INTRODUCTION

1. Overview

The Review of Particle Physics and the abbreviated version, the Particle Physics Booklet, are reviews of the field of Particle Physics. This complete Review includes a compilation/evaluation of data on particle properties, called the "Particle Listings." These Listings include 2000 new measurements from 610 papers, in addition to the 16,800 measurements from 4850 papers that first appeared in previous editions.

Both books include Summary Tables with our best values and limits for particle properties such as masses, widths or lifetimes, and branching fractions, as well as an extensive summary of searches for hypothetical particles. In addition, we give a long section of "Reviews, Tables, and Plots" on a wide variety of theoretical and experimental topics, a quick reference for the practicing particle physicist.

The Review and the Booklet are published in evennumbered years. This edition is an updating through December 1999 (and, in some areas, well into 2000). As described in the section "Using Particle Physics Databases" following this introduction, the content of this Review is available on the World-Wide Web, and is updated between printed editions (http://pdg.lbl.gov/).

The Summary Tables give our best values of the properties of the particles we consider to be well established, a summary of search limits for hypothetical particles, and a summary of experimental tests of conservation laws.

The Particle Listings contain all the data used to get the values given in the Summary Tables. Other measurements considered recent enough or important enough to mention, but which for one reason or another are not used to get the best values, appear separately just beneath the data we do use for the Summary Tables. The Particle Listings also give information on unconfirmed particles and on particle searches, as well as short "reviews" on subjects of particular interest or controversy.

The Particle Listings were once an archive of all published data on particle properties. This is no longer possible because of the large quantity of data. We refer interested readers to earlier editions for data now considered to be obsolete.

We organize the particles into six categories:

Gauge and Higgs bosons

Leptons Quarks

Mesons Baryons

Searches for monopoles,

supersymmetry, compositeness, etc.

The last category only includes searches for particles that do not belong to the previous groups; searches for heavy charged leptons and massive neutrinos, by contrast, are with the leptons.

In Sec. 2 of this Introduction, we list the main areas of responsibility of the authors, and also list our large number of consultants, without whom we would not have been able to produce this *Review*. In Sec. 3, we mention briefly the naming scheme for hadrons. In Sec. 4, we discuss our procedures for choosing among measurements of particle

properties and for obtaining best values of the properties from the measurements.

The accuracy and usefulness of this *Review* depend in large part on interaction between its users and the authors. We appreciate comments, criticisms, and suggestions for improvements of any kind. Please send them to the appropriate author, according to the list of responsibilities in Sec. 2 below, or to the LBNL addresses below.

To order a copy of the *Review* or the *Particle Physics* Booklet from North and South America, Australia, and the Far East, write to

Particle Data Group, MS 50-308 Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA or send e-mail to PDG@LBL.GOV.

To order more than one copy of the *Review* or booklet, write to

c/o Anne Fleming Technical Information Division, MS 50B-4206 Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA or send e-mail to ASFLEMING@LBL.GOV.

From all other areas, write to CERN Scientific Information Service

CH-1211 Geneva 23

Switzerland

or send e-mail to LIBDESK@CERN.CH.

or via the WWW from CERN

(http://www.cern.ch/library)
 Publications

2. Authors and consultants

The authors' main areas of responsibility are shown below:

* Asterisk indicates the person to contact with questions or comments

Gauge and Higgs bosons

γ	D.E. Groom*
Gluons	R.M. Barnett,* A.V. Manohar
Graviton	D.E. Groom*
W, Z	C. Caso,* A. Gurtu*
Higgs bosons	K. Hikasa, M.L. Mangano*
Heavy bosons	C. Kolda,* M. Tanabashi, T.G. Trippe*
Axions	M.L. Mangano,* H. Murayama, K.A. Olive

Leptons

Neutrinos	M. Goodman, D.E. Groom,*
	K. Nakamura, K.A. Olive, A. Piepke,
	P. Vogel
e,μ	C. Grab, D.E. Groom*
$ u_{ au}, au$	D.E. Groom, K.G. Hayes, K. Mönig*
Quarks	

Quarks

R.M. Barnett,* A.V. Manohar

Top quark

J.L. Feng, K. Hagiwara, T.G. Trippe*

J.L. Feng, K. Hagiwara, T.G. Trippe*

D.E. Groom*

Mesons

C. Grab, D.E. Groom,* C.G. Wohl π, η

Unstable mesons M. Aguilar-Benitez, C. Amsler, M. Doser,*

S. Eidelman, J.J. Hernández, A. Masoni,

S. Navas, M. Roos, N.A. Törngvist

K (stable) G. Conforto, T.G. Trippe* D (stable) P.R. Burchat, C.G. Wohl*

B (stable) L. Gibbons, K. Honscheid, W.-M. Yao*

Baryons

Stable baryons C. Grab, C.G. Wohl*

Unstable baryons C.G. Wohl,* R.L. Workman Charmed baryons P.R. Burchat, C.G. Wohl*

Bottom baryons L. Gibbons, K. Honscheid, W.-M. Yao*

Miscellaneous searches

Monopole D.E. Groom*

Supersymmetry M.L. Mangano,* H. Murayama, K.A. Olive, • P. Coyle (CPP, Marseille)

Technicolor C. Kolda,* T.G. Trippe*

Compositeness C.D. Carone, M. Tanabashi, T.G. Trippe*

WIMPs and Other J.L. Feng, K. Hikasa, K.A. Olive,

T.G. Trippe*

Reviews, tables, figures, and formulae

R.M. Barnett, D.E. Groom, * T.G. Trippe, C.G. Wohl, W.-M. Yao

Technical support

B. Armstrong,* J.L. Casas Serradilla, B.B. Filimonov, P.S. Gee, S.B. Lugovsky, S. Mankov

The Particle Data Group benefits greatly from the assistance of some 700 physicists who are asked to verify every piece of data entered into this Review. Of special value is the advice of the PDG Advisory Committee which meets annually and thoroughly reviews all aspects of our operation. The members of the 1999 committee were:

- P. Bloch (CERN), Chair
- A. Ali (DESY)
- T. Kondo (KEK)
- P. Kreitz (SLAC)
- Z. Kunszt (ETH Zurich)
- J. LoSecco (Notre Dame)

We have especially relied on the expertise of the following people for advice on particular topics:

- L. Addis (SLAC)
- S.I. Alekhin (COMPAS Group, IHEP, Serpukhov)
- A. Ali (DESY)
- J. Annala (Fermilab)
- T. Appelquist (Yale University)
- M. Artuso (Syracuse University)
- R. Bailey (CERN)
- A.R. Barker (University of Colorado)
- T. Barnes (University of Tennessee)
- J.-L. Basdevant (University of Paris)
- M. Battaylia (University of Helsinki)
- M. Berg (University of Texas)
- E. Berger (ANL)

- S. Bethke (CERN)
- I.I. Bigi (Notre Dame University)
- S. Bilenky (Joint Inst. for Nuclear Research, Dubna)
- M. Billing (Cornell University)
- E. Blucher (University of Chicago)
- R.A. Briere (Harvard University)
- D. Bryman (TRIUMF)
- A. Buras (Tech. University of Munich)
- S.V. Burdin (Budker Inst. of Nuclear Physics)
- M. Carena (Fermilab)
- S. Catani (CERN)
- D. Chakraborty (SUNY, Stony Brook)
- M. Chanowitz (LBNL)
- M. Chertok (Texas A&M University)
- R. Clare (MIT)
- E.D. Commins (University of California, Berkeley)
- J. Conway (Rutgers University)
- G. Cowan (University of Siegen)
- R.L. Crawford (Glasgow)
- R.H. Dalitz (Oxford University)
- S.E. Deustua (LBNL)
- L. Di Ciaccio (Rome University)
- S. Dittmaier (CERN)
- J. Donoghue (University of Massachusetts, Amherst)
- R.K. Ellis (Fermilab)
- J. Ellison (University of California, Riverside)
- A. Falk (Johns Hopkins University)
- A. Favara (California Institute of Technology)
- T. Feldmann (RWTH Aachen)
- T. Ferbel (Rochester University)
- R. Fleischer (DESY)
- G. Fogli (University of Bari)
- S.J. Freedman (LBNL)
- H. Fritzsch (University of Munich)
- F. Gabbiani (Duke University)
- J.-F. Genat (LPHNE, Paris)
- A. Goldhaber (Stony Brook)
- A. Goussiou (SUNY, Stony Brook)
- H. Greenlee (Fermilab)
- J.-F. Grivax (INPNP, University of Paris, Sud)
- E.M. Gullikson (LBNL)
- R. Hagstrom (ANL)
- L. Hall (LBNL)
- F. Halzen (University of Wisconsin)
- D.L. Hartill (Cornell University)
- R. Harris (Fermilab)
- W.C. Haxton (University of Washington)
- J. Hewett (SLAC)
- J. Huston (Michigan State University)
- J. Imazato (KEK)
- G. Isidori (INFN, Frascati)
- P.M. Ivanov (Budker Inst. of Nuclear Physics)
- Yu.M. Ivanov (Petersburg Nuclear Physics Inst.)
- F. James (CERN)
- P. Janot (CERN)
- T. Junk (Carleton University)
- J.A. Kadyk (LBNL)
- R.W. Kenney (LBNL)
- B. Klima (Fermilab)
- I. Koop (Budker Inst. of Nuclear Physics)

- P.P. Krokovny (Budker Inst. of Nuclear Physics)
- S. Kurokawa (KEK)
- M. Lancaster (Bristol University)
- G. Landsberg (Brown University)
- K. Lane (Boston University)
- P. Lefevre (CERN)
- S. Loucatos (Saclay)
- J. Lykken (FNAL)
- G.R. Lynch (LBNL)
- W.C. Martin (NIST)
- P. Meyers (Princeton University)
- A. Milsztajn (DAPNIA, Saclay)
- P.J. Mohr (NIST)
- D. Morgan (Rutherford Appleton Lab)
- H.-G. Moser (Max-Planck-Inst. für Physik, München)
- H.N. Nelson (University of California at Santa Barbara)
- Y. Nir (Weizmann Institutute)
- H. O'Connell (SLAC)
- F. Paige (Brookhaven National Lab)
- V. Parkhomchuk (Budker Inst. of Nuclear Physics)
- F. Parodi (University of Genova)
- R. Partridge (Brown University)
- M. Paulini (LBNL)
- R. Peccei (University of California, Los Angeles)
- M.R. Pennington (University of Durham)
- E. Perevedentsev (Budker Inst. of Nuclear Physics)
- N. Phinney (SLAC)
- B.V.P. Polishchuk (COMPAS Group, IHEP, Serpukhov)
- H.B. Prosper (Florida State University)
- I. Protopopov (Budker Inst. of Nuclear Physics)
- J. Qian (Michigan University)
- A. Quadt (CERN)
- J. Richman (University of California, Santa Barbara)
- T. Rizzo (SLAC)
- B.L. Roberts (Boston University)
- R.G.H. Robertson (University of Washington)
- B.P. Roe (University of Michigan)
- R. Roser (Fermilab)
- J.L. Rosner (University of Chicago)
- P. Roudeau (LAL, Orsay)
- G. Rudolph (University of Innsbruck)
- V. Ruhlmann-Kleider (DAPNIA, CEA-Saclay)
- O. Schneider (CERN)
- J. Seeman (SLAC)
- Yu. Shatunov (Budker Inst. of Nuclear Physics)
- C. Shepherd-Themistocleous (Carleton University)
- M. Shochet (University of Chicago)
- A. Sirlin (New York University)
- T. Stelzer (University of Illinois, Urbana)
- S.L. Stone (Syracuse University)
- S.I. Striganov (COMPAS Group, IHEP, Serpukhov)
- Yu. G. Stroganov (COMPAS Group, IHEP, Serpukhov)
- M. Strovink (LBNL)
- C.W. Stubbs (University of Washington)
- M. Swartz (Johns Hopkins University)
- B.N. Taylor (NIST)
- K.A. Ter-Martirosian (Moscow, ITEP)
- J.L. Tonry (University of Hawaii)
- W. Venus (RAL)
- G. Vignola (Frascati)
- C. Wagner (CERN)

- H. Wahl (CERN)
- A. Warburton (Cornell University)
- C. Weiser (CERN)
- M. Whalley (University of Durham)
- M. White (Harvard University
- C.M. Will (Washington U., St. Louis)
- F. Willeke (DESY)
- G. Wilson (DESY)
- C. Woody (Brookhaven National Lab)
- M.P. Worah (LBNL)
- M. Zeller (Yale University)
- P. Zerwas (DESY)
- C. Zhang (IHEP, Beijing)

3. Naming scheme for hadrons

We introduced in the 1986 edition [2] a new naming scheme for the hadrons. Changes from older terminology affected mainly the heavier mesons made of u, d, and s quarks. Otherwise, the only important change to known hadrons was that the F^{\pm} became the D_s^{\pm} . None of the lightest pseudoscalar or vector mesons changed names, nor did the $c\bar{c}$ or $b\bar{b}$ mesons (we do, however, now use χ_c for the $c\bar{c}$ χ states), nor did any of the established baryons. The Summary Tables give both the new and old names whenever a change has occurred.

The scheme is described in "Naming Scheme for Hadrons" (p. 84) of this *Review*.

We give here our conventions on type-setting style. Particle symbols are italic (or slanted) characters: e^- , p, Λ , π^0 , K_L , D_s^+ , b. Charge is indicated by a superscript: B^- , Δ^{++} . Charge is not normally indicated for p, n, or the quarks, and is optional for neutral isosinglets: η or η^0 . Antiparticles and particles are distinguished by charge for charged leptons and mesons: τ^+ , K^- . Otherwise, distinct antiparticles are indicated by a bar (overline): $\overline{\nu}_{\mu}$, \overline{t} , \overline{p} , \overline{K}^0 , and $\overline{\Sigma}^+$ (the antiparticle of the Σ^-).

4. Procedures

4.1. Selection and treatment of data: The Particle Listings contain all relevant data known to us that are published in journals. With very few exceptions, we do not include results from preprints or conference reports. Nor do we include data that are of historical importance only (the Listings are not an archival record). We search every volume of 20 journals through our cutoff date for relevant data. We also include later published papers that are sent to us by the authors (or others).

In the Particle Listings, we clearly separate measurements that are used to calculate or estimate values given in the Summary Tables from measurements that are not used. We give explanatory comments in many such cases. Among the reasons a measurement might be excluded are the following:

- It is superseded by or included in later results.
- No error is given.
- It involves assumptions we question.
- It has a poor signal-to-noise ratio, low statistical significance, or is otherwise of poorer quality than other data available.
- It is clearly inconsistent with other results that appear to be more reliable. Usually we then state the criterion,

which sometimes is quite subjective, for selecting "more reliable" data for averaging. See Sec. 4.

- It is not independent of other results.
- It is not the best limit (see below).
- It is quoted from a preprint or a conference report.

In some cases, none of the measurements is entirely reliable and no average is calculated. For example, the masses of many of the baryon resonances, obtained from partial-wave analyses, are quoted as estimated ranges thought to probably include the true values, rather than as averages with errors. This is discussed in the Baryon Particle

For upper limits, we normally quote in the Summary Tables the strongest limit. We do not average or combine upper limits except in a very few cases where they may be re-expressed as measured numbers with Gaussian errors.

As is customary, we assume that particle and antiparticle share the same spin, mass, and mean life. The Tests of Conservation Laws table, following the Summary Tables, lists tests of CPT as well as other conservation laws.

We use the following indicators in the Particle Listings to tell how we get values from the tabulated measurements:

- OUR AVERAGE—From a weighted average of selected
- OUR FIT—From a constrained or overdetermined multiparameter fit of selected data.
- OUR EVALUATION—Not from a direct measurement, but evaluated from measurements of related quantities.
- OUR ESTIMATE—Based on the observed range of the data. Not from a formal statistical procedure.
- OUR LIMIT—For special cases where the limit is evaluated by us from measured ratios or other data. Not from a direct measurement.

An experimentalist who sees indications of a particle will of course want to know what has been seen in that region in the past. Hence we include in the Particle Listings all reported states that, in our opinion, have sufficient statistical merit and that have not been disproved by more reliable data. However, we promote to the Summary Tables only those states that we feel are well established. This judgment is, of course, somewhat subjective and no precise criteria can be given. For more detailed discussions, see the minireviews in the Particle Listings.

- 4.2. Averages and fits: We divide this discussion on obtaining averages and errors into three sections:
- (1) treatment of errors; (2) unconstrained averaging;
- (3) constrained fits.
- Treatment of errors: In what follows, the "error" δx means that the range $x \pm \delta x$ is intended to be a 68.3% confidence interval about the central value x. We treat this error as if it were Gaussian. Thus when the error is Gaussian, δx is the usual one standard deviation (1 σ). Many experimenters now give statistical and systematic errors separately, in which case we usually quote both errors, with the statistical error first. For averages and fits, we then add the the two errors in quadrature and use this combined error for δx .

When experimenters quote asymmetric errors $(\delta x)^+$ and $(\delta x)^-$ for a measurement x, the error that we use for that measurement in making an average or a fit with other measurements is a continuous function of these three quantities. When the resultant average or fit \overline{x} is less than $x - (\delta x)^{-}$, we use $(\delta x)^{-}$; when it is greater than $x + (\delta x)^{+}$, we use $(\delta x)^+$. In between, the error we use is a linear function of x. Since the errors we use are functions of the result, we iterate to get the final result. Asymmetric output errors are determined from the input errors assuming a linear relation between the input and output quantities.

In fitting or averaging, we usually do not include correlations between different measurements, but we try to select data in such a way as to reduce correlations. Correlated errors are, however, treated explicitly when there are a number of results of the form $A_i \pm \sigma_i \pm \Delta$ that have identical systematic errors Δ . In this case, one can first average the $A_i \pm \sigma_i$ and then combine the resulting statistical error with Δ . One obtains, however, the same result by averaging $A_i \pm (\sigma_i^2 + \Delta_i^2)^{1/2}$, where $\Delta_i = \sigma_i \Delta [\sum (1/\sigma_i^2)]^{1/2}$. This procedure has the advantage that, with the modified systematic errors Δ_i , each measurement may be treated as independent and averaged in the usual way with other data. Therefore, when appropriate, we adopt this procedure. We tabulate Δ and invoke an automated procedure that computes Δ_i before averaging and we include a note saying that there are common systematic errors.

Another common case of correlated errors occurs when experimenters measure two quantities and then quote the two and their difference, e.g., m_1 , m_2 , and $\Delta = m_2 - m_1$. We cannot enter all of m_1 , m_2 and Δ into a constrained fit because they are not independent. In some cases, it is a good approximation to ignore the quantity with the largest error and put the other two into the fit. However, in some cases correlations are such that the errors on m_1 , m_2 and Δ are comparable and none of the three values can be ignored. In this case, we put all three values into the fit and invoke an automated procedure to increase the errors prior to fitting such that the three quantities can be treated as independent measurements in the constrained fit. We include a note saying that this has been done.

Unconstrained averaging: To average data, we use a standard weighted least-squares procedure and in some cases, discussed below, increase the errors with a "scale factor." We begin by assuming that measurements of a given quantity are uncorrelated, and calculate a weighted average and error as

$$\overline{x} \pm \delta \overline{x} = \frac{\sum_{i} w_{i} \ x_{i}}{\sum_{i} w_{i}} \pm \left(\sum_{i} w_{i}\right)^{-1/2} , \qquad (1)$$

where

$$w_i = 1/(\delta x_i)^2 .$$

Here x_i and δx_i are the value and error reported by the ith experiment, and the sums run over the N experiments. We then calculate $\chi^2 = \sum w_i (\overline{x} - x_i)^2$ and compare it with N-1, which is the expectation value of χ^2 if the measurements are from a Gaussian distribution.

If $\chi^2/(N-1)$ is less than or equal to 1, and there are no known problems with the data, we accept the results.

If $\chi^2/(N-1)$ is very large, we may choose not to use the average at all. Alternatively, we may quote the calculated average, but then make an educated guess of the error, a conservative estimate designed to take into account known problems with the data.

Finally, if $\chi^2/(N-1)$ is greater than 1, but not greatly so, we still average the data, but then also do the following:

(a) We increase our quoted error, $\delta \overline{x}$ in Eq. (1), by a scale factor S defined as

$$S = \left[\chi^2 / (N - 1) \right]^{1/2} . \tag{2}$$

Our reasoning is as follows. The large value of the χ^2 is likely to be due to underestimation of errors in at least one of the experiments. Not knowing which of the errors are underestimated, we assume they are all underestimated by the same factor S. If we scale up all the input errors by this factor, the χ^2 becomes N-1, and of course the output error $\delta \bar{x}$ scales up by the same factor. See Ref. 3.

When combining data with widely varying errors, we modify this procedure slightly. We evaluate S using only the experiments with smaller errors. Our cutoff or ceiling on δx_i is arbitrarily chosen to be

$$\delta_0 = 3N^{1/2} \, \delta \overline{x} \, ,$$

where $\delta \overline{x}$ is the unscaled error of the mean of all the experiments. Our reasoning is that although the low-precision experiments have little influence on the values \overline{x} and $\delta \overline{x}$, they can make significant contributions to the χ^2 , and the contribution of the high-precision experiments thus tends to be obscured. Note that if each experiment has the same error δx_i , then $\delta \overline{x}$ is $\delta x_i/N^{1/2}$, so each δx_i is well below the cutoff. (More often, however, we simply exclude measurements with relatively large errors from averages and fits: new, precise data chase out old, imprecise data.)

Our scaling procedure has the property that if there are two values with comparable errors separated by much more than their stated errors (with or without a number of other values of lower accuracy), the scaled-up error $\delta \overline{x}$ is approximately half the interval between the two discrepant values.

We emphasize that our scaling procedure for *errors* in no way affects central values. And if you wish to recover the unscaled error $\delta \overline{x}$, simply divide the quoted error by S.

(b) If the number M of experiments with an error smaller than δ_0 is at least three, and if $\chi^2/(M-1)$ is greater than 1.25, we show in the Particle Listings an ideogram of the data. Figure 1 is an example. Sometimes one or two data points lie apart from the main body; other times the data split into two or more groups. We extract no numbers from these ideograms; they are simply visual aids, which the reader may use as he or she sees fit.

Each measurement in an ideogram is represented by a Gaussian with a central value x_i , error δx_i , and area proportional to $1/\delta x_i$. The choice of $1/\delta x_i$ for the area is somewhat arbitrary. With this choice, the center of gravity of the ideogram corresponds to an average that uses weights $1/\delta x_i$ rather than the $(1/\delta x_i)^2$ actually used in the averages. This may be appropriate when some of the experiments have seriously underestimated systematic errors. However, since for this choice of area the height of the Gaussian for each measurement is proportional to $(1/\delta x_i)^2$, the peak position of the ideogram will often favor the high-precision measurements at least as much as does the least-squares average. See our 1986 edition [2] for a detailed discussion of the use of ideograms.

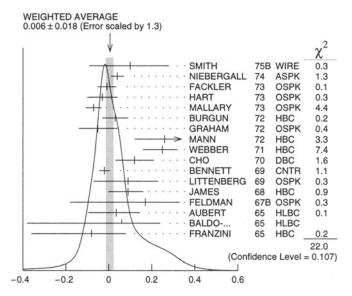


Figure 1: A typical ideogram. The arrow at the top shows the position of the weighted average, while the width of the shaded pattern shows the error in the average after scaling by the factor S. The column on the right gives the χ^2 contribution of each of the experiments. Note that the next-to-last experiment, denoted by the incomplete error flag (\bot) , is not used in the calculation of S (see the text).

4.2.3. Constrained fits: Except for trivial cases, all branching ratios and rate measurements are analyzed by making a simultaneous least-squares fit to all the data and extracting the partial decay fractions P_i , the partial widths Γ_i , the full width Γ (or mean life), and the associated error matrix.

Assume, for example, that a state has m partial decay fractions P_i , where $\sum P_i = 1$. These have been measured in N_r different ratios R_r , where, e.g., $R_1 = P_1/P_2$, $R_2 = P_1/P_3$, etc. [We can handle any ratio R of the form $\sum \alpha_i P_i / \sum \beta_i P_i$, where α_i and β_i are constants, usually 1 or 0. The forms $R = P_i P_j$ and $R = (P_i P_j)^{1/2}$ are also allowed.] Further assume that each ratio R has been measured by N_k experiments (we designate each experiment with a subscript k, e.g., R_{1k}). We then find the best values of the fractions P_i by minimizing the χ^2 as a function of the m-1 independent parameters:

$$\chi^2 = \sum_{r=1}^{N_r} \sum_{k=1}^{N_k} \left(\frac{R_{rk} - R_r}{\delta R_{rk}} \right)^2 , \qquad (3)$$

where the R_{rk} are the measured values and R_r are the fitted values of the branching ratios.

In addition to the fitted values \overline{P}_i , we calculate an error matrix $\langle \delta \overline{P}_i \ \delta \overline{P}_j \rangle$. We tabulate the diagonal elements of $\delta \overline{P}_i = \langle \delta \overline{P}_i \ \delta \overline{P}_i \rangle^{1/2}$ (except that some errors are scaled as discussed below). In the Particle Listings, we give the complete correlation matrix; we also calculate the fitted value of each ratio, for comparison with the input data, and list it above the relevant input, along with a simple unconstrained average of the same input.

Three comments on the example above:

(1) There was no connection assumed between measurements of the full width and the branching ratios. But

often we also have information on partial widths Γ_i as well as the total width Γ . In this case we must introduce Γ as a parameter in the fit, along with the P_i , and we give correlation matrices for the widths in the Particle Listings.

- (2) We do not allow for correlations between input data. We do try to pick those ratios and widths that are as independent and as close to the original data as possible. When one experiment measures all the branching fractions and constrains their sum to be one, we leave one of them (usually the least well-determined one) out of the fit to make the set of input data more nearly independent.
- (3) We calculate scale factors for both the R_r and P_i when the measurements for any R give a larger-than-expected contribution to the χ^2 . According to Eq. (3), the double sum for χ^2 is first summed over experiments k=1 to N_k , leaving a single sum over ratios $\chi^2 = \sum \chi_r^2$. One is tempted to define a scale factor for the ratio r as $S_r^2 = \chi_r^2/\langle \chi_r^2 \rangle$. However, since $\langle \chi_r^2 \rangle$ is not a fixed quantity (it is somewhere between N_k and N_{k-1}), we do not know how to evaluate this expression. Instead we define

$$S_r^2 = \frac{1}{N_k} \sum_{k=1}^{N_k} \frac{\left(R_{rk} - \overline{R}_r\right)^2}{\left(\delta R_{rk}\right)^2 - \left(\delta \overline{R}_r\right)^2} \,, \tag{4}$$

where $\delta \overline{R}_r$ is the fitted error for ratio r. With this definition the expected value of S_r^2 is one.

The fit is redone using errors for the branching ratios that are scaled by the larger of S_r and unity, from which new and often larger errors $\delta \overline{P}_i'$ are obtained. The scale factors we finally list in such cases are defined by $S_i = \delta \overline{P}_i'/\delta \overline{P}_i$. However, in line with our policy of not letting S affect the central values, we give the values of \overline{P}_i obtained from the original (unscaled) fit.

There is one special case in which the errors that are obtained by the preceding procedure may be changed. When a fitted branching ratio (or rate) \overline{P}_i turns out to be less than three standard deviations $(\delta \overline{P}_i')$ from zero, a new smaller error $(\delta \overline{P}_i'')^-$ is calculated on the low side by requiring the area under the Gaussian between $\overline{P}_i - (\delta \overline{P}_i'')^-$ and \overline{P}_i to be 68.3% of the area between zero and \overline{P}_i . A similar correction is made for branching fractions that are within three standard deviations of one. This keeps the quoted errors from overlapping the boundary of the physical region.

4.3. Discussion: The problem of averaging data containing discrepant values is nicely discussed by Taylor in Ref. 4. He considers a number of algorithms that attempt to incorporate inconsistent data into a meaningful average. However, it is difficult to develop a procedure that handles simultaneously in a reasonable way two basic types of situations: (a) data that lie apart from the main body of the data are incorrect (contain unreported errors); and (b) the opposite—it is the main body of data that is incorrect. Unfortunately, as Taylor shows, case (b) is not infrequent. He concludes that the choice of procedure is less significant than the initial choice of data to include or exclude.

We place much emphasis on this choice of data. Often we solicit the help of outside experts (consultants). Sometimes, however, it is simply impossible to determine which of a set of discrepant measurements are correct. Our scale-factor technique is an attempt to address this ignorance by increasing the error. In effect, we are saying that present experiments do not allow a precise determination of this

quantity because of unresolvable discrepancies, and one must await further measurements. The reader is warned of this situation by the size of the scale factor, and if he or she desires can go back to the literature (via the Particle Listings) and redo the average with a different choice of data.

Our situation is less severe than most of the cases Taylor considers, such as estimates of the fundamental constants like \hbar , etc. Most of the errors in his case are dominated by systematic effects. For our data, statistical errors are often at least as large as systematic errors, and statistical errors are usually easier to estimate. A notable exception occurs in partial-wave analyses, where different techniques applied to the same data yield different results. In this case, as stated earlier, we often do not make an average but just quote a range of values.

A brief history of early Particle Data Group averages is given in Ref. 3. Figure 2 shows some histories of our values of a few particle properties. Sometimes large changes occur. These usually reflect the introduction of significant new data or the discarding of older data. Older data are discarded in favor of newer data when it is felt that the newer data have smaller systematic errors, or have more checks on systematic errors, or have made corrections unknown at the time of the older experiments, or simply have much smaller errors. Sometimes, the scale factor becomes large near the time at which a large jump takes place, reflecting the uncertainty introduced by the new and inconsistent data. By and large, however, a full scan of our history plots shows a dull progression toward greater precision at central values quite consistent with the first data points shown.

We conclude that the reliability of the combination of experimental data and our averaging procedures is usually good, but it is important to be aware that fluctuations outside of the quoted errors can and do occur.

ACKNOWLEDGMENTS

The publication of the Review of Particle Physics is supported by the Director, Office of Science, Office of High Energy and Nuclear Physics, the Division of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098; by the U.S. National Science Foundation under Agreement No. PHY-9703140; by the European Laboratory for Particle Physics (CERN); by an implementing arrangement between the governments of Japan (Monbusho) and the United States (DOE) on cooperative research and development; and by the Italian National Institute of Nuclear Physics (INFN).

We thank all those who have assisted in the many phases of preparing this *Review*. We particularly thank the many who have responded to our requests for verification of data entered in the Listings, and those who have made suggestions or pointed out errors.

REFERENCES

- 1. The previous edition was Particle Data Group: C. Caso et al., Eur. Phys. J. C3, 1 (1998).
- Particle Data Group: M. Aguilar-Benitez et al., Phys. Lett. 170B (1986).
- 3. A.H. Rosenfeld, Ann. Rev. Nucl. Sci. 25, 555 (1975).
- 4. B.N. Taylor, "Numerical Comparisons of Several Algorithms for Treating Inconsistent Data in a Least-Squares Adjustment of the Fundamental Constants," U.S. National Bureau of Standards NBSIR 81-2426 (1982).

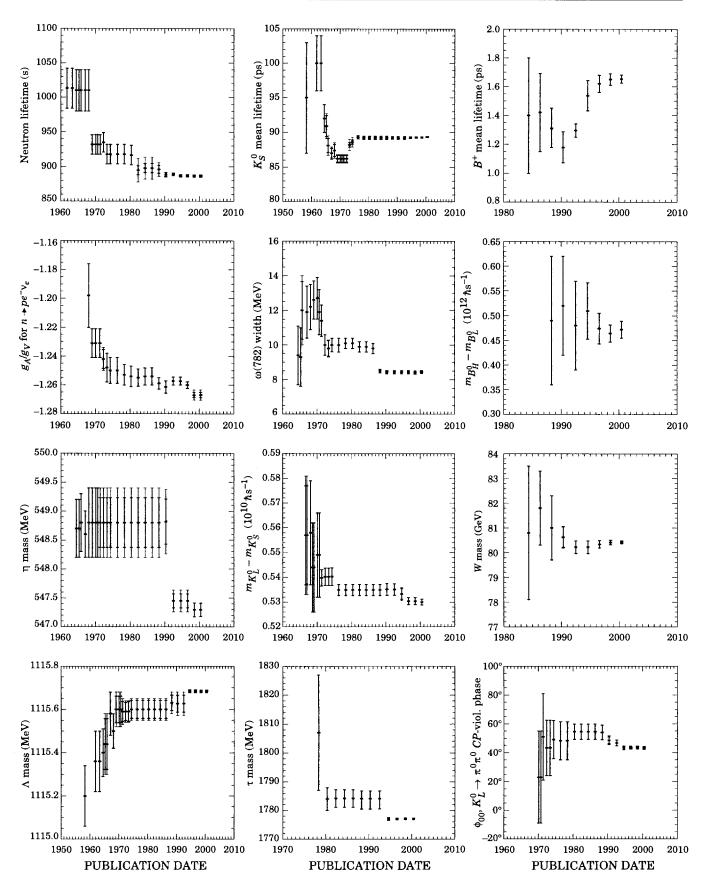


Figure 2: An historical perspective of values of a few particle properties tabulated in this *Review* as a function of date of publication of the *Review*. A full error bar indicates the quoted error; a thick-lined portion indicates the same but without the "scale factor."

ONLINE PARTICLE PHYSICS INFORMATION

Revised April 2000 by P. Kreitz (SLAC).

The purpose of this list is to organize a broad set of online catalogs, databases, directories, World-Wide Web (WWW) pages, etc., that are of value to the particle physics community. This compilation is prescreened and highly selective. It attempts to describe the scope, size, and organization of the resources so that efficient choices can be made amongst many sites which may appear similar. Because this list must be fixed in print, it is important to consult the updated version of this compilation which includes newly added resources and hypertext links to more complete information at:

http://www.slac.stanford.edu/library/pdg/

In this edition, a resource is excluded if it provides information primarily of interest to one institution. In the case where there are multiple resources covering similar material, an attempt has been made in the annotation to identify the particular strength of each source. Databases and resources focusing primarily on accelerator physics have been excluded in deference to the excellent compilation at the World Wide Web Virtual Library of Beam Physics and Accelerator Technology:

http://www.slac.stanford.edu/grp/arb/dhw/dpb/w3vl/w3.html

My thanks to Betty Armstrong, Particle Data Group, Molly Moss, SLAC Library, Rich Dominiak, SLAC Library, and the many particle physics Web site and database maintainers who have all given me their generous assistance. Please send suggestions, additions, changes, ideas for category groupings, exclusions, etc., by e-mail to pkreitz@slac.stanford.edu.

1. Particles & Properties Data:

• REVIEW OF PARTICLE PHYSICS (RPP): A biennial comprehensive review summarizing much of the known data about the field of Particle Physics produced by the international Particle Data Group (PDG). Includes a compilation/evaluation of data on particle properties, summary tables with best values and limits for particle properties, extensive summaries of searches for hypothetical particles, and a long section of reviews, tables, and plots on a wide variety of theoretical and experimental topics of interest to particle and astrophysicists. The linked table of contents provides access to particle listings, reviews, summary tables, errata, indices, etc. The current printed version is Eur. Phys. J. C15, 1 (2000). Maintained at:

http://pdg.lbl.gov/

• PARTICLE PHYSICS BOOKLET: A pocket-sized booklet containing the Summary Tables and abbreviated versions of some of the other sections of the full Review of Particle Physics. This is extracted from the most recent edition of the full RPP. Contains images in an easy-to-read print useful for classroom studies. The last edition was July 1998 and the next edition will be August 2000. Until the new edition is published and available via the Web, students, teachers, and researchers should use the full RPP:

http://pdg.lbl.gov/

• COMPUTER-READABLE FILES: Currently available from the PDG: Tables of masses, widths, and PDG Monte Carlo particle numbers and cross-section data, including hadronic total and elastic cross sections vs laboratory momenta, and total center-of-mass energy. Check out the Palm Pilot version of the table of masses, widths, and PDG Monte Carlo particle numbers. This version will be updated in the Summer of even-numbered years coinciding with the production of the Review of Particle Properties:

http://pdg.lbl.gov/computer_read.html

 PARTICLE PHYSICS DATA SYSTEM: Contains an indexed bibliography of experimental particle physics (1895 - 1995) and computerized numerical data extracted from publications. The Web interfaces permitting simple searching for numerical data on observables in reactions and for compilations of integrated cross-section data are still under construction. Maintained by the COMPAS group at IHEP: • HEPDATA: Reaction Data Database: A part of the HEPDATA databases at University of Durham/RAL, this database is compiled by the Durham Database Group (UK) with help from the COMPAS Group (Russia) for the PDG. Contains numerical values of HEP reaction data such as total and differential cross sections, fragmentation functions, structure functions, and polarization measurements from a wide range of experiments. Updated at regular intervals and contains links to precompiled reviewed data such as 'Structure Functions in DIS', 'Single Photon Production in Hadronic Interactions', and 'Drell-Yan Cross-Sections':

http://durpdg.dur.ac.uk/HEPDATA/REAC

NIST Physics Laboratory: This unit of the National Institute
of Standards and Technology provides measurement services
and research for electronic, optical, and radiation technologies.
Two sub-pages, one on Physical Reference Data and another on
Constants, Units & Uncertainty are extremely useful. Additional
links to other physical properties and data of tangential interest to
particle physics are also available from this page:

http://physics.nist.gov/

2. Collaborations & Experiments:

• EXPERIMENTS Database: Contains more than 2,000 experiments in elementary particle physics covering past, current, and proposed experiments in both accelerator and non-accelerator physics. Simple searches by: participant; title; experiment number; institution; date approved; accelerator; or detector; return a result that fully describes the experiment, including a complete list of authors, title, description of the experiment's goals and methods, a list of resulting journal articles, and a link to the experiment's Web page if available:

http://www.slac.stanford.edu/spires/experiments/

• EXPERIMENTS ONLINE: Current Experiments in Particle Physics: A list of almost 500 current experiments with active home pages. This list is abstracted from the EXPERIMENTS Database and links back to it for more complete information. Accelerator experiments are organized by institution, machine, and experiment name. Non-accelerator experiments are alphabetical by name:

http://www.slac.stanford.edu/spires/experiments/online.exp.html

• HIGH ENERGY PHYSICS EXPERIMENTS: A HEPiC page providing links to collaboration Web pages. Collaborations are arranged alphabetically by name or number under 15 major laboratories or in a catch-all group labeled 'Other':

http://www.hep.net/experiments/all_sites.html

3. Conferences:

CONFERENCES: Contains conferences, schools, and meetings
of interest to high-energy physics and related fields. Searchable
SPIRES database produced by the SLAC, DESY, CERN, and
KEK libraries with 9,000 listings covering 1973 to 2002+. Search
or browse by title, acronym, date, location. Includes information
about published proceedings, links to submitted papers from the
SPIRES-HEP database, and links to the conference website when
available. New feature permits searches by day, month, quarter, or
year:

http://www.slac.stanford.edu/spires/conferences.html

• CONFERENCES AND CONFERENCES: (Subtitled: There Are Too Many Conferences!): Lists over a hundred current and future meetings in many fields of physics. This Web page provides a complete list of all conferences in ASCII or specialized lists arranged by topic: particle, quantum, condensed matter, classical, mathematical or interdisciplinary physics are provided. Includes links to the conference Web page and the contact:

http://www.physics.umd.edu/robot/confer/confmenu.html

 CONFERENCES, WORKSHOPS AND SCHOOLS: Maintained by the PhysicsWeb, this site contains several hundred entries for current national and regional physics meetings worldwide. Searchable by sub-discipline or by free text words. Provides a Web form and email address for adding a conference. Automatically uploads new entries to the EPS EurophysNet meeting list:

http://physicsweb.org/TIPTOP/FORUM/CONF/

 EUROPHYSICS MEETINGS LIST: Maintained by the European Physical Society, this international list of links to other conference lists is organized alphabetically by name of the organization, institution or other group providing a particular list of conferences. Useful for searching by organization and for providing access to meetings and conferences that are of peripheral interest:

http://epswww.epfl.ch/conf/urls.html

• HEP Events: A list maintained by CERN of approximately 100 upcoming conferences, schools, workshops, seminars, and symposia of interest to high-energy physics. Usefully organized by type of meeting, e.g.: school, workshop:

http://www.cern.ch/Physics/Events

4. Current Notices & Announcement Services:

 SUBMIT EVENTS: PhysicsWeb Calendar: Maintained by The Internet Pilot to Physics. Provides a Web form for adding a conference and automatically uploads new entries to the EPS EurophysNet meeting list. Directions on the top-level page enable you to sign up to receive weekly email notification of new conferences and deadlines:

http://physicsweb.org/events/newconfentry.phtml

- CONFNEWS & WEBNEWS: Provides a system for broadcasting a conference or job opening to "a large number of physicists worldwide." For further information, e-mail: yskim@physics.umd.edu
- E-PRINT ARCHIVES LISTSERV NOTICES: The LANL-based E-Print Archives provides daily notices of preprints in the fields of physics, mathematics, nonlinear sciences, and computer sciences which have been submitted to the archives as full text electronic documents. Use the Web-accessible listings:

http://xxx.lanl.gov/ or subscribe:

http://xxx.lanl.gov/help/subscribe

 NEW EXPERIMENTS Announcement: Submit information about a new particle physics experiment to the SPIRES EXPERIMENTS Database or modify an older entry using the form at:

http://www.slac.stanford.edu/spires/experiments/ submit.html

• SPIRES NEW CONFERENCES IN PARTICLE PHYSICS: Use this form, or send email or a fax to submit information about a conference of value to the field of particle physics:

http://www.slac.stanford.edu/spires/conferences/add_conference.html

Note: Use the library pages in Section 5.3 below to find additional announcement lists for recently received preprints, books, and proceedings. Use the online journal links in Section 7 below for journal table of contents.

5. Directories:

5.1. Directories—Research Institutions:

• CERN RESEARCH INSTITUTES: Contains HEP Institutes used in the CERN Library catalog. Provides almost a thousand addresses, and, where available, the following: phone and fax numbers; e-mail addresses; active Web links; and information about the institution's physics program. Provides free text searching and result sorting by organization, country, or town:

http://weblib.cern.ch/Home/HEPInstitutes/

 HEP INSTITUTIONS ONLINE: Active links to the home pages of more than 800 HEP-related institutions with Web servers. Maintained by SLAC. Listed by country, and then alphabetically by institution:

http://www.slac.stanford.edu/spires/institutions/online_institutions.html

• INSTITUTIONS: Database of over 6,000 high-energy physics institutes, laboratories, and university departments in which some research on particle physics is performed. Covers six continents and almost one hundred countries. Searchable by name, acronym, location, etc. Provides address, phone and fax numbers, e-mail address, and Web links where available. Has pointers to the recent HEP papers from that institution. Maintained by SLAC and DESY libraries:

http://www.slac.stanford.edu/spires/institutions/

PHYSICSWEB LINKS: SEARCH DEPARTMENTS: A useful
database of web links to the home pages of physics departments
worldwide. Searchable by field of research, country, or by a
combination of both. Results vary since information is dependent
upon submission by the institutions or by individual departments
from a university:

http://physicsweb.org/resources/dsearch.phtml

 WWW VIRTUAL LIBRARY—HIGH ENERGY PHYSICS WEB SITES: An alphabetical listing of particle physics web sites maintained at CERN. Provides links to the institution's Web pages. Somewhat difficult to use because entries are listed by institutional acronym or by short name:

http://www.cern.ch/Physics/HEP.html

5.2. Directories—People:

• HEPNAMES: Searchable worldwide database of 37,000 e-mail addresses of people associated with particle physics, synchrotron radiation, and related fields:

http://www.slac.stanford.edu/spires/hepnames/

• HEP VIRTUAL PHONEBOOK: A list of links to phonebooks and directories of high-energy physics sites and collaborations around the world. Very useful if you know the place or group and are trying to find a particular individual. Maintained by HEPiC:

http://www.hep.net/sites/directories.html

 US-HEPFOLK: A searchable database of almost 3,500 physicists from 155 U.S. institutions based on a survey conducted in 1997.
 Searchable by first or last name, by affiliation, and/or by email address. Also provides some interesting demographic plots of the survey data:

http://pdg.lbl.gov/us-hepfolk/index.html

5.3. Directories—Libraries:

• Argonne National Lab Library:

http://www.library.anl.gov/library/services.html

• Berkeley Lab (LBNL) Library:

http://www-library.lbl.gov/

• Brookhaven National Lab Library:

http://inform.bnl.gov/RESLIB/reslib.html

- (CERN) European Organization for Nuclear Research Library: http://library.cern.ch/
- Deutsches Elektronen-Synchrotron (DESY) Library: http://www-library.desy.de/
- Fermilab Library:

http://fnalpubs.fnal.gov/

• Jefferson Lab Library:

http://www.jlab.org/div_dept/admin/library/

- (KEK) National Laboratory for High Energy Physics Library: http://www-lib.kek.jp/publib.html
- Lawrence Livermore National Laboratory Library: http://www.llnl.gov/tid/Library.html
- Los Alamos National Laboratory Library: http://lib-www.lanl.gov/
- Oak Ridge National Laboratory Library:
 http://www.ornl.gov/Library/library-home.html
- Sandia National Laboratory Library: http://www.sandia.gov/library.htm
- Stanford Linear Accelerator Center Library: http://www.slac.stanford.edu/library

5.4. Directories—Publishers:

 COMPANIES/PUBLISHERS: Contains 50 links to institutions, societies, or companies involved in supplying physics-related information:

• DIRECTORY OF PUBLISHERS AND VENDORS: Outstanding and comprehensive directory of web links to publishers. Additional lists include publishers' email addresses and a directory of science book reviews on the web. Publisher and vendor lists are searchable alphabetically or by subject areas: Science, Mathematics, and Technology Publishers; Biomedical Publishers; Computer Publishers; Engineering Publishers; General Publishers; Natural History Publishers, and University Presses:

http://www.library.vanderbilt.edu/law/acqs/pubr.html

5.5. Directories—Scholarly Societies:

• American Association for the Advancement of Science: http://www.aaas.org/

• American Association of Physics Teachers:

http://www.aapt.org/

• American Astronomical Society:

http://www.aas.org

• American Institute of Physics:

http://www.aip.org/

• American Mathematical Society:

http://www.ams.org/

American Physical Society:

http://www.aps.org

• European Physical Society:

http://epswww.epfl.ch/

• IEEE Nuclear and Plasma Sciences Society:

http://hibp7.ecse.rpi.edu/~connor/ieee/npss.html

• Institute of Physics:

http://www.iop.org/

 PHYSICSWEB LINKS: SOCIETIES/PHYSICAL: Contains 141 links to societies involved in the physical sciences. Organized by country with some entries containing a small annotation describing the society's focus:

http://physicsweb.org/resources/paw.phtml?k= Societies/Physical&o=country&t=k&f=1

RESOURCES OF SCHOLARLY SOCIETIES—PHYSICS: Alphabetical list of several hundred scholarly societies with links to their websites. Includes acronyms and indicates when a website contains both its native language and an English-language version. Maintained by the University of Waterloo:

http://www.lib.uwaterloo.ca/society/physics_soc.html

6. E-Prints/Pre-Prints, Papers, & Reports:

CERN ARTICLES & PREPRINTS: The CERN Library's database
which contains records of more than 200,000 (CERN and nonCERN) articles, preprints, theses, CERN Yellow reports, technical
notes, Grey Books, and official committee documents held by
the Library or the Archives. Provides access to full text of the
document and to the references when available:

http://weblib.cern.ch/Home/Library_Catalogue/ Articles_and_Preprints/

• HEP DATABASE (SPIRES): Contains over 415,000 bibliographic summaries for particle physics e-prints, journal articles, preprints, reports, conferences papers, and theses, etc. Covers 1974 to the present with substantial older materials added. Updated daily with links to electronic texts (e.g. from LANL, CERN, KEK, and other HEP servers). Searchable by all authors and authors' affiliations, title, topic, report number, citation (footnotes), e-print archive number, date, journal, etc. A joint project of the SLAC and DESY libraries with the collaboration of Fermilab, Durham (UK), KEK, Kyoto, and many other research institutions and scholarly societies such as the APS:

http://www.slac.stanford.edu/spires/hep/

 KISS (KEK Information Service System) for Preprints: KEK Library preprint and technical report database. Contains bibliographic records of preprints and technical reports held in the KEK library with links to the full text images of more than 100,000 papers scanned from their worldwide collection of preprints:

http://www-lib.kek.jp/KISS/kiss_prepri.html

arXive.org E-PRINT ARCHIVE: An automated electronic repository of physics, mathematics, computer, and nonlinear science preprints. Used heavily by the sub-disciplines of highenergy physics. Began with a core set of archives in 1991. Provides access to the full text of the electronic versions of these preprints. Permits searching by author, title, and keyword in abstract. Allows limiting by subfield archive or by date. Has over 15 mirror sites around the world. Papers are sent electronically to the archives by authors:

http://xxx.lanl.gov

• PARTICLE PHYSICS DATA SYSTEM—PPDS: A search interface to the bibliography of the print publication A Guide to Experimental Elementary Particle Physics Literature (LBL-90). This bibliography covers the published literature of theoretical and experimental particle physics from 1895 to 1995:

http://pdg.lbl.gov/ppds

• PPF: PREPRINTS IN PARTICLES AND FIELDS: A weekly listing averaging 250 new preprints in particle physics and related fields. Contains bibliographic listings for and, in the Web version, full text links to, the new preprints received by and cataloged into the SPIRES High-Energy Physics (HEP) database. Includes that week's titles from the LANL e-print archives as well as preprints and articles received from other sources. Directions for subscribing to an email version can be found on the page listing the most recent week's preprints:

http://www.slac.stanford.edu/library/documents/newppf.html

7. Particle Physics Journals & Reviews:

7.1. Online Journals and Tables of Contents:

Please note, some of these journals, publishers, and reviews may limit access to subscribers. If you encounter access problems, check with your institution's library.

 Advances in Theoretical and Mathematical Physics: Bimonthly electronic and hard copy publication. Table of contents has links to LANL E-Print Archives where papers for this journal are submitted:

http://www.intlpress.com/journals/ATMP/

 American Journal of Physics: A monthly publication of the American Association of Physics Teachers on instructional and cultural aspects of physical science:

http://ojps.aip.org/ajp

 Applied Physics Letters: Weekly publication of short (3 pages maximum) articles:

http://ojps.aip.org/aplo/

 Astrophysical Journal: Published three times a month by the American Astronomical Society. See also AAS entry under Journal Publishers (below):

http://www.journals.uchicago.edu/ApJ/

 Classical and Quantum Gravity: Published 24 times a year by IOP:

http://www.iop.org/Journals/cq

 European Physical Journal A: Hadrons and Nuclei: This monthly journal merges Il Nuovo Cimento A and Zeitschrift fur Physik A:

http://link.springer.de/link/service/journals/ 10050/index.htm • European Physical Journal C: Particles and Fields: This twice monthly journal is the successor to Zeitschrift fur Physik C:

http://link.springer.de/link/service/journals/ 10052/index.htm

Journal of High Energy Physics: Electronic and print available.
 Like ATMP, this is an electronically-run journal. It accepts email submission notices and 'fetches' the submitted paper from the LANL E-print archives:

http://jhep.sissa.it/

 Journal of Physics G: Nuclear and Particle Physics: Monthly, published by IOP:

http://www.iop.org/Journals/jg

 Journal of the Physical Society of Japan: JPSJ Online: Monthly, online since 1993:

http://www.soc.nacsis.ac.jp/jps/jpsj/index.html

 Modern Physics Letters A: Published 40 times a year, this contains research papers in gravitation, cosmology, nuclear physics, and particles and fields. Brief Review section for short reports on new findings and developments:

http://www.wspc.com.sg/journals/mpla/mpla.html

 Modern Physics Letters B: Published 40 times a year, this contains research papers in condensed matter physics, statistical physics, applied physics and High Tc Superconductivity. Brief Review section for short reports on new findings and developments:

http://www.wspc.com.sg/journals/mplb/mplb.html

 New Journal of Physics: Funded by article charges from authors of published papers, NJP is available in a free, electronic form:

http://www.njp.org/

 Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors, and Associated Equipment: Published approximately 36 times per year, this journal focuses on instrumentation and large scale facilities:

http://www.elsevier.nl/locate/nima

 Nuclear Physics A: Nuclear and Hadronic Physics: http://www.elsevier.nl/inca/publications/ store/5/0/5/7/1/5/

 Nuclear Physics B: Particle Physics, Field Theory, Statistical Systems, and Mathematical Physics:

http://www.elsevier.nl/inca/publications/store/5/0/5/7/1/6/

 Nuclear Physics B: Proceedings Supplement: Publishes proceedings of international conferences and topical meetings in high-energy physics and related areas:

http://www.elsevier.nl/inca/publications/ store/5/0/5/7/1/7/

 Physical Review D: Particles, Fields, Gravitation, and Cosmology: Published 24 times a year:

http://prd.aps.org/

 Physical Review Special Topics - Accelerators and Beams: A peer-reviewed electronic journal freely available from the APS:

http://prst-ab.aps.org/

 Physics Letters B: Nuclear and Particle Physics: Published weekly: http://www.elsevier.nl/locate/plb

 Physics—Uspekhi: English edition of Uspekhi Fizicheskikh Nauk: http://ufn.ioc.ac.ru/

 Progress in Particle and Nuclear Physics: Published four times a year. Many, but not all, articles are at a level suitable for the general nuclear and particle physicist:

http://www.elsevier.nl/locate/ppartnuclphys

7.2. Journals - Directories:

• DESY Library Electronic Journals: Use this Web page for upto-date links to electronic journals of interest to particle physics. Contains a broader list than is included in this compilation:

http://www-library.desy.de/eljnl.html

 Electronic Journals: A directory of over 900 science, technology, and engineering journals online compiled by the University of Buffalo's Science and Engineering Library:

http://ublib.buffalo.edu/libraries/units/sel/collections/ejournal2.html

7.3. Journals - Publishers & Repositories:

• AAS: NASA Astrophysics Data System: Provides free electronic access to back issues of the Astrophysical Journal, Astrophysical Journal Letters, and the Astrophysical Journal Supplement Series through the end of 1996. The NASA ADS is in the process of scanning more back issues and will eventually make the complete ApJ available:

http://adswww.harvard.edu/

• AIP JOURNAL CENTER: The American Institute of Physics' top-level page for their electronic journals may be found at:

http://www.aip.org/ojs/service.html

 AMERICAN PHYSICAL SOCIETY: The top-level page for the APS research journals is:

http://publish.aps.org/

• ELSEVIER SCIENCE: This website enables browsing Elsevier-published journals by subject field. Selecting 'physics' and publication type 'journals' returns an intermediate page with links organized by the first letter of the name of the journal. Thus one must select "A" to retrieve a list of all of Elsevier's physics-related journals beginning with that letter. A somewhat inefficient way to search what Elsevier offers:

http://www.elsevier.nl/homepage/

- EUROPEAN PHYSICAL SOCIETY: Their journals are handled by various publishers but may be reached from this top-level page: http://epswww.epfl.ch/pub/index.html
- INSTITUTE OF PHYSICS: Journals: Information: A list of the IOP journals organized by subject. A page organized by title is also available linked to this page:

http://www.iop.org/Journals/jnlsubj

• SPRINGER PUBLISHING: Physics: This link provides a list of Springer journals covering topics of interest to physicists. Small bullets containing the letter 'E' beside each title indicate which journals are electronic:

http://link.springer.de/ol/pol/all.htm

7.4. Review Publications:

Net Advance of Physics: A free electronic service providing review
articles and tutorials in an encyclopedic format. Covers all areas
of physics. Includes e-prints, book announcements, full text of
electronic books, and other resources with hypertext links when
available. Welcomes contributions of original review articles:

http://web.mit.edu/afs/athena.mit.edu/ user/r/e/redingtn/www/netadv/welcome.html

 Physics Reports: A review section for Physics Letters A and Physics Letters B. Each report deals with one subject. The reviews are specialized in nature, more extensive than a literature survey but normally less than book length:

http://www.elsevier.nl/locate/physrep

Reviews of Modern Physics: Published quarterly. Includes traditional scholarly reviews and shorter colloquium papers intended

to describe recent research of interest to a broad audience of physicists:

http://www.phys.washington.edu/~rmp/Welcome.html

8. Particle Physics Education Sites:

8.1. Particle Physics Education: General Sites:

 Argonne National Laboratory Gee Whiz!: Includes links to other interesting and publically-accessible information such as the Rube Goldberg Machine Contest; Arts in Science; and the parts of the movie 'Chain Reaction' that were filmed at Argonne:

http://www.anl.gov/OPA/geewhiz.htm

- Brookhaven National Laboratory: Science Museum Programs: http://www.pubaf.bnl.gov/bnl_museum.htm
- Contemporary Physics Education Project (CPEP): Provides charts, brochures, Web links, and classroom activities. Online interactive courses include: Particle Adventure; Fusion Physics of a Fundamental Energy Source; and Nuclear Science ABC's:

http://www.cpepweb.org/

 Center for Particle Astrophysics in Berkeley: Excellent source for online demos aimed at middle school students (modifiable for other levels). Online demonstrations include: Air-Powered Rockets;
 Desktop Stars; Lunar Topography, Ping Pong Ball Launcher;
 Potato Power; Solar System; and more to come. Each includes an introduction, teacher and student worksheets, and a list of materials needed:

http://cfpa.berkeley.edu/Education/DEMOS/DEMOS.html

Fermilab: Education and Outreach Resources for Particle Physicists: Outstanding collection of resources from the 'grandmother' of all physics lab educational programs. Sections are organized for students and educators by grade level and for general visitors:

http://www-ed.fnal.gov/trc/phys_resc.html_resc.html

• Stanford Linear Accelerator Center: This Virtual Visitor's Center website explains basic particle physics, linear and synchrotron accelerators, and the experiments conducted at SLAC. Aimed at the general public, as well as at students and teachers: http://www2.slac.stanford.edu/vvc/home.html

8.2. Particle Physics Education: Meta-Sites:

• ESTEEM: The Department of Energy's exciting and visually appealing meta-site for Education in Science, Technology, Energy, Engineering, and Math. Organized both textually and graphically as a 'city'. Users can explore resources by source (energy and science museums), by subject (windmills, 'playground', virtual experiments, computers), or by targeted audience (university, middle, or elementary students). Provides excellent links to many other sites:

http://www.sandia.gov/ESTEEM/home.html

 Physical Science: Educational Hotlists: Created by the outstanding Franklin Institute Science Museum, these hotlists contain a prescreened list of resources for science educators, students, and enthusiasts. The criteria for inclusion is that a site stimulates creative thinking and learning bout science. The excellent Physical Science list contains useful links for physics, physicists, optics, material science, applied design and engineering, sites for museums, 'doing science,' and inventors and engineers:

http://sln.fi.edu/tfi/hotlists/hotlists.html

 PhysicsEd: Physics Education Resources: From a group renowned for doing research on physics education. Provides links to courses and topics; curriculum development; resources for demonstrations; software; research and projects in physics education; textbooks; journals and newsletters; email discussion groups; reference resources; organizations and companies; FAQ's; and links to much more:

http://www-hpcc.astro.washington.edu/scied/physics.html

8.3. Particle Physics Education: Ask-a-Scientist Sites:

Ask A Scientist: Questions are answered by volunteer scientists
throughout the world. Service provided by the Newton BBS
through Argonne National Lab. Submission form permits very
specific age information to be included with the question so that
the answer can be targeted to the questioner's level of knowledge:

http://newton.dep.anl.gov/aasquest.htm

 How Things Work: The author of the popular How Things Work: the Physics of Everyday Life has created a site that functions as a virtual 'radio call-in program'. Submit questions about how something works or consult the 60 pages of most recent questions which are searchable by date, topic, or keyword:

http://howthingswork.virginia.edu

Mad Scientist's Network: Ask A Question: Responds to hundreds
of questions a week. Be sure to check out their extensive archive
of answered questions:

http://www.madsci.org/submit.html

 The Science Club: An excellent compilation of places to ask science questions. Organized by 'general' sites and then by sites that specialize in specific subjects or professions:

http://www.halcyon.com/sciclub/kidquest.html

8.4. Particle Physics Education: Experiments, Demos, & Fun

Albert Einstein Online: A meta-Einstein site with links to dozens
of resources by and about this scientist. Organized into Overviews;
Moments (recollections of Einstein by others); Physics; Writings;
Quotes; Pictures; and Miscellaneous:

http://www.westegg.com/einstein/

Deep Space: Remote Access Astronomy Project: This project
(RAAP) was developed as a supplement for high school, college or
advanced placement physics courses to enable students to combine
theory with observation by working with satellite imaging data
and a Remotely Operated Telescope. The labs are available as
PostScript and .doc files. Classes should also obtain the 180 page
curriculum and image processing manual available for \$15.00 plus
shipping:

http://www.deepspace.ucsb.edu/rot.htm

 The Edible/Inedible Experiments Archive of the Mad Scientist Network: Astronomy, Mathematics, and Physics are included in the scientific fields covered. Each experiment uses common materials and identifies whether the experiment is edible, inedible, or 'partially drinkable', or 'not all that edible' (!?) categories:

http://www.madsci.org/experiments/

 Pages of Light: From Fermi National Accelerator Laboratory, a delightful collection of pages explaining light at the advanced placement high school level or above:

http://www.fnal.gov/pub/light/

 The Particle Adventure: An interactive tour of particle physics and the inner workings of the atom for the general public, students and teachers. Available in five languages:

http://ParticleAdventure.org/

• Physics Around the World's Educational Section: Contains several useful links to collections of resources particularly the sections covering: Hands-On Experiments; Exercises and Problems; and Demonstrations. Targeted to the university level:

http://physicsweb.org/TIPTOP/paw/

 Science for the Millennium: Expo Web: Aimed at diverse audiences, this site focuses chiefly on astronomy, astrophysics, advanced computation, and virtual environments to showcase recent advances in these fields. The content is deep and the site is well-designed, permitting hierarchical and serendipitous use. Maintained by NCSA with significant help from the Electronic Visualization Laboratory:

http://www.ncsa.uiuc.edu/Cyberia/Expo/ information-pavilion.html

• The Virtual Laboratory: Physics Applets: Maintained by the University of Oregon's Physics Department. A series of experiments using Java applets that are targeted to non-majors physics classes which have no physical lab sections. The experiments provide conceptual interfaces to the equations of physics and represent interaction with data that simulates a real physics experiment. Includes: Astrophysics applets; Energy and Environment applets; Mechanics applets; Thermodynamics applets; and the beginnings of some general tools such as a whiteboard to create a gif image of a particular applet's output for submitting as a homework assignment:

http://jersey.uoregon.edu/vlab/index.html

9. Software Directories:

• CERNLIB: CERN PROGRAM LIBRARY: A large collection of general purpose libraries and modules offered in both source code and object code forms from the CERN central computing division. Provides programs applicable to a wide range of physics research problems such as general mathematics, data analysis, detectors simulation, data-handling, etc. Also includes links to commercial, free, and other software:

http://wwwinfo.cern.ch/asd/index.html

• FREEHEP: A collection of software and information about software useful in high-energy physics. Searching can be done by title, subject, date acquired, date updated, or by browsing an alphabetical list of all packages:

 $\verb|http://www.slac.stanford.edu/find/fhmain.html|$

 FERMILAB Software Tools Program: Software repository of Fermilab-developed software packages of value to the HEP community. Permits searching for packages by title or subject, by browsing FTP site, and by recent acquisitions:

http://www.fnal.gov/fermitools/

 HEPIC: Software & Tools Used in HEP Research: A meta-level site with links to other sites of HEP-related software and computing tools:

http://www.hep.net/resources/software.html

 INTERNET PILOT TO PHYSICS: COMPUTING: The section on computing contains links to separate Web listings of: software archives; hands-on experiments; graphics & visualization; parallel computing; Java applets; and computing centers:

http://physicsweb.org/TIPTOP/paw/

 LIFECYCLE GLOBAL HYPERTEXT: Originally developed for managing ALEPH's massive programming code, this is a Webbased template system that publishes all documents from the software lifecycle including diagrams and code and automatically cross references the information. It can be configured to present Web output and to integrate both internal and external links. Excellent system for accessing massive amounts of complex code:

http://light.cern.ch/

10. Specialized Subject Pages:

20

10.1. Subject Pages-Applied

 Nanotechnology: A selective set of links providing recent news, introductory-level explanations, web videos, bibliographies of books and articles, conferences, events, and an excellent list of links to other sites:

http://www.zyvex.com/nano/

Sean Morgan's Nanotechnology Pages: A large compilation that
must be browsed to discover all it's gems. Includes News;
Molecular Nanotechnology, Scanning Probe Microscopy; Molecular
Modeling; Nanoelectronics and Micromachining; Nanotechnology
Mailing Lists; Electronic Magazines and Journals on MNT; and
a Nanotechnology Timeline. Each list includes articles, books,
conferences, and more:

http://www.lucifer.com/~sean/Nano.html

10.2. Subject Pages-Concepts & Theories

The Official String Theory Web Site: Outstanding compilation of
information about string theory includes: an introductory section
on theory; cosmology; links to other sites; experiments testing
string theory; black holes; a directory of people working on string
theory; and a discussion forum. Many of the explanations are very
accessible to an advanced high school level:

http://superstringtheory.com/

Relativity: Bookmarks: Presents an almost overwhelming number
of worldwide links. Topical divisions include: university sites;
experimental gravitation projects; relativity-related journals and
databases; historical relativity; popular relativity; visualization;
relativistic raytracing; elementary, intermediate, and advanced
relativity; workshops; courses and seminars; astrophysical and
black hole relativity; computational; symbolic; quantum; applied;
and philosophical:

http://physics.syr.edu/research/relativity/ RELATIVITY.html

Relativity on the World Wide Web: An excellent set of pages
offering links and written information about relativity. Organized
into: popular science sites; visualization sites; web tutorials;
observational and experimental evidence and rebuttals; course
work (divided into undergraduate and graduate levels); software;
research frontiers; and further reading:

http://www.math.washington.edu/~hillman/relativity.html

10.3. Subject Pages-Particles

Neutrino Website: John Bahcall has compiled links to: technical
and popular articles books; Hubble Space Telescope and other
images; models; viewgraphs; cross-section data; software; and
more. The place to begin researching neutrinos at a graduate
student level and beyond:

http://www.sns.ias.edu/~jnb/

SUMMARY TABLES OF PARTICLE PROPERTIES

Extracted from the Particle Listings of the Review of Particle Physics

D.E. Groom et al., Eur. Phys. Jour. C15, 1 (2000)

Available at http://pdg.lbl.gov

Particle Data Group Authors:

D.E. Groom, M. Aguilar-Benitez, C. Amsler, R.M. Barnett, P.R. Burchat,
C.D. Carone, C. Caso, G. Conforto, O. Dahl, M. Doser, S. Eidelman,
J.L. Feng, L. Gibbons, M. Goodman, C. Grab, A. Gurtu, K. Hagiwara,
K.G. Hayes, J.J. Hernández, K. Hikasa, K. Honscheid, C. Kolda,
M.L. Mangano, A.V. Manohar, A. Masoni, K. Mönig, H. Murayama,
K. Nakamura, S. Navas, K.A. Olive, L. Pape, A. Piepke, M. Roos,
M. Tanabashi, N.A. Törnqvist, T.G. Trippe, P. Vogel, C.G. Wohl,
R.L. Workman, W.-M. Yao

Technical Associates: B. Armstrong, J.L. Casas Serradilla, B.B. Filimonov, P.S. Gee, S.B. Lugovsky, F. Nicholson

Other Authors who have made substantial contributions to reviews since the 1996 edition:

K.S. Babu, D. Besson, O. Biebel, P. Bloch, R.N. Cahn, A. Cattai,
R.S. Chivukula, R.D. Cousins, T. Damour, K. Desler, R.J. Donahue,
D.A. Edwards, J. Erler, V.V. Ezhela, A. Fassò, W. Fetscher,
D. Froidevaux, M. Fukugita, T.K. Gaisser, L. Garren, S. Geer,
H.-J. Gerber, F.J. Gilman, H.E. Haber, C. Hagmann, I. Hinchliffe,
C.J. Hogan, G. Höhler, P. Igo-Kemenes, J.D. Jackson, K.F. Johnson,
D. Karlen, B. Kayser, S.R. Klein, K. Kleinknecht, I.G. Knowles,
E.W. Kolb, P. Kreitz, R. Landua, P. Langacker, L. Littenberg,
D.M. Manley, J. March-Russell, T. Nakada, H.R. Quinn, G. Raffelt,
B. Renk, L. Rolandi, M.T. Ronan, L.J. Rosenberg, H.F.W. Sadrozinski,
A.I. Sanda, M. Schmitt, O. Schneider, D. Scott, W.G. Seligman,
M.H. Shaevitz, T. Sjöstrand, G.F. Smoot, S. Spanier, H. Spieler,
M. Srednicki, A. Stahl, T. Stanev, M. Suzuki, N.P. Tkachenko,
M.S. Turner, G. Valencia, K. van Bibber, R. Voss, D. Ward,
L. Wolfenstein, J. Womersley

© Regents of the University of California (Approximate closing date for data: January 1, 2000)

GAUGE AND HIGGS BOSONS

$$I(J^{PC}) = 0.1(1^{-})$$

Mass $m < 2 \times 10^{-16}$ eV Charge $q < 5 \times 10^{-30}$ e Mean life $\tau =$ Stable

$$I(J^P) = 0(1^-)$$

Mass m = 0 [a] SU(3) color octet

$$J = 1$$

Charge = $\pm 1~e$ Mass $m = 80.419 \pm 0.056~{\rm GeV}$ $m_Z - m_W = 10.76 \pm 0.05~{\rm GeV}$ $m_{W^+} - m_{W^-} = -0.2 \pm 0.6~{\rm GeV}$ Full width $\Gamma = 2.12 \pm 0.05~{\rm GeV}$ $\langle N_{charged} \rangle = 19.3 \pm 0.4$

 W^{-} modes are charge conjugates of the modes below.

W+ DECAY MODES		Fraction (Γ_i/Γ)	Confidence level	(MeV/	
$\ell^+ u$	[b]	(10.56 ± 0.14) %			
$e^+ \nu$		(10.66 ± 0.20) %		4020	
$\mu^+ u$		(10.49± 0.29) %		4020	
$ au^+ u$		$(10.4 \pm 0.4)\%$		4018	
hadrons		$(68.5 \pm 0.6)\%$			

$\pi^+ \gamma$ $D_s^+ \gamma$	< 7 < 1.3	$\times 10^{-5} \\ \times 10^{-3}$	95% 95%	40205 —
cX	(35 ± 4)) %		_
c 5	$(32 \begin{array}{c} +13 \\ -11 \end{array}$) %		-
invisible	[c] (1.4 \pm 2.8) %		-

J = 1

Charge = 0 Mass $m = 91.1882 \pm 0.0022$ GeV $^{[d]}$ Full width $\Gamma = 2.4952 \pm 0.0026$ GeV $\Gamma(\ell^+\ell^-) = 84.057 \pm 0.099$ MeV $^{[b]}$ $\Gamma(\text{invisible}) = 499.4 \pm 1.7$ MeV $^{[e]}$ $\Gamma(\text{hadrons}) = 1743.8 \pm 2.2$ MeV $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-) = 0.9999 \pm 0.0032$ $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-) = 1.0012 \pm 0.0036$ $^{[f]}$

Average charged multiplicity

$$\langle N_{charged} \rangle = 21.07 \pm 0.11$$

Couplings to leptons

 $g_A^f = -0.03795 \pm 0.00071$ $g_A^c = -0.50145 \pm 0.00030$ $g_{\mu}^{\nu} = 0.53 \pm 0.09$ $g_{\mu}^{\nu} = 0.502 \pm 0.017$

Asymmetry parameters [g]

 $A_{\rm e} = 0.152 \pm 0.004 \quad (S = 1.2)$ $A_{\mu} = 0.102 \pm 0.034$ $A_{\tau} = 0.141 \pm 0.006$ $A_{\rm c} = 0.66 \pm 0.11$ $A_{b} = 0.91 \pm 0.05$

Charge asymmetry (%) at Z pole

 $A_{FB}^{(0\ell)} = 1.82 \pm 0.11$ $A_{FB}^{(0u)} = 4 \pm 7$ $A_{FB}^{(0s)} = 9.8 \pm 1.1$ $A_{FB}^{(0c)} = 7.01 \pm 0.45$ $A_{FB}^{(0c)} = 10.03 \pm 0.22$

Z DECAY MODES	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	Scale factor/ Confidence level	р (MeV/c)
e+ e-	(3.367 ±0.005) %	45594
$\mu^+\mu^-$	(3.367 ± 0.008)) %	45593
$ au^+ au^-$	(3.371 ± 0.009)) %	45559
ℓ+ℓ-	[b] (3.3688 ± 0.0026) %	-
invisible	(20.02 ± 0.06)) %	-
hadrons	(69.89 ± 0.07)) %	-
(vū+cō)/2	(10.1 ± 1.1)) %	_
$(d\overline{d} + s\overline{s} + b\overline{b})/3$	(16.6 ± 0.6)) %	-
c <u>ē</u>	(11.68 ± 0.34)) %	-
<i>b</i> <u>Б</u>	(15.13 ± 0.05)) %	-
$b\overline{b}b\overline{b}$	(4.2 ± 1.6)) × 10 ⁻⁴	-
ggg	< 1.1	% CL=95%	
$\pi^0 \gamma$	< 5.2	$\times 10^{-5}$ CL=95%	
$\eta \gamma$	< 5.1	$\times 10^{-5}$ CL=95%	
$\omega \gamma$	< 6.5	$\times 10^{-4}$ CL=95%	
$\eta'(958)\gamma$	< 4.2	$\times 10^{-5}$ CL=95%	
$\gamma \gamma$	< 5.2	$\times 10^{-5}$ CL=95%	
$\gamma\gamma\gamma$	< 1.0	$\times 10^{-5}$ CL=95%	
$\pi^{\pm}W^{\mp}$	[h] < 7	× 10 ⁻⁵ CL=95%	
$ ho^{\pm}W^{\mp}$	[h] < 8.3	$\times 10^{-5}$ CL=95%	10114
$J/\psi(1S)X$	$\begin{pmatrix} 3.51 & +0.23 \\ -0.25 \end{pmatrix}$)×10 ⁻³ 5≈1.1	_
$\psi(2S)X$	(1.60 ±0.29) × 10 ⁻³	-
$\chi_{c1}(1P)X$	(2.9 ± 0.7)	$) \times 10^{-3}$	-
$\chi_{c2}(1P)X$	< 3.2	× 10 ⁻³ CL=90%	-
$\Upsilon(1S) \times + \Upsilon(2S) \times + \Upsilon(3S) \times$	(1.0 ± 0.5)	$) \times 10^{-4}$	-
τ(1S) X	< 4.4	× 10 ⁻⁵ CL=95%	, –
r(25)X	< 1.39	× 10 ⁻⁴ CL=95%	
r(̀3s)́x	< 9.4	×10 ⁻⁵ CL=95%	
(D^0/\overline{D}^0) X	(20.7 ±2.0) %	-

Gauge & Higgs Boson Summary Table

$D^{\pm}X$		(12.2	± 1.7) %	-
D*(2010)± X		[h] (11.4	± 1.3) %	_
$B_s^0 X$		seen			-
$B_c^+ X$		searched	for		-
anomalous $\gamma+$ hadrons		[i] < 3.2		$\times 10^{-3}$ CL=95%	_
$e^+e^-\gamma$		[/] < 5.2		$\times 10^{-4}$ CL=95%	45594
$\mu^+\mu^-\gamma$		[i] < 5.6		$\times 10^{-4}$ CL=95%	
$ au^+ au^- \gamma$		[i] < 7.3		$\times 10^{-4}$ CL=95%	45559
$\ell^+\ell^-\gamma\gamma$		[j] < 6.8		$\times 10^{-6}$ CL=95%	_
4 <u>9</u> γγ		[j] < 5.5		$\times 10^{-6}$ CL=95%	_
$ u \overline{ u} \gamma \gamma$		$\{j\} < 3.1$		×10 ⁶ CL=95%	45594
$e^{\pm}\mu^{\mp}$	LF	[h] < 1.7		×10 ⁻⁶ CL=95%	45593
$e^{\pm} au^{\mp}$	LF	[h] < 9.8		×10 ⁻⁶ CL=95%	45576
$\mu^{\pm} \tau^{\mp}$	LF	[h] < 1.2		$\times 10^{-5}$ CL=95%	45576
pe	L,B	< 1.8		$\times 10^{-6}$ CL=95%	-
ρμ	L,B	< 1.8		$\times 10^{-6}$ CL=95%	-

Higgs Bosons — H^0 and H^{\pm} , Searches for

```
H^0 Mass m > 95.3 GeV, CL = 95\%
```

H_1^0 in Supersymmetric Models $(m_{H_1^0} < m_{H_2^0})$

Mass m > 82.6 GeV, CL = 95%

A⁰ Pseudoscalar Higgs Boson in Supersymmetric Models [k]

Mass m > 84.1 GeV, $CL = 95\% \quad \tan \beta > 1$

 H^{\pm} Mass m > 69.0 GeV, CL = 95%

See the Particle Listings for a Note giving details of Higgs Bosons

Heavy Bosons Other Than Higgs Bosons, Searches for

Additional W Bosons

 W_R — right-handed W Mass m>715 GeV, CL = 90% (electroweak fit) W' with standard couplings decaying to $e\nu$, $\mu\nu$ Mass m>720 GeV, CL = 95%

Additional Z Bosons

 Z'_{SM} with standard couplings (pp direct search) Mass m > 690 GeV, CL = 95%Mass m > 898 GeV, CL = 95% (electroweak fit) Z_{LR} of $SU(2)_L \times SU(2)_R \times U(1)$ (with $g_L = g_R$) Mass m > 630 GeV, CL = 95%(pp direct search) Mass m > 564 GeV, CL = 95%(electroweak fit) Z_X of SO(10) \rightarrow SU(5)×U(1)_X (with $g_X = e/\cos\theta_W$) Mass m > 595 GeV, CL = 95% (pp direct search) Mass m > 545 GeV, CL = 95% (electroweak fit) Z_{ψ} of $E_6 \rightarrow SO(10) \times U(1)_{\psi}$ (with $g_{\psi} = e/\cos\theta_W$) Mass m > 590 GeV, CL = 95% $(p\overline{p} \text{ direct search})$ Mass m > 294 GeV, CL = 95% (electroweak fit) Z_n of $E_6 \rightarrow SU(3)\times SU(2)\times U(1)\times U(1)_n$ (with $g_n=e/\cos\theta_W$) Mass m > 620 GeV, CL = 95% ($p\overline{p}$ direct search) Mass m > 365 GeV, CL = 95%(electroweak fit)

Scalar Leptoquarks

Mass m>225 GeV, CL = 95% (1st generation, pair prod.) Mass m>200 GeV, CL = 95% (1st gener., single prod.) Mass m>202 GeV, CL = 95% (2nd gener., pair prod.) Mass m>73 GeV, CL = 95% (2nd gener., single prod.) Mass m>99 GeV, CL = 95% (3rd gener., pair prod.) (See the Particle Listings for assumptions on leptoquark quantum numbers and branching fractions.)

Axions (A⁰) and Other Very Light Bosons, Searches for

The standard Peccei-Quinn axion is ruled out. Variants with reduced couplings or much smaller masses are constrained by various data. The Particle Listings in the full *Review* contain a Note discussing axion searches.

The best limit for the half-life of neutrinoless double beta decay with Majoron emission is $> 7.2 \times 10^{24}$ years (CL = 90%).

NOTES

In this Summary Table:

When a quantity has "(S = ...)" to its right, the error on the quantity has been enlarged by the "scale factor" S, defined as $S = \sqrt{\chi^2/(N-1)}$, where N is the number of measurements used in calculating the quantity. We do this when S > 1, which often indicates that the measurements are inconsistent. When S > 1.25, we also show in the Particle Listings an ideogram of the measurements. For more about S, see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3-or-more-body decay, p is the largest momentum any of the products can have in this frame.

- [a] Theoretical value. A mass as large as a few MeV may not be precluded.
- [b] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [c] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.</p>
- [d] The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator.
- [e] This partial width takes into account Z decays into $\nu \overline{\nu}$ and any other possible undetected modes.
- [f] This ratio has not been corrected for the au mass.
- [g] Here $A \equiv 2g_V g_A/(g_V^2 + g_A^2)$.
- [h] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [i] See the Z Particle Listings for the γ energy range used in this measurement
- [j] For $m_{\gamma\gamma}=$ (60 \pm 5) GeV.
- [k] The limits assume no invisible decays.

LEPTONS

е

$J=\frac{1}{2}$

Mass $m=0.510998902\pm0.000000021$ MeV $=(5.485799110\pm0.000000012)\times10^{-4} \text{ u}$ $(m_{e^+}-m_{e^-})/m<8\times10^{-9}, \text{ CL}=90\%$ $|q_{e^+}+q_{e^-}|/e<4\times10^{-8}$ Magnetic moment $\mu=1.001159652187\pm0.0000000000004$ μ_B $(g_{e^+}-g_{e^-})$ / $g_{average}=(-0.5\pm2.1)\times10^{-12}$ Electric dipole moment $d=(0.18\pm0.16)\times10^{-26}$ e cm Mean life $\tau>4.2\times10^{24}$ yr, CL =68% $^{[a]}$

μ

$J=\frac{1}{2}$

Mass $m=105.658357\pm0.000005$ MeV $=0.1134289168\pm0.0000000034$ u Mean life $\tau=(2.19703\pm0.00004)\times10^{-6}$ s $\tau_{\mu^+}/\tau_{\mu^-}=1.00002\pm0.00008$ $c\tau=658.654$ m Magnetic moment $\mu=1.0011659160\pm0.0000000006$ $e\hbar/2m_{\mu}$ $(g_{\mu^+}-g_{\mu^-})$ / $g_{\rm average}=(-2.6\pm1.6)\times10^{-8}$ Electric dipole moment $d=(3.7\pm3.4)\times10^{-19}$ ecm

Decay parameters [b]

 $\begin{array}{l} \rho = 0.7518 \pm 0.0026 \\ \eta = -0.007 \pm 0.013 \\ \delta = 0.749 \pm 0.004 \\ \xi P_{\mu} = 1.003 \pm 0.008 \\ \xi^{2} = 1.003 \pm 0.008 \\ \xi^{2} = 1.00 \pm 0.04 \\ \xi^{2} = 1.00 \pm 0.04 \\ \xi^{2} = 0.7 \pm 0.4 \\ \alpha/A = (0 \pm 4) \times 10^{-3} \\ \alpha'/A = (0 \pm 4) \times 10^{-3} \\ \beta/A = (4 \pm 6) \times 10^{-3} \\ \beta'/A = (2 \pm 6) \times 10^{-3} \\ \overline{\eta} = 0.02 \pm 0.08 \end{array}$

 μ^+ modes are charge conjugates of the modes below.

μ DECAY MODES		F	Fraction (Γ_i/Γ)		Confidence level	(MeV/c)	
$e^- \overline{\nu}_e \nu_\mu$		2	≈ 100%			53	
$e^- \overline{\nu}_e \nu_\mu \gamma$		[d]	(1.4 ± 0)	.4) %		53	
$e^- \overline{ u}_e u_\mu e^+ e^-$		[<i>e</i>]	(3.4±0	.4) × 10	5	53	
	Lepton Family n	umbe	r (LF)	violating	modes		
$e^- \nu_e \overline{\nu}_\mu$	LF	[f]	< 1.2	%	90%	53	
e-γ .	LF		< 1.2	× 10 ⁻	11 90%	53	
e- e+ e-	LF		< 1.0	× 10 ⁺	12 90%	53	
$e^-2\gamma$	LF		< 7.2	× 10 ⁻	11 90%	53	

$$J=\frac{1}{2}$$

Mass $m=1777.03^{+0.30}_{-0.26}$ MeV Mean life $\tau=(290.6\pm1.1)\times10^{-15}$ s $c\tau=87.11~\mu{\rm m}$ Magnetic moment anomaly >-0.052 and <0.058, CL =95% Electric dipole moment d>-3.1 and $<3.1\times10^{-16}$ ecm, CL =95%

Weak dipole moment

$${\rm Re}(d_{\tau}^{\it w}) < 0.56 \times 10^{-17} \ {\rm e\,cm, \ CL} = 95\% \ {\rm Im}(d_{\tau}^{\it w}) < 1.5 \times 10^{-17} \ {\rm e\,cm, \ CL} = 95\%$$

Weak anomalous magnetic dipole moment

$${\rm Re}(\alpha_{\tau}^{\rm W}) < 4.5 \times 10^{-3}, {\rm CL} = 90\% \ {\rm Im}(\alpha_{\tau}^{\rm W}) < 9.9 \times 10^{-3}, {\rm CL} = 90\% \ {\rm CL$$

Decay parameters

See the au Particle Listings for a note concerning au-decay parameters.

$$\begin{split} \rho^{\tau}(e \text{ or } \mu) &= 0.747 \pm 0.009 \\ \rho^{\tau}(e) &= 0.749 \pm 0.011 \\ \rho^{\tau}(\mu) &= 0.752 \pm 0.021 \\ \xi^{\tau}(e \text{ or } \mu) &= 0.997 \pm 0.032 \\ \xi^{\tau}(e) &= 0.996 \pm 0.044 \\ \xi^{\tau}(\mu) &= 1.046 \pm 0.065 \\ \eta^{\tau}(e \text{ or } \mu) &= 0.011 \pm 0.031 \\ \eta^{\tau}(\mu) &= -0.013 \pm 0.097 \\ (\delta\xi)^{\tau}(e \text{ or } \mu) &= 0.746 \pm 0.023 \\ (\delta\xi)^{\tau}(\mu) &= 0.735 \pm 0.030 \\ (\delta\xi)^{\tau}(\mu) &= 0.774 \pm 0.043 \\ \xi^{\tau}(\mu) &= 0.992 \pm 0.046 \\ \xi^{\tau}(\rho) &= 0.998 \pm 0.010 \\ \xi^{\tau}(a) &= 0.998 \pm 0.077 \\ \xi^{\tau}(\text{ all hadronic modes}) &= 1.000 \pm 0.008 \end{split}$$

 τ^+ modes are charge conjugates of the modes below. " $h^{\pm n}$ stands for π^\pm or K^\pm . " ℓ^* stands for e or μ . "Neutral" means neutral hadron whose decay products include γ 's and/or π^0 's.

τ – DECAY MODES		Fraction (F	_i /୮)		cale factor/ idence level	p (MeV/c)
Modes witi	ı on	e charged	partic	e		
particle ⁻ ≥ 0 neutrals $\geq 0K_I^0\nu_T$		(84.71±			S=1.2	_
("1-prong")		,	, i			
particle ≥ 0 neutrals $\ge 0K^0\nu_{\tau}$		(85.32±	0.13) %		S=1.2	-
$\mu^- \overline{\nu}_{\mu} \nu_{\tau}$	[g]	$(17.37 \pm$	0.07) %			885
$\mu^{\dot{-}} \overline{ u}_{\mu} \overline{ u}_{\tau} \gamma$	[e]	(3.6 ±	0.4)×	10^{-3}		-
$e^{-}\overline{\nu}_{e}\nu_{\tau}$	[g]	(17.83±	0.06) %			889
$e^{-}\overline{\nu}_{e}\nu_{\tau}\gamma$	[e]	(1.75±	0.18) %			-
$h^- \geq 0$ neutrals $\geq 0 K_L^0 u_{ au}$		(49.51±	0.15) %		S=1.2	-
$h^- \geq 0 K_L^0 \nu_{ au}$		(12.35±	0.12) %		S=1.4	_
$h^- \nu_{\tau}$		(11.79±	0.12) %		S=1.4	_
$\pi^- u_{ au}$	[g]	(11.09±	0.12) %		S=1.4	883
$K^- \dot{\nu_{ au}}$	[g]	(6.99±	0.27) ×	10-3		820
$h^- \geq 1$ neutrals $ u_{m{ au}}$		$(36.88 \pm$	0.17) %		S=1.2	_
$h^-\pi^0 u_ au$		(25.86 \pm	0.14) %		S=1.1	_
$\pi^-\pi^0 u_{ au}$	[g]				S=1.1	878
$\pi^-\pi^0$ non- $ ho$ (770) $ u_{ au}$		($3.0 \pm$				878
$\kappa^-\pi^0\nu_{ au}$	[g]	(4.54±	0.33) ×	10^{-3}		814
$h^- \geq 2\pi^0 \nu_{\tau}$		$(10.73 \pm$,		S=1.2	-
$h^- 2\pi^0 \nu_T$		(9.36±	,		S=1.2	-
$h^-2\pi^0\nu_{\tau}(\mathrm{ex}.K^0)$		(9.19±	,		S=1.2	-
$\pi^{-} 2\pi^{0} \nu_{\tau} (ex.K^{0})$	[g]	-			S=1.2	862
$\pi^{-} 2\pi^{0} \nu_{\tau} (ex.K^{0})$		< 9	×	10-3	CL=95%	_
scalar $\pi^{-2}\pi^{0}\nu_{\tau}$ (ex. K^{0}),		< 7	×	10-3	CL=95%	-
$K^{-2}\pi^{0}\nu_{\tau}$ (ex. K^{0})	[و]	(6.0 ±	24) x	10-4		796
$h^- \geq 3\pi^0 \nu_{\tau}$	[0]	(1.37±			S=1.1	_
$h^-3\pi^0\nu_{\tau}$		(1.21±			S=1.1	_
$\pi^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0})	[g]	•	•		S=1.1	836
$K^-3\pi^0\nu_{\tau}$ (ex. K^0 ,	[g]	(3.9 +	2.3 2.1)×	10-4		766
$h^-4\pi^0 u_{ au}$ (ex. K^0)		(1.6 ±				-
$h^- 4\pi^0 \nu_{\tau} (\mathrm{ex}.K^0,\eta)$	[g]	{ 1.0 +	0.6 0.5)×	10-3		_
$K^- \geq 0\pi^0 \geq 0K^0 \nu_{ au}$		(1.58±				
$K^{-} \geq 1 \; (\pi^0 \text{ or } K^0) \; \nu_{\tau}$		(8.8 ±				-

Lepton Summary Table

Mo	des v	vith K ⁰ 's			Mo	des with f	ive ch	arged par	ticles		
K^0 (particles) $-\nu_{\tau}$	۰	(1.71 ± 0.06) %	S=1.1	-	$3h^+2h^+ \ge 0$ neutrals ν_{τ}			9.9 ± 0.7			-
$h^{-}\widetilde{K}^{0} \geq 0$ neutrals $\geq 0K_{L}^{0}\nu_{\tau}$		(1.67 ± 0.06) %	S=1.1	-	$(ex. \ K_S^{\overline{0}} \rightarrow \pi^-\pi^+)$						
$h^- \overline{K}^0 \underline{\nu_T}$		(1.06 ± 0.05) %	S=1.2	-	("5-prong")				4		
$rac{\pi^-}{\pi^-}rac{\overline{K}^0}{K^0} u_ au$		$(9.0 \pm 0.4) \times 10^{-3}$ $< 1.7 \times 10^{-3}$	S=1.1 CL=95%	812	$3h^{-}2h^{+}\nu_{\tau}$ (ex. K^{0}) $3h^{-}2h^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0})	la C	g] (7.8 ±0.6 2.2 ±0.5) × 10 ⁴		_
π K° (non-K*(892) $$) ν_{τ}	•	$< 1.7 \times 10^{-3}$	CL=95%	812	$3h - 2h + 2\pi^0 \nu_{\tau} (ex.K^*)$	L		2.2 ± 0.5 1.1	× 10 ⁻⁴	CL=90%	_
$K^{-}K^{0}\nu_{\tau}$	[g]	$(1.55 \pm 0.17) \times 10^{-3}$		737	-					CL-7070	
$K^- \widetilde{K}^0 > 0 \pi^0 \nu_{\tau}$	[6]	$(3.12\pm0.25)\times10^{-3}$		_	$(5\pi)^- u_ au$	cellaneous		7.9 ± 0.7			_
$h^{-}\overline{K}^{0}\pi^{\overline{0}} u_{ au}$		$(5.3 \pm 0.4) \times 10^{-3}$		-	$4h^-3h^+ \ge 0$ neutrals ν_1		•	2.4	× 10-6	CL=90%	_
$\frac{\pi^-}{K^0} \overline{K^0} \pi^0 \nu_{\tau}$	[g]	$(3.8 \pm 0.4) \times 10^{-3}$		794	("7-prong")						
$\overline{\mathcal{K}}^0 ho^- u_ au$ $\mathcal{K}^- \mathcal{K}^0 \pi^0 u_ au$		$(2.2 \pm 0.5) \times 10^{-3}$		-	$X^{-}(S=-1)\nu_{\tau}$,	2.89 ± 0.09	•	S≃1.1	-
$\pi^{-}\overline{K}^{0} \geq 1\pi^{0}\nu_{\tau}$	[g]	$(1.57\pm0.21)\times10^{-3}$ $(3.2\pm1.0)\times10^{-3}$		685 —	$K^*(892)^- \ge 0(h^0 \ne K_5^0)$,	1.94 ± 0.31	•		
$\frac{\pi}{\pi} - \frac{\kappa}{\kappa} \stackrel{2}{0} \frac{1}{\pi} \stackrel{0}{0} \frac{\pi}{\pi} \stackrel{0}{0} \frac{\nu_{\tau}}{\nu_{\tau}}$		$(3.2 \pm 1.0) \times 10^{-4}$		_	$K^*(892)^- \ge 0$ neutrals	$\nu_{ au}$	•	1.33 ± 0.13	•		_
$\kappa^-\kappa^0\pi^0\pi^0\nu_{\tau}$		< 1.6 × 10 ⁻⁴	CL=95%	_	$K^*(892)^- \nu_{\tau}$ $K^*(892)^0 K^- \ge 0$ neutra	de		1.29 ± 0.05 3.2 ± 1.4			665
$\pi^- K^0 \overline{K}{}^0 \nu_{ au}$	[g]	$(1.19\pm0.20)\times10^{-3}$	S=1.2	682	$K^*(892)^0 K^- \nu_+$	iis ν_{τ}	(2.1 ±0.4) × 10 -3		539
$\pi^- K^0_S K^{\dot 0}_S \nu_{ au}$		$(3.0 \pm 0.5) \times 10^{-4}$	S=1.2	-	$K^*(892)^0\pi^- \ge 0$ neutra	ls v~	í	3.8 ±1.7) × 10 ⁻³		-
$\pi^- K_{\underline{S}}^{0} K_{\underline{L}}^{0} \nu_{\tau}$		$(6.0 \pm 1.0) \times 10^{-4}$	S=1.2	-	$K^*(892)^0 \pi^- \nu_{\tau}$		(2.2 ± 0.5	$) \times 10^{-3}$		653
$\pi^- K^0 \overline{K^0} \pi^{\overline{0}} \nu_{\tau}$		$(3.1 \pm 2.3) \times 10^{-4}$		_	$(\overline{K}^*(892)\pi)^-\nu_{\tau} \rightarrow$		į.	1.0 ± 0.4	$) \times 10^{-3}$		-
$\pi^{-}K_{5}^{0}K_{5}^{0}\pi^{0}\nu_{\tau}$	•	< 2.0 × 10 ⁻⁴	CL=95%	-	$\pi^-\overline{\mathcal{K}}{}^0\pi^0 u_ au$				1		
$\pi^- K_5^{\circ} K_L^{\circ} \pi^0 \nu_{\tau}$		$(3.1 \pm 1.2) \times 10^{-4}$ $< 1.7 \times 10^{-3}$	CI OFF	_	$K_1(1270)^- \nu_{\tau}$			4.7 ±1.1			433
$K^0 h^+ h^- h^- \geq 0$ neutrals ν_{τ} $K^0 h^+ h^- h^- \nu_{\tau}$		$< 1.7 \times 10^{-3}$ $(2.3 \pm 2.0) \times 10^{-4}$	CL=95%	_	$K_1(1400)^- \nu_{\tau}$			1.7 ±2.6	•	S=1.7	335
'					$K^*(1410)^- \nu_{\tau}$		($1.5 \begin{array}{c} +1.4 \\ -1.0 \end{array}$			-
		e charged particles			$K_0^*(1430)^- \nu_{\tau}$		<		× 10 ⁻⁴	CL≃95%	-
$h^-h^-h^+ \ge 0$ neut. ν_{τ} ("3-prong"	')	(15.18±0.13) %	S=1.2	-	$K_2^*(1430)^-\nu_{\tau}$		<		× 10 ⁻³	CL=95%	317
$h^-h^-h^+ \ge 0$ neutrals ν_{τ} (ex. $K^0_S \to \pi^+\pi^-$)		$(14.58 \pm 0.13) \%$	S==1.2	_	$\eta \pi^- \nu_{\tau}$			1.4	× 10 ⁻⁴	CL=95%	798
$\pi^-\pi^+\pi^- \ge 0$ neutrals ν_{τ}		(14.49±0.14) %		_	$\eta \pi^- \pi^0 \nu_{ au} \\ \eta \pi^- \pi^0 \pi^0 \nu_{ au}$		[8] (1.74 ± 0.24 1.4 ± 0.7	1) × 10 -4		778 746
$h^-h^-h^+\nu_{\tau}$		(9.97±0.10)%	S=1.1	_	$\eta K^- \nu_{\tau}$			2.7 ±0.6			720
$h^- h^- h^+ \nu_{\tau} (ex.K^0)$		(9.61 ± 0.10) %	S=1.1	_	$\eta K^*(892)^- \nu_{\tau}$,	(2.9 ± 0.9	$) \times 10^{-4}$		
$h^-h^-h^+\nu_{\tau}(ex.K^0\omega)$		$(9.56 \pm 0.10)\%$	S=1.1	-	$\eta K^- \pi^0 \nu_{\tau}$		(1.8 ±0.9) × 10 ⁻⁴		-
$\pi^-\pi^+\pi^-\nu_{\tau}$		(9.49±0.11) %	S=1.1	_	$\eta \overline{K}{}^0 \pi^- \nu_{ au}$			$2.2\ \pm0.7$) × 10 ⁻⁴		-
$\pi^- \pi^+ \pi^- \nu_{\tau} (ex. K^0)$		(9.18 ± 0.11) %	S=1.1	_	$\eta \pi^+ \pi^- \pi^- \ge 0$ neutrals	ν_{τ}		3	× 10 ⁻³	CL=90%	-
$\pi^-\pi^+\pi^- u_{ au}(\text{ex}.K^0),$ non-axial vector		< 2.4 %	CL=95%	_	$ \eta \pi^- \pi^+ \pi^- \nu_{\tau} \eta a_1 (1260)^- \nu_{\tau} \rightarrow \eta \pi $	0	,	3.4 ±0.8 3.9	× 10 ⁻⁴	CL=90%	_
$\pi^-\pi^+\pi^-\nu_{\tau}(\mathrm{ex}.K^0,\omega)$	[g]	$(9.13 \pm 0.11)\%$	S=1.1	-	$ \eta d_1(1200) \nu_\tau \to \eta \eta \\ \eta \eta \pi^- \nu_\tau $	$\rho \nu_{\tau}$		1.1	× 10 ⁻⁴	CL=95%	637
$h^-h^-h^+ \geq 1$ neutrals $ u_ au$		(5.17±0.11) %	S=1.2	-	$\eta \eta \pi^- \pi^0 \nu_{\tau}$			2.0	× 10-4	CL=95%	559
$h^-h^-h^+ \ge 1$ neutrals ν_{τ} (ex.		$(4.97 \pm 0.11)\%$	S=1.2	-	$\eta'(958)\pi^{-}\nu_{\tau}$			7.4	× 10 ⁵	CL=90%	-
$K_S^0 \rightarrow \pi^+\pi^-)$					$\eta'(958)\pi^{-}\pi^{0}\nu_{\tau}$			8.0	× 10 ⁻⁵	CL=90%	-
$h^- h^- h^+ \pi^0 \nu_{\tau}$ $h^- h^- h^+ \pi^0 \nu_{\tau} (ex. K^0)$		(4.49±0.08) % (4.30±0.08) %		_	$\phi \pi^- u_{ au}$			2.0	× 10 ⁻⁴	CL=90%	585
$h^-h^-h^+\pi^0\nu_{\tau}(ex.K^0,\omega)$		(4.50±0.08) % (2.58±0.08) %		_	$\phi K^- \nu_{\tau}$			6.7 5.8 ± 2.3	× 10 ⁻⁵	CL=90%	-
$\pi^-\pi^+\pi^-\pi^0\nu_{\tau}$		(4.32±0.08) %		_	$f_1(1285)\pi^-\nu_{\tau} f_1(1285)\pi^-\nu_{\tau} \to$		(5.8 ± 2.3 1.9 ± 0.7) × 10 -4		_
$\pi^- \pi^+ \pi^- \pi^0 \nu_{\tau} (ex.K^0)$		(4.20±0.08) %		-	$n\pi^-\pi^+\pi^-\nu_{\tau}$,	1.7 ±0.1	, ~ 10		
$\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(\text{ex.}K^{0},\omega)$	[g]	(2.47±0.08) %		~	$\pi(1300)^-\nu_{\tau} \rightarrow (\rho\pi)^-$	$\nu_{\tau} \rightarrow$	<	1.0	× 10 ⁻⁴	CL=90%	-
$h^- h^- h^+ 2\pi^0 \nu_{\tau}$		$(5.4 \pm 0.4) \times 10^{-3}$		-	$(3\pi)^- \nu_{\tau}$	•					
$h^-h^-h^+2\pi^0\nu_{\tau}(\text{ex.}K^0)$		$(5.3 \pm 0.4) \times 10^{-3}$		_	$\pi(1300)^-\nu_{\tau} \rightarrow$		<	1.9	× 10 ⁻⁴	CL=90%	-
$h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau}(ex.K^{0},\omega,\eta)$				_	$((\pi\pi)_{S-\text{wave }}\pi)^-\nu_{\tau}$						
$h^- h^- h^+ \ge 3\pi^0 \nu_{\tau}$	[g]	$(1.3 \begin{array}{c} +0.8 \\ -0.7 \end{array}) \times 10^{-3}$	5=1.3	_	$(3\pi)^- u_ au$ $h^- \omega \geq 0$ neutrals $ u_ au$			2.36±0.0	8) %		_
$h^- h^- h^+ 3\pi^0 \nu_{\tau}$		$(2.9 \pm 0.8) \times 10^{-4}$		-	$h^-\omega \nu_{\tau}$			(2.30 ± 0.0)			_
$K^-h^+h^- \ge 0$ neutrals ν_{τ}		$(6.5 \pm 0.5) \times 10^{-3}$	S=1.4	_	$h^-\omega\pi^0\nu_{ au}$		[g]	(4.3 ±0.5	$) \times 10^{-3}$		-
$K^- h^+ \pi^- \nu_{\tau} (\text{ex.} K^0)$ $K^- h^+ \pi^- \pi^0 \nu_{\tau} (\text{ex.} K^0)$		$(4.3 \pm 0.5) \times 10^{-3}$ $(1.07 \pm 0.22) \times 10^{-3}$	S=1.5	_	$h^-\omega 2\pi^0 \nu_{\tau}$			1.9 ± 0.8) × 10 ⁻⁴		-
$K^-\pi^+\pi^- \ge 0$ neutrals ν_{τ}		$(4.4 \pm 0.5) \times 10^{-3}$	S=1.4	_		mily numb				(L),	
$K^-\pi^+\pi^- \geq$		$(3.4 \pm 0.5) \times 10^{-3}$	S=1.4	-		aryon num				darl	
$0\pi^0 u_{\tau} (\mathrm{ex}.K^0)$		2			(in the modes L means lepton nu						
$K^-\pi^+\pi^-\nu_{\tau}$		$(3.2 \pm 0.5) \times 10^{-3}$	5=1.5	-	common usage, LF	means lepti	on farr	ily violation	and not le	pton number	
$K^- \pi^+ \pi^- \nu_{\tau} (ex.K^0) K^- \pi^+ \pi^- \pi^0 \nu_{\tau}$	[8]	$(2.7 \pm 0.5) \times 10^{-3}$ $(1.20 \pm 0.25) \times 10^{-3}$	S≃1.5	-	violation (e.g. $ au^-$	$\rightarrow e^{-}\pi^{+}\pi$	τ). Ε	3 means bar	yon number	violation.	
$K - \pi + \pi - \pi^{0} \nu_{\tau}$ (ex. K^{0})		$(6.7 \pm 2.4) \times 10^{-4}$		_	e-γ	LF		2.7	× 10 ⁻⁶	CL=90%	888
$K^-\pi^+\pi^-\pi^0\nu_{\tau}(ex.K^0,\eta)$) lgì			_	$\mu^-\gamma_0$	LF		1.1	× 10 ⁻⁶	CL=90%	885
$K^-\pi^+K^- \ge 0$ neut. ν_{τ}		$< 9 \times 10^{-4}$	CL=95%		$\begin{array}{c} e^-\pi^0 \\ \mu^-\pi^0 \end{array}$	LF LF		3.7 4.0	$\times 10^{-6} \times 10^{-6}$	CL=90% CL=90%	883 880
$K^-K^+\pi^- \geq 0$ neut. $ u_{ au}$		$(2.01\pm0.23)\times10^{-3}$		-	e^{-K^0}	LF		1.3	× 10-3	CL=90%	819
$K^-K^+\pi^-\nu_{\tau}$	[g]	$(1.61\pm0.18)\times10^{-3}$		685	$\mu^- K^0$	LF		1.0	$\times 10^{-3}$	CL=90%	815
$K^-K^+\pi^-\pi^0\nu_{\tau}$	[g]	$(4.0 \pm 1.6) \times 10^{-4}$	CI 079/	-	$e^-\eta$	LF		8.2	$\times 10^{-6}$	CL=90%	804
$K^-K^+K^- \ge 0$ neut. ν_{τ} $K^-K^+K^-\nu_{\tau}$		$< 2.1 \times 10^{-3} < 1.9 \times 10^{-4}$	CL=95% CL=90%	_	$\mu^-\eta$	LF		9.6	× 10 ⁻⁶	CL=90%	800
$\pi^- K^+ \pi^- \geq 0$ neut. ν_{τ}		< 2.5 × 10 ⁻³	CL=90% CL=95%		$e^{-}\rho^{0}$	LF		2.0	× 10 ⁻⁶	CL=90%	722
$e^-e^-e^+\overline{\nu}_e\nu_\tau$		$(2.8 \pm 1.5) \times 10^{-5}$		889	$\mu^{-}\rho^{0}$	LF LE		6.3	× 10 ⁻⁶ × 10 ⁻⁶	CL=90% CL=90%	718 663
$\mu^-e^-e^+\overline{\nu}_{\mu}\nu_{\tau}$		< 3.6 × 10 ⁻⁵	CL=90%	885	$e^{-}K^*(892)^0$ $\mu^{-}K^*(892)^0$	LF LF		5.1 7.5	× 10 6	CL=90% CL=90%	657
*					$e^{-\frac{K}{K}*(892)^0}$	LF LF		7.4	× 10 ⁻⁶	CL=90%	663
					$\mu^{-}\overline{K}^{*}(892)^{0}$	LF		7.5	$\times 10^{-6}$	CL=90%	657
					$e^-\phi$	LF		6.9	× 10 ⁻⁶	CL≃90%	596
					$\mu^-\phi$	LF		7.0	× 10 ⁻⁶	CL=90%	590
					$\pi^-\gamma$	L	<	2.8	$\times 10^{-4}$	CL=90%	883

$\pi^-\pi^0$	L	< 3.7	× 10 ⁻⁴	CL=90%	878
$e^{-} e^{+} e^{-}$	LF	< 2.9	× 10 ⁻⁶	CL=90%	888
$e^{-}\mu^{+}\mu^{-}$	LF	< 1.8	$\times 10^{-6}$	CL=90%	882
$e^{+}\mu^{-}\mu^{-}$	LF	< 1.5	$\times 10^{-6}$	CL=90%	882
$\mu^{-}e^{+}e^{-}$	LF	< 1.7	× 10 ⁻⁶	CL=90%	885
$\mu^{+}e^{-}e^{-}$	LF.	< 1.5	$\times 10^{-6}$	CL=90%	885
$\mu^{-}\mu^{+}\mu^{-}$	LF	< 1.9	× 10 ⁻⁶	CL=90%	873
$e^-\pi^+\pi^-$	LF	< 2.2	$\times 10^{-6}$	CL=90%	877
$e^{+}\pi^{-}\pi^{-}$	L	< 1.9	\times 10 ⁻⁶	CL=90%	877
$\mu^- \pi^+ \pi^-$	LF	< 8.2	\times 10 ⁻⁶	CL=90%	866
$\mu^+\pi^-\pi^-$	L	< 3.4	× 10 ⁶	CL=90%	866
$e^-\pi^+K^-$	LF	< 6.4	$\times 10^{-6}$	CL=90%	814
$e^-\pi^-K^+$	LF	< 3.8	× 10 ⁶	CL=90%	814
$e^+\pi^-\mathcal{K}^-$	L	< 2.1	\times 10 ⁻⁶	CL=90%	814
e ⁻ K ⁺ K ⁻	LF	< 6.0	\times 10 ⁻⁶	CL=90%	739
e ⁺ K ⁻ K ⁻	L	< 3.8	$\times 10^{-6}$	CL=90%	739
$\mu^-\pi^+$ K $^-$	LF	< 7.5	$\times 10^{-6}$	CL=90%	800
$\mu^{-}\pi^{-}K^{+}$	LF	< 7.4	$\times 10^{-6}$	CL=90%	800
$\mu^+\pi^-K^-$	L	< 7.0	$\times 10^{-6}$	CL=90%	800
$\mu^- K^+ K^-$	LF	< 1.5	$\times 10^{-5}$	CL=90%	699
$\mu^+ K^- K^-$	L	< 6.0	\times 10 ⁻⁶	CL=90%	699
$e^{-}\pi^{0}\pi^{0}$	LF	< 6.5	$\times 10^{-6}$	CL=90%	878
$\mu^-\pi^0\pi^0$	LF	< 1.4	$\times 10^{-5}$	CL=90%	867
$e^- \eta \eta$	LF	< 3.5	$\times 10^{-5}$	CL=90%	700
$\mu^-\eta\eta$	LF	< 6.0	$\times 10^{-5}$	CL=90%	654
$e^-\pi^0\eta$	LF	< 2.4	× 10 ⁻⁵	CL=90%	798
$\mu^-\pi^0\eta$	LF	< 2.2	× 10 ⁻⁵	CL=90%	784
$\overline{p}\gamma_{-}$	L,B	< 3.5	× 10 ⁶	CL=90%	641
$\overline{\rho}\pi^0$	L,B	< 1.5	$\times 10^{-5}$	CL=90%	632
$\bar{p} 2\pi^0$	L,B	< 3.3	$\times 10^{-5}$	CL=90%	-
$\vec{p}\eta_{\alpha}$	L,B	< 8.9	$\times 10^{-6}$	CL=90%	476
$\overline{p}\pi^0\eta$	L,B	< 2.7	× 10 ⁻⁵	CL=90%	_
e ⁻ light boson	LF	< 2.7	× 10 ⁻³	CL=95%	-
μ^- light boson	LF	< 5	$\times 10^{-3}$	CL=95%	_

Heavy Charged Lepton Searches

L± - charged lepton

Mass m > 92.4 GeV, CL = 95% [h] $m_{\nu} \approx 0$

L^{\pm} – stable charged heavy lepton

Mass m > 93.5 GeV, CL = 95%

Neutrinos

See the Particle Listings for a Note "Neutrino Mass" giving details of neutrinos, masses, mixing, and the status of experimental searches.

$$J=\frac{1}{2}$$

Mass m < 3 eV Interpretation of tritium beta decay experiments is complicated by anomalies near the endpoint, and the limits are not without ambiguity.

Mean life/mass, $\tau/m_{\nu_e} > 7 \times 10^9$ s/eV (solar) Mean life/mass, $\tau/m_{\nu_e} > 300$ s/eV, CL = 90% (reactor) Magnetic moment $\mu < 1.5 \times 10^{-10}~\mu_B$, CL = 90%

$$J =$$

Mass m < 0.19 MeV, CL = 90% $^{[f]}$ Mean life/mass, $\tau/m_{\nu_{\mu}} > 15.4$ s/eV, CL = 90% Magnetic moment $\mu < 7.4 \times 10^{-10}~\mu_{B}$, CL = 90%

$$J = \frac{1}{2}$$

Mass m<18.2 MeV, CL = 95% U Magnetic moment $\mu<5.4\times10^{-7}~\mu_B$, CL = 90% Electric dipole moment $d<5.2\times10^{-17}~e$ cm, CL = 95%

Number of Light Neutrino Types

(including $\nu_e, \, \nu_\mu, \, {\sf and} \, \, \nu_ au)$

Number $N=2.994\pm0.012$ (Standard Model fits to LEP data) Number $N=3.00\pm0.06$ (Direct measurement of invisible Z width)

Massive Neutrinos and Lepton Mixing, Searches for

For excited leptons, see Compositeness Limits below.

See the Particle Listings for a Note "Neutrino Mass" giving details of neutrinos, masses, mixing, and the status of experimental searches.

There is now rather convincing evidence that neutrinos have nonzero mass from the apparent observation of neutrino oscillations, where the neutrinos come from π (or K) $\rightarrow \mu \rightarrow e$ decays in the atmosphere; the mesons are produced in cosmic-ray cascades.

Stable Neutral Heavy Lepton Mass Limits

```
Mass m > 45.0 GeV, CL = 95% (Dirac)
Mass m > 39.5 GeV, CL = 95% (Majorana)
```

Neutral Heavy Lepton Mass Limits

```
Mass m>83.3 GeV, CL = 95% (Dirac \nu_L coupling to e, \mu, \tau; conservative case(\tau)) Mass m>73.5 GeV, CL = 95% (Majorana \nu_L coupling to e, \mu, \tau; conservative case(\tau))
```

Solar Neutrinos

Detectors using gallium ($E_{\nu}\gtrsim 0.2$ MeV), chlorine ($E_{\nu}\gtrsim 0.8$ MeV), and Ĉerenkov effect in water ($E_{\nu}\gtrsim 7$ MeV) measure significantly lower neutrino rates than are predicted from solar models. The deficit in the solar neutrino flux compared with solar model calculations could be explained by oscillations with $\Delta m^2 \leq 10^{-5}$ eV² causing the disappearance of ν_e .

Atmospheric Neutrinos

Underground detectors observing neutrinos produced by cosmic rays in the atmosphere have measured a ν_{μ}/ν_{e} ratio much less than expected and also a deficiency of upward going ν_{μ} compared to downward. This could be explained by oscillations leading to the disappearance of ν_{μ} with $\Delta m^{2}\approx 10^{-3}$ to $0.1\,\mathrm{eV^{2}}$. This is presently the best evidence for neutrino mass.

ν oscillation: $\overline{\nu}_e \not\rightarrow \overline{\nu}_e$ ($\theta = \text{mixing angle}$)

```
\Delta m^2 < 7 \times 10^{-4} \text{ eV}^2, CL = 90% (if \sin^2 2\theta = 1) \sin^2 2\theta < 0.02, CL = 90% (if \Delta(m^2) is large)
```

u oscillation: $u_{\mu} \; (\overline{\nu}_{\mu}) \to \; u_{e} \; (\overline{\nu}_{e}) \; (\text{any combination})$

$$\Delta m^2 < 0.075 \text{ eV}^2$$
, CL = 90% (if $\sin^2 2\theta = 1$) $\sin^2 2\theta < 1.8 \times 10^{-3}$, CL = 90% (if $\Delta (m^2)$ is large)

NOTES

In this Summary Table:

When a quantity has "(S = ...)" to its right, the error on the quantity has been enlarged by the "scale factor" S, defined as $S = \sqrt{\chi^2/(N-1)}$, where N is the number of measurements used in calculating the quantity. We do this when S>1, which often indicates that the measurements are inconsistent. When S>1.25, we also show in the Particle Listings an ideogram of the measurements. For more about S, see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3-or-more-body decay, p is the largest momentum any of the products can have in this frame.

- [a] This is the best "electron disappearance" limit. The best limit for the mode $e^- \to \nu \gamma$ is $> 2.35 \times 10^{25}$ yr (CL=68%).
- [b] See the "Note on Muon Decay Parameters" in the μ Particle Listings for definitions and details.
- [c] P_μ is the longitudinal polarization of the muon from pion decay. In standard V-A theory, $P_\mu=1$ and $\rho=\delta=3/4$.
- [d] This only includes events with the γ energy > 10 MeV. Since the $e^-\overline{\nu}_e\nu_\mu$ and $e^-\overline{\nu}_e\nu_\mu\gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [e] See the relevant Particle Listings for the energy limits used in this measurement
- [f] A test of additive vs. multiplicative lepton family number conservation.
- [g] Basis mode for the τ .
- [h] L^{\pm} mass limit depends on decay assumptions; see the Full Listings.
- [i] Assumes ν_2 is the dominant mass eigenstate.
- [j] Assumes ν_3 is the dominant mass eigenstate.

Quark Summary Table

QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\rm MS}$ at a scale $\mu \approx$ 2 GeV. The c- and b-quark masses are estimated from charmonium, bottomonium, D, and B masses. They are the "running" masses in the MS scheme. These can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass m = 1 to 5 MeV [a] $m_u/m_d = 0.2 \text{ to } 0.8$

Charge =
$$\frac{2}{3} e I_z = +\frac{1}{2}$$

d

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass m = 3 to 9 MeV [a]

Charge =
$$-\frac{1}{3} e I_z = -\frac{1}{2}$$

 $m_s/m_d=17$ to 25

$$\overline{m} = (m_u + m_d)/2 = 2.5 \text{ to 6 MeV}$$

5

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Mass m=75 to 170 MeV [a] Charge $=-\frac{1}{3}$ e Strangeness =-1 $(m_s - (m_u + m_d)/2)/(m_d - m_u) = 34 \text{ to } 51$

C

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass m = 1.15 to 1.35 GeV

Charge =
$$\frac{2}{3}e$$
 Charm = +1

b

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Mass m=4.0 to 4.4 GeV Charge $=-\frac{1}{3}$ e Bottom =-1

Charge =
$$-\frac{1}{2}e$$
 Bottom = $-$

t

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge =
$$\frac{2}{3}e$$

$$Top = +1$$

Mass $m = 174.3 \pm 5.1$ GeV (direct observation of top events) Mass $m = 168.2^{+9.6}_{-7.4}$ GeV (Standard Model electroweak fit)

t DECAY MODES	Fraction (Γ_j/Γ) Co	ponfidence level (MeV/c)
Wb		-
ℓu_ℓ anything	[b,c] (9.4 ± 2.4) %	-
$\tau \nu_{\tau} b$		_
$\gamma q(q=u,c)$	[d] < 3.2 %	95%
Δ	T=1 weak neutral current (TI) mod	des
Zq(q=u,c)	T1 [e] < 33 %	95% -

b' (4th Generation) Quark, Searches for

Mass $m > 199 \,\text{GeV}, \, \text{CL} = 95\%$ $(p\overline{p}, neutral-current decays)$ Mass m > 128 GeV, CL = 95% $(p\overline{p}, \text{ charged-current decays})$

Mass m > 46.0 GeV, CL = 95% $(e^+e^-, all decays)$

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] The ratios m_u/m_d and m_s/m_d are extracted from pion and kaon masses using chiral symmetry. The estimates of u and d masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from SU(3) splittings in hadron masses.
- [b] ℓ means e or μ decay mode, not the sum over them.
- [c] Assumes lepton universality and W-decay acceptance.
- [d] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [e] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

LIGHT UNFLAVORED MESONS (S=C=B=0)

For l=1 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for l=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass $m=139.57018\pm0.00035$ MeV (S=1.2) Mean life $\tau=(2.6033\pm0.0005)\times10^{-8}$ s (S=1.2) $c\tau = 7.8045 \text{ m}$

$\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ form factors $^{[a]}$

$$F_V = 0.017 \pm 0.008$$

 $F_A = 0.0116 \pm 0.0016$ (S = 1.3)
 $R = 0.059^{+0.009}_{-0.008}$

 π^- modes are charge conjugates of the modes below.

π ⁺ DECAY MODES	ECAY MODES Fraction (Γ_j/Γ) Confidence level					
$\frac{1}{\mu^+ \nu_{\mu}}$	[b]	(99.9877	0±0.000	04) %	30	
$\mu^{\dot{+}} u_{\mu} \gamma$	[c]	(2.00	±0.25	$) \times 10^{-4}$	30	
$e^+ \nu_e$	[b]	(1.230	± 0.004) × 10 ⁻⁴	70	
$e^+ u_e \gamma$ $e^+ u_e \pi^0$	[c]	(1.61	±0.23) × 10 ⁻⁷	70	
$e^{+}\nu_{e}\pi^{0}$		(1.025	± 0.034) × 10 ⁸	4	
$e^+ u_ee^+e^-$		(3.2	±0.5) × 10 ⁻⁹	70	
$e^+ \nu_e \nu \overline{\nu}$		< 5		$\times 10^{-6} 90\%$	70	
Lepton Family number (LF)	or L	epton nu	mber () violating mod	ies	
$\mu^+ \overline{\nu}_e$	[d]	< 1.5		$\times 10^{-3} 90\%$	30	
$\mu^+ \nu_e$ LF	[d]	< 8.0		$\times 10^{-3} 90\%$	30	
$\mu^- e^+ e^+ \nu$ LF		< 1.6		$\times 10^{-6}$ 90%	30	

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass
$$m=134.9766\pm0.0006$$
 MeV (S = 1.1) $m_{\pi^\pm}-m_{\pi^0}=4.5936\pm0.0005$ MeV Mean life $r=(8.4\pm0.6)\times10^{-17}$ s (S = 3.0) $c\tau=25.1$ nm

π ⁰ DECAY MODES	Fraction (Γ_I/Γ)	Scale factor/ Confidence level	p (MeV/c)
2γ	(98.798±0.032)	% 5=1.1	67
$e^+e^-\gamma$	(1.198 ± 0.032)	% S=1.1	67
γpositronium	(1.82 ± 0.29)	× 10 ⁻⁹	67
e+ e+ e- e-	(3.14 ± 0.30)	× 10 ⁻⁵	67
e^+e^-	(6.2 ±0.5)	$\times 10^{-8}$	67
4γ	< 2	$\times 10^{-8}$ CL=90%	67
$ u \overline{ u}$	[e] < 8.3	$\times 10^{-7}$ CL=90%	67
$\nu_e \overline{\nu}_e$	< 1.7	$\times 10^{-6}$ CL=90%	67
$\nu_{\mu} \overline{\nu}_{\mu}$	< 3.1	$\times 10^{-6}$ CL=90%	67
$ u_{\tau} \overline{\nu}_{\tau}$	< 2.1	\times 10 ⁻⁶ CL=90%	67

Charge conjugation (C) or Lepton Family number (LF) violating modes

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m = 547.30 \pm 0.12 \text{ MeV}$ Full width $\Gamma=1.18\pm0.11~\text{keV}^{\text{[f]}}~\text{(S}=1.8)$

C-nonconserving decay parameters

 $\pi^+\pi^-\pi^0$ Left-right asymmetry = (0.09 \pm 0.17) \times 10⁻² $\pi^{+}\pi^{-}\pi^{0}$ Sextant asymmetry = $(0.18 \pm 0.16) \times 10^{-2}$ $\pi^{+}\pi^{-}\pi^{0}$ Quadrant asymmetry = $(-0.17 \pm 0.17) \times 10^{-2}$ $\pi^+\pi^-\gamma$ Left-right asymmetry = $(0.9 \pm 0.4) \times 10^{-2}$ $\pi^+\pi^-\gamma$ β (D-wave) = 0.05 ± 0.06 (S = 1.5)

Dalitz plot parameter

$$\pi^0 \pi^0 \pi^0$$
 $\alpha = -0.039 \pm 0.015$

/ / / /	u 0.033 ± 0.013		
7 DECAY MODES	Fraction (Γ_i/Γ)	Scale factor, Confidence leve	
	Neutral modes		
neutral modes	(71.6 ± 0.4)) % 5=1.2	2 –
$2\gamma_{\perp}$	[f] (39.33 ± 0.25)) % 5=1.1	274
$3\pi^0$	(32.24±0.29)) % S=1.2	178
$\pi^02\gamma$	(7.1 ± 1.4)) × 10 ⁻⁴	257
other neutral modes	< 2.8	% CL=90%	-
	Charged modes		
charged modes	(28.3 ± 0.4)) % S=1.2	2 -
$\pi^+\pi^-\pi^0$	(23.0 ± 0.4)) % 5=1.2	2 173
$\pi^+\pi^-\gamma$	(4.75±0.11)) % 5=1.:	235
$e^+e^-\gamma$	(4.9 ± 1.1)) × 10 ⁻³	274
$\mu^+\mu^-\gamma$	(3.1 ± 0.4)		252
e^+e^-	< 7.7	×10 ⁻⁵ CL=90%	274
$\mu^+\mu^-$	(5.8 ± 0.8)) × 10 ⁻⁶	252
$\pi^+\pi^-e^+e^-$	$(1.3 \begin{array}{c} +1.2 \\ -0.8 \end{array})$	$) \times 10^{-3}$	235
$\pi^+\pi^-2\gamma$	< 2.1	×10 ⁻³	235
$\pi^+\pi^-\pi^0\gamma$	< 6	×10 ⁻⁴ CL=90%	6 173
$\pi^0 \mu^+ \mu^- \gamma$	< 3	× 10 ⁻⁶ CL=90%	6 210
	arge conjugation (C) , Parit		
	$rge\ conjugation\ imes\ Parity\ (rectangle) Family number\ (LF)\ violate$		
$\pi^+\pi^-$		- 4	/ 225
$\pi^{0}\pi^{0}$	P,CP < 3.3		
•	P,CP < 4.3	×10 ⁻⁴ CL=90% ×10 ⁻⁴ CL=95%	-
$\frac{3\gamma}{\pi^0} \frac{1}{e^+ e^-}$	C < 5	× 10 · CL=95% × 10 ⁻⁵ CL=90%	-
$\pi^{0} e^{+} e^{-}$	C [g] < 4		
	C $[g] < 5$		
$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF < 6	×10 ⁻⁶ CL=90%	6 263

f₀(400-1200) [h]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass m = (400-1200) MeV Full width $\Gamma = (600-1000) \text{ MeV}$

f ₀ (400-1200) DECAY MODES	Fraction (Γ _i /Γ)	p (MeV/c)
ππ	dominant	_
$\gamma\gamma$	seen	-

ρ(770) ^[i]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m = 769.3 \pm 0.8$ MeV (S = 2.1) Full width $\Gamma = 150.2 \pm 0.8$ MeV $\Gamma_{ee} = 6.77 \pm 0.32$ keV

ρ(770) DECAY MODES	Fraction (Γ_j/Γ)		ale factor/ dence level	
ππ	~ 100	%		358
	$\rho(770)^{\pm}$ decays			
$\pi^{\pm} \gamma$ $\pi^{\pm} \eta$ $\pi^{\pm} \pi^{+} \pi^{-} \pi^{0}$	(4.5 ± 0.5)) × 10 ⁻⁴	\$=2.2	372
$\pi^{\pm}\eta$	< 6	$\times 10^{-3}$	CL=84%	146
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	< 2.0	\times 10 ⁻³	CL=84%	249
	$\rho(770)^0$ decays			
$\pi^+\pi^-\gamma$	(9.9 ±1.6)	$) \times 10^{-3}$		358
$\pi^0 \gamma$	(6.8 ± 1.7)	$\times 10^{-4}$		372
$\eta \gamma$	$(2.4 \begin{array}{c} +0.8 \\ -0.9 \end{array})$) × 10 ⁻⁴	S=1.6	189
$\mu^+\mu^-$	[j] (4.60 ± 0.28)) × 10 ⁻⁵		369
e+e-	[j] (4.49±0.22)	$\times 10^{-5}$		384
$\pi^{+}\pi^{-}\pi^{0}$	< 1.2	$\times 10^{-4}$	CL=90%	319
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(1.8 ±0.9)	$) \times 10^{-5}$		246
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	< 4	× 10 ⁻⁵	CL=90%	252

$\omega(782)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 782.57 \pm 0.12$ MeV (S = 1.8) Full width $\Gamma = 8.44 \pm 0.09$ MeV $\Gamma_{ee} = 0.60 \pm 0.02$ keV

ω(782) DECAY MODES	Fraction (Γ_j/Γ)	Scale factor/ Confidence level	
$\frac{1}{\pi^+\pi^-\pi^0}$	(88.8 ±0.7)%	6	327
$\pi^0\gamma$	(8.5 ± 0.5) %	6	379
$\pi^+\pi^-$	(2.21 ± 0.30) %	6	365
neutrals (excluding $\pi^0 \gamma$)	(5.3 +8.7)×	· 10 ⁻³	-
$\eta \gamma$	(6.5 ±1.0)×	: 10-4	199
$\pi^0 e^+ e^-$	(5.9 ±1.9) ×	: 10 ⁻⁴	379
$\pi^0 \mu^+ \mu^-$	(9.6 ± 2.3) ×	10-5	349
e+e-	$(7.07 \pm 0.19) \times$	10 ⁻⁵ S=1.1	391
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	< 2 %	6 CL=90%	261
$\pi^+\pi^-\gamma$	< 3.6 ×	10 ⁻³ CL=95%	365
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 1 ×	10 ⁻³ CL=90%	256
$\pi^0\pi^0\gamma$	(7.2 ±2.5)×	10-5	367
$\mu^+\mu^-$ 3 γ	< 1.8 ×	10 ⁻⁴ CL=90%	376
3γ	< 1.9 ×	10 ⁻⁴ CL=95%	391
	ion (C) violating	modes	
$\eta \pi^0$	< 1 ×	10 ⁻³ CL=90%	162
$3\pi^0$ C	< 3 ×	10 ⁻⁴ CL=90%	329

η'(958)

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m = 957.78 \pm 0.14$ MeV Full width $\Gamma = 0.202 \pm 0.016$ MeV (S = 1.3)

		Scale factor/	P
η'(958) DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	(MeV/c)
$\pi^+\pi^-\eta$	(44.3 ±1.5)	% S=1.2	232
$ ho^0\gamma$ (including non- resonant $\pi^+\pi^-\gamma$)	(29.5 ±1.0)	% S=1.2	169
$\pi^0\pi^0\eta$	(20.9 ± 1.2)	% S=1.2	239
$\omega\gamma$	(3.03 ± 0.31)	%	160
77	(2.12 ± 0.14)	% S=1.3	479
$3\pi^0$	(1.56 ± 0.26)	$\times 10^{-3}$	430
$\mu^+\mu^-\gamma$	(1.04 ± 0.26)	× 10 ⁻⁴	467
$\pi^+\pi^-\pi^0$	< 5	% CL=90%	427
$\pi^{0} \rho^{0}$	< 4	% CL=90%	118
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	< 1	% CL=90%	372
$\pi^+\pi^+\pi^-\pi^-$ neutrals	< 1	% CL=95%	_
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	< 1	% CL=90%	298
6π	< 1	% CL=90%	189
$\pi^{+}\pi^{-}e^{+}e^{-}$	< 6	× 10 ⁻³ CL=90%	458
$\pi^0 \gamma \gamma$	< 8	× 10 ⁻⁴ CL=90%	469
$4\pi^0$	< 5	$\times 10^{-4}$ CL=90%	379
e ⁺ e ⁻	< 2.1	× 10 ⁻⁷ CL=90%	479

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^+\pi^-$	P,CP	< 2	%	CL=90%	458
$\pi^{0}\pi^{0}$	P,CP	< 9	× 10 ⁻⁴	CL=90%	459
$\gamma e^+ e^-$	С	< 9	× 10 ⁻⁴	CL=90%	-
$\pi^0 e^+ e^-$	С	[g] < 1.4	× 10 ⁻³	CL=90%	469
$\eta e^+ e^-$	С	[g] < 2.4	$\times 10^{-3}$	CL=90%	322
3γ	С	< 1.0	× 10 ⁻⁴	CL=90%	479
$\mu^+\mu^-\pi^0$	С	[g] < 6.0	× 10 ⁻⁵	CL=90%	445
$\mu^+\mu^-\eta$	С	[g] < 1.5	× 10 ⁻⁵	CL=90%	274
eμ	LF	< 4.7	× 10 ⁻⁴	CL=90%	_

f₀(980) ^[k]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=980\pm10$ MeV Full width $\Gamma=40$ to 100 MeV

f ₀ (980) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$\pi\pi$	dominant	470
κ κ	seen	-

a₀(980) [k]

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Mass $m=984.8\pm1.4$ MeV (S = 1.7) Full width $\Gamma=50$ to 100 MeV

a ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta \pi_{-}$	dominant	321
κ κ	seen	-
$\gamma\gamma$	seen	492

$\phi(1020)$

$$I^G(J^{PC}) = 0^-(1^{--})$$

Mass $m = 1019.417 \pm 0.014$ MeV (S = 1.8) Full width Γ = 4.458 ± 0.032 MeV

∳(1020) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/c)
K+K-	(49.2 ±0.7) % S=1.2	127
$K_L^0 K_S^0$	(33.8 ± 0.6) % S=1.2	110
$\rho\pi^+ \pi^+\pi^-\pi^0$	(15.5 ± 0.6)) % S=1.4	-
ηχ	(1.297 ± 0.03		363
$\pi^0_{\cdot}\gamma$	$(1.26 \pm 0.10$		501
e+ e-	(2.91 ± 0.07)		510
$\mu^+\mu^-$	(3.7 ± 0.5)		499
$\eta e^+ e^-$	$(1.3 \begin{array}{c} +0.8 \\ -0.6 \end{array})$	$) \times 10^{-4}$	363
$\pi^+\pi^-$	(7.5 ± 1.4)) × 10 ⁻⁵	490
$\omega \pi^0$	(4.8 ± 2.0)	$) \times 10^{-5}$	_
$\omega \gamma$	< 5	% CL=84%	210
$\rho\gamma$	< 1.2		219
$\pi^+\pi^-\gamma$	(4.1 ± 1.3)		490
$f_0(980)\gamma$,) × 10 ⁻⁴	39
$\pi^0\pi^0\gamma$	(1.08 ± 0.19)		492
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 8.7	×10 ⁻⁴ CL=90%	410
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	< 1.5	×10 ⁻⁴ CL=95%	341
$\pi^{0} e^{+} e^{-}$	< 1.2	× 10 ⁻⁴ CL=90%	501
$\pi^0 \eta \gamma$) × 10 ⁻⁵	346
$a_0(980)\gamma$	< 5	×10 ⁻³ CL=90%	36
$\eta'(958)\gamma$	$(6.7 \begin{array}{c} +3.5 \\ -3.1 \end{array}$	$) \times 10^{-5}$	-
$\eta \pi^0 \pi^0 \gamma$	< 2	$\times 10^{-5}$ CL=90%	_
$\mu^+\mu^-\gamma$	(1.4 ± 0.5)	$) \times 10^{-5}$	_
ργγ	< 5	$\times 10^{-4}$ CL=90%	-
$\eta \pi^+ \pi^-$	< 3	×10 ⁻⁴ CL=90%	-

$h_1(1170)$

$$I^G(J^{PC})=0^-(1^{+-})$$

Mass $m=1170\pm 20$ MeV Full width $\Gamma=360\pm 40$ MeV

h1 (1170) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	seen	310

b₁(1235)

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass $m = 1229.5 \pm 3.2 \text{ MeV}$ (S = 1.6) Full width $\Gamma = 142 \pm 9 \text{ MeV}$ (S = 1.2)

b ₁ (1235) DECAY MODES	Fraction (F	;/ Г)	Confidence level	<i>p</i> (MeV/c)
$\omega\pi$ [D/S amplitude ratio =	domina = 0.29 ± 0.04]	nt		348
$\pi^{\pm}\gamma$	(1.6±0	.4) × 10	₎ –3	608
$\eta \rho$	seen			_
$\eta \rho \atop \pi^+ \pi^+ \pi^- \pi^0$	< 50	%	84%	536
$(K\overline{K})^{\pm}\pi^{0}$	< 8	%	90%	248
$K_S^0 K_I^0 \pi^{\pm}$	< 6	%	90%	238
$K_S^0 K_L^0 \pi^{\pm}$ $K_S^0 K_S^0 \pi^{\pm}$	< 2	%	90%	238
$\phi\pi$	< 1.5	%	84%	146

a₁(1260) [/]

$$I^{G}(J^{PC}) = 1^{-}(1++)$$

Mass $m=1230\pm40$ MeV [m]Full width $\Gamma=250$ to 600 MeV

$(\rho\pi)_{S-\text{wave}}$ seen $(\rho\pi)_{D-\text{wave}}$ seen $(\rho(1450)\pi)_{S-\text{wave}}$ seen $(\rho(1450)\pi)_{D-\text{wave}}$ seen	leV/c)
$(\rho(1450)\pi)_{S-\text{wave}}$ seen	
$(\rho(1450)\pi)_{S-\text{wave}}$ seen	-
(ρ(1450)π)p seen	_
(P(I 100) // /D=Wave	_
$\sigma\pi$ seen	_
$f_0(980)\pi$ not seen	_
$f_0(1370)\pi$ seen	-
$f_2(1270)\pi$ seen	_
$\overline{K}K^*(892) + c.c.$ seen	_
$\pi(1300)\pi$ not seen	_
$\pi\gamma$ seen	607

f₂(1270)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m = 1275.4 \pm 1.2$ MeV Full width $\Gamma = 185.1^{+3.4}_{-2.6}$ MeV (S = 1.5)

f2(1270) DECAY MODES	Fraction (Γ_j/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/c)
ππ	(84.7 +2.4) %	S=1.3	622
$\pi^+\pi^-2\pi^0$	$(7.1 \ ^{+1.5}_{-2.6})\%$	S=1.3	562
ĸĸ	(4.6 ±0.5)%	5=2.8	403
$2\pi^{+}2\pi^{-}$	$(2.8 \pm 0.4)\%$	5=1.2	559
$\eta\eta_{_{-}}$	$(4.5 \pm 1.0) \times 1$	0^{-3} 5=2.4	327
$4\pi^0$	(3.0 ± 1.0) $\times 1$	0-3	564
$\gamma\gamma$	$(1.41\pm0.13)\times1$	0-5	637
$\eta \pi \pi$	< 8 ×1	0 ⁻³ CL≃95%	475
$K^0 K^- \pi^+ + \text{c.c.}$		0 ⁻³ CL=95%	293
e+ e-	< 9 ×1	0 ⁻⁹ CL=90%	637

 $f_1(1285)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1281.9\pm0.6$ MeV (S = 1.7) Full width $\Gamma=24.0\pm1.2$ MeV (S = 1.4)

f1(1285) DECAY MODES	Fraction (Γ_j/Γ)	Scale factor/ Confidence level	р (MeV/c)
4π	$(33.1^{+}_{-} \begin{array}{c} 2.1\\ 1.8 \end{array})$ %	S=1.3	563
$\pi^0 \pi^0 \pi^+ \pi^-$	(22.0 + 1.4)%	S=1.3	566
$2\pi^{+}2\pi^{-}$	$(11.0 + 0.7 \atop -0.6)$ %	S=1.3	563
$ ho^0 \pi^+ \pi^-$	(11.0 + 0.7) %	S=1.3	340
$4\pi^0$	< 7 × 10) ⁻⁴ CL=90%	568
$\eta \pi \pi$	(52 ±16)%		479
$a_0(980)\pi$ [ignoring $a_0(980) \rightarrow K\overline{K}$]	(36 ± 7)%		234
$\eta \pi \pi$ [excluding $a_0(980)\pi$]	$(16 \pm 7)\%$		_
$K\overline{K}\pi$	$(9.0 \pm 0.4)\%$	S=1.1	308
<i>Κ</i> K *(892)	not seen		_
$\dot{\gamma} \rho^0$	(5.5 ± 1.3) %	S=2.8	410
φγ	(7.4± 2.6) × 10) ⁻⁴	236

 $\eta(1295)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})^{+}$$

Mass $m=1297.0\pm2.8$ MeV Full width $\Gamma=53\pm6$ MeV

η(1295) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\eta \pi^+ \pi^-}$	seen	488
$a_0(980)\pi$ $\eta \pi^0 \pi^0$	seen	245
$\eta \pi^0 \pi^0$	seen	
$\eta(\pi\pi)_{S ext{-wave}}$	seen	-

 $\pi(1300)$

$$I^{G}(J^{PC}) = 1^{-}(0^{-})$$

Mass $m=1300\pm 100$ MeV [m]Full width $\Gamma=200$ to 600 MeV

x(1300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	seen	406
$\pi(\pi\pi)_{S-Wave}$	seen	-

a₂(1320)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

Mass $m=1318.0\pm0.6$ MeV (S = 1.1) Full width $\Gamma=107\pm5$ MeV [m]

≥2(1320) DECAY MODES	Fraction (Γ_i/Γ)	5cale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$ ho\pi$	(70.1 ± 2.7) %	S=1.2	419
$\eta \pi$	(14.5 ± 1.2) %		535
$\omega \pi \pi$	(10.6 ± 3.2) %	S=1.3	362
κ κ	$(4.9\pm0.8)\%$		437
$\eta'(958)\pi$ $\pi^{\pm}\gamma$	$(5.3\pm0.9)\times1$	0-3	287
$\pi^{\pm}\gamma$	$(2.8 \pm 0.6) \times 1$	0-3	652
$\gamma\gamma$	$(9.4\pm0.7)\times1$	0-6	659
$\pi^{+}\pi^{-}\pi^{-}$	< 8 %	CL=90%	621
e+ e-	< 2.3 × 1	0 ⁻⁷ CL=90%	659

f₀(1370) ^[k]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass m = 1200 to 1500 MeV Full width $\Gamma = 200$ to 500 MeV

f ₀ (1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
ππ	seen	_
4π	seen	-
$4\pi^0$	seen	-
$2\pi^{+}2\pi^{-}$ $\pi^{+}\pi^{-}2\pi^{0}$	seen	-
	seen	_
$2(\pi\pi)_{S\text{-wave}}$	seen	-
ηη	seen	_
η <u>η</u> Κ <u>Κ</u>	seen	_
$\gamma\gamma$	seen	-
e+ e-	not seen	-

f₁(1420) [n]

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1426.3\pm1.1$ MeV (S = 1.3) Full width $\Gamma=55.5\pm2.9$ MeV

f1(1420) DECAY MODES	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	p (MeV/c)
KKπ	dominant	439
$K\overline{K}^*(892) + \text{c.c.}$	dominant	155
ηππ	possibly seen	571
$\phi\gamma$	5een	-

 ω (1420) $^{[o]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1419\pm31~{\rm MeV}$ Full width $\Gamma=174\pm60~{\rm MeV}$

⊌(1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	dominant	488

η(1440) ^[ρ]

 $I^{G}(J^{PC}) = 0^{+}(0^{-}+)$

Mass m=1400 - 1470 MeV $^{[m]}$ Full width $\Gamma=50$ - 80 MeV $^{[m]}$

η(1440) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KKπ	seen	
$K\overline{K}^*(892) + c.c.$	seen	-
ηππ	seen	-
$a_0(980)\pi$	seen	-
$\eta(\pi\pi)_{S ext{-wave}}$	seen	-
$f_0(980)\eta$	seen	-
4π	seen	-

a₀(1450)

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Mass $m=1474\pm19~{\rm MeV}$ Full width $\Gamma=265\pm13~{\rm MeV}$

a ₀ (1450) DECAY MODES	Fraction (Γ _į /Γ)	p (MeV/c)
πη	seen	613
πη'(958) ΚΚ	seen	392
κ κ	seen	530

ρ(1450) ^[q]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass m= 1465 \pm 25 MeV $^{[m]}$ Full width $\Gamma=$ 310 \pm 60 MeV $^{[m]}$

ρ(1450) DECAY MODES	Fraction (Γ_j/Γ)	Confidence level	р (MeV/c)
ππ	seen		719
4π	seen		665
$\omega\pi$	<2.0 %	95%	512
e ⁺ e ⁻	seen		732
$\eta \rho$	<4 %		317
$a_2(1320)\pi$	not seen		_
$\phi \pi \over K \overline{K}$	<1 %		358
κ κ	$<1.6 \times 10^{-3}$	95%	541

f₀(1500) [r]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=1500\pm10$ MeV (S = 1.3) Full width $\Gamma=112\pm10$ MeV

ිල(1500) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta \eta'(958)$	seen	_
$\eta\eta$	seen	513
4π	seen	_
$4\pi^0$	seen	690
$2\pi^{+}2\pi^{-}$	seen	686
ππ	seen	-
$\pi^+\pi^-$	seen	737
$\pi^{+}\pi^{-}$ $2\pi^{0}$	seen	738
κ Κ	seen	563

 $f_2'(1525)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1525\pm 5~{\rm MeV}~{}^{[m]}$ Full width $\Gamma=76\pm 10~{\rm MeV}~{}^{[m]}$

f ₂ (1525) DECAY MODES	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	p (MeV/c)
KK	(88.8 ±3.1) %	581
$\eta \eta$	(10.3 ±3.1)%	531
ππ	$(8.2 \pm 1.5) \times 10^{-3}$	750
77	$(1.32\pm0.21)\times10^{-6}$	763

ω(1650) ^[5] was ω(1600)

$$I^G(J^{PC}) = 0^-(1^{--})$$

Mass $m = 1649 \pm 24$ MeV (S = 2.3) Full width $\Gamma = 220 \pm 35$ MeV (S = 1.6)

⊌(1650) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
ρπ	seen	637
$\omega \pi \pi$	seen	601
e+ e-	seen	824

 $\omega_3(1670)$

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m = 1667 \pm 4 \text{ MeV}$ Full width $\Gamma = 168 \pm 10 \text{ MeV}$ [m]

سع(1670) DECAY MODES	Fraction (Γ _i /Γ)	p (MeV/c)
$ ho\pi$	seen	647
$\omega \pi \pi$	seen	614
$b_1(1235)\pi$	possibly seen	359

 $\pi_2(1670)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-})$$

Mass $m=1670\pm 20~{\rm MeV}~{\rm [m]}$ Full width $\Gamma=259\pm 11~{\rm MeV}~{\rm [m]}~({\rm S}=1.5)$

Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
(95.8±1.4) %		806
(56.2±3.2) %		325
$(31 \pm 4)\%$		649
(13 ±6) %		_
(8.7±3.4) %		-
(4.2±1.4) %		453
(2.7±1.1) %		-
< 3.6 × 1	10-3 97.7%	-
< 1.9 × 1	10 ⁻³ 97.7%	-
	(95.8±1.4) % (56.2±3.2) % (31 ±4) % (13 ±6) % (8.7±3.4) % (4.2±1.4) % (2.7±1.1) % < 3.6 × 1	$(95.8 \pm 1.4) \%$ $(56.2 \pm 3.2) \%$ $(31 \pm 4) \%$ $(13 \pm 6) \%$ $(8.7 \pm 3.4) \%$ $(4.2 \pm 1.4) \%$ $(2.7 \pm 1.1) \%$ $< 3.6 \times 10^{-3} 97.7\%$

 $\phi(1680)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1680\pm20$ MeV $^{[m]}$ Full width $\Gamma=150\pm50$ MeV $^{[m]}$

♦ (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\overline{K}^*(892) + c.c.$	dominant	463
Κ <mark>°</mark> Κπ Κ Κ	seen	620
ĸĸ	seen	681
e^+e^-	seen	840
$\omega \pi \pi$	not seen	622

 $\rho_3(1690)$

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

Mass $m=1691\pm 5~{\rm MeV}~[m]$ Full width $\Gamma=161\pm 10~{\rm MeV}~[m]$ (S = 1.5)

ρ ₃ (1690) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
4π	(71.1 ± 1.9)%		788
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	$(67 \pm 22)\%$		788
$\omega\pi$	$(16 \pm 6)\%$		656
$\pi\pi$	$(23.6 \pm 1.3)\%$		834
$K\overline{K}\pi$	$(3.8 \pm 1.2)\%$		628
κR	(1.58± 0.26) %	1.2	686
$\eta \pi^+ \pi^-$	seen		728
$\rho(770)\eta$	seen		-

 $\rho(1700)^{[q]}$

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m=1700\pm20$ MeV $^{[m]}$ $(\eta\,\rho^0$ and $\pi^+\,\pi^-$ modes) Full width $\Gamma=240\pm60$ MeV $^{[m]}$ $(\eta\,\rho^0$ and $\pi^+\,\pi^-$ modes)

ρ(1700) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
ρππ	dominant	640
$ ho^0\pi^+\pi^-$	large	640
$ ho^{\pm}\pi^{\mp}\pi^{0}$	large	642
$2(\pi^{+}\pi^{-})$	large	792
$\pi^+\pi^-$	seen	838
$\pi^-\pi^0$	seen	839
$K\overline{K}^*(892) + c.c.$	seen	479
$\eta \rho$	seen	533
$a_2(1320)\pi$	not seen	_
KΚ	seen	692
e+ e-	seen	850
$\pi^0\omega$	seen	662

f₀(1710) [t]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m = 1715 \pm 7 \text{ MeV}$ (S = 1.1) Full width $\Gamma=125\pm12$ MeV

f ₀ (1710) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
KK	seen	690
$\eta\eta$	seen	648
ππ	seen	837

 $\pi(1800)$

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m = 1801 \pm 13 \text{ MeV}$ (S = 1.9) Full width $\Gamma = 210\,\pm\,15$ MeV

π(1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\frac{1}{\pi^{+}\pi^{-}\pi^{-}}$	seen	
$f_0(980)\pi^-$	seen	623
$f_0(1370)\pi^-$	seen	_
$\rho\pi^-$	not seen	728
$\eta\eta\pi^{-}$	seen	_
$a_0(980)\eta$	seen	459
$f_0(1500)\pi^-$	seen	240
$\eta \eta'(958) \pi^-$	seen	_
$K_0^*(1430)K^-$	seen	-
K*(892)K-	not seen	560

 $\phi_3(1850)$

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m = 1854 \pm 7 \text{ MeV}$ Full width $\Gamma = 87^{+28}_{-23} \text{ MeV}$ (S = 1.2)

₱3(1850) DECAY MODES	Fraction (Γ_j/Γ)	ρ (MeV/c)
KK	seen	785
$K\overline{K}^*(892) + \text{c.c.}$	seen	602

£(2010)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2011^{+60}_{-80}~{\rm MeV}$ Full width $\Gamma=202\pm60~{\rm MeV}$

Full width $\Gamma=361\pm50~\text{MeV}$

∱(2010) DECAY MODES	Fraction (Γ _į /Γ)	p (MeV/c)
$\phi \phi$	seen	_
a ₄ (2040)	$I^{G}(J^{PC}) = 1^{-}(4^{+})^{-}$	+)

a4(2040) Mass $m = 2014 \pm 15 \text{ MeV}$

a ₄ (2040) DECAY MODES	MODES Fraction (Γ_i/Γ)	
KK	seen	892
$\pi^{+}\pi^{-}\pi^{0}$	seen	-
$\eta \pi^0$	seen	941

f4(2050)

$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

Mass $m = 2034 \pm 11 \text{ MeV}$ (S = 1.6) Full width $\Gamma = 222 \pm 19$ MeV (S = 1.8)

14(2050) DECAY MODES	DECAY MODES Fraction $(\Gamma_{\hat{I}}/\Gamma)$	
ωω	(26 ±6)%	658
$\pi \pi$	(17.0 ± 1.5) %	1012
κ κ	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$	895
$\eta \eta$ $4\pi^0$	$(2.1\pm0.8)\times10^{-3}$	863
$4\pi^0$	< 1.2 %	977
$a_2(1320)\pi$	seen	_

f₂(2300)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2297\pm28~{\rm MeV}$ Full width Γ = 149 \pm 40 MeV

1 ₂ (2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi \phi$	seen	529

f₂(2340)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2339\pm60~{\rm MeV}$ Full width $\Gamma = 319^{+80}_{-70}$ MeV

f2(2340) DECAY MODES	Fraction (Γ_f/Γ)	p (MeV/c)	
$\phi \phi$	seen	573	

STRANGE MESONS $(S=\pm 1, C=B=0)$

 $K^+ = u\overline{s}$, $K^0 = d\overline{s}$, $\overline{K}^0 = \overline{d}s$, $K^- = \overline{u}s$, similarly for $K^{*}s$

Κ±

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m = 493.677 \pm 0.016$ MeV [u] (S = 2.8) Mean life $\tau = (1.2386 \pm 0.0024) \times 10^{-8} \text{ s}$ (S = 2.0) $c\tau = 3.713 \text{ m}$

Slope parameter g [v]

(See Particle Listings for quadratic coefficients)

$$\begin{array}{lll} K^+ \rightarrow & \pi^+ \pi^+ \pi^- = -0.2154 \pm 0.0035 & (S=1.4) \\ K^- \rightarrow & \pi^- \pi^- \pi^+ = -0.217 \pm 0.007 & (S=2.5) \\ K^\pm \rightarrow & \pi^\pm \pi^0 \pi^0 = 0.652 \pm 0.031 & (S=2.7) \end{array}$$

K^{\pm} decay form factors [a,w]

 K_{e3}^+ $\lambda_+ = 0.0276 \pm 0.0021$

 $K_{\mu 3}^{+}$ $\lambda_{+} = 0.031 \pm 0.008$ (S = 1.6)

 $K_{\mu 3}^{+}$ $\lambda_0 = 0.006 \pm 0.007$ (S = 1.6)

 K_{e3}^{+} $|f_S/f_+| = 0.084 \pm 0.023$ (S = 1.2)

 $K_{e3}^+ |f_T/f_+| = 0.38 \pm 0.11 \text{ (S = 1.1)}$

 $K_{\mu 3}^{+} |f_T/f_+| = 0.02 \pm 0.12$

 $K^{+} \rightarrow e^{+} \nu_{e} \gamma$ $|F_{A} + F_{V}| = 0.148 \pm 0.010$ $K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma$ $|F_{A} + F_{V}| < 0.23$, CL = 90% $K^{+} \rightarrow e^{+} \nu_{e} \gamma$ $|F_{A} - F_{V}| < 0.49$

 $K^+ \to \mu^+ \nu_\mu \gamma |F_A - F_V| = -2.2 \text{ to } 0.3$

K⁻⁻ modes are charge conjugates of the modes below.

K+ DECAY HODES	E (E (E)	Scale factor/	P
K+ DECAY MODES	Fraction (Γ_j/Γ)	Confidence level	(MeV/c)
$\mu^+ u_\mu$	(63.51±0.18) %	S=1.3	236
$e^+ \stackrel{\cdot}{ u_e}$	$(1.55 \pm 0.07) \times$	10^{-5}	247
$\pi^+\pi^0$	(21.16 ± 0.14) %	S=1.1	205
$\pi^+\pi^+\pi^-$	(5.59±0.05) %	S=1.8	125
$\pi^{+}\pi^{0}\pi^{0}$	(1.73±0.04) %	S=1.2	133
$\pi^0 \mu^+ u_{\mu}$	(3.18±0.08) %	S=1.5	215
Called $K_{\mu 3}^+$.			
$\pi^0 e^+ \nu_e$	(4.82 ± 0.06) %	S=1.3	228
Called K_{e3}^+ .			
$\pi^{0}\pi^{0}e^{+}\nu_{e}$	(2.1 ±0.4)×	10-5	206
$\pi^+\pi^-e^+\nu_e$	$(3.91 \pm 0.17) \times$	10-5	203
$\pi^+\pi^-\mu^+ u_\mu$	(1.4 ±0.9)×	10-5	151
$\pi^0 \pi^0 \pi^0 e^+ \nu_e$	< 3.5 ×	10 ⁻⁶ CL=90%	135
$\mu^+ u_{\mu} u \overline{ u}$	< 6.0 ×	10 ⁻⁶ CL=90%	236
$e^+ \nu_e \nu \overline{\nu}$	< 6 ×	10 ⁻⁵ CL=90%	247
$\mu^+ u_\mu e^+ e^-$	(1.3 \pm 0.4) \times	10 ⁻⁷	236
$e^+ u_ee^+e^-$	$(3.0 ^{+3.0}_{-1.5}) \times$	10-8	247
$e^{+}\nu_{e}\mu^{+}\mu^{-}$	< 5 ×	10 ⁻⁷ CL=90%	_
$\mu^+ \nu_\mu \mu^+ \mu^-$	< 4.1 ×	10 ⁻⁷ CL=90%	185
$\mu^+ u_\mu \gamma$	[x,y] (5.50±0.28) ×	10-3	236
$\pi^+\pi^0\gamma$	[x,y] (2.75±0.15) ×		205
$\pi^+\pi^0\gamma(DE)$	[y,z] (1.8 ± 0.4) ×		205
$\pi^+\pi^+\pi^-\gamma$	[x,y] (1.04±0.31) ×		125
$\pi^+\pi^0\pi^0\gamma$	$[x,y]$ (7.5 $^{+5.5}_{-3.0}$) ×		133
$\pi^0 \mu^+ u_\mu \gamma$		10 ⁻⁵ CL=90%	215
$\pi^0 e^+ \nu_e \gamma$	[x,y] (2.62±0.20) ×	_	228
$\pi^0 e^+ \nu_e \gamma (SD)$		10 ⁻⁵ CL=90%	228
$\pi^0 \pi^0 e^+ \nu_e \gamma$		10 ⁻⁶ CL=90%	206
$\pi^+\gamma\gamma$	[y] $(1.10\pm0.32) \times$		227
$\pi^+3\gamma$	$[y] < 1.0 \times$	10 ⁻⁴ CL=90%	227

Lepton Family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

$\pi^+\pi^+e^-\overline{\nu}_e$	SQ	< 1.2	× 10 ⁻⁸	CL=90%	203
$\pi^+\pi^+\mu^-\overline{ u}_{\mu}$	SQ	< 3.0	× 10 ⁻⁶	CL=95%	151
$\pi^+ e^+ e^-$	51	(2.88±0	$.13) \times 10^{-7}$		227
$\pi^+ \mu^+ \mu^-$	S1	(7.6 ±2	.1)×10 ⁻⁸	S=3.4	172
$\pi^+ u \overline{ u}$	S1	$(1.5 \begin{array}{c} +3 \\ -1 \end{array})$	$\binom{4}{2} \times 10^{-10}$		227
$\mu^- \nu e^+ e^+$	LF	< 2.0	× 10 ⁻⁸	CL=90%	236
$\mu^+ \nu_e$	LF	[d] < 4	× 10 ⁻³	CL=90%	236
$\pi^+\mu^+e^-$	LF	< 2.1	× 10 ⁻¹⁰	CL=90%	214
$\pi^+\mu^-e^+$	LF	< 7	× 10 ⁻⁹	CL=90%	214
$\pi^-\mu^+e^+$	L	< 7	× 10 ⁻⁹	CL=90%	214
$\pi^{-}e^{+}e^{+}$	L	< 1.0	× 10 ⁻⁸	CL=90%	227
$\pi^-\mu^+\mu^+$	L	[d] < 1.5	× 10 ⁻⁴	CL=90%	172
$\mu_{\perp}^{+} \overline{\nu}_{e}$	L	[d] < 3.3	× 10 ⁻³	CL=90%	236
$\pi^0 e^+ \overline{\nu}_e$	L	< 3	× 10 ⁻³	CL=90%	228

K^0

$$I(J^P) = \frac{1}{2}(0^-)$$

50% K_S, 50% K_L Mass $m = 497.672 \pm 0.031 \text{ MeV}$ $m_{K^0} - m_{K^{\pm}} = 3.995 \pm 0.034 \text{ MeV} \quad (S = 1.1)$ $\left|m_{K^0} - m_{\overline{K}^0}\right| / m_{\mathrm{average}} < 10^{-18} \, [bb]$

7-violation parameters in K^0 - \overline{K}^0 mixing [w]

Asymmetry A_{T} in $\ensuremath{\mbox{\,K}^{0}}\mbox{-}\ensuremath{\mbox{\,K}^{0}}$ mixing = (6.6 \pm 1.6) \times 10 $^{-3}$

CPT-violation parameters in $K^0-\overline{K}^0$ mixing [w]

Re
$$\Delta = (2.9 \pm 2.7) \times 10^{-4}$$

Im $\Delta = (-0.8 \pm 3.1) \times 10^{-3}$

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life $\tau = (0.8935 \pm 0.0008) \times 10^{-10}$ s $c\tau = 2.6786 \text{ cm}$

CP-violation parameters [cc]

$$lm(\eta_{+-0}) = -0.002 \pm 0.009$$

 $lm(\eta_{000}) = -0.05 \pm 0.13$

K ⁰ _S DECAY MODES		Fraction	(Γ _į /Γ)		ale factor/ dence level	<i>p</i> (MeV/c)
$\pi^+\pi^-$		(68.61	±0.28) %		S=1.2	206
$\pi^0 \pi^0$		(31.39	± 0.28) %		S=1.2	209
$\pi^+\pi^-\gamma$	[x,dd	(1.78	3±0.05)×	10-3		206
$\gamma\gamma$		(2.4	±0.9)×	10-6		249
$\pi^+\pi^-\pi^0$		(3.2	$^{+1.2}_{-1.0}$) \times	10-7		133
$3\pi^{0}$		< 1.4	×	10-5	CL=90%	139
$\pi^{\pm}e^{\mp} u_{e}$	[ee	7.2	±1.4) \times	10-4		229
$\Delta S = 1$	weak neut	ral cum	ent (<i>S1</i>)	modes		
$\mu^+\mu^-$	S1	< 3.2	×	10-7	CL=90%	225
e+e-	S1	< 1.4	×	10-7	CL=90%	249
$\pi^0 e^+ e^-$	S1	< 1.1	×	10-6	CL=90%	231

$$I(J^P) = \frac{1}{2}(0^-)$$

 $m_{K_L} - m_{K_S} = (0.5300 \pm 0.0012) \times 10^{10} \; h \; s^{-1}$ $= (3.489 \pm 0.008) \times 10^{-12} \text{ MeV}$ Mean life $\tau = (5.17 \pm 0.04) \times 10^{-8} \text{ s}$ (S = 1.1) $c\tau = 15.51 \text{ m}$

Slope parameter $g^{[\nu]}$

(See Particle Listings for quadratic coefficients)
$$K^0_J \to ~\pi^+\pi^-\pi^0 = 0.678 \pm 0.008 ~(S=1.5)$$

K_L decay form factors [w]

 $\begin{array}{lll} \mathcal{K}^{0}_{e3} & \lambda_{+} = 0.0288 \pm 0.0015 & (S = 1.3) \\ \mathcal{K}^{0}_{\mu3} & \lambda_{+} = 0.034 \pm 0.005 & (S = 2.3) \\ \mathcal{K}^{0}_{\mu3} & \lambda_{0} = 0.025 \pm 0.006 & (S = 2.3) \\ \mathcal{K}^{0}_{e3} & |f_{S}/f_{+}| < 0.04, \text{ CL} = 68\% \\ \mathcal{K}^{0}_{e3} & |f_{T}/f_{+}| < 0.23, \text{ CL} = 68\% \\ \mathcal{K}^{0}_{\mu3} & |f_{T}/f_{+}| = 0.12 \pm 0.12 \\ \mathcal{K}_{L} \rightarrow & e^{+}e^{-}\gamma \colon & \alpha_{K^{*}} = -0.33 \pm 0.05 \end{array}$

CP-violation parameters [cc]

$$\begin{split} \delta &= (0.327 \pm 0.012)\% \\ |\eta_{00}| &= (2.262 \pm 0.017) \times 10^{-3} \\ |\eta_{+-}| &= (2.276 \pm 0.017) \times 10^{-3} \\ |\eta_{00}/\eta_{+-}| &= 0.9936 \pm 0.0014 \, {}^{[f]} \quad (S = 1.6) \\ \epsilon'/\epsilon &= (2.1 \pm 0.5) \times 10^{-3} \, {}^{[f]} \quad (S = 1.6) \\ \phi_{+-} &= (43.3 \pm 0.5)^\circ \\ \phi_{00} &= (43.2 \pm 1.0)^\circ \\ \phi_{00} &= \phi_{+-} &= (-0.1 \pm 0.8)^\circ \\ CP \text{ asymmetry } A \text{ in } K_0^0 \to \pi^+\pi^-e^+e^- = (13.6 \pm 2.8)\% \\ \text{j for } K_0^0 \to \pi^+\pi^-\pi^0 = 0.0011 \pm 0.0008 \\ \text{f for } K_0^1 \to \pi^+\pi^-\pi^0 = 0.004 \pm 0.006 \\ |\eta_{+-\gamma}| &= (2.35 \pm 0.07) \times 10^{-3} \\ \phi_{+-\gamma} &= (44 \pm 4)^\circ \\ |\epsilon'_{+-\gamma}|/\epsilon &< 0.3, \text{ CL} = 90\% \end{split}$$

$\Delta S = -\Delta Q$ in K_{L3}^0 decay

Re $x = -0.002 \pm 0.006$ Im $x = 0.0012 \pm 0.0019$

KO DECAY MODES	Fracti	on (Γ_i/Γ)	Scale factor/ Confidence level	•
$3\pi^0$	(21	.13 ±0.27) %	% S=1.1	139
$\pi^+\pi^-\pi^0$	(12	.55 ± 0.20) %	% S=1.7	133
$\pi^{\pm}\mu^{\mp}\nu_{\mu}$	[ee] (27	.18 ±0.25) %	% S=1.1	216
Called $K_{\mu 3}^{0}$.				
$\pi^{\pm}e^{\mp} u_{e}$	[ee] (38	.78 ±0.28) %	% S=1.1	229
Called K_{e3}^0 .				
2γ	(5	.86 ±0.15)>	< 10 ⁻⁴	249
$\frac{3\gamma}{\pi^0}$ 2 γ	< 2	.4 >	< 10 ⁻⁷ CL=90%	249
		.68 ±0.10) >		231
$\pi^0\pi^{\pm}e^{\mp}\nu$.18 ±0.29) >	_	207
$(\pi \mu atom) \nu$	(1	.06 ±0.11)>	⟨10-/	-
$\pi^{\pm} e^{\mp} \nu_e \gamma$	[x,ee,gg] (3	.62 + 0.26) >	× 10 ⁻³	229
$\pi^{\pm}\mu^{\mp} u_{\mu}\gamma$	(5	.7 +0.6)>	× 10 ^{−4}	_
$\pi^+\pi^-\gamma$	[x,gg] (4	.61 ±0.14) >		206
$\pi^0\pi^0\gamma$	< 5	.6 >	< 10 ⁻⁶	209
$\mu^+\mu^-\gamma$.25 ± 0.28) >		225
$e^+e^-\gamma$.0 ±0.5)>		249
$e^+e^-\gamma\gamma$.9 ±1.0)>		249
$\pi^0 \gamma e^+ e^-$	< 7	.1 >	<10 ⁻⁷ CL=90%	_

Charge conjugation \times Parity (*CP*, *CPV*) or Lepton Family number (*LF*) violating modes, or $\Delta S = 1$ weak neutral current (*S1*) modes

morating moration		oun neuglai ci	anche (DZ) modes	
$\pi^+\pi^-$	CPV	$(2.056 \pm 0.03$	$3) \times 10^{-3}$	206
$\pi^{0}\pi^{0}$	CPV	(9.27 ± 0.19)	$) \times 10^{-4}$	209
$\mu^+\mu^-$	S1	(7.15 ± 0.16)	$) \times 10^{-9}$	225
e ⁺ e ⁻	S1	(9 +6	$) \times 10^{-12}$	249
$\pi^+\pi^-e^+e^-$	S1 [gg]	(3.5 ± 0.6)	·	206
$\mu^{+}\mu^{-}e^{+}e^{-}$	5 1	(2.9 + 6.7 - 2.4)	$) \times 10^{-9}$	225
e+ e- e+ e-	SI	(4.1 ± 0.8)) × 10 ⁻⁸	249
$\pi^{0}\mu^{+}\mu^{-}$	CP,S1[hh] <	< 5.1	$\times 10^{-9}$ CL=90%	177
$\pi^0 e^+ e^-$	CP,S1[hh] <	< 4.3	$\times 10^{-9}$ CL=90%	231
$\pi^0 \nu \overline{\nu}$	CP,S1 [ii] <	< 5.9	$\times 10^{-7}$ CL=90%	231
$e^{\pm}\mu^{\mp}$	LF [ee]	< 4.7	$\times 10^{-12}$ CL=90%	238
$e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$	LF [ee] ·	< 6.1	$\times 10^{-9}$ CL=90%	-
$\pi^0 \mu^{\pm} e^{\mp}$	LF [ee] ·	< 6.2	× 10 ⁻⁹ CL=90%	-

K*(892)

$$I(J^P) = \frac{1}{2}(1^-)$$

 $K^*(892)^{\pm}$ mass $m = 891.66 \pm 0.26$ MeV $K^*(892)^0$ mass $m = 896.10 \pm 0.27$ MeV (S = 1.4) $K^*(892)^{\pm}$ full width Γ = 50.8 ± 0.9 MeV $K^*(892)^0$ full width Γ = 50.7 ± 0.6 MeV (S = 1.1)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Κπ	~ 100	%	291
$K^0\gamma$	(2.30 ± 0.20)	× 10 ⁻³	310
$K^{\pm}\gamma$	(9.9 ± 0.9)	× 10 ⁻⁴	309
Κππ	< 7	× 10 ⁻⁴ 95%	224

K₁(1270)

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m = 1273 \pm 7 \text{ MeV } [m]$ Full width $\Gamma = 90 \pm 20 \text{ MeV } [m]$

K ₁ (1270) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κρ	(42 ±6)%	76
$K_0^*(1430)\pi$	(28 ±4)%	-
K*(892)π	(16 ±5)%	301
Κω	(11.0 ± 2.0) %	_
K f ₀ (1370)	$(3.0\pm2.0)\%$	_

K₁(1400)

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m = 1402 \pm 7$ MeV Full width $\Gamma = 174 \pm 13$ MeV (S = 1.6)

K ₁ (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
K*(892)π	(94 ±6)%	401	
Kρ	$(3.0 \pm 3.0)\%$	298	
K f ₀ (1370)	(2.0±2.0) %	_	
Κω	(1.0 ± 1.0) %	285	
$K_0^*(1430)\pi$	not seen	_	

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m = 1414 \pm 15$ MeV (S = 1.3) Full width $\Gamma = 232 \pm 21$ MeV (S = 1.1)

K*(1410) DECAY MODES	ECAY MODES Fraction (Γ_i/Γ)		Confidence level	<i>p</i> (MeV/ <i>c</i>)
Κ*(892) π	> 40	%	95%	408
Κπ	(6.6±	1.3) %		611
Κρ	< 7	%	95%	309

K₀*(1430) [ii]

$$I(J^P) = \tfrac{1}{2}(0^+)$$

Mass $m=1412\pm 6~{\rm MeV}$ Full width $\Gamma=294\pm 23~{\rm MeV}$

K ₀ *(1430) DECAY MODES	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	p (MeV/c)	
Κπ	(93±10)%	621	

K₂(1430)

$$I(J^P) = \frac{1}{2}(2^+)$$

 $\begin{array}{ll} \textit{K}_2^*(1430)^{\pm} \; \text{mass} \; \textit{m} = 1425.6 \pm 1.5 \; \text{MeV} & (\text{S} = 1.1) \\ \textit{K}_2^*(1430)^0 \; \; \text{mass} \; \textit{m} = 1432.4 \pm 1.3 \; \text{MeV} \\ \textit{K}_2^*(1430)^{\pm} \; \text{full} \; \text{width} \; \Gamma = 98.5 \pm 2.7 \; \text{MeV} & (\text{S} = 1.1) \\ \textit{K}_2^*(1430)^0 \; \; \text{full} \; \text{width} \; \Gamma = 109 \pm 5 \; \text{MeV} & (\text{S} = 1.9) \end{array}$

K ₂ *(1430) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	р (MeV/c)
Κπ	(49.9±1.2) %		622
K*(892)π	$(24.7 \pm 1.5) \%$		423
$K^*(892)\pi\pi$	(13.4 ± 2.2) %		375
Kρ	(8.7±0.8)%	S=1.2	331

Κω	(2.9±0.8) %		319
$K^+\gamma$	$(2.4\pm0.5)\times10^{-3}$	S=1.1	627
Κη	$(1.5^{+3.4}_{-1.0}) \times 10^{-3}$	S=1.3	492
$K\omega\pi K^0\gamma$	$< 7.2 \times 10^{-4}$ $< 9 \times 10^{-4}$	CL=95% CL=90%	110 631
K 1	< 3 × 10 ·	CL = 70 /0	031

K*(1680)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m = 1717 \pm 27 \text{ MeV}$ (S = 1.4) Full width $\Gamma = 322 \pm 110 \text{ MeV}$ (S = 4.2)

K*(1680) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
Κπ	(38.7±2.5) %	779
Κρ	$(31.4^{+4.7}_{-2.1})\%$	571
$K^*(892)\pi$	(29.9 ^{+2.2} _{-4.7}) %	615

K2(1770) [kk]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m = 1773 \pm 8 \text{ MeV}$ Full width $\Gamma = 186 \pm 14 \text{ MeV}$

K ₂ (1770) DECAY MODES	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	p (MeV/c)	
Κππ			
$K_2^*(1430)\pi$	dominant	287	
$K^{*}(892)\pi$	seen	653	
$K f_2(1270)$	seen	_	
Κφ	seen	441	
Κω	seen	608	

K₃(1780)

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass $m = 1776 \pm 7 \text{ MeV}$ (S = 1.1) Full width $\Gamma = 159 \pm 21 \text{ MeV}$ (S = 1.3)

K*(1780) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/c)
Κρ	(31 ± 9)%		612
$K^*(892)\pi$	(20 ± 5) %		651
Κπ	(18.8 ± 1.0) %		810
$K\eta$	(30 \pm 13)%		715
$K_2^*(1430)\pi$	< 16 %	95%	284

K₂(1820) [//]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1816\pm13~{\rm MeV}$ Full width $\Gamma=276\pm35~{\rm MeV}$

K2(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K_2^*(1430)\pi$	seen	325
K*(892)π	seen	680
K f ₂ (1270)	seen	186
Κω	seen	638

K₄(2045)

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass $m=2045\pm 9$ MeV (S = 1.1) Full width $\Gamma=198\pm 30$ MeV

K*(2045) DECAY MODES	Fraction (Γ_i/Γ)	ρ (MeV/c)	
Κπ	(9.9±1.2) %	958	
$K^*(892)\pi\pi$	(9 ±5)%	800	
$K^*(892)\pi\pi\pi$	(7 ±5)%	764	
ρΚπ	$(5.7 \pm 3.2) \%$	742	
ωKπ	$(5.0 \pm 3.0) \%$	736	
φΚπ	$(2.8 \pm 1.4) \%$	591	
φK*(892)	(1.4 ± 0.7) %	363	

CHARMED MESONS

 $(C=\pm 1)$

 $D^+ = c\overline{d}$, $D^0 = c\overline{u}$, $\overline{D}{}^0 = \overline{c}u$, $D^- = \overline{c}d$, similarly for D^* 's

D±

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m=1869.3\pm0.5~{\rm MeV}~{\rm (S}=1.1)$ Mean life $\tau=(1.051\pm0.013)\times10^{-12}~{\rm s}$ $c\tau=315~{\rm \mu m}$

c-quark decays

 $\Gamma(c \to \ell^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.095 \pm 0.009 \text{ [mm]}$

CP-violation decay-rate asymmetries

$$\begin{split} &A_{CP}(K^+K^-\pi^\pm) = -0.017 \pm 0.027 \\ &A_{CP}(K^\pm K^{*0}) = -0.02 \pm 0.05 \\ &A_{CP}(\phi\pi^\pm) = -0.014 \pm 0.033 \\ &A_{CP}(\pi^+\pi^-\pi^\pm) = -0.02 \pm 0.04 \end{split}$$

$D^+ \to \overline{K}^{\bullet}(892)^0 \ell^+ \nu_{\ell}$ form factors

$$\begin{split} r_{\nu} &= 1.82 \pm 0.09 \\ r_{2} &= 0.78 \pm 0.07 \\ r_{3} &= 0.0 \pm 0.4 \\ \Gamma_{L}/\Gamma_{T} &= 1.14 \pm 0.08 \\ \Gamma_{+}/\Gamma_{-} &= 0.21 \pm 0.04 \quad (S = 1.3) \end{split}$$

 D^- modes are charge conjugates of the modes below.

D+ DECAY MODES	Fraction (Γ_j/Γ)	Scale factor/ Confidence level	
ı	Inclusive modes		
e ⁺ anything	(17.2 ± 1.9) %		-
K ⁻ anything	$(24.2 \pm 2.8)\%$	S=1.4	-
\overline{K}^0 anything $+ K^0$ anything	(59 ± 7) %		-
K^+ anything	(5.8 ± 1.4) %		-
η anything	[nn] < 13 %	CL=90%	-
Leptonic	and semileptonic mode	5	
$\mu^+ u_{m \mu}$	(8 + 17)×	10-4	932
$\overline{K}^0 \ell^+ \nu_{\ell}$	[oo] (6.8 ± 0.8)%		_
$\overline{K}{}^0e^{ ilde{+}} u_e$	(6.7 ± 0.9) %		868
$\overline{\mathcal{K}}{}^0\mu^+ u_\mu$	(7.0 $^+$ $^ ^{3.0}$) %		865
$K^-\pi^+e^+ u_e$	$(4.1 \ ^{+}_{-}\ 0.9)\%$		863
$\overline{K}^*(892)^0 e^+ \nu_e$	$(3.2 \pm 0.33)\%$		720
$\times B(\overline{K}^{*0} \rightarrow K^{-}\pi^{+})$			
$K^-\pi^+e^+ u_e$ nonresonant	< 7 ×	10 ⁻³ CL=90%	863
$K^-\pi^+\mu^+ u_\mu$	$(3.2 \pm 0.4)\%$	S=1.1	851
\overline{K}^* (892) $^0\mu^+ u_{\mu}$	$(2.9 \pm 0.4)\%$		715
$\times \ B(\overline{K}^{*0} \to \ K^-\pi^+)$			
$K^-\pi^+\mu^+ u_\mu$ nonresonant	$(2.7 \pm 1.1) \times$	₁₀ -3	851
$(\overline{K}^*(892)\pi)^0 e^+ \nu_e$	< 1.2 %		714
$(\overline{K}\pi\pi)^0 e^+ \nu_e$ non- \overline{K}^* (892)	< 9 ×		846
$K^-\pi^+\pi^0\mu^+\nu_{\mu}$	< 1.4 ×		825
$\pi^0 \ell^+ \nu_\ell$	[pp] (3.1 \pm 1.5) \times	10 ⁻³	930

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

, ,	, ,	•		
$\overline{K}^*(892)^0 \ell^+ \nu_{\ell}$	[oo] (4.7 ± 0.4) %		_
$\overline{K}^*(892)^0 e^+ \nu_e$	(4.8 ± 0.5) %		720
$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$	(4.4 ± 0.6) %	S=1.1	715
$\overline{K}_1(1270)^0 \mu^+ \nu_{\mu}$	< 3.5	%	CL=95%	493
$\overline{K}^*(1410)^0 \mu^+ \nu_{\mu}$	< 2.7	%	CL=95%	389
$\overline{K}_{2}^{*}(1430)^{0} \mu^{+} \nu_{\mu}$	< 8	$\times 10^{-3}$	CL=95%	374
$\rho^{0}e^{+}\nu_{e}$	$(2.2 \pm 0.8$	$) \times 10^{-3}$		776
$ ho^0 \mu^+ u_{\mu}$	(2.7 ± 0.7)	$) \times 10^{-3}$		772
$\phi e^+ \nu_e$	< 2.09	%	CL=90%	657
$\phi \mu^+ \nu_{\mu}$	< 3.72	%	CL=90%	651
$\eta \ell^+ \nu_{\ell}$	< 5	$\times 10^{-3}$	CL=90%	-
$\eta'(958)\mu^+\nu_{\mu}$	< 9	$\times 10^{-3}$	CL=90%	684

$\overline{K}{}^0\pi^+$ Hadronic m	odes with a \overline{K} or $\overline{K}K\overline{K}$ (2.89± 0.26) %	S=1.1	862	$\frac{\overline{K}_{0}^{*}(1430)^{0}\pi^{+}}{\overline{K}^{*}(1680)^{0}\pi^{+}}$	$(3.7 \pm 0.4)\%$	368 65
$K^-\pi^+\pi^+$	$[qq] (9.0 \pm 0.6)\%$	3_1.1	845		(1.43± 0.30) %	
$K^*(892)^0\pi^+$	(1.27 ± 0.13) %		712	$\overline{K}^*(892)^0 \pi^+ \pi^0$ total $\overline{K}^*(892)^0 \pi^+ \pi^0$ 3-body	(6.7 ± 1.4) %	687
$\times B(\overline{K}^{*0} \to K^{-}\pi^{+})$	(1.27 ± 0.13) /6		112	$K^*(892)^-\pi^+\pi^+3$ -body	[rr] (4.2 ± 1.4)%	687 688
$\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$	(2.3 ± 0.3) %		368	$K^-\rho^+\pi^+$ total	$(2.0 \pm 0.9)\%$ $(3.1 \pm 1.1)\%$	616
\times B($\overline{K}_0^*(1430)^0 \rightarrow K^-\pi^+$				$K^-\rho^+\pi^+$ 3-body	$(1.1 \pm 0.4)\%$	616
\overline{K}^* (1680) π^+	$(3.7 \pm 0.8) \times 10^{-3}$		65	$\overline{K}^0 \rho^0 \pi^+ \text{total}$	$(4.2 \pm 0.9)\%$ CL=90%	614
\times B(\overline{K}^* (1680) ⁰ $\rightarrow K^-\pi^+$			03	$\overline{K}^0 \rho^0 \pi^+$ 3-body	$(5 \pm 5) \times 10^{-3}$	614
$K^-\pi^+\pi^+$ nonresonant	(8.5 ± 0.8)%		845	$\overline{K}^0 f_0(980) \pi^+$	< 5 × 10 ⁻³ CL=90%	461
$\overline{K}^0\pi^+\pi^0$	$[qq] (9.7 \pm 3.0)\%$	5=1.1	845	$\overline{K}^*(892)^0\pi^+\pi^+\pi^-$	$(8.1 \pm 3.4) \times 10^{-3}$ S=1.7	642
$\overline{K}{}^0 ho^+$	(6.6 ± 2.5)%		680	$\overline{K}^*(892)^0 \rho^0 \pi^+$	$(2.9 + 1.7 \atop -1.5) \times 10^{-3}$ S=1.8	242
$\overline{K}^*(892)^0\pi^+$	$(6.3 \pm 0.4) \times 10^{-3}$		712	$\overline{K}^*(892)^0 \pi^+ \pi^+ \pi^- \text{no-} \rho$	$(4.3 \pm 1.7) \times 10^{-3}$	642
$\times B(\overline{K}^{*0} \to \overline{K}^0\pi^0)$				$K^{-}\rho^{0}\pi^{+}\pi^{+}$	$(3.1 \pm 0.9) \times 10^{-3}$	529
$\overline{K}^0\pi^+\pi^0$ nonresonant	$(1.3 \pm 1.1)\%$		845	•	, ,	
$K^-\pi^+\pi^+\pi^0$	$[qq] (6.4 \pm 1.1)\%$		816		Pionic modes	
$\overline{K}^*(892)^0 \rho^+ \text{total}$ $\times B(\overline{K}^{*0} \to K^- \pi^+)$	$(1.4 \pm 0.9)\%$		423	$\frac{\pi^{+}\pi^{0}}{\pi^{+}\pi^{+}\pi^{-}}$	$(2.5 \pm 0.7) \times 10^{-3}$	925
$\overline{K}_1(1400)^0 \pi^+$	(22 06) 9/		390	$\pi'\pi'\pi$ $\rho^0\pi^+$	$(3.6 \pm 0.4) \times 10^{-3}$ $(1.05 \pm 0.31) \times 10^{-3}$	908 769
$\times B(\overline{K}_1(1400)^0 \to K^-\pi^+$	$(2.2 \pm 0.6)\%$		390	$\frac{\rho^-\pi^+}{\pi^+\pi^+\pi^-}$ nonresonant	$(2.2 \pm 0.4) \times 10^{-3}$	908
$K^-\rho^+\pi^+$ total	(3.1 ± 1.1)%		616		,	
$K^-\rho^+\pi^+$ 3-body	$(3.1 \pm 1.1)\%$		616	$\pi^+\pi^+\pi^-\pi^0$	$(1.9 + 1.5 \atop -1.2)\%$	882
$\overline{K}^*(892)^0\pi^+\pi^0$ total	$(4.5 \pm 0.9)\%$		687	$\eta \pi^+ \times B(\eta \to \pi^+ \pi^- \pi^0)$	$(6.9 \pm 1.4) \times 10^{-4}$	848
$\times B(\overline{K}^{*0} \to K^-\pi^+)$	(= ,			$\omega \pi^+ \times B(\omega \to \pi^+ \pi^- \pi^0)$	$< 6 \times 10^{-3} \text{ CL} = 90\%$	764
$\overline{K}^*(892)^0\pi^+\pi^0$ 3-body	$(2.8 \pm 0.9)\%$		687	$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	$(2.1 \pm 0.4) \times 10^{-3}$	845
$\times B(\overline{K}^{*0} \rightarrow K^-\pi^+)$,			$\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	$(2.9 + 2.9 \times 10^{-3}) \times 10^{-3}$	799
$K^*(892)^-\pi^+\pi^+$ 3-body	$(7 \pm 3) \times 10^{-3}$		688		2.0	
$\times B(K^{*-} \rightarrow K^- \pi^0)$				Fractions of some of the fo	llowing modes with resonances have already	
$K^-\pi^+\pi^+\pi^0$ nonresonant	[rr] (1.2 ± 0.6) %		816	• •	s of particular charged-particle modes.	
$\overline{K}^0\pi^+\pi^+\pi^-$	$[qq] (7.0 \pm 0.9)\%$		814	$\eta \pi^+$	$(3.0 \pm 0.6) \times 10^{-3}$	848
$\overline{K}^0 a_1(1260)^+$	(4.0 ± 0.9) %		328	$ ho^0 \pi^+$	$(1.05 \pm 0.31) \times 10^{-3}$	769
$\times B(a_1(1260)^+ \to \pi^+\pi^+)$	•			$\omega \pi^+$	$< 7 \times 10^{-3} \text{ CL} = 90\%$	764
$\overline{K}_1(1400)^0 \pi^+ \times B(\overline{K}_1(1400)^0 \to \overline{K}^0 \pi^+)$	(2.2 ± 0.6) %		390	$\eta \rho^+$	$< 7 \times 10^{-3} \text{ CL} = 90\%$	658
$K^*(892)^-\pi^+\pi^+3$ -body	•		600	$\eta'(958)\pi^{+}$	$(5.0 \pm 1.0) \times 10^{-3}$	680
$\times B(K^{*-} \rightarrow \overline{K}^0 \pi^-)$	(1.4 ± 0.6) %		688	$\eta'(958) \rho^+$	$< 5 \times 10^{-3} \text{ CL} = 90\%$	355
$\overline{K}^0 \rho^0 \pi^+ \text{total}$	(4.2 ± 0.9)%		614	Hadronic	modes with a $K\overline{K}$ pair	
$\frac{F}{K^0}\rho^0\pi^+$ 3-body	$(5 \pm 5) \times 10^{-3}$		614	$\mathcal{K}^+\overline{\mathcal{K}}{}^0$	$(7.4 \pm 1.0) \times 10^{-3}$	792
$\overline{K}^0\pi^+\pi^+\pi^-$ nonresonant	$(8 \pm 4) \times 10^{-3}$		814	$K^+K^-\pi^+$	[qq] (8.7 \pm 0.7) \times 10 ⁻³	744
$K^-\pi^+\pi^+\pi^+\pi^-$	[qq] $(7.2 \pm 1.0) \times 10^{-3}$		772	$\phi \pi^+ \times B(\phi \rightarrow K^+ K^-)$	$(3.0 \pm 0.3) \times 10^{-3}$	647
$\overline{K}^*(892)^0 \pi^+ \pi^+ \pi^-$	$(5.4 \pm 2.3) \times 10^{-3}$		642	$K^{+}\overline{K}^{*}(892)^{0}$	$(2.8 \pm 0.4) \times 10^{-3}$	610
\times B($\overline{K}^{*0} \rightarrow K^-\pi^+$)				$\times B(\overline{K}^{*0} \rightarrow K^{-}\pi^{+})$	•	
$\overline{K}^*(892)^0 \rho^0 \pi^+$	$(1.9 + 1.1 \atop -1.0) \times 10^{-3}$		242	$K^+K^-\pi^+$ nonresonant	$(4.5 \pm 0.9) \times 10^{-3}$	744
$\times B(\overline{K}^{*0} \to K^-\pi^+)$	1.0 7			$K^0\overline{K}^0\pi^+$		741
$\overline{K}^*(892)^0 \pi^+ \pi^+ \pi^- \text{ no-} \rho$	$(2.9 \pm 1.1) \times 10^{-3}$		642	$K^*(892)^+\overline{K}^0$ $\times B(K^{*+} \rightarrow K^0\pi^+)$	$(2.1 \pm 1.0)\%$	611
$\stackrel{\sim}{\times} B(\stackrel{\leftarrow}{K}^{*0} \rightarrow K^-\pi^+)$				$\begin{array}{c} \times B(K^{+} \rightarrow K^{-}\pi^{+}) \\ K^{+}K^{-}\pi^{+}\pi^{0} \end{array}$		
$K^- \rho^0 \pi^+ \pi^+$	$(3.1 \pm 0.9) \times 10^{-3}$		529	$\phi \pi^+ \pi^0 \times B(\phi \rightarrow K^+ K^-)$		682 619
$K^-\pi^+\pi^+\pi^+\pi^-$ nonresonant	$< 2.3 \times 10^{-3}$	CL=90%	772	$\phi \rho^+ \times B(\phi \to K^+ K^-)$	$(1.1 \pm 0.5)\%$ < 7 × 10 ⁻³ CL=90%	268
$K^-\pi^+\pi^+\pi^0\pi^0$	$(2.2 + 5.0 \atop -0.9)\%$		775			
				$\mathcal{K}^+\mathcal{K}^-\pi^+\pi^0$ non- ϕ	$(1.5 \begin{array}{c} + & 0.7 \\ - & 0.6 \end{array})\%$	682
$\overline{K}{}^0\pi^+\pi^+\pi^-\pi^0$	(5.4 + 3.0)%		773	$K^{+}\overline{K}{}^{0}\pi^{+}\pi^{-}$	< 2 % CL=90%	678
$\overline{K}{}^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	$(8 \pm 7) \times 10^{-4}$		714	$K^0 K^- \pi^+ \pi^+$	$(1.0 \pm 0.6)\%$	678
$K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	$(2.0 \pm 1.8) \times 10^{-3}$		718	$K^*(892)^+\overline{K}^*(892)^0$	(1.2 ± 0.5)%	273
$\overline{K}^0\overline{K}^0K^+$	$(1.8 \pm 0.8)\%$		545	$\times B^{2}(K^{*+} \rightarrow K^{0}\pi^{+})$		
				$K^0K^-\pi^+\pi^+$ non- $K^{*+}\overline{K}^{*0}$ $K^+K^-\pi^+\pi^+\pi^-$	$< 7.9 \times 10^{-3} \text{ CL} = 90\%$	678
	lowing modes with resonances he of particular charged-particle m			$\phi_{\pi^+\pi^+\pi^-}$		600
$\overline{K}{}^{0}\rho^{+}$	- ·	oues.		$\varphi \pi^+ \pi^+ \pi^- \times B(\phi \to K^+ K^-)$	$< 1 \times 10^{-3} \text{ CL} = 90\%$	565
$\frac{K^0 \rho}{K^0} a_1 (1260)^+$	(6.6 ± 2.5) %		680	$K^+K^-\pi^+\pi^+\pi^-$ nonresonan	it < 3 % CL=90%	600
$\frac{K^{0}}{K^{0}} a_{2}(1320)^{+}$	$(8.0 \pm 1.7)\%$ < 3 $\times 10^{-3}$	CL=90%	328 199	A A A A A HOMESOMAN	76 CL=90%	600
$K^*(892)^0 \pi^+$	(1.90 ± 0.19) %	CL - 3070	712	Fractions of the following of	nodes with resonances have already appeared	
	[r] (2.1 ± 1.3) %		423		cular charged-particle modes.	
	$[m]$ (2.1 ± 1.3) % $[m]$ (1.6 ± 1.6) %		423 423	$\phi\pi^+$	$(6.1 \pm 0.6) \times 10^{-3}$	647
$\overline{K}^*(892)^0 \rho^+ \text{ total}$ $\overline{K}^*(892)^0 \rho^+ S$ -wave		CL=90%	423	$\phi \pi^+ \pi^0$	$(2.3 \pm 1.0)\%$	619
$\overline{K}^*(892)^0 \rho^+ S$ -wave	< 1 × 10 ⁻³	J / / /		$\phi \rho^+$	< 1.4 % CL=90%	268
$\overline{K}^*(892)^0 \rho^+ S$ -wave $\overline{K}^*(892)^0 \rho^+ P$ -wave			423			
$\frac{\overline{K}^*(892)^0 \rho^+ S$ -wave $\overline{K}^*(892)^0 \rho^+ P$ -wave $\overline{K}^*(892)^0 \rho^+ D$ -wave	$(10 \pm 7) \times 10^{-3}$	CL=90%	423 423		$< 2 \times 10^{-3} \text{ CL} = 90\%$	565
$\overline{K}^*(892)^0 \rho^+$ S-wave $\overline{K}^*(892)^0 \rho^+$ P-wave $\overline{K}^*(892)^0 \rho^+$ D-wave $\overline{K}^*(892)^0 \rho^+$ D-wave longitudinal	$(10 \pm 7) \times 10^{-3}$	CL=90%	423 423	$\phi \pi^{+} \pi^{+} \pi^{-} K^{+} \overline{K}^{*} (892)^{0}$	$< 2 \times 10^{-3} \text{ CL}=90\%$ (4.2 ± 0.5) $\times 10^{-3}$	565 610
$\overline{K}^*(892)^0 \rho^+ S$ -wave $\overline{K}^*(892)^0 \rho^+ P$ -wave $\overline{K}^*(892)^0 \rho^+ D$ -wave longitudinal $\overline{K}_1(1270)^0 \pi^+$	$(10 \pm 7) \times 10^{-3}$ $< 7 \times 10^{-3}$	CL=90% CL=90%		$\phi \pi^+ \pi^+ \pi^- \ K^+ \overline{K}^* (892)^0 \ K^* (892)^+ \overline{K}^0$		
$\overline{K}^*(892)^0 \rho^+ S$ -wave $\overline{K}^*(892)^0 \rho^+ P$ -wave $\overline{K}^*(892)^0 \rho^+ D$ -wave $\overline{K}^*(892)^0 \rho^+ D$ -wave longitu-	$(10 \pm 7) \times 10^{-3} < 7 \times 10^{-3} < 7 \times 10^{-3} < 7 \times 10^{-3} < 4.9 \pm 1.2)\%$		423	$\phi \pi^{+} \pi^{+} \pi^{-} K^{+} \overline{K}^{*} (892)^{0}$	$(4.2 \pm 0.5) \times 10^{-3}$	610

$\Delta C = 1$ weak	pibbo suppressed (DC) modes,	_		ic modes	with a \overline{K} or $\overline{K}K\overline{K}$	
	neutral current (C1) modes, or		$K^-\pi^+$		(3.83±0.09) %	
	LF) or Lepton number (L) violat	ting modes	$\overline{K}^0\pi^0$		(2.11±0.21) %	5 =1.1
$^{+}\pi^{+}\pi^{-}$ De	$C = (6.8 \pm 1.5) \times 10^{-4}$	845	$\overline{K}^0\pi^+\pi^-$	[99]	$(5.4 \pm 0.4)\%$	5=1.2
$K^+ \rho^0$	$C = (2.5 \pm 1.2) \times 10^{-4}$	681	$\overline{\mathcal{K}}{}^0 ho^0$		$(1.21\pm0.17)\%$	
$K^*(892)^0\pi^+$	$C = (3.6 \pm 1.6) \times 10^{-4}$	712	$\overline{K}^0 f_0(980)$		$(3.0 \pm 0.8) \times 10^{-3}$	
$K^+\pi^+\pi^-$ nonresonant D_0	$(2.4 \pm 1.2) \times 10^{-4}$	845	$\times B(f_0 \rightarrow \pi^+\pi^-)$			
K+K- D	` '		$\overline{K}^0 f_2(1270)$		$(2.4 \pm 0.9) \times 10^{-3}$	
6K+ D		CL=90% 527	$\times B(f_2 \to \pi^+\pi^-)$		(/	
	-		$\overline{K}^{0}f_{0}(1370)$		$(4.3 \pm 1.3) \times 10^{-3}$	
	_				(4.3 ±1.3) × 10	
$\mu^+\mu^-$			$\times B(f_0 \to \pi^+\pi^-)$			
$\mu^+\mu^-$	_	CL=90% 759	$K^*(892)^-\pi^+$		(3.4 ±0.3) %	
· e+ e-		CL=90% 869	$\stackrel{\checkmark}{\times}$ B($\stackrel{\checkmark}{K}^{*-} \rightarrow \overline{K}{}^{0} \pi^{-}$)			
$\mu^+\mu^-$	$[55] < 4.4 \times 10^{-5}$	CL=90% 856	$K_0^*(1430)^-\pi^+$		$(6.4 \pm 1.6) \times 10^{-3}$	
e±μ [∓] LF		CL=90% 926	\times B($K_0^*(1430)^- \rightarrow \overline{K}$	$(0,\pi^{-1})$		
e [±] μ [∓] LF	- · ·	CL=90% 866	$\overline{K}^0\pi^+\pi^-$ nonresonant	,	(1.47±0.24) %	
e^+e^+	• •	CL=90% 929	$K^-\pi^+\pi^0$	r1		
$\mu^+\mu^+$	_	CL=90% 917		[44]	(13.9 ±0.9) %	5=1.3
• . • .			$K^-\rho^+$		$(10.8 \pm 1.0)\%$	
e+ μ+ L			$K^*(892)^-\pi^+$		(1.7 ±0.2)%	
$\mu^+\mu^+$		CL=90% 759	\times B($K^{*-} \rightarrow K^- \pi^0$)			
'e+e+ L		CL=90% 869	$\overline{K}^*(892)^0 \pi^0$		$(2.1 \pm 0.3)\%$	
$\mu^+\mu^+$	$< 1.2 \times 10^{-4}$	CL=90% 856	$\times B(\overline{K}^{*0} \to K^-\pi^+)$,	
$e^+\mu^+$		CL=90% 866	$K^-\pi^+\pi^0$ nonresonant		$(6.9 \pm 2.5) \times 10^{-3}$	
$(892)^{-}\mu^{+}\mu^{+}$			$\frac{K}{K^0} \pi^0 \pi^0$		(0.2 2.2.3) X 10 2	
() pr pr					- (11 100)0	
			$\overline{K}^*(892)^0\pi^0$		$(1.1 \pm 0.2)\%$	
0	$I(J^P) = \frac{1}{2}(0^-)$		$\times B(\overline{K}^{*0} \to \overline{K}^0 \pi^0)$			
	7(3) - 2(0)		$\overline{K}{}^0\pi^0\pi^0$ nonresonant		$(7.8 \pm 2.0) \times 10^{-3}$	
Mass $m = 1864.5$	$5 \pm 0.5 \text{ MeV} (S = 1.1)$		$K^-\pi^+\pi^+\pi^-$	[44]	(7.49±0.31) %	
	$.79 \pm 0.10 \text{ MeV} (S = 1.1)$		$K^-\pi^+\rho^0$ total		$(6.3 \pm 0.4)\%$	
$m_{D^{\pm}} - m_{D^0} - 4$	4106 + 0.0000) - 10-12 -		$K^- \stackrel{\cdot}{\pi^+} \rho^0$ 3-body		$(4.7 \pm 2.1) \times 10^{-3}$	
	$4126 \pm 0.0028) \times 10^{-12}$ s		$\frac{1}{K}$ *(892) ⁰ ρ ⁰		$(9.8 \pm 2.2) \times 10^{-3}$	
$c\tau = 123.7 \ \mu r$	m		$\times B(\overline{K}^{*0} \to K^-\pi^+$	٠١	(3.0 12.2) ~ 10	
$ m_{D^0} - m_{D^0} <$	$7 \times 10^{10} \ h \ s^{-1}$, CL = 95% [tt]]		, .	(26 106) 1/	
			$K^-a_1(1260)^+$		(3.6 ±0.6)%	
$(D_0 - D_0)/ D_0$: $-0.116 < \Delta\Gamma/\Gamma < 0.020$, CL :	= 95% [11]	$\times B(a_1(1260)^+ \rightarrow$	π'π'π	•	
$\Gamma(K^{+}) = \mathcal{D}_{\bullet}$ (via \overline{I}	$(\bar{D}^0))/\Gamma(K^-\ell^+ u_{\ell})< 0.005$, CL =	90%	$\overline{K}^*(892)^0 \pi^+ \pi^- \text{ total}$		$(1.5 \pm 0.4)\%$	
			$\times B(\overline{K}^{*0} \to K^-\pi^+)$			
$\Gamma(K^+\pi^-)$ (via D^0)	$))/\Gamma(K^-\pi^+) < 4.1 \times 10^{-4}, C$	L = 95%	\overline{K}^* (892) $\pi^+\pi^-$ 3-body	/	$(9.5 \pm 2.1) \times 10^{-3}$	
CP-violation decay-rat	to an metales		$\times B(\overline{K}^{*0} \rightarrow K^-\pi^+)$.)		
	-		$K_1(1270) - \pi^+$	[rr]	$(3.6 \pm 1.0) \times 10^{-3}$	
$A_{CP}(K^+K^-)=0$).026 ± 0.035		\times B($K_1(1270)^- \rightarrow K$,	
$A_{CP}(\pi^{+}\pi^{-}) = -$	-0.05 ± 0.08		$K^-\pi^+\pi^+\pi^-$ nonresonan		(1.74±0.25) %	
A (100 /) C	0.03 + 0.09		$\overline{K}^0\pi^+\pi^-\pi^0$		(10.0 ±1.2) %	
$A_{CD}(K \circ \emptyset) = -0$						
$A_{CP}(K_5^0\phi) = -0$			1/U D/- + U			
$A_{CP}(K_S^0\pi^0) = -$	0.018 ± 0.030		$\frac{K^0}{K^0}\eta \times B(\eta \to \pi^+\pi^-\pi^0)$		$(1.6 \pm 0.3) \times 10^{-3}$	
	0.018 ± 0.030		$\overline{K}^0\omega \times B(\omega o \pi^+\pi^-\pi$		$(1.9 \pm 0.4)\%$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^{\pm}\pi^{\mp}) = 0$	0.018 ± 0.030 0.02 ± 0.20		$\overline{K}^0 \overset{\cdot}{\omega} \times \overset{\circ}{B} \overset{\cdot}{(\omega} \to \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^-$			
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^{\pm}\pi^{\mp}) = 0$	0.018 ± 0.030		$\overline{K^0}\overset{\cdot}{\omega}\times\overset{B}{(\omega}\to^{}\pi^+\pi^-\pi^-K^*(892)^-\rho^+\times^{}B(K^{*-}\to^{}\overline{K^0}\pi^-)$		$(1.9 \pm 0.4)\%$	
$A_{CP}(K_S^{\dagger}\pi^0) = A_{CP}(K^{\pm}\pi^{\mp}) = 0$ \overline{D}^0 modes are charge con	0.018 ± 0.030 0.02 ± 0.20 e)jugates of the modes below.	le factor/ p	$ \overline{K^0} \stackrel{\cdot}{\omega} \times \stackrel{\cdot}{\text{B}} \stackrel{\cdot}{\omega} \rightarrow \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times \stackrel{\cdot}{\text{B}} (K^{*-} \rightarrow \overline{K^0} \pi^-) \\ \overline{K^*}(892)^0 \rho^0 $		(1.9 ±0.4) % (4.1 ±1.6) %	
$A_{CP}(K_S^{\dagger}\pi^0) = A_{CP}(K^{\pm}\pi^{\mp}) = 0$ \overline{D}^0 modes are charge con	0.018 ± 0.030 0.02 ± 0.20 .jugates of the modes below.	le factor/ p ence level (MeV/c)	$ \overline{K^0} \stackrel{\cdot}{\omega} \times \stackrel{\cdot}{\text{B}} \stackrel{\cdot}{\omega} \rightarrow \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times \stackrel{\cdot}{\text{B}} (K^{*-} \rightarrow \overline{K^0} \pi^-) \\ \overline{K^*}(892)^0 \rho^0 $		$(1.9 \pm 0.4)\%$	
$A_{CP}(K_S^{\dagger}\pi^0) = -A_{CP}(K^{\pm}\pi^{\mp}) = 0$ D^0 modes are charge con	0.018 ± 0.030 0.02 ± 0.20 Engligates of the modes below. Scal Fraction (Γ_i/Γ) Confide		$ \overline{K^0} \stackrel{\cdot}{\omega} \times \stackrel{\cdot}{\text{B}} \stackrel{\cdot}{\omega} \rightarrow \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times \stackrel{\cdot}{\text{B}} (K^{*-} \rightarrow \overline{K^0} \pi^-) \\ \overline{K^*}(892)^0 \rho^0 \\ \times \stackrel{\cdot}{\text{B}} (\overline{K^{*0}} \rightarrow \overline{K^0} \pi^0) $	^ó)	(1.9 ±0.4) % (4.1 ±1.6) % (4.9 ±1.1) × 10 ⁻³	
$A_{CP}(K_{\sigma}^{V}\pi^{0}) = -A_{CP}(K^{\pm}\pi^{\mp}) = 0$ \overline{D}^{0} modes are charge con	0.018 ± 0.030 0.02 ± 0.20 Hyugates of the modes below. Scal Fraction (Γ_I/Γ) Confide		$ \overline{K^0} \stackrel{\cdot}{\omega} \times \stackrel{\cdot}{B} \stackrel{\cdot}{\omega} \rightarrow \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times \stackrel{\cdot}{B} (K^{*-} \rightarrow \overline{K^0} \pi^-) \\ \overline{K^*} (892)^0 \rho^0 \\ \times \stackrel{\cdot}{B} (\overline{K^{*0}} \rightarrow \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ $	⁰)	(1.9 ±0.4) % (4.1 ±1.6) %	
$A_{CP}(K_{\Sigma}^{V}\pi^{0}) = -A_{CP}(K^{\pm}\pi^{\mp}) = 0$ D^{0} modes are charge condition. DECAY MODES	0.018 ± 0.030 0.02 ± 0.20 Injugates of the modes below. Scal Fraction (Γ_i/Γ) Confide Inclusive modes (6.75 ± 0.29) %		$ \overline{K^0} \stackrel{\smile}{\omega} \times \stackrel{\frown}{B} \stackrel{\smile}{\omega} \rightarrow \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times \stackrel{\frown}{B} (K^*- \rightarrow \overline{K^0} \pi^-) \\ \overline{K^*}(892)^0 \rho^0 \\ \times \stackrel{\frown}{B} (\overline{K^{*0}} \rightarrow \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ \\ \times \stackrel{\frown}{B} (K_1(1270)^- \rightarrow \overline{K^0} \pi^0) $	⁰)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$	
$A_{CP}(K_{\sigma}^{V}\pi^{0}) = -A_{CP}(K^{\pm}\pi^{\mp}) = 0$ D^{0} modes are charge condition. DECAY MODES	0.018 ± 0.030 0.02 ± 0.20 Hyugates of the modes below. Scal Fraction (Γ_I/Γ) Confide		$ \overline{K^{0}} \stackrel{\vee}{\omega} \times \stackrel{\circ}{B} \stackrel{\vee}{\omega} \rightarrow \pi^{+} \pi^{-} \pi \\ K^{*}(892)^{-} \rho^{+} \\ \times \stackrel{\circ}{B} (K^{*-} \rightarrow \overline{K^{0}} \pi^{-}) \\ \overline{K^{*}}(892)^{0} \rho^{0} \\ \times \stackrel{\circ}{B} (\overline{K^{*0}} \rightarrow \overline{K^{0}} \pi^{0}) \\ K_{1}(1270)^{-} \pi^{+} \\ \times \stackrel{\circ}{B} (K_{1}(1270)^{-} \rightarrow \overline{K} \\ \overline{K^{*}}(892)^{0} \pi^{+} \pi^{-} 3\text{-body} $	⁰)	(1.9 ±0.4) % (4.1 ±1.6) % (4.9 ±1.1) × 10 ⁻³	
$A_{CP}(\mathcal{K}_{\Sigma}^{\delta}\pi^{0}) = -A_{CP}(\mathcal{K}^{\pm}\pi^{\mp}) = 0$ \overline{D}^{0} modes are charge conditional modes DECAY MODES anything anything	0.018 ± 0.030 0.02 ± 0.20 Injugates of the modes below. Scal Fraction (Γ_i/Γ) Confide Inclusive modes (6.75 ± 0.29) %		$ \overline{K^{0}} \stackrel{\vee}{\omega} \times \stackrel{\circ}{B} \stackrel{\vee}{\omega} \rightarrow \pi^{+}\pi^{-}\pi \\ K^{*}(892)^{-}\rho^{+} \\ \times \stackrel{\circ}{B} (K^{*-} \rightarrow \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}}(892)^{0}\rho^{0} \\ \times \stackrel{\circ}{B} (\overline{K^{*0}} \rightarrow \overline{K^{0}}\pi^{0}) \\ K_{1}(1270)^{-}\pi^{+} \\ \times \stackrel{\circ}{B} (K_{1}(1270)^{-} \rightarrow \overline{K} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}3\text{-body} \\ \times \stackrel{\circ}{B} (\overline{K^{*0}} \rightarrow \overline{K^{0}}\pi^{0}) $	⁰)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^\pm\pi^\mp) = 0$ \overline{D}^0 modes are charge conditions DECAY MODES anything anything anything	0.018 ± 0.030 0.02 ± 0.20 Injugates of the modes below. Fraction $(\Gamma_{\tilde{I}}/\Gamma)$ Confide Inclusive modes $(6.75 \pm 0.29)\%$ $(6.6 \pm 0.8)\%$ $(53 \pm 4)\%$	ence level (MeV/c)	$\overline{K^0 \omega} \times B(\omega \to \pi^+ \pi^- \pi K^*(892)^- \rho^+ \times B(K^{*-} \to \overline{K^0} \pi^-)$ $\overline{K^*(892)^0} \rho^0 \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0)$ $K_1(1270)^- \pi^+ \times B(K_1(1270)^- \to \overline{K}$ $\overline{K^*(892)^0} \pi^+ \pi^- 3\text{-body}$ $\times B(\overline{K^{*0}} \to \overline{K^0} \pi^0)$ $\overline{K^0} \pi^+ \pi^- \pi^0 \text{nonresonant}$	⁰)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^\pm\pi^\mp) = 0$ \overline{D}^0 modes are charge conditions. DECAY MODES anything anything anything anything anything K^0 anything	0.018 ± 0.030 0.02 ± 0.20 Injugates of the modes below. Fraction (Γ_I/Γ) Confide Inclusive modes (6.75 ± 0.29) % (6.6 ± 0.8) % (53 ± 4) % (42 ± 5) %	ence level (MeV/c)	$ \begin{array}{c} \overline{K^0 \omega} \times B(\omega \to \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times B(K^{*-} \to \overline{K^0} \pi^-) \\ \overline{K^*(892)^0} \rho^0 \\ \times B(\overline{K^*0} \to \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ \\ \times B(K_1(1270)^- \to \overline{K} \\ \overline{K^*(892)^0} \pi^+ \pi^- 3\text{-body} \\ \times B(\overline{K^*0} \to \overline{K^0} \pi^0) \\ \overline{K^0} \pi^+ \pi^- \pi^0 \text{ nonresonant} \\ K^- \pi^+ \pi^0 \pi^0 \end{array} $	⁰)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^\pm\pi^\mp) = 0$ \overline{D}^0 modes are charge conditions. DECAY MODES anything anything anything anything anything K^0	0.018 ± 0.030 0.02 ± 0.20 Injugates of the modes below. Fraction $(\Gamma_{\tilde{I}}/\Gamma)$ Confide Inclusive modes $(6.75 \pm 0.29)\%$ $(6.6 \pm 0.8)\%$ $(53 \pm 4)\%$	ence level (MeV/c)	$ \begin{array}{c c} \overline{K^0 \omega} \times B(\omega \to \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times B(K^{*-} \to \overline{K^0} \pi^-) \\ \overline{K^*}(892)^0 \rho^0 \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ \\ \times B(K_1(1270)^- \to \overline{K} \\ \overline{K^*}(892)^0 \pi^+ \pi^- 3\text{-body} \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ \overline{K^0} \pi^+ \pi^- \pi^0 \text{ nonresonant} \\ K^- \pi^+ \pi^0 \pi^0 \\ K^- \pi^+ \pi^+ \pi^- \pi^0 \end{array} $	⁰)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$	
$A_{CP}(K_{-}^{\delta}\pi^{0}) = -A_{CP}(K_{-}^{\delta}\pi^{0}) = 0$ D^{0} modes are charge condition of modes DECAY MODES anything anything anything anything anything anything anything anything	0.018 ± 0.030 0.02 ± 0.20 Higher of the modes below. Fraction (Γ_I/Γ) Scal Fraction (Γ_I/Γ) Confide Inclusive modes (6.75 ± 0.29) % (6.6 ± 0.8) % (53 ±4) % (42 ± 5) % (3.4 + 0.6) %	ence level (MeV/c)	$ \begin{array}{c} \overline{K^0 \omega} \times B(\omega \to \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times B(K^{*-} \to \overline{K^0} \pi^-) \\ \overline{K^*(892)^0} \rho^0 \\ \times B(\overline{K^*0} \to \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ \\ \times B(K_1(1270)^- \to \overline{K} \\ \overline{K^*(892)^0} \pi^+ \pi^- 3\text{-body} \\ \times B(\overline{K^*0} \to \overline{K^0} \pi^0) \\ \overline{K^0} \pi^+ \pi^- \pi^0 \text{ nonresonant} \\ K^- \pi^+ \pi^0 \pi^0 \end{array} $	⁰)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$	
$A_{CP}(K_0^{\delta}\pi^0) = -A_{CP}(K^{\pm}\pi^{\mp}) = 0$ \overline{D}^0 modes are charge conditions. DECAY MODES anything anything anything anything anything anything anything	0.018 ± 0.030 0.02 ± 0.20 Example 10.00 below. Scal Fraction (Γ_I/Γ) Confide Inclusive modes (6.75 ± 0.29) % (6.6 ± 0.8) % (53 ± 4) % (42 ± 5) % (3.4 $^{+0.6}_{-0.4}$) % [nn] < 13 %	S=1.3	$\begin{array}{c} \overline{K^0 \omega} \times B(\omega \to \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times B(K^*- \to \overline{K^0} \pi^-) \\ \overline{K^*}(892)^0 \rho^0 \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ \\ \times B(K_1(1270)^- \to \overline{K} \\ \overline{K^*}(892)^0 \pi^+ \pi^- 3\text{-body} \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ \overline{K^0} \pi^+ \pi^- \pi^0 \text{ non resonant } \\ K^- \pi^+ \pi^0 \pi^0 \\ \overline{K^*}(892)^0 \pi^+ \pi^- \pi^0 \\ \overline{K^*}(892)^0 \pi^+ \pi^- \pi^0 \end{array}$	⁰)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$	
$A_{CP}(K_{\infty}^{0}\pi^{0}) = -A_{CP}(K_{\infty}^{0}\pi^{0}) = -A_{CP}(K_{\infty}^{0}\pi^{0}) = 0$ \overline{D}^{0} modes are charge conditional modes DECAY MODES anything anything anything anything anything anything anything	0.018 ± 0.030 0.02 ± 0.20 Example 10.00 by a piguates of the modes below. Scal Fraction (Γ_i/Γ) Confide Inclusive modes (6.75 \pm 0.29) % (6.6 \pm 0.8) % (53 \pm 4) % (42 \pm 5) % (3.4 \pm 0.6) % [nn] $<$ 13 % Semileptonic modes	S=1.3	$\begin{array}{c} \overline{K^0 \omega} \times B(\omega \to \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times B(K^{*-} \to \overline{K^0} \pi^-) \\ \overline{K^*(892)^0} \rho^0 \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ \\ \times B(K_1(1270)^- \to \overline{K} \\ \overline{K^*(892)^0} \pi^+ \pi^- 3\text{-body} \\ \times B(\overline{K^*0} \to \overline{K^0} \pi^0) \\ \overline{K^0} \pi^+ \pi^- \pi^0 \text{nonresonant} \\ K^- \pi^+ \pi^0 \pi^0 \\ K^- \pi^+ \pi^- \pi^0 \\ \overline{K^*(892)^0} \pi^+ \pi^- \pi^0 \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \end{array}$	⁰)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$	
$A_{CP}(K_{\infty}^{0}\pi^{0}) = -A_{CP}(K_{\infty}^{0}\pi^{0}) = -A_{CP}(K_{\infty}^{0}\pi^{0}) = -A_{CP}(K_{\infty}^{0}\pi^{0}) = -A_{CP}(K_{\infty}^{0}\pi^{0}) = -A_{CP}(K_{\infty}^{0}\pi^{0})$ modes are charge condition. DECAY MODES anything anything anything anything anything anything	0.018 ± 0.030 0.02 ± 0.20 Example 10.00 below. Scal Fraction (Γ_I/Γ) Confide Inclusive modes (6.75 ± 0.29) % (6.6 ± 0.8) % (53 ± 4) % (42 ± 5) % (3.4 $^{+0.6}_{-0.4}$) % [nn] < 13 %	S=1.3	$\begin{array}{c} \overline{K^0 \omega} \times B(\omega \to \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times B(K^{*-} \to \overline{K^0} \pi^-) \\ \overline{K^*}(892)^0 \rho^0 \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ \\ \times B(K_1(1270)^- \to \overline{K} \\ \overline{K^*}(892)^0 \pi^+ \pi^- 3\text{-body} \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ \overline{K^0} \pi^+ \pi^- \pi^0 \text{nonresonant} \\ K^- \pi^+ \pi^0 \pi^0 \\ K^- \pi^+ \pi^+ \pi^- \pi^0 \\ \overline{K^*}(892)^0 \pi^+ \pi^- \pi^0 \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \eta \end{array}$	ο΄) ο _π - _π ο΄)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^\pm\pi^\mp) = 0$ $D^0 \text{ modes are charge con}$ $DECAY MODES$	0.018 ± 0.030 0.02 ± 0.20 Injugates of the modes below. Fraction (Γ_I/Γ) Confide Inclusive modes (6.75 ± 0.29) % (6.6 ± 0.8) % (53 ± 4) % (42 ± 5) % (3.4 ± 0.6) % [nn] $<$ 13 % Semileptonic modes [oo] (3.47 ± 0.17) %	S=1.3 - 	$\begin{array}{c} \overline{K^{0}} \stackrel{\smile}{\omega} \times \stackrel{\frown}{B} \stackrel{\smile}{\omega} \rightarrow \pi^{+}\pi^{-}\pi \\ K^{*}(892)^{-}\rho^{+} \\ \times \stackrel{\frown}{B} (K^{*}-\rightarrow \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}}(892)^{0}\rho^{0} \\ \times \stackrel{\frown}{B} (\overline{K^{*}0} \rightarrow \overline{K^{0}}\pi^{0}) \\ K_{1}(1270)^{-}\pi^{+} \\ \times \stackrel{\frown}{B} (K_{1}(1270)^{-}\rightarrow \overline{K} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}3\text{-body} \\ \times \stackrel{\frown}{B} (\overline{K^{*}0} \rightarrow \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}}\pi^{+}\pi^{-}\pi^{0} \text{ nonresonant} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0} \\ \stackrel{\frown}{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ \times \stackrel{\frown}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\eta \\ \times \stackrel{\frown}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) \end{array}$	ο΄) · ο π – πο΄)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^\pm\pi^\mp) = 0$ $D^0 \text{ modes are charge con}$ $DECAY MODES$ anything anything anything anything anything anything anything $A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0)$ anything $A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0)$	$\begin{array}{c} 0.018 \pm 0.030 \\ 0.02 \pm 0.20 \\ \\ \text{Diggates of the modes below.} \\ \\ \text{Fraction } (\Gamma_{\tilde{I}}/\Gamma) \\ \\ \text{Inclusive modes} \\ & (6.75 \pm 0.29) \% \\ & (6.6 \pm 0.8) \% \\ & (53 \pm 4) \% \\ & (42 \pm 5) \% \\ & (3.4 \pm 0.6) \% \\ \\ \text{Innl} < 13 \\ \\ \text{Semileptonic modes} \\ & [oo] & (3.47 \pm 0.17) \% \\ & (3.64 \pm 0.18) \% \\ \end{array}$	S=1.3 - CL=90% - 5=1.3 867	$\begin{array}{c} \overline{K^{0}} \stackrel{\vee}{\omega} \times \stackrel{\circ}{B} \stackrel{\vee}{\omega} \rightarrow \pi^{+}\pi^{-}\pi \\ K^{*}(892)^{-}\rho^{+} \\ \times \stackrel{\circ}{B} (K^{*-} \rightarrow \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}}(892)^{0}\rho^{0} \\ \times \stackrel{\circ}{B} (\overline{K^{*0}} \rightarrow \overline{K^{0}}\pi^{0}) \\ K_{1}(1270)^{-}\pi^{+} \\ \times \stackrel{\circ}{B} (K_{1}(1270)^{-} \rightarrow \overline{K} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}3\text{-body} \\ \times \stackrel{\circ}{B} (\overline{K^{*0}} \rightarrow \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}}\pi^{+}\pi^{-}\pi^{0} \text{ nonresonant} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0} \\ \stackrel{\circ}{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ \times \stackrel{\circ}{B} (\overline{K^{*0}} \rightarrow K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\eta \\ \times \stackrel{\circ}{B} (\overline{K^{*0}} \rightarrow K^{-}\pi^{+}) \\ \stackrel{\circ}{K^{0}} (892)^{0}\eta \\ \times \stackrel{\circ}{B} (\overline{K^{*0}} \rightarrow K^{-}\pi^{+}) \\ \stackrel{\circ}{K^{0}} (892)^{0}\eta \\ \times \stackrel{\circ}{B} (\overline{K^{*0}} \rightarrow K^{-}\pi^{+}) \\ \stackrel{\circ}{K^{0}} (892)^{0}\eta \\ \times \stackrel{\circ}{B} (\overline{K^{*0}} \rightarrow K^{-}\pi^{+}) \\ \stackrel{\circ}{K^{0}} (892)^{0}\eta \\ \times \stackrel{\circ}{B} (\overline{K^{*0}} \rightarrow K^{-}\pi^{+}) \\ \stackrel{\circ}{K^{0}} (892)^{0}\eta \\ \stackrel{\circ}{K^{0}} (91)^{0} \\ \stackrel{\circ}{K^{$	ο΄) το π – π ^(rr))	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^\pm\pi^\mp) = 0$ $D^0 \text{ modes are charge con}$ $DECAY MODES$ anything anything anything anything anything anything anything $A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0)$ anything $A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0)$ $A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0$	$\begin{array}{c} 0.018 \pm 0.030 \\ 0.02 \pm 0.20 \\ \text{Diggates of the modes below.} \\ & & & & & & \\ & & & & & & \\ & & & & $	S=1.3 - CL=90% - S=1.3 867 867 863	$\begin{array}{c} \overline{K^{0}} \dot{\omega} \times \dot{B}(\dot{\omega} \to \pi^{+}\pi^{-}\pi \\ K^{*}(892)^{-}\rho^{+} \\ &\times \dot{B}(K^{*}-\to \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}}(892)^{0}\rho^{0} \\ &\times \dot{B}(\overline{K^{*}0} \to \overline{K^{0}}\pi^{0}) \\ K_{1}(1270)^{-}\pi^{+} \\ &\times \dot{B}(K_{1}(1270)^{-}\to \overline{K} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}3\text{-body} \\ &\times \dot{B}(\overline{K^{*}0} \to \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}}\pi^{+}\pi^{-}\pi^{0} \text{ nonresonant } \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ &\times \dot{B}(\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\eta \\ &\times \dot{B}(\overline{K^{*}0} \to K^{-}\pi^{+}) \\ &\times \dot{B}(\eta \to \pi^{+}\pi^{-}\pi^{0} \\ K^{-}\pi^{+}\omega \times \dot{B}(\omega \to \pi^{+}\pi^{-}\pi^{0}) \end{array}$	ο΄) το π – π ^(rr))	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^\pm\pi^\mp) = 0$ $D^0 \text{ modes are charge con}$ $DECAY MODES$ anything anything anything anything anything anything anything $A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0)$ anything $A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0)$ $A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0$	$\begin{array}{c} 0.018 \pm 0.030 \\ 0.02 \pm 0.20 \\ \\ \text{Diggates of the modes below.} \\ \\ \text{Fraction } (\Gamma_{\tilde{I}}/\Gamma) \\ \\ \text{Inclusive modes} \\ & (6.75 \pm 0.29) \% \\ & (6.6 \pm 0.8) \% \\ & (53 \pm 4) \% \\ & (42 \pm 5) \% \\ & (3.4 \pm 0.6) \% \\ \\ \text{Innl} < 13 \\ \\ \text{Semileptonic modes} \\ & [oo] & (3.47 \pm 0.17) \% \\ & (3.64 \pm 0.18) \% \\ \end{array}$	S=1.3 - CL=90% - 5=1.3 867	$ \overline{K^{0}} \stackrel{\vee}{\omega} \times \stackrel{\circ}{B} \stackrel{\vee}{\omega} \rightarrow \pi^{+}\pi^{-}\pi^{-}\pi^{+}K^{*}(892)^{-}\rho^{+} \\ \times \stackrel{\circ}{B} (K^{*}- \rightarrow \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}}(892)^{0}\rho^{0} \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow \overline{K^{0}}\pi^{0}) \\ K_{1}(1270)^{-}\pi^{+} \\ \times \stackrel{\circ}{B} (K_{1}(1270)^{-} \rightarrow \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}} (892)^{0}\pi^{+}\pi^{-}3\text{-body} \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}} \pi^{+}\pi^{-}\pi^{0} \text{ nonresonant} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\eta \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) \\ \times \stackrel{\circ}{B} (\overline{\eta} \rightarrow \pi^{+}\pi^{-}\pi^{0}) \\ K^{-}\pi^{+}\omega \times \stackrel{\circ}{B} (\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}) \\ K^{-}\pi^{+}\omega \times \stackrel{\circ}{B} (\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}) \\ \overline{K^{*}} (892)^{0}\omega $	$ \begin{bmatrix} 0 \\ 0 \\ \pi - \pi^0 \end{bmatrix} $ $ \begin{bmatrix} r_1 \\ r_2 \\ \pi^0 \end{bmatrix} $	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$	
$A_{CP}(K_0^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0)$ modes are charge condition. DECAY MODES anything anything anything anything anything anything $(-E^0\pi^0)$	0.018 ± 0.030 0.02 ± 0.20 Injugates of the modes below. Fraction (Γ_j/Γ) Confide Inclusive modes $(6.75 \pm 0.29) \%$ $(5.6 \pm 0.8) \%$ $(53 \pm 4) \%$ $(42 \pm 5) \%$ $(3.4 + 0.6) \%$ $[nn] < 13$ Semileptonic modes $[oo] (3.47 \pm 0.17) \%$ $(3.64 \pm 0.18) \%$ $(3.22 \pm 0.17) \%$ $(1.6 + 1.3) \%$	S=1.3 CL=90% - 5=1.3 867 863 861	$\begin{array}{c} \overline{K^{0}} \dot{\omega} \times \dot{B}(\dot{\omega} \to \pi^{+}\pi^{-}\pi^{-}K^{+}(892)^{-}\rho^{+} \\ & \times \dot{B}(K^{*-} \to \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}}(892)^{0}\rho^{0} \\ & \times \dot{B}(\overline{K^{*0}} \to \overline{K^{0}}\pi^{0}) \\ K_{1}(1270)^{-}\pi^{+} \\ & \times \dot{B}(K_{1}(1270)^{-} \to \overline{K}^{0}K^{0}) \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}3\text{-body} \\ & \times \dot{B}(\overline{K^{*0}} \to \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}}\pi^{+}\pi^{-}\pi^{0} & \text{nonresonant} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ & \times \dot{B}(\overline{K^{*0}} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\eta \\ & \times \dot{B}(\overline{K^{*0}} \to K^{-}\pi^{+} \\ \overline{K^{*}}(892)^{0}\omega \\ & \times \dot{B}(\overline{K^{*0}} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\omega \\ & \times \dot{B}(\overline{K^{*0}} \to K^{-}\pi^{+}) \\ \hline K^{*}(892)^{0}\omega \\ & \times \dot{B}(\overline{K^{*0}} \to K^{-}\pi^{+}) \end{array}$	$ \begin{bmatrix} 0 \\ 0 \\ \pi - \pi^0 \end{bmatrix} $ $ \begin{bmatrix} r \\ \tau - \pi^0 \end{bmatrix} $	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$	
$A_{CP}(K_0^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0)$ modes are charge condition. DECAY MODES anything anything anything anything anything $\ell^+\nu_\ell$ $\ell^-e^+\nu_e$ $\ell^-\mu^+\nu_\mu$ $\ell^-e^+\nu_e$ $\ell^-\mu^+\nu_\mu$ $\ell^-e^+\nu_e$ $\ell^-e^+\nu_e$	$\begin{array}{c} 0.018 \pm 0.030 \\ 0.02 \pm 0.20 \\ \text{Diggates of the modes below.} \\ & & & & & & \\ & & & & & & \\ & & & & $	S=1.3 - CL=90% - S=1.3 867 867 863	$\begin{array}{c} \overline{K^{0}} \dot{\omega} \times \dot{B}(\dot{\omega} \to \pi^{+}\pi^{-}\pi^{-}K^{+}(892)^{-}\rho^{+} \\ & \times \dot{B}(K^{*-} \to \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}}(892)^{0}\rho^{0} \\ & \times \dot{B}(\overline{K^{*0}} \to \overline{K^{0}}\pi^{0}) \\ K_{1}(1270)^{-}\pi^{+} \\ & \times \dot{B}(K_{1}(1270)^{-} \to \overline{K}^{0}K^{0}) \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}3\text{-body} \\ & \times \dot{B}(\overline{K^{*0}} \to \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}}\pi^{+}\pi^{-}\pi^{0} & \text{nonresonant} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ & \times \dot{B}(\overline{K^{*0}} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\eta \\ & \times \dot{B}(\overline{K^{*0}} \to K^{-}\pi^{+} \\ \overline{K^{*}}(892)^{0}\omega \\ & \times \dot{B}(\overline{K^{*0}} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\omega \\ & \times \dot{B}(\overline{K^{*0}} \to K^{-}\pi^{+}) \\ \hline K^{*}(892)^{0}\omega \\ & \times \dot{B}(\overline{K^{*0}} \to K^{-}\pi^{+}) \end{array}$	$ \begin{bmatrix} 0 \\ 0 \\ \pi - \pi^0 \end{bmatrix} $ $ \begin{bmatrix} r \\ \tau - \pi^0 \end{bmatrix} $	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$	
$A_{CP}(K_0^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0)$ modes are charge condition. DECAY MODES anything anything anything anything anything $\ell^+\nu_\ell$ $\ell^-e^+\nu_e$ $\ell^-\mu^+\nu_\mu$ $\ell^-e^+\nu_e$ $\ell^-\mu^+\nu_\mu$ $\ell^-e^+\nu_e$ $\ell^-e^+\nu_e$	0.018 ± 0.030 0.02 ± 0.20 Injugates of the modes below. Fraction (Γ_i/Γ) Confide Inclusive modes (6.75 ± 0.29) % (6.6 ± 0.8) % (53 ± 4) % (42 ± 5) % (3.4 + 0.6) % [nn] < 13 % Semileptonic modes [oo] (3.47 ± 0.17) % (3.64 ± 0.18) % (3.22 ± 0.17) % (1.6 + $\frac{1.3}{0.05}$) % (2.8 + $\frac{1.7}{0.9}$) %	S=1.3 CL=90% - 5=1.3 867 863 861	$ \overline{K^{0}} \stackrel{\vee}{\omega} \times \stackrel{\circ}{B} \stackrel{\vee}{\omega} \rightarrow \pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{*}(892)^{-}\rho^{+} \\ \times \stackrel{\circ}{B} (K^{*}- \rightarrow \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}} (892)^{0}\rho^{0} \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow \overline{K^{0}}\pi^{0}) \\ K_{1} (1270)^{-}\pi^{+} \\ \times \stackrel{\circ}{B} (K_{1} (1270)^{-} \rightarrow \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}} (892)^{0}\pi^{+}\pi^{-}3\text{-body} \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}} (\pi^{+}\pi^{-}\pi^{0}) \text{ nonresonant} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0} \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) \\ \overline{K^{*}} (892)^{0} \eta \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) \\ \times \stackrel{\circ}{B} (\pi^{+}\pi^{-}\pi^{0}) \\ K^{-}\pi^{+}\omega \times \stackrel{\circ}{B} (\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}) \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) $	$ \begin{bmatrix} 0 \\ 0 \\ \pi - \pi^0 \end{bmatrix} $ $ \begin{bmatrix} r \\ \tau - \pi^0 \end{bmatrix} $	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$ $(2.7 \pm 0.5)\%$ $(7 \pm 3) \times 10^{-3}$	
$A_{CP}(K_0^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0)$ The modes are charge conditions anything anyt	0.018 ± 0.030 0.02 ± 0.20 Injugates of the modes below. Fraction (Γ_j/Γ) Confide Inclusive modes $(6.75 \pm 0.29) \%$ $(5.6 \pm 0.8) \%$ $(53 \pm 4) \%$ $(42 \pm 5) \%$ $(3.4 + 0.6) \%$ $[nn] < 13$ Semileptonic modes $[oo] (3.47 \pm 0.17) \%$ $(3.64 \pm 0.18) \%$ $(3.22 \pm 0.17) \%$ $(1.6 + 1.3) \%$	S=1.3 - CL=90% - 5=1.3 867 863 861 860	$ \begin{array}{c} \overline{K^0 \omega} \times B(\omega) \to \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times B(K^{*-} \to \overline{K^0} \pi^-) \\ \overline{K^*}(892)^0 \rho^0 \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ \\ \times B(K_1(1270)^- \to \overline{K} \\ \overline{K^*}(892)^0 \pi^+ \pi^- 3\text{-body} \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ \overline{K^0} \pi^+ \pi^- \pi^0 \text{ nonresonant } \\ K^- \pi^+ \pi^+ \pi^- \pi^0 \\ \overline{K^*}(892)^0 \pi^+ \pi^- \pi^0 \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \eta \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \eta \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0}(892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \overline{K^0} $	$ \begin{bmatrix} 0 \\ 0 \\ \pi - \pi^0 \end{bmatrix} $ $ \begin{bmatrix} r \\ \tau - \pi^0 \end{bmatrix} $	$\begin{array}{l} (1.9 \pm 0.4) \% \\ (4.1 \pm 1.6) \% \\ (4.9 \pm 1.1) \times 10^{-3} \\ (5.1 \pm 1.4) \times 10^{-3} \\ (4.8 \pm 1.1) \times 10^{-3} \\ (2.1 \pm 2.1) \% \\ (15 \pm 5) \% \\ (4.0 \pm 0.4) \% \\ (1.2 \pm 0.6) \% \\ (2.9 \pm 0.8) \times 10^{-3} \\ (5.8 \pm 1.6) \times 10^{-3} \\ \end{array}$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K^0\pi^0)$ $D^0 modes are charge conjugate of the properties of the prop$	0.018 ± 0.030 0.02 ± 0.20 Injugates of the modes below. Fraction (Γ_{j}/Γ) Confide Inclusive modes (6.75 ± 0.29) % (6.6 ± 0.8) % (53 ± 4) % (42 ± 5) % (3.4 $+0.6$) % [nn] < 13 % Semileptonic modes [oo] (3.47 ± 0.17) % (3.64 ± 0.18) % (3.22 ± 0.17) % (1.6 ± 1.3) % (2.8 ± 1.7) % (1.35 ± 0.22) %	S=1.3 - CL=90% - S=1.3 867 867 863 861 860 719	$\begin{array}{c} \overline{K^0 \omega} \times B(\omega \to \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times B(K^{*-} \to \overline{K^0} \pi^-) \\ \overline{K^*}(892)^0 \rho^0 \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ \\ \times B(K_1(1270)^- \to \overline{K} \\ \overline{K^*}(892)^0 \pi^+ \pi^- 3\text{-body} \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ \overline{K^0} \pi^+ \pi^- \pi^0 \text{ nonresonant } \\ K^- \pi^+ \pi^+ \pi^- \pi^0 \\ \overline{K^*}(892)^0 \pi^+ \pi^- \pi^0 \\ \overline{K^*}(892)^0 \eta \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \eta \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} \pi^+ \pi^+ \pi^- \pi^- \\ \overline{K^0} \pi^+ \pi^+ \pi^- \pi^- \\ \overline{K^0} \pi^+ \pi^- \pi^0 \pi^0 (\pi^0) \end{array}$	$ \begin{bmatrix} 0 \\ 0 \\ \pi - \pi^0 \end{bmatrix} $ $ \begin{bmatrix} r \\ \tau - \pi^0 \end{bmatrix} $	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$ $(2.7 \pm 0.5)\%$ $(7 \pm 3) \times 10^{-3}$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K$	$\begin{array}{l} 0.018 \pm 0.030 \\ 0.02 \pm 0.20 \\ \\ \text{liggates of the modes below.} \\ \hline & & & & & & \\ & & & & & & \\ & & & &$	S=1.3	$ \begin{array}{c} \overline{K^0 \omega} \times B(\omega) \to \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times B(K^{*-} \to \overline{K^0} \pi^-) \\ \overline{K^*}(892)^0 \rho^0 \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ \\ \times B(K_1(1270)^- \to \overline{K} \\ \overline{K^*}(892)^0 \pi^+ \pi^- 3\text{-body} \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ \overline{K^0} \pi^+ \pi^- \pi^0 \text{ nonresonant } \\ K^- \pi^+ \pi^+ \pi^- \pi^0 \\ \overline{K^*}(892)^0 \pi^+ \pi^- \pi^0 \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \eta \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \eta \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0}(892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} (892)^0 \omega \\ \overline{K^0} $	$ \begin{bmatrix} 0 \\ 0 \\ \pi - \pi^0 \end{bmatrix} $ $ \begin{bmatrix} r \\ \tau - \pi^0 \end{bmatrix} $	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$ $(5.8 \pm 1.6) \times 10^{-3}$ $(5.8 \pm 1.6) \times 10^{-3}$ $(5.8 \pm 1.6) \times 10^{-3}$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K$	$\begin{array}{l} 0.018 \pm 0.030 \\ 0.02 \pm 0.20 \\ 0.03 \pm 0.20 \\ 0.04 \\ 0.05 \pm 0.29) \% \\ $	S=1.3 - CL=90% - S=1.3 867 867 863 861 860 719	$ \begin{array}{c} \overline{K^0 \omega} \times B(\omega) \to \pi^+ \pi^- \pi \\ K^*(892)^- \rho^+ \\ \times B(K^{*-} \to \overline{K^0} \pi^-) \\ \overline{K^*}(892)^0 \rho^0 \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ K_1(1270)^- \pi^+ \\ \times B(K_1(1270)^- \to \overline{K} \\ \overline{K^*}(892)^0 \pi^+ \pi^- 3\text{-body} \\ \times B(\overline{K^{*0}} \to \overline{K^0} \pi^0) \\ \overline{K^0} \pi^+ \pi^- \pi^0 \text{ nonresonant } \\ K^- \pi^+ \pi^+ \pi^- \pi^0 \\ \overline{K^*}(892)^0 \pi^+ \pi^- \pi^0 \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \eta \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \eta \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^*}(892)^0 \omega \\ \times B(\overline{K^{*0}} \to K^- \pi^+) \\ \overline{K^0} \pi^+ \pi^+ \pi^- \pi^- \\ \overline{K^0} \pi^+ \pi^+ \pi^- \pi^- \\ \overline{K^0} \pi^+ \pi^- \pi^0 \pi^0 (\pi^0) \\ \overline{K^0} K^+ K^- \end{array} $	ο΄) ο΄ π - πο΄)) τ - πο΄) τ - πο΄)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$ $(5.8 \pm 1.6) \times 10^{-3}$ $(5.8 \pm 1.6) \times 10^{-3}$ $(10.6 \pm 7.3)\%$ $(9.4 \pm 1.0) \times 10^{-3}$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K$	$\begin{array}{l} 0.018 \pm 0.030 \\ 0.02 \pm 0.20 \\ \\ \text{liggates of the modes below.} \\ \hline & & & & & & \\ & & & & & & \\ & & & &$	S=1.3	$ \overline{K^{0}} \stackrel{\vee}{\omega} \times \stackrel{\circ}{B} \stackrel{\vee}{\omega} \rightarrow \pi^{+}\pi^{-}\pi^{-}K^{*}(892)^{-}\rho^{+} \\ \times \stackrel{\circ}{B} (K^{*}- \rightarrow \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}}(892)^{0}\rho^{0} \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow \overline{K^{0}}\pi^{0}) \\ K_{1}(1270)^{-}\pi^{+} \\ \times \stackrel{\circ}{B} (K_{1}(1270)^{-} \rightarrow \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}} \stackrel{\circ}{K^{+}}\pi^{-}\pi^{0} \stackrel{\circ}{\text{nonresonant}} \\ K^{-}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ \times \stackrel{\circ}{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\eta \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) \\ \times \stackrel{\circ}{K^{*}}(892)^{0}\psi \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\psi \\ \times \stackrel{\circ}{B} (\overline{K^{*}0} \rightarrow K^{-}\pi^{+}) \\ \times \stackrel{\circ}{B} (\overline{\omega} \rightarrow \pi^{+}\pi^{-}\pi^{0}) \\ \overline{K^{0}} \stackrel{\circ}{K^{+}}\pi^{+}\pi^{-}\pi^{-} \\ \overline{K^{0}} \stackrel{\circ}{\pi^{+}}\pi^{+}\pi^{-}\pi^{-} \\ \overline{K^{0}} \stackrel{\circ}{\pi^{+}}\pi^{-}\pi^{0}\pi^{0} (\pi^{0}) \\ \overline{K^{0}} \stackrel{\circ}{K^{+}}K^{-} \\ \overline{K^{0}} \stackrel{\circ}{\psi} \times \stackrel{\circ}{B} (\phi \rightarrow K^{+}K^{-}) $	ο΄) ο΄ π - πο΄)) τ - πο΄) τ - πο΄)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$ $(5.8 \pm 1.6) \times 10^{-3}$ $(5.8 \pm 1.6) \times 10^{-3}$ (1.6 + 7.3) % $(9.4 \pm 1.0) \times 10^{-3}$ $(4.3 \pm 0.5) \times 10^{-3}$	
$A_{CP}(K_S^0\pi^0) = -A_{CP}(K^0\pi^0) = -A_{CP}(K$	$\begin{array}{l} 0.018 \pm 0.030 \\ 0.02 \pm 0.20 \\ 0.03 \pm 0.20 \\ 0.04 \\ 0.05 \pm 0.29) \% \\ $	S=1.3	$\begin{array}{c} \overline{K^{0}} \dot{\omega} \times \dot{B} (\dot{\omega} \to \pi^{+}\pi^{-}\pi^{-}K^{*}(892)^{-}\rho^{+} \\ & \times \dot{B} (K^{*}-\to \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}}(892)^{0} \rho^{0} \\ & \times \dot{B} (\overline{K^{*}0} \to \overline{K^{0}}\pi^{0}) \\ K_{1}(1270)^{-}\pi^{+} \\ & \times \dot{B} (K_{1}(1270)^{-}\to \overline{K}^{0}\pi^{0}) \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}3\text{-body} \\ & \times \dot{B} (\overline{K^{*}0} \to \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}}\pi^{+}\pi^{-}\pi^{0} & \text{nonresonant} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ & \times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\eta \\ & \times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\psi \\ & \times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\psi \\ & \times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\psi \\ & \times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{0}}\pi^{+}\pi^{+}\pi^{-}\pi^{-} \\ \overline{K^{0}}\pi^{+}\pi^{+}\pi^{-}\pi^{-} \\ \overline{K^{0}}\pi^{+}\pi^{+}\pi^{-}\pi^{0} \\ \overline{K^{0}}K^{+}K^{-} \\ \overline{K^{0}}K^{+}K^{-} \\ \overline{K^{0}}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{+}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{$	ο΄) ο΄ π - πο΄)) τ - πο΄) τ - πο΄)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$ $(2.7 \pm 0.5)\%$ $(7 \pm 3) \times 10^{-3}$ $(5.8 \pm 1.6) \times 10^{-3}$ (10.6 + 7.3)% $(9.4 \pm 1.0) \times 10^{-3}$ $(4.3 \pm 0.5) \times 10^{-3}$ $(4.3 \pm 0.5) \times 10^{-3}$ $(5.1 \pm 0.8) \times 10^{-3}$	
$A_{CP}(K_{0}^{K}\pi^{0}) = -A_{CP}(K^{E}\pi^{\mp}) = 0$ $\overline{D}^{0} \text{ modes are charge con}$ $\overline{DECAY MODES}$ anything anything anything anything anything anything $E^{+}\nu_{\ell}$ $K^{-}e^{+}\nu_{e}$ $K^{-}\mu^{+}\nu_{\mu}$ $\pi^{0}e^{+}\nu_{e}$ $\pi^{-}e^{+}\nu_{e}$ $K^{+}(892)^{-}e^{+}\nu_{e}$ $\times B(K^{*}- \to \overline{K}^{0}\pi^{-})$ $\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$ $(\overline{K}^{*}(892)\pi)^{-}\mu^{+}\nu_{\mu}$ $e^{+}\nu_{e}$	$\begin{array}{l} 0.018 \pm 0.030 \\ 0.02 \pm 0.20 \\ 0.03 \pm 0.20 \\ 0.04 \pm $	S=1.3	$\begin{array}{c} \overline{K^{0}} \dot{\omega} \times \dot{B} (\dot{\omega} \to \pi^{+}\pi^{-}\pi \\ K^{*}(892)^{-}\rho^{+} \\ &\times \dot{B} (K^{*}-\to \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}}(892)^{0}\rho^{0} \\ &\times \dot{B} (\overline{K^{*}0} \to \overline{K^{0}}\pi^{0}) \\ K_{1}(1270)^{-}\pi^{+} \\ &\times \dot{B} (K_{1}(1270)^{-}\to \overline{K} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}3\text{-body} \\ &\times \dot{B} (\overline{K^{*}0} \to \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}}\pi^{+}\pi^{-}\pi^{0} & \text{nonresonant} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0} \\ &\times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ &\times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\eta \\ &\times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\omega \\ &\times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\omega \\ &\times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{0}}\pi^{+}\pi^{+}\pi^{-}\pi^{-} \\ \overline{K^{0}}\pi^{+}\pi^{+}\pi^{-}\pi^{-} \\ \overline{K^{0}}\pi^{+}\pi^{+}\pi^{-}\pi^{0} \\ \overline{K^{0}}K^{+}K^{-} \\ \overline{K^{0}}K^{+}K^{-} \\ \overline{K^{0}}K^{+}K^{-} \\ \overline{K^{0}}K^{+}K^{-} \\ \overline{K^{0}}K^{+}S^{-}K^{0}S^{-}S^{-}S^{-}S^{-}S^{-}S^{-}S^{-}S^{-$	ο΄) ο΄ π - πο΄)) τ - πο΄) τ - πο΄)	(1.9 ±0.4)% (4.1 ±1.6)% (4.9 ±1.1) × 10 ⁻³ (5.1 ±1.4) × 10 ⁻³ (4.8 ±1.1) × 10 ⁻³ (2.1 ±2.1)% (15 ±5)% (4.0 ±0.4)% (1.2 ±0.6)% (2.9 ±0.8) × 10 ⁻³ (2.7 ±0.5)% (7 ±3) × 10 ⁻³ (5.8 ±1.6) × 10 ⁻³ (10.6 +7.3)% (9.4 ±1.0) × 10 ⁻³ (4.3 ±0.5) × 10 ⁻³ (5.1 ±0.8) × 10 ⁻³ (8.3 ±1.5) × 10 ⁻⁴	
$A_{CP}(K_0^{V}, \pi^0) = -A_{CP}(K_0^{V}, \pi^0) = -A_{CP}(K_0^{V}, \pi^+) = 0$ $\overline{D}^0 \text{ modes are charge conjugate of modes}$ $DECAY MODES$ $anything$ $anything$ $anything + K^0 \text{ anything}$ $anything$ $anythi$	0.018 ± 0.030 0.02 ± 0.20 Injugates of the modes below. Fraction (Γ_I/Γ) Confide Inclusive modes (6.75 ± 0.29) % (6.6 ± 0.8) % (53 ± 4) % (42 ± 5) % (3.4 ± 0.6) % [nn] < 13 % Semileptonic modes [oo] (3.47 ± 0.17) % (3.64 ± 0.18) % (3.22 ± 0.17) % (1.6 ± 1.3) % (2.8 ± 1.7) % (1.8 ± 0.9) % (1.35 ± 0.22) % < 1.2 $\pm 10^{-3}$ < 1.4 $\pm 10^{-3}$ (3.7 ± 0.6) $\pm 10^{-3}$ g resonance mode has already appeared.	S=1.3	$\begin{array}{c} \overline{K^{0}} \dot{\omega} \times \dot{B} (\dot{\omega} \to \pi^{+}\pi^{-}\pi^{-}K^{*}(892)^{-}\rho^{+} \\ & \times \dot{B} (K^{*}-\to \overline{K^{0}}\pi^{-}) \\ \overline{K^{*}}(892)^{0} \rho^{0} \\ & \times \dot{B} (\overline{K^{*}0} \to \overline{K^{0}}\pi^{0}) \\ K_{1}(1270)^{-}\pi^{+} \\ & \times \dot{B} (K_{1}(1270)^{-}\to \overline{K}^{0}\pi^{0}) \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}3\text{-body} \\ & \times \dot{B} (\overline{K^{*}0} \to \overline{K^{0}}\pi^{0}) \\ \overline{K^{0}}\pi^{+}\pi^{-}\pi^{0} & \text{nonresonant} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ K^{-}\pi^{+}\pi^{0}\pi^{0} \\ \overline{K^{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0} \\ & \times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\eta \\ & \times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\psi \\ & \times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\psi \\ & \times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{*}}(892)^{0}\psi \\ & \times \dot{B} (\overline{K^{*}0} \to K^{-}\pi^{+}) \\ \overline{K^{0}}\pi^{+}\pi^{+}\pi^{-}\pi^{-} \\ \overline{K^{0}}\pi^{+}\pi^{+}\pi^{-}\pi^{-} \\ \overline{K^{0}}\pi^{+}\pi^{+}\pi^{-}\pi^{0} \\ \overline{K^{0}}K^{+}K^{-} \\ \overline{K^{0}}K^{+}K^{-} \\ \overline{K^{0}}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{+}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-}K^{-} \\ \hline K^{0}K^{+}K^{-} & \overline{K^{0}}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{$	ο΄) ο΄ π - πο΄)) τ - πο΄) τ - πο΄)	$(1.9 \pm 0.4)\%$ $(4.1 \pm 1.6)\%$ $(4.9 \pm 1.1) \times 10^{-3}$ $(5.1 \pm 1.4) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-3}$ $(2.1 \pm 2.1)\%$ $(15 \pm 5)\%$ $(4.0 \pm 0.4)\%$ $(1.2 \pm 0.6)\%$ $(2.9 \pm 0.8) \times 10^{-3}$ $(2.7 \pm 0.5)\%$ $(7 \pm 3) \times 10^{-3}$ $(5.8 \pm 1.6) \times 10^{-3}$ (10.6 + 7.3)% $(9.4 \pm 1.0) \times 10^{-3}$ $(4.3 \pm 0.5) \times 10^{-3}$ $(4.3 \pm 0.5) \times 10^{-3}$ $(5.1 \pm 0.8) \times 10^{-3}$	

```
K 6 K 6 70
           Fractions of many of the following modes with resonances have already
                                                                                                                                                                                           < 5.9
                                                                                                                                                                                                                \times 10^{-4}
            appeared above as submodes of particular charged-particle modes. (Modes
                                                                                                                                   K^{+}K^{-}\pi^{+}\pi^{-}
                                                                                                                                                                                    [uu] (2.50 \pm 0.23) \times 10^{-3}
                                                                                                                                                                                                                                                  676
           for which there are only upper limits and \overline{K}^*(892) \rho submodes only appear
                                                                                                                                       \phi \pi^+ \pi^- \times B(\phi \rightarrow K^+ K^-)
                                                                                                                                                                                             ( 5.3~\pm1.4 ) \times\,10^{-4}
                                                                                                                                                                                                                                                  614
           below.)
                                                                                                                                          \phi \rho^0 \times B(\phi \to K^+ K^-)
                                                                                                                                                                                             ( 3.0 \pm1.6 ) \times 10<sup>-4</sup>
                                                                                                                                                                                                                                                   260
{\overline K^0 \eta \over \overline K^0 \rho^0}
                                                          (7.0 \pm 1.0) \times 10^{-3}
                                                                                                                                       K^{+}K^{-}\rho^{0} 3-body
                                                                                                               772
                                                                                                                                                                                             ( 9.0 \pm 2.3 ) \times\,10^{-4}
                                                                                                                                                                                                                                                   309
                                                                                                                                       K^*(892)^0 K^- \pi^+ + \text{c.c.}
 \times B(K^{*0} \to K^+ \pi^-)
                                                          (1.21 \pm 0.17)\%
                                                                                                               676
                                                                                                                                                                                                                \times 10^{-4}
                                                                                                                                                                                                                                                   528
                                                                                                                                                                                     [yy] < 5
\frac{K^-\rho^+}{K^0\omega}
                                                           (10.8 \pm 0.9)\%
                                                                                               5=1.2
                                                                                                               678
                                                          (2.1 \pm 0.4)\%
                                                                                                               670
                                                                                                                                       K*(892)0 K*(892)0
                                                                                                                                                                                             (6 \pm 2) \times 10^{-4}
                                                                                                                                                                                                                                                   257
\overline{K}^0 \eta'(958)
                                                                                                                                          \times B^2(K^{*0} \rightarrow K^+\pi^-)
                                                          (1.71 \pm 0.26)\%
\overline{K}^{0}f_{0}(980)
                                                          ( 5.7 \pm 1.6 ) \times 10^{-3}
                                                                                                               549
                                                                                                                                       K^+K^-\pi^+\pi^- non-\phi
                                                                                                                                                                                                                                                   676
\overline{K}^0\phi
                                                          ( 8.6~\pm1.0 ) \times\,10^{-3}
                                                                                                               520
                                                                                                                                       K^+K^-\pi^+\pi^- nonresonant
                                                                                                                                                                                           < 8
                                                                                                                                                                                                               \times 10^{-4}
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   676
K^-a_1(1260)^+
                                                          (7.3 \pm 1.1)\%
                                                                                                               327
                                                                                                                                   K^0\overline{K}^0\pi^+\pi^-
                                                                                                                                                                                             ( 6.8~\pm 2.7 ) \times\,10^{-3}
                                                                                                                                                                                                                                                   673
\overline{K}^0 a_1 (1260)^0
                                                        < 1.9
                                                                            %
                                                                                            CL=90%
                                                                                                               322
                                                                                                                                   K^+K^-\pi^+\pi^-\pi^0
                                                                                                                                                                                             ( 3.1~\pm 2.0 ) \times\,10^{-3}
                                                                                                                                                                                                                                                   600
\overline{K}^0 f_2(1270)
                                                          (4.1 \pm 1.5) \times 10^{-3}
                                                                                                               263
K = a_2(1320)^+
                                                                            \times 10<sup>-3</sup>
                                                        < 2
                                                                                           CL=90%
                                                                                                               197
                                                                                                                                              Fractions of most of the following modes with resonances have already
\overline{K}^0 f_0(1370)
                                                          ( 6.9 \pm 2.1 ) \times 10^{-3}
                                                                                                                                              appeared above as submodes of particular charged-particle modes.
K^*(892)^-\pi^+
                                                          (5.0 \pm 0.4)\%
                                                                                               5=1.2
                                                                                                               711
                                                                                                                                                                                                              × 10<sup>-3</sup>
                                                                                                                                   \overline{K}^*(892)^0 K^0
                                                                                                                                                                                           < 1.6
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   605
\overline{K}^*(892)^0\pi^0
                                                          (3.1 \pm 0.4)\%
                                                                                                               709
                                                                                                                                   K*(892)+ K-
                                                                                                                                                                                            ( 3.5 \pm 0.8 ) \times 10^{-3}
                                                                                                                                                                                                                                                   610
\overline{K}^*(892)^0 \pi^+ \pi^- \text{ total}
                                                          (2.2 \pm 0.5)\%
                                                                                                               683
                                                                                                                                   K*(892)0 K0
                                                                                                                                                                                                               \times 10^{-4}
                                                                                                                                                                                           < 8
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   605
    \vec{K}^*(892)^0\pi^+\pi^-3-body
                                                          (1.42\pm0.32)\%
                                                                                                               683
                                                                                                                                   K*(892)-K+
                                                                                                                                                                                           ( 1.8 \pm 1.0 ) \times 10^{-3}
                                                                                                                                                                                                                                                   610
K^-\pi^+\rho^0 total
                                                                                                                                                                                                               \times 10<sup>-3</sup>
                                                          (6.3 \pm 0.4)\%
                                                                                                               612
                                                                                                                                   \phi \pi^{\dot{0}}
                                                                                                                                                                                           < 1.4
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   644
   K^-\pi^+\rho^0 3-body
                                                          ( 4.7 \pm 2.1 ) \times 10^{-3}
                                                                                                                                                                                                                \times 10^{-3}
                                                                                                               612
                                                                                                                                   \phi\eta
                                                                                                                                                                                           < 2.8
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   489
    \overline{K}^*(892)^0 \rho^0
                                                          ( 1.46±0.32) %
                                                                                                               418
                                                                                                                                                                                                                \times 10<sup>-3</sup>
                                                                                                                                                                                           < 2.1
                                                                                                                                                                                                                                                   239
       \overline{K}^*(892)^0 \rho^0 transverse \overline{K}^*(892)^0 \rho^0 S-wave \overline{K}^*(892)^0 \rho^0 S-wave long.
                                                                                                                                                                                                                              CL=90%
                                                          (1.5 \pm 0.5)\%
                                                                                                               418
                                                                                                                                   \dot{\phi}\pi^+\pi^-
                                                                                                                                                                                             (1.07\pm0.28)\times10^{-3}
                                                                                                                                                                                                                                                   614
                                                                                                                                      \phi \rho^0
                                                          (2.8 \pm 0.6)\%
                                                                                                               418
                                                                                                                                                                                             (6 ±3 )×10<sup>-4</sup>
                                                                                                                                                                                                                                                  260
                                                                            \times 10^{-3}
                                                                                                                                       \phi \pi^+ \pi^- 3-body
                                                        < 3
                                                                                           CL =90%
                                                                                                               41B
                                                                                                                                                                                             (7 \pm 5) \times 10^{-4}
                                                                                                                                                                                                                                                   614
                                                                             \times 10<sup>-3</sup>
       \overline{K}^*(892)^0 \rho^0 P-wave
                                                        < 3
                                                                                                                                   K^*(892)^0 K^- \pi^+ + \text{c.c.}
                                                                                                                                                                                                               × 10<sup>-4</sup>
                                                                                           CL=90%
                                                                                                               418
                                                                                                                                                                                     [vv] < 7
                                                                                                                                                                                                                              CL=90%
       \overline{K}^*(892)^0 \rho^0 D-wave
                                                                                                                                       K*(892)0 K*(892)0
                                                          (1.9 \pm 0.6)\%
                                                                                                               418
                                                                                                                                                                                             ( 1.4~\pm0.5 ) \times\,10^{-3}
                                                                                                                                                                                                                                                   257
K^*(892)^- \rho^+
                                                          (6.1 \pm 2.4)\%
                                                                                                               422
   K^*(892)^- \rho^+ longitudinal K^*(892)^- \rho^+ transverse K^*(892)^- \rho^+ P-wave
                                                                                                                                                                                 Radiative modes
                                                           (2.9 \pm 1.2)\%
                                                                                                               422
                                                                                                                                   \rho^0 \gamma
                                                                                                                                                                                                                × 10<sup>-4</sup>
                                                                                                                                                                                           < 2.4
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   773
                                                          (3.2 \pm 1.8)\%
                                                                                                               422
                                                                                                                                                                                                                \times 10^{-4}
                                                                                                                                   \omega \gamma
                                                                                                                                                                                           < 2.4
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   768
                                                        < 1.5
                                                                                           CL=90%
                                                                                                               422
                                                                                                                                                                                                                × 10<sup>-4</sup>
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   654
                                                                                                                                   \frac{\phi \gamma}{K^*(892)^0 \gamma}
                                                                                                                                                                                           < 1.9
K^-\pi^+f_0(980)
                                                        < 1.1
                                                                             %
                                                                                           CL=90%
                                                                                                               459
                                                                                                                                                                                                                \times 10^{-4}
                                                                             \times 10^{-3}
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   717
    \overline{K}^*(892)^0 f_0(980)
                                                                                                                                                                                           < 7.6
                                                        < 7
                                                                                           C1 = 90\%
K_1(1270)^-\pi^+
                                                  [m] ( 1.06 ± 0.29) %
                                                                                                               483
                                                                                                                                                              Doubly Cabibbo suppressed (DC) modes,
K_1(1400)^-\pi^+
                                                                                                                                                            \Delta C = 2 forbidden via mixing (C2M) modes,
                                                        < 1.2
                                                                                            CL=90%
                                                                                                               386
\overline{K}_1(1400)^0\pi^0
                                                                                           CL=90%
                                                                                                               387
                                                                                                                                                           \Delta C = 1 weak neutral current (C1) modes, or
K^*(1410)^-\pi^+
                                                        < 1.2
                                                                                           CL=90%
                                                                                                               378
                                                                                                                                                           Lepton Family number (LF) violating modes
K_0^*(1430)^-\pi^+
                                                          (1.04\pm0.26)\%
                                                                                                               364
                                                                                                                                   K^+\ell^-\overline{\nu}_\ell(\text{via }\overline{D}^0)
                                                                                                                                                                             C2M
                                                                                                                                                                                                               × 10<sup>-4</sup>
                                                                                                                                                                                           < 1.7
                                                                                                                                                                                                                              CL=90%
K_2^*(1430)^-\pi^+
                                                                             \times 10^{-3}
                                                        < 8
                                                                                           CL=90%
                                                                                                               367
                                                                                                                                   K^+\pi^-
                                                                                                                                                                                             ( 1.46\pm0.30) \times 10^{-4}
                                                                                                                                                                             DC
                                                                                                                                                                                                                                                   861
\overline{K}_{2}^{*}(1430)^{0}\pi^{0}
                                                                             \times 10^{-3}
                                                                                                                                   K^+\pi^- (via \overline{D}^0)
                                                                                                                                                                                                                × 10<sup>-5</sup>
                                                                                           CL = 90\%
                                                        < 4
                                                                                                               363
                                                                                                                                                                             C2M
                                                                                                                                                                                           < 1.6
                                                                                                                                                                                                                              CL=95%
                                                                                                                                                                                                                                                   861
\overline{K}^{*}(892)^{0}\pi^{+}\pi^{-}\pi^{0}
                                                                                                                                   K^{+}\pi^{-}\pi^{+}\pi^{-}
                                                                                                                                                                                             ( 1.9 \pm 2.6 ) \times 10^{-4}
                                                          ( 1.8 \pm 0.9 ) %
                                                                                                               641
                                                                                                                                                                             DC
                                                                                                                                                                                                                                                   812
                                                                                                                                                                                                               × 10<sup>-4</sup>
   \overline{K}^*(892)^0 \eta
                                                          (1.9 \pm 0.5)\%
                                                                                                                                   K^{+}\pi^{-}\pi^{+}\pi^{-} (via \overline{D}^{0})
                                                                                                               580
                                                                                                                                                                             C2M
                                                                                                                                                                                           < 4
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   812
\frac{K^-\pi^+\omega}{\overline{K}^*(892)^0\omega}
                                                                                                                                   K^+\pi^- or
                                                                                                                                                                                                                \times 10<sup>-3</sup>
                                                          (3.0 \pm 0.6)\%
                                                                                                               605
                                                                                                                                                                                           < 1.0
                                                                                                                                                                                                                              CL=90%
                                                                                                                                        K^+\pi^-\pi^+\pi^- (via \overline{D}^0)
                                                          ( 1.1 \pm 0.4 ) %
                                                                                                               406
                                                          ( 7.0 \pm 1.8 ) \times 10^{-3}
K^-\pi^+\eta'(958)
                                                                                                               479
                                                                                                                                    \mu^- anything (via \overline{D}{}^0)
                                                                                                                                                                             С2М
                                                                                                                                                                                                                \times 10^{-4}
                                                                                                                                                                                                                              CL=90%
   \overline{K}^*(892)^0 \eta'(958)
                                                                             \times 10^{-3}
                                                                                                                                   e+e-
                                                                                                                                                                                                                \times 10<sup>-6</sup>
                                                        < 1.0
                                                                                           CL=90%
                                                                                                                99
                                                                                                                                                                             C1
                                                                                                                                                                                           < 6.2
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   932
                                                                                                                                                                                                                \times 10^{-6}
                                                                                                                                   \mu^{+}\mu^{-}
                                                                                                                                                                             CI
                                                                                                                                                                                           < 4.1
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   926
                                                Pionic modes
                                                                                                                                   ,
π0 e+ e-
                                                                                                                                                                                                                × 10<sup>-5</sup>
                                                                                                                                                                             C1
                                                                                                                                                                                           < 4.5
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   927
_{\pi^{0}\pi^{0}}^{+\pi^{-}}
                                                          ( 1.52 \pm 0.09) \times 10^{-3}
                                                                                                               922
                                                                                                                                   \pi^0 \mu^+ \mu^-
                                                                                                                                                                                                                × 10<sup>-4</sup>
                                                                                                                                                                             C1
                                                                                                                                                                                           < 1.8
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   915
                                                          ( 8.4 \pm 2.2 ) \times 10^{-4}
                                                                                                               922
                                                                                                                                                                                                                × 10<sup>-4</sup>
                                                                                                                                   \eta e^+ e^-
                                                                                                                                                                             C1
                                                                                                                                                                                            < 1.1
                                                                                                                                                                                                                              CL=90%
\pi^+\pi^-\pi^0
                                                           (1.6 \pm 1.1)\%
                                                                                               S=2.7
                                                                                                               907
                                                                                                                                                                                                                \times 10^{-4}
                                                                                                                                   \eta \mu^+ \mu^-
                                                                                                                                                                             C1
                                                                                                                                                                                           < 5.3
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   838
\pi^{+}\pi^{+}\pi^{-}\pi^{-}
                                                          ( 7.3 \pm 0.5 ) \times 10^{-3}
                                                                                                               879
                                                                                                                                                                                                                × 10<sup>-4</sup>
                                                                                                                                   \rho^0 e^+ e^-
                                                                                                                                                                             C1
                                                                                                                                                                                           < 1.0
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   773
\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}
                                                           ( 1.9 \pm 0.4 ) %
                                                                                                               844
                                                                                                                                   \rho^0 \mu^+ \mu^-
                                                                                                                                                                                                                × 10<sup>-4</sup>
                                                                                                                                                                             CI
                                                                                                                                                                                           < 2.3
                                                                                                                                                                                                                              C1 = 90\%
                                                                                                                                                                                                                                                   756
\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}
                                                          (4.0 \pm 3.0) \times 10^{-4}
                                                                                                               795
                                                                                                                                                                                                                × 10<sup>-4</sup>
                                                                                                                                   \omega e^+ e^-
                                                                                                                                                                             C1
                                                                                                                                                                                           < 1.8
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   768
                                                                                                                                                                                                                \times 10<sup>-4</sup>
                                 Hadronic modes with a K\overline{K} pair
                                                                                                                                   \omega \mu^+ \mu^-
                                                                                                                                                                             CI
                                                                                                                                                                                           < 8.3
                                                                                                                                                                                                                              CL=90%
                                                                                                                                   \phi e^+ e^-
                                                                                                                                                                                                                \times 10<sup>-5</sup>
K+K-
                                                          ( 4.25 \pm 0.16) \times 10^{-3}
                                                                                                                                                                             ÇI
                                                                                                                                                                                           < 5.2
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   654
                                                                                                               791
                                                                                                                                   \frac{\phi \mu^{+} \mu^{-}}{K^{0} e^{+} e^{-}}
                                                                                                                                                                                                                × 10<sup>-4</sup>
K^0\overline{K}^0
                                                           (6.5 \pm 1.8) \times 10^{-4}
                                                                                                                                                                                                                              CL=90%
                                                                                               S=1.2
                                                                                                               788
                                                                                                                                                                             CI
                                                                                                                                                                                           < 4.1
                                                                                                                                                                                                                                                   631
K^0K^-\pi^+
                                                                                                                                                                                                                × 10<sup>-4</sup>
                                                          ( 6.4~\pm1.0 ) \times\,10^{-3}
                                                                                                                                                                                      [ss] < 1.1
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   866
                                                                                               5=1.1
                                                                                                                                   K^0 \mu^+ \mu^-
   \overline{K}^*(892)^0 K^0
                                                                                                                                                                                                                × 10<sup>-4</sup>
                                                        < 1.1
                                                                             \times 10^{-3}
                                                                                           CL=90%
                                                                                                               605
                                                                                                                                                                                      [ss] < 2.6
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   852
                                                                                                                                   \overline{K}^*(892)^0 e^+ e^-
                                                                                                                                                                                                                × 10<sup>-4</sup>
       \times B(\overline{K}^{*0} \rightarrow K^-\pi^+)
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                      [55] < 1.4
                                                                                                                                                                                                                \times 10<sup>-3</sup>
                                                                                                                                   \overline{K}^*(892)^0 \mu^+ \mu^-
    K*(892)+K-
                                                          ( 2.3 \pm 0.5 ) \times\,10^{-3}
                                                                                                                                                                                      [ss] < 1.18
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   69B
                                                                                                               610
       \times B(K^{*+} \rightarrow K^0 \pi^+)
                                                                                                                                                                                                                \times 10^{-4}
                                                                                                                                   \pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}
                                                                                                                                                                             C1
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                           < 8.1
                                                                                                                                                                                                                                                   863
    K^0K^-\pi^+ nonresonant
                                                                                                                                   \mu^{\pm}\,\mathrm{e}^{\mp}
                                                                                                                                                                                                                \times 10<sup>-6</sup>
                                                          (2.3 \pm 2.3) \times 10^{-3}
                                                                                                                                                                             LF
                                                                                                                                                                                     [ee] < 8.1
                                                                                                                                                                                                                              Ct=90%
                                                                                                                                                                                                                                                   929
                                                                                                               739
                                                                                                                                   \pi^0 e^{\pm} \mu^{\mp}
\eta e^{\pm} \mu^{\mp}
                                                                                                                                                                                                                × 10<sup>-5</sup>
\overline{K}^0 K^+ \pi^-
                                                          ( 5.0 \pm 1.0 ) \times 10^{-3}
                                                                                                               739
                                                                                                                                                                             LF
                                                                                                                                                                                     [ee] < 8.6
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   924
                                                                                                                                                                                                                × 10<sup>-4</sup>
   K^*(892)^0 \overline{K}{}^0
                                                                            × 10<sup>-4</sup>
                                                                                                                                                                             LF
                                                                                                                                                                                     [ee] < 1.0
                                                                                                                                                                                                                              CL=90%
                                                                                           CL=90%
                                                        < 5
                                                                                                               605
                                                                                                                                                                                                                \times 10<sup>-5</sup>
       \times B(K^{*0} \rightarrow K^+\pi^-)
                                                                                                                                   \rho^0 e^{\pm} \mu^{\mp}
                                                                                                                                                                             LF
                                                                                                                                                                                     [ee] < 4.9
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   769
    K*(892)-K+
                                                                                                                                   \omega e^{\pm} \mu^{\mp}
                                                                                                                                                                                                                \times 10^{-4}
                                                          ( 1.2 \pm 0.7 ) \times 10^{-3}
                                                                                                                                                                             LF
                                                                                                               610
                                                                                                                                                                                     [ee] < 1.2
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   764
                                                                                                                                   \frac{\phi e^{\pm} \mu^{\mp}}{K^0 e^{\pm} \mu^{\mp}}
                                                                                                                                                                                                                \times 10^{-5}
       \times B(K^{*-} \rightarrow \overline{K}^0 \pi^-)
                                                                                                                                                                             1 F
                                                                                                                                                                                     [ee] < 3.4
                                                                                                                                                                                                                              CI = 90%
                                                                                                                                                                                                                                                   648
                                                                                                                                                                                                                × 10<sup>-4</sup>
                                                                                                                                                                             LF
                                                                                                                                                                                     [ee] < 1.0
                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                                                   862
    \overline{K}^0 K^+ \pi^- nonresonant
                                                          (3.8 \begin{array}{c} +2.3 \\ -1.9 \end{array}) \times 10^{-3}
                                                                                                               739
                                                                                                                                    \overline{K}^*(892)^0 e^{\pm} \mu^{\mp}
                                                                                                                                                                                                                × 10<sup>-4</sup>
                                                                                                                                                                             LF
                                                                                                                                                                                     [ee] < 1.0
                                                                                                                                                                                                                               CL=90%
K^+K^-\pi^0
                                                          (1.3 \pm 0.4) \times 10^{-3}
                                                                                                               742
```

D*(2007)0

 $I(J^P) = \frac{1}{2}(1^-)$ I, J, P need confirmation.

Mass $m=2006.7\pm0.5~{\rm MeV}~{\rm (S}=1.1)$ $m_{D^{+0}}-m_{D^0}=142.12\pm0.07~{\rm MeV}$ Full width $\Gamma~<~2.1~{\rm MeV},~{\rm CL}=90\%$

 $\overline{D}^*(2007)^0$ modes are charge conjugates of modes below.

D*(2007) DECAY MODES	MODES Fraction (Γ_i/Γ)		
$D^0 \pi^0$	(61.9±2.9) %	43	
$D^0\gamma$	(38.1 ± 2.9) %	137	

$D^*(2010)^{\pm}$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass $m=2010.0\pm0.5$ MeV (S = 1.1) $m_{D^{\bullet}(2010)^{+}}-m_{D^{+}}=140.64\pm0.10$ MeV (S = 1.1) $m_{D^{\bullet}(2010)^{+}}-m_{D^{0}}=145.436\pm0.016$ MeV Full width Γ < 0.131 MeV, CL = 90%

 $D^*(2010)^{--}$ modes are charge conjugates of the modes below.

D*(2010)* DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$D^0\pi^+$	(67.7±0.5) %	39	
$D^{+}\pi^{0}$	$(30.7 \pm 0.5) \%$	38	
$D^+\gamma$	$(1.6 \pm 0.4) \%$	136	

$D_1(2420)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

Mass $m = 2422.2 \pm 1.8 \; {\rm MeV} \quad ({\rm S} = 1.2)$ Full width $\Gamma = 18.9^{+4.6}_{-3.5} \; {\rm MeV}$

 $\overline{\mathcal{D}}_1(2420)^0$ modes are charge conjugates of modes below.

D1(2420)0 DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c) 355	
$D^*(2010)^+\pi^-$	seen		
$D^+\pi^-$	not seen	474	

D*(2460)0

$$I(J^P) = \frac{1}{2}(2^+)$$

 $J^P = 2^+$ assignment strongly favored (ALBRECHT 89B).

Mass m= 2458.9 \pm 2.0 MeV $\,$ (S = 1.2) Full width $\Gamma=$ 23 \pm 5 MeV

 $\overline{\mathcal{D}}_2^*(2460)^0$ modes are charge conjugates of modes below.

D*(2460)0 DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$D^+\pi^-$	seen	503	
$D^*(2010)^+\pi^-$	seen	387	

D*(2460)±

$$I(J^P) = \frac{1}{2}(2^+)$$

 $J^P=2^+$ assignment strongly favored (ALBRECHT 89B). Mass $m=2459\pm 4$ MeV (S = 1.7) $m_{D_2^*(2460)^\pm}-m_{D_2^*(2460)^0}=0.9\pm 3.3$ MeV (S = 1.1) Full width $\Gamma=25^{+8}_{-7}$ MeV

 $D_2^*(2460)^-$ modes are charge conjugates of modes below.

D ₂ (2460) ± DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)	
$D^0\pi^+$	seen	508	
$D^{*0}\pi^{+}$	seen	390	

CHARMED, STRANGE MESONS $(C = S = \pm 1)$

 $D_s^+ = c\overline{s}, D_s^- = \overline{c}s$, similarly for D_s^* 's

Ds[±] was F[±]

$$I(J^P) = 0(0^-)$$

Scale factor/

Mass
$$m=1968.6\pm0.6$$
 MeV (S = 1.1) $m_{D_5^\pm}-m_{D^\pm}=99.2\pm0.5$ MeV (S = 1.1) Mean life $\tau=(0.496^{+0.010}_{-0.009})\times10^{-12}$ s $c\tau=148.6~\mu\mathrm{m}$

D_s^+ form factors

$$r_2 = 1.60 \pm 0.24$$

 $r_v = 1.92 \pm 0.32$
 $\Gamma_L/\Gamma_T = 0.72 \pm 0.18$

Branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. $D_{\overline{s}}^-$ modes are charge conjugates of the modes below.

D+ DECAY MODES		Fraction	(Γ_j/Γ)		Confidence level	(MeV/c)
	nclusi	ve mod	les			
K^- anything		(13	+14 -12) %		_
\overline{K}^0 anything + K^0 anything		(39	± 28) %		_
K ⁺ anything		(20	+18 -14) %		-
non-KK anything		(64) %		-
e ⁺ anything		(В	+ 6 5) %		_
ϕ anything		(18	+15 -10) %		_
Leptonic	and se	emilept	_	odes	5	
$\mu^+ \nu_{\mu}$		-	± 1.9		_	981
$\tau^+ \nu_{\tau}$		(7	± 4) %		182
$\phi \ell^+ \nu_\ell$	[ww]	(2.0	± 0.5) %		-
$\eta \ell^+ \nu_\ell + \eta'(958) \ell^+ \nu_\ell$	[ww]	(3.5	± 1.0) %		-
$\eta \ell^+ \nu_{\ell}$		(2.6	± 0.7) %		_
$\eta'(958)\ell^+\nu_\ell$		(8.9	± 3.4) × 1	10-3	-
Hadronic modes wit	h a K	-	•	_	from $a \phi$)	
$K^+\overline{K}^0$		-	± 1.1			850
$K^+K^-\pi^+$	[99]		± 1.2		S=1.1	805
$\phi\pi^+\ K^+\overline{K}^*(892)^0$	[xx]	•	± 0.9			712
$f_0(980)\pi^+$	[xx]		± 0.9		S=1.3	682 732
$K^{+}\overline{K}_{0}^{*}(1430)^{0}$	[xx] [xx]		± 0.8 ± 4			186
$f_0(1710)\pi^+ \rightarrow K^+K^-\pi^+$	[///		± 1.9			204
$K^+K^-\pi^+$ nonresonant	ועע		± 4			805
$K^0\overline{K}^0\pi^+$		()		, ^ .		802
$K^*(892)^+\overline{K}^0$	[xx]	(4.3	± 1.4) %		683
$K^+K^-\pi^+\pi^0$	• •	•	_	•		748
$\phi\pi^+\pi^0$	[xx]	(9	± 5) %		687
ϕho^+	[xx]	(6.7	± 2.3) %		407
$\phi\pi^+\pi^0$ 3-body	[xx]	< 2.6		%	CL=90%	687
$K^+K^-\pi^+\pi^0$ non- ϕ		< 9		%	CL=90%	748
$K^+\overline{K}^0\pi^+\pi^-$		< 2.8		%	CL=90%	744
$K^{0}K^{-}\pi^{+}\pi^{+}$			± 1.5			744
$K^*(892)^+ \overline{K}^*(892)^0$ $K^0 K^- \pi^+ \pi^+ \text{non-} K^{*+} \overline{K}^{*0}$	[xx]	(5.8			CI 008/	412 744
$K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-}$		< 2.9	± 3.3	%	CL=90%	673
$\phi \pi^+ \pi^+ \pi^-$	[xx]		± 3.3 8± 0.3!		10	640
	[~~]				3	
$K^+K^-\pi^+\pi^+\pi^-$ non- ϕ		(3.0	+ 3.0 - 2.0)×	10 3	673
+ + - Hadron	ic mo					
$\pi^{+}\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$		< 8	± 0.4		S=1.2 10 ⁻⁴ CL=90%	959 827
$f_0(980)\pi^+$	[צצו	(1.8	+ 0.8		\$=1.7	732
$f_2(1270)\pi^+$	[xx]		± 1.3			559
$f_0(1500)\pi^+ \rightarrow \pi^+\pi^-\pi^+$		(2.8				391
$\pi^+\pi^+\pi^-$ nonresonant	1	< 2.8			10 ⁻³ CL=90%	959
$\pi^{+}\pi^{+}\pi^{-}\pi^{0}$		< 12		%	CL=90%	935
$\eta \pi^+$	[xx]	(1.7	± 0.5) %		902

[xx] (2.8 ± 1.1) $\times 10^{-3}$

822

$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	(6.9 ± 3.0) \times	10-3	899
$\pi^{+} \pi^{+} \pi^{-} \pi^{0} \pi^{0}$	_		902
ηho^+	[xx] $(10.8 \pm 3.1)\%$	•	727
$\eta\pi^+\pi^0$ 3-body	[xx] < 4	CL=90%	886
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	(4.9 ± 3.2) %)	856
$\eta'(958)\pi^+$	[xx] $(3.9 \pm 1.0)\%$	•	743
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}\pi^{0}$	_		803
$\eta'(958) \rho^+$	[xx] $(10.1 \pm 2.8)\%$	•	470
$\eta'(958)\pi^{+}\pi^{0}$ 3-body	[xx] < 1.4 %	CL=90%	720
Mod	es with one or three K's		

$K^0\pi^+$ × 10⁻³ CL=90% 916 $K^+\pi^+\pi$ $(1.0 \pm 0.4)\%$ 900 $K^+\rho^0$ $\times 10^{-3}$ 747 < 2.9 Κ*(892)⁰ π⁺ Κ+ Κ+ Κ-[xx] (6.5 \pm 2.8) \times 10⁻³ 773 $\times 10^{-4}$ < 6 628 ϕK^+ $\times\,10^{-4}$ CL=90% 607

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton-number (L) violating modes

		1-1				
$\pi^{+} e^{+} e^{-}$		[ss] <	2.7	× 10 ⁻⁴	CL=90%	979
$\pi^{+} \mu^{+} \mu^{-}$		[ss] <	1.4	× 10 ⁻⁴	CL=90%	968
$K^{+}e^{+}e^{-}$	CI	<	1.6	× 10 ⁻³	CL=90%	922
$K^{+} \mu^{+} \mu^{-}$	CI	<	1.4	× 10 ⁻⁴	CL=90%	909
$K^*(892)^+ \mu^+ \mu^-$	CI	<	1.4	× 10 ⁻³	CL=90%	765
$\pi^+ e^{\pm} \mu^{\mp}$	LF	[ee] <	6.1	× 10 ⁻⁴	CL=90%	976
$K^+e^\pm\mu^\mp$	LF	[ee] <	6.3	× 10 ⁻⁴	CL=90%	919
$\pi^{-} e^{+} e^{+}$	L	<	6.9	× 10 ⁻⁴	CL=90%	979
$\pi^-\mu^+\mu^+$	L	<	8.2	× 10 ⁻⁵	CL=90%	968
$\pi^- e^+ \mu^+$	L	<	7.3	× 10 ⁻⁴	CL=90%	976
$K^-e^+e^+$	L	<	6.3	× 10 ⁻⁴	CL=90%	922
$K^-\mu^+\mu^+$	L	<	1.8	$\times 10^{-4}$	CL=90%	909
$K^-e^+\mu^+$	L	<	6.8		CL=90%	919
$K^*(892)^-\mu^+\mu^+$	L	<	1.4	\times 10 ⁻³	CL=90%	765

D_s*±

$$I(J^P) = 0(??)$$

 J^{P} is natural, width and decay modes consistent with $1^{-}\,.$

Mass $m=2112.4\pm0.7~{\rm MeV}~{\rm (S}=1.1)$ $m_{D_s^{\pm}}-m_{D_s^{\pm}}=143.8\pm0.4~{\rm MeV}$ Full width Γ < 1.9 MeV, CL = 90%

 D_s^{*-} modes are charge conjugates of the modes below.

D*+ DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)	
$\frac{D_s^+ \gamma}{D_s^+ \pi^0}$	(94.2±2.5) %	139	
$D_s^+\pi^0$	(5.8 ± 2.5) %	48	

$D_{s1}(2536)^{\pm}$

$$I(J^P) = 0(1^+)$$

 $J, P \text{ need confirmation.}$

Mass $m=2535.35\pm0.34\pm0.5$ MeV Full width Γ < 2.3 MeV, CL = 90%

 $D_{s1}(2536)^{-}$ modes are charge conjugates of the modes below.

D _{S1} (2536)+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$D^*(2010)^+ K^0$	seen	150	
$D^*(2007)^0 K^+$	seen	169	
$D^+ K^0$	not seen	382	
D ⁰ K ⁺	not seen	392	
$D_s^{*+}\gamma$	possibly seen	389	

$D_{sJ}(2573)^\pm$

$$I(J^P) = 0(??)$$

 J^P is natural, width and decay modes consistent with 2+. Mass $m=2573.5\pm1.7$ MeV Full width $\Gamma=15^{+5}_{-4}$ MeV

 $D_{sJ}(2573)^-$ modes are charge conjugates of the modes below.

D _e J(2573)+ DECAY MODES	Fraction (Γ_j/Γ)	ρ (MeV/c)
D ⁰ K ⁺	seen	436
$D^*(2007)^0 K^+$	not seen	245

BOTTOM MESONS

 $(B=\pm 1)$

 $B^+ = u\overline{b}, B^0 = d\overline{b}, \overline{B}^0 = \overline{d}b, B^- = \overline{u}b,$ similarly for B^* 's

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for T(4S) results and " $B^\pm/B^0/B_s^0/B_s^0/B$ -b-baryon Admixture" for results at higher energies. Most inclusive decay branching fractions are found in the Admixture sections. $B^0-\overline{B}^0$ mixing data are found in the B^0 section, while $B_s^0-\overline{B}_s^0$ mixing data and B- \overline{B} mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. CP-violation data are found in the B^0 section. D-baryons are found near the end of the Baryon section.

The organization of the *B* sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

- B[±]
 mass, mean life
 - branching fractions
- B⁰

mass, mean life branching fractions polarization in B^0 decay

 B^0 - \overline{B}^0 mixing CP violation

• B[±] B⁰ Admixtures branching fractions

• $B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon Admixtures mean life

production fractions branching fractions

B*

mass

• B_s

mass, mean life branching fractions polarization in B_s^0 decay $B_s^0 - \overline{B}_s^0$ mixing

 $B-\overline{B}$ mixing (admixture of B^0 , B_s^0)

• B_c^{\pm}

mass, mean life branching fractions

At end of Baryon Listings:

Λ_b

mass, mean life branching fractions

• b-baryon Admixture mean life

branching fractions

```
D_s^{*+} \pi^0
                                                                                                                                                                                          < 3.3
                                                                                                                                                                                                               \times 10^{-4}
                                                                                                                                                                                                                             CL=90%
                                                           I(J^P) = \frac{1}{2}(0^-)
  Β±
                                                                                                                                  D_{s}^{+} \eta
D_{s}^{*+} \eta
D_{s}^{+} \rho^{0}
                                                                                                                                                                                                               \times 10^{-4}
                                                                                                                                                                                          <
                                                                                                                                                                                               5
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2235
                                                                                                                                                                                                               \times 10^{-4}
                                                                                                                                                                                          <
                                                                                                                                                                                              8
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2177
      I, J, P need confirmation. Quantum numbers shown are quark-model
                                                                                                                                                                                                               \times 10<sup>-4</sup>
                                                                                                                                                                                           <
                                                                                                                                                                                              4
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2198
                                                                                                                                        +\rho^0
                                                                                                                                   D.
                                                                                                                                                                                                               \times 10<sup>-4</sup>
                                                                                                                                                                                           < 5
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2139
                  Mass m_{B^{\pm}} = 5279.0 \pm 0.5 \text{ MeV}
                                                                                                                                   D_c^{+}
                                                                                                                                                                                                               \times 10^{-4}
                                                                                                                                        ω
                                                                                                                                                                                           <
                                                                                                                                                                                               5
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2195
                  Mean life \tau_{B^{\pm}} = (1.653 \pm 0.028) \times 10^{-12} \text{ s}
                                                                                                                                  D_{c}^{*+}\omega
                                                                                                                                                                                                               \times 10<sup>-4</sup>
                                                                                                                                                                                          <
                                                                                                                                                                                               7
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2136
                       c\tau = 496 \ \mu m
                                                                                                                                  D_s^+ a_1 (1260)^0
                                                                                                                                                                                                               \times 10^{-3}
                                                                                                                                                                                          < 2.2
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2079
            B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE
                                                                                                                                  D_s^{*+} a_1 (1260)^0
                                                                                                                                                                                                               \times 10<sup>-3</sup>
                                                                                                                                                                                           < 1.6
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2014
                                                                                                                                  D_s^+ \phi
D_s^{++} \phi
                                                                                                                                                                                                               × 10<sup>-4</sup>
                                                                                                                                                                                           < 3.2
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2141
                                                                                                                                                                                                               \times 10^{-4}
                                                                                                                                                                                           <
                                                                                                                                                                                               4
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2079
                                                                                                                                  D_{\varepsilon}^{s} \overline{K}^{0}
            The branching fractions listed below assume 50% B^0 \overline{B}{}^0 and 50% B^+ B^-
                                                                                                                                                                                                               \times 10^{-3}
                                                                                                                                                                                           <
                                                                                                                                                                                               1.1
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2241
            production at the T(4S). We have attempted to bring older measurements
                                                                                                                                  D_s^{*+}\overline{K}^0
                                                                                                                                                                                                               \times 10^{-3}
                                                                                                                                                                                           < 1.1
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2184
            up to date by rescaling their assumed T(4S) production ratio to 50:50
                                                                                                                                   D_s^+ \overline{K}^* (892)^0
                                                                                                                                                                                                               \times 10^{-4}
                                                                                                                                                                                           <
                                                                                                                                                                                               5
           and their assumed D, D_S, D^*, and \psi branching ratios to current values whenever this would affect our averages and best limits significantly.
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2171
                                                                                                                                  D_s^{*+}\overline{K}^{*}(892)^0

D_s^{-}\pi^{+}K^{+}

D_s^{*-}\pi^{+}K^{+}
                                                                                                                                                                                                               × 10<sup>-4</sup>
                                                                                                                                                                                          < 4
                                                                                                                                                                                                                             CI = 90\%
                                                                                                                                                                                                                                               2110
                                                                                                                                                                                                               \times 10<sup>-4</sup>
                                                                                                                                                                                           <
                                                                                                                                                                                               8
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2222
            Indentation is used to indicate a subchannel of a previous reaction. All
                                                                                                                                                                                                               × 10<sup>-3</sup>
            resonant subchannels have been corrected for resonance branching frac-
                                                                                                                                                                                          < 1.2
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2164
            tions to the final state so the sum of the subchannel branching fractions
                                                                                                                                  D_c^2 \pi^+ K^*(892)^+
                                                                                                                                                                                                               \times 10^{-3}
                                                                                                                                                                                           < 6
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2137
            can exceed that of the final state.
                                                                                                                                                                                                               \times 10^{-3}
                                                                                                                                   D_c^{*-}\pi^+K^*(892)^+
                                                                                      Scale factor/
B+ DECAY MODES
                                                                                  Confidence level (MeV/c)
                                                       Fraction (\Gamma_j/\Gamma)
                                                                                                                                                                             Charmonium modes
                                                                                                                                   J/\psi(15)K^{+}
                                                                                                                                                                                            (10.0 \pm 1.0) \times 10^{-4}
                                                                                                                                                                                                                                               1683
                                 Semileptonic and leptonic modes
                                                                                                                                  J/\psi(1S) K^{+} \pi^{+} \pi^{-}
                                                                                                                                                                                            (1.4 \pm 0.6) \times 10^{-3}
                                                                                                                                                                                                                                               1612
rac{\ell^+
u_\ell}{\overline{D}^0} anything
                                                  [pp] (10.2 ± 0.9 ) %
                                                                                                                                   J/\psi(1S)K^*(892)^+
                                                                                                                                                                                            (1.48\pm0.27)\times10^{-3}
                                                                                                                                                                                                                                               1571
                                                  [pp]
                                                        (2.15\pm0.22)\%
                                                                                                                                                                                            ( 5.1 \pm 1.5 ) \times 10^{-5}
                                                                                                                                   J/\psi(1S)\pi^+
                                                                                                                                                                                                                                               1727
    \overline{D}^*(2007)^0 \ell^+ \nu_{\ell}
                                                        (5.3 \pm 0.8)\%
                                                                                                                                  J/\psi(15)\rho^+
                                                                                                                                                                                                              \times 10^{-4}
                                                                                                                                                                                           < 7.7
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               1613
    \overline{D}_1(2420)^0 \ell^+ \nu_{\ell}
                                                          ( 5.6~\pm1.6 ) \times\,10^{-3}
                                                                                                                                                                                                               \times 10^{-3}
                                                                                                                                   J/\psi(1S) \partial_1(1260)^+
                                                                                                                                                                                           < 1.2
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               1414
    D2 (2460)0 ++ ve
                                                                            \times 10^{-3}
                                                        < 8
                                                                                           CL=90%
                                                                                                                                   \psi(2S)K^{+}
                                                                                                                                                                                            ( 5.8 \pm 1.0 ) \times 10^{-4}
                                                                                                                                                                                                                                               1284
    \pi^{\circ e^+} \nu_e
                                                                            \times 10^{-3}
                                                        < 2.2
                                                                                           CL=90%
                                                                                                             2638
                                                                                                                                   \psi(2S)K^*(892)^+
                                                                                                                                                                                                              \times 10^{-3}
                                                                                                                                                                                          < 3.0
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               1115
   \omega \ell^+ \nu_\ell
                                                                            \times 10<sup>-4</sup>
                                                  [pp] < 2.1
                                                                                           CL=90%
                                                                                                                                  \psi(2S) K^{+} \pi^{+} \pi^{-}
                                                                                                                                                                                            ( 1.9 \pm 1.2 ) \times\,10^{-3}
                                                                                                                                                                                                                                                 909
    \rho^0 \ell^+ \nu_\ell
                                                                            \times\,10^{-4}
                                                                                                                                  \chi_{c1}(1P)\,K^+
                                                  [pp] < 2.1
                                                                                           CL=90%
                                                                                                                                                                                            (1.0 \pm 0.4) \times 10^{-3}
                                                                                                                                                                                                                                               1411
    e^+ \nu_e
                                                                            \times 10^{-5}
                                                        < 1.5
                                                                                           CL=90%
                                                                                                             2639
                                                                                                                                                                                                              \times 10^{-3}
                                                                                                                                  \chi_{c1}(1P)K^*(892)^+
                                                                                                                                                                                           < 2.1
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               1265
                                                                            \times 10^{-5}
   \mu^+\,\nu_\mu
                                                        < 2.1
                                                                                           CL=90%
                                                                                                             2638
    \tau^+ \nu_{\tau}
                                                                            \times 10<sup>-4</sup>
                                                                                                                                                                                K or K* modes
                                                        < 5.7
                                                                                           CL=90%
                                                                                                             2340
                                                                                                                                   K^0\pi^+
                                                                                                                                                                                            ( 2.3 \pm 1.1 ) \times\,10^{-5}
                                                                            × 10<sup>-4</sup>
                                                                                                                                                                                                                                               2614
    e^+ \nu_e \gamma
                                                        < 2.0
                                                                                           CL=90%
                                                                                                                                                                                                               \times 10^{-5}
                                                                                                                                  K^+\pi^0
                                                                            × 10<sup>-5</sup>
   \mu^+ \, \nu_{\mu} \, \gamma
                                                                                                                                                                                           < 1.6
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2615
                                                        < 5.2
                                                                                           CL=90%
                                                                                                                                  \eta' K^+
                                                                                                                                                                                            ( 6.5~\pm1.7 ) \times\,10^{-5}
                                                                                                                                                                                                                                               2528
                                          D, D^*, or D_s modes
                                                                                                                                  \eta' K^*(892)^+
                                                                                                                                                                                                               \times 10<sup>-4</sup>
                                                                                                                                                                                          < 1.3
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2472
                                                                                                                                                                                                               \times 10^{-5}
\overline{D}{}^0\pi^+
                                                                                                                                  \eta K^+
                                                          (5.3 \pm 0.5) \times 10^{-3}
                                                                                                                                                                                          < 1.4
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2587
                                                                                                             2308
                                                                                                                                  \eta K^*(892)^+
\overline{D}^0 \rho^+
                                                                                                                                                                                                               \times 10<sup>-5</sup>
                                                          (1.34 \pm 0.18)\%
                                                                                                             2238
                                                                                                                                                                                          < 3.0
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2534
\overline{D}^0K^+
                                                          ( 2.9~\pm0.8 ) \times\,10^{-4}
                                                                                                                                  \omega K^+
                                                                                                                                                                                            (1.5 \begin{array}{c} +0.7 \\ -0.6 \end{array}) \times 10^{-5}
\overline{D}{}^0\pi^+\pi^+\pi^-
                                                          (1.1 \pm 0.4)\%
                                                                                                             2289
                                                                                                                                                                                                               \times 10<sup>-5</sup>
                                                                                                                                  \omega K^*(892)^+
                                                                                                                                                                                          < 8.7
                                                                                                                                                                                                                             CL=90%
    \overline{D}{}^0\pi^+\pi^+\pi^- nonresonant
                                                          (5 \pm 4) \times 10^{-3}
                                                                                                             2289
                                                                                                                                  K^*(892)^0\pi^+
                                                                                                                                                                                                               \times 10<sup>-5</sup>
                                                                                                                                                                                          < 4.1
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2561
    \overline{D}{}^0\pi^+\rho^0
                                                          (4.2 \pm 3.0) \times 10^{-3}
                                                                                                             2209
                                                                                                                                  K^*(892)^+\pi^0
                                                                                                                                                                                                               \times 10^{-5}
                                                                                                                                                                                          <
                                                                                                                                                                                              9.9
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2562
       \overline{D}^0 \, \dot{a_1} (1260)^+
                                                          (5 \pm 4) \times 10^{-3}
                                                                                                             2123
                                                                                                                                   K^{+}\pi^{-}\pi^{+} nonresonant
                                                                                                                                                                                                               \times 10^{-5}
                                                                                                                                                                                          < 2.8
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2609
                                                          (2.1 \pm 0.6) \times 10^{-3}
    D^*(2010)^-\pi^+\pi^+
                                                                                                             2247
                                                                                                                                                                                                               × 10<sup>-5</sup>
                                                                                                                                   K^-\pi^+\pi^+ nonresonant
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                          < 5.6
                                                                            \times 10^{-3}
D^{-}\pi^{+}\pi^{+}
                                                        < 1.4
                                                                                           CL=90%
                                                                                                             2299
                                                                                                                                  K_1(1400)^0\pi^+
                                                                                                                                                                                                               \times 10<sup>-3</sup>
                                                                                                                                                                                              2.6
\overline{D}^*(2007)^0\pi^+
                                                                                                                                                                                          <
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2451
                                                          (4.6 \pm 0.4) \times 10^{-3}
                                                                                                             2256
                                                                                                                                  K_2^*(1430)^0\pi^+
                                                                                                                                                                                                               \times 10<sup>-4</sup>
                                                                                                                                                                                          < 6.8
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2443
D^*(2010)^+\pi^0
                                                                            × 10<sup>-4</sup>
                                                        < 1.7
                                                                                           CL=90%
                                                                                                             2254
                                                                                                                                  K^{+}\rho^{0}
K^{0}\rho^{+}
                                                                                                                                                                                                               \times 10<sup>-5</sup>
\frac{\overline{D}^*(2007)^0}{\overline{D}^*(2007)^0} \frac{\pi^+}{\pi^+} \pi^-
                                                                                                                                                                                          < 1.9
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2559
                                                          (1.55 \pm 0.31)\%
                                                                                                             2183
                                                                                                                                                                                                               \times 10<sup>-5</sup>
                                                                                                                                                                                          <
                                                                                                                                                                                               4.8
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2559
                                                          (9.4 \pm 2.6) \times 10^{-3}
                                                                                                             2236
                                                                                                                                                                                                               \times 10<sup>-3</sup>
                                                                                                                                   K^*(892)^+\pi^+\pi^-
                                                                                                                                                                                          <
                                                                                                                                                                                              1.1
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2556
    \vec{D}^*(2007)^0 a_1(1260)^+
                                                          (1.9 \pm 0.5)\%
                                                                                                             2062
                                                                                                                                  K^*(892)^+ \rho^0

K_1(1400)^+ \rho^0
                                                                                                                                                                                          <
                                                                                                                                                                                              9.0
                                                                                                                                                                                                               × 10<sup>-4</sup>
D^*(2010)^-\pi^+\pi^+\pi^0

D^*(2010)^-\pi^+\pi^+\pi^+\pi^-
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2505
                                                          (1.5 \pm 0.7)\%
                                                                                                             2235
                                                                                                                                                                                                               \times 10^{-4}
                                                                                                                                                                                          < 7.8
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2389
                                                        < 1
                                                                            %
                                                                                            CL=:90%
                                                                                                             2217
                                                                                                                                  K_2^*(1430)^+\rho^0
                                                                                                                                                                                                               × 10<sup>-3</sup>
\overline{D}_{1}^{*}(2420)^{0}\pi^{+}
                                                                                                                                                                                          < 1.5
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2382
                                                          ( 1.5 \pm 0.6 ) \times 10^{-3}
                                                                                              S=1.3
                                                                                                             2081
                                                                                                                                  K^{+}\overline{K}^{0}
                                                                                                                                                                                                               \times 10<sup>-5</sup>
                                                                                                                                                                                          <
                                                                                                                                                                                               2.1
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2592
\overline{D}_{1}^{*}(2420)^{0}\rho^{+}
                                                                            × 10<sup>-3</sup>
                                                                                           CL=90%
                                                        < 1.4
                                                                                                             1997
                                                                                                                                                                                                              \times 10<sup>-5</sup>
                                                                                                                                   K^+K^-\pi^+ nonresonant
                                                                                                                                                                                          < 7.5
                                                                            × 10<sup>-3</sup>
                                                                                                                                                                                                                             CL=90%
\overline{D}_{2}^{*}(2460)^{0}\pi^{+}
                                                        < 1.3
                                                                                           CL=90%
                                                                                                             2064
                                                                                                                                   K^+K^+\pi^- nonresonant
                                                                                                                                                                                                               \times 10<sup>-5</sup>
                                                                                                                                                                                          < 8.79
                                                                                                                                                                                                                             CL=90%
\overline{D}_{2}^{*}(2460)^{0}\rho^{+}
                                                        < 4.7
                                                                            \times 10^{-3}
                                                                                           CL=90%
                                                                                                             1979
                                                                                                                                                                                                               × 10<sup>-4</sup>
                                                                                                                                  K^+ K^* (892)^0
                                                                                                                                                                                          < 1.29
                                                                                                                                                                                                                             CL=90%
\overline{D}^{\circ}D^{+}
                                                          ( 1.3 \pm 0.4 ) %
                                                                                                             1815
                                                                                                                                   K+ K- K+
                                                                                                                                                                                                               \times 10^{-4}
                                                                                                                                                                                          <
                                                                                                                                                                                              2.0
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2522
\overline{D}{}^0D_{\cdot\cdot}^{\stackrel{?}{\bullet}+}
                                                          (9 \pm 4) \times 10^{-3}
                                                                                                             1734
                                                                                                                                      K^+\phi
                                                                                                                                                                                                              \times 10^{-6}
                                                                                                                                                                                          <
                                                                                                                                                                                               5
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2516
\overline{D}^*(2007)^0 D_5^+
                                                                                                                                                                                                              \times 10<sup>-5</sup>
                                                          (1.2 \pm 0.5)\%
                                                                                                             1737
                                                                                                                                      K+K-K+ nonresonant
                                                                                                                                                                                          < 3.8
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2516
\overline{D}^*(2007)^0 D_c^{*+}
                                                                                                                                   K*(892)+K+K-
                                                          ( 2.7 \pm1.0 )%
                                                                                                                                                                                                              \times 10^{-3}
                                                                                                             1650
                                                                                                                                                                                          < 1.6
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2466
                                                                                                                                                                                                              × 10<sup>-5</sup>
\overline{D}^*(2007)^0 D^*(2010)^+
                                                                                                                                      \dot{K}^*(892)^+\phi
                                                        < 1.1
                                                                            %
                                                                                           CL=90%
                                                                                                                                                                                          <
                                                                                                                                                                                              4.1
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2460
                                                                                                                                                                                                              \times 10^{-3}
\overline{D}^{0}D^{*}(2010)^{+}+
                                                                                                                                   K_1(1400)^+ \phi
                                                                                                                                                                                          < 1.1
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2339
                                                        < 1.3
                                                                            %
                                                                                           CL=90%
                                                                                                                                  K_2^*(1430)^+\phi
                                                                                                                                                                                                              \times\,10^{-3}
     \overline{D}^*(2007)^0 D^+
                                                                                                                                                                                          < 3.4
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2332
                                                                                                                                                                                                              × 10<sup>-5</sup>
\overline{D}^0D^+
                                                                            × 10<sup>-3</sup>
                                                        < 6.7
                                                                                           CL=90%
                                                                                                                                   K^+ f_0(980)
                                                                                                                                                                                          < 8
                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                               2524
D_s^+\pi^0
                                                                            \times 10^{-4}
                                                                                                                                   K^*(892)^+ \gamma
                                                                                                                                                                                            ( 5.7~\pm3.3 ) \times\,10^{-5}
                                                        < 2.0
                                                                                           CL=90%
                                                                                                             2270
```

<	7.3	$\times 10^{-3}$	CL=90%	2486
<	2.2	$\times 10^{-3}$	CL=90%	2453
<	1.4	$\times 10^{-3}$	CL=90%	2447
<	1.9	$\times 10^{-3}$	CL=90%	2361
<	5.5	$\times 10^{-3}$	CL=90%	2343
<	9.9	$\times 10^{-3}$	CL=90%	2243
red	meson mo	des		
<	2.0	\times 10 ⁻⁵	CL=90%	2636
<	1.3	$\times 10^{-4}$	CL=90%	2630
<	4.3	$\times 10^{-5}$	CL=90%	2582
<	1.4	× 10 ⁻⁴	CL=90%	2547
<	2.4	$\times 10^{-4}$	CL=90%	2483
<	4.1	$\times 10^{-5}$	CL=90%	-
<	8.9		CL=90%	2631
<	7.7		CL=90%	2582
				2621
<	1.0		-	2525
<	1.7			2494
<	9.0		CL=90%	2494
<	2.3		CL=90%	2580
<	6.1			-
<				2609
<				2550
<	4.7			2493
<	3.2			2554
<			CL=90%	-
<	1.6			-
-			CL=90%	2608
				2434
<				2411
<				2592
<	1.3	%	CL=90%	2335
ticle	: (<i>h</i> ±) mod	des		
($1.6 \begin{array}{c} +0.7 \\ -0.6 \end{array}$			-
	2.50	× 10 ⁻⁵		-
	v v v v v dd v v v v v v v v v v v v v	< 2.0 < 1.3 < 4.3 < 1.4 < 2.4 < 4.1 < 8.9 < 7.7 < 4.0 < 1.0 < 1.7 < 9.0 < 2.3 < 6.1 < 1.5 < 3.1 < 4.7 < 3.2 < 5 < 1.6 < 8.6 < 6.2 < 7.2 < 6.3 < 1.3 ticle (h±) mod	< 2.2	<pre> < 2.2</pre>

$n-=\kappa-$ or $\pi-$				
$h^+\pi^0$	$(1.6 \begin{array}{c} +0.7 \\ -0.6 \end{array})$	$) \times 10^{-5}$		-
ωh^+	2.50	× 10 ⁻⁵		_
	Baryon modes			
$\rho \overline{\rho} \pi^+$	< 1.6	× 10 ⁻⁴	CL=90%	2439
$\rho \bar{\rho} \pi^+$ nonresonant	< 5.3	\times 10 ⁻⁵	CL=90%	-
$\rho \overline{\rho} \pi^+ \pi^+ \pi^-$	< 5.2	× 10 ⁻⁴	CL=90%	2369
$p \overline{p} K^+$ nonresonant	< B.9	× 10 ⁻⁵	CL=90%	-
ρ⊼	< 2.6	× 10 ⁻⁶	CL=90%	2430
ρΛπ ⁺ π ⁻ Δ ⁰ ρ	< 2.0	× 10 ⁻⁴	CL=90%	2367
	< 3.8	× 10 ⁻⁴	CL=90%	2402
$\Delta^{++}\overline{p}$	< 1.5	× 10 ⁻⁴	CL=90%	2402
$\overline{\Lambda}_c^- \rho \pi^+$	(6.2 ± 2.7	$) \times 10^{-4}$		_
$\frac{\overline{\Lambda}_c^-}{\overline{\Lambda}_c^-} \rho \pi^+ \pi^0$ $\overline{\Lambda}_c^- \rho \pi^+ \pi^+ \pi^-$	< 3.12	\times 10 ⁻³	CL=90%	-
$\overline{\Lambda}_c^- \rho \pi^+ \pi^+ \pi^-$	< 1.46	\times 10 ⁻³	CL=90%	-
$\overline{\Lambda}_c^{c} p \pi^+ \pi^+ \pi^- \pi^0$	< 1.34	%	CL=90%	-

Lepton Family number						i, or
$\Delta B =$	1 weak n	eutral ci	urren	it ($B1$) modes		
$\pi^+ e^+ e^-$	B1	< 3	3.9	× 10 ⁻³	CL=90%	2638
$\pi^+\mu^+\mu^-$	B1	< 9	9.1	× 10 ⁻³	CL=90%	2633
K ⁺ e ⁺ e ⁻	B1	< 6	5	× 10 ⁻⁵	CL=90%	2616
$K^{+}\mu^{+}\mu^{-}$	B1	< 5	5.2	× 10 ⁻⁶	CL=90%	2612
K*(892)+ e+ e-	B1	< 6	5.9	× 10 ⁻⁴	CL=90%	2564
$K^*(892)^+ \mu^+ \mu^-$	B1	< 1	1.2	× 10 ⁻³	CL=90%	2560
$\pi^{+} e^{+} \mu^{-}$	LF	< 6	5.4	× 10 ⁻³	CL=90%	2637
$\pi^{+} e^{-} \mu^{+}$	LF	< 6	5.4	$\times 10^{-3}$	CL=90%	2637
$K^{+}e^{+}\mu^{-}$	LF	< 6	5.4	$\times 10^{-3}$	CL=90%	2615
$K^{+}e^{-}\mu^{+}$	LF	< 6	5.4	\times 10 ⁻³	CL=90%	2615
$\pi^{-}e^{+}e^{+}$	L	< 3	3.9	× 10 ⁻³	CL=90%	2638
$\pi^-\mu^+\mu^+$	L	< 9	9.1	$\times 10^{-3}$	CL=90%	2633
$\pi^- e^+ \mu^+$	LF	< 0	6.4	× 10 ⁻³	CL=90%	2637
$K^-e^+e^+$	L	< 3	3.9	× 10 ⁻³	CL=90%	2616
$K^-\mu^+\mu^+$	L	< 9	9.1	× 10 ⁻³	CL=90%	2612
$K^-e^+\mu^+$	LF	< (6.4	× 10 ⁻³	CL=90%	2615

$$B^0$$

$$I(J^P) = \frac{1}{2}(0^-)$$

 $\emph{I},~\emph{J},~\emph{P}$ need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0} = 5279.4 \pm 0.5$$
 MeV $m_{B^0} - m_{B^\pm} = 0.33 \pm 0.28$ MeV (S = 1.1) Mean life $\tau_{B^0} = (1.548 \pm 0.032) \times 10^{-12}$ s $c\tau = 464~\mu\text{m}$ $\tau_{B^+}/\tau_{B^0} = 1.060 \pm 0.029$ (average of direct and inferred) $\tau_{B^+}/\tau_{B^0} = 1.062 \pm 0.029$ (direct measurements) $\tau_{B^+}/\tau_{B^0} = 0.95^{+0.15}_{-0.12}$ (inferred from branching fractions)

$B^0-\overline{B}{}^0$ mixing parameters

$$\chi_d = 0.174 \pm 0.009$$

 $\Delta m_{B^0} = m_{B^0_H} - m_{B^0_L} = (0.472 \pm 0.017) \times 10^{12} \ h \ s^{-1}$
 $\chi_d = \Delta m_{B^0} / \Gamma_{B^0} = 0.730 \pm 0.029$

CP violation parameters

$$Re(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2) = 0.002 \pm 0.007$$

 $sin(2\beta) = 0.9 \pm 0.4$

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^{\pm}/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(45)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(45)$ production ratio to 50:50 and their assumed D, D_5 , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

Scale factor/

BO DECAY MODES		Fraction (Γ_i/Γ)	Confidence le	
6 +		(-0.5 . 0.0) 0/		
ℓ ⁺ ν _ℓ anything	[PP]	(10.5 ± 0.8) %		_
$D^-\ell^+ u_\ell$ $D^*(2010)^-\ell^+ u_\ell$	[PP]			_
, , ,	[PP]	(4.60±0.27)%		_
$\rho^-\ell^+ u_\ell$	[pp]	$(2.6^{+0.6}_{-0.7}) \times$		-
$\pi^-\ell^+ u_\ell$		(1.8 \pm 0.6) \times	10-4	-
tn	clusi	ve modes		
K ⁺ anything	101031	(78 ±8)%		-
D. 1	D*. o	r D _s modes		
$D^-\pi^+$	- , -	(3.0 ±0.4)×	10-3	2306
$D^{-}\rho^{+}$		(7.9 ±1.4)×		2236
$\overline{D}{}^0$ π^+ π^-		< 1.6 ×	10 ⁻³ CL=9	0% 2301
$D^*(2010)^-\pi^+$		(2.76 ± 0.21) \times		2254
$D^{-}\pi^{+}\pi^{+}\pi^{-}$		(8.0 ±2.5)×		2287
$(D^-\pi^+\pi^+\pi^-)$ nonresonant		(3.9 \pm 1.9) \times	10-3	2287
$D^-\pi^+\rho^0$		(1.1 \pm 1.0) \times	10-3	2207
$D^-a_1(1260)^+$		(6.0 ±3.3)×		2121
$D^*(2010)^-\pi^+\pi^0$		$(1.5 \pm 0.5)\%$		2247
$\hat{D}^*(20\hat{1}0)^-\rho^+$		(6.8 \pm 3.4) \times		2181
$D^*(2010)^-\pi^+\pi^+\pi^-$		(7.6 \pm 1.8) \times		
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-		(0.0 ± 2.5) \times	10-3	2235
resonant $D^*(2010)^-\pi^+ ho^0$		(5.7 ±3.2)×	10-3	2151
$D^*(2010)^{-1}a_1(1260)^{+1}$		(1.30±0.27) %		2061
$D^*(2010)^-\pi^+\pi^+\pi^-\pi^0$		$(3.5 \pm 1.8)\%$		2218
$\overline{D}_{2}^{*}(2460)^{-}\pi^{+}$			10 ⁻³ CL=9	
$\overline{D}_{2}^{*}(2460)^{-}\rho^{+}$			10 ⁻³ CL=9	
D-D+			10 ⁻³ CL=9	
D-D+ S		(8.0 ±3.0)×		1812
$D^*(2010)^-D_s^+$		(9.6 ±3.4)×		1735
$D^-D_s^{*+}$		$(1.0 \pm 0.5)\%$		1731
$D^*(2010)^-D_s^{*+}$		(2.0 ±0.7)%		1649
D+			10 ^{—4} CL=9	
$D_{S}^{+}\pi^{-}$ $D_{S}^{+}\pi^{-}$				
ν_s π			10 ⁻⁴ CL=9	
$D_s^+ \rho^-$			10 ⁻⁴ CL=9	
$D_s^{*+}\rho^-$		< 8 ×	10 ⁻⁴ CL=9	0% 2139

$D_s^+ a_1 (1260)^-$	< 2.6 × 10)−3 CL=90%	2079	$K_1(1270)^0\gamma$	< 7.0	× 10 ⁻³	CL=90%	2486
$D_s^{*+} a_1(1260)^-$	< 2.2 × 10		2014	$K_1(1400)^0 \gamma$	< 4.3	$\times 10^{-3}$	CL=90%	2453
$D_s^- K^+$	< 2.4 × 10		2242	$K_2^*(1430)^0\gamma$	< 4.0	× 10 ⁻⁴	CL=90%	2445
$D_{s}^{\frac{2}{s}-}K^{+}$	< 1.7 × 10		2185	$K^{*}(1680)^{0}\gamma$	< 2.0	\times 10 ⁻³	CL=90%	2361
$D_s^{\frac{5}{5}} K^*(892)^+$	< 9.9 × 10		2172	$K_3^*(1780)^0\gamma$	< 1.0	%	CL=90%	2343
D*-K*(892)+	< 1.1 × 10) ⁻³ CL=90%	2112	$K_4^*(2045)^0\gamma$	< 4.3	$\times 10^{-3}$	CL=90%	2244
$D_s^- \pi^+ K^0$	< 5 × 10		2221		ight unflavored meson n			
D*+ \(\nu_0\)				π+π	-		CL 008/	0606
$D_s^{*-}\pi^+K^0$	< 3.1 × 10		2164	$\frac{\pi}{\pi^0}\frac{\pi}{\pi^0}$	< 1.5	$^{\times 10^{-5}}_{\times 10^{-6}}$	CL=90%	2636
$D_{5}^{-}\pi^{+}K^{*}(892)^{0}$	< 4 × 10		2136	$\eta \pi^0$	< 9.3	× 10 ° × 10 −6	CL=90% CL=90%	2636
$\frac{D_s^{*-}\pi^+K^*(892)^0}{D^0\pi^0}$	< 2.0 × 10		2074		< 8 < 1.8	× 10 × × 10 ×	CL=90% CL=90%	2609 2582
$D^0\pi^0$	< 1.2 × 10		2308	$\eta \eta \over \eta' \pi^0$	< 1.1	× 10 ⁻⁵	CL=90%	2551
$\frac{\overline{D}^0}{\overline{B}^0} \rho^0$	< 3.9 × 10		2238	$\eta' \eta'$	< 4.7	× 10 ⁻⁵	CL=90%	2460
$\frac{\overline{D}^0}{\overline{D}^0}$,	< 1.3 × 10		2274	$\eta' \eta$	< 2.7	× 10 ⁻⁵	CL=90%	2522
$\overline{D}^0 \eta'$	< 9.4 × 10		2198	$\eta' \rho^0$	< 2.3	× 10 ⁻⁵	CL=90%	2493
$\overline{D}^0\omega$	< 5.1 × 10) ⁻⁴ CL=90%	2235	$\eta \rho^0$	< 1.3	× 10 ⁻⁵	CL=90%	2554
$\overline{D}^*(2007)^0 \pi^0$ $\overline{D}^*(2007)^0 \rho^0$	< 4.4 × 10		2256	$\omega \eta$	< 1.2	× 10 ⁻⁵	CL=90%	_
$\overline{D}^*(2007)^0 \eta$	< 5.6 × 10		2183	$\omega \eta'$	< 6.0	× 10 ⁻⁵	CL=90%	_
$\overline{D}^*(2007)^0 \eta'$	< 2.6 × 10		2220	$\omega \stackrel{\cdot}{ ho}{}^0$	< 1.1	× 10 ⁻⁵	CL=90%	_
$\vec{D}^*(2007)^0 \omega$	< 1.4 × 10)-3 CL=90%	2141	ωω	< 1.9	$\times 10^{-5}$	CL=90%	_
, ,	< 7.4 × 10		2180	$\phi \pi^0$	< 5	× 10 ⁻⁶	CL=90%	_
D*(2010)+ D*(2010)-	$(6.2 \begin{array}{c} +4.1 \\ -3.1 \end{array}) \times 10$)-4	1711	$\stackrel{\cdot}{\phi}\eta$	< 9	$\times 10^{-6}$	CL=90%	_
$D^*(2010)^+D^-$	< 1.8 × 10		1790	$\phi n'$	< 3.1	\times 10 ⁻⁵	CL=90%	~
$D^{(*)0}\overline{D}^{(*)0}$	< 2.7 %	CL=90%	_	$\phi \rho^0$	< 1.3	× 10 ⁻⁵	CL=90%	-
	Cha' 4			$\phi\omega$	< 2.1	\times 10 ⁻⁵	CL=90%	_
$J/\psi(1S)K^0$	Charmonium modes	-4	1600	$\phi\phi$	< 1.2	$\times 10^{-5}$	CL=90%	2435
$J/\psi(15)K^{+}\pi^{-}$	$(8.9 \pm 1.2) \times 10$		1683	$\pi + \pi - \pi^0$	< 7.2	× 10 ⁻⁴	CL=90%	2631
$J/\psi(15)K^*(892)^0$	$(1.2 \pm 0.6) \times 10$		1652	$ ho^0 \pi^0$	< 2.4	$\times 10^{-5}$	CL=90%	2582
$J/\psi(15)\pi^0$	$(1.50\pm0.17) \times 10$ < 5.8 $\times 10$		1570	$ ho^{\mp}\pi^{\pm}$	[ee] < 8.8	$\times 10^{-5}$	CL=90%	2582
$J/\psi(1S)\eta$			1728	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 2.3	× 10 ⁻⁴	CL=90%	2621
$J/\psi(1S)\rho^0$	< 1.2 × 10 < 2.5 × 10		1672 1614	$ ho^0 ho^0$	< 2.8	\times 10 ⁻⁴	CL=90%	2525
$J/\psi(1S)\omega$	< 2.7 × 10		1609	$a_1(1260)^{\mp} \pi^{\pm}$	[ee] < 4.9	× 10 ⁴	CL=90%	2494
$\psi(2S)K^0$	< 8 × 10		1283	$a_2(1320)^{\mp}\pi^{\pm}$	[ee] < 3.0	× 10 ⁻⁴	CL=90%	2473
$\psi(2S)K^+\pi^-$	< 1 × 10		1238	$\pi^+ \stackrel{\sim}{\pi^-} \pi^0 \stackrel{\sim}{\pi^0}$	< 3.1	× 10 ³	CL=90%	2622
$\psi(2S)K^*(892)^0$	(9.3 ±2.3)×10		1113	$\rho^+ \rho^-$	< 2.2	× 10 ⁻³	CL=90%	2525
$\chi_{c1}(1P)K^0$	< 2.7 × 10		1411	$a_1(1260)^0\pi^0$	< 1.1	× 10 ⁻³	CL=90%	2494
$\chi_{c1}(1P)K^*(892)^0$	< 2.1 × 10) ⁻³ CL=90%	1263	$\omega \pi^0$	< 1.4	× 10 ⁻⁵	CL=90%	2580
X(1(1)) (0)2)	\ Z.1	, CL=3070	1203	$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	< 9.0	$\times 10^{-3}$	CL=90%	2609
	K or K* modes			$a_1(1260)^+ \rho^-$	< 3.4	× 10 ⁻³	CL=90%	2434
$K^+\pi^-$	$(1.5 \begin{array}{c} +0.5 \\ -0.4 \end{array}) \times 10^{-1}$	₀ –5	2615	$a_1(1260)^0 \rho^0$	< 2.4	× 10 ⁻³	CL=90%	2434
$K^0\pi^0$	< 4.1 × 10		2614	$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$	< 3.0	× 10 ⁻³	CL=90%	2592
η' K ⁰				$a_1(1260)^+ a_1(1260)^-$	< 2.8	× 10 ⁻³	CL=90%	2336
·	$(4.7 \begin{array}{c} +2.8 \\ -2.2 \end{array}) \times 1$		2528	$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0}$	< 1.1	%	CL=90%	2572
$\eta' K^*(892)^0$	< 3.9 × 10) ⁻⁵ CL=90%	2472		Baryon modes			
$\eta K^*(892)^0$	< 3.0 × 10) ⁻⁵ CL=90%	2534	ρ <u>γ</u>	< 7.0	$\times 10^{-6}$	CL=90%	2467
ηK^0	< 3.3 × 10) ⁻⁵ CL=90%	2593	$\rho \overline{\rho} \pi^+ \pi^-$	< 2.5	$\times 10^{-4}$	CL=90%	2406
ωK^0	< 5.7 × 10		-	$\rho \overline{\Lambda} \pi^-$	< 1.3	$\times 10^{-5}$	CL=90%	2401
$\omega K^*(892)^0$	< 2.3 × 10		-	<i>⊼∧</i>	< 3.9	$\times 10^{-6}$	CL=90%	-
K+ K-	< 4.3 × 1	0 ⁻⁶ CL=90%	2593	$\Delta^0 \overline{\Delta}{}^0$	< 1.5	$\times 10^{-3}$	CL=90%	2334
$K^0\overline{K}^0$	< 1.7 × 10		2592	$\Delta^{++}\Delta^{}$	< 1.1	$\times 10^{-4}$	CL=90%	2334
K ⁺ ρ ⁻	< 3.5 × 10	0 ⁻⁵ CL=90%	2559	$\overline{\Sigma}_c^{}\Delta^{++}$	< 1.0	$\times 10^{-3}$	CL=90%	1839
$K^{0}\rho^{0}$	< 3.9 × 10	0 ⁻⁵ CL=90%	2559	$\overline{\Lambda}_{c}^{-} \rho \pi^{+} \pi^{-}$	(1.3 ±0.	6) $\times 10^{-3}$		_
K ⁰ f ₀ (980)	< 3.6 × 10	0 ⁻⁴ CL=90%	2523	$\overline{\Lambda}_{c}^{c}$ p	< 2.1	× 10 ⁻⁴	CL=90%	2021
K*(892)+π~	< 7.2 × 10	0 ⁻⁵ CL=90%	2562	$\frac{\overline{\Lambda}_c^2}{\overline{\Lambda}_c} p \pi^0$	< 5.9	× 10 ⁻⁴	CL=90%	_
$K^*(892)^0\pi^0$	< 2.8 × 10	0 ⁻⁵ CL=90%	2562	$\overline{\lambda}_{c}^{c} \rho \pi^{+} \pi^{-} \pi^{0}$	< 5.07	× 10 ⁻³	CL=90%	_
$K_2^*(1430)^+\pi^-$	< 2.6 × 10) ⁻³ CL=90%	2445	$\overline{\Lambda}_{c}^{c} \rho \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	< 2.74	× 10 ⁻³	CL=90% CL=90%	
K ⁰ K ⁺ K ⁻	< 1.3 × 10) ⁻³ CL=90%	2522	$N_c P^R R R R$	< 2.14	X 10 -	CL=9076	_
Κ ⁰ φ	< 3.1 × 10	0 ⁻⁵ CL=90%	2516	Lepton Fa	mily number (LF) viola	ting modes,	, or	
$K^-\pi^+\pi^+\pi^-$ $K^*(892)^0\pi^+\pi^-$	[aaa] < 2.3 × 10 × 10 × 10	0 ⁻⁴ CL=90%	2600	$\Delta B =$	1 weak neutral current ((B1) modes	i	
$K^*(892)^0 \pi^+ \pi^-$ $K^*(892)^0 \rho^0$	< 1.4 × 10) ⁻³ CL=90%	2556	$\gamma\gamma$	< 3.9	× 10 ⁻⁵	CL=90%	2640
K*(892)° ρ° K*(892)0 f ₀ (980)	< 4.6 × 10	0 ⁻⁴ CL=90%	2504	e+ e-	B1 < 5.9	× 10 ⁻⁶	CL=90%	2640
$K^{*}(892)^{\circ} r_{0}(980)$ $K_{1}(1400)^{+} \pi^{-}$	< 1.7 × 10 < 1.1 × 10	0 ⁻⁴ CL=90%	2467	$\mu^+\mu^-$	B1 < 6.8	$\times 10^{-7}$	CL=90%	2637
$K_1(1400) + \pi$ $K^- a_1(1260)^+$			2451	$K^0e^+e^-$	B1 < 3.0	$\times 10^{-4}$	CL=90%	2616
$K^*(892)^0 K^+ K^-$	[aaa] < 2.3 × 10 × 10 × 10) ⁻⁴ CL=90%) ⁻⁴ CL=90%	2471	$K^0 \mu^+ \mu^-$	BI < 3.6	$\times 10^{-4}$	CL=90%	2612
11 (UJZ) 11 11	< 6.1 × 10	, CL≕90%	2466 2459	K*(892) ⁰ e ⁺ e ⁻	B1 < 2.9	× 10~4	CL=90%	2564
K*(892)0 A	Z 211	1—2 CI_000/						
$K^*(892)^0 \phi$	< 2.1 × 10	0 ⁻⁵ CL≂90%		$K^*(892)^0 \mu^+ \mu^-$	<i>B</i> 1 < 4.0	\times 10 ⁻⁶	CL=90%	2559
$K_1(1400)^0 \rho^0$	< 2.1 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	0 ⁻³ CL=90%	2389	$K^*(892)^0 \nu \overline{\nu}$	B1 < 4.0 B1 < 1.0	$\times 10^{-3}$	CL=90% CL=90%	2559 2244
$K_1(1400)^0 \rho^0$ $K_1(1400)^0 \phi$	< 2.1 × 10 < 3.0 × 10 < 5.0 × 10	0 ⁻³ CL=90% 0 ⁻³ CL=90%	2389 2339	Κ*(892) ⁰ ν⊽ e [±] μ [∓]		$^{\times 10^{-3}}_{\times 10^{-6}}$		
$K_1(1400)^0 \rho^0$ $K_1(1400)^0 \phi$ $K_2^*(1430)^0 \rho^0$	< 2.1 × 10 < 3.0 × 10 < 5.0 × 11 < 1.1 × 10	0 ⁻³ CL=90% 0 ⁻³ CL=90% 0 ⁻³ CL=90%	2389 2339 2380	$egin{aligned} & extit{K*}(892)^0 u\overline{ u}\ & e^\pm\mu^\mp\ & e^\pm au^\mp \end{aligned}$	B1 < 1.0	$\times 10^{-3}$ $\times 10^{-6}$ $\times 10^{-4}$	CL=90% CL=90% CL=90%	2244
$K_1(1400)^0 \rho^0$ $K_1(1400)^0 \phi$	< 2.1 × 10 < 3.0 × 10 < 5.0 × 10	0-3 CL=90% 0-3 CL=90% 0-3 CL=90% 0-3 CL=90%	2389 2339	Κ*(892) ⁰ ν⊽ e [±] μ [∓]	B1 < 1.0 LF [ee] < 3.5	$^{\times 10^{-3}}_{\times 10^{-6}}$	CL=90% CL=90%	2244 2639

Charmonium modes

B±/B⁰ ADMIXTURE

The branching fraction measurements are for an admixture of ${\cal B}$ mesons at the ${\cal T}(45)$. The values quoted assume that B(${\cal T}(45) \to {\cal B} \overline{\cal B}) = 100\%$.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibity would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical when only one of the specified particles is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross sections.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

	entonic and lentonic mod		(1010 0/0)	
B DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	p (MeV/c)	

```
B \rightarrow e^+ \nu_e anything
                                                [bbb] ( 10.41 \pm 0.29) %
                                                                                               S=1.2
                                                                             ×10<sup>-3</sup> CL=90%
   B \rightarrow \overline{p} e^+ \nu_e anything
                                                       < 1.6
B \rightarrow \mu^+ \nu_\mu anything
                                                [bbb] ( 10.3 \pm 0.5 ) %
B \rightarrow \ell^+ \nu_\ell anything
                                            [pp,bbb] ( 10.45 \pm 0.21) %
   B \rightarrow D^- \ell^+ \nu_\ell anything
                                                 [pp]
                                                        ( 2.7 ±0.8)%
   B \rightarrow \overline{D}{}^0 \ell^+ \nu_{\ell} anything
                                                  [pp] ( 7.0 ±1.4)%
   B \rightarrow \overline{D}^{**} \ell^+ \nu_{\ell}
                                            [pp,ccc] ( 2.7 \pm 0.7)%
       B \rightarrow \overline{D}_1(2420)\ell^+\nu_\ell any-
                                                          (7.4 \pm 1.6) \times 10^{-3}
           thing
       B \rightarrow \tilde{D}\pi \ell^+ \nu_{\ell} anything +
                                                          (2.3 \pm 0.4)\%
           D^*\pi\ell^+\nu_\ell anything
       B \rightarrow \overline{D}_2^*(2460)\ell^+\nu_\ell any-
                                                                              \times 10^{-3} CL=95%
                                                        < 6.5
       thing B \rightarrow D^{*-}\pi^{+}\ell^{+}\nu_{\ell} any-
                                                          (1.00 \pm 0.34)\%
           thing
   B \rightarrow D_s^- \ell^+ \nu_\ell anything
                                                                              \times 10^{-3} CL=90%
                                                  [pp] < 9
       B \rightarrow D_s^- \ell^+ \nu_\ell K^+ any-
                                                                              \times 10^{-3} CL=90%
                                                 [pp] <
                                                              6
           thing
       B \rightarrow \bar{D}_s^- \ell^+ \nu_\ell K^0 anything [pp] < 9
                                                                              \times 10^{-3} CL=90%
   B \rightarrow K^+ \ell^+ \nu_\ell anything
                                                  [pp] ( 6.0 ±0.5 )%
   B \rightarrow K^- \ell^+ \nu_\ell anything
                                                  [pp] ( 10 ±4 )×10<sup>-3</sup>
   B \rightarrow K^0 / \overline{K}^0 \ell^+ \nu_\ell anything [pp] ( 4.4 ±0.5)%
```

D, D^* , or D_g modes

```
B \rightarrow D^{\pm} anything
                                                       ( 24.1 ±1.9 ) %
B \rightarrow D^0 / \overline{D}^0 anything
                                                       (63.5 \pm 2.9)\%
                                                                                          S=1.1
B \rightarrow D^*(2010)^{\pm} anything
                                                       (22.7 \pm 1.6)\%
B \rightarrow D^*(2007)^0 anything
                                                       (26.0 \pm 2.7)\%
B \rightarrow D_s^{\pm} anything
                                               [ee] ( 10.0 ± 2.5 ) %
B \rightarrow D^{(*)}\overline{D}^{(*)}K^0 +
                                          [ee,ddd] (7.1 + 2.7 - 1.7)%
    D^{(*)}\overline{D}^{(*)}K^{\pm}
                                                       (22 ±4)%
b \rightarrow c\overline{c}5
B \rightarrow D_c^{(*)} \overline{D}^{(*)}
                                          [ee,ddd] ( 4.9 \pm 1.3)%
B \to D^* D^* (2010)^{\pm}
                                                                          \times\,10^{-3} CL=90%
                                               [ee] < 5.9
                                                                          \times 10^{-3} CL=90%
B \to DD^*(2010)^{\pm} + D^*D^{\pm}
                                               [ee] < 5.5
                                                                          \times 10^{-3} CL=90%
                                               [ee] < 3.1
B \rightarrow D_s^{(*)\pm}\overline{D}^{(*)}X(n\pi^{\pm}) [ee,ddd] ( 9 ^{+5}_{-4}
B \rightarrow D^*(2010)\gamma
                                                                          ×10<sup>-3</sup> CL=90%
                                                     < 1.1
B \to D_s^+ \pi^-, D_s^{*+} \pi^-,
                                                                           ×10<sup>-4</sup> CL=90%
                                                [ee] < 5
     D_s^+ \rho^- , D_s^{*+} \rho^- , D_s^+ \pi^0 ,
     D_s^{*+}\pi^0, D_s^+\eta, D_s^{*+}\eta,
     D_s^+ \rho^0, D_s^{*+} \rho^0, D_s^+ \omega,
     D_s^{*+}\omega
```

 $\times 10^{-3}$ CL=90%

 $B \rightarrow D_{s1}(2536)^+$ anything

```
B 	o J/\psi(1S) anything
                                                           ( 1.15 \pm 0.06)%
                                                           ( 8.0 \pm 0.8 ) \times 10^{-3}
   B \rightarrow J/\psi(1S) (direct) any-
       thing
B \rightarrow \psi(2S) anything
                                                           (3.5 \pm 0.5) \times 10^{-3}
                                                           ( 4.2 \pm 0.7 ) \times\,10^{-3}
B \rightarrow \chi_{c1}(1P) anything
                                                           ( 3.7 \pm 0.7 ) \times 10^{-3}
   B \rightarrow \chi_{c1}(1P) (direct) any-
        thing
B \rightarrow \chi_{c2}(1P) anything
                                                                                ×10<sup>-3</sup> CL=90%
                                                          < 3.8
                                                                                ×10<sup>-3</sup> CL=90%
B \rightarrow \eta_c(15) anything
                                               K or K* modes
B \rightarrow K^{\pm} anything
                                                   [ee] ( 78.9 ± 2.5 ) %
   B \rightarrow K^+ anything
                                                           (66 ±5)%
   B \rightarrow K^- anything
                                                           (13 \pm 4)\%
B \to K^0 / \overline{K}^0 anything
                                                   [ee] (64 ±4)%
B \rightarrow K^*(892)^{\pm} anything
                                                           (18 ±6)%
B \to K^*(892)^0 / \overline{K}^*(892)^0 any- [ee] (14.6 ±2.6)%
    thing
B \rightarrow K_1(1400)\gamma
                                                                                \times 10^{-4} CL=90%
                                                          <
                                                               4.1
                                                                                ×10<sup>-4</sup> CL=90%
B \rightarrow K_2^*(1430)\gamma
                                                          <
                                                               8.3
B \rightarrow \bar{K_2}(1770)\gamma
                                                                                \times 10^{-3} CL=90%
                                                          < 1.2
                                                                                \times 10^{-3}
B \rightarrow K_3^*(1780) \gamma
                                                                                            CL=90%
                                                         < 3.0
B \rightarrow K_4^*(2045)\gamma
                                                                                 \times 10^{-3}
                                                          <
                                                               1.0
                                                                                             CL=90%
B \rightarrow \overline{b} \rightarrow \overline{5}\gamma
                                                           (2.3 \pm 0.7) \times 10^{-4}
B \rightarrow \overline{b} \rightarrow \overline{s}gluon
                                                          < 6.8
                                                                                %
                                                                                              CL=90%
                                                                                \times 10^{-4}
   B \rightarrow \eta anything
                                                               4.4
                                                                                             CL=90%
                                                           (6.2 \begin{array}{c} +2.1 \\ -2.6 \end{array}) \times 10^{-4}
    B \rightarrow \eta' anything
                                    Light unflavored meson modes
B \rightarrow \pi^{\pm} anything
                                              [ee,eee] (358 \pm 7 )%
B \rightarrow \eta anything
                                                            ( 17.6 ±1.6 )%
B \rightarrow \rho^0 anything
                                                            (21 \pm 5 )%
                                                          < 81
B \rightarrow \omega anything
                                                                                %
                                                                                              CL=90%
B 
ightarrow \phi anything
                                                           (3.5 \pm 0.7)\%
                                                                                                 S=1.8
                                                                                \times 10^{-5}
    B \rightarrow \phi K^*(892)
                                                          < 2.2
                                                                                              CL=90%
                                                 Baryon modes
B \rightarrow \Lambda_c^{\pm} anything
                                                           (6.4 \pm 1.1)\%
B \rightarrow \overline{\Lambda}_c^- e^+ anything
                                                                              ×10<sup>-3</sup> CL=90%
                                                          < 3.2
B \rightarrow \widehat{\Lambda}_c^- p anything
                                                           ( 3.6 \pm 0.7)%
\begin{array}{ccc} B \to & \overline{\Lambda}_c^- p \, e^+ \, \nu_e \\ B \to & \overline{\Sigma}_c^- & \text{anything} \\ B \to & \overline{\Sigma}_c^- & \text{anything} \end{array}
                                                                                \times 10^{-3} CL=90%
                                                          < 1.5
                                                           (4.2 \pm 2.4) \times 10^{-3}
                                                                               ×10<sup>-3</sup> CL=90%
                                                          < 9.6
B \to \overline{\Sigma}_c^0 anything
                                                           (4.6 \pm 2.4) \times 10^{-3}
B \rightarrow \overline{\Sigma}_{c}^{0} N(N = p \text{ or } n)

B \rightarrow \overline{\Xi}_{c}^{0} \text{ anything}
                                                                                ×10<sup>-3</sup> CL=90%
                                                          < 1.5
                                                           (1.4 \pm 0.5) \times 10^{-4}
      \times B(\Xi_c^0 \to \Xi^- \pi^+)
B \rightarrow \Xi_c^+ anything
                                                            (4.5 \begin{array}{c} +1.3 \\ -1.2 \end{array}) \times 10^{-4}
      \times B(\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+)
B \rightarrow \rho/\overline{\rho} anything
                                                   [ee] ( 8.0 \pm 0.4 )%
                                                           ( 5.5 ± 0.5 ) %
B \rightarrow p/\overline{p} (direct) anything
                                                    [ee]
B \rightarrow \Lambda/\overline{\Lambda} anything
                                                           (4.0 \pm 0.5)\%
                                                    [ee]
B \rightarrow \Xi^{-}/\overline{\Xi}^{+} anything
                                                            ( 2.7 \pm 0.6 ) \times 10^{-3}
                                                    [ee]
B \rightarrow \text{baryons anything}
                                                                6.8 \pm 0.6) %
B \rightarrow p\overline{p} anything
                                                            (2.47\pm0.23)\%
B \rightarrow \Lambda \overline{p} / \overline{\Lambda} p anything
                                                          ( 2.5 ±0.4)%
                                                                                 \times 10^{-3} CL=90%
B \rightarrow \Lambda \overline{\Lambda} anything
                                                               5
                        Lepton Family number (LF) violating modes or
                           \Delta B = 1 weak neutral current (B1) modes
                                                                                 ×10<sup>-5</sup> CL=90%
B \rightarrow e^+e^-s
                                           В1
                                                          < 5.7
                                                                                 ×10<sup>-5</sup> CL=90%
B \rightarrow \mu^+ \mu^- s
                                                          < 5.8
B \rightarrow e^{\pm}\mu^{\mp}s
                                                                                 ×10<sup>-5</sup> CL=90%
                                           LF
                                                          < 2.2
```

B±/B⁰/B_s⁰/b-baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LEP, Tevatron, SppS).

> Mean life $\tau = (1.564 \pm 0.014) \times 10^{-12} \text{ s}$ Mean life $\tau = (1.72 \pm 0.10) \times 10^{-12}$ s Charged b-hadron Mean life $au = (1.58 \pm 0.14) imes 10^{-12} \, \mathrm{s}$ Neutral *b*-hadron ad-

au charged b-hadron / au neutral b-hadron $=1.09\pm0.13$ $|\Delta \tau_b|/\tau_{b,\bar{b}} = -0.001 \pm 0.014$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LEP, Tevatron, $\mathsf{Sp}\overline{\mathsf{pS}}$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LEP and at the Tevatron.

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical when only one of the specified particles is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross sections.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include

5 DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the LEP B Oscillation Working Group as described in the note "Production and Decay of b-Flavored Hadrons" in the B[±] Particle Listings. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b} \to B^+) = \mathsf{B}(\overline{b} \to B^0) \\ \mathsf{B}(\overline{b} \to B^+) + \mathsf{B}(\overline{b} \to B^0) + \mathsf{B}(\overline{b} \to B^0) + \mathsf{B}(b \to b\text{-baryon}) = 100 \ \%. \end{array}$$

The notation for production fractions varies in the literature (${\it f_d},~{\it d_{B^0}},$ $f(b \to \overline{B}^0)$, Br $(b \to \overline{B}^0)$). We use our own branching fraction notation here, $B(\overline{b} \rightarrow B^0)$.

B ⁺	$(38.9 \pm 1.3)\%$	_
B ⁰	,	
-	$(38.9 \pm 1.3)\%$	-
B_s^0	$(10.7 \pm 1.4)\%$	-
b-baryon	$(11.6 \pm 2.0)\%$	-
R.	<u> </u>	_

DECAY MODES

Semileptonic and leptonic modes

u anything		(23.1 ± 1.5) %	_
$\ell^+ u_\ell$ anything	$[\rho\rho]$	(10.73 ± 0.18) % S=1.1	-
$e^+ u_{ m e}$ anything		(10.86 ± 0.35) %	-
$\mu^+ u_\mu$ anything		$(10.95^{+}_{-0.25})\%$	-
$D^-\ell^+\nu_\ell$ anything	$[\rho\rho]$	(2.02 ± 0.29) %	-
$D^0\ell^+\nu_\ell$ anything	[pp]	(6.6 ± 0.6) %	-
$D^{*-}\ell^+ u_\ell$ anything	[pp]	(2.76± 0.29) %	-
$\overline{\mathcal{D}}_i^0\ell^+ u_\ell$ anything	$\{pp,fff\}$	seen	-
$D_i^-\ell^+ u_\ell$ anything	$\{pp,fff\}$	seen	-
$\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}$ anything		seen	_
$D_2^*(2460)^+\ell^+\nu_\ell$ anything		seen	-
charmless ℓ v ℓ	[pp]	$(1.7 \pm 0.6) \times 10^{-3}$	_
$ au^+ u_ au$ anything		$(2.6 \pm 0.4)\%$	-
$\overline{c} \rightarrow \ell^- \overline{\nu}_\ell$ anything	[pp]	$(8.3 \pm 0.4)\%$	_

Charmed me	son a	nd ba	ryo	។ ឃ	odes		
$\overline{\mathcal{D}}^0$ anything		(60.5			•		-
$D^0 D_s^{\pm}$ anything	[<i>ee</i>]	(9.1	+	3.9 2.8) %		
$D^{\mp}D_s^{\pm}$ anything	[ee]	(4.0	+	2.3 1.8) %		-
$\overline{D}{}^0D^0$ anything	[<i>ee</i>]	(5.1	+	2.0 1.8) %		_
$D^0 D^{\pm}$ anything	[<i>ee</i>]	(2.7	+	1.8 1.6) %		-
	[ee] <	9				CL=90%	_
D^- anything		(23.7					-
$D^*(2010)^+$ anything		(17.3					_
$D_1(2420)^0$ anything				1.5			_
$D^*(2010)^{\mp}D_s^{\pm}$ anything	[ee]			1.6 1.3			_
$D^0 D^* (2010)^{\pm}$ anything	[<i>ee</i>]) %		-
	[<i>ee</i>]	(2.5	+	1.2 1.0) %		-
	[<i>e</i> e]	(1.2					_
D ₂ *(2460) ⁰ anything		(4.7	±	2.7) %		-
\overline{D}_s anything		(18		5	•		-
Λ_c anything		•) %		-
₹/canything [4	eee]	(117	±	4) %		-
Chan	moni	um m	ode	s			
$J/\psi(1S)$ anything		(1.1			0) %		-
$\psi(2S)$ anything		(4.8	±	2.4	$) \times 10^{-3}$		-
$\chi_{c1}(1P)$ anything		(1.8	±	0.5) %		-
K	or K'	• mod	es				
$\overline{s}\gamma$	• • • • •			1.1	$) \times 10^{-4}$	ļ.	_
K^{\pm} anything		(74					_
K_S^0 anything		(29.0	±	2.9) %		_
_	Dian :	mode					
π^{\pm} anything	- IOII	(397		21) %		_
	eee]	•		60) %		_
_	-	٠.			, ~		
	aryon	mod					
$\rho/\overline{\rho}$ anything		(13.:	. ±	1.1) %		_
C	ther	mode	S				
charged anything [eee]	(497	±	7) %		_
hadron+ hadron-		(1.	, +	1.0) × 10 ⁻⁵	5	_
charmless) × 10 ⁻³		_
R	arvon	mod	25				
Λ/Λ anything	ai joi	(5.9		0.6) %		_
b-baryon anything		(10.					_
		•			•	_	
$\Delta B = 1$ weak n				(B)			
μ ⁺ μ ⁻ anything B1		3.2	? 		× 10	CL=90%	

₿*

$$I(J^P) = \tfrac12(1^+)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^*} = 5325.0 \pm 0.6$$
 MeV $m_{B^*} - m_B = 45.78 \pm 0.35$ MeV

B* DECAY MODES	Fraction (Γ _j /Γ)	p (MeV/c)
Βγ	dominant	46

BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \overline{B}_s^0 = \overline{s}b,$ similarly for B_s^* 's

B_s

$$I(J^P) = 0(0^-)$$

 $\emph{I},\ \emph{J},\ \emph{P}$ need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0} = 5369.6 \pm 2.4$$
 MeV
Mean life $\tau = (1.493 \pm 0.062) \times 10^{-12}$ s $c\tau = 448 \ \mu \text{m}$

$B_s^0 - \overline{B}_s^0$ mixing parameters

$$\chi_B$$
 at high energy = $f_d \chi_d + f_5 \chi_s = 0.118 \pm 0.005$
 $\Delta m_{B_5^0} = m_{B_5^0} - m_{B_5^0} > 10.6 \times 10^{12} \ \hbar \ s^{-1}$, CL = 95% $\chi_s = \Delta m_{B_5^0} / \Gamma_{B_5^0} > 15.7$, CL = 95% $\chi_s > 0.4980$, CL = 95%

These branching fractions all scale with $B(\overline{b}\to B_S^0)$, the LEP B_S^0 production fraction. The first four were evaluated using $B(\overline{b}\to B_S^0)=(10.7\pm1.4)\%$ and the rest assume $B(\overline{b}\to B_S^0)=12\%$.

The branching fraction ${\sf B}(B_5^0\to D_5^-\ell^+\nu_\ell$ anything) is not a pure measurement since the measured product branching fraction ${\sf B}(\overline{b}\to B_5^0)\times {\sf B}(B_5^0\to D_5^-\ell^+\nu_\ell$ anything) was used to determine ${\sf B}(\overline{b}\to B_5^0)$, as described in the note on "Production and Decay of b-Flavored Hadrons."

B DECAY MODES	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	Confidence level	(MeV/c)
D _s anything	(92 ± 31	1 %	
$D_s^-\ell^+\nu_\ell$ anything	[ggg] (8.1 ± 2.4)	} %	-
$D_s^-\pi^+$	< 13	%	2321
$D_s^{\bullet}(\bullet) + D_s^{\bullet}(\bullet) -$	< 21.8	% 90%	_
$J/\psi(1S)\dot{\phi}$	(9.3 ± 3.3)) × 10 ⁻⁴	1590
$J/\psi(1S)\pi^0$	< 1.2	$\times 10^{-3}$ 90%	1788
$J/\psi(1S)\eta$	< 3.8	$\times 10^{-3}$ 90%	1735
$\psi(2S)\phi$	seen		1122
$\pi^+\pi^-$	< 1.7	× 10 ⁻⁴ 90%	1122
$\pi^{0}\pi^{0}$	< 2.1	× 10 ⁻⁴ 90%	2861
$\eta \pi^0$	< 1.0	$\times 10^{-3}$ 90%	2655
$\eta\eta$	< 1.5	$\times 10^{-3}$ 90%	2628
$\pi^+ K^-$	< 2.1	× 10 ⁻⁴ 90%	2660
K+ K-	< 5.9	×10 ⁻⁵ 90%	2639
ρ p	< 5.9	×10 ⁻⁵ 90%	2515
77	< 1.48	×10 ⁻⁴ 90%	2685
$\phi\gamma$	< 7	× 10 ⁻⁴ 90%	2588
Lepton Family	number (LF) violation	ng modes or	
$\Delta B = 1$ we	ak neutral current (<i>B</i>	1) modes	
$\mu^+\mu^-$ B	< 2.0	× 10 ⁻⁶ 90%	2682
e ⁺ e ⁻ B	< 5.4	× 10 ⁻⁵ 90%	2864
$e^{\pm}\mu^{\mp}$ L	F [ee] < 6.1	× 10 ⁻⁶ 90%	2864
$\phi \nu \overline{\nu}$ B	< 5.4	×10 ⁻³ 90%	-

BOTTOM, CHARMED MESONS $(B=C=\pm 1)$

 $B_c^+ = c\overline{b}, B_c^- = \overline{c}b,$ similarly for B_c^* 's

B_c^{\pm}

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation.

 $\label{eq:Quantum numbers shown are quark-model predicitions.}$

Mass
$$m = 6.4 \pm 0.4 \; {\rm GeV}$$
 Mean life $\tau = (0.46^{+0.18}_{-0.16}) \times 10^{-12} \; {\rm s}$

 B_c^- modes are charge conjugates of the modes below.

B+ DECAY MODES	Fraction ([Γ _i /Γ)	Confidence level	<i>p</i> (MeV/c)
$J/\psi(1S)\ell^+ u_\ell$ anything	[hhh] (5.2 + 2	2.4 2.1) × 10 ⁻⁵		_
$J/\psi(1S)\pi^+$	[hhh] < 8.2	× 10 ⁻⁵	90%	-
$J/\psi(1S)\pi^+\pi^+\pi^-$	[hhh] < 5.7	× 10 ⁻⁴	90%	_
$J/\psi(1S) a_1(1260)$	[hhh] < 1.2	$\times 10^{-3}$	90%	-
$D^*(2010)^+ \overline{D}{}^0$	[hhh] < 6.2	× 10 ⁻³	90%	_

				$\phi\pi^+\pi^-$		$(8.0 \pm 1.2) \times 10^{-4}$		•
	C MESONS		7	$\phi\pi^+\pi^-$ $\phi K^{\pm}K^0_S\pi^{\mp}$		$\{8.0 \pm 1.2\} \times 10^{-4}$		1
				$\omega f_1(1420)$		6.8 ±2.4) × 10 ⁻⁴		1
(1.0)	C. BC.	1		$\phi\eta$	($(6.5 \pm 0.7) \times 10^{-4}$		1
$\eta_c(1S)$	$I^{G}(J^{PC}) = 0^{+}(0^{-})$	+)		<i>Ξ</i> (1530)− <i>Ξ</i> +	($(5.9 \pm 1.5) \times 10^{-4}$		
Mass m = 2979 8	$8 \pm 1.8 \text{ MeV} (S = 1.9)$			$\rho K^{-}\overline{\Sigma}(1385)^{0}$		$(5.1 \pm 3.2) \times 10^{-4}$		
Full width $\Gamma = 13$				$\omega \pi^0$		$(4.2 \pm 0.6) \times 10^{-4}$	S=1.4	1
Ton Width 1 15	3.2 – 3.2			$\phi \eta'(958)$		$(3.3 \pm 0.4) \times 10^{-4}$		1
(1C) DECAY MODES	Frantian (F (F) Confid	longo loval (A	p An) ((n)	$\phi f_0(980) = 0$		$(3.2 \pm 0.9) \times 10^{-4}$	S=1.9	1
(15) DECAY MODES	Fraction (Γ_i/Γ) Confidence	lence level (M	viev/c)	$\Xi(1530)^0 \overline{\Xi}^0$		$(3.2 \pm 1.4) \times 10^{-4}$		
Decays in	nvolving hadronic resonances			$\Sigma(1385)^{-}\overline{\Sigma}^{+}$ (or c.c.)		$(3.1 \pm 0.5) \times 10^{-4}$		
(958) π π	(4.1 ±1.7)%		1319	$\phi f_1(1285)$		$(2.6 \pm 0.5) \times 10^{-4}$	S=1.1	1
ρ	$(2.6 \pm 0.9) \%$		1275	ρη/(059)		$(1.93\pm0.23)\times10^{-4}$ $(1.67\pm0.25)\times10^{-4}$		1
* $(892)^0 K^- \pi^+ + \text{c.c.}$	$(2.0 \pm 0.7) \%$		1273	$\omega \eta'(958)$		$(1.67 \pm 0.25) \times 10^{-4}$		1
(892)\overline{K}(892)	$(8.5 \pm 3.1) \times 10^{-3}$		1193	$\omega f_0(980)$		$(1.4 \pm 0.5) \times 10^{-4}$		1
⊅	$(7.1 \pm 2.8) \times 10^{-3}$		1086	ρη'(958) ρ <u>ρ</u> φ		$(4.5 \pm 1.5) \times 10^{-5}$		•
$(980)\pi$	< 2 %	90%	1323	$a_2(1320)^{\pm}\pi^{\mp}$	[ee] <	` '	CL=90%	1
$(1320)\pi$	< 2 %	90%	1193	$K\overline{K}_{2}^{*}(1430) + \text{c.c.}$	• •	4.0 × 10 ⁻³	CL=90%	1
$(892)\overline{K} + c.c.$	< 1.28 %	90%	1307	$K_1(1270)^{\pm} K^{\mp}$		3.0 × 10 ⁻³	CL=90%	
$(1270)\eta$	< 1.1 %	90%	1142	$K_2^*(1430)^0 \overline{K}_2^*(1430)^0$		2.9 × 10 ⁻³	CL=90%	
υ	$<3.1 \times 10^{-3}$	90%	1268	$K^*(892)^0 \overline{K}^*(892)^0$		5 × 10 ⁻⁴	CL=90%	1
Dec	cays into stable hadrons			$\phi f_2(1270)$		3.7 × 10 ⁻⁴	CL=90%	1
$\overline{K}\pi$	(5.5 ±1.7) %		1378	$p\overline{p}\rho$		3.1 × 10 ⁻⁴	CL=90%	
$\tau\pi$	(4.9 ±1.8) %		1425	$\phi \eta (1440) \rightarrow \phi \eta \pi \pi$		2.5 × 10 ⁻⁴	CL=90%	
π-K+K-	$(2.0 \begin{array}{c} +0.7 \\ -0.6 \end{array}) \%$		1342	$\omega f_2'(1525)$		2.2 × 10 ⁻⁴	CL=90%	
				$\Sigma(1385)^{0}\overline{\Lambda}$		2 × 10 ⁻⁴	CL=90%	
K+ K-)	$(2.1 \pm 1.2) \%$		1053	$\Delta(1232)^+\overline{p}$		1 × 10 ⁻⁴	CL=90%	
$\pi^{+}\pi^{-}$)	$(1.2 \pm 0.4) \%$		1457	$\Sigma^{0}\overline{\Lambda}$		9 × 10 ⁻⁵	CL=90%	
<u>, </u>	$(1.2 \pm 0.4) \times 10^{-3}$		1157	$\frac{1}{\phi}\pi^0$		6.8 × 10 ⁻⁶	CL=90%	
Κ η	< 3.1 %	90%	1262	•				
π - ρ <u>ρ</u> 1	< 1.2 % < 2 × 10 ⁻³	90%	1023	D	ecays into st	able hadrons		
l e e e e e e e e e e e e e e e e e e e		90%	987	$2(\pi^{+}\pi^{-})\pi^{0}$		(3.37±0.26) %		
	Radiative decays			$3(\pi^{+}\pi^{-})\pi^{0}$		(2.9 ±0.6) %		
				$\pi^{+}\pi^{-}\pi^{0}$		(1.50±0.20) %		
	$(3.0 \pm 1.2) \times 10^{-4}$		1489	" _ " _ " O 1/2 _ 1/4 _				
1	$(3.0 \pm 1.2) \times 10^{-4}$		1489	$\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$		(1.20±0.30) %		
			1489	$\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$ $4(\pi^{+}\pi^{-})\pi^{0}$	1	$(9.0 \pm 3.0) \times 10^{-3}$		
J/ψ(1S)	$I^{G}(J^{PC}) = 0^{-}(1^{-}$	⁻)	1489	$\pi^{+} \pi^{-} \pi^{0} K^{+} K^{-}$ $4(\pi^{+} \pi^{-}) \pi^{0}$ $\pi^{+} \pi^{-} K^{+} K^{-}$		$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$		
	$I^G(J^{PC}) = 0^-(1^-$	-)	1489	$\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$ $4(\pi^{+}\pi^{-})\pi^{0}$ $\pi^{+}\pi^{-}K^{+}K^{-}$ $K\overline{K}\pi$		$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$	C1 2	
J/ψ(15)	$I^G(J^{PC}) = 0^-(1^-)$ 87 ± 0.04 MeV	-)	1489	$\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$ $4(\pi^{+}\pi^{-})\pi^{0}$ $\pi^{+}\pi^{-}K^{+}K^{-}$ $K\overline{K}\pi$ $\rho\overline{\rho}\pi^{+}\pi^{-}$		$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$	S=1.3	
$J/\psi(1S)$ Mass $m = 3096.8$	${}_{I}^{G}(J^{PC})=0^{-}(1^{-}$ 87 ± 0.04 MeV 7 ± 5 keV	-)	1489	$\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$ $4(\pi^{+}\pi^{-})\pi^{0}$ $\pi^{+}\pi^{-}K^{+}K^{-}$ $K\overline{K}\pi$ $p\overline{p}\pi^{+}\pi^{-}$ $2(\pi^{+}\pi^{-})$		$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$	S=1.3	
// ψ (15) Mass $m = 3096.8$ Full width $\Gamma = 83$	$I^G(J^{PC}) = 0^-(1^-)$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV	ŕ		$ \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} 4(\pi^{+}\pi^{-})\pi^{0} $ $ \pi^{+}\pi^{-}K^{+}K^{-} $ $ K\overline{K}\pi $ $ P\overline{P}\pi^{+}\pi^{-} 2(\pi^{+}\pi^{-}) $ $ 3(\pi^{+}\pi^{-}) $		$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$	S=1.3	
Mass $m = 3096.8$ Full width $\Gamma = 81$ $\Gamma_{ee} = 5.26 \pm 0.3$	$I^G(J^{PC}) = 0^-(1^-)$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV	ale factor/	p MeV/c)	$\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$ $4(\pi^{+}\pi^{-})\pi^{0}$ $\pi^{+}\pi^{-}K^{+}K^{-}$ $K\overline{K}\pi$ $p\overline{p}\pi^{+}\pi^{-}$ $2(\pi^{+}\pi^{-})$		(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4 ±4) × 10 ⁻³	S=1.3	
Mass $m=3096.8$ Full width $\Gamma=88$ $\Gamma_{ee}=5.26\pm0.3$ $\psi(1s)$ DECAY MODES	${}_I{}^G(J^{PC})=0^-(1^{-1})$ 87 \pm 0.04 MeV 7 \pm 5 keV 37 keV Sca	ale factor/	P	$ \begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \end{array} $		$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$	S=1.3	
Mass $m=3096.8$ Full width $\Gamma=88$ $\Gamma_{ee}=5.26\pm0.8$ $\phi(1s)$ DECAY MODES	$I^G(J^{PC}) = 0^-(1^-$ $87 \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV Sca Fraction (Γ_i/Γ) Sca $(87.7 \pm 0.5) \%$	ale factor/	p MeV/c)	$ \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} 4(\pi^{+}\pi^{-})\pi^{0} \pi^{+}\pi^{-}K^{+}K^{-} K\overline{K}\pi p\overline{p}\pi^{+}\pi^{-} 2(\pi^{+}\pi^{-}) 3(\pi^{+}\pi^{-}) n\overline{n}\pi^{+}\pi^{-} \Sigma^{0}\overline{\Sigma}^{0} 2(\pi^{+}\pi^{-})K^{+}K^{-} $		$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$ $(4 \pm 4) \times 10^{-3}$ $(1.27 \pm 0.17) \times 10^{-3}$ $(3.1 \pm 1.3) \times 10^{-3}$	S=1.3	
Mass $m=3096.8$ Full width $\Gamma=81$ $\Gamma_{ee}=5.26\pm0.3$ $\phi(15)$ DECAY MODES drons $\phi(15)$ Addrons	$I^{G}(J^{PC}) = 0^{-}(1^{-}$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_{I}/Γ) (87.7 ±0.5) % (17.0 ±2.0) %	ale factor/	р МеV/c) — —	$ \begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \end{array} $	[<i>iii</i>]	$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$ $(4 \pm 4) \times 10^{-3}$ $(1.27 \pm 0.17) \times 10^{-3}$ $(3.1 \pm 1.3) \times 10^{-3}$ $(2.3 \pm 0.9) \times 10^{-3}$		
Mass $m=3096.8$ Full width $\Gamma=80$ $\Gamma_{ee}=5.26\pm0.0$ $\phi(15)$ DECAY MODES drons virtual $\gamma \rightarrow \text{hadrons}$ e^-	$I^G(J^{PC}) = 0^-(1^-$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_I/Γ) (87.7 ± 0.5) % (17.0 ± 2.0) % (5.93 ± 0.10) %	ale factor/	<i>p</i> MeV/ <i>c</i>) — — —	$ \begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \\ \rho\overline{\rho} \end{array} $	[117]	$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$ $(4 \pm 4) \times 10^{-3}$ $(1.27 \pm 0.17) \times 10^{-3}$ $(3.1 \pm 1.3) \times 10^{-3}$		
Mass $m=3096.8$ Full width $\Gamma=81$ $\Gamma_{ee}=5.26\pm0.3$ $\phi(1s)$ DECAY MODES drons $\phi(1s)$ hadrons $\phi(1s)$	$I^G(J^{PC}) = 0^-(1^ 87 \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV Sca Fraction (Γ_i/Γ) $(87.7 \pm 0.5)\%$ $(17.0 \pm 2.0)\%$ $(5.93 \pm 0.10)\%$ $(5.88 \pm 0.10)\%$	ale factor/	р МеV/c) — —	$ \begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \end{array} $	[111]	$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$ $(4.4 \pm 4) \times 10^{-3}$ $(1.27 \pm 0.17) \times 10^{-3}$ $(3.1 \pm 1.3) \times 10^{-3}$ $(2.3 \pm 0.9) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.09 \pm 0.18) \times 10^{-3}$ $(2.00 \pm 0.10) \times 10^{-3}$		
Mass $m=3096.8$ Full width $\Gamma=81$ $\Gamma_{ee}=5.26\pm0.3$ $\psi(1s)$ DECAY MODES drons $V(1s) = V(1s) = V(1s)$ $V(1s) = V(1s)$ $V(1s)$	$I^G(J^{PC}) = 0^-(1^-)$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_I/Γ) (87.7 ± 0.5) % (17.0 ± 2.0) % (5.93 ± 0.10) % (5.88 ± 0.10) % involving hadronic resonances	ale factor/	<i>p</i> MeV/ <i>c</i>) — — —	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \\ \rho\overline{\rho} \\ \rho\overline{\rho}\eta \\ \rho\overline{n}\pi^{-} \\ n\overline{n} \end{array}$	[#7]	$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$ $(4.4 \pm 4) \times 10^{-3}$ $(1.27 \pm 0.17) \times 10^{-3}$ $(2.3 \pm 0.9) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.09 \pm 0.18) \times 10^{-3}$ $(2.00 \pm 0.10) \times 10^{-3}$		
Mass $m=3096.8$ Full width $\Gamma=8$: $\Gamma_{ee}=5.26\pm0.3$ $\phi(15)$ DECAY MODES drons virtual $\gamma \to \text{hadrons}$ $e^ \mu^-$ Decays in	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV Sca Fraction (Γ_I/Γ) Sca $(87.7 \pm 0.5) \%$ $(17.0 \pm 2.0) \%$ $(5.93 \pm 0.10) \%$ $(5.88 \pm 0.10) \%$ involving hadronic resonances $(1.27 \pm 0.09) \%$	ale factor/	P MeV/c)	$ \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} 4(\pi^{+}\pi^{-})\pi^{0} \pi^{+}\pi^{-}K^{+}K^{-} K\overline{K}\pi \rho\overline{\rho}\pi^{+}\pi^{-} 2(\pi^{+}\pi^{-}) 3(\pi^{+}\pi^{-}) n\overline{n}\pi^{+}\pi^{-} \Sigma^{0}\overline{\Sigma}^{0} 2(\pi^{+}\pi^{-})K^{+}K^{-} \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \rho\overline{\rho} \rho\overline{\rho} \rho\overline{\rho} \pi^{-} n\overline{n} \Xi\overline{\Xi} $	[##]	$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$ $(4 \pm 4) \times 10^{-3}$ $(1.27 \pm 0.17) \times 10^{-3}$ $(2.3 \pm 0.9) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.09 \pm 0.18) \times 10^{-3}$ $(2.00 \pm 0.10) \times 10^{-3}$ $(2.20 \pm 0.4) \times 10^{-3}$ $(2.2 \pm 0.4) \times 10^{-3}$		
Mass $m=3096.8$ Full width $\Gamma=8$: $\Gamma_{ee}=5.26\pm0.3$ $\phi(1S)$ DECAY MODES drons virtual $\gamma\to$ hadrons $\Gamma_{ee}=\frac{1}{\mu}$ Decays in	$I^G(J^{PC}) = 0^-(1^-$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_i/Γ) (87.7 ± 0.5) % (17.0 ± 2.0) % (5.93 ± 0.10) % (5.88 ± 0.10) % involving hadronic resonances (1.27 ± 0.09) % (4.2 ± 0.5) × 10 ⁻³	ale factor/	P MeV/c) - - 1548 1545	$ \begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \\ \rho\overline{\rho} \\ \rho\overline{\rho}\eta \\ \rho\overline{n}\pi^{-} \\ n\overline{n} \\ \overline{\Xi} \\ A\overline{A} \end{array} $	[#1]	$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$ $(4 \pm 4) \times 10^{-3}$ $(1.27 \pm 0.17) \times 10^{-3}$ $(2.3 \pm 0.9) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.09 \pm 0.18) \times 10^{-3}$ $(2.00 \pm 0.10) \times 10^{-3}$ $(1.8 \pm 0.4) \times 10^{-3}$ $(1.8 \pm 0.4) \times 10^{-3}$	S=1.9	
Mass $m=3096.8$ Full width $\Gamma=8$ $\Gamma_{ee}=5.26\pm0.3$ $\phi(1S)$ DECAY MODES drons $e^ \mu^-$ Decays in $\rho^0\pi^0$ (1320) ρ	$I^G(J^{PC}) = 0^-(1^-)$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_i/Γ) (87.7 ± 0.5) % (17.0 ± 2.0) % (5.93 ± 0.10) % (5.88 ± 0.10) % involving hadronic resonances (1.27 ± 0.09) % (4.2 ± 0.5) × 10 ⁻³ (1.09 ± 0.22) %	ale factor/	P MeV/c) - - 1548 1545 1449 1449 1125	$ \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} 4(\pi^{+}\pi^{-})\pi^{0} \pi^{+}\pi^{-}K^{+}K^{-} K\overline{K}\pi \rho\overline{\rho}\pi^{+}\pi^{-} 2(\pi^{+}\pi^{-}) 3(\pi^{+}\pi^{-}) n\overline{n}\pi^{+}\pi^{-} \Sigma^{0}\overline{\Sigma}^{0} 2(\pi^{+}\pi^{-})K^{+}K^{-} \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \rho\overline{\rho} \rho\overline{\rho}\pi \rho\overline{n}\pi^{-} n\overline{n} \equiv \overline{\Xi} \Lambda\overline{\Lambda} \rho\overline{\rho}\pi^{0} $	[111]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.10 ±2.0) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.20±0.10) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.09±0.09) × 10 ⁻³	S=1.9 S=1.8	
Mass $m=3096.8$ Full width $\Gamma=8$ $\Gamma_{ee}=5.26\pm0.3$ σ (15) DECAY MODES drons pirtual $\gamma\to hadrons$ σ σ σ σ σ σ σ σ σ σ	$I^G(J^{PC}) = 0^-(1^{-87}\pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV Sca Fraction (Γ_I/Γ) $(87.7 \pm 0.5)\%$ $(17.0 \pm 2.0)\%$ $(5.93 \pm 0.10)\%$ $(5.98 \pm 0.10)\%$ involving hadronic resonances $(1.27 \pm 0.09)\%$ $(4.2 \pm 0.5) \times 10^{-3}$ $(1.09 \pm 0.22)\%$ $(8.5 \pm 3.4) \times 10^{-3}$	ale factor/	P MeV/c) - - 1548 1545 1449 1125 1392	$ \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} 4(\pi^{+}\pi^{-})\pi^{0} \pi^{+}\pi^{-}K^{+}K^{-} K\overline{K}\pi \rho\overline{\rho}\pi^{+}\pi^{-} 2(\pi^{+}\pi^{-}) 3(\pi^{+}\pi^{-}) n\overline{n}\pi^{+}\pi^{-} \Sigma^{0}\overline{\Sigma}^{0} 2(\pi^{+}\pi^{-})K^{+}K^{-} \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \rho\overline{\rho} \rho\overline{\rho}\pi \rho\overline{n}\pi^{-} n\overline{n} =\overline{\Xi} \Lambda\overline{\Lambda} \rho\overline{\rho}\pi^{0} \Lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} $	[<i>iii</i>]	$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$ $(4 \pm 4) \times 10^{-3}$ $(1.27 \pm 0.17) \times 10^{-3}$ $(3.1 \pm 1.3) \times 10^{-3}$ $(2.3 \pm 0.9) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.02 \pm 0.18) \times 10^{-3}$ $(2.00 \pm 0.10) \times 10^{-3}$ $(2.02 \pm 0.4) \times 10^{-3}$ $(1.8 \pm 0.4) \times 10^{-3}$ $(1.30 \pm 0.12) \times 10^{-3}$ $(1.09 \pm 0.09) \times 10^{-3}$ $(1.09 \pm 0.09) \times 10^{-3}$	S=1.9 S=1.8	
Mass $m=3096.8$ Full width $\Gamma=81$ $\Gamma_{ee}=5.26\pm0.3$ Explose $\Gamma_{ee}=5$	$I^G(J^{PC}) = 0^-(1^{-87}\pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV Sca Fraction (Γ_I/Γ) $(87.7 \pm 0.5)\%$ $(17.0 \pm 2.0)\%$ $(5.93 \pm 0.10)\%$ $(5.98 \pm 0.10)\%$ involving hadronic resonances $(1.27 \pm 0.09)\%$ $(4.2 \pm 0.5) \times 10^{-3}$ $(1.09 \pm 0.22)\%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(7.2 \pm 1.0) \times 10^{-3}$	ale factor/	P MeV/c) - - 1548 1545 1449 1125 1392 1435	$\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$ $4(\pi^{+}\pi^{-})\pi^{0}$ $\pi^{+}\pi^{-}K^{+}K^{-}$ $K\overline{K}\pi$ $\rho\overline{\rho}\pi^{+}\pi^{-}$ $2(\pi^{+}\pi^{-})$ $3(\pi^{+}\pi^{-})$ $n\overline{n}\pi^{+}\pi^{-}$ $\Sigma^{0}\overline{\Sigma^{0}}$ $2(\pi^{+}\pi^{-})K^{+}K^{-}$ $\rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0}$ $\rho\overline{\rho}\pi^{0}$ $\rho\overline{\rho}\pi^{0}$ $\rho\overline{n}\pi^{-}$ $n\overline{n}$ $\Xi^{-}\Xi^{-}$ $\Lambda\overline{\Lambda}$ $\rho\overline{\rho}\pi^{0}$ $\Lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)}$ $\rho K^{-}\overline{\Lambda}$	[<i>iii</i>]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4 ±4) × 10 ⁻³ (1.27±0.17) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.09±0.16) × 10 ⁻³ (2.09±0.10) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.60±0.12) × 10 ⁻³	S=1.9 S=1.8	
Mass $m=3096.8$ Full width $\Gamma=81$ $\Gamma_{ee}=5.26\pm0.3$ E(1S) DECAY MODES drons wirtual $\gamma\to$ hadrons e^- μ^- Decays in $e^0\pi^0$ $e^0\pi^0$ $e^0\pi^0$ $e^0\pi^0$ $e^0\pi^0$ $e^0\pi^0$ $e^0\pi^0$	$I^{G}(J^{PC}) = 0^{-}(1^{-}$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_{I}/Γ) (87.7 ± 0.5) % (17.0 ± 2.0) % (5.93 ± 0.10) % (5.88 ± 0.10) % (1.27 ± 0.09) % (4.2 ± 0.5) \cdot 100-3 (1.09 ± 0.22) % (8.5 ± 3.4) × 10-3 (7.2 ± 1.0) × 10-3 (4.3 ± 0.6) × 10-3	ale factor/	P MeV/c)	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \\ \rho\overline{\rho} \\ \rho\overline{\rho} \\ \rho\overline{\rho}\eta \\ \rho\overline{n}\pi^{-} \\ n\overline{n} \\ \equiv \overline{\Xi} \\ \Lambda\overline{\Lambda} \\ \rho\overline{\rho}\pi^{0} \\ \Lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} \\ \rho K^{-}\overline{\Lambda} \\ 2(K^{+}K^{-}) \end{array}$	[<i>iii</i>]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.2 ±2.0) × 10 ⁻³ (1.27±0.17) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.19) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.60±0.12) × 10 ⁻³ (8.9 ±1.6) × 10 ⁻⁴ (7.0 ±3.0) × 10 ⁻⁴	S=1.9 S=1.8	
Mass $m=3096.8$ Full width $\Gamma=80$ $\Gamma_{ee}=5.26\pm0.3$ $\rho(1s)$ DECAY MODES drons virtual $\gamma\to$ hadrons e^- μ^- Decays in $\rho^0\pi^0$ $(1320)\rho$ $\rho^+\pi^+\pi^-\pi^-$ $\nu^+\pi^-$	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV $\text{Sca} \frac{\text{Fraction } (\Gamma_i/\Gamma)}{(87.7 \pm 0.5) \%}$ $(17.0 \pm 2.0) \%$ $(5.93 \pm 0.10) \%$ $(5.88 \pm 0.10) \%$ $(5.88 \pm 0.10) \%$ $(1.27 \pm 0.09) \%$ $(4.2 \pm 0.5) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(7.2 \pm 1.0) \times 10^{-3}$ $(4.3 \pm 0.6) \times 10^{-3}$ $(6.7 \pm 2.6) \times 10^{-3}$	ale factor/	P MeV/c) 1548 1545 1449 1449 1125 1392 1435 1143 1005	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}\\ 4(\pi^{+}\pi^{-})\pi^{0}\\ \pi^{+}\pi^{-}K^{+}K^{-}\\ K\overline{K}\pi\\ \rho\overline{\rho}\pi^{+}\pi^{-}\\ 2(\pi^{+}\pi^{-})\\ 3(\pi^{+}\pi^{-})\\ n\overline{n}\pi^{+}\pi^{-}\\ \Sigma^{0}\overline{\Sigma^{0}}\\ 2(\pi^{+}\pi^{-})K^{+}K^{-}\\ \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0}\\ \rho\overline{\rho}\\ \rho\overline{\rho}\\ \rho\overline{\rho}\\ \rho\overline{\rho}\pi^{0}\\ \Lambda\overline{\Sigma}^{-}\pi^{+} (\text{or c.c.})\\ \rho K^{-}\overline{\Lambda}\\ 2(K^{+}K^{-})\\ \rho K^{-}\overline{\Sigma^{0}}\\ \end{array}$	[<i>iii</i>]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.2 ±2.0) × 10 ⁻³ (1.27±0.17) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.00±0.18) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.09±0.09) × 10 ⁻³	S=1.9 S=1.8	
Mass $m=3096.8$ Full width $\Gamma=81$ $\Gamma_{ee}=5.26\pm0.3$ $\phi(1S)$ DECAY MODES drons wirtual $\gamma\to$ hadrons e^- μ^- Decays in $(1320)\rho$ $+^+\pi^+\pi^-\pi^-$ $-^+\pi^-$ $\omega f_2(1270)$ $(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$ $(^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV $\begin{array}{c} \text{Sca} \\ \text{Fraction} & (\Gamma_i/\Gamma) \\ \text{(87.7 } \pm 0.5 \text{) } \% \\ \text{(17.0 } \pm 2.0 \text{) } \% \\ \text{(5.93 \pm 0.10) } \% \\ \text{(5.88 \pm 0.10) } \% \\ \text{(5.88 \pm 0.10) } \% \\ \text{(4.2 } \pm 0.5 \text{) } \times 10^{-3} \\ \text{(1.09 \pm 0.22) } \% \\ \text{(8.5 } \pm 3.4 \text{) } \times 10^{-3} \\ \text{(7.2 } \pm 1.0 \text{) } \times 10^{-3} \\ \text{(4.3 } \pm 0.6 \text{) } \times 10^{-3} \\ \text{(6.7 } \pm 2.6 \text{) } \times 10^{-3} \\ \text{(5.3 } \pm 2.0 \text{) } \times 10^{-3} \\ \text{(5.3 } \pm 2.0 \text{) } \times 10^{-3} \\ \end{array}$	ale factor/	P MeV/c)	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ p\overline{p}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ p\overline{p}\pi^{+}\pi^{-}\pi^{0} \\ p\overline{p} \\ p\overline{p} \\ p\overline{p} \\ p\overline{p} \\ p\overline{p}\pi^{0} \\ \Lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} \\ pK^{-}\overline{\Sigma}^{0} \\ 2(K^{+}K^{-}) \\ pK^{-}\overline{\Sigma}^{0} \\ K^{+}K^{-} \end{array}$	[<i>iii</i>]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.2 ±2.0) × 10 ⁻³ (1.27±0.17) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.10±0.10) × 10 ⁻³ (2.20±0.18) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.90±0.09) × 10 ⁻³ (1.09±0.09) × 10 ⁻³	S=1.9 S=1.8	
Mass $m=3096.8$ Full width $\Gamma=8$: $\Gamma_{ee}=5.26\pm0.3$ $\phi(15)$ DECAY MODES drons wirtual $\gamma \rightarrow$ hadrons e^{-} μ^{-} Decays in $(1320) \rho$ $\pi^{+}\pi^{+}\pi^{-}\pi^{-}$ $\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$ $(892)^{0} \overline{K}_{\bullet}^{\bullet}(1430)^{0} + \text{c.c.}$ $K^{\bullet}(892)^{0} K + \text{c.c.}$ $+\overline{K}^{\bullet}(892)^{-} + \text{c.c.}$	$I^{G}(J^{PC}) = 0^{-}(1^{-}$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_i/Γ) Confid (87.7 ± 0.5) % (17.0 ± 2.0) % (5.93 ± 0.10) % (5.93 ± 0.10) % (5.88 ± 0.10) % involving hadronic resonances (1.27 ± 0.09) % (4.2 ± 0.5) × 10 ⁻³ (1.09 ± 0.22) % (8.5 ± 3.4) × 10 ⁻³ (7.2 ± 1.0) × 10 ⁻³ (4.3 ± 0.6) × 10 ⁻³ (6.7 ± 2.6) × 10 ⁻³ (5.3 ± 2.0) × 10 ⁻³ (5.0 ± 0.4) × 10 ⁻³	ale factor/	P MeV/c)	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ p\overline{p}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ p\overline{p}\pi^{+}\pi^{-}\pi^{0} \\ p\overline{p}\pi^{0} \\ p\overline{p}\pi^{0} \\ n\overline{n} \\ = \overline{\Xi} \\ \Lambda\overline{\Lambda} \\ p\overline{p}\pi^{0} \\ \Lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} \\ pK^{-}\overline{\Lambda} \\ 2(K^{+}K^{-}) \\ pK^{+}\overline{K}^{-} \\ \Lambda\overline{\Lambda}\pi^{0} \end{array}$	[<i>iii</i>]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.2 ±2.0) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.09±0.09) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.6) × 10 ⁻⁴	S=1.9 S=1.8	
Mass $m = 3096.8$ Full width $\Gamma = 8$: $\Gamma_{ee} = 5.26 \pm 0.3$ Full width $\Gamma = 8$: $\Gamma_{ee} = 5.26 \pm 0.3$ Full width $\Gamma = 8$: $\Gamma_{ee} = 5.26 \pm 0.3$ Full width $\Gamma = 8$: F	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV Sca Fraction (Γ_i/Γ) (87.7 ± 0.5) % (17.0 ± 2.0) % (5.93 ± 0.10) % (5.93 ± 0.10) % (5.88 ± 0.10) % involving hadronic resonances (1.27 ± 0.09) % (4.2 ± 0.5) $\times 10^{-3}$ (1.09 ± 0.22) % (8.5 ± 3.4) $\times 10^{-3}$ (7.2 ± 1.0) $\times 10^{-3}$ (4.3 ± 0.6) $\times 10^{-3}$ (6.7 ± 2.6) $\times 10^{-3}$ (5.3 ± 2.0) $\times 10^{-3}$ (5.0 ± 0.4) $\times 10^{-3}$ (4.2 ± 0.4) $\times 10^{-3}$	ale factor/	P MeV/c)	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \\ \rho\overline{\rho}\pi \\ \rho\overline{\rho}\pi^{-}\pi^{-} \\ n\overline{n} \\ \equiv \overline{\Xi} \\ \lambda\overline{\lambda} \\ \rho\overline{\rho}\pi^{0} \\ \lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} \\ \rho K^{-}\overline{\lambda} \\ 2(K^{+}K^{-}) \\ \rho K^{-}\overline{\Sigma}^{0} \\ K^{+}K^{-} \\ \lambda\overline{\Lambda}\pi^{0} \\ \pi^{+}\pi^{-} \end{array}$	[<i>iii</i>]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.10 ±2.0) × 10 ⁻³ (4.20 ±2.0) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.10±0.16) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.90±0.09) × 10 ⁻³ (1.06±0.12) × 10 ⁻³ (7.0 ±3.0) × 10 ⁻⁴ (7.0 ±3.0) × 10 ⁻⁴ (2.2 ±0.6) × 10 ⁻⁴ (2.23±0.6) × 10 ⁻⁴ (2.23±0.6) × 10 ⁻⁴ (2.24±0.6) × 10 ⁻⁴ (2.25±0.6) × 10 ⁻⁴	S=1.9 S=1.8	
Mass $m = 3096.8$ Full width $\Gamma = 81$ $\Gamma_{ee} = 5.26 \pm 0.3$ Po(1S) DECAY MODES drons wirtual $\gamma \rightarrow$ hadrons e^{-} μ^{-} Decays in $\rho^{0}\pi^{0}$ $(1320)\rho_{r^{+}\pi^{+}\pi^{-}\pi^{-}r^{+}\pi^{-}}$ $\nu^{1}\pi^{0}$ $(1320)^{0}$ $\kappa^{2}\pi^{0}$ $\kappa^{2}\pi$	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV $Fraction (\Gamma_i/\Gamma) \qquad Scand Confid$ $(87.7 \pm 0.5) \%$ $(17.0 \pm 2.0) \%$ $(5.93 \pm 0.10) \%$ $(5.93 \pm 0.10) \%$ $(5.88 \pm 0.10) \%$ $(4.2 \pm 0.5) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(7.2 \pm 1.0) \times 10^{-3}$ $(4.3 \pm 0.6) \times 10^{-3}$ $(5.0 \pm 0.4) \times 10^{-3}$ $(5.0 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(3.8 \pm 1.4) \times 10^{-3}$	ale factor/	P MeV/c) 1548 1545 1449 1125 1392 1435 1143 1005 1098 1373 1371	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \\ \rho\overline{\rho}\pi^{0} \\ \rho\overline{\rho}\pi^{0} \\ \rho\overline{n}\pi^{-} \\ n\overline{n} \\ \equiv \overline{\Xi} \\ \lambda\overline{\lambda} \\ \rho\overline{\rho}\pi^{0} \\ \lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} \\ \rho K^{-}\overline{\lambda} \\ 2(K^{+}K^{-}) \\ \rho K^{-}\overline{\Sigma}^{0} \\ K^{+}K^{-} \\ \lambda\overline{n}\pi^{0} \\ \pi^{+}\pi^{-} \\ K^{0}_{S}K^{0}_{L} \end{array}$	[<i>iii</i>]	$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.09 \pm 0.18) \times 10^{-3}$ $(2.00 \pm 0.10) \times 10^{-3}$ $(2.2 \pm 0.4) \times 10^{-3}$ $(1.8 \pm 0.4) \times 10^{-3}$ $(1.80 \pm 0.12) \times 10^{-3}$ $(1.09 \pm 0.09) \times 10^{-3}$ $(1.09 \pm 0.09) \times 10^{-3}$ $(1.09 \pm 0.09) \times 10^{-3}$ $(1.09 \pm 0.12) \times 10^{-3}$ $(2.00 \pm 0.12) \times 10^{-4}$ $(2.0 \pm 0.12) \times 10^{-4}$	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 80$ $\Gamma_{ee} = 5.26 \pm 0.3$ for Γ_{e	$I^{G}(J^{PC}) = 0^{-}(1^{-}$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_{I}/Γ) (87.7 ± 0.5) % (17.0 ± 2.0) % (5.93 ± 0.10) % (5.88 ± 0.10) % involving hadronic resonances (1.27 ± 0.09) % (4.2 ± 0.5) × 10 ⁻³ (1.09 ± 0.22) % (8.5 ± 3.4) × 10 ⁻³ (7.2 ± 1.0) × 10 ⁻³ (4.3 ± 0.6) × 10 ⁻³ (5.0 ± 0.4) × 10 ⁻³ (5.0 ± 0.4) × 10 ⁻³ (5.0 ± 0.4) × 10 ⁻³ (4.2 ± 0.4) × 10 ⁻³ (3.8 ± 1.4) × 10 ⁻³ (3.8 ± 1.4) × 10 ⁻³ (3.4 ± 0.8) × 10 ⁻³	ale factor/	P MeV/c) 1548 1545 1449 1125 1392 1435 1143 1005 1098 1373 1371 - 1436	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ p\overline{p}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ p\overline{p}\pi^{0}\pi^{+}\pi^{-}\pi^{0} \\ p\overline{p}\pi^{0} \\ p\overline{p}\pi^{0} \\ n\overline{n} \\ = \overline{\Xi} \\ \Lambda\overline{\Lambda} \\ p\overline{p}\pi^{0} \\ \Lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} \\ pK^{-}\overline{\Lambda} \\ 2(K^{+}K^{-}) \\ pK^{-}\overline{\Sigma}^{0} \\ K^{+}K^{-} \\ \Lambda\overline{\Lambda}\pi^{0} \\ \pi^{+}\pi^{-} \\ K^{0}_{0}K^{0}_{1} \\ \Lambda\overline{\Sigma}^{+} \text{ c.c.} \end{array}$	[<i>iii</i>]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4 ±4) × 10 ⁻³ (1.27±0.17) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.10) × 10 ⁻³ (2.09±0.10) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.99±0.09) × 10 ⁻³ (1.99±0.09) × 10 ⁻³ (1.99±0.09) × 10 ⁻³ (2.99±0.8) × 10 ⁻⁴ (2.37±0.31) × 10 ⁻⁴ (2.37±0.31) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.109±0.14) × 10 ⁻⁴	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 81$ $\Gamma_{ee} = 5.26 \pm 0.3$ Points DECAY MODES drons wirtual $\gamma \rightarrow$ hadrons e^{-} μ^{-} Decays in $\rho^{0}\pi^{0}$ $(1320)\rho$ $\rho^{+}\pi^{+}\pi^{-}\pi^{-}$ $\nu^{+}\pi^{+}\pi^{-}$ $\nu^{+}(21270)$ $(892)^{0}\overline{K}_{2}^{*}(1430)^{0} + \text{c.c.}$ $(\pi^{*}(892)^{0}\overline{K} + \text{c.c.}$ $(\pi^{*}(892)^{0} + \text{c.c.}$ $(\pi^{*}(892)^{0} + \text{c.c.}$ $(1400)^{\pm}K^{\mp}$ $(1235)^{\pm}\pi^{\mp}$	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV Sca Fraction (Γ_I/Γ) Sca $(87.7 \pm 0.5) \%$ $(17.0 \pm 2.0) \%$ $(5.93 \pm 0.10) \%$ $(5.93 \pm 0.10) \%$ $(5.88 \pm 0.10) \%$ involving hadronic resonances $(1.27 \pm 0.09) \%$ $(4.2 \pm 0.5) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(7.2 \pm 1.0) \times 10^{-3}$ $(4.3 \pm 0.6) \times 10^{-3}$ $(5.3 \pm 2.0) \times 10^{-3}$ $(5.3 \pm 2.0) \times 10^{-3}$ $(5.0 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(3.8 \pm 1.4) \times 10^{-3}$ $(3.4 \pm 0.8) \times 10^{-3}$ [ee] $(3.0 \pm 0.5) \times 10^{-3}$	ale factor/	P MeV/c) 1548 1545 1449 1125 1392 1435 1143 1005 1098 1373 1371 - 1436 1299	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \\ \rho\overline{\rho}\pi^{0} \\ \rho\overline{\rho}\pi^{0} \\ \rho\overline{n}\pi^{-} \\ n\overline{n} \\ \equiv \overline{\Xi} \\ \lambda\overline{\lambda} \\ \rho\overline{\rho}\pi^{0} \\ \lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} \\ \rho K^{-}\overline{\lambda} \\ 2(K^{+}K^{-}) \\ \rho K^{-}\overline{\Sigma}^{0} \\ K^{+}K^{-} \\ \lambda\overline{n}\pi^{0} \\ \pi^{+}\pi^{-} \\ K^{0}_{S}K^{0}_{L} \end{array}$	[<i>iii</i>]	$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.0 \pm 0.5) \times 10^{-3}$ $(4.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 2.0) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.12 \pm 0.10) \times 10^{-3}$ $(2.09 \pm 0.18) \times 10^{-3}$ $(2.00 \pm 0.10) \times 10^{-3}$ $(2.2 \pm 0.4) \times 10^{-3}$ $(1.8 \pm 0.4) \times 10^{-3}$ $(1.80 \pm 0.12) \times 10^{-3}$ $(1.09 \pm 0.09) \times 10^{-3}$ $(1.09 \pm 0.09) \times 10^{-3}$ $(1.09 \pm 0.09) \times 10^{-3}$ $(1.09 \pm 0.12) \times 10^{-3}$ $(2.00 \pm 0.12) \times 10^{-4}$ $(2.0 \pm 0.12) \times 10^{-4}$	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 80$ $\Gamma_{ee} = 5.26 \pm 0.3$ from Siritual $\gamma \rightarrow$ hadrons $e^ \mu^-$ Decays in $0^0\pi^0$ (1320) ρ $+ \pi + \pi - \pi$ $+ \pi^ \omega f_2(1270)$ (892) $\overline{K}_2^*(1430)^0 + \text{c.c.}$ $\overline{K}^*(892)^T + \text{c.c.}$ $\overline{K}^*(892)^T + \text{c.c.}$ (1400) $\pm K^{\mp}$ $0^0\pi^0$ (1235) $\pm \pi^{\mp}$ $C^{\pm}K_{S}^*\pi^{\mp}$	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV $Fraction (\Gamma_I/\Gamma) \qquad Sca \\ Fraction (0.00000000000000000000000000000000000$	ale factor/	P MeV/c) 1548 1545 1449 1449 1125 1392 1435 1143 1005 1098 1373 1371 1436 1299 1210	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ p\overline{p}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ p\overline{p}\pi^{0}\pi^{+}\pi^{-}\pi^{0} \\ p\overline{p}\pi^{0} \\ p\overline{p}\pi^{0} \\ n\overline{n} \\ = \overline{\Xi} \\ \Lambda\overline{\Lambda} \\ p\overline{p}\pi^{0} \\ \Lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} \\ pK^{-}\overline{\Lambda} \\ 2(K^{+}K^{-}) \\ pK^{-}\overline{\Sigma}^{0} \\ K^{+}K^{-} \\ \Lambda\overline{\Lambda}\pi^{0} \\ \pi^{+}\pi^{-} \\ K^{0}_{0}K^{0}_{1} \\ \Lambda\overline{\Sigma}^{+} \text{ c.c.} \end{array}$	[iii]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.10 ±2.0) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.80±0.12) × 10 ⁻³ (1.90±0.09) × 10 ⁻³ (1.06±0.12) × 10 ⁻³ (2.9 ±0.8) × 10 ⁻⁴ (7.0 ±3.0) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.10±0.6) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 8$: $\Gamma_{ee} = 5.26 \pm 0.5$ Po(15) DECAY MODES drons virtual $\gamma \rightarrow$ hadrons e^{-} μ^{-} Decays in $\rho^{0} \pi^{0}$ (1320) ρ $+^{+}\pi^{+}\pi^{-}\pi^{-}$ $+^{+}\pi^{-}$ (1892) $\overline{K}_{2}^{*}(1430)^{0} + \text{c.c.}$ $+^{+}K^{*}(892)^{-} + \text{c.c.}$ $+^{+}K^{*}(892)^{-} + \text{c.c.}$ (1235) $\pm \pi^{\mp}$ $\times^{+}K^{+}K^{+}_{2}\pi^{\mp}$ (1235) π^{0}	$I^{G}(J^{PC}) = 0^{-}(1^{-}$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_{i}/Γ)	ale factor/	P MeV/c)	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ p\overline{p}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ p\overline{p}\pi^{0}\pi^{+}\pi^{-}\pi^{0} \\ p\overline{p}\pi^{0} \\ p\overline{n}\pi^{-} \\ n\overline{n} \\ \equiv \overline{\Xi} \\ \lambda\overline{\lambda} \\ p\overline{p}\pi^{0} \\ \lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} \\ pK^{-}\overline{\lambda}^{0} \\ 2(K^{+}K^{-}) \\ pK^{-}\overline{\Sigma}^{0} \\ K^{+}K^{-} \\ \lambda\overline{n}\pi^{0} \\ \pi^{+}\pi^{-} \\ K^{0}_{S}K^{0}_{L} \\ \lambda\overline{\Sigma}^{+}\text{ c.c.} \\ K^{0}_{S}K^{0}_{S} \end{array}$	[iii] [ee] < Radiative	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.10 ±2.0) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.90±0.09) × 10 ⁻³ (1.00±0.12) × 10 ⁻³ (1.00±0.13) × 10 ⁻⁴ (7.0 ±3.0) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ 1.5 × 10 ⁻⁴ 1.5 × 10 ⁻⁶ e decays	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 80$ $\Gamma_{ee} = 5.26 \pm 0.0$ P(1S) DECAY MODES drons virtual $\gamma \rightarrow$ hadrons e^{-} μ^{-} Decays in $\rho^{0} \pi^{0}$ (1320) ρ $+^{+}\pi^{+}\pi^{-}\pi^{-}$ $+^{+}\pi^{-}$ $\omega f_{2}(1270)$ (1892) $K_{2}^{*}(1430)^{0} + \text{c.c.}$ $+^{*}K^{*}(892)^{-} + \text{c.c.}$ $+^{*}K^{*}(892)^{-} + \text{c.c.}$ (1400) $\pm K^{\mp}$ $+^{*}(\pi^{0}\pi^{0})^{-}$ $+^{*}K^{+}K^{0}\pi^{\mp}$ (1235) $+^{*}\pi^{0}$ $+^{*}K^{+}K^{0}\pi^{+}$ (1235) $+^{*}\pi^{0}$ $+^{*}(892)^{-}K^{-}$ c.c.	$I^{G}(J^{PC}) = 0^{-}(1^{-}$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_i/Γ) (87.7 ±0.5) % (17.0 ±2.0) % (5.93 ±0.10) % (5.93 ±0.10) % (5.93 ±0.10) % involving hadronic resonances (1.27 ±0.09) % (4.2 ±0.5) × 10 ⁻³ (1.09 ±0.22) % (8.5 ±3.4) × 10 ⁻³ (7.2 ±1.0) × 10 ⁻³ (4.3 ±0.6) × 10 ⁻³ (5.3 ±2.0) × 10 ⁻³ (5.0 ±0.4) × 10 ⁻³ (5.0 ±0.4) × 10 ⁻³ (3.4 ±0.8) × 10 ⁻³ (3.4 ±0.8) × 10 ⁻³ [ee] (3.0 ±0.5) × 10 ⁻³ [ee] (2.9 ±0.7) × 10 ⁻³ (2.3 ±0.6) × 10 ⁻³	ale factor/	P MeV/c) - 1548 1545 1449 1449 1125 1392 1435 1143 1005 1098 1373 1371 - 4136 1299 1210 1299 969	$ \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} 4(\pi^{+}\pi^{-})\pi^{0} \pi^{+}\pi^{-}K^{+}K^{-} K\overline{K}\pi p\overline{p}\pi^{+}\pi^{-} 2(\pi^{+}\pi^{-}) 3(\pi^{+}\pi^{-}) 3(\pi^{+}\pi^{-}) 5(\pi^{-}\pi^{+}K^{-}) 7(\pi^{-}\pi^{-}) 7(\pi^{-}\pi^{-}K^{0}) 7(\pi^{-}\pi^{-$	[##]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.10 ±2.0) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.90±0.99) × 10 ⁻³ (1.90±0.99) × 10 ⁻³ (1.90±0.99) × 10 ⁻³ (2.90±0.18) × 10 ⁻⁴ (2.90±0.8) × 10 ⁻⁴ (2.90±0.8) × 10 ⁻⁴ (2.90±0.8) × 10 ⁻⁴ (2.90±0.8) × 10 ⁻⁴ (1.90±0.91) × 10 ⁻⁴	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 8$: $\Gamma_{ee} = 5.26 \pm 0.3$ P(1S) DECAY MODES divirtual $\gamma \rightarrow$ hadrons e^{-} μ^{-} Decays in $\rho^{0} \pi^{0}$ (1320) ρ $r^{+} \pi^{+} \pi^{-} \pi^{-}$ $r^{+} \pi^{-}$ $\omega f_{2}(1270)$ $K^{*}(892)^{0} \overline{K}_{2}^{*}(1430)^{0} + c.c.$ $K^{*}(892)^{0} \overline{K} + c.c.$ $\Gamma^{*}(892)^{0} \overline{K} + c.c.$ (1400) $\pm K^{\mp}$ $\Gamma^{0} \pi^{0}$ (1235) $\pm \pi^{\mp}$ $K^{\pm} K_{5}^{o} \pi^{\mp}$ (1235) π^{0} $K^{*}(892)^{0} \overline{K} + c.c.$ $K^{*}(892)^{0} \overline{K} + c.c.$	$I^{G}(J^{PC}) = 0^{-}(1^{-}$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_i/Γ) (87.7 ±0.5) % (17.0 ±2.0) % (5.93±0.10) % (5.93±0.10) % (5.88±0.10) % involving hadronic resonances (1.27±0.09) % (4.2 ±0.5) × 10 ⁻³ (1.09±0.22) % (8.5 ±3.4) × 10 ⁻³ (7.2 ±1.0) × 10 ⁻³ (4.3 ±0.6) × 10 ⁻³ (5.0 ±2.6) × 10 ⁻³ (5.0 ±0.4) × 10 ⁻³ (5.0 ±0.4) × 10 ⁻³ (3.4 ±0.8) × 10 ⁻³ (2.9 ±0.7) × 10 ⁻³ [ee] (3.0 ±0.5) × 10 ⁻³ [ee] (2.9 ±0.7) × 10 ⁻³ (2.3 ±0.6) × 10 ⁻³ (2.04±0.28) × 10 ⁻³ (1.9 ±0.4) × 10 ⁻³	ale factor/	P MeV/c) 1548 1545 1449 1125 1392 1435 1143 1005 1098 1373 1371 1436 1299 1210 1299 969 1268	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ p\overline{p}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ p\overline{p}\pi^{0} \\ \pi^{0}\pi^{-}\pi^{0} \\ p\overline{p}\pi^{0} \\ n\overline{n}\pi^{-} \\ n\overline{n} \\ = \overline{\Xi} \\ \Lambda\overline{\Lambda} \\ p\overline{p}\pi^{0} \\ \Lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} \\ pK^{-}\overline{\Lambda} \\ 2(K^{+}K^{-}) \\ pK^{-}\overline{\Sigma}^{0} \\ K^{+}K^{-} \\ \Lambda\overline{\Lambda}\pi^{0} \\ \pi^{+}\pi^{-} \\ K^{0}_{S}K^{0}_{L} \\ \Lambda\Sigma^{-} + \text{c.c.} \\ K^{0}_{S}K^{0}_{S} \\ \gamma^{\eta}c^{(1S)} \\ \gamma^{\pi^{+}}\pi^{-} 2\pi^{0} \end{array}$	[#i] [ee]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.10) × 10 ⁻³ (1.27±0.17) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (2.2 ±0.4) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.06±0.12) × 10 ⁻³ (8.9 ±1.6) × 10 ⁻⁴ (7.0 ±3.0) × 10 ⁻⁴ (2.37±0.31) × 10 ⁻⁴ (2.37±0.31) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ 1.5 × 10 ⁻⁶ e decays (1.3 ±0.4) % (8.3 ±3.1) × 10 ⁻³	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 8$: $\Gamma_{ee} = 5.26 \pm 0.3$ P(1S) DECAY MODES divirtual $\gamma \rightarrow$ hadrons e^{-} μ^{-} Decays in $\rho^{0} \pi^{0}$ (1320) ρ $r^{+} \pi^{+} \pi^{-} \pi^{-}$ $r^{+} \pi^{-}$ $\omega f_{2}(1270)$ $K^{*}(892)^{0} \overline{K}_{2}^{*}(1430)^{0} + c.c.$ $K^{*}(892)^{0} \overline{K} + c.c.$ $\Gamma^{*}(892)^{0} \overline{K} + c.c.$ (1400) $\pm K^{\mp}$ $\Gamma^{0} \pi^{0}$ (1235) $\pm \pi^{\mp}$ $K^{\pm} K_{5}^{o} \pi^{\mp}$ (1235) π^{0} $K^{*}(892)^{0} \overline{K} + c.c.$ $K^{*}(892)^{0} \overline{K} + c.c.$	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV Sca Fraction (Γ_i/Γ) (87.7 ± 0.5) % (17.0 ± 2.0) % (5.93 ± 0.10) % (5.93 ± 0.10) % (5.88 ± 0.10) % involving hadronic resonances (1.27 ± 0.09) % (4.2 ± 0.5) $\times 10^{-3}$ (1.09 ± 0.22) % (8.5 ± 3.4) $\times 10^{-3}$ (1.09 ± 0.22) % (8.5 ± 3.4) $\times 10^{-3}$ (7.2 ± 1.0) $\times 10^{-3}$ (4.3 ± 0.6) $\times 10^{-3}$ (5.3 ± 2.0) $\times 10^{-3}$ (5.0 ± 0.4) $\times 10^{-3}$ (6.7 ± 2.6) $\times 10^{-3}$ (5.0 ± 0.4) $\times 10^{-3}$ (4.2 ± 0.4) $\times 10^{-3}$ (3.8 ± 1.4) $\times 10^{-3}$ (4.2 ± 0.4) $\times 10^{-3}$ (6.7 ± 0.6) $\times 10^{-3}$ (6.9 (3.0 ± 0.5) $\times 10^{-3}$ (6.1 ± 0.6) $\times 10^{-3}$ (7.2 ± 0.6) $\times 10^{-3}$ (8.1 ± 0.6) $\times 10^{-3}$ (9.04 ± 0.28) $\times 10^{-3}$ (1.9 ± 0.4) $\times 10^{-3}$ (4.8 ± 1.1) $\times 10^{-4}$	ale factor/	P MeV/c) — — 1548 1545 1449 1125 1392 1435 1143 1005 1098 1373 1371 — 1436 1299 1210 1299 969 1268 878	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}\\ 4(\pi^{+}\pi^{-})\pi^{0}\\ \pi^{+}\pi^{-}K^{+}K^{-}\\ K\overline{K}\pi\\ p\overline{p}\pi^{+}\pi^{-}\\ 2(\pi^{+}\pi^{-})\\ 3(\pi^{+}\pi^{-})\\ n\overline{n}\pi^{+}\pi^{-}\\ \Sigma^{0}\overline{\Sigma^{0}}\\ 2(\pi^{+}\pi^{-})K^{+}K^{-}\\ p\overline{p}\pi^{+}\pi^{-}\pi^{0}\\ p\overline{p}\\ p\overline{p}\pi\\ p\overline{n}\pi^{-}\\ n\overline{n}\\ \overline{\Xi}\overline{\Xi}\\ \Lambda\overline{\Lambda}\\ p\overline{p}\pi^{0}\\ \Lambda\overline{\Sigma}^{-}\pi^{+} (\text{or c.c.})\\ pK^{-}\overline{\Lambda}\\ 2(K^{+}K^{-})\\ pK^{-}\overline{\Sigma^{0}}\\ K^{+}K^{-}\\ \Lambda\overline{\Lambda}\pi^{0}\\ \pi^{+}\pi^{-}\\ K^{0}S_{0}K^{0}\\ \Lambda^{0}\Sigma^{+}+c.c.\\ K^{0}S_{0}K^{0}S_{0}\\ \gamma^{0}\pi^{+}\pi^{-}2\pi^{0}\\ \gamma^{0}\pi^{\pi}\pi\\ \end{array}$	[#i] [ee]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.2 ±2.0) × 10 ⁻³ (1.27±0.17) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.19) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.06±0.12) × 10 ⁻³ (1.06±0.12) × 10 ⁻³ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9±0.6) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁶ e decays (1.3 ±0.4) % (8.3 ±3.1) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 80$ $\Gamma_{ee} = 5.26 \pm 0.3$ $\psi(1S)$ DECAY MODES drons virtual $\gamma \rightarrow$ hadrons $\Gamma_{ee} = \frac{1}{2} \frac{1}{2$	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV $Fraction (\Gamma_I/\Gamma) \qquad Sca \\ Fraction (0.00 + 0.00 $	ale factor/	P MeV/c) 1548 1545 1449 1125 1392 1435 1143 1005 1098 1373 1371 - 1436 1299 1210 1299 969 1268 878 1318	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}\\ 4(\pi^{+}\pi^{-})\pi^{0}\\ \pi^{+}\pi^{-}K^{+}K^{-}\\ K\overline{K}\pi\\ p\overline{p}\pi^{+}\pi^{-}\\ 2(\pi^{+}\pi^{-})\\ 3(\pi^{+}\pi^{-})\\ n\overline{n}\pi^{+}\pi^{-}\\ \Sigma^{0}\overline{\Sigma}^{0}\\ 2(\pi^{+}\pi^{-})K^{+}K^{-}\\ p\overline{p}\pi^{+}\pi^{-}\pi^{0}\\ p\overline{p}\pi^{0}\\ \rho\overline{p}\pi\\ p\overline{n}\pi^{-}\\ n\overline{n}\\ =\overline{\Xi}\\ A\overline{A}\\ \rho\overline{p}\pi^{0}\\ A\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)}\\ pK^{-}\overline{A}\\ 2(K^{+}K^{-})\\ pK^{-}\overline{\Sigma}^{0}\\ K^{+}K^{-}\\ A\overline{\Lambda}\pi^{0}\\ \pi^{+}\pi^{-}\\ K^{0}_{S}K^{0}_{S}\\ A\overline{\Sigma}^{-}+\text{ c.c.}\\ K^{0}_{S}K^{0}_{S}\\ \gamma^{\eta_{c}}(1S)\\ \gamma^{\pi^{+}}\pi^{-}2\pi^{0}\\ \gamma^{\eta_{\pi}\pi}\\ \gamma^{\eta}(1440) \rightarrow \gamma^{K}\overline{K}\pi \end{array}$	[##] [ee] Radiative	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.2 ±2.0) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.20±0.18) × 10 ⁻³ (2.20±0.18) × 10 ⁻³ (2.20±0.19) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.80±0.12) × 10 ⁻³ (1.90±0.09) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.20±0.6) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ 5.2 × 10 ⁻⁶ e decays (1.3 ±0.4) % (6.3 ±3.1) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (9.1 ±1.8) × 10 ⁻⁴	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 80$ $\Gamma_{ee} = 5.26 \pm 0.3$ with $\Gamma_{ee} = 5.26 \pm 0.3$ for $\Gamma_{$	$I^{G}(J^{PC}) = 0^{-}(1^{-}$ 87 ± 0.04 MeV 7 ± 5 keV 37 keV Sca Fraction (Γ_{i}/Γ) South (87.7 ± 0.5) % (17.0 ± 2.0) % (5.93 ± 0.10) % (5.88 ± 0.10) % involving hadronic resonances (1.27 ± 0.09) % (4.2 ± 0.5) × 10 ⁻³ (1.09 ± 0.22) % (8.5 ± 3.4) × 10 ⁻³ (7.2 ± 1.0) × 10 ⁻³ (4.3 ± 0.6) × 10 ⁻³ (6.7 ± 2.6) × 10 ⁻³ (5.3 ± 2.0) × 10 ⁻³ (5.0 ± 0.4) × 10 ⁻³ (4.2 ± 0.4) × 10 ⁻³ (3.8 ± 1.4) × 10 ⁻³ (3.8 ± 1.4) × 10 ⁻³ (4.2 ± 0.4) × 10 ⁻³ (4.2 ± 0.4) × 10 ⁻³ (5.0 ± 0.5) × 10 ⁻³ (6e] (2.9 ± 0.7) × 10 ⁻³ (2.3 ± 0.6) × 10 ⁻³ (2.4 ± 0.28) × 10 ⁻³ (2.9 ± 0.7) × 10 ⁻³ (2.9 ± 0.7) × 10 ⁻³ (4.8 ± 1.1) × 10 ⁻⁴ (1.60 ± 0.32) × 10 ⁻³ (1.6 ± 0.5) × 10 ⁻³ (1.6 ± 0.5) × 10 ⁻³	ale factor/	P MeV/c) 1548 1545 1449 1449 1125 1392 1435 1143 1005 1098 1373 1371 1436 1299 1210 1299 969 1210 1299 969 1210 1299 1268 878 1318 1030	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{0} \\ \gamma\overline{\rho}\pi^{0} \\ \Lambda\overline{\Sigma}^{-}\pi^{+} \\ (\text{or c.c.}) \\ \rho K^{-}\overline{\Lambda} \\ 2(K^{+}K^{-}) \\ \rho K^{-}\overline{\Lambda} \\ 2(K^{+}K^{-}) \\ \rho K^{-}\overline{K}^{0} \\ K^{+}K^{-} \\ \Lambda\overline{\Lambda}\pi^{0} \\ \pi^{+}\pi^{-} \\ K^{0}_{S}K^{0}_{L} \\ \Lambda\overline{\Sigma}^{+} \text{c.c.} \\ K^{0}_{S}K^{0}_{S} \\ \gamma^{0}\pi^{(1440)} \rightarrow \gamma \kappa^{0}$	[#i] (ee] < < < Radiative	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.10 ±2.0) × 10 ⁻³ (4.20 ±2.0) × 10 ⁻³ (4.20 ±2.0) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (1.80±0.12) × 10 ⁻³ (1.80±0.12) × 10 ⁻³ (1.90±0.09) × 10 ⁻³ (1.90±0.09) × 10 ⁻³ (1.90±0.09) × 10 ⁻³ (1.90±0.09) × 10 ⁻⁴ (2.90±0.8) × 10 ⁻⁴ (1.90±0.8) × 10 ⁻³ (1.90±0.8) × 10 ⁻⁴ (1.90±0.8) × 10 ⁻³ (1.90±0.8) ×	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 80$ $\Gamma_{ee} = 5.26 \pm 0.3$ w(15) DECAY MODES drons virtual $\gamma \rightarrow$ hadrons $\Gamma_{ee} = 5.26 \pm 0.3$ Decays in $\Gamma_{ee} = 5.26 \pm 0.3$ $\Gamma_{ee} = $	$I^{G}(J^{PC}) = 0^{-}(1^{-}87 \pm 0.04 \text{ MeV} $ $7 \pm 5 \text{ keV} $ $37 \text{ keV} $	ale factor/	P MeV/c)	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ p\overline{p}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ p\overline{p}\pi^{0} \\ n\overline{n}\pi^{-} \\ n\overline{n} \\ = \overline{\Xi} \\ \lambda\overline{\lambda} \\ p\overline{p}\pi^{0} \\ \lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} \\ pK^{-}\overline{\lambda} \\ 2(K^{+}K^{-}) \\ pK^{-}\overline{\lambda}^{0} \\ \chi^{0}K^{0}K^{0}K^{0}K^{0}K^{0}K^{0}K^{0}K$	[##] [ee] < < < Radiative [o]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.10 ±2.0) × 10 ⁻³ (4.10 ±2.0) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.10±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.80±0.12) × 10 ⁻³ (1.90±0.9) × 10 ⁻³ (1.90±0.9) × 10 ⁻³ (1.90±0.9) × 10 ⁻³ (1.90±0.9) × 10 ⁻⁴ (1.90±0.8) × 10 ⁻⁴ (2.2 ±0.6) × 10 ⁻⁴ (2.2 ±0.6) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ 1.5 × 10 ⁻⁴ 1.5 × 10 ⁻⁴ 1.5 × 10 ⁻⁴ (1.3 ±0.4) % (8.3 ±3.1) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.4 ±1.4) × 10 ⁻⁵ (9.1 ±1.8) × 10 ⁻⁴ (6.4 ±1.4) × 10 ⁻⁵ (3.0 ±0.5) × 10 ⁻⁴	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 8$: $\Gamma_{ee} = 5.26 \pm 0.5$ (15) DECAY MODES divirtual $\gamma \rightarrow$ hadrons e^{-} μ^{-} Decays in Γ_{e} $\rho^{0}\pi^{0}$ (1320) ρ $\tau^{+}\pi^{+}\pi^{-}\pi^{-}$ $\tau^{+}\pi^{-}$ $\tau^{+}\pi^{-}$ $\tau^{+}\pi^{-}$ $\tau^{+}\pi^{-}$ $\tau^{+}\pi^{-}$ $\tau^{+}\pi^{-}$ $\tau^{+}\pi^{-}$ $\tau^{+}\pi^{-}$ $\tau^{+}\pi^{-}$ $\tau^{+}\pi^{-}$ $\tau^{+}\pi^{-}$ $\tau^{+}\pi^{-}$ (1430) τ^{-} $\tau^{-}\pi^{-}$ $\tau^{-}\pi^{-}\pi^{-}$ $\tau^{-}\pi^{-}\pi^{-}$ $\tau^{-}\pi^{-}\pi^{-}$ $\tau^{-}\pi^{-}\pi^{-}\pi^{-}$ $\tau^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$ $\tau^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi$	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV $Fraction (\Gamma_i/\Gamma) \qquad Scan (17.0 \pm 2.0) \%$ $(5.93 \pm 0.10) \%$ $(5.88 \pm 0.10) \%$ $(5.88 \pm 0.10) \%$ $(1.27 \pm 0.09) \%$ $(4.2 \pm 0.5) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(7.2 \pm 1.0) \times 10^{-3}$ $(4.3 \pm 0.6) \times 10^{-3}$ $(5.3 \pm 2.0) \times 10^{-3}$ $(5.3 \pm 2.0) \times 10^{-3}$ $(5.0 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(3.8 \pm 1.4) \times 10^{-3}$ $(3.8 \pm 1.4) \times 10^{-3}$ $(3.4 \pm 0.8) \times 10^{-3}$ $(2.9 \pm 0.7) \times 10^{-3}$ $(2.9 \pm 0.7) \times 10^{-3}$ $(2.9 \pm 0.7) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-4}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(1.6 \pm 0.5) \times 10^{-3}$ $(1.6 \pm 0.5) \times 10^{-3}$ $(1.6 \pm 0.5) \times 10^{-3}$ $(1.48 \pm 0.22) \times 10^{-3}$	ale factor/	P MeV/c) 1548 1545 1449 1449 1125 1392 1435 1143 1005 1098 1373 1371 1436 1299 1210 1299 969 1268 878 1318 1030 1394 1179	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{0} \\ \rho\overline{\rho}\pi^{0} \\ \rho\overline{\rho}\pi^{0} \\ \Lambda\overline{\Sigma}^{-}\pi^{+} \\ (\text{or c.c.}) \\ \rho K^{-}\overline{\Lambda} \\ 2(K^{+}K^{-}) \\ \rho K^{-}\overline{\Sigma}^{0} \\ K^{+}K^{-} \\ \Lambda\overline{\Lambda}\pi^{0} \\ \pi^{+}\pi^{-} \\ K^{0}_{S}K^{0}_{L} \\ \Lambda\overline{\Sigma}^{+} \\ \text{c.c.} \\ K^{0}_{S}K^{0}_{S} \\ \gamma\eta_{c}(1S) \\ \gamma\eta^{\pi}\pi \\ \gamma\eta(1440) \rightarrow \gamma\gamma\rho^{0} \\ \gamma\eta(1440) \rightarrow \gamma\eta\pi^{+}\pi^{-} \\ \gamma\rho\rho \end{array}$	[##] [ee] Radiative	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.10) × 10 ⁻³ (1.27±0.17) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.9 ±0.9) × 10 ⁻³ (1.90±0.99) × 10 ⁻³ (1.90±0.99) × 10 ⁻³ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ 1.5 × 10 ⁻⁶ e decays (1.3 ±0.4) % (8.3 ±3.1) × 10 ⁻³ (9.1 ±1.8) × 10 ⁻⁴ (3.0 ±0.5) × 10 ⁻⁴ (4.5 ±0.8) × 10 ⁻⁵	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 8$: $\Gamma_{ee} = 5.26 \pm 0.5$ w(15) DECAY MODES drons virtual $\gamma \rightarrow$ hadrons $P_{ee} = \frac{1}{2} $	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV $Sca \frac{\text{Fraction } (\Gamma_i/\Gamma) \text{ Confid}}{(87.7 \pm 0.5) \%}$ $(17.0 \pm 2.0) \%$ $(5.93 \pm 0.10) \%$ $(5.93 \pm 0.10) \%$ $(5.98 \pm 0.10) \%$ $(4.2 \pm 0.5) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(7.2 \pm 1.0) \times 10^{-3}$ $(4.3 \pm 0.6) \times 10^{-3}$ $(5.3 \pm 2.0) \times 10^{-3}$ $(5.3 \pm 2.0) \times 10^{-3}$ $(5.0 \pm 0.4) \times 10^{-3}$ $(5.0 \pm 0.4) \times 10^{-3}$ $(3.4 \pm 0.8) \times 10^{-3}$ $(3.4 \pm 0.8) \times 10^{-3}$ $(2.9 \pm 0.7) \times 10^{-3}$ $(2.04 \pm 0.28) \times 10^{-3}$ $(2.04 \pm 0.28) \times 10^{-3}$ $(4.8 \pm 1.1) \times 10^{-4}$ $(1.60 \pm 0.5) \times 10^{-3}$ $(1.6 \pm 0.5) \times 10^{-3}$ $(1.48 \pm 0.22) \times 10^{-3}$	ale factor/ lence level (N	P MeV/c) 1548 1545 1449 1449 1125 1392 1435 1143 1005 1098 1373 1371 1436 1299 1210 1299 969 1268 878 1318 1030 1394 1179 875	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma^{0}} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{+}\pi^{-}\pi^{0} \\ \rho\overline{\rho}\pi^{0} \\ \Lambda\overline{\Lambda} \\ \rho\overline{\rho}\pi^{0} \\ \Lambda\overline{\Lambda} \\ \rho\overline{\rho}\pi^{0} \\ \Lambda\overline{\Lambda} \\ \rho\overline{K} \\ \gamma\overline{K} \\ \gamma K^{-}\overline{\Lambda} \\ \gamma K^{-}\overline{\Lambda} \\ \gamma K^{0}K^{0} \\ \lambda \Sigma + c.c. \\ K^{0}S^{0}K^{0} \\ \lambda \Sigma + c.c. \\ K^{0}S^{0}K^{0} \\ \gamma \eta\pi^{\pi} \\ \gamma \eta(1440) \rightarrow \gamma \kappa K\overline{K} \\ \gamma \eta(1440) \rightarrow \gamma \gamma \rho^{0} \\ \gamma \eta(1440) \rightarrow \gamma \eta \pi^{+}\pi^{-} \\ \gamma \rho \\ \gamma \eta(1440) \rightarrow \gamma \pi^{+}\pi^{-} \\ \gamma \rho \\ \gamma \eta(1440) \rightarrow \gamma \pi^{+}\pi^{-} \\ \gamma \rho \\ \gamma \eta(1480) \rightarrow \gamma \pi^{+}\pi^{-} \\ \gamma \rho \\ \gamma \eta(1870) \rightarrow \gamma \pi^{+}\pi^{-} \\ \end{array}$	[##] [ee] Radiative	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.10) × 10 ⁻³ (1.27±0.17) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (2.2 ±0.4) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.09±0.09) × 10 ⁻³ (1.09±0.09) × 10 ⁻³ (1.09±0.09) × 10 ⁻³ (2.2 ±0.6) × 10 ⁻⁴ (7.0 ±3.0) × 10 ⁻⁴ (2.37±0.31) × 10 ⁻⁴ (2.37±0.31) × 10 ⁻⁴ (2.37±0.31) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ 1.5 × 10 ⁻⁶ **edecays* (1.3 ±0.4) % (8.3 ±3.1) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (9.1 ±1.8) × 10 ⁻⁴ (4.5 ±0.8) × 10 ⁻⁴ (4.5 ±0.8) × 10 ⁻⁴ (4.5 ±0.8) × 10 ⁻⁴	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 80$ $\Gamma_{ee} = 5.26 \pm 0.3$ Φ (15) DECAY MODES drons virtual $\gamma \rightarrow$ hadrons $\Gamma_{ee} = 5.26 \pm 0.3$	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV Sca Fraction (Γ_i/Γ) Sca Fraction (Γ_i/Γ) Sca $(17.0 \pm 2.0) \%$ $(5.93 \pm 0.10) \%$ $(5.93 \pm 0.10) \%$ $(5.88 \pm 0.10) \%$ Sinvolving hadronic resonances $(1.27 \pm 0.09) \%$ $(4.2 \pm 0.5) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(7.2 \pm 1.0) \times 10^{-3}$ $(4.3 \pm 0.6) \times 10^{-3}$ $(5.0 \pm 2.6) \times 10^{-3}$ $(5.0 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(3.4 \pm 0.8) \times 10^{-3}$ $(3.4 \pm 0.8) \times 10^{-3}$ $(2.04 \pm 0.28) \times 10^{-3}$ $(2.04 \pm 0.28) \times 10^{-3}$ $(1.9 \pm 0.4) \times 10^{-3}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(1.68 \pm 0.1) \times 10^{-3}$ $(1.68 \pm 0.5) \times 10^{-3}$ $(1.68 \pm 0.5) \times 10^{-3}$ $(1.68 \pm 0.5) \times 10^{-3}$ $(1.68 \pm 0.6) \times 10^{-4}$ $(1.30 \pm 0.25) \times 10^{-4}$ $(1.30 \pm 0.25) \times 10^{-3}$	ale factor/	P MeV/c) 1548 1545 1449 1125 1392 1435 1143 1005 1098 1373 1371 1436 1299 1210 1299 969 1268 878 1318 1030 1394 1179 875 769	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ \rho\overline{\rho}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma}^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ \rho\overline{\rho}\pi^{0} \\ \rho\overline{\rho}\pi^{0} \\ \rho\overline{\rho}\pi^{0} \\ \Lambda\overline{\Sigma}^{-}\pi^{+} \\ (\text{or c.c.}) \\ \rho K^{-}\overline{\Lambda} \\ 2(K^{+}K^{-}) \\ \rho K^{-}\overline{\Sigma}^{0} \\ K^{+}K^{-} \\ \Lambda\overline{\Lambda}\pi^{0} \\ \pi^{+}\pi^{-} \\ K^{0}_{S}K^{0}_{L} \\ \Lambda\overline{\Sigma}^{+} \\ \text{c.c.} \\ K^{0}_{S}K^{0}_{S} \\ \gamma\eta_{c}(1S) \\ \gamma\eta^{\pi}\pi \\ \gamma\eta(1440) \rightarrow \gamma\gamma\rho^{0} \\ \gamma\eta(1440) \rightarrow \gamma\eta\pi^{+}\pi^{-} \\ \gamma\rho\rho \end{array}$	[##] [ee] < < Radiative [ø]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.2 ±2.0) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.19) × 10 ⁻³ (2.09±0.19) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.06±0.12) × 10 ⁻³ (1.06±0.12) × 10 ⁻³ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.12±0.6) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ (1.3 ±0.4) % (8.3 ±3.1) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (9.1 ±1.8) × 10 ⁻⁴ (4.5 ±0.8) × 10 ⁻⁴ (4.5 ±0.8) × 10 ⁻⁴ (4.31±0.30) × 10 ⁻⁴	S=1.9 S=1.8 S=1.1	
Mass $m = 3096.8$ Full width $\Gamma = 81$ $\Gamma_{ee} = 5.26 \pm 0.3$ $\psi(1S)$ DECAY MODES drons virtual $\gamma \rightarrow$ hadrons $\Gamma_{e} = \frac{1}{2} \Gamma_{ee}$ Decays in $\Gamma_{e} = \frac{1}{2} \Gamma_{ee}$ Decays in $\Gamma_{e} = \frac{1}{2} \Gamma_{ee}$ Decays in $\Gamma_{e} = \frac{1}{2} \Gamma_{ee}$ $\Gamma_{e} = \frac{1}{2} \Gamma_{ee}$ $\Gamma_{e} = \frac{1}{2} \Gamma_{ee}$ $\Gamma_{e} = \frac{1}{2} \Gamma_{ee}$ $\Gamma_{ee} = \frac{1}{$	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV Sca Fraction (Γ_I/Γ) Sca $(87.7 \pm 0.5) \%$ $(17.0 \pm 2.0) \%$ $(5.93 \pm 0.10) \%$ $(5.93 \pm 0.10) \%$ $(5.88 \pm 0.10) \%$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(7.2 \pm 1.0) \times 10^{-3}$ $(4.3 \pm 0.6) \times 10^{-3}$ $(5.3 \pm 2.0) \times 10^{-3}$ $(5.0 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(3.4 \pm 0.8) \times 10^{-3}$ $(2.3 \pm 0.6) \times 10^{-3}$ $(2.3 \pm 0.6) \times 10^{-3}$ $(2.9 \pm 0.7) \times 10^{-3}$ $(2.9 \pm 0.7) \times 10^{-3}$ $(2.04 \pm 0.28) \times 10^{-3}$ $(2.04 \pm 0.28) \times 10^{-3}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(1.68 \pm 0.6) \times 10^{-3}$ $(1.68 \pm 0.6) \times 10^{-3}$ $(1.68 \pm 0.6) \times 10^{-3}$ $(1.48 \pm 0.22) \times 10^{-3}$ $(1.48 \pm 0.22) \times 10^{-3}$ $(1.10 \pm 0.29) \times 10^{-3}$	ale factor/ lence level (N	P MeV/c)	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ p\overline{p}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ 70\overline{p}\pi^{0} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ p\overline{p}\pi^{0} \\ 70\overline{p}\pi^{0} \\ 70p$	[ee] < < Radiative	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±1.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.10 ±2.0) × 10 ⁻³ (4.20) × 10 ⁻³ (4.10 ±2.0) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (2.00±0.10) × 10 ⁻³ (1.8 ±0.4) × 10 ⁻³ (1.80±0.12) × 10 ⁻³ (1.90±0.09) × 10 ⁻³ (1.90±0.09) × 10 ⁻³ (1.90±0.12) × 10 ⁻³ (2.9 ±0.8) × 10 ⁻⁴ (7.0 ±3.0) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ 1.5 × 10 ⁻⁴ 1.5 × 10 ⁻⁴ (1.3 ±0.4) % (8.3 ±3.1) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.2 ±2.4) × 10 ⁻⁴ (4.5 ±0.8) × 10 ⁻³ (4.5 ±0.8) × 10 ⁻³ (2.8 ±0.5) × 10 ⁻³ (2.1 ±0.6) × 10 ⁻³	S=1.9 S=1.8 S=1.1 CL=90% CL=90%	
Mass $m = 3096.8$ Full width $\Gamma = 80$ $\Gamma_{ee} = 5.26 \pm 0.3$ Φ (15) DECAY MODES drons virtual $\gamma \rightarrow$ hadrons $\Gamma_{ee} = 5.26 \pm 0.3$	$I^G(J^{PC}) = 0^-(1^{-87} \pm 0.04 \text{ MeV}$ $7 \pm 5 \text{ keV}$ 37 keV Sca Fraction (Γ_I/Γ) Sca $(87.7 \pm 0.5) \%$ $(17.0 \pm 2.0) \%$ $(5.93 \pm 0.10) \%$ $(5.93 \pm 0.10) \%$ $(5.88 \pm 0.10) \%$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(1.09 \pm 0.22) \%$ $(8.5 \pm 3.4) \times 10^{-3}$ $(7.2 \pm 1.0) \times 10^{-3}$ $(4.3 \pm 0.6) \times 10^{-3}$ $(5.3 \pm 2.0) \times 10^{-3}$ $(5.0 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ $(3.4 \pm 0.8) \times 10^{-3}$ $(2.3 \pm 0.6) \times 10^{-3}$ $(2.3 \pm 0.6) \times 10^{-3}$ $(2.9 \pm 0.7) \times 10^{-3}$ $(2.9 \pm 0.7) \times 10^{-3}$ $(2.04 \pm 0.28) \times 10^{-3}$ $(2.04 \pm 0.28) \times 10^{-3}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(1.68 \pm 0.6) \times 10^{-3}$ $(1.68 \pm 0.6) \times 10^{-3}$ $(1.68 \pm 0.6) \times 10^{-3}$ $(1.48 \pm 0.22) \times 10^{-3}$ $(1.48 \pm 0.22) \times 10^{-3}$ $(1.10 \pm 0.29) \times 10^{-3}$	ale factor/ lence level (N	P MeV/c) 1548 1545 1449 1125 1392 1435 1143 1005 1098 1373 1371 1436 1299 1210 1299 969 1268 878 1318 1030 1394 1179 875 769	$\begin{array}{l} \pi^{+}\pi^{-}\pi^{0}K^{+}K^{-} \\ 4(\pi^{+}\pi^{-})\pi^{0} \\ \pi^{+}\pi^{-}K^{+}K^{-} \\ K\overline{K}\pi \\ p\overline{p}\pi^{+}\pi^{-} \\ 2(\pi^{+}\pi^{-}) \\ 3(\pi^{+}\pi^{-}) \\ n\overline{n}\pi^{+}\pi^{-} \\ \Sigma^{0}\overline{\Sigma^{0}} \\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ p\overline{p}\pi^{+}\pi^{-}\pi^{0} \\ p\overline{p}\pi^{0} \\ \Lambda\overline{\Sigma}^{-}\pi^{+} \\ (\text{or c.c.}) \\ pK^{-}\overline{\Lambda} \\ 2(K^{+}K^{-}) \\ pK^{-}\overline{\Sigma^{0}} \\ K^{+}K^{-} \\ \Lambda\overline{\Lambda}\pi^{0} \\ \pi^{+}\pi^{-} \\ K^{0}_{S}K^{0}_{L} \\ \Lambda\overline{\Sigma}^{+} \\ \text{c.c.} \\ K^{0}_{S}K^{0}_{S} \\ \gamma^{\eta_{c}}(1S) \\ \gamma^{\eta}\pi^{\pi} \\ \gamma^{\eta}(1440) \rightarrow \gamma^{\eta}\pi^{+}\pi^{-} \\ \gamma^{\rho}\rho \\ \gamma^{\eta}(1440) \rightarrow \gamma^{\eta}\pi^{+}\pi^{-} \\ \gamma^{\rho}\rho \\ \gamma^{\eta}(1958) \\ \gamma^{2\pi^{+}2\pi^{-}} \end{array}$	[ee]	(9.0 ±3.0) × 10 ⁻³ (7.2 ±2.3) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.0 ±0.5) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.0 ±2.0) × 10 ⁻³ (4.4 ± 4) × 10 ⁻³ (1.27±0.17) × 10 ⁻³ (3.1 ±1.3) × 10 ⁻³ (2.3 ±0.9) × 10 ⁻³ (2.12±0.10) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.18) × 10 ⁻³ (2.09±0.19) × 10 ⁻³ (2.09±0.19) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.30±0.12) × 10 ⁻³ (1.06±0.12) × 10 ⁻³ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.8) × 10 ⁻⁴ (2.9 ±0.6) × 10 ⁻⁴ (1.47±0.23) × 10 ⁻⁴ (1.08±0.14) × 10 ⁻⁴ (1.5 × 10 ⁻⁶ **edecays* (1.3 ±0.4) % (8.3 ±3.1) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (6.1 ±1.0) × 10 ⁻³ (9.1 ±1.8) × 10 ⁻⁴ (4.5 ±0.8) × 10 ⁻⁴ (4.5 ±0.8) × 10 ⁻⁴ (4.31±0.30) × 10 ⁻³ (6.4 ±2.4) × 10 ⁻⁴ (4.31±0.30) × 10 ⁻³ (2.8 ±0.5) × 10 ⁻³	S=1.9 S=1.8 S=1.1 CL=90% CL=90%	

$\gamma \eta(1440) \rightarrow \gamma \rho^0 \rho^0$	$(1.7 \pm 0.4) \times 10^{-3}$	S=1.3	1223
$\gamma f_2(1270)$	$(1.38\pm0.14)\times10^{-3}$		1286
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	$(8.5 \begin{array}{c} +1.2 \\ -0.9 \end{array}) \times 10^{-4}$	5=1.2	1075
$\gamma \eta$	$(8.6 \pm 0.8) \times 10^{-4}$		1500
$\gamma f_1(1420) \rightarrow \gamma K \overline{K} \pi$	$(8.3 \pm 1.5) \times 10^{-4}$		1220
$\gamma f_1(1285)$	$(6.1 \pm 0.9) \times 10^{-4}$		1283
$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$	$(4.5 \pm 1.2) \times 10^{-4}$		-
$\gamma f_2'(1525)$	$(4.7 \begin{array}{c} +0.7 \\ -0.5 \end{array}) \times 10^{-4}$		1173
$\gamma f_2(1950) \rightarrow$	$(7.0 \pm 2.2) \times 10^{-4}$		-
$\gamma K^*(892) \overline{K}^*(892)$			
$\gamma K^*(892) \overline{K}^*(892)$	$(4.0 \pm 1.3) \times 10^{-3}$		-
$\gamma \phi \phi$	$(4.0 \pm 1.2) \times 10^{-4}$	S=2.1	1166
$\gamma p \overline{p}$	$(3.8 \pm 1.0) \times 10^{-4}$		1232
$\gamma \eta$ (2225)	$(2.9 \pm 0.6) \times 10^{-4}$		834
$\gamma \eta(1760) \rightarrow \gamma \rho^0 \rho^0$	$(1.3 \pm 0.9) \times 10^{-4}$		1048
$\gamma \pi^0$	$(3.9 \pm 1.3) \times 10^{-5}$		1546
$\gamma \rho \overline{\rho} \pi^+ \pi^-$	$< 7.9 \times 10^{-4}$	CL=90%	1107
γγ_	$< 5 \times 10^{-4}$	CL=90%	1548
$\gamma \Lambda \overline{\Lambda}$	$< 1.3 \times 10^{-4}$	CL=90%	1074
3γ	$< 5.5 \times 10^{-5}$	CL=90%	1548
$\gamma f_J(2220)$	$> 2.50 \times 10^{-3}$	CL=99.9%	_
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	$(8 \pm 4) \times 10^{-5}$		_
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$	$(8.1 \pm 3.0) \times 10^{-5}$		-
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$	$(1.5 \pm 0.8) \times 10^{-5}$		_
$\gamma f_0(1500)$	$<(5.7 \pm 0.8) \times 10^{-4}$		1184
$\gamma e^+ e^-$	$(8.8 \pm 1.4) \times 10^{-3}$		-

 $\chi_{c0}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m = 3415.0 \pm 0.8 \text{ MeV}$ Full width $\Gamma = 14.9^{+2.6}_{-2.3} \text{ MeV}$

		Scale factor/	P			
X _C 0(1P) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)			
	Hadronic decays					
$2(\pi^{+}\pi^{-})$	$(2.0 \pm 0.9)\%$	S=2.7	1679			
$\pi^{+}\pi^{-}K^{+}K^{-}$	$(1.8 \pm 0.6)\%$	S=1.9	1580			
$ ho^0 \pi^+ \pi^-$	$(1.6 \pm 0.5)\%$		1608			
$3(\pi_{-}^{+}\pi^{-})$	(1.24 ± 0.22) %		1633			
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}$ + c.c.	$(1.2 \pm 0.4)\%$		1522			
$\pi^+\pi^-$	$(5.0 \pm 0.7) \times 10^{-1}$	-3	1702			
K+K-	$(5.9 \pm 0.9) \times 10^{-3}$	-3	1635			
$\pi^+\pi^-\rho\overline{\rho}$	$(1.8 \pm 0.9) \times 10^{-3}$	-3 S=1.6	1320			
K+K-K+K-	$(2.1 \pm 0.5) \times 10^{-3}$	-3	-			
$K_S^0 K_S^0$	$(2.0 \pm 0.6) \times 10^{-3}$	-3	_			
$\phi \dot{\phi}$	(9 ±5)×10	-4	_			
$K_S^0 K^+ \pi^- + \text{c.c.}$	< 7.1 × 10	-4 CL=90%	-			
$\rho \overline{\overline{\rho}}$	$(2.2 \pm 1.3) \times 10^{-3}$	-4 S=2.1	1427			
Radiative decays						
$\gamma J/\psi(1S)$	$(6.6 \pm 1.8) \times 10^{-1}$	-3	303			
γγ	(2.7 ±1.9) × 10	-4	1708			

 $\chi_{c1}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m = 3510.51 \pm 0.12 \text{ MeV}$ Full width $\Gamma = 0.88 \pm 0.14 \text{ MeV}$

X _{C1} (1P) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/c)
	Hadronic decays		
$3(\pi^{+}\pi^{-})$	$(6.3\pm1.4)\times10^{-3}$		1683
$2(\pi^{+}\pi^{-})$	$(5.6\pm2.6)\times10^{-3}$	2.2	1727
$\pi^+\pi^-K^+K^-$	$(4.9\pm1.2)\times10^{-3}$	1.1	1632
$ ho^0\pi^+\pi^-$	$(3.9 \pm 3.5) \times 10^{-3}$		1659
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(3.2\pm2.1)\times10^{-3}$		1576
$K_S^0 K^+ \pi^-$	$(2.5\pm0.8)\times10^{-3}$		_
$\pi^{+}\pi^{-}\rho\bar{\rho}$	$(5.4\pm2.1)\times10^{-4}$		1381
K+ K- K+ K-	$(4.2\pm1.9)\times10^{-4}$		_
ρ p	$(8.2\pm1.3)\times10^{-5}$	1.2	1483
$\pi^{+}\pi^{-} + K^{+}K^{-}$	$< 2.1 \times 10^{-3}$		-
	Radiative decays		
$\gamma J/\psi(1S)$	(27.3±1.6) %		389

 $\chi_{c2}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m = 3556.18 \pm 0.13 \, \text{MeV}$ Full width $\Gamma = 2.00 \pm 0.18 \, \text{MeV}$

X _{C2} (1P) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
	Hadronic decays		
$2(\pi^{+}\pi^{-})$	(1.2 ± 0.5) %	S=2.2	1751
$\pi^{+}\pi^{-}K^{+}K^{-}$	(10 ±4)×	10 ⁻³	1656
$3(\pi^{+}\pi^{-})$	(9.2 ±2.2) ×	10~3	1707
$ ho^0 \pi^+ \pi^-$	(7 ±4)×	10-3	1683
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{ c.c.}$	(4.8 \pm 2.8) \times	₁₀ -3	1601
$\pi^+ \pi^- \rho \overline{\rho}$	(1.4 \pm 0.6) \times	10 ⁻³ S=1.5	1410
$\phi \phi$	(2.0 ± 0.8) \times	10-3	-
$\pi^+\pi^-$	(1.52±0.25) ×	10-3	1773
K+ K-	(8.1 ± 1.9) \times	10-4	1708
K+K-K+K-	(1.5 ± 0.4) \times	10-3	-
Kg Kg	(6.1 ± 2.3) \times	10-4	-
$\rho \overline{\rho}$	(9.8 \pm 1.0) \times	10 ⁻⁵	1510
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{0}$	< 1.5 %	CL=90%	185
$K_S^0 K^+ \pi^- + \text{c.c.}$	< 1.06 ×	10 ⁻³ CL=90%	-
	Radiative decays		
$\gamma J/\psi(15)$	$(13.5 \pm 1.1)\%$	•	430
77	(1.6 ±0.5)×	10-4	1778

 $\psi(2S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3685.96\pm0.09$ MeV Full width $\Gamma=277\pm31$ keV (S = 1.1) $\Gamma_{e\,e}=2.12\pm0.18$ keV

		Scale factor/	P
ψ(2S) DECAY MODES	Fraction $(\Gamma_{\tilde{I}}/\Gamma)$	Confidence level	
hadrons	(98.10±0.30) %		_
virtual $\gamma ightarrow hadrons$	(2.9 ±0.4) %		_
e+e-	(8.8 ±1.3) ×	10-3	1843
$\mu^+\mu^-$	$(1.03\pm0.35)\%$		1840
Decays into J	$\psi(1S)$ and anythis	ng.	
$J/\psi(1S)$ anything	(55 ±5)%		_
$J/\psi(1S)$ neutrals	(23.1 ±2.3) %		_
$J/\psi(1S)\pi^+\pi^-$	(31.0 ±2.8)%		477
$J/\psi(1S)\pi^0\pi^0$	(18.2 ±2.3)%		481
$J/\psi(1S)\eta$	$(2.7 \pm 0.4)\%$	S=1.6	200
$J/\psi(1S)\pi^0$	(9.7 \pm 2.1) \times	LO ⁻⁴	527
Hadn	onic decays		
$3(\pi^{+}\pi^{-})\pi^{0}$	(3.5 ±1.6)×	10-3	1746
$2(\pi^{+}\pi^{-})\pi^{0}$	$(3.0 \pm 0.8) \times 10^{-1}$		1799
$\omega f_2(1270)$	< 1.7 ×	10 ⁻⁴ CL=90%	_
$\rho a_2(1320)$	< 2.3 ×	10 ⁻⁴ CL=90%	-
$\pi^{+}\pi^{-}K^{+}K^{-}$	(1.6 ± 0.4) \times		1726
$K^*(892)\overline{K}_2^*(1430)^0$		10 ⁻⁴ CL=90%	-
$K_1(1270)^{\pm}K^{\mp}$	$(1.00\pm0.28)\times1$		-
$\pi^+\pi^-\rho\overline{\rho}$	(8.0 ± 2.0) \times		1491
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-} + \text{c.c.}$	(6.7 \pm 2.5) \times		1673
$b_1^{\pm} \pi^{\mp}$	(5.2 \pm 1.3) \times		-
$2(\pi^{+}\pi^{-})$	(4.5 \pm 1.0) \times	10-4	1817
$\rho^0 \pi^+ \pi^-$	(4.2 ± 1.5) \times		1751
Pρ	(1.9 \pm 0.5) \times		1586
$3(\pi^{+}\pi^{-})$	(1.5 \pm 1.0) \times		1774
$\overline{\rho}\rho\pi^0$	(1.4 ±0.5)×		1543
K+ K-	(1.0 ±0.7)×	10-4	1776
$\pi^+\pi^-\pi^0$	(8 ±5)×	10 ⁻⁵	1830
ρπ _+		10 ⁻⁵ CL=90%	1760
$\pi^+\pi^ \Lambda \overline{\Lambda}$		10 ^{—5} 10 ^{—4} CL=90%	1838
$K_1(1400)^{\pm} K^{\mp}$		10 ⁻⁴ CL=90%	1467
Z-Z+		10 CL=90%	
$=$ $=$ $K+K-\pi^0$		10 CL=90%	1285 1754
$K^{+} \overline{K}^{*} (892)^{-} + \text{c.c.}$		10 CL=90%	1698
$\phi f_2'(1525)$		10 CL=90%	-

	Radiative decays		
$\gamma \chi_{c0}(1P)$	(9.3 ±0.9) %		261
$\gamma \chi_{c1}(1P)$	(8.7 ±0.8) %		171
$\gamma \chi_{c2}(1P)$	(7.8 ±0.8) %		127
$\gamma \eta_c(1S)$	(2.8 ±0.6)×		639
$\gamma \eta'(958)$	(1.5 ±0.4)×		1719
$\gamma\eta$		10 ^{—5} CL=90%	1802
77 _		10 ⁻⁴ CL=90%	1843
$\gamma \eta(1440) \rightarrow \gamma K \overline{K} \pi$	< 1.2 ×	10 ⁻⁴ CL=90%	1569

ψ(3770)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3769.9\pm2.5$ MeV (S = 1.8) Full width $\Gamma=23.6\pm2.7$ MeV (S = 1.1) $\Gamma_{ee}=0.26\pm0.04$ keV (S = 1.2)

♦(3770) DECAY MODES	Fraction (Γ_j/Γ)	Scale factor	(MeV/c)
DD	dominant		242
e ⁺ e ⁻	$(1.12\pm0.17)\times10^{-5}$	1.2	1885

ψ(4040) [iii]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 4040 \pm 10$ MeV Full width $\Gamma = 52 \pm 10$ MeV $\Gamma_{ee} = 0.75 \pm 0.15$ keV

♦(4040) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
e+ e-	$(1.4\pm0.4)\times10^{-5}$	2020
$D^0 \overline{D}{}^0$	seen	777
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	seen	578
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen	232

ψ(4160) ^[jij]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4159\pm20$ MeV Full width $\Gamma=78\pm20$ MeV $\Gamma_{ee}=0.77\pm0.23$ keV

♦(4160) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e+ e-	$(10\pm 4) \times 10^{-6}$	2079

ψ(4415) ^[jjj]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4415\pm 6$ MeV Full width $\Gamma=43\pm 15$ MeV (S = 1.8) $\Gamma_{ee}=0.47\pm 0.10$ keV

♦(4415) DECAY MODES	Fraction (Γ_f/Γ)	p (MeV/c)
hadrons	dominant	_
e+ e-	$(1.1\pm0.4)\times10^{-5}$	2207

$b\overline{b}$ MESONS

7(15)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 9460.30 \pm 0.26$ MeV (5 = 3.3) Full width $\Gamma = 52.5 \pm 1.8$ keV $\Gamma_{ee} = 1.32 \pm 0.05$ keV

T(15) DECAY MODES	Fraction (Γ _j /Γ)	Confidence level	p (MeV/c)
τ+τ-	$(2.67^{+0.14}_{-0.16})\%$		4384
e+e-	(2.38±0.11) %		4730
$\mu^+\mu^-$	(2.48±0.06) %		4729
	Hadronic decays		
$J/\psi(1S)$ anything	$(1.1 \pm 0.4) \times 1$	₁₀ -3	4223
$ ho\pi$		10 ⁻⁴ 90%	4698
$\pi^+\pi^-$		10-4 90%	4728
K+K-	, < 5 ×	10 ⁻⁴ 90%	4704
ρ̃p	< 5 ×	10-4 90%	4636
$\pi^0\pi^+\pi^-$	< 1.84 ×	10 ⁻⁵ 90%	
	Radiative decays		
$\gamma \pi^+ \pi^-$	$(6.3 \pm 1.8) \times$	₁₀ –5	_
$\gamma \pi^0 \pi^0$	(1.7 ±0.7)×	₁₀ -5	_
$\gamma 2h^+2h^-$	(7.0 \pm 1.5) \times	10 ^{—4}	4720
$\gamma 3h^+3h^-$	(5.4 ± 2.0) \times	10 ⁻⁴	4703
γ 4 h^+ 4 h^-	(7.4 \pm 3.5) \times	₁₀ -4	4679
$\gamma \pi^+ \pi^- K^+ K^-$	$(2.9 \pm 0.9) \times$		4686
$\gamma 2\pi^+ 2\pi^-$	(2.5 ±0.9)×	₁₀ -4	4720
$\gamma 3\pi^+ 3\pi^-$	(2.5 \pm 1.2) \times		4703
$\gamma 2\pi^{+} 2\pi^{-} K^{+} K^{-}$	(2.4 ±1.2)×	10 ⁻⁴	4658
$\gamma \pi^+ \pi^- p \overline{p}$	(1.5 \pm 0.6) \times		4604
$\gamma 2\pi^+ 2\pi^- p\overline{p}$		₁₀ –5	4563
$\gamma 2K^{+}2K^{-}$	$(2.0 \pm 2.0) \times$	₁₀ –5	4601
$\gamma \eta'(958)$	< 1.3 ×	10 ⁻³ 90%	4682
$\gamma\eta$		10-4 90%	4714
$\gamma f_2'(1525)$	< 1.4 ×	10 ⁻⁴ 90%	4607
$\gamma f_2(1270)$	(8 ±4)×	10 ⁻⁵	4644
$\gamma \eta (1440)$	< 8.2 ×	10-5 90%	4624
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	< 2.6 ×	10-4 90%	4576
$\gamma f_0(2200) \rightarrow \gamma K^+ K^-$	< 2 ×	10-4 90%	4475
$\gamma f_J(2220) \rightarrow \gamma K^+ K^-$	< 1.5 ×	10 ⁻⁵ 90%	4469
$\gamma \eta(2225) \rightarrow \gamma \phi \phi$	< 3 ×	10 ⁻³ 90%	4469
γX		10 ⁻⁵ 90%	-
X = pseudoscalar with n		•	
$\gamma X \overline{X}$		10 ⁻³ 90%	_
$X\overline{X} = \text{vectors with } m <$	3.1 GeV)		

 $\chi_{b0}(1P)^{[kkk]}$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 9859.9 \pm 1.0 \text{ MeV}$

x _{b0} (1P) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	p (MeV/c)
γ T(15)	<6 %	90%	391

 $\chi_{b1}(1P)^{[kkk]}$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass $m = 9892.7 \pm 0.6 \text{ MeV}$ (S = 1.1)

Xb1(1P) DECAY MODES	Fraction $(\Gamma_{\tilde{I}}/\Gamma)$	p (MeV/c)
$\gamma \Upsilon(15)$	(35±8) %	422

 $\chi_{b2}(1P)^{[kkk]}$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass $m = 9912.6 \pm 0.5 \text{ MeV}$ (S = 1.1)

XIQ(1P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
γ T(15)	(22±4) %	443

T(25)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10.02326\pm0.00031$ GeV Full width $\Gamma=44\pm7$ keV $\Gamma_{ee}=0.520\pm0.032$ keV

T(25) DECAY MODES	Fraction (Γ_i/Γ)	Confidence le	evel	р (MeV/c)
$rac{\tau(1S)\pi^+\pi^-}$	(18.8 ±0.6) %			475
$\Upsilon(1S)\pi^0\pi^0$	(9.0 ±0.8) %	ı		480
$\tau^+\tau^-$	(1.7 ±1.6)%			4686
$\mu^+\mu^-$	(1.31±0.21) %			5011
e ⁺ e ⁻	(1.18±0.20) %	ı		5012
$\Upsilon(1S)\pi^0$	< 1.1 ×	10-3 9	0%	531
$T(1S)\eta$	< 2 ×	10-3 9	0%	127
$J/\psi(1S)$ anything	< 6 ×	10 ⁻³ 9	0%	4533
	Radiative decays			
$\gamma \chi_{b1}(1P)$	(6.8 ±0.7)%			131
$\gamma \chi_{b2}(1P)$	(7.0 ±0.6) %	1		110
$\gamma \chi_{b0}(1P)$	(3.8 ±0.6) %	ı		162
$\gamma f_0(1710)$	< 5.9 ×	10-4 9	0%	4866
$\gamma f_2'(1525)$	< 5.3 ×	10-4 9	00%	4896
$\gamma f_2(1270)$	< 2.41 ×	10-4 9	90%	4931

χ_{b0}(2P) [kkk]

$$J^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 10.2321 \pm 0.0006$ GeV

X ₀₀ (2P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
γ T(2S)	(4.6 ± 2.1) %	210
$\gamma T(1S)$	$(9 \pm 6) \times 10^{-3}$	746

χ_{b1}(2P) [kkk]

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass $m=10.2552\pm0.0005~{\rm GeV}$ $m_{\chi_{b1}(2P)}-m_{\chi_{b0}(2P)}=23.5\pm1.0~{\rm MeV}$

Xb1(2P) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>P</i> (MeV/c)
$\gamma T(2S)$	(21 ±4)%	1.5	229
$\gamma \Upsilon(1S)$	$(8.5\pm1.3)\%$	1.3	764

χ_{b2}(2P) [kkk]

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass $m=10.2685\pm0.0004~{\rm GeV}$ $m_{\chi_{b2}(2P)}-m_{\chi_{b1}(2P)}=13.5\pm0.6~{\rm MeV}$

X _{D2} (2P) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$\gamma \Upsilon(2S)$	(16.2±2.4) %	242
$\gamma T(15)$	$(7.1 \pm 1.0) \%$	776

T(35)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10.3552\pm0.0005$ GeV Full width $\Gamma=26.3\pm3.5$ keV

T(35) DECAY MODES	Fraction (Γ_j/Γ)	Scale factor/ Confidence level	p (MeV/c
r(2S) anything	(10.6 ±0.8) %		296
$\Upsilon(2S)\pi^+\pi^-$	(2.8 ±0.6) %	S=2.2	177
$\Upsilon(2S)\pi^0\pi^0$	(2.00 ± 0.32) %		190
$T(2S)\gamma\gamma$	(5.0 ± 0.7) %		327
$\Upsilon(1S)\pi^+\pi^-$	(4.48±0.21) %		814
$\Upsilon(1S)\pi^0\pi^0$	(2.06 ± 0.28) %		816
$T(1S)\eta$	< 2.2 × 1	0 ⁻³ CL=90%	-
$\mu^+\mu^-$	(1.81±0.17) %		5177
e+e-	seen		5177

	Radiative decays		
$\gamma \chi_{b2}(2P)$	$(11.4 \pm 0.8)\%$	5=1.3	87
$\gamma \chi_{b1}(2P)$	$(11.3 \pm 0.6)\%$		100
$\gamma \chi_{b0}(2P)$	(5.4 ±0.6) %	S=1.1	123

T(45) or T(10580)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 10.5800 \pm 0.0035$ GeV Full width $\Gamma = 14 \pm 5$ MeV (S = 1.7) $\Gamma_{ee} = 0.248 \pm 0.031$ keV (S = 1.3)

T(45) DECAY MODES	Fraction (Γ _[/Γ)	Confidence level	(MeV/c)
BB	> 96	%	95%	_
non- <i>B \overline{B}</i>	< 4	%	95%	-
e+ e-	(2.8±	0.7) × 10 ⁻	-5	5290
$J/\psi(3097)$ anything	(2.2±	0.7) × 10	.3	
D^{*+} anything $+$ c.c.	< 7.4	%	90%	5099
ϕ anything	< 2.3	× 10	3 90%	5240
$\varUpsilon(1S)$ anything	< 4	× 10	3 90%	1053
$r(1S)\pi^+\pi^-$	< 1.2	× 10 ⁻	4 90%	_
$\Upsilon(2S)\pi^+\pi^-$	< 3.9	× 10 ⁻	4 90%	_

7(10860)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 10.865 \pm 0.008$ GeV (S = 1.1) Full width $\Gamma = 110 \pm 13$ MeV $\Gamma_{ee} = 0.31 \pm 0.07$ keV (S = 1.3)

7(10860) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
e+e-	$(2.8\pm0.7)\times10^{-6}$	5432

T(11020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 11.019 \pm 0.008$ GeV Full width $\Gamma = 79 \pm 16$ MeV $\Gamma_{ee} = 0.130 \pm 0.030$ keV

T(11020) DECAY MODES	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	p (MeV/c)
e+ e-	$(1.6\pm0.5)\times10^{-6}$	5509

NOTES

In this Summary Table:

When a quantity has "(S = ...)" to its right, the error on the quantity has been enlarged by the "scale factor" S, defined as S = $\sqrt{\chi^2/(N-1)}$, where N is the number of measurements used in calculating the quantity. We do this when S > 1, which often indicates that the measurements are inconsistent. When S > 1.25, we also show in the Particle Listings an ideogram of the measurements. For more about S, see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3-or-more-body decay, p is the largest momentum any of the products can have in this frame.

- [a] See the "Note on $\pi^\pm \to \ell^\pm \nu \gamma$ and $K^\pm \to \ell^\pm \nu \gamma$ Form Factors" in the π^\pm Particle Listings for definitions and details.
- [b] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include low-energy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\text{total}} = 100\%$.
- [c] See the π^{\pm} Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.

- [d] Derived from an analysis of neutrino-oscillation experiments.
- [e] Astrophysical and cosmological arguments give limits of order 10^{-13} ; see the π^0 Particle Listings.
- [f] See the "Note on the Decay Width $\Gamma(\eta \to \gamma \gamma)$ " in our 1994 edition, Phys. Rev. **D50**, 1 August 1994, Part I, p. 1451.
- [g] C parity forbids this to occur as a single-photon process.
- [h] See the "Note on scalar mesons" in the $f_0(1370)$ Particle Listings . The interpretation of this entry as a particle is controversial.
- [i] See the "Note on $\rho(770)$ " in the $\rho(770)$ Particle Listings .
- [J] The e^+e^- branching fraction is from $e^+e^-\to \pi^+\pi^-$ experiments only. The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e\mu$ universality holds, $\Gamma(\rho^0\to \mu^+\mu^-)=\Gamma(\rho^0\to e^+e^-)\times 0.99785$.
- [k] See the "Note on scalar mesons" in the $f_0(1370)$ Particle Listings .
- [/] See the "Note on $a_1(1260)$ " in the $a_1(1260)$ Particle Listings .
- [m] This is only an educated guess; the error given is larger than the error on the average of the published values. See the Particle Listings for details.
- [n] See the "Note on the $f_1(1420)$ " in the $\eta(1440)$ Particle Listings.
- [o] See also the $\omega(1650)$ Particle Listings.
- [p] See the "Note on the $\eta(1440)$ " in the $\eta(1440)$ Particle Listings.
- [q] See the "Note on the $\rho(1450)$ and the $\rho(1700)$ " in the $\rho(1700)$ Particle Listings.
- [r] See the "Note on non- $q\overline{q}$ mesons" in the Particle Listings (see the index for the page number).
- [s] See also the $\omega(1420)$ Particle Listings.
- [t] See the "Note on $f_0(1710)$ " in the $f_0(1710)$ Particle Listings .
- [u] See the note in the K^{\pm} Particle Listings.
- [v] The definition of the slope parameter g of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^\pm Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [w] For more details and definitions of parameters see the Particle Listings.
- [x] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [y] See the K[±] Particle Listings for the energy limits used in this measurement.
- [z] Direct-emission branching fraction.
- [aa] Structure-dependent part.
- [bb] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0}-m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [cc] The CP-violation parameters are defined as follows (see also "Note on CP Violation in $K_5 \to 3\pi$ " and "Note on CP Violation in K_L^0 Decay" in the Particle Listings):

$$\eta_{+-} = |\eta_{+-}| e^{i\phi_{+-}} = \frac{A(K_{\perp}^{0} \to \pi^{+}\pi^{-})}{A(K_{S}^{0} \to \pi^{+}\pi^{-})} = \epsilon + \epsilon'$$

$$\eta_{00} = |\eta_{00}| e^{i\phi_{00}} = \frac{A(K_L^0 \to \pi^0 \pi^0)}{A(K_S^0 \to \pi^0 \pi^0)} = \epsilon - 2\epsilon'$$

$$\delta = \frac{\Gamma(K_L^0 \to \ \pi^-\ell^+\nu) - \Gamma(K_L^0 \to \ \pi^+\ell^-\nu)}{\Gamma(K_L^0 \to \ \pi^-\ell^+\nu) + \Gamma(K_L^0 \to \ \pi^+\ell^-\nu)} \; ,$$

$$\label{eq:mass_eq} {\rm Im}(\eta_{+-0})^2 = \frac{\Gamma(K_5^0 \to \ \pi^+ \, \pi^- \, \pi^0)^{\it CP \ viol.}}{\Gamma(K_L^0 \to \ \pi^+ \, \pi^- \, \pi^0)} \ ,$$

$${\rm Im}(\eta_{000})^2 = \frac{\Gamma(K_S^0 \to ~\pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to ~\pi^0 \pi^0 \pi^0)}$$

where for the last two relations *CPT* is assumed valid, i.e., ${\rm Re}(\eta_{+-0})\simeq 0$ and ${\rm Re}(\eta_{000})\simeq 0$.

- [dd] See the K_5^0 Particle Listings for the energy limits used in this measurement
- [ee] The value is for the sum of the charge states or particle/antiparticle states indicated.

- $[ff]\,\epsilon'/\epsilon$ is derived from $\left|\eta_{00}/\eta_{+-}\right|$ measurements using theoretical input on phases.
- [gg] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [hh] Allowed by higher-order electroweak interactions.
- [ii] Violates CP in leading order. Test of direct CP violation since the indirect CP-violating and CP-conserving contributions are expected to be suppressed.
- [jj] See the "Note on $f_0(1370)$ " in the $f_0(1370)$ Particle Listings and in the 1994 edition.
- [kk] See the note in the L(1770) Particle Listings in Reviews of Modern Physics **56** No. 2 Pt. II (1984), p. S200. See also the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [//] See the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [mm] This result applies to $Z^0 \to c\overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
- [nn] This is a weighted average of D^\pm (44%) and D^0 (56%) branching fractions. See " D^+ and $D^0 \to (\eta$ anything) / (total D^+ and D^0)" under " D^+ Branching Ratios" in the Particle Listings.
- [oo] This value averages the e^+ and μ^+ branching fractions, after making a small phase-space adjustment to the μ^+ fraction to be able to use it as an e^+ fraction; hence our ℓ^+ here is really an e^+ .
- [pp] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [qq] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [rr] The two experiments measuring this fraction are in serious disagreement.
 See the Particle Listings.
- [ss] This mode is not a useful test for a \(\Delta C=1 \) weak neutral current because both quarks must change flavor in this decay.
- [tt] This D_1^0 - D_2^0 limit is inferred from the D^0 - \overline{D}^0 mixing ratio $\Gamma(K^+\pi^-)$ (via \overline{D}^0)) / $\Gamma(K^-\pi^+)$ near the end of the D^0 Listings.
- [uu] The experiments on the division of this charge mode amongst its submodes disagree, and the submode branching fractions here add up to considerably more than the charged-mode fraction.
- [vv] However, these upper limits are in serious disagreement with values obtained in another experiment.
- [ww] For now, we average together measurements of the X e⁺ ν_e and X μ^+ ν_μ branching fractions. This is the average, not the sum.
- [xx] This branching fraction includes all the decay modes of the final-state resonance.
- [yy] This value includes only K^+K^- decays of the $f_0(1710)$, because branching fractions of this resonance are not known.
- [zz] This value includes only $\pi^+\pi^-$ decays of the $f_0(1500)$, because branching fractions of this resonance are not known.
- $[\it aaa]~B^0$ and $B^0_{\rm S}$ contributions not separated. Limit is on weighted average of the two decay rates.
- [bbb] These values are model dependent. See 'Note on Semileptonic Decays' in the B+ Particle Listings.
- [ccc] D^{**} stands for the sum of the $D(1\,^1P_1)$, $D(1\,^3P_0)$, $D(1\,^3P_1)$, $D(1\,^3P_2)$, $D(2\,^1S_0)$, and $D(2\,^1S_1)$ resonances.
- $[\mathit{ddd}]\ \mathit{D^{(*)}}\overline{\mathit{D}^{(*)}}\ \text{stands for the sum of}\ \mathit{D^{*}}\overline{\mathit{D}^{*}},\ \mathit{D^{*}}\overline{\mathit{D}},\ \mathit{D}\,\overline{\mathit{D}^{*}},\ \text{and}\ \mathit{D}\,\overline{\mathit{D}}.$
- [eee] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [fff] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [ggg] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [hhh] Not a pure branching ratio, it is the fraction $(\Gamma_i/\Gamma) \times B(\overline{B} \to B_c)$.
 - [iii] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [ijj] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region
- $[\emph{kkk}]$ Spectroscopic labeling for these states is theoretical, pending experimental information.

See also the table of suggested $q\overline{q}$ quark-model assignments in the Quark Model section.

- Indicates particles that appear in the preceding Meson Summary Table. We do not regard
 the other entries as being established.
- \dagger Indicates that the value of J given is preferred, but needs confirmation.

	LIGHT UNI			STRA		ВОТТ	
	$(S = C = I^G(J^{PC})$	= <i>B</i> = 0) I	$I^{G}(J^{PC})$	$(S=\pm 1, C)$	$C = B = 0$) $I(J^P)$	(B =	±1) ^G (J ^{PC})
• π [±]	1-(0-)	• π ₂ (1670)	1-(2-+)	• K [±]	1/2(0-)	• B [±]	1/2(0-)
• π ⁰	1-(0-+)	• φ(1680)	0-(1)	• K ⁰	1/2(0-)	• B ⁰	1/2(0-)
• η	0+(0-+)	 ρ₃(1690) 	1 ⁺ (3)	• K _S ⁰	1/2(0-)	● B±/B ⁰ ADMI	
• f ₀ (400-1200)	0+(0++)	 ρ(1700) 	1 ⁺ (1)	• κ_L^0	$1/2(0^{-})$	$\bullet B^{\pm}/B^{0}/B_{s}^{0}/b$	
 ρ(770) 	1+(1)	• $f_0(1710)$	0+(0++)	• K*(892)	1/2(1-)	ADMIXTURE	
• ω(782)	0-(1)	a ₂ (1750)	$1^{-(2++)}$	• K ₁ (1270)	1/2(1+)	• B*	1/2(1-)
 η'(958) 	$0^{+}(0^{-}+)$	$\eta(1760)$	$0^{+}(0^{-}+)$	• K ₁ (1400)	1/2(1+)	B* _J (5732)	?(? [?])
• f ₀ (980)	0+(0++)	X(1775)	1-(?-+)	• K*(1410)	$1/2(1^{-})$	BOTTOM,	STRANGE
• a ₀ (980)	$1^{-}(0^{++})$	• $\pi(1800)$	1-(0-+)	• K* ₀ (1430)	1/2(0 ⁺)	$(B=\pm 1,$	
• $\phi(1020)$	0-(1)	$f_2(1810)$	$0^{+}(2^{+})$	• K ₂ *(1430)	1/2(2+)	• B _s ⁰	0(0-)
• $h_1(1170)$	0-(1+-)	• $\phi_3(1850)$	0-(3)	K(1460)	$1/2(0^{-})$	B*	0(1-)
• $b_1(1235)$	1+(1+-)	$\eta_2(1870)$	$0^{+}(2^{-+})$	$K_2(1580)$	$1/2(2^{-})$	$B_{sJ}^{*}(5850)$?(??)
• a ₁ (1260)	$1^{-}(1^{+})$	X(1910)	0 ⁺ (? ^{?+})	K(1630)	1/2(? [?])		
• f ₂ (1270)	$0^{+}(2^{+})$	$f_2(1950)$	$0^{+}(2^{+})$	$K_1(1650)$	1/2(1 ⁺)	BOTTOM,	
• f ₁ (1285)	$0^{+}(1^{+})$	X(2000)	$1^{-}(?^{?+})$	• K*(1680)	$1/2(1^{-})$	(B = C	
• η(1295)	0 ⁺ (0 ⁻ +) 1 ⁻ (0 ⁻ +)	• f ₂ (2010)	$0^{+}(2^{+})$ $0^{+}(0^{+})$	• K ₂ (1770)	1/2(2-)	• B _c ±	0(0-)
• $\pi(1300)$	1 (0 + 1) 1 - (2 + + 1)	$f_0(2020)$	1-(4++)	• K ₃ *(1780)	1/2(3-)	co	-
• $a_2(1320)$ • $f_0(1370)$	0+(0++)	 a₄(2040) f₄(2050) 	0+(4++)	• K ₂ (1820)	1/2(2-)	• η _c (1S)	0+(0-+)
$h_1(1380)$?-(1+-)	f ₀ (2060)	0+(0++)	K(1830)	1/2(0-)	$\bullet J/\psi(1S)$	0-(1)
$\pi_1(1400)$	$1^{-}(1^{-}+)$	$\pi_2(2100)$	$1^{-}(2^{-}+)$	K ₀ *(1950)	1/2(0+)	$\bullet \chi_{c0}(1P)$	0+(0++)
$\bullet f_1(1420)$	0+(1++)	$f_2(2150)$	$0^{+}(2^{+}+)$	K ₂ *(1980)	1/2(2+)	$\bullet \chi_{c1}(1P)$	$0^{+}(1^{+}+)$
• ω(1420)	0-(1)	$\rho(2150)$	1+(1)	• K ₄ *(2045)	1/2(4+)	$h_c(1P)$??(???)
$f_2(1430)$	$0^{+}(2^{+}+)$	$f_0(2200)$	$0^{+}(0^{+}+)$	$K_2(2250)$	1/2(2-)	$\bullet \chi_{c2}(1P)$	0+(2++)
• η(1440)	0+(0-+)	f _J (2220)	0+(2++	K ₃ (2320)	1/2(3 ⁺)	$\eta_c(2S)$??(??+)
• a ₀ (1450)	$1^{-(0++)}$.5(222)	or 4 + +)	K ₅ *(2380)	1/2(5-)	$\bullet \psi(2S)$	0-(1-'-)
• ρ(1450)	1+(1)	$\eta(2225)$	$0^{+}(0^{-}+)$	K ₄ (2500)	$\frac{1}{2}(4^{-})$	• $\psi(3770)$	0-(1)
• f ₀ (1500)	0+(0++)	$\rho_3(2250)$	1+(3)	K(3100)	??(???)	$\psi(3836)$	$0^{-(2^{-})}$
f ₁ (1510)	$0^{+}(1^{+}+)$	• f ₂ (2300)	$0^{+}(2^{+})$	CHAR	MED	$\bullet \psi(4040)$	0-(1)
• $f_2'(1525)$	0+(2++)	f ₄ (2300)	$0^{+}(4^{+})$	(C =		$\bullet \psi(4160)$	$0^{-}(1^{-})$
f ₂ (1565)	$0^{+}(2^{+})$	• f ₂ (2340)	0+(2++)	• D [±]	1/2(0-)	\bullet ψ (4415)	0-(1)
$\pi_1(1600)$	$1^{-}(1^{-+})$	$ ho_5(2350)$	1+(5)	◆ D ⁰	1/2(0-)		-
X(1600)	$2^{+}(2^{+})$	a ₆ (2450)	$1^{-}(6^{++})$	• D*(2007) ⁰	1/2(1-)	bī	
a ₁ (1640)	1+(1++)	$f_6(2510)$	$0^{+}(6^{+}+)$	• D*(2010)±	$1/2(1^{-})$	• \(\gamma(1S)\)	0-(1)
f ₂ (1640)	0+(2++)	X(3250)	??(???)	• $D_1(2420)^0$	1/2(1+)	• $\chi_{b0}(1P)$	0+(0++)
$\eta_2(1645)$	0+(2-+)	OTHER LIGHT U	INFLAVORED	$D_1(2420)^{\pm}$	1/2(? [?])	$\bullet \chi_{b1}(1P)$	$0^+(1^{++})$
• ω(1650)	0-(1)	(S=C=		• D ₂ *(2460) ⁰	1/2(2 ⁺)	$\bullet \chi_{b2}(1P)$	0+(2++)
X(1650)	0-(??-)			• D ₂ *(2460)+	$1/2(2^{+})$	• \(\tau(2S) \)	$0^{-}(1^{-})$
a ₂ (1660)	$1^{-}(2^{+})$	e ⁺ e ⁻ (1100-220		D*(2640)±	1/2(? [?])	$\bullet \chi_{b0}(2P)$	0 ⁺ (0 ⁻⁺ +) 0 ⁺ (1 ⁺ +)
• $\omega_3(1670)$	0-(3)	N(1100-3600	"	CHARMED,	CTDANCE	$\bullet \chi_{b1}(2P)$	0+(1++)
		X(1900-3600)		CHARMED, $(C = S)$		• $\chi_{b2}(2P)$ • $\Upsilon(3S)$	0-(1)
						• $r(45)$	0-(1)
				• D*±	0(0-)	• \(\tau(10860) \)	0-(1)
				• D*±	0(??)	• $\Upsilon(11020)$	0 (1)
				$\bullet D_{s1}(2536)^{\pm}$ $\bullet D_{sJ}(2573)^{\pm}$	0(1 ⁺) 0(? [?])	<u> </u>	
				- 53 (20.0)	- (-)	NON-q\(\overline{q}\) CAN	
						NON-q q CAN	DIDATES

This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3-or 4-star status are included in the main Baryon Summary Table. Due to insufficient data or uncertain interpretation, the other entries in the short table are not established as baryons. The names with masses are of baryons that decay strongly. See our 1986 edition (Physics Letters 170B) for listings of evidence for Z baryons (KN resonances).

p. n N(1440) N(1520) N(1535) N(1650) N(1675) N(1680) N(1700) N(1710) N(1720) N(1900) N(2000) N(2080) N(2090) N(2100) N(2100) N(2100) N(2220) N(2220) N(2250) N(2600)	P ₁₁ P ₁₁ P ₁₁ D ₁₃ S ₁₁ S ₁₁ D ₁₅ F ₁₅ D ₁₃ P ₁₁ P ₁₃ P ₁₃ F ₁₇ F ₁₅ D ₁₃ S ₁₁ P ₁₁ G ₁₇ D ₁₅ H ₁₉ G ₁₉ H ₁₁	*******	Δ(1232) Δ(1600) Δ(1620) Δ(1700) Δ(1750) Δ(1900) Δ(1905) Δ(1910) Δ(1920) Δ(1930) Δ(1940) Δ(2150) Δ(2200) Δ(2300) Δ(2350) Δ(2400) Δ(2420) Δ(2420)	P ₃₃ P ₃₃ P ₃₃ S ₃₁ D ₃₃ P ₃₁ S ₃₁ F ₃₅ P ₃₁ P ₃₃ D ₃₅ P ₃₃ F ₃₇ F ₃₅ S ₃₁ G ₃₇ H ₃₉ D ₃₅ F ₃₇ G ₃₉ H _{3,11} L _{3,12} L _{3,13}	*********	A A(1405) A(1520) A(1600) A(1670) A(1690) A(1800) A(1810) A(1820) A(1830) A(1890) A(2000) A(2020) A(2100) A(2110) A(2325) A(2585)	P ₀₁ S ₀₁ D ₀₃ P ₀₁ S ₀₁ D ₀₃ S ₀₁ P ₀₁ F ₀₅ D ₀₅ P ₀₃ F ₀₇ G ₀₇ F ₀₅ D ₀₃ H ₀₉	**** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** **	Σ+, Σ ⁰ , Σ ⁻ Σ(1385) Σ(1480) Σ(1560) Σ(1560) Σ(1580) Σ(1620) Σ(1660) Σ(1670) Σ(1770) Σ(1770) Σ(1775) Σ(1840) Σ(1915) Σ(1940) Σ(2000) Σ(2030) Σ(2070) Σ(2080) Σ(2100)	P ₁₃ S ₁₁ P ₁₁ D ₁₃ S ₁₁ P ₁₁ D ₁₅ P ₁₃ P ₁₁ F ₁₅ D ₁₃ S ₁₁ F ₁₇ F ₁₅ P ₁₃	*** * * * * * * * * * * * * * * * * * *	$ \Xi^{0}, \Xi^{-} $ $ \Xi(1530) $ $ \Xi(1620) $ $ \Xi(1690) $ $ \Xi(1820) $ $ \Xi(1950) $ $ \Xi(2030) $ $ \Xi(2120) $ $ \Xi(2500) $ $ \Xi(2500) $ $ \Omega^{-} $ $ \Omega(2250)^{-} $ $ \Omega(2470)^{-} $ $ \Lambda_{c}^{+} $ $ \Lambda_{c}(2593)^{+} $ $ \Lambda_{c}(2455)$	P ₁₁ P ₁₃	**** *** *** *** *** ** ** **
N(1900) N(1990) N(2000) N(2080) N(2090) N(2100) N(2190) N(2200) N(2220)	P ₁₃ F ₁₇ F ₁₅ D ₁₃ S ₁₁ P ₁₁ G ₁₇ D ₁₅ H ₁₉	** ** * * * * * * * * * * *	Δ(1940) Δ(1950) Δ(2000) Δ(2150) Δ(2200) Δ(2300) Δ(2350) Δ(2390) Δ(2400)	D ₃₃ F ₃₇ F ₃₅ S ₃₁ G ₃₇ H ₃₉ D ₃₅ F ₃₇ G ₃₉	**** * * * * * * * * * * *	\(\lambda(1890)\) \(\lambda(2000)\) \(\lambda(2020)\) \(\lambda(2100)\) \(\lambda(2110)\) \(\lambda(2325)\) \(\lambda(2350)\)	P ₀₃ F ₀₇ G ₀₇ F ₀₅ D ₀₃	* * * * * * * * * *	$\Sigma(1770)$ $\Sigma(1775)$ $\Sigma(1840)$ $\Sigma(1880)$ $\Sigma(1915)$ $\Sigma(1940)$ $\Sigma(2000)$ $\Sigma(2030)$ $\Sigma(2070)$	P ₁₁ D ₁₅ P ₁₃ P ₁₁ F ₁₅ D ₁₃ S ₁₁ F ₁₇ F ₁₅	**** ** ** ** ** ** ** ** **	$\Xi(2500)$ Ω^{-} $\Omega(2250)^{-}$ $\Omega(2380)^{-}$ $\Omega(2470)^{-}$ Λ_{c}^{+} $\Lambda_{c}(2593)^{+}$ $\Lambda_{c}(2625)^{+}$	DMIXT	**** ** ** ** ** ** ** ** **

^{****} Existence is certain, and properties are at least fairly well explored.

^{***} Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

^{**} Evidence of existence is only fair.

^{*} Evidence of existence is poor.

N BARYONS (S=0, I=1/2)

 $p, N^{+} = uud; \quad n, N^{0} = udd$

 $I(J^P)=\tfrac{1}{2}(\tfrac{1}{2}^+)$

Mass $m = 938.27200 \pm 0.00004 \text{ MeV}$ [a] $= 1.00727646688 \pm 0.00000000013 \,\mathrm{u}$ $|m_p - m_{\bar{p}}|/m_p < 5 \times 10^{-7} [b]$ $\left|\frac{q_{\bar{p}}}{m_{\bar{p}}}\right| / \left(\frac{q_{p}}{m_{p}}\right) = 0.99999999991 \pm 0.000000000009$ $|q_p + q_{\overline{p}}|/e < 5 \times 10^{-7} [b]$ $|q_p + q_e|/e < 1.0 \times 10^{-21} [c]$ Magnetic moment $\mu = 2.792847337 \pm 0.000000029 \,\mu_N$ $(\mu_P + \mu_{\overline{P}}) / \mu_P = (-2.6 \pm 2.9) \times 10^{-3}$ Electric dipole moment $d = (-4 \pm 6) \times 10^{-23}$ ecm Electric polarizability $\overline{\alpha} = (12.1 \pm 0.9) \times 10^{-4} \; \text{fm}^3$ Magnetic polarizability $\overline{\beta}=(12.1\pm0.9)\times10^{-4}~{\rm fm^3}$ Mean life $\tau>1.6\times10^{25}~{\rm years}$ (independent of mode) $>10^{31}~{\rm to}~10^{33}~{\rm years}$ (mode dependent)

Below, for N decays, p and n distinguish proton and neutron partial lifetimes. See also the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. **D50**, 1673) for a short review.

The "partial mean life" limits tabulated here are the limits on τ/B_j , where τ is the total mean life and B_j is the branching fraction for the mode in

	Partial mean life		P
p DECAY MODES	(10 ³⁰ years)	Confidence level	(MeV/c)
Antilep	ton + meson		
$N \rightarrow e^+ \pi$	> 158 (n), > 1600 (p) 90%	459
$N \rightarrow \mu^+ \pi$	> 100 (n), > 473 (p	90%	453
$N \rightarrow \nu \pi$	> 112 (n), > 25 (p)	90%	459
$p \rightarrow e^+ \eta$	> 313	90%	309
$ ho ightarrow \ \mu^+ \eta$	> 126	90%	296
$n \rightarrow \nu \eta$	> 158	90%	310
$N \rightarrow e^+ \rho$	> 217 (n), > 75 (p)	90%	153
$N \rightarrow \mu^+ \rho$	> 228 (n), > 110 (p	90%	119
$N \rightarrow \nu \rho$	> 19 (n), > 162 (p)	90%	153
$ ho ightarrow e^+ \omega$	> 107	90%	142
$\rho \rightarrow \mu^+ \omega$	> 117	90%	104
$n \rightarrow \nu \omega$	> 108	90%	144
$N \rightarrow e^+ K$	> 17 (n), > 150 (p)	90%	337
$p \rightarrow e^+ K_S^0$	> 76	90%	337
$egin{array}{ll} ho ightarrow & e^+ K_L^0 \ ho ightarrow & e^+ K_L^0 \end{array}$	> 44	90%	337
$N \rightarrow \mu^+ K^-$	> 26 (n), > 120 (p)	90%	326
$\rho \rightarrow \mu^+ K_s^0$	> 64	90%	326
$\begin{array}{ccc} \rho \rightarrow & \mu^+ \mathcal{K}_S^0 \\ \rho \rightarrow & \mu^+ \mathcal{K}_L^0 \end{array}$	> 44	90%	326
$N \rightarrow \nu K$	> 86 (n), > 670 (p)	90%	339
$\rho \rightarrow e^+ K^*(892)^0$	> 84	90%	45
$N \rightarrow \nu K^*(892)$	> 78 (n), > 51 (p)	90%	45
Antilept	on + mesons		
$\rho \rightarrow e^+\pi^+\pi^-$	> 82	90%	448
$\rho \rightarrow e^+ \pi^0 \pi^0$	> 147	90%	449
$n \rightarrow e^+ \pi^- \pi^0$	> 52	90%	449
$\rho \rightarrow \mu^+ \pi^+ \pi^-$	> 133	90%	425
$ ho \rightarrow \mu^+ \pi^0 \pi^0$	> 101	90%	427
$n \rightarrow \mu^+ \pi^- \pi^0$	> 74	90%	427
$n \rightarrow e^+ K^0 \pi^-$	> 18	90%	319
Lepto	n + meson		
$n \rightarrow e^-\pi^+$	> 65	90%	459
$n \rightarrow \mu^- \pi^+$	> 49	90%	453
$n \rightarrow e^- \rho^+$	> 62	90%	154
$n \rightarrow \mu^- \rho^+$	> 7	90%	120
$n \rightarrow e^- K^+$	> 32	90%	340
$n \rightarrow \mu^- K^+$	> 57	90%	330

Leptor	n + mesons		
$\rho \rightarrow e^-\pi^+\pi^+$	> 30	90%	448
$n \rightarrow e^- \pi^+ \pi^0$	> 29	90%	449
$\rho \rightarrow \mu^- \pi^+ \pi^+$	> 17	90%	425
$n \rightarrow \mu^- \pi^+ \pi^0$	> 34	90%	427
$\begin{array}{ccc} \rho \rightarrow & e^- \pi^+ K^+ \\ \rho \rightarrow & \mu^- \pi^+ K^+ \end{array}$	> 75	90%	320
	> 245	90%	279
	n + photon(s)		
$p \rightarrow e_{\perp}^{+} \gamma$	> 670	90%	469
$\rho \rightarrow \mu^+ \gamma$	> 478	90%	463
$n \to \nu \gamma$	> 28	90%	470
$p \rightarrow e^+ \gamma \gamma$	> 100 > 219	90% 90%	469 470
$n \rightarrow \nu \gamma \gamma$		90%	470
$p \rightarrow e^+e^+e^-$	more) leptons	00%/	460
$p \rightarrow e^+e^+e^-$ $p \rightarrow e^+\mu^+\mu^-$	> 793 > 359	90% 90%	469 457
$p \rightarrow e^{+} \nu \nu$	> 17	90%	469
$n \rightarrow e^+e^-\nu$	> 257	90%	470
$n \rightarrow \mu^+ e^- \nu$	> 83	90%	464
$n \rightarrow \mu^+\mu^-\nu$	> 79	90%	458
$p \rightarrow \mu^+ e^+ e^-$	> 529	90%	464
$p \rightarrow \mu^+ \mu^+ \mu^-$	> 675	90%	439
$p \rightarrow \mu^+ \nu \nu$	> 21	90%	463
$p \rightarrow e^- \mu^+ \mu^+$	> 6	90%	457
$n \rightarrow 3\nu$	> 0.0005	90%	470
Inclus	sive modes		
$N \rightarrow e^+$ anything	> 0.6 (n, p)	90%	_
$N \rightarrow \mu^+$ anything	> 12 (n, p)	90%	_
$N \rightarrow e^+ \pi^0$ anything	> 0.6 (n, p)	90%	-
$\Delta B = 2 d$	inucleon modes		
The following are lifetime limits p	er iron nucleus.		
$pp \rightarrow \pi^+\pi^+$	> 0.7	90%	_
$pn \rightarrow \pi^+\pi^0$	> 2	90%	_
$nn \rightarrow \pi^{+}\pi^{-}$	> 0.7	90%	_
$nn \rightarrow \pi^0 \pi^0$	> 3.4	90%	_
$pp \rightarrow e^+e^+$	> 5.8	90%	_
$pp \rightarrow e^+ \mu^+$	> 3.6	90%	_
$pp \rightarrow \mu^+ \mu^+$	> 1.7	90%	-
$pn \rightarrow e^+ \overline{\nu}$	> 2.8	90%	-
$pn \rightarrow \mu^+ \overline{\nu}$	> 1.6	90%	_
$nn \rightarrow \nu_e \overline{\nu}_e$	> 0.000012	90%	-
$n n ightarrow u_{\mu} \overline{ u}_{\mu}$	> 0.000006	90%	
₱ DEC	AY MODES		
p DECAY MODES	Partial mean life (years)	Confidence level	p (MeV/c)
$\overline{p} \rightarrow e^- \gamma$	> 7 × 10 ⁵	90%	469
$\frac{c}{\overline{p}} \rightarrow \mu^- \gamma$	> 5 × 10 ⁴	90%	463
$\overline{p} \rightarrow e^{-\pi^0}$	$> 4 \times 10^5$	90%	459
$\bar{p} \rightarrow \mu^- \pi^0$	> 5 × 10 ⁴	90%	453
$\overline{p} \rightarrow e^- \eta$	> 2 × 10 ⁴	90%	309
$\overline{p} \rightarrow \mu^- p$	> 8 × 10 ³	90%	296
$\overline{p} \rightarrow e^{-}K_{S}^{0}$	> 900	90%	337
$\overline{p} \rightarrow \mu^- K_S^0$	$> 4 \times 10^3$	90%	326
$\overline{p} \rightarrow e^{-} K_{L}^{0}$	> 9 × 10 ³	90%	337
$\overline{p} \rightarrow \mu^- K_L^{\bar{0}}$	> 7 × 10 ³	90%	326
-			
$\overline{p} \rightarrow e^- \gamma \gamma$	$> 2 \times 10^4$	90%	469
$\begin{array}{ccc} \overline{p} \rightarrow & e^{-}\gamma\gamma \\ \overline{p} \rightarrow & \mu^{-}\gamma\gamma \end{array}$	$> 2 \times 10^4$ $> 2 \times 10^4$	90% 90%	469 463
$ \begin{array}{ll} \overline{p} \to \mu^- \gamma \gamma \\ \overline{p} \to e^- \rho \\ \overline{p} \to e^- \omega \end{array} $	> 2 × 10 ⁴ > 200 > 200	90%	463
$\begin{array}{ccc} \overline{p} \to & \mu^- \gamma \gamma \\ \overline{p} \to & e^- \rho \end{array}$	> 2 × 10 ⁴ > 200	90% 90%	463 153

п

$$I(J^P)=\tfrac{1}{2}(\tfrac{1}{2}^+)$$

Decay parameters [f]

n DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
pe− v̄ _e	100 %		1.19
C	harge conservation (Q) violating	mode	
$DV_{\rho}\overline{V}_{\rho}$	$Q < 8 \times 10^{-27}$	68%	1.29

N(1440) P₁₁

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Breit-Wigner mass = 1430 to 1470 (\approx 1440) MeV Breit-Wigner full width = 250 to 450 (\approx 350) MeV $p_{\rm beam} = 0.61~{\rm GeV/c}$ $4\pi x^2 = 31.0~{\rm mb}$ Re(pole position) = 1345 to 1385 (\approx 1365) MeV $-2{\rm Im}({\rm pole~position}) = 160$ to 260 (\approx 210) MeV

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Nπ	60-70 %	397
Νππ	30-40 %	342
$\Delta\pi$	20-30 %	143
Nρ	<8 %	1
$N(\pi\pi)_{S-\text{wave}}^{I=0}$	5-10 %	_
Ργ	0.035-0.048 %	414
$\rho\gamma$, helicity=1/2	0.035-0.048 %	414
ηγ	0.009-0.032 %	413
$n\gamma$, helicity=1/2	0.009-0.032 %	413

N(1520) D₁₃

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Breit-Wigner mass = 1515 to 1530 (\approx 1520) MeV Breit-Wigner full width = 110 to 135 (\approx 120) MeV $p_{\text{beam}} = 0.74 \text{ GeV}/c$ $4\pi X^2 = 23.5 \text{ mb}$ Re(pole position) = 1505 to 1515 (\approx 1510) MeV $-2\text{Im}(\text{pole position}) = 110 \text{ to } 120 (<math>\approx$ 115) MeV

N(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	50-60 %	456
Νππ	40-50 %	410
$\Delta\pi$	15-25 %	228
Nρ	15-25 %	t
$N(\pi\pi)_{S-\text{wave}}^{I=0}$	< B %	_
Pγ	0.460.56 %	470
$p\gamma$, helicity=1/2	0.001-0.034 %	470
$p\gamma$, helicity=3/2	0.44-0.53 %	470
ηγ	0.30-0.53 %	470
$n\gamma$, helicity=1/2	0.04-0.10 %	470
$n\gamma$, helicity=3/2	0.25-0.45 %	470

N(1535) S₁₁

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$$

Breit-Wigner mass = 1520 to 1555 (≈ 1535) MeV Breit-Wigner full width = 100 to 250 (≈ 150) MeV $\rho_{\rm beam} = 0.76 \; {\rm GeV/c} \qquad 4\pi {\it X}^2 = 22.5 \; {\rm mb}$ Re(pole position) = 1495 to 1515 (≈ 1505) MeV $-2{\rm Im}({\rm pole \; position}) = 90 \; {\rm to \; 250} \; (\approx 170) \; {\rm MeV}$

N(1535) DECAY MODES	Fraction $(\Gamma_{\frac{1}{2}}/\Gamma)$	p (MeV/c)
Νπ	35-55 %	467
Nη	3055 %	182
Νππ	1-10 %	422
$\Delta\pi$	<1 %	242
Nρ	<4 %	t
$N(\pi\pi)_{S-\text{wave}}^{I=0}$	<3 %	_
N(1440)π	<7 %	t
$p\gamma$	0.15-0.35 %	481
$\rho\gamma$, helicity=1/2	0.15-0.35 %	481
$n\gamma$	0.004-0.29 %	480
$n\gamma$, helicity=1/2	0.004-0.29 %	480

N(1650) S₁₁

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$$

Breit-Wigner mass = 1640 to 1680 (\approx 1650) MeV Breit-Wigner full width = 145 to 190 (\approx 150) MeV $\rho_{\rm beam} = 0.96~{\rm GeV/c}$ $4\pi\lambda^2 = 16.4~{\rm mb}$ Re(pole position) = 1640 to 1680 (\approx 1660) MeV $-2{\rm Im}({\rm pole~position}) = 150~{\rm to~170~} (\approx 160)~{\rm MeV}$

N(1650) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	55-90 %	547
Νη	3-10 %	346
ΛK	3-11 %	161
Νππ	10-20 %	511
$\Delta \pi$	1-7 %	344
Nρ	4–12 %	t
$N(\pi\pi)_{S-\text{wave}}^{I=0}$	<4 %	_
N(1440)π	<5 %	147
Pγ	0.04-0.18 %	558
$p\gamma$, helicity=1/2	0.04-0.18 %	558
$n\gamma$	0.003-0.17 %	557
$n\gamma$, helicity=1/2	0.003-0.17 %	557

N(1675) D₁₅

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^-)$$

Breit-Wigner mass = 1670 to 1685 (\approx 1675) MeV Breit-Wigner full width = 140 to 180 (\approx 150) MeV $p_{\rm beam} = 1.01~{\rm GeV/c}$ $4\pi\lambda^2 = 15.4~{\rm mb}$ Re(pole position) = 1655 to 1665 (\approx 1660) MeV $-2{\rm Im}({\rm pole~position}) = 125~{\rm to~155}~(\approx$ 140) MeV

N(1675) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Nπ	40-50 %	563
ΛK	<1 %	209
Νππ	50-60 %	529
$\Delta \pi$	50-60 %	364
Nρ	< 1-3 %	t
ργ	0.004-0.023 %	575
$p\gamma$, helicity=1/2	0.0-0.015 %	575
$p\gamma$, helicity=3/2	0.0-0.011 %	575
$n\gamma$	0.02-0.12 %	574
$n\gamma$, helicity=1/2	0.006-0.046 %	574
$n\gamma$, helicity=3/2	0.01-0.08 %	574

N(1680) F₁₅

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$$

Breit-Wigner mass = 1675 to 1690 (\approx 1680) MeV Breit-Wigner full width = 120 to 140 (\approx 130) MeV $p_{\rm beam} = 1.01~{\rm GeV/c}$ $4\pi\lambda^2 = 15.2~{\rm mb}$ Re(pole position) = 1665 to 1675 (\approx 1670) MeV $-2{\rm Im}({\rm pole~position}) = 105~{\rm to~}135~(\approx 120)~{\rm MeV}$

Fraction (Γ_i/Γ)	p (MeV/c)
60-70 %	567
30-40 %	532
515 %	369
3-15 %	t
5-20 %	-
0.21-0.32 %	578
0.001-0.011 %	578
0.20-0.32 %	578
0.021-0.046 %	577
0.004-0.029 %	577
0.01-0.024 %	577
	60-70 % 30-40 % 5-15 % 3-15 % 5-20 % 0.21-0.32 % 0.001-0.011 % 0.20-0.32 % 0.021-0.046 % 0.004-0.029 %

N(1700) D₁₃

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Breit-Wigner mass = 1650 to 1750 (\approx 1700) MeV Breit-Wigner full width = 50 to 150 (\approx 100) MeV $p_{\rm beam} = 1.05~{\rm GeV}/c$ $4\pi\lambda^2 = 14.5~{\rm mb}$ Re(pole position) = 1630 to 1730 (\approx 1680) MeV $-2{\rm Im}({\rm pole~position}) = 50$ to 150 (\approx 100) MeV

N(1700) DECAY MODES	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	p (MeV/c)
Νπ	5-15 %	580
ΛK	<3 %	250
Νππ	85-95 %	547
Nρ	<35 %	t
Pγ	0.01-0.05 %	591
$p\gamma$, helicity=1/2	0.00.024 %	591
$p\gamma$, helicity=3/2	0.002-0.026 %	591
$n\gamma$	0.01-0.13 %	590
$n\gamma$, helicity=1/2	0.0-0.09 %	590
$n\gamma$, helicity=3/2	0.01-0.05 %	590

$N(1710) P_{11}$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Breit-Wigner mass = 1680 to 1740 (\approx 1710) MeV Breit-Wigner full width = 50 to 250 (\approx 100) MeV $\rho_{\rm beam} = 1.07~{\rm GeV}/c$ $4\pi\lambda^2 = 14.2~{\rm mb}$ Re(pole position) = 1670 to 1770 (\approx 1720) MeV $-2{\rm Im}({\rm pole~position}) = 80$ to 380 (\approx 230) MeV

Fraction (Γ_i/Γ)	p (MeV/c)
10-20 %	587
5-25 %	264
40-90 %	554
15-40 %	393
5-25 %	48
10-40 %	-
0.002-0.05%	598
0.002-0.05%	598
0.0-0.02%	597
0.0-0.02%	597
	10-20 % 5-25 % 40-90 % 15-40 % 5-25 % 10-40 % 0.002-0.05% 0.002-0.05%

N(1720) P₁₃

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

Breit-Wigner mass = 1650 to 1750 (\approx 1720) MeV Breit-Wigner full width = 100 to 200 (\approx 150) MeV $p_{\rm beam}$ = 1.09 GeV/c $4\pi\lambda^2$ = 13.9 mb Re(pole position) = 1650 to 1750 (\approx 1700) MeV - 2Im(pole position) = 110 to 390 (\approx 250) MeV

N(1720) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	10-20 %	594
ΛK	1-15 %	278
Νππ	>70 %	561
Nρ	70-85 %	104
Ργ	0.003-0.10 %	604
$p\gamma$, helicity=1/2	0.003-0.08 %	604
$p\gamma$, helicity=3/2	0.001-0.03 %	604
ηγ	0.002-0.39 %	603
$n\gamma$, helicity=1/2	0.0-0.002 %	603
$n\gamma$, helicity=3/2	0.001-0.39 %	603
•		

N(2190) G₁₇

$$I(J^P) = \frac{1}{2}(\frac{7}{2}^-)$$

Breit-Wigner mass = 2100 to 2200 (\approx 2190) MeV Breit-Wigner full width = 350 to 550 (\approx 450) MeV $p_{\rm beam}$ = 2.07 GeV/c $4\pi\lambda^2$ = 6.21 mb Re(pole position) = 1950 to 2150 (\approx 2050) MeV $-2{\rm Im}({\rm pole position})$ = 350 to 550 (\approx 450) MeV

N(2190) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	10-20 %	888

N(2220) H₁₉

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^+)$$

Breit-Wigner mass = 2180 to 2310 (\approx 2220) MeV Breit-Wigner full width = 320 to 550 (\approx 400) MeV $\rho_{\text{beam}} = 2.14 \text{ GeV/c}$ $4\pi\lambda^2 = 5.97 \text{ mb}$ Re(pole position) = 2100 to 2240 (\approx 2170) MeV $-2\text{Im}(\text{pole position}) = 370 \text{ to } 570 (<math>\approx$ 470) MeV

N(2220) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
Νπ	10-20 %	905

N(2250) G₁₉

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^-)$$

Breit-Wigner mass = 2170 to 2310 (\approx 2250) MeV Breit-Wigner full width = 290 to 470 (\approx 400) MeV $p_{\text{beam}} = 2.21 \text{ GeV}/c$ $4\pi\lambda^2 = 5.74 \text{ mb}$ Re(pole position) = 2080 to 2200 (\approx 2140) MeV $-2\text{Im}(\text{pole position}) = 280 \text{ to } 680 (<math>\approx$ 480) MeV

N(2250) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
Nπ	5-15 %	923

N(2600) I_{1,11}

$$I(J^P) = \tfrac{1}{2}(\tfrac{11}{2}^-)$$

Breit-Wigner mass = 2550 to 2750 (\approx 2600) MeV Breit-Wigner full width = 500 to 800 (\approx 650) MeV $p_{\text{beam}} = 3.12 \text{ GeV}/c$ $4\pi\lambda^2 = 3.86 \text{ mb}$

N(2600) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
Nπ	5–10 %	1126

\triangle BARYONS (S=0, I=3/2)

 $\Delta^{++}=uuu, \quad \Delta^{+}=uud, \quad \Delta^{0}=udd, \quad \Delta^{-}=ddd$

$\Delta(1232) P_{33}$

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Breit-Wigner mass (mixed charges) = 1230 to 1234 (≈ 1232) MeV

Breit-Wigner full width (mixed charges) = 115 to 125 (≈ 120) MeV

 $p_{\text{beam}} = 0.30 \text{ GeV}/c$ $4\pi X^2 = 94.8 \text{ mb}$ Re(pole position) = 1209 to 1211 (\approx 1210) MeV $-2\text{Im}(\text{pole position}) = 98 \text{ to } 102 \ (\approx 100) \text{ MeV}$

△(1232) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Nπ	>99 %	227
Nγ	0.52-0.60 %	259
$N\gamma$, helicity=1/2	0.11-0.13 %	259
$N\gamma$, helicity=3/2	0.41-0.47 %	259

$\Delta(1600) P_{33}$

$$I(J^P)=\tfrac{3}{2}(\tfrac{3}{2}^+)$$

Breit-Wigner mass = 1550 to 1700 (≈ 1600) MeV Breit-Wigner full width = 250 to 450 (≈ 350) MeV $p_{\text{beam}} = 0.87 \text{ GeV/}c$ $4\pi X^2 = 18.6 \text{ mb}$ Re(pole position) = 1500 to 1700 (≈ 1600) MeV -2Im(pole position) = 200 to 400 (≈ 300) MeV

△(1600) DECAY MODES	Fraction (Γ_i/Γ)	ρ (MeV/c)
Νπ	10-25 %	512
Νππ	75-90 %	473
$\Delta\pi$	40-70 %	301
Νρ	<25 %	+
N(1440)π	10-35 %	74
$N\gamma$	0.001-0.02 %	525
$N\gamma$, helicity=1/2	0.0-0.02 %	525
$N\gamma$, helicity=3/2	0.001-0.005 %	525

Δ(1620) S₃₁

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^-)$$

Breit-Wigner mass = 1615 to 1675 (\approx 1620) MeV Breit-Wigner full width = 120 to 180 (\approx 150) MeV $p_{\rm beam} = 0.91 \; {\rm GeV}/c \qquad 4\pi\lambda^2 = 17.7 \; {\rm mb}$ Re(pole position) = 1580 to 1620 (\approx 1600) MeV $-2{\rm Im}({\rm pole \; position}) = 100 \; {\rm to \; } 130 \; (\approx 115) \; {\rm MeV}$

A(1620) DECAY MODES	Fraction (Γ_i/Γ)	ρ (MeV/c)
Νπ	20-30 %	526
Νππ	70-80 %	488
$\Delta\pi$	30-60 %	318
Νρ	7-25 %	t
$N\gamma$	0.004-0.044 %	538
$N\gamma$, helicity=1/2	0.004-0.044 %	538

△(1700) D₃₃

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^-)$$

Breit-Wigner mass = 1670 to 1770 (\approx 1700) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV $p_{\rm beam} = 1.05~{\rm GeV/c}$ $4\pi\lambda^2 = 14.5~{\rm mb}$ Re(pole position) = 1620 to 1700 (\approx 1660) MeV $-2{\rm Im}({\rm pole~position}) = 150~{\rm to~250~}(\approx$ 200) MeV

Δ(1700) DECAY MODES	Fraction (Γ_j/Γ)	ρ (MeV/c)
Νπ	10-20 %	580
$N\pi\pi$	80-90 %	547
$\Delta\pi$	30-60 %	385
Νρ	30-55 %	t
Nγ	0.12-0.26 %	591
$N\gamma$, helicity=1/2	0.08-0.16 %	591
$N\gamma$, helicity=3/2	0.025-0.12 %	591

△(1905) F₃₅

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^+)$$

Breit-Wigner mass = 1870 to 1920 (\approx 1905) MeV Breit-Wigner full width = 280 to 440 (\approx 350) MeV $\rho_{\text{beam}} = 1.45 \text{ GeV/c}$ $4\pi\lambda^2 = 9.62 \text{ mb}$ Re(pole position) = 1800 to 1860 (\approx 1830) MeV $-2\text{Im}(\text{pole position}) = 230 \text{ to } 330 \ (\approx$ 280) MeV

△(1905) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	5-15 %	713
Νππ	85-95 %	687
$\Delta \pi$	<25 %	542
Nρ	>60 %	421
$N\gamma$	0.01-0.03 %	721
$N\gamma$, helicity=1/2	0.0-0.1 %	721
$N\gamma$, helicity=3/2	0.004-0.03 %	721

Δ(1910) P₃₁

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$$

Breit-Wigner mass = 1870 to 1920 (≈ 1910) MeV Breit-Wigner full width = 190 to 270 (≈ 250) MeV $p_{\rm beam} = 1.46 \; {\rm GeV/c}$ $4\pi\lambda^2 = 9.54 \; {\rm mb}$ Re(pole position) = 1830 to 1880 (≈ 1855) MeV $-2{\rm Im}({\rm pole \; position}) = 200 \; {\rm to \; 500} \; (\approx 350) \; {\rm MeV}$

△(1910) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Nπ	15-30 %	716
Nγ	0.0-0.2 %	725
$N\gamma$, helicity=1/2	0.0-0.2 %	725

△(1920) P₃₃

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Breit-Wigner mass = 1900 to 1970 (≈ 1920) MeV Breit-Wigner full width = 150 to 300 (≈ 200) MeV $\rho_{\text{beam}} = 1.48 \text{ GeV}/c$ $4\pi \chi^2 = 9.37 \text{ mb}$ Re(pole position) = 1850 to 1950 (≈ 1900) MeV -2Im(pole position) = 200 to 400 (≈ 300) MeV

△(1920) DECAY MODES	Fraction (Γ_i/Γ)	ρ (MeV/c)
Νπ	5-20 %	722

Δ (1930) D_{35}

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^-)$$

Breit-Wigner mass = 1920 to 1970 (\approx 1930) MeV Breit-Wigner full width = 250 to 450 (\approx 350) MeV $p_{\text{beam}} = 1.50 \text{ GeV}/c$ $4\pi\lambda^2 = 9.21 \text{ mb}$ Re(pole position) = 1840 to 1940 (\approx 1890) MeV $-2\text{Im}(\text{pole position}) = 200 \text{ to } 300 (<math>\approx$ 250) MeV

△(1930) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	10-20 %	729
$N\gamma$	0.0-0.02 %	737
Nγ, helicity=1/2	0.0-0.01 %	737
$N\gamma$, helicity=3/2	0.0-0.01 %	737

△(1950) F₃₇

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^+)$$

Breit-Wigner mass = 1940 to 1960 (\approx 1950) MeV Breit-Wigner full width = 290 to 350 (\approx 300) MeV $p_{\text{beam}} = 1.54 \text{ GeV/c}$ $4\pi\lambda^2 = 8.91 \text{ mb}$ Re(pole position) = 1880 to 1890 (\approx 1885) MeV $-2\text{Im}(\text{pole position}) = 210 \text{ to 270 } (\approx$ 240) MeV

△(1950) DECAY MODES	Fraction (Γ_i/Γ)	ρ (MeV/c)
Νπ	35-40 %	741
Νππ		716
$\Delta \pi$	20-30 %	574
Νρ	<10 %	469
$N\gamma$	0.08-0.13 %	749
$N\gamma$, helicity=1/2	0.03-0.055 %	749
$N\gamma$, helicity=3/2	0.05-0.075 %	749

Δ(2420) H_{3,11}

$$I(J^P) = \frac{3}{2}(\frac{11}{2}^+)$$

Breit-Wigner mass = 2300 to 2500 (≈ 2420) MeV Breit-Wigner full width = 300 to 500 (≈ 400) MeV $p_{\rm beam}$ = 2.64 GeV/c 4 π X 2 = 4.68 mb Re(pole position) = 2260 to 2400 (≈ 2330) MeV -2Im(pole position) = 350 to 750 (≈ 550) MeV

△(2420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	5–15 %	1023

Λ BARYONS (S = -1, I = 0)

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Mass $m=1115.683\pm0.006$ MeV $\left(m_{\Lambda}-m_{\overline{\Lambda}}\right)$ / $m_{\Lambda}=\left(-0.1\pm1.1\right)\times10^{-5}$ (S = 1.6) Mean life $\tau=\left(2.632\pm0.020\right)\times10^{-10}$ s (S = 1.6) $c\tau=7.89$ cm

Magnetic moment $\mu=-0.613\pm0.004~\mu_N$ Electric dipole moment $d<1.5\times10^{-16}~{\rm e\,cm}$, CL = 95%

Decay parameters

$$\begin{array}{lll} p\pi^{-} & \alpha_{-} = 0.642 \pm 0.013 \\ " & \phi_{-} = (-6.5 \pm 3.5)^{\circ} \\ " & \gamma_{-} = 0.76 \, ^{[h]} \\ " & \Delta_{-} = (8 \pm 4)^{\circ} \, ^{[h]} \\ n\pi^{0} & \alpha_{0} = +0.65 \pm 0.05 \\ pe^{-} \overline{\nu}_{e} & g_{A}/g_{V} = -0.718 \pm 0.015 \, ^{[f]} \end{array}$$

A DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$\rho\pi^-$	(63.9 ±0.5)%	101
$n\pi^0$	(35.8 ±0.5)%	104
$n\gamma$	$(1.75\pm0.15)\times10^{-3}$	162
$p\pi^-\gamma$	[i] (8.4 ± 1.4) $\times 10^{-4}$	101
$pe^{-}\overline{\nu}_{e}$	$(8.32\pm0.14)\times10^{-4}$	163
$p\mu^-\overline{\nu}_{\mu}$	$(1.57\pm0.35)\times10^{-4}$	131

Λ(1405) S₀₁

$$I(J^P) = 0(\frac{1}{2}^-)$$

Mass $m=1406\pm 4$ MeV Full width $\Gamma=50.0\pm 2.0$ MeV Below \overline{K} N threshold

A(1405) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Σπ	100 %	152

Λ(1520) D₀₃

$$I(J^P)=0(\tfrac{3}{2}^-)$$

Mass $m = 1519.5 \pm 1.0$ MeV $^{[J]}$ Full width $\Gamma = 15.6 \pm 1.0$ MeV $^{[J]}$

 $p_{\text{beam}} = 0.39 \text{ GeV}/c$ $4\pi\lambda^2 = 82.8 \text{ mb}$

A(1520) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
NK	45 ± 1%	244
Σπ	42 ± 1%	267
Λππ	$10 \pm 1\%$	252
Σππ	$0.9 \pm 0.1\%$	152
$\Lambda\gamma$	$0.8\pm0.2\%$	351

Λ(1600) P₀₁

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass m = 1560 to 1700 (≈ 1600) MeV Full width $\Gamma = 50$ to 250 (≈ 150) MeV $p_{\text{beam}} = 0.58 \text{ GeV/}c$ $4\pi X^2 = 41.6 \text{ mb}$

A(1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	15-30 %	343
$\Sigma \pi$	10-60 %	336

Λ(1670) S₀₁

$$I(J^P) = 0(\frac{1}{2}^-)$$

Mass m = 1660 to 1680 (≈ 1670) MeV Full width Γ = 25 to 50 (≈ 35) MeV $p_{\rm beam} = 0.74~{\rm GeV}/c$ $4πX^2 = 28.5~{\rm mb}$

A(1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	15-25 %	414
Σπ	20-60 %	393
Λη	15-35 %	. 64

Λ(1690) D₀₃

$$I(J^P) = 0(\frac{3}{2})$$

Mass m=1685 to $1695~(\approx 1690)$ MeV Full width $\Gamma=50$ to $70~(\approx 60)$ MeV $p_{\rm beam}=0.78~{\rm GeV}/c$ $4\pi X^2=26.1~{\rm mb}$

A(1690) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
NK	20-30 %	433
Σπ	20-40 %	409
Λππ	~ 25 %	415
Σππ	~ 20 %	350

Λ(1800) S₀₁

$$I(J^P) = 0(\frac{1}{2}^-)$$

Mass m=1720 to 1850 (\approx 1800) MeV Full width $\Gamma=200$ to 400 (\approx 300) MeV $p_{\mathrm{beam}}=1.01~\mathrm{GeV}/c$ $4\pi\mathrm{X}^2=17.5~\mathrm{mb}$

A(1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	25-40 %	528
$\Sigma \pi$	seen	493
$\Sigma(1385)\pi$	seen	345
N K *(892)	seen	t

Λ(1810) P₀₁

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Mass m=1750 to 1850 (\approx 1810) MeV Full width $\Gamma=50$ to 250 (\approx 150) MeV $p_{\rm beam}=1.04~{\rm GeV}/c$ $4\pi X^2=17.0~{\rm mb}$

A(1810) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20-50 %	537
$\Sigma \pi$	10-40 %	501
$\Sigma(1385)\pi$	seen	356
N K* (892)	30-60 %	†

Λ(1820) F₀₅

$$I(J^P) = O(\frac{5}{2}^+)$$

Mass m=1815 to 1825 (≈ 1820) MeV Full width Γ = 70 to 90 (≈ 80) MeV $p_{\rm beam}=1.06~{\rm GeV}/c$ $4\pi X^2=16.5~{\rm mb}$

A(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	55-65 %	545
Σπ	8-14 %	508
$\Sigma(1385)\pi$	5-10 %	362

Λ(1830) D₀₅

$$I(J^P) = 0(\frac{5}{2}^-)$$

Mass m=1810 to $1830~(\approx 1830)$ MeV Full width $\Gamma=60$ to $110~(\approx 95)$ MeV $p_{\rm beam}=1.08~{\rm GeV}/c$ $4\pi \vec{\lambda}^2=16.0~{\rm mb}$

A(1830) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	3-10 %	553
$\Sigma \pi$	35-75 %	515
$\Sigma(1385)\pi$	>15 %	371

Λ(1890) P₀₃

$$I(J^P)=0(\tfrac{3}{2}^+)$$

Mass m=1850 to 1910 (≈ 1890) MeV Full width $\Gamma=60$ to 200 (≈ 100) MeV $p_{\rm beam}=1.21~{\rm GeV}/c$ $4\pi\lambda^2=13.6~{\rm mb}$

A(1890) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20–35 %	599
Σπ	3-10 %	559
$\Sigma(1385)\pi$ $N\overline{K}^*(892)$	seen	420
N K*(892)	seen	233

A(2100) G₀₇

$$I(J^P) = 0(\frac{7}{2}^-)$$

Mass m=2090 to 2110 (\approx 2100) MeV Full width $\Gamma=100$ to 250 (\approx 200) MeV $p_{\rm beam}=1.68~{\rm GeV}/c$ $4\pi X^2=8.68~{\rm mb}$

A(2100) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	25-35 %	751
$\Sigma\pi$	∼ 5 %.	704
$\Lambda\eta$	<3 %	617
ΞK	<3 %	483
$\Lambda \omega$	<8 %	443
N K*(892)	10-20 %	514

$\Lambda(2110) F_{05}$

$$I(J^P)=0(\tfrac{5}{2}^+)$$

Mass m=2090 to 2140 (≈ 2110) MeV Full width $\Gamma=150$ to 250 (≈ 200) MeV $\rho_{\rm beam}=1.70~{\rm GeV/}c$ $4\pi X^2=8.53~{\rm mb}$

A(2110) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	5–25 %	757
$\Sigma \pi$	10-40 %	711
Λω	seen	455
$\Sigma(1385)\pi$	seen	589
N K*(892)	10-60 %	524

Λ(2350) H₀₉

$$I(J^P)=0(\tfrac{9}{2}^+)$$

Mass m=2340 to 2370 (\approx 2350) MeV Full width Γ = 100 to 250 (\approx 150) MeV $p_{\rm beam}=2.29~{\rm GeV}/c$ $4\pi X^2=5.85~{\rm mb}$

A(2350) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	~ 12 %	915
Σπ	~ 10 %	867

Σ BARYONS (S=-1, I=1)

$$\Sigma^+ = uus$$
, $\Sigma^0 = uds$, $\Sigma^- = dds$

Σ+

$$I(J^P)=1(\tfrac{1}{2}^+)$$

 $\begin{array}{l} \text{Mass } m = 1189.37 \pm 0.07 \; \text{MeV} \quad (\text{S} = 2.2) \\ \text{Mean life } \tau = (0.8018 \pm 0.0026) \times 10^{-10} \; \text{s} \\ c\tau = 2.404 \; \text{cm} \\ (\tau_{\varSigma^+} - \tau_{\overline{\varSigma}^-}) \ / \ \tau_{\varSigma^+} = (-0.6 \pm 1.2) \times 10^{-3} \\ \text{Magnetic moment } \mu = 2.458 \pm 0.010 \; \mu_N \quad (\text{S} = 2.1) \\ \Gamma(\varSigma^+ \to n \ell^+ \nu) \ / \Gamma(\varSigma^- \to n \ell^- \overline{\nu}) \ < \ 0.043 \end{array}$

Decay parameters

$$\begin{array}{lll} \rho\pi^0 & \alpha_0 = -0.980^{+0.017}_{-0.015} \\ \text{"} & \phi_0 = (36 \pm 34)^{\circ} \\ \text{"} & \gamma_0 = 0.16 \ [h] \\ \text{"} & \Delta_0 = (187 \pm 6)^{\circ} \ [h] \\ \text{"} & \alpha_+ = 0.068 \pm 0.013 \\ \text{"} & \phi_+ = (167 \pm 20)^{\circ} \ (S = 1.1) \\ \text{"} & \gamma_+ = -0.97 \ [h] \\ \text{"} & \Delta_+ = (-73^{+133}_{-10})^{\circ} \ [h] \\ \rho\gamma & \alpha_\gamma = -0.76 \pm 0.08 \end{array}$$

Σ+ DECAY MODES		Fra	ction (Γ_i/Γ)	Confiden	ce level	<i>p</i> (MeV/ <i>c</i>)
$p\pi^0$. (51.57±0.30)	%		189
$n\pi^+$		(-	48.31 ± 0.30)	%		185
$p\gamma$		($1.23 \pm 0.05)$:	$\times 10^{-3}$		225
$n\pi^+\gamma$	[/) (4.5 ± 0.5)	$\times 10^{-4}$		185
$\Lambda e^+ \nu_e$		(2.0 ± 0.5)	\times 10 ⁻⁵		71
			plating mod			
$ne^+\nu_e$	SQ	<	5	× 10 ⁻⁶	90%	224
$n\mu^+ u_{\mu}$	5Q	<		× 10 ⁻⁵	90%	202
pe+e-	SI	<	7	× 10 ⁻⁶		225

Σ0

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass $m=1192.642\pm0.024$ MeV $m_{\Sigma^-}-m_{\Sigma^0}=4.807\pm0.035$ MeV (S = 1.1) $m_{\Sigma^0}-m_{\Lambda}=76.959\pm0.023$ MeV Mean life $\tau=(7.4\pm0.7)\times10^{-20}$ s $c_T=2.22\times10^{-11}$ m Transition magnetic moment $|\mu_{\Sigma\Lambda}|=1.61\pm0.08~\mu_N$

∑ ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
Λγ	100 %		74
$\Lambda \gamma \gamma$	< 3 %	90%	74
Λe ⁺ e ⁻	$[k] 5 \times 10^{-3}$		74

ζ,

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass $m=1197.449\pm0.030$ MeV (S = 1.2) $m_{\Sigma^-}-m_{\Sigma^+}=8.08\pm0.08$ MeV (S = 1.9) $m_{\Sigma^-}-m_{\Lambda}=81.766\pm0.030$ MeV (S = 1.2) Mean life $\tau=(1.479\pm0.011)\times10^{-10}$ s (S = 1.3) $c\tau=4.434$ cm

Magnetic moment $\mu=-1.160\pm0.025~\mu_{N}~(S=1.7)$

Decay parameters

 $\begin{array}{lll} n\pi^- & \alpha_- = -0.068 \pm 0.008 \\ " & \phi_- = (10 \pm 15)^\circ \\ " & \gamma_- = 0.98 \ ^{[h]} \\ " & \Delta_- = (249^+_{-120}^{+12})^\circ \ ^{[h]} \\ ne^- \overline{\nu}_e & g_A/g_V = 0.340 \pm 0.017 \ ^{[f]} \\ " & f_2(0)/f_1(0) = 0.97 \pm 0.14 \\ " & D = 0.11 \pm 0.10 \\ Ae^- \overline{\nu}_e & g_V/g_A = 0.01 \pm 0.10 \ ^{[f]} \\ " & g_{WM}/g_A = 2.4 \pm 1.7 \ ^{[f]} \end{array} \right. \label{eq:decomposition}$

Σ- DECAY MODES	Fraction (Γ_{j}/Γ)	p (MeV/c)
$n\pi^-$	(99.848±0.005) %	193
$n\pi^-\gamma$	[i] (4.6 ± 0.6) $\times 10^{-4}$	193
пе [—] ⊽ _е	$(1.017\pm0.034)\times10^{-3}$	230
$n\mu^-\overline{\nu}_{\mu}$	$(4.5 \pm 0.4) \times 10^{-4}$	210
$\Lambda e^- \overline{\nu}_e$	$(5.73 \pm 0.27) \times 10^{-5}$	79

Σ(1385) P₁₃

$$I(J^P)=1(\tfrac{3}{2}^+)$$

 $\begin{array}{llll} \Sigma(1385)^{+} mass \ m = 1382.8 \pm 0.4 \ \text{MeV} & (\text{S} = 2.0) \\ \Sigma(1385)^{0} \ mass \ m = 1383.7 \pm 1.0 \ \text{MeV} & (\text{S} = 1.4) \\ \Sigma(1385)^{-} mass \ m = 1387.2 \pm 0.5 \ \text{MeV} & (\text{S} = 2.2) \\ \Sigma(1385)^{+} \text{full width } \Gamma = 35.8 \pm 0.8 \ \text{MeV} \\ \Sigma(1385)^{0} \ \text{full width } \Gamma = 36 \pm 5 \ \text{MeV} \\ \Sigma(1385)^{-} \text{full width } \Gamma = 39.4 \pm 2.1 \ \text{MeV} & (\text{S} = 1.7) \\ \text{Below } \overline{K} \ N \ \text{threshold} \end{array}$

Σ(1385) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
Λπ	88±2 %	208
$\Sigma \pi$	12±2 %	127

Σ(1660) P₁₁

$$I(J^P)=1(\frac{1}{2}^+)$$

Mass m=1630 to $1690~(\approx 1660)$ MeV Full width $\Gamma=40$ to $200~(\approx 100)$ MeV $p_{\rm Deam}=0.72~{\rm GeV}/c$ $4\pi X^2=29.9~{\rm mb}$

Σ(1660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	10-30 %	405
$\Lambda\pi$	seen	439
$\Sigma \pi$	seen	385

Σ(1670) D₁₃

$$I(J^P) = 1(\frac{3}{2}^-)$$

Mass m=1665 to 1685 (≈ 1670) MeV Full width Γ = 40 to 80 (≈ 60) MeV $p_{\rm beam}=0.74~{\rm GeV}/c$ $4\pi \lambda^2=28.5~{\rm mb}$

Σ(1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	7–13 %	414
$\Lambda\pi$	5-15 %	447
$\Sigma \pi$	30-60 %	393

Σ (1750) S_{11}

$$I(J^P) = 1(\frac{1}{2}^-)$$

Mass m=1730 to $1800~(\approx 1750)$ MeV Full width $\Gamma=60$ to $160~(\approx 90)$ MeV $p_{\rm beam}=0.91~{\rm GeV}/c$ $4\pi\lambda^2=20.7~{\rm mb}$

Σ(1750) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	10-40 %	486
$\Lambda\pi$	seen	507
Σπ	<8 %	455
Ση	15-55 %	81

Σ(1775) D₁₅

$$I(J^P) = 1(\frac{5}{2}^-)$$

Mass m=1770 to 1780 (\approx 1775) MeV Full width $\Gamma=105$ to 135 (\approx 120) MeV $p_{\rm Deam}=0.96$ GeV/c $4\pi\lambda^2=19.0$ mb

Fraction (Γ_i/Γ)	p (MeV/c)
37-43%	508
14-20%	525
2-5%	474
8-12%	324
17-23%	198
	37-43% 14-20% 2-5% 8-12%

Σ (1915) F_{15}

$$I(J^P)=1(\frac{5}{2}^+)$$

Mass m = 1900 to 1935 (\approx 1915) MeV Full width Γ = 80 to 160 (\approx 120) MeV $p_{\rm beam} = 1.26~{\rm GeV/}c$ $4\pi\lambda^2 = 12.8~{\rm mb}$

Σ(1915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	5-15 %	618
$\Lambda\pi$	seen	622
$\Sigma \pi$	seen	577
$\Sigma(1385)\pi$	<5 %	440

Σ(1940) D₁₃

$$I(J^P)=1(\tfrac{3}{2}^-)$$

Mass m=1900 to 1950 (≈ 1940) MeV Full width Γ = 150 to 300 (≈ 220) MeV $ρ_{\rm beam}=1.32~{\rm GeV}/c$ $4πλ^2=12.1~{\rm mb}$

Σ(1940) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
NK	<20 %	637
$\Lambda\pi$	seen	639
$\Sigma \pi$	seen	594
$\Sigma(1385)\pi$	seen	460
$\Lambda(1520)\pi$	seen	354
$\Delta(1232)\overline{K}$	seen	410
NK*(892)	seen	320

Σ(2030) F₁₇

$$I(J^P) = 1(\frac{7}{2}^+)$$

Mass m=2025 to 2040 (≈ 2030) MeV Full width $\Gamma=150$ to 200 (≈ 180) MeV $p_{\mathrm{beam}}=1.52~\mathrm{GeV}/c$ $4\pi \overline{\lambda}^2=9.93~\mathrm{mb}$

Σ(2030) DECAY MODES	Fraction $(\Gamma_{\tilde{I}}/\Gamma)$	p (MeV/c)
NK	17-23 %	702
Λπ	17-23 %	700
Σπ	5-10 %	657
ΞK	<2 %	412
$\Sigma(1385)\pi$	5-15 %	529
$\Lambda(1520)\pi$	10-20 %	430
$\Delta(1232)\overline{K}$	10-20 %	498
NK*(892)	<5 %	438

Σ(2250)

$$I(J^P) = 1(??)$$

Mass m=2210 to 2280 (≈ 2250) MeV Full width $\Gamma=60$ to 150 (≈ 100) MeV $p_{\rm beam}=2.04$ GeV/c $4\pi X^2=6.76$ mb

Σ(2250) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c	
NK	<10 %	851	
$\Lambda\pi$	seen	842	
$\Sigma \pi$	seen	803	

Ξ BARYONS (S=-2, I=1/2) $\Xi^0 = uss$, $\Xi^- = dss$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Scale factor/

 $\ensuremath{\textit{P}}$ is not yet measured; + is the quark model prediction.

Mass $m=1314.83\pm0.20$ MeV $m_{\Xi^+}-m_{\Xi^0}=6.48\pm0.24$ MeV Mean life $\tau=(2.90\pm0.09)\times10^{-10}$ s c au=8.71 cm

Magnetic moment $\mu = -1.250 \pm 0.014~\mu_N$

Decay parameters

E ⁰ DECAY MODES		Fraction $(\Gamma_i /$	Γ) Con	fidence level	(MeV/c)
$\Lambda \pi^0$		(99.51±0.0	05) %	S=1.2	135
$\Lambda \gamma \Sigma^0 \gamma$		(1.18±0.3	$30) \times 10^{-3}$	S=2.0	184
$\Sigma^0 \gamma$		(3.5 ± 0.4)) × 10 ⁻³		117
$\Sigma^+e^-\overline{\nu}_e$		(2.7 ± 0.4)) × 10 ⁻⁴		120
$\Sigma^+ \mu^- \overline{\nu}_{\mu}$		< 1.1	$\times 10^{-3}$	CL=90%	64
		Q) violating m pidden (<i>S2</i>) n			
$\Sigma^- e^+ u_e$	5Q	< 9	$\times 10^{-4}$	CL=90%	112
$\Sigma^-\mu^+ u_\mu$	5Q	< 9	$\times 10^{-4}$	CL=90%	49
$p\pi^-$	52	< 4	$\times 10^{-5}$	CL=90%	299
$pe^-\overline{\nu}_e$	52	< 1.3	$\times 10^{-3}$		323
$p\mu^-\overline{\nu}_{\mu}$	52	< 1.3	$\times 10^{-3}$		309

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $\ensuremath{\emph{P}}$ is not yet measured; + is the quark model prediction.

Mass $m=1321.31\pm0.13~{\rm MeV}$ Mean life $\tau=(1.639\pm0.015)\times10^{-10}~{\rm s}$ $c\tau=4.91~{\rm cm}$ Magnetic moment $\mu=-0.6507\pm0.0025~\mu_N$

Decay parameters

$$\Lambda \pi^ \alpha = -0.456 \pm 0.014$$
 (S = 1.8)
" $\phi = (4 \pm 4)^\circ$
" $\gamma = 0.89 \, [h]$
" $\Delta = (188 \pm 8)^\circ \, [h]$
 $\Lambda e^- \overline{\nu}_e$ $g_A/g_V = -0.25 \pm 0.05 \, [f]$

= DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c
$\Lambda \pi^-$	(99.887±0.035)	%	139
$\Sigma^-\gamma$	(1.27 ± 0.23)	× 10 ⁻⁴	118
$\Lambda e^{-}\overline{\nu}_{e}$	(5.63 ± 0.31)	1×10^{-4}	190
$\Lambda\mu^-\overline{ u}_{\mu}$	$(3.5 \begin{array}{c} +3.5 \\ -2.2 \end{array})$) × 10 ⁻⁴	163
$\Sigma^0 e^- \overline{ u}_e$	(8.7 ± 1.7)	× 10 ⁻⁵	122
$\Sigma^0 \mu^- \overline{\nu}_{\mu}$	< 8	× 10 ⁻⁴ 90%	70
$\Xi^0 e^- \overline{\nu}_e$	< 2.3	\times 10 ⁻³ 90%	6

$\Delta S = 2$ forbidden (S2) modes						
$n\pi^-$	52	<	1.9	\times 10 ⁻⁵	90%	303
$ne^-\overline{\nu}_e$	52	<	3.2	$\times 10^{-3}$	90%	327
$n\mu^{-}\overline{\nu}_{\mu}$	52	<	1.5	%	90%	314
$p\pi^-\pi^-$	52	<	4	× 10 ⁴	90%	223
$p\pi^-e^-\overline{\nu}_e$	52	<	4	$\times 10^{-4}$	90%	304
$p\pi^-\mu^-\overline{\nu}_{\mu}$	52	<	4	$\times 10^{-4}$	90%	250
ρμ-μ-	L .	<	4	× 10 ⁻⁴	90%	272

Ξ(1530) P₁₃

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

 $\Xi(1530)^0$ mass $m=1531.80\pm0.32$ MeV (S = 1.3) $\Xi(1530)^-$ mass $m=1535.0\pm0.6$ MeV $\Xi(1530)^0$ full width $\Gamma=9.1\pm0.5$ MeV $\Xi(1530)^-$ full width $\Gamma=9.9\pm\frac{1.7}{1.9}$ MeV

≡(1530) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/c)
Ξπ	100 %		152
$\equiv \gamma$	<4 %	90%	200

Ξ(1690)

$$I(J^P) = \frac{1}{2}(?^?)$$

Mass $m=1690\pm 10$ MeV [J]Full width $\Gamma < 30$ MeV

≡(1690) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$\Lambda \overline{K}$	seen	240
ΣK	seen	51
$\Xi \pi$	seen	-
$\Xi^-\pi^+\pi^-$	possibly seen	214

Ξ(1820) D₁₃

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Mass $m = 1823 \pm 5 \text{ MeV}^{[j]}$ Full width $\Gamma = 24^{+15}_{-10} \text{ MeV}^{[j]}$

E(1820) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)	
ΛK	large	400	
$\Sigma \overline{K}$	small	320	
$\equiv \pi$	small	413	
$\Xi(1530)\pi$	small	234	

Ξ(1950)

$$I(J^{P}) = \frac{1}{2}(?^{?})$$

Mass $m=1950\pm15$ MeV [J] Full width $\Gamma=60\pm20$ MeV [J]

≡(1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
ΛK	seen	522	
$\Sigma \overline{K}$	possibly seen	460	
Ξπ	seen	518	

Ξ(2030)

$$I(J^P) = \frac{1}{2}(\geq \frac{5}{2}?)$$

Mass $m = 2025 \pm 5 \text{ MeV } [j]$ Full width $\Gamma = 20^{+15}_{-5} \text{ MeV } [j]$

 ≡(2030) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Lambda K}$	~ 20 %	589
$\Sigma \overline{K}$	\sim 80 %	533
$\Xi \pi$	small	573
$\Xi(1530)\pi$ $\Lambda \overline{K}\pi$	small	421
	small	501
$\Sigma \overline{K} \pi$	small	430

Scale factor/

589

Ω BARYONS (S=-3, I=0)

 $\Omega^- = sss$

Ω^{-}

$$I(J^P) = 0(\frac{3}{2}^+)$$

 ${\it J}^{\it P}$ is not yet measured; ${3\over2}^+$ is the quark model prediction.

Mass
$$m=1672.45\pm0.29$$
 MeV $(m_{\Omega^-}-m_{\overline{\Omega}^+})$ / $m_{\Omega^-}=(-1\pm8)\times10^{-5}$ Mean life $\tau=(0.821\pm0.011)\times10^{-10}$ s $c\tau=2.461$ cm $(\tau_{\Omega^-}-\tau_{\overline{\Omega}^+})$ / $\tau_{\Omega^-}=-0.002\pm0.040$ Magnetic moment $\mu=-2.02\pm0.05$ μ_N

Decay parameters

$$\begin{array}{ll} \Lambda K^{-} & \alpha = -0.026 \pm 0.023 \\ \frac{1}{2} [\alpha (\Lambda K^{-}) + \alpha (\overline{\Lambda} K^{+})] = -0.004 \pm 0.040 \\ \Xi^{0} \pi^{-} & \alpha = 0.09 \pm 0.14 \\ \Xi^{-} \pi^{0} & \alpha = 0.05 \pm 0.21 \end{array}$$

Ω^- DECAY MODES	Fraction (Γ_j/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
ΛK-	(67.8±0.7) %		211
$=0$ π^-	(23.6±0.7) %		294
$\underline{\underline{-}}$ π^0	(B.6±0.4) %		290
$\bar{z}^-\pi^+\pi^-$	$(4.3^{+3.4}_{-1.3}) \times$	10-4	190
$\Xi(1530)^{0}\pi^{-}$	$(6.4^{+5.1}_{-2.0}) \times$	10-4	17
$\bar{z}^0 e^- \bar{\nu}_e$	(5.6±2.8) ×	10-3	319
$\Xi^-\gamma$	< 4.6 ×	10 ⁻⁴ 90%	314
Δ5	= 2 forbidden (52) mod	ies	
$\Lambda\pi^-$	52 < 1.9 ×	10-4 90%	449

Ω(2250)⁻

$$I(J^P) = 0(??)$$

Mass $m=2252\pm 9~\text{MeV}$ Full width $\Gamma=55\pm 18~\text{MeV}$

Ω(2250) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Ξ-π+K-	seen	531
$\Xi(1530)^0 K^-$	seen	437

CHARMED BARYONS

$$(C = +1)$$

$$\begin{array}{lll} \varLambda_c^+ = udc, & \varSigma_c^{++} = uuc, & \varSigma_c^+ = udc, & \varSigma_c^0 = ddc, \\ & \Xi_c^+ = usc, & \Xi_c^0 = dsc, & \varOmega_c^0 = ssc \end{array}$$

Λ_c+

 $p\phi$

$$I(J^P)=0(\tfrac{1}{2}^+)$$

J is not well measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m = 2284.9 \pm 0.6 \; {\rm MeV}$$

Mean life $\tau = (0.206 \pm 0.012) \times 10^{-12} \; {\rm s}$ $c\tau = 61.8 \; {\rm \mu m}$

Decay asymmetry parameters

$$\begin{array}{ll} \Lambda \pi^+ & \alpha = -0.98 \pm 0.19 \\ \Sigma^+ \pi^0 & \alpha = -0.45 \pm 0.32 \\ \Lambda \ell^+ \nu_\ell & \alpha = -0.82^{+0.11}_{-0.07} \end{array}$$

Nearly all branching fractions of the Λ_c^+ are measured relative to the $pK^-\pi^+$ mode, but there are no model-independent measurements of this branching fraction. We explain how we arrive at our value of $\mathrm{B}(\Lambda_c^+\to pK^-\pi^+)$ in a Note at the beginning of the branching-ratio measurements in the Listings. When this branching fraction is eventually well determined, all the other branching fractions will slide up or down proportionally as the true value differs from the value we use here.

,			Scale factor/	P
A+ DECAY MODES	f	Fraction (Γ_j/Γ)	Confidence level	(MeV/c)
Hadroni	c modes v	with a p and on	e \overline{K}	
$ \rho \overline{K}^0 $		(2.3 ± 0.6)	6	872
ρK ⁻ π ⁺	[/]	(5.0 ± 1.3)	6	822
p K *(892) ⁰	[<i>m</i>]	(1.6 ± 0.5)	6	681
$\Delta(1232)^{++}K^{-}$		(8.6 ± 3.0)	< 10 ^{−3}	709
$\Lambda(1520)\pi^{+}$	[m]	(5.9 ± 2.1):	< 10 ⁻³	626
$pK^-\pi^+$ nonresonant		(2.8 ± 0.8)	%	822
$\rho \overline{K}^0 \pi^0$		(3.3 ± 1.0)	%	822
$ \rho \widetilde{K}^0 \eta$		(1.2 ± 0.4)	/ _e	56,7
$\rho \overline{K}{}^0 \pi^+ \pi^-$		(2.6 ± 0.7)	%	753
$\rho K^- \pi^+ \pi^0$		(3.4 ± 1.0)	%	758
p K*(892) π ⁺	[<i>m</i>]	(1.1 ± 0.5)	%	579
$p(K^-\pi^+)_{\text{nonresonant}}\pi^0$		(3.6 ± 1.2)	%	758
$\Delta(1232)\overline{K}^*(892)$		seeп		416
$pK^{-}\pi^{+}\pi^{+}\pi^{-}$		(1.1 ± 0.8) :	× 10 ^{−3}	670
$pK^{-}\pi^{+}\pi^{0}\pi^{0}$		(8 ± 4):	× 10 ^{−3}	676
$\rho K^- \pi^+ \pi^0 \pi^0 \pi^0$		(5.0 ± 3.4)	× 10 ⁻³	573
Hadronic mo	des with	a p and zero or	two K's	
$\rho \pi^+ \pi^-$		(3.5 ± 2.0)	× 10 ⁻³	926
$pf_0(980)$	[m]	(2.8 ± 1.9)	× 10 ⁻³	621
$\rho \pi^{+} \pi^{+} \pi^{-} \pi^{-}$		(1.8 ± 1.2)	× 10 ⁻³	851
pK+K-		(2.3 ± 0.9)	× 10 ³	615

[m] (1.2 \pm 0.5) \times 10⁻³

	Hadronic modes with a hyperon				
$\Lambda\pi^+$	$(9.0 \pm 2.8) \times 10^{-3}$	863			
$\Lambda\pi^+\pi^0$	$(3.6 \pm 1.3)\%$	843			
$\Lambda \rho^+$	< 5 % CL=95%	638			
$\Lambda \pi^+ \pi^+ \pi^-$	$(3.3 \pm 1.0)\%$	806			
$\Lambda \pi^+ \eta$	$(1.8 \pm 0.6)\%$	690			
$\Sigma(1385)^+\eta$	[m] (8.5 \pm 3.3) \times 10 ⁻³	569			
$\Lambda K^+ \overline{K}^0$	$(6.0 \pm 2.1) \times 10^{-3}$	441			
$\sum_{n=1}^{\infty} \pi^{+}$	$(9.9 \pm 3.2) \times 10^{-3}$	824			
$\Sigma^{+}\pi^{0}$	(1.00 ± 0.34) %	826			
$\sum_{n=1}^{+} \eta$	$(5.5 \pm 2.3) \times 10^{-3}$	712			
$\Sigma^{+}\pi^{+}\pi^{-}$	$(3.4 \pm 1.0)\%$	803			
$\Sigma^+ \rho^0$	< 1.4 % CL=95%	578			
$\Sigma^-\pi^+\pi^+$	$(1.8 \pm 0.8)\%$	798			
$\Sigma^0\pi^+\pi^0$	$(1.8 \pm 0.8)\%$	802			
$\Sigma^{0} \pi^{+} \pi^{+} \pi^{-} $ $\Sigma^{+} \pi^{+} \pi^{-} \pi^{0}$	(1.1 ± 0.4) %	762			
$\Sigma^+\pi^-\pi^-\pi^-$ $\Sigma^+\omega$		766			
	[m] (2.7 ± 1.0) %	568			
$\Sigma^+\pi^+\pi^+\pi^-\pi^-$	$(3.0 \ ^{+}_{-} \ ^{4.1}_{2.1}) \times 10^{-3}$	707			
$\Sigma^+ K^+ K^-$	$(3.5 \pm 1.2) \times 10^{-3}$	346			
$oldsymbol{\Sigma}^+ oldsymbol{\phi}$	[m] $(3.5 \pm 1.7) \times 10^{-3}$	292			
$\mathcal{\Sigma}^+\mathcal{K}^+\pi^-$	$(7 + \frac{6}{4}) \times 10^{-3}$	668			
Ξ0 K+	$(3.9 \pm 1.4) \times 10^{-3}$	652			
$\Xi^-K^+\pi^+$	$(4.9 \pm 1.7) \times 10^{-3}$	564			
$\Xi(1530)^0 K^+$	[m] (2.6 ± 1.0) × 10 ⁻³	471			
Semileptonic modes					
$\Lambda \ell^+ \nu_\ell$	$[n]$ (2.0 \pm 0.6) %	-			
$\Lambda e^{+} \nu_{e}$	$(2.1 \pm 0.6)\%$	870			
$\Lambda \mu^+ \nu_{\mu}$	$(2.0 \pm 0.7)\%$	866			
,	Inclusive modes				
e ⁺ anything	(4.5 ± 1.7) %	_			
pe ⁺ anything	$(1.8 \pm 0.9)\%$	_			
p anything	(50 ±16)%	_			
p anything (no Λ)	(12 ±19)%	_			
n anything	$(50 \pm 16)\%$	_			
n anything (no Λ)	(29 ±17)%	_			
Λ anything \	(35 ±11)% S=1.4	_			
$\mathcal{\Sigma}^{\pm}$ anything	[o] (10 ± 5)%	-			
$\Delta C = 1$ weak neutral current (C1) modes, or					
	Lepton number (L) violating modes				

Lepton number (L) violating modes

	•		` '	-		
$\rho \mu^+ \mu^-$		C1	< 3.4	× 10 ⁻⁴	CL=90%	936
$\Sigma^- \mu^+ \mu^+$		1	< 7.0	× 10 ⁻⁴	CI = 90%	811

Λ_c(2593)+

$$I(J^P)=0(\tfrac{1}{2}^-)$$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant.

Mass
$$m=2593.9\pm0.8~{\rm MeV}$$
 $m-m_{\Lambda_c^+}=308.9\pm0.6~{\rm MeV}~{\rm (S=1.1)}$ Full width $\Gamma=3.6^{+2.0}_{-1.3}~{\rm MeV}$

 $\Lambda_{C}^{+}\pi\pi$ and its submode $\Sigma_{C}(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited $\Lambda_{\mathcal{C}}^+$ having this mass; and the submode seems to dominate.

A _C (2593)+ DECAY MODES	Fraction (Γ_i/Γ)	ρ (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	[ρ] ≈ 67 %	124
$\Sigma_{c}(2455)^{++}\pi^{-}$	24 ± 7 %	17
$\Sigma_c (2455)^0 \pi^+$	24 ± 7 %	23
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 \pm 10 %	124
$\Lambda_c^+ \bar{\pi}^0$ $\Lambda_c^+ \gamma$	not seen	261
$\Lambda_c^+ \gamma$	not seen	290

$\Lambda_c(2625)^+$

$$I(J^P) = 0(\frac{3}{2}^-)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

Mass
$$m=2626.6\pm0.8$$
 MeV (S = 1.2) $m-m_{\Lambda_c^+}=341.7\pm0.6$ MeV (S = 1.6) Full width $\Gamma<1.9$ MeV, CL = 90%

 $\Lambda_{C}^{+}\pi\pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

A _c (2625)+ DECAY MODES	Fraction (Γ_j/Γ)	Confidence level	р (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	[ρ] ≈ 67%		184
$\Sigma_c(2455)^{++}\pi^-$	<5	90%	100
$\Sigma_{c}^{\circ}(2455)^{0}\pi^{+}$	<5	90%	101
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	large		184
$A_c^+ \pi^0$ $A_c^+ \gamma$	not seen		293
$\Lambda_c^+ \gamma$	not seen		319

$\Sigma_c(2455)$

$$I(J^P) = 1(\frac{1}{2}^+)$$

 $\overline{J^P}$ has not been measured; $\frac{1}{2}$ has not been measured;

$$\Sigma_c(2455)^{++}$$
 mass $m=2452.8\pm0.6$ MeV $\Sigma_c(2455)^{+}$ mass $m=2453.6\pm0.9$ MeV $\Sigma_c(2455)^{0}$ mass $m=2452.2\pm0.6$ MeV $m_{\Sigma_c^{++}}-m_{\Lambda_c^{+}}=167.87\pm0.19$ MeV $m_{\Sigma_c^{-}}-m_{\Lambda_c^{+}}=168.7\pm0.6$ MeV $m_{\Sigma_c^{-}}-m_{\Lambda_c^{+}}=167.30\pm0.20$ MeV $m_{\Sigma_c^{-}}-m_{\Lambda_c^{-}}=0.57\pm0.23$ MeV $m_{\Sigma_c^{+}}-m_{\Sigma_c^{0}}=0.57\pm0.23$ MeV $m_{\Sigma_c^{+}}-m_{\Sigma_c^{0}}=1.4\pm0.6$ MeV

 $\Lambda_c^+\pi$ is the only strong decay allowed to a Σ_c having this mass.

Σ_{c} (2455) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi$	≈ 100 %	90

$\Sigma_c(2520)$

$$I(J^P) = 1(\frac{3}{2}^+)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ has the quark-model prediction.

$$\begin{array}{l} \varSigma_c(2520)^{++} \text{mass } m = 2519.4 \pm 1.5 \text{ MeV} \\ \varSigma_c(2520)^0 \quad \text{mass } m = 2517.5 \pm 1.4 \text{ MeV} \\ m_{\varSigma_c(2520)^{++}} - m_{\Lambda_c^+} = 234.5 \pm 1.4 \text{ MeV} \\ m_{\varSigma_c(2520)^0} - m_{\Lambda_c^+} = 232.6 \pm 1.3 \text{ MeV} \\ m_{\varSigma_c(2520)^{++}} - m_{\varSigma_c(2520)^0} = 1.9 \pm 1.7 \text{ MeV} \\ \varSigma_c(2520)^{++} \text{full width } \Gamma = 18 \pm 5 \text{ MeV} \\ \varSigma_c(2520)^0 \quad \text{full width } \Gamma = 13 \pm 5 \text{ MeV} \\ \end{array}$$

 $\Lambda_{c}^{+}\pi$ is the only strong decay allowed to a Σ_{c} having this mass.

Σ _C (2520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi$	≈ 100 %	180

۱۱ ۱۰

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2466.3\pm1.4~{\rm MeV}$$

Mean life $\tau=(0.33^{+0.06}_{-0.04})\times10^{-12}~{\rm s}$
 $c\tau=98~{\rm \mu m}$

No absolute branching fractions have been measured. The following are branching ratios relative to $\Xi^-\pi^+\pi^+$.

≡+ DECAY MODES	Fraction (Γ_j/Γ)	Confidence level	(MeV/c)
$\Lambda K^- \pi^+ \pi^+$	[q] 0.58±0.18		785
$\Lambda \overline{K}^* (892)^0 \pi^+$	[m,q] < 0.29	90%	603
$\Sigma(1385)^{+} K^{-} \pi^{+}$	[m,q] < 0.41	90%	677
$\Sigma^+ K^- \pi^+$	[q] 1.18 ± 0.31		809
$\Sigma^{+}\overline{K}^{*}(892)^{0}$	[m,q] 0.92±0.30		654
$\Sigma^0 K^- \pi^+ \pi^+$	[q] 0.49±0.26		734
$\equiv^0 \pi^+$	[q] 0.55 ± 0.16		876
$\Xi^-\pi^+\pi^+$	[q] = 1.0		850
$\Xi(1530)^{0}\pi^{+}$	[m,q] < 0.2	90%	749
$\equiv^0 \pi^+ \pi^0$	[q] 2.34±0.68		855
$\bar{\Xi}^{0}\pi^{+}\pi^{+}\pi^{-}$	[q] 1.74 ± 0.50		817
$\Xi^0 e^+ \nu_e$	[q] $2.3 \begin{array}{c} +0.7 \\ -0.9 \end{array}$		883
$pK^-\pi^+$	$[q]$ 0.20 \pm 0.05		-

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^+$ is the quark-model prediction.

Mass
$$m=2471.8\pm 1.4~{\rm MeV}$$
 $m_{\equiv^+_{c}}-m_{\equiv^+_{c}}=5.5\pm 1.8~{\rm MeV}$ Mean life $\tau=(0.098^{+0.023}_{-0.015})\times 10^{-12}~{\rm s}$ $c\tau=29~{\rm \mu m}$

≡0 DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}{}^0$	seen	907
$\Lambda \overline{K}{}^0 \pi^+ \pi^-$	seen	788
$\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}$	seen	704
$\equiv \pi^+$	seen	876
$\Xi^{-}\pi^{+}\pi^{+}\pi^{-}$	seen	817
pK-K*(892) ⁰	seen	408
Ω^-K^+	seen	523
$\Xi^-e^+\nu_e$	seen	883
$\Xi^+\ell^+$ anything	seen	-

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^+$ is the quark-model prediction.

Mass
$$m=2574.1\pm3.3~{\rm MeV}$$
 $m_{\Xi_c^{\prime+}}-m_{\Xi_c^+}=107.8\pm3.0~{\rm MeV}$

The $\Xi_c^{\prime +} - \Xi_c^+$ mass difference is too small for any strong decay to occur.

E'+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_c^+ \gamma$	seen	106

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^+$ is the quark-model prediction.

Mass
$$m = 2578.8 \pm 3.2 \text{ MeV}$$

 $m_{\Xi_c^{\prime 0}} - m_{\Xi_c^0} = 107.0 \pm 2.9 \text{ MeV}$

The $\Xi_c^{\prime 0} - \Xi_c^0$ mass difference is too small for any strong decay to occur.

E 0 DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_c^0 \gamma}$	seen	105

 $\Xi_c(2645)$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

 J^P has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$\begin{split} &\Xi_c(2645)^+ \text{ mass } m = 2647.4 \pm 2.0 \text{ MeV} \quad \text{(S = 1.2)} \\ &\Xi_c(2645)^0 \text{ mass } m = 2644.5 \pm 1.8 \text{ MeV} \\ &m_{\Xi_c(2645)^+} - m_{\Xi_c^0} = 175.6 \pm 1.4 \text{ MeV} \quad \text{(S = 1.7)} \\ &m_{\Xi_c(2645)^0} - m_{\Xi_c^+} = 178.2 \pm 1.1 \text{ MeV} \\ &\Xi_c(2645)^+ \text{ full width } \Gamma < 3.1 \text{ MeV, CL} = 90\% \\ &\Xi_c(2645)^0 \text{ full width } \Gamma < 5.5 \text{ MeV, CL} = 90\% \end{split}$$

 $\Xi_C\pi$ is the only strong decay allowed to a Ξ_C resonance having this mass.

≡ _C (2645) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$=\frac{0}{c}\pi^{+}$	seen	103
$\Xi_c^+\pi^-$	seen	107

$\Xi_c(2815)$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

 J^P has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$\begin{split} &\Xi_c(2815)^+ \text{ mass } m = 2814.9 \pm 1.8 \text{ MeV} \\ &\Xi_c(2815)^0 \text{ mass } m = 2819.0 \pm 2.5 \text{ MeV} \\ &m_{\Xi_c(2815)^+} - m_{\Xi_c^+} = 348.6 \pm 1.2 \text{ MeV} \\ &m_{\Xi_c(2815)^0} - m_{\Xi_c^0} = 347.2 \pm 2.1 \text{ MeV} \\ &\Xi_c(2815)^+ \text{ full width } \Gamma < 3.5 \text{ MeV}, \text{ CL} = 90\% \\ &\Xi_c(2815)^0 \text{ full width } \Gamma < 6.5 \text{ MeV}, \text{ CL} = 90\% \end{split}$$

The $\Xi_C \pi \pi$ modes are consistent with being entirely via $\Xi_C(2645)\pi$.

≡ _C (2815) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$\overline{\Xi_c^+\pi^+\pi^-}$	seen	196
$\equiv_c^{\delta} \pi^+ \pi^-$	seen	193

$$I(J^P) = 0(\frac{1}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^+$ is the quark-model prediction.

Mass
$$m=2704\pm 4$$
 MeV (S = 1.8)
Mean life $\tau=(0.064\pm 0.020)\times 10^{-12}$ s $c\tau=19~\mu{\rm m}$

Ω ⁰ DECAY MODES	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	p (MeV/c)
$\Sigma^+ K^- K^- \pi^+$	seen	697
$\equiv -K^-\pi^+\pi^+$	seen	838
$\Omega^-\pi^+$	seen	827
$\Omega^-\pi^-\pi^+\pi^+$	seen	759

BOTTOM BARYONS (B=-1)

$$\Lambda_b^0 = udb$$
, $\Xi_b^0 = usb$, $\Xi_b^- = dsb$

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $I(J^P)$ not yet measured; $0(\frac{1}{2}^+)$ is the quark model prediction. Mass $m=5624\pm 9$ MeV (S = 1.8) Mean life $\tau=(1.229\pm 0.080)\times 10^{-12}$ s $c\tau=368~\mu m$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy $\rho\overline{\rho}$), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction B($b \to b$ -baryon) and are evaluated for our value B($b \to b$ -baryon) = (11.6 \pm 2.0)%.

The branching fractions B(b-baryon $\to A\ell^-\overline{\nu}_\ell$ anything) and B($\Lambda^0_b \to \Lambda^+_c\ell^-\overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

AD DECAY MODES	Fraction (Γ_j/Γ) Confid	<i>p</i> lence level (MeV/c)
$J/\psi(1S)\Lambda$	$(4.7\pm2.8)\times10^{-4}$	1744
$\Lambda_c^+ \pi^-$	seen	2345
$\Lambda_c^+ a_1(1260)^-$	seen	2156
$\Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything	[r] (7.9 ± 1.9) %	-
$p\pi^-$	$< 5.0 \times 10^{-5}$	90% 2732
pK ⁻	$< 5.0 \times 10^{-5}$	90% 2711

b-baryon ADMIXTURE (Λ_b , Ξ_b , Σ_b , Ω_b)

Mean life $au = (1.208 \pm 0.051) \times 10^{-12} \text{ s}$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy $\rho\overline{\rho}$), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction B(b \rightarrow b-baryon) and are evaluated for our value B(b \rightarrow b-baryon) = (11.6 \pm 2.0)%.

The branching fractions $\mathsf{B}(b\text{-baryon}\to A\ell^-\overline{\nu}_\ell$ anything) and $\mathsf{B}(\Lambda_0^b\to \Lambda_0^+\ell^-\overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with $\mathsf{B}(b\to b\text{-baryon})$ were used to determine $\mathsf{B}(b\to b\text{-baryon})$, as described in the note "Production and Decay of b-Flavored Hadrons."

b-baryon ADMIXTURE $(A_b,\Xi_b,\Sigma_b,\Omega_b)$	Fraction (Γ_i/Γ)	ρ (MeV/c)
$p\mu^-\overline{\nu}$ anything	(4.2 ⁺ 1.8) %	-
$p\ell\overline{\nu}_{\ell}$ anything	(4.1 ± 1.0) %	_
panything	(51 ±17)%	-
$\Lambda \ell^- \overline{\nu}_{\ell}$ anything	(2.7 ± 0.8) %	-
$\Lambda/\overline{\Lambda}$ anything	(28 ± 7)%	-
$\vec{\Xi}^{-}\ell^{-}\vec{\nu}_{\ell}$ anything	$(4.8 \pm 1.3) \times 10^{-3}$	-

NOTES

This Summary Table only includes established baryons. The Particle Listings include evidence for other baryons. The masses, widths, and branching fractions for the resonances in this Table are Breit-Wigner parameters, but pole positions are also given for most of the N and Δ resonances.

For most of the resonances, the parameters come from various partial-wave analyses of more or less the same sets of data, and it is not appropriate to treat the results of the analyses as independent or to average them together. Furthermore, the systematic errors on the results are not well understood. Thus, we usually only give ranges for the parameters. We then also give a best guess for the mass (as part of the name of the resonance) and for the width. The Note on N and Δ Resonances and the Note on N and Σ Resonances in the Particle Listings review the partial-wave analyses.

When a quantity has "(S = ...)" to its right, the error on the quantity has been enlarged by the "scale factor" S, defined as S = $\sqrt{\chi^2/(N-1)}$, where N is the number of measurements used in calculating the quantity. We do this when S > 1, which often indicates that the measurements are inconsistent. When S > 1.25, we also show in the Particle Listings an ideogram of the measurements. For more about S, see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3-or-more-body decay, p is the largest momentum any of the products can have in this frame. For any resonance, the *nominal* mass is used in calculating p. A dagger ("†") in this column indicates that the mode is forbidden when the nominal masses of resonances are used, but is in fact allowed due to the nonzero widths of the resonances.

- [a] The masses of the p and n are most precisely known in u (unified atomic mass units). The conversion factor to MeV, 1 u = 931.494013 ± 0.000037 MeV, is less well known than are the masses in u.
- [b] These two results are not independent, and both use the more precise measurement of $|q_{\overline{\rho}}/m_{\overline{\rho}}|/(q_{\rho}/m_{\rho})$.
- [c] The limit is from neutrality-of-matter experiments; it assumes $q_n=q_p+q_e.$ See also the charge of the neutron.
- [d] The first limit is geochemical and independent of decay mode. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray \bar{p} 's is $\tau_{\bar{p}} > 10^7$ yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\bar{p}}/B(\bar{p}\to e^-\gamma) > 7 \times 10^5$ yr.
- [e] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [f] The parameters g_A , g_V , and g_{WM} for semileptonic modes are defined by $\overline{B}_f[\gamma_\lambda(g_V+g_A\gamma_5)+i(g_{WM}/m_{B_i})\ \sigma_{\lambda\nu}\ q^\nu]B_i$, and ϕ_{AV} is defined by $g_A/g_V=|g_A/g_V|e^{i\phi_{AV}}$. See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.
- [g] Time-reversal invariance requires this to be 0° or 180° .
- [h] The decay parameters γ and Δ are calculated from α and ϕ using

$$\gamma = \sqrt{1-\alpha^2} \cos \phi$$
, $\tan \Delta = -\frac{1}{\alpha} \sqrt{1-\alpha^2} \sin \phi$.

See the "Note on Baryon Decay Parameters" in the neutron Particle Listings

- [i] See the Listings for the pion momentum range used in this measurement.
- [j] The error given here is only an educated guess. It is larger than the error on the weighted average of the published values.
- [k] A theoretical value using QED.
- [/] See the "Note on Λ_c^+ Branching Fractions" in the Branching Fractions of the Λ_c^+ Particle Listings.
- $\[m]$ This branching fraction includes all the decay modes of the final-state resonance.
- [n] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [o] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [p] Assuming isospin conservation, so that the other third is $\varLambda_{\epsilon}^{+}\pi^{0}\pi^{0}$.
- [q] No absolute branching fractions have been measured. The following are branching ratios relative to $\Xi^-\pi^+\pi^+$.
- [r] Not a pure measurement. See note at head of Λ_h^0 Decay Modes.

SEARCHES FOR MONOPOLES, SUPERSYMMETRY, TECHNICOLOR, COMPOSITENESS, etc.

Magnetic Monopole Searches

Isolated supermassive monopole candidate events have not been confirmed. The most sensitive experiments obtain negative results.

Best cosmic-ray supermassive monopole flux limit:

 $< 1.0 \times 10^{-15} \text{ cm}^{-2} \text{sr}^{-1} \text{s}^{-1}$ for $1.1 \times 10^{-4} < \beta < 0.1$

Supersymmetric Particle Searches

Limits are based on the Minimal Supersymmetric Standard Model. Assumptions include: 1) $\widetilde{\chi}_1^0$ (or $\widetilde{\gamma}$) is lightest supersymmetric particle; 2) R-parity is conserved; 3) With the excepton of \widetilde{t} and \widetilde{b} , all scalar quarks are assumed to be degenerate in mass and $m_{\widetilde{q}_R} = m_{\widetilde{q}_L}$. 4) Limits for sleptons refer to the $\widetilde{\ell}_R$ states.

See the Particle Listings for a Note giving details of supersymmetry.

$$\begin{array}{l} \widetilde{\chi}_{i}^{0} - \text{neutralinos (mixtures of } \widetilde{\gamma}, \, \widetilde{Z}^{0}, \, \text{and } \widetilde{H}_{i}^{0}) \\ \text{Mass } m_{\widetilde{\chi}_{1}^{0}} \ > \ 32.5 \ \text{GeV, CL} = 95\% \\ \text{[} \tan\!\beta > 0.7, \, m_{\widetilde{\chi}_{2}^{0}} - m_{\widetilde{\chi}_{1}^{0}} > 5 \ \text{GeV]} \\ \text{Mass } m_{\widetilde{\chi}_{2}^{0}} \ > \ 55.9 \ \text{GeV, CL} = 95\% \\ \text{[} \tan\!\beta > 1.5, \, m_{\widetilde{\chi}_{2}^{0}} - m_{\widetilde{\chi}_{1}^{0}} > 10 \ \text{GeV]} \\ \text{Mass } m_{\widetilde{\chi}_{3}^{0}} \ > \ 106.6 \ \text{GeV, CL} = 95\% \\ \text{[} \tan\!\beta > 1.5, \, m_{\widetilde{\chi}_{2}^{0}} - m_{\widetilde{\chi}_{1}^{0}} > 10 \ \text{GeV]} \\ \end{array}$$

$$\widetilde{\chi}_{i}^{\pm}$$
 — charginos (mixtures of \widetilde{W}^{\pm} and \widetilde{H}_{i}^{\pm})

Mass $m_{\widetilde{\chi}_{1}^{\pm}} >$ 67.7 GeV, CL = 95%

[$\tan \beta >$ 0.7, $m_{\widetilde{\chi}_{1}^{\pm}} - m_{\widetilde{\chi}_{1}^{0}} >$ 3 GeV]

 \widetilde{e} — scalar electron (selectron)

Mass
$$m > 87.1$$
 GeV, CL = 95% $[m_{\widetilde{e}_R} - m_{\widetilde{\chi}_1^0} > 5$ GeV]

 $\widetilde{\mu}$ — scalar muon (smuon)

Mass
$$m > 82.3 \text{ GeV}$$
, CL = 95% $[m_{\widetilde{\mu}_R} - m_{\widetilde{\chi}_1^0} > 3 \text{ GeV}]$

 $\tilde{\tau} - \text{scalar tau (stau)}$

Mass
$$m > 81.0$$
 GeV, CL = 95% $[m_{\tilde{\tau}_R} - m_{\tilde{\chi}_1^0}] > 8$ GeV]

 \tilde{q} — scalar quark (squark)

These limits include the effects of cascade decays, evaluated assuming a fixed value of the parameters μ and $\tan\beta$. The limits are weakly sensitive to these parameters over much of parameter space. Limits assume GUT relations between gaugino masses and the gauge coupling.

Mass
$$m > 250$$
 GeV, CL = 95% $[\tan \beta = 2, \mu < 0, A = 0]$

 \tilde{b} — scalar bottom (sbottom)

Mass
$$m$$
 none 40–75 GeV, CL = 95% $[\tilde{b} \rightarrow \ b \, \tilde{\chi}^0_1, \, \text{all} \, \theta_b, \, m_{\tilde{b}} - m_{\tilde{\chi}^0_1} > 10 \,\, \text{GeV}]$

 \tilde{t} — scalar top (stop)

$$\begin{array}{ll} \mathsf{Mass} \ m > \ 86.4 \ \mathsf{GeV}, \ \mathsf{CL} = 95\% \\ [\widetilde{\mathfrak{t}} \ \to \ t \ \widetilde{\chi}^0_1, \ \mathsf{all} \ \theta_t, \ m_{\widetilde{t}} - m_{\widetilde{\chi}^0_1} > 5 \ \mathsf{GeV}] \end{array}$$

 \tilde{g} — gluino

There is some controversy on whether gluinos in a low-mass window (1 $\lesssim m_{\widetilde{g}} \lesssim$ 5 GeV) are excluded or not. See the Supersymmetry Listings for details.

The limits summarised here refere to the high-mass region $(m_{\widetilde{g}} \gtrsim 5~{\rm GeV})$, and include the effects of cascade decays, evaluated assuming a fixed value of the parameters μ and $\tan\beta$. The limits are weakly sensitive to these parameters over much of parameter space. Limits assume GUT relations between gaugino masses and the gauge coupling,

Mass m > 190 GeV, CL = 95% $[\tan \beta = 2, \mu < 0, A = 0]$ Mass m > 260 GeV, CL = 95% $[m_{\tilde{\theta}} = m_{\tilde{R}}, \tan \beta = 2, \mu < 0, A = 0]$

Technicolor

Searches for a color-octet techni- ρ constrain its mass to be greater than 260 to 480 GeV, depending on allowed decay channels. Similar bounds exist on the color-octet techni- ω .

Quark and Lepton Compositeness, Searches for

Scale Limits A for Contact Interactions (the lowest dimensional interactions with four fermions)

If the Lagrangian has the form

$$\pm \frac{g^2}{2\Lambda^2} \overline{\psi}_L \gamma_\mu \psi_L \overline{\psi}_L \gamma^\mu \psi_L$$

(with $g^2/4\pi$ set equal to 1), then we define $\Lambda \equiv \Lambda^{\pm}_{LL}$. For the full definitions and for other forms, see the Note in the Listings on Searches for Quark and Lepton Compositeness in the full *Review* and the original literature.

 $\Lambda_{LL}^{+}(\nu\nu q q)$ > 5.0 TeV, CL = 95% $\Lambda_{LL}^{-}(\nu\nu q q)$ > 5.4 TeV, CL = 95%

Searches Summary Table

Excited Leptons

```
The limits from \ell^{*+}\ell^{*-} do not depend on \lambda (where \lambda is the
     \ell\ell^* transition coupling). The \lambda-dependent limits assume chiral
     coupling, except for the third limit for e^* which is for nonchiral
     coupling. For chiral coupling, this limit corresponds to \lambda_{\gamma} = \sqrt{2}.
e^{*\pm} — excited electron
    Mass m > 90.7 GeV, CL = 95% (from e^{*+}e^{*-})
    Mass m = \text{none } 30\text{--}200 \text{ GeV}, CL = 95\% (from ep \rightarrow e^*X)
    Mass m > 91 GeV, CL = 95\%
                                           (if \lambda_Z > 1)
    Mass m > 306 GeV, CL = 95% (if \lambda_{\gamma} = 1)
\mu^{*\pm} — excited muon
    Mass m > 90.7 GeV, CL = 95% (from \mu^{*+} \mu^{*-})
    Mass m > 91 GeV, CL = 95\%
                                            (if \lambda_Z > 1)
\tau^{*\pm} — excited tau
    Mass m > 89.7 GeV, CL = 95% (from \tau^{*+} \tau^{*-})
    Mass m > 90 GeV, CL = 95\%
                                            (if \lambda_Z > 0.18)
```

```
\nu^* — excited neutrino
    Mass m > 90.0 \text{ GeV}, CL = 95% (from \nu^* \overline{\nu}^*)
    Mass m > 91 GeV, CL = 95% (if \lambda_Z > 1)
    Mass m = \text{none } 40\text{--}96 \text{ GeV}, CL = 95\% (from ep \rightarrow \nu^* X)
q^* — excited quark
    Mass m > 45.6 GeV, CL = 95%
                                             (from q^* \overline{q}^*)
    Mass m > 88 \text{ GeV}, CL = 95\%
                                           (if \lambda_Z > 1)
    Mass m > 570 GeV, CL = 95\%
                                            (p\overline{p} \rightarrow q^*X)
Color Sextet and Octet Particles
Color Sextet Quarks (q_6)
    Mass m > 84 GeV, CL = 95\% (Stable q_6)
Color Octet Charged Leptons (\ell_8)
    Mass m > 86 GeV, CL = 95\%
                                         (Stable \ell_8)
Color Octet Neutrinos (\nu_8)
    Mass m > 110 GeV, CL = 90% (\nu_8 \rightarrow \nu g)
```

TESTS OF CONSERVATION LAWS

Revised by L. Wolfenstein and T.G. Trippe, May 2000.

In keeping with the current interest in tests of conservation laws, we collect together a Table of experimental limits on all weak and electromagnetic decays, mass differences, and moments, and on a few reactions, whose observation would violate conservation laws. The Table is given only in the full Review of Particle Physics, not in the Particle Physics Booklet. For the benefit of Booklet readers, we include the best limits from the Table in the following text. Limits in this text are for CL=90% unless otherwise specified. The Table is in two parts: "Discrete Space-Time Symmetries," i.e., C, P, T, CP, and CPT; and "Number Conservation Laws," i.e., lepton, baryon, hadronic flavor, and charge conservation. The references for these data can be found in the the Particle Listings in the Review. A discussion of these tests follows.

CPT INVARIANCE

General principles of relativistic field theory require invariance under the combined transformation CPT. The simplest tests of CPT invariance are the equality of the masses and lifetimes of a particle and its antiparticle. The best test comes from the limit on the mass difference between K^0 and \overline{K}^0 . Any such difference contributes to the CP-violating parameter ϵ . Assuming CPT invariance, ϕ_{ϵ} , the phase of ϵ should be very close to 44°. (See the review "CP Violation" in this edition.) In contrast, if the entire source of CP violation in K^0 decays were a $K^0 - \overline{K}^0$ mass difference, ϕ_{ϵ} would be $44^{\circ} + 90^{\circ}$.

Assuming that there is no other source of CPT violation than this mass difference, it is possible to deduce that [1]

$$m_{\overline{K}^0} - m_{K^0} \approx \frac{2(m_{K^0_L} - m_{K^0_S}) \, |\eta| \, (\frac{2}{3}\phi_{+-} + \frac{1}{3}\phi_{00} - \phi_0)}{\sin\phi_0} \ ,$$

where $\phi_0=43.5^\circ$ with an uncertainty of less than 0.1°. Using our best values of the CP-violation parameters, we get $|(m_{\overline{K}^0}-m_{K^0})/m_{K^0}| \leq 10^{-18}$ at CL=95%. Limits can also be placed on specific CPT-violating decay amplitudes. Given the small value of $(1-|\eta_{00}/\eta_{+-}|)$, the value of $\phi_{00}-\phi_{+-}$ provides a measure of CPT violation in $K_L^0 \to 2\pi$ decay. Results from CERN [1] and Fermilab [2] indicate no CPT-violating effect.

CP AND T INVARIANCE

Given CPT invariance, CP violation and T violation are equivalent. So far most of the evidence for CP or T violation comes from the measurements of η_{+-} , η_{00} , $\eta_{+-\gamma}$, the semileptonic decay charge asymmetry for K_L , and the decay plane asymmetry in $K_L \to \pi^+\pi^-e^+e^-$, e.g., $|\eta_{+-}| = |A(K_L^0 \to \pi^+\pi^-)/A(K_S^0 \to \pi^+\pi^-)| = (2.285 \pm 0.019) \times 10^{-3}$ and $[\Gamma(K_L^0 \to \pi^-e^+\nu) \Gamma(K_L^0 \to \pi^+ e^- \overline{\nu})]/[\text{sum}] = (0.333 \pm 0.014)\%$. There is also a measurement from CPLEAR of the difference between the oscillation probabilities of $K^0 \to \overline{K}^0$ and $\overline{K}^0 \to K^0$ [3]. In the Standard Model, much larger effects are expected in B decays and the first measurement of the CP-violating parameter $\sin 2\beta$ at Fermilab gives a value of 0.9 ± 0.4 . Other searches for CP or T violation involve effects that are expected to be unobservable in the Standard Model. The most sensitive are probably the searches for an electric dipole moment of the neutron, measured to be $< 6 \times 10^{-26}$ e cm, and the electron $(0.18 \pm 0.16) \times 10^{-26}$ e cm. A nonzero value requires both P and T violation.

CONSERVATION OF LEPTON NUMBERS

Present experimental evidence and the standard electroweak theory are consistent with the absolute conservation of three separate lepton numbers: electron number L_e , muon number L_{μ} , and tau number L_{τ} . Searches for violations are of the following types:

- a) $\Delta L=2$ for one type of charged lepton. The best limit comes from the search for neutrinoless double beta decay $(Z,A) \rightarrow (Z+2,A)+e^-+e^-$. The best laboratory limit is $t_{1/2}>1.6\times 10^{25}$ yr (CL=90%) for ⁷⁶Ge.
- b) Conversion of one charged-lepton type to another. For purely leptonic processes, the best limits are on $\mu\to e\gamma$ and $\mu\to 3e$, measured as $\Gamma(\mu\to e\gamma)/\Gamma(\mu\to \mathrm{all})<1.2\times 10^{-11}$ and $\Gamma(\mu\to 3e)/\Gamma(\mu\to \mathrm{all})<1.0\times 10^{-12}$. For semileptonic processes, the best limit comes from the coherent conversion process in a muonic atom, μ^-+ $(Z,A)\to e^-+$ (Z,A), measured as $\Gamma(\mu^-\mathrm{Ti}\to e^-\mathrm{Ti})/\Gamma(\mu^-\mathrm{Ti}\to \mathrm{all})<4\times 10^{-12}$. Of special interest is the case in which the hadronic flavor also changes, as in $K_L\to e\mu$ and $K^+\to \pi^+e^-\mu^+$, measured as $\Gamma(K_L\to e\mu)/\Gamma(K_L\to \mathrm{all})<4.7\times 10^{-12}$ and $\Gamma(K^+\to \pi^+e^-\mu^+)/\Gamma(K^+\to \mathrm{all})<2.1\times 10^{-10}$. Limits on the conversion of τ into e or μ are found in τ decay and are much less stringent than those for $\mu\to e$ conversion, e.g., $\Gamma(\tau\to \mu\gamma)/\Gamma(\tau\to \mathrm{all})<1.1\times 10^{-6}$ and $\Gamma(\tau\to e\gamma)/\Gamma(\tau\to \mathrm{all})<2.7\times 10^{-6}$.
- c) Conversion of one type of charged lepton into another type of charged antilepton. The case most studied is $\mu^- + (Z,A) \rightarrow e^+ + (Z-2,A)$, the strongest limit being $\Gamma(\mu^- {\rm Ti} \rightarrow e^+ {\rm Ca})/\Gamma(\mu^- {\rm Ti} \rightarrow {\rm all}) < 3.6 \times 10^{-11}$.
- d) Neutrino oscillations. If neutrinos have mass, then it is expected even in the standard electroweak theory that the lepton numbers are not separately conserved, as a consequence of lepton mixing analogous to Cabibbo quark mixing. However, in this case lepton-number-violating processes such as $\mu \to e \gamma$ are expected to have extremely small probability. For small neutrino masses, the lepton-number violation would be observed first in neutrino oscillations, which have been the subject of extensive experimental searches. For example, searches for $\overline{\nu}_e$ disappearance, which we label as $\overline{\nu}_e \not \to \overline{\nu}_e$, give measured limits $\Delta(m^2) < 7 \times 10^{-4} \text{ eV}^2 \text{ for } \sin^2(2\theta) = 1, \text{ and } \sin^2(2\theta) < 0.02$ for large $\Delta(m^2)$, where θ is the neutrino mixing angle. Possible evidence for mixing has come from two sources. The deficit in the solar neutrino flux compared with solar model calculations could be explained by oscillations with $\Delta(m^2) \leq 10^{-4} \text{ eV}^2$ causing the disappearance of ν_e . In addition, underground detectors observing neutrinos produced by cosmic rays in the atmosphere have measured a ν_{μ}/ν_{e} ratio much less than expected and have also found a factor of 2 deficiency of upward going ν_{μ} compared to downward. This provides compelling evidence for ν_{μ} disappearance, for which the most probable explanation is $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations with nearly maximal mixing and $\Delta(m^2)$ of the order $0.001-0.01 \text{ eV}^2$.

CONSERVATION OF HADRONIC FLAVORS

In strong and electromagnetic interactions, hadronic flavor is conserved, *i.e.* the conversion of a quark of one flavor (d, u, s, c, b, t) into a quark of another flavor is forbidden. In the Standard Model, the weak interactions violate these conservation laws in a manner described by the Cabibbo-Kobayashi-Maskawa mixing (see the section "Cabibbo-Kobayashi-Maskawa Mixing Matrix"). The way in which these conservation laws are violated is tested as follows:

Tests of Conservation Laws

- a) $\Delta S = \Delta Q$ rule. In the strangeness-changing semileptonic decay of strange particles, the strangeness change equals the change in charge of the hadrons. Tests come from limits on decay rates such as $\Gamma(\Sigma^+ \to n e^+ \nu)/\Gamma(\Sigma^+ \to \text{all}) < 5 \times 10^{-6}$, and from a detailed analysis of $K_L \to \pi e \nu$, which yields the parameter x, measured to be (Re x, Im x) = $(-0.002 \pm 0.006$, -0.0012 ± 0.0019). Corresponding rules are $\Delta C = \Delta Q$ and $\Delta B = \Delta Q$.
- b) Change of flavor by two units. In the Standard Model this occurs only in second-order weak interactions. The classic example is $\Delta S=2$ via $K^0-\overline{K}^0$ mixing, which is directly measured by $m(K_S)-m(K_L)=(3.489\pm0.008)\times10^{-12}$ MeV. There is now evidence for $B^0-\overline{B}^0$ mixing $(\Delta B=2)$, with the corresponding mass difference between the eigenstates $(m_{B_1^0}-m_{B_1^0})=(0.730\pm0.029)\Gamma_{B^0}=(3.11\pm0.11)\times10^{-10}$ MeV, and for $B_s^0-\overline{B}_s^0$ mixing, with $(m_{B_s^0}-m_{B_s^0})>16\Gamma_{B_s^0}$ or $>7\times10^{-9}$ MeV (CL=95%). For $D^0-\overline{D}^0$ mixing $m_{D_H^0}-m_{D_L^0}<5\times10^{-11}$ MeV; the value in the Standard Model is expected to be much small than this.
- c) Flavor-changing neutral currents. In the Standard Model the neutral-current interactions do not change flavor. The low rate $\Gamma(K_L \to \mu^+\mu^-)/\Gamma(K_L \to \text{all}) = (7.2 \pm 0.5) \times 10^{-9}$ puts limits on such interactions; the nonzero value for this rate is attributed to a combination of the weak and electromagnetic interactions. The best test should come from $K^+ \to \pi^+ \nu \bar{\nu}$, which occurs in the Standard Model only as a second-order weak process with a branching fraction of $(0.4 \text{ to } 1.2) \times 10^{-10}$. Recent results, including observation of one event, yields $\Gamma(K^+ \to \pi^+ \nu \bar{\nu})/\Gamma(K^+ \to \text{all}) = (1.5^{+3.4}_{-1.2}) \times 10^{-10}$ [5]. Limits for charmchanging or bottom-changing neutral currents are much less stringent: $\Gamma(D^0 \to \mu^+\mu^-)/\Gamma(D^0 \to \text{all}) < 4 \times 10^{-6}$ and $\Gamma(B^0 \to \mu^+\mu^-)/\Gamma(B^0 \to \text{all}) < 7 \times 10^{-7}$. One cannot isolate flavor-changing neutral current (FCNC) effects in non leptonic decays. For example, the FCNC transition $s \to d + (\bar{u} + u)$ is equivalent to the charged-current transition $s \to u + (\bar{u} + d)$. Tests for FCNC are therefore limited to hadron decays into lepton pairs. Such decays are expected only in second-order in the electroweak coupling in the Standard Model.

References

- 1. R. Carosi et al., Phys. Lett. B237, 303 (1990).
- M. Karlsson et al., Phys. Rev. Lett. 64, 2976 (1990);
 L.K. Gibbons et al., Phys. Rev. Lett. 70, 1199 (1993).
- 3. A. Angelopoulos et al., Phys. Lett. **B444**, 43 (1998).
- 4. B. Schwingenheuer et al., Phys. Rev. Lett. 74, 4376 (1995).
- 5. S. Adler et al., Phys. Rev. Lett. 84, 3768 (2000).

TESTS OF DISCRETE SPACE-TIME SYMMETRIES

CHARGE CONJUGATION (C) INVARIANCE

$\Gamma(\pi^0 \rightarrow 3\gamma)/\Gamma_{\text{total}}$	$<3.1 \times 10^{-8}$, CL = 90%
η C-nonconserving decay parameters	
$\pi^+\pi^-\pi^0$ left-right asymmetry	$(0.09 \pm 0.17) \times 10^{-2}$
parameter	
$\pi^+\pi^-\pi^0$ sextant asymmetry	$(0.18 \pm 0.16) \times 10^{-2}$
parameter	_
$\pi^+\pi^-\pi^0$ quadrant asymmetry	$(-0.17 \pm 0.17) \times 10^{-2}$
parameter	_
$\pi^+\pi^-\gamma$ left-right asymmetry	$(0.9 \pm 0.4) \times 10^{-2}$
parameter	
$\pi^+\pi^-\gamma$ parameter β (<i>D</i> -wave)	$0.05 \pm 0.06 \ (5 = 1.5)$
$\Gamma(\eta \rightarrow 3\gamma)/\Gamma_{\text{total}}$	$< 5 \times 10^{-4}$, CL = 95%
$\Gamma(\eta \to \pi^0 e^+ e^-)/\Gamma_{\text{total}}$	[a] $<$ 4 $ imes$ 10 $^{-5}$, CL $=$ 90%
$\Gamma(\eta \to \pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$	[a] $<$ 5 $ imes$ 10 $^{-6}$, CL $=$ 90%
$\Gamma(\omega(782) \rightarrow \eta \pi^0)/\Gamma_{\text{total}}$	$<$ 1 $ imes$ 10 $^{-3}$, CL $=$ 90%
$\Gamma(\omega(782) \rightarrow 3\pi^0)/\Gamma_{\text{total}}$	$<$ 3 $ imes$ 10 $^{-4}$, CL $=$ 90%
$\Gamma(\eta'(958) \rightarrow \gamma e^+ e^-)/\Gamma_{\text{total}}$	$<9 \times 10^{-4}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow \pi^0 e^+ e^-)/\Gamma_{\text{total}}$	[a] $<1.4 \times 10^{-3}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow \eta e^+ e^-)/\Gamma_{\text{total}}$	[a] $<2.4 \times 10^{-3}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow 3\gamma)/\Gamma_{\text{total}}$	$<1.0 \times 10^{-4}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow \mu^{+}\mu^{-}\pi^{0})/\Gamma_{\text{total}}$	[a] $<6.0 \times 10^{-5}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow \mu^{+}\mu^{-}\eta)/\Gamma_{\text{total}}$	[a] $< 1.5 \times 10^{-5}$, CL $= 90\%$

PARITY (P) INVARIANCE

ecm
cm
0 ⁻¹⁶ ecm,
0%
)%
ó
ó
m
CL = 90%
L = 95%
֡

TIME REVERSAL (T) INVARIANCE

Limits on e, μ , τ , ρ , n, and Λ electric dipole moments under Parity Invariance above are also tests of Time Reversal Invariance.

μ decay parameters		
transverse e^+ polarization normal to		0.007 ± 0.023
plane of μ spin, e^+ momentum		
α'/A		$(0 \pm 4) \times 10^{-3}$
β'/A		$(2 \pm 6) \times 10^{-3}$
$Im(\xi)$ in $K_{\mu 3}^{\pm}$ decay (from transverse μ pol.)		-0.014 ± 0.014
asymmetry A_T in K^0 - \overline{K}^0 mixing		$(6.6 \pm 1.6) \times 10^{-3}$
$\operatorname{Im}(\xi)$ in $K^0_{\mu3}$ decay (from transverse μ pol.)		-0.007 ± 0.026
$n \rightarrow p e^- \nu$ decay parameters		
ϕ_{AV} , phase of g_A relative to g_V	[b]	$(180.07 \pm 0.18)^{\circ}$
triple correlation coefficient D		$(-0.5 \pm 1.4) \times 10^{-3}$
triple correlation coefficient D for $\Sigma^- o$		0.11 ± 0.10
ne- v.		

CP INVARIANCE

$Re(d_{\tau}^{W})$ $< 0.56 \times 10^{-17} \text{ ecm, CL} = 95\%$ <1.5 \times 10 $^{-17}$ e cm, CL = 95% $Im(d_{\tau}^{W})$ $\Gamma(\eta \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$ $< 3.3 \times 10^{-4}$, CL = 90% $\Gamma(\eta \to \pi^0 \pi^0)/\Gamma_{\text{total}}$ $<4.3 \times 10^{-4}$, CL = 90% $\Gamma(\eta'(958) \rightarrow \pi^{+}\pi^{-})/\Gamma_{\text{total}}$ $<2 \times 10^{-2}$, CL = 90% $\Gamma(\eta'(958) \rightarrow \pi^0 \pi^0)/\Gamma_{\text{total}}$ $<9 \times 10^{-4}$, CL = 90% $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ rate difference/average $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ rate difference/average $(0.07 \pm 0.12)\%$ $(0.0 \pm 0.6)\%$ $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$ rate difference/average $(0.9 \pm 3.3)\%$ $(g_{\tau^{+}} - g_{\tau^{-}}) / (g_{\tau^{+}} + g_{\tau^{-}}) \text{ for } K^{\pm} \rightarrow$ $(-0.7 \pm 0.5)\%$ $Im(\eta_{+-0}) = Im(A(K_S^0 \to \pi^+\pi^-\pi^0, CP^-))$ -0.002 ± 0.009 violating) / A($\kappa_L^0 \rightarrow \pi^+\pi^-\pi^0$)) $Im(\eta_{000}) = Im(A(K_S^0 \to \pi^0 \pi^0 \pi^0)/A(K_L^0 \to \pi^0 \pi^0 \pi^0))$ -0.05 ± 0.13 linear coefficient j for $K_L^0 \rightarrow \pi^+\pi^-\pi^0$ 0.0011 ± 0.0008 $|\epsilon'_{+-\gamma}|/\epsilon$ for $K_L^0 \to \pi^+\pi^-\gamma$ <0.3, CL = 90% $\Gamma(\kappa_L^0 \to \pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$ $\Gamma(\kappa_L^0 \to \pi^0 e^+ e^-)/\Gamma_{\text{total}}$ [c] $<5.1 \times 10^{-9}$, CL = 90% [c] $<4.3 \times 10^{-9}$, CL = 90% $\Gamma(K_L^0 \to \pi^0 \nu \bar{\nu})/\Gamma_{\text{total}}$ [d] $<5.9 \times 10^{-7}$, CL = 90% $A_{CP}(K^+K^-\pi^\pm)$ in $D^\pm \to K^+K^-\pi^\pm$ -0.017 ± 0.027 $A_{CP}(K^{\pm}K^{*0})$ in $D^{+} \rightarrow K^{+}\overline{K}^{*0}$, $D^{-} \rightarrow K^{-}K^{*0}$ $A_{CP}(\phi \pi^{\pm})$ in $D^{\pm} \rightarrow \phi \pi^{\pm}$ -0.02 ± 0.05 -0.014 ± 0.033 $A_{CP}(\pi^+\pi^-\pi^\pm)$ in $D^\pm \to \pi^+\pi^-\pi^\pm$ -0.02 ± 0.04 $A_{CP}(K^+K^-)$ in D^0 , $\overline{D}{}^0 \rightarrow K^+K^ 0.026 \pm 0.035$ $A_{CP}(\pi^+\pi^-)$ in D^0 , $\overline{D}{}^0 \rightarrow \pi^+\pi^ -0.05 \pm 0.08$ $A_{CP}(K_S^0\phi)$ in $D^0, \overline{D}{}^0 \to K_S^0\phi$ -0.03 ± 0.09 $A_{CP}(\kappa_S^0\pi^0)$ in D^0 , $\overline{D}{}^0 \to \kappa_S^0\pi^0$ -0.018 ± 0.030 $A_{CP}(K^{\pm}\pi^{\mp}) \text{ in } D^{0} \rightarrow K^{+}\pi^{-}, \overline{D}{}^{0} \rightarrow K^{-}\pi^{+}$ 0.02 ± 0.20 $\operatorname{Re}(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2)$ 0.002 ± 0.007 Parameters for $B^0 \rightarrow J/\psi K_S^0$ 0.9 ± 0.4 $\left[\alpha_{-}(\Lambda) + \alpha_{+}(\overline{\Lambda})\right] / \left[\alpha_{-}(\Lambda) - \alpha_{+}(\overline{\Lambda})\right]$ -0.03 ± 0.06

CPT INVARIANCE

$(m_{W^+} - m_{W^-}) / m_{\text{average}}$		-0.002 ± 0.007
$(m_{e^+} - m_{e^-}) / m_{average}$		$< 8 \times 10^{-9}$, CL = 90%
$ q_{e^+} + q_{e^-} /e$		$<4 \times 10^{-8}$
$(g_{e^+} - g_{e^-}) / g_{average}$		$(-0.5 \pm 2.1) \times 10^{-12}$
$(\tau_{\mu^+} - \tau_{\mu^-}) / \tau_{\text{average}}$		$(2 \pm 8) \times 10^{-5}$
$(g_{\mu^+} - g_{\mu^-}) / g_{\text{average}}$		$(-2.6 \pm 1.6) \times 10^{-8}$
$(m_{\pi^+} - m_{\pi^-}) / m_{\text{average}}$		$(2 \pm 5) \times 10^{-4}$
$(\tau_{\pi^+} - \tau_{\pi^-}) / \tau_{\text{average}}$		$(6 \pm 7) \times 10^{-4}$
$(m_{K^+} - m_{K^-}) / m_{\text{average}}$		$(-0.6 \pm 1.8) \times 10^{-4}$
$(\tau_{K^+} - \tau_{K^-}) / \tau_{average}$		$(0.11 \pm 0.09)\% (S = 1.2)$
$K^{\pm} ightarrow \mu^{\pm} \nu_{\mu}$ rate difference/average		$(-0.5 \pm 0.4)\%$
$\kappa^{\pm} ightarrow \pi^{\pm} \pi^{0}$ rate difference/average	[f]	$(0.8 \pm 1.2)\%$
$ m_{K^0} - m_{\overline{K}^0} / m_{\text{average}}$	[g]	<10 ⁻¹⁸
<i>CPT</i> -violation parameters in K^0 - \overline{K}^0 mixing		
real part of Δ		$(2.9 \pm 2.7) \times 10^{-4}$
imaginary part of Δ		$(-0.8 \pm 3.1) \times 10^{-3}$
phase difference ϕ_{00} - ϕ_{+-}		$(-0.1 \pm 0.8)^{\circ}$
$ m_{\overline{p}} - m_{\overline{p}} /m_{\overline{p}}$	[h]	$< 5 \times 10^{-7}$
$(\frac{q_{\overline{\rho}}}{m_{\overline{\rho}}} -\frac{q_{\overline{\rho}}}{m_{\rho}})/\frac{q_{\overline{\rho}}}{m_{\rho}}$		$(-9 \pm 9) \times 10^{-11}$
$ q_p + q_{\overline{p}} /e$	[<i>h</i>]	$< 5 \times 10^{-7}$
$(\mu_{\overline{p}} + \mu_{\overline{p}}) / \mu_{\overline{p}}$		$(-2.6 \pm 2.9) \times 10^{-3}$
$(m_n - m_{\overline{n}})/m_n$		$(9 \pm 5) \times 10^{-5}$
$(m_{\Lambda}-m_{\widetilde{\Lambda}})/m_{\Lambda}$		$(-0.1 \pm 1.1) \times 10^{-5} \text{ (S} = 1.6)$
$(\tau_{\Lambda} - \tau_{\overline{\Lambda}}) / \tau_{\Lambda}$		0.04 ± 0.09
$(au_{\Sigma^+} - au_{\overline{\Sigma}^-}) / au_{\Sigma^+}$		$(-0.6 \pm 1.2) \times 10^{-3}$
$(\mu_{\Sigma^+} + \mu_{\overline{\Sigma}^-}) / \mu_{\Sigma^+}$		0.014 ± 0.015
$(m_{\Xi^{-}} - m_{\Xi^{+}}) / m_{\Xi^{-}}$		$(1.1 \pm 2.7) \times 10^{-4}$
$(\tau_{\Xi^+} - \tau_{\Xi^+}) / \tau_{\Xi^-}$		0.02 ± 0.18
$(\mu_{\Xi^-} + \mu_{\Xi^+}) / \mu_{\Xi^-} $		$+0.01\pm0.05$
$(m_{\Omega^-} - m_{\overline{\Omega}^+}) / m_{\Omega^-}$		$(-1 \pm 8) \times 10^{-5}$
$(\tau_{\Omega^{-}} - \tau_{\overline{\Omega}^{+}}) / \tau_{\Omega^{-}}$		-0.002 ± 0.040

CP VIOLATION OBSERVED

 -0.004 ± 0.040

 $[\alpha(\Omega^- \to \Lambda K^-) + \alpha(\overline{\Omega}^+ \to \overline{\Lambda} K^+)]/2$

charge asymmetry in $\mathcal{K}_{m{\ell}3}^0$ decays	
$\delta(\mu) = [\Gamma(\pi^- \mu^+ \nu_{\mu})]$	$(0.304 \pm 0.025)\%$
$ \Gamma(\pi^+\mu^-\overline{ u}_{\mu})]/sum$	
$\delta(e) = [\Gamma(\pi^+ e^+ \nu_e)$	$(0.333 \pm 0.014)\%$
$-\Gamma(\pi^+\mathrm{e}^-\overline{\nu}_e)]/sum$	
parameters for $K_L^0 \rightarrow 2\pi$ decay	
$ \eta_{00} = A(K_L^0\to\ 2\pi^0)\ /$	$(2.262 \pm 0.017) \times 10^{-3}$
$A(K_S^0 \rightarrow 2\pi^0)$	
$ \eta_{+-} = A(K_L^0 \to \pi^+\pi^-) $	$(2.276 \pm 0.017) \times 10^{-3}$
$A(K_S^0 \to \pi^+\pi^-) $	
$\epsilon'/\epsilon \approx \operatorname{Re}(\epsilon'/\epsilon) = (1- \eta_{00}/\eta_{+-})/3$ [e]	$(2.1 \pm 0.5) \times 10^{-3} (5 = 1.6)$
ϕ_{+-} , phase of η_{+-}	$(43.3 \pm 0.5)^{\circ}$
ϕ_{00} , phase of η_{00}	$(43.2 \pm 1.0)^{\circ}$
CP asymmetry A in $K_L^0 \rightarrow \pi^+\pi^-e^+e^-$	$(13.6 \pm 2.8)\%$
parameters for $K_I^0 \to \pi^+\pi^-\gamma$ decay	
$ \eta_{+-\gamma} = A(K_I^0 \rightarrow \pi^+\pi^-\gamma, CP) $	$(2.35 \pm 0.07) \times 10^{-3}$
violating)/A($K_5^0 \rightarrow \pi^+\pi^-\gamma$)	
$\phi_{+-\gamma}=$ phase of $\eta_{+-\gamma}$	(44 ± 4)°
$\Gamma(K_I^0 \to \pi^+\pi^-)/\Gamma_{\text{total}}$	$(2.056 \pm 0.033) \times 10^{-3}$
$\Gamma(K_I^0 \to \pi^0 \pi^0)/\Gamma_{\text{total}}$	$(9.27 \pm 0.19) \times 10^{-4}$
	•

TESTS OF NUMBER CONSERVATION LAWS

LEPTON FAMILY NUMBER

Lepton family number conservation means separate conservation of each of $L_{\rm e},\,L_{\mu},\,L_{\tau}.$

$\Gamma(Z \rightarrow e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[i] <1.7 × 10 ⁻⁶ , CL = 95%
	$[i] < 1.7 \times 10^{-5}, CL = 95\%$ $[i] < 9.8 \times 10^{-6}, CL = 95\%$
$\Gamma(Z \to e^{\pm \tau^{\mp}})/\Gamma_{\text{total}}$	
$\Gamma(Z \to \mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$	[i] $<1.2 \times 10^{-5}$, CL = 95%
limit on $\mu^- \rightarrow e^-$ conversion	••
$\sigma(\mu^{-32}S \to e^{-32}S) / 22$	$<$ 7 \times 10 $^{-11}$, CL $=$ 90%
$\sigma(\mu^{-32}S \rightarrow \nu_{\mu}^{32}P^*)$	
$\sigma(\mu^- Ti o e^- Ti) /$	$<4.3 \times 10^{-12}$, CL = 90%
$\sigma(\mu^- \text{ Ti} \rightarrow \text{ capture})$	
$\sigma(\mu^- Pb \rightarrow e^- Pb) /$	$<4.6 \times 10^{-11}$, CL = 90%
$\sigma(\mu^- Pb \rightarrow capture)$	
limit on muonium → antimuonium	<0.0030, CL $=$ 90%
conversion $R_{g} = G_{C} / G_{F}$	_
$\Gamma(\mu^- \rightarrow e^- \nu_e \overline{\nu}_{\mu}) / \Gamma_{\text{total}}$	[/] $<1.2 \times 10^{-2}$, CL = 90%
$\Gamma(\mu^- \rightarrow e^- \gamma)/\Gamma_{\text{total}}$	$<1.2 \times 10^{-11}$, CL $=90\%$
$\Gamma(\mu^- \rightarrow e^- e^+ e^-)/\Gamma_{\text{total}}$	$<1.0 \times 10^{-12}$, CL = 90%
$\Gamma(\mu^- \rightarrow e^- 2\gamma)/\Gamma_{\text{total}}$	$< 7.2 \times 10^{-11}$, CL = 90%
$\Gamma(\tau^- \to e^- \gamma)/\Gamma_{\rm total}$	$< 2.7 \times 10^{-6}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \gamma)/\Gamma_{\text{total}}$	$<1.1\times10^{-6}$. CL = 90%
$\Gamma(\tau^- \rightarrow e^- \pi^0)/\Gamma_{\text{total}}$	$< 3.7 \times 10^{-6}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \pi^0)/\Gamma_{\text{total}}$	$<4.0 \times 10^{-6}$, CL = 90%
$\Gamma(\tau^- \rightarrow e^- K^0)/\Gamma_{\text{total}}$	$<1.3 \times 10^{-3}$, CL = 90%
$\Gamma(\tau^{} \rightarrow \mu^{-} K^{0})/\Gamma_{\text{total}}$	$<1.0 \times 10^{-3}$, CL = 90%
	•
$\Gamma(\tau^- \to e^- \eta)/\Gamma_{\text{total}}$	$< 8.2 \times 10^{-6}, CL = 90\%$
$\Gamma(\tau^- \rightarrow \mu^- \eta)/\Gamma_{\text{total}}$	$<9.6 \times 10^{-6}$, CL = 90%
$\Gamma(\tau^- \rightarrow e^- \rho^0)/\Gamma_{\text{total}}$	$< 2.0 \times 10^{-6}, CL = 90\%$

Tests of Conservation Laws

```
\Gamma(\tau^- \rightarrow \mu^- \rho^0)/\Gamma_{\text{total}}
                                                                                      <6.3 \times 10^{-6}, CL = 90%
                                                                                      <5.1 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow e^- K^*(892)^0)/\Gamma_{\text{total}}
\Gamma(\tau^- \rightarrow \mu^- K^*(892)^0)/\Gamma_{\text{total}}
                                                                                      <7.5 \times 10^{-6}, CL = 90%
                                                                                      < 7.4 \times 10^{-6}, CL = 90\%
\Gamma(\tau^- \rightarrow e^- \overline{K}^*(892)^0)/\Gamma_{\text{total}}
\Gamma(\tau^- \rightarrow \mu^- \overline{K}^*(892)^0)/\Gamma_{\text{total}}
                                                                                      < 7.5 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow e^- \phi)/\Gamma_{\text{total}}
                                                                                      <6.9 \times 10^{-6}, CL = 90%
                                                                                      < 7.0 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^- \phi)/\Gamma_{\text{total}}
\Gamma(\tau^- \rightarrow e^- e^+ e^-)/\Gamma_{\text{total}}
                                                                                      < 2.9 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow e^- \mu^+ \mu^-)/\Gamma_{\text{total}}
                                                                                      <1.8 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow e^+ \mu^- \mu^-)/\Gamma_{\text{total}}
                                                                                      <1.5 \times 10^{-6}, CL = 90%
                                                                                     <1.7 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^- e^+ e^-)/\Gamma_{\text{total}}
                                                                                      <1.5 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^+ e^- e^-)/\Gamma_{\text{total}}
\Gamma(\tau^- \rightarrow \mu^- \mu^+ \mu^-)/\Gamma_{\text{total}}
                                                                                      <1.9 \times 10^{-6}, CL = 90%
                                                                                      <2.2 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow e^- \pi^+ \pi^-)/\Gamma_{\text{total}}
\Gamma(\tau^- \rightarrow \mu^- \pi^+ \pi^-)/\Gamma_{\text{total}}
                                                                                      < 8.2 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow e^- \pi^+ K^-)/\Gamma_{\text{total}}
                                                                                      <6.4 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow e^- \pi^- K^+)/\Gamma_{\text{total}}
                                                                                      < 3.8 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow e^- K^+ K^-)/\Gamma_{\text{total}}
                                                                                      <6.0 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^- \pi^+ K^-)/\Gamma_{\text{total}}
                                                                                      <7.5 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^- \pi^- K^+)/\Gamma_{\text{total}}
                                                                                      < 7.4 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^- K^+ K^-)/\Gamma_{total}
                                                                                      <1.5 \times 10^{-5}, CL = 90%
\Gamma(\tau^- \rightarrow e^- \pi^0 \pi^0)/\Gamma_{\text{total}}
                                                                                      <6.5 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^- \pi^0 \pi^0)/\Gamma_{\text{total}}
                                                                                      <1.4 \times 10^{-5}, CL = 90%
\Gamma(\tau^- \rightarrow e^- \eta \eta)/\Gamma_{\text{total}}
                                                                                      < 3.5 \times 10^{-5}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^- \eta \eta)/\Gamma_{\text{total}}
                                                                                      <6.0 \times 10^{-5}, CL = 90%
\Gamma(\tau^- \rightarrow e^- \pi^0 \eta) / \Gamma_{\text{total}}
                                                                                      < 2.4 \times 10^{-5}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^- \pi^0 \eta)/\Gamma_{\text{total}}
                                                                                      < 2.2 \times 10^{-5}, CL = 90%
\Gamma(\tau^- \rightarrow e^- \text{ light boson})/\Gamma_{\text{total}}
                                                                                      < 2.7 \times 10^{-3}, CL = 95%
                                                                                      <5 \times 10^{-3}, CL = 95%
\Gamma(\tau^- \rightarrow \mu^- \text{light boson})/\Gamma_{\text{total}}

u-flavor nonconservation via mixing from reactor and accelator experiments .
(For other lepton mixing, see the Particle Listings. In particular, there is now compelling
evidence from SuperKamiokande for the disappearance of 
u_{\mu}, for which the most probable
interpretation is \nu_{\mu}-\nu_{\tau} mixing with \Delta m^2= 0.001-0.01 eV^2 and \sin^2 2\theta \approx 1.)
\bar{\nu}_e \not \rightarrow \bar{\nu}_e
        \Delta(m^2) for \sin^2(2\theta) = 1
                                                                                      < 7 \times 10^{-4} \text{ eV}^2, CL = 90%
         \sin^2(2\theta) for "Large" \Delta(m^2)
                                                                                      <0.02, CL = 90\%
\nu_{e} \rightarrow \nu_{\tau}
         \Delta(m^2) for \sin^2(2\theta) = 1
                                                                                      < 0.77 \text{ eV}^2, CL = 90\%
         \sin^2(2\theta) for "Large" \Delta(m^2)
                                                                                      < 0.21, CL = 90%
        \sin^2(2\theta) for "Large" \Delta(m^2)
                                                                                      <0.7. CL = 90%
\nu_{\mu} \rightarrow \nu_{e}
         \Delta(m^2) for \sin^2(2\theta) = 1
                                                                                      < 0.09 \text{ eV}^2, CL = 90%
                                                                                      <3.0 \times 10^{-3}, CL = 90%
        \sin^2(2\theta) for "Large" \Delta(m^2)
\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}
         \Delta(m^2) for \sin^2(2\theta) = 1
                                                                                      < 0.14 \text{ eV}^2, CL = 90%
         \sin^2(2\theta) for "Large" \Delta(m^2)
                                                                                      <0.004, CL = 95%
\nu_{\mu}(\overline{\nu}_{\mu}) \rightarrow \nu_{e}(\overline{\nu}_{e})
         \Delta(m^2) for \sin^2(2\theta) = 1
                                                                                      < 0.075 \text{ eV}^2, CL = 90%
                                                                                      <1.8 \times 10^{-3}, CL = 90%
         \sin^2(2\theta) for "Large" \Delta(m^2)
         \Delta(m^2) for \sin^2(2\theta)=1
                                                                                      <1.1 \text{ eV}^2, CL = 90%
         \sin^2(2\theta) for "Large" \Delta(m^2)
                                                                                       <0.0012, CL = 90%
\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\tau}
         \Delta(m^2) for \sin^2(2\theta) = 1
                                                                                      <2.2 eV^2, CL = 90%
         \sin^2(2\theta) for "Large" \Delta(m^2)
                                                                                      <4.4 \times 10^{-2}, CL = 90%
\nu_{\mu}(\overline{\nu}_{\mu}) \to \nu_{\tau}(\overline{\nu}_{\tau})
         \Delta(m^2) for \sin^2(2\theta) = 1
                                                                                       <1.5 \text{ eV}^2, CL = 90\%
                                                                                       < 8 \times 10^{-3}, CL = 90\%
         \sin^2(2\theta) for "Large" \Delta(m^2)
ve + ve
         \Delta(m^2) for \sin^2(2\theta) = 1
                                                                                       < 0.18 \text{ eV}^2, CL = 90\%
                                                                                       < 7 \times 10^{-2}, CL = 90%
         \sin^2(2\theta) for "Large" \Delta(m^2)
 \nu_{\mu} \not\rightarrow \nu_{\mu}
         \Delta(m^2) for \sin^2(2\theta) = 1
                                                                                       < 0.23 \text{ or } > 1500 \text{ eV}^2
         \sin^2(2\theta) for \Delta(m^2) = 100 \text{eV}^2
                                                                               [k] <0.02, CL = 90%
 \bar{\nu}_{\mu} \not\rightarrow \bar{\nu}_{\mu}
         \Delta(m^2) for \sin^2(2\theta) = 1
                                                                                       <7 \text{ or } >1200 \text{ eV}^2
          \sin^2(2\theta) for 190 eV<sup>2</sup> < \Delta(m^2) <
                                                                               [/] <0.02, CL = 90%
                 320 eV<sup>2</sup>
                                                                               [m] <8.0 × 10<sup>-3</sup>, CL = 90%
\Gamma(\pi^+ \rightarrow \mu^+ \nu_e)/\Gamma_{\text{total}}
\Gamma(\pi^+ \rightarrow \mu^- e^+ e^+ \nu)/\Gamma_{\text{total}}
                                                                                      <1.6 \times 10^{-6}, CL = 90%
 \Gamma(\pi^0 \rightarrow \mu^+ e^- + e^- \mu^+)/\Gamma_{\text{total}}
                                                                                       <1.72 \times 10^{-8}, CL = 90%
 \Gamma(\eta \rightarrow \mu^+ e^- + \mu^- e^+)/\Gamma_{\text{total}}
                                                                                       <6 \times 10^{-6}, CL = 90%
```

Unless otherwise stated, limits are given at the 90% confidence level, while errors are given as ± 1 standard deviation.

$\Gamma(\eta'(958) \rightarrow e\mu)/\Gamma_{\text{total}}$		$<$ 4.7 \times 10 ⁻⁴ , CL = 90%
$\Gamma(K^+ \rightarrow \mu^- \nu e^+ e^+)/\Gamma_{\text{total}}$		$< 2.0 \times 10^{-8}$, CL = 90%
$\Gamma(K^+ \rightarrow \mu^+ \nu_e)/\Gamma_{\text{total}}$	[m]	$<$ 4 \times 10 ⁻³ , CL $=$ 90%
$\Gamma(K^+ \rightarrow \pi^+ \mu^+ e^-)/\Gamma_{\text{total}}$		$<2.1 \times 10^{-10}$, CL = 90%
$\Gamma(K^+ \rightarrow \pi^+ \mu^- e^+)/\Gamma_{\text{total}}$		$<$ 7 $ imes$ 10 $^{-9}$, CL $=$ 90%
$\Gamma(\kappa_L^0 \rightarrow e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[<i>i</i>]	$<4.7 \times 10^{-12}$, CL = 90%
$\Gamma(\kappa_L^{0} \rightarrow e^{\pm} e^{\pm} \mu^{\mp} \mu^{\mp})/\Gamma_{\text{total}}$	[/]	$<6.1 \times 10^{-9}$, CL = 90%
$\Gamma(\kappa_L^0 \rightarrow \pi^0 \mu^{\pm} e^{\mp})/\Gamma_{\text{total}}$	[i]	$<$ 6.2 $ imes$ 10 $^{-9}$, CL $=$ 90%
$\Gamma(D^{+} \rightarrow \pi^{+} e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[/]	$< 3.4 \times 10^{-5}$, CL = 90%
$\Gamma(D^+ \rightarrow K^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[7]	$<$ 6.8 \times 10 ⁻⁵ , CL $=$ 90%
$\Gamma(D^0 \rightarrow \mu^{\pm} e^{\mp})/\Gamma_{\text{total}}$	[/]	$< 8.1 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to \pi^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[i]	$<\!8.6\times10^{-5}$, CL $=90\%$
$\Gamma(D^0 \rightarrow \eta e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[/]	$< \! 1.0 \times 10^{-4}$, CL $= 90\%$
$\Gamma(D^0 \rightarrow \rho^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[/]	$<$ 4.9 \times 10 $^{-5}$, CL $=$ 90%
$\Gamma(D^0 \to \omega e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[/]	$<1.2 \times 10^{-4}$, CL $=90\%$
$\Gamma(D^0 \to \phi e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[/]	$<\!3.4\times10^{-5}$, CL $=90\%$
$\Gamma(D^0 \to \overline{K}^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[7]	$<1.0 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \to \overline{K}^*(892)^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[/]	$<1.0 \times 10^{-4}$, CL = 90%
$\Gamma(D_S^+ \to \pi^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[i]	$<\!6.1\times10^{-4}$, CL $=$ 90%
$\Gamma(D_s^+ \to K^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[i]	$<6.3 \times 10^{-4}$, CL = 90%
$\Gamma(B^+ \rightarrow \pi^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$<6.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \to \pi^+ e^- \mu^+)/\Gamma_{\text{total}}$		$<6.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \to K^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$<6.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \to K^+ e^- \mu^+)/\Gamma_{\text{total}}$		$<6.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \to \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$		$<6.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \to K^- e^+ \mu^+)/\Gamma_{\text{total}}$		$<6.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^0 \to e^{\pm} \mu^{\mp})/\Gamma_{total}$	[i]	$< 3.5 \times 10^{-6}$, CL = 90%
$\Gamma(B^0 \to e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$	[/]	$<5.3 \times 10^{-4}$, CL = 90%
$\Gamma(B^0 \to \mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$	[7]	$< 8.3 \times 10^{-4}$, CL = 90%
$\Gamma(B \to e^{\pm} \mu^{\mp} s) / \Gamma_{\text{total}}$		$< 2.2 \times 10^{-5}$, CL $= 90\%$
$\Gamma(B_s^0 \to e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[/]	$<6.1 \times 10^{-6}$, CL = 90%
· > // LOCAL		*

TOTAL LEPTON NUMBER

Violation of total lepton number conservation also implies violation of lepton family number conservation.

```
\Gamma(Z \rightarrow pe)/\Gamma_{\text{total}}
                                                                                                    <1.8 \times 10^{-6}, CL = 95%
\Gamma(Z \rightarrow p\mu)/\Gamma_{\text{total}}
                                                                                                    <1.8 \times 10^{-6}, CL = 95%
\begin{array}{c} \text{limit on } \mu^- \rightarrow \ e^+ \ \text{conversion} \\ \sigma(\mu^- \ ^{32}\text{S} \rightarrow \ e^+ \ ^{32}\text{Si}^*) \ / \\ \sigma(\mu^- \ ^{32}\text{S} \rightarrow \ \nu_\mu \ ^{32}\text{P}^*) \end{array}
                                                                                                     <9 \times 10^{-10}, CL = 90%
          \begin{array}{c} \sigma(\mu^{-127}| \rightarrow e^{+127} \mathrm{Sb^*}) \ / \\ \sigma(\mu^{-127}| \rightarrow \mathrm{anything}) \end{array}
                                                                                                     <3 \times 10^{-10}, CL = 90%
          \sigma(\mu^- \text{Ti} \rightarrow e^+ \text{Ca}) /
                                                                                                     < 3.6 \times 10^{-11}, CL = 90%
                  \sigma(\mu^- \text{Ti} \rightarrow \text{capture})
\Gamma(\tau^- \rightarrow \pi^- \gamma)/\Gamma_{\text{total}}
                                                                                                     < 2.8 \times 10^{-4}, CL = 90%
                                                                                                     < 3.7 \times 10^{-4}, CL = 90%
\Gamma(\tau^- \rightarrow \pi^- \pi^0)/\Gamma_{\text{total}}
\Gamma(\tau^- \rightarrow e^+\pi^-\pi^-)/\Gamma_{\text{total}}
                                                                                                     <1.9 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^+ \pi^- \pi^-)/\Gamma_{\text{total}}
                                                                                                    <3.4 \times 10^{-6}, CL = 90%
                                                                                                     <2.1 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow e^+ \pi^- K^-)/\Gamma_{\text{total}}
\Gamma(\tau^- \rightarrow e^+ K^- K^-)/\Gamma_{\text{total}}
                                                                                                     < 3.8 \times 10^{-6}, CL = 90\%
                                                                                                     < 7.0 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^+ \pi^- K^-)/\Gamma_{\text{total}}
                                                                                                     <6.0 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow \mu^+ K^- K^-)/\Gamma_{\text{total}}
\Gamma(\tau^- \to \overline{p}\gamma)/\Gamma_{\text{total}}
                                                                                                     < 3.5 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \to \overline{p}\pi^0)/\Gamma_{total}
                                                                                                     <1.5 \times 10^{-5}, CL = 90%
\Gamma(\tau^- \to \overline{p} 2\pi^0)/\Gamma_{\text{total}}
                                                                                                     < 3.3 \times 10^{-5}, CL = 90%
                                                                                                     < 8.9 \times 10^{-6}, CL = 90%
\Gamma(\tau^- \rightarrow \overline{p}\eta)/\Gamma_{\text{total}}
\Gamma(\tau^- \to \overline{p}\pi^0\eta)/\Gamma_{\text{total}}
                                                                                                     < 2.7 \times 10^{-5}, CL = 90%
\nu_e \rightarrow (\overline{\nu}_e)_L
          \alpha\Delta(m^2) for \sin^2(2\theta) = 1
                                                                                                     <0.14 \text{ eV}^2, CL = 90%
                                                                                                     <0.032, CL = 90%
          \alpha^2 \sin^2(2\theta) for "Large" \Delta(m^2)
\nu_{\mu} \rightarrow (\overline{\nu}_e)_L
          \alpha\Delta(m^2) for \sin^2(2\theta)=1
                                                                                                     < 0.16 \text{ eV}^2, CL = 90\%
          \alpha^2 \sin^2(2\theta) for "Large" \Delta(m^2)
                                                                                                     <0.001, CL = 90%
                                                                                           [m] <1.5 \times 10^{-3}, CL = 90%
\Gamma(\pi^+ \to \mu^+ \overline{\nu}_e)/\Gamma_{\rm total}
\Gamma(K^+ \rightarrow \pi^- \mu^+ e^+)/\Gamma_{\text{total}}
                                                                                                     < 7 \times 10^{-9}, CL = 90%
\Gamma(K^+ \rightarrow \pi^- e^+ e^+)/\Gamma_{\text{total}}
                                                                                                     <1.0 \times 10^{-8}, CL = 90%
                                                                                           [m] <1.5 × 10<sup>-4</sup>, CL = 90%
\Gamma(K^+ \rightarrow \pi^- \mu^+ \mu^+)/\Gamma_{\text{total}}
\Gamma(K^+ \rightarrow \mu^+ \overline{\nu}_e)/\Gamma_{\text{total}}
                                                                                           [m] <3.3 × 10<sup>-3</sup>, CL = 90%
\Gamma(K^+ \to \pi^0 e^+ \overline{\nu}_e)/\Gamma_{\text{total}}
                                                                                                     <3 \times 10^{-3}, CL = 90%
```

$\Gamma(D^+ \rightarrow \pi^- e^+ e^+)/\Gamma_{\text{total}}$	$<9.6 \times 10^{-5}$, CL = 90%
$\Gamma(D^+ \rightarrow \pi^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<1.7 \times 10^{-5}$, CL = 90%
$\Gamma(D^+ \rightarrow \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$	$< 5.0 \times 10^{-5}$, CL = 90%
$\Gamma(D^+ \rightarrow \rho^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<$ 5.6 \times 10 ⁻⁴ , CL $=$ 90%
$\Gamma(D^+ \rightarrow K^- e^+ e^+)/\Gamma_{\text{total}}$	$<1.2 \times 10^{-4}$, CL = 90%
$\Gamma(D^+ \rightarrow \kappa^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<1.2 \times 10^{-4}$, CL = 90%
$\Gamma(D^+ \rightarrow \kappa^- e^+ \mu^+)/\Gamma_{\text{total}}$	$< 1.3 \times 10^{-4}$, CL $= 90\%$
$\Gamma(D^+ \to K^*(892)^- \mu^+ \mu^+)/\Gamma_{t}$	otal $< 8.5 \times 10^{-4}, CL = 90\%$
$\Gamma(D_s^+ \to \pi^- e^+ e^+)/\Gamma_{\text{total}}$	$<6.9 \times 10^{-4}$, CL = 90%
$\Gamma(D_s^+ \to \pi^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$< 8.2 \times 10^{-5}$, CL = 90%
$\Gamma(D_s^+ \to \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$	<7.3 $ imes$ 10 ⁻⁴ , CL $=$ 90%
$\Gamma(D_s^+ \to K^- e^+ e^+)/\Gamma_{\text{total}}$	$<6.3 \times 10^{-4}$, CL = 90%
$\Gamma(D_s^+ \to K^- \mu^+ \mu^+)/\Gamma_{total}$	$<1.8 \times 10^{-4}$, CL $= 90\%$
$\Gamma(D_s^+ \to K^- e^+ \mu^+)/\Gamma_{total}$	$<6.8 \times 10^{-4}$, CL = 90%
$\Gamma(D_s^+ \to K^*(892)^- \mu^+ \mu^+)/\Gamma_{t_1}$	otal $<1.4 \times 10^{-3}, CL = 90\%$
$\Gamma(B^+ \rightarrow \pi^- e^+ e^+)/\Gamma_{\text{total}}$	$< 3.9 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \rightarrow \pi^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<9.1 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \rightarrow K^- e^+ e^+)/\Gamma_{\text{total}}$	$< 3.9 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \to K^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<9.1 \times 10^{-3}$, CL = 90%
$\Gamma(\Xi^- \rightarrow \rho \mu^- \mu^-)/\Gamma_{total}$	$<4 \times 10^{-4}$, CL = 90%
$\Gamma(\Lambda_c^+ \to \Sigma^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$< 7.0 \times 10^{-4}$, CL = 90%

BARYON NUMBER

$\Gamma(Z \rightarrow pe)/\Gamma_{\text{total}}$	$<1.8 \times 10^{-6}$, CL = 95%
	·
$\Gamma(Z \rightarrow p\mu)/\Gamma_{\text{total}}$	$<1.8 \times 10^{-6}$, CL = 95%
$\Gamma(\tau^- \to \overline{p}\gamma)/\Gamma_{\text{total}}$	$< 3.5 \times 10^{-6}$, CL = 90%
$\Gamma(\tau^- \to \overline{p}\pi^0)/\Gamma_{\text{total}}$	$<1.5 \times 10^{-5}$, CL = 90%
$\Gamma(\tau^- \to \bar{p} 2\pi^0)/\Gamma_{\text{total}}$	$< 3.3 \times 10^{-5}$, CL = 90%
$\Gamma(\tau^- \to \overline{p}\eta)/\Gamma_{\text{total}}$	$< 8.9 \times 10^{-6}$, CL $= 90\%$
$\Gamma(\tau^- \to \overline{p}\pi^0\eta)/\Gamma_{\text{total}}$	$< 2.7 \times 10^{-5}$, CL = 90%
p mean life	$> 1.6 \times 10^{25}$ years

A few examples of proton or bound neutron decay follow. For limits on many other nucleon decay channels, see the Baryon Summary Table.

$\tau(N \to e^+\pi)$	$> 158 (n), > 1600 (p) \times 10^{30}$ years,
	CL = 90%
$\tau(N \to \mu^+ \pi)$	$> 100 (n), > 473 (p) \times 10^{30}$ years, CL = 90%
$\tau(N \to e^+ K)$	$> 17 (n), > 150 (p) \times 10^{30}$ years,
1	CL = 90%
$\tau(N \to \mu^+ K)$	$> 26 (n), > 120 (p) \times 10^{30}$ years,
limit on $n\overline{n}$ oscillations (free n)	$>0.86 \times 10^8$ s, CL = 90%
limit on $n\overline{n}$ oscillations (bound n)	$[n] > 1.2 \times 10^8 \text{ s. CL} = 90\%$

ELECTRIC CHARGE (Q)

e^{-}	mea	an life ,	/ branc	hing	fractio	ìΠ
L(u	-+	$p\nu_e\overline{\nu}$	e)/F _{tol}	:al		

[o]
$$>4.2 \times 10^{24}$$
 yr, CL = 68%
 $<8 \times 10^{-27}$, CL = 68%

$\Delta S = \Delta Q$ RULE

Violations allowed in second-order weak interactions.

$\Gamma(K^{+} \rightarrow \pi^{+}\pi^{+}e^{-}\nu_{e})/\Gamma_{\text{total}}$ $\Gamma(K^{+} \rightarrow \pi^{+}\pi^{+}\mu^{-}\nu_{\mu})/\Gamma_{\text{total}}$	$<1.2 \times 10^{-8}$, CL = 90% $<3.0 \times 10^{-6}$, CL = 95%
$x = A(\overline{K}^0 \rightarrow \pi^- \ell^+ \nu)/A(K^0 \rightarrow \pi^- \ell^+ \nu) = A(\Delta$	$S = -\Delta Q$)/A($\Delta S = \Delta Q$)
real part of x	-0.002 ± 0.006
imaginary part of x	0.0012 ± 0.0019
$\Gamma(\Sigma^+ \to n\ell^+\nu)/\Gamma(\Sigma^- \to n\ell^-\overline{\nu})$	< 0.043
$\Gamma(\Sigma^+ \to ne^+\nu_e)/\Gamma_{\text{total}}$	$<$ 5 \times 10 ⁻⁶ , CL = 90%
$\Gamma(\Sigma^+ \to \pi \mu^+ \nu_\mu)/\Gamma_{\text{total}}$	$< 3.0 \times 10^{-5}$, CL = 90%
$\Gamma(\Xi^0 \to \Sigma^- e^+ \nu_e)/\Gamma_{\text{total}}$	$< 9 \times 10^{-4}$, CL = 90%
$\Gamma(\Xi^0 \to \Sigma^- \mu^+ \nu_\mu)/\Gamma_{\text{total}}$	$< 9 \times 10^{-4}$, CL = 90%

$\Delta S = 2$ FORBIDDEN

Allowed in second-order weak interactions.

$\Gamma(\Xi^0 \to p\pi^-)/\Gamma_{\text{total}}$	$<$ 4 $ imes$ 10 $^{-5}$, CL $=$ 90%
$\Gamma(\bar{z}^0 \to pe^-\bar{v}_e)/\Gamma_{\text{total}}$	$<1.3 \times 10^{-3}$
$\Gamma(\Xi^0 \to p\mu^-\overline{\nu}_{\mu})/\Gamma_{\text{total}}$	$<1.3 \times 10^{-3}$
$\Gamma(\Xi^- \to n\pi^-)/\Gamma_{\text{total}}$	$<1.9 \times 10^{-5}$, CL = 90%
$\Gamma(\Xi^- \to ne^- \overline{\nu}_e)/\Gamma_{\text{total}}$	$< 3.2 \times 10^{-3}$, CL = 90%
$\Gamma(\Xi^- \rightarrow n\mu^-\overline{\nu}_{\mu})/\Gamma_{\text{total}}$	$<1.5 \times 10^{-2}$, CL = 90%
$\Gamma(\Xi^- \to p\pi^-\pi^-)/\Gamma_{\text{total}}$	$<$ 4 \times 10 $^{-4}$, CL $=$ 90%
$\Gamma(\Xi^- \to p\pi^- e^- \overline{\nu}_e)/\Gamma_{\text{total}}$	$<4 \times 10^{-4}$, CL = 90%
$\Gamma(\Xi^- \to p\pi^-\mu^-\overline{\nu}_{\mu})/\Gamma_{\text{total}}$	$<4 \times 10^{-4}$, CL = 90%
$\Gamma(\Omega^- \to \Lambda \pi^-)/\Gamma_{\text{total}}$	$<1.9 \times 10^{-4}$, CL = 90%

$\Delta S = 2$ VIA MIXING

Allowed in second-order weak interactions, e.g. mixing.

$m_{\kappa_l^0} - m_{\kappa_s^0}$	$(0.5300 \pm 0.0012) \times 10^{10} \ h \ s^{-1}$
$m_{\kappa_L^0} - m_{\kappa_S^0}$	$(3.489 \pm 0.008) \times 10^{-12} \text{ MeV}$

$\Delta C = 2 \text{ VIA MIXING}$

Allowed in second-order weak interactions, e.g. mixing.

$ m_{D_1^0} - m_{D_2^0} $	[p] $< 7 \times 10^{10} \ h \ s^{-1}$, CL = 95%
$\Gamma(K^+\ell^-\overline{\nu}_{\ell}(\text{via }\overline{D}^0))/\Gamma(K^-\ell^+\nu_{\ell})$	< 0.005, CL = $90%$
$\Gamma(\mathcal{K}^+\pi^-$ (via $\widetilde{\mathcal{D}}^0$))/ $\Gamma(\mathcal{K}^-\pi^+)$	$<$ 4.1 \times 10 ⁻⁴ , CL $=$ 95%
$\Gamma(D^0 \to K^+ \ell^- \overline{\nu}_{\ell}(\text{via } \overline{D}^0))/\Gamma_{\text{total}}$	$<1.7 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \to K^+\pi^- \text{(via } \overline{D}^0))/\Gamma_{\text{total}}$	$<1.6 \times 10^{-5}$, CL = 95%
$\Gamma(D^0 \to K^+\pi^-\pi^+\pi^-(\text{via }\overline{D}^0))/\Gamma_{\text{total}}$	$< 4 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \to \mu^- \text{ anything (via } \overline{D}^0))/\Gamma_{\text{total}}$	$<4 \times 10^{-4}$, CL = 90%

$\Delta B = 2 \text{ VIA MIXING}$

Allowed in second-order weak interactions, e.g. mixing.

x_d	0.174 ± 0.009
$\Delta m_{B^0} = m_{B_H^0} - m_{B_L^0}$	$(0.472 \pm 0.017) \times 10^{12} \text{ h s}^{-1}$
$x_{d} = \Delta m_{B^0} / \Gamma_{B^0}$	0.730 ± 0.029
χ_{B} at high energy	0.118 ± 0.005
$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0}$	$>10.6 \times 10^{12} \ h \ s^{-1}$, CL = 95%
$x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0}$	>15.7, CL $=$ 95%
Χş	>0.4980, CL = 95%

$\Delta S = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$\Gamma(K^+ \rightarrow \pi^+ e^+ e^-)/\Gamma_{\text{total}}$	$(2.88 \pm 0.13) \times 10^{-7}$
$\Gamma(K^+ \rightarrow \pi^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$(7.6 \pm 2.1) \times 10^{-8} (S = 3.4)$
$\Gamma(K^+ \rightarrow \pi^+ \nu \overline{\nu})/\Gamma_{\text{total}}$	$(1.5 + \frac{3.4}{1.2}) \times 10^{-10}$
$\Gamma(K_S^0 \rightarrow \mu^+\mu^-)/\Gamma_{\text{total}}$	$< 3.2 \times 10^{-7}$, CL $= 90\%$
$\Gamma(K_S^0 \rightarrow e^+e^-)/\Gamma_{\text{total}}$	$<1.4 \times 10^{-7}$, CL = 90%
$\Gamma(\kappa_S^0 \to \pi^0 e^+ e^-)/\Gamma_{\text{total}}$	$<1.1 \times 10^{-6}$, CL = 90%
$\Gamma(K_L^{\bar{0}} \rightarrow \mu^+ \mu^-)/\Gamma_{\text{total}}$	$(7.15 \pm 0.16) \times 10^{-9}$
$\Gamma(\kappa_L^{\bar{0}} \rightarrow e^+e^-)/\Gamma_{\text{total}}$	$(9^{+6}_{-4}) \times 10^{-12}$
$\Gamma(K_L^0 \rightarrow \pi^+\pi^-e^+e^-)/\Gamma_{\text{total}}$	[q] $(3.5 \pm 0.6) \times 10^{-7}$
$\Gamma(\kappa_L^0 \rightarrow \mu^+ \mu^- e^+ e^-)/\Gamma_{\text{total}}$	$(2.9^{+6.7}_{-2.4}) \times 10^{-9}$
$\Gamma(\kappa_L^{\bar{0}} \rightarrow e^+e^-e^+e^-)/\Gamma_{\text{total}}$	$(4.1 \pm 0.8) \times 10^{-8} (S = 1.2)$
$\Gamma(\kappa_L^0 \to \pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<$ 5.1 \times 10 ⁻⁹ , CL $=$ 90%
$\Gamma(K_L^{0} \rightarrow \pi^0 e^+ e^-)/\Gamma_{\text{total}}$	$<4.3 \times 10^{-9}$, CL = 90%
$\Gamma(K_L^0 \to \pi^0 \nu \overline{\nu})/\Gamma_{\text{total}}$	$<$ 5.9 \times 10 ⁻⁷ , CL $=$ 90%
$\Gamma(\Sigma^{+} \rightarrow pe^{+}e^{-})/\Gamma_{\text{total}}$	$< 7 \times 10^{-6}$

Tests of Conservation Laws

$\Delta C = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$\Gamma(D^+ \rightarrow \pi^+ e^+ e^-)/\Gamma_{\text{total}}$	$<5.2 \times 10^{-5}$, CL = 90%
$\Gamma(D^+ \rightarrow \pi^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<1.5 \times 10^{-5}$, CL = 90%
$\Gamma(D^+ \rightarrow \rho^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<5.6 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \rightarrow e^+e^-)/\Gamma_{\text{total}}$	$<6.2 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<4.1 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to \pi^0 e^+ e^-)/\Gamma_{\text{total}}$	$<4.5\times10^{-5}$, CL = 90%
$\Gamma(D^0 \to \pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<1.8 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \to \eta e^+ e^-)/\Gamma_{\text{total}}$	$<1.1 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \to \eta \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<5.3 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \to \rho^0 e^+ e^-)/\Gamma_{\text{total}}$	$<1.0 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \to \rho^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<2.3 \times 10^{-4}$, CL = 90%
$\Gamma(\mathcal{D}^0 \to \omega e^+ e^-)/\Gamma_{\text{total}}$	$<1.8 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \to \omega \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 8.3 \times 10^{-4}, CL = 90\%$
$\Gamma(D^0 \to \phi e^+ e^-)/\Gamma_{\text{total}}$	$<5.2 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 \to \phi \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<4.1 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \rightarrow \pi^+\pi^-\pi^0\mu^+\mu^-)/\Gamma_{\text{total}}$	$< 8.1 \times 10^{-4}$, CL = 90%
$\Gamma(D_s^+ \to K^+ e^+ e^-)/\Gamma_{\text{total}}$	$<1.6 \times 10^{-3}$, CL = 90%
$\Gamma(D_s^+ \to K^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<1.4 \times 10^{-4}$, CL = 90%
$\Gamma(D_s^+ \to K^*(892)^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<1.4 \times 10^{-3}$, CL = 90%
total	· ·
$\Gamma(\Lambda_c^{+} \rightarrow p\mu^{+}\mu^{-})/\Gamma_{\text{total}}$	$<3.4 \times 10^{-4}$, CL = 90%

$\Delta B = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$\begin{array}{llll} \Gamma(B^+ \to \pi^+ e^+ e^-)/\Gamma_{\rm total} & <3.9 \times 10^{-3}, \; {\rm CL} = 90\% \\ \Gamma(B^+ \to \pi^+ \mu^+ \mu^-)/\Gamma_{\rm total} & <9.1 \times 10^{-3}, \; {\rm CL} = 90\% \\ \Gamma(B^+ \to K^+ e^+ e^-)/\Gamma_{\rm total} & <6 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B^+ \to K^+ \mu^+ \mu^-)/\Gamma_{\rm total} & <5.2 \times 10^{-6}, \; {\rm CL} = 90\% \\ \Gamma(B^+ \to K^+ (892)^+ e^+ e^-)/\Gamma_{\rm total} & <5.9 \times 10^{-4}, \; {\rm CL} = 90\% \\ \Gamma(B^+ \to K^* (892)^+ \mu^+ \mu^-)/\Gamma_{\rm total} & <1.2 \times 10^{-3}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to e^+ e^-)/\Gamma_{\rm total} & <5.9 \times 10^{-6}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to \mu^+ \mu^-)/\Gamma_{\rm total} & <5.8 \times 10^{-7}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 e^+ e^-)/\Gamma_{\rm total} & <3.0 \times 10^{-4}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 (892)^0 e^+ e^-)/\Gamma_{\rm total} & <3.6 \times 10^{-4}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^* (892)^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <2.9 \times 10^{-4}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^* (892)^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <4.0 \times 10^{-6}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^* (892)^0 \nu \bar{\nu})/\Gamma_{\rm total} & <1.0 \times 10^{-3}, \; {\rm CL} = 90\% \\ \Gamma(B \to e^+ e^- s)/\Gamma_{\rm total} & <5.7 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total} & <5.8 \times 10^{-5}, \; {\rm CL} = 90\% \\ \Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\rm total$
$\begin{array}{lll} \Gamma(B^+ \to K^+ e^+ e^-)/\Gamma_{\rm total} & <6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(B^+ \to K^+ \mu^+ \mu^-)/\Gamma_{\rm total} & <5.2 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(B^+ \to K^+ (892)^+ e^+ e^-)/\Gamma_{\rm total} & <5.9 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^+ \to K^* (892)^+ \mu^+ \mu^-)/\Gamma_{\rm total} & <1.2 \times 10^{-3}, {\rm CL} = 90\% \\ \Gamma(B^0 \to e^+ e^-)/\Gamma_{\rm total} & <5.9 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(B^0 \to \mu^+ \mu^-)/\Gamma_{\rm total} & <6.8 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 e^+ e^-)/\Gamma_{\rm total} & <3.0 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 e^+ e^-)/\Gamma_{\rm total} & <3.6 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 (892)^0 e^+ e^-)/\Gamma_{\rm total} & <2.9 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^* (892)^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <4.0 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^* (892)^0 \nu \bar{\nu})/\Gamma_{\rm total} & <1.0 \times 10^{-3}, {\rm CL} = 90\% \\ \Gamma(B^0 \to e^+ e^- s)/\Gamma_{\rm total} & <5.7 \times 10^{-5}, {\rm CL} = 90\% \\ \end{array}$
$\begin{array}{lll} \Gamma(B^+ \to K^+ e^+ e^-)/\Gamma_{\rm total} & <6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(B^+ \to K^+ \mu^+ \mu^-)/\Gamma_{\rm total} & <5.2 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(B^+ \to K^+ (892)^+ e^+ e^-)/\Gamma_{\rm total} & <5.9 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^+ \to K^* (892)^+ \mu^+ \mu^-)/\Gamma_{\rm total} & <1.2 \times 10^{-3}, {\rm CL} = 90\% \\ \Gamma(B^0 \to e^+ e^-)/\Gamma_{\rm total} & <5.9 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(B^0 \to \mu^+ \mu^-)/\Gamma_{\rm total} & <6.8 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 e^+ e^-)/\Gamma_{\rm total} & <3.0 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 e^+ e^-)/\Gamma_{\rm total} & <3.6 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 (892)^0 e^+ e^-)/\Gamma_{\rm total} & <2.9 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^* (892)^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <4.0 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^* (892)^0 \nu \bar{\nu})/\Gamma_{\rm total} & <1.0 \times 10^{-3}, {\rm CL} = 90\% \\ \Gamma(B^0 \to e^+ e^- s)/\Gamma_{\rm total} & <5.7 \times 10^{-5}, {\rm CL} = 90\% \\ \end{array}$
$\begin{array}{lll} \Gamma(B^+ \to K^+ \mu^+ \mu^-)/\Gamma_{\text{total}} & <5.2 \times 10^{-6}, \; \text{CL} = 90\% \\ \Gamma(B^+ \to K^*(892)^+ e^+ e^-)/\Gamma_{\text{total}} & <6.9 \times 10^{-4}, \; \text{CL} = 90\% \\ \Gamma(B^+ \to K^*(892)^+ \mu^+ \mu^-)/\Gamma_{\text{total}} & <1.2 \times 10^{-3}, \; \text{CL} = 90\% \\ \Gamma(B^0 \to e^+ e^-)/\Gamma_{\text{total}} & <5.9 \times 10^{-6}, \; \text{CL} = 90\% \\ \Gamma(B^0 \to \mu^+ \mu^-)/\Gamma_{\text{total}} & <6.8 \times 10^{-7}, \; \text{CL} = 90\% \\ \Gamma(B^0 \to K^0 e^+ e^-)/\Gamma_{\text{total}} & <3.0 \times 10^{-4}, \; \text{CL} = 90\% \\ \Gamma(B^0 \to K^0 (892)^0 e^+ e^-)/\Gamma_{\text{total}} & <2.9 \times 10^{-4}, \; \text{CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\text{total}} & <2.9 \times 10^{-4}, \; \text{CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\text{total}} & <4.0 \times 10^{-6}, \; \text{CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \nu \bar{\nu})/\Gamma_{\text{total}} & <1.0 \times 10^{-3}, \; \text{CL} = 90\% \\ \Gamma(B^0 \to e^+ e^- s)/\Gamma_{\text{total}} & <5.7 \times 10^{-5}, \; \text{CL} = 90\% \\ \end{array}$
$\begin{array}{lll} \Gamma(B^+ \to K^*(892)^+ e^+ e^-)/\Gamma_{\rm total} & <6.9 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^+ \to K^*(892)^+ \mu^+ \mu^-)/\Gamma_{\rm total} & <1.2 \times 10^{-3}, {\rm CL} = 90\% \\ \Gamma(B^0 \to e^+ e^-)/\Gamma_{\rm total} & <5.9 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(B^0 \to \mu^+ \mu^-)/\Gamma_{\rm total} & <6.8 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 e^+ e^-)/\Gamma_{\rm total} & <3.0 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <3.6 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 e^+ e^-)/\Gamma_{\rm total} & <2.9 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <4.0 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \nu \bar{\nu})/\Gamma_{\rm total} & <1.0 \times 10^{-3}, {\rm CL} = 90\% \\ \Gamma(B^0 \to e^+ e^- s)/\Gamma_{\rm total} & <5.7 \times 10^{-5}, {\rm CL} = 90\% \\ \end{array}$
$ \begin{array}{llll} \Gamma(B^+ \to K^*(892)^+ \mu^+ \mu^-)/\Gamma_{\rm total} & <1.2 \times 10^{-3}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to e^+ e^-)/\Gamma_{\rm total} & <5.9 \times 10^{-6}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to \mu^+ \mu^-)/\Gamma_{\rm total} & <6.8 \times 10^{-7}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 e^+ e^-)/\Gamma_{\rm total} & <3.0 \times 10^{-4}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <3.6 \times 10^{-4}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 e^+ e^-)/\Gamma_{\rm total} & <2.9 \times 10^{-4}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <4.0 \times 10^{-6}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \nu \bar{\nu})/\Gamma_{\rm total} & <1.0 \times 10^{-3}, \; {\rm CL} = 90\% \\ \Gamma(B \to e^+ e^- s)/\Gamma_{\rm total} & <5.7 \times 10^{-5}, \; {\rm CL} = 90\% \\ \end{array} $
$ \begin{array}{llll} \Gamma(B^0 \to e^+e^-)/\Gamma_{\rm total} & <5.9 \times 10^{-6}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to \mu^+\mu^-)/\Gamma_{\rm total} & <6.8 \times 10^{-7}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0e^+e^-)/\Gamma_{\rm total} & <3.0 \times 10^{-4}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0\mu^+\mu^-)/\Gamma_{\rm total} & <3.6 \times 10^{-4}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0e^+e^-)/\Gamma_{\rm total} & <2.9 \times 10^{-4}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0\mu^+\mu^-)/\Gamma_{\rm total} & <4.0 \times 10^{-6}, \; {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0\nu\bar{\nu})/\Gamma_{\rm total} & <1.0 \times 10^{-3}, \; {\rm CL} = 90\% \\ \Gamma(B \to e^+e^-s)/\Gamma_{\rm total} & <5.7 \times 10^{-5}, \; {\rm CL} = 90\% \\ \end{array} $
$\begin{array}{lll} \Gamma(B^0 \to \ \mu^+ \mu^-)/\Gamma_{\text{total}} & <6.8 \times 10^{-7}, \ \text{CL} = 90\% \\ \Gamma(B^0 \to \ K^0 e^+ e^-)/\Gamma_{\text{total}} & <3.0 \times 10^{-4}, \ \text{CL} = 90\% \\ \Gamma(B^0 \to \ K^0 \mu^+ \mu^-)/\Gamma_{\text{total}} & <3.6 \times 10^{-4}, \ \text{CL} = 90\% \\ \Gamma(B^0 \to \ K^*(892)^0 e^+ e^-)/\Gamma_{\text{total}} & <2.9 \times 10^{-4}, \ \text{CL} = 90\% \\ \Gamma(B^0 \to \ K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\text{total}} & <4.0 \times 10^{-6}, \ \text{CL} = 90\% \\ \Gamma(B^0 \to \ K^*(892)^0 \nu \bar{\nu})/\Gamma_{\text{total}} & <1.0 \times 10^{-3}, \ \text{CL} = 90\% \\ \Gamma(B \to \ e^+ e^- s)/\Gamma_{\text{total}} & <5.7 \times 10^{-5}, \ \text{CL} = 90\% \\ \end{array}$
$\begin{array}{lll} \Gamma(B^0 \to K^0 e^+ e^-)/\Gamma_{\rm total} & <3.0 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <3.6 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 e^+ e^-)/\Gamma_{\rm total} & <2.9 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <4.0 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \nu \bar{\nu})/\Gamma_{\rm total} & <1.0 \times 10^{-3}, {\rm CL} = 90\% \\ \Gamma(B \to e^+ e^- s)/\Gamma_{\rm total} & <5.7 \times 10^{-5}, {\rm CL} = 90\% \end{array}$
$\begin{array}{lll} \Gamma(B^0 \to K^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <3.6 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 e^+ e^-)/\Gamma_{\rm total} & <2.9 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\rm total} & <4.0 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \nu \bar{\nu})/\Gamma_{\rm total} & <1.0 \times 10^{-3}, {\rm CL} = 90\% \\ \Gamma(B \to e^+ e^- s)/\Gamma_{\rm total} & <5.7 \times 10^{-5}, {\rm CL} = 90\% \end{array}$
$\begin{array}{lll} \Gamma(B^0 \to K^*(892)^0 e^+ e^-)/\Gamma_{\text{total}} & <2.9 \times 10^{-4}, \text{CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\text{total}} & <4.0 \times 10^{-6}, \text{CL} = 90\% \\ \Gamma(B^0 \to K^*(892)^0 \nu \bar{\nu})/\Gamma_{\text{total}} & <1.0 \times 10^{-3}, \text{CL} = 90\% \\ \Gamma(B \to e^+ e^- s)/\Gamma_{\text{total}} & <5.7 \times 10^{-5}, \text{CL} = 90\% \end{array}$
$ \Gamma(B^0 \to K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\text{total}} $ $ \Gamma(B^0 \to K^*(892)^0 \nu \bar{\nu})/\Gamma_{\text{total}} $ $ \Gamma(B \to e^+ e^- s)/\Gamma_{\text{total}} $ $ < 4.0 \times 10^{-6}, CL = 90\% $ $ < 1.0 \times 10^{-3}, CL = 90\% $ $ < 5.7 \times 10^{-5}, CL = 90\% $
$\Gamma(B^0 \to K^*(892)^0 \nu \bar{\nu})/\Gamma_{\text{total}}$ <1.0 × 10 ⁻³ , CL = 90% $\Gamma(B \to e^+ e^- s)/\Gamma_{\text{total}}$ <5.7 × 10 ⁻⁵ , CL = 90%
$\Gamma(B \rightarrow e^+e^-s)/\Gamma_{\text{total}}$ <5.7 × 10 ⁻⁵ , CL = 90%
$\Gamma(B \to \mu^+ \mu^- s)/\Gamma_{\text{total}}$ <5.8 × 10 ⁻⁵ , CL = 90%
$\Gamma(\overline{b} \rightarrow \mu^{+} \mu^{-} \text{ anything})/\Gamma_{\text{total}}$ <3.2 × 10 ⁻⁴ , CL = 90%
$\Gamma(B_5^0 \to \mu^+ \mu^-)/\Gamma_{\text{total}}$ <2.0 × 10 ⁻⁶ , CL = 90%
$\Gamma(B_{\frac{5}{5}}^{0} \rightarrow e^{+}e^{-})/\Gamma_{\text{total}}$ <5.4 × 10 ⁻⁵ , CL = 90%
$\Gamma(B_s^0 \rightarrow \phi \nu \bar{\nu})/\Gamma_{\text{total}}$ <5.4 × 10 ⁻³ , CL = 90%

$\Delta T = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$$\Gamma(t \rightarrow Zq(q=u,c))/\Gamma_{total}$$
 [r] <33 × 10⁻², CL = 95%

NOTES

In this Summary Table:

When a quantity has "(S = ...)" to its right, the error on the quantity has been enlarged by the "scale factor" S, defined as S = $\sqrt{\chi^2/(N-1)}$, where N is the number of measurements used in calculating the quantity. We do this when S > 1, which often indicates that the measurements are inconsistent. When S > 1.25, we also show in the Particle Listings an ideogram of the measurements. For more about S, see the Introduction.

- [a] C parity forbids this to occur as a single-photon process.
- [b] Time-reversal invariance requires this to be 0° or 180°.
- [c] Allowed by higher-order electroweak interactions.
- [d] Violates CP in leading order. Test of direct CP violation since the indirect CP-violating and CP-conserving contributions are expected to be suppressed.
- [e] ϵ'/ϵ is derived from $\left|\eta_{00}/\eta_{+-}\right|$ measurements using theoretical input on phases.
- [f] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. D12, 2744 (1975).
- [g] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{\mathcal{K}_{L}^{0}}-m_{\mathcal{K}_{S}^{0}}|$, and $\tau_{\mathcal{K}_{c}^{0}}$, as described in the introduction to "Tests of Conservation Laws."
- [h] These two results are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [i] The value is for the sum of the charge states or particle/antiparticle states indicated.
- $\ensuremath{[\emph{j}]}$ A test of additive vs. multiplicative lepton family number conservation.
- $[k] \Delta(m^2) = 100 \text{ eV}^2.$
- [/] $190 \text{ eV}^2 < \Delta(m^2) < 320 \text{ eV}^2$.
- [m] Derived from an analysis of neutrino-oscillation experiments.
- [n] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [o] This is the best "electron disappearance" limit. The best limit for the mode $e^- \to \nu \gamma$ is $> 2.35 \times 10^{25}$ yr (CL=68%).
- [p] This D_1^0 - D_2^0 limit is inferred from the D^0 - \overline{D}^0 mixing ratio $\Gamma(K^+\pi^-)$ (via \overline{D}^0)) / $\Gamma(K^-\pi^+)$ near the end of the D^0 Listings.
- [q] See the K⁰_L Particle Listings for the energy limits used in this measurement.
- [r] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

1. PHYSICAL CONSTANTS

Table 1.1. Reviewed 2000 by P.J. Mohr and B.N. Taylor (NIST). Based mainly on the "CODATA Recommended Values of the Fundamental Physical Constants: 1998" by P.J. Mohr and B.N. Taylor, J. Phys. Chem. Ref. Data 28, 1713 (1999) and Rev. Mod. Phys. 72, 351 (2000). The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1-standard-deviation uncertainties in the last digits; the corresponding uncertainties in parts per billion (ppb) are given in the last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). The full 1998 CODATA set of constants may be found at http://physics.nist.gov/constants

			Uncertainty (ppb)
speed of light in vacuum	c	299 792 458 m s ⁻¹	exact*
Planck constant	h	$6.626\ 068\ 76(52) \times 10^{-34}\ \mathrm{J\ s}$	78
Planck constant, reduced	$\hbar \equiv h/2\pi$	$1.054\ 571\ 596(82) \times 10^{-34}\ \text{J s}$	78
dan da 9 d		$= 6.582 \ 118 \ 89(26) \times 10^{-22} \ \text{MeV s}$	39
electron charge magnitude conversion constant	e ħc	$1.602\ 176\ 462(63) \times 10^{-19}\ C = 4.803\ 204\ 2$	
conversion constant	$(\hbar c)^2$	197.326 960 2(77) MeV fm 0.389 379 292(30) GeV ² mbarn	39 78
electron mass proton mass	m_e	0.510 998 902(21) MeV/ c^2 = 9.109 381 88(938.271 998(38) MeV/ c^2 = 1.672 621 58(3	
proton mass	m_p	$= 1.007 \ 276 \ 466 \ 88(13) \ u = 1836.152 \ 66'$	
deuteron mass	m_d	$1875.612\ 762(75)\ \text{MeV}/c^2$	1 0(33) me 0.13, 2.1 40
unified atomic mass unit (u)		931.494 013(37) MeV/ c^2 = 1.660 538 73(1)	
permittivity of free space	$\epsilon_0 = 1/\mu_0 c^2$	$8.854\ 187\ 817\ \dots \times 10^{-12}\ \mathrm{Fm}^{-1}$	exact
permeability of free space	$\mu_0 = 1/\mu_0 c$	$4\pi \times 10^{-7} \text{ N A}^{-2} = 12.566 \ 370 \ 614 \dots \times 10^{-7} \ \text{ N}$	10^{-7} N A^{-2} exact
-	$lpha=e^2/4\pi\epsilon_0\hbar c$		
fine-structure constant	, -	$7.297\ 352\ 533(27) \times 10^{-3} = 1/137.035\ 999$	
classical electron radius	$egin{aligned} r_e &= e^2/4\pi\epsilon_0 m_e c^2 \ \lambda_e &= \hbar/m_e c = r_e lpha^{-1} \end{aligned}$	$2.817 940 285(31) \times 10^{-15} \text{ m}$ $3.861 592 642(28) \times 10^{-13} \text{ m}$	11
$(e^- ext{ Compton wavelength})/2\pi$ Bohr radius $(m_{ ext{nucleus}} = \infty)$	$\lambda_e = h/m_e c = r_e lpha$ = $a_{\infty} = 4\pi\epsilon_0 \hbar^2/m_e e^2 = r_e lpha^{-2}$	$0.529\ 177\ 208\ 3(19) \times 10^{-10}\ m$	7.3 3.7
wavelength of 1 eV/c particle	hc/e	1.239 841 857(49)×10 ⁻⁶ m	39
Rydberg energy	$hcR_{\infty} = m_e e^4 / 2(4\pi\epsilon_0)^2 \hbar^2 = m_e c^2 \alpha^2 / 2$		39
Thomson cross section	$\sigma_T = 8\pi r_e^2/3$	0.665 245 854(15) barn	22
Bohr magneton	$\mu_B = e\hbar/2m_e$	5.788 381 749(43)×10 ⁻¹¹ MeV T ⁻¹	7.3
nuclear magneton	$\mu_N = e\hbar/2m_p$	$3.152\ 451\ 238(24)\times 10^{-14}\ \mathrm{MeV}\ \mathrm{T}^{-1}$	7.6
electron cyclotron freq./field	$\omega_{\text{cycl}}^e/B = e/m_e$	$1.758~820~174(71)\times10^{11}~{\rm rad~s^{-1}~T^{-1}}$	40
proton cyclotron freq./field	$\omega_{ m cvcl}^{ m cycl}/B=e/m_p$	$9.578~834~08(38)\times10^7~{ m rad~s^{-1}~T^{-1}}$	40
gravitational constant [‡]	G_N	$6.673(10) \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$	1.5×10^6
, ravitational composition	G _M	$= 6.707(10) \times 10^{-39} \ \hbar c \ (\text{GeV}/c^2)^{-2}$	1.5×10^{6} 1.5×10^{6}
standard grav. accel., sea level	g_n	$9.806\ 65\ \mathrm{m\ s^{-2}}$	exact
Avogadro constant	N_A	$6.022\ 141\ 99(47)\times10^{23}\ \mathrm{mol^{-1}}$	79
Boltzmann constant	k	1.380 650 $3(24) \times 10^{-23} \text{ J K}^{-1}$	1700
		$= 8.617 \ 342(15) \times 10^{-5} \ eV \ K^{-1}$	1700
molar volume, ideal gas at STP	$N_A k(273.15 \text{ K})/(101 \ 325 \text{ Pa})$	$22.413 \ 996(39) \times 10^{-3} \ \text{m}^3 \ \text{mol}^{-1}$	1700
Wien displacement law constant		$2.897\ 768\ 6(51)\times10^{-3}\ m\ K$	1700
Stefan-Boltzmann constant	$\sigma = \pi^2 k^4 / 60 \hbar^3 c^2$	$5.670\ 400(40) \times 10^{-8}\ \mathrm{W\ m^{-2}\ K^{-4}}$	7000
Fermi coupling constant**	$G_F/(\hbar c)^3$	$1.166~39(1) \times 10^{-5}~{ m GeV^{-2}}$	9000
weak-mixing angle	$\sin^2\widehat{ heta}(M_Z)$ $(\overline{ ext{MS}})$	$0.23117(16)^{\dagger\dagger}$	$7 imes 10^5$
W^{\pm} boson mass	m_W	$80.419(56) \text{ GeV}/c^2$	$7 imes 10^5$
Z^0 boson mass	m_Z	$91.1882(22)~{ m GeV}/c^2$	$2.4 imes 10^4$
strong coupling constant	$\alpha_s(m_Z)$	0.1185(20)	1.7×10^{7}
$\pi = 3.141\ 592\ 653\ 5$			4 901 532 861
$1~{\rm in} \equiv 0.0254~m \qquad 1~G \equiv 1$	0^{-4} T 1 eV = 1.602 1	76 $462(63) \times 10^{-19} \text{ J}$ $kT \text{ at } 300 \text{ K}$	$E = [38.681 \ 686(67)]^{-1} \text{ eV}$
$1 \text{ Å} \equiv 0.1 \text{ nm}$ $1 \text{ dyne} \equiv 1$	0^{-5} N 1 eV/ $c^2 = 1.782 \text{ 6}$	$61 \ 731(70) \times 10^{-36} \text{ kg}$ 0 °C	$\equiv 273.15 \text{ K}$
	$0^{-7} \text{ J} 2.997 924 58 \times 10^9 \text{ esu} = 1 \text{ C}$	1 atmosphere $\equiv 760$ Torr	

^{*} The meter is the length of the path traveled by light in vacuum during a time interval of 1/299 792 458 of a second.

 $^{^{\}dagger}$ At $Q^2=0.$ At $Q^2\approx m_W^2$ the value is approximately 1/128.

 $^{^{\}ddagger}$ Absolute lab measurements of G_N have been made only on scales of 1 mm to 1 m.

^{**} See the discussion in Sec. 10, "Electroweak model and constraints on new physics."

 $^{^{\}dagger\dagger}$ The corresponding $\sin^2\theta$ for the effective angle is 0.23147(16).

2. ASTROPHYSICAL CONSTANTS

Table 2.1. Revised 2000 by D.E. Groom (LBNL). The figures in parentheses after some values give the one-standard deviation uncertainties in the last digit(s). Physical constants are from Ref. 1. While every effort has been made to obtain the most accurate current values of the listed quantities, the table does not represent a critical review or adjustment of the constants, and is not intended as a primary reference.

Quantity	Symbol, equation	Value I	Reference, footnote
speed of light	с	$299792458~{ m m~s^{-1}}$	defined2
Newtonian gravitational constant	G_N	$6.673(10) \times 10^{-11} \mathrm{m^3kg^{-1}s^{-2}}$	3
astronomical unit (mean ⊕-⊙ distance)	au	149 597 870 660(20) m	4, 5
tropical year (equinox to equinox) (2001.0)	yr	31 556 925.2 s	4
sidereal year (fixed star to fixed star) (2001.0)		31 558 149.8 s	4
mean sidereal day (2001.0)		$23^{\rm h}56^{\rm m}04^{\rm s}\!.09053$	4
Jansky	Jy	$10^{-26}~{ m W}~{ m m}^{-2}{ m Hz}^{-1}$	
Planck mass	$\sqrt{\hbar c/G_N}$	$1.2210(9) \times 10^{19} \text{ GeV}/c^2$ = $2.1767(16) \times 10^{-8} \text{ kg}$	1
parsec (1 AU/1 arc sec) light year (deprecated unit)	pc ly	$3.085\ 677\ 580\ 7(4) \times 10^{16}\ m = 3.262ly$ $0.306\ 6\ pc = 0.946\ 1 \times 10^{16}\ m$	6
Schwarzschild radius of the Sun	$2G_N M_{\odot}/c^2$	2.953 250 08 km	7
solar mass	M_{\odot}	$1.9889(30) \times 10^{30} \text{ kg}$	8
solar equatorial radius	R_{\odot}	$6.961 \times 10^8 \text{ m}$	4
solar luminosity	L_{\odot}	$(3.846 \pm 0.008) \times 10^{26} \text{ W}$	9
Schwarzschild radius of the Earth	$2G_N M_{\oplus}/c^2$	4.435 028 11 mm	10
Earth mass		4.43502811 mm $5.974(9) \times 10^{24} \text{ kg}$	11
Earth mean equatorial radius	M_{\oplus}	$6.378140 \times 10^{6} \text{ m}$	
Earth mean equatorial radius	<i>R</i> ⊕	6.378140 × 10° m	4
luminosity conversion	L	$3.02 \times 10^{28} \times 10^{-0.4}~M_{ m bol}~{ m W}$	12
		$(M_{\text{bol}} = \text{absolute bolometric magnitude} = \text{bolometric magnitude at } 10 \text{ pc})$	
flux conversion	${\mathscr F}$	$2.52 \times 10^{-8} \times 10^{-0.4} \ m_{\rm bol} \ { m W m}^{-2}$	from above
		$(m_{ m bol} = { m apparent\ bolometric\ magnitude})$	
v_{\odot} around center of Galaxy	Θο	220(20) km s ⁻¹	13
solar distance from galactic center	R_{\circ}	8.0(5) kpc	14
Hubble expansion rate [†]	H_0	$100 \ h_0 \ {\rm km \ s^{-1} \ Mpc^{-1}}$	
		$= h_0 \times (9.77813 \mathrm{Gyr})^{-1}$	15
normalized Hubble expansion rate [†]	h_0	$(0.71 \pm 0.07) imes {0.95 \atop 0.95}$	16, 17
critical density of the universe [†]	$\rho_c = 3H_0^2/8\pi G_N$	$\begin{array}{l} 2.77536627\times10^{11}h_0^2M_{\odot}\mathrm{Mpc}^{-3}\\ = 1.879(3)\times10^{-29}h_0^2\mathrm{g\ cm}^{-3}\\ = 1.0539(16)\times10^{-5}h_0^2\mathrm{GeV}\mathrm{cm}^{-3} \end{array}$	
local disk density	0.11.1	$3-12 \times 10^{-24} \text{ g cm}^{-3} \approx 2-7 \text{ GeV}/c^2 \text{ cm}^{-3}$	18
	ρ disk	$2-13 \times 10^{-25} \text{ g cm}^{-3} \approx 0.1-0.7 \text{ GeV/}c^2 \text{cm}$	
local halo density	ρ halo		
pressureless matter density of the universe	$\Omega_M \equiv \rho_M/\rho_c$	$0.15 \lesssim \Omega_M \lesssim 0.45$	16, 20
scaled cosmological constant	$\Omega_{\Lambda} = \Lambda c^2 / 3H_0^2$	$0.6 \lesssim \Omega_{\Lambda} \lesssim 0.8$	16
scale factor for cosmological constant	$c^2/3H_0^2$	$2.853 \times 10^{51} h_0^{-2} \text{ m}^2$	
$\Omega_M + \Omega_\Lambda + \dots $ [21]	$\Omega_{ m tot}$ [21]	see footnote 22	
age of the universe [†]	t_0	12-18 Gyr	16
cosmic background radiation (CBR) temperatur	e^{\dagger} T_{0}	$2.725 \pm 0.001 \text{ K}$	23, 24
solar velocity with respect to CBR		$369.3 \pm 2.5 \text{ km s}^{-1}$	24, 25
energy density of CBR	$ ho_{\gamma}$	$4.641.7 \times 10^{-34} (T/2.725)^4 \text{ g cm}^{-3}$ = 0.260.38 (T/2.725) ⁴ eV cm ⁻³	12, 24
energy density of relativistic particles (CBR + ν)	$ ho_R$	$7.8042 \times 10^{-34} (T/2.725)^4 \text{ g cm}^{-3}$ = $0.43778 (T/2.725)^4 \text{ eV cm}^{-3}$	12, 24
number density of CBR photons	n_{γ}	$410.50(T/2.725)^3\mathrm{cm}^{-3}$	12, 24
entropy density/Boltzmann constant	s/k	$2889.2(T/2.725)^3~{ m cm}^{-3}$	12

 $^{^\}dagger$ Subscript 0 indicates present-day values.

References:

- P.J. Mohr and B.N. Taylor, "CODATA Recommended Values of the Fundamental Physical Constants: 1998," J. Phys. Chem. Ref. Data 28, 1713-1852 (1999).
- 2. B.W. Petley, Nature 303, 373 (1983).
- 3. The value of G_N [1] is the same as in Ref. 26, but the quoted error is 12 times larger. See Measurement, Science, and Technology 10, No. 6 (June 1999), special section: "The gravitational constant: Theory and experiment 200 years after Cavendish."

In the context of the scale dependence of field theoretic quantities, it should be remarked that absolute lab measurements of G_N have been performed on scales of 0.01–1.0 m.

- The Astronomical Almanac for the year 2001, U.S. Government Printing Office, Washington, and Her Majesty's Stationary Office, London (1999).
- JPL Planetary Ephemerides, E. Myles Standish, Jr., private communication (1989).
- 6. 1 AU divided by $\pi/648\,000$; quoted error is from the JPL Planetary Ephemerides value of the AU [5].
- Product of 2/c² and the heliocentric gravitational constant [4].
 The given 9-place accuracy seems consistent with uncertainties in defining the earth's orbital parameters.
- 8. Obtained from the heliocentric gravitational constant [4] and G_N [3]. The error is the 1500 ppm standard deviation of G_N .
- 9. 1996 mean total solar irradiance (TSI) = 1367.5 ± 2.7 [27]; the solar luminosity is $4\pi \times (1 \text{ AU})^2$ times this quantity. This value increased by 0.036% between the minima of solar cycles 21 and 22. It was modulated with an amplitude of 0.039% during solar cycle 21 [28].

Sackmann et al. [29] use TSI = 1370 ± 2 W m⁻², but conclude that the solar luminosity ($L_{\odot} = 3.853 \times 10^{26}$ J s⁻¹) has an uncertainty of 1.5%. Their value comes from three 1977–83 papers, and they comment that the error is based on scatter among the reported values, which is substantially in excess of that expected from the individual quoted errors.

The conclusion of the 1971 review by Thekaekara and Drummond [30] $(1353\pm1\%~W~m^{-2})$ is often quoted [31]. The conversion to luminosity is not given in the Thekaekara and Drummond paper, and we cannot exactly reproduce the solar luminosity given in Ref. 31.

Finally, a value based on the 1954 spectral curve due to Johnson [32] $(1395 \pm 1\% \text{ W m}^{-2}, \text{ or } L_{\odot} = 3.92 \times 10^{26} \text{ J s}^{-1})$ has been used widely, and may be the basis for the higher value of the solar luminosity and the corresponding lower value of the solar absolute bolometric magnitude (4.72) still common in the literature [12].

- 10. Product of $2/c^2$, the heliocentric gravitational constant from Ref. 4, and the earth/sun mass ratio, also from Ref. 4. The given 9-place accuracy appears to be consistent with uncertainties in actually defining the earth's orbital parameters.
- 11. Obtained from the geocentric gravitational constant [4] and G_N [3]. The error is the 1500 ppm standard deviation of G_N .
- E.W. Kolb and M.S. Turner, The Early Universe, Addison-Wesley (1990).
- 13. F.J. Kerr and D. Lynden-Bell, Mon. Not. R. Astr. Soc. 221, 1023–1038 (1985). "On the basis of this review these [$R_{\rm o}=8.5\pm1.1$ kpc and $\Theta_{\rm c}=220\pm20$ km s⁻¹] were adopted by resolution of IAU Commission 33 on 1985 November 21 at Delhi".
- 14. M.J. Reid, Annu. Rev. Astron. Astrophys. 31, 345-372 (1993). Note that Θ_{\circ} from the 1985 IAU Commission 33 recommendations is adopted in this review, although the new value for R_{\circ} is smaller.

- 5. Conversion using length of tropical year.
- 16. M. Fukugita & C.J. Hogan, "Global Cosmological Parameters: H_0 , Ω_M , and Λ ," Sec. 17 of this Review.
- The final uncertainty arises from dichotomous estimates of the distance to the Large Magellanic Cloud.
- G. Gilmore, R.F.G. Wyse, and K. Kuijken, Annu. Rev. Astron. Astrophys. 27, 555 (1989).
- 19. E.I. Gates, G. Gyuk, and M.S. Turner (Astrophys. J. 449, L133 (1995)) find the local halo density to be $9.2^{+3.8}_{-3.1} \times 10^{-25}$ g cm⁻³, but also comment that previously published estimates are in the range $1-10 \times 10^{-25}$ g cm⁻³.
 - The value 0.3 GeV/c^2 has been taken as "standard" in several papers setting limits on WIMP mass limits, e.g. in M. Mori et al., Phys. Lett. **B289**, 463 (1992).
- 20. Fukugita & Hogan find a more restrictive limit, $0.2 \lesssim \Omega_M \lesssim 0.4$, if the Universe is flat.
- 21. In addition to the pressureless mass density Ω_M and the scaled cosmological constant Ω_Λ , $\Omega_{\rm tot}$ contains very small contributions from the cosmic background radiation, the primordial neutrino energy density, and perhaps other sources. $1-\Omega_{\rm tot}$ is the three-dimensional scalar curvature scaled by the squared inverse Hubble length, variously written as $kc^2/(H_0R(t_0))^2$ [12], Kc^2/H_0^2 [36], and Ω_k [37]. Thus $\Omega_{\rm tot}=1$ indicates a flat universe.
- 22. First results from both BOOMERANG [33] and MAXIMA-1 [34] indicate $\Omega_M + \Omega_\Lambda \approx 1$ with $\approx 10\%$ uncertainties, providing the strongest evidence to date for a flat universe. See discussions elsewhere in this *Review* concerning the remarkable consistency of Ω_M and Ω_Λ measurements by different methods [16,24,35].
- J. Mather et al., Astrophys. J. 512, 511 (1999). We quote a one standard deviation uncertainty.
- G.F. Smoot & D. Scott, "Cosmic Background Radiation," Sec. 19 of this Review.
- 25. C.H. Lineweaver et al., Astrophys. J. 470, 28 (1996). Dipole velocity is in the direction $(\ell, b) = (264^{\circ}.31 \pm 0^{\circ}.04 \pm 0^{\circ}.16, +48^{\circ}.05 \pm 0^{\circ}.02 \pm 0^{\circ}.09)$, or $(\alpha, \delta) = (11^{h}11^{m}57^{s} \pm -7^{\circ}.22 \pm 0^{\circ}.08)$ (JD2000).
- 26. E.R. Cohen and B.N. Taylor, Rev. Mod. Phys. 59, 1121 (1987).
- R.C. Willson, Science 277, 1963 (1997);
 the 0.2% error estimate is from R.C. Willson, private correspondence (1998).
- 28. R.C. Willson and H.S. Hudson, Nature 332, 810 (1988).
- I.-J. Sackmann, A.I. Boothroyd, and K.E. Kraemer, Astrophys. J. 418, 457 (1993).
- M.P. Thekaekara and A.J. Drummond, Nature Phys. Sci. 229, 6 (1971).
- K.R. Lang, Astrophysical Formulae, Springer-Verlag (1974);
 K.R. Lang, Astrophysical Data: Planets and Stars, Springer-Verlag (1992).
- 32. F.S. Johnson, J. Meterol. 11, 431 (1954).
- 33. P. de Bernardis et al., Nature 404, 955 (2000).
- A. Balbi et al., astro-ph/0005124, submitted to Astrophys. J. Lett.
- 35. E.W. Kolb and M.S. Turner, "Pocket Cosmology," Sec. 15 of this *Review.*
- S. Weinberg, Gravitation and Cosmology, John Wiley & Sons (1972).
- P.J.E. Peebles, Principles of Physical Cosmology, Princeton (1993).

3. INTERNATIONAL SYSTEM OF UNITS (SI)

See "The International System of Units (SI)," NIST Special Publication 330, B.N. Taylor, ed. (USGPO, Washington, DC, 1991); and "Guide for the Use of the International System of Units (SI)," NIST Special Publication 811, 1995 edition, B.N. Taylor (USGPO, Washington, DC, 1995).

Physical quantity	Name of unit	Symbol			
Base units					
length	meter	m			
mass	kilogram	kg			
time	second	s			
electric current	ampere	A			
thermodynamic temperature	kelvin	K			
amount of substance	mole	mol			
luminous intensity	candela	cd			
Derived unit	s with special name	es			
plane angle	angle radian rad				
solid angle	steradian	sr			
frequency	hertz	Hz			
energy	joule	J			
force	newton	N			
pressure	pascal	Pa			
power	watt	W			
electric charge	coulomb	С			
electric potential	volt	v			
electric resistance	ohm	Ω			
electric conductance	siemens	S			
electric capacitance	farad	F			
magnetic flux	weber	Wb			
inductance	henry	H			
magnetic flux density	tesla	Т			
luminous flux	lumen	lm			
illuminance	lux	lx			
celsius temperature	degree celsius	°C			
activity (of a radioactive source)*	becquerel	Bq			
absorbed dose (of ionizing radiation)*	gray	Gy			
dose equivalent*	sievert	Sv			

^{*}See our section 25, on "Radioactivity and radiation protection," p. 186.

SI prefixes				
10^{24}	yotta	(Y)		
10^{21}	zetta	(Z)		
10^{18}	exa	(E)		
10^{15}	peta	(P)		
10^{12}	tera	(T)		
10^{9}	giga	(G)		
10^{6}	mega	(M)		
10^{3}	kilo	(k)		
10^{2}	hecto	(h)		
10	$_{ m deca}$	(da)		
10^{-1}	deci	(d)		
10^{-2}	centi	(c)		
10^{-3}	milli	(m)		
10^{-6}	micro	(μ)		
10^{-9}	nano	(n)		
10^{-12}	·pico	(p)		
10^{-15}	femto	(f)		
10^{-18}	atto	(a)		
10^{-21}	zepto	(z)		
10^{-24}	yocto	(y)		

4. PERIODIC TABLE OF THE ELEMENTS

have no stable isotopes, they do have characteristic terrestrial compositions, and meaningful weighted masses can be given. For elements 110-112, the atomic numbers of known isotopes are given. Adapted from the Commission of Atomic Weights and Isotopic Abundances, "Atomic Weights of the Elements 1995," Pure and Applied Chemistry 68, 2339 (1996), and G. Audi and A.H. Wapstra, "The 1993 Mass Evaluation," Nucl. Phys. A565, 1 (1993). to be exactly 12 unified atomic mass units (u). Errors range from 1 to 9 in the last digit quoted. Relative isotopic abundances often vary considerably, both in natural and commercial samples. A number in parentheses is the mass of the longest-lived isotope of that element—no stable isotope exists. However, although Th, Pa, and U nucleus. The atomic mass (bottom) is weighted by isotopic abundances in the Earth's surface. Atomic masses are relative to the mass of the carbon-12 isotope, defined Table 4.1. Revised 1997 by C.G. Wohl (LBNL). Heavy element updates in May 2000 by D.E. Groom. The atomic number (top left) is the number of protons in the

Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu	etium	4.967	U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No 103 Lr	Actinium Protactin. Uranium Neptunium Plutonium Americ. Curium Berkelium Californ. Einstein. Fermium Mendelev. Nobelium Lawrenc.	$227.027777) \\ 232.0381 \\ 231.03588 \\ 232.0381 \\ 231.03588 \\ 231.0381.078959 \\ (237.092840) \\ (247.070346) \\ (247.070346) \\ (247.070346) \\ (247.070346) \\ (247.070386) \\ (251.079579) \\ (251.079579) \\ (251.079579) \\ (252.08297)$
11	Lut	17,	103	Lav	(262
Ϋ́	odym. Prometh. Samarium Buropium Gadolin. Terbium Dyspros. Holmium Erbium Thulium Ytterbium Lutetium	4.24 (144.912745) 150.36 151.964 157.25 158.92534 162.50 164.93032 167.26 168.93421 173.04 174.967	S	elium	(1101)
20	Ytte	17	102	Nob	(259
E	lium	33421	PΜ	delev.	98427)
69	Thu	168.5	101	Men	(258.0
ய்	ium	7.26	Fm	aium	92036
89	Erb	167	100	Fern	(257.0
운	mium	93032	Es	tein.	38297)
29	Holr	164.9	66	Eins	(252.0
ō	pros.	2.50	Ç	iforn.	(62562)
99	Dys	16,	86	Cali	(251.0
4	bium	92534	æ	elium	70298)
65	Terl	158.9	16	Berk	(247.0
В	dolin.	7.25	Cm	rium	170346)
64	Gac	15	96	Ö	(247.0
교	muiqe	1.964	Am	eric.	161372)
63	Eurc	151	95	Am	(243.0
Sm	arium	0.36	Pu	onium	164197
62	Sam	15	95	Plut	1 (244.0
Pm	meth.	12745)	ş	uniun	(48166)
61	Pro	(144.5	93	Nept	(237.0
PN	dym.	4.24) >	nium	.0289
	Neo	14	92	Ura	238.
P	odym	90765	Pa	actin.	03588
29	Prase	140.	91	Prot	231.0
57 La 58 Ce 59 Pr 60	Lanthan. Cerium Praseodym. Neo	138.9055 140.116 140.90765 14	89 Ac 90 Th 91 Pa 92	rium	.0381
28	Ç	140	8	Tho	232.
La	than.	.9055	Ä	min	(27747)
57	Lan	138.	89	Acti	(227.0
Lanthanide	series		Actinide	series	

5. ELECTRONIC STRUCTURE OF THE ELEMENTS

Table 5.1. Reviewed 1999 by W.C. Martin (NIST). The electronic configurations and the ionization energies (except for a few newer values, marked with an *) are taken from "Atomic Spectroscopy," W.C. Martin and W.L. Wiese, in Atomic, Molecular, and Optical Physics Reference Book, G.W.F. Drake, ed., Amer. Inst. Phys., 1995. The electron configuration for, say, iron indicates an argon electronic core (see argon) plus six 3d electrons and two 4s electrons. The ionization energy is the least energy necessary to remove to infinity one electron from an atom of the element.

	Elen	nent	Electron configuration $(3d^5 = \text{five } 3d \text{ electron})$			$\begin{array}{c} \text{Ground} \\ \text{state} \\ {}^{2S+1}L_J \end{array}$	Ionization energy (eV)
1	Н	Hydrogen	1s			$^{2}S_{1/2}$	13.5984
2	He	Helium	$1s^2$			${}^{1}S_{0}$	24.5874
3	Li	Lithium	(He) 2s			$^{2}S_{1/2}$	5.3917
4	Be B	Beryllium	$(\text{He}) 2s^2$			${}^{1}S_{0}$	9.3227
5		Boron	(He) $2s^2 - 2p$			${}^{2}P_{1/2}$	8.2980
6	C	Carbon	(He) $2s^2 - 2p^2$			${}^{3}P_{0}^{'}$	11.2603
7	N	Nitrogen	(He) $2s^2 - 2p^3$			$^{4}S_{3/2}$	14.5341
8	0	Oxygen	(He) $2s^2 2p^4$			${}^{3}P_{2}$	13.6181
9	F	Fluorine	(He) $2s^2 2p^5$			$^{2}P_{3/2}$	17.4228
10	Ne	Neon	(He) $2s^2 2p^6$			$^{1}S_{0}^{'}$	21.5646
11	Na	Sodium	$(\mathrm{Ne})3s$			$^{2}S_{1/2}$	5.1391
12	Mg	Magnesium	$(\mathrm{Ne})3s^2$			$^{1}S_{0}$	7.6462
13	Al	Aluminum	(Ne) $3s^2 - 3p$			$^{2}P_{1/2}$	5.9858
14	Si	Silicon	$({ m Ne})3s^23p^2$			3P_0	8.1517
15	P	Phosphorus	(Ne) $3s^2 3p^3$			$^{4}S_{3/2}$	10.4867
16	S	Sulfur	(Ne) $3s^2 3p^4$			$^{3}P_{2}$	10.3600
17	Cl	Chlorine	(Ne) $3s^2 3p^5$			$^{2}P_{3/2}$	12.9676
18	Ar	Argon	(Ne) $3s^2 3p^6$			$^{1}S_{0}^{-1}$	15.7596
19	K	Potassium	(Ar) 4s			$^{2}S_{1/2}$	4.3407
20	Ca	Calcium	(Ar) $4s^2$			${}^{1}S_{0}^{1/2}$	6.1132
							0.1132
21	Sc	Scandium	$(\mathrm{Ar})3d 4s^2$	T		$^{2}D_{3/2}$	6.5615
22	Ti	Titanium	$({ m Ar}) 3d^2 4s^2$	r	e	3F_2	6.8281
23	V	Vanadium	$(Ar) 3d^3 4s^2$	a	ì	${}^4F_{3/2}$	6.7463
24	Cr	Chromium	$(\mathrm{Ar})3d^54s$	n	e	$^{7}S_{3}$	6.7665
25	Mn	Manganese	$({ m Ar})3d^54s^2$	s i	m	$^6S_{5/2}$	7.4340
26	Fe	Iron	$(Ar) 3d^6 4s^2$	t	e	$^5D_{4}$	7.9024
27	Co	Cobalt	$(\mathrm{Ar})3d^7\ 4s^2$	i	n	${}^4F_{9/2}$	7.8810
28	N_i	Nickel	$(Ar) 3d^8 4s^2$	0	t	$^{3}F_{4}$	7.6398
29	Cu	Copper	$(\mathrm{Ar})3d^{10}4s$	n	s	$^{2}S_{1/2}$	7.7264
30	$\mathbf{Z}\mathbf{n}$	Zinc	$({ m Ar})3d^{10}4s^2$			${}^{1}S_{0}$	9.3942
			(Ar) $3d^{10}4s^2 4p$				
31	Ga	Gallium	(Ar) $3d^{10}4s^2 4p^2$ (Ar) $3d^{10}4s^2 4p^2$			${}^{2}P_{1/2}$	5.9993
32	Ge	Germanium	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			${}^{3}P_{0}^{7}$	7.8994
33	As	Arsenic	(Ar) $3d^{10}4s^2 4p^4$			$\frac{4}{3}S_{3/2}$	9.7886
34	Se	Selenium	$ (Ar) 3d^{10} 4s^2 4p^4 $ $ (Ar) 3d^{10} 4s^2 4p^5 $			${}^{3}P_{2}$	9.7524
35	Br	Bromine	(Ar) $3d^{10}4s^2 4p^6$			${}^{2}P_{3/2}^{-}$	11.8138
36	Kr	Krypton				${}^{1}S_{0}$	13.9996
37	Rb	$\mathbf{Rubidium}$	(Kr) 5s			$^{2}S_{1/2}$	4.1771
38	Sr	Strontium	(Kr) $5s^2$			$^{1}S_{0}$	5.6949
39	Y	Yttrium	$(Kr) 4d 5s^2$	T		$^{2}D_{3/2}$	6.2171
40	$\frac{1}{Zr}$	Zirconium	$(Kr) 4d^2 5s^2$	r		3F_2	
41	Nb	Niobium	$(Kr) 4d^{4} 5s^{2}$ $(Kr) 4d^{4} 5s$	a	e	6 D	6.6339
41	Mo	Molybdenum	$(Kr) 4d^5 - 5s$ $(Kr) 4d^5 - 5s$	n	1	$^6D_{1/2} = ^7S_3$	6.7589
42	Tc	Molybaenum Technetium	$(Kr) 4d^5 5s^2$ $(Kr) 4d^5 5s^2$	s	e	53 6 C	7.0924 7.28
44	Ru	Ruthenium	$(Kr) 4d^{7} 5s^{2}$ $(Kr) 4d^{7} 5s$	i	m	$^6S_{5/2} \ ^5F_5$	
44	Rh	Rhodium	$ (Kr) 4d^8 5s $ $ (Kr) 4d^8 5s $	t	e n	4 F	7.3605 7.4589
46	Pd	Palladium	$(Kr) 4d^{-33}$ $(Kr) 4d^{10}$	i	t	$^4F_{9/2} \ ^1S_0$	7.4589
47	Ag	Silver	$(Kr) 4d^{10} 5s$	o	s	${}^{2}S_{1/2}$	8.3369 7.5762*
48		Cadmium	$(\text{Kr}) 4d^{10} 5s^2$	n		$\frac{s_{1/2}}{1c}$	
48	Cd	Cadinium	(KI) 4a~ 5s*			$^{1}S_{0}$	8.9938

49	In	Indium	$(Kr) 4d^{10} 5s^2 5p$		${}^{2}P_{1/2}$	5.7864
50	Sn	Tin	$(\mathrm{Kr}) 4d^{10} 5s^2 5p^2$		$^{3}P_{0}$	7.3439
51	\mathbf{Sb}	Antimony	$(Kr) 4d^{10} 5s^2 5p^3$		$^{4}S_{3/2}$	8.6084
52	${ m Te}$	Tellurium	$(\mathrm{Kr}) 4d^{10} 5s^2 5p^4$		$^{3}P_{2}$	9.0096
53	I	Iodine	$({ m Kr})4d^{10}5s^25p^5$		$^{2}P_{3/2}$	10.4513
54	$\mathbf{X}\mathbf{e}$	Xenon	$({ m Kr})4d^{10}5s^25p^6$		$^{1}S_{0}^{'}$	12.1298
55	Cs	Cesium	(Xe) 6s		$^{2}S_{1/2}$	3.8939
56	$_{ m Ba}$	Barium	(Xe) $6s^2$		${}^{1}S_{0}^{-}$	5.2117
		· · · · · · · · · · · · · · · · · · ·	(V) = 1 0 2		2.5	
57	La	Lanthanum	(Xe) $5d 6s^2$		$^{2}D_{3/2}$	5.5770
58	Ce	Cerium	$(Xe)4f 5d 6s^2$	~	$^{1}G_{4}^{'}$	5.5387
59	Pr	Praseodymium	$(Xe)4f^3 \qquad 6s^2$	L	$^{4}I_{9/2}$	5.464
60	Nd	Neodymium	$(Xe)4f^4 6s^2$	a.	${}^{5}I_{4}$	5.5250
61	Pm	Promethium	$(Xe)4f^5 6s^2$	$rac{ ext{n}}{ ext{t}}$	$^{6}H_{5/2}$	5.58
62	Sm	Samarium	$(Xe)4f^6 6s^2$	h	${}^{7}F_{0}$	5.6436
63	Eu	Europium	$(Xe)4f^7$ $6s^2$	a	${}^8S_{7/2}$	5.6704
64	Gd	Gadolinium	$(Xe) 4f^7 5d 6s^2$	n	${}^{9}D_{2}$	6.1498*
65	$^{\mathrm{Tb}}$	Terbium _	$(Xe) 4f^9 6s^2$	i	$^{6}H_{15/2}$	5.8638
66	Dу	Dysprosium	$(Xe) 4f^{10} 6s^2$	\mathbf{d}	${}^{5}I_{8}$	5.9389
67	Но	Holmium	$(Xe) 4f^{11} 6s^2$	e	$^{4}I_{15/2}$	6.0215
68	Er	Erbium	$(Xe) 4f^{12} \qquad 6s^2$	S	${}^{3}H_{6}^{'}$	6.1077
69	Tm	Thulium	$(Xe) 4f^{13} = 6s^2$		$^{2}F_{7/2}$	6.1843
70	Yb	Ytterbium	$(Xe) 4f^{14} \qquad 6s^2$		${}^{1}S_{0}$	6.2542
71	Lu	Lutetium	$(Xe)4f^{14}5d - 6s^2$		$^{2}D_{3/2}$	5.4259
72	Hf	Hafnium	$(Xe)4f^{14}5d^2 6s^2$	T	3F_2	6.8251
73	Ta	Tantalum	$(Xe)4f^{14}5d^3 6s^2$	т	${}^4F_{3/2}$	7.5496
74	W	Tungsten	$(Xe)4f^{14}5d^4 6s^2$	_ e	${}^{5}D_{0}^{3/2}$	7.8640
75	Re	Rhenium	$(Xe)4f^{14}5d^5 6s^2$	n 1	${}^{6}S_{5/2}$	7.8335
76	Os	Osmium	$(Xe)4f^{14}5d^6 6s^2$	s m	${}^{5}D_{4}^{5/2}$	8.4382*
77	Ir	Iridium	$(Xe)4f^{14}5d^7 6s^2$	i m	${}^4F_{9/2}$	8.9670*
78	Pt	Platinum	$(Xe) 4f^{14}5d^9 6s$	$^{ m t}$ n	$^{3}D_{3}^{9/2}$	8.9587
79	Au	Gold	$(Xe)4f^{14}5d^{10}6s$	i t	$2S_{1/2}$	9.2255
80	Hg	Mercury	$(Xe) 4f^{14}5d^{10}6s^2$	o s	${}^{1}S_{0}$	10.4375
				n		
81	Tl	Thallium	$({ m Xe})4f^{14}5d^{10}6s^2$ 6p		${}^{2}P_{1/2}$	6.1082
82	$\mathbf{P}\mathbf{b}$	Lead	$({ m Xe})4f^{14}5d^{10}6s^2 \ 6p^2$		$^{3}P_{0}$	7.4167
83	Bi	Bismuth	$(Xe)4f^{14}5d^{10}6s^2 6p^3$		$^{4}S_{3/2}$	7.2855*
84	Po	Polonium	$(\mathrm{Xe}) 4f^{14} 5d^{10} 6s^2 6p^4$		3P_2	8.4167
85	At	Astatine	$(Xe)4f^{14}5d^{10}6s^2 6p^5$		$^{2}P_{3/2}$	
86	Rn	Radon	$(Xe)4f^{14}5d^{10}6s^2 6p^6$		$^{1}S_{0}^{'}$	10.7485
87	Fr	Francium	(Rn) 7s		$^{2}S_{1/2}$	4.0727
88	Ra	Radium	(Rn) $7s^2$		${}^{1}S_{0}^{1/2}$	5.2784
89	$\mathbf{A}\mathbf{c}$	Actinium	(Rn) $6d 7s^2$		$^{2}D_{3/2}$	5.17
90	Th	Thorium	(Rn) $6d^2 7s^2$		$^{3}F_{2}$	6.3067
91	\mathbf{Pa}	Protactinium	$(Rn)5f^2 6d 7s^2$	A	$^{4}K_{11/2}$	5.89
92	\mathbf{U}	Uranium	$(Rn)5f^3 6d 7s^2$	c	${}^{5}L_{6}$	6.1941
93	Np	Neptunium	$(Rn)5f^4 6d 7s^2$	t :	$^{6}L_{11/2}$	6.2657
94	Pu	Plutonium	$(\text{Rn})5f^6 = 7s^2$	i	${}^{7}F_{0}$	6.0262
95	\mathbf{Am}	Americium	$(Rn)5f^7$ $7s^2$	n i	$^{8}S_{7/2}$	5.9738
96	\mathbf{Cm}	Curium	$(Rn)5f^{7} 6d 7s^{2}$	\mathbf{d}	${}^{9}D_{2}^{7}$	5.9915*
97	$\mathbf{B}\mathbf{k}$	Berkelium	$(Rn)5f^9$ $7s^2$	e	$^{6}H_{15/2}$	6.1979*
98	$\mathbf{C}\mathbf{f}$	Californium	$(Rn)5f^{10}$ $7s^2$	s	5I_8	6.2817*
99	Es	Einsteinium	$(Rn)5f^{11}$ $7s^2$		$^{4}I_{15/2}$	6.42
100	\mathbf{Fm}	Fermium	$(Rn)5f^{12}$ $7s^2$		3H_6	6.50
101	Md	$\mathbf{Mendelevium}$	$(Rn)5f^{13}$ $7s^2$		$^{2}F_{7/2}$	6.58
102	No	Nobelium	$(\text{Rn})5f^{14}$ $7s^2$		$^{1}S_{0}$	6.65
103	Lr	Lawrencium	$(Rn)5f^{14}$ $7s^2$ $7p$?		$^{2}P_{1/2}$?	
104	D.C	Rutherfordium	$(\text{Rn})5f^{14}6d^2 7s^2$?		3F_2 ?	6.0?
104	Rf	Autherfordium	(RH)010a- 18-1		r ₂ :	0.0:

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Revised May 2000 by D.E. Groom (LBNL). Gases are evaluated at 20°C and 1 atm (in parentheses) or at STP [square brackets]. Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2. Futher materials and properties are given in Ref. 3.

Material	Z	\boldsymbol{A}	$\langle Z/A \rangle$		Nuclear a interaction	$\left. \frac{dE/dx}{min} \right _{min}$	' Radiati	$\stackrel{ ext{ion length }^{\epsilon}}{X_0}$	_	Liquid boiling	Refractive index n
) Mev (r / 2	A_0 {cm}	{g/cm ³ }	J	
					length λ_I {g/cm ² }	$\left(\frac{g/cm^2}{g}\right)$	{g/cm²	'} {cm}	$(\{g/\ell\}$ for gas)	point at 1 atm(K)	$((n-1)\times 10^6)$ for gas)
H ₂ gas	1	1.00794	0.99212	43.3	50.8	(4.103)	61.28 ^d	(731000)	(0.0838)[0.0899]		[139.2]
H ₂ liquid	1	1.00794	0.99212	43.3	50.8	4.034	61.28 d	866	0.0708	20.39	1.112
D_2	1	2.0140	0.49652	45.7	54.7	(2.052)	122.4	724	0.169[0.179]	23.65	1.128 [138]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024 [34.9
Li	3	6.941	0.43221	54.6	73.4	1.639	82.76	155	0.534		
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		***************************************
С	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265 ^e		
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205[298]
O_2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22[296]
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204[0.9005]	27.09	1.092 [67.1
Al	13	26.981539	0.48181	70.6	106.4	1.615	24.01	8.9	2.70		
Si	14	28.0855	0.49848	70.6	106.0	1.664	21.82	9.36	2.33		3.95
Ar	18	39.948	0.45059	76.4	117.2	(1.519)	19.55	14.0	1.396[1.782]	87.28	1.233 [283]
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54		-
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		_
Cu Ge	$\frac{29}{32}$	63.546	0.45636	85.6	134.9	1.403	12.86	1.43	8.96		
Sn	52 50	72.61 118.710	$0.44071 \\ 0.42120$	$88.3 \\ 100.2$	$140.5 \\ 163$	1.371	12.25	2.30	5.323		
Xe	54	131.29	0.42120	100.2	169	1.264 (1.255)	$8.82 \\ 8.48$	$\frac{1.21}{2.87}$	7.31 $2.953[5.858]$	165.1	
W	74	183.84	0.40250	110.3	185	1.145	6.76	0.35	19.3	105.1	[701]
Pt	78	195.08	0.39984	113.3	189.7	1.129	6.54	0.305	21.45		
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		
U	92	238.0289	0.38651	117.0	199	1.082	6.00	≈0.32	≈18.95		
Air, (20°C, 1 a	atm.), [S	STP1	0.49919	62.0	90.0	(1.815)	36.66	[30420]		78.8	(273) [293]
H_2O	//	,	0.55509	60.1	83.6	1.991	36.08	36.1	1.00	373.15	1.33
CO ₂ gas			0.49989	62.4	89.7	(1.819)	36.2	[18310]			[410]
CO_2 solid (dry	y ice)		0.49989	62.4	89.7	1.787	36.2	23.2	1.563	sublimes	
Shielding conc			0.50274	67.4	99.9	1.711	26.7	10.7	2.5		_
SiO ₂ (fused qu			0.49926	66.5	97.4	1.699	27.05	12.3	$2.20^{\ g}$		1.458
Dimethyl ethe	r, (CH ₃)) ₂ O	0.54778	59.4	82.9		38.89	_		248.7	
Methane, CH ₄			0.62333	54.8	73.4	(2.417)	46.22	[64850]		111.7	[444]
Ethane, C_2H_6			0.59861	55.8	75.7	(2.304)	45.47	[34035]	$0.509(1.356)^{\circ}$	h 184.5	$(1.038)^{h}$
Propane, C_3H_3			0.58962	56.2	76.5	(2.262)	45.20		(1.879)	231.1	
Isobutane, (CI			0.58496	56.4	77.0	(2.239)	45.07	[16930]	[2.67]	261.42	[1900]
Octane, liquid			0.57778	56.7	77.7	2.123	44.86	63.8	0.703	398.8	1.397
Paraffin wax, ($(1_2)_{n\approx 23}\mathrm{CH}_3$	0.57275	56.9	78.2	2.087	44.71	48.1	0.93		
Vylon, type 6	i		0.54790	58.5	81.5	1.974	41.84	36.7	1.14		
Polycarbonate	(Lexan) ³ .	0.52697	59.5	83.9	1.886	41.46	34.6	1.20		_
Polyethylene t	erephthl	late (Mylar) *	0.52037	60.2	85.7	1.848	39.95	28.7	1.39		_
Polyethylene ^l			0.57034	57.0	78.4	2.076	44.64	≈ 47.9	0.92 - 0.95		
Polyimide film		on) ^m	0.51264	60.3	85.8	1.820	40.56	28.6	1.42		-
Lucite, Plexigl		_	0.53937	59.3	83.0	1.929	40.49	≈ 34.4	1.16 - 1.20		≈1.49
Polystyrene, s			0.53768	58.5	81.9	1.936	43.72	42.4	1.032		1.581
Polytetrafluore			0.47992	64.2	93.0	1.671	34.84	15.8	2.20		_
Polyvinyltolul			0.54155	58.3	81.5	1.956	43.83	42.5	1.032		_
Aluminum oxi	` -	•,	0.49038	67.0	98.9	1.647	19.27	4.85	3.97		1.761
Barium fluorid			0.42207	92.0	145	1.303	9.91	2.05	4.89		1.56
Bismuth germ		ago).	0.42065	98.2	157	1.251	7.97	1.12	7.1		2.15
Cesium iodide			0.41569	102	167	1.243	8.39	1.85	4.53		1.80
Lithium fluori Sodium fluorid			0.46262	62.2	88.2	1.614	39.25	14.91	2.632		1.392
Sodium nuoria Sodium iodide		,	0.47632 0.42697	66.9 94.6	$98.3 \\ 151$	$\frac{1.69}{1.305}$	$29.87 \\ 9.49$	$\frac{11.68}{2.59}$	$2.558 \\ 3.67$		1.336 1.775
Silica Aerogel			0.52019	64	92	1.83	29.83	≈150	0.1-0.3		$1.0+0.25\rho$
NEMA G10 pl	iate -			62.6	90.2	1.87	33.0	19.4	1.7		

Material	Dielectric	Young's	Coeff. of	Specific	Electrical	Thermal
-	constant $(\kappa = \epsilon/\epsilon_0)$	modulus	$_{ m thermal}$	$_{ m heat}$	resistivity	conductivity
	() is $(\kappa - 1) \times 10^6$	$[10^6 \text{ psi}]$	expansion	[cal/g-°C]	$[\mu\Omega \mathrm{cm}(@^{\circ}\mathrm{C})]$	[cal/cm-°C-sec]
	for gas		$[10^{-6} \mathrm{cm/cm}\text{-}^{\circ}\mathrm{C}]$			
$\overline{\mathrm{H}_2}$	(253.9)				_	
$_{ m He}$	(64)	_	_			
Li	_		56	0.86	$8.55(0^{\circ})$	0.17
\mathbf{Be}		37	12.4	0.436	$5.885(0^{\circ})$	0.38
C	_	0.7	0.6-4.3	0.165	1375(0°)	0.057
N_2	(548.5)	-	_			-
O_2	(495)	_			*****	
Ne	(127)		_	-	_	_
Al		10	23.9	0.215	$2.65(20^{\circ})$	0.53
Si	11.9	16	2.8 - 7.3	0.162		0.20
Ar	(517)	_	-	_	_	
Ti		16.8	8.5	0.126	50(0°)	_
Fe		28.5	11.7	0.11	9.71(20°)	0.18
Cu	_	16	16.5	0.092	$1.67(20^{\circ})$	0.94
Ge	16.0	_	5.75	0.073	_	0.14
Sn	_	6	20	0.052	$11.5(20^{\circ})$	0.16
Xe	_		_		_	_
W	_	50	4.4	0.032	$5.5(20^{\circ})$	0.48
Pt	-	21	8.9	0.032	$9.83(0^{\circ})$	0.17
Pb		2.6	29.3	0.038	$20.65(20^{\circ})$	0.083
U	_		36.1	0.028	29(20°)	0.064

- 1. R.M. Sternheimer, M.J. Berger, and S.M. Seltzer, Atomic Data and Nuclear Data Tables 30, 261-271 (1984).
- 2. S.M. Seltzer and M.J. Berger, Int. J. Appl. Radiat. 33, 1189-1218 (1982).
- 3. D.E. Groom, N.V. Mokhov, and S.I. Striganov, "Muon stopping-power and range tables," Atomic Data and Nuclear Data Tables, to be published (2000).
- S.M. Seltzer and M.J. Berger, Int. J. Appl. Radiat. 35, 665 (1984) and http://physics.nist.gov/PhysRefData/Star/Text/contents.html.
- a. σ_T , λ_T and λ_I are energy dependent. Values quoted apply to high energy range, where energy dependence is weak. Mean free path between collisions (λ_T) or inelastic interactions (λ_I) , calculated from $\lambda^{-1} = N_A \sum w_j \, \sigma_j \, / A_j$, where N is Avogadro's number and w_j is the weight fraction of the jth element in the element, compound, or mixture. σ_{total} at 80-240 GeV for neutrons ($\approx \sigma$ for protons) from Murthy et al., Nucl. Phys. **B92**, 269 (1975). This scales approximately as $A^{0.77}$. $\sigma_{\text{inelastic}} = \sigma_{\text{total}} \sigma_{\text{elastic}} \sigma_{\text{quasielastic}}$; for neutrons at 60-375 GeV from Roberts et al., Nucl. Phys. **B159**, 56 (1979). For protons and other particles, see Carroll et al., Phys. Lett. **80B**, 319 (1979); note that $\sigma_I(p) \approx \sigma_I(n)$. σ_I scales approximately as $A^{0.71}$.
- b. For minimum-ionizing muons (results are very slightly different for other particles). Minimum dE/dx from Ref. 3, using density effect correction coefficients from Ref. 1. For electrons and positrons see Ref. 4. Ionization energy loss is discussed in Sec. 23.
- c. From Y.S. Tsai, Rev. Mod. Phys. 46, 815 (1974); X_0 data for all elements up to uranium are given. Corrections for molecular binding applied for H_2 and D_2 . For atomic H, $X_0 = 63.05 \text{ g/cm}^2$.
- d. For molecular hydrogen (deuterium). For atomic H, $X_0 = 63.047 \text{ g cm}^{-2}$.
- e. For pure graphite; industrial graphite density may vary $2.1-2.3~\mathrm{g/cm^3}$.
- f. Standard shielding blocks, typical composition O₂ 52%, Si 32.5%, Ca 6%, Na 1.5%, Fe 2%, Al 4%, plus reinforcing iron bars. The attenuation length, ℓ = 115 ± 5 g/cm², is also valid for earth (typical ρ = 2.15), from CERN-LRL-RHEL Shielding exp., UCRL-17841 (1968).
- g. For typical fused quartz. The specific gravity of crystalline quartz is 2.64.
- h. Solid ethane density at $-60\,^{\circ}\mathrm{C};$ gaseous refractive index at $0\,^{\circ}\mathrm{C},\,546$ mm pressure.
- i. Nylon, Type 6, $(NH(CH_2)_5CO)_n$
- j. Polycarbonate (Lexan), $(C_{16}H_{14}O_3)_n$
- k. Polyethylene terephthlate, monomer, $C_5H_4O_2$
- l. Polyethylene, monomer CH₂ = CH₂
- m. Polymide film (Kapton), $(C_{22}H_{10}N_2O_5)_n$
- n. Polymethylmethacralate, monomer CH₂ =C(CH₃)CO₂CH₃
- o. Polystyrene, monomer C₆H₅CH=CH₂
- p. Teflon, monomer $CF_2 = CF_2$
- q. Polyvinyltolulene, monomer 2-CH₃C₆H₄CH=CH₂
- r. Bismuth germanate (BGO), $(Bi_2O_3)_2(GeO_2)_3$
- s. $n(\mathrm{SiO}_2) + 2n(\mathrm{H}_2\mathrm{O})$ used in Čerenkov counters, $\rho = \mathrm{density}$ in $\mathrm{g/cm}^3$. From M. Cantin $\mathrm{\it et}\ aL$, Nucl. Instrum. Methods 118, 177 (1974).
- t. G10-plate, typically 60% SiO2 and 40% epoxy.

7. ELECTROMAGNETIC RELATIONS

Quantity	Gaussian CGS	SI
Conversion factors:		
Charge:	$2.99792458 \times 10^9 \text{ esu}$	= 1 C = 1 A s
Potential:	(1/299.792 458) statvolt (ergs/esu)	$= 1 V = 1 J C^{-1}$
Magnetic field:	$10^4 \text{ gauss} = 10^4 \text{ dyne/esu}$	$= 1 T = 1 N A^{-1}m^{-1}$
Lorentz force:	$\mathbf{F} = q\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}\right)$	$\mathbf{F} = q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)$
Maxwell equations:	$\nabla \cdot \mathbf{D} = 4\pi \rho$	$\nabla \cdot \mathbf{D} = \rho$
	$\nabla \times \mathbf{H} - \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} = \frac{4\pi}{c} \mathbf{J}$	$\nabla imes \mathbf{H} - rac{\partial \mathbf{D}}{\partial t} = \mathbf{J}$
	$\nabla \cdot \mathbf{B} = 0$	$\nabla \cdot \mathbf{B} = 0$
	$\mathbf{\nabla} imes \mathbf{E} + rac{1}{c} rac{\partial \mathbf{B}}{\partial t} = 0$	$\mathbf{\nabla} imes \mathbf{E} + rac{\partial \mathbf{B}}{\partial t} = 0$
Constitutive relations:	$\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P}, \mathbf{H} = \mathbf{B} - 4\pi \mathbf{M}$	$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}, \mathbf{H} = \mathbf{B}/\mu_0 - \mathbf{M}$
Linear media:	$\mathbf{D} = \epsilon \mathbf{E}, \mathbf{H} = \mathbf{B}/\mu$	$\mathbf{D} = \epsilon \mathbf{E}, \mathbf{H} = \mathbf{B}/\mu$
Permitivity of free space:	1	$\epsilon_0 = 8.854 \ 187 \dots \times 10^{-12} \ \mathrm{F m^{-1}}$
Permeability of free space:	1	$\mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2}$
Fields from potentials:	$\mathbf{E} = -\nabla V - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$	$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$
	$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$	$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$
Static potentials: (coulomb gauge)	$V = \sum_{\mathrm{charges}} rac{q_i}{r_i} = \int rac{ ho\left(\mathbf{r'} ight)}{\left \mathbf{r}-\mathbf{r'} ight } d^3x'$	$V = rac{1}{4\pi\epsilon_0} \sum_{\mathrm{charges}} rac{q_i}{r_i} = rac{1}{4\pi\epsilon_0} \int rac{ ho\left(\mathbf{r'} ight)}{\left \mathbf{r}-\mathbf{r'} ight } d^3x'$
	$\mathbf{A} = \frac{1}{c} \oint \frac{I \mathbf{d} \ell}{ \mathbf{r} - \mathbf{r}' } = \frac{1}{c} \int \frac{\mathbf{J}(\mathbf{r}')}{ \mathbf{r} - \mathbf{r}' } d^3 x'$	$\mathbf{A} = \frac{\mu_0}{4\pi} \oint \frac{I \mathbf{d}\ell}{ \mathbf{r} - \mathbf{r}' } = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{ \mathbf{r} - \mathbf{r}' } d^3x'$
Relativistic transformations:	$\mathbf{E}_{ }' = \mathbf{E}_{ }$	$\mathbf{E}'_{\parallel} = \mathbf{E}_{\parallel}$
(v is the velocity of the primed frame as seen	$\mathbf{E}'_{\perp} = \gamma (\mathbf{E}_{\perp} + \frac{1}{c}\mathbf{v} \times \mathbf{B})$	$\mathbf{E}'_{\perp} = \gamma (\mathbf{E}_{\perp} + \mathbf{v} imes \mathbf{B})$
in the unprimed frame)	$\mathbf{B}'_{\parallel} = \mathbf{B}_{\parallel}$	$\mathbf{B}'_{\parallel} = \mathbf{B}_{\parallel}$
	$\mathbf{B}'_{\perp} = \gamma (\mathbf{B}_{\perp} - \frac{1}{c} \mathbf{v} \times \mathbf{E})$	$\mathbf{B}'_{\perp} = \gamma (\mathbf{B}_{\perp} - \frac{1}{c^2} \mathbf{v} \times \mathbf{E})$
$\frac{1}{4\pi\epsilon_0} = c^2 \times 10^{-7} \text{ N A}^{-2} = 8.9$	$87.55 \times 10^9 \text{ m F}^{-1}$; $\frac{\mu_0}{4\pi} = 10^{-7} \text{ N A}^{-1}$	$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = 2.99792458 \times 10^8 \text{ m s}^{-1}$

7.1. Impedances (SI units)

 $\rho = \text{resistivity at room temperature in } 10^{-8} \,\Omega \, \text{m}$:

 $\begin{array}{lll} \sim 1.7 \ \text{for Cu} & \sim 5.5 \ \text{for W} \\ \sim 2.4 \ \text{for Au} & \sim 73 \ \text{for SS } 304 \\ \sim 2.8 \ \text{for Al} & \sim 100 \ \text{for Nichrome} \\ \text{(Al alloys may have double the Al value.)} \end{array}$

For alternating currents, instantaneous current I, voltage V, angular frequency ω :

$$V = V_0 e^{j\omega t} = ZI . (7.1)$$

Impedance of self-inductance L: $Z=j\omega L$.

Impedance of capacitance $C\colon\thinspace Z=1/j\omega C$.

Impedance of free space: $Z = \sqrt{\mu_0/\epsilon_0} = 376.7 \ \Omega$.

High-frequency surface impedance of a good conductor:

$$Z = \frac{(1+j) \rho}{\delta} , \quad \text{where } \delta = \text{skin depth} ;$$
 (7.2)

$$\delta = \sqrt{\frac{\rho}{\pi \nu \mu}} \approx \frac{6.6 \text{ cm}}{\sqrt{\nu (\text{Hz})}} \text{ for Cu}.$$
 (7.3)

7.2. Capacitance \widehat{C} and inductance \widehat{L} per unit length (SI units) [negligible skin depth]

Flat rectangular plates of width w, separated by $d \ll w$ with linear medium (ϵ, μ) between:

$$\widehat{C} = \epsilon \, \frac{w}{d} \, ; \qquad \widehat{L} = \mu \, \frac{d}{m} \, ; \tag{7.4}$$

 $\epsilon/\epsilon_0 = 2$ to 6 for plastics; 4 to 8 for porcelain, glasses; (7.5)

$$\mu/\mu_0 \simeq 1 \ . \tag{7.6}$$

Coaxial cable of inner radius r_1 , outer radius r_2 :

$$\widehat{C} = \frac{2\pi \epsilon}{\ln (r_2/r_1)} ; \quad \widehat{L} = \frac{\mu}{2\pi} \ln (r_2/r_1) . \tag{7.7}$$

Transmission lines (no loss):

Impedance:
$$Z = \sqrt{\widehat{L}/\widehat{C}}$$
 . (7.8)

Velocity:
$$v = 1/\sqrt{\widehat{L} \ \widehat{C}} = 1/\sqrt{\mu \epsilon}$$
 . (7.9)

7.3. Synchrotron radiation (CGS units)

For a particle of charge e, velocity $v=\beta c$, and energy $E=\gamma mc^2$, traveling in a circular orbit of radius R, the classical energy loss per revolution δE is

$$\delta E = \frac{4\pi}{3} \, \frac{e^2}{R} \, \beta^3 \, \gamma^4 \, . \tag{7.10}$$

For high-energy electrons or positrons ($\beta \approx 1$), this becomes

$$\delta E \text{ (in MeV)} \approx 0.0885 \ [E(\text{in GeV})]^4 / R(\text{in m}) \ .$$
 (7.11)

For $\gamma \gg 1$, the energy radiated per revolution into the photon energy interval $d(\hbar \omega)$ is

$$dI = \frac{8\pi}{9} \alpha \gamma F(\omega/\omega_c) d(\hbar\omega) , \qquad (7.12)$$

where $\alpha = e^2/\hbar c$ is the fine-structure constant and

$$\omega_{\rm c} = \frac{3\gamma^3 c}{2R} \tag{7.13}$$

is the critical frequency. The normalized function F(y) is

$$F(y) = \frac{9}{8\pi} \sqrt{3} y \int_{y}^{\infty} K_{5/3}(x) dx, \qquad (7.14)$$

where $K_{5/3}\left(x\right)$ is a modified Bessel function of the third kind. For electrons or positrons,

$$\hbar\omega_c (\text{in keV}) \approx 2.22 [E(\text{in GeV})]^3 / R(\text{in m})$$
 (7.15)

Fig. 7.1 shows F(y) over the important range of y.

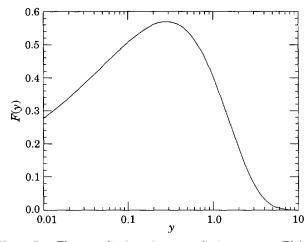


Figure 7.1: The normalized synchrotron radiation spectrum F(y).

For $\gamma \gg 1$ and $\omega \ll \omega_c$,

$$\frac{dI}{d(\hbar\omega)} \approx 3.3\alpha \left(\omega R/c\right)^{1/3} ,$$
 (7.16)

whereas for

$$\gamma\gg 1$$
 and $\omega\gtrsim 3\omega_c$,

$$\frac{dI}{d(\hbar\omega)} \approx \sqrt{\frac{3\pi}{2}} \, \alpha \, \gamma \left(\frac{\omega}{\omega_c}\right)^{1/2} e^{-\omega/\omega_c} \left[1 + \frac{55}{72} \frac{\omega_c}{\omega} + \ldots\right] \quad . \tag{7.17}$$

The radiation is confined to angles $\lesssim 1/\gamma$ relative to the instantaneous direction of motion. The mean number of photons emitted per revolution is

$$N_{\gamma} = \frac{5\pi}{\sqrt{3}} \alpha \gamma , \qquad (7.18)$$

and the mean energy per photon is

$$\langle \hbar \omega \rangle = \frac{8}{15\sqrt{3}} \hbar \omega_c \ . \tag{7.19}$$

When $\langle \hbar \omega \rangle \gtrsim O(E)$, quantum corrections are important.

See J.D. Jackson, Classical Electrodynamics, $2^{\rm nd}$ edition (John Wiley & Sons, New York, 1975) for more formulae and details. In his book, Jackson uses a definition of ω_c that is twice as large as the customary one given above.

8. NAMING SCHEME FOR HADRONS

Maintained 2000 by M. Roos (University of Finland) and C.G. Wohl (LBNL).

8.1. Introduction

We introduced in the 1986 edition [1] a new naming scheme for the hadrons. Changes from older terminology affected mainly the heavier mesons made of the light (u, d, and s) quarks. Old and new names were listed alongside until 1994. Names also change from edition to edition because some characteristic like mass or spin changes. The Summary Tables give both the new and old names whenever a change occurred.

8.2. "Neutral-flavor" mesons (S=C=B=T=0)

Table 8.1 shows the names for mesons having the strangeness and all heavy-flavor quantum numbers equal to zero. The scheme is designed for all ordinary non-exotic mesons, but it will work for many exotic types too, if needed.

Table 8.1: Symbols for mesons with the strangeness and all heavy-flavor quantum numbers equal to zero.

j	$J^{PC} =$	$\begin{cases} 0^{-+} \\ 2^{-+} \\ \vdots \end{cases}$	1+- 3+- :	1 2 :	0++ 1++ :
$q\overline{q}$ content $^{2S+1}$	$L_J =$	$^1(L\mathrm{even})_J$	$^1(L \operatorname{odd})_J$	$^3(L{ m even})_J$	$^3(L \mathrm{odd})_J$
$\overline{u\overline{d},u\overline{u}-d\overline{d},d\overline{u}}$ (I=1	π	ь	ρ	a
$\left. egin{array}{l} d\overline{d} + u\overline{u} \\ \mathrm{and/or} \ s\overline{s} \end{array} ight\} \ (I$	= 0)	η,η'	h, h'	ω,ϕ	f,f'
$c\overline{c}$		η_c	h_c	ψ^\dagger	χ_c
$b\overline{b}$		η_b	h_b	Υ	χ_b
$t \overline{t}$		η_t	h_t	θ	χ_t

[†]The J/ψ remains the J/ψ .

First, we assign names to those states with quantum numbers compatible with being $q\bar{q}$ states. The rows of the Table give the possible $q\bar{q}$ content. The columns give the possible parity/charge-conjugation states,

$$PC = -+, +-, --, \text{ and } ++;$$

these combinations correspond one-to-one with the angular-momentum state $^{2S+1}L_J$ of the $q\bar{q}$ system being

$$^{1}(L \text{ even})_{J}$$
, $^{1}(L \text{ odd})_{J}$, $^{3}(L \text{ even})_{J}$, or $^{3}(L \text{ odd})_{J}$.

Here $S,\,L,\,$ and J are the spin, orbital, and total angular momenta of the $q\overline{q}$ system. The quantum numbers are related by

$$P = (-1)^{L+1}$$
, $C = (-1)^{L+S}$, and G parity $= (-1)^{L+S+I}$,

where of course the C quantum number is only relevant to neutral mesons.

The entries in the Table give the meson names. The spin J is added as a subscript except for pseudoscalar and vector mesons, and the mass is added in parentheses for mesons that decay strongly. However, for the lightest meson resonances, we omit the mass.

Measurements of the mass, quark content (where relevant), and quantum numbers I, J, P, and C (or G) of a meson thus fix its symbol. Conversely, these properties may be inferred unambiguously from the symbol.

If the main symbol cannot be assigned because the quantum numbers are unknown, X is used. Sometimes it is not known whether a meson is mainly the isospin-0 mix of $u\overline{u}$ and $d\overline{d}$ or is mainly $s\overline{s}$. A prime (or pair ω , ϕ) may be used to distinguish two such mixing states.

We follow custom and use spectroscopic names such as $\Upsilon(1S)$ as the primary name for most of those ψ , Υ , and χ states whose spectroscopic identity is known. We use the form $\Upsilon(9460)$ as an alternative, and as the primary name when the spectroscopic identity is not known.

Names are assigned for $t\bar{t}$ mesons, although the top quark is evidently so heavy that it is expected to decay too rapidly for bound states to form.

Gluonium states or other mesons that are not $q\overline{q}$ states are, if the quantum numbers are *not* exotic, to be named just as are the $q\overline{q}$ mesons. Such states will probably be difficult to distinguish from $q\overline{q}$ states and will likely mix with them, and we make no attempt to distinguish those "mostly gluonium" from those "mostly $q\overline{q}$."

An "exotic" meson with J^{PC} quantum numbers that a $q\overline{q}$ system cannot have, namely $J^{PC}=0^{--},0^{+-},1^{-+},2^{+-},3^{-+},\cdots$, would use the same symbol as does an ordinary meson with all the same quantum numbers as the exotic meson except for the C parity. But then the J subscript may still distinguish it; for example, an isospin-0 1^{-+} meson could be denoted ω_1 .

8.3. Mesons with nonzero S, C, B, and/or T

Since the strangeness or a heavy flavor of these mesons is nonzero, none of them are eigenstates of charge conjugation, and in each of them one of the quarks is heavier than the other. The rules are:

 The main symbol is an upper-case italic letter indicating the heavier quark as follows:

$$s \to \overline{K}$$
 $c \to D$ $b \to \overline{B}$ $t \to T$.

We use the convention that the flavor and the charge of a quark have the same sign. Thus the strangeness of the s quark is negative, the charm of the c quark is positive, and the bottom of the b quark is negative. In addition, I_3 of the u and d quarks are positive and negative, respectively. The effect of this convention is as follows: Any flavor carried by a charged meson has the same sign as its charge. Thus the K^+ , D^+ , and B^+ have positive strangeness, charm, and bottom, respectively, and all have positive I_3 . The D_s^+ has positive charm and strangeness. Furthermore, the $\Delta(\text{flavor}) = \Delta Q$ rule, best known for the kaons, applies to every flavor.

- 2. If the lighter quark is not a u or a d quark, its identity is given by a subscript. The D_s^+ is an example.
- 3. If the spin-parity is in the "normal" series, $J^P = 0^+, 1^-, 2^+, \cdots$, a superscript "*" is added.
- The spin is added as a subscript except for pseudoscalar or vector mesons.

8.4. Baryons

The symbols N, Δ , Λ , Σ , Ξ , and Ω used for more than 30 years for the baryons made of light quarks (u, d, and s quarks) tell the isospin and quark content, and the same information is conveyed by the symbols used for the baryons containing one or more heavy quarks (c and b quarks). The rules are:

- 1. Baryons with three u and/or d quarks are N's (isospin 1/2) or Δ 's (isospin 3/2).
- 2. Baryons with $two\ u$ and/or d quarks are A's (isospin 0) or Σ 's (isospin 1). If the third quark is a c, b, or t quark, its identity is given by a subscript.
- Baryons with one u or d quark are \(\mathcal{E}\)'s (isospin 1/2). One or two subscripts are used if one or both of the remaining quarks are heavy: thus \(\mathcal{E}_c\), \(\mathcal{E}_{cc}\), \(\mathcal{E}_b\), etc.*
- Baryons with no u or d quarks are Ω's (isospin 0), and subscripts indicate any heavy-quark content.
- 5. A baryon that decays strongly has its mass as part of its name. Thus $p, \Sigma^-, \Omega^-, \Lambda_c^+, etc.$, but $\Delta(1232)^0, \Sigma(1385)^-, \Xi_c(2645)^+, etc.$

In short, the number of u plus d quarks together with the isospin determine the main symbol, and subscripts indicate any content of heavy quarks. A Σ always has isospin 1, an Ω always has isospin 0, etc.

Footnote and Reference:

- * Sometimes a prime is necessary to distinguish two \mathcal{Z}_c 's in the same $\mathrm{SU}(n)$ multiplet. See the "Note on Charmed Baryons" in the Charmed Baryon Listings.
- Particle Data Group: M. Aguilar-Benitez et al., Phys. Lett. 170B (1986).

9. QUANTUM CHROMODYNAMICS

The last term in this expansion is

9.1. The QCD Lagrangian

Revised September 1999 by I. Hinchliffe (LBNL).

Quantum Chromodynamics (QCD), the gauge field theory which describes the strong interactions of colored quarks and gluons, is one of the components of the SU(3)×SU(2)×U(1) Standard Model. A quark of specific flavor (such as a charm quark) comes in 3 colors; gluons come in eight colors; hadrons are color-singlet combinations of quarks, anti-quarks, and gluons. The Lagrangian describing the interactions of quarks and gluons is (up to gauge-fixing terms)

$$L_{\text{QCD}} = -\frac{1}{4} F_{\mu\nu}^{(a)} F^{(a)\mu\nu} + i \sum_{q} \overline{\psi}_{q}^{i} \gamma^{\mu} (D_{\mu})_{ij} \psi_{q}^{j} - \sum_{q} m_{q} \overline{\psi}_{q}^{i} \psi_{qi} , \qquad (9.1)$$

$$F_{\mu\nu}^{(a)} = \partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a} + g_{s} f_{abc} A_{\mu}^{b} A_{\nu}^{c} , \qquad (9.2)$$

$$(D_{\mu})_{ij} = \delta_{ij} \partial_{\mu} - ig_s \sum_{i,j} \frac{\lambda_{i,j}^a}{2} A_{\mu}^a , \qquad (9.3)$$

where g_s is the QCD coupling constant, and the f_{abc} are the structure constants of the SU(3) algebra (the λ matrices and values for f_{abc} can be found in "SU(3) Isoscalar Factors and Representation Matrices," Sec. 32 of this Review). The $\psi_q^i(x)$ are the 4-component Dirac spinors associated with each quark field of (3) color i and flavor q, and the $A_{\mu}^{a}(x)$ are the (8) Yang-Mills (gluon) fields. A complete list of the Feynman rules which derive from this Lagrangian, together with some useful color-algebra identities, can be found in Ref. 1.

The principle of "asymptotic freedom" (see below) determines that the renormalized QCD coupling is small only at high energies, and it is only in this domain that high-precision tests-similar to those in QED—can be performed using perturbation theory. Nonetheless, there has been in recent years much progress in understanding and quantifying the predictions of QCD in the nonperturbative domain, for example, in soft hadronic processes and on the lattice [2]. This short review will concentrate on QCD at short distances (large momentum transfers), where perturbation theory is the standard tool. It will discuss the processes that are used to determine the coupling constant of QCD. Other recent reviews of the coupling constant measurements may be consulted for a different perspective [3,4].

9.2. The QCD coupling and renormalization scheme

The renormalization scale dependence of the effective QCD coupling $\alpha_s = g_s^2/4\pi$ is controlled by the β -function:

$$\mu \frac{\partial \alpha_s}{\partial \mu} = -\frac{\beta_0}{2\pi} \alpha_s^2 - \frac{\beta_1}{4\pi^2} \alpha_s^3 - \frac{\beta_2}{64\pi^3} \alpha_s^4 - \cdots, \qquad (9.4a)$$

$$\beta_0 = 11 - \frac{2}{3} n_f \;, \tag{9.4b}$$

$$\beta_1 = 51 - \frac{19}{3} n_f , \qquad (9.4c)$$

$$\beta_1 = 51 - \frac{19}{3} n_f , \qquad (9.4c)$$

$$\beta_2 = 2857 - \frac{5033}{9} n_f + \frac{325}{27} n_f^2 ; \qquad (9.4d)$$

where n_f is the number of quarks with mass less than the energy scale μ . The expression for the next term in this series (β_3) can be found in Ref. 5. In solving this differential equation for α_s , a constant of integration is introduced. This constant is the one fundamental constant of QCD that must be determined from experiment. The most sensible choice for this constant is the value of α_s at a fixed-reference scale μ_0 . It has become standard to choose $\mu_0 = M_Z$. It is also convenient to introduce the dimensional parameter Λ , since this provides a parameterization of the μ dependence of α_s . The definition of A is arbitrary. One way to define it (adopted here) is to write a solution of Eq. (9.4) as an expansion in inverse powers of $\ln (\mu^2)$:

$$\alpha_{s}(\mu) = \frac{4\pi}{\beta_{0} \ln(\mu^{2}/\Lambda^{2})} \left[1 - \frac{2\beta_{1}}{\beta_{0}^{2}} \frac{\ln\left[\ln(\mu^{2}/\Lambda^{2})\right]}{\ln(\mu^{2}/\Lambda^{2})} + \frac{4\beta_{1}^{2}}{\beta_{0}^{4} \ln^{2}(\mu^{2}/\Lambda^{2})} \right] \times \left(\left(\ln\left[\ln(\mu^{2}/\Lambda^{2})\right] - \frac{1}{2} \right)^{2} + \frac{\beta_{2}\beta_{0}}{8\beta_{1}^{2}} - \frac{5}{4} \right) \right]. \tag{9.5a}$$

$$\mathcal{O}\left(\frac{\ln^2\left[\ln\left(\mu^2/\Lambda^2\right)\right]}{\ln^3\left(\mu^2/\Lambda^2\right)}\right) , \qquad (9.5b)$$

and is usually neglected in the definition of Λ . We choose to include it. For a fixed value of $\alpha_s(M_Z)$, the inclusion of this term shifts the value of Λ by ~ 15 MeV. This solution illustrates the asymptotic freedom property: $\alpha_s \to 0$ as $\mu \to \infty$.

Consider a "typical" QCD cross section which, when calculated perturbatively, starts at $\mathcal{O}(\alpha_s)$:

$$\sigma = A_1 \alpha_s + A_2 \alpha_s^2 + \cdots . \tag{9.6}$$

The coefficients A_1 , A_2 come from calculating the appropriate Feynman diagrams. In performing such calculations, various divergences arise, and these must be regulated in a consistent way. This requires a particular renormalization scheme (RS). The most commonly used one is the modified minimal subtraction (MS) scheme [6]. This involves continuing momentum integrals from 4 to $4\text{--}2\epsilon$ dimensions, and then subtracting off the resulting $1/\epsilon$ poles and also (ln $4\pi - \gamma_E$), which is another artifact of continuing the dimension. (Here γ_E is the Euler-Mascheroni constant.) To preserve the dimensionless nature of the coupling, a mass scale μ must also be introduced: $g \to \mu^{\epsilon} g$. The finite coefficients A_i $(i \geq 2)$ thus obtained depend implicitly on the renormalization convention used and explicitly on the scale μ .

The first two coefficients (β_0, β_1) in Eq. (9.4) are independent of the choice of RS's. In contrast, the coefficients of terms proportional to α_s^n for n > 3 are RS-dependent. The form given above for β_2 is in the \overline{MS} scheme.

The fundamental theorem of RS dependence is straightforward. Physical quantities, in particular the cross section, calculated to all orders in perturbation theory, do not depend on the RS. It follows that a truncated series does exhibit RS dependence. In practice, QCD cross sections are known to leading order (LO), or to next-to-leading order (NLO), or in a few cases, to next-to-next-to-leading order (NNLO); and it is only the latter two cases, which have reduced RS dependence, that are useful for precision tests. At NLO the RS dependence is completely given by one condition which can be taken to be the value of the renormalization scale μ . At NNLO this is not sufficient, and μ is no longer equivalent to a choice of scheme; both must now be specified. One, therefore, has to address the question of what is the "best" choice for μ within a given scheme, usually $\overline{\rm MS}$. There is no definite answer to this question-higher-order corrections do not "fix" the scale, rather they render the theoretical predictions less sensitive to its variation.

One should expect that choosing a scale μ characteristic of the typical energy scale (E) in the process would be most appropriate. In general, a poor choice of scale generates terms of order $\ln (E/\mu)$ in the A_i 's. Various methods have been proposed including choosing the scale for which the next-to-leading-order correction vanishes ("Fastest Apparent Convergence [7]"); the scale for which the next-toleading-order prediction is stationary [8], (i.e., the value of μ where $d\sigma/d\mu=0$); or the scale dictated by the effective charge scheme [9] or y the BLM scheme [10]. By comparing the values of α_s that different sasonable schemes give, an estimate of theoretical errors can be obtained. It has also been suggested to replace the perturbation series by its Pade approximant [11]. Results obtained using this method have, in certain cases, a reduced scale dependence [12,13]. One can also attempt to determine the scale from data by allowing it to vary and using a fit to determine it. This method can allow a determination of the error due to the scale choice and can give more confidence in the end result [14]. In many of the cases discussed below this scale uncertainty is the dominant error.

An important corollary is that if the higher-order corrections are naturally small, then the additional uncertainties introduced by the μ dependence are likely to be small. There are some processes, however, for which the choice of scheme can influence the extracted value of $\alpha_s(M_Z)$. There is no resolution to this problem other than to try to

calculate even more terms in the perturbation series. It is important to note that, since the perturbation series is an asymptotic expansion, there is a limit to the precision with which any theoretical quantity can be calculated. In some processes, the highest-order perturbative terms may be comparable in size to nonperturbative corrections (sometimes called higher-twist or renormalon effects, for a discussion see [15]); an estimate of these terms and their uncertainties is required if a value of α_s is to be extracted.

Cases occur where there is more than one large scale, say μ_1 and μ_2 . In these cases, terms appear of the form $\log(\mu_1/\mu_2)$. If the ratio μ_1/μ_2 is large, these logarithms can render naive perturbation theory unreliable and a modified perturbation expansion that takes these terms into account must be used. A few examples are discussed below.

In the cases where the higher-order corrections to a process are known and are large, some caution should be exercised when quoting the value of α_s . In what follows, we will attempt to indicate the size of the theoretical uncertainties on the extracted value of α_s . There are two simple ways to determine this error. First, we can estimate it by comparing the value of $\alpha_s(\mu)$ obtained by fitting data using the QCD formula to highest known order in α_s , and then comparing it with the value obtained using the next-to-highest-order formula (μ is chosen as the typical energy scale in the process). The corresponding Λ 's are then obtained by evolving $\alpha_s(\mu)$ to $\mu=M_Z$ using Eq. (9.4) to the same order in α_s as the fit. Alternatively, we can vary the value of μ over a reasonable range, extracting a value of Λ for each choice of μ . This method is by its nature imprecise, since "reasonable" involves a subjective judgment. In either case, if the perturbation series is well behaved, the resulting error on $\alpha_s(M_Z)$ will be small.

In the above discussion we have ignored quark-mass effects, i.e., we have assumed an idealized situation where quarks of mass greater than μ are neglected completely. In this picture, the β -function coefficients change by discrete amounts as flavor thresholds (a quark of mass M) are crossed when integrating the differential equation for α_s . Now imagine an experiment at energy scale μ ; for example, this could be $e^+e^- \to \text{hadrons}$ at center-of-mass energy μ . If $\mu \gg M$, the mass M is negligible and the process is well described by QCD with n_f massless flavors and its parameter $\alpha_{(n_f)}$ up to terms of order M^2/μ^2 . Conversely if $\mu \ll M$, the heavy quark plays no role and the process is well described by QCD with n_f-1 massless flavors and its parameter $\alpha_{(n_f-1)}$ up to terms of order μ^2/M^2 . If $\mu \sim M$, the effects of the quark mass are process-dependent and cannot be absorbed into the running coupling. The values of $\alpha^{(n_f)}$ and $\alpha^{(n_{f-1})}$ are related so that a physical quantity calculated in both "theories" gives the same result [16]. This implies

$$\alpha_{(n_f)}(M) = \alpha_{(n_f-1)}(M) - \frac{7}{72\pi^2} \alpha_{(n_f-1)}^2(M)$$
 (9.7)

which is almost identical to the naive result $\alpha_{(n_f)}(M) = \alpha_{(n_f-1)}(M)$. Here M is the mass of the value of the running quark mass defined in the $\overline{\text{MS}}$ scheme (see the note on "Quark Masses" in the Particle Listings for more details), i.e., where $M_{\overline{\text{MS}}}(M) = M$.

It also follows that, for a relationship such as Eq. (9.5) to remain valid for all values of μ , Λ must also change as flavor thresholds are crossed, the value corresponds to an effective number of massless quarks: $\Lambda \to \Lambda^{(n_f)}$ [16,17]. The formulae are given in the previous edition of this review.

An alternative matching procedure can be used [18]. This procedure requires the equality $\alpha_s(\mu)^{(n_f)} = \alpha_s(\mu)^{(n_f-1)}$ for $\mu=M$. This matching is somewhat arbitrary; a different relation between $\Lambda^{(n_f)}$ and $\Lambda^{(n_f-1)}$ would result if $\mu=M/2$ were used. In practice, the differences between these procedures are very small. $\Lambda^{(5)}=200$ MeV corresponds to $\Lambda^{(4)}=289$ MeV in the scheme of Ref. 18 and $\Lambda^{(4)}=280$ MeV in the scheme we adopt. Note that the differences between $\Lambda^{(5)}$ and $\Lambda^{(4)}$ are numerically very significant.

Data from deep-inelastic scattering are in a range of energy where the bottom quark is not readily excited, and hence, these experiments quote $\Lambda_{\overline{MS}}^{(4)}$. Most data from PEP, PETRA, TRISTAN, LEP, and SLC quote a value of $\Lambda_{\overline{MS}}^{(5)}$ since these data are in an energy range

where the bottom quark is light compared to the available energy. We have converted it to $\Lambda_{\overline{\rm MS}}^{(4)}$ as required. A few measurements, including the lattice gauge theory values from the $J\psi$ system, and from τ decay are at sufficiently low energy that $\Lambda_{\overline{\rm MS}}^{(3)}$ is appropriate.

In order to compare the values of α_s from various experiments, they must be evolved using the renormalization group to a common scale. For convenience, this is taken to be the mass of the Z boson. This evolution uses third-order perturbation theory and can introduce additional errors particularly if extrapolation from very small scales is used. The variation in the charm and bottom quark masses $(m_b=4.3\pm0.2~{\rm GeV}$ and $m_c=1.3\pm0.3~{\rm GeV}$ are used) can also introduce errors. These result in a fixed value of $\alpha_s(2~{\rm GeV})$ giving an uncertainty in $\alpha_s(M_Z)=\pm0.001$ if only perturbative evolution is used. There could be additional errors from nonperturbative effects that enter at low energy.

9.3. QCD in deep-inelastic scattering

The original and still one of the most powerful quantitative tests of perturbative QCD is the breaking of Bjorken scaling in deep-inelastic lepton-hadron scattering. In the leading-logarithm approximation, the measured structure functions $F_i(x,Q^2)$ are related to the quark distribution functions $q_i(x,Q^2)$ according to the naive parton model, by the formulae in "Cross-section Formulae for Specific Processes," Sec. 35 of this *Review*. (In that section, q_i is denoted by the notation f_q). In describing the way in which scaling is broken in QCD, it is convenient to define nonsinglet and singlet quark distributions:

$$F^{NS} = q_i - q_j$$
 $F^S = \sum_i (q_i + \overline{q}_i)$ (9.8)

The nonsinglet structure functions have nonzero values of flavor quantum numbers such as isospin or baryon number. The variation with Q^2 of these is described by the so-called DGLAP equations [19,20]:

$$Q^2 \frac{\partial F^{NS}}{\partial Q^2} = \frac{\alpha_s(|Q|)}{2\pi} P^{qq} * F^{NS}$$
 (9.9a)

$$Q^{2} \frac{\partial}{\partial Q^{2}} \begin{pmatrix} F^{S} \\ G \end{pmatrix} = \frac{\alpha_{s}(|Q|)}{2\pi} \begin{pmatrix} P^{qq} & 2n_{f}P^{qg} \\ P^{gq} & P^{gg} \end{pmatrix} * \begin{pmatrix} F^{S} \\ G \end{pmatrix}$$
(9.9b)

where * denotes a convolution integral:

$$f * g = \int_{x}^{1} \frac{dy}{y} f(y) g\left(\frac{x}{y}\right) . \tag{9.10}$$

The leading-order Altarelli-Parisi [20] splitting functions are

$$P^{qq} = \frac{4}{3} \left[\frac{1+x^2}{(1-x)_{\perp}} \right] + 2\delta(1-x) , \qquad (9.11a)$$

$$P^{qg} = \frac{1}{2} \left[x^2 + (1-x)^2 \right] , \qquad (9.11b)$$

$$P^{gq} = \frac{4}{3} \left[\frac{1 + (1 - x)^2}{x} \right] , \qquad (9.11c)$$

$$P^{gg} = 6 \left[\frac{1-x}{x} + x(1-x) + \frac{x}{(1-x)_{+}} + \frac{11}{12} \delta(1-x) \right] - \frac{n_f}{3} \delta(1-x) . \tag{9.11d}$$

Here the gluon distribution $G(x,Q^2)$ has been introduced and $1/(1-x)_+$ means

$$\int_0^1 dx \frac{f(x)}{(1-x)_+} = \int_0^1 dx \, \frac{f(x) - f(1)}{(1-x)} \,. \tag{9.12}$$

The precision of contemporary experimental data demands that higher-order corrections also be included [21]. The above results are for massless quarks. At low Q^2 values, there are also important "higher-twist" (HT) contributions of the form:

$$F_i(x,Q^2) = F_i^{(LT)}(x,Q^2) + \frac{F_i^{(HT)}(x,Q^2)}{Q^2} + \cdots$$
 (9.13)

Leading twist (LT) indicates a term whose behavior is predicted by perturbative QCD. These corrections are numerically important only for $Q^2 < \mathcal{O}(\text{few GeV}^2)$ except for x very close to 1. At very large values of x perturbative corrections proportional to $\log(1-x)$ can become important [22].

A detailed review of the current status of the experimental data can be found, for example, in Refs. [23–26], and only a brief summary will be presented here. We shall only include determinations of Λ from the recently published results; the earlier editions of this *Review* should be consulted for the earlier data. Data now exist from HERA at much smaller values of x than the fixed-target data. They provide valuable information about the shape of the antiquark and gluon distribution functions at $x \sim 10^{-4}$ [27].

From Eq. (9.9), it is clear that a nonsinglet structure function offers in principle the most precise test of the theory, since the Q^2 evolution is independent of the unmeasured gluon distribution. The CCFR collaboration fit to the Gross-Llewellyn Smith sum rule [28] which is known to order α_s^3 [29,30](Estimates of the order α_s^4 term are available [31])

$$\int_{0}^{1} dx \left(F_{3}^{\bar{\nu}p}(x, Q^{2}) + F_{3}^{\nu p}(x, Q^{2}) \right) = 3 \left[1 - \frac{\alpha_{s}}{\pi} (1 + 3.58 \frac{\alpha_{s}}{\pi} + 19.0 \left(\frac{\alpha_{s}}{\pi} \right)^{2} \right) - \Delta HT \right] , \quad (9.14)$$

where the higher-twist contribution ΔHT is estimated to be $(0.09\pm0.045)/Q^2$ in Refs. [29,32] and to be somewhat smaller by Ref. 33. The CCFR collaboration [35], combines their data with that from other experiments [36] and gives α_s ($\sqrt{3}$ GeV) = 0.28 ± 0.035 (expt.) ±0.05 (sys) $^{+0.035}_{-0.03}$ (theory). The error from higher-twist terms (assumed to be $\Delta HT=0.05\pm0.05$) dominates the theoretical error. If the higher twist result of Ref. 33 is used, the central value increases to 0.31 in agreement with the fit of [37]. This value corresponds to $\alpha_s(M_Z)=0.118\pm0.011$.

 ${\bf Measurements\ involving\ singlet-dominated\ structure\ functions,\ such }$ as F_2 , result in measurements of α_s and the gluon structure function. A full next-to-leading-order fit combining date from SLAC [38], BCDMS [39], E665 [40] and HERA [27] has been performed by Ref. 41. These authors extend the analysis to next-to-next-to-leading order (NNLO). In this case the full theoretical calculation is not available as not all the three loop anomalous dimensions are known; their analysis uses moments of structure functions and is restricted to those moments where the full calculation is available [21,42,37]. The NNLO result is $\alpha_s(M_Z) = 0.1172 \pm 0.0017$ (expt.) ± 0.0017 (sys). Here the first error is a combination of statistical and systematic experimental errors, and the second error is due to the uncertainties in the quark masses, higher twist and target mass corrections, and errors from the gluon distribution. If only a next-to-leading-order fit is performed then the value decreases to $\alpha_s(M_Z) = 0.116$ indicating that the theoretical results are stable. Scale uncertainties are not included. This result is consistent with earlier determinations [43,44,45]. The second of these authors estimated the scale uncertainty at ± 0.004 when a NLO fit was used. The error of Ref. 41 should be increased to take account of the possible scale error. We will therefore use $\alpha_s(M_Z) = 0.1172 \pm 0.0045$ in the final average.

The spin-dependent structure functions, measured in polarized lepton-nucleon scattering, can also be used to test QCD and to determine α_s . Here the values of $Q^2 \sim 2.5 \; {\rm GeV}^2$ are small, particularly for the E143 data [49], and higher-twist corrections are important. A fit [46] using the measured spin dependent structure functions for several experiments themselves from Refs. [48,49] gives $\alpha_s(M_Z) = 0.121 \pm 0.002 ({\rm expt.}) \pm 0.006 ({\rm theory~and~syst.})$. Data from HERMES [50] are not included in this fit; they are consistent with the older data. α_s can also be determined from the Bjorken sum rule [51]; a fit gives [47] $\alpha_s(M_Z) = 0.118^{+0.010}_{-0.024}$; consistent with an earlier determination [52], the larger error being due to the extrapolation into the (unmeasured) small x region. Theoretically, the sum rule is preferable as the perturbative QCD result is known to higher order and these terms are important at the low Q^2 involved. It has been shown that the theoretical errors associated with the choice of scale are considerably reduced by the use of Pade approximants [12]

which results in $\alpha_s(1.7~{\rm GeV})=0.328\pm0.03({\rm expt.})\pm0.025({\rm theory})$ corresponding to $\alpha_s(M_Z)=0.116^{+0.003}_{-0.005}({\rm expt.})\pm0.003({\rm theory})$. No error is included from the extrapolation into the region of x that is unmeasured. Should data become available at smaller values of x so that this extrapolation could be more tightly constrained, the sum rule method could provide the best determination of α_s ; the result from the structure functions themselves is used in the average.

At very small values of x and Q^2 , the x and Q^2 dependence of the structure functions is predicted by perturbative QCD [53]. Here terms to all orders in $\alpha_s \ln(1/x)$ are summed. The data from HERA [27] on $F_2^{ep}(x,Q^2)$ can be fitted to this form [54], including the NLO terms which are required to fix the Q^2 scale. The data are dominated by $4 \text{ GeV}^2 < Q^2 < 100 \text{ GeV}^2$. The fit [55] using H1 data [56] gives $\alpha_s(M_Z) = 0.122 \pm 0.004 \text{ (expt.)} \pm 0.009 \text{ (theory)}$. (The theoretical error is taken from Ref. 54.) The dominant part of the theoretical error is from the scale dependence; errors from terms that are suppressed by $1/\log(1/x)$ in the quark sector are included [57] while those from the gluon sector are not.

Typically, Λ is extracted from the deep inelastic scattering data by parameterizing the parton densities in a simple analytic way at some Q_0^2 , evolving to higher Q^2 using the next-to-leading-order evolution equations, and fitting globally to the measured structure functions to obtain $\Lambda_{\overline{MS}}^{(4)}$. Thus, an important by-product of such studies is the extraction of parton densities at a fixed-reference value of Q_0^2 . These can then be evolved in Q^2 and used as input for phenomenological studies in hadron-hadron collisions (see below). To avoid having to evolve from the starting Q_0^2 value each time, a parton density is required; it is useful to have available a simple analytic approximation to the densities valid over a range of x and Q^2 values. A package is available from the CERN computer library that includes an exhaustive set of fits [58]. Most of these fits are obsolete. In using a parameterization to predict event rates, a next-to-leading order fit must be used if the process being calculated is known to next-to-leading order in QCD perturbation theory. In such a case, there is an additional scheme dependence; this scheme dependence is reflected in the $\mathcal{O}(\alpha_s)$ corrections that appear in the relations between the structure functions and the quark distribution functions. There are two common schemes: a deep-inelastic scheme where there are no order α_s corrections in the formula for $F_2(x,Q^2)$ and the minimal subtraction scheme. It is important when these next-to-leading order fits are used in other processes (see below), that the same scheme is used in the calculation of the partonic rates. Most current sets of parton distributions are obtained using fits to all relevant event data [59]. In particular, data from purely hadronic initial states are used as they can provide important constraints on the gluon distributions.

9.4. QCD in decays of the τ lepton

The semi-leptonic branching ratio of the tau $(\tau \to \nu_{\tau} + \text{hadrons}, R_{\tau})$ is an inclusive quantity. It is related to the contribution of hadrons to the imaginary part of the W self energy $(\Pi(s))$. It is sensitive to a range of energies since it involves an integral

$$R_{ au} \sim \int_{0}^{m_{ au}^2} \frac{ds}{m_{ au}^2} (1 - \frac{s}{m_{ au}^2})^2 \ \mathrm{Im} \left(\Pi(s)\right) \ .$$

Since the scale involved is low, one must take into account nonperturbative (higher-twist) contributions which are suppressed by powers of the τ mass.

$$R_{\tau} = 3.058 \left[1 + \frac{\alpha_s(m_{\tau})}{\pi} + 5.2 \left(\frac{\alpha_s(m_{\tau})}{\pi} \right)^2 + 26.4 \left(\frac{\alpha_s(m_{\tau})}{\pi} \right)^3 + a \frac{m^2}{m_{\tau}^2} + b \frac{m\psi\overline{\psi}}{m_{\tau}^4} + c \frac{\psi\overline{\psi}\psi\overline{\psi}}{m_{\tau}^6} + \cdots \right]. \tag{9.15}$$

Here a,b, and c are dimensionless constants and m is a light quark mass. The term of order $1/m_{\tau}^2$ is a kinematical effect due to the light quark masses and is consequently very small. The nonperturbative terms are estimated using sum rules [60]. In total, they are estimated to be -0.014 ± 0.005 [61,62]. This estimate relies on there being no

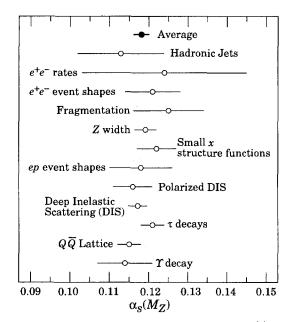


Figure 9.1: Summary of the values of $\alpha_s(M_Z)$ and $\Lambda^{(5)}$ from various processes. The values shown indicate the process and the measured value of α_s extrapolated up to $\mu = M_Z$. The error shown is the *total* error including theoretical uncertainties.

term of order Λ^2/m_τ^2 (note that $\frac{\alpha_s(m_\tau)}{\pi} \sim (\frac{0.5 \text{ GeV}}{m_\tau})^2$). The a, b, and c can be determined from the data [63] by fitting to moments of the $\Pi(s)$ and separately to the final states accessed by the vector and axial parts of the W coupling. The values so extracted [64,65] are consistent with the theoretical estimates. If the nonperturbative terms are omitted from the fit, the extracted value of $\alpha_s(m_\tau)$ decreases by ~ 0.02 .

For $\alpha_s(m_\tau)=0.35$ the perturbative series for R_τ is $R_\tau\sim 3.058(1+0.112+0.064+0.036)$. The size (estimated error) of the nonperturbative term is 20% (7%) of the size of the order α_s^3 term. The perturbation series is not very well convergent; if the order α_s^3 term is omitted, the extracted value of $\alpha_s(m_\tau)$ increases by 0.05. The order α_s^4 term has been estimated [111] and attempts made to resum the entire series [67,68]. These estimates can be used to obtain an estimate of the errors due to these unknown terms [69,70]. We assign an uncertainty of ± 0.02 to $\alpha_s(m_\tau)$ from these sources.

 R_τ can be extracted from the semi-leptonic branching ratio from the relation $R_\tau=1/(\mathrm{B}(\tau\to e\nu\overline{\nu})-1.97256;$ where $\mathrm{B}(\tau\to e\nu\overline{\nu})$ is measured directly or extracted from the lifetime, the muon mass, and the muon lifetime assuming universality of lepton couplings. Using the average lifetime of 290.0 ± 1.2 fs and a τ mass of 1777.05 ± 0.29 MeV from the PDG fit gives $R_\tau=3.655\pm0.023.$ The direct measurement of $\mathrm{B}(\tau\to e\nu\overline{\nu})$ can be combined with $\mathrm{B}(\tau\to \mu\nu\overline{\nu})$ to give $\mathrm{B}(\tau\to e\nu\overline{\nu})=0.1783\pm0.0007$ which gives $R_\tau=3.636\pm0.021.$ Averaging these yields $\alpha_s(m_\tau)=0.351\pm0.008$ using the experimental error alone. We assign a theoretical error equal to 40% of the contribution from the order α^3 term and all of the nonperturbative contributions. This then gives $\alpha_s(m_\tau)=0.35\pm0.03$ for the final result. This corresponds to $\alpha_s(M_Z)=0.121\pm0.003.$

9.5. QCD in high-energy hadron collisions

There are many ways in which perturbative QCD can be tested in high-energy hadron colliders. The quantitative tests are only useful if the process in question has been calculated beyond leading order in QCD perturbation theory. The production of hadrons with large transverse momentum in hadron-hadron collisions provides a direct probe of the scattering of quarks and gluons: $qq \rightarrow qq$, $qg \rightarrow qg$, $gg \rightarrow gg$, etc. Higher-order QCD calculations of the jet rates [71] and shapes are in impressive agreement with data [72]. This agreement has led to the proposal that these data could be used to provide a determination of α_s [73]. A set of structure functions is assumed and

Tevatron collider data are fitted over a very large range of transverse momenta, to the QCD prediction for the underlying scattering process that depends on α_s . The evolution of the coupling over this energy range (40 to 250 GeV) is therefore tested in the analysis. CDF obtains $\alpha_s(M_Z)=0.1129\pm0.0001$ (stat.) ±0.0085 (syst.) [74]. Estimation of the theoretical errors is not straightforward. The structure functions used depend implicitly on α_s and an iteration procedure must be used to obtain a consistent result; different sets of structure functions yield different correlations between the two values of α_s . I estimate an uncertainty of ±0.005 from examining the fits. Ref. 73 estimates the error from unknown higher order QCD corrections to be ±0.005 . Combining these then gives. $\alpha_s(M_Z)=0.113\pm0.011$. Data are also available on the angular distribution of jets; these are also in agreement with QCD expectations [75,76].

QCD corrections to Drell-Yan type cross sections (i.e., the production in hadron collisions by quark-antiquark annihilation of lepton pairs of invariant mass Q from virtual photons, or of real W or Z bosons), are known [77]. These $\mathcal{O}(\alpha_s)$ QCD corrections are sizable at small values of Q. The correction to W and Z production, as measured in $p\bar{p}$ collisions at $\sqrt{s}=0.63$ TeV and $\sqrt{s}=1.8$ TeV, is of order 30%. The NNLO corrections to this process are known [78].

The production of W and Z bosons and photons at large transverse momentum can also be used to test QCD. The leading-order QCD subprocesses are $q\overline{q} \to \gamma g$ and $qg \to \gamma q$. If the parton distributions are taken from other processes and a value of α_s assumed, then an absolute prediction is obtained. Conversely, the data can be used to extract information on quark and gluon distributions and on the value of α_s . The next-to-leading-order QCD corrections are known [79,80] (for photons), and for W/Z production [81], and so a precision test is possible. Data exist on photon production from the CDF and DØ collaborations [82,83] and from fixed target experiments [84]. Detailed comparisons with QCD predictions [85] may indicate an excess of the data over the theoretical prediction at low value of transverse momenta. although other authors [86] find smaller excesses.

The UA2 collaboration [87] extracted a value of $\alpha_s(M_W)=0.123\pm0.018(\mathrm{stat.})\pm0.017(\mathrm{syst.})$ from the measured ratio $R_W=\frac{\sigma(W+1\mathrm{jet})}{\sigma(W+0\mathrm{jet})}$. The result depends on the algorithm used to define a jet, and the dominant systematic errors due to fragmentation and corrections for underlying events (the former causes jet energy to be lost, the latter causes it to be increased) are connected to the algorithm. There is also dependence on the parton distribution functions, and hence, α_s appears explicitly in the formula for R_W , and implicitly in the distribution functions. This result is not used in the final average. Data from CDF and D0 on the W p_t distribution [89] are in agreement with QCD but are not able to determine α_s with sufficient precision to have any weight in a global average.

In the region of low p_t , fixed order perturbation theory is not applicable; one must sum terms of order $\alpha_s^n \ln^n(p_t/M_W)$ [88]. Data from D0 [90] on the p_t distribution of Z bosons agree well with these predictions.

The production rates of b quarks in $p\bar{p}$ have been used to determine α_s [91]. The next-to-leading-order QCD production processes [92] have been used. By selecting events where the b quarks are back-to-back in azimuth, the next-to-leading-order calculation can be used to compare rates to the measured value and a value of α_s extracted. The errors are dominated by the measurement errors, the choice of μ and M, and uncertainties in the choice of structure functions. The last were estimated by varying the structure functions used. The result is $\alpha_s(M_Z)=0.113^{+0.009}_{-0.013}$.

9.6. QCD in heavy-quarkonium decay

Under the assumption that the hadronic and leptonic decay widths of heavy $Q\overline{Q}$ resonances can be factorized into a nonperturbative part—dependent on the confining potential—and a calculable perturbative part, the ratios of partial decay widths allow measurements of α_s at the heavy-quark mass scale. The most precise data come from the decay widths of the 1^{--} $J/\psi(1S)$ and Υ resonances. The total decay width of the Υ is predicted by perturbative QCD [93]

$$\begin{split} R_{\mu}(\varUpsilon) &= \frac{\Gamma(\varUpsilon \to \text{hadrons})}{\Gamma(\varUpsilon \to \mu^{+}\mu^{-})} \\ &= \frac{10(\pi^{2} - 9)\alpha_{s}^{3}(M)}{9\pi\alpha_{\text{em}}^{2}} \\ &\times \left[1 + \frac{\alpha_{s}}{\pi} \left(-19.4 + \frac{3\beta_{0}}{2} \left(1.162 + \ln\left(\frac{2M}{M_{\Upsilon}}\right)\right)\right)\right] \ (9.16) \end{split}$$

Data are available for the Υ , Υ' , Υ'' , and J/ψ . The result is very sensitive to α_s and the data are sufficiently precise $(R_{\mu}(\Upsilon) = 32.5 \pm 0.9)$ [94] that the theoretical errors will dominate. There are theoretical corrections to this simple formula due to the relativistic nature of the $Q\overline{Q}$ system; $v^2/c^2\sim 0.1$ for the \varUpsilon . They are more severe for the J/ψ . There are also nonperturbative corrections of the form Λ^2/M_T^2 ; again these are more severe for the J/ψ . A fit to Υ , Υ' , and Υ'' [95] gives $\alpha_s(M_Z) = 0.113 \pm 0.001$ (expt.). The results from each state separately and also from the J/ψ are consistent with each other. There is an uncertainty of order ± 0.005 from the choice of scale; the error from v^2/c^2 corrections is a little larger. The ratio of widths $\frac{\Upsilon \to \gamma gg}{\Upsilon \to ggg}$ has been measured by the CLEO collaboration who use it to determine $\alpha_s(9.45~{\rm GeV}) = 0.163 \pm 0.002 \pm 0.014~[97]$ which corresponds to $\alpha_s(M_Z) = 0.110 \pm 0.001 \pm 0.007$. The error is dominated by theoretical uncertainties associated with the scale choice. The theoretical uncertainties due to the production of photons in fragmentation [96] are small [97]. Higher order QCD calculations of the photon energy distribution are available [98]; this distribution could now be used to further test the theory. The width $\Gamma(\Upsilon \to e^+e^-)$ can also be used to determine α_s by using moments of the quantity $R_b(s)=rac{\sigma(e^+e^- o bar b)}{\sigma(e^+e^- o \mu^+\mu^-)}$ defined by $M_n = \int_0^\infty \frac{R_b(s)}{s^{n+1}}$ [99]. At large values of n, M_n is dominated by $\Gamma(\Upsilon \to e^+e^-)$. Higher order corrections are available and the method gives [100] $\alpha_s(m_b) = 0.220 \pm 0.027$. The dominant error is theoretical

9.7. Perturbative QCD in e^+e^- collisions

The total cross section for $e^+e^- \to \text{hadrons}$ is obtained (at low values of \sqrt{s}) by multiplying the muon-pair cross section by the factor $R=3\Sigma_q e_q^2$. The higher-order QCD corrections to this quantity have been calculated, and the results can be expressed in terms of the factor:

and is dominated by the choice of scale and by uncertainties in Coulomb

corrections. It corresponds to $\alpha_s(M_Z) = 0.119 \pm 0.008$. These various

 Υ measurements can be combined and give $\alpha_s(M_Z) = 0.114 \pm 0.008$.

$$R = R^{(0)} \left[1 + \frac{\alpha_s}{\pi} + C_2 \left(\frac{\alpha_s}{\pi} \right)^2 + C_3 \left(\frac{\alpha_s}{\pi} \right)^3 + \cdots \right] , \qquad (9.17)$$

where $C_2 = 1.411$ and $C_3 = -12.8$ [101].

 $R^{(0)}$ can be obtained from the formula for $d\sigma/d\Omega$ for $e^+e^- \to f\overline{f}$ by integrating over Ω . The formula is given in Sec. 35.2 of this Review. This result is only correct in the zero-quark-mass limit. The $\mathcal{O}(\alpha_s)$ corrections are also known for massive quarks [102]. The principal advantage of determining α_s from R in e^+e^- annihilation is that there is no dependence on fragmentation models, jet algorithms, etc.

A measurement by CLEO [103] at $\sqrt{s}=10.52$ GeV yields $\alpha_s(10.52~{\rm GeV})=0.20\pm0.01\pm0.06$, which corresponds to $\alpha_s(M_Z)=0.13\pm0.005\pm0.03$. A comparison of the theoretical prediction of Eq. (9.17) (corrected for the *b*-quark mass), with all the available data at values of \sqrt{s} between 20 and 65 GeV, gives [104]

 $\alpha_s(35~{\rm GeV})=0.146\pm0.030$. The size of the order α_s^3 term is of order 40% of that of the order α_s^2 and 3% of the order α_s . If the order α_s^3 term is not included, a fit to the data yields α_s (34 GeV) = 0.142±0.03, indicating that the theoretical uncertainty is smaller than the experimental error.

Measurements of the ratio of hadronic to leptonic width of the Z at LEP and SLC, Γ_h/Γ_μ probe, the same quantity as R. Using the average of $\Gamma_h/\Gamma_\mu=20.783\pm0.029$ gives $\alpha_s(M_Z)=0.123\pm0.004$ [105]. There are theoretical errors arising from the values of top-quark and Higgs masses which enter due to electroweak corrections to the Z width and from the choice of scale.

While this method has small theoretical uncertainties from QCD itself, it relies sensitively on the electroweak couplings of the Z to quarks [106]. The presence of new physics which changes these couplings via electroweak radiative corrections would invalidate the value of $\alpha_s(M_Z)$. However, given the excellent agreement [107] of the many measurements at the Z, there is no reason not to use the value of $\alpha_s(M_Z) = 0.1192 \pm 0.0028 \pm 0.002(scale)$ from the global fits of the various precision measurements at LEP/SLC and the W and top masses in the world average (see the section on "Electroweak model and constraints on new physics," Sec. 10 of this Review).

An alternative method of determining α_s in e^+e^- annihilation is from measuring quantities that are sensitive to the relative rates of two-, three-, and four-jet events. A review should be consulted for more details [108] of the issues mentioned briefly here. In addition to simply counting jets, there are many possible choices of such "shape variables": thrust [109], energy-energy correlations [110], average jet mass, etc. All of these are infrared safe, which means they can be reliably calculated in perturbation theory. The starting point for all these quantities is the multijet cross section. For example, at order α_s , for the process $e^+e^- \to qqg$: [111]

$$\frac{1}{\sigma} \frac{d^2 \sigma}{dx_1 dx_2} = \frac{2\alpha_s}{3\pi} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)} , \qquad (9.18)$$

$$x_i = \frac{2E_i}{\sqrt{s}} \tag{9.19}$$

where x_i are the center-of-mass energy fractions of the final-state (massless) quarks. A distribution in a "three-jet" variable, such as those listed above, is obtained by integrating this differential cross section over an appropriate phase space region for a fixed value of the variable. The order α_s^2 corrections to this process have been computed, as well as the 4-jet final states such as $e^+e^- \to qqgg$ [112].

There are many methods used by the e^+e^- experimental groups to determine α_s from the event topology. The jet-counting algorithm, originally introduced by the JADE collaboration [113], has been used by many other groups. Here, particles of momenta p_i and p_j are combined into a pseudo-particle of momentum $p_i + p_j$ if the invariant mass of the pair is less than $y_0\sqrt{s}$. The process is then iterated until no more pairs of particles or pseudo-particles remain. The remaining number is then defined to be the number of jets in the event, and can be compared to the QCD prediction. The Durham algorithm is slightly different: in computing the mass of a pair of partons, it uses $M^2 = 2\min(E_1^2, E_2^2)(1 - \cos\theta_{ij})$ for partons of energies E_i and E_j separated by angle θ_{ij} [114].

There are theoretical ambiguities in the way this process is carried out. Quarks and gluons are massless, whereas the observed hadrons are not, so that the massive jets that result from this scheme cannot be compared directly to the massless jets of perturbative QCD. Different recombination schemes have been tried, for example combining 3-momenta and then rescaling the energy of the cluster so that it remains massless. These schemes result in the same data giving a slightly different values [115,116] of α_s . These differences can be used to determine a systematic error. In addition, since what is observed are hadrons rather than quarks and gluons, a model is needed to describe the evolution of a partonic final state into one involving hadrons, so that detector corrections can be applied. The QCD matrix elements are combined with a parton-fragmentation

model. This model can then be used to correct the data for a direct comparison with the parton calculation. The different hadronization models that are used [117–120] model the dynamics that are controlled by nonperturbative QCD effects which we cannot yet calculate. The fragmentation parameters of these Monte Carlos are tuned to get agreement with the observed data. The differences between these models contribute to the systematic errors. The systematic errors from recombination schemes and fragmentation effects dominate over the statistical and other errors of the LEP/SLD experiments.

The scale M at which $\alpha_s(M)$ is to be evaluated is not clear. The invariant mass of a typical jet (or $\sqrt{sy_0}$) is probably a more appropriate choice than the e^+e^- center-of-mass energy. While there is no justification for doing so, if the value is allowed to float in the fit to the data, the fit improves and the data tend to prefer values of order $\sqrt{s}/10$ GeV for some variables [116,121]; the exact value depends on the variable that is fitted.

The perturbative QCD formulae can break down in special kinematical configurations. For example, the thrust (T) distribution contains terms of the type $\alpha_s \ln^2(1-T)$. The higher orders in the perturbation expansion contain terms of order $\alpha_s^n \ln^m(1-T)$. For $T \sim 1$ (the region populated by 2-jet events), the perturbation expansion is unreliable. The terms with $n \leq m$ can be summed to all orders in α_s [122]. If the jet recombination methods are used higherorder terms involve $\alpha_s^n \ln^m(y_0)$, these too can be resummed [123]. The resummed results give better agreement with the data at large values of T. Some caution should be exercised in using these resummed results because of the possibility of overcounting; the showering Monte Carlos that are used for the fragmentation corrections also generate some of these leading-log corrections. Different schemes for combining the order α_s^2 and the resummations are available [124]. These different schemes result in shifts in α_s of order ± 0.002 . The use of the resummed results improves the agreement between the data and the theory. An average of the recent results at the Z resonance from SLD [116], OPAL [125], L3 [126], ALEPH [127], and DELPHI [128], using the combined α_s^2 and resummation fitting to a large set of shape variables, gives $\alpha_s(M_Z) = 0.122 \pm 0.007$. The errors in the values of $\alpha_s(M_Z)$ from these shape variables are totally dominated by the theoretical uncertainties associated with the choice of scale, and the effects of hadronization Monte Carlos on the different quantities fitted.

Similar studies on event shapes have been undertaken at lower energies at TRISTAN, PEP/PETRA, and CLEO. A combined result from various shape parameters by the TOPAZ collaboration gives $\alpha_s(58~{\rm GeV})=0.125\pm0.009$, using the fixed order QCD result, and $\alpha_s(58~{\rm GeV})=0.132\pm0.008$ (corresponding to $\alpha_s(M_Z)=0.123\pm0.007$), using the same method as in the SLD and LEP average [129]. The measurements of event shapes at PEP/PETRA are summarized in earlier editions of this note. A recent reevaluation of the JADE data [130] obtained using resummed QCD results and by averaging over several shape variables gives $\alpha_s(35~{\rm GeV})=0.145^{+0.012}_{-0.007}$. An analysis by the TPC group [131] gives $\alpha_s(29~{\rm GeV})=0.160\pm0.012$, using the same method as TOPAZ. This value corresponds to $\alpha_s(M_Z)=0.131\pm0.010$

The CLEO collaboration fits to the order α_s^2 results for the two jet fraction at $\sqrt{s}=10.53$ GeV, and obtains $\alpha_s(10.93$ GeV) = 0.164 ± 0.004 (expt.) ±0.014 (theory) [132]. The dominant systematic error arises from the choice of scale (μ), and is determined from the range of α_s that results from fit with $\mu=10.53$ GeV, and a fit where μ is allowed to vary to get the lowest χ^2 . The latter results in $\mu=1.2$ GeV. Since the quoted result corresponds to $\alpha_s(1.2 \text{ GeV})=0.35$, it is by no means clear that the perturbative QCD expression is reliable and the resulting error should, therefore, be treated with caution. A fit to many different variables as is done in the LEP/SLC analyses would give added confidence to the quoted error.

Recently studies have been carried out at energies between $\sim 130~{\rm GeV}$ [133] and $\sim 189~{\rm GeV}$ [134]. These can be combined to give $\alpha_s(130~{\rm GeV})=0.114\pm0.008$ and $\alpha_s(189~{\rm GeV})=0.1104\pm0.005$. The dominant errors are theoretical and systematic and, as most of these are in common at the two energies. These data and those at the

Z resonance provide clear confirmation of the expected decrease in α_s as the energy is increased.

Since the errors in the event shape measurements are dominantly systematic, and are common to the experiments, the results from PEP/PETRA, TRISTAN, LEP, SLC, and CLEO are combined to give $\alpha_s(M_Z)=0.121\pm0.007$. All of the experiments are consistent with this average and, taken together, provide verification of the running of the coupling constant with energy.

Estimates are available for the nonperturbative corrections to the mean value of 1-T [136]. These are of order 1/E and involve a single parameter to be determined from experiment. These corrections can then be used as an alternative to those modeled by the fragmentation Monte-Carlos. The DELPHI collaboration [135] uses data up to the Z mass from many experiments and determines $\alpha_s(M_Z)=0.119\pm0.006$, the error being dominated by the choice of scale. The value is also determined by a fit to a second variable (the mean jet mass); while the extracted values of $\alpha_s(M_Z)$ are consistent with each other, the values of the non perturbative parameter are not. The analysis is useful as one can directly determine the size of the 1/E corrections; they are approximately 20% (50%) of the perturbative result at $\sqrt{s}=91(11)$ GeV.

9.8. Scaling violations in fragmentation functions

Measurements of the fragmentation function $d_i(z, E)$, (the probability that a hadron of type i be produced with energy zE in e^+e^- collisions at $\sqrt{s}=2E$) can be used to determine α_s . As in the case of scaling violations in structure functions, QCD predicts only the E dependence. Hence, measurements at different energies are needed to extract a value of α_s . Because the QCD evolution mixes the fragmentation functions for each quark flavor with the gluon fragmentation function, it is necessary to determine each of these before α_s can be extracted. The ALEPH collaboration has used data from energies ranging from $\sqrt{s} = 22 \text{ GeV}$ to $\sqrt{s} = 91$ GeV. A flavor tag is used to discriminate between different quark species, and the longitudinal and transverse cross sections are used to extract the gluon fragmentation function [137]. The result obtained is $\alpha_s(M_Z) = 0.126 \pm 0.007$ (expt.) ± 0.006 (theory) [138]. The theory error is due mainly to the choice of scale. The OPAL collaboration [139] has also extracted the separate fragmentation functions. DELPHI [140] has also performed a similar analysis using data from other experiments at lower energy with the result $\alpha_s(M_Z) = 0.124 \pm 0.007 \pm 0.009$ (theory). The larger theoretical error is due to the larger range of scales that were used in the fit. These results can be combined to give $\alpha_s(M_Z) = 0.125 \pm 0.005 \pm 0.008$ (theory).

9.9. Photon structure functions

 e^+e^- can also be used to study photon-photon interactions, which can be used to measure the structure function of a photon [141], by selecting events of the type $e^+e^- \rightarrow e^+e^- + hadrons$ which proceeds via two photon scattering. If events are selected where one of the photons is almost on mass shell and the other has a large invariant mass Q, then the latter probes the photon structure function at scale Q; the process is analogous to deep inelastic scattering where a highly virtual photon is used to probe the proton structure. This process was included in earlier versions of this Review which can be consulted or details on older measurements [142-145]. A recent review of the data can be found in Ref. 146. Data have become available from LEP [147-150] and from TRISTAN [151,152] which extend the range of Q^2 to of order 300 GeV² and x as low as 2×10^{-3} and show Q^2 dependence of the structure function that is consistent with QCD expectations. Experiments at HERA can also probe the photon structure function by looking at jet production in γp collisions; this is analogous to the jet production in hadron-hadron collisions which is sensitive to hadron structure functions. The data [153] are consistent with theoretical models [154].

9.10. Jet rates in ep collisions

At lowest order in α_s , the ep scattering process produces a final state of (1+1) jets, one from the proton fragment and the other from the quark knocked out by the process $e + quark \rightarrow e + quark$. At next order in α_s , a gluon can be radiated, and hence a (2+1) jet final state produced. By comparing the rates for these (1+1) and (2+1) jet processes, a value of α_s can be obtained. A NLO QCD calculation is available [155]. The basic methodology is similar to that used in the jet counting experiments in e^+e^- annihilation discussed above. Unlike those measurements, the ones in ep scattering are not at a fixed value of Q^2 . In addition to the systematic errors associated with the jet definitions, there are additional ones since the structure functions enter into the rate calculations. Results from H1 [156] and ZEUS [157] can be combined to give $\alpha_s(M_Z) = 0.118 \pm 0.0015$ (stat.) ± 0.009 (syst.). The contributions to the systematic errors from experimental effects (mainly the hadronic energy scale) are comparable to the theoretical ones arising from scale choice, structure functions, and jet definitions. The theoretical errors are common to the two measurements; therefore, we have not reduced the systematic error after forming the average.

9.11. QCD in diffractive events

In approximately 10% of the deep-inelastic scattering events at HERA a rapidity gap is observed [158]; that is events are seen where there are almost no hadrons produced in the direction of the incident proton. This was unexpected; QCD based models of the final state predicted that the rapidity interval between the quark that is hit by the electron and the proton remnant should be populated approximately evenly by the hadrons. Similar phenomena have been observed at the Tevatron in W and jet production. For a review see Ref. 159.

9.12. Lattice QCD

Lattice gauge theory calculations can be used to calculate, using non-perturbative methods, a physical quantity that can be measured experimentally. The value of this quantity can then be used to determine the QCD coupling that enters in the calculation. For a review of the methodology see Ref. 160. For example, the energy levels of a $Q\overline{Q}$ system can be determined and then used to extract α_s . The masses of the $Q\overline{Q}$ states depend only on the quark mass and on α_s . A limitation is that calculations cannot be performed for three light quark flavors. Results are available for zero $(n_f = 0, \text{ quenched approximation})$ and two light flavors, which allow extrapolation to three. The coupling constant so extracted is in a lattice renormalization scheme, and must be converted to the MS scheme for comparison with other results. Using the mass differences of Υ and Υ' and Υ'' and χ_b , Davies et al. [161] extract a value of $\alpha_s(M_Z) = 0.1174 \pm 0.0024$. A similar result with larger errors is reported by [162], where results are consistent with $\alpha_s(M_Z) = 0.111 \pm 0.006$. The SESAM collaboration [163] uses the Υ and Υ' and χ_b masses to obtain $\alpha_s(M_Z) = 0.1118 \pm 0.0017$ using Wilson fermions. These authors point out that their result is more than 3σ from that of Davies et al. which uses Kogut-Susskind fermions. A combination of the results from quenched [164] and $(n_f = 2)$ [165] gives $\alpha_s(M_Z) = 0.116 \pm 0.003$ [166]. Calculations [167] using the strength of the force between two heavy quarks computed in the quenched approximation obtains a value of $\alpha_s(5 \text{ GeV})$ that is consistent with these results. There have also been investigations of the running of α_s [168]. These show remarkable agreement with the two loop perturbative result of Eq. (9.5).

There are several sources of error in these estimates of $\alpha_s(M_Z)$. The experimental error associated with the measurements of the particle masses is negligible. The conversion from the lattice coupling constant to the $\overline{\rm MS}$ constant is obtained using a perturbative expansion where one coupling expanded as a power series in the other. This series is only known to second order. A third order calculation exists only from the $n_f=0$ case [169]. Its inclusion leads to a shift in the extracted value of $\alpha_s(M_Z)$ of +0.002. Other theoretical errors arising from the limited statistics of the Monte-Carlo calculation, extrapolation in n_f , and corrections for light quark masses are smaller than this.

The result of averaging [163,161,164] gives with a more conservative error $\alpha_s(M_Z) = 0.115 \pm 0.003$. This will be used in the average.

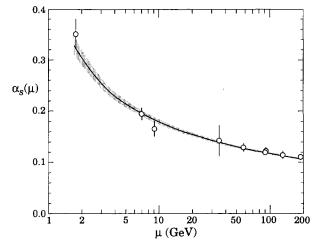


Figure 9.2: Summary of the values of $\alpha_s(\mu)$ at the values of μ where they are measured. The lines show the central values and the $\pm 1\sigma$ limits of our average. The figure clearly shows the decrease in $\alpha_s(\mu)$ with increasing μ . The data are, in increasing order of μ , τ width, deep inelastic scattering, Υ decays, e^+e^- event rate at 25 GeV, event shapes at TRISTAN, Z width, e^+e^- event shapes of M_Z , 135, and 189 GeV.

9.13. Conclusions

The need for brevity has meant that many other important topics in QCD phenomenology have had to be omitted from this review. One should mention in particular the study of exclusive processes (form factors, elastic scattering, ...), the behavior of quarks and gluons in nuclei, the spin properties of the theory, and QCD effects in hadron spectroscopy.

We have focused on those high-energy processes which currently offer the most quantitative tests of perturbative QCD. Figure 9.1 shows the values of $\alpha_s(M_Z)$ deduced from the various experiments. Figure 9.2 shows the values and the values of Q where they are measured. This figure clearly shows the experimental evidence for the variation of $\alpha_s(Q)$ with Q.

An average of the values in Fig. 9.1 gives $\alpha_s(M_z)=0.1181$, with a total χ^2 of 3.8 for twelve fitted points, showing good consistency among the data. The error on the average, assuming that all of the errors in the contributing results are uncorrelated, is ± 0.0014 , and may be an underestimate. Almost all of the values used in the average are dominated by systematic, usually theoretical, errors. Only some of these, notably from the choice of scale, are correlated. The average is not dominated by a single measurement; there are several results with comparable small errors: these are the ones from τ decay, lattice gauge theory, deep inelastic scattering, and the Z^0 width. We quote our average value as $\alpha_s(M_Z)=0.1181\pm0.002$, which corresponds to $\Lambda^{(5)}=208^{+25}_{-23}$ MeV using Eq. (9.5a). Future experiments can be expected to improve the measurements of α_s somewhat. Precision at the 1% level may be achievable if the systematic and theoretical errors can be reduced [170].

The value of α_s at any scale corresponding to our average can be obtained from http://www-theory.lbl.gov/~ianh/alpha/alpha.html

References:

- R.K. Ellis, W.J. Stirling, and B.R. Webber, "QCD and Collider Physics" (Cambridge 1996).
- For reviews see, for example, A.S. Kronfeld and P.B. Mackenzie, Ann. Rev. Nucl. and Part. Sci. 43, 793 (1993);
 - H. Wittig, Int. J. Mod. Phys. A12, 4477 (1997).
- For example see, S. Bethke, in Proceedings of the IVth Int. Symposium on Radiative Corrections, Barcelona, Spain (Sept. 1998), hep-ex/9812026;
 - M Davier, 33rd Rencontres de Moriond: Electroweak Interactions and Unified Theories, Les Arcs, France (14–21 Mar. 1998);
 - P.N. Burrows, Acta. Phys. Pol. 28, 701 (1997).
- J. Womersley, International Conference on Lepton Photon Interactions, Stanford, USA (Aug. 1999).
- S.A. Larin, T. van Ritbergen, and J.A.M. Vermaseren, Phys. Lett. **B400**, 379 (1997).
- 6. W.A. Bardeen et al., Phys. Rev. D18, 3998 (1978).
- G. Grunberg, Phys. Lett. 95B, 70 (1980); Phys. Rev. D29, 2315 (1984).
- P.M. Stevenson, Phys. Rev. **D23**, 2916 (1981); and Nucl. Phys. **B203**, 472 (1982).
- 9. S. Brodsky and H.J. Lu, SLAC-PUB-6389 (Nov. 1993).
- S. Brodsky, G.P. Lepage, and P.B. Mackenzie, Phys. Rev. D28, 228 (1983).
- M.A. Samuel, G. Li, and E. Steinfelds, Phys. Lett. **B323**, 188 (1994);
 - M.A. Samuel, J. Ellis, and M. Karliner, Phys. Rev. Lett. **74**, 4380 (1995).
- 12. J. Ellis et al., Phys. Rev. D54, 6986 (1996).
- 13. P.N. Burrows et al., Phys. Lett. B382, 157 (1996).
- 14. P. Abreu et al., Z. Phys. C54, 55 (1992).
- 15. A.H. Mueller, Phys. Lett. B308, 355, (1993).
- W. Bernreuther, Annals of Physics 151, 127 (1983); Erratum Nucl. Phys. B513, 758 (1998);
 - S.A. Larin, T. van Ritbergen, and J.A.M. Vermaseren, Nucl. Phys. **B438**, 278 (1995).
- K.G. Chetyrkin, B.A. Kniehl, and M. Steinhauser, Phys. Rev. Lett. 79, 2184 (1977).
- 18. W. Marciano, Phys. Rev. **D29**, 580 (1984).
- V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972);
 Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).
- 20. G. Altarelli and G. Parisi, Nucl. Phys. **B126**, 298 (1977).
- G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys. B175, 27 (1980);
 - W. Furmanski and R. Petronzio, Phys. Lett. 97B, 437 (1980); and Z. Phys. C11, 293 (1982);
 - E.G. Floratos, C. Kounnas, and R. Lacaze, Phys. Lett. **98B**, 89 (1981); Phys. Lett. **98B**, 285 (1981); and Nucl. Phys. **B192**, 417 (1981);
 - R.T. Herrod and S. Wada, Phys. Lett. 96B, 195 (1981); andZ. Phys. C9, 351 (1981).
- G. Sterman, Nucl. Phys. B281, 310 (1987);
 S. Catani and L. Trentadue, Nucl. Phys. B327, 323 (1989); Nucl. Phys. B353, 183 (1991).
- 23. R.D. Ball and A. DeRoeck, hep-ph/9609309.
- J. Feltesse, in Proceedings of the XXVII International Conference on High Energy Physics, Glasgow, Scotland, (July 1994).
- M Klein at International Conference on Lepton Photon Interactions, Stanford, USA (August 1999).
- F. Eisele, at the European Physical Society meeting, Brussels, (July 1995).

- M. Derrick et al., Phys. Lett. B345, 576 (1995); Z. Phys. C62, 399 (1999);
 - S. Aid et al., Phys. Lett. **B354**, 494 (1995); Nucl. Phys. **B470**, 3 (1996).
- 28. D. Gross and C.H. Llewellyn Smith, Nucl. Phys. B14, 337 (1969).
- 29. J. Chyla and A.L. Kataev, Phys. Lett. B297, 385 (1992).
- 30. S.A. Larin and J.A.M. Vermaseren, Phys. Lett. B259, 345 (1991).
- A.L. Kataev and V.V. Starchenko, Mod. Phys. Lett. A10, 235 (1995).
- V.M. Braun and A.V. Kolesnichenko, Nucl. Phys. B283, 723 (1987).
- 33. M. Dasgupta and B. Webber, Phys. Lett. B382, 273 (1993).
- 34. M. Maul et al., Phys. Lett. 401, 100 (1997).
- 35. J. Kim et al., Phys. Rev. Lett. 81, 3595 (1998).
- 36. D. Allasia et al., Z. Phys. C28, 321 (1985);
 - K. Varvell et al., Z. Phys. C36, 1 (1997);
 - V.V. Ammosov et al., Z. Phys. C30, 175 (1986);
 - P.C. Bosetti et al., Nucl. Phys. B142, 1 (1978).
- A.L. Kataev et al., Nucl. Phys. A666 & 667, 184 (2000) hep-ph/9907310.
- 38. L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).
- A.C. Benvenuti et al., Phys. Lett. B223, 490 (1989); Phys. Lett. B223, 485, (1989); Phys. Lett. B237, 592 (1990); and Phys. Lett. B237, 599 (1990).
- 40. M.R. Adams et al., Phys. Rev. D54, 3006 (1996).
- J. Santiago and F.J. Yndurain, Nucl. Phys. B563, 45 (1999) hep-ph/9904344.
- K. Adel, F. Barriero, and F.J. Yndurain, Nucl. Phys. B495, 221 (1997);
 - W.L. Van Neerven, and E.B. Zijlstra, Phys. Lett. **B272**, 127 (1991); Nucl. Phys. **B383**, 525 (1992);
 - S. A. Larin et al., Nucl. Phys. B427, 41 (1994); Nucl. Phys. B492, 338 (1997).
- 43. M. Arneodo et al., Phys. Lett. B309, 222 (1993).
- 44. M. Virchaux and A. Milsztajn, Phys. Lett. B274, 221 (1992).
- 45. P.Z. Quintas, Phys. Rev. Lett. 71, 1307 (1993).
- 46. B. Adeva et al., Phys. Rev. D58, 112002 (1998).
- G. Altarelli et al., Nucl. Phys. B496, 337 (1997), hep-ph/9803237.
- D. Adams et al., Phys. Lett. B329, 399 (1995); Phys. Rev. D56, 5330 (1998); Phys. Rev. D58, 1112001 (1998).
- K. Abe et al., Phys. Rev. Lett. 74, 346 (1995); Phys. Lett. B364,
 61 (1995); Phys. Rev. Lett. 75, 25 (1995);
 P.L. Anthony et al., Phys. Rev. D54, 6620 (1996).
- A. Airapetian et al., Phys. Lett. B442, 484 (1998), hep-ex/99-06035.
- 51. J.D. Bjorken, Phys. Rev. 148, 1467 (1966).
- 52. J. Ellis and M. Karliner, Phys. Lett. **B341**, 397 (1995).
- A. DeRujula et al., Phys. Rev. D10, 1669 (1974);
 E.A. Kurayev, L.N. Lipatov, and V.S. Fadin, Sov. Phys. JETP 45, 119 (1977);
 - Ya.Ya. Balitsky and L.N. Lipatov, Sov. J. Nucl. Phys. 28, 882 (1978).
- R.D. Ball and S. Forte, Phys. Lett. B335, 77 (1994); Phys. Lett. B336, 77 (1994);
 - H1Collaboration: S. Aid et al., Nucl. Phys. B470, 3 (1996).
- 55. R.D. Ball and S. Forte, hep-ph/9607289.
- H1 Collaboration: T. Ahmed et al., Nucl. Phys. B439, 471 (1995).
- 57. S. Catani and F. Hautmann, Nucl. Phys. **B427**, 475 (1994).
- 58. H. Plothow-Besch, Comp. Phys. Comm. 75, 396 (1993).

- H.L. Lai et al., Eur. Phys. J. C12, 375 (2000) hep-ph/9903282;
 A.D. Martin et al., Nucl. Phys. B Proc. Suppl. 79, 105 (1999) hep-ph/9906231.
- M.A. Shifman, A.I Vainshtein, and V.I. Zakharov, Nucl. Phys. B147, 385 (1979).
- S. Narison and A. Pich, Phys. Lett. B211, 183 (1988);
 E. Braaten, S. Narison, and A. Pich, Nucl. Phys. B373, 581 (1992).
- 62. M. Neubert, Nucl. Phys. B463, 511 (1996).
- 63. F. Le Diberder and A. Pich, Phys. Lett. B289, 165 (1992).
- R. Barate et al., Z. Phys. C76, 1 (1997); Z. Phys. C76, 15 (1997);
 K. Ackerstaff et al., Eur. Phys. J. C7, 571 (1999).
- 65. T. Coan et al., Phys. Lett. B356, 580 (1995).
- A.L. Kataev and V.V. Starshenko, Mod. Phys. Lett. A10, 235 (1995).
- 67. F. Le Diberder and A. Pich, Phys. Lett. B286, 147 (1992).
- 68. C.J. Maxwell and D.J. Tong, Nucl. Phys. B481, 681 (1996).
- G. Altarelli, Nucl. Phys. **B40**, 59 (1995);
 G. Altarelli, P. Nason, and G. Ridolfi, Z. Phys. **C68**, 257 (1995).
- 70. S. Narison, Nucl. Phys. **B40**, 47 (1995).
- S.D. Ellis, Z. Kunszt, and D.E. Soper, Phys. Rev. Lett. 64, 2121 (1990);
 - F. Aversa et al., Phys. Rev. Lett. 65, 401 (1990);
 - W.T. Giele, E.W.N. Glover, and D. Kosower, Phys. Rev. Lett. **73**, 2019 (1994);
 - S. Frixione, Z. Kunszt, and A. Signer, Nucl. Phys. **B467**, 399 (1996).
- F. Abe et al., Phys. Rev. Lett. 77, 438 (1996);
 B. Abbott et al., Phys. Rev. Lett. 82, 2451 (1999).
- W.T. Giele, E.W.N. Glover, and J. Yu, Phys. Rev. D53, 120 (1996).
- 74. CDF Collaboration reported in [4].
- UA1 Collaboration: G. Arnison et al., Phys. Lett. B177, 244 (1986).
- F. Abe et al., Phys. Rev. Lett. 77, 533 (1996);
 ibid., erratum Phys. Rev. Lett. 78, 4307 (1997);
 - B. Abbott, Phys. Rev. Lett. 80, 666 (1998);
 - S. Abache et al., Phys. Rev. D53, 6000 (1996).
- G. Altarelli, R.K. Ellis, and G. Martinelli, Nucl. Phys. B143, 521 (1978).
- R. Hamberg, W.L. Van Neerven, and T. Matsuura, Nucl. Phys. B359, 343 (1991).
- P. Aurenche, R. Baier, and M. Fontannaz, Phys. Rev. **D42**, 1440 (1990);
 - P. Aurenche et al., Phys. Lett. 140B, 87 (1984);
 - P. Aurenche et al., Nucl. Phys. B297, 661 (1988).
- H. Baer, J. Ohnemus, and J.F. Owens, Phys. Lett. B234, 127 (1990).
- H. Baer and M.H. Reno, Phys. Rev. **D43**, 2892 (1991);
 P.B. Arnold and M.H. Reno, Nucl. Phys. **B319**, 37 (1989).
- 82. F. Abe et al., Phys. Rev. Lett. 73, 2662 (1994).
- 83. S. Abachi et al., Phys. Rev. Lett. 77, 5011 (1996).
- 84. G. Alverson et al., Phys. Rev. D48, 5 (1993).
- L. Apanasevich et al., Phys. Rev. D59, 074007 (1999); Phys. Rev. Lett. 81, 2642 (1998).
- W. Vogelsang and A. Vogt, Nucl. Phys. B453, 334 (1995);
 P. Aurenche et al., Eur. Phys. J. C9, 107 (1999).
- 87. J. Alitti et al., Phys. Lett. **B263**, 563 (1991).
- R. K. Ellis and S. Veseli, Nucl. Phys. B511, 649 (1998);
 C.T. Davies, B.R. Webber, and W.J. Stirling, Nucl. Phys. B256, 413 (1985).

- 89. S. Abache et al., Phys. Rev. Lett. 75, 3226 (1995);
 - J. Womersley, private communication;
 - J. Huston, in the *Proceedings to the 29th International Conference on High-Energy Physics (ICHEP98)*, Vancouver, Canada (23–29 Jul 1998) hep-ph/9901352.
- DØ Collaboration: B. Abbott et al., Phys. Rev. D61, 032004 (2000) hep-ex/9907009;
 - T. Affolder et al., FERMILAB-PUB-99/220.
- 91. C. Albajar et al., Phys. Lett. **B369**, 46 (1996).
- M.L. Mangano, P. Nason, and G. Ridolfi, Nucl. Phys. B373, 295 (1992).
- R. Barbieri et al., Phys. Lett. 95B, 93 (1980);
 B.P. Mackenzie and G.P. Lepage, Phys. Rev. Lett. 47, 1244 (1981).
- 94. M. Kobel et al., Z. Phys. C53, 193 (1992).
- 95. M. Kobel, DESY-F31-91-03 (thesis).
- S. Catani and F. Hautmann, Nucl. Phys. B (Proc. Supp.), vol. 39BC, 359 (1995).
- 97. B. Nemati et al., Phys. Rev. D55, 5273 (1997).
- 98. M. Kramer, Phys. Rev. D60, 111503 (1999) hep-ph/9904416.
- 99. M. Voloshin, Int. J. Mod. Phys. A10, 2865 (1999).
- M. Jamin and A. Pich, Nucl. Phys. B507, 334 (1997).
- S.G. Gorishny, A. Kataev, and S.A. Larin, Phys. Lett. **B259**, 114 (1991);
 - L.R. Surguladze and M.A. Samuel, Phys. Rev. Lett. 66, 560 (1991).
- 102. K.G. Chetyrkin and J.H. Kuhn, Phys. Lett. B308, 127 (1993).
- R. Ammar et al., Phys. Rev. D57, 1350 (1998).
- D. Haidt, in *Directions in High Energy Physics*, vol. 14, p. 201, ed. P. Langacker (World Scientific, 1995).
- G. Quast, presented at the International Europhysics Conference on High Energy Physics, EPS-HEP99, Tampere, Finland (July 1999).
- 106. A. Blondel and C. Verzegrassi, Phys. Lett. **B311**, 346 (1993);
 - G. Altarelli et al., Nucl. Phys. **B405**, 3 (1993).
- 107. See the section on "Standard Model of Electroweak Interactions" (Sec. 10) in this Review.
- S. Bethke and J. Pilcher, Ann. Rev. Nucl. and Part. Sci. 42, 251 (1992).
- 109. E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
- 110. C.L. Basham et al., Phys. Rev. **D17**, 2298 (1978).
- J. Ellis, M.K. Gaillard, and G. Ross, Nucl. Phys. B111, 253 (1976);
 - ibid., erratum Nucl. Phys. **B130**, 516 (1977);
 - P. Hoyer et al., Nucl. Phys. B161, 349 (1979).
- R.K. Ellis, D.A. Ross, T. Terrano, Phys. Rev. Lett. 45, 1226 (1980);
 - Z. Kunszt and P. Nason, ETH-89-0836 (1989).
- 113. S. Bethke et al., Phys. Lett. B213, 235 (1988).
- 114. S. Bethke et al., Nucl. Phys. B370, 310 (1992).
- 115. M.Z. Akrawy et al., Z. Phys. C49, 375 (1991).
- K. Abe et al., Phys. Rev. Lett. 71, 2578 (1993); Phys. Rev. D51, 962 (1995).
- 117. B. Andersson et al., Phys. Reports 97, 33 (1983).
- 118. A. Ali et al., Nucl. Phys. B168, 409 (1980);

119. B.R. Webber, Nucl. Phys. B238, 492 (1984);

- A. Ali and R. Barreiro, Phys. Lett. 118B, 155 (1982).
- G. Marchesini et al., Phys. Comm. 67, 465 (1992).
- T. Sjostrand and M. Bengtsson, Comp. Phys. Comm. 43, 367 (1987);
 - T. Sjostrand, CERN-TH-7112/93 (1993).

- 121. O. Adriani et al., Phys. Lett. B284, 471 (1992);
 - M. Akrawy et al., Z. Phys. C47, 505 (1990);
 - B. Adeva et al., Phys. Lett. B248, 473 (1990);
 - D. Decamp et al., Phys. Lett. **B255**, 623 (1991).
- 122. S. Catani et al., Phys. Lett. B263, 491 (1991).
- 123. S. Catani et al., Phys. Lett. B269, 432 (1991);
 - S. Catani, B.R. Webber, and G. Turnock, Phys. Lett. **B272**, 368 (1991);
 - N. Brown and J. Stirling, Z. Phys. C53, 629 (1992).
- G. Catani et al., Phys. Lett. B269, 632 (1991); Phys. Lett. B295, 269 (1992); Nucl. Phys. B607, 3 (1993); Phys. Lett. B269, 432 (1991).
- P.D. Acton et al., Z. Phys. C55, 1 (1992); Z. Phys. C58, 386 (1993).
- 126. O. Adriani et al., Phys. Lett. B284, 471 (1992).
- D. Decamp et al., Phys. Lett. B255, 623 (1992); Phys. Lett. B257, 479 (1992).
- P. Abreu et al., Z. Phys. C59, 21 (1993);
 M. Acciarri et al., Phys. Lett. B404, 390 (1997).
- 129. Y. Ohnishi et al., Phys. Lett. B313, 475 (1993).
- 130. P.A. Movilla Fernandez et al., Eur. Phys. J. C1, 461 (1998);
 O. Biebel et al., Phys. Lett. B459, 326 (1999).
- 131. D.A. Bauer et al., SLAC-PUB-6518.
- 132. L. Gibbons et al., CLNS 95-1323 (1995).
- DELPHI Collaboration: D. Buskulic et al., Z. Phys. C73, 409 (1997); Z. Phys. C73, 229 (1997).
- 134. ALEPH Collaboration: 99-023 (1999); DELPHI Collaboration: 99-114 (1999); L3 Collaboration: L3-2414 (1999); OPAL Collaboration, PN-403 (1999); all submitted to International Conference on Lepton Photon Interactions, Stanford, USA (Aug. 1999);
 - **OPAL** Collaboration: M. Acciarri *et al.*, Phys. Lett. **B371**, 137 (1996); Z. Phys. **C72**, 191 (1996);
 - K. Ackerstaff et al., Z. Phys. C75, 193 (1997);
 - ALEPH Collaboration: ALEPH 98-025 (1998).
- 135. **DELPHI** Collaboration: Phys. Lett. **B456**, 322 (1999).
- 136. Y.L. Dokshitzer and B.R. Webber Phys. Lett. B352, 451 (1995);
 Y.L. Dokshitzer et. al. Nucl. Phys. B511, 396 (1997);
 Y.L. Dokshitzer et. al. JHEP 9801,011 (1998).
- 137. P. Nason and B.R. Webber, Nucl. Phys. **B421**, 473 (1994).
- D. Buskulic et al., Phys. Lett. B357, 487 (1995);
 ibid., erratum Phys. Lett. B364, 247 (1995).
- 139. OPAL Collaboration: R. Akers et al., Z. Phys. C68, 203 (1995).
- DELPHI Collaboration: P. Abreu et al., Phys. Lett. B398, 194 (1997).
- 141. E. Witten, Nucl. Phys. B120, 189 (1977).
- 142. C. Berger et al., Nucl. Phys. B281, 365 (1987).

- 143. H. Aihara et al., Z. Phys. C34, 1 (1987).
- M. Althoff et al., Z. Phys. C31, 527 (1986).
- 145. W. Bartel et al., Z. Phys. C24, 231 (1984).
- J. Butterworth, International Conference on Lepton Photon Interactions, Stanford, USA (Aug. 1999).
- K. Ackerstaff et al., Phys. Lett. B412, 225 (1997); Phys. Lett. B411, 387 (1997).
- 148. R. Barate et al., Phys. Lett. **B458**, 152 (1999).
- 149. M. Acciarri et al., Phys. Lett. B436, 403 (1998).
- 150. P. Abreu et al., Z. Phys. C69, 223 (1996).
- 151. K. Muramatsu et al., Phys. Lett. B332, 477 (1994).
- 152. S.K. Sahu et al., Phys. Lett. B346, 208 (1995).
- H1 Collaboration: C. Adloff et al., Eur. Phys. J. C13, 397 (2000) DESY-98-205;
 - J.Breitweg et al., Eur. Phys. J. C11, 35 (1999) DESY 99-057.
- 154. S. Frixone, Nucl. Phys. B507, 295 (1997);
 B.W. Harris and J.F. Owens, Phys. Rev. D56, 4007 (1997);
 M. Klasen and G. Kramr, Z. Phys. C72, 107 (1996).
- D. Graudenz, Phys. Rev. **D49**, 3921 (1994) hep-ph/9708362;
 J.G. Korner, E. Mirkes, and G.A. Schuler, Int. J. Mod. Phys. **A4**, 1781, (1989);
 - S. Catani and M. Seymour, Nucl. Phys. **B485**, 291 (1997);
 - M. Dasgupta and B.R. Webber, Eur. Phys. J. C1, 539 (1998) hep-ph/9704297;
 - E. Mirkes and D. Zeppenfeld, Phys. Lett. B380, 205 (1996).
- H1 Collaboration: T. Ahmed et al., Phys. Lett. B346, 415 (1995); Eur. Phys. J. C5, 575 (1998).
- ZEUS Collaboration: M. Derrick et al., Phys. Lett. B363, 201 (1995).
- M.Derrick et al., Phys. Lett. B, 369 (1996);
 H1 Collaboration: T. Ahmed et al., Nucl. Phys. B435, 3 (1995).
- 159. D.M. Janson, M. Albrow, and R. Brugnera hep-ex/9905537.
- 160. P Weisz, Nucl. Phys. B (Proc. Supp.) 47, 71 (1996).
- 161. C.T.H. Davies et al., Phys. Rev. D56, 2755 (1997).
- 162. S. Aoki et al., Phys. Rev. Lett. 74, 222 (1995).
- 163. A. Spitz et al., Phys. Rev. D60, 074502 (1999) hep-lat/9906009.
- A.X. El-Khadra et al., Phys. Rev. Lett. 69, 729 (1992);
 A.X. El-Khadra et al., FNAL 94-091/T (1994);
 - A.X. El-Khadra et al., hep-ph/9608220.
- 165. S. Collins et al., cited by [166].
- 166. J. Shigemitsu, Nucl. Phys. B (Proc. Supp.) 53, 16 (1997).
- G.S Bali and K. Schilling, Phys. Rev. **D47**, 661 (1973);
 S.P. Booth *et al.*, Phys. Lett. **B294**, 38 (1992).
- G. de Divitiis et al., Nucl. Phys. B437, 447 (1995);
 M. Luscher et al., Nucl. Phys. B413, 481 (1994).
- 169. M. Luscher and P. Weisz, Nucl. Phys. **B452**, 234 (1995).
- P.N. Burrows et al., in Proceedings of 1996 DPF/DPB Snowmass Summer Study, ed. D. Cassel et al., (1997).

10. ELECTROWEAK MODEL AND CONSTRAINTS ON NEW PHYSICS

Revised August 1999 by J. Erler and P. Langacker (Univ. of Pennsylvania).

- 10.1 Introduction
- 10.2 Renormalization and radiative corrections
- 10.3 Cross-section and asymmetry formulas
- $10.4 \quad W \text{ and } Z \text{ decays}$
- 10.5 Experimental results
- 10.6 Constraints on new physics

10.1. Introduction

The standard electroweak model is based on the gauge group [1] $\mathrm{SU}(2) \times \mathrm{U}(1)$, with gauge bosons W^i_μ , i=1,2,3, and B_μ for the $\mathrm{SU}(2)$ and $\mathrm{U}(1)$ factors, respectively, and the corresponding gauge coupling constants g and g'. The left-handed fermion fields $\psi_i = \binom{\nu_i}{\ell_i^-}$ and $\binom{u_i}{d_i^i}$ of the i^{th} fermion family transform as doublets under $\mathrm{SU}(2)$, where $d_i' \equiv \sum_j V_{ij} \ d_j$, and V is the Cabibbo-Kobayashi-Maskawa mixing matrix. (Constraints on V are discussed in the section on the Cabibbo-Kobayashi-Maskawa mixing matrix.) The right-handed fields are $\mathrm{SU}(2)$ singlets. In the minimal model there are three fermion families and a single complex Higgs doublet $\phi \equiv \binom{\phi^+}{\sigma^0}$.

After spontaneous symmetry breaking the Lagrangian for the fermion fields is

$$\mathcal{L}_{F} = \sum_{i} \overline{\psi}_{i} \left(i \partial - m_{i} - \frac{g m_{i} H}{2 M_{W}} \right) \psi_{i}$$

$$- \frac{g}{2 \sqrt{2}} \sum_{i} \overline{\psi}_{i} \gamma^{\mu} (1 - \gamma^{5}) (T^{+} W_{\mu}^{+} + T^{-} W_{\mu}^{-}) \psi_{i}$$

$$- e \sum_{i} q_{i} \overline{\psi}_{i} \gamma^{\mu} \psi_{i} A_{\mu}$$

$$- \frac{g}{2 \cos \theta_{W}} \sum_{i} \overline{\psi}_{i} \gamma^{\mu} (g_{V}^{i} - g_{A}^{i} \gamma^{5}) \psi_{i} Z_{\mu} . \tag{10.1}$$

 $\theta_W \equiv \tan^{-1}(g'/g)$ is the weak angle; $e=g\sin\theta_W$ is the positron electric charge; and $A \equiv B\cos\theta_W + W^3\sin\theta_W$ is the (massless) photon field. $W^\pm \equiv (W^1\mp iW^2)/\sqrt{2}$ and $Z \equiv -B\sin\theta_W + W^3\cos\theta_W$ are the massive charged and neutral weak boson fields, respectively. T^+ and T^- are the weak isospin raising and lowering operators. The vector and axial vector couplings are

$$g_V^i \equiv t_{3L}(i) - 2q_i \sin^2 \theta_W , \qquad (10.2a)$$

$$g_A^i \equiv t_{3L}(i) , \qquad (10.2b)$$

where $t_{3L}(i)$ is the weak isospin of fermion i $(+1/2 \text{ for } u_i \text{ and } \nu_i; -1/2 \text{ for } d_i \text{ and } e_i)$ and q_i is the charge of ψ_i in units of e.

The second term in \mathscr{L}_F represents the charged-current weak interaction [2]. For example, the coupling of a W to an electron and a neutrino is

$$-\frac{e}{2\sqrt{2}\sin\theta_W} \left[W_{\mu}^- \ \overline{e} \ \gamma^{\mu} (1-\gamma^5)\nu + W_{\mu}^+ \ \overline{\nu} \ \gamma^{\mu} \ (1-\gamma^5)e \right] \ . \tag{10.3}$$

For momenta small compared to M_W , this term gives rise to the effective four-fermion interaction with the Fermi constant given (at tree level, *i.e.*, lowest order in perturbation theory) by $G_F/\sqrt{2}=g^2/8M_W^2$. CP violation is incorporated in the Standard Model by a single observable phase in V_{ij} . The third term in \mathcal{L}_F describes electromagnetic interactions (QED), and the last is the weak neutral-current interaction.

In Eq. (10.1), m_i is the mass of the i^{th} fermion ψ_i . For the quarks these are the current masses. For the light quarks, as described in the Particle Listings, $\hat{m}_u \approx 1\text{--}5$ MeV, $\hat{m}_d \approx 3\text{--}9$ MeV, and $\hat{m}_s \approx 75\text{--}170$ MeV. These are running $\overline{\text{MS}}$ masses evaluated at the scale $\mu=2$ GeV. (In this section we denote quantities defined in the $\overline{\text{MS}}$ scheme by a caret; the exception is the strong coupling constant, α_s , which will always correspond to the $\overline{\text{MS}}$ definition and where the caret will be dropped.) For the heavier quarks,

 $\widehat{m}_c(\mu=\widehat{m}_c)\approx 1.15$ –1.35 GeV and $\widehat{m}_b(\mu=\widehat{m}_b)\approx 4.0$ –4.4 GeV. The average of the recent CDF [4] and DØ [5] values for the top quark "pole" mass is $m_t=174.3\pm 5.1$ GeV. We will use this value for m_t (together with $M_H=100$ GeV) for the numerical values quoted in Sec. 10.2–Sec. 10.4. See "The Note on Quark Masses" in the Particle Listings for more information.

H is the physical neutral Higgs scalar which is the only remaining part of ϕ after spontaneous symmetry breaking. The Yukawa coupling of H to ψ_i , which is flavor diagonal in the minimal model is $gm_i/2M_W$. In nonminimal models there are additional charged and neutral scalar Higgs particles [6].

10.2. Renormalization and radiative corrections

The Standard Model has three parameters (not counting the Higgs boson mass, M_H , and the fermion masses and mixings). A particularly useful set is:

- (a) The fine structure constant $\alpha = 1/137.0359895(61)$, determined from the quantum Hall effect. In most electroweakrenormalization schemes, it is convenient to define a running α dependent on the energy scale of the process, with $\alpha^{-1} \sim 137$ appropriate at very low energy. (The running has also been observed directly. [7]) For scales above a few hundred MeV this introduces an uncertainty due to the low-energy hadronic contribution to vacuum polarization. In the modified minimal subtraction (MS) scheme [8] (used for this Review), and with $\alpha_s(M_Z) = 0.120$ for the QCD coupling at M_Z , one has $\widehat{\alpha}(m_\tau)^{-1} = 133.513 \pm 0.026$ and $\widehat{\alpha}(M_Z)^{-1}=\stackrel{\cdot}{127.934}\stackrel{\cdot}{\pm}\stackrel{\cdot}{0.027}$ [9]. The non-linear α_s dependence of $\hat{\alpha}(M_Z)$ and the resulting correlation with the input variable α_s , is fully taken into account in the fits. The uncertainty is from e^+e^- annihilation data below 1.8 GeV [10], from uncalculated higher order perturbative and non-perturbative QCD corrections, and from the $\overline{\rm MS}$ quark masses, $\widehat{m}_c(\widehat{m}_c) = 1.31 \pm 0.07$ and $\widehat{m}_b(\widehat{m}_b) = 4.24 \pm 0.11$ [9]. Such a short distance mass definition (unlike the pole mass) is free from non-perturbative and renormalon uncertainties. Various recent evaluations of the contributions of the five light quark flavors, $\Delta \alpha_{\rm had}^{(3)}$, to the conventional (on-shell) QED coupling, $\alpha(M_Z)=\frac{\alpha}{1-\Delta\alpha}$, are summarized in Table 10.1. Most of the older results relied on $e^+e^- \rightarrow \text{hadrons cross-section measurements up to energies of}$ 40 GeV which were somewhat higher than the QCD prediction, suggested stronger running, and were less precise. The most recent results assume the validity of perturbative QCD (PQCD) at scales of 1.8 GeV and above (outside of resonance regions), and are in very good agreement with each other. They imply higher central values for the extracted M_H by $\mathcal{O}(20~{
 m GeV})$. On the other hand, the upper limits for M_H are all similar due to a compensation of the latter effect and the higher precision. Further improvement of this dominant theoretical uncertainty in the interpretation of precision data will require better measurements of the cross-section for $e^+e^- \rightarrow$ hadrons at low energy.
- (b) The Fermi constant, $G_F = 1.16637(1) \times 10^{-5} \text{ GeV}^{-2}$, determined from the muon lifetime formula [22,23],

$$au_{\mu}^{-1} = rac{G_F^2 m_{\mu}^5}{192 \pi^3} \ F\left(rac{m_e^2}{m_{\mu}^2}
ight) \left(1 + rac{3}{5} rac{m_{\mu}^2}{M_W^2}
ight)$$

$$\times \left[1 + \left(\frac{25}{8} - \frac{\pi^2}{2} \right) \frac{\alpha(m_\mu)}{\pi} + C_2 \frac{\alpha^2(m_\mu)}{\pi^2} \right] ,$$
 (10.4a)

where

$$F(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \ln x , \qquad (10.4b)$$

$$C_2 = \frac{156815}{5184} - \frac{518}{81}\pi^2 - \frac{895}{36}\zeta(3) + \frac{67}{720}\pi^4 + \frac{53}{6}\pi^2\ln(2) \; , \; \; (10.4c)$$

and

$$\alpha(m_{\mu})^{-1} = \alpha^{-1} - \frac{2}{3\pi} \ln\left(\frac{m_{\mu}}{m_{e}}\right) + \frac{1}{6\pi} \approx 136$$
. (10.4d)

Table 10.1: Recent evaluations of the on-shell $\Delta\alpha_{\rm had}^{(5)}(M_Z)$. For better comparison we adjusted central values and errors to correspond to a common and fixed value of $\alpha_s(M_Z)=0.120$. References quoting results without the top quark decoupled are converted to the five flavor definition. Ref. [20] uses $\Lambda_{\rm QCD}=380\pm60$ MeV; for the conversion we assumed $\alpha_s(M_Z)=0.118\pm0.003$.

Reference	Result	Comment
Martin&Zeppenfeld [11]	0.02744 ± 0.00036	PQCD for $\sqrt{s} > 3$ GeV
Eidelman&Jegerlehner [12]	0.02803 ± 0.00065	PQCD for $\sqrt{s} > 40 \mathrm{GeV}$
Geshkenbein&Morgunov [13]	0.02780 ± 0.00006	$\mathcal{O}(lpha_s)$ resonance model
Burkhardt&Pietrzyk [14]	0.0280 ± 0.0007	PQCD for $\sqrt{s} > 40 \text{ GeV}$
Swartz [15]	0.02754 ± 0.00046	use of fitting function
Alemany, Davier, Höcker [16]	0.02816 ± 0.00062	includes τ decay data
Krasnikov&Rodenberg [17]	0.02737 ± 0.00039	PQCD for $\sqrt{s} > 2.3\mathrm{GeV}$
Davier&Höcker [10]	0.02784 ± 0.00022	PQCD for $\sqrt{s} > 1.8 \text{ GeV}$
Kühn&Steinhauser [18]	0.02778 ± 0.00016	complete $\mathcal{O}(lpha_s^2)$
Erler [9]	0.02779 ± 0.00020	converted from $\overline{\text{MS}}$ scheme
Davier&Höcker [19]	0.02770 ± 0.00015	use of QCD sum rules
Groote et al. [20]	0.02787 ± 0.00032	use of QCD sum rules
Jegerlehner [21]	0.02778 ± 0.00024	converted from
		MOM scheme

The $\mathcal{O}(\alpha^2)$ corrections to μ decay have been completed recently [23]. The remaining uncertainty in G_F is from the experimental input.

(c) The Z boson mass, $M_Z=91.1872\pm0.0021$ GeV, determined from the Z lineshape scan at LEP 1 [24].

With these inputs, $\sin^2\theta_W$ can be calculated when values for m_t and M_H are given; conversely (as is done at present), M_H can be constrained by $\sin^2\theta_W$. The value of $\sin^2\theta_W$ is extracted from Z pole observables, the W mass, and neutral-current processes [25], and depends on the renormalization prescription. There are a number of popular schemes [27–32] leading to values which differ by small factors depending on m_t and M_H . The notation for these schemes is shown in Table 10.2. Discussion of the schemes follows the table.

Table 10.2: Notations used to indicate the various schemes discussed in the text. Each definition of $\sin \theta_W$ leads to values that differ by small factors depending on m_t and M_H .

Scheme	Notation
On-shell	$s_W = \sin \theta_W$
NOV	$s_{M_Z} = \sin \theta_W$
\overline{MS}	$\hat{s}_Z = \sin \theta_W$
$\overline{ ext{MS}}$ ND	$\widehat{s}_{ND} = \sin \theta_W$
Effective angle	$\vec{s}_f = \sin \theta_W$

(i) The on-shell scheme [27] promotes the tree-level formula $\sin^2\theta_W=1-M_W^2/M_Z^2$ to a definition of the renormalized $\sin^2\theta_W$ to all orders in perturbation theory, i.e., $\sin^2\theta_W\to s_W^2\equiv 1-M_W^2/M_Z^2$. This scheme is simple conceptually. However, M_W is known much less precisely than M_Z and in practice one extracts s_W^2 from M_Z alone using

$$M_W = \frac{A_0}{s_W (1 - \Delta r)^{1/2}} , \qquad (10.5a)$$

$$M_Z = \frac{M_W}{c_W} , \qquad (10.5b)$$

where $c_W \equiv \cos\theta_W$, $A_0 = (\pi\alpha/\sqrt{2}G_F)^{1/2} = 37.2805(2)$ GeV, and Δr includes the radiative corrections relating α , $\alpha(M_Z)$, G_F , M_W , and M_Z . One finds $\Delta r \sim \Delta r_0 - \rho_t/\tan^2\theta_W$, where $\Delta r_0 = 1 - \alpha/\widehat{\alpha}(M_Z) = 0.0664(2)$ is due to the running of α and $\rho_t = 3G_Fm_t^2/8\sqrt{2}\pi^2 = 0.00952(m_t/174.3~{\rm GeV})^2$ represents the dominant (quadratic) m_t dependence. There are additional contributions to Δr from bosonic loops, including those which depend logarithmically on M_H . One has $\Delta r = 0.0350 \mp 0.0019 \pm 0.0002$, where the second uncertainty is from $\alpha(M_Z)$. Thus the value of s_W^2 extracted from M_Z includes an uncertainty (∓ 0.0006) from the currently allowed range of m_t .

(ii) A more precisely determined quantity $s_{M_Z}^2$ can be obtained from M_Z by removing the (m_t, M_H) dependent term from Δr [28], i.e.,

$$s_{M_Z}^2 c_{M_Z}^2 \equiv \frac{\pi \alpha(M_Z)}{\sqrt{2} G_F M_Z^2} \ .$$
 (10.6)

Using $\alpha(M_Z)^{-1}=128.92\pm0.03$ yields $s_{M_Z}^2=0.23105\mp0.00008$. The small uncertainty in $s_{M_Z}^2$ compared to other schemes is because most of the m_t dependence has been removed by definition. However, the m_t uncertainty reemerges when other quantities (e.g., M_W or other Z pole observables) are predicted in terms of M_Z .

Both s_W^2 and $s_{M_Z}^2$ depend not only on the gauge couplings but also on the spontaneous-symmetry breaking, and both definitions are awkward in the presence of any extension of the Standard Model which perturbs the value of M_Z (or M_W). Other definitions are motivated by the tree-level coupling constant definition $\theta_W = \tan^{-1}(g'/g)$.

(iii) In particular, the modified minimal subtraction (\overline{MS}) scheme introduces the quantity $\sin^2 \widehat{\theta}_W(\mu) \equiv \widehat{g}^{\prime 2}(\mu) / [\widehat{g}^{2}(\mu) + \widehat{g}^{\prime 2}(\mu)],$ where the couplings \widehat{g} and \widehat{g}' are defined by modified minimal subtraction and the scale μ is conveniently chosen to be M_Z for electroweak processes. The value of $\widehat{s}_Z^2 = \sin^2 \widehat{\theta}_W(M_Z)$ extracted from M_Z is less sensitive than s_W^2 to m_t (by a factor of $\tan^2 \theta_W$), and is less sensitive to most types of new physics than s_W^2 or $s_{M_Z}^2$. It is also very useful for comparing with the predictions of grand unification. There are actually several variant definitions of $\sin^2 \widehat{\theta}_W(M_Z)$, differing according to whether or how finite $\alpha \ln(m_t/M_Z)$ terms are decoupled (subtracted from the couplings). One cannot entirely decouple the $\alpha \ln(m_t/M_Z)$ terms from all electroweak quantities because $m_t \gg m_b$ breaks SU(2) symmetry. The scheme that will be adopted here decouples the $\alpha \ln(m_t/M_Z)$ terms from the $\gamma - Z$ mixing [8,29], essentially eliminating any $\ln(m_t/M_Z)$ dependence in the formulae for asymmetries at the Z pole when written in terms of \hat{s}_{Z}^{2} . (A similar definition is used for $\hat{\alpha}$.) The various definitions are related by

$$\widehat{s}_{Z}^{2} = c(m_{t}, M_{H}) s_{W}^{2} = \overline{c}(m_{t}, M_{H}) s_{M_{Z}}^{2},$$
 (10.7)

where $c=1.0371\pm0.0021$ and $\overline{c}=1.0004\mp0.0007$. The quadratic m_t dependence is given by $c\sim 1+\rho_t/\tan^2\theta_W$ and $\overline{c}\sim 1-\rho_t/(1-\tan^2\theta_W)$, respectively. The expressions for M_W and M_Z in the $\overline{\rm MS}$ scheme are

$$M_W = \frac{A_0}{\hat{s}_Z (1 - \Delta \hat{r}_W)^{1/2}} ,$$
 (10.8a)

$$M_Z = \frac{M_W}{\hat{\rho}^{1/2} \hat{c}_Z} , \qquad (10.8b)$$

and one predicts $\Delta \widehat{r}_W = 0.0695 \pm 0.0001 \pm 0.0002$. $\Delta \widehat{r}_W$ has no quadratic m_t dependence, because shifts in M_W are absorbed into the observed G_F , so that the error in $\Delta \widehat{r}_W$ is dominated by $\Delta r_0 = 1 - \alpha/\widehat{\alpha}(M_Z)$, which induces the second quoted uncertainty. The quadratic m_t dependence has been shifted into $\widehat{\rho} \sim 1 + \rho_t$, where including bosonic loops, $\widehat{\rho} = 1.0107 \pm 0.0006$.

(iv) A variant $\overline{\rm MS}$ quantity $\widehat s_{\rm ND}^2$ (used in the 1992 edition of this Review) does not decouple the $\alpha \ln(m_t/M_Z)$ terms [30]. It is

related to \hat{s}_{z}^{2} by

$$\widehat{s}_{Z}^{2} = \widehat{s}_{ND}^{2} / \left(1 + \frac{\widehat{\alpha}}{\pi} d\right) , \qquad (10.9a)$$

$$d = \frac{1}{3} \left(\frac{1}{\widehat{s}^{2}} - \frac{8}{3}\right) \left[\left(1 + \frac{\alpha_{s}}{\pi}\right) \ln \frac{m_{t}}{M_{Z}} - \frac{15\alpha_{s}}{8\pi} \right] , \quad (10.9b)$$

Thus, $\hat{s}_Z^2 - \hat{s}_{ND}^2 \sim -0.0002$ for $m_t = 174.3$ GeV.

(v) Yet another definition, the effective angle [31,32] \bar{s}_f^2 for Z coupling to fermion f, is described in Sec. 10.3.

Experiments are now at such a level of precision that complete $\mathcal{O}(\alpha)$ radiative corrections must be applied. For neutral-current and Z pole processes, these corrections are conveniently divided into two classes:

- QED diagrams involving the emission of real photons or the exchange of virtual photons in loops, but not including vacuum polarization diagrams. These graphs often yield finite and gaugeinvariant contributions to observable processes. However, they are dependent on energies, experimental cuts, etc., and must be calculated individually for each experiment.
- 2. Electroweak corrections, including $\gamma\gamma$, γZ , ZZ, and WW vacuum polarization diagrams, as well as vertex corrections, box graphs, etc., involving virtual W's and Z's. Many of these corrections are absorbed into the renormalized Fermi constant defined in Eq. (10.4). Others modify the tree-level expressions for Z pole observables and neutral-current amplitudes in several ways [25]. One-loop corrections are included for all processes. In addition, certain two-loop corrections are also important. In particular, two-loop corrections involving the top-quark modify ρ_t in $\hat{\rho}$, Δr , and elsewhere by

$$\rho_t \to \rho_t [1 + R(M_H, m_t)\rho_t/3] .$$
(10.10)

 $R(M_H, m_t)$ is best described as an expansion in M_Z^2/m_t^2 . The unsuppressed terms were first obtained in Ref. 33, and are known analytically [34]. Contributions suppressed by M_Z^2/m_t^2 were studied in Ref. 35 with the help of small and large Higgs mass expansions, which can be interpolated. These contributions are about as large as the leading ones in Refs. 33 and 34. A subset of the relevant two-loop diagrams has also been calculated numerically without any heavy mass expansion [36]. This serves as a valuable check on the M_H dependence of the leading terms obtained in Refs. 33-35. The difference turned out to be small. For M_H above its lower direct limit, -17 < R < -12. Mixed QCD-electroweak loops of order $\alpha \alpha_s m_t^2$ [37] and $\alpha \alpha_s^2 m_t^2$ [38] increase the predicted value of m_t by 6%. This is, however, almost entirely an artifact of using the pole mass definition for m_t . The equivalent corrections when using the $\overline{\text{MS}}$ definition $\widehat{m}_t(\widehat{m}_t)$ increase m_t by less than 0.5%. The leading electroweak [33,34] and mixed [39] two-loop terms are also known for the $Z \to b\bar{b}$ vertex, but not the respective subleading ones. $\mathcal{O}(\alpha\alpha_s)$ -vertex corrections involving massless quarks have been obtained in Ref. [40]. Since they add coherently, the resulting effect is sizable, and shifts the extracted $\alpha_s(M_Z)$ by $\approx +0.0007$. Corrections of the same order to $Z \to b\bar{b}$ decays have also been completed [41].

Throughout this Review we utilize electroweak radiative corrections from the program GAPP, which works entirely in the $\overline{\text{MS}}$ scheme, and which is independent of the package ZFITTER.

10.3. Cross-section and asymmetry formulas

It is convenient to write the four-fermion interactions relevant to ν -hadron, ν -e, and parity violating e-hadron neutral-current processes in a form that is valid in an arbitrary gauge theory (assuming massless left-handed neutrinos). One has

$$-\mathcal{L}^{\nu \text{Hadron}} = \frac{G_F}{\sqrt{2}} \, \overline{\nu} \, \gamma^{\mu} \, (1 - \gamma^5) \nu$$

$$\times \sum_i \left[\epsilon_L(i) \, \overline{q}_i \, \gamma_{\mu} (1 - \gamma^5) q_i + \epsilon_R(i) \, \overline{q}_i \, \gamma_{\mu} (1 + \gamma^5) q_i \right] , \quad (10.11)$$

$$- \mathscr{L}^{\nu e} = \frac{G_F}{\sqrt{2}} \, \overline{\nu}_{\mu} \, \gamma^{\mu} (1 - \gamma^5) \nu_{\mu} \, \overline{e} \, \gamma_{\mu} (g_V^{\nu e} - g_A^{\nu e} \gamma^5) e \qquad (10.12)$$

(for ν_e -e or $\overline{\nu}_e$ -e, the charged-current contribution must be included), and

$$-\mathscr{L}^{e \text{Hadron}} = -\frac{G_F}{\sqrt{2}}$$

$$\times \sum_{i} \left[C_{1i} \, \overline{e} \, \gamma_{\mu} \, \gamma^{5} \, e \, \overline{q}_{i} \, \gamma^{\mu} \, q_{i} + C_{2i} \, \overline{e} \, \gamma_{\mu} \, e \, \overline{q}_{i} \, \gamma^{\mu} \, \gamma^{5} \, q_{i} \right] . \quad (10.13)$$

(One must add the parity-conserving QED contribution.)

The Standard Model expressions for $\epsilon_{L,R}(i)$, $g_{V,A}^{\nu e}$, and C_{ij} are given in Table 10.3. Note, that $g_{V,A}^{\nu e}$ and the other quantities are coefficients of effective four-fermi operators, which differ from the quantities defined in Eq. (10.2) in the radiative corrections and in the presence of possible physics beyond the Standard Model.

A precise determination of the on-shell s_W^2 , which depends only very weakly on m_t and M_H , is obtained from deep inelastic neutrino scattering from (approximately) isoscalar targets [42]. The ratio $R_{\nu} \equiv \sigma_{\nu N}^{NC}/\sigma_{\nu N}^{CC}$ of neutral- to charged-current cross-sections has been measured to 1% accuracy by the CDHS [43] and CHARM [44] collaborations at CERN, and the CCFR [45] collaboration at Fermilab has obtained an even more precise result, so it is important to obtain theoretical expressions for R_{ν} and $R_{\overline{\nu}} \equiv \sigma_{\overline{\nu}N}^{NC}/\sigma_{\overline{\nu}N}^{CC}$ to comparable accuracy. Fortunately, most of the uncertainties from the strong interactions and neutrino spectra cancel in the ratio. The largest theoretical uncertainty is associated with the c-threshold, which mainly affects σ^{CC} . Using the slow rescaling prescription [46] the central value of $\sin^2 \theta_W$ from CCFR varies as $0.0111(m_c \,[\text{GeV}] - 1.31)$, where m_c is the effective mass which is numerically close to the $\overline{ ext{MS}}$ mass $\widehat{m}_c(\widehat{m}_c)$, but their exact relation is unknown at higher orders. For $m_{\rm c}=1.31\pm0.24$ GeV (determined from $\nu\text{-induced}$ dimuon production [47]) this contributes ±0.003 to the total uncertainty $\Delta \sin^2 \theta_W \sim \pm 0.004$. (The experimental uncertainty is also ± 0.003 .) This uncertainty largely cancels, however, in the Paschos-Wolfenstein ratio [48],

$$R^{-} = \frac{\sigma_{\nu N}^{NC} - \sigma_{\bar{\nu}N}^{NC}}{\sigma_{\nu N}^{CC} - \sigma_{\bar{\nu}N}^{CC}}.$$
 (10.14)

It was measured recently by the NuTeV collaboration [49] for the first time, and required a high-intensity and high-energy anti-neutrino beam.

A simple zero th -order approximation is

$$R_{\nu} = g_L^2 + g_R^2 r \ , \tag{10.15a}$$

$$R_{\overline{\nu}} = g_L^2 + \frac{g_R^2}{r} \;, \tag{10.15b}$$

$$R^- = g_L^2 - g_R^2$$
 , (10.15c)

where

$$g_L^2 \equiv \epsilon_L(u)^2 + \epsilon_L(d)^2 \approx \frac{1}{2} - \sin^2 \theta_W + \frac{5}{9} \sin^4 \theta_W ,$$
 (10.16a)

$$g_R^2 \equiv \epsilon_R(u)^2 + \epsilon_R(d)^2 \approx \frac{5}{9} \sin^4 \theta_W$$
, (10.16b)

and $r \equiv \sigma^{CC}_{\overline{\nu}N}/\sigma^{CC}_{\nu N}$ is the ratio of $\overline{\nu}$ and ν charged-current cross-sections, which can be measured directly. (In the simple parton model, ignoring hadron energy cuts, $r \approx (\frac{1}{3}+\epsilon)/(1+\frac{1}{3}\epsilon)$, where $\epsilon \sim 0.125$ is the ratio of the fraction of the nucleon's momentum carried by antiquarks to that carried by quarks.) In practice, Eq. (10.15) must be corrected for quark mixing, quark sea effects, c-quark threshold effects, nonisoscalarity, W-Z propagator differences, the finite muon mass, QED and electroweak radiative corrections. Details of the neutrino spectra, experimental cuts, x and Q^2 dependence of structure functions, and longitudinal structure functions enter only at the level of these corrections and therefore lead to very small uncertainties. The CCFR group quotes $s^2_W=0.2236\pm0.0041$ for $(m_t, M_H)=(175,150)$ GeV with very little sensitivity to (m_t, M_H) . The NuTeV collaboration finds $s^2_W=0.2253\pm0.0022$ using the

Table 10.3: Standard Model expressions for the neutral-current parameters for ν -hadron, ν -e, and e-hadron processes. At tree level, $\rho=\kappa=1$, $\lambda=0$. If radiative corrections are included, $\rho_{\nu N}^{NC}=1.0083$, $\widehat{\kappa}_{\nu N}(\langle Q^2\rangle=-10~{\rm GeV}^2)=0.9980$, $\widehat{\kappa}_{\nu N}(\langle Q^2\rangle=-35~{\rm GeV}^2)=0.9965$, $\lambda_{uL}=-0.0031$, $\lambda_{dL}=-0.0025$, and $\lambda_{dR}=2\,\lambda_{uR}=7.5\times 10^{-5}$. For ν -e scattering, $\rho_{\nu e}=1.0129$ and $\widehat{\kappa}_{\nu e}=0.9967$ (at $\langle Q^2\rangle=0$.). For atomic parity violation and the SLAC polarized electron experiment, $\rho_{eq}^{\prime}=0.9878$, $\rho_{eq}=1.0008$, $\widehat{\kappa}_{eq}^{\prime}=1.0026$, $\widehat{\kappa}_{eq}=1.0300$, $\lambda_{1d}=-2\,\lambda_{1u}=3.7\times 10^{-5}$, $\lambda_{2u}=-0.0121$ and $\lambda_{2d}=0.0026$. The dominant m_t dependence is given by $\rho\sim 1+\rho_t$, while $\widehat{\kappa}\sim 1$ ($\overline{\rm MS}$) or $\kappa\sim 1+\rho_t/\tan^2\theta_W$ (on-shell).

Quantity	Standard Model Expression
$\epsilon_L(u)$	$ ho_{ u N}^{NC} \left(rac{1}{2} - rac{2}{3} \widehat{\kappa}_{ u N} \ \widehat{s}_Z^2 ight) + \lambda_{u L}$
$\epsilon_L(d)$	$ ho_{ u N}^{NC} \left(-rac{1}{2} + rac{1}{3} \widehat{\kappa}_{ u N} \; \widehat{s}_Z^2 ight) + \lambda_{dL}$
$\epsilon_R(u)$	$ ho_{ u N}^{NC} \left(-rac{2}{3} \widehat{\kappa}_{ u N} \; \widehat{s}_{Z}^{2} ight) + \lambda_{uR}$
$\epsilon_R(d)$	$ ho_{ u N}^{NC} \left(rac{1}{3}\widehat{\kappa}_{ u N} \; \widehat{s}_{Z}^{2} ight) + \lambda_{dR}$
$g^{ u e}_{V}$	$ ho_{ u e} \left(-rac{1}{2} + 2 \widehat{\kappa}_{ u e} \; \widehat{s}_Z^2 ight)$
• •	/
$g_A^{ u e}$	$ ho_{ u e} \left(-rac{1}{2} ight)$
C_{1u}	$ ho_{eq}^{\prime}\left(-rac{1}{2}+rac{4}{3}\widehat{\kappa}_{eq}^{\prime}\;\widehat{s}_{Z}^{2} ight)+\lambda_{1u}$
C_{1d}	$ ho_{eq}^{\prime}\left(rac{1}{2}-rac{2}{3}\widehat{\kappa}_{eq}^{\prime}\widehat{s}_{Z}^{2} ight)+\lambda_{1d}$
C_{2u}	$ ho_{eq}\left(-rac{1}{2}+2\widehat{\kappa}_{eq}\;\widehat{s}_{Z}^{2} ight)+\lambda_{2u}$
C_{2d}	$ ho_{eq}\left(rac{1}{2}-2\widehat{\kappa}_{eq}\;\widehat{s}_{Z}^{2} ight)+\lambda_{2d}$

same reference values. Combining all of the precise deep-inelastic measurements, one obtains $s_W^2=0.2253\pm0.0021$.

The laboratory cross-section for $\nu_\mu e \to \nu_\mu e$ or $\overline{\nu}_\mu e \to \overline{\nu}_\mu e$ elastic scattering is

$$\frac{d\sigma_{\nu_{\mu},\overline{\nu}_{\mu}}}{dy} = \frac{G_F^2 m_e E_{\nu}}{2\pi}$$

$$\times \left[(g_V^{\nu e} \pm g_A^{\nu e})^2 + (g_V^{\nu e} \mp g_A^{\nu e})^2 (1 - y)^2 - (g_V^{\nu e^2} - g_A^{\nu e^2}) \frac{y m_e}{E_{\nu}} \right] , \qquad (10.17)$$

where the upper (lower) sign refers to $\nu_{\mu}(\overline{\nu}_{\mu})$, and $y\equiv E_e/E_{\nu}$ (which runs from 0 to $(1+m_e/2E_{\nu})^{-1}$) is the ratio of the kinetic energy of the recoil electron to the incident ν or $\overline{\nu}$ energy. For $E_{\nu}\gg m_e$ this yields a total cross-section

$$\sigma = \frac{G_F^2 \ m_e \ E_{\nu}}{2\pi} \left[(g_V^{\nu e} \pm g_A^{\nu e})^2 + \frac{1}{3} (g_V^{\nu e} \mp g_A^{\nu e})^2 \right] \ . \tag{10.18}$$

The most accurate leptonic measurements [50-52] of $\sin^2\theta_W$ are from the ratio $R \equiv \sigma_{\nu\mu e}/\sigma_{\nu\mu e}$ in which many of the systematic uncertainties cancel. Radiative corrections (other than m_t effects) are small compared to the precision of present experiments and have negligible effect on the extracted $\sin^2\theta_W$. The most precise experiment (CHARM II) [52] determined not only $\sin^2\theta_W$ but $g_{V,A}^{\nu e}$ as well. The cross-sections for ν_{e} -e and $\overline{\nu}_{e}$ -e may be obtained from Eq. (10.17) by replacing $g_{V,A}^{\nu e}$ by $g_{V,A}^{\nu e}+1$, where the 1 is due to the charged-current contribution.

The SLAC polarized-electron experiment [53] measured the parity-violating asymmetry

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \,, \tag{10.19}$$

where $\sigma_{R,L}$ is the cross-section for the deep-inelastic scattering of a right- or left-handed electron: $e_{R,L}N \to eX$. In the quark parton model

$$\frac{A}{Q^2} = a_1 + a_2 \, \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \,, \tag{10.20}$$

where $Q^2 > 0$ is the momentum transfer and y is the fractional energy transfer from the electron to the hadrons. For the deuteron or other isoscalar targets, one has, neglecting the s-quark and antiquarks,

$$a_{1} = \frac{3G_{F}}{5\sqrt{2}\pi\alpha} \left(C_{1u} - \frac{1}{2}C_{1d} \right) \approx \frac{3G_{F}}{5\sqrt{2}\pi\alpha} \left(-\frac{3}{4} + \frac{5}{3}\sin^{2}\theta_{W} \right),$$

$$a_{2} = \frac{3G_{F}}{5\sqrt{2}\pi\alpha} \left(C_{2u} - \frac{1}{2}C_{2d} \right) \approx \frac{9G_{F}}{5\sqrt{2}\pi\alpha} \left(\sin^{2}\theta_{W} - \frac{1}{4} \right).$$
(10.21b)

There are now precise experiments measuring atomic parity violation [54] in cesium (at the 0.4% level) [55], thallium [56], lead [57], and bismuth [58]. The uncertainties associated with atomic wave functions are quite small for cesium [59], and have been reduced recently to about 0.4% [60]. In the past, the semi-empirical value of the tensor polarizability added another source of theoretical uncertainty [61]. The ratio of the off-diagonal hyperfine amplitude to the polarizability has now been measured directly by the Boulder group [60]. Combined with the precisely known hyperfine amplitude [62] one finds excellent agreement with the earlier results, reducing the overall theory uncertainty to only 0.5% (while slightly increasing the experimental error). The theoretical uncertainties are 3% for thallium [63] but larger for the other atoms. For heavy atoms one determines the "weak charge"

$$Q_W = -2 \left[C_{1u} \left(2Z + N \right) + C_{1d} (Z + 2N) \right]$$

$$\approx Z (1 - 4 \sin^2 \theta_W) - N . \tag{10.22}$$

The recent Boulder experiment in cesium also observed the parity-violating weak corrections to the nuclear electromagnetic vertex (the anapole moment [64]).

In the future it should be possible to reduce the theoretical wave function uncertainties by taking the ratios of parity violation in different isotopes [54,65]. There would still be some residual uncertainties from differences in the neutron charge radii, however [66].

The forward-backward asymmetry for $e^+e^- \to \ell^+\ell^-, \ \ell=\mu$ or $\tau,$ is defined as

$$A_{FB} \equiv \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} \,, \tag{10.23}$$

where $\sigma_F(\sigma_B)$ is the cross-section for ℓ^- to travel forward (backward) with respect to the e^- direction. A_{FB} and R, the total cross-section relative to pure QED, are given by

$$R = F_1 , \qquad (10.24)$$

$$A_{FB} = 3F_2/4F_1 , (10.25)$$

where

$$F_1 = 1 - 2\chi_0 g_V^e g_V^\ell \cos \delta_R + \chi_0^2 \left(g_V^{e2} + g_A^{e2} \right) \left(g_V^{\ell2} + g_A^{\ell2} \right), \quad (10.26a)$$

$$F_2 = -2\chi_0 g_A^e g_A^\ell \cos \delta_R + 4\chi_0^2 g_A^e g_A^\ell g_V^\ell g_V^\ell , \qquad (10.26b)$$

$$\tan \delta_R = \frac{M_Z \Gamma_Z}{M_Z^2 - s} , \qquad (10.27)$$

$$\chi_0 = \frac{G_F}{2\sqrt{2}\pi\alpha} \frac{sM_Z^2}{[(M_Z^2 - s)^2 + M_Z^2\Gamma_Z^2]^{1/2}} , \qquad (10.28)$$

and \sqrt{s} is the CM energy. Eq. (10.26) is valid at tree level. If the data is radiatively corrected for QED effects (as described above), then the remaining electroweak corrections can be incorporated [67,68] (in an approximation adequate for existing PEP, PETRA, and TRISTAN data, which are well below the Z pole) by replacing χ_0 by $\chi(s) \equiv (1+\rho_t)\chi_0(s)\alpha/\alpha(s)$, where $\alpha(s)$ is the running QED coupling, and evaluating g_V in the $\overline{\rm MS}$ scheme. Formulas for $e^+e^-\to {\rm hadrons}$ may be found in Ref. 69.

At LEP and SLC, there are high-precision measurements of various Z pole observables [70–78]. These include the Z mass and total width, Γ_Z , and partial widths $\Gamma(f\overline{f})$ for $Z \to f\overline{f}$ where fermion $f=e,\;\mu,\; au,\;$ hadrons, $b,\;$ or c. It is convenient to use the variables $M_Z, \; \Gamma_Z, \; R_\ell \equiv \Gamma(\mathrm{had})/\Gamma(\ell^+\ell^-), \; \sigma_{\mathrm{had}} \equiv 12\pi\Gamma(e^+e^-)\Gamma(\mathrm{had})/M_Z^2 \; \Gamma_Z^2,$ $R_b \equiv \Gamma(b\bar{b})/\Gamma(\text{had})$, and $R_c \equiv \Gamma(c\bar{c})/\Gamma(\text{had})$, most of which are weakly correlated experimentally. ($\Gamma(had)$ is the partial width into hadrons.) $\mathcal{O}(\alpha^3)$ QED corrections introduce a large anticorrelation (-28%) between Γ_Z and $\sigma_{\rm had}$, while the anticorrelation between R_b and R_c (-14%) is smaller than previously. R_ℓ is insensitive to m_t except for the $Z \to b\bar{b}$ vertex and final state corrections and the implicit dependence through $\sin^2 \theta_W$. Thus it is especially useful for constraining α_s . The width for invisible decays [24], $\Gamma(\text{inv}) = \Gamma_Z - 3\Gamma(\ell^+\ell^-) - \Gamma(\text{had}) = 498.8 \pm 1.5 \text{ MeV}$, can be used to determine the number of neutrino flavors much lighter than $M_Z/2$, $N_{\nu} = \Gamma(\text{inv})/\Gamma^{\text{theory}}(\nu \overline{\nu}) = 2.983 \pm 0.009$ for $(m_t, M_H) =$ (174.3, 100) GeV.

There are also measurements of various Z pole asymmetries. These include the polarization or left-right asymmetry

$$A_{LR} \equiv \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \,, \tag{10.29}$$

where $\sigma_L(\sigma_R)$ is the cross-section for a left-(right)-handed incident electron. A_{LR} has been measured precisely by the SLD collaboration at the SLC [71,72], and has the advantages of being extremely sensitive to $\sin^2 \theta_W$ and that systematic uncertainties largely cancel. In addition, the SLD collaboration has extracted the final-state couplings A_b , A_c [24,73], A_s [74], A_τ , and A_μ [72,75] from left-right forward-backward asymmetries, using

$$A_{LR}^{FB}(f) = \frac{\sigma_{LF}^{f} - \sigma_{LB}^{f} - \sigma_{RF}^{f} + \sigma_{RB}^{f}}{\sigma_{LF}^{f} + \sigma_{LB}^{f} + \sigma_{RF}^{f} + \sigma_{RB}^{f}} = \frac{3}{4}A_{f}, \qquad (10.30)$$

where, for example, σ_{LF} is the cross-section for a left-handed incident electron to produce a fermion f traveling in the forward hemisphere. Similarly, A_{τ} is measured at LEP [24,76] through the negative total τ polarization, \mathcal{P}_{τ} , and A_e is extracted from the angular distribution of \mathcal{P}_{τ} . An equation such as (10.30) assumes that initial state QED corrections, photon exchange, $\gamma-Z$ interference, the tiny electroweak boxes, and corrections for $\sqrt{s} \neq M_Z$ are removed from the data, leaving the pure electroweak asymmetries. This allows the use of effective tree-level expressions,

$$A_{LR} = A_e P_e , \qquad (10.31)$$

$$A_{FB} = \frac{3}{4} A_f \frac{A_e + P_e}{1 + P_e A_e} , \qquad (10.32)$$

where

$$A_f \equiv \frac{2\overline{g}_V^f \,\overline{g}_A^f}{\overline{g}_V^{f2} + \overline{g}_A^{f2}} \,, \tag{10.33}$$

and

$$\begin{split} \overline{g}_V^f &= \sqrt{\rho_f} \left(t_{3L}^{(f)} - 2q_f \kappa_f \sin^2 \theta_W \right) \,, \\ \overline{g}_A^f &= \sqrt{\rho_f} \, t_{3L}^{(f)} \,. \end{split} \tag{10.33b}$$

$$\overline{g}_A^f = \sqrt{\rho_f} t_{3J}^{(f)} . \tag{10.33c}$$

 P_e is the initial e^- polarization, so that the second equality in F_e is the initial e polarization, so that the second equality in Eq. (10.30) is reproduced for $P_e = 1$, and the Z pole forward-backward asymmetries at LEP ($P_e = 0$) are given by $A_{FB}^{(0,f)} = \frac{3}{4}A_eA_f$ where f = e, μ , τ , b, c, s [77], and q, and where $A_{FB}^{(0,g)}$ refers to the hadronic charge asymmetry. Corrections for t-channel exchange and s/t-channel interference cause $A_{FB}^{(0,e)}$ to be strongly anticorrelated with R_e (-36%). The initial state coupling, A_e , is also determined through the left-right charge asymmetry [78] and in polarized Blabba through the left-right charge asymmetry [78] and in polarized Bhabba scattering at the SLC [72,75].

The electroweak-radiative corrections have been absorbed into corrections $\rho_f - 1$ and $\kappa_f - 1$, which depend on the fermion f and on the renormalization scheme. In the on-shell scheme, the quadratic m_t dependence is given by $\rho_f \sim 1 + \rho_t$, $\kappa_f \sim 1 + \rho_t/\tan^2\theta_W$, while in $\overline{\rm MS}$,

 $\widehat{
ho}_f \sim \widehat{\kappa}_f \sim 1$, for $f \neq b$ $(\widehat{
ho}_b \sim 1 - \frac{4}{3}\rho_t$, $\widehat{\kappa}_b \sim 1 + \frac{2}{3}\rho_t$). In the $\overline{
m MS}$ scheme the normalization is changed according to $G_F M_Z^2/2\sqrt{2}\pi \to \widehat{\alpha}/4\widehat{s}_Z^2\widehat{c}_Z^2$. (If one continues to normalize amplitudes by $G_F M_Z^2/2\sqrt{2}\pi$, as in the 1996 edition of this Review, then $\widehat{
ho}_f$ contains an additional factor of $\widehat{\rho}$.) In practice, additional bosonic and fermionic loops, vertex corrections, leading higher order contributions, etc., must be included. For example, in the $\overline{\rm MS}$ scheme one has $\widehat{\rho}_{\ell}=0.9979,\ \widehat{\kappa}_{\ell}=1.0013,$ $\widehat{\rho}_b = 0.9866$ and $\widehat{\kappa}_b = 1.0068.$ It is convenient to define an effective angle $\bar{s}_f^2 \equiv \sin^2 \bar{\theta}_{Wf} \equiv \hat{\kappa}_f \hat{s}_Z^2 = \kappa_f s_W^2$, in terms of which \bar{g}_V^f and \bar{g}_A^f are given by $\sqrt{\rho_f}$ times their tree-level formulae. Because \bar{g}_V^ℓ is very small, not only $A_{LR}^0 = A_e$, $A_{FB}^{(0,\ell)}$, and \mathcal{P}_τ , but also $A_{FB}^{(0,b)}$, $A_{FB}^{(0,c)}$, $A_{FB}^{(0,s)}$, and the hadronic asymmetries are mainly sensitive to \bar{s}_f^2 . One finds that $\hat{\kappa}_f$ $(f \neq b)$ is almost independent of (m_t, M_H) , so that one can write

$$\bar{s}_{\ell}^2 \sim \hat{s}_Z^2 + 0.00029$$
 (10.34)

Thus, the asymmetries determine values of \overline{s}_ℓ^2 and \widehat{s}_Z^2 almost independent of m_t , while the κ 's for the other schemes are m_t dependent.

The Z boson properties are extracted assuming the Standard Model expressions for the $\gamma - Z$ interference terms. These have also been tested experimentally by performing more general fits [79] to the LEP data obtained at CM energies of about 91, 130, and 172 GeV. Assuming family universality this approach introduces three additional parameters relative to the standard fit [76],

$$j_{\rm had}^{\rm tot} \sim g_V^{\ell} g_V^{\rm had} = 0.14 \pm 0.14 \;, \tag{10.35a}$$

$$j_\ell^{\text{tot}} \sim g_V^\ell g_V^\ell = 0.004 \pm 0.012 \;, \tag{10.35b}$$

$$j_{\ell}^{\text{fb}} \sim g_A^{\ell} g_A^{\ell} = 0.780 \pm 0.013 \;, \tag{10.35c}$$

where the first two parameters describe the $\gamma-Z$ interference contribution to the total hadronic and leptonic cross-sections, and the third to the leptonic forward-backward asymmetries. The results in Eq. (10.35) are in good agreement with the Standard Model expectations [76], 0.22, 0.004, and 0.799, respectively. This is a valuable test of the Standard Model; but it should be cautioned that new physics is not expected to be described by this set of parameters, since (i) they do not account for extra interactions beyond the standard weak neutral current, and (ii) the photonic amplitude remains fixed to its Standard Model value.

As another test, strong constraints on anomalous triple gauge couplings were obtained at LEP 2 above the W^+W^- threshold and by DØ at the Tevatron. While there are a total of 14 independent couplings, one can use $SU(2) \times U(1)$ gauge invariance, discrete symmetries, and LEP 1 constraints to reduce the number of triple gauge couplings to three. Each coupling is extracted from the data by setting the other two to zero (the SM value). Including the run at CM energy of 189 GeV, LEP 2 quotes the results [24],

$$\Delta \kappa_{\gamma} = 0.038^{+0.079}_{-0.075} \,, \tag{10.36a}$$

$$\Delta g_1^Z = -0.010 \pm 0.033 \; , \qquad (10.36b)$$

$$\lambda_{\gamma} = -0.037^{+0.035}_{-0.036} , \qquad (10.36c)$$

in excellent agreement with Standard Model expectations. Eq. (10.36a) can be used to rule out Kaluza-Klein theories which predict $\Delta \kappa_{\gamma} = -3$ [80]. In addition, the first direct limits on anomalous quartic gauge couplings were obtained by OPAL [81] through measurements of the $W^+W^-\gamma$ cross-section and of acoplanar photon

The CLEO collaboration [82] reported a precise measurement of the flavor changing transition $b \rightarrow s\gamma$. The result for the branching

$$\mathcal{B}(b\to s\gamma) = (3.37 \pm 0.37 \pm 0.34 \pm 0.24^{+0.35}_{-0.16} \pm 0.38) \times 10^{-4} \ , \ \ (10.37)$$

where the first three errors are the quoted statistical, systematical, and model uncertainties, respectively. The fourth uncertainty accounts for the extrapolation from the finite photon energy cutoff (2.1 GeV) to the full theoretical branching ratio [83], and the last one is our estimate of the theory uncertainty (excluding parametric errors such as from α_s). It is advantageous to normalize the result with respect to the semi-leptonic branching fraction [84,85], $\mathcal{B}(b\to ce\nu)=0.1034\pm0.0046$, yielding

 $R = \frac{\mathcal{B}(b \to s\gamma)}{\mathcal{B}(b \to ce\nu)} = (3.26^{+0.75}_{-0.68}) \times 10^{-3} , \qquad (10.38)$

and to use the variable $\ln R = -5.73 \pm 0.22$ in electroweak fits to assure an approximately Gaussian error [86]. This measurement is to be compared to the next-to-leading order calculations of Refs. 85,87.

The present world average of the muon anomalous magnetic moment is

$$a_{\mu}^{\text{exp}} = \frac{g_{\mu} - 2}{2} = (116592300 \pm 840) \times 10^{-11}$$
, (10.39)

while the estimated SM electroweak contribution [88], $a_{\mu}^{\rm EW}=(151\pm4)\times10^{-11}$, is much smaller than the uncertainty. However, a new experiment at BNL is expected to reduce the experimental error to $\pm40\times10^{-11}$ or better. The limiting factor will then be the uncertainty from the hadronic contribution [19], $a_{\mu}^{\rm had}=(6924\pm62)\times10^{-11}$, which has recently been estimated with the help of τ decay data and finite-energy QCD sum rule techniques. This result constitutes a major improvement over previous ones which had more than twice the uncertainty [12]. It would be important to verify it, and reduce the error even further to meet the experimental precision. Additional hadronic uncertainties are induced by the light-by-light scattering contribution [89], $a_{\mu}^{\rm LBLS}=(-92\pm32)\times10^{-11}$, and other subleading hadronic contributions [90], $a_{\mu}^{\rm had}\left[\left(\frac{\alpha}{\pi}\right)^3\right]=(-100\pm6)\times10^{-11}$. The SM prediction is

$$a_{\mu}^{\text{theory}} = (116591596 \pm 67) \times 10^{-11}$$
 (10.40)

With the anticipated accuracy at BNL it will be possible to explore new physics (specifically supersymmetry in the large $\tan \beta$ region [91]) up to energies of 5 TeV and more. If greater precision is achieved, it will be important to properly correlate the theoretical error on $a_{\mu}^{\rm had}$ with the one in $\Delta \alpha_{\rm had}^{(5)}$.

10.4. W and Z decays

The partial decay width for gauge bosons to decay into massless fermions $f_1\overline{f}_2$ is

$$\Gamma(W^+ \to e^+ \nu_e) = \frac{G_F M_W^3}{6\sqrt{2}\pi} \approx 226.5 \pm 0.3 \text{ MeV} ,$$
 (10.41a)

$$\Gamma(W^+ \to u_i \overline{d}_j) = \frac{CG_F M_W^3}{6\sqrt{2}\pi} |V_{ij}|^2 \approx (707 \pm 1) |V_{ij}|^2 \text{ MeV} , (10.41b)$$

$$\Gamma(Z \to \psi_i \overline{\psi}_i) = \frac{CG_F M_Z^3}{6\sqrt{2}\pi} \left[g_V^{i2} + g_A^{i2} \right] \tag{10.41c}$$

$$\approx \begin{cases} 300.3 \pm 0.2 \text{ MeV } (u\overline{u}), & 167.24 \pm 0.08 \text{ MeV } (\nu \overline{\nu}), \\ 383.1 \pm 0.2 \text{ MeV } (d\overline{d}), & 84.01 \pm 0.05 \text{ MeV } (e^+e^-), \\ 375.9 \mp 0.1 \text{ MeV } (b\overline{b}). \end{cases}$$

For leptons C=1, while for quarks $C=3\left(1+\alpha_s(M_V)/\pi+1.409\alpha_s^2/\pi^2-12.77\alpha_s^3/\pi^3\right)$, where the 3 is due to color and the factor in parentheses represents the universal part of the QCD corrections [92] for massless quarks [93]. The $Z\to f\overline{f}$ widths contain a number of additional corrections: universal (non-singlet) top-mass contributions [94]; fermion mass effects and further QCD corrections proportional to $\widehat{m}_q^2(M_Z^2)$ [95] which are different for vector and axial-vector partial widths; and singlet contributions starting from two-loop order which are large, strongly top-mass dependent, family universal, and flavor non-universal [96]. All QCD effects are known and included up to three loop order. The QED factor $1+3\alpha q_f^2/4\pi$, as well as two-loop $\alpha\alpha_s$ and α^2 self-energy corrections [97] are also included. Working in the on-shell scheme, i.e., expressing the widths

in terms of $G_F M_{W,Z}^3$, incorporates the largest radiative corrections from the running QED coupling [27,98]. Electroweak corrections to the Z widths are then incorporated by replacing $g \frac{i 2}{V_c A_c}$ by $\overline{g} \frac{i 2}{V_c A_c}$. Hence, in the on-shell scheme the Z widths are proportional to $\rho_i \sim 1 + \rho_t$. The $\overline{\rm MS}$ normalization accounts also for the leading electroweak corrections [31]. There is additional (negative) quadratic m_t dependence in the $Z \to b \overline{b}$ vertex corrections [99] which causes $\Gamma(b \overline{b})$ to decrease with m_t . The dominant effect is to multiply $\Gamma(b \overline{b})$ by the vertex correction $1 + \delta \rho_{b \overline{b}}$, where $\delta \rho_{b \overline{b}} \sim 10^{-2} (-\frac{1}{2} \frac{m_t^2}{M_Z^2} + \frac{1}{5})$. In practice, the corrections are included in ρ_b and κ_b , as discussed before.

For 3 fermion families the total widths are predicted to be

$$\Gamma_Z \approx 2.4963 \pm 0.0012 \text{ GeV}$$
 , (10.42)

$$\Gamma_W \approx 2.0927 \pm 0.0025 \text{ GeV}$$
 (10.43)

We have assumed $\alpha_s(M_Z)=0.1200$. An uncertainty in α_s of ± 0.0028 introduces an additional uncertainty of 0.1% in the hadronic widths, corresponding to ± 1.4 MeV in Γ_Z . These predictions are to be compared with the experimental results $\Gamma_Z=2.4944\pm 0.0024$ GeV [24] and $\Gamma_W=2.06\pm 0.05$ GeV [100].

10.5. Experimental results

The values of the principal Z pole observables are listed in Table 10.4, along with the Standard Model predictions for $M_Z=91.1870\pm0.0021\,\mathrm{GeV},\,M_H=98^{+58}_{-38}\,\mathrm{GeV},\,m_t=172.9\pm4.6\,\mathrm{GeV},\,\alpha_s(M_Z)=0.1192\pm0.0028,\,\,\mathrm{and}\,\,\widehat{\alpha}(M_Z)^{-1}=127.938\pm0.027\,\,(\Delta\alpha^{(5)}_{\mathrm{had}}\approx0.02776\pm0.00020).$ Note, that the values of the Z pole observables (as well as M_W) differ from those in the Particle Listings because they include recent preliminary results [24,72]. The values and predictions of M_W [24,101]; the Q_W for cesium [55,60] and thallium [56]; deep inelastic [43–45,49] and ν_{μ^-e} scattering [50–52]; and the $b\to s\gamma$ observable [82] are also listed. The agreement is very good. Even the largest discrepancies, $A_{FB}^{(0,b)}$ and $Q_W(\mathrm{Cs})$, deviate by only 2.3 σ . The hadronic peak cross-section, σ_{had} , the A_{LR}^0 from hadronic final states, and the R^ν result by the CHARM collaboration deviate by 1.7 σ ; all the other observables agree with the Standard Model prediction at the 1.5 σ level or better. Other observables like $R_b = \Gamma(b\bar{b})/\Gamma(\mathrm{had})$ and $R_c = \Gamma(c\bar{c})/\Gamma(\mathrm{had})$ which showed significant deviations in the past, are now in reasonable agreement. In particular, R_b whose measured value deviated as much as 3.7 σ from the Standard Model prediction is now only 0.9 σ (0.3%) high.

 A_b can be extracted from $A_{FB}^{(0,b)}$ when $A_e=0.1497\pm0.0016$ is taken from a fit to leptonic asymmetries (using lepton universality), and combined with the measurement at the SLC. The result, $A_b=0.892\pm0.016$, is 2.7 σ below the Standard Model prediction. However, it would be extremely difficult to account for this nearly 5% deviation by new physics radiative corrections since a 25% correction to $\widehat{\kappa}_b$ would be necessary to account for the central value of A_b . If this deviation is due to new physics, it is most likely of tree-level type affecting preferentially the third generation. It seems difficult, however, to simultaneously account for R_b , which has been measured on the Z peak, off-peak [103], and recently at LEP 2 [24]). $A_{FB}^{(b)}=0.44\pm0.12$ has also been measured at LEP 2 [24], and found to be 1.2 σ below the Standard Model prediction (0.58).

The left-right asymmetry, $A_{LR}^0=0.15108\pm0.00218$ [72], based on all hadronic data from 1992–1998 has moved closer to the Standard Model expectation of 0.1475 ± 0.0013 than previous values. The combined value of $A_\ell=0.1512\pm0.0020$ from SLD (using lepton-family universality) is still $1.8~\sigma$ above the Standard Model prediction; but there is now only a minor experimental difference of $\sim 1.2~\sigma$ between this SLD value and the LEP value, $A_\ell=0.1471\pm0.0026$, obtained from a fit to $A_{FB}^{(0,\ell)}$, $A_e(\mathcal{P}_\tau)$, and $A_\tau(\mathcal{P}_\tau)$, again assuming universality.

† Alternatively, one can use $A_\ell=0.1471\pm0.0026$, which is from LEP alone and in excellent agreement with the Standard Model, and obtain $A_b=0.904\pm0.018$ which is 1.7 σ low. This illustrates that some of the discrepancy is related to the one in A_{LR} .

Table 10.4: Principal Z-pole and other recent observables, compared with the Standard Model predictions for the global best fit values $M_Z = 91.1870 \pm 0.0021$ GeV, $M_H = 98^{+57}_{-38}$ GeV, $m_t = 172.9 \pm 4.6$ GeV, $\alpha_s(M_Z) = 0.1192 \pm 0.0028$, and $\widehat{\alpha}(M_Z)^{-1} = 127.938 \pm 0.027.$ The LEP averages of the ALEPH, DELPHI, L3, and OPAL results include common systematic errors and correlations [24,76]. The heavy flavour results of LEP and SLD are based on common inputs and correlated, as well [73]. $\overline{s}_{\ell}^{2}(A_{FB}^{(0,q)})$ is the effective angle extracted from the hadronic charge asymmetry. The values of $\Gamma(\ell^+\ell^-)$, $\Gamma(\text{had})$, and $\Gamma(\text{inv})$ are not independent of Γ_Z , the R_ℓ , and σ_{had} . The first M_W value is from CDF, UA2, and DØ [101] while the second one is from LEP 2 [24]. The first M_W and M_Z are correlated, but the effect is negligible due to the tiny M_Z error. The three values of A_e are (i) from A_{LR} for hadronic final states [71]; (ii) from A_{LR} for leptonic final states and from polarized Bhabba scattering [75]; and (iii) from the angular distribution of the au polarization. The two $A_{ au}$ values are from SLD and the total τ polarization, respectively. The two values of R^{ν} from deep-inelastic scattering (DIS) are from CDHS [43] and CHARM [44], respectively; similarly, κ^{ν} (proportional to R^{ν}) is from CCFR [45]. The two values for $g^{\nu e}_{V,A}$ are from CHARM II [52] and the world average. The second errors in Q_W and DIS are theoretical. In the Standard Model predictions, the uncertainty is from M_Z , M_H , m_t , $\widehat{\alpha}(M_Z)^{-1}$, and α_s , and their correlations have been accounted for. The errors in Γ_{Z} , $\Gamma(\text{had})$, R_{ℓ} , and $\sigma_{\rm had}$ are largely dominated by the uncertainty in α_s .

Quantity	Value	Standard Model	Pull
$m_t \; [{ m GeV}]$	174.3 ± 5.1	172.9 ± 4.6	0.3
$M_{W} [{ m GeV}]$	80.448 ± 0.062	80.378 ± 0.020	1.1
	80.350 ± 0.056		-0.5
$M_Z \; [{ m GeV}]$	91.1872 ± 0.0021	91.1870 ± 0.0021	0.1
$\Gamma_Z \; [{ m GeV}]$	2.4944 ± 0.0024	2.4956 ± 0.0016	-0.5
$\Gamma(\mathrm{had}) \; [\mathrm{GeV}]$	1.7439 ± 0.0020	1.7422 ± 0.0015	
$\Gamma(\mathrm{inv}) \ [\mathrm{MeV}]$	498.8 ± 1.5	501.65 ± 0.15	_
$\Gamma(\ell^+\ell^-)~[{ m MeV}]$	83.96 ± 0.09	84.00 ± 0.03	_
$\sigma_{ m had} [{ m nb}]$	41.544 ± 0.037	41.480 ± 0.014	1.7
R_e	20.803 ± 0.049	20.740 ± 0.018	1.3
R_{μ}	20.786 ± 0.033	20.741 ± 0.018	1.4
$R_{ au}$	20.764 ± 0.045	20.786 ± 0.018	-0.5
R_{b}	0.21642 ± 0.00073	0.2158 ± 0.0002	0.9
$R_{\mathbf{c}}$	0.1674 ± 0.0038	0.1723 ± 0.0001	-1.3
$A_{FB}^{(0,e)}$	0.0145 ± 0.0024	0.0163 ± 0.0003	-0.8
$A_{FB}^{(0,\mu)}$	0.0167 ± 0.0013		0.3
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017		1.5
$A_{FB}^{(0,b)}$	0.0988 ± 0.0020	0.1034 ± 0.0009	-2.3
$A_{FB}^{(0,c)}$	0.0692 ± 0.0037	0.0739 ± 0.0007	-1.3
$A_{EB}^{(0,s)}$	0.0976 ± 0.0114	0.1035 ± 0.0009	-0.5
$ar{s}_{\ell}^2(A_{FB}^{(0,q)})$	0.2321 ± 0.0010	0.2315 ± 0.0002	0.6

Despite these discrepancies the goodness of the fit to all data is reasonable with a $\chi^2/\text{d.o.f.}=42/37$. The probability of a larger χ^2 is 27%. The observables in Table 10.4, as well as some other less precise observables, are used in the global fits described below. The correlations on the LEP lineshape, the LEP/SLD heavy flavor, and the deep inelastic scattering observables, are included. There are also small correlations between some of the SLD measurements, and between the two observables from the τ polarization at LEP, which have not been fully investigated, yet.

The data allow a simultaneous determination of M_H , m_t , $\sin^2\theta_W$, and the strong coupling $\alpha_s(M_Z)$. $(\Delta\alpha_{\rm had}^{(5)}$ is also allowed to float in the fits, subject to the theoretical constraints [9] described in

Table 10.4: (continued)

Quantity	Value	Standard Model	Pull
$\overline{A_e}$	0.15108 ± 0.00218	0.1475 ± 0.0013	1.7
	0.1558 ± 0.0064		1.3
	0.1483 ± 0.0051		0.2
A_{μ}	$\boldsymbol{0.137 \pm 0.016}$		-0.7
$A_{ au}$	0.142 ± 0.016		-0.3
	0.1425 ± 0.0044		-1.1
A_b	0.911 ± 0.025	0.9348 ± 0.0001	-1.0
A_c	0.630 ± 0.026	0.6679 ± 0.0006	-1.5
A_s	0.85 ± 0.09	0.9357 ± 0.0001	-1.0
R^-	$0.2277 \pm 0.0021 \pm 0.0007$	0.2299 ± 0.0002	-1.0
κ^{ν}	$0.5820 \pm 0.0027 \pm 0.0031$	0.5831 ± 0.0004	-0.3
$R^{ u}$	$0.3096 \pm 0.0033 \pm 0.0028$	0.3091 ± 0.0002	0.1
	$0.3021 \pm 0.0031 \pm 0.0026$		-1.7
$g_V^{ u e}$	-0.035 ± 0.017	-0.0397 ± 0.0003	_
	-0.041 ± 0.015		-0.1
$g_A^{ u e}$	-0.503 ± 0.017	-0.5064 ± 0.0001	_
••	-0.507 ± 0.014		0.0
$Q_W(\mathrm{Cs})$	$-72.06 \pm 0.28 \pm 0.34$	-73.09 ± 0.03	2.3
$Q_W(\mathrm{Tl})$	$-114.8 \pm 1.2 \pm 3.4$	-116.7 ± 0.1	0.5
$\frac{\Gamma(b \to s\gamma)}{\Gamma(b \to ce\nu)}$	$3.26^{+0.75}_{-0.68} \times 10^{-3}$	$3.15^{+0.21}_{-0.20} \times 10^{-3}$	0.1

Table 10.5: Values of \hat{s}_Z^2 , s_W^2 , α_s , and M_H [in GeV] for various (combinations of) observables. Unless indicated otherwise, the top quark mass, $m_t = 174.3 \pm 5.1$ GeV, is used as an additional constraint in the fits. The (\dagger) symbol indicates a fixed parameter.

Data	\widehat{s}_{Z}^{2}	s_W^2	$\alpha_s(M_Z)$	M_H
All data	0.23117(16)	0.2230(4)	0.1192(28)	98^{+57}_{-38}
All data (incl. α_s)	0.23116(16)	0.2230(4)	0.1184(12)	97^{+56}_{-37}
All indirect (no m_t)	0.23114(17)	0.2232(5)	0.1190(28)	69^{+80}_{-33}
Z pole (no m_t)	0.23120(18)	0.2233(6)	0.1191(28)	77^{+102}_{-38}
LEP 1 (no m_t)	0.23156(23)	0.2240(7)	0.1208(30)	166^{+270}_{-95}
$SLD + M_Z$	0.23070(28)	0.2220(6)	0.1200 (†)	40^{+38}_{-22}
$A_{FB}^{(b,c)} + M_Z$	0.23204(34)	0.2251(9)	0.1200 (†)	516^{+521}_{-258}
$M_W + M_Z$	0.23107(42)	0.2227(9)	0.1200 (†)	85^{+112}_{-60}
M_Z	0.23115(18)	0.2229(6)	0.1200 (†)	100 (†)
Q_W	0.2269(18)	0.2186(19)	0.1200 (†)	100 (†)
DIS (isoscalar)	0.2335(22)	0.2252(21)	0.1200 (†)	100 (†)
SLAC eD	0.222(18)	0.213(19)	0.1200 (†)	100 (†)
elastic $ u_{\mu}(\overline{ u_{\mu}})e$	0.229(8)	0.221(8)	0.1200 (†)	100 (†)
elastic $ u_{\mu}(\overline{ u_{\mu}})p$	0.211(32)	0.203(32)	0.1200 (†)	100 (†)

Sec. 10.2.) α_s is determined mainly from R_ℓ , Γ_Z , and $\sigma_{\rm had}$, and is only weakly correlated with the other variables. The global fit to all data, including the CDF/DØ value, $m_t=174.3\pm5.1$ GeV, yields

$$\begin{split} M_H &= 98^{+57}_{-38} \; \mathrm{GeV} \; , \\ m_t &= 172.9 \pm 4.6 \; \mathrm{GeV} \; , \\ \widehat{s}^2_Z &= 0.23117 \pm 0.00016 \; , \\ \alpha_s(M_Z) &= 0.1192 \pm 0.0028 \; . \end{split} \label{eq:mt}$$

In the on-shell scheme one has $s_W^2 = 0.22302 \pm 0.00040$, the larger error due to the stronger sensitivity to m_t , while the corresponding

effective angle is related by Eq. (10.34), i.e., $\vec{s}_\ell^2 = 0.23147 \pm 0.00016$. In all fits, the errors include full statistical, systematic, and theoretical uncertainties. The \hat{s}_Z^2 (\vec{s}_ℓ^2) error reflects the error on $\vec{s}_f^2 = 0.23151 \pm 0.00017$ from a fit to the Z pole asymmetries.

The weak mixing angle can be determined from Z pole observables, M_W , and from a variety of neutral-current processes spanning a very wide Q^2 range. The results (for the older low-energy neutral-current data see [25,26]) shown in Table 10.5, are in reasonable agreement with each other, indicating the quantitative success of the Standard Model. The largest discrepancy is the value $\hat{s}_Z^2 = 0.23204 \pm 0.00034$ from the forward-backward asymmetries into bottom and charm quarks combined with M_Z , which is 2.6 σ above the value 0.23117 \pm 0.00016 from the global fit to all data. Similarly, the SLD asymmetries, when combined with M_Z , yield $\hat{s}_Z^2 = 0.23070 \pm 0.00028$, which is 1.7 σ low. The new value of Q_W from atomic parity violation corresponds (for $M_H = 100$ GeV) to $\hat{s}_Z^2 = 0.2269 \pm 0.0018$, which is 2.4 σ low.

The extracted value of $\alpha_s(M_Z)$ is based on a formula with negligible theoretical uncertainty (± 0.0005 in $\alpha_s(M_Z)$) if one assumes the exact validity of the Standard Model. It is in excellent agreement with other precise values, such as 0.1202 ± 0.0027 (ALEPH) and 0.1219 ± 0.0020 (OPAL) from τ decays [104], 0.120 ± 0.005 from jetevent shapes in e^+e^- annihilation, 0.119 ± 0.002 (exp) ± 0.004 (scale) from deep-inelastic scattering [105], and 0.1174 ± 0.0024 ($b\bar{b}$) [106] and 0.116 ± 0.003 ($c\bar{c}$) [107] from lattice calculations of quarkonium spectra. The results from the τ lifetime have been converted from the 3-flavor definition, $lpha_{\delta}^{(3)}(m_{ au})=0.334\pm0.022$ (ALEPH) and $lpha_s^{(3)}(m_ au) = 0.348 \pm 0.021$ (OPAL), to the 5-flavor definition at the Z scale using the four-loop QCD β -function [108] with three-loop matching [109]. We note, that this introduces an asymmetric error (the lower error bar being larger), and that the quoted OPAL error for $\alpha_s^{(5)}(M_Z)$ is slightly underestimated given their result for $\alpha_s^{(3)}(m_\tau)$. For more details, see our Section 9 on "Quantum Chromodynamics" in this Review. The average $\alpha_s(M_Z)$ obtained from Section 9 when ignoring the precision measurements discussed in this Section is 0.1182 ± 0.0013 . We use this value as an external constraint for the second fit in Table 10.5. The resulting value, $\alpha_s(M_Z) = 0.1184 \pm 0.0012$, can be regarded as the present world average. One should keep in mind, however, that the Z lineshape value of α_s is very sensitive to many types of new physics.

The data indicate a preference for a small Higgs mass. There is a strong correlation between the quadratic m_t and logarithmic M_H terms in $\hat{\rho}$ in all of the indirect data except for the $Z \to b\bar{b}$ vertex. Therefore, observables (other than R_b) which favor m_t values higher than the Tevatron range favor lower values of M_H . This effect is enhanced by R_b , which has little direct M_H dependence but favors the lower end of the Tevatron m_t range. M_W has additional M_H dependence through $\Delta \hat{r}_W$ which is not coupled to m_t^2 effects. The strongest individual pulls towards smaller M_H are from M_W and A_{LR}^0 . The difference in χ^2 for the global fit is $\Delta \chi^2 = \chi^2(M_H = 1000~{\rm GeV}) - \chi^2_{\rm min} = 30.4$. Hence, the data favor a small value of M_H , as in supersymmetric extensions of the Standard Model, and m_t on the lower side of the Tevatron range. The central value of the global fit result, $M_H = 98^{+57}_{-38}~{\rm GeV}$, is close to the present kinematic reach at LEP 2, and slightly above the direct lower bound, $M_H \geq 95.2~{\rm GeV}$ (95% CL) [110].

The 90% central confidence range from all precision data is

$$42~{
m GeV} \leq M_H \leq 201~{
m GeV}$$
 .

Including the results of the direct searches as an extra contribution to the likelihood function drives the 95% upper limit to $M_H \leq 231$ GeV. As two further refinements, we account for (i) theoretical uncertainties from uncalculated higher order contributions by allowing the T parameter (see next subsection) subject to the constraint $T=0\pm0.02$, (ii) the M_H dependence of the correlation matrix which gives slightly more weight to lower Higgs masses [112]. The resulting limits at 95 (90, 99)% CL are

 $M_H \le 235 \ (205, 306) \ \mathrm{GeV}$,

respectively. The extraction of M_H from the precision data depends strongly on the value used for $\alpha(M_Z)$. Upper limits, however, are more robust due to two compensating effects: the older results indicated more QED running and were less precise, yielding M_H distributions which were broader with centers shifted to smaller values.

One can also carry out a fit to the indirect data alone, i.e., without including the value, $m_t=174.3\pm5.1$ GeV, observed directly by CDF and DØ. (The indirect prediction is for the $\overline{\rm MS}$ mass, $\widehat{m}_t(\widehat{m}_t)=158.7^{+9.1}_{-7.0}$ GeV, which is in the end converted to the pole mass using a BLM optimized [113] version of the two-loop perturbative QCD formula [114]; this should correspond approximately to the kinematic mass extracted from the collider events.) One obtains $m_t=168.2^{+9.6}_{-7.4}$ GeV, with little change in the $\sin^2\theta_W$ and α_s values, in remarkable agreement with the direct CDF/DØ value. The central M_H value of this fit (see the third line of Table 10.5) is below the direct lower bound; keeping $M_H=100$ GeV fixed results in $m_t=172.2\pm4.0$ GeV in even better agreement. The relations between M_H and m_t for various observables are shown in Fig. 10.1.

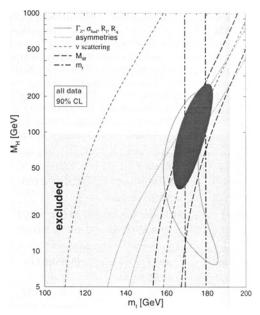


Figure 10.1: One-standard-deviation (39.35%) uncertainties in M_H as a function of m_t for various inputs, and the 90% CL region ($\Delta\chi^2 = 4.605$) allowed by all data. $\alpha_s(M_Z) = 0.120$ is assumed except for the fit to all data. The 95% direct lower limit from LEP 2 is also shown.

Using $\alpha(M_Z)$ and \widehat{s}_Z^2 as inputs, one can predict $\alpha_s(M_Z)$ assuming grand unification. One predicts [115] $\alpha_s(M_Z) = 0.130 \pm 0.001 \pm 0.01$ for the simplest theories based on the minimal supersymmetric extension of the Standard Model, where the first (second) uncertainty is from the inputs (thresholds). This is slightly larger, but consistent with the experimental $\alpha_s(M_Z) = 0.1192 \pm 0.0028$ from the Z lineshape, and with the world average 0.1184 ± 0.0012 . Nonsupersymmetric unified theories predict the low value $\alpha_s(M_Z) = 0.073 \pm 0.001 \pm 0.001$. See also the note on "Low-Energy Supersymmetry" in the Particle Listings.

One can also determine the radiative correction parameters Δr : from the global fit one obtains $\Delta r=0.0354\pm0.0012$ and $\Delta \hat{r}_W=0.0694\pm0.0004$. M_W measurements [24,101] (when combined with M_Z) are equivalent to measurements of $\Delta r=0.0345\pm0.0025$, in excellent agreement with the result from all indirect data, $\Delta r=0.0357\pm0.0014$. Fig. 10.2 shows the 1 σ contours in the M_W-m_t plane from the direct and indirect determinations, as well as the combined 90% CL region. The indirect determination uses M_Z from LEP 1 as input, which is defined assuming an s-dependent decay width. M_W then corresponds to the s-dependent width definition, as well, and can be directly compared with the results from the Tevatron and LEP 2 which have been obtained using the same definition. The difference to a constant width definition is formally only of $\mathcal{O}(\alpha^2)$, but

is strongly enhanced since the decay channels add up coherently. It is about 34 MeV for M_Z and 27 MeV for M_W . The residual difference between working consistently with one or the other definition is about 3 MeV, i.e., of typical size for non-enhanced (and generally uncalculated) $\mathcal{O}(\alpha^2)$ corrections.

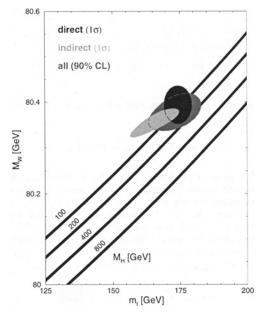


Figure 10.2: One-standard-deviation (39.35%) region in M_W as a function of m_t for the direct and indirect data, and the 90% CL region ($\Delta \chi^2 = 4.605$) allowed by all data. The Standard Model prediction as a function of M_H is also indicated. The widths of the M_H bands reflect the theoretical uncertainty from $\alpha(M_Z)$ for $\alpha_s(M_Z) = 0.120$.

Most of the parameters relevant to ν -hadron, ν -e, e-hadron, and e⁺e⁻ processes are determined uniquely and precisely from the data in "model independent" fits (i.e., fits which allow for an arbitrary electroweak gauge theory). The values for the parameters defined in Eqs. (10.11)-(10.13) are given in Table 10.6 along with the predictions of the Standard Model. The agreement is reasonable. The low-energy e^+e^- results are difficult to present in a model-independent way because Z propagator effects are non-negligible at TRISTAN, PETRA, and PEP energies. However, assuming $e\text{-}\mu\text{-}\tau$ universality, the lepton asymmetries imply [69] $4(g_A^e)^2 = 0.99 \pm 0.05$, in good agreement with the Standard Model prediction $\simeq 1$.

The results presented here are generally in reasonable agreement with the ones obtained by the LEP Electroweak Working Group [24,76]. We obtain slightly higher best fit values for α_s and M_H . We could trace most of the differences to be due to (i) the inclusion of recent higher order radiative corrections, in particular, the leading $\mathcal{O}(\alpha_s^4)$ contribution to hadronic Z decays [111]; (ii) a different evaluation of $\alpha(M_Z)$ [9]; (iii) slightly different data sets; and (iv) scheme dependences. Taking into account these differences, the agreement is excellent.

10.6. Constraints on new physics

The Z pole, W mass, and neutral-current data can be used to search for and set limits on deviations from the Standard Model. In particular, the combination of these indirect data with the direct CDF and DØ value for m_t allows to set stringent limits on new physics. We will mainly discuss the effects of exotic particles (with heavy masses $M_{\text{new}} \gg M_Z$ in an expansion in M_Z/M_{new}) on the gauge boson self-energies. (Brief remarks are made on new physics which is not of this type.) Most of the effects on precision measurements can be described by three gauge self-energy parameters S, T, and U. We will define these, as well as related parameters, such as ρ_0 , ϵ_i , and $\hat{\epsilon}_i$, to arise from new physics only. I.e., they are equal to zero $(\rho_0 = 1)$ exactly in the Standard Model, and do not include any contributions

Table 10.6: Values of the model-independent neutral-current parameters, compared with the Standard Model predictions for the global best fit values $M_Z=91.1870\pm0.0021$ GeV, $M_H=$ $98^{+57}_{-38} \text{ GeV}, \ m_t = 172.9 \pm 4.6 \ \text{GeV}, \ \alpha_s(M_Z) = 0.1192 \pm 0.0028,$ and $\widehat{\alpha}(M_Z)^{-1}=127.938\pm0.027.$ There is a second $g_{V,A}^{\nu e}$ solution, given approximately by $g_V^{\nu e} \leftrightarrow g_A^{\nu e}$, which is eliminated by e^+e^- data under the assumption that the neutral current is dominated by the exchange of a single Z. The ϵ_L , as well as the ϵ_R , are strongly correlated and non-Gaussian, so that for implementations we recommend the parametrization using g_i and $\theta_i = \tan^{-1}[\epsilon_i(u)/\epsilon_i(d)], i = L$ or R. θ_R is only weakly correlated with the g_i , while the correlation coefficient between θ_R and θ_L is 0.27.

Quantity	Experimental Value	Standard Model Prediction		Correlation
$\epsilon_L(u)$	0.330 ±0.016	0.3459±0.0002		
$\epsilon_L(d)$	-0.439 ± 0.011	-0.4291 ± 0.0002		non-
$\epsilon_R(u)$	$-0.176 {}^{+0.014}_{-0.006}$	$-0.1550{\pm}0.0001$		Gaussian
$\epsilon_R(d)$	$-0.023 ^{+0.070}_{-0.047}$	0.0776		
g_L^2	0.3020±0.0019	0.3038±0.0003	0.32	-0.39
$g_R^{\overline{2}}$	0.0315 ± 0.0016	0.0301		-0.10
$ heta_L$	2.50 ± 0.034	$2.4631 {\pm} 0.0001$		
θ_R	$\begin{array}{cc} 4.58 & ^{+0.40}_{-0.27} \end{array}$	5.1765		
$g_V^{ u e}$	-0.041 ± 0.015	-0.0397±0.0003		-0.04
$g_A^{ u e}$	-0.507 ± 0.014	-0.5064 ± 0.0001		
C_{1u}	-0.211 ± 0.041	-0.1886 ± 0.0002	-0.9996	-0.78
C_{1d}	0.359 ± 0.037	$0.3413 {\pm} 0.0002$		0.78
$\frac{C_{2u}-\frac{1}{2}C_{2d}}{}$	-0.04 ± 0.12	-0.0491 ± 0.0005		

from m_t or M_H , which are treated separately. Our treatment differs from most of the original papers.

Many extensions of the Standard Model are described by the ρ_0 parameter.

$$\rho_0 \equiv M_W^2 / (M_Z^2 \, \hat{c}_Z^2 \, \hat{\rho}) \,\,, \tag{10.45}$$

which describes new sources of SU(2) breaking that cannot be accounted for by the Standard Model Higgs doublet or m_t effects. In the presence of $\rho_0 \neq 1$, Eq. (10.45) generalizes Eq. (10.8b), while Eq. (10.8a) remains unchanged. Provided that the new physics which yields $\rho_0 \neq 1$ is a small perturbation which does not significantly affect the radiative corrections, ρ_0 can be regarded as a phenomenological parameter which multiplies G_F in Eqs. (10.11)-(10.13), (10.28), and Γ_Z in Eq. (10.41). There is enough data to determine ρ_0 , M_H , m_t , and α_s , simultaneously. From the global fit,

$$\rho_0 = 0.9998^{+0.0011}_{-0.0006} \,, \tag{10.46}$$

$$\rho_0 = 0.9998^{+0.0011}_{-0.0006} , \qquad (10.46)$$
 95 GeV $< M_H < 211$ GeV , (10.47)

$$m_t = 173.6 \pm 4.9 \text{ GeV}$$
, (10.48)

$$\alpha_s(M_Z) = 0.1194 \pm 0.0028$$
, (10.49)

where the lower limit on M_H is the direct search bound. (If the direct limit is ignored one obtains $M_H = 72^{+125}_{-36}$ and $\rho_0 = 0.9995^{+0.0013}_{-0.0009}$). The error bar in Eq. (10.46) is highly asymmetric: at the 2 σ level one has $\rho_0=0.9998^{+0.0034}_{-0.0012}$ and $M_H<1002$ GeV. Clearly, in the presence of ρ_0 upper limits on M_H become very weak.

The result in Eq. (10.46) is in remarkable agreement with the Standard Model expectation, $\rho_0 = 1$. It can be used to constrain higher-dimensional Higgs representations to have vacuum expectation values of less than a few percent of those of the doublets. Indeed, the relation between M_W and M_Z is modified if there are Higgs multiplets with weak isospin > 1/2 with significant vacuum expectation values. In order to calculate to higher orders in such theories one must define a set of four fundamental renormalized parameters which one may

104

conveniently choose to be α , G_F , M_Z , and M_W , since M_W and M_Z are directly measurable. Then \widehat{s}_Z^2 and ρ_0 can be considered dependent

Eq. (10.46) can also be used to constrain other types of new physics. For example, nondegenerate multiplets of heavy fermions or scalars break the vector part of weak SU(2) and lead to a decrease in the value of M_Z/M_W . A nondegenerate SU(2) doublet $\binom{f_1}{f_2}$ yields a positive contribution to ρ_0 [116] of

$$\frac{CG_F}{8\sqrt{2}\pi^2}\Delta m^2 , \qquad (10.50)$$

where

$$\Delta m^2 \equiv m_1^2 + m_2^2 - \frac{4m_1^2m_2^2}{m_1^2 - m_2^2} \ln \frac{m_1}{m_2} \ge (m_1 - m_2)^2 , \qquad (10.51)$$

and C = 1 (3) for color singlets (triplets). Thus, in the presence of such multiplets, one has

$$\frac{3G_F}{8\sqrt{2}\pi^2} \sum_i \frac{C_i}{3} \Delta m_i^2 = \rho_0 - 1 , \qquad (10.52)$$

where the sum includes fourth-family quark or lepton doublets, $\binom{t'}{b'}$ or $\binom{E^0}{E^-}$, and scalar doublets such as $\binom{\hat{t}}{\hat{b}}$ in supersymmetry (in the absence of L-R mixing). This implies

$$\sum_{i} \frac{C_i}{3} \, \Delta m_i^2 \le (100 \text{ GeV})^2 \tag{10.53}$$

at 95% CL. The corresponding constraints on nondegenerate squark and slepton doublets are even stronger, $\Delta m_i^2 \leq (69 \text{ GeV})^2$. This is due to the MSSM Higgs mass bound, $m_{h^0} < 150~{\rm GeV},$ and the strong correlation between m_{h^0} and ρ_0 (81%).

Nondegenerate multiplets usually imply $ho_0 > 1$. Similarly, heavy Z' bosons decrease the prediction for M_Z due to mixing and generally lead to $\rho_0 > 1$ [117]. On the other hand, additional Higgs doublets which participate in spontaneous symmetry breaking [118], heavy lepton doublets involving Majorana neutrinos [119], and the vacuum expectation values of Higgs triplets or higher-dimensional representations can contribute to ρ_0 with either sign. Allowing for the presence of heavy degenerate chiral multiplets (the S parameter, to be discussed below) affects the determination of ρ_0 from the data, at present leading to a smaller value (for fixed M_H).

A number of authors [120-125] have considered the general effects on neutral current and Z and W boson observables of various types of heavy (i.e., $M_{\text{new}} \gg M_Z$) physics which contribute to the W and Z self-energies but which do not have any direct coupling to the ordinary fermions. In addition to nondegenerate multiplets, which break the vector part of weak SU(2), these include heavy degenerate multiplets of chiral fermions which break the axial generators. The effects of one degenerate chiral doublet are small, but in technicolor theories there may be many chiral doublets and therefore significant effects [120].

Such effects can be described by just three parameters, S, T, and U at the (electroweak) one loop level. (Three additional parameters are needed if the new physics scale is comparable to M_Z [126].) T is proportional to the difference between the W and Z self-energies at $Q^2=0$ (i.e., vector SU(2)-breaking), while S (S+U) is associated with the difference between the Z (W) self-energy at $Q^2=M_{Z,W}^2$ and $Q^2 = 0$ (axial SU(2)-breaking). Denoting the contributions of new physics to the various self-energies by Π_{ij}^{new} , we have

$$\begin{split} \widehat{\alpha}(M_Z)T &\equiv \frac{\Pi_{WW}^{\text{new}}(0)}{M_W^2} - \frac{\Pi_{ZZ}^{\text{new}}(0)}{M_Z^2} \;, \\ \frac{\widehat{\alpha}(M_Z)}{4\widehat{s}^2 \widehat{c}^2 Z} S &\equiv \frac{\Pi_{ZZ}^{\text{new}}(M_Z^2) - \Pi_{ZZ}^{\text{new}}(0)}{M_Z^2} \\ &\qquad - \frac{\widehat{c}_Z^2 - \widehat{s}_Z^2}{\widehat{c}_Z \widehat{s}_Z} \frac{\Pi_{ZY}^{\text{new}}(M_Z^2)}{M_Z^2} - \frac{\Pi_{\gamma\gamma}^{\text{new}}(M_Z^2)}{M_Z^2} \;, \quad (10.54b) \\ \frac{\widehat{\alpha}(M_Z)}{4\widehat{s}^2 Z} (S + U) &\equiv \frac{\Pi_{WW}^{\text{new}}(M_W^2) - \Pi_{WW}^{\text{new}}(0)}{M_W^2} \\ &\qquad - \frac{\widehat{c}_Z}{\widehat{s}_Z} \frac{\Pi_{Z\gamma}^{\text{new}}(M_Z^2)}{M_Z^2} - \frac{\Pi_{\gamma\gamma}^{\text{new}}(M_Z^2)}{M_Z^2} \;. \end{split}$$

(10.54c)

S, T, and U are defined with a factor proportional to $\hat{\alpha}$ removed, so that they are expected to be of order unity in the presence of new physics. In the MS scheme as defined in Ref. [29], the last two terms in Eq. (10.54b) and Eq. (10.54c) can be omitted (as was done in earlier editions of this Review). They are related to other parameters (S_i, h_i) $\hat{\epsilon}_i$) defined in [29,121,122] by

$$T = h_V = \hat{\epsilon}_1/\alpha ,$$

$$S = h_{AZ} = S_Z = 4\hat{s}_Z^2 \hat{\epsilon}_3/\alpha ,$$

$$U = h_{AW} - h_{AZ} = S_W - S_Z = -4\hat{s}_Z^2 \hat{\epsilon}_2/\alpha . \qquad (10.55)$$

A heavy nondegenerate multiplet of fermions or scalars contributes positively to T as

$$\rho_0 - 1 = \frac{1}{1 - \alpha T} - 1 \simeq \alpha T , \qquad (10.56)$$

where ρ_0 is given in Eq. (10.52). The effects of nonstandard Higgs representations cannot be separated from heavy nondegenerate multiplets unless the new physics has other consequences, such as vertex corrections. Most of the original papers defined T to include the effects of loops only. However, we will redefine T to include all new sources of SU(2) breaking, including nonstandard Higgs, so that T and ρ_0 are equivalent by Eq. (10.56).

A multiplet of heavy degenerate chiral fermions yields

$$S = C \sum_{i} \left(t_{3L}(i) - t_{3R}(i) \right)^{2} / 3\pi , \qquad (10.57)$$

where $t_{3L,R}(i)$ is the third component of weak isospin of the left-(right-) handed component of fermion i and C is the number of colors. For example, a heavy degenerate ordinary or mirror family would contribute $2/3\pi$ to S. In technicolor models with QCD-like dynamics, one expects [120] $S \sim 0.45$ for an isodoublet of technifermions, assuming $N_{TC}=4$ technicolors, while $S\sim 1.62$ for a full technigeneration with $N_{TC}=4;\ T$ is harder to estimate because it is model dependent. In these examples one has $S \geq 0$. However, the QCD-like models are excluded on other grounds (flavor-changing neutral currents, and too-light quarks and pseudo-Goldstone bosons [127]). In particular, these estimates do not apply to models of walking technicolor [127], for which S can be smaller or even negative [128]. Other situations in which S < 0, such as loops involving scalars or Majorana particles, are also possible [129]. Supersymmetric extensions of the Standard Model generally give very small effects [130]. Most simple types of new physics yield U = 0, although there are counter-examples, such as the effects of anomalous triple-gauge vertices [122].

The Standard Model expressions for observables are replaced by

$$\begin{split} M_Z^2 &= M_{Z0}^2 \;\; \frac{1 - \alpha T}{1 - G_F M_{Z0}^2 S / 2 \sqrt{2} \pi} \;\; , \\ M_W^2 &= M_{W0}^2 \;\; \frac{1}{1 - G_F M_{W0}^2 (S + U) / 2 \sqrt{2} \pi} \;\; , \end{split} \tag{10.58}$$

where M_{Z0} and M_{W0} are the Standard Model expressions (as functions of m_t and M_H) in the $\overline{\rm MS}$ scheme. Furthermore,

$$\Gamma_{Z} = \frac{1}{1 - \alpha T} M_{Z}^{3} \beta_{Z} ,$$

$$\Gamma_{W} = M_{W}^{3} \beta_{W} ,$$

$$A_{i} = \frac{1}{1 - \alpha T} A_{i0} ,$$
(10.59)

where β_Z and β_W are the Standard Model expressions for the reduced widths Γ_{Z0}/M_{Z0}^3 and Γ_{W0}/M_{W0}^3 , M_Z and M_W are the physical masses, and A_i (A_{i0}) is a neutral current amplitude (in the Standard Model).

The data allow a simultaneous determination of \hat{s}_Z^2 (from the Z pole asymmetries), S (from M_Z), U (from M_W), T (mainly from Γ_Z), α_s (from R_ℓ and $\sigma_{\rm had}$), and m_t (from CDF and DØ), with little correlation among the Standard Model parameters:

$$\begin{split} S &= -0.07 \pm 0.11 \; (-0.09) \; , \\ T &= -0.10 \pm 0.14 \; (+0.09) \; , \\ U &= 0.11 \pm 0.15 \; (+0.01) \; , \end{split} \tag{10.60}$$

and $\hat{s}_Z^2 = 0.23117 \pm 0.00017$, $\alpha_s(M_Z) = 0.1203 \pm 0.0031$, $m_t = 173.4 \pm 4.9$ GeV, where the uncertainties are from the inputs. The central values assume $M_H = 100$ GeV, and in parentheses we show the change for $M_H = 300$ GeV. As can be seen, the Standard Model parameters (U) can be determined with no (little) M_H dependence. On the other hand, S, T, and M_H cannot be obtained simultaneously, because the Higgs boson loops themselves are resembled approximately by oblique effects. The first Eq. (10.60) shows that negative contributions to the S parameter can weaken or entirely remove the strong constraints on M_H from the Standard Model fits. The parameters in Eqs. (10.60) which by definition are due to new physics only, are all consistent with the Standard Model values of zero. Using Eq. (10.56) the value of ρ_0 corresponding to T is 0.9992 \pm 0.0011 (+0.0007). The values of the $\hat{\epsilon}$ parameters defined in Eq. (10.55) are

$$\widehat{\epsilon}_3 = -0.0006 \pm 0.0009 \, (-0.0008) \, ,$$

$$\widehat{\epsilon}_1 = -0.0008 \pm 0.0011 \, (+0.0007) \, ,$$

$$\widehat{\epsilon}_2 = -0.0009 \pm 0.0013 \, (-0.0001) \, .$$
(10.61)

Unlike the original definition, we defined the quantities in Eqs. (10.61) to vanish identically in the absence of new physics and to correspond directly to the parameters S, T, and U in Eqs. (10.60). There is a strong correlation (81%) between the S and T parameters. The allowed region in S-T is shown in Fig. 10.3. From Eqs. (10.60) one obtains $S \leq 0.11(0.01)$ and $T \leq 0.13(0.22)$ at 95% CL for $M_H = 100$ GeV (300 GeV). If one fixes $M_H = 600$ GeV and requires the constraint $S \geq 0$ (as is appropriate in QCD-like technicolor models) then $S \leq 0.09$. This rules out simple technicolor models with many techni-doublets and QCD-like dynamics.

An extra generation of ordinary fermions is excluded at the 99.6% CL on the basis of the S parameter alone. This result assumes that there are no new contributions to T or U. Allowing a contribution of 0.18 \pm 0.08 to T reduces the CL to 97%. This is in agreement with a fit to the number of light neutrinos, $N_{\nu}=2.985\pm0.008$ (which favors a larger value for $\alpha_s(M_Z)=0.1229\pm0.0034$ mainly from R_{ℓ}). However, the S parameter fit is valid even for a very heavy fourth family neutrino.

Although S is consistent with zero, the electroweak asymmetries, especially the SLD left-right asymmetry and Q_W , favor S<0. The simplest origin of S<0 would probably be an additional heavy Z' boson [117], which could mimic S<0. Similarly, there is a slight indication of negative T, while, as discussed above, nondegenerate scalar or fermion multiplets generally predict T>0.

There is no simple parametrization that is powerful enough to describe the effects of every type of new physics on every possible observable. The S, T, and U formalism describes many types of heavy physics which affect only the gauge self-energies, and it can be applied to all precision observables. However, new physics which couples directly to ordinary fermions, such as heavy Z' bosons [117] or mixing with exotic fermions [131] cannot be fully parametrized in the S, T, and U framework. It is convenient to treat these types of new physics by parametrizations that are specialized to that particular class of theories (e.g., extra Z' bosons), or to consider specific models (which might contain, e.g., Z' bosons and exotic fermions with correlated parameters). Constraints on various types of new physics are reviewed in [26,132,133]. Fits to models with technicolor, extended technicolor, and supersymmetry are described, respectively, in [134], [135], and [86,136]. In a new development, the effects of compactified extra spatial dimensions at the TeV scale have been considered in Ref. 137.

An alternate formalism [138] defines parameters, ϵ_1 , ϵ_2 , ϵ_3 , ϵ_b in terms of the specific observables M_W/M_Z , $\Gamma_{\ell\ell}$, $A_{FB}^{(0,\ell)}$, and R_b .

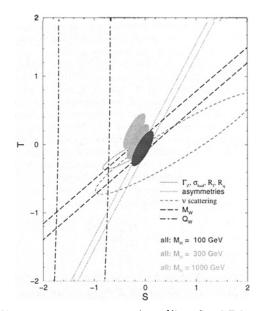


Figure 10.3: 1 σ constraints (39.35%) on S and T from various inputs. S and T represent the contributions of new physics only. (Uncertainties from m_t are included in the errors.) The contours assume $M_H=100$ GeV except for the central and upper 90% CL contours allowed by all data, which are for $M_H=300$ GeV and 1000 GeV, respectively. Data sets not involving M_W are insensitive to U. Due to higher order effects, however, U=0 has to be assumed in all fits. $\alpha_s(M_Z)=0.120$ is assumed for the 1 σ constraints, while in the fits to all data α_s is allowed to float.

The definitions coincide with those for $\widehat{\epsilon}_i$ in Eqs. (10.54) and (10.55) for physics which affects gauge self-energies only, but the ϵ 's now parametrize arbitrary types of new physics. However, the ϵ 's are not related to other observables unless additional model-dependent assumptions are made. Another approach [139–141] parametrizes new physics in terms of gauge-invariant sets of operators. It is especially powerful in studying the effects of new physics on non-Abelian gauge vertices. The most general approach introduces deviation vectors [132]. Each type of new physics defines a deviation vector, the components of which are the deviations of each observable from its Standard Model prediction, normalized to the experimental uncertainty. The length (direction) of the vector represents the strength (type) of new physics.

Table 10.7: 95% CL lower mass limits (in GeV) on various extra Z' bosons, appearing in models of unification and string theory. ρ_0 free indicates a completely arbitrary Higgs sector, while $\rho_0 = 1$ restricts to Higgs doublets and singlets with still unspecified charges.

Z'	ρ_0 free	$\rho_0 = 1$
$\overline{Z_\chi}$	551	545
$Z_{oldsymbol{\psi}}$	151	146
Z_{η}	379	365
Z_{LR}	570	564
Z_{SM}	822	809
$Z_{\rm string}$	582	578

One of the best motivated kinds of physics beyond the Standard Model besides supersymmetry are extra Z' bosons. They do not spoil the observed approximate gauge coupling unification, and appear copiously in many Grand Unified Theories (GUTs) and most superstring models. For example, the SO(10) GUT contains an extra U(1) as can be seen from its maximal subgroup,

106

 $SU(5) \times U(1)_{\chi}$. Similarly, the E_6 GUT contains the subgroup $SO(10) \times U(1)_{\psi}$. It possesses only axial-vector couplings to the ordinary fermions, and its mass is generally less constrained. The Z_{η} boson is the linear combination $\sqrt{3/8} Z_{\chi} - \sqrt{5/8} Z_{\psi}$. The Z_{LR} boson occurs in left-right models with gauge group $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \subset SO(10)$. The sequential Z_{SM} boson is defined to have the same couplings to fermions as the SM Z boson. Such a boson is not expected in the context of gauge theories unless it has different couplings to exotic fermions than the ordinary Z. However, it serves as a useful reference case when comparing constraints from various sources. It could also play the role of an excited state of the ordinary Z in models with extra dimensions at the weak scale. Finally, we consider a superstring motivated Z_{string} boson appearing in a specific model [142]. The potential Z' boson is in general a superposition of the SM Z and the new boson associated with the extra U(1). The mixing angle θ satisfies,

$$an^2 heta = rac{M_{Z_1^0}^2 - M_Z^2}{M_{Z'}^2 - M_{Z_2^0}^2},$$

where $M_{Z_1^0}$ is the SM value for M_Z in the absence of mixing. Note, that $M_Z < M_{Z_1^0}$, and that the SM Z couplings are changed by the mixing. If the Higgs U(1)' quantum numbers are known, there will be an extra constraint,

$$\theta = C \frac{g_2}{g_1} \frac{M_Z^2}{M_{Z'}^2} \,, \tag{10.62}$$

where $g_{1,2}$ are the U(1) and U(1)' gauge couplings with $g_2=\sqrt{\frac{5}{3}}\sin\theta_W\sqrt{\lambda}\,g_1$. $\lambda=1$ (which we assume) if the GUT group breaks directly to SU(3) × SU(2) × U(1) × U(1)'. C is a function of vacuum expectation values. For minimal Higgs sectors it can be found in reference [117]. Table 10.7 shows the 95% CL lower mass limits obtained from a somewhat earlier data set [143] for ρ_0 free and $\rho_0=1$, respectively. In cases of specific minimal Higgs sectors where C is known, the Z' mass limits are generally pushed into the TeV region. For more details see Ref. 143 and the Section on "The Z' Searches" in this Review. The more recent values for $Q_W(\mathrm{Cs})$ and σ_{had} used in this Review modify the results and even suggest the possible existence of Z' [144].

References:

- 1. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);
 - A. Salam, p. 367 of *Elementary Particle Theory*, ed. N. Svartholm (Almquist and Wiksells, Stockholm, 1969);
 - S.L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. ${\bf D2},\,1285$ (1970).
- For reviews, see G. Barbiellini and C. Santoni, Riv. Nuovo Cimento 9(2), 1 (1986);
 - E.D. Commins and P.H. Bucksbaum, Weak Interactions of Leptons and Quarks, (Cambridge Univ. Press, Cambridge, 1983);
 W. Fetscher and H.J. Gerber, p. 657 of Ref. 3;
 - J. Deutsch and P. Quin, p. 706 of Ref. 3.
- Precision Tests of the Standard Electroweak Model, ed. P. Langacker (World Scientific, Singapore, 1995).
- 4. CDF: F. Abe et al., Phys. Rev. Lett. 82, 271 (1999).
- 5. DØ: B. Abbott et al., Phys. Rev. D58, 052001 (1998).
- For reviews, see the article on "The Higgs boson" in this Review;
 J. Gunion, H.E. Haber, G.L. Kane, and S. Dawson, The Higgs Hunter's Guide, (Addison-Wesley, Redwood City, 1990);
 M. Sher, Phys. Reports 179, 273 (1989).
- TOPAZ: I. Levine et al., Phys. Rev. Lett. 78, 424 (1997);
 OPAL: hep-ex/9908008.
- S. Fanchiotti, B. Kniehl, and A. Sirlin, Phys. Rev. D48, 307 (1993) and references therein.
- 9. J. Erler, Phys. Rev. **D59**, 054008 (1999).
- 10. M. Davier and A. Höcker, Phys. Lett. **B419**, 419 (1998).

- 11. A.D. Martin and D. Zeppenfeld, Phys. Lett. B345, 558 (1995).
- 12. S. Eidelman and F. Jegerlehner, Z. Phys. C67, 585 (1995).
- B.V. Geshkenbein and V.L. Morgunov, Phys. Lett. B340, 185 (1995) and Phys. Lett. B352, 456 (1995).
- 14. H. Burkhardt and B. Pietrzyk, Phys. Lett. B356, 398 (1995).
- 15. M.L. Swartz, Phys. Rev. **D53**, 5268 (1996).
- R. Alemany, M. Davier, and A. Höcker, Eur. Phys. J. C2, 123 (1998).
- N.V. Krasnikov and R. Rodenberg, Nuovo Cimento 111A, 217 (1998).
- 18. J.H. Kühn and M. Steinhauser, Phys. Lett. **B437**, 425 (1998).
- 19. M. Davier and A. Höcker, Phys. Lett. **B435**, 427 (1998).
- S. Groote, J.G. Körner, K. Schilcher, N.F. Nasrallah, Phys. Lett. B440, 375 (1998).
- 21. F. Jegerlehner, hep-ph/9901386.
- 22. W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 61, 1815 (1988).
- T. van Ritbergen and R.G. Stuart, Phys. Rev. Lett. 82, 488 (1999).
- J. Mnich and G. Quast for the LEP collaborations, presented at the *International Europhysics Conference on High Energy Physics* (Tampere, 1999).
- Earlier analyses include U. Amaldi *et al.*, Phys. Rev. **D36**, 1385 (1987);
 - P. Langacker and M. Luo, Phys. Rev. **D44**, 817 (1991);

Very similar conclusions are reached in an analysis by G. Costa et al., Nucl. Phys. **B297**, 244 (1988);

Deep inelastic scattering is considered by G.L. Fogli and D. Haidt, Z. Phys. C40, 379 (1988);

For recent analyses, see Ref. 26.

- 26. P. Langacker, p. 883 of Ref. 3;
 - J. Erler and P. Langacker, Phys. Rev. **D52**, 441 (1995).
- 27. A. Sirlin, Phys. Rev. **D22**, 971 (1980);
 - A. Sirlin, Phys. Rev. **D29**, 89 (1984);
 - W. Hollik, Fortsch. Phys. 38, 165 (1990);
 - D.C. Kennedy et al., Nucl. Phys. B321, 83 (1989);
 - D.C. Kennedy and B.W. Lynn, Nucl. Phys. **B322**, 1 (1989);
 - D.Yu. Bardin et al., Z. Phys. C44, 493 (1989);

For recent reviews, see the articles by W. Hollik, pp. 37 and 117, and W. Marciano, p. 170 in Ref. 3. Extensive references to other papers are given in Ref. 25.

- W. Hollik in Ref. 27 and references therein;
 V.A. Novikov, L.B. Okun, and M.I. Vysotsky, Nucl. Phys. B397,
- 29. W.J. Marciano and J.L. Rosner, Phys. Rev. Lett. 65, 2963 (1990).
- G. Degrassi, S. Fanchiotti, and A. Sirlin, Nucl. Phys. **B351**, 49 (1991).
- 31. G. Degrassi and A. Sirlin, Nucl. Phys. B352, 342 (1991).
- P. Gambino and A. Sirlin, Phys. Rev. D49, 1160 (1994);
 ZFITTER: D. Bardin et al., CERN-TH.6443/92 and references therein.
- 33. R. Barbieri et al., Phys. Lett. B288, 95 (1992);
 - R. Barbieri et al., Nucl. Phys. B409, 105 (1993).
- J. Fleischer, O.V. Tarasov, and F. Jegerlehner, Phys. Lett. **B319**, 249 (1993).
- G. Degrassi, P. Gambino, and A. Vicini, Phys. Lett. B383, 219 (1996);
 - G. Degrassi, P. Gambino, and A. Sirlin, Phys. Lett. **B394**, 188 (1997).
- 36. S. Bauberger and G. Weiglein, Phys. Lett. B419, 333 (1998).

- A. Djouadi and C. Verzegnassi, Phys. Lett. **B195**, 265 (1987);
 A. Djouadi, Nuovo Cimento **100A**, 357 (1988);
 - B.A. Kniehl, Nucl. Phys. B347, 86 (1990);
 - A. Djouadi and P. Gambino, Phys. Rev. **D49**, 3499 (1994), **D49**, 4705 (1994), and **D53**, 4111(E) (1996).
- K.G. Chetyrkin, J.H. Kühn, and M. Steinhauser, Phys. Lett. B351, 331 (1995);
 L. Avdeev et al., Phys. Lett. B336, 560 (1994) and B349, 597(E)
- J. Fleischer *et al.*, Phys. Lett. **B293**, 437 (1992);
 K.G. Chetyrkin, A. Kwiatkowski, and M. Steinhauser, Mod. Phys. Lett. **A8**, 2785 (1993).
- 40. A. Czarnecki and J.H. Kühn, Phys. Rev. Lett. 77, 3955 (1996).
- R. Harlander, T. Seidensticker, and M. Steinhauser, Phys. Lett. B426, 125 (1998);
 - J. Fleischer et al., hep-ph/9904256.
- 42. For a review, see F. Perrier, p. 385 of Ref. 3.
- CDHS: H. Abramowicz et al., Phys. Rev. Lett. 57, 298 (1986);
 CDHS: A. Blondel et al., Z. Phys. C45, 361 (1990).
- CHARM: J.V. Allaby et al., Phys. Lett. B117, 446 (1986);
 CHARM: J.V. Allaby et al., Z. Phys. C36, 611 (1987).
- CCFR: C.G. Arroyo et al., Phys. Rev. Lett. 72, 3452 (1994);
 CCFR: K.S. McFarland et al., Eur. Phys. J. C1, 509 (1998).
- H. Georgi and H.D. Politzer, Phys. Rev. **D14**, 1829 (1976);
 R.M. Barnett, Phys. Rev. **D14**, 70 (1976).
- 47. LAB-E: S.A. Rabinowitz et al., Phys. Rev. Lett. 70, 134 (1993).
- 48. E.A. Paschos and L. Wolfenstein, Phys. Rev. **D7**, 91 (1973).
- NuTeV: K.S. McFarland et al., presented at the International Europhysics Conference on High Energy Physics (Tampere, 1999).
- 50. CHARM: J. Dorenbosch et al., Z. Phys. C41, 567 (1989).
- 51. CALO: L.A. Ahrens et al., Phys. Rev. D41, 3297 (1990).
- CHARM II: P. Vilain et al., Phys. Lett. B335, 246 (1994);
 See also J. Panman, p. 504 of Ref. 3.
- SSF: C.Y. Prescott et al., Phys. Lett. B84, 524 (1979);
 For a review, see P. Souder, p. 599 of Ref. 3.
- For reviews and references to earlier work, see B.P. Masterson and C.E. Wieman, p. 545 of Ref. 3;
 M.A. Bouchiat and L. Pottier, Science 234, 1203 (1986).
- 55. Cesium (Boulder): C.S. Wood et al., Science 275, 1759 (1997).
- Thallium (Oxford): N.H. Edwards et al., Phys. Rev. Lett. 74, 2654 (1995);
 Thallium (Seattle): P.A. Vetter et al., Phys. Rev. Lett. 74, 2658 (1995).
- Lead (Seattle): D.M. Meekhof et al., Phys. Rev. Lett. 71, 3442 (1993).
- Bismuth (Oxford): M.J.D. MacPherson et al., Phys. Rev. Lett. 67, 2784 (1991).
- V.A. Dzuba, V.V. Flambaum, and O.P. Sushkov, Phys. Lett. 141A, 147 (1989);
 S.A. Blundell, J. Sapirstein, and W.R. Johnson, Phys. Rev. Lett.
 - S.A. Blundell, J. Sapirstein, and W.R. Johnson, Phys. Rev. Lett. **65**, 1411 (1990) and Phys. Rev. **D45**, 1602 (1992);
 - For a review, see S.A. Blundell, W.R. Johnson, and J. Sapirstein, p. 577 of Ref. 3.
- 60. S.C. Bennett and C.E. Wieman, Phys. Rev. Lett. 82, 2484 (1999).
- V.A. Dzuba, V.V. Flambaum, and O.P. Sushkov, Phys. Rev. A56, R4357 (1997).
- 62. M.A. Bouchiat and J. Guéna, J. Phys. (France) 49, 2037 (1988).
- 63. V.A. Dzuba et al., J. Phys. B20, 3297 (1987).
- Ya.B. Zel'dovich, Sov. Phys. JETP 6, 1184 (1958);
 For a recent discussion, see V.V. Flambaum and D.W. Murray, Phys. Rev. C56, 1641 (1997) and references therein.

- 65. J.L. Rosner, Phys. Rev. **D53**, 2724 (1996).
- S.J. Pollock, E.N. Fortson, and L. Wilets, Phys. Rev. C46, 2587 (1992);
 - B.Q. Chen and P. Vogel, Phys. Rev. C48, 1392 (1993).
- 67. B.W. Lynn and R.G. Stuart, Nucl. Phys. B253, 216 (1985).
- 68. Physics at LEP, ed. J. Ellis and R. Peccei, CERN 86-02, Vol. 1.
- C. Kiesling, Tests of the Standard Theory of Electroweak Interactions, (Springer-Verlag, New York, 1988);
 - R. Marshall, Z. Phys. C43, 607 (1989);
 - Y. Mori et al., Phys. Lett. B218, 499 (1989);
 - D. Haidt, p. 203 of Ref. 3.
- For reviews, see D. Schaile, p. 215, and A. Blondel, p. 277 of Ref. 3;
 - R. Clare, private communication.
- 71. SLD: K. Abe et al., Phys. Rev. Lett. 78, 2075 (1997).
- SLD: J.E. Brau et al., presented at the International Europhysics Conference on High Energy Physics (Tampere, 1999).
- The LEP/SLD Heavy Flavour Working Group: D. Abbaneo et al., LEPHF/99-01.
- SLD: K. Abe et al., submitted to the International Europhysics Conference on High Energy Physics (Tampere, 1999).
- 75. SLD: K. Abe et al., Phys. Rev. Lett. 79, 804 (1997).
- The LEP Collaborations ALEPH, DELPHI, L3, OPAL, the LEP Electroweak Working Group and the SLD Heavy Flavour and Electroweak Groups: D. Abbaneo et al., CERN-EP/99-15.
- DELPHI: P. Abreu et al., Z. Phys. C67, 1 (1995);
 OPAL: K. Ackerstaff et al., submitted to the XXIXth Conference on High Energy Physics (Vancouver, 1998).
- 78. SLD: K. Abe et al., Phys. Rev. Lett. 78, 17 (1997).
- A. Leike, T. Riemann, and J. Rose, Phys. Lett. **B273**, 513 (1991);
 T. Riemann, Phys. Lett. **B293**, 451 (1992).
- 80. L. Maiani and P. Zerwas, as quoted in Ref. 76.
- OPAL: K. Ackerstaff et al., submitted to the International Europhysics Conference on High Energy Physics (Tampere, 1999).
- CLEO: M.S. Alam et al., Phys. Rev. Lett. 74, 2885 (1995);
 CLEO: T. Skwarnicki et al., presented at the 29th International Conference on High Energy Physics (Vancouver, 1998).
- A. Ali and C. Greub, Phys. Lett. **B259**, 182 (1991);
 A.L. Kagan and M. Neubert, Eur. Phys. J. **C7**, 5 (1999).
- 84. B. Barish et al., Phys. Rev. Lett. 76, 1570 (1996).
- 85. A. Czarnecki and W.J. Marciano, Phys. Rev. Lett. 81, 277 (1998).
- 86. J. Erler and D.M. Pierce, Nucl. Phys. **B526**, 53 (1998).
- 87. Y. Nir, Phys. Lett. **B221**, 184 (1989);
 - K. Adel and Y.P. Yao, Phys. Rev. **D49**, 4945 (1994);
 - C. Greub, T. Hurth, and D. Wyler, Phys. Rev. **D54**, 3350 (1996);K.G. Chetyrkin, M. Misiak, and M. Münz, Phys. Lett. **B400**, 206 (1997);
 - C. Greub and T. Hurth, Phys. Rev. **D56**, 2934 (1997);
 - M. Ciuchini et al., Nucl. Phys. **B527**, 21 (1998) and **B534**, 3 (1998);
 - F.M. Borzumati and C. Greub, Phys. Rev. **D58**, 074004 (1998) and **D59**, 057501 (1999);
 - A. Strumia, Nucl. Phys. **B532**, 28 (1998).
- A. Czarnecki, B. Krause, and W.J. Marciano, Phys. Rev. Lett. 76, 3267 (1996).
- J. Bijnens, E. Pallante, and J. Prades, Nucl. Phys. B474, 379 (1996).
- 90. B. Krause, Phys. Lett. **B390**, 392 (1997).
- M. Carena, G.F. Giudice, and C.E.M. Wagner, Phys. Lett. B390, 234 (1997).

- A comprehensive report and further references can be found in K.G. Chetyrkin, J.H. Kühn, and A. Kwiatkowski, Phys. Reports 277, 189 (1996).
- J. Schwinger, Particles, Sources and Fields, Vol. II, (Addison-Wesley, New York, 1973);
 - K.G. Chetyrkin, A.L. Kataev, and F.V. Tkachev, Phys. Lett. B85, 277 (1979);
 - M. Dine and J. Sapirstein, Phys. Rev. Lett. 43, 668 (1979);
 - W. Celmaster, R.J. Gonsalves, Phys. Rev. Lett. 44, 560 (1980);
 - S.G. Gorishnii, A.L. Kataev, and S.A. Larin, Phys. Lett. **B212**, 238 (1988) and **B259**, 144 (1991);
 - L.R. Surguladze and M.A. Samuel, Phys. Rev. Lett. **66**, 560 (1991) and 2416(E);
 - For a discussion of higher order estimates, see A.L. Kataev and V.V. Starshenko, Mod. Phys. Lett. A10, 235 (1995).
- 94. W. Bernreuther and W. Wetzel, Z. Phys. 11, 113 (1981);
 - W. Wetzel and W. Bernreuther, Phys. Rev. D24, 2724 (1982);
 - B.A. Kniehl, Phys. Lett. B237, 127 (1990);
 - K.G. Chetyrkin, Phys. Lett. **B307**, 169 (1993);
 - A.H. Hoang et al., Phys. Lett. B338, 330 (1994);
 - S.A. Larin, T. van Ritbergen, and J.A.M. Vermaseren, Nucl. Phys. **B438**, 278 (1995).
- T.H. Chang, K.J.F. Gaemers, and W.L. van Neerven, Nucl. Phys. B202, 407 (1980);
 - J. Jersak, E. Laermann, and P.M. Zerwas, Phys. Lett. **B98**, 363 (1981) and Phys. Rev. **D25**, 1218 (1982);
 - S.G. Gorishnii, A.L. Kataev, and S.A. Larin, Nuovo Cimento 92, 117 (1986);
 - K.G. Chetyrkin and J.H. Kühn, Phys. Lett. B248, 359 (1990);
 - K.G. Chetyrkin, J.H. Kühn, and A. Kwiatkowski, Phys. Lett. B282, 221 (1992);
 - K.G. Chetyrkin and J.H. Kühn, Phys. Lett. B406, 102 (1997).
- B.A. Kniehl and J.H. Kühn, Phys. Lett. **B224**, 229 (1990) and Nucl. Phys. **B329**, 547 (1990);
 - K.G. Chetyrkin and A. Kwiatkowski, Phys. Lett. **B305**, 285 (1993) and **B319**, 307 (1993);
 - S.A. Larin, T. van Ritbergen, and J.A.M. Vermaseren, Phys. Lett. **B320**, 159 (1994);
 - K.G. Chetyrkin and O.V. Tarasov, Phys. Lett. B327, 114 (1994).
- 97. A.L. Kataev, Phys. Lett. B287, 209 (1992).
- 98. D. Albert et al., Nucl. Phys. B166, 460 (1980);
 - F. Jegerlehner, Z. Phys. C32, 425 (1986);
 - A. Djouadi, J.H. Kühn, and P.M. Zerwas, Z. Phys. C46, 411 (1990);
 - A. Borrelli et al., Nucl. Phys. B333, 357 (1990).
- A.A. Akhundov, D.Yu. Bardin, and T. Riemann, Nucl. Phys. B276, 1 (1986);
 - W. Beenakker and W. Hollik, Z. Phys. C40, 141 (1988);
 - B.W. Lynn and R.G. Stuart, Phys. Lett. **B352**, 676 (1990);
 - J. Bernabeu, A. Pich, and A. Santamaria, Nucl. Phys. **B363**, 326 (1991).
- C. Caso et al., from the W Particle Listings in the 1999 WWW
 edition of the "Review of Particle Physics", http://pdg.lbl.gov.
- 101. CDF: F. Abe et al., Phys. Rev. Lett. 75, 11 (1995);
 - CDF: F. Abe et al., Phys. Rev. **D52**, 4784 (1995);
 - CDF: W. Carithers et al., presented at the International Europhysics Conference on High Energy Physics (Tampere, 1999);
 - DØ: B. Abbott et al., Phys. Rev. D58, 092003 (1998);
 - DØ: B. Abbott et al., Phys. Rev. Lett. 80, 3008 (1998);
 - DØ: B. Abbott et al., submitted to the International Europhysics Conference on High Energy Physics (Tampere, 1999);
 - UA2: S. Alitti et al., Phys. Lett. B276, 354 (1992).

- J. Erler, Phys. Rev. **D52**, 28 (1995);
 J. Erler, J.L. Feng, and N. Polonsky, Phys. Rev. Lett. **78**, 3063 (1997)
- DELPHI: P. Abreu et al., Z. Phys. C, 70 (1996);
 DELPHI: P. Abreu et al., submitted to the International Europhysics Conference on High Energy Physics (Jerusalem, 1997).
- ALEPH: R. Barate et al., Eur. Phys. J. C4, 409 (1998);
 OPAL: K. Ackerstaff et al., Eur. Phys. J. C7, 571 (1999).
- 105. CCFR: W.G. Seligman et al., Phys. Rev. Lett. 79, 1213 (1997).
- 106. NRQCD: C.T.H. Davies et al., Phys. Rev. D56, 2755 (1997).
- SCRI: A.X. El-Khadra et al., presented at the 31st Rencontres de Moriond: Electroweak Interactions and Unified Theories, Les Arcs (1996).
- T. van Ritbergen, J.A.M. Vermaseren, and S.A. Larin, Phys. Lett. **B400**, 379 (1997).
- K.G. Chetyrkin, B.A. Kniehl, and M. Steinhauser, Phys. Rev. Lett. 79, 2184 (1997).
- 110. ALEPH, DELPHI, L3, OPAL, and the LEP working group for Higgs boson searches, P. Bock et al., submitted to the International Europhysics Conference on High Energy Physics (Tampere, 1999).
- A.L. Kataev and V.V. Starshenko, Mod. Phys. Lett. A10, 235 (1995);
 - J. Erler, to be published.
- J. Erler, presented at the 17th International Workshop on Weak Interactions and Neutrinos (Cape Town, 1999).
- S.J. Brodsky, G.P. Lepage, and P.B. Mackenzie, Phys. Rev. D28, 228 (1983).
- 114. N. Gray et al., Z. Phys. C48, 673 (1990).
- P. Langacker and N. Polonsky, Phys. Rev. D52, 3081 (1995) and references therein.
- M. Veltman, Nucl. Phys. B123, 89 (1977);
 M. Chanowitz, M.A. Furman, and I. Hinchliffe, Phys. Lett. B78, 285 (1978).
- P. Langacker and M. Luo, Phys. Rev. D45, 278 (1992) and references therein.
- A. Denner, R.J. Guth, and J.H. Kühn, Phys. Lett. B240, 438 (1990).
- 119. S. Bertolini and A. Sirlin, Phys. Lett. B257, 179 (1991).
- 120. M. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990);
 - M. Peskin and T. Takeuchi, Phys. Rev. **D46**, 381 (1992);
 - M. Golden and L. Randall, Nucl. Phys. **B361**, 3 (1991).
- D. Kennedy and P. Langacker, Phys. Rev. Lett. 65, 2967 (1990);
 D. Kennedy and P. Langacker, Phys. Rev. D44, 1591 (1991).
- 122. G. Altarelli and R. Barbieri, Phys. Lett. B253, 161 (1990).
- 123. B. Holdom and J. Terning, Phys. Lett. B247, 88 (1990).
- 124. B.W. Lynn, M.E. Peskin, and R.G. Stuart, p. 90 of Ref. 68.
- 125. An alternative formulation is given by K. Hagiwara et al., Z. Phys. C64, 559 (1994) and C68, 352(E) (1995);
 - K. Hagiwara, D. Haidt, and S. Matsumoto, Eur. Phys. J. C2, 95 (1998).
- I. Maksymyk, C.P. Burgess, and D. London, Phys. Rev. **D50**, 529 (1994);
 - C.P. Burgess et al., Phys. Lett. **B326**, 276 (1994).
- K. Lane, presented at the 27th International Conference on High Energy Physics (ICHEP 94) (Glasgow, 1994).
- .28. R. Sundrum and S.D.H. Hsu, Nucl. Phys. **B391**, 127 (1993);
 - R. Sundrum, Nucl. Phys. **B395**, 60 (1993);
 - M. Luty and R. Sundrum, Phys. Rev. Lett. 70, 529 (1993);
 - T. Appelquist and J. Terning, Phys. Lett. **B315**, 139 (1993);
 - E. Gates and J. Terning, Phys. Rev. Lett. 67, 1840 (1991).

- H. Georgi, Nucl. Phys. B363, 301 (1991);
 M.J. Dugan and L. Randall, Phys. Lett. B264, 154 (1991).
- 130. R. Barbieri et al., Nucl. Phys. B341, 309 (1990).
- 131. For a review, see D. London, p. 951 of Ref. 3.
- 132. P. Langacker, M. Luo, and A.K. Mann, Rev. Mod. Phys. 64, 87 (1992);
 M. Luo, p. 977 of Ref. 3.
- 133. F.S. Merritt et al., p. 19 of Particle Physics: Perspectives and Opportunities: Report of the DPF Committee on Long Term Planning, ed. R. Peccei et al. (World Scientific, Singapore, 1995).
- R.S. Chivukula, E.H. Simmons, and J. Terning, Phys. Lett. B331, 383 (1994).
- 135. J. Ellis, G.L. Fogli, and E. Lisi, Phys. Lett. B343, 282 (1995).
- G.L. Kane, R.G. Stuart, and J.D. Wells, Phys. Lett. **B354**, 350 (1995);
 - X. Wang, J.L. Lopez, and D.V. Nanopoulos, Phys. Rev. **D52**, 4116 (1995);
 - P.H. Chankowski and S. Pokorski, Phys. Lett. B366, 188 (1996).
- M. Masip and A. Pomarol, Phys. Rev. D60, 096005 (1999) hep-ph/9902467;
 - K. Cheung, Phys. Lett. **B460**, 383 (1999);
 - T.G. Rizzo and J.D. Wells, Phys. Rev. **D61**, 016007 (2000) hep-ph/9906234;
 - A. Strumia, Phys. Lett. **B466**, 107 (1999) hep-ph/9906266;
 - R. Casalbuoni et al., Phys. Lett. **B462**, 48 (1999) hep-ph/9907355;
 - C.D. Carone, Phys. Rev. D61, 015008 (2000) hep-ph/9907362;
 - A. Ioannisian and A. Pilaftsis, hep-ph/9907522.

- G. Altarelli, R. Barbieri, and S. Jadach, Nucl. Phys. B369, 3 (1992) and B376, 444(E) (1992).
- 139. A. De Rújula et al., Nucl. Phys. B384, 3 (1992).
- 140. K. Hagiwara et al., Phys. Rev. D48, 2182 (1993).
- 141. C.P. Burgess and D. London, Phys. Rev. D48, 4337 (1993).
- 142. S. Chaudhuri et al., Nucl. Phys. **B456**, 89 (1995);
 - G. Cleaver et al., Phys. Rev. **D59**, 055005 (1999).
- 143. J. Erler and P. Langacker, Phys. Lett. **B456**, 68 (1999).
- R. Casalbuoni, S. De Curtis, D. Dominici, and R. Gatto, Phys. Lett. **B460**, 135 (1999);
 - J.L. Rosner, Phys. Rev. D61, 016006 (2000);
 - J. Erler and P. Langacker, Phys. Rev. Lett. 84, 212 (2000).

11. THE CABIBBO-KOBAYASHI-MASKAWA QUARK-MIXING MATRIX

Revised 2000 by F.J. Gilman (Carnegie-Mellon University), K. Kleinknecht and B. Renk (Johannes-Gutenberg Universität Mainz).

In the Standard Model with $SU(2) \times U(1)$ as the gauge group of electroweak interactions, both the quarks and leptons are assigned to be left-handed doublets and right-handed singlets. The quark mass eigenstates are not the same as the weak eigenstates, and the matrix relating these bases was defined for six quarks and given an explicit parametrization by Kobayashi and Maskawa [1] in 1973. It generalizes the four-quark case, where the matrix is parametrized by a single angle, the Cabibbo angle [2].

By convention, the mixing is often expressed in terms of a 3×3 unitary matrix V operating on the charge -e/3 quark mass eigenstates (d, s, and b):

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} . \tag{11.1}$$

The values of individual matrix elements can in principle all be determined from weak decays of the relevant quarks, or, in some cases, from deep inelastic neutrino scattering. Using the constraints discussed below together with unitarity, and assuming only three generations, the 90% confidence limits on the magnitude of the elements of the complete matrix are

$$\begin{pmatrix} 0.9742 \text{ to } 0.9757 & 0.219 & \text{to } 0.226 & 0.002 & \text{to } 0.005 \\ 0.219 & \text{to } 0.225 & 0.9734 & \text{to } 0.9749 & 0.037 & \text{to } 0.043 \\ 0.004 & \text{to } 0.014 & 0.035 & \text{to } 0.043 & 0.9990 & \text{to } 0.9993 \end{pmatrix} . (11.2)$$

The ranges shown are for the individual matrix elements. The constraints of unitarity connect different elements, so choosing a specific value for one element restricts the range of others.

There are several parametrizations of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We advocate a "standard" parametrization [3] of V that utilizes angles θ_{12} , θ_{23} , θ_{13} , and a phase, δ_{12}

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix},$$

$$(11.3)$$

with $c_{ij}=\cos\theta_{ij}$ and $s_{ij}=\sin\theta_{ij}$ for the "generation" labels i,j=1,2,3. This has distinct advantages of interpretation, for the rotation angles are defined and labelled in a way that relates to the mixing of two specific generations and if one of these angles vanishes, so does the mixing between those two generations; in the limit $\theta_{23}=\theta_{13}=0$ the third generation decouples, and the situation reduces to the usual Cabibbo mixing of the first two generations with θ_{12} identified with the Cabibbo angle [2]. The real angles $\theta_{12},\,\theta_{23},\,\theta_{13}$ can all be made to lie in the first quadrant by an appropriate redefinition of quark field phases.

The matrix elements in the first row and third column, which can be directly measured in decay processes, are all of a simple form, and, as c_{13} is known to deviate from unity only in the sixth decimal place, $V_{ud}=c_{12},\,V_{us}=s_{12},\,V_{ub}=s_{13}\,\,e^{-i\delta_{13}},\,V_{cb}=s_{23},\,$ and $V_{tb}=c_{23}$ to an excellent approximation. The phase δ_{13} lies in the range $0\leq\delta_{13}<2\pi,$ with nonzero values generally breaking CP invariance for the weak interactions. The generalization to the n generation case contains n(n-1)/2 angles and (n-1)(n-2)/2 phases. The range of matrix elements in Eq. (11.2) corresponds to 90% CL limits on the sines of the angles of $s_{12}=0.219$ to $0.226,s_{23}=0.037$ to 0.043, and $s_{13}=0.002$ to 0.005.

Kobayashi and Maskawa [1] originally chose a parametrization involving the four angles θ_1 , θ_2 , θ_3 , and δ :

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} c_1 & -s_1 c_3 & -s_1 s_3 \\ s_1 c_2 & c_1 c_2 c_3 -s_2 s_3 e^{i\delta} & c_1 c_2 s_3 + s_2 c_3 e^{i\delta} \\ s_1 s_2 & c_1 s_2 c_3 + c_2 s_3 e^{i\delta} & c_1 s_2 s_3 - c_2 c_3 e^{i\delta} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} , \qquad (11.4)$$

where $c_i = \cos\theta_i$ and $s_i = \sin\theta_i$ for i=1,2,3. In the limit $\theta_2 = \theta_3 = 0$, this reduces to the usual Cabibbo mixing with θ_1 identified (up to a sign) with the Cabibbo angle [2]. Several different forms of the Kobayashi-Maskawa parametrization are found in the literature. Since all these parametrizations are referred to as "the" Kobayashi-Maskawa form, some care about which one is being used is needed when the quadrant in which δ lies is under discussion.

A popular approximation that emphasizes the hierarchy in the size of the angles, $s_{12} \gg s_{23} \gg s_{13}$, is due to Wolfenstein [4], where one sets $\lambda \equiv s_{12}$, the sine of the Cabibbo angle, and then writes the other elements in terms of powers of λ :

$$V \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} . \tag{11.5}$$

with A, ρ , and η real numbers that were intended to be of order unity.

More recently, another parametrization has been advocated [5]. It arises in many theories of quark masses and is particularly useful where one builds models in which initially $m_u=m_d=0$ and there is no nontrivial phase in the CKM matrix. In this parametrization [5] no phases occur in the third row or third column of the CKM matrix, so that the CP-violating phase only occurs in the CKM matrix elements connecting first and second generation quarks. Consequently, the connection between measurements of CP-violating effects for B mesons and single CKM parameters is less obvious than in the standard parametrization.

No physics can depend on which of the above parametrizations (or any other) is used, as long as a single one is used consistently and care is taken to be sure that no other choice of phases is in conflict.

Our present knowledge of the matrix elements comes from the following sources:

(1)| V_{ud} |: Analyses have been performed comparing nuclear beta decays that proceed through a vector current to muon decay. Radiative corrections are essential to extracting the value of the matrix element. They already include [6] effects of order $Z\alpha^2$, and most of the theoretical argument centers on the nuclear mismatch and structure-dependent radiative corrections [7,8]. New data have been obtained on superallowed $0^+ \to 0^+$ beta decays [9].

Taking the complete data set, a value of $|V_{ud}|=0.9740\pm0.0005$ has been obtained [10]. It has been argued [11] that the change in charge-symmetry-violation for quarks inside nucleons that are in nuclear matter results in an additional change in the predicted decay rate by 0.075 to 0.2%, leading to a systematic underestimate of $|V_{ud}|$. This reasoning has been used [12] to explain quantitatively the binding energy differences of the valence protons and neutrons of mirror nuclei. While it can be argued [10] that there may be double-counting of corrections, until this is settled, we take this correction as an additional uncertainty to obtain a value of $|V_{ud}|=0.9740\pm0.0010$.

The theoretical uncertainties in extracting a value of $|V_{ud}|$ from neutron decays are significantly smaller than for decays of mirror nuclei, but the value depends on both the value of g_A/g_V and the neutron lifetime. Experimental progress has been made on the former quantity using very highly polarized cold neutrons together with improved detectors. Averaging over recent experiments [13] gives $g_A/g_V = -1.2715 \pm 0.0021$ and results in $|V_{ud}| = 0.9728 \pm 0.0012$ from neutron decay. Since most of the contributions to the errors in these two determinations of $|V_{ud}|$ are independent, we average them to obtain

$$|V_{ud}| = 0.9735 \pm 0.0008 . (11.6)$$

(2) $|V_{us}|$: Analysis of K_{e3} decays yields [14]

$$|V_{us}| = 0.2196 \pm 0.0023 \ . \tag{11.7}$$

With isospin violation taken into account in K^+ and K^0 decays, the extracted values of $|V_{us}|$ are in agreement at the 1% level.

A reanalysis [8] obtains essentially the same value, but quotes a somewhat smaller error, which is only statistical. The analysis [15] of hyperon decay data has larger theoretical uncertainties because of first order SU(3) symmetry breaking effects in the axial-vector couplings. This has been redone incorporating second order SU(3) symmetry breaking corrections in models [16] applied to the WA2 data [17] to give a value of $|V_{us}| = 0.2176 \pm 0.0026$, which is consistent with Eq. (11.7) using the "best-fit" model. Since the values obtained in the models differ outside the errors and generally do not give good fits, we retain the value in Eq. (11.7) for $|V_{us}|$.

(3)| V_{cd} |: The magnitude of | V_{cd} | may be deduced from neutrino and antineutrino production of charm off valence d quarks. The dimuon production cross sections of the CDHS group [18] yield $\overline{B}_c \, |V_{cd}|^2 = 0.41 \pm 0.07 \times 10^{-2}$, where \overline{B}_c is the semileptonic branching fraction of the charmed hadrons produced. The corresponding value from the more recent CCFR Tevatron experiment [19], where a next-to-leading-order QCD analysis has been carried out, is $0.534 \pm 0.021^{+0.025}_{-0.051} \times 10^{-2}$, where the last error is from the scale uncertainty. Assuming a similar scale error for the CDHS result and averaging these two results gives $0.49 \pm 0.05 \times 10^{-2}$. Supplementing this with data [20] on the mix of charmed particle species produced by neutrinos and PDG values for their semileptonic branching fractions (to give [19] $\overline{B}_c = 0.099 \pm 0.012$) then yields

$$|V_{cd}| = 0.224 \pm 0.016 \ . \tag{11.8}$$

(4) $|V_{cs}|$: Values of $|V_{cs}|$ from neutrino production of charm are dependent on assumptions about the strange-quark density in the parton sea. The most conservative assumption, that the strange-quark sea does not exceed the value corresponding to an SU(3)-symmetric sea, leads to a lower bound [18], $|V_{cs}| > 0.59$. It is more advantageous to proceed analogously to the method used for extracting $|V_{us}|$ from K_{e3} decay; namely, we compare the experimental value for the width of D_{e3} decay with the expression [21] that follows from the standard weak interaction amplitude:

$$\Gamma(D \to \overline{K}e^+\nu_e) = |f_+^D(0)|^2 |V_{cs}|^2 (1.54 \times 10^{11} \text{ s}^{-1}).$$
 (11.9)

Here $f_+^D(q^2)$, with $q=p_D-p_K$, is the form factor relevant to D_{e3} decay; its variation has been taken into account with the parametrization $f_+^D(t)/f_+^D(0)=M^2/(M^2-t)$ and $M=2.1~{\rm GeV}/c^2$, a form and mass consistent with direct measurements [22]. Combining data on branching fractions for D_{e3} decays with accurate values for the D lifetimes [22] yields a value of $(0.818\pm0.041)\times10^{11}~{\rm s}^{-1}$ for $\Gamma(D\to \overline{K}e^+\nu_e)$. Therefore

$$|f_{+}^{D}(0)|^{2} |V_{cs}|^{2} = 0.531 \pm 0.027$$
 (11.10)

A very conservative assumption is that $|f_{+}^{D}(0)| < 1$, from which it follows that $|V_{cs}| > 0.62$. Calculations of the form factor either performed [23,24] directly at $q^2 = 0$, or done [25] at the maximum value of $q^2 = (m_D - m_K)^2$ and interpreted at $q^2 = 0$ using the measured q^2 dependence, give the value $f_{+}^{D}(0) = 0.7 \pm 0.1$. It follows that

$$|V_{cs}| = 1.04 \pm 0.16 . (11.11)$$

Recent measurements [26] of $|V_{cs}|$ in charmed-tagged W decays give a consistent result of $|V_{cs}|=0.97\pm0.09$ (stat.) ±0.07 (syst.). The constraint of unitarity when there are only three generations gives a much tighter bound (see below).

(5) $|V_{cb}|$: The heavy quark effective theory [27] (HQET) provides a nearly model-independent treatment of B semileptonic decays to charmed mesons, assuming that both the b and c quarks are heavy enough for the theory to apply. Measurements of the exclusive decay $B \to \overline{D}^* \ell^+ \nu_\ell$ have been used primarily to extract a value of $|V_{cb}|$ using corrections based on the HQET. Exclusive $B \to \overline{D} \ell^+ \nu_\ell$ decays give a consistent but less precise result. Analysis of inclusive decays, where the measured semileptonic bottom hadron partial width is assumed to be that of a b quark decaying through the usual V-A interaction, depends on going from the quark to the hadron level. This is also understood within the context of the HQET [28], and the results for $|V_{cb}|$ are again consistent with those from exclusive decays. Combining all the LEP data on both exclusive and inclusive decays gives [29]

$$|V_{cb}| = 0.0402 \pm 0.0019 , \qquad (11.12)$$

which is consistent with the latest CLEO result [29] from exclusive and inclusive decays, $|V_{cb}| = 0.0404 \pm 0.0034$. The combination of large data samples and the HQET make this the third most accurately measured CKM matrix element, after $|V_{ud}|$ and $|V_{us}|$.

(6) $|V_{ub}|$: The decay $b \to u\ell\bar{\nu}$ and its charge conjugate can be observed from the semileptonic decay of B mesons produced on the $\Upsilon(4S)$ ($b\bar{b}$) resonance by measuring the lepton energy spectrum above the endpoint of the $b \to c\ell\bar{\nu}_\ell$ spectrum. There the $b \to u\ell\bar{\nu}_\ell$ decay rate can be obtained by subtracting the background from nonresonant e^+e^- reactions. This continuum background is determined from auxiliary measurements off the $\Upsilon(4S)$. The interpretation of the result in terms of $|V_{ub}/V_{cb}|$ depends fairly strongly on the theoretical model used to generate the lepton energy spectrum, especially for $b \to u$ transitions [24,25,30].

The LEP experiments ALEPH [31], L3 [32], and DELPHI [33] have presented new analyses that measure the $b \to u\ell\nu_\ell$ component in b decays at the Z^0 . Discrimination between u-like and c-like decays is based on up to 20 different event parameters which are sensitive to the mass of the quark of the final state. Using an extended range of the spectrum compared to the end-point analysis, this extraction of $|V_{ub}|$ is less sensitive to theoretical assumptions, but requires a detailed understanding of the decay $b \to c\ell\nu_\ell$.

The value of $|V_{ub}|$ can also be extracted from exclusive decays, such as $B \to \pi \ell \nu_\ell$ and $B \to \rho \ell \nu_\ell$, but there is an associated theoretical model dependence in the values of the matrix elements of the weak current between exclusive states. There has been a substantial increase in the data from CLEO for these exclusive decays [29], and the error on $|V_{ub}|$, arising primarily from the theoretical model dependence, is comparable to that obtained from inclusive decays. Enhanced awareness of the theoretical uncertainties and the difference between the results obtained from inclusive and exclusive analyses leads us to be even more conservative in setting the error bar than in previous reviews and we quote [34]

$$|V_{ub}/V_{cb}| = 0.090 \pm 0.025 . {(11.13)}$$

 $(7)V_{tb}$: The discovery of the top quark by the CDF and DØ collaborations utilized in part the semileptonic decays of t to b. One can set a (still rather crude) limit on the fraction of decays of the form $t \to b \ \ell^+ \ \nu_\ell$, as opposed to semileptonic t decays that involve s or d quarks, of [35]

$$\frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} = 0.99 \pm 0.29 . \tag{11.14}$$

(8) Hadronic W decays: The ratio of hadronic W decays to leptonic decays has been measured at LEP, with the result [36] that $\Sigma_{i,j}|V_{ij}|^2=2.032\pm0.032$, where the sum extends over i=u,c and j=d,s,b. With a three-generation CKM matrix, from unitarity this sum would be expected to have the value 2. Since five of the CKM matrix elements are well measured or contribute negligibly to the sum of the squares, this measurement can also be used as a precision measurement of $|V_{cs}|=0.9891\pm0.016$.

For most of these CKM matrix elements the principal error is no longer experimental, but rather theoretical. This arises from explicit model dependence in interpreting data or in the use of specific hadronic matrix elements to relate experimental measurements to weak transitions of quarks. This type of uncertainty arises even more strongly in extracting CKM matrix elements from loop diagrams, as discussed below. Such errors are not distributed in a Gaussian manner. We have taken the interpretation that a "1 σ " range in a theoretical error corresponds to a 68% likelihood that the true value lies within "±1 σ " of the central value. While we do use the central values with the quoted errors to make a best overall fit to the CKM matrix, the result should be taken with appropriate care, and we regard extending this to multi-standard-deviation determinations of allowed regions for CKM matrix elements as unfounded.

The results for three generations of quarks, from Eqs. (11.6)-(11.8) and Eqs. (11.11)-(11.14), plus unitarity, are summarized in the matrix in Eq. (11.2). The ranges given there are different from those given

112

in Eqs. (11.6)–(11.14) because of the inclusion of unitarity, but are consistent with the one-standard-deviation errors on the input matrix elements. Note in particular that the unitarity constraint has pushed $|V_{ud}|$ about one standard deviation higher than given in Eq. (11.6). If we had kept the error on $|V_{ud}|$ quoted by Hardy and Towner [10], we would have a violation of unitarity in the first row of the CKM matrix by about two standard deviations. While this bears watching and encourages another more accurate measurement of $|V_{us}|$, we do not see this presently as a major challenge to the validity of the three-generation Standard Model.

The data do not preclude there being more than three generations. Moreover, the entries deduced from unitarity might be altered when the CKM matrix is expanded to accommodate more generations. Conversely, the known entries restrict the possible values of additional elements if the matrix is expanded to account for additional generations. For example, unitarity and the known elements of the first row require that any additional element in the first row have a magnitude $|V_{ub'}| < 0.10$. When there are more than three generations, the allowed ranges (at 90% CL) of the matrix elements connecting the first three generations are

where we have used unitarity (or the expanded matrix) and the measurements of the magnitudes of the CKM matrix elements (including the constraint from hadronic W decays), resulting in the weak bound $|V_{tb}| > 0.07$.

Further information, particularly on CKM matrix elements involving the top quark, can be obtained from flavor-changing processes that occur at the one-loop level. We have not used this information in the discussion above since the derivation of values for V_{td} and V_{ts} in this manner from, for example, B mixing or $b \to s\gamma$, require an additional assumption that the top-quark loop, rather than new physics, gives the dominant contribution to the process in question. Conversely, the agreement of CKM matrix elements extracted from loop diagrams with the values based on direct measurements and three generations can be used to place restrictions on new physics.

The measured value [37] of $\Delta M_{B_d}=0.473\pm0.016~{\rm ps}^{-1}$ from $B_d^0-\overline{B}_d^0$ mixing can be turned in this way into information on $|V_{tb}^*V_{td}|,$ assuming that the dominant contribution to the mass difference arises from the matrix element between a B_d and a \overline{B}_d of an operator that corresponds to a box diagram with W bosons and top quarks as sides. Using the characteristic hadronic matrix element that then occurs, $\widehat{B}_{B_d}f_{B_d}^{\ 2}=(210\pm40~{\rm MeV})^2$ from lattice QCD calculations [38], which we regard as having become the most reliable source of such matrix elements, next-to-leading-order QCD corrections $(\eta_{\rm QCD}=0.55)$ [39], and the running top-quark mass, $\overline{m}_t(m_t)=166\pm5~{\rm GeV},$ as input,

$$|V_{tb}^* \cdot V_{td}| = 0.0083 \pm 0.0016$$
 , (11.16)

where the uncertainty comes primarily from that in the hadronic matrix elements, whose estimated errors are combined linearly.

In the ratio of $B_{\mathfrak{s}}$ to $B_{\mathfrak{d}}$ mass differences, many common factors (such as the QCD correction and dependence on the top-quark mass) cancel, and we have

$$\frac{\Delta M_{B_s}}{\Delta M_{B_d}} = \frac{M_{B_s}}{M_{B_d}} \, \frac{\widehat{B}_{B_s} f_{B_s}^2}{\widehat{B}_{B_d} f_{B_d}^2} \, \frac{|V_{tb}^* \cdot V_{ts}|^2}{|V_{tb}^* \cdot V_{td}|^2} \, . \tag{11.17}$$

With the experimentally measured masses [22], $\widehat{B}_{B_s}/\widehat{B}_{B_d}=(1.14\pm0.13)^2$ with quite conservative error bars from lattice QCD [38], and the improved experimental lower limit [37] at 95% CL of $\Delta M_{B_s} > 14.3~{\rm ps}^{-1}$,

$$|V_{td}|/|V_{ts}| < 0.24 \tag{11.18}$$

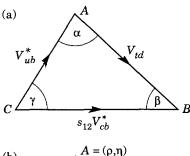
Since with three generations, $|V_{ts}| \approx |V_{cb}|$, this result converts to $|V_{td}| < 0.010$, which is a significant constraint by itself (see Fig. 11.2).

The CLEO observation [40] of $b\to s\gamma$ can be translated [41] similarly into $|V_{ts}|/|V_{cb}|=1.1\pm0.43$, where the large uncertainty is again dominantly theoretical. In $K^+\to\pi^+\nu\bar{\nu}$ there are significant contributions from loop diagrams involving both charm and top quarks. Experiment is just beginning to probe the level predicted in the Standard Model [42].

All these additional indirect constraints are consistent with the matrix elements obtained from the direct measurements plus unitarity, assuming three generations; with the recent results on B mixing and theoretical improvements in lattice calculations, adding the indirect constraints to the fit reduces the range allowed for $|V_{td}|$.

Direct and indirect information on the CKM matrix is neatly summarized in terms of "the unitarity triangle," one of six such triangles that correspond to the unitarity condition applied to two different rows or columns of the CKM matrix. Unitarity of the 3×3 CKM matrix applied to the first and third columns yields

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0 . (11.19)$$


The unitarity triangle is just a geometrical presentation of this equation in the complex plane [43]. We can always choose to orient the triangle so that V_{cd} V_{cb}^* lies along the horizontal; in the parametrization we have chosen, V_{cb} is real, and V_{cd} is real to a very good approximation in any case. Setting cosines of small angles to unity, Eq. (11.19) becomes

$$V_{ub}^{*} + V_{td} = s_{12} \ V_{cb}^{*} \ , \tag{11.20}$$

which is shown as the unitarity triangle in Fig. 11.1(a). Rescaling the triangle by a factor $[1/|s_{12}|V_{cb}|]$ so that the base is of unit length, the coordinates of the vertices become

$$A \left({\rm Re}(V_{ub})/|s_{12} \ V_{cb}| \ , \ - {\rm Im}(V_{ub})/|s_{12} \ V_{cb}| \right) \ , \ B(1,0) \ , \ C(0,0) \ . \eqno(11.21)$$

In the Wolfenstein parametrization [4], the coordinates of the vertex A of the unitarity triangle are simply (ρ, η) , as shown in Fig. 11.1(b). The angle $\gamma = \delta_{13}$.

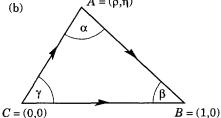


Figure 11.1: (a) Representation in the complex plane of the triangle formed by the CKM matrix elements V_{ub}^* , V_{td} , and s_{12} V_{cb}^* . (b) Rescaled triangle with vertices $A(\rho, \eta)$, B(1, 0), and C(0, 0).

CP-violating processes will involve the phase in the CKM matrix, assuming that the observed CP violation is solely related to a nonzero value of this phase. This allows additional constraints to be

brought to bear. More specifically, a necessary and sufficient condition for CP violation with three generations can be formulated in a parametrization-independent manner in terms of the nonvanishing of the determinant of the commutator of the mass matrices for the charge 2e/3 and charge -e/3 quarks [44]. CP-violating amplitudes or differences of rates are all proportional to the CKM factor in this quantity. This is the product of factors $s_{12}s_{13}s_{23}c_{12}c_{13}^2c_{23}s_{613}$ in the parametrization adopted above, and is $s_1^2s_2s_3c_1c_2c_3s_6$ in that of Ref. 1. With the approximation of setting cosines to unity, this is just twice the area of the unitarity triangle.

While hadronic matrix elements whose values are imprecisely known generally enter the calculations, the constraints from CP violation in the neutral kaon system, taken together with the restrictions on the magnitudes of the CKM matrix elements shown above, are tight enough to restrict considerably the range of angles and the phase of the CKM matrix. For example, the constraint obtained from the CP-violating parameter ϵ in the neutral K system corresponds to the vertex A of the unitarity triangle lying on a hyperbola for fixed values of the hadronic matrix elements [45,46]. In addition, following the initial evidence [47], it is now established that direct CP violation in the weak transition from a neutral K to two pions exists, i.e., that the parameter ϵ' is nonzero [48]. However, theoretical uncertainties in hadronic matrix elements of cancelling amplitudes presently preclude this measurement from giving a significant constraint on the unitarity triangle.

The constraints on the vertex of the unitarity triangle that follow from $|V_{ub}|$, B mixing, and ϵ are shown in Fig. 11.2. The improved limit in Eq. (11.18) that arises from the ratio of B_s to B_d mixing eliminates a significant region for the vertex A of the unitarity triangle, a region otherwise allowed by direct measurements of the CKM matrix elements, essentially limiting the vertex A to be in the first quadrant (ρ positive). The limit is not far from the value we would expect from the other information on the unitarity triangle. Thus a significant increase in experimental sensitivity to B_s mixing will lead either to an observation of mixing or an indication of physics beyond the Standard Model. This limit is more robust theoretically since it depends on ratios (rather than absolute values) of hadronic matrix elements and is independent of the top mass or QCD corrections (which cancel in the ratio).

Ultimately in the Standard Model, the CP-violating process $K_L \to \pi^0 \nu \bar{\nu}$ offers high precision in measuring the imaginary part of $V_{td} \cdot V_{ts}^*$, which, given V_{ts} , will yield the altitude of the unitarity triangle. However, the experimental upper limit is presently many orders of magnitude away from the requisite sensitivity.

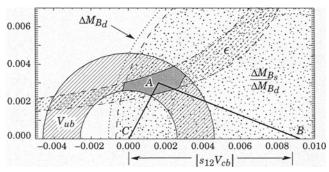


Figure 11.2: Constraints on the position of the vertex, A, of the unitarity triangle following from $|V_{ub}|$, B mixing, and ϵ . A possible unitarity triangle is shown with A in the preferred region.

For CP-violating asymmetries of neutral B mesons decaying to CP eigenstates, for certain final states arising from a single weak decay amplitude there is a direct relationship between the magnitude of the asymmetry in a given decay and $\sin 2\phi$, where $\phi = \alpha$, β , γ is an appropriate angle of the unitarity triangle [43]. The CDF

Collaboration has used the decay $B_d(\overline{B}_d) \to \psi K_S$ to obtain a first indication [49] of a nonvanishing asymmetry, corresponding to a value of $\sin 2\beta$:

$$\sin 2\beta = 0.79^{+0.41}_{-0.44} \ . \tag{11.22}$$

This is consistent with the other information in Fig. 11.2 including having the correct sign, which is positive at the 93% CL. It presages the data that will be obtained in the next several years on both the magnitudes and relative phases of the CKM matrix elements, permitting incisive tests of this part of the Standard Model. (See Sec. 12 on CP Violation and the review on "CP Violation in B decay—Standard Model Predictions" in the B Listings.)

References:

- M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- 2. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
- L.-L. Chau and W.-Y. Keung, Phys. Rev. Lett. 53, 1802 (1984);
 H. Harari and M. Leurer, Phys. Lett. B181, 123 (1986);
 H. Fritzsch and J. Plankl, Phys. Rev. D35, 1732 (1987);
- F.J. Botella and L.-L. Chao, Phys. Lett. **B168**, 97 (1986).
- 4. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
- C.D. Froggatt and H.B. Nielsen, Nucl. Phys. B147, 277 (1979);
 H. Fritzsch, Nucl. Phys. B155, 189 (1979);
 S. Dimopoulos, L.J. Hall, and S. Rabi, Phys. Rev. Lett. 68, 1984 (1992);
 - H. Fritzsch and Z.-Z. Xing, Phys. Lett. **B413**, 396 (1997).
- W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 56, 22 (1986);
 A. Sirlin and R. Zucchini, Phys. Rev. Lett. 57, 1994 (1986);
 W. Jaus and G. Rasche, Phys. Rev. D35, 3420 (1987);
 - A. Sirlin, Phys. Rev. **D35**, 3423 (1987).
- B.A. Brown and W.E. Ormand, Phys. Rev. Lett. 62, 866 (1989).
- F.C. Barker et al., Nucl. Phys. A540, 501 (1992);
 F.C. Barker et al., Nucl. Phys. A579, 62 (1994).
- 9. G. Savard et al., Phys. Rev. Lett. 74, 1521 (1995).
- J.C. Hardy and I.S. Towner, talk at WEIN98 (Santa Fe, June 14-21, 1998) and nucl-th/9809087.
- 11. K.P. Saito and A.W. Thomas, Phys. Lett. B363, 157 (1995).
- 12. K. Tsushima, K. Saito, and A.W. Thomas, nucl-th/9907101.
- H. Abele et al., Phys. Lett. B407, 212 (1997);
 - J. Reich et al., ILL Workshop, October 1998;
 - E. Bopp et al., Phys. Rev. Lett. 56, 919 (1986);
 - P. Liaud, Nucl. Phys. A612, 53 (1997).
- H. Leutwyler and M. Roos, Z. Phys. C25, 91 (1984). See also the work of R.E. Shrock and L.-L. Wang, Phys. Rev. Lett. 41, 1692 (1978).
- J.F. Donoghue, B.R. Holstein, and S.W. Klimt, Phys. Rev. **D35**, 934 (1987).
- R. Flores-Mendieta, A. García, and G. Sánchez-Colón, Phys. Rev. D54, 6855 (1996).
- 17. M. Bourquin et al., Z. Phys. C21, 27 (1983).
- 18. H. Abramowicz et al., Z. Phys. C15, 19 (1982).
- S.A. Rabinowitz et al., Phys. Rev. Lett. 70, 134 (1993);
 A.O. Bazarko et al., Z. Phys. C65, 189 (1995).
- 20. N. Ushida et al., Phys. Lett. B206, 375 (1988).
- F. Bletzacker, H.T. Nieh, and A. Soni, Phys. Rev. **D16**, 731 (1977).
- C. Caso et al., Review of Particle Physics, Eur. Phys. J. C3, 1 (1998).
- T.M. Aliev et al., Yad. Fiz. 40, 823 (1984) [Sov. J. Nucl. Phys. 40, 527 (1984)].
- 24. M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C29, 637 (1985).

- B. Grinstein, N. Isgur, and M.B. Wise, Phys. Rev. Lett. 56, 298 (1986);
 - B. Grinstein et al., Phys. Rev. D39, 799 (1989).
- P. Abreu et al., Phys. Lett. **B439**, 209 (1998);
 - R. Barate et al., Phys. Lett. B465, 349 (1999).
- N. Isgur and M.B. Wise, Phys. Lett. **B232**, 113 (1989) and Phys. Lett. **B237**, 527 (1990);
 - E.E. Eichten and B. Hill, Phys. Lett. **B234**, 511 (1990);M.E. Luke, Phys. Lett. **B252**, 447 (1990).
- 28. M. Neubert, to appear in *Heavy Flavors*, Second Edition, edited by A.J. Buras and M. Lindner (World Scientific, Singapore, 1997),
- R. Poling, plenary talk at the XIX International Symposium on Lepton and Photon Interactions at High Energies (Stanford, August 9-14, 1999).
- 30. G. Altarelli et al., Nucl. Phys. B208, 365 (1982).
- 31. R. Barate et al., Eur. Phys. J. C6, 555 (1999).

p. 239.

- 32. M. Acciarri et al., Phys. Lett. B436, 174 (1998).
- 33. P. Abreu et al., Phys. Lett. B478, 14 (2000).
- A. Falk, plenary talk at the XIX International Symposium on Lepton and Photon Interactions at High Energies (Stanford, August 9-14, 1999);
 - Z. Ligeti, invited talk at KAON'99 (Chicago, June 21-26, 1999), Fermilab preprint FERMILAB-Conf-99/213-T, and hep-ph/9908432.
- A.P. Heinson, invited talk at the Second International Conference on B Physics and CP Violation (Honolulu, March 24-27, 1997) and hep-ex/9707026.
- C. Sbarra, talk at the Rencontres de Moriond, Les Arcs, Savoie, France (March 11-18, 2000).
- G. Blaylock, plenary talk at the XIX International Conference on Lepton and Photon Interactions at High Energies (Stanford, August 9-14, 1999).
- S. Sharpe, plenary talk at the International Conference on High Energy Physics (Vancouver, July 23-29, 1998) and heplat/9811006.
- 39. A.J. Buras et al., Nucl. Phys. B347, 491 (1990).
- 40. M.S. Alam et al., Phys. Rev. Lett. 74, 2885 (1995).

- P.A. Griffin, M. Maslip, and M. McGuigan, Phys. Rev. D50, 5751 (1994).
- S. Adler et al., Phys. Rev. Lett. 79, 2204 (1997);
 G. Redlinger, talk at KAON99 (Chicago, June 21-26, 1999).
- L.-L. Chau and W.Y. Keung, Ref. 3;
 J.D. Bjorken, private communication and Phys. Rev. D39, 1396 (1982).
 - C. Jarlskog and R. Stora, Phys. Lett. **B208**, 268 (1988);
 - J.L. Rosner, A.I. Sanda, and M.P. Schmidt, in *Proceedings of the Workshop on High Sensitivity Beauty Physics at Fermilab*, Fermilab, November 11–14, 1987, edited by A.J. Slaughter, N. Lockyer, and M. Schmidt (Fermilab, Batavia, 1988), p. 165;
 - C. Hamzaoui, J.L. Rosner, and A.I. Sanda, ibid., p. 215.
- C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985) and Z. Phys. C29, 491 (1985).
- The relevant QCD corrections in leading order in F.J. Gilman and M.B. Wise, Phys. Lett. B93, 129 (1980) and Phys. Rev. D27, 1128 (1983), have been extended to next-to-leading-order by A. Buras, M. Jamin, and P.H. Weisz, Nucl. Phys. B347, 491 (1990);
 S. Herrlich and H. Nierste, Nucl. Phys. B419, 292 (1992) and Nucl. Phys. B476, 27 (1996).
- 46. The limiting curves in Fig. 11.2 arising from the value of $|\epsilon|$ correspond to values of the hadronic matrix element, expressed in terms of the renormalization group invariant parameter \widehat{B}_K , from 0.75 to 1.10, following the lattice QCD calculations reported in Sharpe, Ref. 38.
- 47. H. Burkhardt et al., Phys. Lett. B206, 169 (1988).
- G.D. Barr et al., Phys. Lett. B317, 233 (1993);
 L.K. Gibbons et al., Phys. Rev. Lett. 70, 1203 (1993);
 - A. Alavi-Harati et al., Phys. Rev. Lett. 83, 22 (1999);
 - M. Sozzi, talk at KAON99 (Chicago, June 23–26, 1999);
 - G. Barr, plenary talk at the XIX International Symposium on Lepton and Photon Interactions at High Energies (Stanford, August 9-14, 1999).
- M. Paulini, plenary talk at the XIX International Conference on Lepton and Photon Interactions at High Energies (Stanford, August 9-14, 1999);
 - CDF Collab: T. Affolder et al., hep-ex/9909003.

12. CP VIOLATION

Revised April 2000 by L. Wolfenstein (Carnegie-Mellon Univ.).

The symmetries C (particle-antiparticle interchange) and P (space inversion) hold for strong and electromagnetic interactions. After the discovery of large C and P violation in the weak interactions, it appeared that the product CP was a good symmetry. In 1964 CP violation was observed in K^0 decays at a level given by the parameter $\epsilon \approx 2.3 \times 10^{-3}$. Larger CP-violation effects are anticipated in B^0 decays.

12.1. CP violation in Kaon decay

CP violation has been observed in the semi-leptonic decays $K_L^0 \to \pi^\mp \ell^\pm \nu$ and in the nonleptonic decay $K_L^0 \to 2\pi$. The experimental numbers that have been measured are

$$\delta = \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}$$
(12.1a)

$$\eta_{+-} = A(K_L^0 \to \pi^+ \pi^-)/A(K_S^0 \to \pi^+ \pi^-)$$

$$= |\eta_{+-}| e^{i\phi_{+-}} \tag{12.1b}$$

$$\eta_{00} = A(K_L^0 \to \pi^0 \pi^0) / A(K_S^0 \to \pi^0 \pi^0)$$

$$= |\eta_{00}| e^{i\phi_{00}} . \qquad (12.1c)$$

CP violation can occur either in the $K^0-\overline{K}^0$ mixing or in the decay amplitudes. Assuming CPT invariance, the mass eigenstates of the $K^0-\overline{K}^0$ system can be written

$$|K_S\rangle = p|K^0\rangle + q|\overline{K}^0\rangle$$
, $|K_L\rangle = p|K^0\rangle - q|\overline{K}^0\rangle$. (12.2)

If CP invariance held, we would have q=p so that K_S would be CP even and K_L CP odd. (We define $|\overline{K}^0\rangle$ as CP $|K^0\rangle$). CP violation in $K^0-\overline{K}^0$ mixing is then given by the parameter $\widetilde{\epsilon}$ where

$$\frac{p}{q} = \frac{(1+\tilde{\epsilon})}{(1-\tilde{\epsilon})} \ . \tag{12.3}$$

CP violation can also occur in the decay amplitudes

$$A(K^0 \to \pi\pi(I)) = A_I e^{i\delta_I}$$
, $A(\overline{K}^0 \to \pi\pi(I)) = A_I^* e^{i\delta_I}$, (12.4)

where I is the isospin of $\pi\pi$, δ_I is the final-state phase shift, and A_I would be real if CP invariance held. The CP-violating observables are usually expressed in terms of ϵ and ϵ' defined by

$$\eta_{+-} = \epsilon + \epsilon', \qquad \eta_{00} = \epsilon - 2\epsilon', \qquad (12.5a)$$

One can then show [1]

$$\epsilon = \tilde{\epsilon} + i \, \left(\operatorname{Im} A_0 / \operatorname{Re} A_0 \right) \,, \tag{12.5b}$$

$$\begin{split} \sqrt{2}\epsilon' &= ie^{i(\delta_2 - \delta_0)} (\text{Re } A_2/\text{Re } A_0) \ \left(\text{Im } A_2/\text{Re } A_2 - \text{Im } A_0/\text{Re } A_0\right) \,, \\ \delta &= 2\text{Re } \epsilon/(1+|\epsilon|^2) \approx 2\text{Re } \epsilon \,. \end{split} \tag{12.5c}$$

In Eq. (12.5c) small corrections of order $\epsilon' \times \text{Re} (A_2/A_0)$ are neglected and Eq. (12.5d) assumes the $\Delta S = \Delta Q$ rule.

The quantities Im A_0 , Im A_2 , and Im ϵ depend on the choice of phase convention since one can change the phases of K^0 and \overline{K}^0 by a transformation of the strange quark state $|s\rangle \to |s\rangle e^{i\alpha}$; of course, observables are unchanged. It is possible by a choice of phase convention to set Im A_0 or Im A_2 or Im $\tilde{\epsilon}$ to zero, but none of these is zero with the usual phase conventions in the Standard Model. The choice Im $A_0=0$ is called the Wu-Yang phase convention [2] in which case $\epsilon=\tilde{\epsilon}$. The value of ϵ' is independent of phase convention and a nonzero value demonstrates CP violation in the decay amplitudes, referred to as direct CP violation. The possibility that direct CP violation is essentially zero and that CP violation occurs only in the mixing matrix was referred to as the superweak theory [3].

By applying CPT invariance and unitarity the phase of ϵ is given approximately by

$$\phi(\epsilon) \approx \tan^{-1} \frac{2(m_{K_L} - m_{K_S})}{\Gamma_{K_S} - \Gamma_{K_L}} = 43.49 \pm 0.08^{\circ}$$
 (12.6a)

while Eq. (12.5c) gives

$$\phi(\epsilon') = \delta_2 - \delta_0 + \frac{\pi}{2} \approx 48 \pm 4^{\circ} ,$$
 (12.6b)

where the numerical value is based on an analysis of $\pi-\pi$ scattering [4]. The approximation in Eq. (12.6a) depends on the assumption that direct CP violation is very small in all K^0 decays. This is expected to be good to a few tenths of a degree as indicated by the small value of ϵ' and of η_{+-0} , the CP violation parameter in the decay $K_S \to \pi^+\pi^-\pi^0$ [5], although limits on η_{000} are still poor. The relation in Eq. (12.6a) is exact in the superweak theory so this is sometimes called the superweak phase. An important point for the analysis is that $\cos[\phi(\epsilon') - \phi(\epsilon)] \simeq 1$. The consequence is that only two real quantities need be measured, the magnitude of ϵ and the value of (ϵ'/ϵ) including its sign. The measured quantity $|\eta_{00}/\eta_{+-}|^2$, which is very close to unity, is given to a good approximation by

$$|\eta_{00}/\eta_{+-}|^2 \approx 1 - 6\text{Re}\left(\epsilon'/\epsilon\right) \approx 1 - 6\epsilon'/\epsilon$$
 (12.7)

From the experimental measurements, one finds

$$\epsilon = (2.271 \pm 0.017) \times 10^{-3}$$
, (12.8a)

$$\operatorname{Re}(\epsilon'/\epsilon) \approx \epsilon'/\epsilon = (2.1 \pm 0.5) \times 10^{-3}$$
, (12.8b)

$$\phi_{+-} = 43.5 \pm 0.5^{\circ} , \qquad (12.8c)$$

$$\phi_{00} - \phi_{+-} = -0.1 \pm 0.8 , \qquad (12.8d)$$

$$\delta = (3.33 \pm 0.14) \times 10^{-3}$$
 (12.8e)

Direct CP violation, as indicated by ϵ'/ϵ , is expected in the Standard Model; most calcuations [6] give a somewhat smaller value, but they have a large uncertainty. The value of δ agrees with Eq. (12.5d). The values of ϕ_{+-} and $\phi_{00}-\phi_{+-}$ are used to set limits on CPT violation. [See Tests of Conservation Laws.]

In the Standard Model, CP violation arises as a result of a single phase entering the CKM matrix (Sec. 11). As a result in what is now the standard phase convention, two elements have large phases, $V_{ub} \sim e^{-i\gamma}$, $V_{td} \sim e^{-i\beta}$. Because these elements have small magnitudes and involve the third generation, CP violation in the K^0 system is small. On the other hand, large effects are expected in the B^0 system, which is a major motivation for B factories.

12.2. CP violation in B decay

CP violation in the B^0 system can be observed by comparing B^0 and \overline{B}^0 decays [7]. For a final CP eigenstate a, the decay rate has a time dependence given by

$$\begin{split} \Gamma_a \sim e^{-\Gamma t} \bigg(\big[1 + |\lambda_a|^2 \big] \, \pm \, \big[1 - |\lambda_a|^2 \big] \; \cos(\Delta M t) \\ \mp \, \mathrm{Im} \; \lambda_a \; \sin(\Delta M t) \bigg) \end{split} \tag{12.9}$$

where the top sign is for B^0 and the bottom for $\overline{B}{}^0$ and

$$\lambda_a = (q_B/p_B) \ \overline{A}_a/A_a \ . \tag{12.10}$$

The quantities p_B and q_B come from the analogue for B^0 of Eq. (12.2), and $A_a(\overline{A}_a)$ is the decay amplitude to state a for $B^0(\overline{B}^0)$. However, for B^0 the eigenstates are expected to have a negligible lifetime difference and are only distinguished by the mass difference ΔM ; also as a consequence $|q_B/p_B| \approx 1$ so that $\tilde{\epsilon}_B$ is purely imaginary.

If only one quark weak transition contributes to the decay, $|\overline{A}_a/A_a|=1$ so that $|\lambda_a|=1$ and the $\cos(\Delta Mt)$ term vanishes. In this case, the difference between B^0 and \overline{B}^0 decays is given by the $\sin(\Delta Mt)$ term with the asymmetry coefficient

$$a_{a} = \frac{\Gamma_{a}\left(t\right) - \overline{\Gamma}_{a}\left(t\right)}{\left(\Gamma_{a}\left(t\right) + \overline{\Gamma}_{a}\left(t\right)\right)\sin(\Delta M t)} = \eta_{a}\sin\left(2(\phi_{M} + \phi_{D})\right), \quad (12.11)$$

where $2\phi_M$ is the phase of the $B^0-\overline{B}^0$ mixing, ϕ_D is the weak phase of the decay transition, and η_a is the CP eigenvalue of a.

For $B^0(\overline B{}^0) \to \psi K_S$ from the transition $b \to c\overline c s$, one finds in the Standard Model that the asymmetry is given directly in terms of a CKM phase with no hadronic uncertainty:

$$a_{\psi K_S} = -\sin 2\beta \ . \tag{12.12}$$

From the constraints on the CKM matrix (Sec. 11) $\sin 2\beta$ is predicted to be between 0.3 and 0.9. A significantly different value could be a sign of new physics.

A second decay of interest is B^0 $(\overline B{}^0)\to \pi^+\pi^-$ from the transition $b\to u\overline u d$ with

$$a_{\pi\pi} = \sin 2(\beta + \gamma) \ . \tag{12.13}$$

While either of these asymmetries could be ascribed to $B^0-\overline{B}^0$ mixing $(q_B/p_B \text{ or } \widetilde{\epsilon}_B)$, the difference between the two asymmetries is evidence for direct CP violation. From Eq. (12.10) it is seen that this corresponds to a phase difference between $A_{\psi K_S}$ and $A_{\pi^+\pi^-}$. Thus this is analogous to ϵ' . In the standard phase convention, 2β in Eqs. (12.12) and (12.13) arises from $B^0-\overline{B}^0$ mixing whereas the γ in Eq. (12.13) comes from V_{ub} in the transition $b\to u\overline{u}d$. The result in Eq. (12.13) may have a sizeable correction due to what is called a penguin diagram. This is a one-loop graph producing $b\to d+$ gluon with a W and a quark, predominantly the t quark, in the loop. This leads to an amplitude proportional to $V_{tb}^*V_{td}$, which has a weak phase different from that of the original tree amplitude proportional to $V_{ub}V_{ud}^*$. There are several methods to approximately determine this correction using additional measurements [8].

CP violation in the decay amplitude is also revealed by the $\cos(\Delta Mt)$ term in Eq. (12.9) or by a difference in rates of B^+ and B^- to charge-conjugate states. These effects, however, require two contributing amplitudes to the decay (such as a tree amplitude plus a penguin) and also require final-state interaction phases. Predicted effects are very uncertain and are generally small [9].

In the case of the B_s system, the mass difference ΔM is much larger than for B^0 and has not yet been measured. As a result, it will be difficult to isolate the $\sin(\Delta Mt)$ term to measure asymmetries. Furthermore, in the Standard Model with the standard phase convention, ϕ_M is very small so that decays due to $b \to c \bar c s$, yielding $B_s \to \psi \eta'$, would have zero asymmetry. Decays due to $b \to u \bar u d$, yielding $B_s \to \rho^0 K_S$, would have an asymmetry $\sin 2\gamma$ in the tree approximation. The width difference $\Delta \Gamma$ is also expected to be much larger for B_s so that $\Delta \Gamma/\Gamma$ might be as large as 0.15. In this case, there might be a possibility of detecting CP violation as in the case of K^0 by observing the B_s states with different lifetimes decaying into the same CP eigenstate [10].

For further details, see the notes on CP violation in the K_L^0 , K_S^0 , and B^0 Particle Listings of this Review.

- B. Winstein and L. Wolfenstein, Rev. Mod. Phys. 65, 1113 (1993).
- 2. T.T. Wu and C.N. Yang, Phys. Rev. Lett. 13, 380 (1964).
- L. Wolfenstein, Phys. Rev. Lett. 13, 562 (1964);
 - L. Wolfenstein, Comm. Nucl. Part. Phys. 21, 275 (1994).
- 4. E. Chell and M.G. Olsson, Phys. Rev. D48, 4076 (1993).
- R. Adler et al., (CPLEAR Collaboration), Phys. Lett. B407, 193 (1997);
 - P. Bloch, to be published in *Proceedings of Workshop on K Physics* (Orsay 1996), ed. L. Iconomidou-Fayard, Edition Frontieres, Gif-sur-Yvette, France (1997) p. 307.
- G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996);
 - S. Bosch et al., Nucl. Phys. B565, 3 (2000);
 - S. Bertolini, M. Fabrichesi, and J.O. Egg, Rev. Mod. Phys. 72, 65 (2000).
- For a review, see Y. Nir and H. Quinn in B Decays (ed. S. Stone) World Scientific 1994, p. 362 or Ann. Rev. Nucl. and Part. Sci. 42, 211 (1992).
- M. Gronau and D. London, Phys. Rev. Lett. 65, 3361 (1990);
 J.P. Silva and L. Wolfenstein, Phys. Rev. D49, R1151 (1994);
 A.S. Dighe, M. Gronau, and J.L. Rosner, Phys. Rev. D54, 3309 (1996).
- 9. J.M. Gerard and W.S. Hou, Phys. Rev. D43, 2999 (1991).
- I. Dunietz Phys. Rev. **D52**, 3048 (1995);
 R. Fleischer and I. Dunietz, Phys. Rev. **D55**, 279 (1997).

13. QUARK MODEL

Revised April 2000 by C. Amsler (Univ. of Zürich) and C.G. Wohl (LBNL).

13.1. Quantum numbers of the quarks

Each quark has spin 1/2 and baryon number 1/3. Table 13.1 gives the additive quantum numbers (other than baryon number) of the three generations of quarks. Our convention is that the *flavor* of a quark (I_z , S, C, B, or T) has the same sign as its *charge*. With this convention, any flavor carried by a *charged* meson has the same sign as its charge; *e.g.*, the strangeness of the K^+ is +1, the bottomness of the B^+ is +1, and the charm and strangeness of the D_s^- are each -1.

By convention, each quark is assigned positive parity. Then each antiquark has negative parity.

Table 13.1: Additive quantum numbers of the quarks.

Property Quark	d	и	s	c	ь	t
Q - electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$
I_z – isospin z-component	$-\frac{1}{2}$	$+\frac{1}{2}$	0	0	0	0
S – strangeness	0	0	-1	0	0	0
C – charm	0	0	0	+1	0	0
B – bottomness	0	0	0	0	-1	0
T – topness	0	0	0	0	0	+1

13.2. Mesons: $q\overline{q}$ states

Nearly all known mesons are bound states of a quark q and an antiquark \overline{q}' (the flavors of q and q' may be different). If the orbital angular momentum of the $q\overline{q}'$ state is L, then the parity P is $(-1)^{L+1}$. A state $q\overline{q}$ of a quark and its own antiquark is also an eigenstate of charge conjugation, with $C=(-1)^{L+S}$, where the spin S is 0 or 1. The L=0 states are the pseudoscalars, $J^P=0^-$, and the vectors, $J^P=1^-$. Assignments for many of the known mesons are given in Table 13.2. States in the "normal" spin-parity series, $P=(-1)^J$, must, according to the above, have S=1 and hence CP=+1. Thus mesons with normal spin-parity and CP=-1 are forbidden in the $q\overline{q}'$ model. The $J^{PC}=0^{--}$ state is forbidden as well. Mesons with such J^{PC} may exist, but would lie outside the $q\overline{q}'$ model.

The nine possible $q\overline{q}'$ combinations containing $u,\ d,$ and s quarks group themselves into an octet and a singlet:

$$\mathbf{3} \otimes \mathbf{\overline{3}} = \mathbf{8} \oplus \mathbf{1} \tag{13.1}$$

States with the same IJ^P and additive quantum numbers can mix. (If they are eigenstates of charge conjugation, they must also have the same value of C.) Thus the I=0 member of the ground-state pseudoscalar octet mixes with the corresponding pseudoscalar singlet to produce the η and η' . These appear as members of a nonet, which is shown as the middle plane in Fig. 13.1(a). Similarly, the ground-state vector nonet appears as the middle plane in Fig. 13.1(b).

A fourth quark such as charm can be included in this scheme by extending the symmetry to SU(4), as shown in Fig. 13.1. Bottom extends the symmetry to SU(5); to draw the multiplets would require four dimensions.

For the pseudoscalar mesons, the Gell-Mann-Okubo formula is

$$m_{\eta}^2 = \frac{1}{3}(4m_K^2 - m_{\pi}^2) , \qquad (13.2)$$

assuming no octet-singlet mixing. However, the octet η_8 and singlet η_1 mix because of SU(3) breaking. In general, the mixing angle is

mass dependent and becomes complex for resonances of finite width. Neglecting this, the physical states η and η' are given in terms of a mixing angle θ_P by

$$\eta = \eta_8 \cos \theta_P - \eta_1 \sin \theta_P \tag{13.3a}$$

$$\eta' = \eta_8 \sin \theta_P + \eta_1 \cos \theta_P . \tag{13.3b}$$

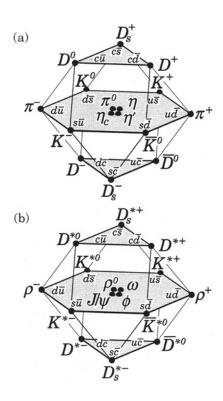


Figure 13.1: SU(4) 16-plets for the (a) pseudoscalar and (b) vector mesons made of u, d, s, and c quarks. The nonets of light mesons occupy the central planes, to which the $c\overline{c}$ states have been added. The neutral mesons at the centers of these planes are mixtures of $u\overline{u}$, $d\overline{d}$, $s\overline{s}$, and $c\overline{c}$ states.

These combinations diagonalize the mass-squared matrix

$$M^2 = \begin{pmatrix} M_{11}^2 & M_{18}^2 \\ M_{19}^2 & M_{99}^2 \end{pmatrix} , \qquad (13.4)$$

where $M_{88}^2 = \frac{1}{3} (4 m_K^2 - m_\pi^2).$ It follows that

$$\tan^2 \theta_P = \frac{M_{88}^2 - m_{\eta}^2}{m_{\pi'}^2 - M_{88}^2} \ .$$
 (13.5)

The sign of θ_P is meaningful in the quark model. If

$$\eta_1 = (u\overline{u} + d\overline{d} + s\overline{s})/\sqrt{3} \tag{13.6a}$$

$$\eta_8 = (u\overline{u} + d\overline{d} - 2s\overline{s})/\sqrt{6} , \qquad (13.6b)$$

then the matrix element M_{18}^2 , which is due mostly to the strange quark mass, is negative. From the relation

$$\tan \theta_P = \frac{M_{88}^2 - m_{\eta}^2}{M_{19}^2} , \qquad (13.7)$$

we find that $\theta_P < 0$. However, caution is suggested in the use of the η - η' mixing-angle formulas, as they are extremely sensitive to SU(3)

Table 13.2: Suggested $q\bar{q}$ quark-model assignments for most of the known mesons. Some assignments, especially for the 0^{++} multiplet and for some of the higher multiplets, are controversial. Mesons in bold face are included in the Meson Summary Table. Of the light mesons in the Summary Table, the $f_0(1500)$, $f_1(1510)$, $f_2(1950)$, $f_2(2300)$, $f_2(2340)$, and one of the two peaks in the $\eta(1440)$ entry are not in this table. Within the $q\bar{q}$ model, it is especially hard to find a place for the first two of these f mesons and for one of the $\eta(1440)$ peaks. See the "Note on Non- $q\bar{q}$ Mesons" at the end of the Meson Listings.

		$u\overline{d},u\overline{u},d\overline{d}$	$u\overline{u},d\overline{d},s\overline{s}$	cč	$bar{b}$	īu, īd	$c\overline{u}, c\overline{d}$	$c\overline{s}$	$\bar{b}u$, $\bar{b}d$	$\bar{b}s$	$\bar{b}c$
$N^{2S+1}L_J$	J^{PC}	I=1	I=0	I=0	I=0	I=1/2	I=1/2	I=0	I = 1/2	I=0	
1 ¹ S ₀	0-+	π	η,η'	η_c		K	D	D_s	В	B_s	B_c
1 ³ S ₁	1	ρ	ω, ϕ	$J/\psi(1S)$	Y (1S)	K*(892)	D*(2010)	D_s^*	B*	B_s^*	
1 ¹ P ₁	1+-	$b_1(1235)$	$h_1(1170), h_1(1380)$	$h_c(1P)$		K_{1B}^{\dagger}	$D_1(2420)$	$D_{s1}(2536)$			
1 ³ P ₀	0++	$a_0(1450)^*$	$f_0(1370)^*, f_0(1710)^*$	$\chi_{c0}(1P)$	$\chi_{b0}(1P)$	$K_0^*(1430)$					
1 ³ P ₁	1++	a ₁ (1260)	$f_1(1285), f_1(1420)$	$\chi_{c1}(1P)$	$\chi_{b1}(1P)$	K_{1A}^{\dagger}					
1 ³ P ₂	2++	$a_2(1320)$	$f_2(1270), f_2'(1525)$	$\chi_{c2}(1P)$	$\chi_{b2}(1P)$	$K_2^*(1430)$	$D_2^*(2460)$				
$1 ^1D_2$	2-+	$\pi_2(1670)$	$\eta_2(1645), \eta_2(1870)$			$K_2(1770)$					
1 ³ D ₁	1	ho(1700)	$\omega(1650)$	$\psi(3770)$		K*(1680) [‡]					
1 ³ D ₂	2					$K_2(1820)$					
1 ³ D ₃	3	$ ho_3(1690)$	$\omega_3(1670), \phi_3(1850)$			$K_3^*(1780)$					
1 ³ F ₄	4++	a4(2040)	$f_4(2050), f_4(2220)$			$K_4^*(2045)$					
2 ¹ S ₀	0-+	$\pi(1300)$	$\eta(1295),\eta(1440)$	$\eta_c(2S)$		K(1460)					
2 ³ S ₁	1	ho(1450)	$\omega(1420),\phi(1680)$	$\psi(2S)$	$\Upsilon(2S)$	K*(1410) [‡]					
2 ³ P ₂	2++		$f_2(1810), f_2(2010)$		$\chi_{b2}(2P)$	$K_2^*(1980)$					
3 ¹ S ₀	0-+	$\pi(1800)$	$\eta(1760)$			K(1830)					

^{*} See our scalar minireview in the Particle Listings. The candidates for the I=1 states are $a_0(980)$ and $a_0(1450)$, while for I=0 they are: $f_0(400-1200)$, $f_0(980)$, $f_0(1370)$, and $f_0(1710)$. The light scalars are problematic, since there may be two poles for one $q\bar{q}$ state and $a_0(980)$, $f_0(980)$ may be $K\overline{K}$ bound states.

If we allow $M_{88}^2 = \frac{1}{3}(4m_K^2 - m_\pi^2)$ $(1 + \Delta)$, the mixing angle is determined by

$$\tan^2 \theta_P = 0.0319(1 + 17\Delta) \tag{13.8}$$

$$\theta_P = -10.1^{\circ}(1 + 8.5\Delta) \tag{13.9}$$

to first order in Δ . A small breaking of the Gell-Mann-Okubo relation can produce a major modification of θ_P .

For the vector mesons, $\pi \to \rho$, $K \to K^*$, $\eta \to \phi$, and $\eta' \to \omega$, so that

$$\phi = \omega_8 \cos \theta_V - \omega_1 \sin \theta_V \tag{13.10}$$

$$\omega = \omega_8 \sin \theta_V + \omega_1 \cos \theta_V \ . \tag{13.11}$$

For "ideal" mixing, $\phi = s\overline{s}$, so $\tan\theta_V = 1/\sqrt{2}$ and $\theta_V = 35.3^\circ$. Experimentally, θ_V is near 35°, the sign being determined by a formula like that for $\tan\theta_P$. Following this procedure we find the mixing angles given in Table 13.3.

Table 13.3: Singlet-octet mixing angles for several nonets, neglecting possible mass dependence and imaginary parts. The sign conventions are given in the text. The values of $\theta_{\rm quad}$ are obtained from the equations in the text, while those for $\theta_{\rm lin}$ are obtained by replacing m^2 by m throughout. Of the two isosinglets in a nonet, the mostly octet one is listed first.

J^{PC}	Nonet members	$\theta_{ ext{quad}}$	$ heta_{ ext{lin}}$
0-+	π,K,η,η'	-10°	-23°
1	$ ho,K^*(892),\phi,\omega$	39°	36°
2++	$a_2(1320), K_2^*(1430), f_2'(1525), f_2(1270)$	28°	26°
3	$\rho_3(1690), K_3^*(1780), \phi_3(1850), \omega_3(1670)$	29°	28°

[†] The K_{1A} and K_{1B} are nearly equal (45°) mixes of the $K_1(1270)$ and $K_1(1400)$.

[‡]The $K^*(1410)$ could be replaced by the $K^*(1680)$ as the 2 3S_1 state.

In the quark model, the coupling of neutral mesons to two photons is proportional to $\sum_{i} Q_{i}^{2}$, where Q_{i} is the charge of the *i*-th quark. This provides an alternative characterization of mixing. For example, defining

$$\operatorname{Amp}\left[P \to \gamma(k_1) \ \gamma(k_2)\right] = M \epsilon^{\mu\nu\alpha\beta} \ \epsilon_{1\mu}^* \ k_{1\nu} \ \epsilon_{2\alpha}^* \ k_{2\beta} \ , \tag{13.12}$$

where $\epsilon_{i\lambda}$ is the λ component of the polarization vector of the i^{th} photon, one finds

$$\frac{M(\eta \to \gamma \gamma)}{M(\pi^0 \to \gamma \gamma)} = \frac{1}{\sqrt{3}} (\cos \theta_P - 2\sqrt{2} \sin \theta_P)
= \frac{1.73 \pm 0.18}{\sqrt{3}}$$

$$\frac{M(\eta' \to \gamma \gamma)}{M(\pi^0 \to \gamma \gamma)} = 2\sqrt{2/3} \left(\cos \theta_P + \frac{\sin \theta_P}{2\sqrt{2}}\right)
= 2\sqrt{2/3} (0.78 \pm 0.04)$$
(13.13b)

$$\frac{M(\eta' \to \gamma\gamma)}{M(\pi^0 \to \gamma\gamma)} = 2\sqrt{2/3} \left(\cos\theta_P + \frac{\sin\theta_P}{2\sqrt{2}}\right)$$
$$= 2\sqrt{2/3} \left(0.78 \pm 0.04\right), \tag{13.13b}$$

where the numbers with errors are experimental. These data favor $\theta_P \approx -20^\circ$, which is compatible with the quadratic mass mixing formula with about 12% SU(3) breaking in M_{88}^2 .

13.3. Baryons: qqq states

All the established baryons are apparently 3-quark (qqq) states, and each such state is an SU(3) color singlet, a completely antisymmetric state of the three possible colors. Since the quarks are fermions, the state function for any baryon must be antisymmetric under interchange of any two equal-mass quarks (up and down quarks in the limit of isospin symmetry). Thus the state function may be written as

$$|qqq\rangle_A = |\operatorname{color}\rangle_A \times |\operatorname{space}, \operatorname{spin}, \operatorname{flavor}\rangle_S,$$
 (13.14)

where the subscripts S and A indicate symmetry or antisymmetry under interchange of any two of the equal-mass quarks. Note the contrast with the state function for the three nucleons in ³H or ³He:

$$|NNN\rangle_A = |\operatorname{space}, \operatorname{spin}, \operatorname{isospin}\rangle_A$$
 . (13.15)

This difference has major implications for internal structure, magnetic moments, etc. (For a nice discussion, see Ref. 1.)

The "ordinary" baryons are made up of u, d, and s quarks. The three flavors imply an approximate flavor SU(3), which requires that baryons made of these quarks belong to the multiplets on the right side of

$$\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} = \mathbf{10}_S \oplus \mathbf{8}_M \oplus \mathbf{8}_M \oplus \mathbf{1}_A \tag{13.16}$$

(see Sec. 33, on "SU(n) Multiplets and Young Diagrams"). Here the subscripts indicate symmetric, mixed-symmetry, or antisymmetric states under interchange of any two quarks. The 1 is a uds state (Λ_1) and the octet contains a similar state (Λ_8) . If these have the same spin and parity they can mix. An example is the mainly octet D_{03} $\Lambda(1690)$ and mainly singlet D_{03} $\Lambda(1520)$. In the ground state multiplet, the SU(3) flavor singlet Λ is forbidden by Fermi statistics. The mixing formalism is the same as for η - η' or ϕ - ω (see above), except that for baryons the mass M instead of M^2 is used. Section 32, on "SU(3) Isoscalar Factors and Representation Matrices", shows how relative decay rates in, say, 10 -> 8 \otimes 8 decays may be calculated. A summary of results of fits to the observed baryon masses and decay rates for the best-known SU(3) multiplets is given in Appendix II of our 1982 edition [2].

The addition of the c quark to the light quarks extends the flavor symmetry to SU(4). Figures 13.2(a) and 13.2(b) show the (badly broken) SU(4) baryon multiplets that have as their bottom levels an SU(3) octet, such as the octet that includes the nucleon, or an SU(3) decuplet, such as the decuplet that includes the $\Delta(1232)$. All the particles in a given SU(4) multiplet have the same spin and parity. The charmed baryons are discussed in more detail in the "Note on Charmed Baryons" in the Particle Listings. The addition of a b quark extends the flavor symmetry to SU(5); it would require four dimensions to draw the multiplets.

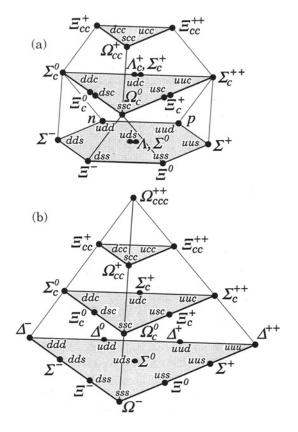


Figure 13.2: SU(4) multiplets of baryons made of u, d, s, and c quarks. (a) The 20-plet with an SU(3) octet. (b) The 20-plet with an SU(3) decuplet.

For the "ordinary" baryons (no c or b quark), flavor and spin may be combined in an approximate flavor-spin SU(6) in which the six basic states are $d\uparrow$, $d\downarrow$, ..., $s\downarrow$ (\uparrow , \downarrow = spin up, down). Then the baryons belong to the multiplets on the right side of

$$\mathbf{6} \otimes \mathbf{6} \otimes \mathbf{6} = \mathbf{56}_S \oplus \mathbf{70}_M \oplus \mathbf{70}_M \oplus \mathbf{20}_A . \tag{13.17}$$

These SU(6) multiplets decompose into flavor SU(3) multiplets as follows:

$$\mathbf{56} = {}^{4}\mathbf{10} \oplus {}^{2}\mathbf{8} \tag{13.18a}$$

$$\mathbf{70} = {}^{2}\mathbf{10} \oplus {}^{4}\mathbf{8} \oplus {}^{2}\mathbf{8} \oplus {}^{2}\mathbf{1} \tag{13.18b}$$

$$20 = {}^{2}8 \oplus {}^{4}1 , \qquad (13.18c)$$

where the superscript (2S+1) gives the net spin S of the quarks for each particle in the SU(3) multiplet. The $J^P = 1/2^+$ octet containing the nucleon and the $J^P = 3/2^+$ decuplet containing the $\Delta(1232)$ together make up the "ground-state" 56-plet in which the orbital angular momenta between the quark pairs are zero (so that the spatial part of the state function is trivially symmetric). The 70 and 20 require some excitation of the spatial part of the state function in order to make the overall state function symmetric. States with nonzero orbital angular momenta are classified in SU(6)&O(3) supermultiplets. Physical baryons with the same quantum numbers do not belong to a single supermultiplet, since SU(6) is broken by spin-dependent interactions, differences in quark masses, etc. Nevertheless, the SU(6)⊗O(3) basis provides a suitable framework for describing baryon state functions.

It is useful to classify the baryons into bands that have the same number N of quanta of excitation. Each band consists of a number of supermultiplets, specified by (D, L_N^P) , where D is the dimensionality of the SU(6) representation, L is the total quark orbital angular momentum, and P is the total parity. Supermultiplets contained in bands up to N = 12 are given in Ref. 3. The N = 0 band,

which contains the nucleon and $\Delta(1232)$, consists only of the $(56,0_0^+)$ supermultiplet. The N=1 band consists only of the $(70,1_1^-)$ multiplet and contains the negative-parity baryons with masses below about 1.9 GeV. The N=2 band contains five supermultiplets: $(56,0_2^+)$, $(70,0_2^+)$, $(56,2_2^+)$, $(70,2_2^+)$, and $(20,1_2^+)$. Baryons belonging to the $(20,1_2^+)$ supermultiplet are not ever likely to be observed, since a coupling from the ground-state baryons requires a two-quark excitation. Selection rules are similarly responsible for the fact that many other baryon resonances have not been observed [4].

In Table 13.4, quark-model assignments are given for many of the established baryons whose $SU(6)\otimes O(3)$ compositions are relatively unmixed. We note that the unestablished resonances $\varSigma(1480)$, $\varSigma(1560)$, $\varSigma(1580)$, $\varSigma(1770)$, and $\varXi(1620)$ in our Baryon Particle Listings are too low in mass to be accommodated in most quark models [4,5].

Table 13.4: Quark-model assignments for many of the known baryons in terms of a flavor-spin SU(6) basis. Only the dominant representation is listed. Assignments for some states, especially for the $\Lambda(1810)$, $\Lambda(2350)$, $\Xi(1820)$, and $\Xi(2030)$, are merely educated guesses. For assignments of the charmed baryons, see the "Note on Charmed Baryons" in the Particle Listings.

$\overline{J^P}$	(D,L_N^P)	S	Octet m	nembers		Singlets
1/2+	$(56,0_0^+)$	1/2 N(939)	A(1116)	$\Sigma(1193)$	Ξ(1318)	
$1/2^{+}$	$(56,0_2^+)$	1/2 N(1440)	$\Lambda(1600)$	$\varSigma(1660)$	$\Xi(?)$	
$1/2^{-}$	$(70,1_1^-)$	1/2 N(1535)	$\Lambda(1670)$	$\varSigma(1620)$	$\mathcal{\Xi}(?)$	$\Lambda(1405)$
$3/2^{-}$	$(70,1_1^-)$	1/2 N(1520)	$\Lambda(1690)$	$\varSigma(1670)$	$\mathcal{\Xi}(1820)$	$\Lambda(1520)$
$1/2^{-}$	$(70,1_1^-)$	3/2 N(1650)	$\Lambda(1800)$	$\Sigma(1750)$	$\Xi(?)$	
$3/2^{-}$	$(70,1_1^-)$	3/2 N(1700)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$5/2^{-}$	$(70,1_1^-)$	3/2 N(1675)	$\Lambda(1830)$	$\Sigma(1775)$	$\varXi(?)$	
$1/2^{+}$	$(70,0_2^+)$	1/2 N(1710)	$\Lambda(1810)$	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(?)$
$3/2^{+}$	$(56,2_2^+)$	1/2 N(1720)	$\Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
$5/2^{+}$	$\scriptscriptstyle{(56,2_2^+)}$	1/2 N(1680)	$\Lambda(1820)$	$\Sigma(1915)$	$\Xi(2030)$	
7/2-	$(70,3_3^-)$	1/2 N(2190)	$\Lambda(?)$	$\Sigma(?)$	$\varXi(?)$	$\Lambda(2100)$
$9/2^{-}$	$(70,3_3^-)$	3/2 N(2250)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$9/2^{+}$	$(56,4_4^+)$	1/2 N(2220)	A(2350)	$\Sigma(?)$	$\Xi(?)$	

Decumlet members

				Decupier	members	
3/2+	$(56,0_0^+)$	3/2	Δ (1232)	$\Sigma(1385)$	$\mathcal{E}(1530)$	$\Omega(1672)$
$1/2^{-}$	$(70,1_1^-)$	1/2	$\Delta(1620)$	$\varSigma(?)$	$\mathcal{\Xi}(?)$	$\Omega(?)$
$3/2^{-}$	$(70,1_1^-)$	1/2	$\Delta(1700)$	$\Sigma(?)$	$\mathcal{\Xi}(?)$	$\Omega(?)$
$5/2^{+}$	$(56,2_2^+)$	3/2	$\Delta(1905)$	$\varSigma(?)$	$\Xi(?)$	$\Omega(?)$
$7/2^{+}$	$\scriptscriptstyle{(56,2_2^+)}$	3/2	$\Delta(1950)$	$\varSigma(2030)$	$\Xi(?)$	$\Omega(?)$
11/2+	$(56,4_4^+)$	3/2	$\Delta(2420)$	$\Sigma(?)$	$\mathcal{\Xi}(?)$	$\Omega(?)$

The quark model for baryons is extensively reviewed in Ref. 6 and 7.

13.4. Dynamics

Many specific quark models exist, but most contain the same basic set of dynamical ingredients. These include:

- i) A confining interaction, which is generally spin-independent.
- ii) A spin-dependent interaction, modeled after the effects of gluon exchange in QCD. For example, in the S-wave states, there is a spin-spin hyperfine interaction of the form

$$H_{HF} = -\alpha_S M \sum_{i>j} (\overrightarrow{\sigma} \lambda_a)_i (\overrightarrow{\sigma} \lambda_a)_j , \qquad (13.19)$$

where M is a constant with units of energy, λ_a $(a=1,\cdots,8,)$ is the set of SU(3) unitary spin matrices, defined in Sec. 32, on "SU(3) Isoscalar Factors and Representation Matrices," and the sum runs over constituent quarks or antiquarks. Spin-orbit interactions, although allowed, seem to be small.

- iii) A strange quark mass somewhat larger than the up and down quark masses, in order to split the SU(3) multiplets.
- iv) In the case of isoscalar mesons, an interaction for mixing $q\overline{q}$ configurations of different flavors (e.g., $u\overline{u} \leftrightarrow d\overline{d} \leftrightarrow s\overline{s}$), in a manner which is generally chosen to be flavor independent.

These four ingredients provide the basic mechanisms that determine the hadron spectrum.

- F.E. Close, in Quarks and Nuclear Forces (Springer-Verlag, 1982), p. 56.
- 2. Particle Data Group, Phys. Lett. 111B (1982).
- 3. R.H. Dalitz and L.J. Reinders, in Hadron Structure as Known from Electromagnetic and Strong Interactions, Proceedings of the Hadron '77 Conference (Veda, 1979), p. 11.
- N. Isgur and G. Karl, Phys. Rev. **D18**, 4187 (1978); ibid. **D19**, 2653 (1979); ibid. **D20**, 1191 (1979);
 - K.-T. Chao, N. Isgur, and G. Karl, Phys. Rev. **D23**, 155 (1981).
- 5. C.P. Forsyth and R.E. Cutkosky, Z. Phys. C18, 219 (1983).
- A.J.G. Hey and R.L. Kelly, Phys. Reports 96, 71 (1983). Also see S. Gasiorowicz and J.L. Rosner, Am. J. Phys. 49, 954 (1981).
- 7. N. Isgur, Int. J. Mod. Phys. E1, 465 (1992);
 - G. Karl, Int. J. Mod. Phys. E1, 491 (1992).

14. EXPERIMENTAL TESTS OF GRAVITATIONAL THEORY

Revised October 1999 by T. Damour (IHES, Bures-sur-Yvette, France).

Einstein's General Relativity, the current "standard" theory of gravitation, describes gravity as a universal deformation of the Minkowski metric:

$$g_{\mu\nu}(x^{\lambda}) = \eta_{\mu\nu} + h_{\mu\nu}(x^{\lambda})$$
, where $\eta_{\mu\nu} = \text{diag}(-1, +1, +1, +1)$. (14.1)

Alternatively, it can be defined as the unique, consistent, local theory of a massless spin-2 field $h_{\mu\nu}$, whose source must then be the total, conserved energy-momentum tensor [1]. General Relativity is classically defined by two postulates. One postulate states that the Lagrangian density describing the propagation and self-interaction of the gravitational field is

$$\mathcal{L}_{\rm Ein}[g_{\mu\nu}] = \frac{c^4}{16\pi G_N} \sqrt{g} g^{\mu\nu} R_{\mu\nu}(g) , \qquad (14.2)$$

$$R_{\mu\nu}(g) = \partial_{\alpha}\Gamma^{\alpha}_{\mu\nu} - \partial_{\nu}\Gamma^{\alpha}_{\mu\alpha} + \Gamma^{\beta}_{\alpha\beta}\Gamma^{\alpha}_{\mu\nu} - \Gamma^{\beta}_{\nu\alpha}\Gamma^{\alpha}_{\mu\beta} , \qquad (14.3)$$

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\sigma} (\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\mu\sigma} - \partial_{\sigma} g_{\mu\nu}) , \qquad (14.4)$$

where G_N is Newton's constant, $g=-\det(g_{\mu\nu})$, and $g^{\mu\nu}$ is the matrix inverse of $g_{\mu\nu}$. A second postulate states that $g_{\mu\nu}$ couples universally, and minimally, to all the fields of the Standard Model by replacing everywhere the Minkowski metric $\eta_{\mu\nu}$. Schematically (suppressing matrix indices and labels for the various gauge fields and fermions and for the Higgs doublet),

$$\mathcal{L}_{\text{SM}}[\psi, A_{\mu}, H, g_{\mu\nu}] = -\frac{1}{4} \sum \sqrt{g} g^{\mu\alpha} g^{\nu\beta} F^{a}_{\mu\nu} F^{a}_{\alpha\beta} - \sum \sqrt{g} \overline{\psi} \gamma^{\mu} D_{\mu} \psi - \frac{1}{2} \sqrt{g} g^{\mu\nu} \overline{D_{\mu} H} D_{\nu} H - \sqrt{g} V(H) - \sum \lambda \sqrt{g} \overline{\psi} H \psi ,$$
 (14.5)

where $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$, and where the covariant derivative D_{μ} contains, besides the usual gauge field terms, a (spin dependent) gravitational contribution $\Gamma_{\mu}(x)$ [2]. From the total action $S_{\text{tot}}[g_{\mu\nu}, \psi, A_{\mu}, H] = c^{-1} \int d^4x (\mathcal{L}_{\text{Ein}} + \mathcal{L}_{\text{SM}})$ follow Einstein's field equations.

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G_N}{4} T_{\mu\nu} \ . \tag{14.6}$$

Here $R=g^{\mu\nu}R_{\mu\nu}$, $T_{\mu\nu}=g_{\mu\alpha}g_{\nu\beta}T^{\alpha\beta}$, and $T^{\mu\nu}=(2/\sqrt{g})\delta\mathcal{L}_{\rm SM}/\delta g_{\mu\nu}$ is the (symmetric) energy-momentum tensor of the Standard Model matter. The theory is invariant under arbitrary coordinate transformations: $x^{\prime\mu}=f^{\mu}(x^{\nu})$. To solve the field equations Eq. (14.6) one needs to fix this coordinate gauge freedom. E.g. the "harmonic gauge" (which is the analogue of the Lorentz gauge, $\partial_{\mu}A^{\mu}=0$, in electromagnetism) corresponds to imposing the condition $\partial_{\nu}(\sqrt{g}g^{\mu\nu})=0$

In this Review, we only consider the classical limit of gravitation (i.e. classical matter and classical gravity). Considering quantum matter in a classical gravitational background already poses interesting challenges, notably the possibility that the zero-point fluctuations of the matter fields generate a nonvanishing vacuum energy density $\rho_{\rm vac}$, corresponding to a term $-\sqrt{g} \rho_{\text{vac}}$ in \mathcal{L}_{SM} [3]. This is equivalent to adding a "cosmological constant" term $+\Lambda \, g_{\mu\nu}$ on the left-hand side of Einstein's equations Eq. (14.6), with $\Lambda = 8\pi G_N \rho_{\rm vac}/c^4$. Cosmological observations set upper bounds (as well as, possibly, lower bounds) on Λ (see "Astrophysical Constants," Sec. 2 of this Review) which, when translated in particle physics units, appear suspiciously small: $\rho_{\rm vac}\lesssim 10^{-48}~{\rm GeV}^4$. This bound shows that $\rho_{\rm vac}$, even if it is not strictly zero, has a negligible effect on the tests discussed below. Quantizing the gravitational field itself poses a very difficult challenge because of the perturbative non-renormalizability of Einstein's Lagrangian. Supergravity and superstring theory offer promising avenues toward solving this challenge.

14.1. Experimental tests of the coupling between matter and gravity

The universality of the coupling between $g_{\mu\nu}$ and the Standard Model matter postulated in Eq. (14.5) ("Equivalence Principle") has many observable consequences. First, it predicts that the outcome of a local non-gravitational experiment, referred to local standards, does not depend on where, when, and in which locally inertial frame, the experiment is performed. This means, for instance, that local experiments should neither feel the cosmological evolution of the universe (constancy of the "constants"), nor exhibit preferred directions in spacetime (isotropy of space, local Lorentz invariance). These predictions are consistent with many experiments and observations. The best limit on a possible time variation of the basic coupling constants concerns the fine-structure constant $\alpha_{\rm em}$ and has been obtained by analyzing a natural fission reactor phenomenon which took place at Oklo, Gabon, two billion years ago [4]

$$-6.7 \times 10^{-17} {\rm yr}^{-1} < \frac{\dot{\alpha}_{\rm em}}{\alpha_{\rm em}} < 5.0 \times 10^{-17} {\rm yr}^{-1} \ . \eqno(14.7)$$

The highest precision tests of the isotropy of space have been performed by looking to possible quadrupolar shifts of nuclear energy levels [5]. The (null) results can be interpreted as testing the fact that the various pieces in the matter Lagrangian Eq. (14.5) are indeed coupled to one and the same external metric $g_{\mu\nu}$ to the 10^{-27} level.

The universal coupling to $g_{\mu\nu}$ postulated in Eq. (14.5) implies that two (electrically neutral) test bodies dropped at the same location and with the same velocity in an external gravitational field fall in the same way, independently of their masses and compositions. The universality of the acceleration of free fall has been verified at the 10^{-12} level both for laboratory bodies [6],

$$\left(\frac{\Delta a}{a}\right)_{\rm BeCu} = (-1.9 \pm 2.5) \times 10^{-12} ,$$
 (14.8)

and for the gravitational accelerations of the Moon and the Earth toward the Sun [7],

$$\left(\frac{\Delta a}{a}\right)_{\text{MoonEarth}} = (-3.2 \pm 4.6) \times 10^{-13} \ .$$
 (14.9)

Finally, Eq. (14.5) also implies that two identically constructed clocks located at two different positions in a static external Newtonian potential $U(x) = \sum G_N m/r$ exhibit, when intercompared by means of electromagnetic signals, the (apparent) difference in clock rate,

$$\frac{\tau_1}{\tau_2} = \frac{\nu_2}{\nu_1} = 1 + \frac{1}{c^2} [U(x_1) - U(x_2)] + O\left(\frac{1}{c^4}\right) , \qquad (14.10)$$

independently of their nature and constitution. This universal gravitational redshift of clock rates has been verified at the 10^{-4} level by comparing a hydrogen-maser clock flying on a rocket up to an altitude $\sim 10,000$ km to a similar clock on the ground [8]. For more details and references on experimental gravity see, e.g., Refs. 9 and 10.

14.2. Tests of the dynamics of the gravitational field in the weak field regime

The effect on matter of one-graviton exchange, i.e. the interaction Lagrangian obtained when solving Einstein's field equations Eq. (14.6) written in, say, the harmonic gauge at first order in $h_{\mu\nu}$,

$$\Box h_{\mu\nu} = -\frac{16\pi G_N}{c^4} (T_{\mu\nu} - \frac{1}{2}T\eta_{\mu\nu}) + O(h^2) + O(hT) , \qquad (14.11)$$

reads $-(8\pi G_N/c^4)T^{\mu\nu}\Box^{-1}(T_{\mu\nu}-\frac{1}{2}T\eta_{\mu\nu})$. For a system of N moving point masses, with free Lagrangian $L^{(1)}=\sum_{A=1}^N-m_Ac^2\sqrt{1-v_A^2/c^2}$, this interaction, expanded to order v^2/c^2 , reads (with $r_{AB}\equiv |{\boldsymbol x}_A-{\boldsymbol x}_B|$, $n_{AB}\equiv ({\boldsymbol x}_A-{\boldsymbol x}_B)/r_{AB}$)

$$L^{(2)} = \frac{1}{2} \sum_{A \neq B} \frac{G_N m_A m_B}{r_{AB}} \left[1 + \frac{3}{2c^2} (v_A^2 + v_B^2) - \frac{7}{2c^2} (v_A \cdot v_B) - \frac{1}{2c^2} (n_{AB} \cdot v_A) (n_{AB} \cdot v_B) + O\left(\frac{1}{c^4}\right) \right].$$
(14.12)

The two-body interactions Eq. (14.12) exhibit v^2/c^2 corrections to Newton's 1/r potential induced by spin-2 exchange. Consistency at the "post-Newtonian" level $v^2/c^2 \sim G_N \, m/rc^2$ requires that one also considers the three-body interactions induced by some of the three-graviton vertices and other nonlinearities (terms $O(h^2)$ and O(hT) in Eq. (14.11)),

$$L^{(3)} = -\frac{1}{2} \sum_{B \neq A \neq C} \frac{G_N^2 \, m_A \, m_B \, m_C}{r_{AB} \, r_{AC} \, c^2} + O\left(\frac{1}{c^4}\right) . \tag{14.13}$$

All currently performed gravitational experiments in the solar system, including perihelion advances of planetary orbits, the bending and delay of electromagnetic signals passing near the Sun, and very accurate ranging data to the Moon obtained by laser echoes, are compatible with the post-Newtonian results Eqs. (14.11)–(14.13).

Similarly to what is done in discussions of precision electroweak experiments (see Section 10 in this Review), it is useful to quantify the significance of precision gravitational experiments by parameterizing plausible deviations from General Relativity. Endowing the spin-2 excitations with a (Pauli-Fierz) mass term is excluded both for phenomenological (discontinuities in observable predictions [11]) and theoretical (no energy lower bound [12]) reasons. Therefore, deviations from Einstein's pure spin-2 theory are defined by adding new, bosonic, ultra light or massless, macroscopically coupled fields. The addition of a vector (spin 1) field necessarily leads to violations of the universality of free fall and is constrained by "fifth force" experiments. See Refs. [6,13] for compilations of constraints. The addition of a scalar (spin 0) field is the most studied type of deviation from General Relativity, being motivated by many attempts to unify gravity with the Standard Model (Kaluza-Klein program, supergravity, string theory). The technically simplest class of tensor-scalar (spin 2

spin 0) theories consists in adding a massless scalar field φ coupled to the trace of the energy-momentum tensor $T=g_{\mu\nu}T^{\mu\nu}$ [14]. The most general such theory contains an arbitrary function $a(\varphi)$ of the scalar field, and can be defined by the Lagrangian

$$\mathcal{L}_{\text{tot}}[g_{\mu\nu}, \varphi, \psi, A_{\mu}, H] = \frac{c^4}{16\pi G} \sqrt{g} (R(g) - 2g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi) + \mathcal{L}_{\text{SM}}[\psi, A_{\mu}, H, \tilde{g}_{\mu\nu}], \qquad (14.14)$$

where G is a "bare" Newton constant, and where the Standard Model matter is coupled not to the "Einstein" (pure spin-2) metric $g_{\mu\nu}$, but to the conformally related ("Jordan-Fierz") metric $\widetilde{g}_{\mu\nu}=\exp(2a(\varphi))g_{\mu\nu}$. The scalar field equation $\Box_g\varphi=-(4\pi G/c^4)\alpha(\varphi)T$ displays $\alpha(\varphi)\equiv\partial a(\varphi)/\partial\varphi$ as the basic (field-dependent) coupling between φ and matter [15]. The one-parameter Jordan-Fierz-Brans-Dicke theory [14] is the special case $a(\varphi)=\alpha_0\varphi$ leading to a field-independent coupling $\alpha(\varphi)=\alpha_0$.

In the weak field, slow motion, limit appropriate to describing gravitational experiments in the solar system, the addition of φ modifies Einstein's predictions only through the appearance of two "post-Einstein" dimensionless parameters: $\overline{\gamma} = -2\alpha_0^2/(1+\alpha_0^2)$ and $\overline{\beta} \,=\, +\tfrac{1}{2}\beta_0\alpha_0^2/(1+\alpha_0^2)^2, \text{ where } \alpha_0 \,\equiv\, \alpha(\varphi_0), \; \beta_0 \,\equiv\, \partial\alpha(\varphi_0)/\partial\varphi_0, \; \varphi_0$ denoting the vacuum expectation value of φ . These parameters show up also naturally (in the form $\gamma_{\rm PPN}=1+\overline{\gamma},\;\beta_{\rm PPN}=1+\overline{\beta})$ in phenomenological discussions of possible deviations from General Relativity [16,9]. The parameter $\overline{\gamma}$ measures the admixture of spin 0 to Einstein's graviton, and contributes an extra term $+ \overline{\gamma} (v_A - v_B)^2 / c^2$ in the square brackets of the two-body Lagrangian Eq. (14.12). The parameter $\overline{\beta}$ modifies the three-body interaction Eq. (14.13) by a factor $1 + 2\overline{\beta}$. Moreover, the combination $\eta \equiv 4\overline{\beta} - \overline{\gamma}$ parameterizes the lowest order effect of the self-gravity of orbiting masses by modifying the Newtonian interaction energy terms in Eq. (14.12) into $G_{AB}m_Am_B/r_{AB}$, with a body-dependent gravitational "constant" $G_{AB}=G_N[1+\eta(E_A^{\rm grav}/m_Ac^2+E_B^{\rm grav}/m_Bc^2)+O(1/c^4)]$, where $G_N=G\exp[2a(\varphi_0)](1+\alpha_0^2)$ and where $E_A^{\rm grav}$ denotes the gravitational binding the state of G_A and G_A are the state of G_A are the state of G_A and G_A are the state of G_A are the state of G_A and G_A are the state of G_A are the state of G_A are the state of G_A and G_A are the state of G_A are the state of G_A are the state of G_A and G_A are the state of G_A are the state of G_A are the state of G_A and G_A are the state of G_A are the st binding energy of body A.

The best current limits on the post-Einstein parameters $\overline{\gamma}$ and $\overline{\beta}$ are (at the 68% confidence level): (i) $-3.8\times 10^{-4}<\overline{\gamma}<2.6\times 10^{-4}$ deduced from Very Long Baseline Interferometry (VLBI) measurements of the deflection of radio waves by the Sun [17], and (ii) $4\overline{\beta}-\overline{\gamma}=-0.0007\pm0.0010$ [7] from Lunar Laser Ranging measurements of a possible polarization of the Moon toward the Sun [18]. More stringent limits on $\overline{\gamma}$ are obtained in models (e.g., string-inspired ones [19]) where scalar couplings violate the Equivalence Principle.

14.3. Tests of the dynamics of the gravitational field in the radiative and/or strong field regimes

The discovery of pulsars (i.e. rotating neutron stars emitting a beam of radio noise) in gravitationally bound orbits [20,21] has opened up an entirely new testing ground for relativistic gravity, giving us an experimental handle on the regime of radiative and/or strong gravitational fields. In these systems, the finite velocity of propagation of the gravitational interaction between the pulsar and its companion generates damping-like terms at order $(v/c)^5$ in the equations of motion [22]. These damping forces are the local counterparts of the gravitational radiation emitted at infinity by the system ("gravitational radiation reaction"). They cause the binary orbit to shrink and its orbital period P_b to decrease. The remarkable stability of the pulsar clock has allowed Taylor and collaborators to measure the corresponding very small orbital period decay $\dot{P}_b \equiv dP_b/dt \sim (v/c)^5 \sim 10^{-12}$ [21,23], thereby giving us a direct experimental confirmation of the propagation properties of the gravitational field. In addition, the surface gravitational potential of a neutron star $h_{00}(R) \simeq 2Gm/c^2R \simeq 0.4$ being a factor $\sim 10^8$ higher than the surface potential of the Earth, and a mere factor 2.5 below the black hole limit $(h_{00} = 1)$, pulsar data are sensitive probes of the strong-gravitational-field regime.

Binary pulsar timing data record the times of arrival of successive electromagnetic pulses emitted by a pulsar orbiting around the center of mass of a binary system. After correcting for the Earth motion around the Sun and for the dispersion due to propagation in the interstellar plasma, the time of arrival of the Nth pulse t_N can be described by a generic, parameterized "timing formula [24]" whose functional form is common to the whole class of tensor-scalar gravitation theories:

$$t_N - t_0 = F[T_N(\nu_p, \dot{\nu}_p, \ddot{\nu}_p); \{p^K\}; \{p^{PK}\}].$$
 (14.15)

Here, T_N is the pulsar proper time corresponding to the Nth turn given by $N/2\pi = \nu_p T_N + \frac{1}{2}\dot{\nu}_p T_N^2 + \frac{1}{6}\ddot{\nu}_p T_N^3$ (with $\nu_p \equiv 1/P_p$ the spin frequency of the pulsar, etc.), $\{p^K\} = \{P_b, T_0, e, \omega_0, x\}$ is the set of "Keplerian" parameters (notably, orbital period P_b , eccentricity e and projected semi-major axis $x = a \sin i/c$), and $\{p^{PK}\} = \{k, \gamma_{\text{timing}}, \dot{P}_b, r, s, \delta_\theta, \dot{e}, \dot{x}\}$ denotes the set of (separately measurable) "post-Keplerian" parameters. Most important among these are: the fractional periastron advance per orbit $k \equiv \dot{\omega} P_b/2\pi$, a dimensionful time-dilation parameter γ_{timing} , the orbital period

derivative \dot{P}_b , and the "range" and "shape" parameters of the gravitational time delay caused by the companion, r and s.

Without assuming any specific theory of gravity, one can phenomenologically analyze the data from any binary pulsar by least-squares fitting the observed sequence of pulse arrival times to the timing formula Eq. (14.15). This fit yields the "measured" values of the parameters $\{\nu_p,\dot{\nu}_p,\ddot{\nu}_p\}$, $\{p^K\}$, $\{p^{FK}\}$. Now, each specific relativistic theory of gravity predicts that, for instance, k, $\gamma_{\text{timing}},\dot{P}_b$, r and s (to quote parameters that have been successfully measured from some binary pulsar data) are some theory-dependent functions of the Keplerian parameters and of the (unknown) masses m_1 , m_2 of the pulsar and its companion. For instance, in General Relativity, one finds (with $M\equiv m_1+m_2$, $n\equiv 2\pi/P_b$)

$$\begin{split} k^{\text{GR}}(m_1, m_2) &= 3(1 - e^2)^{-1} (G_N M n / c^3)^{2/3} \;, \\ \gamma_{\text{timing}}^{\text{GR}}(m_1, m_2) &= e n^{-1} (G_N M n / c^3)^{2/3} m_2 (m_1 + 2 m_2) / M^2 \;, \\ \dot{P}_b^{\text{GR}}(m_1, m_2) &= - \left(192 \pi / 5\right) (1 - e^2)^{-7/2} \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4\right) \\ &\qquad \qquad \times (G_N M n / c^3)^{5/3} m_1 m_2 / M^2 \;, \\ r(m_1, m_2) &= G_N m_2 / c^3 \;, \\ s(m_1, m_2) &= n x (G_N M n / c^3)^{-1/3} M / m_2 \;. \end{split}$$
(14.16)

In tensor-scalar theories, each of the functions $k^{\text{theory}}(m_1, m_2)$, $\gamma_{\text{timing}}^{\text{theory}}(m_1, m_2)$, $\dot{P}_b^{\text{theory}}(m_1, m_2)$, etc is modified by quasi-static strong field effects (associated with the self-gravities of the pulsar and its companion), while the particular function $\dot{P}_b^{\text{theory}}(m_1, m_2)$ is further modified by radiative effects (associated with the spin 0 propagator) [15,25].

Let us summarize the current experimental situation. In the first discovered binary pulsar PSR1913 + 16 [20,21], it has been possible to measure with accuracy the three post-Keplerian parameters k, $\gamma_{\rm timing}$ and \dot{P}_b . The three equations $k^{\rm measured} = k^{\rm theory}(m_1,m_2)$, $\gamma_{\rm timing}^{\rm measured} = \gamma_{\rm timing}^{\rm theory}(m_1,m_2)$, $\dot{P}_b^{\rm measured} = \dot{P}_b^{\rm theory}(m_1,m_2)$ determine, for each given theory, three curves in the two-dimensional mass plane. This yields one (combined radiative/strong-field) test of the specified theory, according to whether the three curves meet at one point, as they should. After subtracting a small ($\sim 10^{-14}$ level in $\dot{P}_b^{\rm obs} = (-2.422 \pm 0.006) \times 10^{-12}$), but significant, Newtonian perturbing effect caused by the Galaxy [26], one finds that General Relativity passes this $(k-\gamma_{\rm timing}-\dot{P}_b)_{1913+16}$ test with complete success at the 10^{-3} level [21,23]

$$\left[\frac{\dot{P}_b^{\rm obs} - \dot{P}_b^{\rm galactic}}{\dot{P}_b^{\rm GR}[k^{\rm obs}, \gamma_{\rm timing}^{\rm obs}]} \right]_{1913+16} = 1.0032 \pm 0.0023 (\rm obs) \pm 0.0026 (\rm galactic)$$

$$= 1.0032 \pm 0.0035 \ . \tag{14.17}$$

Here $\dot{P}_b^{\rm GR}[k^{\rm obs},\gamma_{\rm timing}^{\rm obs}]$ is the result of inserting in $\dot{P}_b^{\rm GR}(m_1,m_2)$ the values of the masses predicted by the two equations $k^{\rm obs}=k^{\rm GR}(m_1,m_2)$, $\gamma_{\rm timing}^{\rm obs}=\gamma_{\rm timing}^{\rm GR}(m_1,m_2)$. This experimental evidence for the reality of gravitational radiation damping forces at the 0.3% level is illustrated in Fig. 14.1, which shows actual orbital phase data (after subtraction of a linear drift).

The discovery of the binary pulsar PSR1534 + 12 [27] has allowed one to measure the four post-Keplerian parameters k, γ_{timing} , r and s, and thereby to obtain two (four observables minus two masses) tests of strong field gravity, without mixing of radiative effects [28]. General Relativity passes these tests within the measurement accuracy [28,21]. The most precise of these new, pure, strong-field tests is the one obtained by combining the measurements of k, γ , and s. Using the most recent data [29], one finds agreement at the 1% level:

$$\left[\frac{s^{\text{obs}}}{s^{\text{GR}}[k^{\text{obs}}, \gamma_{\text{timing}}^{\text{obs}}]}\right]_{1534\pm12} = 1.007 \pm 0.008 . \tag{14.18}$$

It has also been possible to measure the orbital period change of PSR1534 + 12. General Relativity passes the corresponding $(k - \gamma_{\text{timing}} - \dot{P}_b)_{1534+12}$ test with success at the 15% level [29].

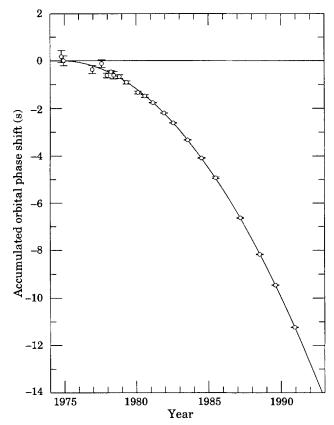


Figure 14.1: Accumulated shift of the times of periastron passage in the PSR 1913+16 system, relative to an assumed orbit with a constant period. The parabolic curve represents the general relativistic prediction, modified by Galactic effects, for orbital period decay from gravitational radiation damping forces. (Figure obtained with permission from Ref. 21.)

Several other binary pulsar systems, of a nonsymmetric type (nearly circular systems made of a neutron star and a white dwarf), can also be used to test relativistic gravity [30,31]. The constraints on tensor-scalar theories provided by three binary-pulsar "experiments" have been analyzed in [25] and shown to exclude a large portion of the parameter space allowed by solar-system tests. Recently, measurements of the pulse shape of PSR1913 + 16 [32] have detected a time variation of the pulse shape compatible with the prediction [33] that the general relativistic spin-orbit coupling should cause a secular change in the orientation of the pulsar beam with respect to the line of sight ("geodetic precession").

The tests considered above have examined the gravitational interaction on scales between a few centimeters and a few astronomical units. Millimeter scale tests of Newtonian gravity have been reported in Ref. 34. On the other hand, the general relativistic action on light and matter of an external gravitational field on a length scale ~ 100 kpc has been verified to $\sim 30\%$ in some gravitational lensing systems (see, e.g., Ref. 35). Some tests on cosmological scales are also available. In particular, Big Bang Nucleosynthesis (see Section 15 of this Review) has been used to set significant constraints on the variability of the gravitational "constant" [36].

14.4. Conclusions

All present experimental tests are compatible with the predictions of the current "standard" theory of gravitation: Einstein's General Relativity. The universality of the coupling between matter and gravity (Equivalence Principle) has been verified at the 10^{-12} level. Solar system experiments have tested the weak-field predictions of Einstein's theory at the 10^{-3} level. The propagation properties of relativistic gravity, as well as several of its strong-field aspects, have been verified at the 10^{-3} level in binary pulsar experiments. Several

important new developments in experimental gravitation are expected in the near future. The approved NASA Gravity Probe B mission (a space gyroscope experiment; due for launch within the next two years) will directly measure the gravitational spin-orbit and spin-spin couplings, thereby measuring the weak-field post-Einstein parameter $\overline{\gamma}$ to the 10^{-5} level. The planned NASA-ESA MiniSTEP mission (a satellite test of the Equivalence Principle) should test the universality of acceleration of free fall down to the 10^{-18} level (an improvement by six orders of magnitude). Laboratory experiments (motivated by recent theoretical ideas [37]) plan to test possible deviations from standard Newtonian gravity on sub-millimeter distance scales. Finally, the various kilometer-size laser interferometers under construction (notably LIGO in the USA and VIRGO in Europe) should, soon after 2002, directly detect gravitational waves arriving on Earth. As the sources of these waves are expected to be extremely relativistic objects with strong internal gravitational fields (e.g., coalescing binary black holes), their detection will allow one to experimentally probe gravity in highly dynamical circumstances.

- 1. S.N. Gupta, Phys. Rev. 96, 1683 (1954);
 - R.H. Kraichnan, Phys. Rev. 98, 1118 (1955);
 - R.P. Feynman, F.B. Morinigo, and W.G. Wagner, Feynman Lectures on Gravitation, edited by Brian Hatfield (Addison-Wesley, Reading, 1995);
 - S. Weinberg, Phys. Rev. 138, B988 (1965);
 - V.I. Ogievetsky and I.V. Polubarinov, Ann. Phys. (NY) 35, 167 (1965):
 - W. Wyss, Helv. Phys. Acta 38, 469 (1965);
 - S. Deser, Gen. Rel. Grav. 1, 9 (1970);
 - D.G. Boulware and S. Deser, Ann. Phys. (NY) 89, 193 (1975);
 - J. Fang and C. Fronsdal, J. Math. Phys. 20, 2264 (1979);
 - R.M. Wald, Phys. Rev. **D33**, 3613 (1986);
 - C. Cutler and R.M. Wald, Class. Quantum Grav. 4, 1267 (1987);
 - R.M. Wald, Class. Quantum Grav. 4, 1279 (1987).
- S. Weinberg, Gravitation and Cosmology (John Wiley, New York, 1972).
- 3. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
- 4. A.I. Shlyakhter, Nature 264, 340 (1976);
 - T. Damour and F. Dyson, Nucl. Phys. **B480**, 37 (1996).
- 5. J.D. Prestage et al., Phys. Rev. Lett. 54, 2387 (1985);
 - S.K. Lamoreaux et al., Phys. Rev. Lett. 57, 3125 (1986);
 - T.E. Chupp et al., Phys. Rev. Lett. 63, 1541 (1989).
- Y. Su et al., Phys. Rev. D50, 3614 (1994).
- J.O. Dickey et al., Science 265, 482 (1994);
 J.G. Williams, X.X. Newhall, and J.O. Dickey, Phys. Rev. D53, 6730 (1996).
- R.F.C. Vessot and M.W. Levine, Gen. Rel. Grav. 10, 181 (1978);
 R.F.C. Vessot et al., Phys. Rev. Lett. 45, 2081 (1980).
- C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993).
- T. Damour, in Gravitation and Quantizations, ed. B. Julia and J. Zinn-Justin, Les Houches, Session LVII (Elsevier, Amsterdam, 1995), pp. 1-61.

- 11. H. van Dam and M. Veltman, Nucl. Phys. B22, 397 (1970).
- 12. D.G. Boulware and S. Deser, Phys. Rev. D6, 3368 (1972).
- 13. E. Fischbach and C. Talmadge, Nature 356, 207 (1992).
- P. Jordan, Schwerkraft und Weltall (Vieweg, Braunschweig, 1955);
 M. Fierz, Helv. Phys. Acta 29, 128 (1956);
 - C. Brans and R.H. Dicke, Phys. Rev. 124, 925 (1961).
- T. Damour and G. Esposito-Farèse, Class. Quantum Grav. 9, 2093 (1992).
- A.S. Eddington, The Mathematical Theory of Relativity (Cambridge University Press, Cambridge, 1923);
 - K. Nordtvedt, Phys. Rev. 169, 1017 (1968);
 - C.M. Will, Astrophys. J. 163, 611 (1971).
- T.M. Eubanks et al., Bull. Am. Phys. Soc., Abstract # K 11.05 (1997).
- 18. K. Nordtvedt, Phys. Rev. 170, 1186 (1968).
- T.R. Taylor and G. Veneziano, Phys. Lett. B213, 450 (1988);
 T. Damour and A.M. Polyakov, Nucl. Phys. B423, 532 (1994).
- 20. R.A. Hulse, Rev. Mod. Phys. 66, 699 (1994).
- 21. J.H. Taylor, Rev. Mod. Phys. 66, 711 (1994).
- 22. T. Damour and N. Deruelle, Phys. Lett. A87, 81 (1981);
 - T. Damour, C.R. Acad. Sci. Paris 294, 1335 (1982).
- 23. J.H. Taylor, Class. Quantum Grav. 10, S167 (Supplement 1993).
- 24. T. Damour and J.H. Taylor, Phys. Rev. **D45**, 1840 (1992).
- 25. T. Damour and G. Esposito-Farèse, Phys. Rev. **D54**, 1474 (1996).
- 26. T. Damour and J.H. Taylor, Astrophys. J. 366, 501 (1991).
- 27. A. Wolszczan, Nature 350, 688 (1991).
- 28. J.H. Taylor et al., Nature 355, 132 (1992).
- I.H. Stairs et al., Astrophys. J. 505, 352 (1998);
 I.H. Stairs et al., astro-ph/9903289, to appear in the proceedings of "Gravitational Waves and Experimental Gravity," XXXIVth Rencontres de Moriond (January 23-30, 1999).
- 30. C.M. Will and H.W. Zaglauer, Astrophys. J. 346, 366 (1989).
- 31. T. Damour and G. Schäfer, Phys. Rev. Lett. 66, 2549 (1991).
- M. Kramer, Astrophys. J. 509, 856 (1998);
 J.H. Taylor, talk given at the XXXIVth Rencontres de Moriond (January 23-30, 1999).
- T. Damour and R. Ruffini, C. R. Acad. Sc. Paris 279, série A, 971 (1974);
 - B.M. Barker and R.F. O'Connell, Phys. Rev. D 12, 329 (1975).
- V.P. Mitrofanov and O.I. Ponomareva, Sov. Phys. JETP 67, 1963 (1988).
- 35. A. Dar, Nucl. Phys. (Proc. Supp.) B28, 321 (1992).
- J. Yang et al., Astrophys. J. 227, 697 (1979);
 T. Rothman and R. Matzner, Astrophys. J. 257, 450 (1982);
 F.S. Accetta, L.M. Krauss, and P. Romanelli, Phys. Lett. B248, 146 (1990).
- I. Antoniadis, S. Dimopoulos, and G. Dvali, Nucl. Phys. **B516**, 70 (1998);
 - N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. **B429**, 263 (1998).

15. THE POCKET COSMOLOGY

Written April 2000 by E.W. Kolb and M.S. Turner (The University of Chicago and Fermilab).

15.1. The Universe Observed

15.1.1. The Hubble expansion:

The most fundamental discovery of modern observational cosmology is the expansion of the Universe. The expansion is just a rescaling of the Universe: the proper distance between points at rest in the cosmic rest frame scales as the cosmic scale factor R(t) [sometimes denoted as a(t)]. The expansion rate is given by

$$H(t) \equiv \dot{R}(t)/R(t) . \tag{15.1}$$

In general, H is a function of time. The present value of the expansion rate, the Hubble constant H_0 , can be measured in a number of ways, all of which fundamentally involve dividing the recessional velocity of a distant galaxy by its distance. It is conventional to express H_0 in terms of a dimensionless constant h: $H_0 = 100 \ h\,\mathrm{km\,s^{-1}\,Mpc^{-1}}$. While the linear nature of the distance-redshift relation for nearby objects (Hubble's Law) is clear (see Fig. 15.1), until recently there was a systematic uncertainty of almost a factor of two in the value of h. Today, virtually all methods are now consistent with $h=0.65\pm0.05$ ($H_0=65\pm5\,\mathrm{km\,s^{-1}\,Mpc^{-1}}$), with a possible systematic error of about 10% [1].

The Hubble constant sets the scale of the Universe in both time and space: the time since the scale factor R(t) was zero is measured in units of the Hubble time $H_0^{-1}=9.778\ h^{-1}\,\mathrm{Gyr}$, and the size of the observable Universe is set by the Hubble distance $cH_0^{-1}=2998\ h^{-1}\,\mathrm{Mpc}=9.251\ h^{-1}\times10^{27}\,\mathrm{cm}$. The precise relationships between H_0 and the size and age depend upon the expansion history of the Universe and are discussed in Sec. 15.2.

Another fundamental parameter is the deceleration parameter, q_0 , which measures the rate of change of the expansion:

$$H_0^2 q_0 \equiv -\ddot{R}(t_0)/R(t_0) \ . \tag{15.2}$$

In a universe comprised only of matter, q_0 equals $\Omega_M/2$, where Ω_M is the fraction of critical density contributed by matter. The critical density is determined by H_0 and the gravitational constant G:

$$\rho_{\text{crit}} \equiv \frac{3H_0^2}{8\pi G} = 1.879 \ h^2 \times 10^{-29} \,\text{g cm}^{-3}$$
$$= 1.054 \ h^2 \times 10^4 \,\text{eV cm}^{-3} \ . \tag{15.3}$$

For a matter-dominated or radiation-dominated universe the density determines the fate of the universe: a sub-critical-density universe expands forever and a super-critical-density universe recollapses. A cosmological constant (or similar form of energy density) complicates the connection between destiny and energy density.

Measurements of the distances to very distant supernovae indicate that q_0 is actually negative, *i.e.*, the Universe is accelerating (see below). If correct, this illustrates dramatically that the energy density of the Universe is dominated by something other than matter or relativistic particles, since their gravity would slow (decelerate) the expansion.

15.1.2. The redshift:

As the Universe expands, all distances are stretched with the cosmic scale factor, including the wavelengths of photons. (The exception to this universal stretching is the size of a bound system, e.g., a galaxy, a Hydrogen atom, or a proton.) Because the Universe is expanding, photons emitted long ago are redshifted:

$$1 + z \equiv \frac{\lambda_{\rm today}}{\lambda_{\rm emission}} = \frac{R(t_0)}{R(t_{\rm emission})} \ . \tag{15.4}$$

Redshift (z) directly indicates the relative linear size of the Universe when that photon was emitted. For example, the most distant quasar has z=5.82; when the light from that quasar was emitted, the Universe was a factor of $1+z\simeq 6.82$ times smaller. The relative size of the Universe is simply $(1+z)^{-1}$, while its age at a given redshift depends upon the expansion history.

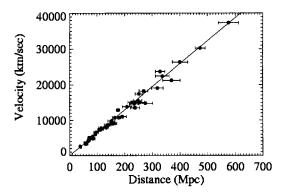


Figure 15.1: The distance-redshift diagram illustrates the expansion of the Universe. This "Hubble diagram" with linear axes is derived from a sample of type Ia supernovae and $H_0 = 65 \pm 2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (error purely statistical; figure courtesy of Adam Riess).

15.1.3. The age of the Universe:

The relationship between the expansion age (time since zero scale factor) and the Hubble age H_0^{-1} depends upon the slowing or speeding of the expansion rate. For plausible values of the Hubble constant and expansion histories, the expansion age is between 10 and 17 Gyr. The supernova measurements that indicate the Universe is accelerating also constrain the expansion history, and imply an expansion age of $15_{-1.1}^{+1.4}$ Gyr [2].

An important cosmological consistency test is the comparison of the expansion age with independent age measurements of objects within the Universe: consistency requires the Universe to be older than any object within it. Independent age measurements include the ages of the oldest globular clusters dated by their stars, of the heavy elements as dated by radioactive decays, and of the oldest white-dwarf stars in the disk of our galaxy as measured by their cooling. The last two clocks are less easily compared to the expansion age because of the uncertainty of when the disk formed relative to the galaxy and the time history of heavy-element formation.

The reliability of the globular-cluster technique has improved in the last five years due to better stellar models, better atomic-physics data, and more accurate globular-cluster distance measurements. Current estimates for the age of the Universe based upon globular clusters are $t_0=14\pm 2$ Gyr, with a possible systematic error of similar size [3]. Ages for the Universe based upon white-dwarf cooling and nuclecosmochronology are consistent with this number. While the error bars are still significant, the expansion age is comfortably consistent with the independent estimates of the age of the Universe.

15.1.4. The composition of the Universe:

We have taken the first steps toward a full accounting of the composition of the Universe. In units of the critical density, our assessment is

$$\begin{aligned} & \text{total}: \Omega_0 = 1 \pm 0.1 \ , \\ & \text{matter}: \Omega_M = 0.35 \pm 0.1 \ , \\ & \text{energy}: \Omega_E = 0.8 \pm 0.2 \ , \end{aligned} \tag{15.5}$$

where the errors quoted are meant to be 1σ . By matter we mean material that is nonrelativistic (i.e., pressure p much smaller than its energy density). As discussed below, energy refers to components that are intrinsically relativistic; e.g., photons (γ) , massless neutrinos (ν) , and vacuum energy (Λ) .

The total of matter plus energy density has been determined by measurements of the dependence of the anisotropy of the cosmic microwave background (CMB) upon angular scale (see the review on "Cosmic background radiation" (Sec. 19) in the full *Review* and Figure 15.2).

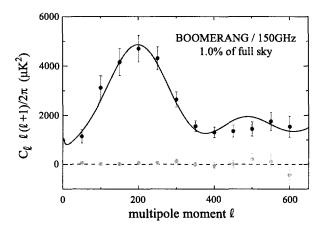


Figure 15.2: CMB angular power spectrum as determined by the Long Duration Balloon Flight of Boomerang, based on one frequency channel and 1% of the sky [4]. The curve is a flat CDM model with $\Omega_{\Lambda}=0.65$. The Boomerang data by themselves imply $\Omega_{0}=1\pm0.06$. (The broken line and associated points show the difference of the two halves of the time stream of data; the absence of a difference indicates internal consistency.)

The matter density consists of several components: optically bright baryons in stars, optically dark baryons (in hot, cold, and warm gas, neutral atomic gas, molecular clouds, and stellar remnants), neutrinos, and nonbaryonic dark matter of an unknown form, here referred to as cold dark matter (CDM). The matter density breaks down as follows

$$\begin{split} \mathrm{CDM}: & \Omega_{\mathrm{CDM}} = 0.30 \pm 0.1 \\ \mathrm{Baryons}: & \Omega_B = (0.019 \pm 0.001) h^{-2} \simeq 0.045 \pm 0.01 \\ & \mathrm{optically \ bright \ baryons} \ \Omega_{\bullet} \sim 0.005 \\ & \mathrm{dark \ baryons} \ \Omega_B \sim 0.04 \end{split}$$
 Neutrinos: $0.10 \gtrsim \Omega_{\nu} \gtrsim 0.003$. (15.6)

The baryon density is most precisely probed by comparing the big-bang production of deuterium and the measurements of the primeval deuterium abundances in high-redshift clouds of hydrogen (see the review on "Big-bang nucleosynthesis (BBN)" (Sec. 16) in the full Review and Ref. 5). The total matter density is determined many ways, all of which are consistent with $\Omega_M=0.35\pm0.07$. We believe that it is most cleanly determined from the baryon density and the ratio of baryonic mass to total mass in clusters of galaxies ($\equiv f_B$): $\Omega_M=\Omega_B/f_B$ [6].

The lower bound to the contribution of light neutrinos is from the SuperKamionkande evidence for neutrino oscillations involving muon neutrinos and a mass difference squared of $\mathcal{O}(10^{-2}\,\mathrm{eV}^2)$ [7]. The upper bound to Ω_{ν} is from the requirement that neutrinos not interfere with the formation of structure in the Universe [8]. While the neutrino contribution is small, it is comparable to that of bright stars. Finally, the CDM mass density is derived from the difference of Ω_M and Ω_B , assuming that neutrinos do not contribute significantly and that the nonbaryonic dark matter is slowly moving cold particles (the "C" in CDM).

Almost seventy years ago Zwicky pointed out that the gravity of stars in clusters of galaxies is not great enough to hold together clusters. More precise measurements today show that the total matter density is almost 100 times that of stars and that the dark matter problem is manifold. The factor of seven discrepancy between Ω_M and Ω_B is strong evidence that most of the matter is nonbaryonic. Further, the study of the formation of structure in the Universe indicates

that the nonbaryonic dark matter must be slowly moving particles (cold dark matter), with the leading candidates being elementary particles left over from the earliest moments (see the review on "Dark matter" (Sec. 18) in the full *Review*). Finally, (optically) dark baryons outweigh those in stars by about a factor of ten.

Relativistic energy denoted by Ω_E appears in several forms today:

$$\begin{aligned} \text{photons}: & \, \Omega_{\gamma}h^2 = 2.471 \times 10^{-5} \\ \text{massless neutrinos}: & \, \Omega_{\nu}h^2 = 1.122 \times 10^{-5} \\ \text{dark energy}: & \, \Omega_{X} = 0.8 \pm 0.2 \; . \end{aligned} \tag{15.7}$$

The contribution of the photons in the cosmic microwave background and the (undetected) relativistic neutrino seas (two relativistic species assumed) are simple to calculate. Today, this relativistic contribution is negligible, but during the earliest moments it was the dominant component.

The mysterious entry, dark energy, is suggested by the type Ia supernovae measurements (SNeIa) that indicate the Universe is accelerating [2,9]. The supernovae data were analyzed assuming that the dark energy is a cosmological constant, and the results can be summarized by

$$\Omega_{\Lambda} = \frac{4}{3}\Omega_{M} + \frac{1}{3} \pm \frac{1}{6} \ . \tag{15.8}$$

All data are consistent with a cosmological constant of this size; however, theoretical estimates for the contribution to the cosmological constant coming from vacuum energy (zero-point energies) are at least 55 orders of magnitude larger than the critical density. This is the long-standing cosmological-constant problem.

It might well be that the resolution of the cosmological-constant puzzle is that vacuum energy does not contribute anything to the energy budget of the Universe today. If this is so, any acceleration of the expansion must be due to something else! The requirement for acceleration is an inequality involving the energy density and the pressure: $\rho + 3p < 0$. Since this component is clearly dark and relativistic ($|p| \sim \rho$ if $\rho > 0$), we have called it dark energy. Theorists have been busy, and there are already a number of interesting suggestions for the dark energy; they include a very light, slowly evolving scalar field (sometimes referred to as quintessence), vacuum energy, and a network of light, tangled topological defects. The supernova measurements, combined with other data, indicate that $-1 \leq p/\rho \leq -\frac{1}{2}$ [10].

As shown in Fig. 15.3 there is consistency between the independent determinations of the matter/energy content of the Universe. The emerging picture for the matter-energy of the Universe challenges the Standard Model of particle physics since nonbaryonic dark matter, massive neutrinos, and dark energy are not part of the Standard Model.

15.1.5. The cosmic microwave background:

The cosmic microwave background contributes only a tiny fraction of critical density today; however, its presence means that during early history ($t < 40,000\,\mathrm{yrs}$) radiation dominated the energy density of the Universe. See the review on "Cosmic background radiation" (Sec. 19) in the full *Review* for a summary of the CMB with references; here we touch upon the most salient features.

The CMB is to an extraordinary precision black-body radiation (any deviation from the Planck spectrum is less than 50 parts per million and statistically insignificant). The temperature has been measured to four significant figures: $T_0=2.725\pm0.001\,\mathrm{K}$. This corresponds to a photon number density of $n_\gamma=410.5\,\mathrm{cm}^{-3}$ and fraction of critical density $\Omega_\gamma=2.471~h^{-2}\times10^{-5}$.

The CMB has a dipole anisotropy on the sky of amplitude $3.372 \pm 0.004 \, mK$, which arises from the velocity of the solar system with respect to the cosmic rest frame (defined as the CMB rest frame). This implies a solar-system velocity of $371 \pm 0.5 \, km \, s^{-1}$, and a velocity of the local group of $622 \pm 22 \, km \, s^{-1}$.

CMB anisotropy has now been detected on angular scales from 90° (multipole l=2) to a fraction of a degree ($l\sim500$), with amplitudes of tens of $\mu \rm K$ (see Figure 15.2). This anisotropy is due to

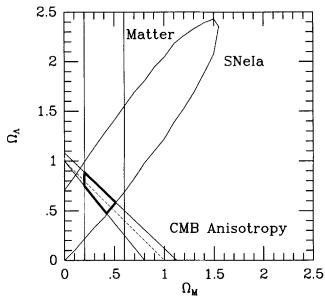


Figure 15.3: Summary of independent determinations of Ω_0 , Ω_X and Ω_M , assuming the dark energy is vacuum energy (cosmological constant). Note the consistency of the three 95% confidence contours. Data are consistent with $\Omega_o = \Omega_\Lambda + \Omega_M = 1$ (dashed line).

inhomogeneity in the distribution of matter of the same amplitude, $\delta\rho/\rho\sim\delta T/T\sim 10^{-5}$. Since the surface of last scattering for the CMB is the Universe at about 500,000 years after the bang, this CMB anisotropy implies that the Universe at that time was very smooth, but not perfectly smooth. The level of matter inhomogeneity indicated is what is needed to explain the structure that exists today, after taking into account the growth of inhomogeneity due to the attractive force of gravity over the past 14 Gyr.

15.1.6. Large-scale structure of the Universe:

Einstein and others assumed isotropy and homogeneity to simplify the field equations of general relativity. While the Universe on small scales (much less than 100 Mpc) is neither isotropic or homogeneous, at early times, and on large scales today, there is ample evidence for isotropy and homogeneity. The evidence at early times is provided by the uniformity of the CMB $(\delta T/T\sim\delta\rho/\rho\sim10^{-5})$. Redshift surveys, three-dimensional maps of the distribution of galaxies, now probe the Universe on scales as large as 300 h^{-1} Mpc. They indicate that the distribution of galaxies becomes homogeneous and isotropic on scales much greater than 100 Mpc (see Fig. 15.4). Even larger surveys to be completed over the next five years [e.g., the Sloan Digital Sky Survey (SDSS) and the 2° Field project (2dF)] will probe the distribution of matter on even larger scales.

On smaller scales the Universe is highly structured: there are galaxies, small groups of galaxies, great clusters containing thousands of galaxies, superclusters, and giant sheet-like structures extending across $100\ h^{-1}\,\mathrm{Mpc}$. This structure can be explained by the level of inhomogeneity revealed by the CMB anisotropy and the subsequent growth due to gravitational amplification, provided there is nonbaryonic dark matter.

Redshift surveys reveal the distribution of light, rather than matter itself. In principle, the two could be very different. After all, the bulk of the matter is not even baryons. This problem is called biasing: light is likely to be a biased tracer of mass. The ratio of the inhomogeneity in the distribution of galaxies to that of matter is called the bias factor b. (The bias is likely to depend on scale and the type of galaxy.) A variety of studies show that biasing is important, but not overwhelming: b differs from unity by of order 50% or less. For example, the rms fluctuation in the number of galaxies within a sphere of radius 8 h^{-1} Mpc is unity; on the same scale the rms mass fluctuation has been inferred to be about 0.8, from the abundance of rich clusters and numerical simulations of structure formation.

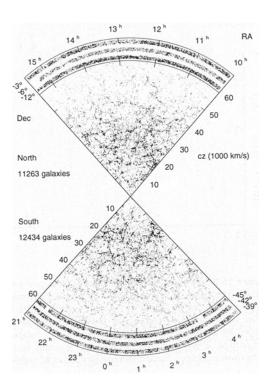


Figure 15.4: A slice from the Las Campanas Redshift Survey [11]. Each point represents a galaxy in the survey. Recessional velocity cz may be translated into distance d from us by Hubble's Law, $d=10\ h^{-1}\ \mathrm{Mpc}\ (cz/1000\ \mathrm{km/s})$.

Figure 15.5 summarizes the power spectrum $P(k) \equiv |\delta_k|^2$ of the distribution of galaxies today, where δ_k is the Fourier transform of the galaxy number density. On the very largest scales, $\lambda \gtrsim 10~h^{-1}\,\mathrm{Mpc}$, the inhomogeneity of matter is probed by the CMB anisotropy; on small scales it is probed by the present distribution of galaxies. When the MAP and Planck CMB anisotropy maps and the 2dF and SDSS redshift surveys are complete, there will be a range of scales, from about $10~h^{-1}\,\mathrm{Mpc}$ up to about $500~h^{-1}\,\mathrm{Mpc}$, where both the matter and galaxy inhomogeneity will be probed. On these scales biasing will be directly examined.

15.2. The Standard Cosmology

15.2.1. Robertson-Walker line element:

The distribution of matter in the observable Universe today is isotropic and homogeneous on the largest scales ($\gg 10~h^{-1}{\rm\,Mpc}$). The smoothness of the CMB, $\delta_T/T < 10^{-4}$ on all angular scales measured, indicates that at early times the distribution of matter and radiation were isotropic and homogeneous. Thus, for purposes of describing the present observable Universe on sufficiently large scales, as well as the Universe at early times, we may assume that the Universe is isotropic and homogeneous.

The metric for a space with homogeneous and isotropic spatial sections is the maximally symmetric Robertson-Walker (RW) metric, which can be written in the form

$$ds^{2} = dt^{2} - R^{2}(t) \left\{ \frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right\} , \qquad (15.9)$$

where (t, r, θ, ϕ) are coordinates (referred to as comoving coordinates), and R(t) is the cosmic scale factor. With an appropriate rescaling of the coordinates, k can be chosen to be +1, -1, or 0 for spaces of constant positive, negative, or zero spatial curvature, respectively. Nonetheless, there are an infinity of RW models, distinguished

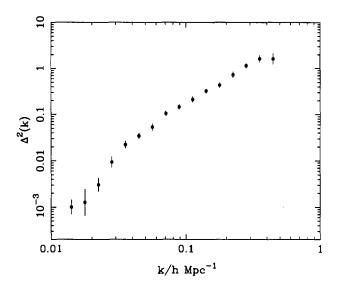


Figure 15.5: Summary of measurements of the power spectrum of the distribution of bright galaxies vs Fourier wavenumber k, shown as $\Delta(k)$ vs k [12]. $\Delta^2(k) = k^3 P(k)/2\pi^2$, which is equal to the contribution to variance of the galaxy number density divided by mean galaxy density per logarithmic interval in k $(d\sigma^2/d \ln k)$. Physically, $\Delta(k)$ roughly corresponds to the rms fluctuation in galaxy-number density in spheres of radius $\approx \pi/k$.

by their radii of spatial curvature, $R_{\rm curv}=R(t)/\sqrt{|k|}$. A convenient and widely used convention is to set the cosmic scale factor to unity today; then, the coordinate r and $1/\sqrt{|k|}$ have dimensions of length. We shall usually use this convention.

The time coordinate is just the proper (or clock) time measured by an observer at rest in the comoving frame, i.e., (r, θ, ϕ) =const. The term *comoving* is well chosen: Observers at rest in the comoving frame remain at rest, i.e., (r, θ, ϕ) remain unchanged, and observers initially moving with respect to this frame will eventually come to rest in it.

15.2.2. Particle kinematics and conservation of energy.

If the stress-energy tensor has the form of a perfect fluid, the conservation of stress energy $(T^{\mu\nu}_{\ ;\nu}=0)$ gives the first law of thermodynamics in the form

$$d(\rho R^3) = -pd(R^3) , \qquad (15.10)$$

or equivalently,

$$d \ln \rho = -3(1+w)d \ln R$$

$$\Rightarrow \rho \propto \exp \left[-3 \int (1+w)d \ln R\right] , \qquad (15.11)$$

where $w\equiv p/\rho$ characterizes the equation of state of the fluid. The physical significance of the above equation is clear: The change in energy in a comoving volume element, $d(\rho R^3)$, is equal to minus the pressure times the change in volume, $-pd(R^3)$. If w is independent of time, the energy density evolves as $\rho \propto R^{-3(1+w)}$. Examples of interest include

radiation:
$$p = \frac{1}{3}\rho \Longrightarrow \rho \propto R^{-4}$$

matter: $p = 0 \Longrightarrow \rho \propto R^{-3}$
vacuum energy: $p = -\rho \Longrightarrow \rho \propto \text{const}$. (15.12)

The "early" Universe was radiation dominated, and the "adolescent" Universe was matter dominated. The Universe today appears to be dominated by a form of energy similar to vacuum energy ($w \approx -1$). If the Universe underwent inflation, there was a "very early" period when the stress-energy was dominated by vacuum energy.

The equation of motion for a freely falling particle in RW space-time is very simple: the three-momentum decreases as the inverse of the cosmic scale factor:

$$|\mathbf{p}| \propto 1/R \tag{15.13}$$

For a massless particle, this is the cosmological redshift of wavelength. For a massive, nonrelativistic particle, this implies that any velocity with respect to the cosmic rest frame decreases as the inverse of the scale factor, with the particle eventually coming to rest in comoving RW coordinates.

15.2.3. Friedmann equations:

The dynamics of the expansion are determined from the Einstein equations. For the Robertson-Walker metric they are known as the Friedmann equations:

$$H^{2} = \frac{\dot{R}^{2}}{R^{2}} = \frac{8\pi G}{3}\rho - \frac{k}{R^{2}}$$

$$\frac{\ddot{R}}{R} = -\frac{4\pi G}{3}(\rho + 3p) . \qquad (15.14)$$

Note that the equation for the expansion rate is the first integral of the second Friedmann equation.

These equations can be used to write the deceleration parameter as

$$q_0 = \frac{1}{2}\Omega_0 + \frac{3}{2}\sum_i w_i \Omega_i \ . \tag{15.15}$$

This formula applies to any epoch, provided the values of Ω_i corresponding to that epoch are used. For example, assuming a flat Universe and matter and cosmological-constant components,

$$q_z = \frac{1}{2} - \frac{3}{2} \left[\frac{\Omega_{\Lambda}}{\Omega_{\Lambda} + (1+z)^3 (1-\Omega_{\Lambda})} \right]$$
 (15.16)

where the factor following 3/2 is $\Omega_{\Lambda}(z)$. It follows that the epoch of accelerated expansion $(q_z < 0)$ began at redshift $z = (2\Omega_{\Lambda}/\Omega_M)^{1/3} - 1 \approx 0.6$ (taking $\Omega_M = 0.35$ and $\Omega_{\Lambda} = 0.65$).

In the simple case in which the right side of the Friedmann equation is dominated by a fluid whose pressure is given by $p=w\rho$, it follows that

$$\rho \propto R^{-3(1+w)} \qquad R \propto t^{2/3(1+w)} \,, \tag{15.17}$$

This leads to the results: $R \propto t^{1/2}$ for w=1/3 (radiation-dominated universe); $R \propto t^{2/3}$ for w=0 (matter dominated); $R \propto \exp(H_0 t)$ for w=-1 (vacuum dominated); and $R \propto t$ for a curvature-dominated universe (i.e., $H^2=|k|/R^2$). Dark energy with $-1/3>w\geq -1$ leads to the scale factor growing more rapidly than t and perhaps as rapidly as $\exp(H_0 t)$. Note that in terms of the dynamics of the expansion, curvature-domination and dark energy with w=-1/3 both lead to $R \propto t$.

15.2.4. The three ages of the Universe:

Because the energy density in relativistic particles (photons and neutrinos) evolves as R^{-4} , while that in matter evolves as R^{-3} , when $R(t) \leq R_{EQ} = 2.663 \times 10^{-4}/(\Omega_M h^2/0.156)$ the Universe was "radiation dominated." This corresponds to temperatures $T \geq T_{EQ} = 0.8819 \, \mathrm{eV}(\Omega_M h^2/0.156)$. (In computing R_{EQ} we have assumed that all three neutrino species were relativistic at early times.) During the radiation era, the scale factor $R(t) \propto t^{1/2}$. Note that the 1σ uncertainty in $\Omega_M h^2$ is nearly 30%; the fiducial value $\Omega_M h^2 = 0.156$ derives from the somewhat arbitrarily selected central values, $\Omega_M = 0.35$ and h = 2/3;

After matter-radiation equality, the Universe begins a matter-dominated phase with scale factor $R(t) \propto t^{2/3}$. During the matter-dominated era,

$$t(z) = 16.5 \,\mathrm{Gyr}/(1+z)^{3/2} (\Omega_M h^2/0.156)^{1/2}$$
 (15.18)

When the contributions to the energy density from both matter and radiation are comparable, the scale factor and age are related by

$$\frac{t}{t_{EQ}} = \frac{(R/R_{EQ} - 2)(R/R_{EQ} + 1)^{1/2} + 2}{2 - \sqrt{2}} , \qquad (15.19)$$

This exact expression reduces to $R \propto t^{1/2}$ for $t \ll t_{EQ}$ and $R \propto t^{2/3}$ for $t \gg t_{EQ}$. The age of the Universe at matter-radiation equality is

$$t_{EQ} = 4(\sqrt{2} - 1)H_{EQ}^{-1}/3$$

= $4.25 \times 10^4 \text{ yrs}/(\Omega_M h^2/0.156)^2$. (15.20)

Last scattering of the CMB photons occurs shortly after matter-radiation equality, at a redshift $z_{LS}\simeq 1100$, when the age of the Universe was

$$t_{LS} \simeq 4.5 \times 10^5 \,\mathrm{yrs}/(\Omega_M h^2 / 0.156)^{1/2}$$
 (15.21)

Acceleration implies that dark energy has recently began to control the behavior of the expansion. Assuming that the dark energy exists in the form of a cosmological constant, the transition to a vacuum-energy dominated age occurred at

$$R_{\Lambda} = (\Omega_M/\Omega_{\Lambda})^{1/3} = 0.814$$
 (15.22)

for $\Omega_M=0.35$ and $\Omega_{\Lambda}=0.65$, which corresponds to a redshift $z_{\Lambda}=0.23$. Well into the Λ -dominated era, the scale factor evolves as

$$R(t) \propto \exp\left[\sqrt{\Omega_{\Lambda}}H_0t\right]$$
 (15.23)

15.2.5. Destiny:

In a universe where all forms of energy density decrease more rapidly than R^{-2} ($w_i > -1/3$ for all i), there is a connection between geometry and destiny: open universes ($k \leq 0$) expand forever and closed universes (k > 0) recollapse. We thought until recently that we lived in this kind of universe *i.e.*, matter plus radiation. With the advent of a sizable dark energy component, all that goes out the window! For example, a closed universe with a positive cosmological constant (w = -1) can expand forever and an open universe with a negative cosmological constant must recollapse.

15.2.6. Age and deceleration parameter.

The equality dt = RdR/H can be integrated to give the age of the Universe as a function of redshift:

$$t(z) = \int_z^\infty \frac{dz}{(1+z)H(z)} \ . \tag{15.24}$$

where the present age $t_0 = t(z = 0)$ (see Fig. 15.6). An interesting example is a flat vacuum energy + matter universe:

$$t(z) = \frac{2}{3}H(z)^{-1}\Omega_{\Lambda}(z)^{-1/2}\ln\left[\frac{1+\Omega_{\Lambda}(z)^{1/2}}{\sqrt{\Omega_{M}(z)}}\right].$$
 (15.25)

where

$$\begin{split} \Omega_M(z) &= \frac{\Omega_M}{\Omega_M + \Omega_\Lambda/(1+z)^3} \\ \Omega_\Lambda(z) &= 1 - \Omega_M(z) \\ H^2(z) &= H_0^2 \left[\Omega_M (1+z)^3 + \Omega_\Lambda \right] \ . \end{split} \tag{15.26}$$

15.2.7. The classic tests:

The behavior of the expansion, and thereby the underlying mean properties of the mass and energy in the Universe, as well as the curvature of the Universe are probed by the classical kinematic cosmological tests: the magnitude vs redshift (Hubble) diagram, the angular diameter vs redshift diagram, and the number count vs redshift test. At the heart of all three tests is the comoving distance to an object with redshift z:

$$\begin{split} r(z) = & \kappa^{-1/2} \sinh \left[\kappa^{-1/2} \int_0^z \frac{dx}{H(x)} \right] \\ & \kappa = & (1 - \Omega_0) H_0^2 \\ H^2(z) = & H_0^2 \left[\Omega_M (1+z)^3 + \Omega_X \exp \left(3 \int (1+w) d \ln z \right) \right. \\ & \left. + (1 - \Omega_0) (1+z)^2 \right] \; . \end{split} \tag{15.27}$$

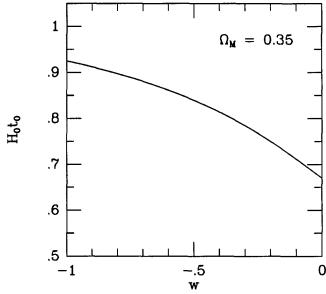


Figure 15.6: H_0t_0 as a function of w, assuming a two-component universe with $\Omega_M=0.35$ and $\Omega_X=0.65$. w=-1 corresponds to a cosmological constant and w=-1/3 corresponds to an open universe with $\Omega_0=\Omega_M=0.35$. Accelerated expansion (or less decelerated expansion) leads to an older universe for a given present expansion rate; thus, H_0t_0 increases with decreasing w.

For definiteness, k < 0 was assumed. For k > 0, $\sinh \rightarrow \sin$ and $\kappa \rightarrow k$.

Luminosity distance as a function of redshift

$$d_L(z) = (1+z)r(z)$$
 (15.28)

can be inferred from flux measurements of standard (or standardizable) candles such as supernovae of type Ia:

$$d_L = \sqrt{\mathcal{L}/4\pi\mathcal{F}} \tag{15.29}$$

where \mathcal{L} is the luminosity of the standard candle and \mathcal{F} is the measured flux. It is this technique, used with type Ia supernovae, that has revealed the acceleration of the expansion.

The angular-diameter distance

$$d_A(z) = r(z)/(1+z) \tag{15.30}$$

can be inferred through measurements of the angular size of standard rules,

$$d_A = D/\theta \tag{15.31}$$

where D is the size of the standard ruler and θ is the subtended angle. This method is central to the determination of Ω_0 from CMB anisotropy. The standard ruler is the sound horizon distance at last scattering, $D \propto v_s t_{\rm LS}$.

The comoving volume element is given by

$$\frac{dV}{d\Omega dr} = \frac{r^2}{\sqrt{1 + \kappa r^2}} \qquad \Rightarrow \qquad \frac{dV}{d\Omega dz} = \frac{r^2(z)}{H(z)} \ . \tag{15.32}$$

It can be related to counts of objects of a constant (or known) comoving number density (e.g., clusters or galaxies of a certain mass) vs a function of redshift,

$$\frac{dN}{dzd\Omega} = \frac{n(z)r^2(z)}{H(z)} \ . \tag{15.33}$$

Using this technique and theoretical expectations for the comoving number density of clusters in the CDM scenario, a matter density of about 0.3 has been inferred.

15.2.8. Thermal history:

During much of the history of the Universe, particularly the earliest history, conditions of thermal equilibrium existed. The total energy density and pressure of all species in equilibrium can be expressed in terms of the photon temperature T

$$\begin{split} \rho_R = & T^4 \sum_{i=\text{species}} \left(\frac{T_i}{T}\right)^4 \frac{g_i}{2\pi^2} \int_{x_i}^{\infty} \frac{(u^2 - x_i^2)^{1/2} u^2 du}{\exp(u - y_i) \pm 1} \\ p_R = & T^4 \sum_{i=\text{species}} \left(\frac{T_i}{T}\right)^4 \frac{g_i}{6\pi^2} \int_{x_i}^{\infty} \frac{(u^2 - x_i^2)^{3/2} du}{\exp(u - y_i) \pm 1} , \quad (15.34) \end{split}$$

where $x_i \equiv m_i/T$, $y_i \equiv \mu_i/T$, the + sign applies to fermions, the – sign to bosons, and we have taken into account the possibility that the species i may have a thermal distribution, but with a different temperature than that of the photons. We have used natural units, where $\hbar = c = k_B = 1$.

Since the energy density and pressure of a nonrelativistic species (i.e., one with mass $m\gg T$) is exponentially smaller than that of a relativistic species (i.e., one with mass $m\ll T$), it is a very convenient and a good approximation to include only the relativistic species in the sums for ρ_R and p_R , in which case the above expressions greatly simplify:

$$\rho_R = \frac{\pi^2}{30} g_* T^4 ,$$

$$p_R = \frac{\rho_R}{3} = \frac{\pi^2}{90} g_* T^4 ,$$
(15.35)

where g_* counts the total number of effectively massless degrees of freedom (those species with mass $m_i \ll T$),

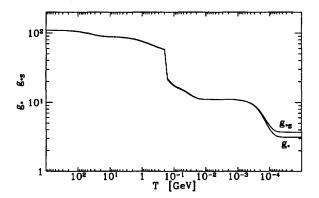

$$g_{\bullet} = \sum_{i = \text{bosons}} g_i \left(\frac{T_i}{T}\right)^4 + \frac{7}{8} \sum_{i = \text{fermions}} g_i \left(\frac{T_i}{T}\right)^4 . \tag{15.36}$$

Fig. 15.7 shows $g_*(T)$ for the degrees of freedom in the Standard Model of particle physics.

During the early radiation-dominated epoch $(t \lesssim 40,000\,\mathrm{yrs})$ $\rho \simeq \rho_R$; and further, when $g_* \simeq \mathrm{const}, \ p_R = \rho_R/3 \ (i.e., \ w = 1/3)$ and $R(t) \propto t^{1/2}$. From this it follows

$$\begin{split} H = &1.660 \ g_{\star}^{1/2} \frac{T^2}{m_{\rm Pl}} \\ t = &0.3012 \ g_{\star}^{-1/2} \frac{m_{\rm Pl}}{T^2} \sim \frac{\rm MeV}{T^2} \ {\rm s} \ , \end{split} \tag{15.37}$$

where m_{Pl} is the Planck mass 1.221×10^{19} GeV.

Figure 15.7: Number of relativistic degrees of freedom g_* and g_{*S} vs temperature according to the Standard Model of particle physics.

In the expanding Universe the entropy density s is given by

$$s \equiv \frac{\rho + p}{T} \ . \tag{15.38}$$

It is dominated by the contribution of relativistic particles, so that to a good approximation,

$$s = \frac{2\pi^2}{45} g_{*S} T^3 , \qquad (15.39)$$

where

$$g_{\bullet S} = \sum_{i = \text{bosons}} g_i \left(\frac{T_i}{T}\right)^3 + \frac{7}{8} \sum_{i = \text{fermions}} g_i \left(\frac{T_i}{T}\right)^3 . \tag{15.40}$$

For most of the history of the Universe all particle species had a common temperature, and g_{*S} can be replaced by g_{*} . The annihilation of electron-positron pairs after neutrinos ceased interacting with the electromagnetic plasma ("decoupled") about 1s after the bang leads to the slight heating of photons and $T_{\gamma}=(11/4)^{1/3}T_{\nu}$. Since then

$$g_* = 2.0 + N_{\nu} \frac{7}{8} (4/11)^{4/3} = 3.363$$

 $g_{*S} = 2.0 + N_{\nu} \frac{7}{8} \frac{4}{11} = 43/11 = 3.91$ (15.41)

where $N_{\nu}=3$ has been used to obtain numerical values since much of the time since BBN all three neutrino species have been relativistic.

In the absence of an entropy producing event (e.g., phase transition or particle decay), the entropy per comoving volume $S \propto R^3 s$ is conserved. The constancy of S implies that the temperature of the Universe evolves as

$$T \propto g_{*S}^{-1/3} R^{-1}$$

 $\implies R = 3.699 \times 10^{-10} g_{*S}(T)^{-1/3} \frac{\text{MeV}}{T}$ (15.42)

Whenever g_{*S} is constant, the familiar result, $T \propto R^{-1}$, obtains. The factor of $g_{*S}^{-1/3}$ enters because whenever a particle species becomes nonrelativistic and disappears, its entropy is transferred to the other relativistic particle species still present in the thermal plasma, causing T to decrease slightly less slowly.

Constancy of S also implies that $s \propto R^{-3}$. This means the physical size of a comoving volume element is proportional to $R^3 \propto s^{-1}$. Thus the number of some species per unit comoving volume, $N \equiv R^3 n$, is equal to the number density of that species divided by $s \colon N \equiv n/s$. Particle-number conservation in the expanding Universe is thus simply expressed as the constancy of n/s.

The entropy density s is proportional to the number density of relativistic particles, and therefore, to the photon number density, $s=1.80g_{\bullet 5}n_{\gamma}$. Today $s=7.04n_{\gamma}$; $g_{\bullet S}$ is a function of temperature, and the factor relating s and n_{γ} has decreased with time. However, since about 1s that factor has been constant.

As an example of the utility of the ratio n/s, consider the baryon number. The baryon number in a comoving volume is

$$\frac{n_B}{s} \equiv \frac{n_b - n_{\bar{b}}}{s} \ . \tag{15.43}$$

So long as baryon number nonconserving interactions are occurring very slowly, the baryon number in a comoving volume, n_B/s , is conserved. Today, there are only baryons and s=7.04 n_γ ; thus, the baryon number of the Universe $n_B/s\simeq \eta/7$, where η is the present baryon-to-photon ratio. From BBN we know $\eta=(5.1\pm0.3)\times 10^{-10}$, and so we can infer that the baryon number of the Universe $n_B/s=(7.2\pm0.4)\times 10^{-11}$. It is believed that this tiny asymmetry between matter and antimatter arises due to B, C, and CP violating interactions that occurred out of equilibrium in the early Universe (baryogenesis).

Finally, thermal equilibrium in the expanding Universe corresponds to the limit of particle interactions occurring much more rapidly than the rate at which the temperature is dropping (set by expansion rate H). The opposite limit, a particle species that interacts slowly compared to the expansion rate (said to be decoupled), can be easily discussed. This limit applies to CMB photons after last scattering (redshift $z_{LS} \simeq 1100$) and neutrinos when the temperature of the Universe falls below about 1 MeV. The evolution of the phase-space distribution of a decoupled species is simple: particle momenta decrease as 1/R(t) and particle number density decrease as $1/R^3$. For a relativistic particle species that was in thermal equilibrium at decoupling (neutrinos and CMB photons), the phase-space distributions remain of the Fermi-Dirac or Bose-Einstein form, with a temperature that decreases precisely as 1/R(t). (Should the species eventually become nonrelativistic—for example a light neutrino species—the momentum phase-space distribution retains the FD or BE form, with $T \propto 1/R$.)

This fact explains why the CMB remains a perfect black body, and with some simple algebra and the constancy of S, how the factor of $(4/11)^{1/3}$ relating the neutrino and photon temperatures arises.

15.3. Beyond the Standard Cosmology: Inflation

Inflation is the most predictive and best developed idea about the earliest moments of the Universe. Further, its basic predictions—a flat Universe, a nearly scale-invariant spectrum of Gaussian, adiabatic density perturbations, and a nearly scale invariant spectrum of gravitational waves—are now being tested. The early results are consistent with the first two of these predictions; the third prediction will be much harder to test.

Inflation can provide insight about very fundamental issues not addressed by the standard cosmology: the origin of the large-scale isotropy and homogeneity; the origin of the small-scale inhomogeneity; the explanation for the oldness/flatness of the Universe; and in the context of simple grand unified theories, the monopole problem.

The key features of inflation are a period of accelerated expansion (typically exponential expansion), followed by an enormous release of entropy. During the period of exponential expansion a small, sub-horizon sized portion of the Universe is blown up to enormous size and made spatially flat. Quantum fluctuations in the field responsible for inflation, and in the metric of space time itself, are likewise stretched in size and eventually become density perturbations and gravitational waves. The entropy release that follows provides the heat that becomes the bath of radiation and other particles, thereby smoothly handing over the Universe to the standard hot big-bang phase. Provided that all of this occurs well before the epoch of big bang nucleosynthesis (i.e., $T \gtrsim 1 \,\mathrm{MeV}$ and $t \lesssim 1 \,\mathrm{s}$), inflation can successfully address the fundamental questions without upsetting the success of the standard hot big-bang cosmology.

15.3.1. Scalar-field dynamics:

While there is no standard model of inflation, essentially all models can be described by the evolution of a scalar field ϕ initially displaced from the minimum of its potential energy curve $V(\phi)$. The evolution of the field can be described by two phases: (1) the slow roll during which nearly exponential expansion is driven by the nearly constant potential energy; (2) the coherent oscillation/reheat phase, during which the field oscillates rapidly about the minimum of its potential and eventually decays into lighter fields reheating the Universe and producing the heat of the big bang.

During the first phase, the equation of motion for the homogeneous mode scalar field in the expanding Universe is

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$
, (15.44)

which is supplemented by the Friedmann equation

$$H^2 = \frac{8\pi}{3m_{\rm Pl}^2} \left[\frac{1}{2} \dot{\phi}^2 + V(\phi) \right] . \tag{15.45}$$

Over a small patch of the Universe, the scalar field should be smooth enough to justify the homogeneity assumption, and as inflation proceeds, the inhomogeneities in the scalar field decay away rapidly. Likewise, the energy density associated with the scalar field quickly come to dominate all other forms of energy in the Universe (e.g., matter and radiation).

During the slow-roll phase the equations can be further simplified, as the $\ddot{\phi}$ term in the equation of motion and the $\dot{\phi}^2$ term in the expression for H^2 can be neglected:

$$\begin{split} \dot{\phi} &\simeq \frac{-V'}{3H} \\ dN &\equiv d\ln R = H dt = -\frac{8\pi}{m_{\rm Pl}^2} \frac{d\phi}{V'/V} \ , \end{split} \tag{15.46}$$

where prime denotes $d/d\phi$. These equations hold until the potential steepens and the slow-roll conditions, $m_{\rm Pl}V'/V\lesssim \sqrt{48\pi}$ and $m_{\rm Pl}^2V''/V\lesssim 24\pi$, are no longer valid.

During the slow-roll phase the Universe grows in size by a factor $\exp(N)$, where N is given by the integral of dN. To solve the flatness and horizon problems, N must be greater than about 60 (the precise number depends upon when inflation takes place and the temperature to which the Universe reheats after inflation). Quantum fluctuations in ϕ , which correspond to energy density fluctuations, $\Delta \rho \sim \Delta \phi V'$, are stretched exponentially from microscopic size to astrophysical size. Likewise, quantum fluctuations in the metric undergo similar exponential stretching.

When the slow-roll phase ends, accelerated expansion ends and the scale factor grows as a power law that depends upon the shape of the potential. Ultimately, the energy in the ϕ field is transferred to other, lighter fields. These fields interact and create the thermal bath of particles that we are confident existed during the earliest moments of the Universe.

Though there are many interesting intermediate details, the reheating of the Universe involves the transition from a cold Universe dominated by the zero-momentum mode of the scalar field to a hot Universe dominated by many degrees of freedom.

While there is no standard model for inflation, typically the energy scale of inflation is $V^{1/4} \sim 10^{14} \, \mathrm{GeV}$, though models exists with energy scales as small as 1 TeV. The potential V must be very flat, typically with a dimensionless coupling of the order of 10^{-14} (which is driven to be this small by the requirement of the density perturbation amplitude of 10^{-5}). The simplest model of inflation is a potential of the form $V(\phi) = \lambda \phi^4$; in this case, $\lambda \simeq 10^{-14}$ and the 60 or so e-folds of inflation needed to produce a large enough patch to contain our present Hubble volume occurs as ϕ rolls from $4.5m_{\rm Pl}$ to $m_{\rm Pl}/\sqrt{2\pi}$.

15.3.2. Predictions for observables:

The spectrum of gravity waves (tensor perturbations) and density (or scalar) perturbations are the basis of the observables associated with inflation. They can be directly calculated from the properties of the scalar-field potential. This fact is the basis for the belief that observations may someday pin down the underlying model of inflation.

In most models both scalar and tensor perturbations have an approximately scale-invariant spectrum. In physical terms, that means that the dimensionless strain amplitude of gravity waves when they re-enter the horizon after inflation is independent of scale; in terms of the inflationary potential, that amplitude is $h_{\rm HOR} \sim H/m_{\rm Pl} \sim V^{1/2}/m_{\rm Pl}^2$. For density perturbations, it is the amplitude of the density perturbation at horizon crossing that is independent of scale: $(\delta\rho/\rho)_{\rm HOR} \sim H^2/\dot{\phi} \sim V^{3/2}/m_{\rm Pl}^3V'$. Further, both spectra are expected to deviate from exact scale invariance by a small amount that depends upon the potential. Finally, the Fourier components of both scalar and tensor perturbations are approximately power-law in wavenumber k.

Primordial perturbations and gravity waves lead to CMB fluctuations, so measurable quantities may be expressed in terms of the inflationary potential. For instance, the scalar contribution (S) and the tensor contribution (T) to the CMB quadrupole anisotropy are

$$S \equiv \frac{5C_2^S}{4\pi} \simeq 2.9 \frac{V/m_{\rm Pl}^4}{(m_{\rm Pl}V'/V)^2}$$

$$T \equiv \frac{5C_2^T}{4\pi} \simeq 0.56(V/m_{\rm Pl}^4) , \qquad (15.47)$$

where C_2^S and C_2^T are the contribution of scalar and tensor perturbations to the variance of the l=2 multipole amplitude $(\langle |a_{2m}|^2\rangle = C_2^S + C_2^T)$ and V is the value of the inflationary potential when the scale $k=H_0$ (present horizon scale) crossed the Hubble radius during inflation. Note, that the numerical coefficients in these expressions depend upon the composition of the Universe; the numbers shown are for $\Omega_M=0.35$ and $\Omega_{\Lambda}=0.65$.

The power-law indices that characterize the scalar and gravity-wave spectra may also be expressed in terms of the inflationary potential and its derivatives:

$$\begin{split} n-1 &= -\frac{1}{8\pi} \left(\frac{m_{\rm Pl} V'}{V} \right)^2 + \frac{m_{\rm Pl}}{4\pi} \left(\frac{m_{\rm Pl} V'}{V} \right)' \\ n_T &= -\frac{1}{8\pi} \left(\frac{m_{\rm Pl} V'}{V} \right)^2 \ . \end{split} \tag{15.48}$$

Variations in the power-law indices with k may be expressed in terms of higher derivatives of V. For example,

$$\frac{dn}{d\ln k} = -\frac{m_{\rm Pl}}{8\pi} \left(\frac{m_{\rm Pl}V'}{V}\right) \frac{dn}{d\phi} \ . \tag{15.49}$$

Finally, one can in principle use these observables to solve for the inflationary potential and its first two derivatives at the value of ϕ when the scale that fixes the CMB quadrupole crossed the Hubble radius during inflation:

$$V = 1.8T m_{\rm Pl}^{4},$$

$$V' = \pm \sqrt{\frac{8\pi}{7} \frac{T}{S}} V/m_{\rm Pl},$$

$$V'' = 4\pi \left[(n-1) + \frac{3}{7} \frac{T}{S} \right] V/m_{\rm Pl}^{2},$$
(15.50)

where the factor 1.8 depends upon the composition of the Universe and is given for $\Omega_M=0.35$ and $\Omega_\Lambda=0.65$. The key to learning about the inflationary potential is measuring the ratio of the gravity-wave to density-perturbation contributions to the CMB quadrupole anisotropy. From that ratio, T/S, and the quadrupole anisotropy (= T+S), which has been measured by COBE, one can infer T. Further, if the spectrum of the inflation-produced gravity waves (n_T) can be measured, there is an important consistency test: inflation predicts $T/S=-4.9 \ n_T$ (for $\Omega_M=0.35$ and $\Omega_\Lambda=0.65$).

15.3.3. The new standard model:

Motivated by the predictions of inflation and the best fit for the matter/energy content of the Universe, a standard model is emerging: ACDM. The model is characterized by its energy/matter content; in terms of the critical density, 65% vacuum energy, 30% cold dark matter particles, and 5% baryons with a tiny bit of hot dark matter. It is a flat (k = 0) model with a Hubble constant of about $65 \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$ and inflation-produced density perturbations that are close to being scale invariant. This model embodies all the successes of the hot big-bang cosmology, as well as the aspirations of inner space/outer space connection. Just as importantly, it is consistent with a very large (and rapidly growing) body of cosmological observations, including, the age of the Universe, the power spectrum of inhomogeneity, the CMB anisotropy measurements from 0.1° to 100°, the studies of the abundance and evolution of galaxies and clusters, the mapping of dark matter in clusters and galaxies, further supernovae observations, and more.

But important questions remain: If there is dark energy, is it just a cosmological constant, and if so why is it so small? What is the nonbaryonic dark matter? What is the primeval spectrum of inhomogeneity and is it consistent with the simplest models of inflation? What are the underlying model parameters of inflation? How does baryogenesis work and can the baryon asymmetry be related to laboratory measurements of CP violation, neutrino masses or proton decay? Is there a fundamental explanation for the odd matter/energy recipe for our Universe? Will one of the seemingly minor puzzles that exist today (the sheet like structures separated by $125\ h^{-1}$ Mpc or the disagreement between theory and observation about the structure of CDM halos) unravel the whole picture? With the flood of observations and data that are coming, we can hope to answer these questions and more in the next decade or so.

- 1. J.R. Mould et al., Astrophys. J. 529, 786 (2000).
- 2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
- 3. B. Chaboyer et al., Astrophys. J. 494, 96 (1998).
- 4. P. de Bernardis et al., Nature 404, 955 (2000).
- S. Burles et al., Phys. Rev. Lett. 82, 4176 (1999).
- 6. J. Mohr et al., Astrophys. J. 517, 627 (1999).
- 7. Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998).
- S. Dodelson et al., Science 274, 69 (1996);
 R.A.C. Croft, W. Hu, and R. Dave, Phys. Rev. Lett. 83, 1092 (1999).
- 9. A.G. Riess, et al., Astron. J. 116, 1009 (1998).
- 10. P.M. Garnavich et al., Astrophys. J. 507, 74 (1998);
 - S. Perlmutter et al., Phys. Rev. Lett. 83, 670 (1999).
- 11. S.A. Shectman et al., Astrophys. J. 470, 172 (1996).
- J. Peacock and S. Dodds, Mon. Not. Roy. Astron. Soc. 267, 1020 (1994).

16. BIG-BANG NUCLEOSYNTHESIS

Revised September 1999 by K.A. Olive (Univ. of Minnesota).

Among the successes of the standard big-bang model is the agreement between the predictions of big-bang nucleosynthesis (BBN) for the abundances of the light elements, D, $^3{\rm He},\,^4{\rm He},\,$ and $^7{\rm Li},\,$ and the primordial abundances inferred from observational data (see [1–4] for a more complete discussion). These abundances span some nine orders of magnitude: $^4{\rm He}$ has an abundance by number relative to hydrogen of about 0.08 (accounting for about 25% of the baryonic mass), while $^7{\rm Li},\,$ the least abundant of the elements with a big-bang origin, has an abundance by number relative to hydrogen of about $\sim 10^{-10}.$

16.1. Big-bang nucleosynthesis theory

The BBN theory matches the observationally determined abundances with a single well-defined parameter, the baryon-to-photon ratio, η . All the light-element abundances can be explained with η in the range $(1.2-5.7)\times 10^{-10}$, or $\eta_{10}\equiv \eta\times 10^{10}=1.2-5.7$. Equivalently, this range can be expressed as the allowed range for the baryon mass density, $\rho_B=0.8-3.9\times 10^{-31}$ g cm⁻³, and can be converted to the fraction, Ω , of the critical density, ρ_c .

The synthesis of the light elements was affected by conditions in the early Universe at temperatures $T\lesssim 1$ MeV, corresponding to an age as early as 1 s. At somewhat higher temperatures, weak-interaction rates were in equilibrium, thus fixing the ratio of the neutron and proton number densities. At $T\gg 1$ MeV, $n/p\approx 1$, since the ratio was given approximately by the Saha relation, $n/p\approx e^{-Q/T}$, where Q is the neutron-proton mass difference. As the temperature fell, the Universe approached the point ("freeze-out") where the weak-interaction rates were no longer fast enough to maintain equilibrium. The final abundance of ⁴He is very sensitive to the n/p ratio at freeze-out.

The nucleosynthesis chain begins with the formation of deuterium in the process $pn \to D\gamma$. However, photo-dissociation by the high number density of photons $(n_\gamma/n_B=\eta^{-1}\sim 10^{10})$ delays production of deuterium (and other complex nuclei) well past the point where T reaches the binding energy of deuterium, $E_B=2.2$ MeV. (The average photon energy in a blackbody is $\overline{E}_\gamma\approx 2.7$ T.) When the quantity $\eta^{-1} \exp(-E_B/T)$ reaches about 1 (at $T\approx 0.1$ MeV), the photo-dissociation rate finally falls below the nuclear production rate.

The 25% fraction of mass in 4 He due to BBN is easily estimated by counting the number of neutrons present when nucleosynthesis begins. When the weak-interaction rates freeze-out at about $T\approx 0.8$ MeV, the n-to-p ratio is about 1/6. When free-neutron decays prior to deuterium formation are taken into account, the ratio drops to $n/p\lesssim 1/7$. Then simple counting yields a primordial 4 He mass fraction

$$Y_p = \frac{2(n/p)}{1 + n/p} \lesssim 0.25 \ . \tag{16.1}$$

In the Standard Model, the ⁴He mass fraction depends primarily on the baryon-to-photon ratio η , as it is this quantity that determines when nucleosynthesis via deuterium production may begin. But because the n/p ratio depends only weakly on η , the ⁴He mass fraction is relatively flat as a function of η . The effect of the uncertainty in the neutron half-life, $\tau_n=886.7\pm1.9$ s, is now small. Lesser amounts of the other light elements are produced: D and ³He at the level of a few times 10^{-5} by number relative to H, and ⁷Li/H at the level of about 10^{-10} , when η is in the range $1-10\times10^{-10}$.

When we go beyond the Standard Model, the ⁴He abundance is very sensitive to changes in the expansion rate, which can be related to the effective number of neutrino flavors. This will be discussed below.

The calculated abundances of the light elements are shown in Fig. 16.1 as a function of η_{10} . The curves for the ⁴He mass fraction, Y_p , bracket the range based primarily on the uncertainty of the neutron mean-life. The spread in the ⁷Li curves is due to the 1σ uncertainties in nuclear cross sections leading to ⁷Li and ⁷Be which subsequently decays to ⁷Li [5-7]. Similarly, the spread in the curves for D and ³He are 1σ uncertainties in the D and ³He predictions. The

boxes show the observed abundances with their range of uncertainty, discussed below. Since the observational boxes line up on top of each other, there is an overall agreement between theory and observations for η_{10} in the range 1.2-5.7.

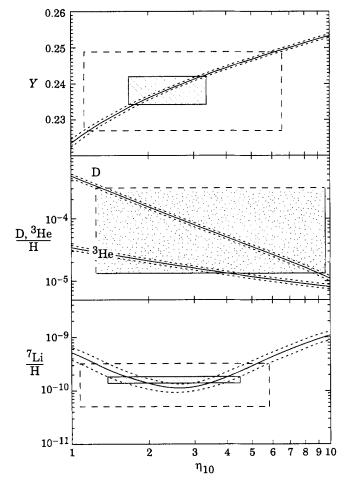


Figure 16.1: The abundances of D, ³He, ⁴He and ⁷Li as predicted by the standard model of big-bang nucleosynthesis. Also shown by a series of boxes is the comparison between these predictions and the observational determination of the light element abundances. See text for details.

16.2. Observations

Because stars produce helium as well as heavier elements, one must search for primordial helium in regions where stellar processing has been minimal, *i.e.*, in regions where abundances of elements such as carbon, nitrogen and oxygen are very low. There are extensive compilations of observed abundances of ⁴He, N, and O in many different extra-galactic regions of ionized H [8,9]. Extrapolating the ⁴He abundances from the data leads to an observational estimate for Y_p of [10–13]

$$Y_p = 0.238 \pm 0.002 \pm 0.005 \ . \tag{16.2}$$

(Here and elsewhere, the first error is the statistical standard deviation, and the second systematic.) The box in Fig. 16.1 bracketing the 4 He curves covers the range 0.234–0.242, where the half height is given as twice the statistical error. Of course the real uncertainty is dominated by systematic effects and the the dashed box is obtained using a larger error (twice the statistical and systematic error when added in quadrature) allowing Y_p to take values in an extended range 0.227–0.249.

Observations for deuterium and $^3\mathrm{He}$ abundances currently present certain difficulties. All deuterium is primordial [14], but some of the primordial deuterium has been destroyed. Thus, as can be seen in the figure, the present deuterium abundance gives us an absolute upper limit to η . However, to get more information requires either an understanding of galactic chemical evolution of deuterium or a direct measurement of primordial deuterium. Even more problematical is $^3\mathrm{He}$: Not only is primordial $^3\mathrm{He}$ destroyed in stars but it is very likely that at least some low-mass stars are net producers of $^3\mathrm{He}$. Neither the galactic chemical evolution of $^3\mathrm{He}$ nor the production of $^3\mathrm{He}$ in stars is well understood with standard models and observations presenting an inconsistent picture.

It appears that D/H has decreased over the age of the galaxy. Samples obtained deep inside meteorites provide measurements of the true (pre)-solar system abundance of ³He, while measurements on meteoritic near-surface samples, the solar wind, and lunar soil samples also contain ³He converted from deuterium in the early pre-main-sequence stage of the sun. The best current values are [15]

$$\left(\frac{D+{}^{3}\text{He}}{H}\right)_{\odot} = (4.1\pm1.0)\times10^{-5} \ ,$$

$$\left(\frac{{}^{3}\text{He}}{H}\right)_{\odot} = (1.5\pm0.3)\times10^{-5} \ . \eqno(16.3)$$

The difference between these, is the pre-solar D abundance. There has also been a recent measurement of HD in the atmosphere of Jupiter [16] yielding a value D/H = $(2.7\pm0.7)\times10^{-5}$ which is consistent with the above presolar value of D/H.

The present interstellar-medium abundance of D/H is [17]

$$D/H = 1.60 \pm 0.09^{+0.05}_{-0.10} \times 10^{-5}$$
 (16.4)

It is this lowest value of D/H that provides the most robust upper bound on η , since D is only destroyed. It is shown (decreased by twice the errors added in quadrature) as the lower right corner of the D and ³He box in Fig. 16.1. Thus, with confidence we can be sure that $\eta_{10} < 9.5$ And correspondingly $\Omega_B h^2 < 0.035$.

Deuterium has also been detected in high-redshift, low-metallicity quasar absorption systems [18-20]. These measured abundances should represent the primordial value, but, they are at present not consistent: Two [18,19] give a relatively high value for D/H $\approx 2 \times 10^{-4}$ while another two [20] give D/H $\approx 3.4 \pm 0.3 \times 10^{-5}$. Although it appears that the quality of the low D/H data is better than those showing high D/H, the latter can be used at the very least as an upper limit to primordial D/H and this is shown by the dashed box in Fig. 16.1, taking a 2σ upper limit of D/H $< 3 \times 10^{-4}$. As one can see, the corresponding value of Y_p (at the same value of η as inferred by the observation of a high D/H) is in good agreement with the data. ⁷Li is also in agreement at this value as well. However, due to the still somewhat preliminary status of this observation, it is premature to use it to fix the primordial abundance. A high value for the D abundance would require an even greater degree of D destruction over the age of the galaxy. The lower measurement for D/H requires that systematics work coherently for both ⁴He and ⁷Li to give an overlap with this data. Systematic effects [21] may, however, imply a higher D/H abundance (in the low D/H objects) which is in the range $3.5-5 \times 10^{-5}$. At the upper end of this range, all of the light element abundances are also in concordance. Eventually, the primordial D/H issue will hopefully be resolved and give a correspondingly narrow allowed range in η and perhaps change the nature of the ³He and ⁷Li (see below) arguments which are currently dominated by galactic and/or stellar evolution issuses.

Finally, we turn to ^7Li . In old, hot, population-II stars, ^7Li is found to have a very nearly uniform abundance. For stars with a surface temperature T > 5500 K and a metallicity less than about 1/20th solar (so that effects such as stellar convection may not be important), the abundances show little or no dispersion beyond that consistent with the errors of individual measurements. Much data has been obtained recently from a variety of sources, and the best estimate for the mean ^7Li abundance and its statistical uncertainty in halo stars

is [22] (the estimate of the systematic uncertainty discussed below is our own)

$$\text{Li/H} = (1.6 \pm 0.1^{+0.4}_{-0.3}{}^{+0.9}_{-0.6}) \times 10^{-10}$$
 (16.5)

The first error is statistical. The box in Fig. 16.1 corresponds to a $2\sigma_{\text{stat}}$ spread. The second set of errors is a systematic uncertainty that covers the range of abundances derived by various methods. The third set of errors in Eq. (16.5) accounts for the possibility that some of the primordial ⁷Li has been destroyed in stars, and that as much as 40% of the observed ⁷Li was produced in cosmic ray collisions rather than in the Big Bang. This uncertainty has been constrained by recent observations showing some evidence for evolution in ⁷Li [23]. These uncertainties (depicted with a half height of $2\sigma_{\text{stat}} + \sigma_{\text{syst}}$) are shown by the dashed box in Fig. 16.1. Observations of ⁶Li, Be, and B help constrain the degree to which these effects play a role [24–26].

16.3. A consistent value for η

For the Standard Model of BBN to be deemed successful, theory and observation of the light element abundances must agree using a single value of η . We summarize the constraints on η from each of the light elements. From the ⁴He mass fraction, $Y_p < (0.242-0.249)$, we have $\eta_{10} < (3.4-6.6)$ as a 2σ upper limit (the highest values use possible systematic errors as shown by the shaded box in the figure). Because of the sensitivity to the assumed upper limit on Y_p and Li/H, the upper limit on η from D/H, is still of value. From D/H $> 1.3 \times 10^{-5}$, we have $\eta_{10} \lesssim 9.5$.

The lower limit on η_{10} can be obtained from either D/H or ^{7}Li . From the high D/H measurement in quasar absorption systems, we obtain $\eta_{10} > 1.2$. ^{7}Li allows a broad range for η_{10} consistent with the other elements. When uncertainties in the reaction rates and systematic uncertainties in the observed abundances are both taken into account, ^{7}Li allows values of η_{10} between (1.1-5.7).

The determination of η depends on our certainty that the observations of the light elements abundances can be translated into primordial abundances. This is perhaps more straightforward for ⁴He and ⁷Li, where the element abundances are determined in primitive low metallicity environments. If it turns out that a consistent value for D/H can be obtained from quasar absorption systems, then because of the slope of D/H with respect to η , D/H will be the best isotope for the determination of η . Until then, the use of the D and ³He abundance determinations is necessarily complicated by the evolution of the abundances of these elements over the star forming history of the galaxy. Uncertainties in the ³He evolution are compounded by uncertainties of stellar production/destruction mechanisms. The resulting overall consistent range for η_{10} is extended to (1.2–5.7) when systematic errors are pushed to their limits. These bounds on η_{10} constrain the fraction of critical density in baryons, Ω_B , to be

$$0.004 < \Omega_B h_0^2 < 0.021 \ . \tag{16.6}$$

For a Hubble parameter, h_0 , between 0.4 and 1.0, the corresponding range for Ω_B is 0.004–0.13.

Perhaps the best test of BBN will come when anisotropies in the microwave background check the determination of Ω_B . At present, other measurements (such as of hot X-ray gas in clusters of galaxies, Lyman- α clouds, or microwave anisotropies) of Ω_B give considerably larger uncertainties than those from BBN, but they are consistent with the BBN range.

16.4. Beyond the Standard Model

Limits on particle physics beyond the Standard Model come mainly from the observational bounds on the 4 He abundance. As discussed earlier, the neutron-to-proton ratio is fixed by its equilibrium value at the freeze-out of the weak-interaction rates at a temperature $T_f \sim 1$ MeV, with corrections for free neutron decay. Furthermore, freeze-out is determined by the competition between the weak-interaction rates and the expansion rate of the Universe,

$$G_F^2 T_f^5 \sim \Gamma_{wk}(T_f) = H(T_f) \sim \sqrt{G_N N} T_f^2$$
, (16.7)

where N counts the total (equivalent) number of relativistic particle species. The presence of additional neutrino flavors (or of any other relativistic species) at the time of nucleosynthesis increases the energy density of the Universe and hence the expansion rate, leading to a larger value of T_f , n/p, and ultimately Y_p . It is clear that just as one can place limits [27] on N, any changes in the weak or gravitational coupling constants can be similarly constrained.

In the Standard Model, the number of particle species can be written as $N=5.5+\frac{7}{4}N_{\nu}$; 5.5 accounts for photons and e^{\pm} , and N_{ν} is the number of (massless) neutrino flavors. The helium curves in Fig. 16.1 were computed assuming $N_{\nu}=3$, and the computed ⁴He abundance scales roughly as $\Delta Y_{\rm BBN}\approx 0.012-0.014~\Delta N_{\nu}$. Clearly the central value for N_{ν} from BBN will depend on η . If the best value for the observed primordial ⁴He abundance is 0.238, then, for $\eta_{10}\sim 1.8$, the central value for N_{ν} is very close to 3. By means of a likelihood analysis on η and N_{ν} based on ⁴He and ⁷Li [28,29](see also [30]) it was found that the 95% CL ranges are $1.7 \leq N_{\nu} \leq 4.3$, and $1.4 \leq \eta \leq 4.9$.

The limits on N_{ν} can be translated into limits on other types of particles or particle masses that would affect the expansion rate of the Universe just prior to nucleosynthesis. In some cases, it is the interaction strengths of new particles which are constrained. Particles with less than full weak strength interactions contribute less to the energy density than particles that remain in equilibrium up to the time of nucleosynthesis [31].

We close with a simple example. Suppose there exist three righthanded neutrinos with only right-handed interactions of strength $G_R < G_F$. The standard left-handed neutrinos are no longer in equilibrium at temperatures below ~ 1 MeV. Particles with weaker interactions decouple at higher temperatures, and their number density ($\propto T^3$) relative to neutrinos is reduced by the annihilations of particles more massive than 1 MeV. If we use the upper bound $N_{\nu} < 4.0$, then the three right-handed neutrinos must have a temperature $3(T_{\nu_R}/T_{\nu_L})^4 < 1$. Since the temperature of the decoupled ν_R 's is determined by entropy conservation, $T_{\nu_R}/T_{\nu_L} = [(43/4)/N(T_f)]^{1/3} < 0.76$, where T_f is the freeze-out temperature of the ν_R 's. Thus $N(T_f) > 24$ and decoupling must have occurred at $T_f > 140$ MeV. Finally, the decoupling temperature is related to G_R by $(G_R/G_F)^2 \sim (T_f/3~{\rm MeV})^{-3},$ where 3 MeV corresponds to the decoupling temperature for ν_L . This yields a limit $G_R \lesssim 10^{-2} G_F$. These limits are strongly dependent on the assumed upper limit to N_{ν} ; for $N_{\nu} < 3.5$, the limit on G_R stegnthened to G_R < 0.002 G_F , since T_f is constrained to be larger than the temperature corresponding to the QCD transition in the early Universe.

- D.N. Schramm and R.V. Wagoner, Ann. Rev. Nucl. and Part. Sci. 27, 37 (1977).
- A. Boesgard and G. Steigman, Ann. Rev. Astron. Astrophys. 23, 319 (1985).
- T.P. Walker, G. Steigman, D.N. Schramm, K.A. Olive, and H.-S. Kang, Astrophys. J. 376, 51 (1991).
- K.A. Olive, G. Steigman, and T.P. Walker, Phys. Rep. (in press) astro-ph/9905320.
- C.J. Copi, D.N. Schramm, and M.S. Turner, Science 267, 192 (1995).
- 6. L.M. Krauss and P. Romanelli, Astrophys. J. 358, 47 (1990).
- N. Hata, R.J. Scherrer, G. Steigman, D. Thomas, and T.P. Walker, Astrophys. J. 458, 637 (1996).
- B.E.J. Pagel, E.A. Simonson, R.J. Terlevich, and M. Edmunds, MNRAS 255, 325 (1992).

- Y.I. Izatov, T.X. Thuan, and V.A. Lipovetsky, Astrophys. J. 435, 647 (1994);
 - Y.I. Izatov and T.X. Thuan, Astrophys. J. Supp. 108, 1 (1997);Astrophys. J. 500, 188 (1998).
- 10. K.A. Olive and G. Steigman, Astrophys. J. Supp. 97, 49 (1995).
- 11. K.A. Olive and S.T. Scully, Int. J. Mod. Phys. A 11, 409 (1996).
- K.A. Olive, E. Skillman, and G. Steigman, Astrophys. J. 493, 788 (1997).
- 13. B.D. Fields and K.A. Olive, Astrophys. J. 506, 177 (1998).
- H. Reeves, J. Audouze, W. Fowler, and D.N. Schramm, Astrophys. J. 179, 909 (1973).
- J. Geiss, in Origin and Evolution of the Elements, eds.
 N. Prantzos, E. Vangioni-Flam, and M. Cassé (Cambridge: Cambridge University Press, 1993), p. 89.
- H.B. Niemann et al., Science, 272, 846 (1996);
 P.R. Mahaffy et al., Sp. Sci. Rev. 84, 251 (1998).
- J.L. Linsky, et al., Astrophys. J. 402, 695 (1993);
 J.L. Linsky, et al., Astrophys. J. 451, 335 (1995).
- R.F. Carswell, M. Rauch, R.J. Weymann, A.J. Cooke, J.K. Webb, MNRAS 268, L1 (1994);
 - A. Songaila, L.L. Cowie, C. Hogan, M. Rugers, Nature 368, 599 (1994).
- J.K. Webb et al., Nature 388, 250 (1997);
 - D. Tytler et al., Astron. J. 117, 63 (1999).
- 20. D. Tytler, X.-M. Fan, and S. Burles, Nature 381, 207 (1996);
 - D. Tytler, and S. Burles, Astrophys. J. 460, 584 (1996);
 - D. Tytler, and S. Burles, Astrophys. J. 499, 699 (1998);
 - D. Tytler, and S. Burles, Astrophys. J. 507, 732 (1998).
- 21. S. Levshakov, D. Tytler, and S. Burles, astro-ph/9812114.
- P. Molaro, F. Primas, and P. Bonifacio, Astron. & Astrophys. 295, L47 (1995);
 - P. Bonifacio and P. Molaro, MNRAS, 285,847(1997).
- S.G. Ryan, J.E. Norris, and T.C. Beers, Astrophys. J. (in press) astro-ph/9903059 (1999).
- T.P. Walker, G. Steigman, D.N. Schramm, K.A. Olive, and B. Fields, Astrophys. J. 413, 562 (1993).
- 25. K.A. Olive, and D.N. Schramm, Nature 360, 439 (1993).
- G. Steigman, B. Fields, K.A. Olive, D.N. Schramm, and T.P. Walker, Astrophys. J. 415, L35 (1993);
 - E. Vangioni-Flam et al., New Astronomy 4, 245 (1999);
 - B.D. Fields and K.A. Olive, New Astronomy 4, 255 (1999).
- G. Steigman, D.N. Schramm, and J. Gunn, Phys. Lett. B66, 202 (1977).
- B.D. Fields and K.A. Olive, Phys. Lett. **B368**, 103 (1996);
 B.D. Fields, K. Kainulainen, D. Thomas, and K.A. Olive, New Astronomy 1, 77 (1996).
- K.A. Olive and D. Thomas, Astro. Part. Phys. 7, 27 (1997);
 K.A. Olive and D. Thomas, Astro. Part. Phys. 11, 403 (1999).
- C.J. Copi, D.N. Schramm, and M.S. Turner, Phys. Rev. D55, 3389 (1997).
- G. Steigman, K.A. Olive, and D.N. Schramm, Phys. Rev. Lett. 43, 239 (1979);
 - K.A. Olive, D.N. Schramm, and G. Steigman, Nucl. Phys. B180, 497 (1981).

17. GLOBAL COSMOLOGICAL PARAMETERS: H_0, Ω_M , and Λ

Written April 2000 by M. Fukugita (University of Tokyo, Institute for Cosmic Ray Research) and C.J. Hogan (University of Washington).

This review surveys the current status of the determination of the three cosmological parameters, the Hubble constant H_0 , the mass density parameter Ω_M and the cosmological constant Λ . These quantities set the scale and characterize the mean mass-energy content and curvature in cosmological solutions of Einstein's equations which describe the geometry and evolution of the universe as a whole. For technical details, see Ref. 1.

We adopt the normalization $\Omega_M+\Omega_\Lambda=1$ for zero curvature (flat universe), where $\Omega_\Lambda=\Lambda/3H_0^2$ with Λ being the cosmological constant entering in the Einstein equation. The case with $\Omega_M=1$ and $\Omega_\Lambda=0$ is referred to as the Einstein-de Sitter (EdS) universe. We often use distance modulus $m-M=5\log(d_L/10~{\rm pc})$ instead of the luminosity distance d_L , where m is the apparent magnitude of an object whose magnitude at 10 pc would be M. We omit the unit km s⁻¹Mpc⁻¹ for the Hubble constant and adopt the abbreviation $h=H_0/100$.

17.1. The Hubble Constant

17.1.1. Overview: The Hubble constant, which has dimension of inverse time, sets the scale of the size and age of the Universe. Recent efforts to measure it have almost solved the long-standing discrepancy concerning the extragalactic distance scale; at the same time, new uncertainties have been revealed in the Milky Way distance scale.

The global value of H_0 was uncertain by a factor of two for several decades. Before 1980 the dispute was between two schools: Sandage and collaborators insisted on $H_0=50$; de Vaucouleurs and collaborators preferred a high value, $H_0=90$ –100. The dichotomy persisted even after the discovery of an empirical but tight relationship between a galaxy's luminosity and rotation velocity, known as the Tully-Fisher relation, which allowed relative distances between whole galaxies to be estimated far out into the smooth Hubble flow. A straightforward reading of the Tully-Fisher relation gave values $H_0=80$ –90, but this result was challenged over the issue of the Malmquist bias—whether the sample selects preferentially bright galaxies, biasing towards a shorter distance. A related dispute concerned the distance to the Virgo cluster, 16 Mpc or 22 Mpc, depending on the sample used.

The next major advance came in 1989–1990 when new, more precise relative distance indicators were discovered: the apparently universal shape of the the planetary nebula luminosity function (PNLF), and the surface brightness fluctuations (SBF) in galaxy images, utilizing the fact that a more distant galaxy shows a smoother light distribution. The two completely independent methods predicted relative distances to individual galaxies in excellent agreement with each other, and also with the Tully-Fisher relation (albeit with a somewhat larger scatter) [2]. These new techniques, when calibrated with the distance to M31, yielded a value around $H_0=80$ and a Virgo distance of 15 Mpc.

Around the same time Type Ia supernovae (SNeIa) were widely adopted as standard candles. This led to $H_0 = 50$ -55, when calibrated with a Cepheid distance to the nearest SNIa host galaxy using the pre-refurbished *Hubble Space Telescope* (HST). Thus in the early nineties estimates were still dichotomous between $H_0 = 50$ and 80.

The refurbishment of HST allowed accurate measurements of Cepheids in galaxies as distant as 20 Mpc. This secured the distance to the Virgo cluster and tightened the calibrations of the extragalactic distance indicators, and resulted in $H_0=(70-75)\pm 10$, 10% lower than the 'high value'. Another important contribution was the discovery that the maximum brightness of SNeIa varies from supernova to supernova, and that it correlates tightly with the decline rate of brightness. Direct calibration of the maximum brightness of several SNeIa with HST Cepheid observations yielded $H_0=65^{+5}_{-10}$, and nearly resolved the long-standing controversy.

All the methods mentioned above use distance ladders and take the distance to the Large Magellanic Cloud (LMC) to be 50 kpc (m-M=18.5) as the zero point. Before 1997 few doubts were cast on the distance to LMC. With the exception of determinations using RR Lyr stars, the distance modulus converged to $m-M=18.5\pm0.1$, i.e., with a 5% error, and the RR Lyr discrepancy was blamed on its larger calibration error. It had been believed that the Hipparcos astrometric satellite would secure the distance within the Milky Way and tighten the distance to LMC. To everyone's surprise, Hipparcos instead revealed the contrary: the distance to LMC was more uncertain than we had thought, introducing new uncertainties into the determination of H_0 . Connected to this, the age of the Universe turned out to be more uncertain than had been believed.

17.1.2. Extragalactic distance scale: The measurement of cosmological distances traditionally employs distance ladders, as shown in Table 17.1. The listings written in italics indicate new methods which circumvent intermediate rungs. The most important milestone of the ladder is the LMC distance, 50 kpc (m-M=18.5). The century-old Cepheid period-luminosity (PL) relation is still given great weight, but requires a few lower rungs to calibrate its zero point.

The refurbishment of HST achieved sufficient resolution to resolve Cepheids in the Virgo cluster [3]. Now 28 nearby spiral galaxies within 25 Mpc are given distances measured using the Cepheid PL relation [4]. A typical random error is 4–5% (0.08–0.10 mag), and the systematic error (from photometry) is 5% (0.1 mag) excluding the uncertainty of the LMC distance, to which the HST-KP ("Key Project") group assigns 6.5% error (0.13 mag). The prime use of these galaxies is to calibrate secondary distance indicators, which penetrate to sufficient depth that perturbations in the Hubble flow are a minor component of the error budget. The results are summarized in Table 17.2. We include a few earlier SNIa results which employed a partial list of Cepheid calibrators.

Table 17.1: Traditional distance ladders.

Method	Distance range	typical targets
Population I stars		-
trigonometric or kinematic methods (ground)	< 50 pc	Hyades, nearby dwarfs
main sequence fitting (FG stars) Pop. I	< 200 pc	Pleiades
trigonometric method (Hipparcos)	< 500 pc	nearby open clusters
main sequence fitting (B stars)	40 pc-10 kpc	open clusters
Cepheids [Population I] (ground)	1 kpc-3 Mpc	LMC, M31, M81
Cepheids [Population I] (HST)	< 30 Mpc	Virgo included
secondary (extragalactic) indicators	700 kpc-100 Mpc	
Population II stars	,,,,,	
trigonometric method (Hipparcos)	< 500 pc	nearby subdwarfs
subdwarf main sequence fitting	100 pc-10 kpc	global clusters
cluster RR Lyr	5 kpc-100 kpc	LMC, age determinatio

Table 17.2: Hubble co	onstant (uncertainties in the ${f LM}$	IC distance
are not included).		

Secondary indicators	References	Hubble constant
Tully-Fisher	HST-KP (Sakai et al., [8])	71±4 ± 7
Fundamental plane	HST-KP (Kelson et al., [9])	$78{\pm}8\pm10$
SBF	HST-KP (Ferrarese et al., [10])	$69\!\pm\!4\pm6$
SBF	Tonry et al., [7]	$\underline{77 \pm 4 \pm 7}$
SBF (galaxy z survey)	Blakeslee et al., [11]	$74\pm4\pm7$
SNeIa	Riess et al., [12]	67±7
SNeIa	Hamuy et al., [13]	$63\!\pm\!3\pm3$
SNeIa	Jha et al., [14]	$64.4^{+5.6}_{-5.1}$
SNeIa	Suntzeff et al., [15]	65.6±1.8
SNeIa	HST-KP (Gibson et al., [16])	$\underline{68\pm2\pm5}$
SNeIa	Saha et al., ([17])	60±2

We emphasize H_0 determinations by two methods, SBF and SNeIa, in particular those underlined in the table. A cross correlation analysis showed that the relative distances agree well between SBF and others, including the Cepheids [5,6], and that it is probably the best secondary indicator presently available together with SNeIa. It is also important that there are now 300 galaxies measured with SBF, which are essential to make corrections for peculiar velocity flows for the $\leq 4000 \text{ km s}^{-1}$ sample. The final value of Tonry et al. [7] is $H_0 = 77 \pm 8$, in which ± 4 is allotted to uncertainties in the flow model and another ± 4 to SBF calibration procedure in addition to the error of the Cepheid distance ± 6 (a quadrature sum is taken). When supplemented with peculiar velocity information from redshift surveys of galaxies, the value is further constrained to be 74 ± 4 up to the Cepheid distance error [11].

It is impressive that analyses of SNeIa Hubble diagram give virtually the same answer despite differences and corrections. The smaller H_0 of Saha et al. [17] arises from omission of the luminosity-decline rate correction; including this would push H_0 up by 10%. The other notable difference is a slightly higher value of HST-KP. Gibson et al. [16] made a reanalysis for all Cepheid observations performed by other groups and showed that the distances are all farther than would be derived from the HST-KP procedure. Taking the luminosity-decline rate correlation to be real and adopting Cepheid distances from the HST-KP data reduction, we adopt $H_0 = 68$ from SNeIa.

Leaving out the uncertainty of the Cepheid distance, H_0 from Tonry et al.'s [7] SBF determination is 77±6, and that from SNeIa (HST-KP) is 68±4. The difference is 13%, and the two values overlap at $H_0=71$. Allowing for individual 2σ errors, the overlap is in a range of $H_0=65$ –76. An additional uncertainty is the 6% error ($\delta H_0=\pm 4.5$) from the Cepheid distance which is common to both, still excluding the uncertainty of the LMC distance. We may summarize $H_0=71\pm 7$ or 64–78 as our current standard, provided that the LMC distance is 50 kpc.

The convergence is a great achievement, in spite of the fact that the SNeIa results are still lower than those from other secondary indicators by 10%. All analyses are based on the LMC distance modulus m-M=18.50 [18,19]. Doubts about this distance are discussed next.

17.1.3. The Local Distance Scale: Distance to LMC: Most traditional paths to the LMC distance follow the ladder shown in the upper half of Table 17.1. The Hipparcos satellite can measure a parallax as small as 2 milliarcsec (mas), corresponding to a distance of 500 pc. It was a reasonable expectation that the geometric distance to the Pleiades cluster could be determined, circumventing the main sequence fitting from nearby parallax stars to the Pleiades and thus securing the Galactic distance scale. Hipparcos results have also opened new methods to estimate the distance to the LMC. However, the new detailed information has actually brought confusion.

The "Pleiades problem": The Pleiades cluster at 130 pc has long been taken to be the first milestone of the distance work, since it has nearly solar abundance of heavy elements. Hipparcos results have led to a revision of the previous distance modulus, based on main sequence fitting of FGK dwarfs, shorter by 0.25 mag (12%) [20,21]. This is a serious problem, since the disagreement means that either our understanding of FGK dwarfs, for which we have the best knowledge about stellar evolution, is incomplete, or that the Hipparcos parallax measurements contain systematic errors [22,23].

Metallicity effects in the LMC Cepheid calibration: The Cepheid distance to LMC is based on calibration using open cluster Cepheids, the distances to which are estimated by B star main sequence fitting that ties to the Pleiades (see Ref. 18 and references therein). It is shown that the residual of the PL fit shows a strong metallicity (Z) dependence. This means either the Cepheid PL relation suffers from a large Z effect, or the distances to open clusters contain significant Z-dependent errors [24]. A correction for this effect changes the distance to LMC either way, depending upon which interpretation is correct. So far direct Hipparcos Cepheid distances are too noisy to resolve this issue directly [25-27].

Red clump: Hipparcos has recalibrated the "red clump," the He burning stage of Population I stars, giving the distance modulus to LMC as 18.1±0.1. Although much shorter than distances from other methods, this value is substantially in agreement with earlier red clump results [28,29].

Eclipsing binaries: Double-spectroscopic eclipsing binaries in principle yield the distance in a semi-geometric way out to LMC or even farther. The LMC distance modulus is estimated to be $m-M=18.30\pm0.07$ [30]. There is a claim that the extinction used is too small by an amount of $\Delta E(B-V)=0.037$ mag, leading to m-M=18.19 [31].

 $RR\ Lyr\ calibration:$ The absolute luminosity of RR Lyr depends on metallicity, usually expressed as

$$\langle M_V(RR Lyr)\rangle = a[Fe/H] + b$$
 (17.1)

(V means values obtained using a "visual" wideband filter.) Considerable effort has been invested in determining the coefficients (a,b). The problem is again how to estimate the distance to RR Lyr stars. The calibration from the ground, (a,b)=(0.2,1.04), leads to an LMC distance of $m-M\approx 18.3$. Using Hipparcos field subdwarfs with parallax to calibrate RR Lyr in globular clusters gives $(a,b)=(0.22\pm0.09,0.76)$, which brings the LMC distance to m-M=18.5-18.6 [32]; see also Ref. 33. Statistical parallax for field RR Lyr in the Hipparcos catalogue [34,35], however, agrees better with the ground-based estimate. The uncertainties of 0.3 mag in the RR Lyr calibration translate to the LMC distance modulus 18.25-18.55.

Summary of the LMC distance problem: The distance modulus of the LMC is now uncertain by as much as 0.4 mag (20% in distance), ranging from 18.20 to 18.60. Recent observations with new techniques argue for the lower value. There is clearly a systematic effect, so that we cannot simply take an 'average of all observations'. Rather, we should leave both possibilities open.

17.1.4. Direct and Physical Methods: Techniques called 'physical methods,' allow distance estimates without resorting to astronomical ladders. The advantage of the ladder is that the error of each ladder can be well documented, while the disadvantage is accumulation of errors. Physical methods are free from 'accumulation of errors,' but in this case the central problem is to minimize the model dependence and document realistic systematic errors. (The use of SNeIa maximum brightness was once taken to be a physical method; when it was 'downgraded' to an empirically-calibrated ladder, the accuracy and reliability were significantly enhanced.) A few direct results are reliable enough to be compared with the distances from ladders.

Geometrical calibration of the Cepheids: NGC4258 (M106) shows H₂O maser emission from clouds orbiting around a black hole of

mass $4\times10^7M_{\odot}$ located at the center. Precise VLBA measurements of Doppler velocities show that the motion of the clouds is very close to Keplerian and is perturbed very little. A complete determination is made for the orbital parameters, including centripetal acceleration and a bulk proper motion of the emission system. This yields a geometric distance to NGC4258 to be 7.2 ± 0.3 Mpc [36]. The distance is also measured using the conventional Cepheid PL relation to give 8.1 ± 0.4 Mpc with $(m-M)_{\rm LMC}=18.5, 13\%$ longer than that from the maser measurement [37]. The short LMC distance would bring the Cepheid distance in a perfect agreement with the geometric distance. However, this is only one example, and the difference could be merely a statistical effect: the deviation is only twice the error.

Expansion photosphere model (EPM) for Type II supernovae (SNeII): If a supernova is a black body emitter one can calculate source brightness from temperature. The distance can then be estimated by comparing source brightness with the observed flux. In SNeII atmospheres the flux is diluted due to electron scattering opacity, requiring more sophisticated model atmospheres. Schmidt et al. [38,39] developed this approach and obtained absolute distances of SNeII in agreement with those from the ladder. The Hubble constant they obtained is 73±9.

Gravitational lensing time delay: When a quasar image is split into two or more by gravitational lensing, a time delay arises among images from different path lengths and potentials at the image postition of the galaxy. The time delay is written as a product of a cosmological factor and a deflector model. It is observable if the source is variable, and can be used to infer H_0 [40]. The cosmological factor depends on Ω_M only weakly; its Ω_Λ dependence is even weaker. However, a crucial ingredient in this argument is a well-constrained model of the mass distribution of the deflector.

The first estimates of H_0 used the 0957+561 lens system. The deflector is not simple but includes a giant elliptical galaxy embedded in a cluster. There is an ambiguity associated with a galaxy mass/cluster mass separation, which does not change any observed lens properties but affects the derived Hubble constant. One way to resolve this degeneracy is to use the velocity dispersion of the central galaxy [41]. While the long-standing issue as to the value of the time delay was settled and $H_0 = 64 \pm 13$ was reported [42], the inclusion of a wider class of models [43] produces a significantly wider range, $H_0 = 77^{+29}_{-24}$, representing uncertainties associated with the choice of models. The second example, PG1115+080, is again not a simple deflector but includes an elliptical galaxy embedded in a compact group of galaxies. Various models for this system yield $H_0 = 36-70$ [44-47], but, as is discussed in the papers, the derived H_0 depends on the assumption for the dark matter distribution, with H_0 varying from 44 ± 4 to 65 ± 5 .

Recently time delays have been measured for three simpler lenses, B0218+357, B1608+656 and PKS1830-211. Among them B0218+357 is a rather clean, isolated spiral galaxy lens, giving $H_0=69^{+13}_{-19}$ (the central value will be 74 if $\Omega_M=0.3$) with a simple galaxy model of a singular isothermal ellipsoid [48]. For B1608+656 one obtained 64±7 for $\Omega_M=0.3$ (59±7 for an EdS universe) and for PKS1830-211 75 $^{+18}_{-10}$ for EdS and 85 $^{+20}_{-11}$ for $\Omega_M=0.3$ from the time delay measured by Koopmans and Fassnacht [49]. These authors concluded 74±8 for low density cosmologies (69±7 for EdS) from four (excluding the second) lensing systems with the simplest model of deflectors. It is encouraging to find such good agreement with the values from ladders from completely independent arguments.

Zeldovich-Sunyaev effect: The observation of the Zeldovich-Sunyaev (ZS) effect (the statistical heating of background photons by Compton scattering off hot electrons) for clusters tells us about the cluster depth (times electron density), which, when combined with angular diameter (times electron density squared) from x-ray observations, gives us the distance to the cluster provided that the cluster is spherical [50-52]. Although new and promising samples of ZS data are being assembled [52], we give little weight to this method for the time being since it is still subject to large systematic errors (±30%). Even with a large sample, selection effects would bias

towards clusters elongated along the line of sight because of higher surface brightness.

17.1.5. Age of globular clusters: The most restrictive estimate for cosmic age is obtained from the evolution of globular clusters. Here, the RR Lyr calibration is also crucial, since the stellar age is proportional to the inverse of luminosity, i.e., inverse square of the distance. Modern calculated evolutionary tracks of the main sequence by different authors agree reasonably well. There are occasional disagreements of colors at around the turn-off point, largely depending on the treatment of convection, but the turnoff luminosity is little affected (see e.g., Renzini [53] and VandenBerg et al. [54]). The absolute magnitude at the turn-off point M_V^{TO} of the main sequence is hence a good indicator of the age [53]:

$$\log t_9 = -0.41 + 0.37 M_V^{TO} - 0.43 Y - 0.13 [Fe/H], \qquad (17.2)$$

in units of Gyr, or

$$\log t_9 = -0.41 + (0.37a - 0.13) [\text{Fe/H}] + 0.37 [(M_V^{TO} - M_V^{\text{RR}}) + b]] - 0.43 Y$$
(17.3)

if Eq. (17.1) is inserted. (Y is the helium mass fraction.) The difference of the magnitudes between the turn-off point and RR Lyr $(M_V^{TO}-M_V^{RR})$ depends little on clusters and is measured to be 3.5 ± 0.1 mag [55]. The a dependence appears in such a way that the metallicity dependence of the cluster age disappears if a=0.35, i.e., globular cluster formation appears coeval [56]. Current estimates (see above) give $a\approx0.2$, which indicates that metal-poor clusters appear older.

The dichotomous calibrations of RR Lyr stars obviously affect the age of globular clusters. The result also depends on whether one takes the age-metallicity correlation to be real, as indicating metal-poor clusters being formed earlier, or merely due to a systematic error, the formation of globular clusters being coeval. The possibilities are four-fold:

b	$(m-M)_{ m LMC}$	t_0 (noncoeval)	t_0 (coeval)
1.05	18.25	18 Суг	15 Gyr
0.75	18.55	14 Gyr	12 Gyr

In addition there are $\pm 10\%$ errors of various origin. The recent claims of Gratton et al. [32], Reid [33], and Chaboyer et al. [57] for young universe (11–12 Gyr) assume a coeval-formation interpretation together with the long RR Lyr calibration and the mean of globular cluster ages. The three other possibilities, however, are not excluded.

17.1.6. Conclusions on H_0 : Progress in the extragalactic distance scale has been substantial. The ladders yield values convergent within 10%, compared to a factor of 1.6 disagreement in early nineties. A new uncertainty, however, becomes manifest in the Galactic distance scale: there is a 15–20% uncertainty in the distance to LMC. Therefore, we may summarize

$$H_0 = (71 \pm 7) \times_{0.95}^{1.15} \tag{17.4}$$

as a currently acceptable value of the Hubble constant. This agrees with a HST-KP summary of Mould et al. [58] up to the uncertainty from the LMC distance, though we followed a different argument. This still allows $H_0=90$ at the high end (if Tonry et al.'s SBF [7,11] is given a higher weight) and 60 at the low end (if the SNeIa results are weighted). Note that H_0 from both EPM and gravitational lensing are consistent with the ladder value for $(m-M)_{\rm LMC}=18.5$. With the shorter LMC distance the overlap is marginal.

The short LMC distance also causes trouble for H_0 -age consistency. The LMC distance modulus of m-M=18.25 would raise the lower limit of H_0 to 72, and increase the lower limit of age from ≈ 11.5 Gyr to ≈ 14.5 Gyr at the same time. There is then no solution for a $\Lambda=0$ universe. Even with a non-zero Ω_{Λ} the solution is marginal (see Fig. 17.1 below).

17.2. The Density Parameter

The dimensionless cosmological density parameter directly controls the gravitational formation of cosmic structure. As our understanding of the cosmic structure formation is tightened, we should have a convergence of the Ω_M parameter. An important test is to examine whether estimates of Ω_M parameter extracted from cosmic structure formation agree with each other and with the values estimated in more direct ways.

17.2.1. Model-independent determinations:

Luminosity density $\times \langle M/L \rangle$: The mass density can be obtained by multiplying the luminosity density ($\mathcal{L}_B = (2.0 \pm 0.4) imes$ $10^8 h L_{\odot} \text{ Mpc}^{-3}$) with the average mass-to-light ratio (M/L). The M/L_B of galaxies is about 1-2 in galaxy disks and generally increases with the scale due to the increasing dominance of dark matter. If the dark matter distribution is isothermal within the virial radius ($r=0.13~{
m Mpc}~\Omega_M^{-0.15}[M/10^{12}M_{\odot}]_{<100~{
m kpc}}^{1/2}$ in a spherical collapse model), the value of M/L_B inside the virial radius is (150-400) h for L^{st} galaxies. This is about the value of M/L_B estimated for groups and clusters, (150-500)h, both from dynamics [59] and from lensing, (see e.g., Kaiser et al. [60]). Multiplying the two values we get [61] $\Omega_M = 0.20 \times 2^{\pm 1}$. The CNOC group [62] made a self-contained estimate using their cluster sample and built-in field galaxy sample. They estimated $M/L_r \approx (210 \pm 60) h$ (n.b.: $M/L_B \approx 1.4 \times M/L_r$) for field galaxies from the cluster value $(289 \pm 50)h$. Their luminosity density of field galaxies is $\mathcal{L}_r = (1.7 \pm 0.2) \times 10^8 h L_{\odot} \text{ Mpc}^{-3}$, and therefore $\Omega_M = 0.19 \pm 0.06$.

 H_0 versus cosmic age: For $H_0 \geq 60$, the age is 10.9 Gyr for the EdS universe. Since this is too short, Ω_M must be smaller than unity. The limits on H_0 and Ω_M are best compared graphically (see Fig. 17.1 below).

Type Ia supernova Hubble diagram: The type Ia supernova Hubble diagram now reaches $z\approx 0.4$ –0.8. It can be used to infer the mass density parameter and the cosmological constant. As we discuss later, the observations favor a low Ω_M and a positive Λ . If we accept the published formal errors, $\Omega_M>0.1$ is allowed only at three sigma for a zero Λ universe [63,64]. With some allowance for systematic effects, a zero Λ open universe may not be excluded yet, but an EdS geometry is far away from the observations. The favored value for Ω_M is approximately 0.8 $\Omega_{\Lambda}-0.4$.

Baryon fractions in Galaxy Clusters: If the gas in a galaxy cluster is in approximate hydrostatic equilibrium (at the virial temperature $T \approx 7 \times 10^7 (\sigma/1000 \text{ km s}^{-1})^2 \text{ K}$), its mass can be estimated by the luminosity and temperature of x-ray emission. In typical clusters baryon mass in the gas exceeds that in stars by an order of magnitude, so the gas gives the total baryon mass [65,66]. From 19 clusters White and Fabian [67] obtained $M_{\rm gas}/M_{\rm grav}=0.056~h^{-2/3},$ where $M_{\rm grav}$ is the dynamical mass. By requiring that the cluster baryon fraction agrees with Ω_B/Ω_M in the field, we have $\Omega_M = 0.066 \ h^{-1/2} \eta_{10} = 0.39 \ (\eta_{10}/5)$, where η_{10} is the global baryon to photon ratio in units of 10^{-10} and the last number assumes h = 0.7. An independent estimate from the Zeldovich-Sunyaev effect observed in clusters [51,68] yields $M_{\rm gas}/M_{\rm grav} = 0.082 \ h^{-1}$, or $\Omega_M = 0.044 \ h^{-1}\eta_{10} = 0.31 \ (\eta_{10}/5)$. With $\eta_{10} = 3-5$ from primordial nucleosynthesis (see Sec. 16 on "Big-bang nucleosynthesis" in this Review) we have $\Omega_M=0.2$ -0.4.

Nonlinear Statistical Dynamics on Small Scales: For small scales (r < 1 Mpc) perturbations are non-linear, and a statistical equilibrium argument is invoked for ensemble averages: the peculiar acceleration induced by a pair of galaxies is balanced by relative motions (the cosmic virial theorem). Current estimates [69] give $\Omega_M(10 \text{ kpc} \lesssim r \lesssim 1 \text{ Mpc}) = 0.15 \pm 0.10$ from the pairwise velocity dispersion (with samples excluding clusters) and the three point correlation function of galaxies via a statistical stability argument. Least action principle reconstruction of galaxy orbits in the Local Group gives $\Omega_M = 0.15 \pm 0.15$. All arguments involving velocity are uncertain regarding the extent to which galaxies trace the mass

distribution (biasing), or how much mass is present far away from galaxies.

Simple quasi-linear infall models: For larger scales (r > 10 Mpc), where perturbations are still in a linear regime, the velocity field is described by

$$\nabla \cdot \vec{v} + H_0 \Omega_M^{0.6} \delta = 0 , \qquad (17.5)$$

where δ is the enclosed mass overdensity. An integral form of Eq. (17.5) for a spherically symmetric case, $v/H_0r = \Omega_M^{0.6} \langle \delta \rangle / 3$, when applied to the Virgocentric flow, gives $\Omega_M \approx 0.2$ for $v \approx 200$ –400 km s⁻¹ and $\langle \delta \rangle \sim 2$, assuming no biasing, i.e., galaxies mass [70]. Recently, Tonry et al. [7] argued that the peculiar velocity ascribed to the Virgo cluster is only $\lesssim 140$ km s⁻¹, while the rest of the peculiar velocity flow is attributed to the Hydra-Centarus supercluster and the quadrupole field.

Large-scale velocity flows: There are several methods to statistically compare large-scale velocity flows and density perturbations [71,72]. If δ is measured from galaxy clustering, Ω_M always appears in the measured combination $\beta = \Omega_M^{0.6}/b$ where b is a linear biasing factor of galaxies against the mass distribution. The value of $\Omega_M^{0.6}/b$ varies from 0.3 to 1.1, and tends to favor a high value. The most recent POTENT analysis using the Mark III compilation of velocities indicates a high-density universe, $\Omega_M = 0.5$ -0.7 with $\Omega_M < 0.3$ excluded at a 99% CL [73]. Blakeslee et al. [11] derived $\Omega_M \approx 0.25 \pm 0.05$, if b is close to unity, using better-determined distances from SBF. In spite of substantial effort the results are controversial. The difficulty is that one needs accurate information for velocity fields, for which an accurate estimate of distances and their errors is crucial. Random errors of the distance indicators introduce large noise in the velocity field. This seems particularly serious in the POTENT algorithm, in which the derivative $\nabla \cdot \vec{v}/\Omega_M^{0.6}$ and its square are numerically computed. This procedure enhances noise, especially for a small Ω_M .

17.2.2. Model-dependent determinations: The following derivations of the mass density parameter are based on the hierarchical clustering model of cosmic structure formation assuming the cold dark matter (CDM) model. The extraction of Ω_M is therefore indirect. On the other hand it is reasonable to appeal to such models, since Ω_M is the parameter that predominantly controls gravitational structure formation.

Shape parameter of the transfer function: Perturbations of density are described by the Fourier power spectrum P(k), where k is the spatial wavenumber. CDM models predict a shape for the linear power spectrum $P(k) \propto k^{n-4}$ on small scales and $P(k) \propto k^n$ on large scales, where $n \approx 1$ is the primordial power law index. The transition scale is determined by $k_{eq} \approx 2\pi/c\,t_{eq}$, where the characteristic length $c\,t_{eq} = 6.5(\Omega_M h)^{-1}h^{-1}\,$ Mpc is the horizon size at the time of matter-radiation equality (in comoving units, appropriately stretched to the present epoch). The "shape parameter" $\Gamma \equiv \Omega_M h$ can be estimated from galaxy clustering, and to yield sufficient clustering power on scales of tens of Mpc must be small, about 0.2 [74–76].

Power spectrum in nonlinear galaxy clustering: It is argued that the power spectrum in a small scale region $(k^{-1} < 3h^{-1} \text{ Mpc})$, where nonlinear effects are dominant, shows more power than is expected in $\Omega_M = 1$ cosmological models. The excess power is understood if $\Omega_M \approx 0.3$ [77].

Evolution of the rich cluster abundance: The cluster abundance at $z\approx 0$ requires the rms mass fluctuation $\sigma_8=((\delta M/M))^{1/2}|_{r=8h^{-1}\ \mathrm{Mpc}}$ to satisfy $\sigma_8\approx 0.6\ \Omega_M^{-0.5}$ [78, 79]. The evolution of the cluster abundance is sensitive to σ_8 in early epochs of growth, corresponding to $z\gtrsim 0.3$ for rich clusters. The rich cluster abundance at $z\sim 0.3-1$, when compared with that at a low z, thus determines both σ_8 and Ω_M [80]. Carlberg [81] derived $\Omega_M=0.4\pm 0.2$, and Bahcall and Fan [82] obtained $\Omega_M=0.2^{+0.3}_{-0.1}$, while Eke et al. [76] reported $\Omega_M=0.43\pm 0.25$ for an open universe, and $\Omega_M=0.36\pm 0.25$ for a flat universe, corresponding to a slow growth of the abundance. On the other hand, Blanchard and Bartlett [83] and Reichart et al. [84]

obtained $\Omega_M \approx 1$ from a more rapid growth. The controversy among authors arises from different estimates of the cluster mass at high z.

Cluster abundance versus the COBE normalization: The cluster abundance gives an accurate estimate of σ_8 for a low-z universe. Another place we can extract an accurate σ_8 is from the fluctuation power imprinted on cosmic microwave background radiation (CBR) anisotropies. Assuming the model CDM transfer function $\sigma_8 = \sigma_8(H_0, \Omega_M, \Omega_\Lambda, \Omega_B, n...)$, matching of the COBE [85] with the cluster abundance gives a significant constraint on cosmological parameters $\Omega_M = \Omega_M(H_0, \Omega_\Lambda)$ [79,86], which improves by adding small-angle CBR data [87–90]. The presence of the tensor mode makes the range of n more uncertain, but notwithstanding these uncertainties, $\Omega_M > 0.5$ is difficult to reconcile with the matching condition whereas too-small Ω_M ($\lesssim 0.15$) is not consistent with the cluster abundance. These constraints will rapidly improve with new CBR data.

17.3. The Cosmological Constant

17.3.1. Type Ia supernova Hubble diagram: The luminosity distance receives a cosmology-dependent correction as z increases: Ω_M pulls down d_L and Ω_Λ pushes it up. In first order of z the correction enters in the combination of $q_0=\Omega_M/2-\Omega_\Lambda$, so this is historically referred to as a q_0 test, a measure of cosmic deceleration, although this single-parameter description is not adequate at the redshifts of the current samples. The discovery by two groups that distant supernovae are fainter than expected from the local sample, even fainter than expected for $q_0=0$, points to the reality of $\Lambda>0$ [63,64]. The best fits are currently for $\Omega_\Lambda\approx 0.7, \Omega_M\approx 0.3$ —a flat, Λ -dominated universe.

The challenge of this analysis is to differentiate among interesting cosmologies with small differences of brightness. The samples are on average about 0.25 mag fainter than in the $\Omega_M = 0.2$, $\Omega_{\Lambda} = 0$ model, a difference most economically explained by adopting a cosmology with $\Lambda > 0$. On the other hand, at z = 0.4 where many supernovae are observed, the difference is $\Delta m = 0.12$ mag between $(\Omega_M, \Omega_{\Lambda}) = (0.3, 0.7)$ and (0, 0), and $\Delta m = 0.22$ from (0, 0) to (1.0,0). Therefore, an accuracy of ≤ 0.05 mag ($\leq 5\%$) must be attained including systematics to prove the presence of Λ without appeal to other constraints (on Ω_M , $\Omega_M + \Omega_\Lambda$, etc.). Each SN data point contains at best ± 0.2 mag (20%) statistical error; the question is whether the total error is mostly random and systematics are controlled to a level of ≤0.05 mag. A particular difficulty arises from a procedure to match high z SNe with the template at $z \approx 0$, which involves an integration over SN spectra dominated by strong features as well as a careful calibration of the flux zero points at different color bands. Even for spectrophotometric standard stars, the synthetic magnitude usually contains errors of 0.02-0.05 mag, especially when the color band involves the Balmer or Paschen regions. Dust obscuration may also be amplified into an important potential source of error, since, for example, a 0.02 mag error in color results in a 0.06 mag error in A_V . Perlmutter et al. [64] estimate 0.02 mag and Riess et al. [63] (see also Ref. 91) estimate 0.03 mag for K correction plus zero point errors, and 0.025 and 0.06 for dust extinction errors, respectively.

17.3.2. Gravitational lensing frequencies for quasars: The cosmological factor in the gravitational lensing optical depth is very sensitive to the cosmological constant, if $\Omega_{\Lambda} \gg \Omega_{M}$ [92,93]. On the other hand, it is nearly insensitive to the change of Λ when it is small $(\Omega_{\Lambda} \lesssim 0.6$, say); in that case the uncertainties in the normalization factor (galaxy number density and the mass distribution of galaxies) dominate. It is likely that $\Omega_{\Lambda} > 0.8$ is excluded. On the other hand, a more stringent limit or solid detection is liable to be elusive for a smaller Ω_{Λ} . Nearly a decade of continuous efforts have brought substantial improvement in reducing uncertainties in the normalization factor [94–96]. Nevertheless, the luminosity density of early type galaxies which dominate lensing is uncertain by about a factor of two. We should adopt a conservative limit at present $\Omega_{\Lambda} < 0.8$ which is insensitive to this concern.

17.3.3. Harmonics of CBR anisotropies: The angular scale of the first acoustic peak is particularly sensitive to a combination of Ω_M and Ω_Λ . The position of the first acoustic peak as estimated numerically using CMBFAST [97] is

$$\ell_1 \approx 220 \left(\frac{1 - \Omega_{\Lambda}}{\Omega_M}\right)^{1/2} , \qquad (17.6)$$

valid to about 10% accuracy for the parameter range that concerns us. This means that the position of the acoustic peak is about $\ell\approx 220$ if $\Omega_M+\Omega_\Lambda=1$, but it shifts to a high ℓ as $\Omega_M^{-1/2}$ if $\Omega_\Lambda=0$. On the other hand, there is little power to determine Ω_M separately from Ω_Λ . The harmonics C_ℓ measured at small angles now reveal the acoustic peak [98], and its position favors a universe close to flat [87–89]. The most rescent result [99] indicates $0.88 \leq \Omega_M + \Omega_\Lambda \leq 1.12$, which means that a zero Λ universe is not tenable when combined with Ω_M from other arguments.

Table 17.3: Summary of Ω and Ω_{Λ} .

Method	Ω_M	Ω_{Λ}
H_0 vs t_0	< 0.7	
luminosity density +M/L	0.1-0.4	
cluster baryon fraction	0.15-0.35	
SNeIa Hubble diagram	≤ 0.3	≈ 0.7
small-scale velocity field		
(summary)	0.2 ± 0.15	
(pairwise velocity)	0.15 ± 0.1	
(Local Group kinematics)	0.15 ± 0.15	
(Virgocentric flow)	$\boldsymbol{0.2 \pm 0.2}$	
large-scale velocity field	0.2 - 1	
cluster evolution		
$(\mathrm{low}\;\Omega_M\;\mathrm{sol'n})$	$0.2^{+0.3*}_{-0.1}$	
(high Ω_M sol'n)	~1*	
COBE-cluster matching	$0.35-0.45 \ ({ m if} \ \Omega_{\Lambda} = 0)^*$	
	0.20–0.40 (if $\Omega_{\Lambda} \neq 0$)	*
shape parameter Γ	0.2-0.4*	
CBR acoustic peak ≈	$(1 \pm 0.12) - \Omega_{\Lambda}^* \approx$	$(1\pm0.12)-\Omega_M$
gravitational lensing		< 0.8
Summary	0.15-0.45 (if open)	
	0.2-0.4 (if flat)	
		0.6 - 0.8
*CDM model used.		

17.4. Conclusions

The status of Ω_M and Ω_Λ is summarized in Table 17.3. We have a reasonable convergence of the Ω_M parameter towards a low value $\Omega_M=0.15$ –0.4. The convergence of Ω_M is significantly better with the presence of a cosmological constant that makes the universe flat. Particularly encouraging is the agreement of Ω_M derived with the most reliable arguments. Even so, the current 'low Ω_M concordance' means values that still vary by more than a factor of two. The indication of $\Omega_\Lambda \neq 0$ from the SNeIa Hubble diagram is very interesting and important, but on its own the conclusion is susceptible to small systematic effects. On the other hand small-scale CBR anisotropy observations confirming a nearly flat universe, in combination with the sum of the other evidence considered here, strongly suggest the presence of Λ or other exotic (highly negative pressure) form of dark mass-energy.

In conclusion we present in Fig. 17.1 allowed ranges of H_0 and Ω_M (and Ω_Λ) for the case of (a) flat and (b) open universes. With the flat case we cut the lower limit of Ω_M at 0.2 due to a strong constraint from lensing. An ample amount of parameter space is allowed for a

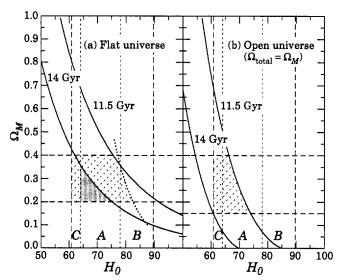


Figure 17.1: Consistent parameter ranges in the H_0 - Ω_M plane for (a) a flat universe and (b) an open universe. A is the range of the Hubble constant when $(m-M)_{\rm LMC}=18.5$. B is also allowed when the LMC distance is shorter by 0.3 mag, and C when longer by 0.1 mag. Note in panel (a) that most of the range of B is forbidden by the compatibility of age and H_0 that are simultaneously driven by the RR Lyr calibration (short dotted curve, see Sec. 17.1.6). Also note that the age range between ≈ 11.5 Gyr and ≈ 14 Gyr (light cross-hatched) is possible only with the interpretation that globular cluster formation is coeval (Sec. 17.1.5). The 'most natural' parameter region is dark gray.

flat universe. A high value of $H_0 > 82$, which would be driven only by a short LMC distance, is excluded by self-consistency with the age of globular clusters, as noted earlier. Therefore, we are led to the range $H_0 \approx 60\text{--}82$ from consistency. For an open universe the coeval-formation interpretation is compelling for globular clusters, or else no region is allowed; the allowed H_0 is limited to 60–70. No solution is available if LMC is at the shorter distance.

- M. Fukugita, in Structure Formation in the Universe, Proc. of the NATO ASI, Cambridge, 1999 (to be published, 2000); astro-ph/0005069.
- 2. J.H. Jacoby et al., Publ. Astron. Soc. Pac. 104, 599 (1992).
- 3. W.L. Freedman et al., Nature 371, 757 (1994).
- 4. L. Ferrarese et al., astro-ph/9910501 (1999).
- 5. J.L. Tonry et al., Astrophys. J. 475, 399 (1997).
- W.L. Freedman, B.F. Madore, and R.C. Kennicutt, in *The Extragalactic distance scale*, eds. M. Livio, M. Donahue, and N. Panagia (Cambridge University Press, Cambridge), p. 171 (1997).
- 7. J.L. Tonry et al., Astrophys. J. 530, 625 (2000).
- 8. S. Sakai et al., Astrophys. J. 529, 698 (2000).
- 9. D.D Kelson et al., Astrophys. J. 529, 768 (2000).
- 10. L. Ferrarese et al., Astrophys. J. 529, 745 (2000).
- 11. J.P. Blakeslee et al., Astron. J. 527, L73 (1999).
- A.G. Riess, W.H. Press, and R.P. Kirshner, Astrophys. J. 438, L17 (1995).
- 13. M. Hamuy et al., Astrophys. J. 112, 2398 (1996).
- 14. S. Jha et al., Astrophys. J. Suppl. Ser. 125, 73 (1999).
- 15. N.B. Suntzeff et al., Astrophys. J. 117, 1175 (1999).
- 16. B.K. Gibson et al., Astrophys. J. 529, 723 (2000).
- 17. A. Saha et al., Astrophys. J. 522, 802 (1999).
- M.W. Feast and A.R. Walker, Ann. Rev. Astr. Astrophys. 25, 345 (1987).

- B.F. Madore and W.L. Freedman, Publ. Astron. Soc. Pac. 103, 933 (1991).
- F. van Leeuwen and C.S. Hansen-Ruiz, Mon. Not. of the R. Astron. Soc. 287, 955 (1997).
- J.-C. Mermilliod et al., in Hipparcos Venice '97, ed. B. Battrick (ESA, Noordwijk, 1997), p. 643.
- 22. M.H. Pinsonneault et al., Astrophys. J. 504, 170 (1998).
- 23. V.K. Narayanan and A. Gould, Astrophys. J. 523, 328 (1999).
- 24. M. Sekiguchi and M. Fukugita, Observatory 118, 73 (1998).
- M.W. Feast and R.M. Catchpole, Mon. Not. of the R. Astron. Soc. 286, L1 (1997).
- 26. X. Luri, et al., Astr. and Astrophys. 335, L81 (1998).
- 27. B.F. Madore and W.L. Freedman, Astrophys. J. 492, 110 (1998).
- 28. A. Udalski et al., Acta Astron. 48, 1 (1998).
- 29. K.Z. Stanek and P.M. Garnavich, Astrophys. J. 503, L131 (1998).
- E.F. Guinan et al., Astrophys. J. 509, L21 (1998).
- 31. A. Udalski et al., Astrophys. J. 509, L25 (1998).
- 32. R.G Gratton et al., Astrophys. J. 491, 749 (1997).
- 33. I.N. Reid, Astron. J. 114, 161 (1997).
- 34. J. Fernley et al., Astr. and Astrophys. 330, 515 (1998).
- 35. A. Gould and P. Popowski, Astrophys. J. 508, 844 (1998).
- 36. J.R. Herrnstein et al., Nature 400, 539 (1999).
- 37. E. Maoz et al., Nature 401, 351 (1999).
- B.P. Schmidt, R.P. Kirshner, and R.G. Eastman, Astrophys. J. 395, 366 (1992).
- 39. B.P. Schmidt et al., Astrophys. J. 432, 42 (1994).
- S. Refsdal, Mon. Not. of the R. Astron. Soc. 128, 307 (1964).
- E.E Falco, M.V. Gorenstein, and I.I. Shapiro, Astrophys. J. 372, 364 (1991).
- 42. T. Kundić et al., Astrophys. J. 482, 75 (1997).
- 43. G. Bernstein and P. Fischer, Astron. J. 118, 14 (1999).
- 44. P.L. Schechter et al., Astrophys. J. 475, L85 (1997).
- 45. C.R. Keeton and C.S. Kochanek, Astrophys. J. 487, 42 (1997).
- 46. F. Courbin et al., Astr. and Astrophys. 324, L1 (1997).
- 47. C.D. Impey et al., Astrophys. J. 509, 551 (1998).
- A.D. Biggs et al., Mon. Not. of the R. Astron. Soc. 304, 349 (1999).
- L.V.E. Koopmans and C.D. Fassnacht, Astrophys. J. 527, 513 (1999).
- M. Birkinshaw, J.P. Hughes, and K.A. Arnaud, Astrophys. J. 379, 466 (1991).
- 51. S.T. Myers et al., Astrophys. J. 485, 1 (1997).
- 52. E.D. Reese et al., Astrophys. J. 533, 38 (2000).
- A. Renzini, in Observational Tests of Cosmological Inflation, ed. T. Shanks et al., (Kluwer, Dordrecht), p. 131 (1991).
- D.A. VandenBerg, M. Bolte, and P.B. Stetson, Ann. Rev. Astr. Astrophys. 34, 461 (1996).
- B. Chaboyer, P. Demarque, and A. Sarajedini, Astrophys. J. 459, 558 (1996).
- 56. A. Sandage, Astron. J. 106, 703 (1993).
- 57. B. Chaboyer et al., Astrophys. J. 494, 96 (1998).
- 58. J.R. Mould et al., Astrophys. J. 529, 786 (2000).
- N.A. Bahcall, L.M. Lubin, and V. Dorman, Astrophys. J. 447, L81 (1995).
- 60. N. Kaiser et al., astro-ph/9809268 (1998).
- M. Fukugita, C.J. Hogan, and P.J.E. Peebles, Astrophys. J. 503, 518 (1998).
- R.G. Carlberg, H.K.C. Yee, and E. Ellingson, Astrophys. J. 478, 462 (1997).
- A.G. Riess et al., Astron. J. 116, 1009 (1998).
- 64. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

- W. Forman, and C. Jones, Ann. Rev. Astr. Astrophys. 20, 547 (1982).
- 66. S.D.M. White et al., Nature 366, 429 (1993).
- D.A. White and A.C. Fabian, Mon. Not. of the R. Astron. Soc. 273, 72 (1995).
- L. Grego et al., presented at the AAS meeting (194.5807G) (1999).
- P.J.E. Peebles, in Formation of Structure in the Universe, eds Dekel, A. and Ostriker, J. P. (Cambridge University Press, Cambridge), p. 435 (1999).
- M. Davis and P.J.E. Peebles, Ann. Rev. Astr. Astrophys. 21, 109 (1983).
- 71. M.A. Strauss and J.A. Willick, Phys. Reports 261, 271 (1995).
- A.J.S Hamilton, in *The Evolving Universe*, ed. D. Hamilton, (Kluwer, Dordrecht, 1998), p. 185.
- 73. A. Dekel et al., Astrophys. J. 522, 1 (1999).
- G. Efstathiou, W.J. Sutherland, and S.J. Maddox, Nature 348, 705 (1990).
- J.A. Peacock and S.J. Dodds, Mon. Not. of the R. Astron. Soc. 267, 1020 (1994).
- V.R. Eke et al., Mon. Not. of the R. Astron. Soc. 298, 1145 (1998).
- 77. J.A. Peacock, Mon. Not. of the R. Astron. Soc. 284, 885 (1997).
- S.D.M. White, G. Efstathiou, and C.S. Frenk, Mon. Not. of the R. Astron. Soc. 262, 1023 (1993).
- V.R. Eke, S. Cole, and C.S. Frenk, Mon. Not. of the R. Astron. Soc. 282, 263 (1996).
- J. Oukbir and A. Blanchard, Astr. and Astrophys. 262, L21 (1992).

- 81. R.G. Carlberg et al., Astrophys. J. 479, L19 (1997).
- 82. N.A. Bahcall and X. Fan, Astrophys. J. 504, 1 (1998).
- A. Blanchard and J.G. Bartlett, Astr. and Astrophys. 332, L49 (1998).
- 84. D.E. Reichart, et al., Astrophys. J. 518, 521 (1999).
- 85. C.L. Bennett et al., Astrophys. J. 464, L1 (1996).
- G. Efstathiou, J.R. Bond, and S.D.M White, Mon. Not. of the R. Astron. Soc. 258, 1 (1992).
- S. Hancock et al., Mon. Not. of the R. Astron. Soc. 294, L1 (1998).
- 88. C.H. Lineweaver, Astrophys. J. 505, L69 (1998).
- G. Efstathiou et al., Mon. Not. of the R. Astron. Soc. 303, 47 (1999).
- 90. M. Tegmark, Astrophys. J. 514, L69 (1999).
- 91. B.P. Schmidt et al., Astrophys. J. 507, 46 (1998).
- M. Fukugita, T. Futamase, and M. Kasai, Mon. Not. of the R. Astron. Soc. 256, 25 (1990).
- 93. E.L. Turner, Astrophys. J. 365, L43 (1990).
- 94. D. Maoz and H.-W. Rix, Astrophys. J. 416, 425 (1993).
- 95. C.S. Kochanek, Astrophys. J. 466, 638 (1996).
- E.E. Falco, C.S. Kochanek, and J.A. Muñoz, Astrophys. J. 494, 47 (1998).
- 97. U. Seljak and M. Zaldarriaga, Astrophys. J. 469, 437 (1996).
- 98. P.F. Scott et al., Astrophys. J. 461, L1 (1996).
- 99. P. deBernardis et al., Nature 404, 955 (2000).

18. DARK MATTER

Revised Sep. 1999 by M. Srednicki (University of California, Santa Barbara).

The total mass-energy of the Universe is composed of several constituents, each of which may be characterized by its energy density $\rho_i \equiv \Omega_i \rho_c$ and its pressure $p_i \equiv w_i \rho_i$. Here $\rho_c \equiv 3H_0^2/8\pi G_{\rm N}$ is the critical density, and H_0 is the present value of the Hubble parameter. We will take $H_0 = 70\,{\rm km\,s^{-1}\,Mpc^{-1}}$ when a numerical value is needed; then $\rho_c = 5.2 \times 10^{-6}\,{\rm GeV/cm^3}$. We can express the total density as $\rho_0 = \Omega_0 \rho_c$, where $\Omega_0 = \sum_i \Omega_i$. The deceleration parameter $q_0 \equiv (\ddot{R}/R)_0/H_0^2$, where R(t) is the scale factor and the subscript 0 denotes the present value, is then given by $q_0 = \frac{1}{2}\Omega_0 + \frac{3}{2}\sum_i \Omega_i w_i$.

In general, relativistic particles have an equation of state specified by $w=+\frac{1}{3}$, nonrelativistic particles have w=0, and the cosmological constant (here treated as another form of matter) has w=-1. Spatially uniform scalar fields which are oscillating rapidly in time (that is, with a frequency much greater than the Hubble parameter H_0) also have w=0. Spatially uniform scalar fields which are changing slowly in time have -1 < w < 0.

Certain contributions to the mass density are well determined. The photons of the cosmic microwave background radiation (CMB) have $\rho_{\gamma}=\frac{\pi^2}{15}T_0^4$, where $T_0=2.73\,\mathrm{K}=2.35\times10^{-4}\,\mathrm{eV}$ is the present temperature of the CMB; this yields $\Omega_{\gamma}=5.1\times10^{-5}$. Results from Big-Bang nucleosynthesis indicate that the total baryon density is in the range $0.008<\Omega_{\mathrm{b}}<0.043$; of this, roughly 0.004 is accounted for by stars. A single species of neutrino with a Majorana mass m_{ν} would have $\Omega_{\nu}=0.56\,G_{\mathrm{N}}T_0^3H_0^{-2}m_{\nu}=m_{\nu}/(45\,\mathrm{eV})$ and $w_{\nu}=0$ if $m_{\nu}\gg T_0$, and $\Omega_{\nu}=0.23\,\Omega_{\gamma}$ and $w_{\nu}=\frac{1}{3}$ if $m_{\nu}\ll T_0$.

There is strong evidence from a variety of different observations for a large amount of dark matter in the Universe [1,2,3,4]. The phrase "dark matter" signifies matter whose existence has been inferred only through its gravitational effects. Two categories should be distinguished: baryonic dark matter, composed of baryons which are not seen (including black holes formed by stellar collapse), and nonbaryonic dark matter, composed either of massive neutrinos, or of elementary particles or fields which are as yet undiscovered (including primordial black holes). The particles or fields which comprise nonbaryonic dark matter must have survived from the Big Bang, and therefore must either be stable or have lifetimes in excess of the current age of the Universe.

There are a number of different observations which indicate the presence of dark matter (baryonic or nonbaryonic). These observations include rotation curves of spiral galaxies [5], which indicate that individual galaxies have halos of dark matter whose density falls off as $1/r^2$ at large distances r from the galaxy's center. In our own Galaxy, estimates of the local density of dark matter typically give $\rho_{\rm dm} \simeq 0.3 \, {\rm GeV/cm^3}$, but this result depends sensitively on how the dark-matter halo is modeled.

An estimate of the total pressureless matter density $\Omega_{\rm m}$ (that is, of all components, baryonic and nonbaryonic, with $w_i=0$) can be made from studies of rich clusters of galaxies. The baryonic mass of a cluster can be inferred from X-ray emissions, and the total mass from galactic velocities (via the virial theorem) or gas dynamics [6]. Assuming that the ratio of these masses is typical of the Universe as a whole, we obtain the value of $\Omega_{\rm m}/\Omega_{\rm b}$. Using the nucleosynthesis value of $\Omega_{\rm b}$ then yields $\Omega_{\rm m}=0.4\pm0.1$. This is at least roughly consistent with a number of other estimates of $\Omega_{\rm m}$, such as from mass-to-light ratios for clusters [7] and from large-scale velocity fields [8]. This value of $\Omega_{\rm m}$ would imply that 90% of the pressureless matter in the Universe is nonbaryonic.

An estimate of the total density Ω_0 can be made from fluctuations in the CMB (see Section 15 on "Big-Bang Cosmology" in this *Review*). The first acoustic peak in the power spectrum of these fluctuations is predicted to occur at a multipole $\ell \sim 220\,\Omega_0^{-1/2}$; current data yields $\Omega_0 \sim 0.8 \pm 0.2$ [9]. This is consistent with the generic prediction $\Omega_0 = 1$ of inflationary models.

Type Ia supernovae can be used as standard candles to get information on the relationship between redshift and distance [10].

If we assume that the dominant contributions to Ω_0 are from pressureless matter and an unknown component X, then the results require $w_X < -0.6$ (at the 95% CL, ignoring any systematic errors). Assuming $w_X = -1$ (a cosmological constant), the results constrain the combination $0.8\,\Omega_{\rm m} - 0.6\,\Omega_X$ to be -0.2 ± 0.1 .

None of these observations give us any direct indication of the nature of the dark matter. The halos of galaxies could have significant fractions of baryonic dark matter in the form of remnants (white dwarfs, neutron stars, black holes) of an early generation of massive stars, or smaller objects which never initiated nuclear burning (and would therefore have masses less than about $0.1\,M_\odot$). These massive compact halo objects are collectively called MACHOs. Results from searches via gravitational lensing effects [11] show that MACHOs with masses from $10^{-6}\,M_\odot$ to $0.1\,M_\odot$ each are not a significant component of our Galaxy's halo. However, the results also indicate that MACHOs with masses of approximately $0.5\,M_\odot$ each comprise roughly half the total mass of the halo. This situation is difficult to reconcile with models of star formation.

For purposes of galaxy formation models [12], nonbaryonic dark matter is classified as "hot" or "cold," depending on whether the dark matter particles were relativistic or nonrelativistic at the time when the horizon of the Universe enclosed enough matter to form a galaxy. If the dark matter particles are in thermal equilibrium with the baryons and radiation, then only the mass of a dark matter particle is relevant to knowing whether the dark matter is hot or cold, with the dividing line being $m_{\rm dm}\sim 1\,{\rm keV}.$ In addition, specifying a model requires giving the power spectrum of initial density fluctuations. Inflationary models generically predict a power spectrum which is nearly scale invariant. With these inputs, galaxy formation models require primarily cold dark matter, with significantly less hot dark matter. However, either a negative-pressure component or some hot dark matter is needed in addition to cold dark matter. For example, a model with $\Omega_{
m cdm}=0.3,\,\Omega_{
m hdm}=0,\,\Omega_X=0.7$ and $w_X=-0.6$ gives a good fit to all current data [13].

There is a constraint on neutrinos (or any light fermions) if they are to comprise the halos of dwarf galaxies: the Fermi-Dirac distribution in phase space restricts the number of neutrinos that can be put into a halo [14], and this implies a lower limit on the neutrino mass of roughly $m_{\nu} > 80 \, \mathrm{eV}$.

There are no presently known particles which could be cold dark matter. However, many proposed extensions of the Standard Model predict a stable (or sufficiently long lived) particle. The key question then becomes the predicted value of $\Omega_{\rm cdm}$.

If the particle is its own antiparticle (or there are particles and antiparticles present in equal numbers), and these particles were in thermal equilibrium with radiation at least until they became nonrelativistic, then their relic abundance is determined by their annihilation cross section $\sigma_{\rm ann}\colon \Omega_{\rm cdm} \sim G_{\rm N}^{3/2} T_0^3 H_0^{-2} \langle \sigma_{\rm ann} v_{\rm rel} \rangle^{-1}$. Here $v_{\rm rel}$ is the relative velocity of the two incoming dark matter particles, and the angle brackets denote an averaging over a thermal distribution of velocities for each at the freeze-out temperature $T_{\rm fr}$ when the dark matter particles go out of thermal equilibrium with radiation; typically $T_{\rm fr} \simeq \frac{1}{20} m_{\rm dm}$. One then finds (putting in appropriate numerical factors) that $\Omega_{\rm cdm} \simeq 7 \times 10^{-27}\,{\rm cm}^3\,{\rm s}^{-1}/\langle \sigma_{\rm ann} v_{\rm rel}\rangle$. The value of $\langle \sigma_{\rm ann} v_{\rm rel}\rangle$ needed for $\Omega_{\rm cdm} \simeq 1$ is remarkably close to what one would expect for a weakly interacting massive particle (WIMP) with a mass of $m_{\rm dm} = 100\,{\rm GeV}$: $\langle \sigma_{\rm ann} v_{\rm rel}\rangle \sim \alpha^2/8\pi m_{\rm dm}^2 \sim 3 \times 10^{-27}\,{\rm cm}^3\,{\rm s}^{-1}$.

If the dark matter particle is not its own antiparticle, and the number of particles minus antiparticles is conserved, then an initial asymmetry in the abundances of particles and antiparticles will be preserved, and can give relic abundances much larger than those predicted above.

If the dark matter particles were never in thermal equilibrium with radiation, then their abundance today must be calculated in some other way, and will in general depend on the precise initial conditions which are assumed.

The two best known and most studied cold dark matter candidates are the neutralino and the axion. The neutralino is predicted by the Minimal Supersymmetric extension of the Standard Model (MSSM) [15,16]. It qualifies as a WIMP, with a theoretically expected mass in the range of tens to hundreds of GeV. The axion is predicted by extensions of the Standard Model which resolve the strong CP problem [17]. Axions can occur in the early universe in the form of a Bose condensate which never comes into thermal equilibrium. The axions in this condensate are always nonrelativistic, and can be a significant component of the dark matter if the axion mass is approximately $10^{-5}\,\mathrm{eV}$. Axions can also arise from the decay of a network of axion strings and domain walls.

There are prospects for direct experimental detection of both these candidates (and other WIMP candidates as well). WIMPs will scatter off nuclei at a calculable rate, and produce observable nuclear recoils [2,16,19]; current data excludes certain regions of parameter space of the MSSM. Axions can be detected by axion to photon conversion in a microwave cavity in a strong magnetic field, and limits on the allowed axion-photon coupling have been set [18].

WIMP candidates can have indirect signatures as well, via present day annihilations into particles which can be detected as cosmic rays. The most promising possibility arises from the fact that WIMPs collect at the centers of the sun and the earth, thus greatly increasing their annihilation rate, and producing high energy neutrinos which can escape and arrive at the earth's surface in potentially observable numbers [16,20].

- 1. V. Trimble, Ann. Rev. Astron. Astrophys. 25, 425 (1987).
- 2. B. Sadoulet, Rev. Mod. Phys. 71, S197 (1999).
- 3. M.S. Turner and J.A. Tyson, Rev. Mod. Phys. 71, S145 (1999).
- 4. N.A. Bahcall et al., Science 284, 1481 (1999).
- M. Persic, P. Salucci and F. Stel, Mon. Not. Roy. Astron. Soc. 281, 27 (1996).
- 6. A.E. Evrard, Mon. Not. Roy. Astron. Soc. 292, 289 (1997).
- 7. R.G. Carlberg et al., Astrophys. J. 516, 552 (1999).
- A. Dekel, Ann. Rev. Astron. Astrophys. 32, 371 (1994);
 M.A. Strauss and J.A. Willick, Phys. Reports 261, 271 (1995);
 A. Dekel, in Formation of Structure in the Universe, ed. A. Dekel and J.P. Ostriker (Cambridge, New York, 1999).

- 9. C.H. Lineweaver, Astrophys. J. 505, L69 (1998).
- S. Perlmutter et al., Astrophys. J. 483, 565 (1997);
 B.P. Schmidt et al., Astrophys. J. 507, 46 (1998);
 A.G. Riess et al., Astron. J. 116, 1009 (1998);
 P.M. Garnavich et al., Astrophys. J. 509, 74 (1998);
 S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
- 11. W. Sutherland, Rev. Mod. Phys. 71, S421 (1999).
- S. Dodelson, E.I. Gates, and M.S. Turner, Science 274, 69 (1996);
 J.R. Primack, in Formation of Structure in the Universe, ed. A. Dekel and J.P. Ostriker (Cambridge, New York, 1999).
- M.S. Turner and M. White, Phys. Rev. **D56**, R4439 (1997);
 S. Perlmutter, M.S. Turner, and M. White, Phys. Rev. Lett. 83, 670 (1999).
- S. Tremaine and J. E. Gunn, Phys. Rev. Lett. 42, 407 (1979);
 O. E. Gerhard and D. N. Spergel, Astrophys. J. 389, L1 (1992).
- 15. H.E. Haber and G.L. Kane, Phys. Reports 117, 75 (1985).
- G. Jungman, M. Kamionkowski, and K. Griest, Phys. Reports 267, 195 (1996).
- M.S. Turner, Phys. Reports 197, 67 (1990);
 Axions '98, ed. P. Sikivie, Nucl. Phys. B (Proc. Supp.) 72 (1999).
- 18. C. Hagmann et al., Phys. Rev. Lett. 80, 2043 (1998).
- J.R. Primack, B. Sadoulet, and D. Seckel, Ann. Rev. Nucl. and Part. Sci. 38, 751 (1988);
 P.F. Smith and J.D. Lewin, Phys. Reports 187, 203 (1990);
 TAUP 97, ed. A. Bottino et al., Nucl. Phys. B (Proc. Supp.) 70 (1999).
- 20. F. Halzen, Nucl. Phys. B (Proc. Supp.) 77, 474 (1999).

19. COSMIC BACKGROUND RADIATION

Revised February 2000 by G.F. Smoot (LBNL) and D. Scott (University of British Columbia).

19.1. Introduction

The observed cosmic microwave background (CMB) radiation provides strong evidence for the hot big bang. The success of primordial nucleosynthesis calculations (see Sec. 16, "Big-bang nucleosynthesis") requires a cosmic background radiation (CBR) characterized by a temperature $kT \sim 1\,\mathrm{MeV}$ at a redshift of $z \simeq 10^9$. In their pioneering work, Gamow, Alpher, and Herman [1] realized this and predicted the existence of a faint residual relic, primordial radiation, with a present temperature of a few degrees. The observed CMB is interpreted as the current manifestation of the required CBR.

The CMB was serendipitously discovered by Penzias and Wilson [2] in 1965. Its spectrum is well characterized by a 2.73 K black-body (Planckian) spectrum over more than three decades in frequency (see Fig. 19.1). A non-interacting Planckian distribution of temperature $T_{\rm i}$ at redshift $z_{\rm i}$ transforms with the universal expansion to another Planckian distribution at redshift $z_{\rm f}$ with temperature $T_{\rm f}/(1+z_{\rm f})=T_{\rm i}/(1+z_{\rm i})$. Hence thermal equilibrium, once established (e.g. at the nucleosynthesis epoch), is preserved by the expansion, in spite of the fact that photons decoupled from matter at early times. Because there are about 10^9 photons per nucleon, the transition from the ionized primordial plasma to neutral atoms at $z\sim 1000$ does not significantly alter the CBR spectrum [3].

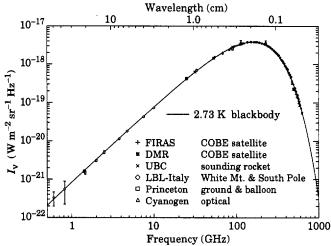


Figure 19.1: Precise measurements of the CMB spectrum. The line represents a 2.73 K blackbody, which describes the spectrum very well, especially around the peak of intensity. The spectrum is less well constrained at 10 cm and longer wavelengths. (References for this figure are at the end of this section under "CMB Spectrum References.")

19.2. The CMB frequency spectrum

The remarkable precision with which the CMB spectrum is fitted by a Planckian distribution provides limits on possible energy releases in the early Universe, at roughly the fractional level of 10^{-4} of the CBR energy, for redshifts $\lesssim 10^7$ (corresponding to epochs $\gtrsim 1$ year). The following three important classes of theoretical spectral distortions (see Fig. 19.2) generally correspond to energy releases at different epochs. The distortion results from the CBR photon interactions with a hot electron gas at temperature T_e .

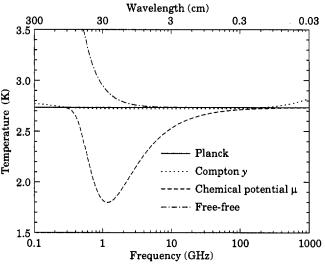


Figure 19.2: The shapes of expected, but so far unobserved, CMB distortions, resulting from energy-releasing processes at different epochs.

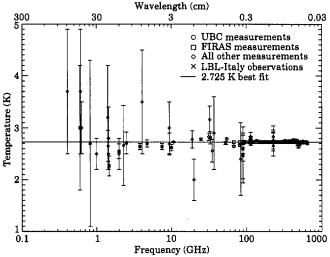


Figure 19.3: Observed thermodynamic temperature as a function frequency.

19.2.1. Compton distortion: Late energy release $(z \lesssim 10^5)$. Compton scattering $(\gamma e \to \gamma' e')$ of the CBR photons by a hot electron gas creates spectral distortions by transferring energy from the electrons to the photons. Compton scattering cannot achieve thermal equilibrium for $y \lesssim 1$, where

$$y = \int_0^z \frac{kT_e(z') - kT_{\gamma}(z')}{m_e c^2} \sigma_T n_e(z') c \frac{dt}{dz'} dz', \qquad (19.1)$$

is the integral of the number of interactions, $\sigma_T \ n_e(z) \ c \ dt$, times the mean-fractional photon-energy change per collision [4]. For $T_e \gg T_\gamma$ y is also proportional to the integral of the electron pressure $n_e k T_e$ along the line of sight. For standard thermal histories y < 1 for epochs later than $z \simeq 10^5$.

The resulting CMB distortion is a temperature decrement

$$\Delta T_{\rm RJ} = -2y \ T_{\gamma} \tag{19.2}$$

in the Rayleigh-Jeans $(h\nu/kT\ll 1)$ portion of the spectrum, and a rise in temperature in the Wien $(h\nu/kT\gg 1)$ region, i.e. photons are

shifted from low to high frequencies. The magnitude of the distortion is related to the total energy transfer [4] ΔE by

$$\Delta E/E_{\rm CBR} = e^{4y} - 1 \simeq 4y$$
 (19.3)

A prime candidate for producing a Comptonized spectrum is a hot intergalactic medium. A hot $(T_e>10^5\,\mathrm{K})$ medium in clusters of galaxies can and does produce a partially Comptonized spectrum as seen through the cluster, known as the Sunyaev-Zel'dovich effect [5]. Based upon X-ray data, the predicted large angular scale total combined effect of the hot intracluster medium should produce $y\sim 10^{-6}$ [6].

19.2.2. Bose-Einstein or chemical potential distortion: Early energy release $(z \sim 10^5-10^7)$. After many Compton scatterings $(y \gg 1)$, the photons and electrons will reach statistical (not thermodynamic) equilibrium, because Compton scattering conserves photon number. This equilibrium is described by the Bose-Einstein distribution with non-zero chemical potential:

$$n = \frac{1}{e^{x+\mu_0} - 1} \,, \tag{19.4}$$

where $x \equiv h\nu/kT$ and $\mu_0 \simeq 1.4 \Delta E/E_{\rm CBR}$, with μ_0 being the dimensionless chemical potential that is required to conserve photon number.

The collisions of electrons with nuclei in the plasma produce free-free (thermal bremsstrahlung) radiation: $eZ \rightarrow e'Z'\gamma$. Free-free emission thermalizes the spectrum to the plasma temperature at long wavelengths and Compton scattering begins to shift these photons upward. Including this effect, the chemical potential becomes frequency-dependent,

$$\mu(x) = \mu_0 e^{-2x_b/x} , \qquad (19.5)$$

where $x_{\rm b}$ is the transition frequency at which Compton scattering of photons to higher frequencies is balanced by free-free creation of new photons. The resulting spectrum has a sharp drop in brightness temperature at centimeter wavelengths [7]. The minimum wavelength is determined by Ω_B .

The equilibrium Bose-Einstein distribution results from the oldest non-equilibrium processes ($10^5 < z < 10^7$), such as the decay of relic particles or primordial inhomogeneities. Note that free-free emission (thermal bremsstrahlung) and radiative-Compton scattering effectively erase any distortions [8] to a Planckian spectrum for epochs earlier than $z \sim 10^7$.

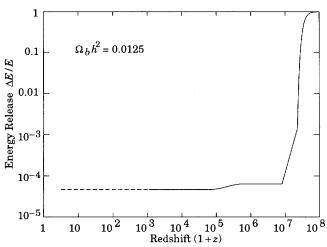


Figure 19.4: Upper Limits (95% CL) on fractional energy $(\Delta E/E_{\rm CBR})$ releases from processes at different epochs as set by resulting lack of CMB spectral distortions. These can be translated into constraints on the mass, lifetime and photon branching ratio of unstable relic particles, with some additional dependence on cosmological parameters such as Ω_B [11,12].

19.2.3. Free-free distortion: Very late energy release $(z\ll 10^3)$. Free-free emission can create rather than erase spectral distortion in the late Universe, for recent reionization $(z<10^3)$ and from a warm intergalactic medium. The distortion arises because of the lack of Comptonization at recent epochs. The effect on the present-day CMB spectrum is described by

$$\Delta T_{\rm ff} = T_{\gamma} Y_{\rm ff} / x^2, \tag{19.6}$$

where T_{γ} is the undistorted photon temperature, x is the dimensionless frequency, and $Y_{\rm ff}/x^2$ is the optical depth to free-free emission:

$$Y_{\rm ff} = \int_0^z \frac{T_e(z') - T_{\gamma}(z')}{T_e(z')} \frac{8\pi e^6 h^2 n_e^2 g}{3m_e(kT_{\gamma})^3 \sqrt{6\pi m_e kT_e}} \frac{dt}{dz'} dz' . \quad (19.7)$$

Here h is Planck's constant, n_e is the electron density and g is the Gaunt factor [9].

19.2.4. Spectrum summary: The CMB spectrum is consistent with a blackbody distribution over more than three decades of frequency around the peak. The best-fit to the COBE FIRAS data yields $T_{\gamma}=2.725\pm0.002$ K (95% CL) [10]. The following table is a summary of all CMB spectrum measurements:

$$\begin{split} T_{\gamma} &= 2.725 \pm 0.002 \text{ K} \quad (95\% \text{ CL}) \,; \\ n_{\gamma} &= (2\zeta(3)/\pi^2) \, T_{\gamma}^3 \simeq 411 \, \text{cm}^{-3} \,; \\ \rho_{\gamma} &= (\pi^2/15) \, T_{\gamma}^4 \simeq 4.64 \times 10^{-34} \, \text{g cm}^{-3} \simeq 0.260 \, \text{eV cm}^{-3} \,; \\ |y| &< 1.2 \times 10^{-5} \qquad (95\% \text{ CL}) \,; \\ |\mu_0| &< 9 \times 10^{-5} \qquad (95\% \text{ CL}) \,; \\ |Y_{\text{ff}}| &< 1.9 \times 10^{-5} \qquad (95\% \text{ CL}) \,. \end{split}$$

These limits [13] correspond to constraints [13–15] on energetic processes $\Delta E/E_{\rm CBR} < 2 \times 10^{-4}$ occurring between redshifts 10^3 and 5×10^6 (see Fig. 19.4).

19.3. Deviations from isotropy

Penzias and Wilson reported that the CMB was isotropic and unpolarized at the 10% level. Current observations show that the CMB is unpolarized at the 10^{-5} level but has a dipole anisotropy at the 10^{-3} level, with smaller-scale anisotropies at the 10^{-5} level. Standard theories predict temperature anisotropies of roughly the amplitude now being detected, and anisotropies in linear polarization at a level which should soon be reached.

It is customary to express the CMB temperature anisotropies on the sky in a spherical harmonic expansion,

$$\frac{\Delta T}{T}(\theta,\phi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\theta,\phi) , \qquad (19.8)$$

and to discuss the various multipole amplitudes. The power at a given angular scale is roughly $\ell \sum_m \left|a_{\ell m}\right|^2/4\pi$, with $\ell \sim 1/\theta$.

19.3.1. The dipole: The largest anisotropy is in the $\ell=1$ (dipole) first spherical harmonic, with amplitude at the level of $\Delta T/T=1.23\times 10^{-3}$. The dipole is interpreted as the result of the Doppler shift caused by the solar system motion relative to the nearly isotropic blackbody field, as confirmed by measurements of the velocity field of local galaxies [16]. The motion of the observer (receiver) with velocity $\beta=v/c$ relative to an isotropic Planckian radiation field of temperature T_0 produces a Doppler-shifted temperature

$$T(\theta) = T_0 (1 - \beta^2)^{1/2} / (1 - \beta \cos \theta)$$

= $T_0 \left(1 + \beta \cos \theta + (\beta^2/2) \cos 2\theta + O(\beta^3) \right)$. (19.9)

The implied velocity [13,17] for the solar-system barycenter is $\beta=0.001237\pm0.000002$ (68% CL) or $v=371\pm0.5\,\mathrm{km\,s^{-1}}$, assuming a value $T_0=T_\gamma$, towards $(\alpha,\delta)=(11.20^{\mathrm{h}}\pm0.01^{\mathrm{h}},-7.22^{\mathrm{o}}\pm0.08^{\mathrm{o}}),$ or $(\ell,b)=(264.31^{\mathrm{o}}\pm0.17^{\mathrm{o}},48.05^{\mathrm{o}}\pm0.10^{\mathrm{o}}).$ Such a solar-system velocity implies a velocity for the Galaxy and the Local Group of galaxies

relative to the CMB. The derived velocity is $v_{\rm LG} = 627 \pm 22 \, {\rm km \, s^{-1}}$ toward $(\ell,b) = (276^{\circ} \pm 3^{\circ}, 30^{\circ} \pm 3^{\circ})$, where most of the error comes from uncertainty in the velocity of the solar system relative to the Local Group.

The Doppler effect of this velocity and of the velocity of the Earth around the Sun, as well as any velocity of the receiver relative to the Earth, is normally removed for the purposes of CMB anisotropy study. The resulting high degree of CMB isotropy is the strongest evidence for the validity of the Robertson-Walker metric.

19.3.2. The quadrupole: The rms quadrupole anisotropy amplitude is defined through $Q_{\rm rms}^2/T_\gamma^2=\sum_m |a_{2m}|^2/4\pi$. The current estimate of its value is $4\,\mu{\rm K}\leq Q_{\rm rms}\leq 28\,\mu{\rm K}$ for a 95% confidence interval [18]. The uncertainty here includes both statistical errors and systematic errors, which are dominated by the effects of galactic emission modelling. This level of quadrupole anisotropy allows one to set general limits on anisotropic expansion, shear, and vorticity; all such dimensionless quantities are constrained to be less than about 10^{-5} .

For specific homogeneous cosmologies, fits to the whole anisotropy pattern allow stringent limits to be placed on, for example, the global rotation at the level of about 10^{-7} of the expansion rate [19].

19.3.3. Smaller angular scales: The COBE-discovered [20] higher-order $(\ell > 2)$ anisotropy is interpreted as being the result of perturbations in the energy density of the early Universe, manifesting themselves at the epoch of the CMB's last scattering. The detection of these anisotropies at just the right level for gravity to have grown all of the structure observed in today's Universe demonstrates that gravitational instability acting on primordial density perturbations was the main mechanism for structure formation.

Theoretical models generally predict a power spectrum in spherical harmonic amplitudes, since the models lead to primordial fluctuations and thus $a_{\ell m}$ that are Gaussian random fields, and hence the power spectrum in ℓ is sufficient to characterize the results. The power at each ℓ is $(2\ell+1)C_\ell/(4\pi)$, where $C_\ell \equiv \langle |a_{\ell m}|^2 \rangle$ and a statistically isotropic sky means that all m's are equivalent. For an idealized full-sky observation, the variance of each measured C_ℓ is $[2/(2\ell+1)]C_\ell^2$. This sampling variance (known as cosmic variance) comes about because each C_ℓ is chi-squared distributed with $(2\ell+1)$ degrees of freedom for our observable volume of the Universe [21].

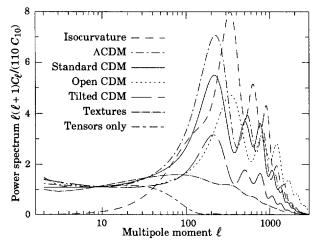


Figure 19.5: Theoretically predicted $\ell(\ell+1)C_\ell$ or CMB anisotropy power spectra [24] for a range of models. The top curve is an isocurvature CDM model which has a characteristically different shape than the adiabatic models. The next four are variants of adiabatic Cold Dark Matter models. The textures model [25] is an example with perturbations seeded by topological defects. We also show the power spectrum from gravity waves (tensors), which could contribute at large angles. All the models have been normalized at $\ell=10$ except for the isocurvature case, which was arbitrarily normalized to the height of the box. Such curves depend in detail on the precise values of the cosmological parameters, and those shown here are examples only.

Figure 19.5 shows the theoretically predicted anisotropy power spectrum for a sample of models, plotted as $\ell(\ell+1)C_{\ell}$ versus ℓ which is the power per logarithmic interval in ℓ or, equivalently, the two-dimensional power spectrum. If the initial power spectrum of perturbations is the result of quantum mechanical fluctuations produced and amplified during inflation, then for simple models the shape of the anisotropy spectrum is coupled to the ratio of contributions from density (scalar) and gravitational wave (tensor) perturbations [22]. In such models the large angle contribution from tensors is constrained to be $\lesssim 0.5$ [23]. However, there are other inflationary models which allow higher tensor contribution. In particular if the energy scale of inflation at the appropriate epoch is $\simeq 10^{16} \text{GeV}$, then detection of the effect of gravitons is more likely and partial reconstruction of the inflaton potential may be feasible. However, if the energy scale is $\lesssim 10^{14} \text{GeV}$, then typically density fluctuations dominate and less constraint is possible.

On angular scales corresponding to $\ell \gtrsim 50$ scalar modes certainly dominate. In the standard scenario the last scattering epoch happens at a redshift of approximately 1100, by which time the large number of photons was no longer able to keep the hydrogen ionized. The optical thickness of the cosmic photosphere is roughly $\Delta z \sim 100$ corresponding to about 5 arcminutes on the sky, so that features smaller than this size are damped.

Anisotropies have now been observed on angular scales above this damping scale by a large number of experiments (see Fig. 19.6), and are consistent with those expected from an initially scale-invariant (also referred to as 'flat') power spectrum of potential and thus metric fluctuations. The initial spectrum of density perturbations is reflected in the large angle (small ℓ) power spectrum, but perturbations can evolve significantly in the epoch $z\gtrsim 1100$ for causally connected regions (angles $\lesssim 1^{\circ} \ \Omega_{\rm tot}^{1/2}$). The primary mode of evolution is through acoustic oscillations, leading to a series of peaks at small angular scales, which encode information about the primordial perturbations, geometry, matter and radiation content, and ionization history of the Universe [26]. Thus, precise measurement of the shape of the anisotropy power spectrum will provide information on the amplitude and slope of the initial conditions, as well as Ω_0 , Ω_B , Ω_{Λ} (cosmological constant), H_0 and other cosmological parameters.

Fits to experimental data are often quoted as the expected value of the quadrupole $\langle Q \rangle$ for some specific theory over some range of ℓ (e.g. a model with power-law initial conditions, having primordial density perturbation power spectrum $|\delta_k|^2 \propto k^n)$. The full 4-year COBE DMR data give $\langle Q \rangle = 15.3^{+3.7}_{-2.8}~\mu {\rm K}$, after projecting out the slope dependence, while the best-fit slope is $n=1.2\pm0.3$, and for a pure n=1 (scale-invariant potential perturbation) spectrum $\langle Q \rangle (n=1)=18\pm1.6~\mu {\rm K}$ [18,27]. The conventional notation is such that $\langle Q \rangle^2/T_\gamma^2=5C_2/4\pi$. An alternative convention is to quote the 'band-power' $\sqrt{\ell(2\ell+1)C_\ell/4\pi}$. Many recent experiments give results for a number of band-powers covering different ranges of ℓ . $\langle Q \rangle^2/T_\gamma^2=5C_2/4\pi$. fluctuations measured by other experiments can also be quoted in terms (n=1)

The initial density perturbations can either be 'adiabatic' (meaning that there is no change to the entropy per particle for each species) or 'isocurvature' (meaning that, for example, matter perturbations compensate radiation perturbations so that the total energy density remains unchanged). Within the family of adiabatic models, the location of the first acoustic peak is predicted to be at $\ell \sim 220~\Omega_{\rm tot}^{-1/2}$ or $\theta \sim 0.3^{\circ}~\Omega_{\rm tot}^{1/2}$ and its amplitude is a calculable function of the parameters (see Fig. 19.5).

It has been clear for several years that there is more power at sub-degree scales than at COBE scales [26]. More recently results have indicated that there is a localized peak, and the general shape of the power spectrum favors adiabatic-type perturbations (compare Fig. 19.5 and Fig. 19.6). Within the adiabatic scenario, the currently available data imply that the Universe is close to flat [28], with $0.62 < \Omega_{\rm tot} < 1.24$ (95% CL) [29]. Together with a number of observations indicating that the matter density $\Omega_{\rm M} \simeq 0.3$ (e.g. see Ref. 37), this implies that there is some unknown contribution to the energy, 'dark energy,' which is independently indicated through distant supernova studies [30]. The height of the peak can also be used to constrain models, but currently the results depend sensitively on what range of models are considered and what other cosmological

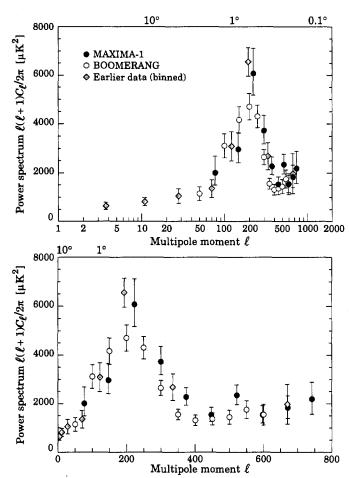


Figure 19.6: There is now so much CMB data that it is difficult and confusing to show all the individual results. Instead the figure shows the new BOOMERANG [32] (open circles) and MAXIMA [33] data (filled circles), together with binned results of all previous experiments, based on data with references given at the end of this section under "CMB Anisotropy References." The previous data are shown as grey diamonds, which were obtained [38] by maximizing the likelihood for a power spectrum assumed to be piece-wise constant between $\ell = 2$ and 1000, permitting experimental errors to be asymmetric, and allowing for correlated calibration uncertainties for each experiment [39]. These binned values are somewhat correlated, partly explaining the apparent discrepancy, which is consistent with calibration uncertainties between experiments. The sub-set of data from the first Antarctic flight of BOOMERANG and the data from the MAXIMA-1 flight are independent, with essentially no correlations between bins. The figure clearly shows a localized peak at $\ell \simeq 200$ and some structure at higher ℓ . Upper limits at smaller angular scales, indicating further evidence for a falloff at high ℓ , have not been shown.

constraints are used [28,29,31]. Detailed measurements of parameters are expected to follow soon, but certainly some more general questions are already being answered.

Recent experimental results from the Boomerang 98 [32] and MAXIMA-1 [33] balloon flights have dramatically improved the power spectrum measurements. These new data indicate a very well-defined first acoustic peak, at close to the position expected in flat models with adiabatic fluctuations. It is difficult generate this feature by an incoherent causal mechanism, such as with topological defects. The position of the first peak constrains the total density parameter to be $\Omega_{\rm tot} \simeq 1.0 \pm 0.1$ [34,35]. Intriguingly, the second peak does not appear as pronounced as had been expected in the previously favored models. There are several ways to explain this [36], including a combination of tilt, higher baryon density and some other mild

parameter variations, as well as more exotic explanations such as delayed recombination, partial loss of coherence of the oscillations, or features in the underlying power spectrum. Detailed measurement of the second and third peaks ought to distinguish among these possibilities.

Causal mechanisms, such as arise in topological defect models, cannot naturally account for the observed power spectrum (see Fig. 19.5), and isocurvature models also generically give the wrong shape. Thus the present data appear to point to models with adiabatic and apparently acausal fluctuations. Since inflation is the only mechanism we have to provide the large-scale homogeneity and anisotropy observed in the universe and to produce these apparently acausal fluctuations, one might consider the current CMB data as supporting the inflationary paradigm. A more stringent test of inflation will be provided with the arrival of data that have the fidelity to resolve the sub-degree region into the oscillating peaks and troughs which must be present in inflationary models.

New data are being acquired at an increasing rate, with a large number of improved ground- and balloon-based experiments being developed. The current suite of experiments promises to map out the CMB anisotropy power spectrum to about 10% accuracy, and determine several parameters at the 10 to 20% level in the very near future. A vigorous sub-orbital and interferometric program should push those numbers further in the next few years.

There are also now two approved satellite experiments: the NASA Microwave Anisotropy Probe (MAP), scheduled for launch in late 2000; and the ESA Planck mission, expected to launch in 2007. The improved sensitivity, freedom from earth-based systematics, and all-sky coverage allow a simultaneous determination of many of the cosmological parameters to unprecedented precision: for example, Ω_0 and n to about 1%, Ω_B and H_0 at the level of a few percent [40]. Just as with the frequency spectrum, precise measurement of the anisotropies should also lead to constraints on a particle physics effects at $z \sim 1000$ [41].

Since Thomson scattering of the anisotropic radiation field also generates linear polarization at the roughly 5% level [42], there is additional cosmological information to be gleaned from polarization measurements. Although difficult to detect, the polarization signal should act as a strong confirmation of the general paradigm. Furthermore, detailed measurement of the polarization signal provides more precise information on the physical parameters. In particular it allows a clear distinction of any gravity wave contribution, which is crucial to probing the $\sim 10^{16}~{\rm GeV}$ energy range. The fulfillment of this promise may await an even more sensitive generation of satellites.

- R.A. Alpher and R.C. Herman, Physics Today 41, No. 8, p. 24 (1988).
- A.A. Penzias and R. Wilson, Astrophys. J. 142, 419 (1965);
 R.H. Dicke, P.J.E. Peebles, P.G. Roll, and D.T. Wilkinson, Astrophys. J. 142, 414 (1965).
- P.J.E. Peebles, "Principles of Physical Cosmology," Princeton U. Press, p. 168 (1993).
- R.A. Sunyaev and Ya.B. Zel'dovich, Ann. Rev. Astron. Astrophys. 18, 537 (1980).
- 5. M. Birkinshaw, Phys. Rep. 310, 98 (1999).
- A.C. da Silva, D. Barbosa, A.R. Liddle, and P.A. Thomas, MNRAS, in press, astro-ph/9907224.
- C. Burigana, L. Danese, and G.F. De Zotti, Astron. & Astrophys. 246, 49 (1991).
- L. Danese and G.F. De Zotti, Astron. & Astrophys. 107, 39 (1982);
 - G. De Zotti, Prog. in Part. Nucl. Phys. 17, 117 (1987).
- 9. J.G. Bartlett and A. Stebbins, Astrophys. J. 371, 8 (1991).
- 10. J.C. Mather et al., Astrophys. J. 512, 511 (1999).
- 11. E.L. Wright et al., Astrophys. J. 420, 450 (1994).
- 12. W. Hu and J. Silk, Phys. Rev. Lett. 70, 2661 (1993).
- 13. D.J. Fixsen et al., Astrophys. J. 473, 576 (1996).
- 14. J.C. Mather et al., Astrophys. J. 420, 439 (1994).

- 15. M. Bersanelli et al., Astrophys. J. 424, 517 (1994).
- A. Dekel, in "Cosmic Flows: Towards an Understanding of Large-Scale Structure", ed. S. Courteau, M.A. Strauss, and J.A. Willick (ASP Conf. Ser.), in press, astro-ph/9911501.
- A. Kogut et al., Astrophys. J. 419, 1 (1993);
 C. Lineweaver et al., Astrophys. J. 470, L28 (1996).
- 18. C.L. Bennett et al., Astrophys. J. 464, L1 (1996).
- A. Kogut, G. Hinshaw, and A.J. Banday, Phys. Rev. **D55**, 1901 (1997);
 E.F. Bunn, P. Ferreira, and J. Silk, Phys. Rev. Lett. **77**, 2883
- 20. G.F. Smoot et al., Astrophys. J. 396, L1 (1992).

(1996).

- M. White, D. Scott, and J. Silk, Ann. Rev. Astron. & Astrophys. 32, 329 (1994).
- 22. D.H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999).
- 23. J.P. Zibin, D. Scott, and M. White, Phys. Rev. D 60,123513(1999).
- 24. U. Seljak and M. Zaldarriaga, Astrophys. J. 469, 437 (1996).
- U.-L. Pen, U. Seljak, and N. Turok, Phys. Rev. Lett. 79, 1611 (1997).
- D. Scott, J. Silk, and M. White, Science 268, 829 (1995);
 W. Hu, J. Silk, and N. Sugiyama, Nature 386, 37 (1996).
- 27. K.M. Górski et al., Astrophys. J. 464, L11 (1996).
- S. Dodelson and L. Knox, Phys. Rev. Lett., in press, astroph/9909454;
 - A. Melchiorri et al., Astrophys. J., in press, astro-ph/9911445.
- M. Tegmark and M. Zaldarriaga, Astrophys. J., in press, astro-ph/0002091.
- S. Perlmutter et al., Astrophys. J. 517, 565 (1999);
 A.G. Riess et al., Astron. J. 116, 1009 (1998).
- C.H. Lineweaver, Astrophys. J. 505, L69 (1998);
 J.R. Bond and A.H. Jaffe, Phil. Trans. Roy. Soc. A, in press, astro-ph/98089043;
- G. Efstathiou, MNRAS 310, 842 (1999).
- 32. P. de Bernardis et al., Nature 404, 955 (2000).
- 33. S. Hanany et al., astro-ph/0005123.
- 34. A. Lange et al., astro-ph/0005004.
- 35. A. Balbi et al., astro-ph/0005124.
- 36. M. White, D. Scott, E. Pierpaoli, astro-ph/0004385.
- R.G. Carlberg et al., Astrophys. J. 462, 32 (1996);
 P. Coles and G.F.R. Ellis, "Is the Universe Open or Closed?", Cambridge University Press, Cambridge (1997).
- 38. E. Pierpaoli, D. Scott and M. White, Science, in press (2000).
- J. R. Bond, A.H. Jaffe, and L.E. Knox, Astrophys. J., in press, astro-ph/9808264.
- G. Jungman, M. Kamionkowski, A. Kosowsky, and D.N. Spergel, Phys. Rev. D54, 1332 (1996);
 - W. Hu and M. White, Phys. Rev. Lett. 77, 1687 (1996);
 J.R. Bond, G. Efstathiou, and M. Tegmark, MNRAS 291, L33 (1997);
 - M. Zaldarriaga, D. Spergel, and U. Seljak, Astrophys. J. 488, 1 (1997).
- M. Kamionkowski, A. Kosowsky, Ann. Rev. Nucl. Part. Sci. 49, 77 (1999).
- 42. W. Hu, M. White, New Astron. 2, 323 (1997).

CMB Spectrum References:

- FIRAS: J.C. Mather et al., Astrophys. J. 420, 439 (1994);
 D. Fixsen et al., Astrophys. J. 420, 445 (1994);
 - D. Fixsen et al., Astrophys. J. 473, 576 (1996);
 - J.C. Mather et al., Astrophys. J. **512**, 511 (1999).
- DMR: A. Kogut et al., Astrophys. J. 419, 1 (1993);
 A. Kogut et al., Astrophys. J. 460, 1 (1996).

- UBC: H.P. Gush, M. Halpern, and E.H. Wishnow, Phys. Rev. Lett. 65, 537 (1990).
- LBL-Italy: G.F. Smoot et al., Phys. Rev. Lett. 51, 1099 (1983);
 M. Bensadoun et al., Astrophys. J. 409, 1 (1993);
 - M. Bersanelli et al., Astrophys. J. 424, 517 (1994);
 - M. Bersanelli et al., Astrophys. Lett. and Comm. 32, 7 (1995);
 - G. De Amici et al., Astrophys. J. 381, 341 (1991);
 - A. Kogut et al., Astrophys. J. 335, 102 (1990);
 - N. Mandolesi et al., Astrophys. J. 310, 561 (1986);
 - G. Sironi, G. Bonelli, & M. Limon, Astrophys. J. 378, 550 (1991).
- 5. Princeton: S. Staggs et al., Astrophys. J. 458, 407 (1995);
 - S. Staggs et al., Astrophys. J. 473, L1 (1996);
 - D.G. Johnson and D.T. Wilkinson, Astrophys. J. 313, L1 (1987).
- Cyanogen: K.C. Roth, D.M. Meyer, and I. Hawkins, Astrophys. J. 413, L67 (1993);
 - K.C. Roth and D.M. Meyer, Astrophys. J. 441, 129 (1995);
 - E. Palazzi et al., Astrophys. J. 357, 14 (1990).

CMB Anisotropy References:

- ARGO: P. de Bernardis et al., Astrophys. J. 422, L33 (1994);
 S. Masi et al., Astrophys. J. 463, L47 (1996).
- ATCA: R. Subrahmayan, M.J. Kesteven, R.D. Ekers, M. Sinclair, and J. Silk, Monthly Not. Royal Astron. Soc. 298, 1189 (1993).
- 3. BAM: G.S. Tucker et al., Astrophys. J. 475, L73 (1997).
- BOOM97: P.D. Mauskopf et al., Astrophys. J., in press, astro-ph/9911444.
- CAT: P.F.S. Scott et al., Astrophys. J. 461, L1 (1996);
 J.C. Baker et al., Monthly Not. Royal Astron. Soc. 308, 1173 (1999).
- 6. COBE: G. Hinshaw et al., Astrophys. J. 464, L17 (1996).
- FIRS: K. Ganga, L. Page, E. Cheng, and S. Meyers, Astrophys. J. 432, L15 (1993).
- 8. IAB: L. Piccirillo and P. Calisse, Astrophys. J. 413, 529 (1993).
- IAC: S.R. Dicker et al., Monthly Not. Royal Astron. Soc., in press, astro-ph/9907118.
- MAT: E. Torbet et al., Astrophys. J. 521, L79 (1999);
 A.D. Miller et al., Astrophys. J. 524, L1 (1999).
- MAX: S.T. Tanaka et al., Astrophys. J. 468, L81 (1996);
 M. Lim et al., Astrophys. J. 469, L69 (1996).
- MSAM: G.W. Wilson et al., Astrophys. J., in press, astroph/9902047.
- OVRO: A.C.S. Readhead et al., Astrophys. J. 346, 566 (1989);
 E. Leitch, A.C.S. Readhead, T.J. Pearson, S.T. Myers, and S. Gulkis, Astrophys. J., in press, astro-ph/9807312.
- Python.: S.R. Platt et al., Astrophys. J. 475, L1 (1997);
 K. Coble et al., Astrophys. J. 519, L5 (1999).
- QMAP: A. de Oliveira-Costa et al., Astrophys. J. 509, L77 (1998).
- 16. Saskatoon: C.B. Netterfield et al., Astrophys. J. 474, 47 (1997).
- 17. SP91: J. Schuster et al., Astrophys. J. 412, L47 (1993).
- 18. SP94: J.O. Gundersen et al., Astrophys. J. 443, L57 (1994).
- 19. SuZIE: S. E. Church et al., Astrophys. J. 484, 523 (1997).
- 20. Tenerife: C.M. Gutiérrez et al., Astrophys. J. 529, 47 (2000).
- Viper: J.B. Peterson et al., Astrophys. J., in press, astroph/9910503.
- 22. VLA: B. Partridge et al., Astrophys. J. 483, 38 (1997).
- WD: G.S. Tucker, G.S. Griffin, H.T. Nguyen, and J.B. Peterson, Astrophys. J. 419, L45 (1993).

20. COSMIC RAYS

Revised February 2000 by T.K. Gaisser and T. Stanev (Bartol Research Inst., Univ. of Delaware).

20.1. Primary spectra

The cosmic radiation incident at the top of the terrestrial atmosphere includes all stable charged particles and nuclei with lifetimes of order 10^6 years or longer. Technically, "primary" cosmic rays are those particles accelerated at astrophysical sources and "secondaries" are those particles produced in interaction of the primaries with interstellar gas. Thus electrons, protons and helium, as well as carbon, oxygen, iron, and other nuclei synthesized in stars, are primaries. Nuclei such as lithium, beryllium, and boron (which are not abundant end-products of stellar nucleosynthesis) are secondaries. Antiprotons and positrons are partly, if not entirely, secondaries, but the fraction of these particles that may be primary is a question of current interest.

Apart from particles associated with solar flares, the cosmic radiation comes from outside the solar system. The incoming charged particles are "modulated" by the solar wind, the expanding magnetized plasma generated by the Sun, which decelerates and partially excludes the lower energy galactic cosmic rays from the inner solar system. There is a significant anticorrelation between solar activity (which has an eleven-year cycle) and the intensity of the cosmic rays with energies below about 10 GeV. In addition, the lower-energy cosmic rays are affected by the geomagnetic field, which they must penetrate to reach the top of the atmosphere. Thus the intensity of any component of the cosmic radiation in the GeV range depends both on the location and time.

There are four different ways to describe the spectra of the components of the cosmic radiation: (1) By particles per unit rigidity. Propagation (and probably also acceleration) through cosmic magnetic fields depends on gyroradius or magnetic rigidity, R, which is gyroradius multiplied by the magnetic field strength:

$$R = \frac{pc}{Ze} = r_L B . \qquad (20.1)$$

(2) By particles per energy-per-nucleon. Fragmentation of nuclei propagating through the interstellar gas depends on energy per nucleon, since that quantity is approximately conserved when a nucleus breaks up on interaction with the gas. (3) By nucleons per energy-per-nucleon. Production of secondary cosmic rays in the atmosphere depends on the intensity of nucleons per energy-per-nucleon, approximately independently of whether the incident nucleons are free protons or bound in nuclei. (4) By particles per energy-per-nucleus. Air shower experiments that use the atmosphere as a calorimeter generally measure a quantity that is related to total energy per particle.

The units of differential intensity I are $[cm^{-2}s^{-1}sr^{-1}\mathcal{E}^{-1}]$, where \mathcal{E} represents the units of one of the four variables listed above.

The intensity of primary nucleons in the energy range from several GeV to somewhat beyond 100 TeV is given approximately by

$$I_N(E) \approx 1.8 E^{-\alpha} \frac{\text{nucleons}}{\text{cm}^2 \text{ s sr GeV}},$$
 (20.2)

where E is the energy-per-nucleon (including rest mass energy) and α ($\equiv \gamma+1$) = 2.7 is the differential spectral index of the cosmic ray flux and γ is the integral spectral index. About 79% of the primary nucleons are free protons and about 70% of the rest are nucleons bound in helium nuclei. The fractions of the primary nuclei are nearly constant over this energy range (possibly with small but interesting variations). Fractions of both primary and secondary incident nuclei are listed in Table 20.1. Figure 20.1 [1] shows the major components as a function of energy at a particular epoch of the solar cycle. There has been a series of more precise measurements of the primary spectrum of protons and helium in the past decade [2,3,4,5].

The spectrum of electrons and positrons incident at the top of the atmosphere is steeper than the spectra of protons and nuclei, as shown

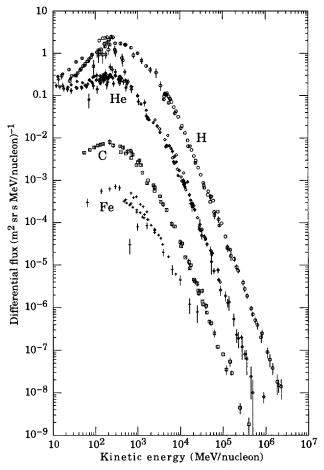


Figure 20.1: Major components of the primary cosmic radiation (from Ref. 1).

Table 20.1: Relative abundances F of cosmic-ray nuclei at 10.6 GeV/nucleon normalized to oxygen (\equiv 1) [6]. The oxygen flux at kinetic energy of 10.6 GeV/nucleon is 3.26×10^{-6} cm⁻² s⁻¹ sr⁻¹ (GeV/nucleon)⁻¹. Abundances of hydrogen and helium are from Ref. 2.

\overline{z}	Element	F	Z	Element	F
1	H	485	13–14	Al-Si	0.19
2	He	26	15-16	P-S	0.03
3-5	Li-B	0.40	17-18	Cl-Ar	0.01
6-8	C-O	2.20	19-20	K-Ca	0.02
9-10	F-Ne	0.30	21-25	Sc-Mn	0.05
11-12	Na-Mg	0.22	26-28	Fe-Ni	0.12

in Fig. 20.2. The positron fraction is about 10% in the region in which it is measured (< 20 GeV), but it is not yet fully understood [8].

Above 10 GeV the fraction of antiprotons to protons is about 10^{-4} , and there is evidence for the kinematic suppression at lower energy expected for secondary antiprotons [9,10,11,12]. There is at this time no evidence for a significant primary component of antiprotons.

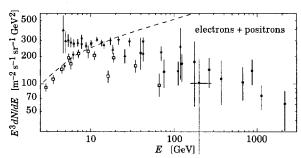


Figure 20.2: Differential spectrum of electrons plus positrons multiplied by E^3 (data summary from Ref. 7). The dashed line shows the proton spectrum multiplied by 0.01.

20.2. Cosmic rays in the atmosphere

Figure 20.3 shows the vertical fluxes of the major cosmic ray components in the atmosphere in the energy region where the particles are most numerous (except for electrons, which are most numerous near their critical energy, which is about 81 MeV in air). Except for protons and electrons near the top of the atmosphere, all particles are produced in interactions of the primary cosmic rays in the air. Muons and neutrinos are products of the decay of charged mesons, while electrons and photons originate in decays of neutral mesons.

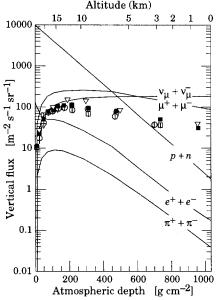


Figure 20.3: Vertical fluxes of cosmic rays in the atmosphere with E>1 GeV estimated from the nucleon flux of Eq. (20.2). The points show measurements of negative muons with $E_{\mu}>1$ GeV [3,13,14,15].

Most measurements are made at ground level or near the top of the atmosphere, but there are also measurements of muons and electrons from airplanes and balloons. Fig. 20.3 includes recent measurements of negative muons [3,13,14,15]. Since $\mu^+(\mu^-)$ are produced in association with $\nu_\mu(\overline{\nu}_\mu)$, the measurement of muons near the maximum of the intensity curve for the parent pions serves to calibrate the atmospheric ν_μ beam [16]. Because muons typically lose almost two GeV in passing through the atmosphere, the comparison near the production altitude is important for the sub-GeV range of $\nu_\mu(\overline{\nu}_\mu)$ energies.

The flux of cosmic rays through the atmosphere is described by a set of coupled cascade equations with boundary conditions at the top of the atmosphere to match the primary spectrum. Numerical or Monte Carlo calculations are needed to account accurately for decay and energy-loss processes, and for the energy-dependences of the cross sections and of the primary spectral index γ . Approximate analytic solutions are, however, useful in limited regions of energy [17]. For

example, the vertical intensity of nucleons at depth X (g cm⁻²) in the atmosphere is given by

$$I_N(E,X) \approx I_N(E,0) e^{-X/\Lambda}$$
, (20.3)

where Λ is the attenuation length of nucleons in air.

The corresponding expression for the vertical intensity of charged pions with energy $E_\pi \ll \epsilon_\pi = 115$ GeV is

$$I_{\pi}(E_{\pi}, X) \approx \frac{Z_{N\pi}}{\lambda_N} I_N(E_{\pi}, 0) e^{-X/\Lambda} \frac{X E_{\pi}}{\epsilon_{\pi}}$$
 (20.4)

This expression has a maximum at $t=\Lambda\approx 120$ g cm⁻², which corresponds to an altitude of 15 kilometers. The quantity $Z_{N\pi}$ is the spectrum-weighted moment of the inclusive distribution of charged pions in interactions of nucleons with nuclei of the atmosphere. The intensity of low-energy pions is much less than that of nucleons because $Z_{N\pi}\approx 0.079$ is small and because most pions with energy much less than the critical energy ϵ_{π} decay rather than interact.

20.3. Cosmic rays at the surface

20.3.1. Muons: Muons are the most numerous charged particles at sea level (see Fig. 20.3). Most muons are produced high in the atmosphere (typically 15 km) and lose about 2 GeV to ionization before reaching the ground. Their energy and angular distribution reflect a convolution of production spectrum, energy loss in the atmosphere, and decay. For example, 2.4 GeV muons have a decay length of 15 km, which is reduced to 8.7 km by energy loss. The mean energy of muons at the ground is ≈ 4 GeV. The energy spectrum is almost flat below 1 GeV, steepens gradually to reflect the primary spectrum in the 10-100 GeV range, and steepens further at higher energies because pions with $E_\pi > \epsilon_\pi \approx 115$ GeV tend to interact in the atmosphere before they decay. Asymptotically $(E_{\mu} \gg 1 \text{ TeV})$, the energy spectrum of atmospheric muons is one power steeper than the primary spectrum. The integral intensity of vertical muons above 1 GeV/c at sea level is $\approx 70 \text{ m}^{-2} \text{s}^{-1} \text{sr}^{-1}$ [18,19]. Experimentalists are familiar with this number in the form $I \approx 1 \text{ cm}^{-2} \text{ min}^{-1}$ for horizontal detectors.

The overall angular distribution of muons at the ground is $\propto \cos^2 \theta$, which is characteristic of muons with $E_{\mu} \sim 3$ GeV. At lower energy the angular distribution becomes increasingly steeper, while at higher energy it flattens and approaches a $\sec \theta$ distribution for $E_{\mu} \gg \epsilon_{\pi}$ and $\theta < 70^{\circ}$.

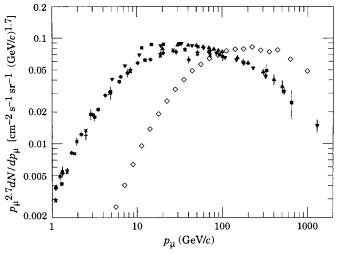


Figure 20.4: Spectrum of muons at $\theta = 0^{\circ}$ (\blacklozenge [18], \blacksquare [20], \blacktriangledown [21], \blacktriangle [22], X,+ [23]), and $\theta = 75^{\circ} \diamondsuit$ [24]).

Figure 20.4 shows the muon energy spectrum at sea level for two angles. At large angles low energy muons decay before reaching the surface and high energy pions decay before they interact, thus the average muon energy increases. An approximate extrapolation formula valid when muon decay is negligible $(E_{\mu}>100/\cos\theta~\text{GeV})$ and the curvature of the Earth can be neglected $(\theta<70^{\circ})$ is

$$\begin{split} \frac{dN_{\mu}}{dE_{\mu}} &\approx \frac{0.14 \, E_{\mu}^{-2.7}}{\mathrm{cm^2 \ s \ sr \ GeV}} \\ &\times \left\{ \frac{1}{1 + \frac{1.1 E_{\mu} \cos \theta}{115 \, \mathrm{GeV}}} + \frac{0.054}{1 + \frac{1.1 E_{\mu} \cos \theta}{850 \, \mathrm{GeV}}} \right\} \ , \end{split} \tag{20.5}$$

where the two terms give the contribution of pions and charged kaons. Eq. (20.5) neglects a small contribution from charm and heavier flavors which is negligible except at very high energy [27].

The muon charge ratio reflects the excess of π^+ over π^- in the forward fragmentation region of proton initiated interactions together with the fact that there are more protons than neutrons in the primary spectrum. The charge ratio is between 1.1 and 1.4 from 1 GeV to 100 GeV [18,23]. Below 1 GeV there is a systematic dependence on location due to geomagnetic effects. [23]

20.3.2. Electromagnetic component: At the ground, this component consists of electrons, positrons, and photons primarily from electromagnetic cascades initiated by decay of neutral and charged mesons. Muon decay is the dominant source of low-energy electrons at sea level. Decay of neutral pions is more important at high altitude or when the energy threshold is high. Knock-on electrons also make a small contribution at low energy [25]. The integral vertical intensity of electrons plus positrons is very approximately 30, 6, and $0.2 \text{ m}^{-2}\text{s}^{-1}\text{sr}^{-1}$ above 10, 100, and 1000 MeV respectively [19,26], but the exact numbers depend sensitively on altitude, and the angular dependence is complex because of the different altitude dependence of the different sources of electrons [25,26,28]. The ratio of photons to electrons plus positrons is approximately 1.3 above a GeV and 1.7 below the critical energy [28].

20.3.3. Protons: Nucleons above 1 GeV/c at ground level are degraded remnants of the primary cosmic radiation. The intensity is approximately represented by Eq. (20.3) with the replacement $t \to t/\cos\theta$ for $\theta < 70^\circ$ and an attenuation length $\Lambda = 123$ g cm⁻². At sea level, about 1/3 of the nucleons in the vertical direction are neutrons (up from $\approx 10\%$ at the top of the atmosphere as the n/p ratio approaches equilibrium). The integral intensity of vertical protons above 1 GeV/c at sea level is ≈ 0.9 m⁻²s⁻¹sr⁻¹ [19,29].

20.4. Cosmic rays underground

Only muons and neutrinos penetrate to significant depths underground. The muons produce tertiary fluxes of photons, electrons, and hadrons.

20.4.1. Muons: As discussed in Section 23.6 of this Review, muons lose energy by ionization and by radiative processes: bremsstrahlung, direct production of e^+e^- pairs, and photonuclear interactions. The total muon energy loss may be expressed as a function of the amount of matter traversed as

$$-\frac{dE_{\mu}}{dX} = a + b E_{\mu} , \qquad (20.6)$$

where a is the ionization loss and b is the fractional energy loss by the three radiation processes. Both are slowly varying functions of energy. The quantity $\epsilon \equiv a/b$ (≈ 500 GeV in standard rock) defines a critical energy below which continuous ionization loss is more important than radiative losses. Table 20.2 shows a and b values for standard rock as a function of muon energy. The second column of Table 20.2 shows the muon range in standard rock (A = 22, Z = 11, $\rho = 2.65$ g cm⁻³). These parameters are quite sensitive to the chemical composition of the rock, which must be evaluated for each experimental location.

The intensity of muons underground can be estimated from the muon intensity in the atmosphere and their rate of energy loss. To the extent that the mild energy dependence of a and b can be neglected, Eq. (20.6) can be integrated to provide the following relation between

Table 20.2: Average muon range R and energy loss parameters calculated for standard rock[30]. Range is given in km-water-equivalent, or 10^5 g cm⁻².

E_{μ} GeV	R km.w.e.	a MeV g ⁻¹ cm ²		$b_{ m pair}$ $10^{-6}~{ m g}$		$\sum b_i$
10	0.05	2.17	0.70	0.70	0.50	1.90
100	0.41	2.44	1.10	1.53	0.41	3.04
1000	2.45	2.68	1.44	2.07	0.41	3.92
10000	6.09	2.93	1.62	2.27	0.46	4.35

the energy $E_{\mu,0}$ of a muon at production in the atmosphere and its average energy E_{μ} after traversing a thickness X of rock (or ice or water):

$$E_{\mu} = (E_{\mu,0} + \epsilon) e^{-bX} - \epsilon . \qquad (20.7)$$

Especially at high energy, however, fluctuations are important and an accurate calculation requires a simulation that accounts for stochastic energy-loss processes [31].

There are two depth regimes for Eq. (20.7). For $X \ll b^{-1} \approx 2.5$ km water equivalent, $E_{\mu,0} \approx E_{\mu}(X) + aX$, while for $X \gg b^{-1}$ $E_{\mu,0} \approx (\epsilon + E_{\mu}(X)) \exp(bX)$. Thus at shallow depths the differential muon energy spectrum is approximately constant for $E_{\mu} < aX$ and steepens to reflect the surface muon spectrum for $E_{\mu} > aX$, whereas for X > 2.5 km.w.e. the differential spectrum underground is again constant for small muon energies but steepens to reflect the surface muon spectrum for $E_{\mu} > \epsilon \approx 0.5$ TeV. In the deep regime the shape is independent of depth although the intensity decreases exponentially with depth. In general the muon spectrum at slant depth X is

$$\frac{dN_{\mu}(X)}{dE_{\mu}} = \frac{dN_{\mu}}{dE_{\mu,0}} \frac{dE_{\mu,0}}{dE_{\mu}} = \frac{dN_{\mu}}{dE_{\mu,0}} e^{bX} , \qquad (20.8)$$

where $E_{\mu,0}$ is the solution of Eq. (20.7) in the approximation neglecting fluctuations.

Fig. 20.5 shows the vertical muon intensity versus depth. In constructing this "depth-intensity curve," each group has taken account of the angular distribution of the muons in the atmosphere, the map of the overburden at each detector, and the properties of the local medium in connecting measurements at various slant depths and zenith angles to the vertical intensity. Use of data from a range of angles allows a fixed detector to cover a wide range of depths. The flat portion of the curve is due to muons produced locally by charged-current interactions of ν_{μ} .

20.4.2. Neutrinos: Because neutrinos have small interaction cross sections, measurements of atmospheric neutrinos require a deep detector to avoid backgrounds. There are two types of measurements: contained (or semi-contained) events, in which the vertex is determined to originate inside the detector, and neutrino-induced muons. The latter are muons that enter the detector from zenith angles so large (e.g., nearly horizontal or upward) that they cannot be muons produced in the atmosphere. In neither case is the neutrino flux measured directly. What is measured is a convolution of the neutrino flux and cross section with the properties of the detector (which includes the surrounding medium in the case of entering muons).

Contained and semi-contained events reflect neutrinos in the sub-GeV to multi-GeV region where the product of increasing cross section and decreasing flux is maximum. In the GeV region the neutrino flux and its angular distribution depend on the geomagnetic location of the detector and, to a lesser extent, on the phase of the solar cycle. Naively, we expect $\nu_\mu/\nu_e=2$ from counting neutrinos of the two flavors coming from the chain of pion and muon decay. This ratio is only slightly modified by the details of the decay kinematics, but the fraction of electron neutrinos gradually decreases above a GeV as parent muons begin to reach the ground before decaying. Experimental measurements have to account for the ratio of $\bar{\nu}/\nu$, which have cross sections different by a factor of 3 in this energy range. In addition, detectors generally have different efficiencies for

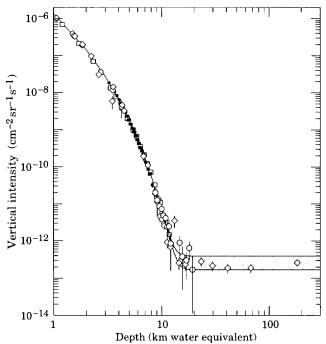


Figure 20.5: Vertical muon intensity vs depth (1 km.w.e. = 10^5 g cm⁻² of standard rock). The experimental data are from: \Diamond : the compilations of Crouch [32], \Box : Baksan [33], \bigcirc : LVD [34], \bullet : MACRO [35], \blacksquare : Frejus [36]. The shaded area at large depths represents neutrino induced muons of energy above 2 GeV. The upper line is for horizontal neutrino-induced muons, the lower one for vertically upward muons.

detecting muon neutrinos and electron neutrinos which need to be accounted for in comparing measurements with expectation. Fig. 20.6 shows the distributions of the visible energy in the Super-Kamiokande detector [39] for electron-like and muon-like charged current neutrino interactions. Contrary to expectation, the numbers of the two classes of events are similar rather than different by a factor of two. The exposure for the data sample shown here is 50 kiloton-years. The falloff of the muon-like events at high energy is a consequence of the poor containment for high energy muons. Corrections for detection efficiencies and backgrounds are, however, insufficient to account for the large difference from the expectation.

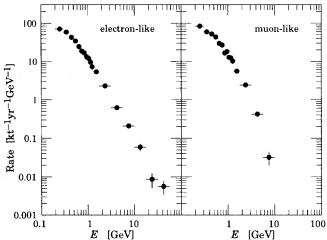


Figure 20.6: Sub-GeV and multi-GeV neutrino interactions from SuperKamiokande [39]. The plot shows the spectra of visible energy in the detector.

Two well-understood properties of atmospheric cosmic rays provide a standard for comparison of the measurements of atmospheric neutrinos. These are the "sec θ effect" and the "east-west effect". The former refers originally to the enhancement of the flux of > 10 GeV muons (and neutrinos) at large zenith angles because the parent pions propagate more in the low density upper atmosphere where decay is enhanced relative to interaction. For neutrinos from muon decay, the enhancement near the horizontal becomes important for $E_{\nu} > 1$ GeV and arises mainly from the increased pathlength through the atmosphere for muon decay in flight. Fig. 20.7 from Ref. 40 shows a comparison between measurement and expectation for the zenith angle dependence of multi-GeV electron-like (mostly ν_e) and muon-like (mostly ν_n) events separately. The ν_e show an enhancement near the horizontal and approximate equality for nearly upward ($\cos \theta \approx -1$) and nearly downward ($\cos \theta \approx 1$) events. There is, however, a very significant deficit of upward (cos $\theta < 0)~\nu_{\mu}$ events, which have long pathlengths comparable to the radius of the Earth. This pattern has been interpreted as evidence for oscillations involving muon neutrinos [39]. (See the article on neutrino properties in this Review.) Including three dimensional effects in the calculation of atmospheric neutrinos may change somewhat the expected angular distributions of neutrinos at low energy [41], but it does not change the fundamental expectation of up-down symmetry, which is the basis of the evidence for oscillations.

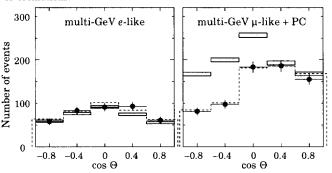


Figure 20.7: Zenith-angle dependence of multi-GeV neutrino interactions from SuperKamiokande [40]. The shaded boxes show the expectation in the absence of any oscillations. The lines show fits with some assumed oscillation parameters, as described in Ref. 40.

The east-west effect [42,43] is the enhancement, especially at low geomagnetic latitudes, of cosmic rays incident on the atmosphere from the west as compared to those from the east. This is a consequence of the fact that the cosmic rays are postively charged nuclei which are bent systematically in one sense in the geomagnetic field. Not all trajectories can reach the atmosphere from outside the geomagnetic field. The standard procedure to see which trajectories are allowed is to inject antiprotons outward from near the top of the atmosphere in various directions and see if they escape from the geomagnetic field without becoming trapped indefinitely or intersecting the surface of the Earth. Any direction in which an antiproton of a given momentum can escape is an allowed direction from which a proton of the opposite momentum can arrive. Since the geomagnetic field is oriented from south to north in the equatorial region, antiprotons injected toward the east are bent back towards the Earth. Thus there is a range of momenta and zenith angles for which positive particles cannot arrive from the east but can arrive from the west. This east-west asymmetry of the incident cosmic rays induces a similar asymmetry on the secondaries, including neutrinos. Since this is an azimuthal effect, the resulting asymmetry is independent of possible oscillations, which depend on pathlength (equivalently zenith angle), but not on azimuth. Fig. 20.8 (from Ref. 44) is a comparison of data and expectation for this effect, which serves as a consistency check of the measurement and analysis.

Muons that enter the detector from outside after production in charged-current interactions of neutrinos naturally reflect a higher energy portion of the neutrino spectrum than contained events because the muon range increases with energy as well as the cross section. The relevant energy range is $\sim 10 < E_{\nu} < 1000$ GeV, depending somewhat on angle. Neutrinos in this energy range show a $\sec\theta$ effect similar

Table 20.3: Measured fluxes $(10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1})$ of neutrino-induced muons as a function of the effective minimum muon energy E_{μ} .

$E_{\mu} >$	1 GeV	1 GeV	1 GeV	2 GeV	3 GeV	3 GeV
Ref.	CWI [45]	Baksan [46]	MACRO [47]	IMB [48]	Kam [49]	SuperK [50]
F_{μ}	2.17±0.21	2.77 ± 0.17	2.29 ± 0.15	2.26±0.11	1.94±0.12	1.74±0.07

to muons (see Eq. (20.5)). This causes the flux of horizontal neutrino induced muons to be approximately a factor two higher than the vertically upward flux. The upper and lower edges of the horizontal shaded region in Fig. 20.5 correspond to horizontal and vertical intensities of neutrino-induced muons. Table 20.3 gives the measured fluxes of upward-moving neutrino-induced muons averaged over the lower hemisphere. Generally the definition of minimum muon energy depends on where it passes through the detector. The tabulated effective minimum energy estimates the average over various accepted trajectories.

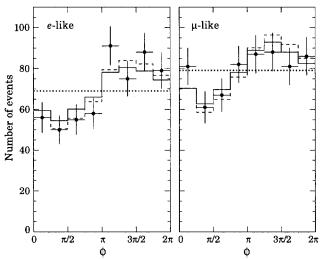


Figure 20.8: Azimuthal dependence of ~GeV neutrino interactions from SuperKamiokande [44]. The cardinal points of the compass are S, E, N, W starting at 0. These are the direction from which the particles arrive. The lines show the expectation based on two different calculations, as described in Ref. 44.

20.5. Air showers

So far we have discussed inclusive or uncorrelated fluxes of various components of the cosmic radiation. An air shower is caused by a single cosmic ray with energy high enough for its cascade to be detectable at the ground. The shower has a hadronic core, which acts as a collimated source of electromagnetic subshowers, generated mostly from $\pi^0 \to \gamma \gamma$. The resulting electrons and positrons are the most numerous particles in the shower. The number of muons, produced by decays of charged mesons, is an order of magnitude lower.

Air showers spread over a large area on the ground, and arrays of detectors operated for long times are useful for studying cosmic rays with primary energy $E_0>100~{\rm TeV}$, where the low flux makes measurements with small detectors in balloons and satellites difficult.

Greisen [51] gives the following approximate expressions for the numbers and lateral distributions of particles in showers at ground level. The total number of muons N_{μ} with energies above 1 GeV is

$$N_{\mu}(> 1 \text{ GeV}) \approx 0.95 \times 10^5 \left(N_e/10^6\right)^{3/4} ,$$
 (20.9)

where N_e is the total number of charged particles in the shower (not just e^{\pm}). The number of muons per square meter, ρ_{μ} , as a function of the lateral distance r (in meters) from the center of the shower is

$$\rho_{\mu} = \frac{1.25 \, N_{\mu}}{2\pi \, \Gamma(1.25)} \left(\frac{1}{320}\right)^{1.25} \, r^{-0.75} \, \left(1 + \frac{r}{320}\right)^{-2.5} \, , \qquad (20.10)$$

where Γ is the gamma function. The number density of charged particles is

$$\rho_e = C_1(s, d, C_2) x^{(s-2)} (1+x)^{(s-4.5)} (1+C_2 x^d) . \tag{20.11}$$

Here s, d, and C_2 are parameters in terms of which the overall normalization constant $C_1(s,d,C_2)$ is given by

$$\begin{split} C_1(s,d,C_2) &= \frac{N_e}{2\pi r_1^2} \left[B(s,4.5-2s) \right. \\ &+ C_2 B(s+d,4.5-d-2s) \right]^{-1} \,, \end{split} \tag{20.12}$$

where B(m,n) is the beta function. The values of the parameters depend on shower size (N_e) , depth in the atmosphere, identity of the primary nucleus, etc. For showers with $N_e\approx 10^6$ at sea level, Greisen uses s=1.25, d=1, and $C_2=0.088$. Finally, x is r/r_1 , where r_1 is the Molière radius, which depends on the density of the atmosphere and hence on the altitude at which showers are detected. At sea level $r_1\approx 78$ m. It increases with altitude.

The lateral spread of a shower is determined largely by Coulomb scattering of the many low-energy electrons and is characterized by the Moliere radius. The lateral spread of the muons (ρ_{μ}) is larger and depends on the transverse momenta of the muons at production as well as multiple scattering.

There are large fluctuations in development from shower to shower, even for showers of the same energy and primary mass—especially for small showers, which are usually well past maximum development when observed at the ground. Thus the shower size N_e and primary energy E_0 are only related in an average sense, and even this relation depends on depth in the atmosphere. One estimate of the relation is [52]

$$E_0 \sim 3.9 \times 10^6 \text{ GeV} (N_e/10^6)^{0.9}$$
 (20.13)

for vertical showers with $10^{14} < E < 10^{17}$ eV at 920 g cm $^{-2}$ (965 m above sea level). Because of fluctuations, N_e as a function of E_0 is not the inverse of Eq. (20.13). As E_0 increases the shower maximum (on average) moves down into the atmosphere and the relation between N_e and E_0 changes. At the maximum of shower development, there are approximately 2/3 particles per GeV of primary energy.

Detailed simulations and cross-calibrations between different types of detectors are necessary to establish the primary energy spectrum from air-shower experiments [52,53]. Figure 20.9 shows the "all-particle" spectrum. In establishing this spectrum, efforts have been made to minimize the dependence of the analysis on the primary composition. In the energy range above 10^{17} eV, the Fly's Eye technique [71] is particularly useful because it can establish the primary energy in a model-independent way by observing most of the ingitudinal development of each shower, from which E_0 is obtained by integrating the energy deposition in the atmosphere.

In Fig. 20.9 the differential energy spectrum has been multiplied by $E^{2.7}$ in order to display the features of the steep spectrum that are otherwise difficult to discern. The steepening that occurs between 10^{15} and 10^{16} eV is known as the *knee* of the spectrum. The feature between 10^{18} and 10^{19} eV is called the *ankle* of the spectrum.

If the cosmic ray spectrum below 10^{18} eV is of galactic origin, the *knee* could reflect the fact that some (but not all) cosmic accelerators have reached their maximum energy. Some types of expanding supernova remnants, for example, are estimated not to be able to accelerate particles above energies in the range of 10^{15} eV total energy per particle. Effects of propagation and confinement in the galaxy [61] also need to be considered.

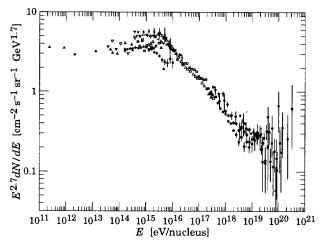


Figure 20.9: The all-particle spectrum: ☐ [52], ▲ [54], ▼ [55], ∇ [56], △ [57], + [58], X [59], ♦ [60]. References for the high energy portion of the spectrum are given in Fig. 20.10.

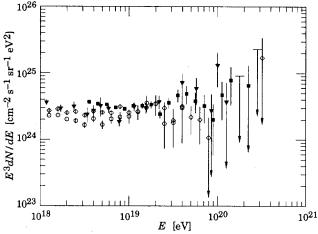


Figure 20.10: Expanded view of the highest energy portion of the cosmic-ray spectrum: o [71] (stereo), \Diamond [71] (monocular) [72], \blacktriangledown [73].

The ankle has the classical characteristic shape [62] of a higher energy population of particles overtaking a lower energy population. A possible interpretation is that the higher energy population represents cosmic rays of extragalactic origin. If this is the case and if the cosmic rays are cosmological in origin, then there should be a cutoff around 5×10^{19} eV, resulting from interactions with the microwave background [63,64]. It is therefore of special interest that several events have been assigned energies above 10^{20} eV [65,66,67,68].

Figure 20.10 gives an expanded view of the high energy end of the spectrum. Not included in the figure are the preliminary results of the Hi-Res Fly's Eye group [69]. Their spectrum is consistent with the others and includes several events above 10^{20} eV. To expand the scale in Fig. 20.10, the differential flux is multiplied by E^3 , a process which amplifies small systematic differences in energy assignments into sizeable differences in rate. The different measurements agree with each other within 20% systematic shifts in energy scale and consistently show that the spectrum continues well past the expected cutoff for a cosmological distribution of sources. The implication is that some sources of the highest energy particles must be relatively nearby. For example, the attenuation length for protons at 2×10^{20} eV is 30 Mpc [70].

References:

- 1. J.A. Simpson, Ann. Rev. Nucl. and Part. Sci. 33, 323 (1983).
- 2. M. Boezio et al., Astrophys. J. 518, 457 (1999).
- 3. R. Bellotti et al., Phys. Rev. D60, 052002 (1999).

- 4. AMS Collaboration, Phys. Lett. B (to be published, 1999).
- T. Sanuki et al., in Proc. 26th Int. Cosmic Ray Conf., Salt Lake City, 3, 93 (1999).
- J.J. Engelmann et al., Astron. & Astrophys. 233, 96 (1990);
 See also Cosmic Abundances of Matter (ed. C. Jake Waddington)
 A.I.P. Conf. Proceedings No. 183 (1988) p. 111.
- 7. S.W. Barwick et al., Astrophys. J. 498, 779 (1998).
- 8. Stephane Coutu et al., Astropart. Phys. 11, 429 (1999).
- 9. J.W. Mitchell et al., Phys. Rev. Lett. 76, 3057 (1996).
- 10. M. Boezio et al., Astrophys. J. 487, 415 (1997).
- M. Hof et al., Astrophys. J. 467, L33 (1996) See also G. Basini et al., Proc. 26th Int. Cosmic Ray Conf., Salt Lake City, 3, 101 (1999).
- H. Matsunaga et al., Phys. Rev. Lett. 81, 4052 (1998). See also
 S. Orito et al., astro-ph/9906426.
- 13. R. Bellotti et al., Phys. Rev. D53, 35 (1996).
- 14. M. Boezio et al., Phys. Rev. Lett. 82, 4757 (1999).
- S. Coutu et al., Proc. 26th Int. Cosmic Ray Conf., Salt Lake City, 2, 68 (1999).
- 16. D.H. Perkins, Astropart. Phys. 2, 249 (1994).
- T.K. Gaisser, Cosmic Rays and Particle Physics, Cambridge University Press (1990).
- 18. M.P. De Pascale et al., J. Geophys. Res. 98, 3501 (1993).
- K. Allkofer and P.K.F. Grieder, Cosmic Rays on Earth, Fachinformationszentrum, Karlsruhe (1984).
- O.C. Allkofer, K. Carstensen, and W.D. Dau, Phys. Lett. B36, 425 (1971).
- 21. B.C. Rastin, J. Phys. G10, 1609 (1984).
- 22. C.A. Ayre et al., J. Phys. G1, 584 (1975).
- 23. J. Kremer et al., Phys. Rev. Lett. 83, 4241 (1999).
- 24. H. Jokisch et al., Phys. Rev. D19, 1368 (1979).
- S. Hayakawa, Cosmic Ray Physics, Wiley, Interscience, New York (1969).
- R.R. Daniel and S.A. Stephens, Revs. Geophysics & Space Sci. 12, 233 (1974).
- F. Halzen, R. Vázquez, and E. Zas, Astropart. Phys. 1, 297 (1993).
- K.P. Beuermann and G. Wibberenz, Can. J. Phys. 46, S1034 (1968).
- 29. I.S. Diggory et al., J. Phys. A7, 741 (1974).
- D.E. Groom, N.V. Mokhov, and S.I. Striganov, "Muon stoppingpower and range tables," Atomic Data and Nuclear Data Tables, to be published (2000).
- P. Lipari and T. Stanev, Phys. Rev. **D44**, 3543 (1991).
- M. Crouch, in Proc. 20th Int. Cosmic Ray Conf., Moscow, 6, 165 (1987).
- Yu.M. Andreev, V.I. Gurentzov, and I.M. Kogai, in Proc. 20th Int. Cosmic Ray Conf., Moscow, 6, 200 (1987).
- M. Aglietta et al., (LVD Collaboration), Astropart. Phys. 3, 311 (1995).
- M. Ambrosio et al., (MACRO Collaboration), Phys. Rev. **D52**, 3793 (1995).
- Ch. Berger *et al.*, (Frejus Collaboration), Phys. Rev. **D40**, 2163 (1989).
- K.S. Hirata et al., (Kam-II Collaboration), Phys. Lett. B280, 146 (1992);
 - Y. Fukuda et al., Phys. Lett. **B335**, 237 (1994).
- R. Becker-Szendy et al., (IMB Collaboration), Phys. Rev. D46, 3720 (1992);
 - See also D. Casper et al., Phys. Rev. Lett. 66, 2561 (1991).
- 39. Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998).

- K. Scholberg et al., in Proc. Eighth Int. Workshop on Neutrino Telescopes (ed. Milla Baldo Ceolin, edizioni papergraf, Venezia, 1999) p. 183.
- 41. G. Battistoni et al., Astropart. Phys. 12, 315 (2000).
- T.H. Johnson, Phys. Rev. 43, 834 (1933). See also T.H. Johnson & E.C. Street, Phys. Rev. 44, 125 (1933).
- 43. L.W. Alvarez and A.H. Compton, Phys. Rev. 43, 835 (1933).
- 44. T. Futagami et al., Phys. Rev. Lett. 82, 5194 (1999).
- 45. F. Reines et al., Phys. Rev. Lett. 15, 429 (1965).
- M.M. Boliev et al., in Proceedings 3rd Int. Workshop on Neutrino Telescopes(ed. Milla Baldo Ceolin), 235 (1991).
- 47. M. Ambrosio et al., (MACRO) Phys. Lett. **B434**, 451 (1998). The number quoted for MACRO is the average over 90% of the lower hemisphere, $\cos \theta < -0.1$; see F. Ronga et al., hep-ex/9905025.
- R. Becker-Szendy et al., Phys. Rev. Lett. 69, 1010 (1992);
 Proc. 25th Int. Conf. High-Energy Physics, Singapore (ed. K.K. Phua and Y. Yamaguchi, World Scientific, 1991) p. 662.
- 49. S. Hatakeyama et al., Phys. Rev. Lett. 81, 2016 (1998).
- 50. Y. Fukuda et al., Phys. Rev. Lett. 82, 2644 (1999).
- 51. K. Greisen, Ann. Rev. Nucl. Sci. 10, 63 (1960).
- 52. M. Nagano et al., J. Phys. G10, 1295 (1984).
- 53. M. Teshima et al., J. Phys. G12, 1097 (1986).
- N.L. Grigorov et al., Yad. Fiz. 11, 1058 (1970) and Proc. 12th Int. Cosmic Ray Conf., Hobart, 2, 206 (1971).
- K. Asakimori et al., Proc. 23rd Int. Cosmic Ray Conf., Calgary, 2, 25 (1993);
 Proc. 22nd Int. Cosmic Ray Conf., Dublin, 2, 57 and 97 (1991).
- T.V. Danilova et al., Proc. 15th Int. Cosmic Ray Conf., Plovdiv, 8, 129 (1977).

- Yu. A. Fomin et al., Proc. 22nd Int. Cosmic Ray Conf., Dublin, 2, 85 (1991).
- 58. M. Amenomori et al., Astrophys. J. 461, 408 (1996).
- A. Roehring et al., Proc. 26th Int. Cosmic Ray Conf., Salt Lake City, 1, 214 (1999).
- 60. M.A.K. Glasmacher et al., Astropart. Phys. 10, 291 (1999).
- 61. V.S. Ptuskin et al., Astron. & Astrophys. 268, 726 (1993).
- 62. B. Peters, Nuovo Cimento 22, 800 (1961).
- 63. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).
- G.T. Zatsepin and V.A. Kuz'min, Sov. Phys. JETP Lett. 4, 78 (1966).
- 65. J. Linsley, Phys. Rev. Lett. 10, 146 (1963).
- 66. D.J. Bird et al., Astrophys. J. 441, 144 (1995).
- 67. N. Hayashima et al., Phys. Rev. Lett. 73, 3941 (1994).
- A.A. Watson, Proc. of the 1994 Summer Study on Nuclear and Particle Astrophysics and Cosmology for the Next Millenium, Snowmass CO, 1994, ed. by E.W. Kolb et al. (World Scientific, Singapore, to be published, 1996).
- C. Jui et al., highlight talk, 26th International Cosmic Ray Conf., Salt Lake City, 1999, to be published in A.I.P. Conference Proceedings.
- V.S. Berezinskii et al., Astrophysics of Cosmic Rays, North-Holland (1990).
- 71. D.J. Bird et al., Astrophys. J. 424, 491 (1994).
- 72. M. Takeda et al., Phys. Rev. Lett. 81, 1163 (1998).
- M.A. Lawrence, R.J.O. Reid, and A.A. Watson, J. Phys. G17, 733 (1991).

21. ACCELERATOR PHYSICS OF COLLIDERS

Revised October 1999 by K. Desler and D.A. Edwards (DESY).

21.1. Introduction

This article is intended to be a mini-introduction to accelerator physics, with emphasis on colliders. Essential data are summarized in the "Tables of Collider Parameters" (Sec. 22). Luminosity is the quantity of most immediate interest for HEP, and so we begin with its definition and a discussion of the various factors involved. Then we talk about some of the underlying beam dynamics. Finally, we comment on present limitations and possible future directions.

The focus is on colliders because they provide the highest c.m. energy, and so the longest potential discovery reach. All present-day colliders are synchrotrons with the exception of the SLAC Linear Collider. In the pursuit of higher c.m. energy with electrons, synchrotron radiation presents a formidable barrier to energy beyond LEP. The LHC will be the first proton collider in which synchrotron radiation has significant design impact.

21.2. Luminosity

The event rate R in a collider is proportional to the interaction cross section σ_{int} and the factor of proportionality is called the *luminosity*:

$$R = \mathscr{L}\sigma_{\rm int} \quad . \tag{21.1}$$

If two bunches containing n_1 and n_2 particles collide with frequency f, then the luminosity is

$$\mathscr{L} = f \frac{n_1 n_2}{4\pi \sigma_x \sigma_y} \tag{21.2}$$

where σ_x and σ_y characterize the Gaussian transverse beam profiles in the horizontal (bend) and vertical directions. Though the initial distribution at the source may be far from Gaussian, by the time the beam reaches high energy the normal form is a very good approximation thanks to the central limit theorem of probability and diminished importance of space charge effects.

Luminosity is normally expressed in units of cm $^{-2}$ s $^{-1}$, and tends to be a large number. For example, as we write this update in late 1999, PEP II has just reached 1.3×10^{33} cm $^{-2}$ s $^{-1}$. The highest luminosity for protons so far is 2.3×10^{32} cm $^{-2}$ s $^{-1}$ at the now decommissioned ISR. The critical quantity for HEP is the integrated luminosity, often stated in pb $^{-1}$; the two-year Tevatron run that concluded in February 1996 yielded 148 pb $^{-1}$, for instance.

The beam size can be expressed in terms of two quantities, one termed the transverse emittance, ϵ and the other, the amplitude function, β . The transverse emittance is a beam quality concept reflecting the process of bunch preparation, extending all the way back to the source for hadrons and, in the case of electrons, mostly dependent on synchrotron radiation. The amplitude function is a beam optics quantity and is determined by the accelerator magnet configuration.

The transverse emittance is a measure of the phase space area associated with either of the two transverse degrees of freedom, x and y. These coordinates represent the position of a particle with reference to some ideal design trajectory. Think of x as the "horizontal" displacement (in the bend plane for the case of a synchrotron), and y as the "vertical" displacement. The conjugate coordinates are the transverse momenta, which at constant energy are proportional to the angles of particle motion with respect to the design trajectory, x' and y'. Various conventions are in use to characterize the boundary of phase space. Beam sizes are usually given as the standard deviations characterizing Gaussian beam profiles in the two transverse degrees of freedom. In each degree of freedom, the one- σ contour in displacement and angle is frequently used and we will follow this choice.

Suppose that at some location in the collider, the phase space boundary appears as an upright ellipse where the coordinates are the displacement x (using the horizontal plane for instance) and the angle x' with respect to the beam axis. The choice of an elliptical

contour will be justified under Beam Dynamics below. If σ and σ' are the ellipse semi-axes in the x and x' directions respectively, then the emittance may be defined by $\epsilon \equiv \pi \sigma \sigma'$. Transverse emittance is often stated in units of mm-mrad.

The aspect ratio, σ/σ' , is the so-called *amplitude function*, β , and its value depends on position within the focussing structure. When expressed in terms of σ and β the transverse emittance becomes

$$\epsilon = \pi \sigma^2 / \beta \ . \tag{21.3}$$

Of particular significance is the value of the amplitude function at the interaction point, β^* . To achieve high luminosity, one wants β^* to be as small as possible; how small depends on the capability of the hardware to make a near-focus at the interaction point. For example, in the HERA proton ring, β^* at one of the major detectors is 1 m while elsewhere in the synchrotron typical values of the amplitude function lie in the range 30–100 m.

Eq. (21.2) can now be recast in terms of emittances and amplitude functions as

$$\mathcal{L} = f \frac{n_1 n_2}{4\sqrt{\epsilon_x \, \beta_x^* \, \epsilon_y \, \beta_y^*}} \ . \tag{21.4}$$

Thus, to achieve high luminosity, all one has to do is make high population bunches of low emittance to collide at high frequency at locations where the beam optics provides as low values of the amplitude functions as possible.

Depending on the particular facility, there are other ways of stating the expression for the luminosity. In a multibunch collider, the various bunch populations will differ, in a facility such as HERA, the electron and proton bunches may differ in emittance, the variation of the beam size in the neighborhood of the interaction point may be significant, and so on.

21.3. Beam dynamics

A major concern of beam dynamics is stability: conservation of adequate beam properties over a sufficiently long time scale. Several time scales are involved, and the approximations used in writing the equations of motion reflect the time scale under consideration. For example, when, in Sec. 21.3.1 below, we write the equations for transverse stability no terms associated with phase stability or synchrotron radiation appear; the time scale associated with the last two processes is much longer than that demanded by the need for transverse stability.

21.3.1. Betatron oscillations:

Present-day high-energy accelerators employ alternating gradient focussing provided by quadrupole magnetic fields [1]. The equations of motion of a particle undergoing oscillations with respect to the design trajectory are

$$x'' + K_x(s)x = 0$$
, $y'' + K_y(s)y = 0$, (21.5)

with

$$x' \equiv dx/ds$$
, $y' \equiv dy/ds$ (21.6)

$$K_x \equiv B'/(B\rho) + \rho^{-2} \ , \ K_y \equiv -B'/(B\rho)$$
 (21.7)

$$B' \equiv \partial B_y / \partial x \ . \tag{21.8}$$

The independent variable s is path length along the design trajectory. This motion is called a *betatron* oscillation because it was initially studied in the context of that type of accelerator. The functions K_x and K_y reflect the transverse focusing—primarily due to quadrupole fields except for the radius of curvature, ρ , term in K_x for a synchrotron—so each equation of motion resembles that for a harmonic oscillator but with spring constants that are a function of position. No terms relating to synchrotron oscillations appear, because their time scale is much longer and in this approximation play no role.

These equations have the form of Hill's equation and so the solution in one plane may be written as

$$x(s) = A\sqrt{\beta(s)} \cos(\psi(s) + \delta), \tag{21.9}$$

where A and δ are constants of integration and the phase advances according to $d\psi/ds=1/\beta$. The dimension of A is the square root of length, reflecting the fact that the oscillation amplitude is modulated by the square root of the amplitude function. In addition to describing the envelope of the oscillation, β also plays the role of an 'instantaneous' λ . The wavelength of a betatron oscillation may be some tens of meters, and so typically values of the amplitude function are of the order of meters rather than on the order of the beam size. The beam optics arrangement generally has some periodicity and the amplitude function is chosen to reflect that periodicity. As noted above, at the interaction point a small value of the amplitude function is desired, and so the focussing optics is tailored in the neighborhood to provide a suitable β^* .

The number of betatron oscillations per turn in a synchrotron is called the *tune* and is given by

$$\nu = \frac{1}{2\pi} \oint \frac{ds}{\beta} \ . \tag{21.10}$$

Expressing the integration constant A in the solution above in terms of x, x' yields the Courant-Snyder invariant

$$A^{2} = \gamma(s) x(s)^{2} + 2\alpha(s) x(s) x'(s) + \beta(s) x'(s)^{2}$$

where

$$\alpha \equiv -\beta'/2, \ \gamma \equiv \frac{1+\alpha^2}{\beta}$$
 (21.11)

(The Courant-Snyder parameters α , β and γ employ three Greek letters which have other meanings and the significance at hand must often be recognized from context.) Because β is a function of position in the focusing structure, this ellipse changes orientation and aspect ratio from location to location but the area πA^2 remains the same.

As noted above the transverse emittance is a measure of the area in x, x' (or y, y') phase space occupied by an ensemble of particles. The definition used in Eq. (21.3) is the area that encloses 39% of a Gaussian beam.

For electron synchrotrons the equilibrium emittance results from the balance between synchrotron radiation damping and excitation from quantum fluctuations in the radiation rate. The equilibrium is reached in a time small compared with the storage time.

For present-day hadron synchrotrons, synchrotron radiation does not play a similar role in determining the transverse emittance. Rather the emittance during storage reflects the source properties and the abuse suffered by the particles throughout acceleration and storage. Nevertheless it is useful to argue as follows: Though x' and x can serve as canonically conjugate variables at constant energy this definition of the emittance would not be an adiabatic invariant when the energy changes during the acceleration cycle. However, $\gamma(v/c)x'$, where here γ is the Lorentz factor, is proportional to the transverse momentum and so qualifies as a variable conjugate to x. So often one sees a normalized emittance defined according to

$$\epsilon_N = \gamma \frac{v}{c} \epsilon. \tag{21.12}$$

21.3.2. Phase stability: The particles in a circular collider also undergo synchrotron oscillations. This is usually referred to as motion in the longitudinal degree-of-freedom because particles arrive at a particular position along the accelerator earlier or later than an ideal reference particle. This circumstance results in a finite bunch length, which is related to an energy spread.

For dynamical variables in longitudinal phase space, let us take ΔE and Δt , where these are the energy and time differences from that of the ideal particle. A positive Δt means a particle is behind the ideal particle. The equation of motion is the same as that for a physical pendulum and therefore is nonlinear. But for small oscillations, it reduces to a simple harmonic oscillator:

$$\frac{d^2\Delta t}{dn^2} = -(2\pi\nu_s)^2\Delta t \tag{21.13}$$

where the independent variable n is the turn number and ν_s is the number of synchrotron oscillations per turn, analogous to the betatron oscillation tune defined earlier.

In the high-energy limit, where $v/c \approx 1$,

$$\nu_s = \left[\frac{h\eta \, eV \, \cos\phi_s}{2\pi E} \right]^{1/2} \quad . \tag{21.14}$$

There are four as yet undefined quantities in this expression: the harmonic number h, the slip factor η , the maximum energy eV gain per turn from the acceleration system, and the synchronous phase ϕ_s . The frequency of the RF system is normally a relatively high multiple, h, of the orbit frequency. The slip factor relates the fractional change in the orbit period τ to changes in energy according to

$$\frac{\Delta \tau}{\tau} = \eta \frac{\Delta E}{E} \quad . \tag{21.15}$$

At sufficiently high energy, the slip factor just reflects the relationship between path length and energy, since the speed is a constant; η is positive for all the synchrotrons in the tables.

The synchronous phase is a measure of how far up on the RF wave the average particle must ride in order to maintain constant energy in the face of synchrotron radiation. That is, $\sin\phi_s$ is the ratio of the energy loss per turn to the maximum energy per turn that can be provided by the acceleration system. For hadron colliders built to date, $\sin\phi_s$ is effectively zero. This is not the case for electron storage rings; for example, the electron ring of HERA runs at a synchronous phase of 45° .

Now if one has a synchrotron oscillation with amplitudes $\widehat{\Delta t}$ and $\widehat{\Delta E}$.

$$\Delta t = \widehat{\Delta t} \sin(2\pi \nu_s n) , \qquad \Delta E = \widehat{\Delta E} \cos(2\pi \nu_s n)$$
 (21.16)

then the amplitudes are related according to

$$\widehat{\Delta E} = \frac{2\pi\nu_s E}{\eta \tau} \widehat{\Delta t} \quad . \tag{21.17}$$

The longitudinal emittance ϵ_{ℓ} may be defined as the phase space area bounded by particles with amplitudes $\widehat{\Delta t}$ and $\widehat{\Delta E}$. In general, the longitudinal emittance for a given amplitude is found by numerical integrations. For $\sin \phi_s = 0$, an analytical expression is as follows:

$$\epsilon_{\ell} = \left[\frac{2\pi^3 EeVh}{\tau^2 \eta} \right]^{1/2} (\widehat{\Delta t})^2 \tag{21.18}$$

Again, a Gaussian is a reasonable representation of the longitudinal profile of a well-behaved beam bunch; if $\sigma_{\Delta t}$ is the standard deviation of the time distribution, then the bunch length can be characterized by

$$\ell = c \, \sigma_{\Delta t} \quad . \tag{21.19}$$

In the electron case the longitudinal emittance is determined by the synchrotron radiation process just as in the transverse degrees of freedom. For the hadron case the history of acceleration plays a role and because energy and time are conjugate coordinates, the longitudinal emittance is a quasi-invariant.

For HEP bunch length is a significant quantity because if the bunch length becomes larger than β^* the luminosity is adversely affected. This is because β grows parabolically as one proceeds from the IP and so the beam size increases thus lowering the contribution to the luminosity from such locations.

21.3.3. Synchrotron radiation [2]: A relativistic particle undergoing centripetal acceleration radiates at a rate given by the Larmor formula multiplied by the 4th power of the Lorentz factor:

$$P = \frac{1}{6\pi\epsilon_0} \frac{e^2 a^2}{c^3} \gamma^4. \tag{21.20}$$

Here, $a=v^2/\rho$ is the centripetal acceleration of a particle with speed v undergoing deflection with radius of curvature ρ . In a synchrotron

that has a constant radius of curvature within bending magnets, the energy lost due to synchrotron radiation per turn is the above multiplied by the time spent in bending magnets, $2\pi\rho/v$. Expressed in familiar units, this result may be written

$$W = 8.85 \times 10^{-5} E^4/\rho$$
 MeV per turn (21.21)

for electrons at sufficiently high energy that $v \approx c$. The energy E is in GeV and ρ is in kilometers. The radiation has a broad energy spectrum which falls off rapidly above the *critical energy*, $E_c = (3c/2\rho)\hbar\gamma^3$. Typically, E_c is in the hard x-ray region.

The characteristic time for synchrotron radiation processes is the time during which the energy must be replenished by the acceleration system. If f_0 is the orbit frequency, then the characteristic time is given by

$$\tau_0 = \frac{E}{f_0 W} \ . \tag{21.22}$$

Oscillations in each of the three degrees of freedom either damp or antidamp depending on the design of the accelerator. For a simple separated function alternating gradient synchrotron, all three modes damp. The damping time constants are related by Robinson's Theorem [3], which, expressed in terms of τ_0 , is

$$\frac{1}{\tau_x} + \frac{1}{\tau_y} + \frac{1}{\tau_s} = 2\frac{1}{\tau_0} . {(21.23)}$$

Even though all three modes may damp, the emittances do not tend toward zero. Statistical fluctuations in the radiation rate excite synchrotron oscillations and radial betatron oscillations. Thus there is an equilibrium emittance at which the damping and excitation are in balance. The vertical emittance is non-zero due to horizontal-vertical coupling.

Polarization can develop from an initially unpolarized beam as a result of synchrotron radiation. A small fraction $\approx E_c/E$ of the radiated power flips the electron spin. Because the lower energy state is that in which the particle magnetic moment points in the same direction as the magnetic bend field, the transition rate toward this alignment is larger than the rate toward the reverse orientation. An equilibrium polarization of 92% is predicted, and despite a variety of depolarizing processes, polarization above 80% has been observed at a number of facilities.

The radiation rate for protons is of course down by a factor of the fourth power of the mass ratio, and is given by

$$W = 7.8 \times 10^{-3} E^4 / \rho \text{ keV per turn}$$
 (21.24)

where E is now in TeV and ρ in km. For the LHC, synchrotron radiation presents a significant load to the cryogenic system, and impacts magnet design due to gas desorption and secondary electron emission from the wall of the cold beam tube.

21.3.4. Beam-beam tune shift: In a bunch-bunch collision the particles of one bunch see the other bunch as a nonlinear lens. Therefore the focusing properties of the ring are changed in a way that depends on the transverse oscillation amplitude. And so there is a spread in the frequency of betatron oscillations.

There is an extensive literature on the subject of how large this tune spread can be. In practice, the limiting value is hard to predict. It is consistently larger for electrons because of the beneficial effects of damping from synchrotron radiation.

In order that contributions to the total tune spread arise only at the detector locations, the beams in a multibunch collider are kept apart elsewhere by a variety of techniques. For equal energy particles of opposite charge circulating in the same vacuum chamber, electrostatic separators may be used assisted by a crossing angle if appropriate. For particles of equal energy and of the same charge, a crossing angle is needed not only for tune spread reasons but to steer the particles into two separate beam pipes. In HERA, because of the large ratio of proton to electron energy, separation can be achieved by bending magnets.

21.3.5. Luminosity lifetime: In electron synchrotrons the luminosity degrades during the store primarily due to particles leaving the phase stable region in longitudinal phase space as a result of quantum fluctuations in the radiation rate and bremsstrahlung. For hadron colliders the luminosity deteriorates due to emittance dilution resulting from a variety of processes. In practice, stores are intentionally terminated when the luminosity drops to the point where a refill will improve the integrated luminosity.

21.4. Status and prospects

Present facilities represent a balance among current technology, the desires of High Energy Physics, and public support. For forty-five years, beam optics has exploited the invention of alternating gradient focussing. This principle is employed in all colliders both linear and circular. Superconducting technology has grown dramatically in importance during the last two decades. Superconducting magnets are vital to the Tevatron, HERA, and to the future LHC. Superconducting accelerating structures are necessary to CESR, LEP, HERA, Jefferson Laboratory and other facilities requiring high-gradient long pulse length RF systems. Present room temperature accelerating structures produce very short pulses, but with gradients well in excess of the superconducting variety [7].

At present, the next potential facilities are perceived to include the LHC and an electron linear collider. The LHC is an approved project that will represent a major step forward in superconducting magnet technology. No linear collider project has been approved as yet, and the conventional and superconducting approaches compete for prominence. Of perhaps more immediate impact are the B and τ "factories" that are designed to go beyond the $10^{33}~{\rm cm}^{-2}{\rm s}^{-1}$ level in luminosity.

In addition to the possibilities of the preceding paragraph, there are other synchrotron-based collider studies underway. Despite formidable R&D challenges a muon-muon collider may become feasible. Proponents of a very large hadron collider at higher energy than the cancelled SSC project are exploring low-cost magnets and tunnels for a facility on the 100 TeV c.m. energy scale.

Ideas abound in accelerator R&D for the long term. Approaches such as wakefield accelerators, plasma-laser combinations, and related investigations may if successful deliver gradients far higher than anything realized today. These studies could potentially lead to a new vision for HEP facilities.

References:

- E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958). This is the classic article on the alternating gradient synchrotron.
- M. Sands, The Physics of Electron Storage Rings—An Introduction, SLAC Publication SLAC 121, UC-28 (ACC), 1970.
- 3. K. Robinson, Phys. Rev. 111, 373 (1958).
- 4. D.A. Edwards and M.J. Syphers, An Introduction to the Physics of High Energy Accelerators, John Wiley & Sons, 1993. This is an elementary textbook on accelerator physics. The next two references are more advanced, and are cited here for readers who may wish to pursue beam physics in greater depth.
- A. Wu Chao, Physics of Collective Beam Instabilities in High Energy Accelerators, John Wiley & Sons, 1993.
- M. Reiser, Theory and Design of Charged Particle Beams, John Wiley & Sons, 1994.
- Handbook of Accelerator Physics and Engineering, ed. A.W. Chao and M. Tigner, World Scientific Publishing Co. (Singapore, 1999).

HIGH-ENERGY COLLIDER PARAMETERS: e^+e^- Colliders (I)

The numbers here were received from representatives of the colliders in late 1999 (contact C.G. Wohl, LBNL). Many of the numbers of course change with time, and only the latest values (or estimates) are given here; those in brackets are for coming upgrades. Quantities are, where appropriate, r.m.s. H and V indicate horizontal and vertical directions. Parameters for the defunct SPEAR, DORIS, PETRA, PEP, and TRISTAN colliders may be found in our 1996 edition (Phys. Rev. **D54**, 1 July 1996, Part I).

	VEPP-2M (Novosibirsk)	VEPP-2000* (Novosibirsk)	VEPP-4M (Novosibirsk)	BEPC (China)	DAΦNE (Frascati)
Physics start date	1974	2001	1994	1989	1999
Maximum beam energy (GeV)	0.7	1.0	6	2.2	0.510 (0.75 max.)
Luminosity (10 ³⁰ cm ⁻² s ⁻¹)	5	100	50	10 at 2 GeV 5 at 1.55 GeV	5(→50)
Time between collisions (µs)	0.03	0.04	0.6	0.8	0.0027-0.0108
Crossing angle (μ rad)	0	0	0	0	$\pm (1.0 \text{ to } 1.5) \times 10^4$
Energy spread (units 10 ⁻³)	0.36	0.64	1	0.58 at 2.2 GeV	0.40
Bunch length (cm)	3	4	5	≈ 5	2(→3)
Beam radius (10 ⁻⁶ m)	H: 300 V: 10	125 (round)	H: 1000 V: 30	H: 890 V: 37	H: 2100 V: 21
Free space at interaction point (m)	±1	±1	±2	±2.15	±0.46 (±157 mrad cone)
Luminosity lifetime (hr)	continuous	continuous	2	7–12	1(→2)
Filling time (min)	continuous	continuous	15	30	2 (per beam)
Acceleration period (s)			150	120	-
Injection energy (GeV)	0.2-0.6	0.2-1.0	1.8	1.55	0.510
Transverse emittance $(10^{-9}\pi \text{ rad-m})$	H: 110 V: 1.3	H: 250 V: 250	H: 400 V: 20	H: 660 V: 28	H: 1000 V: 10
β^* , amplitude function at interaction point (m)	H: 0.45 V: 0.045	H: 0.06 V: 0.06	H: 0.75 V: 0.05	H: 1.2 V: 0.05	H: 4.5 V: 0.045
Beam-beam tune shift per crossing (units 10 ⁻⁴)	H: 200 V: 500	H: 750 V: 750	500	350	400
RF frequency (MHz)	200	172	180	199.53	368.25
Particles per bunch (units 10 ¹⁰)	2	16	15	20 at 2 GeV 11 at 1.55 GeV	3(→ 9)
Bunches per ring per species	1	1	2	1	30-120
Average beam current per species (mA)	50	300	80	40 at 2 GeV 22 at 1.55 GeV	800(→1500)
Circumference or length (km)	0.018	0.024	0.366	0.2404	0.0977
Interaction regions	2	2	1	2	1(→2)
Utility insertions	1	2	1	4	2 × 2
Magnetic length of dipole (m)	1	1.2	2	1.6	e ⁺ : 1.21/0.99 e ⁻ : 1.21/0.99
Length of standard cell (m)	4.5	12	7.2	6.6	_
Phase advance per cell (deg)	280	H: 738 V: 378	65	≈ 60	_
Dipoles in ring	8	8	78	40 + 4 weak	e ⁺ : 8(+4 wigglers) e ⁻ : 8(+4 wigglers)
Quadrupoles in ring	20	20	150	68	e^{+}/e^{-} : 53/53
Peak magnetic field (T)	1.8	2.4	0.6	0.9028 at 2.8 GeV	1.2(→1.76) dipoles 1.8 wigglers

^{*}VEPP-2000 is a major upgrade of VEPP-2M.

HIGH-ENERGY COLLIDER PARAMETERS: e^+e^- Colliders (II)

The numbers here were received from representatives of the colliders in late 1999. Many of the numbers of course change with time, and only the latest values (or estimates) are given here. Quantities are, where appropriate, r.m.s. H and V indicate horizontal and vertical directions; s.c. indicates superconducting.

	CESR (Cornell)	KEKB (KEK)	PEP-II (SLAC)	SLC (SLAC)	LEP (CERN)
Physics start date	1979	1999	1999	1989	1989
	_		e ⁻ : 7-12 (9.0 nominal)		101 in 1999
Maximum beam energy (GeV)	6	$e^- imes e^+: 8 imes 3.5$	e^+ : 2.5-4 (3.1 ") (nominal $E_{\rm cm} = 10.5~{\rm GeV}$)	50	(105=max. foreseen
Luminosity $(10^{30} \text{ cm}^{-2} \text{s}^{-1})$	830 at 5.3 GeV	10000	3000	2.5	24 at Z^0 100 at > 90 GeV
Time between collisions (µs)	0.014 to 0.22	0.002	0.0042	8300	22
Crossing angle (µ rad)	±2000	±11,000	0	0	0
Energy spread (units 10 ⁻³)	0.6 at 5.3 GeV	0.7	e^-/e^+ : 0.61/0.77	1.2	0.7→1.5
Bunch length (cm)	1.8	0.4	e^-/e^+ : 1.1/1.0	0.1	1.0
Beam radius (μm)	H: 500 V: 10	H: 77 V: 1.9	H: 157 V: 4.7	H: 1.5 V: 0.5	$\begin{array}{c} H \colon 200 \to 300 \\ V \colon \ 2.5 \to 8 \end{array}$
Free space at interaction point (m)	±2.2 (±0.6 to REC quads)	+0.75/-0.58 (+300/-500) mrad cone	±0.2, ±300 mrad cone	±2.8	±3.5
Luminosity lifetime (hr)	2-3	2	2.5		$20 \text{ at } Z^0$ 10 at > 90 GeV
Filling time (min)	10 (topping up)	8 (topping up)	3 (topping up)	_	20 to setup 20 to accumulate
Acceleration period (s)	_	_	-		600
Injection energy (GeV)	6	$e^-/e^+: 8/3.5$	2.5-12	45.64	22
Transverse emittance (π rad-nm)	H: 240 V: 6	H: 18 V: 0.36	e ⁻ : 48 (H), 1.5 (V) e ⁺ : 48 (H), 1.5 (V)	H: 0.5 V: 0.05	H: 20-45 $V: 0.25 → 1$
β*, amplitude function at interaction point (m)	H: 1.0 V: 0.018	H: 0.33 V: 0.01	e^- : 0.50 (H), 0.015 (V) e^+ : 0.50 (H), 0.015 (V)	H: 0.0025 V: 0.0015	H: 1.5 V: 0.05
Beam-beam tune shift per crossing (units 10 ⁻⁴)	480	H: 390 V: 520	300	_	830
RF frequency (MHz)	500	508.887	476	_	352.2
Particles per bunch (units 10 ¹⁰)	1.15	e^-/e^+ : 1.3/3.2	e -/e+: 2.1/5.9	4.0	45 in collision 60 in single beam
Bunches per ring per species	9 trains of 4 bunches	5120 (5-10% gap is necessary)	1658	1	4 trains of 1 or 2
Average beam current per species (mA)	260	e^-/e^+ : 1100/2600	e^-/e^+ : 750/2161	0.0008	$\begin{array}{c} 4 \text{ at } Z^0 \\ 4 \rightarrow 6 \text{ at } > 90 \text{ GeV} \end{array}$
Beam polarization (%)				e ⁻ : 80	55 at 45 GeV 5 at 61 GeV
Circumference or length (km)	0.768	3.016	2.2	1.45 +1.47	26.66
Interaction regions	1	1	1 (2 possible)	1	4
Utility insertions	3	3 per ring	5	_	4
Magnetic length of dipole (m)	1.6-6.6	$e^-/e^+: 5.86/0.915$	e^-/e^+ : 5.4/0.45	2.5	11.66/pair
Length of standard cell (m)	16	$e^-/e^+:75.7/76.1$	15.2	5.2	79
Phase advance per cell (deg)	45–90 (no standard cell)	450	e^-/e^+ : 60/90	108	102/90
Dipoles in ring	86	$e^-/e^+:116/112$	e^-/e^+ : 192/192	460+440	3280+24 inj. + 64 weak
Quadrupoles in ring	104	$e^-/e^+:452/452$	e^/e+: 290/326	_	520+288 + 8 s.c.
Peak magnetic field (T)	0.3 normal at 8 0.8 high field GeV	$e^{-}/e^{+}:0.25/0.72$	e^-/e^+ : 0.18/0.75	0.597	0.135

HIGH-ENERGY COLLIDER PARAMETERS: $ep, \overline{p}p$, and pp Colliders

The numbers here were received from representatives of the colliders in late 1999. Many of the numbers of course change with time, and only the latest values (or estimates) are given here. Quantities are, where appropriate, r.m.s. H, V, and, s.c. indicate horizontal and vertical directions, and superconducting. The SSC is kept for purposes of comparison.

	HERA (DESY)	$Sp\overline{p}S$ (CERN)	TEVATRON (Fermilab)		JHC ERN)	SSC (USA)
Physics start date	1992	1981	1987	2	005	Terminated
Physics end date		1990			_	
Particles collided	ep	$p\overline{p}$	$p\overline{p}$	pp	Pb Pb	pp
Maximum beam energy (TeV)	e: 0.030 p: 0.92	0.315 (0.45 in pulsed mode)	1.0	7.0	2.76 TeV/u	20
Luminosity (10 ³⁰ cm ⁻² s ⁻¹)	14	6	210	1.0 × 10 ⁴	0.002	1000
Time between collisions (μs)	0.096	3.8	0.396	0.025	0.125	0.016678
Crossing angle (µ rad)	0	0	0	≥ 200	≤ 200	100 to 200 (135 nominal)
Energy spread (units 10 ⁻³)	e: 0.91 p: 0.2	0.35	0.09	0.1	0.1	0.055
Bunch length (cm)	e: 0.83 p: 8.5	20	38	7.5	7.5	6.0
Beam radius (10 ⁻⁶ m)	e: 280(H), 50(V) p: 265(H), 50(V)	p: 73(H), 36(V) $\bar{p}: 55(H), 27(V)$	p: 34 p̄: 29	16	15	4.8
Free space at interaction point (m)	±5.8	16	±6.5	38	38	±20
Luminosity lifetime (hr)	10	15	7–30	10	6.7	~24
Filling time (min)	e: 60 p: 120	0.5	30	6	20	72
Acceleration period (s)	e: 200 p: 1500	10	86	1	200	1500
Injection energy (TeV)	e: 0.012 p: 0.040	0.026	0.15	0.450	177.4 GeV/u	2
Transverse emittance $(10^{-9}\pi \text{ rad-m})$	e: 42(H), 6(V) p: 5(H), 5(V)	p: 9 p: 5	p: 3.5 p̄: 2.5	0.5	0.5	0.047
β*, amplitude function at interaction point (m)	e: 1(H), 0.7(V) p: 7(H), 0.5(V)	0.6 (H) 0.15 (V)	0.35	0.5	0.5	0.5
Beam-beam tune shift per crossing (units 10 ⁻⁴)	e: 190(H), 360(V) p: 12(H), 9(V)	50	p: 38 p̄: 97	34		8 head on 13 long range
RF frequency (MHz)	e: 499.7 p: 208.2/52.05	100+200	53	400.8	400.8	359.75
Particles per bunch (units 10 ¹⁰)	e: 3 p: 7	p: 15 p : 8	p: 27 p: 7.5	10.5	0.0094	0.8
Bunches per ring per species	e: 189 p: 180	6	36	283 5	608	17,424
Average beam current per species (mA)	e: 40 p: 90	p: 6 p̄: 3	p: 81 p̄: 22	536	7.8	71
Circumference (km)	6.336	6.911	6.28	1	6.659	87.12
Interaction regions	ep: 2; e, p: 1 each, internal fixed target	2	2 high £	2 high ℒ +1	1	4
Utility insertions	4	<u> </u>	4		4	2
Magnetic length of dipole (m)	e: 9.185 p: 8.82	6.26	6.12		14.3	Mostly 14.928
Length of standard cell (m)	e: 23.5 p: 47	64	59.5	10	06.90	180
Phase advance per cell (deg)	e: 60 p: 90	90	67.8		90	90
Dipoles in ring	e: 396 p: 416	744	774		232 dipoles	$\left. egin{array}{ll} H\colon 8336 \ V\colon & 88 \end{array} \right\} ext{ in 2 rings}$
Quadrupoles in ring	e: 580 p: 280	232	216		ocussing 6 skew	2084 } 2 rings
Magnet type	e: C-shaped p: s.c., collared,	H type with bent-up	s.c. cos θ		s.c. in 1	s.c. $\cos \theta$
	cold iron	coil ends	warm iron	col	d iron	cold iron
Peak magnetic field (T)	e: 0.274 p: 4.65	1.4 (2 in pulsed mode)	4.4		8.3	6.790
\overline{p} source accum. rate (hr ⁻¹)		6 × 10 ¹⁰	20×10 ¹⁰		_	
Max. no. \bar{p} in accum. ring		1.2×10^{12}	2.6×10 ¹²			

23. PASSAGE OF PARTICLES THROUGH MATTER

Revised October 1999 by D.E. Groom and S.R. Klein (LBNL).

23.1. Notation

Table 23.1: Summary of variables used in this section. The kinematic variables β and γ have their usual meanings.

Symbol	Definition	Units or Value
α	Fine structure constant	1/137.035 999 76(50)
	$(e^2/4\pi\epsilon_0\hbar c)$	
M	Incident particle mass	${ m MeV}/c^2$
\boldsymbol{E}	Incident particle energy γMc^2	MeV
T	Kinetic energy	MeV
$m_e c^2$	Electron mass $\times c^2$	0.510 998 902(21) MeV
r_e	Classical electron radius	2.817 940 285(31) fm
	$e^2/4\pi\epsilon_0 m_e c^2$	
N_A	Avogadro's number	$6.02214199(47)\times10^{23}\mathrm{mol}^{-1}$
ze	Charge of incident particle	
\boldsymbol{z}	Atomic number of medium	
\boldsymbol{A}	Atomic mass of medium	g mol ⁻¹
K/A	$4\pi N_A r_e^2 m_e c^2/A$	$0.307075~{ m MeV~g^{-1}~cm^2}$
		for $A=1 \text{ g mol}^{-1}$
I	Mean excitation energy	eV (Note bene!)
δ	Density effect correction to ion	
$\hbar\omega_p$	Plasma energy	$28.816\sqrt{ ho\langle Z/A angle}{ m eV}^{(a)}$
	$(\sqrt{4\pi N_e r_e^3} \ m_e c^2/lpha)$	
N_c	Electron density	(units of r_e) ⁻³
w_j	Weight fraction of the j th elem	ent in a compound or mixture
n_{j}	\propto number of jth kind of atoms	in a compound or mixture
X_0	Radiation length	$\rm g~cm^{-2}$
	$4\alpha r_e^2 N_A/A$	$(716.408 \text{ g cm}^{-2})^{-1}$
	-	for $A = 1$ g mol ⁻¹
E_c	Critical energy	MeV
E_s	Scale energy $\sqrt{4\pi/\alpha} \; m_e c^2$	$21.2052~\mathrm{MeV}$
R_M	Molière radius	g cm ⁻²

(a) For ρ in g cm⁻³.

23.2. Ionization energy loss by heavy particles [4-1]

Moderately relativistic charged particles other than electrons lose energy in matter primarily by ionization. The mean rate of energy loss (or stopping power) is given by the Bethe-Bloch equation,

$$-\frac{dE}{dx} = Kz^{2} \frac{Z}{A} \frac{1}{\beta^{2}} \left[\frac{1}{2} \ln \frac{2m_{e}c^{2}\beta^{2}\gamma^{2}T_{\text{max}}}{I^{2}} - \beta^{2} - \frac{\delta}{2} \right] . \tag{23.1}$$

Here T_{\max} is the maximum kinetic energy which can be imparted to a free electron in a single collision, and the other variables are defined in Table 23.1. The units are chosen so that dx is measured in mass per unit area, e.g., in g cm⁻².

In this form, the Bethe-Bloch equation describes the energy loss of pions in a material such as copper to about 1% accuracy for energies between about 6 MeV and 6 GeV (momenta between about 40 MeV/c and 6 GeV/c). At lower energies "C/Z" corrections for tightly-bound atomic electrons and other effects must be made, and at higher energies radiative effects begin to be important. These limits of validity depend on both the effective atomic number of the absorber and the mass of the slowing particle. Low-energy effects will be discussed in Sec. 23.2.2.

The function as computed for muons on copper is shown by the solid curve in Fig. 23.1, and for pions on other materials in Fig. 23.3. A minor dependence on M at the highest energies is introduced through $T_{\rm max}$, but for all practical purposes in high-energy physics dE/dx in a given material is a function only of β . Except in hydrogen, particles of the same velocity have very similar rates of energy loss in different materials; there is a slow decrease in the rate of energy loss with increasing Z. The qualitative difference in stopping power behavior at high energies between a gas (He) and the other materials shown in Fig. 23.3 is due to the density-effect correction, δ , discussed below. The stopping power functions are characterized by broad minima whose position drops from $\beta\gamma=3.5$ to 3.0 as Z goes from 7 to 100. The values of minimum ionization as a function of atomic number are shown in Fig. 23.2.

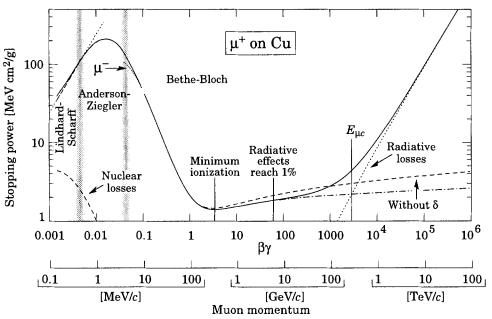


Fig. 23.1: Stopping power (= $\langle -dE/dx \rangle$) for positive muons in copper as a function of $\beta \gamma = p/Mc$ over nine orders of magnitude in momentum (12 orders of magnitude in kinetic energy) [1]. Solid curves indicate the total stopping power. Data below the break at $\beta \gamma \approx 0.1$ are taken from ICRU 49 [2], and data at higher energies are from Ref. 1. Vertical bands indicate boundaries between different approximations discussed in the text. The short dotted lines labeled " μ " illustrate the "Barkas effect," the dependence of stopping power on projectile charge at very low energies [3].

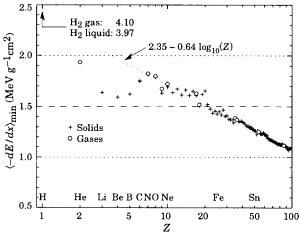


Figure 23.2: Stopping power at minimum ionization for the chemical elements. The straight line is fitted for Z > 6. A simple functional dependence is not to be expected, since $\langle -dE/dx \rangle$ depends on other properties than atomic number.

In practical cases, most relativistic particles (e.g., cosmic-ray muons) have energy loss rates close to the minimum, and are said to be minimum ionizing particles, or mip's.

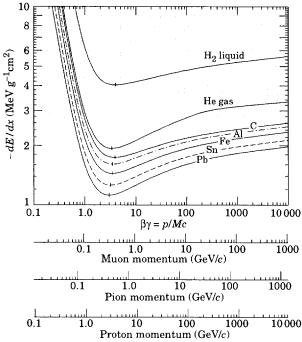


Figure 23.3: Energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminum, tin, and lead.

Eq. (23.1) may be integrated to find the total range R for a particle which loses energy only through ionization. Since dE/dx depends only on β , R/M is a function of E/M or pc/M. In practice, range is a useful concept only for low-energy hadrons ($R \lesssim \lambda_I$, where λ_I is the nuclear interaction length), and for muons below a few hundred GeV (above which radiative effects dominate). R/M as a function of $\beta\gamma = p/Mc$ is shown for a variety of materials in Fig. 23.4.

For a particle with mass M and momentum $M\beta\gamma c,\,T_{\max}$ is given by

$$T_{\text{max}} = \frac{2m_e c^2 \, \beta^2 \gamma^2}{1 + 2\gamma m_e/M + (m_e/M)^2} \ . \tag{23.2}$$

It is usual [4,5] to make the "low-energy" approximation $T_{\rm max}=2m_ec^2\,\beta^2\gamma^2$, valid for $2\gamma m_e/M\ll 1$; this, in fact, is done

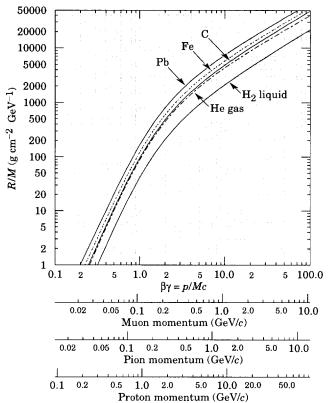


Figure 23.4: Range of heavy charged particles in liquid (bubble chamber) hydrogen, helium gas, carbon, iron, and lead. For example: For a K^+ whose momentum is 700 MeV/c, $\beta\gamma=1.42$. For lead we read $R/M\approx396$, and so the range is 195 g cm⁻².

implicitly in many standard references. For a pion in copper, the error thus introduced into dE/dx is greater than 6% at 100 GeV. The correct expression should be used.

At energies of order 100 GeV, the maximum 4-momentum transfer to the electron can exceed $1 \, \mathrm{GeV}/c$, where structure effects significantly modify the cross sections. This problem has been investigated by J.D. Jackson [6], who concluded that for hadrons (but not for large nuclei) corrections to dE/dx are negligible below energies where radiative effects dominate. While the cross section for rare hard collisions is modified, the average stopping power, dominated by many softer collisions, is almost unchanged.

"The determination of the mean excitation energy is the principal non-trivial task in the evaluation of the Bethe stopping-power formula" [7]. Recommended values have varied substantially with time. Estimates based on experimental stopping-power measurements for protons, deuterons, and alpha particles and on oscillator-strength distributions and dielectric-response functions were given in ICRU 37 [8]. These values, shown in Fig. 23.5, have since been widely used. Machine-readable versions can also be found [9].

23.2.1. The density effect: As the particle energy increases, its electric field flattens and extends, so that the distant-collision contribution to Eq. (23.1) increases as $\ln \beta \gamma$. However, real media become polarized, limiting the field extension and effectively truncating this part of the logarithmic rise [10,11–14]. At very high energies,

$$\delta/2 \to \ln(\hbar\omega_p/I) + \ln\beta\gamma - 1/2$$
, (23.3)

where $\delta/2$ is the density effect correction introduced in Eq. (23.1) and $\hbar\omega_p$ is the plasma energy defined in Table 23.1. A comparison with Eq. (23.1) shows that |dE/dx| then grows as $\ln\beta\gamma$ rather than $\ln\beta^2\gamma^2$, and that the mean excitation energy I is replaced by the plasma energy $\hbar\omega_p$. The ionization stopping power as calculated with and without the density effect correction is shown in Fig. 23.1. Since the plasma frequency scales as the square root of the electron density, the correction is much larger for a liquid or solid than for a gas, as is illustrated by the examples in Fig. 23.3.

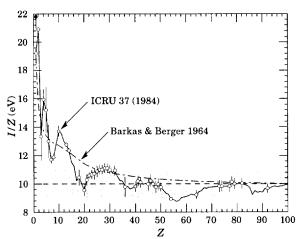


Figure 23.5: Excitation energies (divided by Z) as adopted by the ICRU [8]. Those based on measurement are shown by points with error flags; the interpolated values are simply joined. The solid point is for liquid H_2 ; the open point at 19.2 is for H_2 gas. Also shown are the $I/Z=10\pm1$ eV band and an early approximation.

The density effect correction is usually computed using Sternheimer's parameterization [11]:

$$\delta = \begin{cases} 2(\ln 10)x - \overline{C} & \text{if } x \ge x_1; \\ 2(\ln 10)x - \overline{C} + a(x_1 - x)^k & \text{if } x_0 \le x < x_1; \\ 0 & \text{if } x < x_0 \text{ (nonconductors)}; \\ \delta_0 10^{2(x - x_0)} & \text{if } x < x_0 \text{ (conductors)} \end{cases}$$
(23.4)

Here $x = \log_{10} \eta = \log_{10}(p/Mc)$. \overline{C} (the negative of the C used in Ref. 11) is obtained by equating the high-energy case of Eq. (23.4) with the limit given in Eq. (23.3). The other parameters are adjusted to give a best fit to the results of detailed calculations for momenta below $Mc \exp(x_1)$. Parameters for elements and nearly 200 compounds and mixtures of interest are published in a variety of places, notably in Ref. 14. A recipe for finding the coefficients for nontabulated materials is given by Sternheimer and Peierls [13], and is summarized in Ref. 1.

The remaining relativistic rise can be attributed to large energy transfers to a few electrons. If these escape or are otherwise accounted for separately, the energy deposited in an absorbing layer (in contrast to the energy lost by the particle) approaches a constant value, the Fermi plateau (see Sec. 23.2.5 below). At extreme energies (e.g., > 332 GeV for muons in iron), radiative effects are more important than ionization losses. These are especially relevant for high-energy muons, as discussed in Sec. 23.6.

23.2.2. Energy loss at low energies: A shell correction C/Z is often included in the square brackets of Eq. (23.1) [2,8,15] to correct for atomic binding having been neglected in calculating some of the contributions to Eq. (23.1). We show the Barkas form [15] in Fig. 23.1. For copper it contributes about 1% at $\beta\gamma=0.3$ (kinetic energy 6 MeV for a pion), and the correction decreases very rapidly with energy.

Eq. (23.1) is based on a first-order Born approximation. Higher-order corrections, again important only at lower energy, are normally included by adding a term $z^2L_2(\beta)$ inside the square brackets.

An additional "Barkas correction" $zL_1(\beta)$ makes the stopping power for a negative particle somewhat larger than for a positive particle with the same mass and velocity. In a 1956 paper, Barkas et~al. noted that negative pions had a longer range than positive pions [3]. The effect has been measured for a number of negative/positive particle pairs, most recently for antiprotons at the CERN LEAR facility [16].

A detailed discussion of low-energy corrections to the Bethe formula is given in ICRU Report 49 [2]. When the corrections are properly included, the accuracy of the Bethe-Bloch treatment is accurate to about 1% down to $\beta \approx 0.05$, or about 1 MeV for protons.

For $0.01 < \beta < 0.05$, there is no satisfactory theory. For protons, one usually relies on the empirical fitting formulae developed by

Andersen and Ziegler [2,17]. For particles moving more slowly than $\approx 0.01c$ (more or less the velocity of the outer atomic electrons), Lindhard has been quite successful in describing electronic stopping power, which is proportional to β [18,19]. Finally, we note that at low energies, e.g., for protons of less than several hundred eV, non-ionizing nuclear recoil energy loss dominates the total energy loss [2,19,20].

As shown in ICRU49 [2] (using data taken from Ref. 17), the nuclear plus electronic proton stopping power in copper is 113 MeV cm² g⁻¹ at $T=10~{\rm keV}$, rises to a maximum of 210 MeV cm² g⁻¹ at 100–150 keV, then falls to 120 MeV cm² g⁻¹ at 1 MeV. Above 0.5–1.0 MeV the corrected Bethe-Block theory is adequate.

23.2.3. Fluctuations in energy loss: The quantity $(dE/dx)\delta x$ is the mean energy loss via interaction with electrons in a layer of the medium with thickness δx . For finite δx , there are fluctuations in the actual energy loss. The distribution is skewed toward high values (the Landau tail) [4,21]. Only for a thick layer $[(dE/dx)\delta x\gg T_{\rm max}]$ is the distribution nearly Gaussian. The large fluctuations in the energy loss are due to the small number of collisions involving large energy transfers. The fluctuations are smaller for the so-called restricted energy loss rate, as discussed in Sec. 23.2.5 below.

23.2.4. Energy loss in mixtures and compounds: A mixture or compound can be thought of as made up of thin layers of pure elements in the right proportion (Bragg additivity). In this case,

$$\frac{dE}{dx} = \sum w_j \left. \frac{dE}{dx} \right|_j , \qquad (23.5)$$

where $dE/dx|_j$ is the mean rate of energy loss (in MeV g cm⁻²) in the jth element. Eq. (23.1) can be inserted into Eq. (23.5) to find expressions for $\langle Z/A \rangle$, $\langle I \rangle$, and $\langle \delta \rangle$; for example, $\langle Z/A \rangle = \sum w_j Z_j/A_j = \sum n_j Z_j/\sum n_j A_j$. However, $\langle I \rangle$ as defined this way is an underestimate, because in a compound electrons are more tightly bound than in the free elements, and $\langle \delta \rangle$ as calculated this way has little relevance, because it is the electron density which matters. If possible, one uses the tables given in Refs. 14 and 22, which include effective excitation energies and interpolation coefficients for calculating the density effect correction for the chemical elements and nearly 200 mixtures and compounds. If a compound or mixture is not found, then one uses the recipe for δ given in Ref. 13 (or Ref. 23), and calculates $\langle I \rangle$ according to the discussion in Ref. 7. (Note the "13%" rule!)

23.2.5. Restricted energy loss rates for relativistic ionizing particles: Fluctuations in energy loss are due mainly to the production of a few high-energy knock-on electrons. Practical detectors often measure the energy deposited, not the energy lost. When energy is carried off by energetic knock-on electrons, it is more appropriate to consider the mean energy loss excluding energy transfers greater than some cutoff $T_{\rm cut}$. The restricted energy loss rate is

T_{cut}. The restricted energy loss rate is
$$-\frac{dE}{dx}\Big|_{T < T_{\text{cut}}} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{upper}}}{I^2} - \frac{\beta^2}{2} \left(1 + \frac{T_{\text{upper}}}{T_{\text{max}}} \right) - \frac{\delta}{2} \right]$$
(23.6)

where $T_{\rm upper}={\rm MIN}(T_{\rm cut},T_{\rm max})$. This form agrees with the equation given in previous editions of this Review [24] for $T_{\rm cut}\ll T_{\rm max}$ but smoothly joins the normal Bethe-Bloch function (Eq. (23.1)) for $T_{\rm cut}>T_{\rm max}$.

23.2.6. Energetic knock-on electrons (δ rays): The distribution of secondary electrons with kinetic energies $T\gg I$ is given by [4]

$$\frac{d^2N}{dTdx} = \frac{1}{2}Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \frac{F(T)}{T^2}$$
 (23.7)

for $I \ll T \leq T_{\rm max}$, where $T_{\rm max}$ is given by Eq. (23.2). The factor F is spin-dependent, but is about unity for $T \ll T_{\rm max}$. For spin-0 particles $F(T) = (1-\beta^2 T/T_{\rm max})$; forms for spins 1/2 and 1 are also given by Rossi [4]. When Eq. (23.7) is integrated from $T_{\rm cut}$ to $T_{\rm max}$,one obtains the difference between Eq. (23.1) and Eq. (23.6). For incident electrons, the indistinguishability of projectile and target means that the range of T extends only to half the kinetic energy of the incident

particle. Additional formulae are given in Ref. 25. Equation (23.7) is inaccurate for T close to I: for $2I \lesssim T \lesssim 10I$, the $1/T^2$ dependence above becomes approximately $T^{-\eta}$, with $3 \lesssim \eta \lesssim 5$ [26].

23.2.7. Ionization yields: Physicists frequently relate total energy loss to the number of ion pairs produced near the particle's track. This relation becomes complicated for relativistic particles due to the wandering of energetic knock-on electrons whose ranges exceed the dimensions of the fiducial volume. For a qualitative appraisal of the nonlocality of energy deposition in various media by such modestly energetic knock-on electrons, see Ref. 27. The mean local energy dissipation per local ion pair produced, W, while essentially constant for relativistic particles, increases at slow particle speeds [28]. For gases, W can be surprisingly sensitive to trace amounts of various contaminants [28]. Furthermore, ionization yields in practical cases may be greatly influenced by such factors as subsequent recombination [29].

23.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many small-angle scatters. Most of this deflection is due to Coulomb scattering from nuclei, and hence the effect is called multiple Coulomb scattering. (However, for hadronic projectiles, the strong interactions also contribute to multiple scattering.) The Coulomb scattering distribution is well represented by the theory of Molière [30]. It is roughly Gaussian for small deflection angles, but at larger angles (greater than a few θ_0 , defined below) it behaves like Rutherford scattering, having larger tails than does a Gaussian distribution.

If we define

$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}}$$
 (23.8)

then it is sufficient for many applications to use a Gaussian approximation for the central 98% of the projected angular distribution, with a width given by [31,32]

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big] . \tag{23.9}$$

Here p, βc , and z are the momentum, velocity, and charge number of the incident particle, and x/X_0 is the thickness of the scattering medium in radiation lengths (defined below). This value of θ_0 is from a fit to Molière distribution [30] for singly charged particles with $\beta=1$ for all Z, and is accurate to 11% or better for $10^{-3} < x/X_0 < 100$.

Eq. (23.9) describes scattering from a single material, while the usual problem involves the multiple scattering of a particle traversing many different layers and mixtures. Since it is from a fit to a Molière distribution, it is incorrect to add the individual θ_0 contributions in quadrature; the result is systematically too small. It is much more accurate to apply Eq. (23.9) once, after finding x and X_0 for the combined scatterer.

Lynch and Dahl have extended this phenomenological approach, fitting Gaussian distributions to a variable fraction of the Molière distribution for arbitrary scatterers [32], and achieve accuracies of 2% or better.

Figure 23.6: Quantities used to describe multiple Coulomb scattering. The particle is incident in the plane of the figure.

The nonprojected (space) and projected (plane) angular distributions are given approximately by [30]

$$\frac{1}{2\pi\,\theta_0^2}\,\exp\left(-\frac{\theta_{\rm space}^2}{2\theta_0^2}\right)\,d\Omega\,\,,\tag{23.10}$$

$$\frac{1}{\sqrt{2\pi}\,\theta_0}\,\exp\left(-\frac{\theta_{\rm plane}^2}{2\theta_0^2}\right)d\theta_{\rm plane}\;,\tag{23.11}$$

where θ is the deflection angle. In this approximation, $\theta_{\rm space}^2 \approx$ $(\theta_{\text{plane},x}^2 + \theta_{\text{plane},y}^2)$, where the x and y axes are orthogonal to the blane, x plane, y direction of motion, and $d\Omega \approx d\theta_{\text{plane},x} d\theta_{\text{plane},y}$. Deflections into $\theta_{\text{plane},x}$ and $\theta_{\text{plane},y}$ are independent and identically distributed. Figure 23.6 shows these and other quantities sometimes used to

describe multiple Coulomb scattering. They are

$$\psi_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{3}} \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{3}} \theta_0$$
, (23.12)

$$y_{\,\mathrm{plane}}^{\,\mathrm{rms}} = \frac{1}{\sqrt{3}} x \, \theta_{\,\mathrm{plane}}^{\,\mathrm{rms}} = \frac{1}{\sqrt{3}} x \, \theta_0 \, ,$$
 (23.13)

$$s_{\text{plane}}^{\text{rms}} = \frac{1}{4\sqrt{3}} x \theta_{\text{plane}}^{\text{rms}} = \frac{1}{4\sqrt{3}} x \theta_0 . \qquad (23.14)$$

All the quantitative estimates in this section apply only in the limit of small $\theta_{\rm plane}^{\rm \, rms}$ and in the absence of large-angle scatters. The random variables s, ψ, y , and θ in a given plane are distributed in a correlated fashion (see Sec. 27.1 of this Review for the definition of the correlation coefficient). Obviously, $y \approx x\psi$. In addition, y and θ have the correlation coefficient $\rho_{y\theta}=\sqrt{3}/2\approx 0.87.$ For Monte Carlo generation of a joint $(y_{\text{plane}}, \theta_{\text{plane}})$ distribution, or for other calculations, it may be most convenient to work with independent Gaussian random variables (z_1, z_2) with mean zero and variance one, and then set

$$y_{\text{plane}} = z_1 x \,\theta_0 (1 - \rho_{y\theta}^2)^{1/2} / \sqrt{3} + z_2 \,\rho_{y\theta} x \,\theta_0 / \sqrt{3}$$
$$= z_1 x \,\theta_0 / \sqrt{12} + z_2 x \,\theta_0 / 2 ; \qquad (23.15)$$

$$\theta_{\text{plane}} = z_2 \, \theta_0 \, . \tag{23.16}$$

Note that the second term for $y_{\rm plane}$ equals $x\,\theta_{\rm plane}/2$ and represents the displacement that would have occurred had the deflection $\theta_{\rm plane}$ all occurred at the single point x/2.

For heavy ions the multiple Coulomb scattering has been measured and compared with various theoretical distributions [33].

23.4. Photon and electron interactions in matter

23.4.1. Radiation length: High-energy electrons predominantly lose energy in matter by bremsstrahlung, and high-energy photons by e^+e^- pair production. The characteristic amount of matter traversed for these related interactions is called the radiation length X_0 , usually measured in g cm⁻². It is the mean distance over which a high-energy electron loses all but 1/e of its energy by bremsstrahlung, and the e-folding distance for pair production by a high-energy photon is $\frac{7}{9}X_0$. It is also the appropriate scale length for describing high-energy electromagnetic cascades. X_0 has been calculated and tabulated by Y.S. Tsai [34]:

$$\frac{1}{X_0} = 4\alpha r_e^2 \frac{N_A}{A} \left\{ Z^2 \left[L_{\rm rad} - f(Z) \right] + Z L_{\rm rad}' \right\} \,. \tag{23.17}$$

For A=1 g mol⁻¹, $4\alpha r_e^2 N_A/A=(716.408~{\rm g~cm^{-2}})^{-1}$. $L_{\rm rad}$ and $L'_{\rm rad}$ are given in Table 23.2. The function f(Z) is an infinite sum, but for elements up to uranium can be represented to 4-place accuracy by $f(Z) = a^2 [(1+a^2)^{-1} + 0.20206$

$$f(Z) = a^2 [(1+a^2)^{-1} + 0.20206]$$

$$-0.0369 a^2 + 0.0083 a^4 - 0.002 a^6$$
, (23.18)

where $a = \alpha Z$ [35].

Table 23.2: Tsai's $L_{\rm rad}$ and $L'_{\rm rad}$, for use in calculating the radiation length in an element using Eq. (23.17).

\mathbf{E} lement	\boldsymbol{Z}	$L_{ m rad}$	$L_{ m rad}'$
H	1	5.31	6.144
${ m He}$	2	4.79	5.621
Li	3	4.74	5.805
${f Be}$	4	4.71	5.924
Others	> 4	$\ln(184.15Z^{-1/3})$	$\ln(1194 Z^{-2/3})$

Although it is easy to use Eq. (23.17) to calculate X_0 , the functional dependence on Z is somewhat hidden. Dahl provides a compact fit to the data [36]:

$$X_0 = \frac{716.4 \text{ g cm}^{-2} A}{Z(Z+1) \ln(287/\sqrt{Z})}$$
 (23.19)

Results obtained with this formula agree with Tsai's values to better than 2.5% for all elements except helium, where the result is about 5% low.

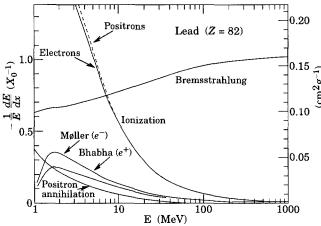


Figure 23.7: Fractional energy loss per radiation length in lead as a function of electron or positron energy. Electron (positron) scattering is considered as ionization when the energy loss per collision is below 0.255 MeV, and as Moller (Bhabha) scattering when it is above. Adapted from Fig. 3.2 from Messel and Crawford, *Electron-Photon Shower Distribution Function Tables for Lead, Copper, and Air Absorbers*, Pergamon Press, 1970. Messel and Crawford use $X_0(Pb) = 5.82 \text{ g/cm}^2$, but we have modified the figures to reflect the value given in the Table of Atomic and Nuclear Properties of Materials $(X_0(Pb) = 6.37 \text{ g/cm}^2)$.

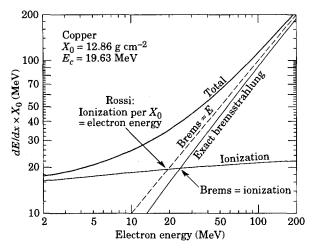


Figure 23.8: Two definitions of the critical energy E_c .

The radiation length in a mixture or compound may be approximated by

$$1/X_0 = \sum w_j/X_j , \qquad (23.20)$$

where w_j and X_j are the fraction by weight and the radiation length for the jth element.

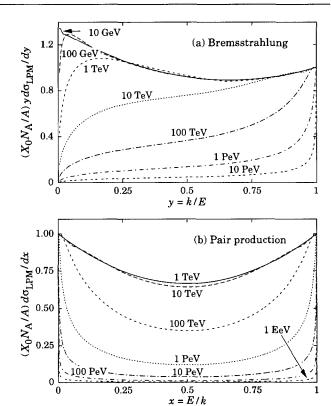


Figure 23.9: (a) The normalized bremsstrahlung cross section $k \, d\sigma_{LPM}/dk$ in lead versus the fractional photon energy y=k/E. The vertical axis has units of photons per radiation length. (b) The normalized pair production cross section $d\sigma_{LPM}/dy$, versus fractional electron energy x=E/k.

23.4.2. Energy loss by electrons: At low energies electrons and positrons primarily lose energy by ionization, although other processes (Møller scattering, Bhabha scattering, e^+ annihilation) contribute, as shown in Fig. 23.7. While ionization loss rates rise logarithmically with energy, bremsstrahlung losses rise nearly linearly (fractional loss is nearly independent of energy), and dominates above a few tens of MeV in most materials (see Fig. 23.8).

Ionization loss by electrons and positrons differs from loss by heavy particles because of the kinematics, spin, and the identity of the incident electron with the electrons which it ionizes. Complete discussions and tables can be found in Refs. 7, 8, and 22.

At very high energies and except at the high-energy tip of the bremsstrahlung spectrum, the cross section can be approximated in the "complete screening case" as [34]

$$\begin{split} d\sigma/dk &= (1/k)4\alpha r_e^2 \left\{ (\frac{4}{3} - \frac{4}{3}y + y^2)[Z^2(L_{\rm rad} - f(Z)) + Z\,L'_{\rm rad}] \right. \\ &+ \frac{1}{9}(1-y)(Z^2 + Z) \right\} \,, \end{split} \tag{23.21}$$

where y = k/E is the fraction of the electron's energy transferred to the radiated photon. At small y (the "infrared limit") the term on the second line can reach 2.5%. If it is ignored and the first line simplified with the definition of X_0 given in Eq. (23.17), we have

$$\frac{d\sigma}{dk} = \frac{A}{X_0 N_A k} \left(\frac{4}{3} - \frac{4}{3} y + y^2 \right) . \tag{23.22}$$

This cross section (times k) is shown by the top curve in Fig. 23.9(a).

This formula is accurate except in near y=1, where screening may become incomplete, and near y=0, where the infrared divergence is removed by the interference of bremsstrahlung amplitudes from nearby scattering centers (the LPM effect) [37,38] and dielectric supression [39,40]. These and other supression effects in bulk media are discussed in Sec. 23.4.5.

With decreasing energy ($E \lesssim 10$ GeV) the high-y cross section drops and the curves become rounded as $y \to 1$. Curves of this familiar

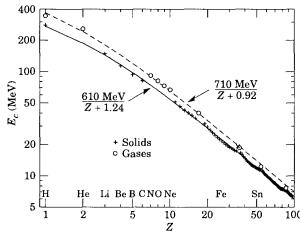


Figure 23.10: Electron critical energy for the chemical elements, using Rossi's definition [4]. The fits shown are for solids and liquids (solid line) and gases (dashed line). The rms deviation is 2.2% for the solids and 4.0% for the gases. (Computed with code supplied by A. Fassó.)

shape can be seen in Rossi [4] (Figs. 2.11.2,3); see also the review by Koch & Motz [41].

Except at these extremes, and still in the complete-screening approximation, the the number of photons with energies between k_{\min} and k_{\max} emitted by an electron travelling a distance $d \ll X_0$ is

$$N_{\gamma} = \frac{d}{X_0} \left[\frac{4}{3} \ln \left(\frac{k_{\text{max}}}{k_{\text{min}}} \right) - \frac{4(k_{\text{max}} - k_{\text{min}})}{3E} + \frac{(k_{\text{max}} - k_{\text{min}})^2}{2E^2} \right]. \tag{23.23}$$

23.4.3. Critical energy: An electron loses energy by bremsstrahlung at a rate nearly proportional to its energy, while the ionization loss rate varies only logarithmically with the electron energy. The critical energy E_c is sometimes defined as the energy at which the two loss rates are equal [42]. Berger and Seltzer [42] also give the approximation $E_c = (800 \text{ MeV})/(Z+1.2)$. This formula has been widely quoted, and has been given in previous editions of this Review [24]. Among alternate definitions is that of Rossi [4], who defines the critical energy as the energy at which the ionization loss per radiation length is equal to the electron energy. Equivalently, it is the same as the first definition with the approximation $|dE/dx|_{\text{brems}} \approx E/X_0$. This form has been found to describe more accurately transverse electromagnetic shower development (see below). These definitions are illustrated in the case of copper in Fig. 23.8.

The accuracy of approximate forms for E_c has been limited by the failure to distinguish between gases and solid or liquids, where there is a substantial difference in ionization at the relevant energy because of the density effect. We distinguish these two cases in Fig. 23.10. Fits were also made with functions of the form $a/(Z+b)^{\alpha}$, but α was essentially unity. Since E_c also depends on A, I, and other factors, such forms are at best approximate.

23.4.4. Energy loss by photons: Contributions to the photon cross section in a light element (carbon) and a heavy element (lead) are shown in Fig. 23.11. At low energies it is seen that the photoelectric effect dominates, although Compton scattering, Rayleigh scattering, and photonuclear absorption also contribute. The photoelectric cross section is characterized by discontinuities (absorption edges) as thresholds for photoionization of various atomic levels are reached. Photon attenuation lengths for a variety of elements are shown in Fig. 23.12, and data for 30 eV < k < 100 GeV for all elements is available from the web pages given in the caption. Here k is the photon energy.

The increasing domination of pair production as the energy increases is shown in Fig. 23.13. Using approximations similar to those used to obtain Eq. (23.22), Tsai's formula for the differential cross section [34] reduces to

$$\frac{d\sigma}{dE} = \frac{A}{X_0 N_A} \left[1 - \frac{4}{3} x (1 - x) \right] \tag{23.24}$$

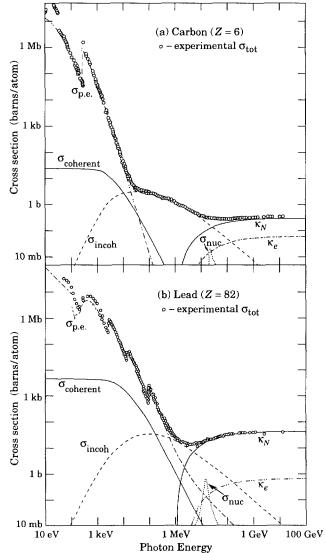


Figure 23.11: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes:

 $\sigma_{p,e}$. = Atomic photoeffect (electron ejection, photon absorption)

 $\sigma_{\rm coherent} = {
m Coherent \ scattering \ (Rayleigh \ scattering-atom \ neither \ ionized \ nor \ excited)}$

 $\sigma_{\rm incoherent} = {\rm Incoherent}$ scattering (Compton scattering off an electron)

 κ_n = Pair production, nuclear field

 κ_e = Pair production, electron field

 $\sigma_{\text{nuc}} = \text{Photonuclear absorption}$ (nuclear absorption, usually followed by emission of a neutron or other particle)

From Hubbell, Gimm, and Øverbø, J. Phys. Chem. Ref. Data 9, 1023 (1980). Data for these and other elements, compounds, and mixtures may be obtained from

http://physics.nist.gov/PhysRefData. The photon total cross section is assumed approximately flat for at least two decades beyond the energy range shown. Figures courtesy J.H. Hubbell (NIST).

in the complete-screening limit valid at high energies. Here x=E/k is the fractional energy transfer to the pair-produced electron (or positron), and k is the incident photon energy. The cross section is very closely related to that for bremsstrahlung, since the Feynman

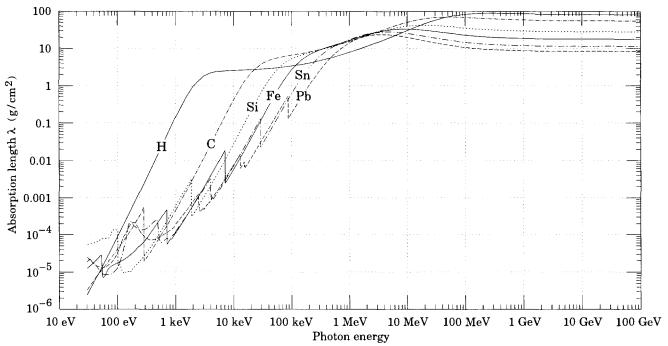


Fig. 23.12: The photon mass attenuation length (or mean free path) $\lambda = 1/(\mu/\rho)$ for various elemental absorbers as a function of photon energy. The mass attenuation coefficient is μ/ρ , where ρ is the density. The intensity I remaining after traversal of thickness t (in mass/unit area) is given by $I = I_0 \exp(-t/\lambda)$. The accuracy is a few percent. For a chemical compound or mixture, $1/\lambda_{\rm eff} \approx \sum_{\rm elements} w_Z/\lambda_Z$, where w_Z is the proportion by weight of the element with atomic number Z. The processes responsible for attenuation are given in not Fig. 23.7. Since coherent processes are included, not all these processes result in energy deposition. The data for 30 eV < E < 1 keV are obtained from http://www-cxro.lbl.gov/optical_constants (courtesy of Eric M. Gullikson, LBNL). The data for 1 keV < E < 100 GeV are from http://physics.nist.gov/PhysRefData, through the courtesy of John H. Hubbell (NIST).

diagrams are variants of one another. The cross section is of necessity symmetric between x and 1-x, as can be seen by the solid curve in Fig. 23.9(b). See the review by Motz, Olsen, & Koch for a more detailed treatment [43].

Eq. (23.24) may be integrated to find the high-energy limit for the total e^+e^- pair-production cross section:

$$\sigma = \frac{7}{9}(A/X_0N_A) \ . \tag{23.25}$$

Equation Eq. (23.25) is accurate to within a few percent down to energies as low as 1 GeV, particularly for high- $\!Z$ materials.

23.4.5. Bremsstrahlung and pair production at very high energies: At ultrahigh energies, Eqns. 23.21–23.25 will fail because of quantum mechanical interference between amplitudes from different scattering centers. Since the longitudinal momentum transfer to a given center is small ($\propto k/E^2$, in the case of bremsstrahlung), the interaction is spread over a comparatively long distance called the formation length ($\propto E^2/k$) via the uncertainty principle. In alternate language, the formation length is the distance over which the highly relatistic electron and the photon "split apart." The interference is usually destructive. Calculations of the "Landau-Pomeranchuk-Migdal" effect may be made semi-classically based on the average multiple scattering, or more rigorously using a quantum transport approach [37,38].

In amorphous media, bremsstrahlung is suppressed if the photon energy is above $k>E^2/E_{LPM}$ [38], where*

$$E_{LPM} = \frac{(m_e c^2)^2 \alpha \rho X_0}{4\pi \hbar c} = (7.7 \text{ TeV/cm}) \times \rho X_0 .$$
 (23.26)

Since physical distances are involved, ρX_0 , in cm, appears. The energy-weighted bremsstrahlung spectrum for lead, $k\,d\sigma_{LPM}/dk$, is shown in Fig. 23.9(a). With appropriate scaling by ρX_0 , other materials behave similarly.

For photons, pair production is reduced for $E(k-E) > k \, E_{LPM}$. The pair-production cross sections for different photon energies are shown in Fig. 23.9(b).

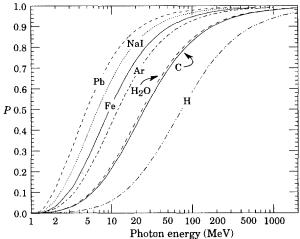


Figure 23.13: Probability P that a photon interaction will result in conversion to an e^+e^- pair. Except for a few-percent contribution from photonuclear absorption around 10 or 20 MeV, essentially all other interactions in this energy range result in Compton scattering off an atomic electron. For a photon attenuation length λ (Fig. 23.12), the probability that a given photon will produce an electron pair (without first Compton scattering) in thickness t of absorber is $P[1 - \exp(-t/\lambda)]$.

^{*} This definition differs from that of Ref. 44 by a factor of two. It is also pointed out that E_{LPM} scales as the 4th power of the mass of the incident particle, so that $E_{LPM} = (1.4 \times 10^{10} \text{ TeV/cm}) \times \rho X_0$ for a muon.

If $k \ll E$, several additional mechanisms can also produce suppression. When the formation length is long, even weak factors can perturb the interaction. For example, the emitted photon can coherently forward scatter off of the electrons in the media. Because of this, for $k < \omega_p E/m_e \sim 10^{-4}$, bremsstrahlung is suppressed by a factor $(km_e/\omega_p E)^2$ [40]. Magnetic fields can also suppress bremsstrahlung.

In crystalline media, the situation is more complicated, with coherent enhancement or suppression possible. The cross section depends on the electron and photon energies and the angles between the particle direction and the crystalline axes [38].

23.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick absorber, it initiates an electromagnetic cascade as pair production and bremsstrahlung generate more electrons and photons with lower energy. The longitudinal development is governed by the high-energy part of the cascade, and therefore scales as the radiation length in the material. Electron energies eventually fall below the critical energy, and then dissipate their energy by ionization and excitation rather than by the generation of more shower particles. In describing shower behavior, it is therefore convenient to introduce the scale variables

$$t = x/X_0$$

$$y = E/E_c, (23.27)$$

so that distance is measured in units of radiation length and energy in units of critical energy.

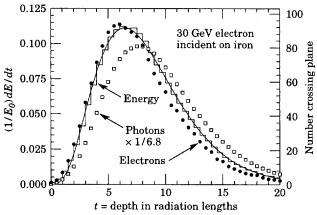


Figure 23.14: An EGS4 simulation of a 30 GeV electron-induced cascade in iron. The histogram shows fractional energy deposition per radiation length, and the curve is a gamma-function fit to the distribution. Circles indicate the number of electrons with total energy greater than 1.5 MeV crossing planes at $X_0/2$ intervals (scale on right) and the squares the number of photons with $E \geq 1.5$ MeV crossing the planes (scaled down to have same area as the electron distribution).

Longitudinal profiles for an EGS4 [23] simulation of a 30 GeV electron-induced cascade in iron are shown in Fig. 23.14. The number of particles crossing a plane (very close to Rossi's II function [4]) is sensitive to the cutoff energy, here chosen as a total energy of 1.5 MeV for both electrons and photons. The electron number falls off more quickly than energy deposition. This is because, with increasing depth, a larger fraction of the cascade energy is carried by photons. Exactly what a calorimeter measures depends on the device, but it is not likely to be exactly any of the profiles shown. In gas counters it may be very close to the electron number, but in glass Čerenkov detectors and other devices with "thick" sensitive regions it is closer to the energy deposition (total track length). In such detectors the signal is proportional to the "detectable" track length T_d , which is in general less than the total track length T. Practical devices are sensitive to electrons with energy above some detection threshold E_d , and $T_d = T F(E_d/E_c)$. An analytic form for $F(E_d/E_c)$ obtained by Rossi [4] is given by Fabjan [45]; see also Amaldi [46].

The mean longitudinal profile of the energy deposition in an electromagnetic cascade is reasonably well described by a gamma distribution [47]:

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$
 (23.28)

The maximum $t_{\rm max}$ occurs at (a-1)/b. We have made fits to shower profiles in elements ranging from carbon to uranium, at energies from 1 GeV to 100 GeV. The energy deposition profiles are well described by Eq. (23.28) with

$$t_{\text{max}} = (a-1)/b = 1.0 \times (\ln y + C_i)$$
, $j = e, \gamma$, (23.29)

where $C_e=-0.5$ for electron-induced cascades and $C_{\gamma}=+0.5$ for photon-induced cascades. To use Eq. (23.28), one finds (a-1)/b from Eq. (23.29) and Eq. (23.27), then finds a either by assuming $b\approx 0.5$ or by finding a more accurate value from Fig. 23.15. The results are very similar for the electron number profiles, but there is some dependence on the atomic number of the medium. A similar form for the electron number maximum was obtained by Rossi in the context of his "Approximation B," [4] (see Fabjan's review in Ref. 45), but with $C_e=-1.0$ and $C_{\gamma}=-0.5$; we regard this as superseded by the EGS4 result.

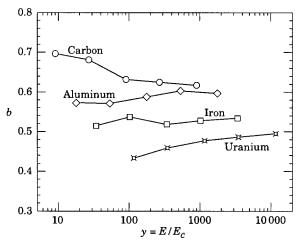


Figure 23.15: Fitted values of the scale factor b for energy deposition profiles obtained with EGS4 for a variety of elements for incident electrons with $1 \le E_0 \le 100$ GeV. Values obtained for incident photons are essentially the same.

The "shower length" $X_s = X_0/b$ is less conveniently parameterized, since b depends upon both Z and incident energy, as shown in Fig. 23.15. As a corollary of this Z dependence, the number of electrons crossing a plane near shower maximum is underestimated using Rossi's approximation for carbon and seriously overestimated for uranium. Essentially the same b values are obtained for incident electrons and photons. For many purposes it is sufficient to take $b \approx 0.5$

The gamma distribution is very flat near the origin, while the EGS4 cascade (or a real cascade) increases more rapidly. As a result Eq. (23.28) fails badly for about the first two radiation lengths; it was necessary to exclude this region in making fits.

Because fluctuations are important, Eq. (23.28) should be used only in applications where average behavior is adequate. Grindhammer $et\ al.$ have developed fast simulation algorithms in which the variance and correlation of a and b are obtained by fitting Eq. (23.28) to individually simulated cascades, then generating profiles for cascades using a and b chosen from the correlated distributions [48].

The transverse development of electromagnetic showers in different materials scales fairly accurately with the *Molière radius* R_M , given by [49,50]

$$R_M = X_0 E_s / E_c , (23.30)$$

where $E_s \approx 21$ MeV (see Table 23.1), and the Rossi definition of E_c is used.

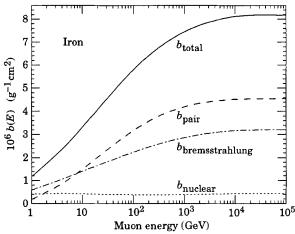


Figure 23.16: Contributions to the fractional energy loss by muons in iron due to e^+e^- pair production, bremsstrahlung, and photonuclear interactions, as obtained from Lohmann *et al.* [61].

In a material containing a weight fraction w_j of the element with critical energy E_{cj} and radiation length X_j , the Molière radius is given by

$$\frac{1}{R_M} = \frac{1}{E_s} \sum \frac{w_j \, E_{cj}}{X_j} \ . \tag{23.31}$$

Measurements of the lateral distribution in electromagnetic cascades are shown in Refs. 49 and 50. On the average, only 10% of the energy lies outside the cylinder with radius R_M . About 99% is contained inside of $3.5R_M$, but at this radius and beyond composition effects become important and the scaling with R_M fails. The distributions are characterized by a narrow core, and broaden as the shower develops. They are often represented as the sum of two Gaussians, and Grindhammer [48] describes them with the function

$$f(r) = \frac{2r R^2}{(r^2 + R^2)^2} , \qquad (23.32)$$

where R is a phenomenological function of x/X_0 and $\ln E$.

At high enough energies, the LPM effect (Sec. 23.4.5) reduces the cross sections for bremsstrahlung and pair production, and hence can cause significant enlongation of electromagnetic cascades [38].

23.6. Muon energy loss at high energy

At sufficiently high energies, radiative processes become more important than ionization for all charged particles. For muons and pions in materials such as iron, this "critical energy" occurs at several hundred GeV. Radiative effects dominate the energy loss of energetic muons found in cosmic rays or produced at the newest accelerators. These processes are characterized by small cross sections, hard spectra, large energy fluctuations, and the associated generation of electromagnetic and (in the case of photonuclear interactions) hadronic showers [51–59]. As a consequence, at these energies the treatment of energy loss as a uniform and continuous process is for many purposes inadequate.

It is convenient to write the average rate of muon energy loss as [60]

$$-dE/dx = a(E) + b(E)E. (23.33)$$

Here a(E) is the ionization energy loss given by Eq. (23.1), and b(E) is the sum of e^+e^- pair production, bremsstrahlung, and photonuclear contributions. To the approximation that these slowly-varying functions are constant, the mean range x_0 of a muon with initial energy E_0 is given by

$$x_0 \approx (1/b) \ln(1 + E_0/E_{\mu c})$$
, (23.34)

where $E_{\mu c}=a/b$. Figure 23.16 shows contributions to b(E) for iron. Since $a(E)\approx 0.002~{\rm GeV}~{\rm g}^{-1}~{\rm cm}^2$, b(E)E dominates the energy loss above several hundred GeV, where b(E) is nearly constant. The rate of energy loss for muons in hydrogen, uranium, and iron is shown in Fig. 23.17 [61].

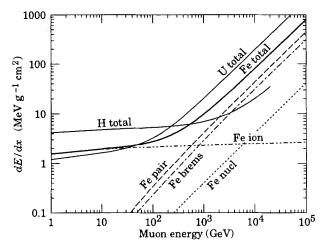


Figure 23.17: The average energy loss of a muon in hydrogen, iron, and uranium as a function of muon energy. Contributions to dE/dx in iron from ionization and the processes shown in Fig. 23.16 are also shown.

The "muon critical energy" $E_{\mu c}$ can be defined more exactly as the energy at which radiative and ionization losses are equal, and can be found by solving $E_{\mu c} = a(E_{\mu c})/b(E_{\mu c})$. This definition corresponds to the solid-line intersection in Fig. 23.8, and is different from the Rossi definition we used for electrons. It serves the same function: below $E_{\mu c}$ ionization losses dominate, and above $E_{\mu c}$ dominate. The dependence of $E_{\mu c}$ on atomic number Z is shown in Fig. 23.18.

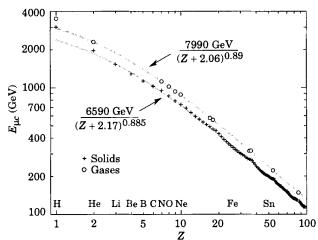


Figure 23.18: Muon critical energy for the chemical elements, defined as the energy at which radiative and ionization energy loss rates are equal. The equality comes at a higher energy for gases than for solids or liquids with the same atomic number because of a smaller density effect reduction of the ionization losses. The fits shown in the figure exclude hydrogen. Alkali metals fall 3-4% above the fitted function, while most other solids are within 2% of the function. Among the gases the worst fit is for neon (1.4% high). (Courtesy of N.V. Mokhov and S.I. Striganov.)

The radiative cross sections are expressed as functions of the fractional energy loss ν . The bremsstrahlung cross section goes roughly as $1/\nu$ over most of the range, while for the pair production case the distribution goes as ν^{-3} to ν^{-2} (see Ref. 62). "Hard" losses are therefore more probable in bremsstrahlung, and in fact energy losses due to pair production may very nearly be treated as continuous. The calculated momentum distribution of an incident 1 TeV/c muon beam after it crosses 3 m of iron is shown in Fig. 23.19. The most probable loss is 9 GeV, or 3.8 MeV g⁻¹cm². The full width at half maximum is 7 GeV/c, or 0.7%. The radiative tail is almost entirely

due to bremsstrahlung; this includes most of the 10% that lost more than 2.8% of their energy. Most of the 3.3% that lost more than 10% of their incident energy experienced photonuclear interactions, which are concentrated in rare, relatively hard collisions. The latter can exceed nominal detector resolution [63], necessitating the reconstruction of lost energy. Electromagnetic and hadronic cascades in detector materials can obscure muon tracks in detector planes and reduce tracking efficiency [64].

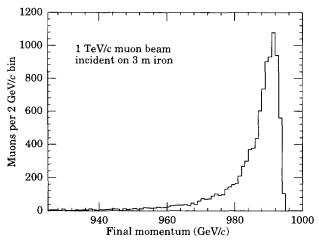


Figure 23.19: The momentum distribution of 1 TeV/c muons after traversing 3 m of iron, as obtained with Van Ginniken's TRAMU muon transport code [62].

23.7. Čerenkov and transition radiation [10,65,66]

A charged particle radiates if its velocity is greater than the local phase velocity of light (Čerenkov radiation) or if it crosses suddenly from one medium to another with different optical properties (transition radiation). Neither process is important for energy loss, but both are used in high-energy physics detectors.

<u>Čerenkov Radiation</u>. The half-angle θ_c of the Čerenkov cone for a particle with velocity βc in a medium with index of refraction n is

$$\theta_c = \arccos(1/n\beta)$$
 $\approx \sqrt{2(1-1/n\beta)}$ for small θ_c , e.g. in gases. (23.35)

The threshold velocity β_t is 1/n, and $\gamma_t = 1/(1-\beta_t^2)^{1/2}$. Therefore, $\beta_t \gamma_t = 1/(2\delta + \delta^2)^{1/2}$, where $\delta = n - 1$. Values of δ for various commonly used gases are given as a function of pressure and wavelength in Ref. 67. For values at atmospheric pressure, see Table 6.1. Data for other commonly used materials are given in Ref. 68.

The number of photons produced per unit path length of a particle

with charge
$$ze$$
 and per unit energy interval of the photons is
$$\frac{d^2N}{dEdx} = \frac{\alpha z^2}{\hbar c} \sin^2\theta_c = \frac{\alpha^2 z^2}{r_e m_e c^2} \left(1 - \frac{1}{\beta^2 n^2(E)}\right)$$

$$\approx 370 \sin^2\theta_c(E) \text{ eV}^{-1} \text{cm}^{-1} \qquad (z=1) , \qquad (23.36)$$

or, equivalently,

$$\frac{d^2N}{dxd\lambda} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right) . \tag{23.37}$$

The index of refraction is a function of photon energy E, as is the sensitivity of the transducer used to detect the light. For practical use, Eq. (23.36) must be multiplied by the transducer response function and integrated over the region for which $\beta n(E) > 1$. Further details are given in the discussion of Čerenkov detectors in the Detectors section (Sec. 24 of this Review).

Transition radiation. The energy radiated when a particle with charge ze crosses the boundary between vacuum and a medium with plasma frequency ω_p is

$$I = \alpha z^2 \gamma \hbar \omega_p / 3 , \qquad (23.38)$$

where

$$\hbar\omega_p = \sqrt{4\pi N_e r_e^3} \ m_e c^2/\alpha$$
$$= \sqrt{4\pi N_e a_\infty^3} \ 2 \times 13.6 \text{ eV} \ . \tag{23.39}$$

Here N_e is the electron density in the medium, r_e is the classical electron radius, and a_{∞} is the Bohr radius. For styrene and similar materials, $\sqrt{4\pi N_e a_\infty^3} \approx 0.8$, so that $\hbar \omega_p \approx 20$ eV. The typical emission angle is $1/\gamma$.

The radiation spectrum is logarithmically divergent at low energies and decreases rapidly for $\hbar\omega/\gamma\hbar\omega_p > 1$. About half the energy is emitted in the range $0.1 \le \hbar\omega/\gamma\hbar\omega_p \le 1$. For a particle with $\gamma = 10^3$, the radiated photons are in the soft x-ray range 2 to 20 keV. The γ dependence of the emitted energy thus comes from the hardening of the spectrum rather than from an increased quantum yield. For a typical radiated photon energy of $\gamma \hbar \omega_p/4$, the quantum yield is

$$N_{\gamma} \approx \frac{1}{2} \frac{\alpha z^{2} \gamma \hbar \omega_{p}}{3} / \frac{\gamma \hbar \omega_{p}}{4}$$
$$\approx \frac{2}{3} \alpha z^{2} \approx 0.5\% \times z^{2} . \tag{23.40}$$

More precisely, the number of photons with energy $\hbar\omega > \hbar\omega_0$ is given by [10]

$$N_{\gamma}(\hbar\omega > \hbar\omega_0) = \frac{\alpha z^2}{\pi} \left[\left(\ln \frac{\gamma \hbar\omega_p}{\hbar\omega_0} - 1 \right)^2 + \frac{\pi^2}{12} \right] , \qquad (23.41)$$

within corrections of order $(\hbar\omega_0/\gamma\hbar\omega_p)^2$. The number of photons above a fixed energy $\hbar\omega_0\ll\gamma\hbar\omega_p$ thus grows as $(\ln\gamma)^2$, but the number above a fixed fraction of $\gamma \hbar \omega_p$ (as in the example above) is constant. For example, for $\hbar\omega > \gamma\hbar\omega_p/10$, $N_{\gamma} = 2.519 \alpha z^2/\pi = 0.59\% \times z^2$.

The yield can be increased by using a stack of plastic foils with gaps between. However, interference can be important, and the soft x rays are readily absorbed in the foils. The first problem can be overcome by choosing thicknesses and spacings large compared to the "formation length" $D = \gamma c/\omega_p$, which in practical situations is tens of μm . Other practical problems are discussed in Sec. 24.

References:

- 1. D.E. Groom, N.V. Mokhov, and S.I. Striganov, "Muon stoppingpower and range tables," Atomic Data and Nuclear Data Tables, to be published (2000).
- "Stopping Powers and Ranges for Protons and Alpha Particles," ICRU Report No. 49 (1993);
 - Tables and graphs of these data are available at http://physics.nist.gov/PhysRefData/.
- W.H. Barkas, W. Birnbaum, and F.M. Smith, Phys. Rev. 101,
- B. Rossi, High Energy Particles, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1952.
- U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).
- J. D. Jackson, Phys. Rev. **D59**, 017301 (1999).
- S.M. Seltzer and M.J. Berger, Int. J. of Applied Rad. 33, 1189
- "Stopping Powers for Electrons and Positrons," ICRU Report No. 37 (1984).
- http://physics.nist.gov/PhysRefData/XrayMassCoef/tab1.html.
- J.D. Jackson, Classical Electrodynamics, 3rd edition, (John Wiley & Sons, New York, 1998).
- 11. R.M. Sternheimer, Phys. Rev. 88, 851 (1952).
- A. Crispin and G.N. Fowler, Rev. Mod. Phys. 42, 290 (1970).
- R.M. Sternheimer and R.F. Peierls, Phys. Rev. B3, 3681 (1971).
- R.M. Sternheimer, S.M. Seltzer, and M.J. Berger, "The Density Effect for the Ionization Loss of Charged Particles in Various Substances," Atomic Data & Nucl. Data Tables 30, 261 (1984). An error resulting from an incorrect chemical formula for lanthanum oxysulfide is corrected in a footnote in Ref. 22. Chemical composition for the tabulated materials is given in Ref. 7

- W.H. Barkas and M.J. Berger, Tables of Energy Losses and Ranges of Heavy Charged Particles, NASA-SP-3013 (1964).
- 16. M. Agnello et al., Phys. Rev. Lett. 74, 371 (1995).
- H.H. Andersen and J.F. Ziegler, Hydrogen: Stopping Powers and Ranges in All Elements. Vol. 3 of The Stopping and Ranges of Ions in Matter (Pergamon Press 1977).
- J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 28, No. 8 (1954).
- J.F. Ziegler, J.F. Biersac, and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press 1985.
- L.D. Landau, J. Exp. Phys. (USSR) 8, 201 (1944); See, for instance, K.A. Ispirian, A.T. Margarian, and A.M. Zverev, Nucl. Instrum. Methods 117, 125 (1974).
- S.M. Seltzer and M.J. Berger, Int. J. of Applied Rad. 35, 665 (1984). This paper corrects and extends the results of Ref. 7.
- W.R. Nelson, H. Hirayama, and D.W.O. Rogers, "The EGS4 Code System," SLAC-265, Stanford Linear Accelerator Center (Dec. 1985).
- K. Hikasa et al., Review of Particle Properties, Phys. Rev. D46 (1992) S1.
- For unit-charge projectiles, see E.A. Uehling, Ann. Rev. Nucl. Sci. 4, 315 (1954). For highly charged projectiles, see J.A. Doggett and L.V. Spencer, Phys. Rev. 103, 1597 (1956). A Lorentz transformation is needed to convert these center-of-mass data to knock-on energy spectra.
- N.F. Mott and H.S.W. Massey, The Theory of Atomic Collisions, Oxford Press, London, 1965.
- L.V. Spencer "Energy Dissipation by Fast Electrons," Nat'l Bureau of Standards Monograph No. 1 (1959).
- "Average Energy Required to Produce an Ion Pair," ICRU Report No. 31 (1979).
- N. Hadley et al., "List of Poisoning Times for Materials," Lawrence Berkeley Lab Report TPC-LBL-79-8 (1981).
- 30. H.A. Bethe, Phys. Rev. 89, 1256 (1953). A thorough review of multiple scattering is given by W.T. Scott, Rev. Mod. Phys. 35, 231 (1963). However, the data of Shen et al., (Phys. Rev. D20, 1584 (1979)) show that Bethe's simpler method of including atomic electron effects agrees better with experiment that does Scott's treatment. For a thorough discussion of simple formulae for single scatters and methods of compounding these into multiple-scattering formulae, see W.T. Scott, Rev. Mod. Phys. 35, 231 (1963). For detailed summaries of formulae for computing single scatters, see J.W. Motz, H. Olsen, and H.W. Koch, Rev. Mod. Phys. 36, 881 (1964).
- V.L. Highland, Nucl. Instrum. Methods 129, 497 (1975), and Nucl. Instrum. Methods 161, 171 (1979).
- 32. G.R. Lynch and O.I Dahl, Nucl. Instrum. Methods B58, 6 (1991).
- 33. M. Wong et al., Med. Phys. 17, 163 (1990).
- 34. Y.S. Tsai, Rev. Mod. Phys. 46, 815 (1974).
- H. Davies, H.A. Bethe, and L.C. Maximon, Phys. Rev. 93, 788 (1954).
- 36. O.I. Dahl, private communication.
- L.D. Landau and I.J. Pomeranchuk, Dokl. Akad. Nauk. SSSR
 92, 535 (1953);
 92, 735 (1953). These papers are available in English in L. Landau, The Collected Papers of L.D. Landau, Pergamon Press, 1965;
 A.B. Migdal, Phys. Rev. 103, 1811 (1956).
- 38. S. Klein, Rev. Mod. Phys. 71, 1501 (1999).
- M. L. Ter-Mikaelian, SSSR 94, 1033 (1954);
 M. L. Ter-Mikaelian, High Energy Electromagnetic Processes in Condensed Media (John Wiley & Sons, New York, 1972).

- 40. P. Anthony et al., Phys. Rev. Lett. 76, 3550 (1996).
- 41. H. W. Koch and J. W. Motz, Rev. Mod. Phys. 31, 920 (1959).
- M.J. Berger and S.M. Seltzer, "Tables of Energy Losses and Ranges of Electrons and Positrons," National Aeronautics and Space Administration Report NASA-SP-3012 (Washington DC 1964).
- J. W. Motz, H. A. Olsen, and H. W. Koch, Rev. Mod. Phys. 41, 581 (1969).
- 44. P. Anthony et al., Phys. Rev. Lett. 75, 1949 (1995).
- Experimental Techniques in High Energy Physics, ed. by T. Ferbel (Addision-Wesley, Menlo Park CA 1987).
- U. Amaldi, Phys. Scripta 23, 409 (1981).
- 47. E. Longo and I. Sestili, Nucl. Instrum. Methods 128, 283 (1975).
- G. Grindhammer et al., in Proceedings of the Workshop on Calorimetry for the Supercollider, Tuscaloosa, AL, March 13-17, 1989, edited by R. Donaldson and M.G.D. Gilchriese (World Scientific, Teaneck, NJ, 1989), p. 151.
- W.R. Nelson, T.M. Jenkins, R.C. McCall, and J.K. Cobb, Phys. Rev. 149, 201 (1966).
- G. Bathow et al., Nucl. Phys. B20, 592 (1970).
- H.A. Bethe and W. Heitler, Proc. Roy. Soc. A146, 83 (1934);
 H.A. Bethe, Proc. Cambridge Phil. Soc. 30, 542 (1934).
- A.A. Petrukhin and V.V. Shestakov, Can. J. Phys. 46, S377 (1968).
- 53. V.M. Galitskii and S.R. Kel'ner, Sov. Phys. JETP 25, 948 (1967).
- 54. S.R. Kel'ner and Yu.D. Kotov, Sov. J. Nucl. Phys. 7, 237 (1968).
- R.P. Kokoulin and A.A. Petrukhin, in Proceedings of the International Conference on Cosmic Rays, Hobart, Australia, August 16-25, 1971, Vol. 4, p. 2436.
- 56. A.I. Nikishov, Sov. J. Nucl. Phys. 27, 677 (1978).
- 57. Y.M. Andreev et al., Phys. Atom. Nucl. 57, 2066 (1994).
- L.B. Bezrukov and E.V. Bugaev, Sov. J. Nucl. Phys. 33, 635 (1981).
- N.V. Mokhov and J.D. Cossairt, Nucl. Instrum. Methods A244, 349 (1986);
 - N.V. Mokhov, Soviet J. Particles and Nuclei 18(5), 408-426 (1987);
 - N.V. Mokhov, "The MARS Code System User's Guide, Version 13(95)," Fermilab-FN-628, (April 1995).
- P.H. Barrett, L.M. Bollinger, G. Cocconi, Y. Eisenberg, and K. Greisen, Rev. Mod. Phys. 24, 133 (1952).
- W. Lohmann, R. Kopp, and R. Voss, "Energy Loss of Muons in the Energy Range 1-10000 GeV," CERN Report 85-03 (1985).
- 62. A. Van Ginneken, Nucl. Instrum. Methods A251, 21 (1986).
- 63. U. Becker et al., Nucl. Instrum. Methods A253, 15 (1986).
- J.J. Eastman and S.C. Loken, in Proceedings of the Workshop on Experiments, Detectors, and Experimental Areas for the Supercollider, Berkeley, CA, July 7-17, 1987, edited by R. Donaldson and M.G.D. Gilchriese (World Scientific, Singapore, 1988), p. 542.
- Methods of Experimental Physics, L.C.L. Yuan and C.-S. Wu, editors, Academic Press, 1961, Vol. 5A, p. 163.
- W.W.M. Allison and P.R.S. Wright, "The Physics of Charged Particle Identification: dE/dx, Čerenkov Radiation, and Transition Radiation," p. 371 in Experimental Techniques in High Energy Physics, T. Ferbel, editor, (Addison-Wesley 1987).
- E.R. Hayes, R.A. Schluter, and A. Tamosaitis, "Index and Dispersion of Some Čerenkov Counter Gases," ANL-6916 (1964).
- T. Ypsilantis, "Particle Identification at Hadron Colliders", CERN-EP/89-150 (1989), or ECFA 89-124, 2 661 (1989).

24. PARTICLE DETECTORS

Revised 1999 (see the various sections for authors).

In this section we give various parameters for common detector components. The quoted numbers are usually based on typical devices, and should be regarded only as rough approximations for new designs. A more detailed discussion of detectors can be found in Ref. 1. In Table 24.1 are given typical spatial and temporal resolutions of common detectors.

Table 24.1: Typical detector characteristics.

Detector Type	Accuracy (rms)	Resolution Time	Dead Time
Bubble chamber	10 to 150 μm	1 ms	50 ms
Streamer chamber	$300~\mu\mathrm{m}$	$2~\mu s$	100 ms
Proportional chamber	$\geq 300~\mu\mathrm{m}^{b,c}$	50 ns	200 ns
Drift chamber	50 to $300~\mu\mathrm{m}$	2 ns^d	100 ns
Scintillator	<u> </u>	150 ps	10 ns
Emulsion	$1~\mu\mathrm{m}$		_
Silicon strip	$\frac{\text{pitch}}{3 \text{ to } 7}^e$	f	f
Silicon pixel	$2~\mu\mathrm{m}^g$	f	f

- ^a Multiple pulsing time.
- ^b 300 μ m is for 1 mm pitch.
- c Delay line cathode readout can give $\pm 150~\mu\mathrm{m}$ parallel to anode wire.
- ^d For two chambers.
- ^e The highest resolution ("7") is obtained for small-pitch detectors ($\lesssim 25~\mu m$) with pulse-height-weighted center finding.
- ^f Limited at present by properties of the readout electronics. (Time resolution of ≤ 25 ns is planned for the ATLAS SCT.)
- ^g Analog readout of 34 μm pitch, monolithic pixel detectors.

24.1. Organic scintillators

Written October 1995 by K.F. Johnson (FSU).

Organic scintillators are broadly classed into three types, crystalline, liquid, and plastic, all of which utilize the ionization produced by charged particles (see the section on "Passage of particles through matter" (Sec. 23.2) of this *Review*) to generate optical photons, usually in the blue to green wavelength regions [2]. Plastic scintillators are by far the most widely used and we address them primarily; however, most of the discussion will also have validity for liquid scintillators with obvious caveats. Crystal organic scintillators are practically unused in high-energy physics.

Densities range from 1.03 to 1.20 g cm⁻³. Typical photon yields are about 1 photon per 100 eV of energy deposit [3]. A one-cm-thick scintillator traversed by a minimum-ionizing particle will therefore yield $\approx 2\times 10^4$ photons. The resulting photoelectron signal will depend on the collection and transport efficiency of the optical package and the quantum efficiency of the photodetector.

Plastic scintillators do not respond linearly to the ionization density. Very dense ionization columns emit less light than expected on the basis of dE/dx for minimum-ionizing particles. A widely used semi-empirical model by Birks' posits that recombination and quenching effects between the excited molecules reduce the light yield [4]. These effects are more pronounced the greater the density of the excited molecules. Birks' formula is

$$\frac{d\mathcal{L}}{dx} = \mathcal{L}_0 \frac{dE/dx}{1 + k_B \, dE/dx} \; , \tag{24.1} \label{eq:24.1}$$

where \mathscr{L} is the luminescence, \mathscr{L}_0 is the luminescence at low specific ionization density, and k_B is Birks' constant, which must be determined for each scintillator by measurement.

Decay times are in the ns range; rise times are much faster. The combination of high light yield and fast response time allows the possibility of sub-ns timing resolution [5]. The fraction of light emitted during the decay "tail" can depend on the exciting particle. This allows pulse shape discrimination as a technique to carry out particle identification. Because of the hydrogen content (carbon to hydrogen ratio ≈ 1) plastic scintillator is sensitive to proton recoils from neutrons. Ease of fabrication into desired shapes and low cost has made plastic scintillators a common detector component. Recently, plastic scintillators in the form of scintillating fibers have found widespread use in tracking and calorimetry [6].

24.1.1. Scintillation mechanism:

Scintillation: A charged particle traversing matter leaves behind it a wake of excited molecules. Certain types of molecules, however, will release a small fraction ($\approx 3\%$) of this energy as optical photons. This process, scintillation, is especially marked in those organic substances which contain aromatic rings, such as polystyrene, polyvinyltoluene, and napthalene. Liquids which scintillate include toluene and xylene.

Fluorescence: In fluorescence, the initial excitation takes place via the absorption of a photon, and de-excitation by emission of a longer wavelength photon. Fluors are used as "waveshifters" to shift scintillation light to a more convenient wavelength. Occurring in complex molecules, the absorption and emission are spread out over a wide band of photon energies, and have some overlap, that is, there is some fraction of the emitted light which can be re-absorbed [7]. This "self-absorption" is undesirable for detector applications because it causes a shortened attenuation length. The wavelength difference between the major absorption and emission peaks is called the Stokes' shift. It is usually the case that the greater the Stokes' shift, the smaller the self absorption—thus, a large Stokes' shift is a desirable property for a fluor.

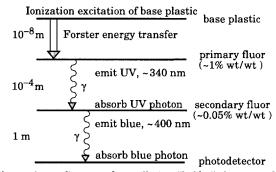


Figure 24.1: Cartoon of scintillation "ladder" depicting the operating mechanism of plastic scintillator. Approximate fluor concentrations and energy transfer distances for the separate sub-processes are shown.

Scintillators: The plastic scintillators used in high-energy physics are binary or ternary solutions of selected fluors in a plastic base containing aromatic rings. (See the appendix in Ref. 8 for a comprehensive list of plastic scintillator components.) Virtually all plastic scintillators contain as a base either polyvinyltoluene, polystyrene, or acrylic, whereby polyvinyltoluene-based scintillator can be up to 50% brighter than the others. Acrylic is non-aromatic and has therefore a very low scintillation efficiency. It becomes an acceptable scintillator when napthalene, a highly aromatic compound, is dissolved into the acrylic at 5% to 20% weight fraction. Thus, in "acrylic" scintillator the active component is napthalene. The fluors must satisfy additional conditions besides being fluorescent. They must be sufficiently stable, soluble, chemically inert, fast, radiation tolerant, and efficient.

The plastic base is the ionization-sensitive (i.e., the scintillator) portion of the plastic scintillator (see Fig. 24.1). In the absence of fluors the base would emit UV photons with short attenuation length (several mm). Longer attenuation lengths are obtained by dissolving a "primary" fluor in high concentration (1% by weight) into the

25. RADIOACTIVITY AND RADIATION PROTECTION

Revised March 1998 by R.J. Donahue (LBNL) and A. Fassò (SLAC).

25.1. Definitions

The International Commission on Radiation Units and Measurements (ICRU) recommends the use of SI units. Therefore we list SI units first, followed by cgs (or other common) units in parentheses, where they differ.

- Unit of activity = becquerel (curie):
 - 1 Bq = 1 disintegration $s^{-1} = 1/(3.7 \times 10^{10})$ Ci
- Unit of absorbed dose = gray (rad):

1 Gy = 1 joule kg⁻¹ (=
$$10^4$$
 erg g⁻¹ = 100 rad)
= 6.24×10^{12} MeV kg⁻¹ deposited energy

- Unit of exposure, the quantity of x- or γ radiation at a point in space integrated over time, in terms of charge of either sign produced by showering electrons in a small volume of air about the point:
 - = 1 coul kg⁻¹ of air (roentgen; 1 $R = 2.58 \times 10^{-4}$ coul kg⁻¹)
 - $= 1 \text{ esu cm}^{-3} (= 87.8 \text{ erg released energy per g of air})$

Implicit in the definition is the assumption that the small test volume is embedded in a sufficiently large uniformly irradiated volume that the number of secondary electrons entering the volume equals the number leaving. This unit is somewhat historical, but appears on many measuring instruments.

• Unit of equivalent dose (for biological damage) = sievert [= 100 rem (roentgen equivalent for man)]: Equivalent dose in Sv = absorbed dose in grays $\times w_R$, where w_R (radiation weighting factor, formerly the quality factor Q) expresses long-term risk (primarily cancer and leukemia) from low-level chronic exposure. It depends upon the type of radiation and other factors, as follows [2]:

Table 25.1: Radiation weighting factors.

Radiation	w_R
X - and γ -rays, all energies	1
Electrons and muons, all energies	1
Neutrons < 10 keV	5
$10-100~\mathrm{keV}$	10
> 100 keV to 2 MeV	20
2-20 MeV	10
$> 20 \mathrm{MeV}$	5
Protons (other than recoils) > 2 MeV	5
Alphas, fission fragments, & heavy nuclei	20

25.2. Radiation levels [3]

- Natural annual background, all sources: Most world areas, whole-body equivalent dose rate ≈ (0.4-4) mSv (40-400 millirems). Can range up to 50 mSv (5 rems) in certain areas. U.S. average ≈ 3.6 mSv, including ≈ 2 mSv (≈ 200 mrem) from inhaled natural radioactivity, mostly radon and radon daughters (0.1-0.2 mSv in open areas. Average is for a typical house and varies by more than an order of magnitude. It can be more than two orders of magnitude higher in poorly ventilated mines).
- Cosmic ray background in counters (Earth's surface): $\sim 1~{\rm min^{-1}~cm^{-2}~sr^{-1}}$. For more accurate estimates and details, see the Cosmic Rays section (Sec. 20 of this Review).
- Fluxes (per cm²) to deposit one Gy, assuming uniform irradiation: $\approx (\text{charged particles}) 6.24 \times 10^9/(dE/dx)$, where dE/dx (MeV g⁻¹ cm²), the energy loss per unit length, may be obtained from the Mean Range and Energy Loss figures.
- $\approx 3.5 \times 10^9~\rm cm^{-2}$ minimum-ionizing singly-charged particles in carbon.

 \approx (photons) 6.24×10^9/[Ef/ λ], for photons of energy E (MeV), attenuation length λ (g cm $^{-2}$) (see Photon Attenuation Length figure), and fraction $f\lesssim 1$ expressing the fraction of the photon's energy deposited in a small volume of thickness $\ll \lambda$ but large enough to contain the secondary electrons.

 $\approx 2 \times 10^{11}$ photons cm⁻² for 1 MeV photons on carbon ($f \approx 1/2$). (Quoted fluxes are good to about a factor of 2 for all materials.)

 Recommended limits to exposure of radiation workers (whole-body dose):*

CERN: 15 mSv yr⁻¹ U.K.: 15 mSv yr⁻¹

U.S.: 50 mSv yr⁻¹ (5 rem yr⁻¹)[†]

• Lethal dose: Whole-body dose from penetrating ionizing radiation resulting in 50% mortality in 30 days (assuming no medical treatment) 2.5–3.0 Gy (250–300 rads), as measured internally on body longitudinal center line. Surface dose varies due to variable body attenuation and may be a strong function of energy.

25.3. Prompt neutrons at accelerators

25.3.1. Electron beams: At electron accelerators neutrons are generated via photonuclear reactions from bremsstrahlung photons. Neutron yields from semi-infinite targets per unit electron beam power are plotted in Fig. 25.1 as a function of electron beam energy [4]. In the photon energy range 10–30 MeV neutron production results from the giant photonuclear resonance mechanism. Neutrons are produced roughly isotropically (within a factor of 2) and with a Maxwellian energy distribution described as:

$$\frac{dN}{dE_n} = \frac{E_n}{T^2} e^{-E_n/T} , \qquad (25.1)$$

where T is the nuclear temperature characteristic of the target nucleus, generally in the range of T=0.5–1.0 MeV. For higher energy photons the quasi-deuteron and photopion production mechanisms become important.

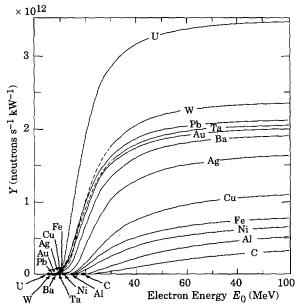


Figure 25.1: Neutron yields from semi-infinite targets, per kW of electron beam power, as a function of electron beam energy, disregarding target self-shielding.

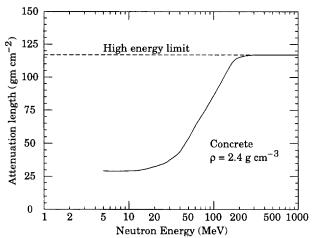
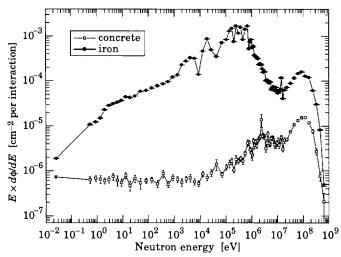



Figure 25.3: The variation of the attenuation length for monoenergetic neutrons in concrete as a function of neutron energy [5].

25.3.2. *Proton beams*: At proton accelerators neutron yields emitted per incident proton by different target materials are roughly independent [5] of proton energy between 20 MeV and 1 GeV and are given by the ratio C:Al:Cu-Fe:Sn:Ta-Pb = 0.3:0.6:1.0:1.5:1.7. Above 1 GeV neutron yield [6] is proportional to E^m , where $0.80 \le m \le 0.85$.

Figure 25.2: Calculated neutron spectrum from 205 GeV/c hadrons (2/3 protons and 1/3 π^+) on a thick copper target. Spectra are evaluated at 90° to beam and through 80 cm of normal density concrete or 40 cm of iron.

A typical neutron spectrum [7] outside a proton accelerator concrete shield is shown in Fig. 25.2. The shape of these spectra are generally characterized as having a thermal-energy peak which is very dependent on geometry and the presence of hydrogenic material, a low-energy evaporation peak around 2 MeV, and a high-energy spallation shoulder.

Letaw's [8] formula for the energy dependence of the inelastic proton cross-section (asymptotic values given in Table 6.1) for $E<2\,$ GeV is:

$$\sigma(E) = \sigma_{\text{asympt}} \left[1 - 0.62e^{-E/200} \sin(10.9E^{-0.28}) \right] , \qquad (25.2)$$

and for E > 2 GeV:

$$\sigma_{\text{asympt}} = 45A^{0.7} [1 + 0.016 \sin(5.3 - 2.63 \ln A)],$$
 (25.3)

where σ is in mb, E is the proton energy in MeV and A is the mass number.

The neutron-attenuation length, λ , is shown in Fig. 25.3 for monoenergetic broad-beam conditions. These values give a satisfactory representation at depths greater than 1 m in concrete.

25.4. Dose conversion factors

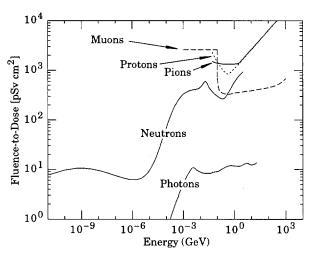


Figure 25.4: Fluence to dose equivalent conversion factors for various particles.

Fluence to dose equivalent factors are given in Fig. 25.4 for photons [9], neutrons [10], muons [11], protons and pions [12]. These factors can be used for converting particle fluence to dose for personnel protection purposes.

25.5. Accelerator-induced activity

The dose rate at 1 m due to spallation-induced activity by high energy hadrons in a 1 g medium atomic weight target can be estimated [13] from the following expression:

$$D = D_0 \Phi \ln[(T+t)/t] , \qquad (25.4)$$

where T is the irradiation time, t is the decay time since irradiation, Φ is the flux of irradiating hadrons (hadrons cm⁻² s⁻¹) and D_0 has a value of 5.2×10^{-17} [(Sv hr⁻¹)/(hadron cm⁻² s⁻¹)]. This relation is essentially independent of hadron energy above 200 MeV.

Dose due to accelerator-produced induced activity can also be estimated with the use of " ω factors" [5]. These factors give the dose rate per unit star density (inelastic reaction for E>50 MeV) after a 30-day irradiation and 1-day decay. The ω factor for steel or iron is $\simeq 3\times 10^{-12}$ (Sv cm³/star). This does not include possible contributions from thermal-neutron activation. Induced activity in concrete can vary widely depending on concrete composition, particularly with the concentration of trace quantities such as sodium. Additional information can be found in Barbier [14].

25.6. Photon sources

The dose rate from a gamma point source of C Curies emitting one photon of energy 0.07 < E < 4 MeV per disintegration at a distance of 30 cm is 6CE (rem/hr), or 60CE (mSv/hr), $\pm 20\%$.

The dose rate from a semi-infinite uniform photon source of specific activity C (μ Ci/g) and gamma energy E (MeV) is 1.07CE (rem/hr), or 10.7CE (mSv/hr).

25.7. Radiation levels in detectors at hadron colliders

An SSC Central Design Group task force studied the radiation levels to be expected in SSC detectors [15]. The study focused on scaling with energy, distance, and angle. As such, it is applicable to future detectors such as those at the LHC. Although superior detector-specific calculations have since been made, the scaling is in most cases not evident, and so the SSC results have some relevance. The SSC/CDG model assumed

- The machine luminosity at $\sqrt{s}=40$ TeV is $\mathscr{L}=10^{33}$ cm⁻²s⁻¹, and the pp inelastic cross section is $\sigma_{\rm inel}=100$ mb. This luminosity is effectively achieved for 10^7 s yr⁻¹. The interaction rate is thus 10^8 s⁻¹, or 10^{15} yr⁻¹;
- All radiation comes from pp collisions at the interaction point;
- The charged particle distribution is (a) flat in pseudorapidity for $|\eta| < 6$ and (b) has a momentum distribution whose perpendicular component is independent of rapidity, which is taken as independent of pseudorapidity:

$$\frac{d^2N_{\rm ch}}{d\eta dp_{\perp}} = H f(p_{\perp}) \tag{25.5}$$

(where $p_{\perp} = p \sin \theta$). Integrals involving $f(p_{\perp})$ are simplified by replacing $f(p_{\perp})$ by $\delta(p_{\perp} - (p_{\perp}))$; in the worst case this approximation introduces an error of less than 10%;

- Gamma rays from π^0 decay are as abundant as charged particles. They have approximately the same η distribution, but half the mean momentum;
- At the SSC ($\sqrt{s}=40$ TeV), $H\approx 7.5$ and $\langle p_{\perp}\rangle\approx 0.6$ GeV/c; assumed values at other energies are given in Table 25.3. Together with the model discussed above, these values are thought to describe particle production to within a factor of two or better.

It then follows that the flux of charged particles from the interaction point passing through a normal area da located a distance r_{\perp} from the beam line is given by

$$\frac{dN_{\rm ch}}{da} = \frac{1.2 \times 10^8 \,\mathrm{s}^{-1}}{r_{\perp}^2} \ . \tag{25.6}$$

In a typical organic material, a relativistic charged particle flux of 3×10^9 cm⁻² produces an ionizing radiation dose of 1 Gy, where 1 Gy \equiv 1 joule kg⁻¹ (= 100 rads). The above result may thus be rewritten as dose rate,

$$\dot{D} = \frac{0.4 \text{ MGy yr}^{-1}}{(r_{\perp}/1 \text{ cm})^2}.$$
 (25.7)

If a magnetic field is present, "loopers" may increase this dose rate by a factor of two ore more.

In a medium in which cascades can develop, the ionizing dose or neutron fluence is proportional to $dN_{\rm ch}/da$ multiplied by $\langle E \rangle^{\alpha}$, where $\langle E \rangle$ is the mean energy of the particles going through da and the power α is slightly less than unity. Since $E \approx p = p_{\perp}/\sin\theta$ and $r_{\perp} = r\sin\theta$, the above expression for $dN_{\rm ch}/da$ becomes

Dose or fluence
$$\frac{1}{r^2} = \frac{A}{r^2 \sin^{2+\alpha} \theta}$$
. (25.8)

The constant A contains the total number of interactions $\sigma_{\rm inel} \int \mathcal{L} dt$, so the ionizing dose or neutron fluence at another accelerator scales as $\sigma_{\rm inel} \int \mathcal{L} dt \, H \, \langle p_\perp \rangle^{\alpha}$.

The dose or fluence in a calorimeter scales as $1/r^2$, as does the neutron fluence inside a central cavity with characteristic dimension r.

Under all conditions so far studied, the neutron spectrum shows a broad log-normal distribution peaking at just under 1 MeV. In a 2 m radius central cavity of a detector with coverage down to $|\eta|=3$, the average neutron flux is $2\times 10^{12}~{\rm cm}^{-2}{\rm yr}^{-1}$, including secondary scattering contributions.

Values of A and α are given in Table 25.2 for several relevant situations. Examples of scaling to other accelerators are given in Table 25.3. It should be noted that the assumption that all radiation comes from the interaction point does not apply to the present generation of accelerators.

The constant A includes factors evaluated with cascade simulation programs as well as constants describing particle production at the interaction point. It is felt that each could introduce an error as large as a factor of two in the results.

Table 25.2: Coefficients $A/(100 \text{ cm})^2$ and α for the evaluation of calorimeter radiation levels at cascade maxima under SSC nominal operating conditions. At a distance r and angle θ from the interaction point the annual fluence or dose is $A/(r^2 \sin^{2+\alpha} \theta)$.

Quantity	$A/(100 \text{ cm})^2$	Units	$\langle p_{\perp} \rangle$	α
Neutron flux	1.5×10^{12}	$cm^{-2}yr^{-1}$	0.6 GeV/c	0.67
Dose rate from photons	124	${ m Gy~yr^{-1}}$	$0.3~{ m GeV}/c$	0.93
Dose rate from hadrons	29	$ m Gy~yr^{-1}$	$0.6~{ m GeV}/c$	0.89

Table 25.3: A rough comparison of beam-collision induced radiation levels at the Tevatron, high-luminosity LHC, SSC, and a possible 100 TeV machine [16].

	Tevatron	LHC	SSC	100 TeV
\sqrt{s} (TeV)	1.8	15.4	40	100
$\mathcal{L}_{\text{nom}} \ (\text{cm}^{-2}\text{s}^{-1})$	2×10^{30}	$1.7\times10^{34^a}$	1×10^{33}	1×10^{34}
$\sigma_{ m inel}$	56 mb	84 mb	100 mb	134 mb
H	3.9	6.2	7.5	10.6
$\langle p_{\perp} angle \; ({ m GeV}/c)$	0.46	0.55	0.60	0.70
Relative dose ${\rm rate}^b$	5×10^{-4}	11	1	20

^a High-luminosity option.

Footnotes:

- * The ICRP recomendation [2] is 20 mSv yr⁻¹ averaged over 5 years, with the dose in any one year ≤ 50 mSv.
- [†] Many laboratories in the U.S. and elsewhere set lower limits.
- [‡] Dose is the time integral of dose rate, and fluence is the time integral of flux.

References:

- C. Birattari et al., "Measurements and simulations in high energy neutron fields" Proceedings of the Second Shielding Aspects of Accelerators, Targets and Irradiation Facilities, in press (1995).
- ICRP Publication 60, 1990 Recommendation of the International Commission on Radiological Protection Pergamon Press (1991).
- See E. Pochin, Nuclear Radiation: Risks and Benefits (Clarendon Press, Oxford, 1983).
- W.P. Swanson, Radiological Safety Aspects of the operation of Electron Linear Accelerators, IAEA Technical Reports Series No. 188 (1979).
- R.H. Thomas and G.R. Stevenson, Radiological Safety Aspects of the Operation of Proton Accelerators, IAEA Technical Report Series No. 283 (1988).
- T.A. Gabriel et al., "Energy Dependence of Hadronic Activity," Nucl. Instrum. Methods A338, 336 (1994).
- A.V. Sannikov, "BON94 Code for Neutron Spectra Unfolding from Bonner Spectrometer Data," CERN/TIS-RP/IR/94-16 (1994).

^b Proportional to $\mathscr{L}_{\mathrm{nom}} \, \sigma_{\mathrm{inel}} \, H \, \langle p_{\perp} \rangle^{0.7}$

- Letaw, Silberberg, and Tsao, "Proton-nucleus Total Inelastic Cross Sections: An Empirical Formula for E > 10 MeV," Astrophysical Journal Supplement Series, 51, 271 (1983);
 For improvements to this formula see Shen Qing-bang, "Systematics of intermediate energy proton nonelastic and neutron total cross section," International Nuclear Data Committee INDC(CPR)-020 (July 1991).
- A. Ferrari and M. Pelliccioni, "On the Conversion Coefficients from Fluence to Ambient Dose Equivalent," Rad. Pro. Dosimetry 51, 251 (1994).
- A.V. Sannikov and E.N. Savitskaya, "Ambient Dose and Ambient Dose Equivalent Conversion Factors for High-Energy neutrons," CERN/TIS-RP/93-14 (1993).
- "Data for Use in Protection Against External Radiation," ICRP Publication 51 (1987).
- G.R. Stevenson, "Dose Equivalent Per Star in Hadron Cascade Calculations," CERN TIS-RP/173 (1986).

- A.H. Sullivan A Guide To Radiation and Radioactivity Levels Near High Energy Particle Accelerators, Nuclear Technology Publishing, Ashford, Kent, England (1992).
- 14. M. Barbier, Induced Activity, North-Holland, Amsterdam (1969).
- Report of the Task Force on Radiation Levels in the SSC Interaction Regions, SSC Central Design Group Report SSC-SR-1033 (June 1988). An abridged version is D.E. Groom, Nucl. Instrum. Methods A279, 1 (1989).
- D.E. Groom, pp. 311-326 in Supercolliders and Superdetectors: Proc. 19th and 25th Workshops of the INFN Eloisatron Project," Erice, Sicily, Italy, 17-22 Nov. 1992, ed. W.A. Barletta and H. Leutz (World Scientific, 1992); also appeared as CERN/LAA/SF/93-11.

26. COMMONLY USED RADIOACTIVE SOURCES

Table 26.1. Revised November 1993 by E. Browne (LBNL).

			Part		Photon
Nuclide	Half-life		Energy (MeV)	Emission prob.	Energy Emission (MeV) prob.
²² Na	2.603 y	β^+ , EC	0.545	90%	0.511 Annih. 1.275 100%
$^4_5\mathrm{Mn}$	0.855 y	EC			0.835 100%
$^{55}_{6}\mathrm{Fe}$	2.73 y	EC			Cr K x rays 26% Mn K x rays:
2610	2.10 3	Lo			$0.00590\ 24.4\%$
7Co	0.744 y	EC			0.00649 2.86%
1700	0.144 y	EC			$0.014 9\% \ 0.122 86\%$
					0.136 11%
					Fe K x rays 58%
00 77 Co	5.271 y	β	0.316	100%	1.173 100% 1.333 100%
58 32 Ge	0.742 y	EC			Ga K x rays 44%
$ ightarrow rac{68}{31} m{Ga}$		β^+ , EC	1.899	90%	0.511 Annih. 1.077 3%
)0 8 8 8	28.5 у	β-	0.546	100%	
$\rightarrow {}^{90}_{39} Y$		β^-	2.283	100%	
¹⁰⁶ Ru	1.020 y	eta^-	0.039	100%	
$ ightarrow$ $^{106}_{45}\mathrm{RH}$	n	eta^-	3.541	79%	$egin{array}{ccc} 0.512 & 21\% \ 0.622 & 10\% \ \end{array}$
¹⁰⁹ Cd	1.267 у	EC	0.063 e	41%	0.088 3.6%
			$0.084 \ e$ $0.087 \ e$		Ag K x rays 100
113 50 Sn	0.315 y	EC	0.364 e		0.392 65%
			0.388 e	- 6%	In K x rays 97%
¹³⁷ Cs	30.2 y	β^-	$0.514 \ e$ $1.176 \ e$		0.662 85%
¹³³ Ba	10.54 y	EC	0.045 e	50%	0.081 34%
30	·		0.075 e		$0.356 \qquad 62\%$
207					Cs K x rays 121
$^{207}_{83}{ m Bi}$	31.8 y	\mathbf{EC}	$0.481 e^{-}$		0.569 98%
			$0.975 \ e^{-1.047}$		1.063 75%
			$1.047 \ e^{-}$	- 2%	1.770 7% Pb K x rays 78%
²²⁸ Th	1 012	6	E 241 +	0 705	
90 1 11	1.912 y	$rac{6lpha}{3eta^-}$:	5.341 to 0.334 to		$0.239 44\% \ 0.583 31\%$
		υρ .	0.001 1	2.210	2.614 36%
$(\rightarrow^{224}_{88}Ra$	$\rightarrow {}^{220}_{86}$	Rn → ²	$^{216}_{84}{ m Po}$	$\rightarrow {}^{212}_{82}\text{Pb}$ -	$ ightarrow \frac{212}{83} \mathrm{Bi} ightarrow \frac{212}{84} \mathrm{Po}$
$^{41}_{95}\mathrm{Am}$	432.7 у	α	5.443 5.486	13% 85%	0.060 36% Np L x rays 38%
²⁴¹ ₉₅ Am/Be	432.2 y		0-5 neut	rons (4–8 Mel. 43 MeV) pe	eV) and
²⁴⁴ ₉₆ Cm	18.11 y	α	5.763 5.805	24% 76%	Pu L x rays ~ 9
²⁵² ₉₈ Cf	2.645 у	α (97%)	6.076	15%	
		Fission	6.118 (3.1%)	82%	
			` '	sion; 80% <	1 MeV
					$\langle n_n \rangle = 2.14 \; { m MeV}$

"Emission probability" is the probability per decay of a given emission; because of cascades these may total more than 100%. Only principal emissions are listed. EC means electron capture, and e^- means monoenergetic internal conversion (Auger) electron. The intensity of 0.511 MeV e^+e^- annihilation photons depends upon the number of stopped positrons. Endpoint β^\pm energies are listed. In some cases when energies are closely spaced, the γ -ray values are approximate weighted averages. Radiation from short-lived daughter isotopes is included where relevant.

Half-lives, energies, and intensities are from E. Browne and R.B. Firestone, *Table of Radioactive Isotopes* (John Wiley & Sons, New York, 1986), recent *Nuclear Data Sheets*, and *X-ray and Gamma-ray Standards for Detector Calibration*, IAEA-TECDOC-619 (1991).

Neutron data are from Neutron Sources for Basic Physics and Applications (Pergamon Press, 1983).

27. PROBABILITY

Revised May 1996 by D.E. Groom (LBNL) and F. James (CERN). Updated September 1999 by R. Cousins (UCLA).

27.1. General [1-6]

Let x be a possible outcome of an observation. The probability of x is the relative frequency with which that outcome occurs out of a (possibly hypothetical) large set of similar observations. If x can take any value from a continuous range, we write $f(x;\theta)$ dx as the probability of observing x between x and x + dx. The function $f(x; \theta)$ is the probability density function (p.d.f.) for the random variable x, which may depend upon one or more parameters θ . If x can take on only discrete values (e.g., the non-negative integers), then $f(x;\theta)$ is itself a probability, but we shall still call it a p.d.f. The p.d.f. is always normalized to unit area (unit sum, if discrete). Both x and θ may have multiple components and are then often written as column vectors. If θ is unknown and we wish to estimate its value from a given set of data measuring x, we may use statistics (see Sec. 28).

The cumulative distribution function F(a) is the probability that

$$F(a) = \int_{-\infty}^{a} f(x) dx . \qquad (27.1)$$

Here and below, if x is discrete-valued, the integral is replaced by a sum. The endpoint a is expressly included in the integral or sum. Then $0 \le F(x) \le 1$, F(x) is nondecreasing, and $Prob(a < x \le b) =$ F(b) - F(a). If x is discrete, F(x) is flat except at allowed values of x, where it has discontinuous jumps equal to f(x).

Any function of random variables is itself a random variable, with (in general) a different p.d.f. The expectation value of any function u(x) is

$$E[u(x)] = \int_{-\infty}^{\infty} u(x) f(x) dx , \qquad (27.2)$$

assuming the integral is finite. For u(x) and v(x) any two functions of x, E(u+v) = E(u) + E(v). For c and k constants, E(cu+k) =cE(u)+k.

The nth moment of a distribution is

$$\alpha_n \equiv E(x^n) = \int_{-\infty}^{\infty} x^n f(x) dx , \qquad (27.3a)$$

and the nth moment about the mean of x, α_1 , is

$$m_n \equiv E[(x-\alpha_1)^n] = \int_{-\infty}^{\infty} (x-\alpha_1)^n f(x) dx . \qquad (27.3b)$$

The most commonly used moments are the mean μ and variance σ^2 :

$$\mu \equiv \alpha_1 \tag{27.4a}$$

$$\mu \equiv \alpha_1 \qquad (27.4a)$$

$$\sigma^2 \equiv \operatorname{Var}(x) \equiv m_2 = \alpha_2 - \mu^2 . \qquad (27.4b)$$

The mean is the location of the "center of mass" of the probability density function, and the variance is a measure of the square of its width. Note that $Var(cx + k) = c^2 Var(x)$.

Any odd moment about the mean is a measure of the skewness of the p.d.f. The simplest of these is the dimensionless coefficient of skewness $\gamma_1 \equiv m_3/\sigma^3$.

Besides the mean, another useful indicator of the "middle" of the probability distribution is the $median x_{med}$, defined by $F(x_{\text{med}}) = 1/2$; i.e., half the probability lies above and half lies below x_{med} . For a given sample of events, x_{med} is the value such that half the events have larger x and half have smaller x (not counting any that have the same x as the median). If the sample median lies between two observed x values, it is set by convention halfway between them. If the p.d.f. for x has the form $f(x - \mu)$ and μ is both mean and median, then for a large number of events N, the variance of the median approaches $1/[4Nf^2(0)]$, provided f(0) > 0.

Let x and y be two random variables with a joint p.d.f. f(x,y). The marginal p.d.f. of x (the distribution of x with y unobserved) is

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$
, (27.5)

and similarly for the marginal p.d.f. $f_2(y)$. We define $f_3(y|x)$, the conditional p.d.f. of y given fixed x, by

$$f_3(y|x) f_1(x) = f(x,y)$$
. (27.6a)

Similarly, $f_4(x|y)$, the conditional p.d.f. of x given fixed y, is

$$f_4(x|y) f_2(y) = f(x,y)$$
. (27.6b)

From these definitions we immediately obtain Bayes' theorem [2]:

$$f_4(x|y) = \frac{f_3(y|x) f_1(x)}{f_2(y)} = \frac{f_3(y|x) f_1(x)}{\int f_3(y|x) f_1(x) dx} . \tag{27.7}$$

The mean of x is

$$\mu_x = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \ f(x, y) \ dx \ dy = \int_{-\infty}^{\infty} x \ f_1(x) \ dx \ , \tag{27.8}$$

and similarly for y. The correlation between x and y is

$$\rho_{xy} = E\left[(x - \mu_x)(y - \mu_y) \right] / \sigma_x \, \sigma_y = \operatorname{Cov}(x, y) / \sigma_x \, \sigma_y , \qquad (27.9)$$

where σ_x and σ_y are defined in analogy with Eq. (27.4b). It can be shown that $-1 \le \rho_{xy} \le 1$. Here "Cov" is the covariance of x and y, a 2-dimensional generalization of the variance.

Two random variables are independent if and only if

$$f(x,y) = f_1(x) f_2(y)$$
. (27.10)

If x and y are independent then $\rho_{xy} = 0$; the converse is not necessarily true except for Gaussian-distributed x and y. If x and y are independent, $E[u(x) \ v(y)] = E[u(x)] \ E[v(y)]$, and Var(x + y)Var(x)+Var(y); otherwise, Var(x+y) = Var(x)+Var(y)+2Cov(x, y), and $E(u \ v)$ does not factor.

In a change of continuous random variables from $x \equiv (x_1, \ldots, x_n)$, with p.d.f. $f(x) = f(x_1, \ldots, x_n)$, to $y \equiv (y_1, \ldots, y_n)$, a one-to-one function of the x_i 's, the p.d.f. $g(y) = g(y_1, \ldots, y_n)$ is found by substitution for (x_1, \ldots, x_n) in f followed by multiplication by the absolute value of the Jacobian of the transformation; that is,

$$g(y) = f[w_1(y), \dots, w_n(y)] |J|$$
 (27.11)

The functions w_i express the inverse transformation, $x_i = w_i(y)$ for $i=1,\ldots,n$, and |J| is the absolute value of the determinant of the square matrix $J_{ij} = \partial x_i/\partial y_j$. If the transformation from x to y is not one-to-one, the situation is more complex and a unique solution may not exist. For example, if the change is to m < n variables, then a given y may correspond to more than one x, leading to multiple integrals over the contributions [1].

To change variables for discrete random variables simply substitute; no Jacobian is necessary because now f is a probability rather than a probability density.

If f depends upon a parameter set α , a change to a different parameter set $\phi_i = \phi_i(\pmb{lpha})$ is made by simple substitution; no Jacobian

27.2. Characteristic functions

The characteristic function $\phi(u)$ associated with the p.d.f. f(x) is essentially its (inverse) Fourier transform, or the expectation value of $\exp(iux)$:

$$\phi(u) = E(e^{iux}) = \int_{-\infty}^{\infty} e^{iux} f(x) dx . \qquad (27.12)$$

It is often useful, and several of its properties follow [1].

It follows from Eqs. (27.3a) and (27.12) that the *n*th moment of the distribution f(x) is given by

$$i^{-n}\frac{d^n\phi}{du^n}\bigg|_{u=0} = \int_{-\infty}^{\infty} x^n f(x) dx = \alpha_n . \qquad (27.13)$$

Thus it is often easy to calculate all the moments of a distribution defined by $\phi(u)$, even when f(x) is difficult to obtain.

If $f_1(x)$ and $f_2(y)$ have characteristic functions $\phi_1(u)$ and $\phi_2(u)$, then the characteristic function of the weighted sum ax + by is $\phi_1(au)\phi_2(bu)$. The addition rules for common distributions (e.g., that the sum of two numbers from Gaussian distributions also has a Gaussian distribution) easily follow from this observation.

Let the (partial) characteristic function corresponding to the conditional p.d.f. $f_2(x|z)$ be $\phi_2(u|z)$, and the p.d.f. of z be $f_1(z)$. The characteristic function after integration over the conditional value is

$$\phi(u) = \int \phi_2(u|z) f_1(z) dz . \qquad (27.14)$$

Suppose we can write ϕ_2 in the form

$$\phi_2(u|z) = A(u)e^{ig(u)z} . (27.15)$$

Then

192

$$\phi(u) = A(u)\phi_1(g(u)) . (27.16)$$

The semi-invariants κ_n are defined by

$$\phi(u) = \exp\left(\sum_{1}^{\infty} \frac{\kappa_n}{n!} (iu)^n\right) = \exp\left(i\kappa_1 u - \frac{1}{2}\kappa_2 u^2 + \ldots\right) . \quad (27.17)$$

The κ_n 's are related to the moments α_n and m_n . The first few relations are

$$\kappa_1 = \alpha_1 \ (= \mu, \text{ the mean})$$

$$\kappa_2 = m_2 = \alpha_2 - \alpha_1^2 \ (= \sigma^2, \text{ the variance})$$

$$\kappa_3 = m_3 = \alpha_3 - 3\alpha_1\alpha_2 + 2\alpha_1^2.$$
(27.18)

27.3. Some probability distributions

Table 27.1 gives a number of common probability density functions and corresponding characteristic functions, means, and variances. Further information may be found in Refs. 1–7; Ref. 7 has particularly detailed tables. Monte Carlo techniques for generating each of them may be found in our Sec. 29.4. We comment below on all except the trivial uniform distribution.

27.3.1. Binomial distribution: A random process with exactly two possible outcomes is called a Bernoulli process. If the probability of obtaining a certain outcome (a "success") in each trial is p, then the probability of obtaining exactly r successes $(r=0,1,2,\ldots,n)$ in n trials, without regard to the order of the successes and failures, is given by the binomial distribution f(r;n,p) in Table 27.1. If r successes are observed in n_r trials with probability p of a success, and if s successes are observed in n_s similar trials, then t=r+s is also binomial with $n_t=n_r+n_s$.

27.3.2. Poisson distribution: The Poisson distribution $f(r;\mu)$ gives the probability of finding exactly r events in a given interval of x (e.g., space and time) when the events occur independently of one another and of x at an average rate of μ per the given interval. The variance σ^2 equals μ . It is the limiting case $p \to 0$, $n \to \infty$, $np = \mu$ of the binomial distribution. The Poisson distribution approaches the Gaussian distribution for large μ .

Two or more Poisson processes (e.g., signal + background, with parameters μ_s and μ_b) that independently contribute amounts n_s and n_b to a given measurement will produce an observed number $n=n_s+n_b$, which is distributed according to a new Poisson distribution with parameter $\mu=\mu_s+\mu_b$.

27.3.3. Normal or Gaussian distribution: The normal (or Gaussian) probability density function $f(x; \mu, \sigma^2)$ given in Table 27.1 has mean $\overline{x} = \mu$ and variance σ^2 . Comparison of the characteristic function $\phi(u)$ given in Table 27.1 with Eq. (27.17) shows that all semi-invariants κ_n beyond κ_2 vanish; this is a unique property of the Gaussian distribution. Some properties of the distribution are:

rms deviation = σ probability x in the range $\mu \pm \sigma = 0.6827$ probability x in the range $\mu \pm 0.6745\sigma = 0.5$ expection value of $|x - \mu|$, $E(|x - \mu|) = (2/\pi)^{1/2}\sigma = 0.7979\sigma$ half-width at half maximum = $(2 \ln 2)^{1/2}\sigma = 1.177\sigma$

The cumulative distribution, Eq. (27.1), for a Gaussian with $\mu = 0$ and $\sigma^2 = 1$ is related to the error function erf(y) by

$$F(x;0,1) = \frac{1}{2} \left[1 + \operatorname{erf}(x/\sqrt{2}) \right] . \tag{27.19}$$

The error function is tabulated in Ref. 7 and is available in computer math libraries and personel computer spreadsheets. For a mean μ and variance σ^2 , replace x by $(x - \mu)/\sigma$. The probability of x in a given range can be calculated with Eq. (28.36).

For x and y independent and normally distributed, z = ax + by obeys $f(z; a\mu_x + b\mu_y, a^2\sigma_x^2 + b^2\sigma_y^2)$; that is, the weighted means and variances add.

The Gaussian gets its importance in large part from the central limit theorem: If a continuous random variable x is distributed according to any p.d.f. with finite mean and variance, then the sample mean, \overline{x}_n , of n observations of x will have a p.d.f. that approaches a Gaussian as n increases. Therefore the end result $\sum^n x_i \equiv n\overline{x}_n$ of a large number of small fluctuations x_i will be distributed as a Gaussian, even if the x_i themselves are not.

(Note that the *product* of a large number of random variables is not Gaussian, but its logarithm is. The p.d.f. of the product is *lognormal*. See Ref. 6 for details.)

For a set of n Gaussian random variables x with means μ and corresponding Fourier variables u, the characteristic function for a one-dimensional Gaussian is generalized to

$$\phi(\mathbf{x}; \boldsymbol{\mu}, S) = \exp\left[i\boldsymbol{\mu} \cdot \mathbf{u} - \frac{1}{2}\mathbf{u}^T S \mathbf{u}\right] . \tag{27.20}$$

From Eq. (27.13), the covariance about the mean is

$$E[(x_i - \mu_i)(x_k - \mu_k)] = S_{ik}. (27.21)$$

If the x are independent, then $S_{jk} = \delta_{jk}\sigma_j^2$, and Eq. (27.20) is the product of the c.f.'s of n Gaussians.

The covariance matrix S can be related to the correlation matrix defined by Eq. (27.9) (a sort of normalized covariance matrix). With the definition $\sigma_k^2 \equiv S_{kk}$, we have $\rho_{jk} = S_{jk}/\sigma_j\sigma_k$.

The characteristic function may be inverted to find the corresponding p.d.f.

$$f(x; \mu, S) = \frac{1}{(2\pi)^{n/2} \sqrt{|S|}} \exp \left[-\frac{1}{2} (x - \mu)^T S^{-1} (x - \mu) \right] (27.22)$$

where the determinant |S| must be greater than 0. For diagonal S (independent variables), $f(x; \mu, S)$ is the product of the p.d.f.'s of n Gaussian distributions.

Distribution	Probability density function f (variable; parameters)	Characteristic function $\phi(u)$	Mean	Variance σ^2
Uniform	$f(x;a,b) = \left\{ egin{array}{ll} 1/(b-a) & a \leq x \leq b \ 0 & ext{otherwise} \end{array} ight.$	$\frac{e^{ibu}-e^{iau}}{(b-a)iu}$	$\overline{x} = \frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Binomial	$f(r;n,p) = rac{n!}{r!(n-r)!} p^r q^{n-r} \ r = 0, 1, 2, \dots, n \; ; 0 \leq p \leq 1 \; ; q = 1-p$	$(q+pe^{iu})^n$	$\overline{r}=np$	npq
Poisson	$f(r;\mu) = rac{\mu^r e^{-\mu}}{r!} \; ; r = 0, 1, 2, \dots \; ; \mu > 0$	$\exp[\mu(e^{iu}-1)]$	$\overline{r}=\mu$	μ
Normal (Gaussian)	$f(x; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-(x - \mu)^2 / 2\sigma^2)$ $-\infty < x < \infty \; ; -\infty < \mu < \infty \; ; \sigma > 0$	$\exp(i\mu u - rac{1}{2}\sigma^2 u^2)$	$\overline{x}=\mu$	σ^2
Multivariate Gaussian	$f(x; \mu, S) = \frac{1}{(2\pi)^{n/2} \sqrt{ S }} imes \exp\left[-\frac{1}{2}(x-\mu)^T S^{-1}(x-\mu)\right]$	$\exp\left[ioldsymbol{\mu}\cdotoldsymbol{u}-rac{1}{2}oldsymbol{u}^TSoldsymbol{u} ight]$	μ	S_{jk}
	$-\infty < x_j < \infty; -\infty < \mu_j < \infty; \det S > 0$			
χ^2	$f(z;n) = rac{z^{n/2-1}e^{-z/2}}{2^{n/2}\Gamma(n/2)} \; ; \;\;\; z \geq 0$	$(1-2iu)^{-n/2}$	$\overline{z}=n$	2n
Student's t	$f(t;n) = rac{1}{\sqrt{n\pi}} \; rac{\Gamma[(n+1)/2]}{\Gamma(n/2)} \left(1 + rac{t^2}{n} ight)^{-(n+1)/2} onumber \ -\infty < t < \infty \; ; \qquad n ext{ not required to be integer}$	_	$ar{t}=0 \ ext{for } n\geq 2$	$n/(n-2)$ for $n \ge 3$
Gamma	$f(x;\lambda,k) = rac{x^{k-1}\lambda^k e^{-\lambda x}}{\Gamma(k)}\;; 0 < x < \infty\;;$ $k \; ext{not required to be integer}$	$(1-iu/\lambda)^{-k}$	$\overline{x}=k/\lambda$	k/λ^2

Table 27.1. Some common probability density functions, with corresponding characteristic functions and means and variances. In the Table, $\Gamma(k)$ is the gamma function, equal to (k-1)! when k is an integer.

For $n=2, f(x; \mu, S)$ is

$$f(x_1, x_2; \ \mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\times \exp\left\{\frac{-1}{2(1-\rho^2)} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \right] \right\}. \tag{27.23}$$

The marginal distribution of any x_i is a Gaussian with mean μ_i and variance S_{ii} . S is $n \times n$, symmetric, and positive definite. Therefore for any vector \mathbf{X} , the quadratic form $\mathbf{X}^T S^{-1} \mathbf{X} = C$, where C is any positive number, traces an n-dimensional ellipsoid as \mathbf{X} varies. If $\mathbf{X}_i = (x_i - \mu_i)/\sigma_i$, then C is a random variable obeying the $\chi^2(n)$ distribution, discussed in the following section. The probability that \mathbf{X} corresponding to a set of Gaussian random variables \mathbf{x}_i lies outside the ellipsoid characterized by a given value of $C(=\chi^2)$ is given by Eq. (27.24) and may be read from Fig. 27.1. For example, the "s-standard-deviation ellipsoid" occurs at $C = s^2$. For the two-variable case (n=2), the point \mathbf{X} lies outside the one-standard-deviation ellipsoid with 61% probability. (This assumes that μ_i and σ_i are correct.) For $X_i = x_i/\sigma_i$, the ellipsoids of constant χ^2 have the same size and orientation but are centered at μ . The use of these ellipsoids as indicators of probable error is described in Sec. 28.6.2.

27.3.4. χ^2 distribution: If x_1,\ldots,x_n are independent Gaussian distributed random variables, the sum $z=\sum^n(x_i-\mu_i)^2/\sigma_i^2$ is distributed as a χ^2 with n degrees of freedom, $\chi^2(n)$. Under a linear transformation to n dependent Gaussian variables x_i' , the χ^2 at each transformed point retains its value; then $z=X'^TV^{-1}X'$ as in the previous section. For a set of z_i , each of which is $\chi^2(n_i)$, $\sum z_i$ is a new random variable which is $\chi^2(\sum n_i)$.

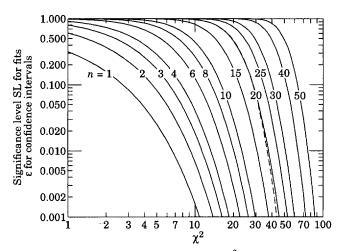


Figure 27.1: The significance level versus χ^2 for n degrees of freedom, as defined in Eq. (27.24). The curve for a given n gives the probability that a value at least as large as χ^2 will be obtained in an experiment; e.g., for n=10, a value $\chi^2\gtrsim 18$ will occur in 5% of a large number of experiments. For a fit, the SL is a measure of goodness-of-fit, in that a good fit to a correct model is expected to yield a low χ^2 (see Sec. 28.5.0). For a confidence interval, ε measures the probability that the interval does not cover the true value of the quantity being estimated (see Sec. 28.6). The dashed curve for n=20 is calculated using the approximation of Eq. (27.25).

Fig. 27.1 shows the significance level (SL) obtained by integrating the tail of f(z; n):

$$SL(\chi^2) = \int_{\chi^2}^{\infty} f(z; n) dz$$
 (27.24)

This is shown for a special case in Fig. 27.2, and is equal to 1.0 minus the cumulative distribution function $F(z=\chi^2;\,n)$. It is useful in evaluating the consistency of data with a model (see Sec. 28): The SL is the probability that a random repeat of the given experiment would observe a greater χ^2 , assuming the model is correct. It is also useful for confidence intervals for statistical estimators (see Sec. 28.6), in which case one is interested in the unshaded area of Fig. 27.2.

Since the mean of the χ^2 distribution is equal to n, one expects in a "reasonable" experiment to obtain $\chi^2 \approx n$. Hence the "reduced χ^2 " $\equiv \chi^2/n$ is sometimes reported. Since the p.d.f. of χ^2/n depends on n, one must report n as well in order to make a meaningful statement. Figure 27.3 shows χ^2/n for useful SL's as a function of n.

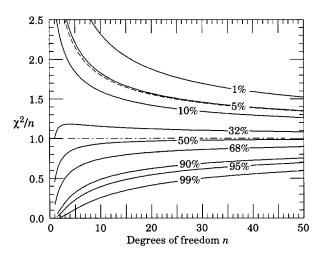


Figure 27.3: Significance levels as a function of the "reduced χ^2 " $\equiv \chi^2/n$ and the number of degrees of freedom n. Curves are labeled by the probability that a measurement will give a value of χ^2/n greater than that given on the y axis; e.g., for n=10, a value $\chi^2/n \gtrsim 1.8$ can be expected 5% of the time.

For large n, the SL is approximately given by [1,8]

$$SL(\chi^2) \approx \frac{1}{\sqrt{2\pi}} \int_y^\infty e^{-x^2/2} dx$$
, (27.25)

where $y = \sqrt{2\chi^2} - \sqrt{2n-1}$. This approximation was used to draw the dashed curves in Fig. 27.1 (for n = 20) and Fig. 27.3 (for SL = 5%). Since all the functions and their inverses are now readily

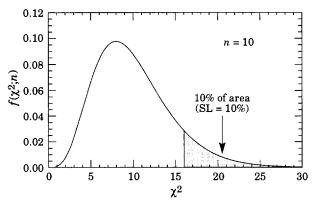


Figure 27.2: Illustration of the significance level integral given in Eq. (27.24). This particlar example is for n = 10, where the area above 15.99 is 0.1.

available in standard mathematical libraries (such as IMSL, used to generate these figures, and personal computer spreadsheets, such as Microsoft (Excel [9]), the approximation (and even figures and tables) are seldom needed.

27.3.5. Student's t distribution: Suppose that x and x_1, \ldots, x_n are independent and Gaussian distributed with mean 0 and variance 1. We then define

$$z = \sum_{i=1}^{n} x_i^2$$
, and $t = \frac{x}{\sqrt{z/n}}$. (27.26)

The variable z thus belongs to a $\chi^2(n)$ distribution. Then t is distributed according to a Student's t distribution with n degrees of freedom, f(t;n), given in Table 27.1.

The Student's t distribution resembles a Gaussian distribution with wide tails. As $n \to \infty$, the distribution approaches a Gaussian. If n = 1, the distribution is a *Cauchy* or *Breit-Wigner* distribution. The mean is finite only for n > 1 and the variance is finite only for n > 2, so for n = 1 or n = 2, the central limit theorem is not applicable to t.

As an example, consider the sample mean $\overline{x} = \sum x_i/n$ and the sample variance $s^2 = \sum (x_i - \overline{x})^2/(n-1)$ for normally distributed random variables x_i with unknown mean μ and variance σ^2 . The sample mean has a Gaussian distribution with a variance σ^2/n , so the variable $(\overline{x} - \mu)/\sqrt{\sigma^2/n}$ is normal with mean 0 and variance 1. Similarly, $(n-1)s^2/\sigma^2$ is independent of this and is χ^2 distributed with n-1 degrees of freedom. The ratio

$$t = \frac{(\overline{x} - \mu)/\sqrt{\sigma^2/n}}{\sqrt{(n-1) s^2/\sigma^2 (n-1)}} = \frac{\overline{x} - \mu}{\sqrt{s^2/n}}$$
(27.27)

is distributed as f(t; n-1). The unknown true variance σ^2 cancels, and t can be used to test the probability that the true mean is some particular value μ .

In Table 27.1, n in f(t;n) is not required to be an integer. A Student's t distribution with nonintegral n>0 is useful in certain applications.

27.3.6. Gamma distribution: For a process that generates events as a function of x (e.g., space or time) according to a Poisson distribution, the distance in x from an arbitrary starting point (which may be some particular event) to the k^{th} event belongs to a gamma distribution, $f(x; \lambda, k)$. The Poisson parameter μ is λ per unit x. The special case k = 1 (i.e., $f(x; \lambda, 1) = \lambda e^{-\lambda x}$) is called the exponential distribution. A sum of k' exponential random variables x_i is distributed as $f(\sum x_i; \lambda, k')$.

The parameter k is not required to be an integer. For $\lambda = 1/2$ and k = n/2, the gamma distribution reduces to the $\chi^2(n)$ distribution.

References:

- H. Cramér, Mathematical Methods of Statistics, Princeton Univ. Press, New Jersey (1958).
- A. Stuart and A.K. Ord, Kendall's Advanced Theory of Statistics, Vol. 1 Distribution Theory 5th Ed., (Oxford Univ. Press, New York, 1987), and earlier editions by Kendall and Stuart.
- W.T. Eadie, D. Drijard, F.E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics (North Holland, Amsterdam and London, 1971).
- L. Lyons, Statistics for Nuclear and Particle Physicists (Cambridge University Press, New York, 1986).
- B.R. Roe, Probability and Statistics in Experimental Physics, (Springer-Verlag, New York, 1992).
- G. Cowan, Statistical Data Analysis (Oxford University Press, Oxford, 1998).
- M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972).
- R.A. Fisher, Statistical Methods for Research Workers, 8th edition, Edinburgh and London (1941).
- 9. Microsoft ® is a registered trademark of Microsoft corporation.

27. PROBABILITY

Revised May 1996 by D.E. Groom (LBNL) and F. James (CERN). Updated September 1999 by R. Cousins (UCLA).

27.1. General [1-6]

Let x be a possible outcome of an observation. The probability of x is the relative frequency with which that outcome occurs out of a (possibly hypothetical) large set of similar observations. If x can take any value from a continuous range, we write $f(x;\theta)$ dx as the probability of observing x between x and x + dx. The function $f(x; \theta)$ is the probability density function (p.d.f.) for the random variable x, which may depend upon one or more parameters θ . If x can take on only discrete values (e.g., the non-negative integers), then $f(x;\theta)$ is itself a probability, but we shall still call it a p.d.f. The p.d.f. is always normalized to unit area (unit sum, if discrete). Both x and θ may have multiple components and are then often written as column vectors. If θ is unknown and we wish to estimate its value from a given set of data measuring x, we may use statistics (see Sec. 28).

The cumulative distribution function F(a) is the probability that

$$F(a) = \int_{-\infty}^{a} f(x) dx . \qquad (27.1)$$

Here and below, if x is discrete-valued, the integral is replaced by a sum. The endpoint a is expressly included in the integral or sum. Then $0 \le F(x) \le 1$, F(x) is nondecreasing, and $Prob(a < x \le b) =$ F(b) - F(a). If x is discrete, F(x) is flat except at allowed values of x, where it has discontinuous jumps equal to f(x).

Any function of random variables is itself a random variable, with (in general) a different p.d.f. The expectation value of any function u(x) is

$$E[u(x)] = \int_{-\infty}^{\infty} u(x) f(x) dx , \qquad (27.2)$$

assuming the integral is finite. For u(x) and v(x) any two functions of x, E(u+v) = E(u) + E(v). For c and k constants, E(cu+k) =cE(u)+k.

The nth moment of a distribution is

$$\alpha_n \equiv E(x^n) = \int_{-\infty}^{\infty} x^n f(x) dx , \qquad (27.3a)$$

and the nth moment about the mean of x, α_1 , is

$$m_n \equiv E[(x-\alpha_1)^n] = \int_{-\infty}^{\infty} (x-\alpha_1)^n f(x) dx . \qquad (27.3b)$$

The most commonly used moments are the mean μ and variance σ^2 :

$$\mu \equiv \alpha_1 \tag{27.4a}$$

$$\mu \equiv \alpha_1 \qquad (27.4a)$$

$$\sigma^2 \equiv \operatorname{Var}(x) \equiv m_2 = \alpha_2 - \mu^2 . \qquad (27.4b)$$

The mean is the location of the "center of mass" of the probability density function, and the variance is a measure of the square of its width. Note that $Var(cx + k) = c^2 Var(x)$.

Any odd moment about the mean is a measure of the skewness of the p.d.f. The simplest of these is the dimensionless coefficient of skewness $\gamma_1 \equiv m_3/\sigma^3$.

Besides the mean, another useful indicator of the "middle" of the probability distribution is the $median x_{med}$, defined by $F(x_{\text{med}}) = 1/2$; i.e., half the probability lies above and half lies below x_{med} . For a given sample of events, x_{med} is the value such that half the events have larger x and half have smaller x (not counting any that have the same x as the median). If the sample median lies between two observed x values, it is set by convention halfway between them. If the p.d.f. for x has the form $f(x - \mu)$ and μ is both mean and median, then for a large number of events N, the variance of the median approaches $1/[4Nf^2(0)]$, provided f(0) > 0.

Let x and y be two random variables with a joint p.d.f. f(x,y). The marginal p.d.f. of x (the distribution of x with y unobserved) is

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$
, (27.5)

and similarly for the marginal p.d.f. $f_2(y)$. We define $f_3(y|x)$, the conditional p.d.f. of y given fixed x, by

$$f_3(y|x) f_1(x) = f(x,y)$$
. (27.6a)

Similarly, $f_4(x|y)$, the conditional p.d.f. of x given fixed y, is

$$f_4(x|y) f_2(y) = f(x,y)$$
. (27.6b)

From these definitions we immediately obtain Bayes' theorem [2]:

$$f_4(x|y) = \frac{f_3(y|x) f_1(x)}{f_2(y)} = \frac{f_3(y|x) f_1(x)}{\int f_3(y|x) f_1(x) dx} . \tag{27.7}$$

The mean of x is

$$\mu_x = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \ f(x, y) \ dx \ dy = \int_{-\infty}^{\infty} x \ f_1(x) \ dx \ , \tag{27.8}$$

and similarly for y. The correlation between x and y is

$$\rho_{xy} = E\left[(x - \mu_x)(y - \mu_y) \right] / \sigma_x \, \sigma_y = \operatorname{Cov}(x, y) / \sigma_x \, \sigma_y , \qquad (27.9)$$

where σ_x and σ_y are defined in analogy with Eq. (27.4b). It can be shown that $-1 \le \rho_{xy} \le 1$. Here "Cov" is the covariance of x and y, a 2-dimensional generalization of the variance.

Two random variables are independent if and only if

$$f(x,y) = f_1(x) f_2(y)$$
. (27.10)

If x and y are independent then $\rho_{xy} = 0$; the converse is not necessarily true except for Gaussian-distributed x and y. If x and y are independent, $E[u(x)\ v(y)] = E[u(x)]\ E[v(y)]$, and $\mathrm{Var}(x+y)$ Var(x)+Var(y); otherwise, Var(x+y) = Var(x)+Var(y)+2Cov(x, y), and $E(u \ v)$ does not factor.

In a change of continuous random variables from $x \equiv (x_1, \ldots, x_n)$, with p.d.f. $f(x) = f(x_1, \ldots, x_n)$, to $y \equiv (y_1, \ldots, y_n)$, a one-to-one function of the x_i 's, the p.d.f. $g(y) = g(y_1, \ldots, y_n)$ is found by substitution for (x_1, \ldots, x_n) in f followed by multiplication by the absolute value of the Jacobian of the transformation; that is,

$$g(y) = f[w_1(y), \dots, w_n(y)] |J|$$
 (27.11)

The functions w_i express the inverse transformation, $x_i = w_i(y)$ for $i=1,\ldots,n$, and |J| is the absolute value of the determinant of the square matrix $J_{ij} = \partial x_i/\partial y_j$. If the transformation from x to y is not one-to-one, the situation is more complex and a unique solution may not exist. For example, if the change is to m < n variables, then a given y may correspond to more than one x, leading to multiple integrals over the contributions [1].

To change variables for discrete random variables simply substitute; no Jacobian is necessary because now f is a probability rather than a probability density.

If f depends upon a parameter set α , a change to a different parameter set $\phi_i = \phi_i(\pmb{lpha})$ is made by simple substitution; no Jacobian

27.2. Characteristic functions

The characteristic function $\phi(u)$ associated with the p.d.f. f(x) is essentially its (inverse) Fourier transform, or the expectation value of $\exp(iux)$:

$$\phi(u) = E(e^{iux}) = \int_{-\infty}^{\infty} e^{iux} f(x) dx . \qquad (27.12)$$

It is often useful, and several of its properties follow [1].

It follows from Eqs. (27.3a) and (27.12) that the *n*th moment of the distribution f(x) is given by

$$i^{-n}\frac{d^n\phi}{du^n}\bigg|_{u=0} = \int_{-\infty}^{\infty} x^n f(x) dx = \alpha_n . \tag{27.13}$$

28. STATISTICS

Revised April 1998 by F. James (CERN). Updated February 2000 by R. Cousins (UCLA).

A probability density function $f(x;\alpha)$ (p.d.f.) with known parameters α enables us to predict the frequency with which random data x will take on a particular value (if discrete) or lie in a given range (if continuous). Here we are concerned with the inverse problem, that of making inferences about α from a set of actual observations. Such inferences are part of a larger subject variously known as statistics, statistical inference, or inverse probability.

There are two different approaches to statistical inference, which we may call Frequentist and Bayesian. In the former, the frequency definition of probability (Sec. 27.1) is used, and it is usually meaningless to define a p.d.f. in α (for example, a parameter which is a constant of nature has a value which is fixed). In Frequentist statistics, one can compute confidence intervals as a function of the observed data, and they will contain ("cover") the unknown true value of α a specified fraction of the time in the long run, as defined in Sec. 28.6.

In Bayesian statistics, the concept of probability is not based on limiting frequencies, but is more general and includes degree of belief. With this definition, one may define p.d.f.'s in α , and then inverse probability simply obeys the general rules of probability. Bayesian methods allow for a natural way to input additional information such as physical boundaries and subjective information; in fact they require as input the prior p.d.f. for any parameter to be estimated. Using Bayes' Theorem (Eq. (27.7)), the prior degree of belief is updated by incoming data.

For many inference problems, the Frequentist and Bayesian approaches give the same numerical answers, even though they are based on fundamentally different assumptions. However, for exact results for small samples and for measurements near a physical boundary, the different approaches may yield very different confidence limits, so we are forced to make a choice. There is an enormous amount of literature devoted to the question of Bayesian vs non-Bayesian methods, much of it written by people who are fervent advocates of one or the other methodology, which often leads to exaggerated conclusions. For a reasonably balanced discussion, we recommend the following articles: by a statistician [1], and by a physicist [2]. A more advanced comparison is offered in Ref. 3.

In high energy physics, where experiments are repeatable (at least in principle) the frequentist definition of probability is normally used. However, Bayesian equations are often used to treat uncertainties on luminosity, background, etc. If the result has poor properties from a Frequentist point of view, one should note that the result is not a classical confidence interval.

Frequentist methods cannot provide the probability that a theory is true, or that a parameter has a particular value. (Such probabilities require input of prior belief.) Rather, Frequentist methods calculate probabilities that various data sets are obtained given specified theories or parameters; these frequencies are often calculated by Monte Carlo methods. As described below, confidence intervals are constructed from such frequencies, and therefore do not represent degree of belief.

The Bayesian methodology is particularly well-adapted to decision-making, which requires subjective input not only for prior belief, but also for risk tolerance, etc. Even primarily Frequentist texts such as Ref. 4 outline Bayesian decision theory. However, the usefulness of Bayesian methods as a means for the communication of experimental measurements is controversial.

Recently, the first Workshop on Confidence Limits [5] was held at CERN, where proponents of various statistical methods presented and discussed the issues. One sees that there was not a consensus on the best way to report confidence limits. We recommend the web site and eventual proceedings as a starting point for discussion of these issues. The methods described below use the Frequentist definition of probability, except where noted.

28.1. Parameter estimation [3, 4, 6-9]

Here we review parametric statistics in which one desires estimates of the parameters α from a set of actual observations.

A statistic is any function of the data, plus known constants, which does not depend upon any of the unknown parameters. A statistic is a random variable if the data have random errors. An estimator is any statistic whose value (the estimate $\widehat{\alpha}$) is intended as a meaningful guess for the value of the parameter α , or the vector α if there is more than one parameter.

Since we are free to choose any function of the data as an estimator of the parameter α , we will try to choose that estimator which has the best properties. The most important properties are (a) consistency, (b) bias, (c) efficiency, and (d) robustness.

- (a) An estimator is said to be *consistent* if the estimate $\widehat{\alpha}$ converges to the true value α as the amount of data increases. This property is so important that it is possessed by all commonly used estimators.
- (b) The bias, $b=E(\widehat{\alpha})-\alpha$, is the difference between the true value and the expectation of the estimates, where the expectation value is taken over a hypothetical set of similar experiments in which $\widehat{\alpha}$ is constructed the same way. When b=0 the estimator is said to be unbiased. The bias depends on the chosen metric, i.e., if $\widehat{\alpha}$ is an unbiased estimator of α , then $(\widehat{\alpha})^2$ is generally not an unbiased estimator of α^2 . The bias may be due to statistical properties of the estimator or to systematic errors in the experiment. If we can estimate the b we can subtract it from $\widehat{\alpha}$ to obtain a new $\widehat{\alpha}' \equiv \widehat{\alpha} b$. However, b may depend upon α or other unknowns, in which case we usually try to choose an estimator which minimizes its average size.
- (c) Efficiency is the inverse of the ratio between the variance of the estimates $Var(\widehat{\alpha})$ and the minimum possible value of the variance. Under rather general conditions, the minimum variance is given by the Rao-Cramér-Frechet bound:

$$Var_{min} = \left[1 + \frac{\partial b}{\partial \alpha}\right]^2 / I(\alpha) ; \qquad (28.1)$$

$$I(lpha) = E \left\{ \left[rac{\partial}{\partial lpha} \sum_i \ln f(x_i; \, lpha)
ight]^2
ight\} \; .$$

(Compare with Eq. (28.6) below.) The sum is over all data and b is the bias, if any; the x_i are assumed independent and distributed as $f(x_i; \alpha)$, and the allowed range of x must not depend upon α . Mean-squared error, $\text{mse} = E[(\widehat{\alpha} - \alpha)^2] = V(\widehat{\alpha}) + b^2$ is a convenient quantity which combines in the appropriate way the errors due to bias and efficiency.

(d) Robustness; is the property of being insensitive to departures from assumptions in the p.d.f. due to such factors as noise.

For some common estimators the above properties are known exactly. More generally, it is always possible to evaluate them by Monte Carlo simulation. Note that they will often depend on the unknown α .

28.2. Data with a common mean

Suppose we have a set of N independent measurements y_i assumed to be unbiased measurements of the same unknown quantity μ with a common, but unknown, variance σ^2 resulting from measurement error. Then

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} y_i \tag{28.2}$$

$$\widehat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \widehat{\mu})^2$$
 (28.3)

are unbiased estimators of μ and σ^2 . The variance of $\widehat{\mu}$ is σ^2/N . If the common p.d.f. of the y_i is Gaussian, these estimates are uncorrelated. Then, for large N, the standard deviation of $\widehat{\sigma}$ (the "error of the error") is $\sigma/\sqrt{2N}$. Again if the y_i are Gaussian, $\widehat{\mu}$ is an efficient estimator for μ . Otherwise the mean is in general not the most

efficient estimator. For example, if the y follow a double-exponential distribution [$\sim \exp(-\sqrt{2}|y-\mu|/\sigma)$], the most efficient estimator of the mean is the sample median (the value for which half the y_i lie above and half below). This is discussed in more detail in Ref. 4, Sec. 8.7.

If σ^2 is known, it does not improve the estimate $\widehat{\mu}$, as can be seen from Eq. (28.2); however, if μ is known, substitute it for $\widehat{\mu}$ in Eq. (28.3) and replace N-1 by N, to obtain a somewhat better estimator of σ^2 .

If the y_i have different, known, variances σ_i^2 , then the weighted average

$$\widehat{\mu} = \frac{1}{w} \sum_{i=1}^{N} w_i \ y_i \ , \tag{28.4}$$

is an unbiased estimator for μ with smaller variance than an unweighted average; here $w_i = 1/\sigma_i^2$ and $w = \sum w_i$. The standard deviation of $\hat{\mu}$ is $1/\sqrt{w}$.

28.3. The method of maximum likelihood

28.3.1. Parameter estimation by maximum likelihood:

"From a theoretical point of view, the most important general method of estimation so far known is the method of maximum likelihood" [6]. We suppose that a set of independently measured quantities x_i came from a p.d.f. $f(x;\alpha)$, where α is an unknown set of parameters. The method of maximum likelihood consists of finding the set of values, $\hat{\alpha}$, which maximizes the joint probability density for all the data, given by

$$\mathscr{L}(\alpha) = \prod_{i} f(x_i; \alpha) , \qquad (28.5)$$

where \mathscr{L} is called the likelihood. It is usually easier to work with $\ln \mathscr{L}$, and since both are maximized for the same set of α , it is sufficient to solve the *likelihood equation*

$$\frac{\partial \ln \mathcal{L}}{\partial \alpha_n} = 0 \ . \tag{28.6}$$

When the solution to Eq. (28.6) is a maximum, it is called the maximum likelihood estimate of α . The importance of the approach is shown by the following proposition, proved in Ref. 3:

If an efficient estimate $\hat{\alpha}$ of α exists, the likelihood equation will have a unique solution equal to $\hat{\alpha}$.

In evaluating \mathcal{L} , it is important that any normalization factors in the f's which involve α be included. However, we will only be interested in the maximum of \mathcal{L} and in ratios of \mathcal{L} at different α 's; hence any multiplicative factors which do not involve the parameters we want to estimate may be dropped; this includes factors which depend on the data but not on α . The results of two or more independent experiments may be combined by forming the product of the \mathcal{L} 's, or the sum of the $\ln \mathcal{L}$'s.

Most commonly the solution to Eq. (28.6) will be found using a general numerical minimization program such as the CERN program MINUIT [10], which contains considerable code to take account of the many special cases and problems which can arise.

Under a one-to-one change of parameters from α to $\beta = \beta(\alpha)$, the maximum likelihood estimate $\widehat{\alpha}$ transforms to $\beta(\widehat{\alpha})$. That is, the maximum likelihood solution is invariant under change of parameter. However, many properties of $\widehat{\alpha}$, in particular the bias, are not invariant under change of parameter.

28.3.2. Uses of \mathcal{L} : $\mathcal{L}(\alpha)$ is not a p.d.f. for α :

Recall the definition of a probability density function: a function $p(\alpha)$ is a p.d.f. for α if $p(\alpha)d\alpha$ is the probability for α to be within α and $\alpha + d\alpha$. The likelihood function $\mathcal{L}(\alpha)$ is not a p.d.f. for α , so in general it is nonsensical to integrate the likelihood function with respect to its parameter(s).

Consider, for example, the Poisson probability for obtaining n when sampling from a distribution with mean α : $f(n;\alpha) = \alpha^n \exp(-\alpha)/n!$. If one obtains n = 3 in a particular experiment, then

 $\mathcal{L}(\alpha) = \alpha^3 \exp(-\alpha)/6$. Nothing in the construction of \mathcal{L} makes it a probability density, i.e., a function which one can multiply by $d\alpha$ in order to obtain a probability.

In Bayesian theory, one applies Bayes' Theorem to construct the posterior p.d.f. for α by multiplying the prior p.d.f. for α by \mathcal{L} :

$$p_{\text{posterior}}(\alpha) \propto \mathcal{L}(\alpha) \times p_{\text{prior}}(\alpha)$$
.

If the prior p.d.f. is uniform, integrating the posterior p.d.f. may give the appearance of integrating \mathcal{L} . But note that the prior p.d.f. crucially provides the *density* which makes it sensible to multiply by $d\alpha$ to obtain a probability. In non-Bayesian applications, such as those considered in the following subsections, only likelihood ratios are used (or equivalently, differences in $\ln \mathcal{L}$).

Because \mathscr{L} is so useful, we strongly encourage publishing it (or enough information to allow the reader to reconstruct it), when practical.

28.3.3. Confidence intervals from the likelihood function:

The covariance matrix V may be estimated from

$$V_{nm} = \left(E \left[-\frac{\partial^2 \ln \mathcal{L}}{\partial \alpha_n \partial \alpha_m} \Big|_{\widehat{\sigma}} \right] \right)^{-1} . \tag{28.7}$$

(Here and below, the superscript -1 indicates matrix inversion, followed by application of the subscripts.)

In the large sample case (or a linear model with Gaussian errors), $\mathscr L$ is Gaussian, $\ln \mathscr L$ is a (multidimensional) parabola, and the second derivative in Eq. (28.7) is constant, so the "expectation" operation has no effect. This leads to the usual approximation of calculating the error matrix of the parameters by inverting the second derivative matrix of $\ln \mathscr L$. In this asymptotic case, it can be seen that a numerically equivalent way of determining s-standard-deviation errors is from the contour given by the α' such that

$$\ln \mathcal{L}(\alpha') = \ln \mathcal{L}_{\max} - s^2/2 , \qquad (28.8)$$

where $\ln \mathcal{L}_{\max}$ is the value of $\ln \mathcal{L}$ at the solution point (compare with Eq. (28.32), below). The extreme limits of this contour parallel to the α_n axis give an approximate s-standard-deviation confidence interval in α_n . These intervals may not be symmetric and in pathological cases they may even consist of two or more disjoint intervals.

Although asymptotically Eq. (28.7) is equivalent to Eq. (28.8) with s=1, the latter is a better approximation when the model deviates from linearity. This is because Eq. (28.8) is invariant with respect to even a non-linear transformation of parameters α , whereas Eq. (28.7) is not. Still, when the model is non-linear or errors are not Gaussian, confidence intervals obtained with both these formulas are only approximate. The true coverage of these confidence intervals can always be determined by a Monte Carlo simulation, or exact confidence intervals can be determined as in Sec. 28.6.1.

28.3.4. Application to Poisson-distributed data:

In the case of Poisson-distributed data in a counting experiment, the unbinned maximum likelihood method (where the index i in Eq. (28.5) labels events) is preferred if the total number of events is very small. (Sometimes it is "extended" to include the total number of events as a Poisson-distributed observable.) If there are enough events to justify binning them in a histogram, then one may alternatively maximize the likelihood function for the contents of the bins (so i labels bins). This is equivalent to minimizing [11]

$$\chi^{2} = \sum_{i} \left[2(N_{i}^{\text{th}} - N_{i}^{\text{obs}}) + 2N_{i}^{\text{obs}} \ln(N_{i}^{\text{obs}}/N_{i}^{\text{th}}) \right]. \tag{28.9}$$

where N_i^{obs} and N_i^{th} are the observed and theoretical (from f) contents of the ith bin. In bins where $N_i^{\text{obs}} = 0$, the second term is zero. This function asymptotically behaves like a classical χ^2 for purposes of point estimation, interval estimation, and goodness-of-fit. It also guarantees that the area under the fitted function f is equal to the sum of the histogram contents (as long as the overall normalization of f is effectively left unconstrained during the fit), which is not the case for χ^2 statistics based on a least-squares procedure with traditional weights.

28.4. Propagation of errors

Suppose that $F(x; \alpha)$ is some function of variable(s) x and the fitted parameters α , with a value \hat{F} at $\hat{\alpha}$. The variance matrix of the parameters is V_{mn} . To first order in $\alpha_m - \hat{\alpha}_m$, F is given by

$$F = \widehat{F} + \sum_{m} \frac{\partial F}{\partial \alpha_{m}} (\alpha_{m} - \widehat{\alpha}_{m}) , \qquad (28.10)$$

and the variance of F about its estimator is given by

$$(\Delta F)^2 = E[(F - \widehat{F})^2] = \sum_{mn} \frac{\partial F}{\partial \alpha_m} \frac{\partial F}{\partial \alpha_n} V_{mn} , \qquad (28.11)$$

evaluated at the x of interest. For different functions ${\cal F}_j$ and ${\cal F}_k$, the covariance is

$$E[(F_j - \widehat{F}_j)(F_k - \widehat{F}_k)] = \sum_{mn} \frac{\partial F_j}{\partial \alpha_m} \frac{\partial F_k}{\partial \alpha_n} V_{mn} . \qquad (28.12)$$

If the first-order approximation is in serious error, the above results may be very approximate. \widehat{F} may be a biased estimator of F even if the $\widehat{\alpha}$ are unbiased estimators of α . Inclusion of higher-order terms or direct evaluation of F in the vicinity of $\widehat{\alpha}$ will help to reduce the bias.

28.5. Method of least squares

The method of least squares can be derived from the maximum likelihood theorem. We suppose a set of N measurements at points x_i . The *i*th measurement y_i is assumed to be chosen from a Gaussian distribution with mean $F(x_i; \alpha)$ and variance σ_i^2 . Then

$$\chi^2 = -2\ln \mathcal{L} + \text{constant} = \sum_i \frac{[y_i - F(x_i; \alpha)]^2}{\sigma_i^2} . \qquad (28.13)$$

Finding the set of parameters α which maximizes $\mathscr L$ is the same as finding the set which minimizes χ^2 .

In many practical cases one further restricts the problem to the situation in which $F(x_i; \alpha)$ is a linear function of the α_m 's,

$$F(x_i; \boldsymbol{\alpha}) = \sum_{n} \alpha_n f_n(x_i) , \qquad (28.14)$$

where the f_n are k linearly independent functions $(e.g., 1, x, x^2, ...,$ or Legendre polynomials) which are single-valued over the allowed range of x. We require $k \leq N$, and at least k of the x_i must be distinct. We wish to estimate the linear coefficients α_n . Later we will discuss the nonlinear case.

If the point errors $\epsilon_i = y_i - F(x_i; \alpha)$ are Gaussian, then the minimum χ^2 will be distributed as a χ^2 random variable with n = N - k degrees of freedom. We can then evaluate the goodnessof-fit (significance level) from Figs. 27.1 or 27.3, as per the earlier discussion. The significance level expresses the probability that a worse fit would be obtained in a large number of similar experiments under the assumptions that: (a) the model $y = \sum \alpha_n f_n$ is correct and (b) the errors ϵ_i are Gaussian and unbiased with variance σ_i^2 . If this probability is larger than an agreed-upon value (0.001, 0.01, or 0.05 are common choices), the data are consistent with the assumptions; otherwise we may want to find improved assumptions. As for the converse, most people do not regard a model as being truly inconsistent unless the probability is as low as that corresponding to four or five standard deviations for a Gaussian $(6 \times 10^{-3} \text{ or } 6 \times 10^{-5}; \text{ see Sec. 28.6.2})$. If the ϵ_i are not Gaussian, the method of least squares still gives an answer, but the goodness-of-fit test would have to be done using the correct distribution of the random variable which is still called " χ^2 ."

Minimizing χ^2 in the linear case is straightforward:

$$-\frac{1}{2}\frac{\partial \chi^2}{\partial \alpha_m} = \sum_i f_m(x_i) \left(\frac{y_i - \sum_n \alpha_n f_n(x_i)}{\sigma_i^2} \right)$$

$$= \sum_{i} \frac{y_{i} f_{m}(x_{i})}{\sigma_{i}^{2}} - \sum_{n} \alpha_{n} \sum_{i} \frac{f_{n}(x_{i}) f_{m}(x_{i})}{\sigma_{i}^{2}} . \qquad (28.15)$$

With the definitions

$$g_m = \sum_{i} y_i \ f_m(x_i) / \sigma_i^2$$
 (28.16)

and

$$V_{mn}^{-1} = \sum_{i} f_n(x_i) f_m(x_i) / \sigma_i^2 , \qquad (28.17)$$

the k-element column vector of solutions $\hat{\alpha}$, for which $\partial \chi^2/\partial \alpha_m = 0$ for all m, is given by

$$\widehat{\boldsymbol{\alpha}} = V \, \boldsymbol{q} \, . \tag{28.18}$$

With this notation, χ^2 for the special case of a linear fitting function (Eq. (28.14)) can be rewritten in the compact form

$$\chi^2 = \chi_{\min}^2 + (\alpha - \widehat{\alpha})^T V^{-1} (\alpha - \widehat{\alpha}) . \qquad (28.19)$$

Nonindependent y_i 's

Eq. (28.13) is based on the assumption that the likelihood function is the product of independent Gaussian distributions. More generally, the measured y_i 's are not independent, and we must consider them as coming from a multivariate distribution with nondiagonal covariance matrix S, as described in Sec. 27.3.3. The generalization of Eq. (28.13)

$$\chi^{2} = \sum_{jk} [y_{j} - F(x_{j}; \alpha)] S_{jk}^{-1} [y_{k} - F(x_{k}; \alpha)] . \qquad (28.20)$$

In the case of a fitting function that is linear in the parameters, one may differentiate χ^2 to find the generalization of Eq. (28.15), and with the extended definitions

$$g_m = \sum_{jk} y_j f_m(x_k) S_{jk}^{-1}$$

$$V_{mn}^{-1} = \sum_{jk} f_n(x_j) f_m(x_k) S_{jk}^{-1}$$
(28.21)

solve Eq. (28.18) for the estimators $\hat{\alpha}$.

The problem of constructing the covariance matrix S is simplified by the fact that contributions to S (not to its inverse) are additive. For example, suppose that we have three variables, all of which have independent statistical errors. The first two also have a common error resulting in a positive correlation, perhaps because a common baseline with its own statistical error (variance s^2) was subtracted from each. In addition, the second two have a common error (variance a^2), but this time the values are anticorrelated. This might happen, for example, if the sum of the two variables is a constant. Then

$$S = \begin{pmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{pmatrix} + \begin{pmatrix} s^2 & s^2 & 0 \\ s^2 & s^2 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & a^2 & -a^2 \\ 0 & -a^2 & a^2 \end{pmatrix} . \tag{28.22}$$

If unequal amounts of the common baseline were subtracted from variables 1, 2, and 3—e.g., fractions f_1 , f_2 , and f_3 , then we would have

$$S = \begin{pmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{pmatrix} + \begin{pmatrix} f_1^2 s^2 & f_1 f_2 s^2 & f_1 f_3 s^2 \\ f_1 f_2 s^2 & f_2^2 s^2 & f_2 f_3 s^2 \\ f_1 f_3 s^2 & f_2 f_3 s^2 & f_3^2 s^2 \end{pmatrix} . \tag{28.23}$$

While in general this "two-vector" representation is not possible, it underscores the procedure: Add zero-determinant correlation matrices to the matrix expressing the independent variation.

Care must be taken when fitting to correlated data, since off-diagonal contributions to χ^2 are not necessarily positive. It is even possible for all of the residuals to have the same sign.

Example: straight-line fit

For the case of a straight-line fit, $y(x) = \alpha_1 + \alpha_2 x$, one obtains, for independent measurements y_i , the following estimates of α_1 and α_2 ,

$$\widehat{\alpha}_1 = (g_1 \ \Lambda_{22} - g_2 \ \Lambda_{12})/D \ , \tag{28.24}$$

$$\widehat{\alpha}_2 = (g_2 \ \Lambda_{11} - g_1 \ \Lambda_{12})/D \ , \tag{28.25}$$

where

$$(\Lambda_{11}, \Lambda_{12}, \Lambda_{22}) = \sum (1, x_i, x_i^2) / \sigma_i^2,$$
 (28.26a)

$$(g_1, g_2) = \sum_i (1, x_i) y_i / \sigma_i^2$$
 (28.26b)

respectively, and

$$D = \Lambda_{11} \Lambda_{22} - (\Lambda_{12})^{2} . \qquad (28.27)$$

The covariance matrix of the fitted parameters is:

$$\begin{pmatrix} V_{11} & V_{12} \\ V_{12} & V_{22} \end{pmatrix} = \frac{1}{D} \begin{pmatrix} \Lambda_{22} & -\Lambda_{12} \\ -\Lambda_{12} & \Lambda_{11} \end{pmatrix} . \tag{28.28}$$

The estimated variance of an interpolated or extrapolated value of y at point x is:

$$(\widehat{y} - y_{\text{true}})^2 \Big|_{\text{est}} = \frac{1}{\Lambda_{11}} + \frac{\Lambda_{11}}{D} \left(x - \frac{\Lambda_{12}}{\Lambda_{11}} \right)^2$$
 (28.29)

28.5.1. Confidence intervals from the chisquare function:

If y is not linear in the fitting parameters α , the solution vector may have to be found by iteration. If we have a first guess α_0 , then we may expand to obtain

$$\frac{\partial \chi^2}{\partial \alpha}\Big|_{\alpha} = \frac{\partial \chi^2}{\partial \alpha}\Big|_{\alpha_0} + V_{\alpha_0}^{-1} \cdot (\alpha - \alpha_0) + \dots,$$
 (28.30)

where $\partial\chi^2/\partial\alpha$ is a vector whose mth component is $\partial\chi^2/\partial\alpha_m$, and $(V_{mn}^{-1})=\frac{1}{2}\partial^2\chi^2/\partial\alpha_m\partial\alpha_n$. (See Eqns. 28.7 and 28.17. When evaluated at $\widehat{\alpha}$, V^{-1} is the inverse of the covariance matrix.) The next iteration toward $\widehat{\alpha}$ can be obtained by setting $\partial\chi^2/\partial\alpha_m|_{\alpha}=0$ and neglecting higher-order terms:

$$\alpha = \alpha_0 - V_{\alpha_0} \cdot \partial \chi^2 / \partial \alpha |_{\alpha_0} . \tag{28.31}$$

If V is constant in the vicinity of the minimum, as it is when the model function is linear in the parameters, then χ^2 is parabolic as a function of α and Eq. (28.31) gives the solution immediately. Otherwise, further iteration is necessary. If the problem is highly nonlinear, considerable difficulty may be encountered. There may be secondary minima, and χ^2 may be decreasing at physical boundaries. Numerical methods have been devised to find such solutions without divergence [9,10]. In particular, the CERN program MINUIT [10] offers several iteration schemes for solving such problems.

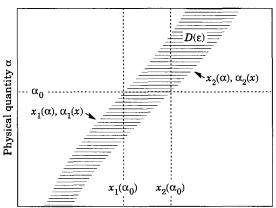
Note that minimizing any function proportional to χ^2 (or maximizing any function proportional to $\ln \mathcal{L}$) will result in the same parameter set $\widehat{\alpha}$. Hence, for example, if the variances σ_j^2 are known only up to a common constant, one can still solve for $\widehat{\alpha}$. One cannot, however, evaluate goodness-of-fit, and the covariance matrix is known only to within the constant multiplier. The scale can be estimated at least roughly from the value of χ^2 compared to its expected value.

Additional information can be extracted from the behavior of the normalized residuals (known as "pulls"), $r_j = (y_j - F(x_j; \alpha)/\sigma_j$, which should themselves distribute normally with mean 0 and rms deviation 1.

If the data covariance matrix S has been correctly evaluated (or, equivalently, the σ_j 's, if the data are independent), then the s-standard deviation limits on each of the parameters are given by a set α' such that

$$\chi^2(\alpha') = \chi^2_{\min} + s^2 \ . \tag{28.32}$$

This equation gives confidence intervals in the same sense as 28.8, and all the discussion of Sec. 28.3.3 applies as well here, substituting $-\chi^2/2$ for $\ln \mathcal{L}$.


28.6. Exact confidence intervals

The unqualified phrase "confidence intervals" refers to frequentist (also called classical) intervals obtained with a construction due to Neyman [12], described below. Approximate confidence intervals are obtained in classical statistics from likelihood ratios as described in the preceeding subsections. The validity of the approximation (in terms of coverage; see below) should be checked (typically by the Monte Carlo method) when in doubt, as is usually the case with small numbers of events.

Intervals in Bayesian statistics, usually called credible intervals or Bayesian confidence intervals, are obtained by integrating the posterior p.d.f. (based on a non-frequency definition of probability), and in many cases do not obey the defining properties of confidence intervals. Correspondingly, confidence intervals do not in general behave like credible intervals.

In the Bayesian framework, all uncertainty including systematic and theoretical uncertainties can be treated in a straightforward manner: one includes in the p.d.f. one's degree of belief about background estimates, luminosity, etc. Then one integrates out such "nuisance parameters." In the Frequentist approach, one should have exact coverage no matter what the value of the nuisance parameters, and this is not in general possible. If one performs a Bayesian-style integration over nuisance parameters while constructing nominally Frequentist intervals, then coverage must be checked.

28.6.1. Neyman's Construction of Confidence intervals:

Possible experimental values x

Figure 28.1: Confidence intervals for a single unknown parameter α . One might think of the p.d.f. $f(x;\alpha)$ as being plotted out of the paper as a function of x along each horizontal line of constant α . The domain $D(\varepsilon)$ contains a fraction $1-\varepsilon$ of the area under each of these functions.

We consider the parameter α whose true value is fixed but unknown. The properties of our experimental apparatus are expressed in the function $f(x;\alpha)$ which gives the probability of observing data x if the true value of the parameter is α . This function must be known in order to interpret the results of an experiment. For a large complex experiment, f is usually determined numerically using Monte Carlo simulation.

Given $f(x; \alpha)$, we can find for every value of α , two values $x_1(\alpha, \varepsilon)$ and $x_2(\alpha, \varepsilon)$ such that

$$P(x_1 < x < x_2; \alpha) = 1 - \varepsilon = \int_{x_1}^{x_2} f(x; \alpha) dx. \qquad (28.33)$$

This is shown graphically in Fig. 28.1: a horizontal line segment $[x_1(\alpha,\varepsilon),x_2(\alpha,\varepsilon)]$ is drawn for representative values of α . The union of all intervals $[x_1(\alpha,\varepsilon),x_2(\alpha,\varepsilon)]$, designated in the figure as the domain $D(\varepsilon)$, is known as the *confidence belt*. Typically the curves $x_1(\alpha,\varepsilon)$ and $x_2(\alpha,\varepsilon)$ are monotonic functions of α , which we assume for this discussion.

Upon performing an experiment to measure x and obtaining the value x_0 , one draws a vertical line through x_0 on the horizontal axis.

The confidence interval for α is the union of all values of α for which the corresponding line segment $[x_1(\alpha,\varepsilon),x_2(\alpha,\varepsilon)]$ is intercepted by this vertical line. The confidence interval is an interval $[\alpha_1(x_0),\alpha_2(x_0)]$, where $\alpha_1(x_0)$ and $\alpha_2(x_0)$ are on the boundary of $D(\varepsilon)$. Thus, the boundaries of $D(\varepsilon)$ can be considered to be functions $x(\alpha)$ when constructing D, and then to be functions $\alpha(x)$ when reading off confidence intervals.

Such confidence intervals are said to have Confidence Level (CL) equal to $1-\varepsilon$.

Now suppose that some unknown particular value of α , say α_0 (indicated in the figure), is the true value of α . We see from the figure that α_0 lies between $\alpha_1(x)$ and $\alpha_2(x)$ if and only if x lies between $x_1(\alpha_0)$ and $x_2(\alpha_0)$. Thus we can write:

$$P[x_1(\alpha_0) < x < x_2(\alpha_0)] = 1 - \varepsilon = P[\alpha_2(x) < \alpha_0 < \alpha_1(x)].$$
 (28.34)

And since, by construction, this is true for any value α_0 , we can drop the subscript 0 and obtain the relationship we wanted to establish for the probability that the confidence limits will contain the true value of α :

$$P[\alpha_2(x) < \alpha < \alpha_1(x)] = 1 - \varepsilon . \tag{28.35}$$

In this probability statement, α_1 and α_2 are the random variables (not α), and we can verify that the statement is true, as a limiting ratio of frequencies in random experiments, for any assumed value of α . In a particular real experiment, the numerical values α_1 and α_2 are determined by applying the algorithm to the real data, and the probability statement is (all too frequently) misinterpreted to be a statement about the true value α since this is the only unknown remaining in the equation. It should however be interpreted as the probability of obtaining values α_1 and α_2 which include the true value of α , in an ensemble of identical experiments. Any method which gives confidence intervals that contain the true value with probability $1-\varepsilon$ (no matter what the true value of α is) is said to have the correct coverage. The frequentist intervals as constructed above have the correct coverage by construction. Coverage is a critical property of confidence intervals [2]. (Power to exclude false values of α , related to the length of the intervals in a relevant measure, is also important.)

The condition of coverage Eq. (28.33) does not determine x_1 and x_2 uniquely, since any range which gives the desired value of the integral would give the same coverage. Additional criteria are thus needed. The most common criterion is to choose central intervals such that the area of the excluded tail on either side is $\varepsilon/2$. This criterion is sufficient in most cases, but there is a more general ordering principle which reduces to centrality in the usual cases and produces confidence intervals with better properties when in the neighborhood of a physical limit. This ordering, which consists of taking the interval which includes the largest values of a likelihood ratio, is briefly outlined in Ref. 3 and has been applied to prototypical problems by Feldman and Cousins [13].

For the problem of a counting rate experiment in the presence of background, Roe and Woodroofe [14] have proposed a modification to Ref. 13 incorporating conditioning, i.e., conditional probabilities computed using constraints on the number of background events actually observed. This and other prescriptions giving frequentist intervals have not yet been fully explored [5].

28.6.2. Gaussian errors:

If the data are such that the distribution of the estimator(s) satisfies the central limit theorem discussed in Sec. 27.3.3, the function $f(x;\alpha)$ is the Gaussian distribution. If there is more than one parameter being estimated, the multivariate Gaussian is used. For the univariate case with known σ ,

$$1 - \varepsilon = \int_{\mu - \delta}^{\mu + \delta} e^{\frac{-(x - \mu)^2}{2\sigma^2}} dx = \operatorname{erf}\left(\frac{\delta}{\sqrt{2}\sigma}\right)$$
 (28.36)

is the probability that the measured value x will fall within $\pm \delta$ of the true value μ . From the symmetry of the Gaussian with respect to x and μ , this is also the probability that the true value will be within

Table 28.1: Area of the tails ε outside $\pm \delta$ from the mean of a Gaussian distribution.

ε (%)	δ	$\varepsilon~(\%)$	δ
31.73	1σ	20	1.28σ
4.55	2σ	10	1.64σ
0.27	3σ	5	1.96σ
6.3×10^{-3}	4σ	1	2.58σ
5.7×10^{-5}	5σ	0.1	3.29σ
2.0×10^{-7}	6σ	0.01	3.89σ

 $\pm\delta$ of the measured value. Fig. 28.2 shows a $\delta=1.64\sigma$ confidence interval unshaded. The choice $\delta=\sqrt{\mathrm{Var}(\mu)}\equiv\sigma$ gives an interval called the *standard error* which has $1-\varepsilon=68.27\%$ if σ is known. Confidence coefficients ε for other frequently used choices of δ are given in Table 28.1.

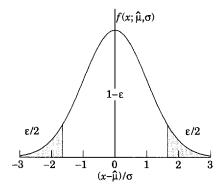


Figure 28.2: Illustration of a symmetric 90% confidence interval (unshaded) for a measurement of a single quantity with Gaussian errors. Integrated probabilities, defined by ε , are as shown.

For other δ , find ε as the ordinate of Fig. 27.1 on the n=1 curve at $\chi^2=(\delta/\sigma)^2$. We can set a one-sided (upper or lower) limit by excluding above $\mu+\delta$ (or below $\mu-\delta$); ε 's for such limits are 1/2 the values in Table 28.1.

For multivariate α the scalar $\mathrm{Var}(\mu)$ becomes a full variance-covariance matrix. Assuming a multivariate Gaussian, Eq. (27.22), and subsequent discussion the standard error ellipse for the pair $(\widehat{\alpha}_m, \widehat{\alpha}_n)$ may be drawn as in Fig. 28.3.

The minimum χ^2 or maximum likelihood solution is at $(\widehat{\alpha}_m, \widehat{\alpha}_n)$. The standard errors σ_m and σ_n are defined as shown, where the ellipse is at a constant value of $\chi^2 = \chi^2_{\min} + 1$ or $\ln \mathcal{L} = \ln \mathcal{L}_{\max} - 1/2$. The angle of the major axis of the ellipse is given by

$$\tan 2\phi = \frac{2\rho_{mn} \sigma_m \sigma_n}{\sigma_m^2 - \sigma_n^2} . \qquad (28.37)$$

For non-Gaussian or nonlinear cases, one may construct an analogous contour from the same χ^2 or $\ln \mathcal{L}$ relations. Any other parameters $\widehat{\alpha}_\ell, \ell \neq m, n$ must be allowed freely to find their optimum values for every trial point.

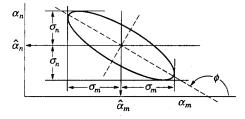


Figure 28.3: Standard error ellipse for the estimators $\widehat{\alpha}_m$ and $\widehat{\alpha}_n$. In this case the correlation is negative.

Table 28.2: $\Delta \chi^2$ corresponding to $(1 - \varepsilon)$, for joint estimation of k parameters.

$(1-\varepsilon)$ (%)	k=1	k = 2	k=3
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

For any unbiased procedure (e.g., least squares or maximum likelihood) used to estimate k parameters $\alpha_i,\ i=1,\ldots,k$, the probability $1-\varepsilon$ that the true values of all k parameters lie within an ellipsoid bounded by a fixed value of $\Delta\chi^2=\chi^2-\chi^2_{\min}$ may be found from Fig. 27.1. This is because the difference, $\Delta\chi^2=\chi^2-\chi^2_{\min}$, obeys the " χ^2 " p.d.f. given in Table 27.1, if the parameter n in the formula is taken to be k (rather than degrees-of-freedom in the fit). In Fig. 27.1, read the ordinate as ε and the abscissa as $\Delta\chi^2$. The correct values of ε are on the n=k curve. For k>1, the values of ε for given $\Delta\chi^2$ are much greater than for k=1. Hence, using $\Delta\chi^2=s^2$, which gives s-standard-deviation errors on a single parameter (irrespective of the other parameters), is not appropriate for a multi-dimensional ellipsoid. For example, for k=2, the probability $(1-\varepsilon)$ that the true values of α_1 and α_2 simultaneously lie within the one-standard-deviation error ellipse (s=1), centered on $\widehat{\alpha}_1$ and $\widehat{\alpha}_2$, is only 39%.

Values of $\Delta\chi^2$ corresponding to commonly used values of ε and k are given in Table 28.2. These probabilities assume Gaussian errors, unbiased estimators, and that the model describing the data in terms of the α_i is correct. When these assumptions are not satisfied, a Monte Carlo simulation is typically performed to determine the relation between $\Delta\chi^2$ and ε .

28.6.3. Upper limits and two-sided intervals:

When a measured value is close to a physical boundary, it is natural to report a one-sided confidence interval (often an upper limit). It is straightforward to force the procedure of Sec. 28.6.1 to produce only an upper limit, by setting $x_2 = \infty$ in Eq. (28.33). Then x_1 is uniquely determined. Clearly this procedure will have the desired coverage, but only if we always choose to set an upper limit. In practice one might decide after seeing the data whether to set an upper limit or a two-sided limit. In this case the upper limits calculated by Eq. (28.33) will not give exact coverage, as has been noted in Ref. 13.

In order to correct this problem and assure coverage in all circumstances, it is necessary to adopt a *unified procedure*, that is, a single ordering principle which will provide coverage globally. Then it is the *ordering principle* which decides whether a one-sided or two-sided interval will be reported for any given set of data. The unified procedure and ordering principle which follows from the theory of likelihood-ratio tests [3] is described in Ref. 13. We reproduce below the main results.

28.6.4. Gaussian data close to a boundary:

One of the most controversial statistical questions in physics is how to report a measurement which is close to the edge or even outside of the allowed physical region. This is because there are several admissible possibilities depending on how the result is to be used or interpreted. Normally one or more of the following should be reported:

(a) The actual measurement should be reported, even if it is outside the physical region. As with any other measurement, it is best to report the value of a quantity which is nearly Gaussian distributed if possible. Thus one may choose to report mass squared rather than mass, or $\cos\theta$ rather than θ . For a complex quantity z close to zero, report Re(z) and Im(z) rather than amplitude and phase of z. Data carefully reported in this way can be unbiased, objective, easily interpreted and combined (averaged) with other data in a straightforward way, even if they lie partly or wholly outside the physical region. The reported error is a direct measure of the intrinsic accuracy of the result, which cannot always be inferred from the upper limits proposed below.

- (b) If the data are to be used to make a decision, for example to determine the dimensions of a new experimental apparatus for an improved measurement, it may be appropriate to report a Bayesian upper limit, which must necessarily contain subjective belief about the possible values of the parameter, as well as containing information about the physical boundary. Its interpretation requires knowledge of the prior distribution which was necessarily used to obtain it.
- (c) If it is desired to report an upper limit that has a well-defined meaning in terms of a limiting frequency, then report the Frequentist confidence bound(s) as given by the unified approach [3], [13]. This algorithm always gives a non-null interval (that is, the confidence limits are always inside the physical region, even for a measurement well outside the physical region), and still has correct global coverage. These confidence limits for a Gaussian measurement close to a non-physical boundary are summarized in Fig. 28.4. Additional tables are given in Ref. 13.

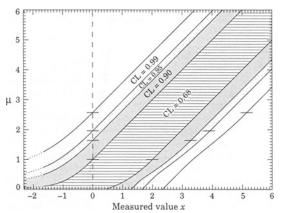


Figure 28.4: Plot of 99%, 95%, 90%, and 68.27% ("one σ ") confidence intervals (using the unified approach as in Ref. 13) for a physical quantity μ based on a Gaussian measurement x (in units of standard deviations), for the case where the true value of μ cannot be negative. The curves become straight lines above the horizontal tick marks. The probability of obtaining an experimental value at least as negative as the left edge of the graph (x=-2.33) is less than 1%. Values of x more negative than -1.64 (dotted segments) are less than 5% probable, no matter what the true value of μ .

28.6.5. Poisson data for small samples:

When the observable is restricted to integer values (as in the case of Poisson and binomial distributions), it is not generally possible to construct confidence intervals with exact coverage for all values of α . In these cases the integral in Eq. (28.33) becomes a sum of finite contributions and it is no longer possible (in general) to find consecutive terms which add up exactly to the required confidence level $1-\varepsilon$ for all values of α . Thus one constructs intervals which happen to have exact coverage for a few values of α , and unavoidable over-coverage for all other values.

In addition to the problem posed by the discreteness of the data, we usually have to contend with possible background whose expectation must be evaluated separately and may not be known precisely. For these reasons, the reporting of this kind of data is even more controversial than the Gaussian data near a boundary as discussed above. This is especially true when the number of observed counts is greater than the expected background. As for the Gaussian case, there are at least three possibilities for reporting such results depending on how the result is to be used:

(a) The actual measurements should be reported, which means (1) the number of recorded counts, (2) the expected background, possibly with its error, and (3) normalization factor which turns the number of counts into a cross section, decay rate, etc. As with Gaussian data, these data can be combined with that of other experiments, to make improved upper limits for example.

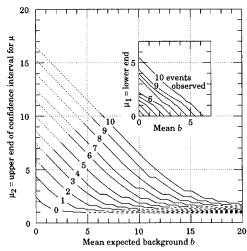


Figure 28.5: 90% confidence intervals $[\mu_1, \mu_2]$ on the number of signal events as a function of the expected number of background events b. For example, if the expected background is 8 events and 5 events are observed, then the signal is 2.60 or less with 90% confidence. Dotted portions of the μ_2 curves on the upper left indicate regions where μ_1 is non-zero (as shown by the inset). Dashed portions in the lower right indicate regions where the probability of obtaining the number of events observed or fewer is less than 1%, even if $\mu=0$. Horizontal curve sections occur because of discrete number statistics. Tables showing these data as well as the CL = 68.27%, 95%, and 99% results are given in Ref. 13. There is considerable discussion about the behavior of the intervals when the number of observed events is less than the expected background; see Ref. 5

- (b) A Bayesian upper limit may be reported. This has the advantages and disadvantages of any Bayesian result as discussed above. The noninformative priors (based on invariance principles rather than subjective degree of belief) recommended in the statistics literature for Poisson mean are rarely, if at all, used in high energy physics; they diverge for the case of zero events observed, and they give upper limits which undercover when evaluated by the Frequentist criterion of coverage. Rather, priors uniform in the counting rate have been used by convention; care must be used in interpreting such results either as "degree of belief" or as a limiting frequency.
- (c) An upper limit (or confidence region) with optimal coverage can be reported using the unified approach of Ref. 13. At the moment these confidence limits have been calculated only for the case of exactly known background expectation. The main results can be read from Fig. 28.5 or from Table 28.3; more extensive tables can be found in Ref. 13.

Table 28.3: Poisson limits $[\mu_1, \mu_2]$ for n_0 observed events in the absence of background.

	CI = 90%	CI = 95%			
$\overline{n_0}$	μ_1	μ_2	μ_1	μ_2	
0	0.00	2.44	0.00	3.09	
1	0.11	4.36	0.05	5.14	
2	0.53	5.91	0.36	6.72	
3	1.10	7.42	0.82	8.25	
4	1.47	8.60	1.37	9.76	
5	1.84	9.99	1.84	11.26	
6	2.21	11.47	2.21	12.75	
7	3.56	12.53	2.58	13.81	
8	3.96	13.99	2.94	15.29	
9	4.36	15.30	4.36	16.77	
10	5.50	16.50	4.75	17.82	

None of the above gives a single number which quantifies the quality or sensitivity of the experiment. This is a serious shortcoming of most upper limits including those of method (c), since it is impossible to distinguish, from the upper limit alone, between a clean experiment with no background and a lucky experiment with fewer observed counts than expected background. For this reason, we suggest that in addition to (a) and (c) above, a measure of the sensitivity should be reported whenever expected background is larger or comparable to the number of observed counts. The best such measure we know of is that proposed and tabulated in Ref. 13, defined as the average upper limit that would be attained by an ensemble of experiments with the expected background and no true signal.

References:

- 1. B. Efron, Am. Stat. 40, 11 (1986).
- 2. R.D. Cousins, Am. J. Phys. 63, 398 (1995).
- A. Stuart and A. K. Ord, Kendall's Advanced Theory of Statistics, Vol. 2 Classical Inference and Relationship 5th Ed., (Oxford Univ. Press, 1991), and earlier editions by Kendall and Stuart. The likelihood-ratio ordering principle is described at the beginning of Ch. 23. Chapter 31 compares different schools of statistical inference.
- W.T. Eadie, D. Drijard, F.E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics (North Holland, Amsterdam and London, 1971).
- Workshop on Confidence Limits, CERN, 17-18 Jan. 2000, www.cern.ch/CERN/Divisions/EP/Events/CLW/. See also the later Fermilab workshop linked to the CERN web page.
- H. Cramér, Mathematical Methods of Statistics, Princeton Univ. Press, New Jersey (1958).
- B.P. Roe, Probability and Statistics in Experimental Physics, (Springer-Verlag, New York, 208 pp., 1992).
- G. Cowan, Statistical Data Analysis (Oxford University Press, Oxford, 1998).
- W.H. Press et al., Numerical Recipes (Cambridge University Press, New York, 1986).
- F. James and M. Roos, "MINUIT, Function Minimization and Error Analysis," CERN D506 (Long Writeup). Available from the CERN Program Library Office, CERN-IT Division, CERN, CH-1211, Geneva 21, Switzerland.
- For a review, see S. Baker and R. Cousins, Nucl. Instrum. Methods 221, 437 (1984).
- J. Neyman, Phil. Trans. Royal Soc. London, Series A, 236, 333 (1937), reprinted in A Selection of Early Statistical Papers on J. Neyman (University of California Press, Berkeley, 1967).
- 13. G.J. Feldman and R.D. Cousins, Phys. Rev. **D57**, 3873 (1998). This paper does not specify what to do if the ordering principle gives equal rank to some values of x. Eq. 23.6 of Ref. 3 gives the rule: all such points are included in the acceptance region (the domain $D(\varepsilon)$). Some authors have assumed the contrary, and shown that one can then obtain null intervals.
- 14. B.P. Roe and M.B. Woodroofe, Phys. Rev. D60, 053009 (1999).

29. MONTE CARLO TECHNIQUES

Revised July 1995 by S. Youssef (SCRI, Florida State University). Updated February 2000 by R. Cousins (UCLA) in consultation with F. James (CERN).

Monte Carlo techniques are often the only practical way to evaluate difficult integrals or to sample random variables governed by complicated probability density functions. Here we describe an assortment of methods for sampling some commonly occurring probability density functions.

29.1. Sampling the uniform distribution

Most Monte Carlo sampling or integration techniques assume a "random number generator" which generates uniform statistically independent values on the half open interval [0,1). There is a long history of problems with various generators on a finite digital computer, but recently, the RANLUX generator [1] has emerged with a solid theoretical basis in chaos theory. Based on the method of Lüscher, it allows the user to select different quality levels, trading off quality with speed.

Other generators are also available which pass extensive batteries of tests for statistical independence and which have periods which are so long that, for practical purposes, values from these generators can be considered to be uniform and statistically independent. In particular, the lagged-Fibonacci based generator introduced by Marsaglia, Zaman, and Tsang [2] is efficient, has a period of approximately 10^{43} , produces identical sequences on a wide variety of computers and, passes the extensive "DIEHARD" battery of tests [3]. Many commonly available congruential generators fail these tests and often have sequences (typically with periods less than 2^{32}) which can be easily exhausted on modern computers and should therefore be avoided [4].

29.2. Inverse transform method

If the desired probability density function is f(x) on the range $-\infty < x < \infty$, its cumulative distribution function (expressing the probability that $x \leq a$) is given by Eq. (27.1). If a is chosen with probability density f(a), then the integrated probability up to point a, F(a), is itself a random variable which will occur with uniform probability density on [0,1]. If x can take on any value, and ignoring the endpoints, we can then find a unique x chosen from the p.d.f. f(s) for a given u if we set

$$u = F(x) , (29.1)$$

provided we can find an inverse of F, defined by

$$x = F^{-1}(u) . (29.2)$$

This method is shown in Fig. 29.1a. It is most convenient when one can calculate by hand the inverse function of the indefinite integral of f. This is the case for some common functions f(x) such as $\exp(x)$, $(1-x)^n$, and $1/(1+x^2)$ (Cauchy or Breit-Wigner), although it does not necessarily produce the fastest generator. CERNLIB contains routines to implement this method numerically, working from functions or histograms.

For a discrete distribution, F(x) will have a discontinuous jump of size $f(x_k)$ at each allowed $x_k, k = 1, 2, \cdots$. Choose u from a uniform distribution on (0,1) as before. Find x_k such that

$$F(x_{k-1}) < u \le F(x_k) \equiv \text{Prob}(x \le x_k) = \sum_{i=1}^k f(x_i);$$
 (29.3)

then x_k is the value we seek (note: $F(x_0) \equiv 0$). This algorithm is illustrated in Fig. 29.1b.

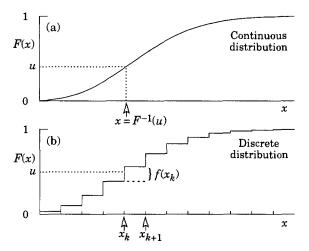


Figure 29.1: Use of a random number u chosen from a uniform distribution (0,1) to find a random number x from a distribution with cumulative distribution function F(x).

29.3. Acceptance-rejection method (Von Neumann)

Very commonly an analytic form for F(x) is unknown or too complex to work with, so that obtaining an inverse as in Eq. (29.2) is impractical. We suppose that for any given value of x the probability density function f(x) can be computed and further that enough is known about f(x) that we can enclose it entirely inside a shape which is C times an easily generated distribution h(x) as illustrated in Fig. 29.2.

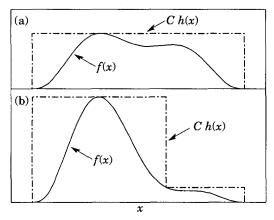


Figure 29.2: Illustration of the acceptance-rejection method. Random points are chosen inside the upper bounding figure, and rejected if the ordinate exceeds f(x). Lower figure illustrates importance sampling.

Frequently h(x) is uniform or is a normalized sum of uniform distributions. Note that both f(x) and h(x) must be normalized to unit area and therefore the proportionality constant C>1. To generate f(x), first generate a candidate x according to h(x). Calculate f(x) and the height of the envelope C h(x); generate u and test if $uC h(x) \leq f(x)$. If so, accept x; if not reject x and try again. If we regard x and uC h(x) as the abscissa and ordinate of a point in a two-dimensional plot, these points will populate the entire area C h(x) in a smooth manner; then we accept those which fall under f(x). The efficiency is the ratio of areas, which must equal 1/C; therefore we must keep C as close as possible to 1.0. Therefore we try to choose C h(x) to be as close to f(x) as convenience dictates, as in the lower part of Fig. 29.2. This practice is called importance sampling, because we generate more trial values of x in the region where f(x) is most important.

29.4. Algorithms

Algorithms for generating random numbers belonging to many different distributions are given by Press [5], Ahrens and Dieter [6], Rubinstein [7], Everett and Cashwell [8], Devroye [9], and Walck [10]. For many distributions alternative algorithms exist, varying in complexity, speed, and accuracy. For time-critical applications, these algorithms may be coded in-line to remove the significant overhead often encountered in making function calls. Variables named "u" are assumed to be independent and uniform on (0,1). (Hence, u must be verified to be non-zero where relevant.)

In the examples given below, we use the notation for the variables and parameters given in Table 27.1.

29.4.1. Exponential decay:

This is a common application of the inverse transform method, also using the fact that (1-u) is uniform if u is uniform. To generate decays between times t_1 and t_2 according to $f(t) = \exp(-t/\tau)$: let $r_2 = \exp(-t_2/\tau)$ and $r_1 = \exp(-t_1/\tau)$; generate u and let

$$t = -\tau \ln(r_2 + u(r_1 - r_2)). \tag{29.4}$$

For $(t_1, t_2) = (0, \infty)$, we have simply $t = -\tau \ln u$. (See also Sec. 29.4.6.)

29.4.2. Isotropic direction in 3D:

Isotropy means the density is proportional to solid angle, the differential element of which is $d\Omega = d(\cos\theta)d\phi$. Hence $\cos\theta$ is uniform $(2u_1-1)$ and ϕ is uniform $(2\pi u_2)$. For alternative generation of $\sin\phi$ and $\cos\phi$, see the next subsection.

29.4.3. Sine and cosine of random angle in 2D:

Generate u_1 and u_2 . Then $v_1=2u_1-1$ is uniform on (-1,1), and $v_2=u_2$ is uniform on (0,1). Calculate $r^2=v_1^2+v_2^2$. If $r^2>1$, start over. Otherwise, the sine (S) and cosine (C) of a random angle are given by

$$S = 2v_1v_2/r^2$$
 and $C = (v_1^2 - v_2^2)/r^2$. (29.5)

29.4.4. Gaussian distribution:

If u_1 and u_2 are uniform on (0,1), then

$$z_1 = \sin 2\pi u_1 \sqrt{-2\ln u_2}$$
 and $z_2 = \cos 2\pi u_1 \sqrt{-2\ln u_2}$ (29.6)

are independent and Gaussian distributed with mean 0 and $\sigma = 1$.

There are many faster variants of this basic algorithm. For example, construct $v_1=2u_1-1$ and $v_2=2u_2-1$, which are uniform on (-1,1). Calculate $r^2=v_1^2+v_2^2$, and if $r^2>1$ start over. If $r^2<1$, it is uniform on (0,1). Then

$$z_1 = v_1 \sqrt{\frac{-2 \ln r^2}{r^2}}$$
 and $z_2 = v_2 \sqrt{\frac{-2 \ln r^2}{r^2}}$ (29.7)

are independent numbers chosen from a normal distribution with mean 0 and variance 1. $z_i' = \mu + \sigma z_i$ distributes with mean μ and variance σ^2 .

A recent implementation of the fast algorithm of Leva Ref. 11 is in CERNLIB.

For a multivariate Gaussian, see the algorithm in Ref. 12.

29.4.5. $\chi^2(n)$ distribution:

For n even, generate n/2 uniform numbers u_i ; then

$$y = -2 \ln \left(\prod_{i=1}^{n/2} u_i \right)$$
 is $\chi^2(n)$. (29.8)

For n odd, generate (n-1)/2 uniform numbers u_i and one Gaussian z as in Sec. 29.4.4; then

$$y = -2 \ln \left(\prod_{i=1}^{(n-1)/2} u_i \right) + z^2 \quad \text{is} \quad \chi^2(n) \ .$$
 (29.9)

For $n\gtrsim 30$ the much faster Gaussian approximation for the χ^2 may be preferable: generate z as in Sec. 29.4.4 and use $y=\left\lceil z+\sqrt{2n-1}\right\rceil^2/2$; if $z<-\sqrt{2n-1}$ reject and start over.

29.4.6. Gamma distribution:

All of the following algorithms are given for $\lambda = 1$. For $\lambda \neq 1$, divide the resulting random number x by λ .

- If k = 1 (the exponential distribution), accept $x = -(\ln u)$. (See also Sec. 29.4.1.)
- If 0 < k < 1, initialize with $v_1 = (e + k)/e$ (with e = 2.71828... being the natural log base). Generate u_1 , u_2 . Define $v_2 = v_1u_1$.

Case 1: $v_2 \le 1$. Define $x = v_1^{1/k}$. If $u_2 \le e^{-x}$, accept x and stop, else restart by generating new u_1, u_2 .

Case 2: $v_2 > 1$. Define $x = -\ln([v_1 - v_2]/k)$. If $u_2 \le x^{k-1}$, accept x and stop, else restart by generating new u_1, u_2 . Note that, for k < 1, the probability density has a pole at x = 0, so that return values of zero due to underflow must be accepted or otherwise dealt with.

• Otherwise, if k > 1, initialize with c = 3k - 0.75. Generate u_1 and compute $v_1 = u_1(1 - u_1)$ and $v_2 = (u_1 - 0.5)\sqrt{c/v_1}$. If $x = k + v_2 - 1 \le 0$, go back and generate new u_1 ; otherwise generate u_2 and compute $v_3 = 64v_1^3u_2^2$. If $v_3 \le 1 - 2v_2^2/x$ or if $\ln v_3 \le 2\{[k-1]\ln[x/(k-1)] - v_2\}$, accept x and stop; otherwise go back and generate new u_1 .

29.4.7. Binomial distribution:

If $p \leq 1/2$, iterate until a successful choice is made: begin with k=1; compute $P_k=q^n$ [for $k\neq 1$ use $P_k\equiv f(r_k;n,p)$, and store P_k into B; generate u. If $u\leq B$ accept $r_k=k-1$ and stop; otherwise increment k by 1 and compute next P_k and add to B; generate a new u and repeat. If we arrive at k=n+1, stop and accept $r_{n+1}=n$. If p>1/2 it will be more efficient to generate r from f(r;n,q), i.e., with p and q interchanged, and then set $r_k=n-r$.

29.4.8. Poisson distribution:

Iterate until a successful choice is made: Begin with k=1 and set A=1 to start. Generate u. Replace A with uA; if now $A<\exp(-\mu)$, where μ is the Poisson parameter, accept $n_k=k-1$ and stop. Otherwise increment k by 1, generate a new u and repeat, always starting with the value of A left from the previous try. For large $\mu(\gtrsim 10)$ it may be satisfactory (and much faster) to approximate the Poisson distribution by a Gaussian distribution (see our Probability chapter, Sec. 27.3.3) and generate z from f(z;0,1); then accept $x=\max(0,[\mu+z\sqrt{\mu}+0.5])$ where $[\]$ signifies the greatest integer \le the expression. [13]

29.4.9. Student's t distribution:

For n>0 degrees of freedom (n not necessarily integer), generate x from a Gaussian with mean 0 and $\sigma^2=1$ according to the method of 29.4.4. Next generate y, an independent gamma random variate with k=n/2 degrees of freedom. Then $z=x\sqrt{2n}/\sqrt{y}$ is distributed as a t with n degrees of freedom.

For the special case n=1, the Breit-Wigner distribution, generate u_1 and u_2 ; set $v_1=2u_1-1$ and $v_2=2u_2-1$. If $v_1^2+v_2^2\leq 1$ accept $z=v_1/v_2$ as a Breit-Wigner distribution with unit area, center at 0.0, and FWHM 2.0. Otherwise start over. For center M_0 and FWHM Γ , use $W=z\Gamma/2+M_0$.

References:

- F. James, Comp. Phys. Comm. 79 111 (1994), based on M. Lüscher, Comp. Phys. Comm. 79 100 (1994). This generator is available as the CERNLIB routine V115, RANLUX.
- G. Marsaglia, A. Zaman, and W.W. Tsang, Towards a Universal Random Number Generator, Supercomputer Computations Research Institute, Florida State University technical report FSU-SCRI-87-50 (1987). This generator is available as the CERNLIB routine V113, RANMAR, by F. Carminati and F. James.
- Much of DIEHARD is described in: G. Marsaglia, A Current View of Random Number Generators, keynote address, Computer Science and Statistics: 16th Symposium on the Interface, Elsevier (1985).

- 4. Newer generators with periods even longer than the lagged-Fibonacci based generator are described in G. Marsaglia and A. Zaman, Some Portable Very-Long-Period Random Number Generators, Compt. Phys. 8, 117 (1994). The Numerical Recipes generator ran2 [W.H. Press and S.A. Teukolsky, Portable Random Number Generators, Compt. Phys. 6, 521 (1992)] is also known to pass the DIEHARD tests.
- W.H. Press et al., Numerical Recipes (Cambridge University Press, New York, 1986).
- 6. J.H. Ahrens and U. Dieter, Computing 12, 223 (1974).
- R.Y. Rubinstein, Simulation and the Monte Carlo Method (John Wiley and Sons, Inc., New York, 1981).

- C.J. Everett and E.D. Cashwell, A Third Monte Carlo Sampler, Los Alamos report LA-9721-MS (1983).
- L. Devroye, Non-Uniform Random Variate Generation (Springer-Verlag, New York, 1986).
- Ch. Walck, Random Number Generation, University of Stockholm Physics Department Report 1987-10-20 (Vers. 3.0).
- J.L. Leva, ACM Trans. Math. Softw. 18 449 (1992). This generator has been implemented by F. James in the CERNLIB routine V120, RNORML.
- 12. F. James, Rept. on Prog. in Phys. 43, 1145 (1980).
- This generator has been implemented by D. Drijard and K. Kölbig in the CERNLIB routine V136, RNPSSN.

30. MONTE CARLO PARTICLE NUMBERING SCHEME

Revised April 2000 by L. Garren (Fermilab), I.G. Knowles (Edinburgh U.), T. Sjöstrand (Lund U.), and T. Trippe (LBNL).

The Monte Carlo particle numbering scheme presented here is intended to facilitate interfacing between event generators, detector simulators, and analysis packages used in particle physics. The numbering scheme was introduced in 1988 [1] and a revised version [2,3] was adopted in 1998 in order to allow systematic inclusion of quark model states which are as yet undiscovered and hypothetical particles such as SUSY particles. The numbering scheme is used in several event generators, e.g. HERWIG and PYTHIA/JETSET, and in the /HEPEVT/ [4] standard interface.

The general form is a 7-digit number:

$$\pm n \; n_r \; n_L \; n_{q_1} \; n_{q_2} \; n_{q_3} \; n_J \; .$$

This encodes information about the particle's spin, flavor content, and internal quantum numbers. The details are as follows:

- 1. Particles are given positive numbers, antiparticles negative numbers. The PDG convention for mesons is used, so that K^+ and B^+ are particles.
- 2. Quarks and leptons are numbered consecutively starting from 1 and 11 respectively; to do this they are first ordered by family and within families by weak isospin.
- 3. In composite quark systems (diquarks, mesons, and baryons) $n_{q_{1-3}}$ are quark numbers used to specify the quark content, while the rightmost digit $n_J = 2J + 1$ gives the system's spin (except for the K_S^0 and K_L^0). The scheme does not cover particles of spin
- 4. Diquarks have 4-digit numbers with $n_{q_1} \geq n_{q_2}$ and $n_{q_3} = 0$.
- 5. The numbering of mesons is guided by the nonrelativistic (L-Sdecoupled) quark model, as listed in Table 13.2.
 - a. The numbers specifying the meson's quark content conform to the convention $n_{q_1} = 0$ and $n_{q_2} \ge n_{q_3}$. The special case K_L^0 is the sole exception to this rule.
 - b. The quark numbers of flavorless, light (u, d, s) mesons are: 11 for the member of the isotriplet (π^0, ρ^0, \ldots) , 22 for the lighter isosinglet (η, ω, \ldots) , and 33 for the heavier isosinglet (η', ϕ, \ldots) . Since isosinglet mesons are often large mixtures of $u\overline{u} + d\overline{d}$ and $s\overline{s}$ states, 22 and 33 are assigned by mass and do not necessarily specify the dominant quark composition.
 - c. The special numbers 310 and 130 are given to the K_S^0 and K_L^0 respectively.
 - d. The fifth digit n_L is reserved to distinguish mesons of the same total (J) but different spin (S) and orbital (L) angular momentum quantum numbers. For J > 0 the numbers are: $(L,S) = (J-1,1) n_L = 0, (J,0) n_L = 1, (J,1) n_L = 2$ and (J+1,1) $n_L=3$. For the exceptional case J=0 the numbers are (0,0) $n_L = 0$ and (1,1) $n_L = 1$ (i.e. $n_L = L$). See Table 30.1.

Table 30.1: Meson numbering logic. Here qq stands for $n_{q2} \, n_{q3}$.

_												
	L = J	-1,	S=1	L = J	, S =	0	L = J	, S =	: 1	L = J	+1,	S=1
J	code	J^{PC}	L	code	J^{PC} .	\overline{L}	code	J^{PC}	L	code	J^{PC}	L
0				00qq1	0-+	0	_	_	_	10qq1	0++	1
1	00qq3	1	0	10qq3	1+-	1	20qq3	1++	1	30qq3	1	2
2	00qq5	2++					20qq5					3
3	00qq7	3					20qq7					4
4	00qq9	4++	3	10qq9	4-+	4	20qq9	4	4	30qq9	4++	5

e. If a set of physical mesons correspond to a (non-negligible) mixture of basis states, differing in their internal quantum numbers, then the lightest physical state gets the smallest basis state number. For example the $K_1(1270)$ is numbered 10313 $(1^{1}P_{1} K_{1B})$ and the $K_{1}(1400)$ is numbered 20313 $(1^3P_1\ K_{1A}).$

- f. The sixth digit n_r is used to label mesons radially excited above the ground state.
- g. Numbers have been assigned for complete $n_r=0\ S$ and P-wave multiplets, even where states remain to be identified.
- h. In some instances assignments within the $q\bar{q}$ meson model are only tentative; here best guess assignments are made.
- i. Many states appearing in the Meson Listings are not yet assigned within the $q\bar{q}$ model. Here $n_{q_{2-3}}$ and n_{J} are assigned according to the state's likely flavors and spin; all such unassigned light isoscalar states are given the flavor code 22. Within these groups $n_L=0,1,2,\ldots$ is used to distinguish states of increasing mass. These states are flagged using n = 9. It is to be expected that these numbers will evolve as the nature of the states are elucidated.
- 6. The numbering of baryons is again guided by the nonrelativistic quark model, see Table 13.4.
 - a. The numbers specifying a baryon's quark content are such
 - that in general $n_{q_1} \ge n_{q_2} \ge n_{q_3}$. b. Two states exist for J=1/2 baryons containing 3 different types of quarks. In the lighter baryon $(\Lambda, \Xi, \Omega, ...)$ the light quarks are in an antisymmetric (J = 0) state while for the heavier baryon $(\Sigma^0, \Xi', \Omega', ...)$ they are in a symmetric (J=1) state. In this situation n_{q_2} and n_{q_3} are reversed for the lighter state, so that the smaller number corresponds to the lighter baryon.
 - c. At present most Monte Carlos do not include excited baryons and no systematic scheme has been developed to denote them, though one is foreseen. In the meantime, use of the PDG 96 [5] numbers for excited baryons is recommended.
- 7. The gluon, when considered as a gauge boson, has official number 21. In codes for glueballs, however, 9 is used to allow a notation in close analogy with that of hadrons.
- 8. The pomeron and odderon trajectories and a generic reggeon trajectory of states in QCD are assigned codes 990, 9990, and 110 respectively, where the final 0 indicates the indeterminate nature of the spin, and the other digits reflect the expected "valence" flavor content. We do not attempt a complete classification of all reggeon trajectories, since there is currently no need to distinguish a specific such trajectory from its lowest-lying member.
- 9. Two-digit numbers in the range 21-30 are provided for the Standard Model gauge bosons and Higgs.
- 10. Codes 81-100 are reserved for generator-specific pseudoparticles and concepts.
- 11. The search for physics beyond the Standard Model is an active area, so these codes are also standardized as far as possible.
 - a. A standard fourth generation of fermions is included by analogy with the first three.
 - b. The graviton and the boson content of a two-Higgs-doublet scenario and of additional SU(2)×U(1) groups are found in the range 31-40.
 - c. "One-of-a-kind" exotic particles are assigned numbers in the range 41-80.
 - d. Fundamental supersymmetric particles are identified by adding a nonzero n to the particle number. The superpartner of a boson or a left-handed fermion has n = 1 while the superpartner of a right-handed fermion has n = 2. When mixing occurs, such as between the winos and charged Higgsinos to give charginos, or between left and right sfermions, the lighter physical state is given the smaller basis state number.
 - e. Technicolor states have n = 3. In the absence of a unique theory we only number generic states whose digits reflect the techniquark content.
 - f. Excited (composite) quarks and leptons are identified by setting n=4.
- 12. Occasionally program authors add their own states. To avoid confusion, these should be flagged by setting $nn_r = 99$.
- 13. Concerning the non-99 numbers, it may be noted that only quarks, excited quarks, squarks, and diquarks have $n_{q_3} = 0$;

only diquarks, baryons, and the odderon have $n_{q_1} \neq 0$; and only mesons, the reggeon, and the pomeron have $n_{q_1} = 0$ and $n_{q_2} \neq 0$. Concerning mesons (not antimesons), if n_{q_1} is odd then it labels a quark and an antiquark if even.

This text and lists of particle numbers can be found on the WWW [6]. The StdHep Monte Carlo standardization project [7] maintains the list of PDG particle numbers, as well as numbering schemes from most event generators and software to convert between the different schemes.

References:

- 1. G.P. Yost et al., Particle Data Group, Phys. Lett. B204, 1 (1988).
- I. G. Knowles et al., in "Physics at LEP2", CERN 96-01, vol. 2, p. 103.
- 3. C. Caso et al., Particle Data Group, Eur. Phys. J. C3, 1 (1998).
- T. Sjöstrand et al., in "Z physics at LEP1", CERN 89-08, vol. 3, p. 327.
- R.M. Barnett *et al.*, Particle Data Group, Phys. Rev. **D54**, 1 (1996).
- 6. http://pdg.lbl.gov/mc_particle_id_contents.html.
- L. Garren, StdHep, Monte Carlo Standardization at FNAL, Fermilab PM0091 and StdHep WWW site: http://www-pat.fnal.gov/stdhep.html.

				sus	Y		LIGHT $I = 1$	MESONS	LIGHT $I = 0$	MESONS
QUARKS		DIQUA	ARKS		TICLES		π^0	111	$(u\overline{u}, d\overline{d}, \text{ and } s\overline{s})$	
d 1		$(dd)_1$	1103	\widetilde{d}_L	1000001		π^+	211	η	221
u 2		$(ud)_0$	2101	\widetilde{u}_L	1000002		$a_0(980)^0$	9000111	$\eta'(958)$	331
s 3		$(ud)_1$	2103	\widetilde{s}_L	1000003		$a_0(980)^+$	9000211	$f_0(400-1200)$	9000221
c 4		$(uu)_1$	2203	\widetilde{c}_L	1000004		$\pi(1300)^0$	100111	$f_0(980)$	9010221
$egin{array}{cccc} b & 5 \\ t & 6 \end{array}$		$(sd)_0$	3101	\widetilde{b}_1	1000005	a	$\pi(1300)^+$	100211	$\eta(1295)$	100221
<i>b'</i> 7		$(sd)_0$ $(sd)_1$	3103	\widetilde{t}_1	1000006	a	$a_0(1450)^0$	10111	$f_0(1370)$	10221
t' 8		$(su)_0$	3201	\widetilde{e}_L^-	1000011		$a_0(1450)^+$	10211	$\eta(1440)$	100331
		$(su)_0$ $(su)_1$	3203	$\widetilde{ u}_{eL}$	1000012		$\pi(1800)^{0}$	200111	$f_0(1500)$	9020221
LEPTONS				$\widetilde{\mu}_L^-$	1000013		$\pi(1800)^{+}$	200211		10331*
e 11		$(ss)_1$	3303	$\widetilde{ u}_{\mu L}$	1000014		$\rho(770)^0$	113	$f_0(1710)$	
ν_e 12		$(cd)_0$	4101	$ ilde{ au}_1^-$	1000015		$\rho(770)^{+}$	213	$\eta(1760)$	200221
μ^{-} 13		$(cd)_1$	4103				$b_1(1235)^0$	10113	$f_0(2020)$	9030221*
ν_{μ} 14		$(cu)_0$	4201	$\widetilde{ u}_{ au L}$	1000016		$b_1(1235)^+$	10213	$f_0(2060)$	9040221*
$ \tau^- $ 15 $ \nu_{\tau} $ 16		$(cu)_1$	4203	$ ilde{d}_R$	2000001		$a_1(1260)^0$	20113	$f_0(2200)$	9050221*
$ \begin{array}{ccc} \nu_{\tau} & 16 \\ \tau^{\prime-} & 17 \end{array} $		$(cs)_0$	4301	\widetilde{u}_R	2000002		$a_1(1260)^+$	20113	$\eta(2225)$	9060221*
$\nu_{\tau'}$ 18		$(cs)_1$	4303	\widetilde{s}_R	2000003				$\omega(782)$	223
ντ. 10		$(cc)_1$	4403	\widetilde{c}_R	2000004		$\pi_1(1400)^0$	9000113*	$\phi(1020)$	333
EXCITED		$(bd)_0$	5101	\widetilde{b}_2	2000005		$\pi_1(1400)^+$	9000213*	$h_1(1170)$	10223
PARTICLE	S	$(bd)_1$	5103	\widetilde{t}_2	2000006		$\rho(1450)^0$	100113	$f_1(1285)$	20223
d* 400000		$(bu)_0$	5201	\widetilde{e}_R^-	2000011		$\rho(1450)^{+}$	100213	$h_1(1380)$	10333
u* 400000		$(bu)_1$	5203	$\widetilde{\mu}_R^-$	2000013		$\pi_1(1600)^0$	9010113*	$f_1(1420)$	20333
e* 400001		$(bs)_0$	5301	$\widetilde{ au}_2^-$	2000015	a	$\pi_1(1600)^+$	9010213*	$\omega(1420)$	100223
ν_e^* 400001	12	$(bs)_1$	5303	\widetilde{g}	1000021		$a_1(1640)^0$	9020113*	$f_1(1510)$	9000223
GAUGE AI	ND	$(bc)_0$	5401	$\widetilde{\chi}_1^0$	1000022	b	$a_1(1640)^+$	9020213*	$\omega(1650)$	30223*
HIGGS BO		$(bc)_1$	5403	$\widetilde{\chi}_2^0$	1000023	b	$ ho(1700)^{0}$	30113	$\phi(1680)$	100333
\boldsymbol{g}	(9) 21	$(bb)_1$	5503	$\tilde{\chi}_1^+$	1000024	b	$\rho(1700)^{+}$	30213	$f_2(1270)$	225
γ	22	(00)1	3000	\tilde{v}_{0}^{0}	1000025	b	$\rho(2150)^0$	9030113*	$f_2(1430)$	9000225
Z^0	23	TECH	NICOLOR	$ ilde{\chi}_3^0 \ ilde{\chi}_4^0$	1000035		$\rho(2150)^{+}$	9030213*	$f_2'(1525)$	335
W^+	24	PART		λ4 ≈+	1000037		$a_2(1320)^0$	115	$f_2(1565)$	9010225
h^0/H_1^0	25	π_{tech}^{0}	3000111	$ ilde{\chi}_2^+ \ ilde{G}$			$a_2(1320)^+$	215		9020225
Z'/Z_2^0	32	π^+_{tech}	3000211	G	1000039	l	$a_2(1660)^0$	9000115*	$f_2(1640)$	
Z''/Z_3^0	33	η_{tech}^{0}	3000221	SPE	CIAL		$a_2(1660)^+$	9000215*	$\eta_2(1645)$	10225
W'/W_2^+	34	$ ho_{ m tech}^0$	3000113	PAF	RTICLES		$\pi_2(1670)^0$	10115	$f_2(1810)$	100225
H^0/H_2^{0}	35	$ ho_{ m tech}^+$	3000213		raviton)	39	$\pi_2(1670)^+$	10215	$\eta_2(1870)$	10335
A^0/H_3^0	36	Ptech , ,0	3000223	R^0		41	$a_2(1750)^0$	9010115*	$f_2(1950)$	9030225
H^+	37	$\omega_{ m tech}^0$	3000223	LQ^c		42	$a_2(1750)^+$	9010215*	$f_2(2010)$	100335
	01			regge	con	110	$\pi_2(1130)^0$		$f_2(2150)$	9040225
				pome	eron	990		9020115*	$f_2(2300)$	9050225
				odde	ron	9990	$\pi_2(2100)^+$	9020215*	$f_2(2340)$	9060225
							$\rho_3(1690)^0$	117	$\omega_3(1670)$	227
							$\rho_3(1690)^+$	217	$\phi_3(1850)$	337
							$ ho_3(2250)^0$	9000117	$f_4(2050)$	229
							$\rho_3(2250)^+$	9000217	$f_J(2220)$	9000339
							$a_4(2040)^0$	119	$f_4(2300)$	9000229
							$a_4(2040)^+$	219	(

31. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS

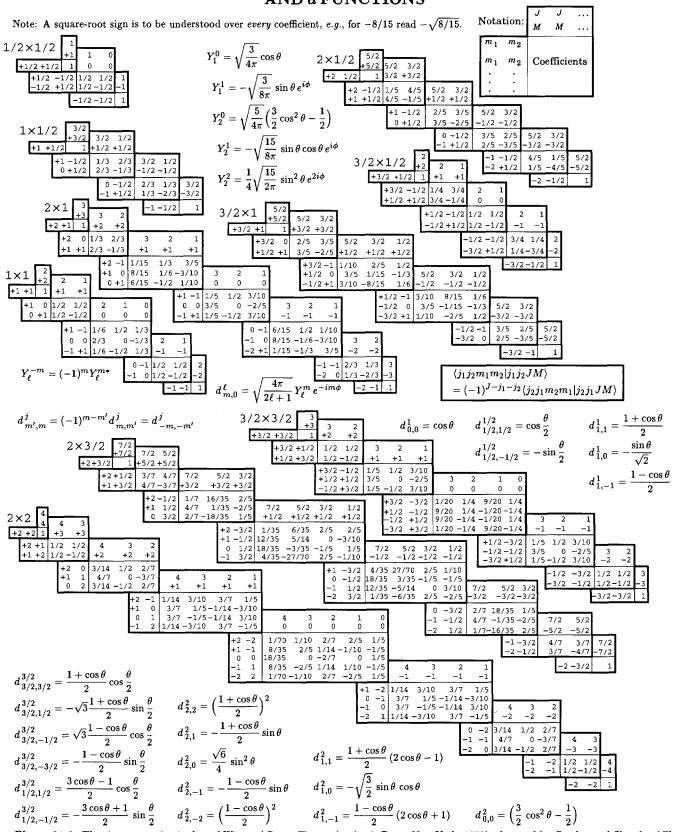


Figure 31.1: The sign convention is that of Wigner (*Group Theory*, Academic Press, New York, 1959), also used by Condon and Shortley (*The Theory of Atomic Spectra*, Cambridge Univ. Press, New York, 1953), Rose (*Elementary Theory of Angular Momentum*, Wiley, New York, 1957), and Cohen (*Tables of the Clebsch-Gordan Coefficients*, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients here have been calculated using computer programs written independently by Cohen and at LBNL.

32. SU(3) ISOSCALAR FACTORS AND REPRESENTATION MATRICES

Written by R.L. Kelly (LBNL).

The most commonly used SU(3) isoscalar factors, corresponding to the singlet, octet, and decuplet content of $8\otimes 8$ and $10\otimes 8$, are shown at the right. The notation uses particle names to identify the coefficients, so that the pattern of relative couplings may be seen at a glance. We illustrate the use of the coefficients below. See J.J de Swart, Rev. Mod. Phys. 35, 916 (1963) for detailed explanations and phase conventions.

 $A \sqrt{\ }$ is to be understood over every integer in the matrices; the exponent 1/2 on each matrix is a reminder of this. For example, the $\Xi \to \Omega K$ element of the $10 \to 10 \otimes 8$ matrix is $-\sqrt{6}/\sqrt{24} = -1/2$.

Intramultiplet relative decay strengths may be read directly from the matrices. For example, in decuplet \to octet + octet decays, the ratio of $\Omega^* \to \Xi \overline{K}$ and $\Delta \to N\pi$ partial widths is, from the $10 \to 8 \times 8$ matrix.

$$\frac{\Gamma(\Omega^* \to \overline{zK})}{\Gamma(\Delta \to N\pi)} = \frac{12}{6} \times \text{ (phase space factors)}. \tag{32.1}$$

Including isospin Clebsch-Gordan coefficients, we obtain, e.g.,

$$\frac{\Gamma(\Omega^{*-} \to \Xi^0 K^-)}{\Gamma(\Delta^+ \to p \pi^0)} = \frac{1/2}{2/3} \times \frac{12}{6} \times p.s.f. = \frac{3}{2} \times p.s.f.$$
 (32.2)

Partial widths for $8 \to 8 \otimes 8$ involve a linear superposition of 8_1 (symmetric) and 8_2 (antisymmetric) couplings. For example,

$$\Gamma(\Xi^* \to \Xi \pi) \sim \left(-\sqrt{\frac{9}{20}} g_1 + \sqrt{\frac{3}{12}} g_2\right)^2$$
 (32.3)

The relations between g_1 and g_2 (with de Swart's normalization) and the standard D and F couplings that appear in the interaction Lagrangian,

$$\mathcal{L} = -\sqrt{2} D Tr(\{\overline{B}, B\}M) + \sqrt{2} F Tr([\overline{B}, B]M), \qquad (32.4)$$

where $[\overline{B},B] \equiv \overline{B}B - B\overline{B}$ and $\{\overline{B},B\} \equiv \overline{B}B + B\overline{B}$, are

$$D = \frac{\sqrt{30}}{40} g_1 , \qquad F = \frac{\sqrt{6}}{24} g_2 . \tag{32.5}$$

Thus, for example,

$$\Gamma(\Xi^* \to \Xi \pi) \sim (F - D)^2 \sim (1 - 2\alpha)^2$$
, (32.6)

where $\alpha \equiv F/(D+F)$. (This definition of α is de Swart's. The alternative D/(D+F), due to Gell-Mann, is also used.)

The generators of SU(3) transformations, λ_a (a=1,8), are 3×3 matrices that obey the following commutation and anticommutation relationships:

$$[\lambda_a, \ \lambda_b] \equiv \lambda_a \lambda_b - \lambda_b \lambda_a = 2i f_{abc} \lambda_c \tag{32.7}$$

$$\{\lambda_a,\ \lambda_b\} \equiv \lambda_a\lambda_b + \lambda_b\lambda_a = \frac{4}{3}\delta_{ab}I + 2d_{abc}\lambda_c\ , \tag{32.8}$$

where I is the 3×3 identity matrix, and δ_{ab} is the Kronecker delta symbol. The f_{abc} are odd under the permutation of any pair of indices, while the d_{abc} are even. The nonzero values are

$$1 \rightarrow 8 \otimes 8$$

$$(\Lambda) \rightarrow (N\overline{K} \ \Sigma \pi \ \Lambda \eta \ \Xi K) = \frac{1}{\sqrt{8}} (2 \ 3 \ -1 \ -2)^{1/2}$$

 $8_1 \rightarrow 8 \otimes 8$

$$\begin{pmatrix} N \\ \Sigma \\ \Lambda \\ \Xi \end{pmatrix} \rightarrow \begin{pmatrix} N\pi & N\eta & \Sigma K & \Lambda K \\ N\overline{K} & \Sigma\pi & \Lambda\pi & \Sigma\eta & \Xi K \\ N\overline{K} & \Sigma\pi & \Lambda\eta & \Xi K \\ \Sigma \overline{K} & \Lambda \overline{K} & \Xi\pi & \Xi\eta \end{pmatrix} = \frac{1}{\sqrt{20}} \begin{pmatrix} 9 & -1 & -9 & -1 \\ -6 & 0 & 4 & 4 & -6 \\ 2 & -12 & -4 & -2 \\ 9 & -1 & -9 & -1 \end{pmatrix}^{1/2}$$

 $8_2 \rightarrow 8 \otimes 8$

$$\begin{pmatrix} N \\ \Sigma \\ \Lambda \\ \Xi \end{pmatrix} \rightarrow \begin{pmatrix} N\pi & N\eta & \Sigma K & \Lambda K \\ N\overline{K} & \Sigma\pi & \Lambda\pi & \Sigma\eta & \Xi K \\ N\overline{K} & \Sigma\pi & \Lambda\eta & \Xi K \\ \Sigma \overline{K} & \Lambda \overline{K} & \Xi\pi & \Xi\eta \end{pmatrix} = \frac{1}{\sqrt{12}} \begin{pmatrix} 3 & 3 & 3 & -3 \\ 2 & 8 & 0 & 0 & -2 \\ 6 & 0 & 0 & 6 \\ 3 & 3 & 3 & -3 \end{pmatrix}^{1/2}$$

$$10 \rightarrow 8 \otimes 8$$

$$\begin{pmatrix} \Delta \\ \Sigma \\ \Xi \\ \Omega \end{pmatrix} \rightarrow \begin{pmatrix} N\overline{K} & \Sigma \pi & \Lambda \pi & \Sigma \eta & \Xi K \\ \Sigma \overline{K} & \Lambda \overline{K} & \Xi \pi & \Xi \eta \\ \Xi \overline{K} \end{pmatrix} = \frac{1}{\sqrt{12}} \begin{pmatrix} -6 & 6 & \\ -2 & 2 & -3 & 3 & 2 \\ 3 & -3 & 3 & 3 & \\ 12 & & & 12 \end{pmatrix}^{1/2}$$

$$8 \rightarrow 10 \otimes 8$$

$$\begin{pmatrix} N \\ \Sigma \\ \Lambda \\ \Xi \end{pmatrix} \rightarrow \begin{pmatrix} \Delta\pi & \Sigma K \\ \Delta\overline{K} & \Sigma\pi & \Sigma\eta & \Xi K \\ \Sigma\pi & \Xi K \\ \Sigma\overline{K} & \Xi\pi & \Xi\eta & \Omega K \end{pmatrix} \qquad = \frac{1}{\sqrt{15}} \begin{pmatrix} -12 & 3 \\ 8 & -2 & -3 & 2 \\ -9 & 6 \\ 3 & -3 & -3 & 6 \end{pmatrix}^{1/2}$$

 $10 \rightarrow 10 \otimes 8$

$$\begin{pmatrix} \Delta \\ \Sigma \\ \Xi \\ \Omega \end{pmatrix} \rightarrow \begin{pmatrix} \Delta \pi & \Delta \eta & \Sigma K \\ \Delta \overline{K} & \Sigma \pi & \Sigma \eta & \Xi K \\ \Sigma \overline{K} & \Xi \pi & \Xi \eta & \Omega K \\ \Xi \overline{K} & \Omega \eta \end{pmatrix} \qquad = \frac{1}{\sqrt{24}} \begin{pmatrix} 15 & 3 & -6 \\ 8 & 8 & 0 & -8 \\ 12 & 3 & -3 & -6 \\ 12 & -12 \end{pmatrix}^{1/2}$$

abc	f_{abc}	\underline{abc}	d_{abc}	abc	d_{abc}
123	1	118	$1/\sqrt{3}$	355	1/2
147	1/2	146	1/2	366	-1/2
156	-1/2	157	1/2	377	-1/2
246	1/2	228	$1/\sqrt{3}$	448	$-1/(2\sqrt{3})$
257	1/2	247	-1/2	558	$-1/(2\sqrt{3})$
345	1/2	256	1/2	668	$-1/(2\sqrt{3})$
367	-1/2	338	$1/\sqrt{3}$	778	$-1/(2\sqrt{3})$
458	$\sqrt{3}/2$	344	1/2	888	$-1/\sqrt{3}$
678	$\sqrt{3}/2$			•	

The λ_a 's are

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

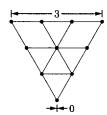
$$\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \quad \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Equation (32.7) defines the Lie algebra of SU(3). A general d-dimensional representation is given by a set of $d \times d$ matrices satisfying Eq. (32.7) with the f_{abc} given above. Equation (32.8) is specific to the defining 3-dimensional representation.

33. SU(n) MULTIPLETS AND YOUNG DIAGRAMS

Written by C.G. Wohl (LBNL).


This note tells (1) how SU(n) particle multiplets are identified or labeled, (2) how to find the number of particles in a multiplet from its label, (3) how to draw the Young diagram for a multiplet, and (4) how to use Young diagrams to determine the overall multiplet structure of a composite system, such as a 3-quark or a meson-baryon system.

In much of the literature, the word "representation" is used where we use "multiplet," and "tableau" is used where we use "diagram."

33.1. Multiplet labels

An SU(n) multiplet is uniquely identified by a string of (n-1) nonnegative integers: $(\alpha, \beta, \gamma, \ldots)$. Any such set of integers specifies a multiplet. For an SU(2) multiplet such as an isospin multiplet, the single integer α is the number of steps from one end of the multiplet to the other (i.e., it is one fewer than the number of particles in the multiplet). In SU(3), the two integers α and β are the numbers of steps across the top and bottom levels of the multiplet diagram. Thus the labels for the SU(3) octet and decuplet

are (1,1) and (3,0). For larger n, the interpretation of the integers in terms of the geometry of the multiplets, which exist in an (n-1)-dimensional space, is not so readily apparent.

The label for the SU(n) singlet is $(0,0,\ldots,0)$. In a flavor SU(n), the n quarks together form a $(1,0,\ldots,0)$ multiplet, and the n antiquarks belong to a $(0,\ldots,0,1)$ multiplet. These two multiplets are *conjugate* to one another, which means their labels are related by $(\alpha,\beta,\ldots) \leftrightarrow (\ldots,\beta,\alpha)$.

33.2. Number of particles

The number of particles in a multiplet, $N = N(\alpha, \beta, ...)$, is given as follows (note the pattern of the equations).

In SU(2), $N = N(\alpha)$ is

$$N = \frac{(\alpha+1)}{1} \ . \tag{33.1}$$

In SU(3), $N = N(\alpha, \beta)$ is

$$N = \frac{(\alpha+1)}{1} \cdot \frac{(\beta+1)}{1} \cdot \frac{(\alpha+\beta+2)}{2} . \tag{33.2}$$

In SU(4), $N = N(\alpha, \beta, \gamma)$ is

$$N = \frac{(\alpha+1)}{1} \cdot \frac{(\beta+1)}{1} \cdot \frac{(\gamma+1)}{1} \cdot \frac{(\alpha+\beta+2)}{2} \cdot \frac{(\beta+\gamma+2)}{2} \cdot \frac{(\alpha+\beta+\gamma+3)}{3} . \tag{33.3}$$

Note that in Eq. (33.3) there is no factor with $(\alpha + \gamma + 2)$: only a consecutive sequence of the label integers appears in any factor. One more example should make the pattern clear for any SU(n). In SU(5), $N = N(\alpha, \beta, \gamma, \delta)$ is

$$\begin{split} N &= \frac{(\alpha + 1)}{1} \cdot \frac{(\beta + 1)}{1} \cdot \frac{(\gamma + 1)}{1} \cdot \frac{(\delta + 1)}{1} \cdot \frac{(\alpha + \beta + 2)}{2} \cdot \frac{(\beta + \gamma + 2)}{2} \\ &\times \frac{(\gamma + \delta + 2)}{2} \cdot \frac{(\alpha + \beta + \gamma + 3)}{3} \cdot \frac{(\beta + \gamma + \delta + 3)}{3} \cdot \frac{(\alpha + \beta + \gamma + \delta + 4)}{4} (33.4) \end{split}$$

From the symmetry of these equations, it is clear that multiplets that are conjugate to one another have the same number of particles, but so can other multiplets. For example, the SU(4) multiplets (3,0,0) and (1,1,0) each have 20 particles. Try the equations and see.

33.3. Young diagrams

A Young diagram consists of an array of boxes (or some other symbol) arranged in one or more left-justified rows, with each row being at least as long as the row beneath. The correspondence between a diagram and a multiplet label is: The top row juts out α boxes to the right past the end of the second row, the second row juts out β boxes to the right past the end of the third row, etc. A diagram in SU(n) has at most n rows. There can be any number of "completed" columns of n boxes buttressing the left of a diagram; these don't affect the label. Thus in SU(3) the diagrams

represent the multiplets (1,0), (0,1), (0,0), (1,1), and (3,0). In any SU(n), the quark multiplet is represented by a single box, the antiquark multiplet by a column of (n-1) boxes, and a singlet by a completed column of n boxes.

33.4. Coupling multiplets together

The following recipe tells how to find the multiplets that occur in coupling two multiplets together. To couple together more than two multiplets, first couple two, then couple a third with each of the multiplets obtained from the first two, etc.

First a definition: A sequence of the letters a, b, c, \ldots is admissible if at any point in the sequence at least as many a's have occurred as b's, at least as many b's have occurred as c's, etc. Thus abcd and aabcb are admissible sequences and abb and acb are not. Now the recipe:

- (a) Draw the Young diagrams for the two multiplets, but in one of the diagrams replace the boxes in the first row with a's, the boxes in the second row with b's, etc. Thus, to couple two SU(3) octets (such as the π -meson octet and the baryon octet), we start with
- $_{\rm b}^{\rm a}$ a. The unlettered diagram forms the upper left-hand corner of all the enlarged diagrams constructed below.
- (b) Add the a's from the lettered diagram to the right-hand ends of the rows of the unlettered diagram to form all possible legitimate Young diagrams that have no more than one a per column. In general, there will be several distinct diagrams, and all the a's appear in each diagram. At this stage, for the coupling of the two SU(3) octets, we have:

- (c) Use the b's to further enlarge the diagrams already obtained, subject to the same rules. Then throw away any diagram in which the full sequence of letters formed by reading right to left in the first row, then the second row, etc., is not admissible.
 - (d) Proceed as in (c) with the c's (if any), etc.

The final result of the coupling of the two SU(3) octets is:

Here only the diagrams with admissible sequences of a's and b's and with fewer than four rows (since n=3) have been kept. In terms of multiplet labels, the above may be written

$$(1,1)\otimes(1,1)=(2,2)\oplus(3,0)\oplus(0,3)\oplus(1,1)\oplus(1,1)\oplus(0,0)$$
.

In terms of numbers of particles, it may be written

$$\mathbf{8} \otimes \mathbf{8} = \mathbf{27} \oplus \mathbf{10} \oplus \overline{\mathbf{10}} \oplus \mathbf{8} \oplus \mathbf{8} \oplus \mathbf{1} .$$

The product of the numbers on the left here is equal to the sum on the right, a useful check. (See also Sec. 13 on the Quark Model.)

34. KINEMATICS

Revised January 2000 by J.D. Jackson (LBNL).

Throughout this section units are used in which $\hbar=c=1$. The following conversions are useful: $\hbar c=197.3$ MeV fm, $(\hbar c)^2=0.3894$ (GeV)² mb.

34.1. Lorentz transformations

The energy E and 3-momentum p of a particle of mass m form a 4-vector p=(E,p) whose square $p^2\equiv E^2-|p|^2=m^2$. The velocity of the particle is $\beta=p/E$. The energy and momentum (E^*,p^*) viewed from a frame moving with velocity β_f are given by

$$\begin{pmatrix} E^* \\ p_{\parallel}^* \end{pmatrix} = \begin{pmatrix} \gamma_f & -\gamma_f \beta_f \\ -\gamma_f \beta_f & \gamma_f \end{pmatrix} \begin{pmatrix} E \\ p_{\parallel} \end{pmatrix} , \quad p_T^* = p_T , \qquad (34.1)$$

where $\gamma_f=(1-\beta_f^2)^{-1/2}$ and p_T (p_\parallel) are the components of p perpendicular (parallel) to β_f . Other 4-vectors, such as the spacetime coordinates of events, of course transform in the same way. The scalar product of two 4-momenta $p_1\cdot p_2=E_1E_2-p_1\cdot p_2$ is invariant (frame independent).

34.2. Center-of-mass energy and momentum

In the collision of two particles of masses m_1 and m_2 the total center-of-mass energy can be expressed in the Lorentz-invariant form

$$E_{\rm cm} = \left[(E_1 + E_2)^2 - (\mathbf{p}_1 + \mathbf{p}_2)^2 \right]^{1/2} ,$$

= $\left[m_1^2 + m_2^2 + 2E_1E_2(1 - \beta_1\beta_2\cos\theta) \right]^{1/2} ,$ (34.2)

where θ is the angle between the particles. In the frame where one particle (of mass m_2) is at rest (lab frame),

$$E_{\rm cm} = (m_1^2 + m_2^2 + 2E_{1\,{\rm lab}}\,m_2)^{1/2}$$
 (34.3)

The velocity of the center-of-mass in the lab frame is

$$\beta_{\rm cm} = p_{\rm lab}/(E_{1\,{\rm lab}} + m_2)$$
, (34.4)

where $p_{\rm lab} \equiv p_{\rm 1\,lab}$ and

$$\gamma_{\rm cm} = (E_{1 \, \rm lab} + m_2)/E_{\rm cm} \ .$$
 (34.5)

The c.m. momenta of particles 1 and 2 are of magnitude

$$p_{\rm cm} = p_{\rm lab} \frac{m_2}{E_{\rm cm}} \ . \tag{34.6}$$

For example, if a 0.80 ${\rm GeV}/c$ kaon beam is incident on a proton target, the center of mass energy is 1.699 ${\rm GeV}$ and the center of mass momentum of either particle is 0.442 ${\rm GeV}/c$. It is also useful to note that

$$E_{\rm cm} dE_{\rm cm} = m_2 dE_{1\,\rm lab} = m_2 \beta_{1\,\rm lab} dp_{\rm lab}$$
 (34.7)

34.3. Lorentz-invariant amplitudes

The matrix elements for a scattering or decay process are written in terms of an invariant amplitude $-i\mathcal{M}$. As an example, the S-matrix for $2\to 2$ scattering is related to \mathcal{M} by

$$\langle p'_1 p'_2 | S | p_1 p_2 \rangle = I - i(2\pi)^4 \, \delta^4(p_1 + p_2 - p'_1 - p'_2) \\ \times \frac{\mathscr{M}(p_1, p_2; p'_1, p'_2)}{(2E_1)^{1/2} (2E_2)^{1/2} (2E'_1)^{1/2} (2E'_2)^{1/2}} \,. \quad (34.8)$$

The state normalization is such that

$$\langle p'|p\rangle = (2\pi)^3 \delta^3(\boldsymbol{p} - \boldsymbol{p}') . \tag{34.9}$$

34.4. Particle decays

The partial decay rate of a particle of mass M into n bodies in its rest frame is given in terms of the Lorentz-invariant matrix element \mathcal{M} by

$$d\Gamma = \frac{(2\pi)^4}{2M} |\mathcal{M}|^2 d\Phi_n (P; p_1, \dots, p_n), \tag{34.10}$$

where $d\Phi_n$ is an element of n-body phase space given by

$$d\Phi_n(P; p_1, \ldots, p_n) = \delta^4 \left(P - \sum_{i=1}^n p_i \right) \prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 2E_i} . \tag{34.11}$$

This phase space can be generated recursively, viz.

$$d\Phi_n(P; p_1, \ldots, p_n) = d\Phi_j(q; p_1, \ldots, p_j)$$

$$\times d\Phi_{n-j+1}(P; q, p_{i+1}, \dots, p_n)(2\pi)^3 dq^2,$$
 (34.12)

where $q^2 = (\sum_{i=1}^j E_i)^2 - \left|\sum_{i=1}^j p_i\right|^2$. This form is particularly useful in the case where a particle decays into another particle that subsequently decays.

34.4.1. Survival probability: If a particle of mass M has mean proper lifetime τ (= $1/\Gamma$) and has momentum (E, p), then the probability that it lives for a time t_0 or greater before decaying is given by

$$P(t_0) = e^{-t_0 \ \Gamma/\gamma} = e^{-Mt_0 \ \Gamma/E} \ , \tag{34.13}$$

and the probability that it travels a distance x_0 or greater is

$$P(x_0) = e^{-Mx_0 \Gamma/|\mathbf{p}|} . (34.14)$$

34.4.2. Two-body decays:

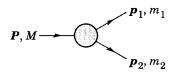


Figure 34.1: Definitions of variables for two-body decays.

In the rest frame of a particle of mass M, decaying into 2 particles labeled 1 and 2,

$$E_1 = \frac{M^2 - m_2^2 + m_1^2}{2M} , \qquad (34.15)$$

$$=\frac{\left[\left(M^2-(m_1+m_2)^2\right)\left(M^2-(m_1-m_2)^2\right)\right]^{1/2}}{2M},\qquad (34.16)$$

and

$$- d\Gamma = \frac{1}{32\pi^2} |\mathscr{M}|^2 \frac{|\pmb{p}_1|}{M^2} d\Omega , \qquad (34.17)$$

where $d\Omega = d\phi_1 d(\cos \theta_1)$ is the solid angle of particle 1.

34.4.3. Three-body decays:

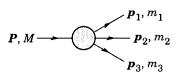


Figure 34.2: Definitions of variables for three-body decays.

Defining $p_{ij}=p_i+p_j$ and $m_{ij}^2=p_{ij}^2$, then $m_{12}^2+m_{23}^2+m_{13}^2=M^2+m_1^2+m_2^2+m_3^2$ and $m_{12}^2=(P-p_3)^2=M^2+m_3^2-2ME_3$, where E_3 is the energy of particle 3 in the rest frame of M. In that frame, the momenta of the three decay particles lie in a plane. The relative orientation of these three momenta is fixed if their energies are known. The momenta can therefore be specified in space by giving three Euler angles (α,β,γ) that specify the orientation of the final system relative to the initial particle [1]. Then

$$d\Gamma = \frac{1}{(2\pi)^5} \frac{1}{16M} |\mathcal{M}|^2 dE_1 dE_2 d\alpha d(\cos \beta) d\gamma . \qquad (34.18)$$

Alternatively

$$d\Gamma = \frac{1}{(2\pi)^5} \frac{1}{16M^2} |\mathcal{M}|^2 |\mathbf{p}_1^*| |\mathbf{p}_3| dm_{12} d\Omega_1^* d\Omega_3, \qquad (34.19)$$

where $(|p_1^*|, \Omega_1^*)$ is the momentum of particle 1 in the rest frame of 1 and 2, and Ω_3 is the angle of particle 3 in the rest frame of the decaying particle. $|p_1^*|$ and $|p_3|$ are given by

$$|\mathbf{p}_{1}^{*}| = \frac{\left[\left(m_{12}^{2} - (m_{1} + m_{2})^{2}\right)\left(m_{12}^{2} - (m_{1} - m_{2})^{2}\right)\right]^{1/2}}{2m_{12}}, \quad (34.20a)$$

and

$$|\mathbf{p}_3| = \frac{\left[\left(M^2 - (m_{12} + m_3)^2\right)\left(M^2 - (m_{12} - m_3)^2\right)\right]^{1/2}}{2M}$$
. (34.20b)

[Compare with Eq. (34.16).]

If the decaying particle is a scalar or we average over its spin states, then integration over the angles in Eq. (34.18) gives

$$\begin{split} d\Gamma &= \frac{1}{(2\pi)^3} \frac{1}{8M} |\mathcal{M}|^2 dE_1 dE_2 \\ &= \frac{1}{(2\pi)^3} \frac{1}{32M^3} |\mathcal{M}|^2 dm_{12}^2 dm_{23}^2 . \end{split}$$
(34.21)

This is the standard form for the Dalitz plot.

34.4.3.1. Dalitz plot: For a given value of m_{12}^2 , the range of m_{23}^2 is determined by its values when p_2 is parallel or antiparallel to p_3 :

$$(m_{23}^2)_{\rm max} =$$

$$(E_2^* + E_3^*)^2 - \left(\sqrt{E_2^{*2} - m_2^2} - \sqrt{E_3^{*2} - m_3^2}\right)^2 , \qquad (34.22a)$$

$$(m_{23}^2)_{\min} =$$

$$(E_2^* + E_3^*)^2 - \left(\sqrt{E_2^{*2} - m_2^2} + \sqrt{E_3^{*2} - m_3^2}\right)^2 . \tag{34.22b}$$

Here $E_2^*=(m_{12}^2-m_1^2+m_2^2)/2m_{12}$ and $E_3^*=(M^2-m_{12}^2-m_3^2)/2m_{12}$ are the energies of particles 2 and 3 in the m_{12} rest frame. The scatter plot in m_{12}^2 and m_{23}^2 is called a Dalitz plot. If $|\mathcal{M}|^2$ is constant, the allowed region of the plot will be uniformly populated with events [see Eq. (34.21)]. A nonuniformity in the plot gives immediate information on $|\mathcal{M}|^2$. For example, in the case of $D\to K\pi\pi$, bands appear when $m_{(K\pi)}=m_{K^*(892)}$, reflecting the appearance of the decay chain $D\to K^*(892)\pi\to K\pi\pi$.

34.4.4. Kinematic limits: In a three-body decay the maximum of $|p_3|$, [given by Eq. (34.20)], is achieved when $m_{12} = m_1 + m_2$, i.e., particles 1 and 2 have the same vector velocity in the rest frame of the decaying particle. If, in addition, $m_3 > m_1, m_2$, then $|p_3|_{\max} > |p_1|_{\max}$, $|p_2|_{\max}$.

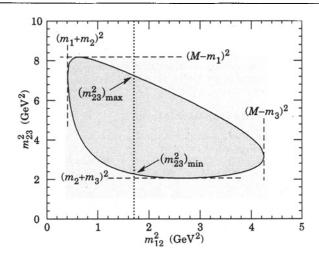


Figure 34.3: Dalitz plot for a three-body final state. In this example, the state is $\pi^+\overline{K}^0p$ at 3 GeV. Four-momentum conservation restricts events to the shaded region.

34.4.5. Multibody decays: The above results may be generalized to final states containing any number of particles by combining some of the particles into "effective particles" and treating the final states as 2 or 3 "effective particle" states. Thus, if $p_{ijk...} = p_i + p_j + p_k + \ldots$, then

$$m_{ijk...} = \sqrt{p^2_{ijk...}} , \qquad (34.23)$$

and $m_{ijk...}$ may be used in place of e.g., m_{12} in the relations in Sec. 34.4.3 or 34.4.3.1 above.

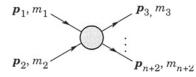


Figure 34.4: Definitions of variables for production of an *n*-body final state.

34.5. Cross sections

The differential cross section is given by

$$d\sigma = \frac{(2\pi)^4 |\mathcal{M}|^2}{4\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}}$$

$$\times d\Phi_n(p_1 + p_2; p_3, \dots, p_{n+2}). \tag{34.24}$$

[See Eq. (34.11).] In the rest frame of $m_2(lab)$,

$$\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2} = m_2 p_{1 \, \text{lab}} \; ; \tag{34.25a}$$

while in the center-of-mass frame

$$\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2} = p_{1\text{cm}} \sqrt{s} . \qquad (34.25b)$$

34.5.1. Two-body reactions:

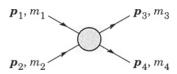


Figure 34.5: Definitions of variables for a two-body final state.

Two particles of momenta p_1 and p_2 and masses m_1 and m_2 scatter to particles of momenta p_3 and p_4 and masses m_3 and m_4 ; the Lorentz-invariant Mandelstam variables are defined by

$$s = (p_1 + p_2)^2 = (p_3 + p_4)^2$$

= $m_1^2 + 2E_1E_2 - 2p_1 \cdot p_2 + m_2^2$, (34.26)
 $t = (p_1 - p_3)^2 = (p_2 - p_4)^2$

$$= m_1^2 - 2E_1E_3 + 2\mathbf{p}_1 \cdot \mathbf{p}_3 + m_3^2 , \qquad (34.27)$$

$$u = (p_1 - p_4)^2 = (p_2 - p_3)^2$$

= $m_1^2 - 2E_1E_4 + 2p_1 \cdot p_4 + m_4^2$, (34.28)

and they satisfy

$$s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2$$
 (34.29)

The two-body cross section may be written as

$$\frac{d\sigma}{dt} = \frac{1}{64\pi s} \frac{1}{|\mathbf{p}_{1cm}|^2} |\mathcal{M}|^2 . \tag{34.30}$$

In the center-of-mass frame

$$t = (E_{1\text{cm}} - E_{3\text{cm}})^2 - (p_{1\text{cm}} - p_{3\text{cm}})^2 - 4p_{1\text{cm}} p_{3\text{cm}} \sin^2(\theta_{\text{cm}}/2)$$

$$= t_0 - 4p_{1\text{cm}} \ p_{3\text{cm}} \ \sin^2(\theta_{\text{cm}}/2) \ , \tag{34.31}$$

where $\theta_{\rm cm}$ is the angle between particle 1 and 3. The limiting values t_0 ($\theta_{\rm cm}=0$) and t_1 ($\theta_{\rm cm}=\pi$) for $2\to 2$ scattering are

$$t_0(t_1) = \left[\frac{m_1^2 - m_3^2 - m_2^2 + m_4^2}{2\sqrt{s}} \right]^2 - (p_{1\,\mathrm{cm}} \mp p_{3\,\mathrm{cm}})^2 . \tag{34.32}$$

In the literature the notation t_{\min} (t_{\max}) for t_0 (t_1) is sometimes used, which should be discouraged since $t_0 > t_1$. The center-of-mass energies and momenta of the incoming particles are

$$E_{1 {
m cm}} = rac{s + m_1^2 - m_2^2}{2 \sqrt{s}} \; , \qquad E_{2 {
m cm}} = rac{s + m_2^2 - m_1^2}{2 \sqrt{s}} \; , \qquad (34.33)$$

For $E_{3\rm cm}$ and $E_{4\rm cm}$, change m_1 to m_3 and m_2 to m_4 . Then

$$p_{i\,\text{cm}} = \sqrt{E_{i\,\text{cm}}^2 - m_i^2}$$
 and $p_{1\,\text{cm}} = \frac{p_{1\,\text{lab}} m_2}{\sqrt{a}}$. (34.34)

Here the subscript lab refers to the frame where particle 2 is at rest. [For other relations see Eqs. (34.2)–(34.4).]

34.5.2. Inclusive reactions: Choose some direction (usually the beam direction) for the z-axis; then the energy and momentum of a particle can be written as

where m_T is the transverse mass

$$m_T^2 = m^2 + p_x^2 + p_y^2 , (34.36)$$

and the rapidity y is defined by

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$
$$= \ln \left(\frac{E + p_z}{m_T} \right) = \tanh^{-1} \left(\frac{p_z}{E} \right) . \tag{34.37}$$

Under a boost in the z-direction to a frame with velocity β , $y \to y - \tanh^{-1} \beta$. Hence the shape of the rapidity distribution dN/dy is invariant. The invariant cross section may also be rewritten

$$E \frac{d^3 \sigma}{d^3 p} = \frac{d^3 \sigma}{d\phi \, dy \, p_T dp_T} \Longrightarrow \frac{d^2 \sigma}{\pi \, dy \, d(p_T^2)} \; . \tag{34.38}$$

The second form is obtained using the identity $dy/dp_z = 1/E$, and the third form represents the average over ϕ .

Feynman's x variable is given by

$$x = \frac{p_z}{p_{z \max}} \approx \frac{E + p_z}{(E + p_z)_{\max}} \quad (p_T \ll |p_z|) . \tag{34.39}$$

In the c.m. frame

$$x \approx \frac{2p_{z\,\mathrm{cm}}}{\sqrt{s}} = \frac{2m_T \sinh y_{\mathrm{cm}}}{\sqrt{s}} \tag{34.40}$$

and

$$=(y_{\rm cm})_{\rm max} = \ln(\sqrt{s}/m)$$
 (34.41)

For $p \gg m$, the rapidity [Eq. (34.37)] may be expanded to obtain

$$y = \frac{1}{2} \ln \frac{\cos^2(\theta/2) + m^2/4p^2 + \dots}{\sin^2(\theta/2) + m^2/4p^2 + \dots}$$

$$\approx -\ln \tan(\theta/2) \equiv \eta$$
 (34.42)

where $\cos\theta = p_x/p$. The pseudorapidity η defined by the second line is approximately equal to the rapidity y for $p \gg m$ and $\theta \gg 1/\gamma$, and in any case can be measured when the mass and momentum of the particle is unknown. From the definition one can obtain the identities

$$\sinh \eta = \cot \theta$$
, $\cosh \eta = 1/\sin \theta$, $\tanh \eta = \cos \theta$. (34.43)

34.5.3. Partial waves: The amplitude in the center of mass for elastic scattering of spinless particles may be expanded in Legendre polynomials

$$f(k,\theta) = \frac{1}{k} \sum_{\ell} (2\ell + 1) a_{\ell} P_{\ell}(\cos \theta) ,$$
 (34.44)

where k is the c.m. momentum, θ is the c.m. scattering angle, $a_{\ell}=(\eta_{\ell}e^{2i\delta_{\ell}}-1)/2i,\ 0\leq\eta_{\ell}\leq 1,$ and δ_{ℓ} is the phase shift of the ℓ^{th} partial wave. For purely elastic scattering, $\eta_{\ell}=1$. The differential cross section is

$$\frac{d\sigma}{d\Omega} = |f(k,\theta)|^2 \ . \tag{34.45}$$

The optical theorem states that

$$\sigma_{\text{tot}} = \frac{4\pi}{L} \text{Im} f(k,0) , \qquad (34.46)$$

and the cross section in the ℓ^{th} partial wave is therefore bounded:

$$\sigma_{\ell} = \frac{4\pi}{k^2} (2\ell + 1) |a_{\ell}|^2 \le \frac{4\pi (2\ell + 1)}{k^2} . \tag{34.47}$$

The evolution with energy of a partial-wave amplitude a_{ℓ} can be displayed as a trajectory in an Argand plot, as shown in Fig. 34.6.

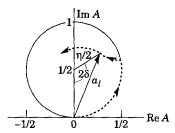


Figure 34.6: Argand plot showing a partial-wave amplitude a_{ℓ} as a function of energy. The amplitude leaves the unitary circle where inelasticity sets in $(\eta_{\ell} < 1)$.

The usual Lorentz-invariant matrix element \mathcal{M} (see Sec. 34.3 above) for the elastic process is related to $f(k,\theta)$ by

$$\mathscr{M} = -8\pi\sqrt{s} \ f(k,\theta) \ , \tag{34.48}$$

so

$$\sigma_{\rm tot} = -\frac{1}{2p_{\rm lab}m_2} \, {\rm Im} \, \mathcal{M}(t=0) \; , \qquad (34.49)$$

where s and t are the center-of-mass energy squared and momentum transfer squared, respectively (see Sec. 34.4.1).

34.5.3.1. Resonances: The Breit-Wigner (nonrelativistic) form for an elastic amplitude a_ℓ with a resonance at c.m. energy E_R , elastic width $\Gamma_{\rm el}$, and total width $\Gamma_{\rm tot}$ is

$$a_\ell = \frac{\Gamma_{\rm el}/2}{E_R - E - i\Gamma_{\rm tot}/2} , \qquad (34.50)$$

where E is the c.m. energy. As shown in Fig. 34.7, in the absence of background the elastic amplitude traces a counterclockwise circle with center $ix_{\rm el}/2$ and radius $x_{\rm el}/2$, where the elasticity $x_{\rm el}=\Gamma_{\rm el}/\Gamma_{\rm tot}$. The amplitude has a pole at $E=E_R-i\Gamma_{\rm tot}/2$.

The spin-averaged Breit-Wigner cross section for a spin-J resonance produced in the collision of particles of spin S_1 and S_2 is

$$\sigma_{BW}(E) = \frac{(2J+1)}{(2S_1+1)(2S_2+1)} \frac{\pi}{k^2} \frac{B_{\rm in} B_{\rm out} \Gamma_{\rm tot}^2}{(E-E_R)^2 + \Gamma_{\rm tot}^2/4} , \quad (34.51)$$

where k is the c.m. momentum, E is the c.m. energy, and $B_{\rm in}$ and $B_{\rm out}$ are the branching fractions of the resonance into the entrance and exit channels. The 2S+1 factors are the multiplicities of the incident spin states, and are replaced by 2 for photons. This expression is valid only for an isolated state. If the width is not small, $\Gamma_{\rm tot}$ cannot be treated as a constant independent of E. There are many other forms for σ_{BW} , all of which are equivalent to the one given here in the narrow-width case. Some of these forms may be more appropriate if the resonance is broad.

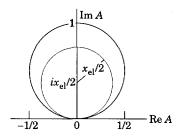


Figure 34.7: Argand plot for a resonance.

The relativistic Breit-Wigner form corresponding to Eq. (34.50) is:

$$a_{\ell} = \frac{-m\Gamma_{\rm el}}{s - m^2 + im\Gamma_{\rm tot}} \ . \tag{34.52}$$

A better form incorporates the known kinematic dependences, replacing $m\Gamma_{\rm tot}$ by $\sqrt{s}\,\Gamma_{\rm tot}(s)$, where $\Gamma_{\rm tot}(s)$ is the width the resonance particle would have if its mass were \sqrt{s} , and correspondingly $m\Gamma_{\rm el}$ by $\sqrt{s}\,\Gamma_{\rm el}(s)$ where $\Gamma_{\rm el}(s)$ is the partial width in the incident channel for a mass \sqrt{s} :

$$a_{\ell} = \frac{-\sqrt{s}\,\Gamma_{\rm el}(s)}{s-m^2+i\sqrt{s}\,\Gamma_{\rm tot}(s)}\;. \eqno(34.53)$$

For the Z boson, all the decays are to particles whose masses are small enough to be ignored, so on dimensional grounds $\Gamma_{\rm tot}(s)=\sqrt{s}\,\Gamma_0/m_Z$, where Γ_0 defines the width of the Z, and $\Gamma_{\rm el}(s)/\Gamma_{\rm tot}(s)$ is constant. A full treatment of the line shape requires consideration of dynamics, not just kinematics. For the Z this is done by calculating the radiative corrections in the Standard Model.

References:

 See, for example, J.J. Sakurai, Modern Quantum Mechnaics, Addison-Wesley (1985), p. 172, or D.M. Brink and G.R. Satchler, Angular Momentum, 2nd ed., Oxford University Press (1968), p. 20.

35. CROSS-SECTION FORMULAE FOR SPECIFIC PROCESSES

Revised April 1998 by R.N. Cahn (LBNL).

35.1. Leptoproduction

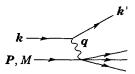


Figure 35.1: Kinematic quantities for description of lepton-nucleon scattering. k and k' are the four-momenta of incoming and outgoing leptons, P is the four-momentum of a nucleon with mass M. The exchanged particle is a γ , W^{\pm} , or Z^0 ; it transfers four-momentum q = k - k' to the target.

Invariant quantities:

 $\nu = \frac{q \cdot P}{M} = E - E' \text{ is the lepton's energy loss in the lab (in earlier literature sometimes } \nu = q \cdot P). \text{ Here, } E \text{ and } E' \text{ are the initial and final lepton energies in the lab.}$

$$\begin{split} Q^2 = -q^2 = 2(EE' - \overrightarrow{k} \cdot \overrightarrow{k}') - m_\ell^2 - m_{\ell'}^2 \text{ where } m_\ell(m_{\ell'}) \text{ is the initial} \\ \text{(final) lepton mass. If } EE' \sin^2(\theta/2) \gg m_\ell^2, \, m_{\ell'}^2, \text{ then} \end{split}$$

 $\approx 4EE'\sin^2(\theta/2),$ where θ is the lepton's scattering angle in the lab.

 $x=rac{Q^2}{2M
u}$ In the parton model, x is the fraction of the target nucleon's momentum carried by the struck quark. [See section on Quantum Chromodynamics (Sec. 9 of this Review.)]

 $y = \frac{q \cdot P}{k \cdot P} = \frac{\nu}{E}$ is the fraction of the lepton's energy lost in the lab.

 $W^2=(P+q)^2=M^2+2M\nu-Q^2$ is the mass squared of the system recoiling against the lepton.

$$s = (k+P)^2 = rac{Q^2}{xy} + M^2$$

35.1.1. Leptoproduction cross sections.

$$\begin{split} \frac{d^2\sigma}{dx\ dy} &= \nu \, (s-M^2) \, \frac{d^2\sigma}{d\nu \, dQ^2} = \frac{2\pi \, M\nu}{E'} \frac{d^2\sigma}{d\Omega_{\rm lab} \, dE'} \\ &= x (s-M^2) \, \frac{d^2\sigma}{dx \, dQ^2} \; . \end{split} \tag{35.1}$$

35.1.2. Leptoproduction structure functions: The neutral-current process, $eN \to eX$, at low Q^2 is just electromagnetic and parity conserving. It can be written in terms of two structure functions $F_1^{\rm em}(x,Q^2)$ and $F_2^{\rm em}(x,Q^2)$:

$$\begin{split} \frac{d^2\sigma}{dx\;dy} &= \frac{4\pi\;\alpha^2(s-M^2)}{Q^4} \\ &\times \left[(1-y)\,F_2^{\rm em} + \,y^2\,xF_1^{\rm em} - \frac{M^2}{(s-M^2)}\,xy\,F_2^{\rm em} \right] \,. \eqno(35.2) \end{split}$$

The charged-current processes, $e^-N \to \nu X$, $\nu N \to e^-X$, and $\overline{\nu}N \to e^+X$, are parity violating and can be written in terms of three structure functions $F_1^{\rm CC}(x,Q^2)$, $F_2^{\rm CC}(x,Q^2)$, and $F_3^{\rm CC}(x,Q^2)$:

$$\frac{d^2\sigma}{dx\,dy} = \frac{G_F^2\,(s-M^2)}{2\pi} \frac{M_W^4}{(Q^2+M_W^2)^2} \tag{35.3}$$

$$\times \; \left\{ \left[1 - y - \frac{M^2 x y}{(s - M^2)} \right] F_2^{\rm CC} + \frac{y^2}{2} \; 2x \, F_1^{\rm CC} \pm \left(y - \frac{y^2}{2} \right) \, x \, F_3^{\rm CC} \right\} \, ,$$

where the last term is positive for the e^- and ν reactions and negative for $\overline{\nu}N \to e^+X$. As explained below there are different structure functions for charge-raising and charge-lowering currents.

35.1.3. Structure functions in the QCD parton model: In the QCD parton model, the structure functions defined above can be expressed in terms of parton distribution functions. The quantity $f_i(x,Q^2)dx$ is the probability that a parton of type i (quark, antiquark, or gluon), carries a momentum fraction between x and x + dx of the nucleon's momentum in a frame where the nucleon's momentum is large. For the cross section corresponding to the neutral-current process $ep \to eX$, we have for $s \gg M^2$ (in the case where the incoming electron is either left- (L) or right- (R) handed):

$$\frac{d^2\sigma}{dx\,dy} = \frac{\pi\alpha^2}{sx^2\,y^2} \left[\sum_q \left(x f_q\left(x, Q^2\right) + x f_{\overline{q}}\left(x, Q^2\right) \right) \right] \times \left[A_q + (1-y)^2 B_q \right] . \tag{35.4}$$

Here the index q refers to a quark flavor (i.e., u, d, s, c, b, or t), and

$$\begin{split} A_{q} &= \left(-q_{q} + g_{Lq} \; g_{Le} \; \frac{Q^{2}}{Q^{2} + M_{Z}^{2}}\right)^{2} + \left(-q_{q} + g_{Rq} \; g_{Re} \; \frac{Q^{2}}{Q^{2} + M_{Z}^{2}}\right)^{2}, \\ B_{q} &= \left(-q_{q} + g_{Rq} \; g_{Le} \; \frac{Q^{2}}{Q^{2} + M_{Z}^{2}}\right)^{2} + \left(-q_{q} + g_{Lq} \; g_{Re} \; \frac{Q^{2}}{Q^{2} + M_{Z}^{2}}\right)^{2}. \end{split} \tag{35.6}$$

Here q_q is the charge of flavor q. For a left-handed electron, $g_{Re}=0$ and $g_{Le}=(-1/2+\sin^2\theta_W)/(\sin\theta_W\cos\theta_W)$, while for a right-handed electron, $g_{Le}=0$ and $g_{Re}=(\sin^2\theta_W)/(\sin\theta_W\cos\theta_W)$. For the quarks, $g_{Lq}=(T_3-q_q\sin^2\theta_W)/(\sin\theta_W\cos\theta_W)$, and $g_{Rq}=(-q_q\sin^2\theta_W)$ / $(\sin\theta_W\cos\theta_W)$.

For neutral-current neutrino (antineutrino) scattering, the same formula applies with g_{Le} replaced by $g_{L\nu}=1/(2\sin\theta_W\cos\theta_W)$ ($g_{L\overline{\nu}}=0$) and g_{Re} replaced by $g_{R\nu}=0$ [$g_{R\overline{\nu}}=-1/(2\sin\theta_W\cos\theta_W)$].

In the case of the *charged-current processes* $e_L^- p \to \nu X$ and $\overline{\nu}p \to e^+ X$, Eq. (35.3) applies with

$$F_{2} = 2xF_{1} = 2x \left[f_{u}(x, Q^{2}) + f_{c}(x, Q^{2}) + f_{t}(x, Q^{2}) + f_{\overline{d}}(x, Q^{2}) + f_{\overline{b}}(x, Q^{2}) + f_{\overline{b}}(x, Q^{2}) \right],$$

$$F_{3} = 2 \left[f_{u}(x, Q^{2}) + f_{c}(x, Q^{2}) + f_{t}(x, Q^{2}) - f_{\overline{d}}(x, Q^{2}) - f_{\overline{b}}(x, Q^{2}) \right].$$

$$(35.8)$$

For the process $\nu p \to e^- X$:

$$F_{2} = 2xF_{1} = 2x \Big[f_{d}(x, Q^{2}) + f_{s}(x, Q^{2}) + f_{b}(x, Q^{2}) + f_{\overline{u}}(x, Q^{2}) + f_{\overline{c}}(x, Q^{2}) + f_{\overline{t}}(x, Q^{2}) \Big] , \qquad (35.9)$$

$$F_{3} = 2 \Big[f_{d}(x, Q^{2}) + f_{s}(x, Q^{2}) + f_{b}(x, Q^{2}) - f_{\overline{u}}(x, Q^{2}) - f_{\overline{c}}(x, Q^{2}) - f_{\overline{t}}(x, Q^{2}) \Big] . \qquad (35.10)$$

35.2. e^+e^- annihilation

For pointlike, spin-1/2 fermions, the differential cross section in the c.m. for $e^+e^- \to f\overline{f}$ via single photon annihilation is (θ) is the angle between the incident electron and the produced fermion; $N_c=1$ if f is a lepton and $N_c=3$ if f is a quark).

$$\frac{d\sigma}{d\Omega} = N_c \frac{\alpha^2}{4s} \beta \left[1 + \cos^2 \theta + (1 - \beta^2) \sin^2 \theta \right] Q_f^2 , \qquad (35.11)$$

where β is the velocity of the final state fermion in the c.m. and Q_f is the charge of the fermion in units of the proton charge. For $\beta \to 1$,

$$\sigma = N_c \frac{4\pi\alpha^2}{3s} Q_f^2 = N_c \frac{86.8 Q_f^2 nb}{s(\text{GeV}/c^2)^2} . \tag{35.12}$$

At higher energies, the Z^0 (mass M_Z and width Γ_Z) must be included. If the mass of a fermion f is much less than the mass of the Z^0 , then the differential cross section for $e^+e^- \to f\bar{f}$ is

$$\frac{d\sigma}{d\Omega} = N_c \frac{\alpha^2}{4s} \left\{ (1 + \cos^2 \theta) \left[Q_f^2 - 2\chi_1 v_e v_f Q_f + \chi_2 (a_e^2 + v_e^2) (a_f^2 + v_f^2) \right] + 2\cos \theta \left[-2\chi_1 a_e a_f Q_f + 4\chi_2 a_e a_f v_e v_f \right] \right\}$$
(35.13)

where

$$\chi_{1} = \frac{1}{16 \sin^{2} \theta_{W} \cos^{2} \theta_{W}} \frac{s(s - M_{Z}^{2})}{(s - M_{Z}^{2})^{2} + M_{Z}^{2} \Gamma_{Z}^{2}},$$

$$\chi_{2} = \frac{1}{256 \sin^{4} \theta_{W} \cos^{4} \theta_{W}} \frac{s^{2}}{(s - M_{Z}^{2})^{2} + M_{Z}^{2} \Gamma_{Z}^{2}},$$

$$a_{e} = -1,$$

$$v_{e} = -1 + 4 \sin^{2} \theta_{W},$$

$$a_{f} = 2T_{3f},$$

$$v_{f} = 2T_{3f} - 4Q_{f} \sin^{2} \theta_{W},$$
(35.14)

where $T_{3f} = 1/2$ for u, c and neutrinos, while $T_{3f} = -1/2$ for d, s, b, and negatively charged leptons.

At LEP II it may be possible to produce the orthodox Higgs boson, H, (see the mini-review on Higgs bosons) in the reaction $e^+e^- \to HZ^0$, which proceeds dominantly through a virtual Z^0 . The Standard Model prediction for the cross section [3] is

$$\sigma(e^+e^- \to HZ^0) = \frac{\pi\alpha^2}{24} \cdot \frac{2K}{\sqrt{s}} \cdot \frac{K^2 + 3M_Z^2}{(s - M_Z^2)^2} \cdot \frac{1 - 4\sin^2\theta_W + 8\sin^4\theta_W}{\sin^4\theta_W \cos^4\theta_W}.$$
(35.15)

where K is the c.m. momentum of the produced H or Z^0 . Near the production threshold, this formula needs to be corrected for the finite width of the Z^0 .

35.3. Two-photon process at e^+e^- colliders

When an e^+ and an e^- collide with energies E_1 and E_2 , they emit dn_1 and dn_2 virtual photons with energies ω_1 and ω_2 and 4-momenta q_1 and q_2 . In the equivalent photon approximation, the cross section for $e^+e^- \to e^+e^- X$ is related to the cross section for $\gamma\gamma \to X$ by (Ref. 1)

$$d\sigma_{e^+e^-\to e^+e^-X}(s) = dn_1 dn_2 d\sigma_{\gamma\gamma\to X}(W^2)$$
 (35.16)

where $s = 4E_1E_2$, $W^2 = 4\omega_1\omega_2$ and

$$dn_i = \frac{\alpha}{\pi} \left[1 - \frac{\omega_i}{E_i} + \frac{\omega_i^2}{2E_i^2} - \frac{m_e^2 \omega_i^2}{(-q_i^2)E_i^2} \right] \frac{d\omega_i}{\omega_i} \frac{d(-q_i^2)}{(-q_i^2)} . \tag{35.17}$$

After integration (including that over q_i^2 in the region $m_e^2 \omega_i^2 / E_i(E_i - \omega_i) \le -q_i^2 \le (-q^2)_{\rm max}$), the cross section is

$$\sigma_{e^{+}e^{-} \to e^{+}e^{-} X}(s) = \frac{\alpha^{2}}{\pi^{2}} \int_{z_{th}}^{1} \frac{dz}{z} \left[f(z) \left(\ln \frac{(-q^{2})_{\text{max}}}{m_{e}^{2} z} - 1 \right)^{2} \right.$$

$$\left. - \frac{1}{3} \left(\ln \frac{1}{z} \right)^{3} \right] \sigma_{\gamma\gamma \to X}(zs) ;$$

$$f(z) = \left(1 + \frac{1}{2} z \right)^{2} \ln \frac{1}{z} - \frac{1}{2} (1 - z)(3 + z) ;$$

$$z = \frac{W^{2}}{z} . \tag{35.18}$$

The quantity $(-q^2)_{\max}$ depends on properties of the produced system X, in particular, $(-q^2)_{\max} \sim m_{\rho}^2$ for hadron production (X=h) and $(-q^2)_{\max} \sim W^2$ for lepton pair production $(X=\ell^+\ell^-,\ell^-,\ell^-,\ell^-)$.

For production of a resonance of mass m_R and spin $J \neq 1$

$$\sigma_{e^{+}e^{-} \to e^{+}e^{-}R}(s) = (2J+1) \frac{8\alpha^{2}\Gamma_{R \to \gamma\gamma}}{m_{R}^{3}} \times \left[f(m_{R}^{2}/s) \left(\ln \frac{sm_{V}^{2}}{m_{e}^{2}m_{R}^{2}} - 1 \right)^{2} - \frac{1}{3} \left(\ln \frac{s}{m_{R}^{2}} \right)^{3} \right]$$
(35.19)

where m_V is the mass that enters into the form factor of the $\gamma\gamma \to R$ transition: $m_V \sim m_\rho$ for $R = \pi^0$, η , $f_2(1270)$, ..., $m_V \sim m_R$ for $R = c\bar{c}$ or $b\bar{b}$ resonances.

35.4. Inclusive hadronic reactions

One-particle inclusive cross sections $Ed^3\sigma/d^3p$ for the production of a particle of momentum p are conveniently expressed in terms of rapidity (see above) and the momentum p_T transverse to the beam direction (defined in the center-of-mass frame)

$$E\frac{d^{3}\sigma}{d^{3}p} = \frac{d^{3}\sigma}{d\phi \, dy \, p_{T} dp_{T}} \ . \tag{35.20}$$

In the case of processes where p_T is large or the mass of the produced particle is large (here large means greater than 10 GeV), the parton model can be used to calculate the rate. Symbolically

$$\sigma_{
m hadronic} = \sum_{ij} \int f_i(x_1, Q^2) \ f_j(x_2, Q^2) \ dx_1 \ dx_2 \ \widehat{\sigma}_{
m partonic} \ , \quad (35.21)$$

where $f_i(x, Q^2)$ is the parton distribution introduced above and Q is a typical momentum transfer in the partonic process and $\hat{\sigma}$ is the partonic cross section. Some examples will help to clarify. The production of a W^+ in pp reactions at rapidity y in the center-of-mass frame is given by

$$\begin{split} \frac{d\sigma}{dy} &= \frac{G_F \ \pi \sqrt{2}}{3} \\ &\times \tau \bigg[\cos^2 \theta_c \bigg(u(x_1 \ , \ M_W^2) \ \overline{d} \ (x_2, M_W^2) \\ &\quad + \ u(x_2 \ , \ M_W^2) \ \overline{d} \ (x_1, M_W^2) \bigg) \\ &\quad + \ \sin^2 \theta_c \bigg(u(x_1 \ , \ M_W^2) \ \overline{s} \ (x_2 \ , \ M_W^2) \\ &\quad + \ s(x_2, M_W^2) \ \overline{u} \ (x_1, M_W^2) \bigg) \bigg] \ , \ (35.22) \end{split}$$

where $x_1 = \sqrt{\tau} e^y$, $x_2 = \sqrt{\tau} e^{-y}$, and $\tau = M_W^2/s$. Similarly the production of a jet in pp (or $p\bar{p}$) collisions is given by

$$\frac{d^{3}\sigma}{d^{2}p_{T} dy} = \sum_{\substack{ij \\ \times}} \int f_{i}(x_{1}, p_{T}^{2}) f_{j}(x_{2}, p_{T}^{2}) \times \left[\hat{s} \frac{d\hat{\sigma}}{d\hat{t}} \right]_{ij} dx_{1} dx_{2} \delta(\hat{s} + \hat{t} + \hat{u}), \quad (35.23)$$

where the summation is over quarks, gluons, and antiquarks. Here

$$s = (p_1 + p_2)^2 , (35.24)$$

$$t = (p_1 - p_{\text{jet}})^2$$
, (35.25)

$$u = (p_2 - p_{\text{jet}})^2 \,, \tag{35.26}$$

 p_1 and p_2 are the momenta of the incoming p and p (or \overline{p}) and \widehat{s} , \widehat{t} , and \widehat{u} are s, t, and u with $p_1 \to x_1 p_1$ and $p_2 \to x_2 p_2$. The partonic cross section $\widehat{s}[(d\widehat{\sigma})/(d\widehat{t})]$ can be found in Ref. 2. Example: for the process $gg \to q\overline{q}$,

$$\widehat{s} \frac{d\sigma}{dt} = 3\alpha_s^2 \frac{(\widehat{t}^2 + \widehat{u}^2)}{8\widehat{s}} \left[\frac{4}{9\widehat{t}\widehat{u}} - \frac{1}{\widehat{s}^2} \right] . \tag{35.27}$$

The prediction of Eq. (35.23) is compared to data from the UA1 and UA2 collaborations in Fig. 37.8 in the Plots of Cross Sections and Related Quantities section of this *Review*.

The associated production of a Higgs boson and a gauge boson is analogous to the process $e^+e^- \to HZ^0$ in Sec. 35.2. The required parton-level cross sections [4], averaged over initial quark colors, are

$$\begin{split} \sigma(q_i \overline{q}_j \to W^\pm H) &= \frac{\pi \alpha^2 |V_{ij}|^2}{36 \sin^4 \theta_W} \cdot \frac{2K}{\sqrt{s}} \cdot \frac{K^2 + 3M_W^2}{(s - M_W^2)^2} \\ \sigma(q \overline{q} \to Z^0 H) &= \frac{\pi \alpha^2 (a_q^2 + v_q^2)}{144 \sin^4 \theta_W \cos^4 \theta_W} \cdot \frac{2K}{\sqrt{s}} \cdot \frac{K^2 + 3M_Z^2}{(s - M_Z^2)^2} \; . \end{split}$$

Here V_{ij} is the appropriate element of the Kobayashi-Maskawa matrix and K is the c.m. momentum of the produced H. The axial and vector couplings are defined as in Sec. 35.2.

35.5. One-particle inclusive distributions

In order to describe one-particle inclusive production in e^+e^- annihilation or deep inelastic scattering, it is convenient to introduce a fragmentation function $D_i^h\left(z,Q^2\right)$ where $D_i^h\left(z,Q^2\right)$ is the number of hadrons of type h and momentum between zp and (z+dz)p produced in the fragmentation of a parton of type i. The Q^2 evolution is predicted by QCD and is similar to that of the parton distribution functions [see section on Quantum Chromodynamics (Sec. 9 of this Review)]. The $D_i^h(z,Q^2)$ are normalized so that

$$\sum_{h} \int z D_i^h (z, Q^2) dz = 1.$$
 (35.28)

If the contributions of the Z boson and three-jet events are neglected, the cross section for producing a hadron h in e^+e^- annihilation is given by

$$\frac{1}{\sigma_{\text{had}}} \frac{d\sigma}{dz} = \frac{\sum_{i} e_{i}^{2} D_{i}^{h}(z, Q^{2})}{\sum_{i} e_{i}^{2}} , \qquad (35.29)$$

where e_i is the charge of quark-type i, $\sigma_{\rm had}$ is the total hadronic cross section, and the momentum of the hadron is $zE_{\rm cm}/2$.

In the case of deep inelastic muon scattering, the cross section for producing a hadron of energy E_h is given by

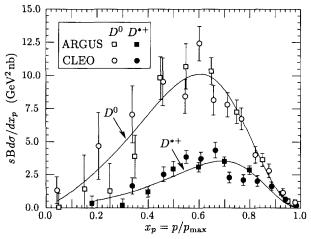
$$\frac{1}{\sigma_{\rm tot}} \, \frac{d\sigma}{dz} = \frac{\sum_{i} e_{i}^{2} \, q_{i}(x,Q^{2}) \, D_{i}^{h}(z,Q^{2})}{\sum_{i} e_{i}^{2} \, q_{i}(x,Q^{2})} \, , \qquad (35.30)$$

where $E_h=\nu z$. (For the kinematics of deep inelastic scattering, see Sec. 34.4.2 of the Kinematics section of this *Review*.) The fragmentation functions for light and heavy quarks have a different z dependence; the former peak near z=0. They are illustrated in Figs. 36.1 and 36.2 in the section on "Heavy Quark Fragmentation in e^+e^- Annihilation" (Sec. 36 of this *Review*).

References:

- V.M. Budnev, I.F. Ginzburg, G.V. Meledin, and V.G. Serbo, Phys. Reports 15C, 181 (1975);
 - See also S. Brodsky, T. Kinoshita, and H. Terazawa, Phys. Rev. **D4**, 1532 (1971).
- G.F. Owens, F. Reya, and M. Glück, Phys. Rev. D18, 1501 (1978).
- B.W. Lee, C. Quigg, and B. Thacker, Phys. Rev. **D16**, 1519 (1977).
- E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 579 (1984).

36. HEAVY-QUARK FRAGMENTATION IN e^+e^- ANNIHILATION


Written January 1998 by D. Besson (University of Kansas).

Measurement of the fragmentation functions of heavy quarks provides information about non-perturbative particle production in a variety of experimental environments. The CDF observation of high p_T $J/\psi(1S)$ production rates far in excess of the extant theoretical predictions prompted the development of the color octet model $(e.g.,\ p\bar{p}\to gg\to \chi_c\to \psi+{\rm X})$ and highlighted the role of gluon fragmentation in charmonium production. Recent results from both LEP and HERA have also helped elucidate the gluonic contribution to charmed meson production. Current estimates from LEP are that gluon fragmentation accounts for approximately half of the D^* production in the lowest momentum region (the lowest quarter of the allowed kinematic region).

Many functional forms have been suggested to describe these momentum spectra for heavy quarks produced in e^+e^- annihilations. The functional form given by Peterson et al. [1] in terms of just one free parameter ϵ_P has found widespread use; other parameterizations are also given in the literature [2]. The earliest Peterson form was a function of one variable z, defined for a heavy-quark Q, light-quark \overline{q} system as the ratio of the energy plus the longitudinal momentum of the hadron $Q\overline{q}$ to the sum of the energy and momentum of the heavy quark after accounting for initial state radiation, gluon bremsstrahlung, and final state radiation: $z = (E + p_{\parallel})_{Q\bar{q}}/(E + p_{Q})$. The main advantage of this variable is that it is relativistically invariant with respect to boosts in the direction of the primary quark. Unfortunately, as this quantity is not directly accessible, experiments typically use other scaling variables which are close approximations to z—either $x^+=(p_{||}+E)_{\mathrm{hadron}}/(p_{||}+E)_{\mathrm{max}}, \ x_p=p/p_{\mathrm{max}}, \ \mathrm{or}$ $x_E = E_{
m hadron}/E_{
m beam}$

The Peterson functional form is:

$$\frac{dN}{dz} = \frac{1}{z[1 - (1/z) - \epsilon_P/(1-z)]^2}$$
 (36.1)

Figure 36.1: Efficiency-corrected inclusive cross section measurements for the production of D^0 and D^{*+} in e^+e^- measurements at $\sqrt{s}\approx 10$ GeV. The variable x_p is related to the Peterson variable z, but is not identical to it.

The bulk of the available fragmentation function data on charmed mesons (excluding $J/\psi(1S)$) is from measurements at $\sqrt{s}=10$ GeV. Shown in Fig. 36.1 are the efficiency-corrected (but not branching ratio corrected) CLEO [3] and ARGUS [4] inclusive cross sections $(s\cdot \mathcal{B} d\sigma/dx_p)$ in units of GeV²-nb, with $x_p=p/p_{\rm max}$) for the production of pseudoscalar D^0 and vector D^{*+} in e^+e^- annihilations at $\sqrt{s}\approx 10$ GeV. For the D^0 , \mathcal{B} represents the branching fraction for $D^0\to K^-\pi^+$; for the D^{*+} , \mathcal{B} represents the product branching fraction: $D^{*+}\to D^0\pi^+$; $D^0\to K^-\pi^+$. These inclusive spectra have not been corrected for cascades from higher states, nor for radiative effects. Note that since the momentum spectra are sensitive to

radiative corrections, comparison of charm spectra at $\sqrt{s}=10~{\rm GeV}$ cannot be compared directly with spectra at higher center-of-mass energies, and must be appropriately evolved.

Fits to the combined CLEO and ARGUS D^0 and D^{*+} data give $\epsilon_P(D^0)=0.135\pm0.01$ and $\epsilon_P(D^*)=0.078\pm0.008$; these are indicated in the solid curves. Measurement of the fragmentation functions for a variety of particles has allowed comparisons between mesons and baryons, and particles of different spin structure, as shown in Table 36.1

Table 36.1: The Peterson momentum hardness parameter ϵ_P as obtained from $e^+e^- \rightarrow (\text{particle}) + X$ measurements.

Particle	L	\sqrt{s}	ϵ_P	Reference	
			·F		
D^0	0	$10~{ m GeV}$	0.135 ± 0.01	[3]	
D^{*+}	0	$10~{ m GeV}$	$\boldsymbol{0.078 \pm 0.008}$	[3]	
D_s^*	0	$10~{ m GeV}$	$0.04^{+0.03}_{-0.01}$	[5]	
$D_1^0(2420)$	1	$10~{ m GeV}$	$0.034^{+0.018}_{-0.012}$	[6]	
$D_2^0(2460)$	1	$10~{ m GeV}$	0.015 ± 0.004	[6]	
$D_1^+(2420)$	1	$10~{ m GeV}$	$0.020^{+0.011}_{-0.006}$	[7]	
$D_2^+(2460)$	1	$10~{ m GeV}$	0.013 ± 0.007	[7]	
$D_{s1}(2536)$	1	$10~{ m GeV}$	$0.06^{+0.035}_{-0.03}$	[8]	
$D_{s2}(2573)$	1	$10~{ m GeV}$	$0.027^{+0.043}_{-0.016}$	[9]	
$\Lambda_{\mathbf{c}}$	0	$10~{ m GeV}$	0.25 ± 0.03	[10,11]	
\varXi_{c}	0	$10~{ m GeV}$	0.23 ± 0.05	[12,13]	
Σ_c	0	10 GeV	0.29 ± 0.06	[14,15]	
Σ_c^*	0	$10~{ m GeV}$	$0.30^{+0.10}_{-0.07}$	[16]	
Ξ_c^{*+}	0	$10~{ m GeV}$	$0.24^{+0.22}_{-0.10}$	[17]	
\varXi_c^{*0}	0	$10~{ m GeV}$	$0.22^{+0.15}_{-0.08}$	[18]	
$\overline{\Lambda_{c,1}}$	1	10 GeV	0.059 ± 0.028	[19,20]	
$A_{c,2}$	1	$10~{ m GeV}$	0.053 ± 0.012	[19,21]	
$arvarepsilon_{c,2}$	1	10 GeV	$0.058^{+0.037}_{-0.021}$	[22]	
b hadrons	_	90 GeV	$0.0047^{+0.0010}_{-0.0008}$	[23]	

We note from Table 36.1 that the mass dependence of ϵ_P is less marked than the dependence on the orbital angular momentum structure of the charmed hadron being measured. Orbitally excited L=1 charmed hadrons $(D_J,D_{s,J},$ and $\Lambda_{c,J})$ show consistently harder spectra (i.e., smaller values of $\epsilon_P)$ than the L=0 ground states, whereas the data for the ground state charmed baryons Λ_c and Ξ_c show agreement with the lighter (by ≈ 400 –600 MeV) ground-state D and D_s charmed mesons. To some extent, the harder spectra of L=1 hadrons can be attributed to the fact that all the L=1 charmed hadrons will eventually decay into L=0 hadrons.

Bottom-flavored hadrons at LEP have been measured to have n even harder momentum spectrum than charmed hadrons at ower energies [23-25]. Qualitatively, whereas charm spectra peak at $x_p \approx 0.6$, the spectra of bottom hadrons peak at $x_p \approx 0.8$. This is as expected in the Peterson model, where the value ϵ_P is expected to vary as the ratio of the effective light quark mass to the heavy quark mass in a heavy quark + light (di)quark hadron. In the case of charm, the Peterson functional form provides an acceptable description of the shape of the x_p distribution, provided the appropriate ϵ_P value is independently determined for each separate species of charmed particle. However, unlike charm, the numbers of fully reconstructed b-flavored hadrons is too small to allow a statistically compelling measure of ϵ_P for each separate bottom hadron. Consequently, a b-enriched sample is isolated kinematically, using, e.g., a high p_T lepton and/or a displaced vertex to tag a primary b quark. The x_p distribution therefore includes all b-flavored hadrons in the sample, and does not yet allow a straightforward species-by-species ϵ_P extraction. Additional uncertainties in the case of bottom arise from the sensitivity of ϵ_P to the fragmentation model used to non-perturbatively evolve the initial $q\bar{q}$ system into final state hadrons.

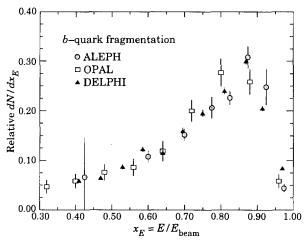


Figure 36.2: Fractional energy distribution for b-quark fragmentation for inclusive b production at LEP.

In general, the b-quark fragmentation function distribution is found to be somewhat narrower than the shape of the Peterson function; this may be due to a systematic underestimate of soft gluon emission in event generators, and/or uncertainties in the appropriate mix of b-flavored hadrons. The match of a single Peterson function to data is therefore much more difficult for bottom than charm at this time, although there is relatively good agreement from experiment to experiment, as seen in Fig. 36.2, which displays the fragmentation function data from OPAL [23], ALEPH [24], and DELPHI [25].

References:

- C. Peterson, D. Schlatter, I. Schmitt, and P. M. Zerwas, Phys. Rev. **D27**, 105 (1983).
- M.G. Bowler, Z. Phys. C11, 169 (1981);
 V.G. Kartvelishvili et al., Phys. Lett. B78, 615 (1978);
 B. Andersson et al., Z. Phys. C20, 317 (1983).
- 3. D. Bortoletto et al., Phys. Rev. D37, 1719 (1988).
- 4. H. Albrecht et al., Z. Phys. C52, 353 (1991).
- J. A. McKenna, Ph.D. thesis, U. of Toronto, Toronto, Canada (1987), unpublished.
- 6. P. Avery et al., Phys. Lett. B331, 236 (1994).
- 7. T. Bergfeld et al., Phys. Lett. B341, 435 (1995).
- R. Kutschke, presented at Intl. Conf. on Heavy Quark Physics, Ithaca, NY, 1989.
- 9. H. Albrecht et al., Z. Phys. C69, 405 (1996).
- 10. G. Crawford et al., Phys. Rev. D45, 752 (1992).
- 11. C. E. K. Charlesworth, A Study of the Decay Properties of the Charmed Baryon Λ_c^+ , Ph. D. Thesis, University of Toronto (1992).
- H. Albrecht et al., Phys. Lett. B247, 121 (1990).
- K. W. Edwards et al., Phys. Lett. B373, 261 (1996).
- 14. H. Albrecht et al., Phys. Lett. B207, 489 (1988).
- 15. T. Bowcock et al., Phys. Rev. Lett. 62, 2233 (1989).
- G. Brandenberg et al., Phys. Rev. Lett. 78, 2304 (1997).
- 17. L. Gibbons et al., Phys. Rev. Lett. 77, 810 (1996).
- P. Avery et al., Phys. Rev. Lett. 75, 4364 (1995).
- 19. K. W. Edwards et al., Phys. Rev. Lett. 74, 3331 (1995).
- 20. H. Albrecht et al., Phys. Lett. **B402**, 207 (1997).
- 21. H. Albrecht et al., Phys. Lett. B317, 227 (1993).
- G. Brandenberg et al., CLEO-CONF 97-17, EPS97-398, submitted to the 1997 European Physical Society Conf. on High Energy Physics, Jerusalem, Israel, Aug. 18-25, 1997.
- G. Alexander et al., The OPAL Collaboration, Phys. Lett. B364, 93 (1995).
- D. Buskulic *et al.*, The ALEPH Collaboration, Phys. Lett. **B357**, 699 (1995).
- O. Podobrin, M. Feindt, et al., The DELPHI Collaboration, DELPHI 95-103 PHYS 538.

37. PLOTS OF CROSS SECTIONS AND RELATED QUANTITIES

NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA,
THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD'S RELIABLE DATA,

Structure Functions

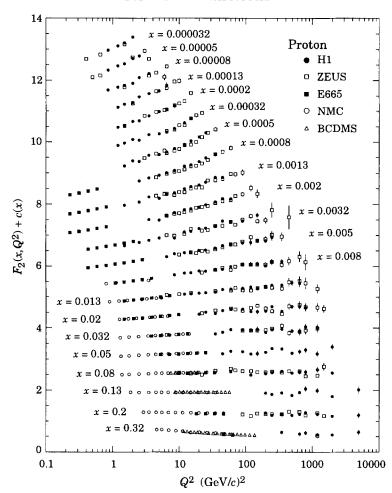


Figure 37.1: The proton structure function F_2^p measured in electromagnetic scattering of electrons (H1, ZEUS) and muons (BCDMS, E665, NMC), in the kinematic domain of the HERA data, for x > 0.00003; cf. Fig. 37.2 for data at smaller x. Only statistical errors are shown. The data are plotted as a function of Q^2 in bins of fixed x. The H1 binning in x is used in this plot; the ZEUS, BCDMS, E665 and NMC data are rebinned to the x values of the H1 data using a phenomenological parametrization. For the purpose of plotting, a constant $c(x) = 0.6(i_x - 0.4)$ is added to F_2^p , where i_x is the number of the x bin ranging from $i_x = 1$ (x = 0.32) to $i_x = 21$ (x = 0.000032). References: H1—S. Aid et al, Nucl. Phys. B470, 3 (1996); C. Adloff et al, Nucl. Phys. B497, 3 (1997); ZEUS—M. Derrick et al, Z. Phys. C72, 399 (1996); J. Breitweg et al, Phys. Lett. B407, 432 (1997); BCDMS—A.C. Benvenuti et al, Phys. Lett. B223, 485 (1989); E665—M.R. Adams et al, Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al, Phys. Lett. B364, 107 (1995). (Courtesy of R. Voss, 1997.)

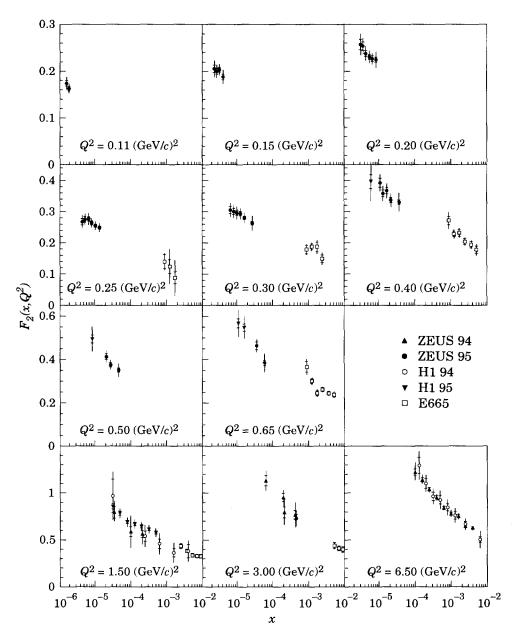


Figure 37.2: The proton structure function F_2^p at small x and Q^2 , measured in electromagnetic scattering of electrons (H1, ZEUS) and muons (E665). The data are plotted as a function of x in bins of fixed Q^2 . References: **ZEUS 94**—M. Derrick *et al.*, Z. Phys. **C72**, 399 (1996); **ZEUS 95**—J. Breitweg *et al.*, Phys. Lett. **B407**, 432 (1997); **H1 94**—S. Aid *et al.*, Nucl. Phys. **B470**, 3 (1996); **H1 95**—C. Adloff *et al.*, Nucl. Phys. **B497**, 3 (1997); **E665**—M.R. Adams *et al.*, Phys. Rev. **D54**, 3006 (1996). (Courtesy of R. Voss, 1997.)

Structure Functions

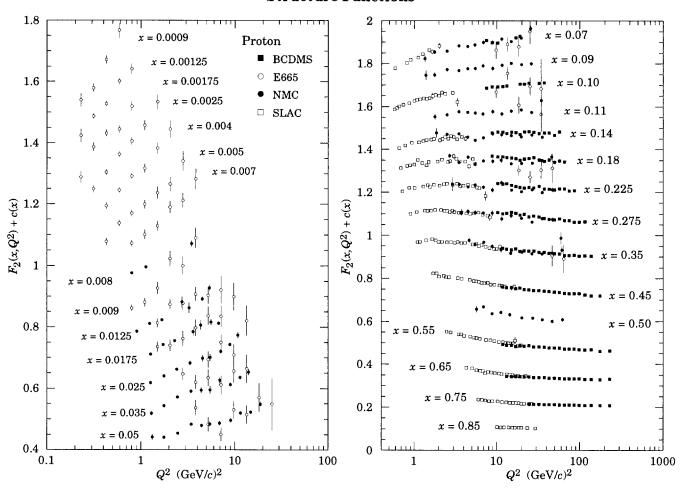


Figure 37.3: The proton structure function F_2^p measured in electromagnetic scattering of electrons (SLAC) and muons (BCDMS, E665, NMC), shown as a function of Q^2 for bins of fixed x. Only statistical errors are shown. For the purpose of plotting, a constant $c(x) = 0.1i_x$ is added to F_2^p where i_x is the number of the x bin, ranging from 1 (x = 0.05) to 14 (x = 0.0009) on the left-hand figure, and from 1 (x = 0.85) to 15 (x = 0.07) on the right-hand figure. For HERA data in the kinematic range of this figure, see Fig. 37.1. References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989); E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Phys. Lett. B364, 107 (1995). SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992). (Courtesy of R. Voss, 1996.)

Structure Functions

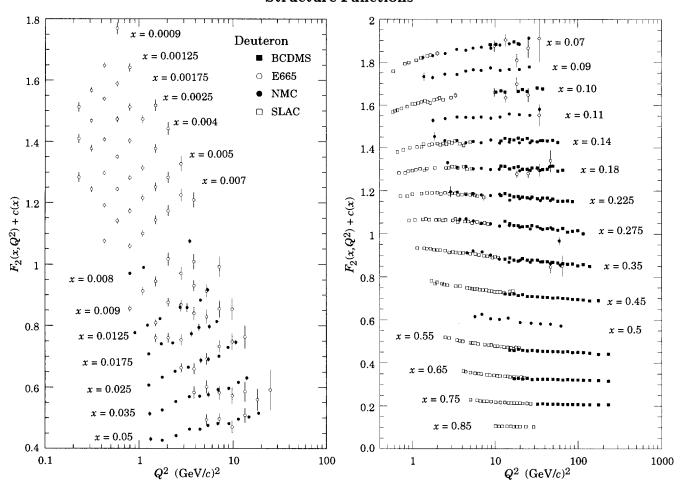


Figure 37.4: As Fig. 37.3, for the deuteron structure function F_2^d . References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC—same references as Fig. 37.3. (Courtesy of R. Voss, 1996.)

Structure Functions

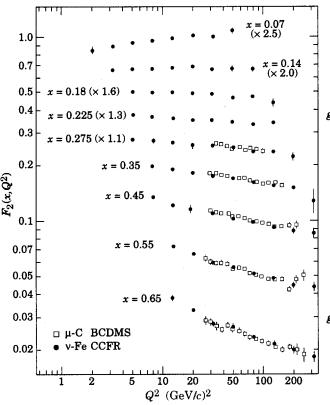
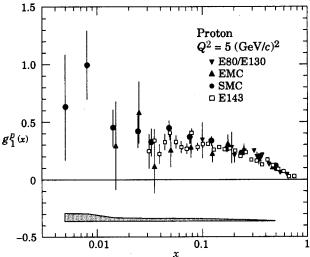



Figure 37.5: The nucleon structure function F_2 measured in deep inelastic scattering of muons on carbon (BCDMS) and neutrinos on iron (CCFR). The data are shown versus Q^2 , for bins of fixed x, and have been scaled by the factors shown in parentheses. References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B195, 91 (1987); CCFR—S.R. Mishra et al., NEVIS-1465 (1992). (Courtesy of R. Voss, 1996.)

Figure 37.6: The spin-dependent structure function $g_1(x)$ of the proton measured in deep inelastic scattering of polarized electrons (E80, E130, E143) and muons (EMC, SMC), shown at $Q^2 = 5 \ GeV^2$. Only statistical errors are shown with the data points. As an example, the SMC systematic error is indicated by the shaded

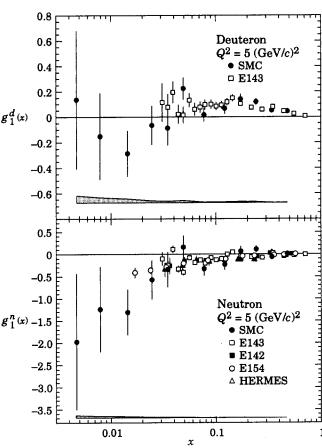
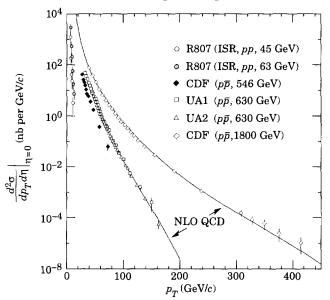



Figure 37.7: The spin-dependent structure function $g_1(x)$ of the deuteron (top) and the neutron (bottom) measured in deep inelastic scattering of polarized electrons (E142, E143, E154, HERMES) and muons (SMC). The SMC and E143 results for the neutron are evaluated from the difference of deuteron and proton data; the E142, E154, and HERMES results were obtained with polarized ³He targets. Only statistical errors are shown with the data points. As an example, the SMC systematic error is indicated by the shaded area. All results except the HERMES data are shown at $Q^2 = 5 \text{ GeV}^2$; the HERMES results are shown at the average Q^2 of the respective data point which varies from $Q^2=1.22\ GeV^2$ at x=0.033 to $Q^2=5.25\ GeV^2$ at x = 0.464. References: E142—P.L. Anthony et al., Phys. Rev. Lett. 71, 959 (1993); E143-K. Abe et al., Phys. Rev. Lett. 75, 25 (1995); E154-K. Abe et al., Phys. Lett. **B405**, 180 (1997) and hep-ph/9705344 v2 (1997); HERMES-K. Ackerstaff et al., Phys. Lett. B404, 383 (1997); SMC-D. Adams et al., Phys. Lett. B396, 338 (1997). (Courtesy of R. Voss, 1997.)

area. References: **E80**—M.J. Alguard *et al.*, Phys. Rev. Lett. **37**, 1261 (1976); ibid. **41**, 70 (1978); **E130**—G. Baum *et al.*, Phys. Rev. Lett. **51**, 1135 (1983); **E143**—K. Abe *et al.*, Phys. Rev. Lett. **74**, 346 (1995); **EMC**—J. Ashman *et al.*, Nucl. Phys. **B328**, 1 (1989); **SMC**—B. Adeva *et al.*, Phys. Lett. **B412**, 414 (1997). In this plot, the E80, E130 and EMC data have been reevaluated using up-to-date parametrizations of F_2^p and $R = \sigma_L/\sigma_T$. (Courtesy of R. Voss, 1997.)

Jet Production in pp and $\overline{p}p$ Interactions

Figure 37.8: Differential cross sections for observation of a single jet of pseudorapidity $\eta=0$ as a function of the jet transverse momentum. CDF—F. Abe et al., Phys. Rev. Lett. 70, 1376 (1993); UA1—G. Arnison et al., Phys. Lett. B172, 461 (1986); UA2—J. Alitti et al., Phys. Lett. B257, 232 (1991); R807—T. Akesson et al., Phys. Lett. B123, 133 (1983). Next-to-leading order QCD curves are shown for 630 GeV and 1800 GeV. (Courtesy of S. Geer, FNAL, 1995.)

Direct γ Production in $\overline{p}p$ Interactions

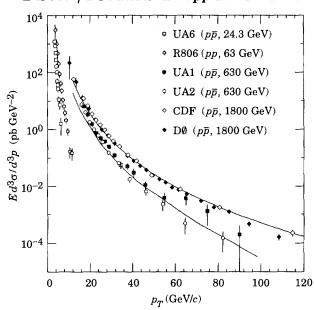


Figure 37.9: Differential cross sections for observation of a single photon of pseudorapidity $\eta=0$ as a function of the photon transverse momentum R806—E. Anassontzis et al., Z. Phys. C13, 277 (1982); UA6—A. Bernasconi et al., Phys. Lett. B206, 163 (1988); UA1—C. Albajar et al., Phys. Lett. B209, 385 (1988); UA2—J. Alitti et al., Phys. Lett. B288, 386 (1992); CDF—F. Abe et al., Phys. Rev. Lett. 73, 2662 (1994); DØ—S. Abachi et al., Phys. Rev. Lett. 77, 5011 (1996). Next-to-leading order QCD curves are shown for 630 GeV and 1800 GeV. (Courtesy of S. Geer, FNAL, 1995.)

Pseudorapidity Distributions in $\bar{p}p$ Interactions

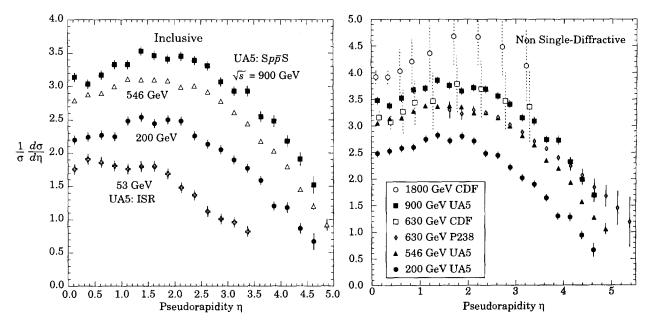


Figure 37.10: Charged particle pseudorapidity distributions in $p\bar{p}$ collisions for 53 GeV $\leq \sqrt{s} \leq$ 1800 GeV. UA5 data from the Sp \bar{p} S are taken from G.J. Alner et al., Z. Phys. C33, 1 (1986), and from the ISR from K. Alpgøard et al., Phys. Lett. 112B, 193 (1982). The UA5 data are shown for both the full inelastic cross-section and with singly diffractive events excluded. Additional non single-diffractive measurements are available from CDF at the Tevatron, F. Abe et al., Phys. Rev. D41, 2330 (1990) and Experiment P238 at the Sp \bar{p} S, R. Harr et al., Phys. Lett. B401, 176 (1997). (Courtesy of D.R. Ward, Cambridge Univ., 1999.)

Average Hadron Multiplicities in Hadronic e^+e^- Annihilation Events

Table 37.1: Average hadronic multiplicities per hadronic e^+e^- annihilation event at $\sqrt{s}\approx 10$, 29–35, and 91 GeV. The rates given include decay products from resonances with $c\tau<10$ cm, and include charge conjugated states. Correlations of the systemaic uncertainties were considered for the calculation of the averages. (Updated July 1999 by O. Biebel.)

Particle	$\sqrt{s} \approx$	10 GeV	$\sqrt{s} = 1$	29-35 GeV	\sqrt{s}	= 91 GeV
Pseudoscala π^+	r meso 6.6		10.3	± 0.4	16.99	$\pm~0.27$
π^0	3.2	± 0.3	5.83	± 0.28	9.47	± 0.54
K^+	0.90	± 0.04	1.48	± 0.09	2.242	± 0.063
K^0	0.91	± 0.05	1.48	± 0.07	2.013	± 0.033
η	0.20	± 0.04	0.61	± 0.07	0.971	± 0.030
$\eta \prime (958)$	0.03	± 0.01	0.26	± 0.10	0.156	± 0.021
D^+	0.16	± 0.03	0.17	± 0.03	0.175	± 0.016
D^0	0.37	± 0.06	0.45	± 0.07	0.454	± 0.030
D_s^+	0.13	± 0.02	0.45	$\pm 0.20^{(a)}$	0.131	± 0.021
B^+, B_d^0		_		_	0.165	$\pm 0.026^{(b)}$
B_s^0				_	0.057	$\pm 0.013^{(b)}$
Scalar meso		± 0.006	0.05	$\pm 0.02^{(c)}$	0.146	± 0.012
$f_0(980)$	0.024	$\pm \ 0.006$	0.05	± 0.02(3)	0.146	$\pm 0.012 \\ \pm 0.11^{(d)}$
$a_0(980)^{\pm}$					0.27	± 0.11(a)
$Vector meso \ ho(770)^0$	ns:	+ 0.04	Ω 01	L 0 00	1 001	T 0 000
	0.35	± 0.04	0.81	± 0.08	1.231	$\pm 0.098 \\ \pm 0.43^{(d)}$
$\rho(770)^{\pm}$	0.00			_	2.40	
$\omega(782)$	0.30	± 0.08		_	1.08	± 0.12
$K^*(892)^+$	0.27	± 0.03	0.64	± 0.05	0.715	± 0.059
$K^*(892)^0$	0.29	± 0.03	0.56	± 0.06	0.738	$\pm \ 0.024$
$\phi(1020)$	0.044	$\pm \ 0.003$	0.085	$\pm \ 0.011$	0.0963	$\pm \ 0.0032$
$D^*(2010)^+$	0.22	± 0.04	0.43	± 0.07	0.183	± 0.010
$D^*(2007)^0$	0.23	± 0.06	0.27	± 0.11		
$D_s^*(2112)^+$				_	0.101	$\pm 0.048^{(f)}$
B^{*} (e)				_	0.288	$\pm \ 0.026$
$J/\psi(1S)$				-	0.0052	$\pm 0.0004^{(g)}$
$\psi(2S)$					0.0023	$\pm 0.0004^{(g)}$
$\Upsilon(1S)$				_	0.00014	$4 \pm 0.00007^{(g)}$
Pseudovecto $\chi_{c1}(3510)$	or meso	ns:			0.0041	$\pm 0.0011^{(g)}$
Tensor meso	ons:					
$f_2(1270)$	0.09	± 0.02	0.14	$\pm~0.04$	0.166	$\pm \ 0.020$
$f_2'(1525)$		_		_	0.012	± 0.006
$K_2^*(1430)^+$		_	0.09	± 0.03		
$K_2^*(1430)^0$			0.12	$\pm \ 0.06$	0.084	$\pm \ 0.022^{(g)}$
$B^{**}(h)$				_	0.118	$\pm~0.024$
Baryons:						
p	0.253	$\pm~0.016$	0.640	± 0.050	1.048	$\pm~0.045$
Λ	0.080	$\pm~0.007$	0.205	$\pm \ 0.010$	0.374	± 0.009
Σ^0	0.023	$\pm \ 0.008$			0.070	$\pm \ 0.012$
$oldsymbol{\Sigma}^-$		_			0.081	± 0.010
$\stackrel{-}{arSigma}^+$		_		_	0.099	± 0.015
$arSigma^\pm$				_	0.174	$\pm \ 0.009$
	0.0059	$\pm~0.0007$	0.0176	$\pm~0.0027$	0.0258	$\pm \ 0.0010$
$\Delta(1232)^{++}$	0.040	$\pm \ 0.010$		_	0.085	$\pm \ 0.014$
$\Sigma(1385)^-$	0.006	$\pm \ 0.002$	0.017	$\pm~0.004$	0.0240	± 0.0017
$\Sigma(1385)^+$	0.005	± 0.001	0.017	± 0.004	0.0239	± 0.0015
$\Sigma(1385)^{\pm}$	0.0106	± 0.0020	0.033	± 0.008	0.0462	± 0.0028
$\Xi(1530)^0$	0.0015	± 0.0020 ± 0.0006	5.500		0.0055	± 0.0025
Ω^-	0.0013	± 0.0004	0.014	± 0.007	0.0033	± 0.0003
Λ_c^+	0.100	± 0.0004 $\pm 0.030^{(i)}$		± 0.050	0.0010	± 0.0003 ± 0.017
Λ_b^0	0.100		0.110	0.000	0.013	± 0.017 ± 0.016
	0.014	- 0.007			0.031	± 0.010
$\Sigma_c^{++}, \Sigma_c^0$ $\Lambda(1520)$	0.014	± 0.007			0.0000	- 0.0007
ACL5201	0.008	$\pm \ 0.002$			0.0222	$\pm~0.0027$

All average multiplicites are per hadronic e^+e^- annihilation event.

- (a) $B(D_s \to \eta \pi, \eta' \pi)$ was used (RPP94).
- (b) The Standard Model $B(Z \to b\bar{b}) = 0.217$ was used.
- (c) $x_p = p/p_{\text{beam}} > 0.1$ only.
- (d) Both charge states.
- (e) Any charge state (i.e., B_d^* , B_u^* , or B_s^*).
- (f) $B(D_s^* \to D_S^+ \gamma)$, $B(D_s^+ \to \phi \pi^+)$, $B(\phi \to K^+ K^-)$ have been used (RPP98).
- (g) $B(Z \rightarrow hadrons) = 0.699$ was used (RPP94).
- (h) Any charge state (i.e., B_d^{**}, B_u^{**}, or B_s^{**}).
- (i) The value was derived from the cross section of $\Lambda_c^+ \to p\pi K$, assuming the branching fraction to be $(3.2 \pm 0.7)\%$ (RPP92).

References:

RPP92: Phys. Rev. D45 (1992) and references therein

RPP94: Phys. Rev. D50, 1173 (1994) and references therein

RPP96: Phys. Rev. D54, 1 (1996) and references therein

RPP98: Eur. Phys. J. C3, 1 (1998) and references therein

R. Marshall, Rep. Prog. Phys. 52, 1329 (1989)

A. De Angelis, J. Phys. G19, 1233 (1993) and references therein
ALEPH: D. Buskulic et al.: Phys. Lett. B295, 396 (1992);
Z. Phys. C64, 361 (1994); C69, 15 (1996); C69, 379 (1996);
C73, 409 (1997); and R. Barate et al.: Z. Phys. C74, 451 (1997); Phys. Reports 294, 1 (1998); Eur. Phys. J. C5, 205 (1998)

ARGUS: H. Albrecht et al.: Phys. Lett. **230B**, 169 (1989); Z. Phys. **C44**, 547 (1989); **C46**, 15 (1990); **C54**, 1 (1992); **C58**, 199 (1993); **C61**, 1 (1994); Phys. Rep. **276**, 223 (1996) CELLO: H.I. Behrend et al.: Z. Phys. **C46**, 397 (1990); **C47**

CELLO: H.J. Behrend et al.: Z. Phys. C46, 397 (1990); C47, 1 (1990)

CLEO: D. Bortoletto et al., Phys. Rev. D37, 1719 (1988)

Crystal Ball: Ch. Bieler et al., Z. Phys. C49, 225 (1991)

DELPHI: P. Abreu et al.: Z. Phys. C57, 181 (1993); C59, 533 (1993); C61, 40 7(1994); C65, 587 (1995); C67, 543 (1995);
C68, 353 (1995); C73, 61 (1996); Nucl. Phys. B444, 3 (1995);
Phys. Lett. B341, 109 (1994); B345, 598 (1995); B361, 207 (1995); B372, 172 (1996); B379, 309 (1996); B416, 233 (1998); B449, 364 (1999); Eur. Phys. J. C6, 19 (1999); C5, 585 (1998); CERN-EP/2000-009 (accepted by Phys. Lett.);
W. Adam et al.: Z. Phys. C69, 561 (1996); C70, 371 (1996)

HRS: S. Abachi et al., Phys. Rev. Lett. 57, 1990 (1986); and M. Derrick et al., Phys. Rev. D35, 2639 (1987)

L3: M. Acciarri *et al.*: Phys. Lett. **B328**, 223 (1994); **B345**, 589 (1995); **B371**, 126 (1996); **B371**, 137 (1996); **B393**, 465 (1997); **B404**, 390 (1997); **B407**, 351 (1997); **B407**, 389 (1997), erratum ibid. **B427**, 409 (1998); **B453**, 94 (1999);

MARK II: H. Schellman et al., Phys. Rev. **D31**, 3013 (1985); and G. Wormser et al., Phys. Rev. Lett. **61**, 1057 (1988)

JADE: W. Bartel et al., Z. Phys. **C20**, 187 (1983); and D.D. Pietzl et al., Z. Phys. **C46**, 1 (1990)

OPAL: R. Akers et al.: Z. Phys. C63, 181 (1994); C66, 555 (1995); C67, 389 (1995); C68, 1 (1995); and G. Alexander et al.: Phys. Lett. B358, 162 (1995); Z. Phys. C70, 197 (1996); C72, 1 (1996); C72, 191 (1996); C73, 569 (1997); C73, 587 (1997); Phys. Lett. B370, 185 (1996); and K. Ackerstaff et al.: Z. Phys. C75, 192 (1997); Phys. Lett. B412, 210 (1997); Eur. Phys. J. C1, 439 (1998); C4, 19 (1998); C5, 1 (1998); C5, 411 (1998);

PLUTO: Ch. Berger et al., Phys. Lett. **104B**, 79 (1981)

SLD: K. Abe, Phys. Rev. D59, 052001 (1999)

TASSO: H. Aihara et al., Z. Phys. C27, 27 (1985)

TPC: H. Aihara et al., Phys. Rev. Lett. 53, 2378 (1984)

Fragmentation in e^+e^- Annihilation

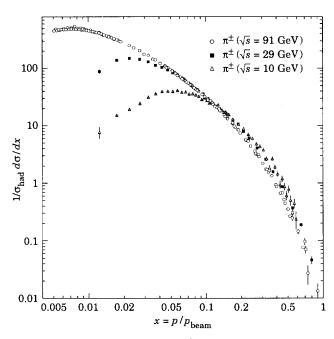


Figure 37.11: Fragmentation into π^{\pm} in e^+e^- annihilations: Inclusive cross sections $(1/\sigma_{\rm had})(d\sigma/dx)$, with $x=p/p_{\rm beam}$. The indicated errors are statistical and systematic errors added in quadrature. Files of the data shown in this figure are given in http://home.cern.ch/b/biebel/www/RPP00

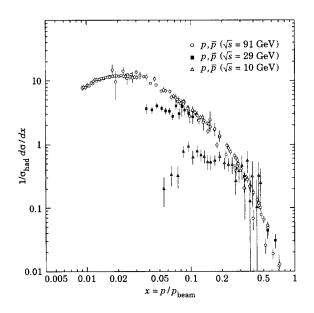
 \triangle : rate at $\sqrt{s} = 9.98$ GeV; an overall uncertainty of 1.8%:

ARGUS-H. Albrecht et al., Z. Phys. C44, 547 (1989).

 \blacksquare : rate at $\sqrt{s} = 29 \text{ GeV}$

TPC-H. Aihara et al., Phys. Rev. Lett. 61, 1263 (1988).

 \bigcirc : rate for hadronic decays of the Z at $\sqrt{s}=91.2~{\rm GeV}$


ALEPH-D. Buskulic et al., Z. Phys. C66, 355 (1995);

DELPHI—P. Abreu et al., Eur. Phys. J. C5, 585 (1998);

OPAL-R. Akers et al., Z. Phys. C63, 181 (1994);

SLD-K. Abe et al., Phys. Rev. D59, 052001 (1999).

(Courtesy of O. Biebel, Max-Planck-Institut für Physik, München, 1999.)

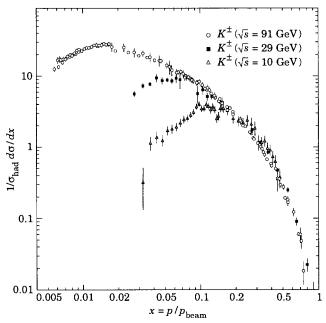


Figure 37.12: Fragmentation into K^{\pm} in e^+e^- annihilations: Inclusive cross sections $(1/\sigma_{\rm had})(d\sigma/dx)$, with $x=p/p_{\rm beam}$. The indicated errors are statistical and systematic errors added in quadrature. Files of the data shown in this figure are given in http://home.cern.ch/b/biebel/www/RPP00

 \triangle : rate at $\sqrt{s} = 9.98$ GeV; an overall uncertainty of 1.8%: **ARGUS**—H. Albrecht *et al.*, Z. Phys. **C44**, 547 (1989).

11. rate at $\sqrt{s} = 29$ GeV **TPC**—H. Aihara *et al.*, Phys. Rev. Lett. **61**, 1263 (1988).

 \bigcirc : rate for hadronic decays of the Z at $\sqrt{s} = 91.2 \text{ GeV}$

ALEPH-D. Buskulic et al., Z. Phys. C66, 355 (1995);

DELPHI-P. Abreu et al., Eur. Phys. J. C5, 585 (1998):

OPAL—R. Akers et al., Z. Phys. C63, 181 (1994).

SLD-K. Abe et al., Phys. Rev. D59, 052001 (1999).

(Courtesy of O. Biebel, Max-Planck-Institut für Physik, München, 1999.)

Figure 37.13: Fragmentation into $p\bar{p}$ in e^+e^- annihilations: Inclusive cross sections $(1/\sigma_{\rm had})(d\sigma/dx)$, with $x=p/p_{\rm beam}$. The indicated errors are statistical and systematic errors added in quadrature. Files of the data shown in this figure are given in http://home.cern.ch/b/biebel/www/RPP00

 \triangle : rate at $\sqrt{s}=9.98$ GeV; an overall uncertainty of 1.8%. This rate is obtained from the measured \overline{p} rate by scaling with a factor of two: **ARGUS**—H. Albrecht *et al.*, Z. Phys. **C44**, 547 (1989).

 \blacksquare : rate at $\sqrt{s}=29$ GeV: **TPC**—H. Aihara et al., Phys. Rev. Lett. 61, 1263 (1988).

 \bigcirc : rate for hadronic decays of the Z at $\sqrt{s} = 91.2$ GeV:

ALEPH-D. Buskulic et al., Z. Phys. C66, 355 (1995);

DELPHI—P. Abreu et al., Eur. Phys. J. C5, 585 (1998):

OPAL—R. Akers et al., Z. Phys. **C63**, 181 (1994);

SLD-K. Abe et al., Phys. Rev. D59, 052001 (1999).

(Courtesy of O. Biebel, Max-Planck-Institut für Physik, München, 1999.)

Annihilation Cross Section Near M_Z

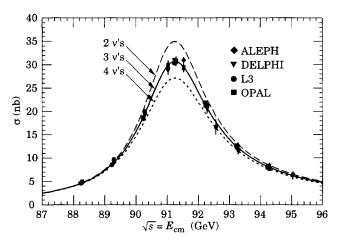


Figure 37.14: Data from the ALEPH, DELPHI, L3, and OPAL Collaborations for the cross section in e^+e^- annihilation into hadronic final states as a function of c.m. energy near the Z. LEP detectors obtained data at the same energies; some of the points are obscured by overlap. The curves show the predictions of the Standard Model with three species (solid curve) and four species (dashed curve) of light neutrinos. The asymmetry of the curves is produced by initial-state radiation. References:

ALEPH: D. Decamp et al., Z. Phys. C53, 1 (1992).
DEPHI: P. Abreu et al., Nucl. Phys. B367, 511 (1992).
L3: B. Adeva et al., Z. Phys. C51, 179 (1991).
OPAL: G. Alexander et al., Z. Phys. C52, 175 (1991).

Average e^+e^- , pp, and $\bar{p}p$ Multiplicity

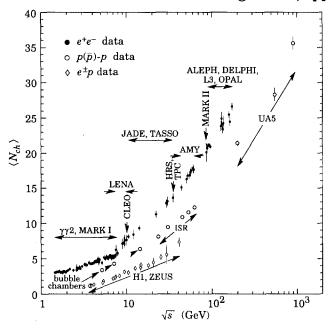


Figure 37.15: Average multiplicity as a function of \sqrt{s} for e^+e^- and $p\bar{p}$ annihilations, and pp and ep collisions. The indicated errors are statistical and systematic errors added in quadrature, except when no systematic errors are given. Files of the data shown in this figure are given in http://home.cern.ch/b/biebel/www/RPP00

 e^+e^- : All e^+e^- measurements include contributions from $K_{\rm S}^0$ and Λ decays with the exception of the L3 measurements. The $\gamma\gamma2$ and MARK I measurements contain a systematic 5% error. Points at identical energies have been spread horizontally for clarity:

ALEPH: D. Buskulic *et al.*, Z. Phys. **C69**, 15 (1995) and Z. Phys. **C73**, 409 (1997)

DELPHI: P. Abreu et al., Eur. Phys. J. C6, 19 (1999); et al., Phys. Lett. B372, 172 (1996); and et al., Phys. Lett. B416, 233 (1998)

L3: M. Acciarri et al., Phys. Lett. B371, 137 (1996); Phys. Lett. B404, 390 (1997); and Phys. Lett. B444, 569 (1998)

OPAL: K. Ackerstaff et al., Z. Phys. C75, 193 (1997); P.D. Acton et al., Z. Phys. C53, 539 (1992) and references therein; R. Akers et al., Z. Phys. C68, 203 (1995)

TOPAZ: K. Nakabayashi et al., Phys. Lett. B413, 447 (1997),

VENUS: K. Okabe et al., Phys. Lett. B423, 407 (1998).

 $e^{\pm}p$: Multiplicities have been measured in the current fragmentation region of the Breit frame:

H1: C. Adloff et al., Nucl. Phys. B504, 3 (1997)

ZEUS: M. Derrick et al., Z. Phys. C67, 93 (1995).

 $p(\overline{p})$: The errors of the $p(\overline{p})$ measurements are the quadratically added statistical and systematic errors, except for the bubble chamber measurements for which only statistical errors are given in the references. The values measured by UA5 exclude single diffractive dissociation:

bubble chamber: J. Benecke et al., Nucl. Phys. B76, 29 (1976), W.M. Morse et al., Phys. Rev. D15, 66 (1977),

ISR: A. Breakstone et al., Phys. Rev. D30, 528 (1984),

UA5: G.J. Alner et al., Phys. Lett. 167B, 476 (1986), R.E. Ansorge et al., Z. Phys. C43, 357 (1989).

(Courtesy of O. Biebel, Max-Planck-Institut für Physik, München, 1999.)

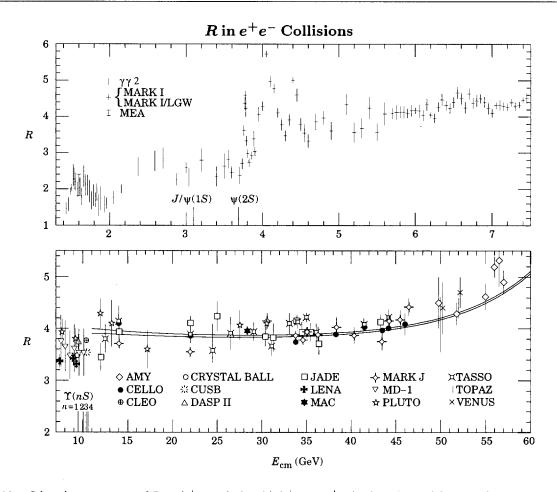


Figure 37.16: Selected measurements of $R \equiv \sigma(e^+e^- \to \text{hadrons})/\sigma(e^+e^- \to \mu^+\mu^-)$, where the annihilation in the numerator proceeds via one photon or via the Z. Measurements in the vicinity of the Z mass are shown in the following figure. The denominator is the calculated QED single-photon process; see the section on Cross-Section Formulae for Specific Processes. Radiative corrections and, where important, corrections for two-photon processes and τ production have been made. Note that the ADONE data $(\gamma\gamma^2)$ and MEA is for ≥ 3 hadrons. The points in the $\psi(3770)$ region are from the MARK I—Lead Glass Wall experiment. To preserve clarity only a representative subset of the available measurements is shown—references to additional data are included below. Also for clarity, some points have been combined or shifted slightly (<4%) in $E_{\rm cm}$, and some points with low statistical significance have been omitted. Systematic normalization errors are not included; they range from $\sim 5-20\%$, depending on experiment. We caution that especially the older experiments tend to have large normalization uncertainties. Note the suppressed zero. The horizontal extent of the plot symbols has no significance. The positions of the $J/\psi(1S)$, $\psi(2S)$, and the four lowest Υ vector-meson resonances are indicated. Two curves are overlaid for $E_{\rm cm} > 11$ GeV, showing the theoretical prediction for R, including higher order QCD [M. Dine and J. Sapirstein, Phys. Rev. Lett. 43, 668 (1979)] and electroweak corrections. The Λ values are for 5 flavors in the $\overline{\rm MS}$ scheme and are $\Lambda^{(5)}_{\rm MS} = 60$ MeV (lower curve) and $\Lambda^{(5)}_{\rm MS} = 250$ MeV (upper curve). (Courtesy of F. Porter, 1992.) References (including several references to data not appearing in the figure and some references to preliminary data):

```
AMY: T. Mori et al., Phys. Lett. B218, 499 (1989);
CELLO: H.-J. Behrend et al., Phys. Lett. 144B, 297 (1984);
 and H.-J. Behrend et al., Phys. Lett. 183B, 400 (1987);
CLEO: R. Giles et al., Phys. Rev. D29, 1285 (1984);
 and D. Besson et al., Phys. Rev. Lett. 54, 381 (1985);
CUSB: E. Rice et al., Phys. Rev. Lett. 48, 906 (1982);
CRYSTAL BALL: A. Osterheld et al., SLAC-PUB-4160;
  and Z. Jakubowski et al., Z. Phys. C40, 49 (1988);
DASP: R. Brandelik et al., Phys. Lett. 76B, 361 (1978);
DASP II: Phys. Lett. 116B, 383 (1982);
DCI: G. Cosme et al., Nucl. Phys. B152, 215 (1979);
DHHM: P. Bock et al. (DESY-Hamburg-Heidelberg-
 MPI München Collab.), Z. Phys. C6, 125 (1980);
\gamma \gamma 2: C. Bacci et al., Phys. Lett. 86B, 234 (1979);
HRS: D. Bender et al., Phys. Rev. D31, 1 (1985);
JADE: W. Bartel et al., Phys. Lett. 129B, 145 (1983);
  and W. Bartel et al., Phys. Lett. 160B, 337 (1985);
LENA: B. Niczyporuk et al., Z. Phys. C15, 299 (1982).
```

MARK J: B. Adeva et al., Phys. Rev. Lett. 50, 799 (1983); and B. Adeva et al., Phys. Rev. **D34**, 681 (1986); MARK I: J.L. Siegrist et al., Phys. Rev. D26, 969 (1982); MARK I + Lead Glass Wall: P.A. Rapidis et al., Phys. Rev. Lett. 39, 526 (1977); and P.A. Rapidis, thesis, SLAC-Report-220 (1979); MARK II: J. Patrick, Ph.D. thesis, LBL-14585 (1982); MD-1: A.E. Blinov et al., Z. Phys. C70, 31 (1996); MEA: B. Esposito et al., Lett. Nuovo Cimento 19, 21 (1977); PLUTO: A. Bäcker, thesis Gesamthochschule Siegen, DESY F33-77/03 (1977); C. Gerke, thesis, Hamburg Univ. (1979); Ch. Berger et al., Phys. Lett. 81B, 410 (1979); and W. Lackas, thesis, RWTH Aachen, DESY Pluto-81/11 (1981); TASSO: R. Brandelik et al., Phys. Lett. 113B, 499 (1982); and M. Althoff et al., Phys. Lett. 138B, 441 (1984); TOPAZ: I. Adachi et al., Phys. Rev. Lett. 60, 97 (1988); and VENUS: H. Yoshida et al., Phys. Lett. 198B, 570 (1987).

MAC: E. Fernandez et al., Phys. Rev. D31, 1537 (1985);

Muon Neutrino and Anti-Neutrino Charged-Current Total Cross Section

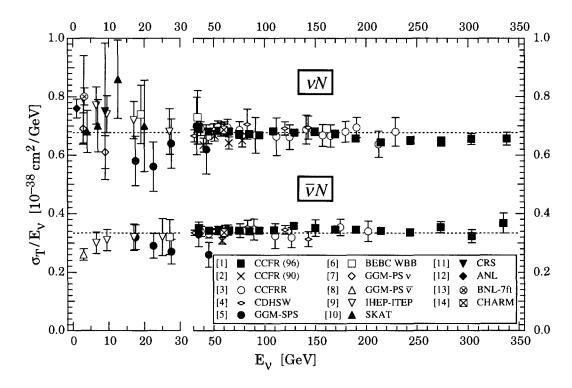


Figure 37.17: σ_T/E_{ν} , for the muon neutrino and anti-neutrino charged-current total cross section as a function of neutrino energy. The error bars include both statistical and systematic errors. The straight lines are the averaged values over all energies as measured by the experiments in Refs. [1-4]: = 0.677 ± 0.014 (0.334 ± 0.008) × 10⁻³⁸ cm²/GeV. Note the change in the energy scale at 30 GeV. (Courtesy W. Seligman and M.H. Shaevitz, Columbia University, 2000.)

- [1] W. Seligman, Ph.D. Thesis, Nevis Report 292 (1996);
- [2] P.S. Auchincloss et al., Z. Phys. C48, 411 (1990);
- [3] D.B. MacFarlane et al., Z. Phys. C26, 1 (1984);
- [4] P. Berge et al., Z. Phys. C35, 443 (1987);
- [5] J. Morfin et al., Phys. Lett. 104B, 235 (1981);
- [6] D.C. Colley et al., Z. Phys. C2, 187 (1979);
- [7] S. Campolillo et al., Phys. Lett. 84B, 281 (1979);

- [8] O. Erriquez et al., Phys. Lett. 80B, 309 (1979);
- [9] A.S. Vovenko et al., Sov. J. Nucl. Phys. 30, 527 (1979);
- [10] D.S. Baranov et al., Phys. Lett. 81B, 255 (1979);
- [11] C. Baltay et al., Phys. Rev. Lett. 44, 916 (1980);
- [12] S.J. Barish et al., Phys. Rev. D19, 2521 (1979);
- [13] N.J. Baker et al., Phys. Rev. **D25**, 617 (1982);
- [14] J.V. Allaby et al., Z. Phys. C38, 403 (1988).

Table 37.2: Total hadronic cross section. Regge theory suggests a parameterization of total cross sections as

$$\sigma_{AB} = X_{AB} s^{\epsilon} + Y_{1AB} s^{-\eta_1} - Y_{2AB} s^{-\eta_2}, \qquad \sigma_{\overline{A}B} = X_{AB} s^{\epsilon} + Y_{1AB} s^{-\eta_1} + Y_{2AB} s^{-\eta_2}$$

where X_{AB}, Y_{iAB} are in mb and s is in GeV². The exponents ϵ, η_1 , and η_2 are independent of the particles A, \overline{A} , and B and represent the pomeron, and lower-lying C-even and C-odd exchanges, respectively. Requiring $\eta_1 = \eta_2$ results in much poorer fits. In addition to total cross section, the measured ratio of the real to the imaginary part of the forward scattering amplitudes were included in the fits by assuming that the C-even and C-odd amplitudes have the simple behavior $(-s)^{\alpha} \pm s^{\alpha}$, where $\alpha = 1 + \epsilon, 1 - \eta_1, 1 - \eta_2$. Fits were made to the 1999-updated data for $p^{\pm}p, \pi^{\pm}p, K^{\pm}p, \gamma p$, and $\gamma \gamma$. The exponents $\epsilon = 0.093(2), \eta_1 = 0.358(15)$, and $\eta_2 = 0.560(17)$ thus obtained were then fixed and used as inputs to a fit to a larger data sample that included cross sections on deuterons and neutrons. In the initial fit only data above $\sqrt{s_{\min}} = 9$ GeV were used. In the subsequent fit, data above $p_{\text{lab}} = 10$ GeV (hadronic collisions) and $\sqrt{s_{\min}} = 4$ GeV (γp and $\gamma \gamma$) collisions were used.

Fits to \overline{p}	$(p)p,\pi^\pm p,K^\pm p$	$, \gamma p, \gamma \gamma$	Colliding		χ^2/dof		
X	Y_1	Y_2	particles	X	Y_1	Y_2	by groups
18.751(27)	63.58(26)	35.46(34)	$\overline{p}(p)p$	18.760(22)	63.52(23)	35.43(34)	
			$\overline{p}(p)n$	18.760(22)	64.74(33)	31.42(63)	1.23
11.883(21)	28.59(14)	5.90(12)	$\pi^{\pm}p$	11.883(23)	28.59(15)	5.90(13)	1.50
10.546(27)	16.42(20)	13.84(18)	$K^{\pm}p$	10.587(22)	16.13(17)	13.82(18)	
			$K^\pm n$	10.587(22)	14.68(38)	7.78(38)	1.21
0.0593(4)	0.1202(26)		γp	0.0593(2)	0.1202(17)		
1.56(11)E-4	0.37(10)E-3		$\gamma\gamma$	1.56(7)E-4	0.37(7)E-3		0.7
$\chi^2/dof=1$	$\chi^2/dof=1.23$ with fixed $\epsilon=0.093(2),$		$\overline{p}(p)d$	33.290(47)	154.3(8)	91.6(1.1)	1.69
,-	$\eta_1 = 0.358(15), \eta_2 = 0.560(17)$ at their central values			21.550(36)	68.87(53)	1.42(63)	1.74
central valı				19.327(38)	37.53(50)	30.49(61)	1.46

The fitted functions are shown in the following figures, along with one-standard-deviation error bands. When the reduced χ^2 is greater than one, a scale factor has been included. Where appropriate, statistical and systematic errors were combined quadratically in constructing weights for all fits. On the plots only statistical error bars are shown. Vertical arrows indicate lower limits on the $p_{\rm lab}$ or $E_{\rm cm}$ range used in the fits. The user may decide on the range of applicability of the extrapolated curves.

One can find the details of the fits and exact parameterizations of the ratio of the real to imaginary part of the forward scattering amplitude in J.R. Cudell et al., Phys. Rev. **D61**, 034019 (2000), as well as comparisons of the simple pole pomeron parameterization with the "unitarized" pomeron parameterizations. It should be noted that parameterization with linear logarithmic pomeron

$$\sigma_{AB} = X_{AB} \ln(\frac{s}{s_0}) + Y_{1AB}(\frac{s}{s_0})^{-\eta_1} - Y_{2AB}(\frac{s}{s_0})^{-\eta_2}, \qquad \sigma_{\overline{A}B} = X_{AB} \ln(\frac{s}{s_0}) + Y_{1AB}(\frac{s}{s_0})^{-\eta_1} + Y_{2AB}(\frac{s}{s_0})^{-\eta_2}$$

gives much better data description picture under the same fits strategy. The data were extracted from the PPDS accessible at http://wwwppds.ihep.su:8001/ppds.html

http://pdg.lbl.gov

or

Computer-readable data files are also available at http://pdg.lbl.gov. (Courtesy of V.V. Ezhela, S.B. Lugovsky, and N.P. Tkachenko, COMPAS group, IHEP, Protvino, Russia, August 1999.)

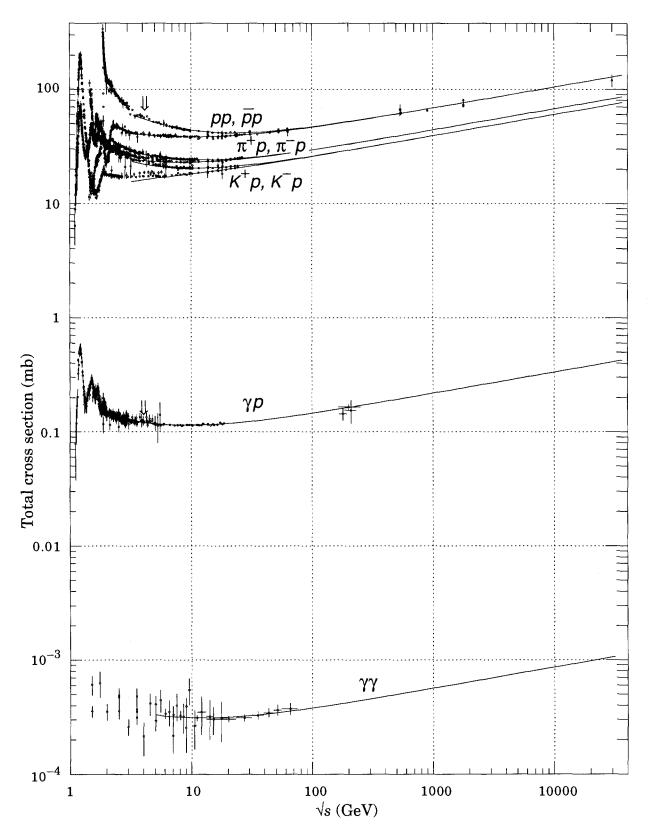


Figure 37.18: Summary of hadronic, γp , and $\gamma \gamma$ total cross sections. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS group, IHEP, Protvino, Russia, August 1999.)

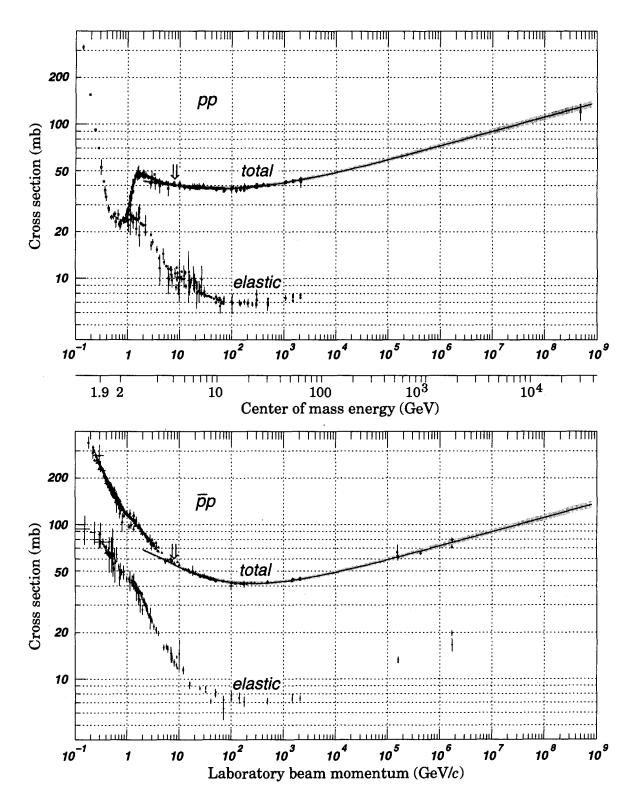


Figure 37.19: Total and elastic cross sections for pp and $\bar{p}p$ collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS Group, IHEP, Protvino, Russia, August 1999.)

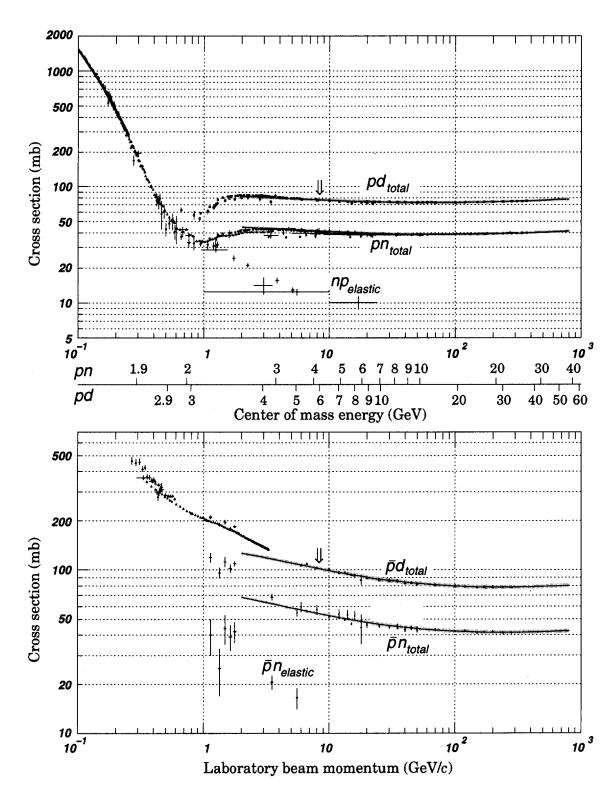


Figure 37.20: Total and elastic cross sections for pd (total only), np, $\bar{p}d$ (total only), and $\bar{p}n$ collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS Group, IHEP, Protvino, Russia, August 1999.)

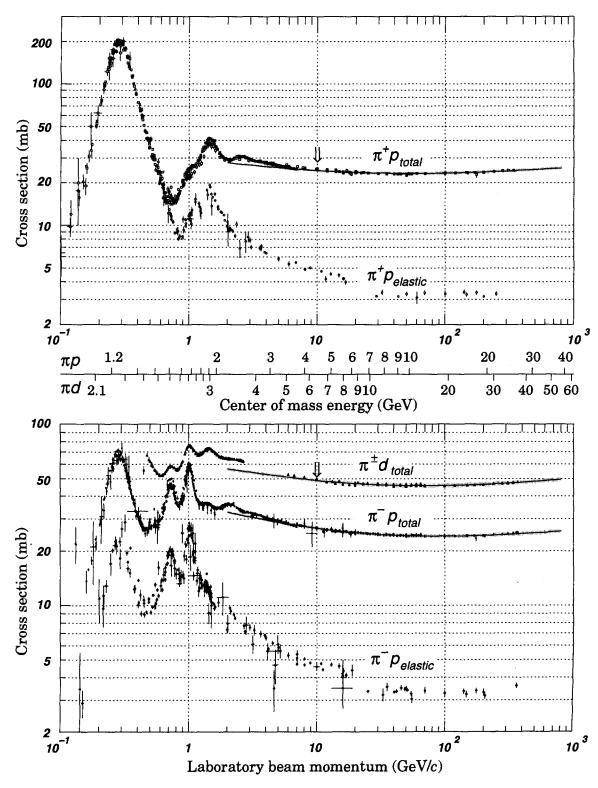


Figure 37.21: Total and elastic cross sections for $\pi^{\pm}p$ and $\pi^{\pm}d$ (total only) collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS Group, IHEP, Protvino, Russia, August 1999.)

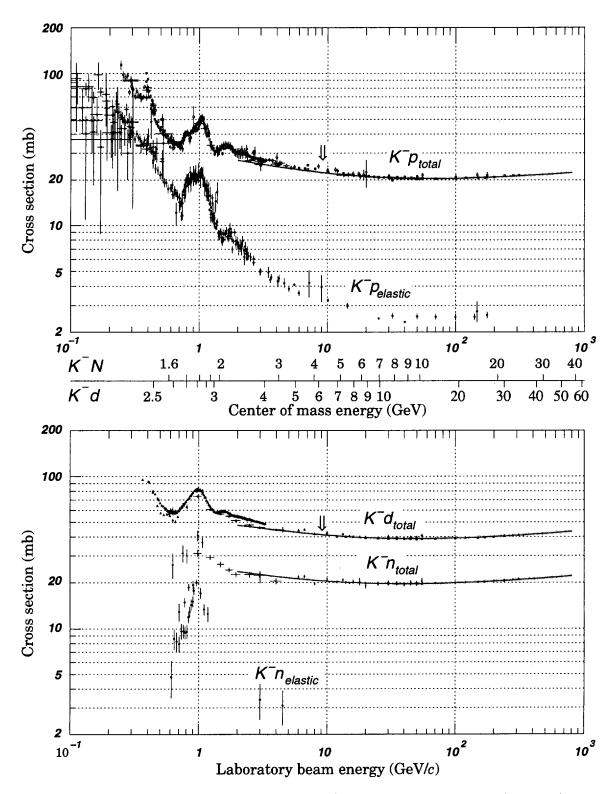


Figure 37.22: Total and elastic cross sections for K^-p and K^-d (total only), and K^-n collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS Group, IHEP, Protvino, Russia, August 1999.)

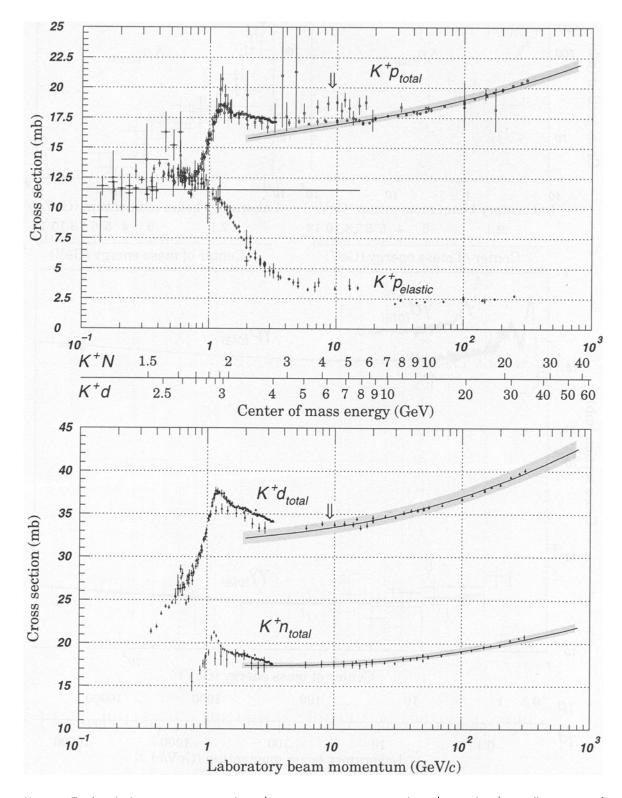


Figure 37.23: Total and elastic cross sections for K^+p and total cross sections for K^+d and K^+n collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS Group, IHEP, Protvino, Russia, August 1999.)

Figure 37.24: Total and elastic cross sections for Λp and total hadronic cross sections for γd , γp , and $\gamma \gamma$ collisions as a function of laboratory beam momentum and the total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS group, IHEP, Protvino, Russia, August 1999.)

GAUGE AND HIGGS BOSONS

$$I(J^{PC}) = 0.1(1^{-})$$

γ MASS

For a review of the photon mass, see BYRNE 77.

VALUE (eV)		CL%	DOCUMENT ID		TECN	COMMENT
< 2	× 10 ⁻¹⁶		¹ LAKES	98		Torque on toroid bal- ance
• • • We do	not use the	following	data for averages,	fits,	limits, et	C. • • •
< 9	$\times 10^{-16}$	90	² FISCHBACH	94		Earth magnetic field
$< (4.73 \pm 0.45)$	$5) \times 10^{-12}$		³ CHERNIKOV	92	SQID	Ampere-law null test
<(9.0 ±8.1	$) \times 10^{-10}$		⁴ RYAN	85		Coulomb-law null test
< 3	$\times 10^{-27}$		⁵ CHIBISOV	76		Galactic magnetic field
< 6	× 10 ¹⁶	99.7	DAVIS	75		Jupiter magnetic field
< 7.3	× 10 ⁻¹⁶		HOLLWEG	74		Alfven waves
< 6	$\times 10^{-17}$		⁶ FRANKEN	71		Low freq. res. cir.
< 1	$\times 10^{-14}$		WILLIAMS	71	CNTR	Tests Gauss law
< 2.3	$\times 10^{-15}$		GOLDHABER	68		Satellite data
< 6	$\times 10^{-15}$		⁶ PATEL	65		Satellite data
< 6	$\times 10^{-15}$		GINTSBURG	64		Satellite data

¹LAKES 98 report limits on torque on a toroid Cavendish balance, obtaining a limit on $\mu^2 A$ via the Maxwell-Proca equations, where μ is the photon mass and A is the ambient vector potential in the Lorentz gauge. This is the most conservative limit reported, in which $A \approx (1 \ \mu \ G) \times (600 \ pc)$ is based on the Galactic field.

2 FISCHBACH 94 report < 8 × 10⁻¹⁶ with unknown CL. We report Bayslan CL used elsewhere in these Listings and described in the Statistics section.

CHERNIKOV 92 measures the photon mass at 1.24 K, following a theoretical suggestion that electromagnetic gauge invariance might break down at some low critical temperature. See the erratum for a correction, included here, to the published result.

ARYAN 85 measures the photon mass at 1.36 K (see the footnote to CHERNIKOV 92). 5 CHIBISOV 76 depends in critical way on assumptions such as applicability of virial theorem. Some of the arguments given only in unpublished references.

6 See criticism questioning the validity of these results in KROLL 71 and GOLDHABER 71.

γ CHARGE

VALUE (e)	DOCUMENT ID		TECN	COMMENT
<5 × 10 ⁻³⁰	7 RAFFELT			
• • • We do not use the	following data for averages,	fits	, limits,	etc. • • •
$<2 \times 10^{-28}$	8 COCCONI	92		VLBA radio telescope resolution
$<2 \times 10^{-32}$	COCCONI	88	TOF	Pulsar f1 - f2 TOF

⁷ RAFFELT 94 notes that COCCONI 88 neglects the fact that the time delay due to dispersion by free electrons in the interstellar medium has the same photon energy dependence as that due to bending of a charged photon in the magnetic field. His limit is based on the assumption that the entire observed dispersion is due to photon charge. It is a factor of 200 less stringent than the COCCONI 88 limit.

COCCONI 92 for less stringent limits in other frequency ranges. Also see RAF-FELT 94 note. γ REFERENCES

		•		
LAKES	98	PRL 80 1826	R. Lakes	(WISC)
FISCHBACH	94	PRL 73 514	E. Fischbach et al.	(PURD, JHU+)
RAFFELT	94	PR D50 7729	G. Raffelt	(MPIM)
CHERNIKOV	92	PRL 68 3383	M.A. Chernikov et al.	`(ETH)
Also	92B	PRL 69 2999 (erratum)	M.A. Chernikov et al.	(ETH)
COCCONI	92	AJP 60 750 `	G. Cocconi	(ČERN)
COCCONI	88	PL B206 705	G. Cocconi	(CERN)
RYAN	85	PR D32 802	J.J. Ryan, F. Accetta, R.H. Austin	(PRIN)
BYRNE	77	Ast.Sp.Sci. 46 115	J. Byrne	(LOIC)
CHIBISON	76	SPU 19 624	G.V. Chibisov	(LEBD)
DAVIS	75	PRL 35 1402	L. Davis, A.S. Goldhaber, M.M. Nieto	(CIT, STON+)
HOLLWEG	74	PRL 32 961	J.V. Hollweg	(NCAR)
FRANKEN	71	PRL 26 115	P.A. Franken, G.W. Ampulski	(MICH)
GOLDHABER	71	RMP 43 277	A.S. Goldfiaber, M.M. Nieto (STON	, BOHR, UCSB)
KROLL	71	PRL 26 1395	N.M. Kroll	(SLAC)
WILLIAMS	71	PRL 26 721	E.R. Williams, J.E. Faller, H.A. Hill	(WESL)
GOLDHABER	68	PRL 21 567	A.S. Goldhaber, M.M. Nieto	(STON)
PATEL	65	PL 14 105	V.L. Patel	(DUKE)
GINTSBURG	64	Sov. Astr. AJ7 536	Gintsburg	(ASCI)

$$I(J^P) = 0(1^-)$$

SU(3) color octet

Mass m=0. Theoretical value. A mass as large as a few MeV may not be precluded, see YNDURAIN 95.

VALUE	DOCUMENT ID	<u>TEÇN</u>	COMMENT
• • • We do not use the following	data for average	s, fits, limits,	etc. • • •
	ABREU	92E DLPH	Spin 1, not 0
	ALEXANDER	91H OPAL	Spin 1, not 0
	BEHREND	82D CELL	Spin 1, not 0
	BERGER	80D PLUT	Spin 1, not 0
	BRANDELIK	80c TASS	Spin 1, not 0

gluon REFERENCES

YNDURAIN	95	PL B345 524	F.J. Yndurain	(MADU)
ABREU	92E	PL B274 498	P. Abreu et al.	(DELPHI Collab.)
ALEXANDER	91 H	ZPHY C52 543	G. Alexander et al.	(OPAL Collab.)
BEHREND	82D	PL B110 329	H.J. Behrend et al.	(ČELLO Collab.)
BERGER	80D	PL B97 459	C. Berger et al.	(PLUTO Collab.)
BRANDELIK	80C	PL B97 453	R. Brandelik et al.	(TASSO Collab.)

graviton

OMITTED FROM SUMMARY TABLE

graviton MASS

All of the following limits are obtained assuming Yukawa potential in weak field limit. VANDAM 70 argue that a massive field cannot approach general relativity in the zero-mass limit; however, see GOLD-HABER 74 and references therein. h_0 is the Hubble constant in units of 100 km s $^{-1}$ Mpc $^{-1}$.

VALUE (eV)	DOCUMENT ID		COMMENT	_
• • • We do not use the foll	owing data for averages	, fit	s, limits, etc. • • •	
	¹ DAMOUR	91	Binary pulsar PSR 1913+16	
$< 2 \times 10^{-29} h_0^{-1}$ $< 7 \times 10^{-28}$	GOLDHABER	74	Rich clusters	
$< 7 \times 10^{-28}$	HARE	73	Galaxy	
$< 8 \times 10^4$	HARE	73	2∞ decay	

¹ DAMOUR 91 is an analysis of the orbital period change in binary pulsar PSR 1913+16, and confirms the general relativity prediction to 0.8%. "The theoretical importance of the [rate of orbital period decay] measurement has long been recognized as a direct confirmation that the gravitational interaction propagates with velocity c (which custom importance cause of a damping force in the binary subject custom is the property of a damping force in the binary subject custom. immediate cause of the appearance of a damping force in the binary pulsar system) and thereby as a test of the existence of gravitational radiation and of its quadrupolar nature." TAYLOR 93 adds that orbital parameter studies now agree with general relativity to 0.5%, and set limits on the level of scalar contribution in the context of a family of tensor [spin 2]-biscalar theories.

graviton REFERENCES

TAYLOR	93	Nature 355 132	J.N. Taylor et al.	(PRIN, ARCBO, BURE+) J
DAMOUR	91	APJ 366 501	T. Darnour, J.H. Taylor	(BURE, MEUD, PRIN)
GOLDHABER	74	PR D9 1119	A.S. Goldhaber, M.M. Nieto	(LANL, STON)
HARE	73	CJP 51 431	Hare	(SASK)
VANDAM	70	NP B22 397	H. van Dam, M. Veltman	(ÙTRE)

THE MASS OF THE W BOSON

Revised March 2000 by C. Caso (Univ. of Genova) and A. Gurtu (Tata Inst.)

Till 1995 the production and study of the W boson was the exclusive domain of the $\bar{p}p$ colliders at CERN and FNAL. W production in these hadron colliders is tagged by a high p_T lepton from W decay. Owing to unknown parton-parton effective energy and missing energy in the longitudinal direction, the experiments reconstruct only the transverse mass of the Wand derive the W mass from comparing the transverse mass distribution with Monte Carlo predictions as a function of M_W .

Beginning 1996 the energy of LEP increased to above 161 GeV, the threshold for W-pair production. A precise knowledge of the e^+e^- centre of mass energy enables one to reconstruct the W mass even if one of them decays leptonically. At LEP two methods have been used to obtain the W mass. In the first method the measured W-pair production cross sections, $\sigma(e^+e^- \to W^+W^-)$, have been used to determine the W mass using the predicted dependence of this cross section on M_W (see Fig. 1). At 161 GeV, which is just above the W-pair production threshold, this dependence is a much more sensitive function of the W mass than at the higher energies (172 to 202 GeV) at which LEP has run during 1996-99. In the second method, which is used at the higher energies, the

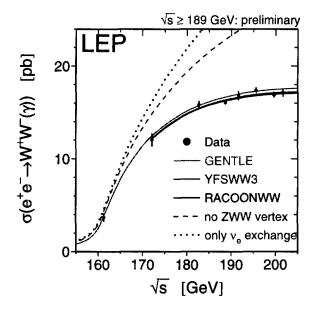


Figure 1: The W-pair cross section as a function of the center-of-mass energy. The data points are the LEP averages. The solid lines are predictions from different models of WW production. For comparison the figure contains also the cross section if the ZWW coupling did not exist (dashed line), or if only the t-channel ν_e exchange diagram existed (dotted line).

W mass has been determined by directly reconstructing the W from its decay products.

Each LEP experiment has combined their own mass values properly taking into account the common systematic errors. In order to compute the LEP average W mass each experiment has provided its measured W mass for the qqqq and $qq\ell\nu$ channels at each center-of-mass energy along with a detailed break-up of errors (statistical and uncorrelated, partially correlated and fully correlated systematics [1]). These have been properly combined to obtain a preliminary [2] LEP W mass = 80.401 ± 0.048 GeV. Errors due uncertainties in LEP energy (17 MeV) and possible effect of color reconnection (CR) and Bose-Einstein (BE) correlations between quarks from different W's (18 MeV) are included. The mass difference between qqqq and $qq\ell\nu$ final states (due to possible CR and BE effects) is 35 ± 55 MeV.

The two Tevatron experiments have also carried out the exercise of identifying common systematic errors and averaging with CERN UA2 data obtain an average W mass = 80.448 ± 0.062 GeV.

Combining all the published and unpublished $p-\overline{p}$ Collider and LEP results (as of mid-March 2000) yields an average W-boson mass of 80.419 ± 0.038 GeV assuming no common systematics between LEP and hadron collider measurements.

The Standard Model prediction from the electroweak fit, excluding the direct W mass measurements from LEP and Tevatron, gives a W-boson mass of 80.382 ± 0.026 GeV.

OUR EVALUATION in the listing below is obtained by combining only published LEP and $p-\overline{p}$ Collider results using the same procedure as above.

References

- The LEP Collaborations: ALEPH, DELPHI, L3, OPAL, the LEP Electroweak Working Group, and the SLD Heavy Flavour and Electroweak Groups, CERN-EP-2000-016 (January 21, 2000).
- A. Straessner and C. Sbarra, talks presented at the XXXV Rencontres de Moriond, "Electroweak Interactions and Unified Theories," (Les Arcs, France, 11-18 March 2000).

W MASS

OUR FIT uses the W and Z mass, mass difference, and mass ratio measurements

To obtain OUR EVALUATION the correlation between systematics is properly taken into account.

VALUE ((GeV)		EVTS	DOÇUMENT ID	TECN	COMMENT
		OUR E	VALUAT			
80.43	± 0.05	OUR F	IT			
80.482	± 0.091		45394	1 ABBOTT	00 D0	$E_{\text{CM}}^{\overline{p}} = 1.8 \text{ TeV}$
80.38	± 0.12	±0.05	701	² ABBIENDI	99c OPAL	Eee = 161+172+ 183 GeV
80.270	± 0.137	± 0.048	809	³ ABREU	99⊤ DLPH	Ecm = 161+172+ 183
80.61	± 0.15		801	⁴ ACCIARRI	99 L3	GeV Eem = 161+172+ 183
80.423	± 0.112	±0.054	812	⁵ BARATE	99 ALEP	GeV Eee = 161+172+ 183
80.41	± 0.18		8986	6 ABE	95P CDF	GeV $E_{CM}^{pp} = 1.8 \text{ TeV}$
79.91	± 0.39		1722	⁷ ABE	90G CDF	$E_{CM}^{oldsymbol{p}\overline{oldsymbol{p}}}$ $=$ 1.8 TeV
	We do n	ot use th	ne follow	ing data for averages	, fits, limits	
80.49	± 0.43	±0.095	871	8 ABREU	99K DLPH	Repl. by ABREU 99T
	± 0.10		28323	9 ABBOTT	980 D0	Repl. by ABBOTT 00
80.22	± 0.41	± 0.07	72	¹⁰ ABREU	98B DLPH	Repl. by ABREU 99T
80.32	\pm 0.30	± 0.094	96	11 ACKERSTAFF	98D OPAL	Repl. by ABBIENDI 99C
80.5	+ 1.4 - 2.2	$+0.5 \\ -0.6$	104	¹² ACKERSTAFF	980 OPAL	Repl. by ABBIENDI 99C
80.80	\pm 0.32	± 0.114	95	13 BARATE	98B ALEP	Repl. by BARATE 99
80.80	+ 0.48 - 0.42	±0.03	20	¹⁴ ACCIARRI	97 L3	Repl. by ACCIARRI 99
	+ 1.4 - 2.4	±0.3	94	¹⁵ ACCIARRI	97M L3	Repl. by ACCIARRI 99
80.71	$^{+\ 0.34}_{-\ 0.35}$	± 0.09	101	16 ACCIARRI	975 L3	Repl. by ACCIARRI 99
B0.14	± 0.34	± 0.095	32	¹⁷ BARATE	97 ALEP	Repl. by BARATE 99
81.17	+ 1.15 - 1.62		106	18 BARATE	975 ALEP	Repl. by BARATE 99
	\pm 0.14	± 0.23	5982	¹⁹ АВАСНІ	96E D0	Repl. by ABBOTT 00
80.40		$^{+0.09}_{-0.10}$	23	²⁰ ACKERSTAFF	96B OPAL	Repl. by ABBIENDI 990
84	+10 - 7		13	²¹ AID	960 H1	$e^{\pm} p \rightarrow \nu_e(\overline{\nu}_e) + X$ $\sqrt{s} \approx 300 \text{ GeV}$
80.84	± 0.22	± 0.83	2065	22 ALITTI	92B UA2	See W/Z ratio below
	± 0.31	±0.84		23 ALITTI	90B UA2	$E_{\text{cm}}^{p\overline{p}} = 546,630 \text{ GeV}$
80.0	± 3.3	±2.4	22	²⁴ ABE	891 CDF	$E_{\text{cm}}^{\overline{p}}=1.8 \text{ TeV}$
82.7	± 1.0	± 2.7	149	²⁵ ALBAJAR	89 UA1	E _{CM} = 546,630 GeV
81.8	+ 6.0 - 5.3	±2.6	46	²⁶ ALBAJAR	89 UA1	$E_{\rm CM}^{\overline{p}\overline{p}}$ = 546,630 GeV
89	± 3	±6	32	²⁷ ALBAJAR	89 UA1	$E_{\text{CM}}^{p\overline{p}} = 546,630 \text{ GeV}$
81.	± 5.		6	ARNISON	83 UA1	E ^{ee} _{CM} = 546 GeV
80.	+10.		4	BANNER	83B UA2	Repl. by ALITTI 90B

 $^{^1}$ ABBOTT 00 use $W \to e \nu_e$ events to measure the W mass with a fit to the transverse mass distribution. The result quoted here corresponds to electrons detected both in the forward and in the central calorimeters for the data recorded in 1992–1995. For the large rapidity electrons recorded in 1994–1995, the analysis combines results obtained from $m_T, p_T(e)$, and $p_T(\nu)$.

²ABBIENDI 99c obtain this value properly combining results from a direct W mass reconstruction at 172 and 183 GeV with that from the measurement of the total W-pair production cross section at 161 GeV. The systematic error includes an uncertainty of ± 0.02 GeV due to the possible color-reconnection and Bose-Einstein effects in the purely hadronic final states and an uncertainty of ± 0.02 GeV due to the beam energy.

 $^{^3}$ ABREU 99T obtain this value properly combining results obtained from a direct W mass reconstruction at 172 and 183 GeV with those from measurement of W-pair production cross sections at 161, 172, and 183 GeV. The systematic error includes $\pm\,0.021$ GeV due to the beam energy uncertainty and $\pm\,0.030$ GeV due to possible color reconnection and Bose-Einstein effects in the purely hadronic final state.

- ⁴ ACCIARRI 99 obtain this value properly combining results obtained from a direct W mass reconstruction at 172 and 183 GeV with those from the measurements of the total W-pair production cross sections at 161 and 172 GeV. The value of the mass obtained from the direct reconstruction at 172 and 183 GeV is M(W)= 80.58 \pm 0.14 \pm 0.08 GeV.
- BARATE 99 obtain this value properly combining results from a direct W mass reconstruction at 172 and 183 GeV with those from the measurements of the total W-pair production cross sections at 161 and 172 GeV. The systematic error includes ±0.023 GeV due to LEP energy uncertainty and ±0.021 GeV due to theory uncertainty and ±0.021 GeV due to theory uncertainty on account of possible color reconnection and Bose-Einstein correlations.
- of possible color reconnection and Bose-Einstein correlations.

 ABE 95P use 3268 $W \rightarrow \mu_{\mu}$ events to find $M = 80.310 \pm 0.205 \pm 0.130$ GeV and 5718 $W \rightarrow e\nu_{e}$ events to find $M = 80.490 \pm 0.145 \pm 0.175$ GeV. The result given here combines these while accounting for correlated uncertainties.

 ABE 90G result from $W \rightarrow e\nu$ is 79.91 \pm 0.35 \pm 0.24 \pm 0.19(scale) GeV and from
- $W \rightarrow \mu \nu$ is 79.90 \pm 0.53 \pm 0.32 \pm 0.08(scale) GeV.
- 8 ABREU 99k derive this value using the Standard Model dependence on M_W of the W-W production cross sections measured at 161, 172, and 183 GeV. The systematics include an error of $\pm\,0.03$ GeV arising from the beam energy uncertainty.
- 9 ABBOTT 980 fit the transverse mass distribution of 28323 $W\to e\nu_e$ events. The systematic error includes a detector related uncertainty of ± 60 MeV and a model uncertainty of ± 30 MeV. Combining with ABACHI 96E DØ obtain a W mass value of 80.43 ± 0.11 GeV.
- 80.43 ± 0.11 GeV.

 10 ABREU 98B obtain this value from a fit to the reconstructed W mass distribution. The W width was taken as its Standard Model value at the fitted W mass. The systematic error includes ±0.03 GeV due to the beam energy uncertainty and ±0.05 GeV due to the possible color reconnection and Bose-Einstein effects in the purely hadronic final state.
- possible color reconnection and Bose-Linstein effects in the purely hadronic final state.

 11 ACKERSTAFF 980 obtain this value from a fit to the reconstructed W mass distribution.
 The W width was taken as its Standard Model value at the fitted W mass. When both W mass and width are varied they obtain $M(W) = 80.30 \pm 0.27 \pm 0.095$ GeV. The systematic error includes ± 0.03 GeV due to the beam energy uncertainty and ± 0.05 GeV due to the possible color reconnection and Bose-Einstein effects in the purely hadronic final state. Combining both values of ACKERSTAFF 980 with ACKERSTAFF 968 authors find: $M(W) = 80.35 \pm 0.24 \pm 0.07 \pm 0.03$ (LEP) GeV.
- 12 ACKERSTAFF 980 derive this value from their measured W W production cross section σ_{WW} =12.3 \pm 1.3 \pm 0.4 pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy.
- 13 BARATE 98B obtain this value from a fit to the reconstructed W mass distribution. The BARALE 988 obtain this value from a fit to the reconstructed V mass distribution. The V width was taken as its Standard Model value at the fitted V mass. The systematic error includes ± 0.03 GeV due to the beam energy uncertainty and ± 0.032 GeV due to the possible color reconnection and Bose-Einstein effects in the purely hadronic final state. Combining with the M_W values from cross section measurements at 161 and 172 GeV (BARATE 97 and BARATE 97s) authors find: $M(W) = 80.51 \pm 0.23 \pm 0.08$ GeV.
- 14 ACCIARRI 97 derive this value from their measured W-W production cross section $\sigma_{WW} = 2.89 ^{+0.81}_{-0.70} \pm 0.14$ pb using the Standard Model dependence of σ_{WW} on $WW=2.05-0.70\pm0.09$ Statistical and systematic errors are added in quadrature and the last error of ±0.03 GeV arises from the beam energy uncertainty. The same result is given by a fit of the production cross sections to the data.
- 15 ACCIARRI 97M derive this value from their measured WW production cross section $\sigma_{WW}=12.27^{+1.41}_{-1.32}\pm0.23$ pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy. Combining with ACCIARRI 97 authors find M(W)= $80.78^{+0.45}_{-0.41} \pm 0.03$ GeV where the last error is due to beam energy uncertainty.
- 16 ACCIARRI 97s obtain this value from a fit to the reconstructed W mass distribution. The W width was taken as its Standard Model value at the fitted W mass. When both W mass and width are varied they obtain $M(W) = 80.72^{+0.33} \pm 0.09$ GeV. The systematic error includes ± 0.03 GeV due to the beam energy uncertainty and ± 0.05 GeV due to the possible color reconnection and Bose-Einstein effects in the purely hadronic final state. Combining with ACCIARRI 97 and ACCIARRI 97M authors find: $M(W) = 80.75^{+0.27} \pm 0.03$ (LEP) GeV.
- 17 BARATE 97 derive this value from their measured W-W production cross section $\sigma_{WW} = 4.23 \pm 0.73 \pm 0.19$ pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy. The systematics include an error of ± 0.03 GeV arising from the beam energy uncertainty.
- 18 BARATE 97s derive this value from their measured W W production cross section σ_{W W} = $11.71 \pm 1.23 \pm 0.28$ pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy. The errors quoted on the mass are statistical only. Combining with BARATE 97 authors find: $M(W) = 80.20 \pm 0.33 \pm 0.09 \pm 0.03$ (LEP) GeV.
- 19 ABACHI 96c fit the transverse mass distribution of 5982 $W \rightarrow e \nu_e$ decays. An error of ± 160 MeV due to the uncertainty in the absolute energy scale of the EM calorimeter is included in the total systematics.
- 20 ACKERSTAFF 96B derive this value from an analysis of the predicted M_W dependence of their accepted four-fermion cross section, explicitly taking into account interference effects. The systematics include an error of $\pm\,0.03$ GeV arising from the beam energy
- 21 AID 96b derive this value as a propagator mass using the Q^2 shape and magnitude of the e^\pm charged-current cross sections. $Q^2 > 5000 \, \text{GeV}^2$ events with p_T of the outgoing lepton $> 25 \, \text{GeV}/c$ are used.
- 22 ALITTI 92B result has two contributions to the systematic error (± 0.83); one (± 0.81) cancels in m_W/m_Z and one (± 0.17) is noncancelling. These were added in quadrature. We choose the ALITTI 92B value without using the LEP m_Z value, because we perform our own combined fit.
- 23 There are two contributions to the systematic error (± 0.84) : one (± 0.81) which cancels in m_W/m_Z and one (± 0.21) which is non-cancelling. These were added in quadrature.
- 24 ABE 891 systematic error dominated by the uncertainty in the absolute energy scale.
- ²⁵ ALBAJAR 89 result is from a total sample of 299 $W \rightarrow e \nu$ events. 26 ALBAJAR 89 result is from a total sample of 67 $W \to ~\mu \nu$ events.
- 27 ALBAJAR 89 result is from $W \rightarrow \tau \nu$ events.

W/Z MASS RATIO

The fit uses the W and Z mass, mass difference, and mass ratio measure-

VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
0.8820 ±0.0005 OUR FIT				_
$0.8821\ \pm0.0011\ \pm0.0008$	28323	²⁸ ABBOTT	98N D0	$E_{\text{cm}}^{p\overline{p}} = 1.8 \text{ TeV}$
$0.88114 \pm 0.00154 \pm 0.00252$	5982	²⁹ ABBOTT	98P D0	$E_{cm}^{p\bar{p}} = 1.8 \; TeV$
$0.8813 \ \pm 0.0036 \ \pm 0.0019$	156	30 ALITTI	92B UA2	$E_{\text{cm}}^{p\bar{p}}$ = 630 GeV

²⁸ ABBOTT 98N obtain this from a study of 28323 $W\to e\nu_e$ and 3294 $Z\to e^+e^-$ decays. Of this latter sample, 2179 events are used to calibrate the electron energy scale. ²⁹ ABBOTT 98P obtain this from a study of 5982 $W\to e\nu_e$ events. The systematic error includes an uncertainty of ± 0.00175 due to the electron energy scale.

30 Scale error cancels in this ratio.

$m_Z - m_W$

The fit uses the W and Z mass, mass difference, and mass ratio measure-

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT				
10.76±0.05 OUR FIT				.T				
10.4 ±1.4 ±0.8	ALBAJAR	89	UA1	E ^{pp} _{cm} = 546,630 GeV				
• • • We do not use the following data for averages, fits, limits, etc. • •								
11.3 $\pm 1.3 \pm 0.9$ ANSARI 87 UA2 $E_{\text{CM}}^{p\overline{p}} = 546,630 \text{ GeV}$								
Must - Mus-								

Test of CPT invariance.

VALUE (GeV)	EVTS	DOCUMENT ID	TECN	COMMENT
-0.19±0.58	1722	ABE	90G CDF	$E_{\text{CM}}^{p\overline{p}} = 1.8 \text{ TeV}$

W WIDTH

The CDF and DØ widths labelled "extracted value" are obtained by measuring $R = [\sigma(W)/\sigma(Z)] [\Gamma(W \to \ell \nu_\ell)]/(B(Z \to \ell \ell)\Gamma(W))$ where the bracketed quantities can be calculated with plausible reliability. $\Gamma(W)$ is then extracted by using a value of $B(Z \to \ell \ell)$ measured at LEP. The UA1 and UA2 widths used $R = [\sigma(W)/\sigma(Z)] [\Gamma(W \to \ell \nu_\ell)/\Gamma(Z \to \ell \ell)]$ ($\Gamma(Z)/\Gamma(W)$ and the measured value of $\Gamma(Z)$. The Standard Model explicit is $\Gamma(X)$. prediction is 2.067 \pm 0.021 (ROSNER 94).

TECN COMMENT

VALUE (GeV)	CL%	EVT5	DOCUMENT ID		TECN	COMMENT
2.12 ±0.05 C	UR AVER	AGE				
2.152 ± 0.066		79176	31 ABBOTT	00B	D0	Extracted value
1.84 ±0.32 ±	0.20	674	32 ABBIENDI	99C	OPAL	E _{cm} = 172+183 GeV
2.48 ±0.40 ±	0.10	737	³³ ABREU	99T	DLPH	Eee = 183 GeV
1.97 ± 0.34 ±	0.17	687	³⁴ ACCIARRI	99	L3	Eee = 172+183 GeV
2.11 ±0.28 ±	0.16	58	³⁵ ABE	95C	CDF	Direct meas.
$2.064 \pm 0.060 \pm$	0.059		³⁶ ABE	95W	CDF	Extracted value
$2.10 \begin{array}{l} +0.14 \\ -0.13 \end{array} \pm$	0.09	3559	³⁷ ALITTI	92	UA2	Extracted value
$2.18 \begin{array}{l} +0.26 \\ -0.24 \end{array} \pm$	0.04		³⁸ ALBAJAR	91	UA1	Extracted value
• • • We do not	use the fo	flowing d	ata for averages, fit	s, lin	nits, etc	. • • •
2.044 ± 0.097		11858	³⁹ ABBOTT	99н	D0	Repl. by AB- BOTT 00B
$2.126^{+0.052}_{-0.048}\pm$	0.035		⁴⁰ BARATE	991	ALEP	E cm == 161+172+183 GeV
$1.30 \begin{array}{c} +0.70 \\ -0.55 \end{array}$ ±	0.18	92	⁴¹ ACKERSTAFF	98D	OPAL	Repl. by ABBI- ENDI 990
$1.74 \begin{array}{c} +0.88 \\ -0.78 \end{array}$ ±	0.25	101	⁴² ACCIARRI	975	L3	Repl. by ACCIA- RRI 99
$2.30 \pm 0.19 \pm$	0.06		⁴³ ALITTI	90 c	UA2	Extracted value
$2.8 \begin{array}{c} +1.4 \\ -1.5 \end{array}$	1.3	149	⁴⁴ ALBAJAR	89	UA1	$E_{\rm cm}^{p\bar{p}} = 546,630 \; {\rm GeV}$
<7	90	119	APPEL	86	UA2	$E_{\rm cm}^{\rho \bar{p}} = 546,630 \; {\rm GeV}$
<65	90	86	45 ARNISON	86	UA1	$E_{pp}^{pp} = 546.630 \text{ GeV}$

- ³¹ ABBOTT 00B measure $R=10.43\pm0.27$ for the $W\to e\nu_e$ decay channel. They use the SM theoretical predictions for $\sigma(W)/\sigma(Z)$ and $\Gamma(W\to e\nu_e)$ and the world average for B($Z\to ee$). The value quoted here is obtained combining this result (2.169 \pm 0.070 GeV) with that of ABBOTT 99H.
- 32 ABBIENDI 99c obtain this value from a fit to the reconstructed Wmass distribution using data at 172 and 183 GeV. The systematic error includes an uncertainty of ± 0.12 GeV due to the possible color-reconnection and Bose-Einstein effects in the purely hadronic final states and an uncertainty of ± 0.01 GeV due to the beam energy.
- 33 ABREU 99T obtain this value using $WW \to \ell \bar{\nu}_{\ell} q \bar{q}$ and $WW \to q \bar{q} q \bar{q}$ events. The systematic error includes an uncertainty of ± 0.080 GeV due to possible color reconnection and Bose-Einstein effects in the purely hadronic final state.
- 34 ACCIARRI 99 obtain this value from a fit to the reconstruced W mass distribution using data at 172 and 183 GeV. 35 ABE 95c use the tail of the transverse mass distribution of $W \to e \nu_e$ decays.

- $^{36}\,\mathrm{ABE}$ 95w measured R = 10.90 \pm 0.32 \pm 0.29. They use $m_{\slash\hspace{-0.4em}W} \! = \! 80.23 \,\pm$ 0.18 GeV, $\sigma(W)/\sigma(Z)=3.35\pm0.03,~\Gamma(W\to e\nu)=225.9\pm0.9~{\rm MeV},~\Gamma(Z\to e^+e^-)=83.98\pm0.18~{\rm MeV},~{\rm and}~\Gamma(Z)=2.4969\pm0.0038~{\rm GeV}.$ 37 ALITTI 92 measured $R=10.4^{+0.7}_{-0.6}\pm0.3$. The values of $\sigma(Z)$ and $\sigma(W)$ come from
- $O(lpha_S^2)$ calculations using $m_W=80.14\pm0.27$ GeV, and $m_Z=91.175\pm0.021$ GeV
- along with the corresponding value of $\sin^2\theta_W=0.2274$. They use $\sigma(W)/\sigma(Z)=3.26\pm0.07\pm0.05$ and $\Gamma(Z)=2.487\pm0.010$ GeV. ³⁸ ALBAJAR 91 measured $R=9.5^{+1.1}_{-1.0}$ (stat. + syst.). $\sigma(W)/\sigma(Z)$ is calculated in QCD at the parton level using $m_W=80.18\pm0.28$ GeV and $m_Z=91.172\pm0.031$ GeV along with $\sin^2\theta_W=0.2322\pm0.0014$. They use $\sigma(W)/\sigma(Z)=3.23\pm0.05$ and $\Gamma(Z)=2.498\pm0.020$ GeV. This measurement is obtained combining both the electron and
- muon channels. They use $M_W=80.39\pm0.06$ GeV and the SM theoretical predictions for $\sigma(W)/\sigma(Z)$, B($Z\to\ell\ell$), and $\Gamma(W\to\ell\nu_\ell)$.
- 40 BARATE 991 obtain this result with a fit to the WW measured cross sections at 161, 172, and 183 GeV. The theoretical prediction takes into account the sensitivity to the
- W total width.

 11 ACKERSTAFF 980 obtain this value from a fit to the reconstructed W mass distribution.

 12 ACKERSTAFF 980 obtain this value from a fit to the reconstructed W mass distribution.

 13 ALITTI 90c used the same technique as described for ABE 90. They measured $R = 9.38 0.72 \pm 0.25$, obtained $\Gamma(W)/\Gamma(Z) = 0.902 \pm 0.074 \pm 0.024$. Using $\Gamma(Z) = 2.64 0.032$ (e.v.) they obtained the [W] value guested above and the limits $\Gamma(W)$ 2.546 \pm 0.032 GeV, they obtained the $\Gamma(W)$ value quoted above and the limits $\Gamma(W)$ < 2.56 (2.64) GeV at the 90% (95%) CL. $E_{\rm CM}^{p\overline{p}} = 546,630$ GeV.
- ⁴⁴ ALBAJAR 89 result is from a total sample of 299 $W \rightarrow e \nu$ events.
- 45 If systematic error is neglected, result is 2.7 $^{+1.4}_{-1.5}$ GeV. This is enhanced subsample of 172 total eyents.

W+ DECAY MODES

W- modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ) Confidence	e level
Γ ₁	$\ell^+ \nu$	[a] (10.56 ± 0.14) %	
Γ_2	$e^+ \nu$	(10.66± 0.20) %	
Гз	$\mu^+ u$	(10.49± 0.29) %	
Г ₃ Г ₄	$ au^+ u$	$(10.4 \pm 0.4)\%$	
Γ_5	hadrons	$(68.5 \pm 0.6)\%$	
Γ_6	$\pi^+\gamma$	$< 7 \times 10^{-5}$	95%
Γ7	$D_s^+ \gamma$	$< 1.3 \times 10^{-3}$	95%
Γ ₈	cX	$(35 \pm 4)\%$	
Γ۹	c s	$(32 {}^{+13}_{-11})\%$	
Γ_{10}	invisible	[b] $(1.4 \pm 2.8)\%$	

- [a] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [b] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.

W PARTIAL WIDTHS

Γ(invisible)			Γ ₁₀
This represents the width for	the decay of the W	boson int	o a charged particle with
momentum below detectability	, p< 200 MeV.		
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT

 $30^{+52}_{-48}\pm33$ 46 BARATE 991 ALEP $E_{\text{cm}}^{ee} = 161 + 172 + 183$

• • • We do not use the following data for averages, fits, limits, etc. • • • 47 BARATE 99L ALEP $E_{\text{CM}}^{\text{ee}} = 161 + 172 + 183$

... GeV

 46 BARATE 991 measure this quantity using the dependence of the total cross section σ_{WW} upon a change in the total width. The fit is performed to the WW measured cross sections at 161, 172, and 183 GeV. This partial width is < 139 MeV at 95%CL. 47 BARATE 99L use W-pair production to search for effectively invisible W decays, tagging with the decay of the other W boson to Standard Model particles. The partial width for effectively invisible decay is < 27 MeV at 95%CL.

W BRANCHING RATIOS

Overall fits are performed to determine the branching ratios of the W. For each LEP experiment the correlation matrix of the leptonic branching ratios is used and the common systematic errors among LEP experiments are properly taken into account. A first fit determines three individual leptonic branching ratios, B($W \to e \nu_e$), B($W \to \mu \nu_\mu$), and B($W \to e \nu_e$), B($W \to \mu \nu_\mu$), and B($W \to e \nu_e$), B($W \to \mu \nu_\mu$), and B($W \to e \nu_e$) $au
u_{ au}$). This fit has a $\chi^2=10.5$ for 20 degrees of freedom. A second fit assumes lepton universality and determines the leptonic branching ratio B($W \to \ell \nu_\ell$). This fit has a $\chi^2 = 11.0$ for 22 degrees of freedom. A separate fit is performed only to hadronic branching ratio data taking into account the common systematic errors. This fit has a $\chi^2=2.3$ for 3 degrees

 $\Gamma(\ell^+\nu)/\Gamma_{\rm total}$ ℓ indicates average over e, μ , and τ modes, not sum over modes.

 Γ_1/Γ

Data marked "fit" are used for the fit. The other data is highly correlated with data

appearing elsewhere ii VALUE		DOCUMENT ID	TECN	COMMENT
	EVTS	DOCUMENTIO	TECN	COMMENT
0.1056±0.0014 OUR FIT				
$0.1071 \pm 0.0024 \pm 0.0014$	1237	ABREU	00k DLPH	Ecm=
				161+172+183
				+189 GeV
0.107 ±0.004 ±0.002	461	ABBIENDI	99D OPAL	$E_{cm}^{ee} = 161 + 172 +$
				183 GeV
0.1102±0.0052 fi	t 11858	48 ABBOTT	99H D0	$E_{cm}^{p\overline{p}} = 1.8 \text{ TeV}$
_				Ecm = 161+172+
$0.1036 \pm 0.0040 \pm 0.0017$	532	BARATE	991 ALEP	
				183 GeV
$0.100 \pm 0.004 \pm 0.001$	324	ACCIARRI	98P L3	Eee = 161+172+
		40		183 GeV
0.104 ±0.008 fi	t 3642	⁴⁹ ABE	92ı ÇDF	$E_{\text{CM}}^{\rho\rho}$ = 1.8 TeV
• • • We do not use the fo	llowing data	for averages, fits,	limits, etc.	• •
$0.1085 \pm 0.0048 \pm 0.0017$	170	ABREU	99k DLPH	Repl. by
0.11000 ± 0.00 10 ± 0.0011	2.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	77.1. BZ. 11	ABREU 00K
$0.101 \begin{array}{c} +0.011 \\ -0.010 \end{array} \pm 0.002$	61	ACKERSTAFF	OPA OPAL	Rept. by ABBI-
0.101 _0.010 ±0.002	01	ACKERS IAFI	700 OIAL	ENDI 990
+0.013				
$0.119 {}^{+0.013}_{-0.012} \pm 0.002$	51	ACCIARRI	97M L3	Repl. by ACCIA-
				RRI 98P
⁴⁸ ABBOTT 99H measure	$R \equiv [\sigma \omega]$	$B(W \rightarrow \ell \nu_{\ell})]/[\epsilon$	$\sigma_{Z} B(Z \rightarrow A)$	(ℓ) = 10.90 ± 0.5

⁴⁹ABBOTT 99H measure $R\equiv [\sigma_W \ B(W\to \ell\nu_\ell)]/[\sigma_Z \ B(Z\to \ell\ell)]=10.90\pm0.52$ combining electron and muon channels. They use $M_W=80.39\pm0.06$ GeV and the SM theoretical predictions for $\sigma(W)/\sigma(Z)$ and $B(Z\to \ell\ell)$.

⁴⁹1216 \pm 38 $\pm^{2.7}_{-31} \ W\to \mu\nu$ events from ABE 92I and 2426 $W\to e\nu$ events of ABE 91C. ABE 92I give the inverse quantity as 9.6 \pm 0.7 and we have inverted.

$\Gamma(e^+\nu)/\Gamma_{\text{total}}$	EVTS	DOCUMENT ID	TECN	Γ ₂ /Γ
0.1066 ± 0.0020 OUR FIT				
$0.1044 \pm 0.0015 \pm 0.0028$	67318	⁵⁰ ABBOTT	00B D0	$E_{cm}^{ar{p}} = 1.8 \; TeV$
$0.1018 \pm 0.0054 \pm 0.0026$	352	ABREU	00k DLPH	Eem = 161+172+183
0.117 ±0.009 ±0.002	191	ABBIENDI	99D OPAL	+189 GeV Eee = 161+172+ 183 GeV
$0.1115 \pm 0.0085 \pm 0.0024$	193	BARATE	99I ALEP	Eee = 161+172+ 183 GeV
0.105 ±0.009 ±0.002	128	ACCIARRI	98P L3	Ecm = 161+172+ 183 GeV
$0.1094 \pm 0.0033 \pm 0.0031$		⁵¹ ABE	95w CDF	$E_{\text{cm}}^{p\overline{p}}$ = 1.8 TeV
$0.10 \pm 0.014 \begin{array}{l} +0.02 \\ -0.03 \end{array}$	248	⁵² ANSARI	87C UA2	$E_{\text{CM}}^{p\overline{p}} = 546,630$ GeV
• • • We do not use the fol	lowing data	for averages, fits,	limits, etc. •	
$0.1012 \pm 0.0107 \pm 0.0028$	56	ABREU	99K DLPH	Repl. by ABREU 00K
$0.098 \begin{array}{l} +0.022 \\ -0.020 \end{array} \pm 0.003$	21	ACKERSTAFF	98D OPAL	Repl. by ABBI- ENDI 990
$0.165 \begin{array}{l} +0.037 \\ -0.033 \end{array} \pm 0.005$	23	ACCIARRI	97M L3	Repl. by ACCIA- RRI 98P
$0.097 \pm 0.02 \pm 0.005$	21	BARATE	975 ALEP	Repl. by BARATE 991
seen	119	APPEL	86 UA2	E ^{pp} _{cm} = 546,630 GeV
seen	172	ARNISON	86 UA1	$E_{\rm cm}^{\rho p} = 546,630$

⁵⁰ ABBOTT 00B measure $R \equiv [\sigma_W B(W \to e \nu_e)]/[\sigma_Z B(Z \to e e)] = 10.43 \pm 0.27$ for the $W \to e \nu_e$ decay channel. They use the SM theoretical prediction for $\sigma(W)/\sigma(Z)$ and the world average for $B(Z \to e e)$.

⁵¹ABE 95w result is from a measurement of $\sigma B(W \rightarrow e \nu)/\sigma B(Z \rightarrow e^+e^-) =$ $10.90 \pm 0.32 \pm 0.29$, the theoretical prediction for the cross section ratio, the experimental knowledge of $\Gamma(Z \rightarrow e^+e^-) = 83.98 \pm 0.18$ MeV, and $\Gamma(Z) = 2.4969 \pm 0.0038$

GeV. 52 The first error was obtained by adding the statistical and systematic experimental uncertainties in quadrature. The second error reflects the dependence on theoretical prediction of total W cross section: $\sigma(546 \text{ GeV}) = 4.7^{+1.4}_{-0.7} \text{ nb}$ and $\sigma(630 \text{ GeV}) = 5.8^{+1.8}_{-1.0} \text{ nb}$. See ALTARELLI 85B.

	EVTS	DOCUMENT ID	TECN	Γ ₃ /Γ
0.1049±0.0029 OUR FIT		DOCOMENT ID		COMMENT
$0.1092 \pm 0.0048 \pm 0.0012$	461	ABREU	00k DLPH	E _{cm} = 161+172+183
$0.102 \pm 0.008 \pm 0.002$	169	ABBIENDI	990 OPAL	+189 GeV Eee = 161+172+ 183 GeV
$.1006 \pm 0.0078 \pm 0.0021$	179	BARATE	99I ALEP	$E_{\text{Cm}}^{\text{ee}} = 161 + 172 + 183$
.102 ±0.009 ±0.002	115	ACCIARRI	98P L3	GeV Eee = 161+172+ 183 GeV
.10 ±0.01	1216	⁵³ ABE	92ı CDF	$E_{\rm Cm}^{p\bar{p}} = 1.8 \text{ TeV}$
• We do not use the for	llowing data	for averages, fits,	limits, etc. •	• •
$.1139 \pm 0.0096 \pm 0.0023$	67	ABREU	99K DLPH	Repl. by ABREU 00k
$073 \begin{array}{l} +0.019 \\ -0.017 \end{array} \pm 0.002$	16	ACKERSTAFF	98D OPAL	Repl. by ABBI- ENDI 990
$.084 \begin{array}{l} +0.028 \\ -0.024 \end{array} \pm 0.003$	13	ACCIARRI	97M L3	Repl. by ACCIA- RRi 98P
.112 ±0.02 ±0.006	25	BARATE	97s ALEP	Repl. by BARATE 991
53 ABE 921 quote the inver	se quantity a	is 9.9 ± 1.2 which	we have inv	
(τ ⁺ ν)/Γ _{total}	EVTS	DOCUMENT ID	TECN_	Γ ₄ /Γ
.1043±0.0041 OUR FIT				
$0.1105 \pm 0.0075 \pm 0.0032$	424	ABREU	00k DLPH	Ecm = 161+172+183 +189 GeV
.101 ±0.010 ±0.003	144	ABBIENDI	99D OPAL	Eem = 161+172+ 183 GeV
$.0976 \pm 0.0101 \pm 0.0033$	160	BARATE	99i ALEP	E ^{ee} _{Cm} = 161+172+ 183 GeV
.090 ±0.012 ±0.003	81	ACCIARRI	98P L3	Eee 161+172+ 183 GeV
• • We do not use the fo	llowing data	for averages, fits,	limits, etc. •	
$.1095 \pm 0.0149 \pm 0.0041$	47	ABREU	99k DLPH	Repl. by ABREU 00k
$.140 \begin{array}{l} +0.030 \\ -0.028 \end{array} \pm 0.005$	23	ACKERSTAFF	98D OPAL	Repl. by ABBI- ENDI 990
.109 $^{+0.042}_{-0.039}$ ± 0.005	15	ACCIARRI	97M L3	Repl. by ACCIA- RRI 98P
.113 ±0.027 ±0.006	37	BARATE	97s ALEP	Repl. by BARATE 99
(hadrons)/F _{total}				Г ₅ /Г
/ALUE 0.6848±0.0059 OUR FIT	<u>EVTS</u>	DOCUMENT ID	TECN_	COMMENT
0.6789±0.0073±0.0043	1773	ABREU	00k DLPH	Eee 161+172+183
0.670 ±0.012 ±0.00E	395	ABBIENDI	99D OPAL	+189 GeV Eee = 161+172+
.679 ±0.012 ±0.005				183 GeV
	1255	BARATE	991 ALEP	$E_{cm}^{ee} = 161 + 172 +$
$0.6893 \pm 0.0121 \pm 0.0051$	1255 462	BARATE ACCIARRI	991 ALEP 98P L3	Ecm = 161+172+ 183 GeV Ecm = 161+172+
$0.6893 \pm 0.0121 \pm 0.0051$ $0.701 \pm 0.013 \pm 0.004$	462	ACCIARRI	98P L3	Eem = 161+172+ 183 GeV Eem = 161+172+ 183 GeV
$0.6893 \pm 0.0121 \pm 0.0051$ $0.701 \pm 0.013 \pm 0.004$ 0.004 We do not use the form	462	ACCIARRI	98P L3	E ^{ee} _{Cm} = 161+172+ 183 GeV E ^{ee} _{Cm} = 161+172+ 183 GeV Repl. by
$0.6893 \pm 0.0121 \pm 0.0051$ $0.701 \pm 0.013 \pm 0.004$ $0.6746 \pm 0.0143 \pm 0.0052$	462 oflowing data	ACCIARRI for averages, fits,	98P L3 Jimits, etc. • 99K DLPH	E ^{ee} _{Cm} = 161+172+ 183 GeV E ^{ee} _{Cm} = 161+172+ 183 GeV • • • Repl. by ABREU 00K Repl. by ABBI-
0.6893 ± 0.0121 ± 0.0051 0.701 ± 0.013 ± 0.004 0 • • • We do not use the form to the fo	462 Oflowing data 465	ACCIARRI for averages, fits, ABREU	98P L3 Jimits, etc. • 99K DLPH	Eem = 161+172+ 183 GeV Eem = 161+172+ 183 GeV Repl. by ABREU 00K Repl. by ABBI- ENDI 990 Repl. by ACCIA-
$0.6893 \pm 0.0121 \pm 0.0051$ $0.701 \pm 0.013 \pm 0.004$ $0.6746 \pm 0.0143 \pm 0.0052$ $0.698 + 0.030 \pm 0.007$ $0.642 + 0.037 \pm 0.005$	462 Oflowing data 465 52	ACCIARRI for averages, fits, ABREU ACKERSTAFF	98P L3 Jimits, etc. 99K DLPH 98D OPAL	Ee = 16.1+172+ 28 3 GeV Ecm = 16.1+172+ 183 GeV ■ ■ Repl. by ABREU 00k Repl. by ABBIEND 1990 Repl. by ACCIA- RRI 98P Repl. by
0.6893 ± 0.0121 ± 0.0051 0.701 ± 0.013 ± 0.004 • • • We do not use the form to the form	462 oflowing data 465 52 70	ACCIARRI for averages, fits, ABREU ACKERSTAFF ACCIARRI	98P L3 Dimits, etc. 0 99K DLPH 98D OPAL 97M L3	Eee = 161+172+ 183 GeV Ee = 161+172+ 183 GeV Repl. by ABREU 00K Repl. by ABBI- ENDI 990 Repl. by ACCIA- RRI 98P Repl. by BARATE 991
0.6893 ± 0.0121 ± 0.0051 0.701 ± 0.013 ± 0.004 0 • • We do not use the form of the control of	462 oflowing data 465 52 70	ACCIARRI for averages, fits, ABREU ACKERSTAFF ACCIARRI	98P L3 Jimits, etc. 1 99K DLPH 98D OPAL 97M L3 97S ALEP	EEE = 16.1+172+ 183 GeV EE = 16.1+172+ 183 GeV • • • Repl. by ABREU 00κ Repl. by ABBI- ENDI 990 Repl. by ACCIA- RRI 98P Repl. by BARATE 99
± 0.037	462 ollowing data 465 52 70 65	ACCIARRI for averages, fits, ABREU ACKERSTAFF ACCIARRI BARATE	98P L3 Jimits, etc. 1 99K DLPH 98D OPAL 97M L3 97S ALEP	Eee = 16.1+172+ 183 GeV Ee = 16.1+172+ 183 GeV Repl. by ABREU 00K Repl. by ABBI- ENDI 990 Repl. by ACCIA- RRI 98P Repl. by BARATE 99I COMMENT
0.6893 ± 0.0121 ± 0.0051 0.701 ± 0.013 ± 0.004 0 • • We do not use the form of the following of the follo	462 billowing data 465 52 70 65	ACCIARRI for averages, fits, ABREU ACKERSTAFF ACCIARRI BARATE	98P L3 Jimits, etc. 6 99K DLPH 98D OPAL 97M L3 97S ALEP	EEE = 16.1+172+ 183 GeV EE = 16.1+172+ 183 GeV • • • Repl. by ABREU 00κ Repl. by ABBI- ENDI 990 Repl. by ACCIA- RRI 98P Repl. by BARATE 99
0.6893 ± 0.0121 ± 0.0051 0.701 ± 0.013 ± 0.004 • • • We do not use the form of the control of	462 billowing data 465 52 70 65	ACCIARRI for averages, fits, ABREU ACKERSTAFF ACCIARRI BARATE DOCUMENT ID 54 ABACHI 55 ABE	98P L3 Jimits, etc. 199K DLPH 98D OPAL 97M L3 97S ALEP TECN 95D D0 921 CDF	E ^{ee} _{cm} = 16.1+172+ 183 GeV E ^{ee} _{cm} = 16.1+172+ 183 GeV Repl. by ABREU 00K Repl. by ABBI- ENDI 990 Repl. by ACCIA- RRI 98P EPI 990 EPI 99
0.6893 ± 0.0121 ± 0.0051 0.701 ± 0.013 ± 0.004 • • • We do not use the form of the control of	462 billowing data 465 52 70 65	ACCIARRI for averages, fits, ABREU ACKERSTAFF ACCIARRI BARATE DOCUMENT ID 54 ABACHI 55 ABE	98P L3 Jimits, etc. 199K DLPH 98D OPAL 97M L3 97S ALEP TECN 95D D0 921 CDF	E ^{ee} _{cm} = 16.1+172+ 183 GeV E ^{ee} _{cm} = 16.1+172+ 183 GeV Repl. by ABREU 00K Repl. by ABBI- ENDI 990 Repl. by ACCIA- RRI 98P EPI 990 EPI 99

ABACHI 950 obtain this result from the measured $\sigma_W B(W \to \mu \nu) = 2.09 \pm 0.23 \pm 0.11$ nb and $\sigma_W B(W \to e \nu) = 2.36 \pm 0.07 \pm 0.13$ nb in which the first error is the combined statistical and systematic uncertainty, the second reflects the uncertainty in the luminosity.

$\Gamma(\tau^+ u) / \Gamma(e^+ u)$				Γ_4/Γ_2
0.979±0.044 OUR FIT	EVTS	DOCUMENT IE	<u>TECN</u>	COMMENT
0.94 ±0.14	179	⁵⁶ ABE		$E_{\text{CM}}^{p\overline{p}} = 1.8 \text{ TeV}$
$1.04 \pm 0.08 \pm 0.08$	754	⁵⁷ ALITTI	92F UA2	$E_{\text{CM}}^{p\overline{p}}$ = 630 GeV
$1.02 \pm 0.20 \pm 0.12$	32	ALBAJAR	89 UA1	$E_{\rm cm}^{p\overline{p}} = 546,630$
• • • We do not use the	following dat	ta for averages, fit	s, limits, etc.	GeV • • •
$0.995 \pm 0.112 \pm 0.083$	198	ALITTI	91C UA2	Repl. by
$1.02 \pm 0.20 \pm 0.10$	32	ALBAJAR	87 UAI	ALITTI 92F Repl. by ALBA-

⁵⁶ ABE 92£ use two procedures for selecting $W \to \tau \nu_T$ events. The missing E_T trigger leads to 132 ± 14 ± 8 events and the τ trigger to 47 ± 9 ± 4 events. Proper statistical and systematic correlations are taken into account to arrive at $\sigma B(W \to \tau \nu) = 2.05 \pm 0.27$ nb. Combined with ABE 91¢ result on $\sigma B(W \to e \nu)$, ABE 92£ quote a ratio of the couplings from which we derive this measurement.

⁵⁷ This measurement is derived by us from the ratio of the couplings of ALITTI 92F.

$\Gamma(\pi^+\gamma)/\Gamma(e^+\nu)$						Γ_6/Γ_2	
VALUE	CL%_	DOCUMENT ID		TECN	COMMENT		
$< 7 \times 10^{-4}$	95	ABE	98H	CDF	$E_{\text{CM}}^{\overline{p}} = 1.8 \text{ TeV}$		
$< 4.9 \times 10^{-3}$	95	⁵⁸ ALITTI			$E_{\text{CM}}^{\overline{p}} = 630 \text{ GeV}$		
$< 58 \times 10^{-3}$	95	⁵⁹ ALBAJAR	90	UA1	$E_{\rm cm}^{p\bar{p}} = 546, 630$	GeV	
58 ALITTI 920 limit is 3.8 \times 10 $^{-3}$ at 90%CL. 59 ALBAJAR 90 obtain $<$ 0.048 at 90%CL.							

$\Gamma(D_s^+\gamma)/\Gamma(e^+\nu)$						Γ_7/Γ_2
VALUE	CL%	DOCUMENT ID		<u>EÇN</u>	COMMENT	
<1.2 x 10 ⁻²	95	ABE	98P CI	DF	$E_{Cm}^{p\overline{p}} = 1.8 \text{ TeV}$	
$\Gamma(cX)/\Gamma(hadrons)$						Γ_8/Γ_5

1 (CA)/1 (madions)				18/	5
VALUE	EVT5	DOCUMENT ID	TECN	COMMENT	
$0.51 \pm 0.05 \pm 0.03$	746	⁶⁰ BARATE	99M ALEP	$E_{\rm CM}^{\it ee} = 172 + 183 \; {\rm GeV}$	

 60 BARATE 99M tag c jets using a neural network algorithm. From this measurement $|V_{CS}|$ is determined to be 1.00 ± 0.11 ± 0.07.

$R_{cs} = \Gamma(c\overline{s})/\Gamma(hadrons)$			Г9/Г5
VALUE	DOCUMENT ID	TECN	COMMENT
$0.46^{+0.18}_{-0.14}\pm0.07$	61 ABREU	98N DLPH	<i>E</i> ^{ee} cm = 161+172 GeV

⁶¹ ABREU 98N tag c and s jets by identifying a charged kaon as the highest momentum particle in a hadronic jet. They also use a lifetime tag to independently identify a c jet, based on the impact parameter distribution of charged particles in a jet. From this measurement $|V_{CS}|$ is determined to be $0.94^{+0.32}_{-0.26} \pm 0.13$.

AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAY

Summed over particle and antiparticle, when appropriate.

VALUE _	DOCUMENT ID	TECN_	COMMENT
19.3 ±0.4 OUR AVERAGE			
19.3 ±0.3 ±0.3	⁶² ABBIENDI	99N OPAL	$E_{\text{CM}}^{ee} = 183 \text{ GeV}$
19.23 ± 0.74	63 ABREU	98c DLPH	Ecm = 172 GeV

TRIPLE GAUGE COUPLINGS (TGC'S)

Revised March 2000 by C. Caso (Univ. of Genova) and A. Gurtu (Tata Inst.)

Fourteen independent couplings, 7 each for ZWW and γWW , completely describe the VWW vertices within the most general framework of the electroweak Standard Model (SM) consistent with Lorentz invariance and U(1) gauge invariance. Of each of the 7 TGC's, 3 conserve C and P individually, 3 violate CP, and one TGC violates C and P individually while conserving CP. Assumption of C and P conservation and electromagnetic gauge invariance reduces the independent VWW couplings to five: one common set is $(\kappa_{\gamma}, \kappa_{Z}, \lambda_{\gamma}, \lambda_{Z}, g_{1}^{Z})$, where $\kappa_{\gamma} = \kappa_{Z} = g_{1}^{Z} = 1$ and $\lambda_{\gamma} = \lambda_{Z} = 0$ in the Standard Model at the tree level. The W magnetic dipole moment, μ_W , and the W electric quadrupole moment, q_W , are expressed as $\mu_W = e (1 + \kappa_{\gamma} + \lambda_{\gamma})/2M_W$ and $q_W = -e (\kappa_{\gamma} - \lambda_{\gamma})/M_W^2$.

⁵⁵ ABE 92: obtain σ_W B($W \to \mu \nu$)= 2.21 \pm 0.07 \pm 0.21 and combine with ABE 91c σ_W B($(W \to e \nu)$) to give a ratio of the couplings from which we derive this measurement.

⁶³ ABREU 98C combine results from both the fully hadronic as well semileptonic W W final states after demonstrating that the ${\it W}$ decay charged multiplicity is independent of the topology within errors.

Precision measurements of suitable observables at LEP1 has already led to an exploration of much of the TGC parameter space. Three linear combinations of the TGC's, $\alpha_{W\phi}$, $\alpha_{B\phi}$ and α_W , have been proposed to investigate the leftover "blind" directions in the CP-conserving TGC parameter space, and two linear couplings, $\tilde{\alpha}_{BW}$ and $\tilde{\alpha}_{W}$ in the CP-violating TGC parameter space (see e.g., papers by Hagiwara [1], Bilenky [2], and Gounaris [3,4]). The relations between these parameters and those contained in the above set, expressed as deviations from the SM, are $\Delta g_1^Z = \alpha_{W\phi}/c_w^2, \, \Delta \kappa_{\gamma} = \alpha_{W\phi} + \, \alpha_{B\phi}, \, \Delta \kappa_Z =$ $\alpha_{W\phi}-\ t_w^2\alpha_{B\phi}$ and $\lambda_{\gamma}=\lambda_Z=\alpha_W,$ where c_w and t_w are the cosine and tangent of the electroweak mixing angle. Similarly, $\widetilde{\kappa}_{\gamma} = \widetilde{\alpha}_{BW}, \widetilde{\kappa}_{Z} = t_{w}^{2} \widetilde{\alpha}_{BW} \text{ and } \widetilde{\lambda}_{\gamma} = \widetilde{\lambda}_{Z} = \widetilde{\alpha}_{W} \text{ within the } CP$ violating sector. The LEP Collaborations have recently agreed to express their results directly in terms of the parameters Δg_1^Z , $\Delta \kappa_{\gamma}$ and λ_{γ} .

At LEP2 the VWW coupling arises in W-pair production via s-channel exchange or in single W production via the radiation of a virtual photon off the incident e^+ or e^- . At the TEVATRON hard photon bremstrahlung off a produced W or Z signals the presence of a triple gauge vertex. In order to extract the value of one TGC the others are generally kept fixed to their SM values.

References

- K. Hagiwara et al., Nucl. Phys. **B282**, 253 (1987).
- M. Bilenky et al., Nucl. Phys. B409, 22 (1993).
- G. Gounaris et al., CERN 96-01 525.
- 4. G. Gounaris et al., Eur. Phys. J. C2, 365 (1998).

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.01 +0.09 OUR A	/ERAGE			
$0.01 \ \begin{array}{c} +0.13 \\ -0.12 \end{array}$	853	64 ABBIENDI	990 OPAL	E ^{ee} _{Cm} = 161+172+ 183 GeV
$-0.04 \begin{array}{l} +0.14 \\ -0.12 \end{array}$	566	⁶⁵ ABREU	99L DLPH	Eee = 183 GeV
$0.11 \begin{array}{l} +0.19 \\ -0.18 \end{array} \pm 0.10$	1154	⁶⁶ ACCIARRI	99Q L3	E ^{ee} _{CM} = 161+172+ 183 GeV
• • We do not use the	e followii	ng data for averages	s, fits, limits,	
	331	67 ABBOTT	991 D0	$E_{Cm}^{p\overline{p}} = 1.8 \; TeV$
$-0.017 \pm 0.018 {}^{+ 0.018}_{- 0.003}$		⁶⁸ MOLNAR	99 THEO	LEP1, SLAC+Tevatron
64 ADDIENDI OOD COM	. L	C 14/+ 14/		

- ABBIENDI 990 combine results from W^+W^- production at different energies. The 95% confidence interval is $-0.23 < \Delta g_1^Z < 0.26$.
- 65 ABREU 99L use W^+W^- , Wev_e , and $v\overline{v}\gamma$ final states. The 95% confidence interval is $-0.28 < \Delta g_1^{\mbox{\it Z}} < 0.24.$

66 ACCIARRI 990 study W-pair, single-W, and single photon events.

- 67 ABBOTT 991 perform a simultaneous fit to the $W\gamma$, $WW \rightarrow$ dilepton, $WW/WZ \rightarrow e\nu jj$, $WW/WZ \rightarrow \mu\nu jj$, and $WZ \rightarrow$ trilepton data samples. For $\Lambda=2.0$ TeV, the 95%CL limits are $-0.37 < \Delta g_1^Z < 0.57$, fixing $\lambda_Z = \Delta \kappa_Z = 0$ and assuming Standard Model values for the $WW\gamma$ couplings.
- 68 MOLNAR 99 extract this value indirectly by fitting high energy electroweak data within the framework of the Standard Model. The central value of the Higgs mass used is 300 GeV and the quoted systematic error is due to its variation between 90 to 1000 GeV.

$\Delta \kappa_{\gamma}$					
VALUE		EVTS	DOCUMENT ID	TECN	COMMENT
0.08	±0.17	OUR AVERAGE			
0.11	+0.52 -0.37	853	⁶⁹ ABBIENDI		$E_{\text{cm}}^{ee} = 161 + 172 + 183$
	±0.34	331	⁷⁰ ABBOTT	99ı D0	$\frac{\text{GeV}}{E_{\text{CM}}^{pp}} = 1.8 \text{ TeV}$
0.19	+0.32 -0.34	566	⁷¹ ABREU	99L DLPH	<i>E</i> ^{ee} = 183 GeV
0.11	±0.25	± 0.17 1154	⁷² ACCIARRI	99Q L3	Eee = 161+172+ 183 GeV
0.05	$^{+1.15}_{-1.10}$	±0.25 207	⁷³ BARATE,R	98 ALEP	$E_{\text{CM}}^{ee} = 161 + 172 + 183$

• • We do not use the following data for averages, fits, limits, etc. • • •

	15	⁷⁴ BARATE	99L ALEP	E ^{ee} _{Cm} = 161+172+183 GeV
$0.016 \pm 0.019 {}^{+ 0.009}_{- 0.013}$		⁷⁵ MOLNAR	99 THEO	LEP1, SLAC+Tevatron
$0.06 \begin{array}{l} +0.27 \\ -0.26 \end{array}$	86	⁷⁶ ACCIARRI	98N L3	Repl. by ACCIARRI 99Q

- 69 ABBIENDI 990 combine results from W^+W^- production at different energies. The 95% confidence interval is $-0.55<\Delta\kappa_\gamma<1.28.$
- 70 ABBOTT 991 perform a simultaneous fit to the $W\gamma$, $WW\to dilepton$, $WW/WZ\to e\nu jj$, $WW/WZ\to \mu\nu jj$, and $WZ\to trilepton$ data samples. For $\Lambda=2.0$ TeV, the $e\nu jj$, $WW/WZ \rightarrow \mu\nu jj$, and $WZ \rightarrow 95\%$ CL limits are $-0.25 < \Delta\kappa_{\gamma} < 0.39$.
- 71 ABREU 99L use W^+W^- , $We^{}
 u_e$, and $u\overline{
 u}\gamma$ final states. The 95% confidence interval is $-0.46 < \Delta \kappa_{\gamma} < 0.84$.

72 ACCIARRI 990 study W-pair, single-W, and single photon events.

- 73 BARATE, R 98 study single photon production in e⁺e⁻ interactions from 161 to 183 GeV. A likelihood fit is performed to the cross section and to the photon energy and angular distributions, taking into account systematic uncertainties. The 95%CL limits
- 74 BARATE 99L study single W production in e^+e^- interactions from 161 to 183 GeV. They obtain 95%CL limits of $-1.6<\kappa_\gamma<1.5$, which we convert to $-2.6<\Delta\kappa_\gamma<0.5$ for $\lambda_{\gamma}=0$.
- 75 MOLNAR 99 extract this value indirectly by fitting high energy electroweak data within the framework of the Standard Model. The central value of the Higgs mass used is 300 GeV and the quoted systematic error is due to its variation between 90 to 1000 GeV.
- 76 ACCIARRI 98N study single W production in e^+e^- interactions from 130 to 183 GeV The 95%CL limits are $-0.46 < \Delta\kappa_\gamma < 0.57$.

VALUE	EVT5	DOCUMENT ID	TECN	COMMENT
-0.04+0.07 OUR A	/ERAGE			
$-0.10^{+0.13}_{-0.12}$	853	77 ABBIENDI	990 OPAL	$E_{\text{cm}}^{ee} = 161 + 172 + 183$
$0.00^{+0.10}_{-0.09}$	331	⁷⁸ ABBOTT	99ı D0	GeV $E_{CM}^{ar{p}\overline{p}}=1.8\;TeV$
$-0.15^{+0.19}_{-0.15}$	566	⁷⁹ ABREU	99L DLPH	<i>E</i> ^{ee} _{CM} == 183 GeV
$0.10^{+0.22}_{-0.20}{\pm}0.10$	1154	⁸⁰ ACCIARRI	99Q L3	Ecm = 161+172+ 183 GeV
$-0.05^{+1.55}_{-1.45}\pm0.30$	207	⁸¹ BARATE,R	98 ALEP	$E_{\rm cm}^{ee} = 161 + 172 + 183$

• • We do not use the following data for averages, fits, limits, etc. •

	15	⁶² BARATE	99L ALEP	$E_{\text{Cm}}^{ee} = 161 + 172 + 183$
				GeV
$-0.48^{+0.44}_{-0.21}$	86	⁸³ ACCIARRI	98N L3	Repl. by ACCIARRI 99Q

- 77 ABBIENDI 990 combine results from W^+W^- production at different energies. The 95% confidence interval is $-0.33 < \lambda_{\gamma} < 0.16.$
- ⁷⁸ ABBOTT 991 perform a simultaneous fit to the $W\gamma$, $WW \rightarrow \text{dilepton}$, WW/WZ $e\nu jj,~WW/WZ \to \mu\nu jj,~$ and $WZ \to$ trilepton data samples. For $\Lambda=2.0$ TeV, the 95%CL limits are $-0.18 < \lambda_{\gamma} < 0.19.$
- 79 ABREU 99L use W^+W^- , $\dot{W}e\nu_{
 m e}$, and $\nuar{
 u}\gamma$ final states. The 95% confidence interval is $-0.44 < \lambda_{\gamma} < 0.24$.
- $^{80}\,\mathrm{ACCIARRI}$ 990 study W-pair, single-W, and single photon events.
- ⁸¹ BARATE,R 98 study single photon production in e^+e^- interactions from 161 to 183 GeV. A likelihood fit is performed to the cross section and to the photo angular distributions, taking into account systematic uncertainties. The 95%CL limits are $-3.1 < \lambda_{\gamma} < 3.2$.
- 82 BARATE 99L study single W production in $e^+\,e^-$ interactions from 161 to 183 GeV. The 95%CL limits are $-1.6 < \lambda_{\gamma} < 1.6$ for $\Delta \kappa_{\gamma} = 0$.
- 83 ACCIARRI 98N study single W production in $e^+\,e^-$ interactions from 130 to 183 GeV. The 95%CL limits are $-0.86 < \lambda_{\gamma} < 0.75$.

This coupling is CP conserving but C and P violating.

VALUE	EV/3	DOCOMENTIO	TECH	COMMENT
$-0.44^{+0.23}_{-0.22}\pm0.12$	1154	⁸⁴ ACCIARRI	99Q L3	Eee = 161+172+ 183 GeV

84 ACCIARRI 99Q study W-pair, single-W, and single photon events.

$\alpha_{W\phi}$

VALUE	EVT5	DOCUMENT IL	TECN	COMMENT			
0.05±0.20 OUR AV	ERAGE						
$0.22^{+0.25}_{-0.28}\pm0.06$	89	⁸⁵ ABREU	98k DLPH	Eee = 161+172 GeV			
$-0.14 + 0.27 + 0.14 \\ -0.25 - 0.12$	78	⁸⁶ BARATE	98Y ALEP	<i>E</i> ^{ee} _{cm} = 172 GeV			
	331	87 ABBOTT	991 D0	$E_{cm}^{p\overline{p}} = 1.8 \text{ TeV}$			

- $E_{\mathsf{Cm}}^{P\overline{p}} = 1.8 \; \mathsf{TeV}$ 331 99I D0 85 ABREU 98K obtain this result using both W pair production and single W ($We
 u_e$)
- 86 BARATE 98Y obtain this value using semileptonic and hadronic decay modes in *W* pair
- Production.

 87 ABBOTT 99I perform a simultaneous fit to the $W\gamma$, $WW \rightarrow$ dilepton, $WW/WZ \rightarrow e\nu jj$, $WW/WZ \rightarrow \mu\nu jj$, and $WZ \rightarrow$ trilepton data samples. For $\Lambda=2.0$ TeV, the 95%CL limits are $-0.18 < \alpha_{W\phi} < 0.36$, fixing $\alpha_{B\phi} = \alpha_{W} = 0$.

ãw

XW ALUE	EVTS	DOCUMENT I	D TECN	COMMENT	
0.1 ±0.4 OUR AVER		<u> </u>	3233	COMMENT	_
$0.11^{+0.48}_{-0.49}\pm0.09$	89	88 ABREU	98k DLPH	<i>E</i>	
$0.06 + 0.56 + 0.12 \\ -0.50 - 0.20$	78	⁸⁹ BARATE	98Y ALEP	<i>E</i> ee 172 GeV	
• • We do not use t	he follow	ing data for avera	ges, fits, limits,	etc. • • •	
	331	90 ABBOTT	99ı D0	$E_{CM}^{oldsymbol{ar{ ho}}oldsymbol{ar{ ho}}}=$ 1.8 TeV	
production.				on and single $W(We u_{\ell})$	
89 BARATE 98Y obta production.	in this va	lue using semilept	onic and hadro	nic decay modes in W pa	ir
90 ABBOTT 991 perfo evjj, WW/WZ 95%CL limits are -	→ uvii.	and $WZ \rightarrow trile$	enton data sami	\rightarrow dilepton, WW/WZ -ples. For $\Lambda=2.0$ TeV, th=0.	→ ne
¥B∳					
ALUE	EVTS	DOCUMENT I	D TECN	COMMENT	_
0.4 +0.5 OUR AVER	RAGE				
$.22^{+0.66}_{-0.83} \pm 0.24$	89	⁹¹ ABREU	98k DLPH	Eee = 161+172 GeV	
$.01^{+0.71}_{-1.75}\pm 0.33$	78	⁹² BARATE	98Y ALEP	<i>E</i> ^{ee} _{cm} = 172 GeV	
• • We do not use t	he follow	ing data for avera	ges, fits, limits,	etc. • • •	
	331	93 abbott	99i D0	$E_{CM}^{p\overline{p}} = 1.8 \; TeV$	
91 ABREU 98K obtain production.	n this res	sult using both V	V pair production	on and single $W(We u_{\epsilon})$,)
92 BARATE 98y obtain production.	in this va	lue using semilept	onic and hadro	nic decay modes in W pa	ir
93 ABBOTT 991 perfo	→ μνjj,	and $WZ \rightarrow trile$	epton data sami	of dilepton, WW/WZ -ples. For $\Lambda = 2.0$ TeV, the figure 1.0.	→ ne
XBW ALUE	EVTS	DOCUMENT II	D TECN	COMMENT	
					_
$0.11^{+0.71}_{-0.88} \pm 0.09$	89	⁹⁴ ABREU	98k DLPH	$E_{cm}^{ee} = 161 + 172 \text{ GeV}$	

 $0.19^{+0.28}_{-0.41}\pm0.11$ 95 ABREU 98K obtain this result using both W pair production and single W (Wev_e) production.

DOCUMENT ID TECN COMMENT

98к DLPH *Ес*т=161+172 GeV

W ANOMALOUS MAGNETIC MOMENT ($\Delta \kappa$)

EVTS

89 ⁹⁵ ABREU

The full magnetic moment is given by $\mu_W=e(1+\kappa+\lambda)/2m_W$. In the Standard Model, at tree level, $\kappa=1$ and $\lambda=0$. Some papers have defined $\Delta\kappa=1-\kappa$ and assume that $\lambda=0$. Note that the electric quadrupole moment is given by $-e(\kappa-\lambda)/m_W^2$. A description of the parameterization of these moments and additional references can be found in HAGIWARA 87 and BAUR 88. The parameter A appearing in the theoretical limits below is a regularization cutoff which roughly corresponds to the energy scale where the structure of the W boson becomes manifest.

VALUE (e/2m _W)	DOCUMENT ID		TECN
• • • We do not use the follow	wing data for average	s, fits	, limits, etc. • • •
	⁹⁶ ABE	95G	CDF
	97 ALITTI	92c	UA2
	⁹⁸ SAMUEL	92	THEO
	99 SAMUEL	91	THEO
	100 GRIFOLS	88	THEO
	¹⁰¹ GROTCH	87	THEO
	102 VANDERBIJ	87	THEO
	¹⁰³ GRAU	85	THEO
	¹⁰⁴ SUZUKI	85	THEO
	¹⁰⁵ HERZOG	84	THEO

⁹⁶ ABE 95G report $-1.3 < \kappa < 3.2$ for $\lambda=0$ and $-0.7 < \lambda < 0.7$ for $\kappa=1$ in $\rho \overline{\rho} \to \ e \nu_e \gamma X$ and $\mu
u_{\mu} \gamma \, {\sf X}$ at $\sqrt{{\sf s}} = 1.8$ TeV.

97 ALITTI 92c measure $\kappa=1+\frac{2.6}{-2.2}$ and $\lambda=0+\frac{1.7}{1.8}$ in $p\bar{p}\to e\nu\gamma+$ X at $\sqrt{s}=630$ GeV. At 95%CL they report $-3.5<\kappa<5.9$ and $-3.6<\lambda<3.5$.
98 SAMUEL 92 use preliminary CDF and UA2 data and find $-2.4<\kappa<3.7$ at 96%CL and $-3.1<\kappa<4.2$ at 95%CL respectively. They use data for $W\gamma$ production and radiative W decay.

PaSAMUEL 91 use preliminary CDF data for $\rho \overline{\rho} \to W \gamma X$ to obtain $-11.3 \le \Delta \kappa \le 10.9$. Note that their $\kappa = 1 - \Delta \kappa$.

 100 GRIFOLS 88 uses deviation from ho parameter to set limit $\Delta\kappa \lesssim$ 65 (M_W^2/Λ^2).

101 GROTCH 87 finds the limit $-37~<~\Delta\kappa~<73.5$ (90% CL) from the experimental limits on $e^+e^-\to \nu\bar{\nu}\gamma$ assuming three neutrino generations and $-19.5<\Delta\kappa<56$ for four generations. Note their $\Delta\kappa$ has the opposite sign as our definition.

102 VANDERBIJ 87 uses existing limits to the photon structure to obtain $|\Delta\kappa|<33$ (m_W/Λ). In addition VANDERBIJ 87 discusses problems with using the ρ parameter of the Standard Model to determine $\Delta\kappa$.

- $^{103}\,\mathrm{GRAU}$ 85 uses the muon anomaly to derive a coupled limit on the anomalous magnetic dipole and electric quadrupole (λ) moments 1.05 > $\Delta\kappa$ ln(Λ/m_W) + $\lambda/2 > -2.77$. In the Standard Model $\lambda=0$.
- 104 SUZUKI 85 uses partial-wave unitarity at high energies to obtain $|\Delta\kappa|\lesssim 190$ $(m_W/\Lambda)^2$. From the anomalous magnetic moment of the muon, SUZUKI 85 obtains $|\Delta\kappa|\lesssim 2.2/{\ln(\Lambda/m_W)}$. Finally SUZUKI 85 uses deviations from the ho parameter and obtains a very qualitative, order-of-magnitude limit $|\Delta\kappa|\lesssim 150~(m_W/\Lambda)^4$ if $|\Delta\kappa|\ll$
- 105 HERZOG 84 consider the contribution of W-boson to muon magnetic moment including anomalous coupling of $WW\gamma$. Obtain a limit $-1 < \Delta\kappa < 3$ for $\Lambda \gtrsim 1$ TeV.

W REFERENCES

ABBOTT 00 PR. B4 222 ABRULD 00 PR. D61 072001 ABBOTT 09 PR. D60 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D60 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D60 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D60 072002 B. Abbott et al. (OP. Clothab.) ABRUL 09 PR. D61 072001 B. Abbott et al. (OP. Clothab.) ABRUL 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABRUL 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABRUL 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABRUL 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABRUL 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABRUL 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) BARATE 09 PR. D61 072002 B. Abbott et al. (ALEPH Collab.) BARATE 09 PR. D61 072002 B. Abbott et al. (ALEPH Collab.) BARATE 09 PR. D61 072002 B. Abbott et al. (ALEPH Collab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (ALEPH Collab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) BARATE 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. Clothab.) ABBOTT 09 PR. D61 072002 B. Abbott et al. (OP. C			**	INCI ENLINCES	
ABBOTT 00 PR D5 072001 B. Abbott et al. (DCLPHI Collab.) ABBIENDI 95 C. PL B479 99 P. Abbett et al. (OPAL Collab.) ABBOTT 99 PR D6 052003 B. Abbott et al. (OPAL Collab.) ABBOTT 99 PR D6 052003 B. Abbott et al. (OCC Collab.) ABBOTT 99 PR D6 052003 B. Abbott et al. (OCC Collab.) ABBOTT 99 PR D6 052003 B. Abbott et al. (OCC Collab.) ABROTT 99 PR D6 052003 B. Abbott et al. (OCC Collab.) ABROTT 99 PR D6 052003 B. Abbott et al. (OCC Collab.) ABROTT 99 PR D6 052003 B. Abbott et al. (OCC Collab.) ABROTT 99 PR D6 052003 B. Abbott et al. (OCC Collab.) ABROTT 99 PR D6 052003 P. Abbott et al. (OCC Collab.) ABROTT 99 PR D6 052003 P. Abbott et al. (OCC Collab.) ABROTT 99 PR D6 052003 P. Abbott et al. (OCC Collab.) BARATE 99 PL B453 107 R. Barate et al. (ALEPH Collab.) BARATE 99 PL B453 107 R. Barate et al. (ALEPH Collab.) BARATE 99 PL B462 389 R. Barate et al. (ALEPH Collab.) BARATE 99 PL B462 389 R. Barate et al. (ALEPH Collab.) ABBOTT 98 PR D58 092003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58 093003 B. Abbott et al. (OCC Collab.) ABBOTT 98 PR D58	ABBOTT	00	PRL 84 222	B. Abbott et al.	(D0 Collab)
ABBENDI) 95° C. PL. B435 338 F. C. Abbiendi er al. (DOCALGILLA). ABBENDI 99° C. PL. B435 338 G. Abbiendi er al. (OPAL Collab.). ABBOTT 99° C. PL. B453 130 G. Abbiendi er al. (OPAL Collab.). ABBOTT 99° C. PL. B453 130 G. Abbiendi er al. (OPAL Collab.). ABBOTT 99° C. PL. B453 130 G. Abbiendi er al. (OPAL Collab.). ABBOTT 99° C. PL. B453 130 G. Abbiendi er al. (OPAL Collab.). ABBOTT 99° C. PL. B453 130 G. Abbiendi er al. (OPAL Collab.). ABBOTT 99° C. PL. B453 130° C. Abbiendi er al. (OPAL Collab.). ABBOTT 99° C. PL. B453 130° C. Abbiendi er al. (OPAL Collab.). ABBOTT 99° C. PL. B454 20° C. P. Abbeu er al. (OECPHI Collab.). ABBOTT 99° C. PL. B457 171° M. Acciaeri er al. (COLLEPHI Collab.). ABBOTT 99° C. PL. B457 171° M. Acciaeri er al. (COLLEPHI Collab.). ABBOTT 98° C. PL. B457 171° M. Acciaeri er al. (ALEPH Collab.). BARATE 99° C. PL. B453 121° C. Barate er al. (ALEPH Collab.). BARATT 99° C. PL. B452 199° C. Barate er al. (ALEPH Collab.). BARATT 99° C. PL. B452 199° C. Barate er al. (ALEPH Collab.). BARATT 99° C. PL. B452 199° C. Barate er al. (ALEPH Collab.). BARATT 99° C. PL. B452 199° C. Barate er al. (ALEPH Collab.). BARATT 99° C. PL. B452 199° C. Barate er al. (ALEPH Collab.). BARATT 99° C. PL. B452 199° C. Barate er al. (ALEPH Collab.). BARATT 99° C. PL. B452 199° C. Barate er al. (ALEPH Collab.). BARATT 99° C. PL. B452 199° C. Barate er al. (ALEPH Collab.). BARATT 99° C. PL. B452 199° C. Barate er al. (ALEPH Collab.). BARATT 99° C. PL. B452 199° C. PL. B452	ABBOTT	00B	PR D61 072001	B. Abbott et al.	(DO Collab.)
ABBIENDI 95 P. P. B453 139 G. Abbiendi et al. (OPAL Collab.) ABBIENDI 99 P. P. B453 131 G. Abbiendi et al. (OPAL Collab.) ABBIENDI 99 P. P. B453 131 G. Abbiendi et al. (OPAL Collab.) ABBOTT 99 P. P. B453 132 G. Abbiendi et al. (OPAL Collab.) ABBOTT 99 P. P. B455 302 P. Abbiendi et al. (OCC Collab.) ABREU 99 P. P. B455 302 P. Abbiendi et al. (OCC Collab.) ABREU 99 P. P. B455 302 P. Abbiendi et al. (OCC Collab.) ABREU 99 P. P. B456 303 P. Abbiendi et al. (OCC Collab.) ABREU 99 P. P. B456 303 P. Abbiendi et al. (OCC Collab.) ABREU 99 P. P. B456 304 P. Abreu et al. (OELPHI Collab.) ABREU 99 P. B457 171 M. Acciarri et al. (L3 Collab.) ACCIARRI 95 P. P. B457 307 M. Acciarri et al. (L3 Collab.) ACCIARRI 95 P. P. B457 307 M. Acciarri et al. (L3 Collab.) ACCIARRI 95 P. P. B457 309 M. M. Acciarri et al. (L3 Collab.) ACCIARRI 95 P. P. B457 309 M. M. Acciarri et al. (L3 Collab.) ACCIARRI 95 P. P. B457 309 M. B457			PL B479 89	P. Abreu et al.	(DELPHI Collab.)
ABBOTT 99N PR DS0 920030 B. Abbott et al. (Op Collab.) ABBOTT 991 PR DS0 920030 B. Abbott et al. (DC Collab.) ABBOTT 991 PR DS0 920030 B. Abbott et al. (DC Collab.) ABBOTT 991 PR DS0 920030 B. Abbott et al. (DC Collab.) ABBOTT 991 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 991 PR DS0 92003 B. Abbott et al. (DC Collab.) ACCIARRI 990 PL B462 101 P. Abreu et al. (DC Collab.) ACCIARRI 990 PL B463 107 M. Acciarri et al. (L3 Collab.) ACCIARRI 990 PL B463 117 M. Acciarri et al. (L3 Collab.) ACCIARRI 990 PL B463 117 M. Acciarri et al. (L3 Collab.) ACCIARRI 991 PL B463 107 R. Barate et al. (ALEPH Collab.) ACCIARRI 991 PL B463 109 R. Barate et al. (ALEPH Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (ALEPH Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC COllab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC COllab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC COllab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC COllab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC COllab.) ABBOTT 980 PR DS0 92003 B. Abbott et al. (DC COLLAB.) ABBOTT 980 PR DS0 92003		99C	PL B453 138	G. Abbiendi <i>et al</i> .	(OPAL Collab.)
ABBOTT 991 PR D50 952003 B. Abbott et al. (Do Collab.) ABROTT 991 PR D50 952003 B. Abbott et al. (Do Collab.) ABROTT 991 PR D50 952003 P. Abreu et al. (DELPHI Collab.) ABROTT 991 PR D50 952003 P. Abreu et al. (DELPHI Collab.) ACCARRI 99 PR D50 95200 PR D50 971 PR			EPJ C8 191	G. Abbiendi et al.	(OPAL Collab.)
ABBOTT 99 PR D50 072002 8. Abbott et al. (DCLPHH Collab.) ABREUU 99 P. PL B459 310 P. Abreu et al. (DELPHH Collab.) ABREU 99 PL B459 310 P. Abreu et al. (DELPHH Collab.) ACCARRIN 39 PL B459 310 P. Abreu et al. (DELPHH Collab.) ACCARRIN 39 PL B459 311 P. B459 310 P. Abreu et al. (LI Collab.) ACCARRIN 39 PL B459 311 P. B459 310 P.				G. Abbiendi et al.	
ABREU 99 P. P. B455 319 P. Abreu et al. (DELPHI Collab.) ABREU 99 P. P. B452 329 P. Abreu et al. (DELPHI Collab.) ABREU 99 P. P. B452 330 P. Abreu et al. (DELPHI Collab.) ABREU 99 P. P. B452 330 P. Abreu et al. (L3 Collab.) ACCIARRI 95 P. B457 171 M. Acciarri et al. (L3 Collab.) ACCIARRI 95 P. B457 171 M. Acciarri et al. (L3 Collab.) ACCIARRI 95 P. B457 171 M. Acciarri et al. (L3 Collab.) BARATE 91 P. B452 312 R. Barate et al. (ALEPH Collab.) BARATE 99 P. B452 349 R. Barate et al. (ALEPH Collab.) ABBOTT 980 PR PB 980 92003 B. Abbott et al. (D. Collab.) ABBOTT 980 PR PB 980 92003 B. Abbott et al. (D. Collab.) ABBOTT 980 PR PB 980 92003 B. Abbott et al. (D. Collab.) ABBOTT 980 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABBOTT 980 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABBOTT 980 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABBOTT 980 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABBOTT 980 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABBOTT 980 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABBEU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABBEU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ABREU 98 PR PB 980 12002 B. Abbott et al. (D. Collab.) ACCIARRI 99 P. B433 417 M. Acciarri et al. (L. Collab.) ACCIARRI 99 PR PB 980 1200 B. Abbott et			PR D60 052003	B. Abbett et al.	(DO Collab.)
ABREU 951 P. Ba59 382 P. Abreu et al. (DELPHI Collab.) ACCIARRI 99 P. P. Ba54 210 P. Abreu et al. (DELPHI Collab.) ACCIARRI 99 P. Ba53 121 R. Barat et al. (L3 Collab.) ACCIARRI 99 P. Ba53 121 R. Barat et al. (L3 Collab.) BARATE 99 P. Ba53 121 R. Barat et al. (L3 Collab.) BARATE 99 P. Ba53 121 R. Barat et al. (ALEPH Collab.) BARATE 99 P. Ba53 121 R. Barat et al. (ALEPH Collab.) BARATE 99 P. Ba53 121 R. Barat et al. (ALEPH Collab.) BARATE 99M P. Ba54 139 P. R. Barat et al. (ALEPH Collab.) BARATE 99M P. Ba54 139 P. R. Barat et al. (ALEPH Collab.) BARATE 99M P. DE 865 349 R. Barat et al. (ALEPH Collab.) BABOTT 98D PR D59 092003 B. Abbott et al. (D0 Collab.) ABBOTT 98D PR D59 012002 B. Abbott et al. (D0 Collab.) ABBOTT 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ABEC 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ACCIARRI 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ACCIARRI 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ACCIARRI 98P PR D59 012002 B. Abbott et al. (D0 Collab.) ACCIARRI 98P PR D50 012002 B. Abbott et al. (D0 Collab.) ACCIARRI 98P PR D50 012002 B. Abbott et al. (D0 Collab.) ACCIARRI 98P PR D50 012002 B. Abbot				B. Abrou et al.	
ABREU 97 PL B452 410 P. Abreu et al. (U.G. Collab.) ACCIARRI 99 PL B457 171 M. Acciarri et al. (U.G. Collab.) BARATE 99 PL B457 171 M. Acciarri et al. (U.G. Collab.) BARATE 99 PL B453 121 R. Barate et al. (ALEPH Collab.) BARATE 99 PL B453 121 R. Barate et al. (ALEPH Collab.) BARATE 99 PL B453 121 R. Barate et al. (ALEPH Collab.) BARATE 99 PL B453 121 R. Barate et al. (ALEPH Collab.) BARATE 99 PL B453 121 R. Barate et al. (ALEPH Collab.) BARATE 99 PL B454 149 P. Mortari, M. Grunewald (ALEPH Collab.) ABBOTT 980 PR D80 902003 B. Abbott et al. (D.C. Collab.) ABBOTT 980 PR D80 902003 B. Abbott et al. (D.C. Collab.) ABBOTT 980 PR D80 90101 F. Abe et al. (C.C. F. Collab.) ABEU 980 PR D80 980 91101 F. Abe et al. (C.C. F. Collab.) ABEU 980 PR D80 980 91101 F. Abe et al. (C.C. F. Collab.) ABREU 980 PR D80 980 91101 F. Abe et al. (C.C. F. Collab.) ABREU 980 PR D80 980 91101 F. Abe et al. (C.C. F. Collab.) ABREU 980 PR D80 980 91101 F. Abe et al. (C.C. F. Collab.) ABREU 980 PR D80 980 91101 F. Abe et al. (C.C. F. Collab.) ABREU 980 PR D80 980 91101 F. Abe et al. (C.C. F. Collab.) ABREU 980 PR D80 980 9101 F. Abe et al. (C.C. F. Collab.) ABREU 980 PR D80 980 9101 F. Abe et al. (C.C. F. Collab.) ABREU 980 PR D80 980 980 980 980 980 980 980 980 980 9			Pt B459 382	P Abreu et al.	(DELPHI Collab.)
ACCIARRI 99 P, B454 386 M. Acciarri et al. (13 Collab.) BARATE 99 P, B453 121 R. Barate et al. (14 Collab.) BARATE 99 P, B453 121 R. Barate et al. (ALEPH Collab.) BARATE 99 P, B453 127 R. Barate et al. (ALEPH Collab.) BARATE 99 P, B453 107 R. Barate et al. (ALEPH Collab.) BARATE 99 P, B453 107 R. Barate et al. (ALEPH Collab.) BARATE 99 P, B453 107 R. Barate et al. (ALEPH Collab.) BARATE 99 P, B453 107 R. Barate et al. (ALEPH Collab.) BARATE 990 PR D58 092003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR D58 092003 B. Abbott et al. (DC Collab.) ABBOTT 980 PR D58 092003 B. Abbott et al. (DC Collab.) ABE 991 PR D58 092003 B. Abbott et al. (DC Collab.) ABE 991 PR D58 091101 F. Abe et al. (CDF Collab.) ABE 991 PR D58 091101 F. Abe et al. (CDF Collab.) ABE 991 PR D58 091101 F. Abe et al. (CDF Collab.) ABE 992 PR D58 091101 F. Abe et al. (DELPHI Collab.) ABE 992 PR D58 091101 F. Abe et al. (DELPHI Collab.) ABE 992 PR D58 091101 F. Abe et al. (DELPHI Collab.) ABE 992 PR D58 091101 F. Abe et al. (DELPHI Collab.) ABE 992 PR D58 091101 F. Abe et al. (DELPHI Collab.) ABE 992 PR D58 091101 F. Abe et al. (DELPHI Collab.) ABE 992 PR D58 091101 F. Abe et al. (DELPHI Collab.) ABE 992 PR D58 091101 F. Abe et al. (DELPHI Collab.) ABE 992 PR D58 091101 F. Abe et al. (DELPHI Collab.) ABE 992 PR D58 091101 F. Abe et al. (DELPHI Collab.) ABE 992 PR D58 091101 F. Abe et al. (DELPHI Collab.) ACCIARRI 990 PR D58 091101 F. Abe et al. (DELPHI Collab.) ACCIARRI 990 PR D58 091101 F. Abe et al. (DELPHI Collab.) ACCIARRI 990 PR D58 091101 F. Abe et al. (DELPHI Collab.) ACCIARRI 990 PR D58 091101 F. Abe et al. (DELPHI Collab.) ACCIARRI 990 PR D58 09101 F. Abe et al. (L13 Collab.) ACCIARRI 990 PR D58 09101 F. Abe et al. (ALEPH Collab.) ACCIARRI 990 PR D58 09101 F. Abe et al. (ALEPH Collab.) ACCIARRI 990 PR D58 0910 F. Abe et al. (ALEPH Collab.) ACCIARRI 990 PR D58 0910 F. Abe et al. (DC Collab.) ABE 992 PR D58 0910 F. Abe et al. (DC Collab.) ABE 992 PR D58 0910 F. Abe et al. (DC Collab.) ABE 993 PR D58 0910 F. Abe et al. (DC Collab.) ABE 994 PR D			PL B462 410	P. Abreu et al.	(DELPHI Collab.)
ACCIARRI 99Q PL B467 171 M. Acciarri et al. (ALEPH Collab.) BARATE 91 PL B453 121 R. Barate et al. (ALEPH Collab.) BARATE 91 PL B465 389 R. Barate et al. (ALEPH Collab.) BARATE 939M PL B465 349 R. Barate et al. (ALEPH Collab.) BARATE 939M PL B465 349 R. Barate et al. (ALEPH Collab.) BARATE 939M PL B465 349 R. Barate et al. (ALEPH Collab.) BARATE 939M PR D465 349 R. Barate et al. (ALEPH Collab.) BARATE 930M PR D465 349 R. Barate et al. (ALEPH Collab.) ABBOTT 980 PR D59 037003 B. Abbott et al. (D0 Collab.) ABBOTT 980 PR D59 031001 F. Abe et al. (COF Collab.) ABE 99P PR D59 031101 F. Abe et al. (COF Collab.) ABE 99P PR D59 031101 F. Abe et al. (COF Collab.) ABE 98P PR D59 031101 F. Abe et al. (COF Collab.) ABE 98P PR D59 031101 F. Abe et al. (COF Collab.) ABREU 98E PL C2 581 P. Abrout et al. (DELPHI Collab.) ABREU 98E PR D59 031101 F. Abe et al. (DELPHI Collab.) ABREU 98E PR D59 031101 F. Abe et al. (DELPHI Collab.) ABREU 98E PR D59 031101 F. Abe et al. (DELPHI Collab.) ABREU 98E PR D59 031101 F. Abe et al. (DELPHI Collab.) ABREU 98E PR D59 031101 F. Abe et al. (DELPHI Collab.) ABREU 98E PR D59 031101 F. Abe et al. (DELPHI Collab.) ABREU 98E PR D59 031101 F. Abe et al. (DELPHI Collab.) ABREU 98E PR D59 031101 F. Abe et al. (DELPHI Collab.) ABREU 98E PR D59 035 F. Abecut et al. (DELPHI Collab.) ABREU 98E PR D59 059 059 059 059 059 059 059 059 059 0		99	PL B454 386	M. Acciarri et al.	
BARATE 99 P. PB. 853 107 R. Barate et al. (ALEPH Collab.) BARATE 99 P. PB. 852 399 R. Barate et al. (ALEPH Collab.) BARATE 99 M. PB. 855 349 R. Barate et al. (ALEPH Collab.) BARATE 99 P. PB. 953 300303 B. Abbott et al. (DC Collab.) ABBOTT 90 PR. DS 901001 F. Abe et al. (DC Collab.) ABE 99 PR. DS 901010 F. Abe et al. (CDF Collab.) ABE 99 PR. DS 901101 F. Abe et al. (CDF Collab.) ABE 99 PR. DS 901101 F. Abe et al. (CDF Collab.) ABE 99 PR. DS 901101 F. Abe et al. (CDF Collab.) ABE 99 PR. DS 901101 F. Abe et al. (DELPH Collab.) ABREU 98 F. PB. B33 194 P. Abreu et al. (DELPH Collab.) ABREU 98 F. PB. B33 194 P. Abreu et al. (DELPH Collab.) ABREU 98 PR. PB. 833 194 P. Abreu et al. (DELPH Collab.) ABREU 98 PR. PB. 833 194 P. Abreu et al. (DELPH Collab.) ACCIARRI 980 P. PB. B33 417 M. Acciarri et al. (L3 Collab.) ACCIARRI 980 P. PB. B34 417 M. Acciarri et al. (L3 Collab.) BARATE 998 P. PB. B35 37 K. Acciarri et al. (L3 Collab.) BARATE 998 P. PB. B35 38 K. Acciarri et al. (L3 Collab.) BARATE 998 P. PB. B452 399 R. B. Barate et al. (ALEPH Collab.) BARATE 998 P. PB. B452 399 R. B. Barate et al. (ALEPH Collab.) BARATE 998 P. PB. B452 399 R. B. Barate et al. (ALEPH Collab.) BARATE 998 P. PB. B452 399 R. B. Barate et al. (ALEPH Collab.) BARATE 998 P. PB. B452 399 R. B. Barate et al. (ALEPH Collab.) BARATE 998 P. PB. B452 399 R. B. Barate et al. (ALEPH Collab.) BARATE 998 P. PB. B452 399 R. B. Barate et al. (ALEPH Collab.) BARATE 998 P. PB. B452 399 R. B. Barate et al. (ALEPH Collab.) BARATE 998 P. PB. B451 437 R. Barate et al. (ALEPH Collab.) BARATE 998 P. B451 437 R. Barate et al. (ALEPH Collab.) BARATE 998 P. B451 439 R. Barate et al. (ALEPH Collab.) BARATE 998 P. B451 439 R. Barate et al. (ALEPH Collab.) BARATE 998 P. B451 439 R. Barate et al. (ALEPH Collab.) BARATE 998 P. B451 439 R. Barate et al. (ALEPH Collab.) BARATE 998 P. B451 439 R. Barate et al. (ALEPH Collab.) BARATE 998 P. B451 439 R. Barate et al. (CDF Collab.) ACCIARRI 998 P. PB. 309 R. Barate et al. (CDF Collab.) ACCIARRI 998 P. PB. 309 R. Barate et al. (CDF C			PL B467 171	M. Acciarri et al.	(L3 Collab.)
BARATE 99M Pl. B465 349 R. Barate et al. (ALEPH Collab.)	BARATE	99		R. Barate et al.	(ALEPH Collab.)
BARATE 99M Pl. B465 349 R. Barate et al. (ALEPH Collab.)			PL B453 107	R. Barate et al.	(ALEPH Collab.)
MOLNAR 99 Pl. B461 149 Pl. Molrar, M. Grunewald Mol. Collab.)			PL B462 389	R. Barate et al.	(ALEPH Collab.)
ABBOTT 98N PR DS9 03008 B. Abbott et al. (DC Collab.) ABBOTT 98P PR DS9 03008 B. Abbott et al. (DC Collab.) ABBOTT 98P PR DS9 03009 B. Abbott et al. (DC Collab.) ABE 98P PR DS9 0310101 F. Abe et al. (CDC Collab.) ABE 98P PR DS9 031101 F. Abe et al. (CDC Collab.) ABE 98P PR DS9 031101 F. Abe et al. (CDC Collab.) ABE 98P PR DS9 031101 F. Abe et al. (DELPHI Collab.) ABE 98P PR DS9 031101 F. Abe et al. (DELPHI Collab.) ABE 98P PR DS9 031101 F. Abe et al. (DELPHI Collab.) ABE 98P PR DS9 031101 F. Abe et al. (DELPHI Collab.) ABE 98P PR DS9 031102 F. Abreu et al. (DELPHI Collab.) ACCIARRI 98N PR DS9 1349 P. P. Abreu et al. (DELPHI Collab.) ACCIARRI 98N PR DS9 1349 P. P. Abreu et al. (DELPHI Collab.) ACCIARRI 98N PR DS9 1349 P. P. Abreu et al. (DELPHI Collab.) ACCIARRI 98N PR DS9 1349 P. P. Abreu et al. (DELPHI Collab.) ACCIARRI 98N PR DS9 1349 P. P. Abreu et al. (DELPHI Collab.) ACCIARRI 98N PR DS9 1349 P. P. Abreu et al. (DELPHI Collab.) ACCIARRI 98Y PL B422 389 R. Barate et al. (ALEPHI Collab.) ACCIARRI 98Y PL B422 389 R. Barate et al. (ALEPHI Collab.) ACCIARRI 97Y DL B399 223 M. Acciarri et al. (ALEPHI Collab.) ACCIARRI 97Y DL B399 223 M. Acciarri et al. (L12 Collab.) ACCIARRI 97Y DL B399 223 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 176 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B413 145 M. Acciarri et al. (L12 Collab.) ACCIARRI 975 PL B414 145 M. Acciarri et al. (L12 Co			PL B465 349	R. Barate et al.	(ALEPH Collab.)
ABBOTT 980 PRL 90 3008 B. Abbott et al. (DC Collab.) ABE 981 PR DS 90 10002 B. Abbott et al. (DC Collab.) ABE 981 PR DS 90 10002 B. Abbott et al. (DC Collab.) ABE 982 PR DS 90 10101 F. Abe et al. (CDF Collab.) ABE 982 PR DS 90 10101 F. Abe et al. (DELPHI Collab.) ABREU 988 EPJ C2 581 P. Abreu et al. (DELPHI Collab.) ABREU 980 PR DS 980 10101 P. Abreu et al. (DELPHI Collab.) ABREU 980 PR DS 981 PR 981 209 P. Abreu et al. (DELPHI Collab.) ARREU 980 PR DS 981 209 P. Abreu et al. (DELPHI Collab.) ACCIARRI 980 PL B433 417 M. Acciarri et al. (LL Collab.) ACCIARRI 980 PL B435 417 M. Acciarri et al. (LL Collab.) ACCIARRI 980 PL B435 437 M. Acciarri et al. (LL Collab.) ACCIARRI 981 PL B432 399 R. Barate et al. (ALEPHI Collab.) ACCIARRI 982 PL B445 239 R. Barate et al. (ALEPHI Collab.) ACCIARRI 977 PL B499 222 M. Acciarri et al. (ALEPHI Collab.) ACCIARRI 978 PL B497 419 M. Acciarri et al. (ALEPHI Collab.) ACCIARRI 978 PL B497 419 M. Acciarri et al. (ALEPHI Collab.) ACCIARRI 978 PL B491 317 M. Acciarri et al. (ALEPHI Collab.) ACCIARRI 979 PL B491 347 R. Barate et al. (ALEPHI Collab.) ABARATE 97 PL B491 347 R. Barate et al. (ALEPHI Collab.) ABARATE 97 PL B491 347 R. Barate et al. (ALEPHI Collab.) ABARATE 97 PL B491 347 R. Barate et al. (ALEPHI Collab.) ABARATE 97 PL B491 347 R. Barate et al. (ALEPHI Collab.) ABARATE 97 PL B491 349 Acciarri et al. (ALEPHI Collab.) ABARATE 97 PL B491 349 Acciarri et al. (ALEPHI Collab.) ABARATE 97 PL B491 349 Acciarri et al. (ALEPHI Collab.) ABARATE 97 PL B491 349 Acciarri et al. (ALEPHI Collab.) ABARATE 97 PL B491 349 Acciarri et al. (ALEPHI Collab.) ABARATE 97 PL B491 349 Acciarri et al. (ALEPHI Collab.) ABARATE 97 PL B491 349 Acciarri et al. (ALEPHI Collab.) ABARATE 97 PL B491 349 Acciarri et al. (ALEPHI Collab.) ABARATE 97 PL B491 349 Acciarri et al. (ALEPHI Collab.) ABARATE 97 PL B491 349 Acciarri et al. (ALEPHI Collab.) ABARATE 98 PR PL 75 1456 Acciarri et al. (ALEPHI Collab.) ABARATE 99 PR PL 75 1456 Acciarri et al. (ALEPHI Collab.) ABC 99 PR PL 75 1456 Acciarri et al. (ALEPHI Collab.		98N	PR D58 092003	R Abbott et al	(D0 Collab)
ABBOTT 98P PR D 59 012002 B. Abbott et al. ABE 99P PR D 58 031101 F. Abe et al. ABE 99P PR D 58 031101 F. Abe et al. (CDF Collab.) ABE 99P PR D 58 031101 F. Abe et al. (CDF Collab.) ABE 99P PR D 58 031101 F. Abe et al. (DELPHI Collab.) ABREU 96C PL B416 233 P. Abreu et al. (DELPHI Collab.) ABREU 98N PL B342 134 P. Abreu et al. (DELPHI Collab.) ABREU 98N PL B343 209 P. Abreu et al. (DELPHI Collab.) ARREU 98N PL B343 417 M. Acciarri et al. (L1 Collab.) ACCIARRI 98P PL B364 437 M. Acciarri et al. (L1 Collab.) BARATE 98P PL B422 336 R. Barate et al. ACCIARRI 98P PL B422 359 R. Barate et al. ACCIARRI 98P PL B422 359 R. Barate et al. ACCIARRI 97P PL B436 437 M. Acciarri et al. (ALEPHI Collab.) BARATE 98P PL B422 359 R. Barate et al. ACCIARRI 97P PL B436 437 M. Acciarri et al. (L1 Collab.) ACCIARRI 97P PL B436 437 M. Acciarri et al. (L2 Collab.) ACCIARRI 97P PL B436 437 M. Acciarri et al. (L2 Collab.) ACCIARRI 97P PL B436 437 M. Acciarri et al. (L2 Collab.) ACCIARRI 97P PL B436 437 M. Acciarri et al. (L2 Collab.) ACCIARRI 97P PL B431 176 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B431 176 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B431 176 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B431 176 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B431 176 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B431 176 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B431 176 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B431 176 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B431 176 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B431 176 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B431 176 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B433 115 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B433 115 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B433 115 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B433 115 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B434 145 M. Acciarri et al. (L2 Collab.) ACCIARRI 97S PL B434 145 M. Acciarri et al. (PRL 80 3008	B. Abbott et al.	(DO Collab.)
ABE 98H PR DS9 031101 F. Abe et al. (CDF Collab.) ABREU 98 PR DS9 031101 F. Abe et al. (CDF Collab.) ABREU 98 PR DS9 031101 F. Abe et al. (DELPHI Collab.) ABREU 98 C. PL Bild 233 P. Abreu et al. (DELPHI Collab.) ABREU 98 N. PL Bild 233 P. Abreu et al. (DELPHI Collab.) ABREU 98 N. PL Bild 319 P. Abreu et al. (DELPHI Collab.) ABREU 98 N. PL Bild 319 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 P. PL Bild 347 M. Acciarri et al. (LI Collab.) ACCIARRI 98 P. PL Bild 417 M. Acciarri et al. (LI Collab.) ACCIARRI 98 P. PL Bild 417 M. Acciarri et al. (LI Collab.) ACCIARRI 99 P. PL Bild 417 M. Acciarri et al. (ALEPHI Collab.) BARATE 99 P. PL Bild 417 M. Acciarri et al. (ALEPHI Collab.) ACCIARRI 97 PL Bild 417 M. Acciarri et al. (ALEPHI Collab.) ACCIARRI 97 PL Bild 417 M. Acciarri et al. (ALEPHI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (ALEPHI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (ALEPHI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 513 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 514 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 514 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 514 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 514 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 514 M. Acciarri et al. (LI Collab.) ACCIARRI 97 PL Bild 514 M. Acciarri et al. (LI Collab.) AC			PR D58 012002	B. Abbott et al.	(D0 Collab.)
ABREU 988 EPJ CZ 581 P. Abreu et al. (DELPHI Collab.) ABREU 986 P. B423 194 P. Abreu et al. (DELPHI Collab.) ABREU 986 P. B423 194 P. Abreu et al. (DELPHI Collab.) ABREU 986 P. B439 729 P. Abreu et al. (DELPHI Collab.) ACCIARRI 980 PI. B436 417 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 980 PI. B436 417 M. Acciarri et al. (L3 Collab.) ACCIARRI 980 P. B436 417 M. Acciarri et al. (L3 Collab.) ACCIARRI 980 P. B436 437 M. Acciarri et al. (L3 Collab.) ACCIARRI 980 P. B422 394 R. Barate et al. (ALEPH Collab.) BARATIE 980 P. B422 395 R. Barate et al. (ALEPH Collab.) BARATIE 980 P. B436 233 M. Acciarri et al. (ALEPH Collab.) ACCIARRI 97 PL B407 419 M. Acciarri et al. (L3 Collab.) ACCIARRI 97 P. B413 176 M. Acciarri et al. (L3 Collab.) ACCIARRI 97 P. B410 137 M. Acciarri et al. (L3 Collab.) ACCIARRI 97 P. B410 137 R. Barate et al. (ALEPH Collab.) BARATIE 980 P. B416 137 M. Acciarri et al. (L3 Collab.) BARATE 97 P. B410 137 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B415 319 R. Barate et al. (ALEPH Collab.) BARATE 975 P. B415 319 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B416 319 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 319 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B416 31 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (CDP Collab.) ACCIARRI 975 P. B417 31 R. Barate et al. (CDP Collab.) ABE 950 P. R. 7 195 F. ABe et al. (CDP Collab.) ABE 950 P. R. 7 195 F. ABe et al. (CDP Collab.) ABE 950 P. R. 7 195			PR D58 031101	F. Abe et al.	(CDF Collab.)
ABREU 96C PL B416 233 P. Abreu et al. ABREU 96K PL B422 194 P. Abreu et al. ABREU 96K PL B422 194 P. Abreu et al. ACCIARRI 96N PL B439 209 P. Abreu et al. ACCIARRI 96N PL B439 209 P. Abreu et al. ACCIARRI 98N PL B436 437 M. Acciarri et al. ACCIARRI 99P PL B436 437 M. Acciarri et al. ACCIARRI 99P PL B436 437 M. Acciarri et al. ACCIARRI 99P PL B436 437 M. Acciarri et al. ACCIARRI 99P PL B436 437 M. Acciarri et al. ACCIARRI 99P PL B422 334 R. Barate et al. ACCIARRI 99P PL B422 339 R. Barate et al. ACCIARRI 99P PL B445 239 R. Barate et al. ACCIARRI 97 PL B493 223 M. Acciarri et al. ACCIARRI 97P PL B431 316 M. Acciarri et al. ACCIARRI 97P PL B407 419 M. Acciarri et al. ACCIARRI 97P PL B407 419 M. Acciarri et al. ACCIARRI 97P PL B401 347 R. Barate et al. ACCIARRI 97P PPL 73 309 S. Abachi et al. ACCIARRI 97P PPL 73 309 S. Abachi et al. ACCIARRI 97P PPL 73 309 S. Abachi et al. ACCIARRI 97P PPL 73 309 ALCIARRI 97P			PR D58 091101	F. Abe et al.	(CDF Collab.)
ABREU 98N PL B423 194 P. Abreu et al. ABREU 98N PL B439 209 P. Abreu et al. ACCIARRI 98N PL B436 417 M. Acciarri et al. ACCIARRI 99N PL B436 417 M. Acciarri et al. ACCIARRI 99P PL B436 417 M. Acciarri et al. ACCIARRI 99P PL B422 399 M. Acciarri et al. ACCIARRI 99P PL B422 399 M. Acciarri et al. ACCIARRI 99P PL B422 399 R. Barate et al. ARAFIE 98P PL B422 399 R. Barate et al. ACCIARRI 97 PL B436 213 M. Acciarri et al. ACCIARRI 97 PL B436 223 M. Acciarri et al. ACCIARRI 97 PL B430 223 M. Acciarri et al. ACCIARRI 97 PL B431 176 M. Acciarri et al. ACCIARRI 97 PL B411 3176 M. Acciarri et al. ACCIARRI 975 PL B411 3176 M. Acciarri et al. ACCIARRI 975 PL B411 3176 M. Acciarri et al. ACCIARRI 975 PL B411 3176 M. Acciarri et al. ACCIARRI 975 PL B411 3176 M. Acciarri et al. ACCIARRI 975 PL B413 3176 M. Acciarri et al. ACCIARRI 975 PL B413 3176 M. Acciarri et al. ACCIARRI 975 PL B413 3176 M. Acciarri et al. ACCIARRI 975 PL B413 3176 M. Acciarri et al. ACCIARRI 975 PL B413 3176 M. Acciarri et al. ACCIARRI 975 PL B413 3176 M. Acciarri et al. ACCIARRI 975 PL B413 319 M. Accia			EPJ C2 581	P. Abreu et al.	
ABREU 98N PL B439 209 P. Abreu et al. ACCIARRI 98P PL B436 437 M. Acciarri et al. ACCIARRI 98P PL B436 437 M. Acciarri et al. ACCIARRI 98P PL B436 437 M. Acciarri et al. ACCIARRI 98P PL B436 437 M. Acciarri et al. (L3 Collab.) BARATE 98B PL B422 334 R. Barate et al. BARATE 98P PL B422 339 R. Barate et al. ACCIARRI 97 PL B939 223 M. Acciarri et al. ACCIARRI 97 PL B495 239 R. Barate et al. ACCIARRI 97 PL B495 239 R. Barate et al. ACCIARRI 97 PL B498 223 M. Acciarri et al. ACCIARRI 97 PL B498 223 M. Acciarri et al. ACCIARRI 97 PL B491 347 R. Barate et al. ACCIARRI 97 PL B491 347 R. Barate et al. ACCIARRI 97 PL B491 347 R. Barate et al. ACCIARRI 97 PL B491 347 R. Barate et al. ACCIARRI 97 PL B491 347 R. Barate et al. ACCIARRI 97 PL B491 347 R. Barate et al. ACCIARRI 97 PL B491 347 R. Barate et al. ACCIARRI 96P PRI 77 3309 S. Abachi et al. ACCIARRI 96P PRI 77 3309 S. Abachi et al. ACCIARRI 96P PRI 77 3309 S. Abachi et al. ACCIARRI 96P PRI 77 319 S. Aid et al. ACCIARRI 96P PRI 77 319 S. Aid et al. ACCIARRI 96P PRI 77 319 S. Aid et al. ABC 95P PRI 74 341 F. Abe et al. (DO Collab.) ABE 95C PRI 74 341 F. Abe et al. ASO 94P PRI 73 11 F. Abe et al. ASO 94P PRI 73 200 F. Abe et al. ASO 94P PRI 73 200 F. Abe et al. ASO 94P PRI 73 200 F. Abe et al. COFF Collab.) ABE 95P PRI 78 11 F. Abe et al. ASO 94P PRI 73 200 F. Abe et al. COFF Collab.) ABE 95P PRI 78 11 F. Abe et al. COFF Collab.) ABE 95P PRI 78 11 F. Abe et al. COFF Collab.) ABB 95P PRI 78 11 F. Abe et al. COFF Collab.) ABB 95P PRI 78 19 30 3 J. Aitti et al. ACCIARRI 48 PRI 94 336 F. Abe et al. COFF Collab.) ABE 95P PRI 78 19 39 39 F. Abe et al. COFF Collab.) ABE 95P PRI 78 19 39 39 F. Abe et al. COFF Collab.) ABE 95P PRI 78 19 20 F. Abe et al. COFF Collab.) ABB 95P PRI 78 19 20 F. Abe et al. COFF Collab.) ABB 95P PRI 78 19 20 F. Abe et al. COFF Collab.) ABB 95P PRI 78 19 20 F. Abe et al. COFF Collab.) ABB 95P PRI 78 19 39 39 39 59 F. Abe et al. COFF Collab.) ABB 95P PRI 78 19 39 59 F. Abe et al. COFF Collab.)			PL B416 233	P. Abreu et al.	(DELPHI Collab.)
ACCIARRI 98N PI, B436 437 M. Acciarri et al. (13 Collab.) ACCIARRI 99P PI, B436 437 M. Acciarri et al. (15 Collab.) ACCIARRI 99P PI, B422 384 M. Acciarri et al. (15 Collab.) ARARTE 98P PI, B422 384 M. Acciarri et al. (16 Collab.) BARATE 98P PI, B422 389 R. Barate et al. (ALEPH Collab.) BARATE 98 PI, B445 239 M. Barate et al. (ALEPH Collab.) ACCIARRI 97 PI, B498 223 M. Acciarri et al. (LIS Collab.) ACCIARRI 97 PI, B498 223 M. Acciarri et al. (LIS Collab.) ACCIARRI 97 PI, B491 376 M. Acciarri et al. (13 Collab.) ACCIARRI 975 PI, B413 176 M. Acciarri et al. (13 Collab.) ACCIARRI 975 PI, B413 176 M. Acciarri et al. (13 Collab.) ACCIARRI 975 PI, B413 435 R. Barate et al. (ALEPH Collab.) ARACH 975 PI, B415 435 R. Barate et al. (ALEPH Collab.) ARACH 975 PI, B415 435 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 PI, B415 435 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 PI, B415 435 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 PI, B415 435 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 PI, B417 435 R. Barate et al. (ALEPH Collab.) ACCIARRI 975 PRI, 73 1956 S. Abachi et al. (DO Collab.) ABACHI 950 PRI, 73 1456 S. Abachi et al. (DO Collab.) ABACHI 950 PRI, 74 1936 F. Abe et al. (COF Collab.) ABAE 950 PRI, 74 1936 F. Abe et al. (COF Collab.) ABE 950 PRI, 74 1936 F. Abe et al. (COF Collab.) ABE 950 PRI, 73 193 PI, PI, 74 1936 F. Abe et al. (COF Collab.) ABE 950 PRI, 74 1936 F. Abe et al. (COF Collab.) ABE 951 PRI, 73 220 F. Abe et al. (COF Collab.) ABE 952 PRI, 68 3398 F. Abe et al. (COF Collab.) ABE 954 PRI, 73 220 F. Abe et al. (COF Collab.) ABE 955 PRI, 74 1936 F. Abe et al. (COF Collab.) ABE 956 PRI, 74 1936 F. Abe et al. (COF Collab.) ABE 957 PRI, 75 12 20 F. Abe et al. (COF Collab.) ABE 958 PRI, 73 220 F. Abe et al. (COF Collab.) ABE 959 PRI, 75 20 PL B277 194 J. Alitti et al. (UA2 Collab.) ALITTI 950 P. B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 950 P. B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 950 P. B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 950 P. B278 139 14 J. Alitti et al. (UA2 Collab.) ALITTI 950			PL B423 194	P. Aureu et al.	(DELPHI Collab.)
ACCIARRI 99P PL B436 437 M. Acciarri et al. (Li Collab) ARARTE 98D PL 51C 1395 K. Ackerstaff et al. (OPAL Collab) BARARTE 98D PL B422 384 R. Barate et al. (ALEPH Collab) BARARTE 98P PL B422 389 R. Barate et al. (ALEPH Collab) BARARTE 98P PL B422 389 R. Barate et al. (ALEPH Collab) BARARTE 98 PL B445 239 R. Barate et al. (ALEPH Collab) BARARTE 97 PL B398 223 M. Acciarri et al. (Li Collab) ACCIARRI 97M PL B407 419 M. Acciarri et al. (Li Collab) ACCIARRI 97M PL B407 419 M. Acciarri et al. (Li Collab) BARARTE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARARTE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARARTE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARARTE 97 PL B401 347 R. Barate et al. (ALEPH Collab) ABACHI 96P PRI 77 3399 S. Abachi et al. (DC Collab) ABACHI 96D PRI 77 3399 S. Abachi et al. (DC Collab) ABACHI 96D PRI 8379 319 S. Aid et al. (DC Collab) ABACHI 96D PRI 77 3141 F. Abe et al. (DC COllab) ABBE 95C PRI 74 341 F. Abe et al. (CDF Collab) ABBE 95C PRI 74 341 F. Abe et al. (CDF Collab) ABBE 95C PRI 74 395 F. Abe et al. (CDF Collab) ABBE 95P PRI 75 11 F. Abe et al. (CDF Collab) ABBE 95P PRI 75 11 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2674 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2674 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2674 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2674 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2674 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2674 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2674 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2674 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2674 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2679 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2679 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2679 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2679 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2679 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2679 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2679 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2679 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2679 F. Abe et al. (CDF Collab) ABBE 95W PR D52 2679 F.			PL B436 417	M Acciarci et al	(L3 Collab.)
ACKERSTAFF 98D EPJ C1 395 K. Ackerstaff et al. (OPAL Collab) BARATE 98P PL B842 389 R. Barate et al. (ALEPH Collab) BARATE 98P PL B842 389 R. Barate et al. (ALEPH Collab) BARATE 98 PL B845 239 R. Barate et al. (ALEPH Collab) ACCIARRI 97 PL B399 223 M. Acciarri et al. (L3 Collab) ACCIARRI 97M PL B807 419 M. Acciarri et al. (L3 Collab) ACCIARRI 97M PL B801 347 M. Acciarri et al. (L3 Collab) ACCIARRI 97 PL B813 176 M. Acciarri et al. (L3 Collab) ACCIARRI 97 PL B810 347 M. Acciarri et al. (L3 Collab) BARATE 97 PL B810 347 M. Acciarri et al. (L3 Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B815 435 R. Barate et al. (ALEPH Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 347 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 349 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 340 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 340 M. Acciarri et al. (ALEPH Collab) BARATE 97 PL B810 341 M. Acciarri et al. (ALEPH Collab) BARCH 98 PL 75 1350 M. Acciarri et al. (ALEPH Collab) BARCH 99 PR 17 5 115 M. Acciarri et al. (ALEPH Collab) BARCH 95 PR 17 7 3309 M. Acciarri et al. (ALEPH Collab) BARCH 95 PR 17 7 3309 M. Acciarri et al. (ALEPH Collab) BARCH 95 PR 17 7 3309 M. Acciarri et al. (ALEPH Collab) BABC 95 PR 17 7 3139 M. Acciarri et al. (ALEPH Collab) BABC 95 PR 17 7 1309 M. Acciarri et al. (ALEPH Collab) BABC 95 PR 17 7 3200 M. Acciarri et al. (ALEPH Collab) BABC 95 PR 17 7 3200 M. Acciarri et al. (ALEPH Collab) BABC 95 PR 17 7 3200 M. Acciarri et al. (ALE			PL B436 437	M. Acciarri et al.	(L3 Collab.)
BARATE 98P PL B422 394 R. Barate et al. (ALEPH Collab.) BARATER 98 PL B445 2399 R. Barate et al. (ALEPH Collab.) BARATER 98 PL B445 2399 R. Barate et al. (ALEPH Collab.) BARATER 97 PL B992 223 M. Acciarri et al. (L. Collab.) ACCIARRI 97 PL B992 223 M. Acciarri et al. (L. Collab.) ACCIARRI 975 PL B113 176 M. Acciarri et al. (L. Collab.) BARATE 97 PL B901 347 R. Barate et al. (ALEPH Collab.) BARATE 975 PL B915 435 R. Barate et al. (ALEPH Collab.) BARATE 975 PL B915 435 R. Barate et al. (ALEPH Collab.) ABACH 96E PRL 77 309 S. Abachi et al. (OPAL Collab.) ABACH 96E PRL 77 309 S. Abachi et al. (OPAL Collab.) ABACH 96E PRL 77 3109 S. Abachi et al. (OPAL Collab.) ABACH 96D PRL 75 1456 S. Abachi et al. (OPAL Collab.) ABACH 95D PRL 75 1456 S. Abachi et al. (OPAL Collab.) ABACH 95D PRL 75 1456 S. Abachi et al. (OPAL Collab.) ABACH 95D PRL 75 1456 S. Abachi et al. (CDF Collab.) ABACH 95D PRL 75 1456 S. Abachi et al. (CDF Collab.) ABE 95C PRL 74 1936 F. Abe et al. (CDF Collab.) ABE 95C PRL 74 1936 F. Abe et al. (CDF Collab.) ABE 95P PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95P PRL 75 12 F. Abe et al. (CDF Collab.) ABE 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABE 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 1363 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 1363 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 1363 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 280 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 1363 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 1363 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 280 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 280 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 280 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 280 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 280 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 280 F. Abe et al. (CDF Collab.) ABE 95P PRL 79 280 F. Abe et al. (CDF Collab	ACKERSTAFF	98D	EPJ C1 395		(OPAL Collab.)
BARATE 99 PL B422 369 R. Barate et al. (ALEPH Collab.) BARATER 99 PL B445 239 M. Barate et al. (ALEPH Collab.) ACCIARRI 97 PL B399 223 M. Acciarri et al. (L3 Collab.) ACCIARRI 97 PL B407 419 M. Acciarri et al. (L3 Collab.) ACCIARRI 97 PL B401 347 M. Acciarri et al. (L3 Collab.) ACCIARRI 97 PL B401 347 M. Acciarri et al. (L3 Collab.) BARATE 97 PL B401 347 M. Acciarri et al. (L1 Collab.) BARATE 97 PL B401 347 M. Acciarri et al. (ALEPH Collab.) BARATE 97 PL B401 347 M. Acciarri et al. (ALEPH Collab.) BARATE 97 PL B415 435 R. Barate et al. (ALEPH Collab.) BARATE 97 PL B415 435 R. Barate et al. (ALEPH Collab.) BARACH 96 PR 177 3309 S. Abachi et al. (D0 Collab.) ACKERSTAFF 96B PL B339 416 K. Ackerstaff et al. (D0 Collab.) ACKERSTAFF 96B PL B339 416 K. Ackerstaff et al. (D0 Collab.) ABC 95D PRL 75 1456 S. Abachi et al. (D0 Collab.) ABE 95C PRL 74 341 F. Abe et al. (CDF Collab.) ABE 95C PRL 74 341 F. Abe et al. (CDF Collab.) ABE 95C PRL 74 343 F. Abe et al. (CDF Collab.) ABE 95C PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95P PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABE 95W PR D52 3624 F. Abe et al. (CDF Collab.) ABE 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABE 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABE 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABE 95P PRL 75 35 J. Altiti et al. (UA2 Collab.) ABE 95P PRL 75 355 J. Altiti et al. (UA2 Collab.) ABE 95P PRL 76 355 J. Altiti et al. (UA2 Collab.) ABE 95P PRL 76 355 J. Altiti et al. (UA2 Collab.) ABE 95P PRL 76 355 J. Altiti et al. (UA2 Collab.) ABE 95P PR D427 355 J. Altiti et al. (UA2 Collab.) ABE 95P PR D427 355 J. Altiti et al. (UA2 Collab.) ABE 95P PR D427 355 J. Altiti et al. (UA2 Collab.) ABE 95P PR D427 355 J. Altiti et al. (UA2 Collab.) ABE 95P PR D427 355 J. Altiti et al. (UA2 Collab.) ABE 95P PR D44 29 F. Abe et al. (CDF Collab.) ABE 95P PR D44 29 F. Abe et al. (CDF Collab.) ABE 95P PR D44 29 F. Abe et al. (CDF Collab.) ABE 95P PR D44 29 F. Abe et al. (CDF Collab.) ABE	BARATE		PL B422 384	R. Barate et al.	(ALEPH Collab.)
ACCIARRI 97M PL B407 419 M. Acciarri et al. (1.3 Collab) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BABACH 95 PRL 77 3309 S. Abachi et al. (OD Collab) ABACHB 950 PRL 78 339 S. Abachi et al. (OD Collab) AID 96D PL B379 319 S. Aid et al. (OD Collab) ABCH 950 PRL 74 341 F. Abe et al. (CDF Collab) ABE 950 PRL 74 341 F. Abe et al. (CDF Collab) ABE 950 PRL 75 11 F. Abe et al. (CDF Collab) ABE 950 PRL 75 11 F. Abe et al. (CDF Collab) ABE 950 PRL 75 12 F. Abe et al. (CDF Collab) ABE 950 PRL 75 12 F. Abe et al. (CDF Collab) ABE 950 PRL 75 13 F. Abe et al. (CDF Collab) ABE 950 PRL 75 13 F. Abe et al. (CDF Collab) ABE 950 PR D52 2624 F. Abe et al. (CDF Collab) ABE 950 PR D52 2626 F. Abe et al. (CDF Collab) ABB 950 PR PR 952 369 F. Abe et al. (CDF Collab) ABB 950 PR PR 953 950 F. Abe et al. (CDF Collab) ABB 950 PR PR 950 950 F. Abe et al. (CDF Collab) ABE 91 PRL 69 28 F. Abe et al. (CDF Collab) ABE 92 PRL 69 28 F. Abe et al. (CDF Collab) ABE 91 PRL 69 28 F. Abe et al. (CDF Collab) ALITTI 92 PL B277 034 J. Aiftit et al. (UA2 Collab) ALITTI 92 PL B277 034 J. Aiftit et al. (UA2 Collab) ALITTI 92 PL B277 034 J. Aiftit et al. (UA2 Collab) ALITTI 92 PL B278 035 J. Aiftit et al. (UA2 Collab) ALITTI 92 PL B278 037 J. Aiftit et al. (UA2 Collab) ALITTI 930 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 94 PL B278 037 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 960 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 970 PL B278 195 195 195 195 195 195 195		98Y	PL B422 369	R. Barate et al.	(ALEPH Collab.)
ACCIARRI 97M PL B407 419 M. Acciarri et al. (1.3 Collab) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BABACH 95 PRL 77 3309 S. Abachi et al. (OD Collab) ABACHB 950 PRL 78 339 S. Abachi et al. (OD Collab) AID 96D PL B379 319 S. Aid et al. (OD Collab) ABCH 950 PRL 74 341 F. Abe et al. (CDF Collab) ABE 950 PRL 74 341 F. Abe et al. (CDF Collab) ABE 950 PRL 75 11 F. Abe et al. (CDF Collab) ABE 950 PRL 75 11 F. Abe et al. (CDF Collab) ABE 950 PRL 75 12 F. Abe et al. (CDF Collab) ABE 950 PRL 75 12 F. Abe et al. (CDF Collab) ABE 950 PRL 75 13 F. Abe et al. (CDF Collab) ABE 950 PRL 75 13 F. Abe et al. (CDF Collab) ABE 950 PR D52 2624 F. Abe et al. (CDF Collab) ABE 950 PR D52 2626 F. Abe et al. (CDF Collab) ABB 950 PR PR 952 369 F. Abe et al. (CDF Collab) ABB 950 PR PR 953 950 F. Abe et al. (CDF Collab) ABB 950 PR PR 950 950 F. Abe et al. (CDF Collab) ABE 91 PRL 69 28 F. Abe et al. (CDF Collab) ABE 92 PRL 69 28 F. Abe et al. (CDF Collab) ABE 91 PRL 69 28 F. Abe et al. (CDF Collab) ALITTI 92 PL B277 034 J. Aiftit et al. (UA2 Collab) ALITTI 92 PL B277 034 J. Aiftit et al. (UA2 Collab) ALITTI 92 PL B277 034 J. Aiftit et al. (UA2 Collab) ALITTI 92 PL B278 035 J. Aiftit et al. (UA2 Collab) ALITTI 92 PL B278 037 J. Aiftit et al. (UA2 Collab) ALITTI 930 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 94 PL B278 037 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 950 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 960 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 970 PL B278 195 195 195 195 195 195 195			PL B445 239	R. Barate et al.	(ALEPH Collab.)
ACCIARRI 975 PL B413 176 M. Acciarri et al. (1.3 Collab) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab) BARATE 97 PL B415 435 R. Barate et al. (ALEPH Collab) BARATE 97 PL B415 435 R. Barate et al. (ALEPH Collab) BARATE 97 PL B415 435 R. Barate et al. (ALEPH Collab) ACKERSTAFF 96B PL B309 416 K. Ackerstaff et al. (DO Collab) ACKERSTAFF 96B PL B309 416 K. Ackerstaff et al. (DO Collab) ACKERSTAFF 96D PRL 75 1456 S. Abachi et al. (DO Collab) ABACH 95D PRL 75 1456 S. Abachi et al. (DO Collab) ABACH 95D PRL 75 1456 S. Abachi et al. (CDF Collab) ABE 95C PRL 74 1913 F. Abe et al. (CDF Collab) ABE 95C PRL 74 1913 F. Abe et al. (CDF Collab) ABE 95C PRL 74 1913 F. Abe et al. (CDF Collab) ABE 95P PRL 75 11 F. Abe et al. (CDF Collab) ABE 95W PR D52 4784 F. Abe et al. (CDF Collab) ABE 95W PR D52 4784 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 8784 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2625 F. Abe et al. (CDF Collab) ABE 95W PR D52 2625 F. Abe et al. (CDF Collab) ABE 95W PR D52 2625 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2625 F. Abe et al. (CDF Collab) ABE 95W PR D52 2625 F. Abe et al. (CDF Collab) ABE 95W PR D52 2625 F. Abe et al. (CDF Collab) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab) ABE 95W PR D52 2625 F. Abe et al. (CDF Collab) ABE 95W PR D52 2625 F. Abe et al. (CDF Collab) ABE 95W PR D52 2625 F. Abe et al. (CDF Collab) ABE 95W PR D52 2625 F. Abe et al. (CDF Collab) ABE 95W PR D52 265 F. Abe et al. (CDF C	ACCIARRI	97	PL B398 223	M. Acciarri et al.	(L3 Collab.)
BARATE 97 PL B401 347 R. Barate et al. (ALÉPH Collab) BARATE 975 PL B415 435 R. Barate et al. (ALÉPH Collab) ABACH 965 PRL 77 3309 S. Abachi et al. (DO Collab) ABACH 966 PRL 8379 319 S. Aid et al. (PACOLLAB) AID 960 PL B379 319 S. Aid et al. (OPAL Collab) AID 960 PRL 75 1456 S. Abachi et al. (CDC Collab) ABE 990 PRL 75 1456 S. Abachi et al. (CDC Collab) ABE 990 PRL 75 1456 F. Abe et al. (CDC Collab) ABE 990 PRL 74 1936 F. Abe et al. (CDC Collab) ABE 990 PRL 75 11 F. Abe et al. (CDC Collab) ABE 990 PRL 75 11 F. Abe et al. (CDC Collab) ABE 990 PRL 75 12 F. Abe et al. (CDC Collab) ABE 990 PR D52 2624 F. Abe et al. (CDC Collab) ABE 990 PR D52 2624 F. Abe et al. (CDC Collab) ABE 990 PR D52 2624 F. Abe et al. (CDC Collab) ABE 990 PR D52 2624 F. Abe et al. (CDC Collab) ABE 910 PRL 73 220 F. Abe et al. (CDC Collab) ABE 920 PRL 69 28 F. Abe et al. (CDC Collab) ABE 920 PRL 69 28 F. Abe et al. (CDC Collab) ABE 910 PRL 69 28 F. Abe et al. (CDC Collab) ALITTI 920 PL B276 356 J. Aiftit et al. (UA2 Collab) ALITTI 920 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 920 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 920 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 920 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 921 PL B280 137 J. Aiftit et al. (UA2 Collab) ALITTI 922 PL B280 137 J. Aiftit et al. (UA2 Collab) ALITTI 924 PL B275 303 J. Aiftit et al. (UA2 Collab) ALITTI 927 PL B280 137 J. Aiftit et al. (UA2 Collab) ALITTI 928 PL B275 194 J. Aiftit et al. (UA2 Collab) ALITTI 929 PL B276 354 J. Aiftit et al. (UA2 Collab) ALITTI 920 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 920 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 920 PL B277 194 J. Aiftit et al. (UA2 Collab) ALITTI 920 PL B280 137 J. Aiftit et al. (UA2 Collab) ALITTI 920 PL B280 137 J. Aiftit et al. (UA2 Collab) ALITTI 920 PL B280 137			PL B407 419	M. Acciari et al.	(L3 Collab.)
BARATE 975 PL B415 435 R. Barate et al. (ALEPH Collab) ACKERSTAFF 96B PL B389 416 K. Ackerstaff et al. (DO Collab) ACKERSTAFF 96B PL B389 416 K. Ackerstaff et al. (DO Collab) ADD 96D PL B379 319 S. Aid et al. (H1 Collab) ABACHI 95D PRL 75 1456 S. Abachi et al. (CDC Collab) ABE 95C PRL 74 341 F. Abe et al. (CDF Collab) ABE 95C PRL 74 345 F. Abe et al. (CDF Collab) ABE 95C PRL 74 345 F. Abe et al. (CDF Collab) ABE 95P PRL 75 115 F. Abe et al. (CDF Collab) ABE 95P PRL 75 11 F. Abe et al. (CDF Collab) ABE 95W PR D52 4784 F. Abe et al. (CDF Collab) ABE 95W PR D52 4784 F. Abe et al. (CDF Collab) ABE 95W PR D53 4784 F. Abe et al. (CDF Collab) ABE 95W PR D54 356 J. Altiti et al. (CDF Collab) ABE 921 PRL 69 28 F. Abe et al. (CDF Collab) ABE 921 PRL 69 28 F. Abe et al. (CDF Collab) ALITTI 922 PL B276 355 J. Altiti et al. (UA2 Collab) ALITTI 920 PL B277 194 J. Altiti et al. (UA2 Collab) ALITTI 920 PL B277 194 J. Altiti et al. (UA2 Collab) ALITTI 920 PL B277 194 J. Altiti et al. (UA2 Collab) ALITTI 920 PL B277 193 J. Altiti et al. (UA2 Collab) ALITTI 927 PL B280 137 J. Altiti et al. (UA2 Collab) ALITTI 928 PL B278 359 C. Albajar et al. (CDF Collab) ALITTI 927 PL B280 137 J. Altiti et al. (UA2 Collab) ALITTI 928 PL B278 194 J. Altiti et al. (UA2 Collab) ALITTI 927 PL B280 137 J. Altiti et al. (UA2 Collab) ALITTI 928 PR C44 29 F. Abe et al. (CDF Collab) ALITTI 902 PR C47 11 J. Altiti et al. (UA2 Collab) ALITTI 904 PR C47 11 J. Altiti et al. (UA2 Collab) ALITTI 907 PR C47 11 J. Altiti et al. (UA2 Collab) ALITTI 908 PL B241 150 J. Altiti et al. (UA2 Collab) ALITTI 909 PR C47 11 J. Altiti et al. (UA2 Collab) ALITTI 900 PR C47 11 J. Altiti et al. (UA2 Collab) ALITTI 900 PR C47 11 J. Altiti et al. (UA2 Collab) ALITTI 900 PR C47 11 J. Altiti et al. (UA2 Co			PL B401 347	P. Barate et al.	(ALERIA Collab.)
ABACHI 96E PRIL 77 3099 S. Abachi et al. (ODCollab.) AID 96D PL B379 319 S. Abachi et al. (OPAL Collab.) ABC 95C PRI 74 341 F. Abe et al. (CDF Collab.) ABE 95C PRI 74 1936 F. Abe et al. (CDF Collab.) ABE 95C PRI 74 1936 F. Abe et al. (CDF Collab.) ABE 95C PRI 74 1936 F. Abe et al. (CDF Collab.) ABE 95C PRI 74 1936 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABC 95W PR D52 2624 F. Abe et al. (CDF Collab.) ALITTI 92D PR D77 3020 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) ABB PL 90 PR D4 29 F. Abe et al. (CDF Collab.) ABB PL 90 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4 29 F. Abe et al. (CDF Collab.) ABB PR D4 29 PR D4			PL B415 435	R. Barate et al.	(ALEPH Collab.)
ACKERSTAFF 96B PL B389 415 K. Ackerstaff et al. (OPA Collab.) ABACH 95D PRL 75 1456 S. Abachi et al. (DO Collab.) ABACH 95D PRL 75 1456 S. Abachi et al. (DO Collab.) ABE 95C PRL 74 331 F. Abe et al. (CDF Collab.) ABE 95C PRL 74 3915 F. Abe et al. (CDF Collab.) ABE 95C PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95P PRL 75 11 F. Abe et al. (CDF Collab.) ABC 95P PRL 75 11 F. Abe et al. (CDF Collab.) ABC 95P PRL 75 11 F. Abe et al. (CDF Collab.) ABC 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABC 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABC 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABC 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABC 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABC 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABC 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABC 95P PRL 97 355 J. Affitt et al. (CDF Collab.) ABC 95P PRL 97 355 J. Affitt et al. (CDF Collab.) ALITTI 92P PL B276 355 J. Affitt et al. (UA2 Collab.) ALITTI 92P PL B277 194 J. Affitt et al. (UA2 Collab.) ALITTI 92P PL B277 194 J. Affitt et al. (UA2 Collab.) ALITTI 92P PL B277 194 J. Affitt et al. (UA2 Collab.) ALITTI 92P PL B277 194 J. Affitt et al. (UA2 Collab.) ALITTI 92P PL B277 194 J. Affitt et al. (UA2 Collab.) ALITTI 92P PL B278 137 J. Affitt et al. (UA2 Collab.) ALITTI 92P PL B278 137 J. Affitt et al. (UA2 Collab.) ABC 91C PRL 67 920 erratum ABC 90 PRL 64 152 F. Abe et al. (CDF Collab.) ABB PRL 97 PRL 67 12 2920 erratum ABC 90 PRL 65 2243 F. Abe et al. (CDF Collab.) ABB PRL 97 PRL 97 2920 erratum ABC 90 PRL 65 2243 F. Abe et al. (CDF Collab.) ABB PRL 97 PRL 97 2920 erratum ABC 90 PRL 65 2253 F. Abe et al. (CDF Collab.) ABB PRL 97 PRL 97 2920 erratum ABC 90 PRL 65 2253 F. Abe et al. (CDF Collab.) ABB PRL 97 2920 erratum ABC 90 PRL 65 2253 F. Abe et al. (CDF Collab.) ABB PRL 97 2920 erratum ABC 90 PRL 65 2253 F. Abe et al. (CDF Collab.) ABB PRL 97 2920 erratum ABC 90 PRL 65 2253 F. Abe et al. (CDF Collab.) ABB PRL 97 2920 erratum ABC 90			PRL 77 3309	S. Abachi et al.	(D0 Collab.)
ABACHI 96D PRL 8379 319 S. Aid et al. (H1 Collab.) ABC 95D PRL 75 1456 S. Abachi et al. (D0 Collab.) ABE 95C PRL 74 341 F. Abe et al. (CDF Collab.) ABE 95C PRL 74 1936 F. Abe et al. (CDF Collab.) ABE 95C PRL 75 11 F. Abe et al. (CDF Collab.) ABC 95P PRL 75 11 F. Abe et al. (CDF Collab.) AISO 95Q PR D52 4784 F. Abe et al. (CDF Collab.) AISO 94B PRL 73 220 F. Abe et al. (CDF Collab.) AISO 94B PRL 73 220 F. Abe et al. (CDF Collab.) ABE 95C PRL 68 3399 F. Abe et al. (CDF Collab.) ABC 91PRL 69 28 F. Abe et al. (CDF Collab.) ABC 91PRL 69 28 F. Abe et al. (CDF Collab.) AIST 192P PL 8276 356 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8277 194 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8277 194 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8277 203 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8278 356 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8278 200 F. Abe et al. (CDF Collab.) ALITTI 92P PL 8278 200 F. Abe et al. (UA2 Collab.) ALITTI 92P PL 8278 200 F. Abe et al. (UA2 Collab.) ALITTI 92P PL 8278 200 F. Abe et al. (UA2 Collab.) ALITTI 92P PL 8278 200 F. Abe et al. (UA2 Collab.) ALITTI 92P PL 8290 137 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8290 137 J. Aitti et al. (UA2 Collab.) ALBAJAR 91 PL 8253 503 J. Aitti et al. (UA2 Collab.) ALBAJAR 91 PL 8253 503 J. Aitti et al. (UA2 Collab.) ALBAJAR 91 PL 8253 503 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PRL 65 2242 F. Abe et al. (CDF Collab.) ABE 90 PRL 65 2243 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL 8241 1250 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 1250 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 1250 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 1250 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 1250 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 1250 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 1250 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 1250 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 1250 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 1250 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 1250 J. Aitti et al. (UA2 Collab.) A	ACKER\$TAFF	96B	PL B389 416	K. Ackerstaff et al.	(OPAL Collab.)
ABE 95P PRL 75 II F. Abe et al. (CDF Collab.) Also 95Q PR D52 4784 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) Also 94B PRL 73 220 F. Abe et al. (CDF Collab.) ABE 92P PRL 69 3398 J. L. Rosner, M.P. Worah, T. Takeuchi (EFI, FNAL) ABE 92I PRL 69 3398 F. Abe et al. (CDF Collab.) ALITTI 92P PR D527 355 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 354 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 354 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 354 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 303 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B278 355 J. Alitti et al. (UA2 Collab.) ABE 91C PR D44 29 F. Abe et al. (CDF Collab.) ABH 91 PL B253 503 C. Albajar et al. (UA2 Collab.) ALITTI 91 PL B253 503 C. Albajar et al. (UA2 Collab.) ALITTI 91 PR PL B278 374 J. Alitti et al. (UA2 Collab.) ABB 90 PR PR 67 990 erratum ABE 90 PR 67 7990 erratum ABE 90 PR 68 4 152 F. Abe et al. (CDF Collab.) ABB 90 PR 68 32070 F. Abe et al. (CDF Collab.) ABB 90 PR 68 4 152 F. Abe et al. (CDF Collab.) ALITTI 90C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C52 109 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C52 109 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B341 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B342 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B342 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B343 2670 F. Abe et al. (CDF Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA1 Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA1 Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B344 150 G. Albajar			PL B379 319	S. Aid et al.	(H1 Collab.)
ABE 95P PRL 75 II F. Abe et al. (CDF Collab.) Also 95Q PR D52 4784 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) Also 94B PRL 73 220 F. Abe et al. (CDF Collab.) ABE 92P PRL 69 3398 J. L. Rosner, M.P. Worah, T. Takeuchi (EFI, FNAL) ABE 92I PRL 69 3398 F. Abe et al. (CDF Collab.) ALITTI 92P PR D527 355 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 354 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 354 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 354 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 303 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B278 355 J. Alitti et al. (UA2 Collab.) ABE 91C PR D44 29 F. Abe et al. (CDF Collab.) ABH 91 PL B253 503 C. Albajar et al. (UA2 Collab.) ALITTI 91 PL B253 503 C. Albajar et al. (UA2 Collab.) ALITTI 91 PR PL B278 374 J. Alitti et al. (UA2 Collab.) ABB 90 PR PR 67 990 erratum ABE 90 PR 67 7990 erratum ABE 90 PR 68 4 152 F. Abe et al. (CDF Collab.) ABB 90 PR 68 32070 F. Abe et al. (CDF Collab.) ABB 90 PR 68 4 152 F. Abe et al. (CDF Collab.) ALITTI 90C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C52 109 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C52 109 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B341 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B342 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B342 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B343 2670 F. Abe et al. (CDF Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA1 Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA1 Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B344 150 G. Albajar			PRL 75 1456	S. Abachi et al.	(DO Collab.)
ABE 95P PRL 75 II F. Abe et al. (CDF Collab.) Also 95Q PR D52 4784 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) Also 94B PRL 73 220 F. Abe et al. (CDF Collab.) ABE 92P PRL 69 3398 J. L. Rosner, M.P. Worah, T. Takeuchi (EFI, FNAL) ABE 92I PRL 69 3398 F. Abe et al. (CDF Collab.) ALITTI 92P PR D527 355 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 354 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 354 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 354 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 303 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B278 355 J. Alitti et al. (UA2 Collab.) ABE 91C PR D44 29 F. Abe et al. (CDF Collab.) ABH 91 PL B253 503 C. Albajar et al. (UA2 Collab.) ALITTI 91 PL B253 503 C. Albajar et al. (UA2 Collab.) ALITTI 91 PR PL B278 374 J. Alitti et al. (UA2 Collab.) ABB 90 PR PR 67 990 erratum ABE 90 PR 67 7990 erratum ABE 90 PR 68 4 152 F. Abe et al. (CDF Collab.) ABB 90 PR 68 32070 F. Abe et al. (CDF Collab.) ABB 90 PR 68 4 152 F. Abe et al. (CDF Collab.) ALITTI 90C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C52 109 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C52 109 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B341 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B342 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B342 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PL B343 2670 F. Abe et al. (CDF Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA1 Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA1 Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B344 150 G. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B344 150 G. Albajar		95C	PRL 74 341	F. Abe et al.	(CDF Collab.)
ABC 95Q PR DS2 4784 F, Abe et al. (CDF Collab.) ABC 95W PR DS2 2624 F, Abe et al. (CDF Collab.) AISO 94B PRL 73 220 F, Abe et al. (CDF Collab.) ABC 94P PR D49 1363 ABE 92F PRL 68 3398 F, Abe et al. (CDF Collab.) ABE 92P PRL 68 3398 F, Abe et al. (CDF Collab.) ABE 92P PRL 68 3398 F, Abe et al. (CDF Collab.) ALITTI 92P PL B276 356 J, Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 194 J, Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 194 J, Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 194 J, Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 194 J, Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 194 J, Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 194 J, Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J, Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J, Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J, Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J, Alitti et al. (UA2 Collab.) ALITTI 92P PL B275 503 C, Albajar et al. (UA2 Collab.) ALITTI 92P PL B275 503 C, Albajar et al. (UA1 Collab.) ALITTI 92P PL B275 503 C, Albajar et al. (UA1 Collab.) ALITTI 92P PL B275 503 C, Albajar et al. (UA2 Collab.) ALITTI 92P PL B275 503 C, Albajar et al. (UA2 Collab.) ALITTI 92P PL B275 503 C, Albajar et al. (UA2 Collab.) ALITTI 92P PL B275 503 C, Albajar et al. (UA2 Collab.) ALITTI 93P PL B275 503 C, Albajar et al. (UA2 Collab.) ALITTI 94P PL B275 503 C, Albajar et al. (UA2 Collab.) ALITTI 95P PL B271 504 299 erratum ALITTI 95P PL B271 504 299 Erratum ALITTI 95P PL B271 505 505 C, Albajar et al. (UA1 Collab.) ALITTI 95P PL B271 505 505 C, Albajar et al. (UA1 Collab.) ALITTI 95P PL B271 505 505 C, Albajar et al. (UA2 Collab.) ALITTI 95P PL B271 505 C, Albajar et al. (UA2 Collab.) ALITTI 95P PL B271 505 C, Albajar et al. (UA2 Collab.) ALITTI 95P PL B271 505 C, Albajar et al. (UA2 Collab.) ALBAJAR 99 PL B271 150 C, Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B38 137 C, Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B38 241 150 C, Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B38 440 C, Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B3			PRL 74 1935	F. Abe et al.	(CDF Collab.)
ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) Also 94B PRL 73 220 F. Abe et al. (CDF Collab.) ABE 92P PRL 69 3398 F. Abe et al. (CDF Collab.) ABE 92P PRL 69 3398 F. Abe et al. (CDF Collab.) ALITTI 92P B276 365 J. Aitti et al. (UA2 Collab.) ALITTI 92P B277 194 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8277 194 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8277 194 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8277 193 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8280 137 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8280 137 J. Aitti et al. (UA2 Collab.) ALITTI 92P PL 8280 137 J. Aitti et al. (UA2 Collab.) ALBAJAR 91 PL 8235 503 M.A. Samuel et al. (COF Collab.) ALBAJAR 91 PL 8235 503 J. Aitti et al. (UA2 Collab.) ALBAJAR 91 PR D43 2670 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PR D44 29 F. Abe et al. (CDF Collab.) ALBAJAR 90 PR D44 29 F. Abe et al. (UA2 Collab.) ALBAJAR 90 PR D43 2670 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL 8241 180 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 180 J. Aitti et al. (UA2 Collab.) ALBAJAR 90 PL 8241 183 C. Albajar et al. (CDF Collab.) ALBAJAR 90 PL 8241 180 J. Aitti et al. (CDF Collab.) ALBAJAR 90 PL 8241 283 C. Albajar et al. (CDF Collab.) ALBAJAR 90 PL 8241 180 J. Aitti et al. (UA2 Collab.) ALBAJAR 80 PR D43 2670 F. Abe et al. (CDF Collab.) ALBAJAR 80 PR D43 2670 F. Abe et al. (CDF Collab.) ALBAJAR 80 PR D43 2670 F. Abe et al. (CDF Collab.) ALBAJAR 80 PR D43 2670 F. Abe et al. (CDF Collab.) ALBAJAR 80 PR D43 2670 F. Abe et al. (CDF Collab.) ALBAJAR 80 PR D43 2670 F. Abe et al. (CDF Collab.) ALBAJAR 80 PR D43 2670 F. Abe et al. (CDF Collab.) ALBAJAR 80 PR D43 2670 F. Abe et al. (CDF Collab.) ALBAJAR 80 PR D43 2670 F. Abe et al. (CDF Collab.) ALBAJAR 80 PR D43 2670 F. Abe et al. (CDF Collab.) ALBAJAR 80 PR D43		950	PRL 75 11 PR 052 4784	F. Abe et al.	(CDF Collab.)
Also 948 PRI, 73 220 F. Abe et al. (CDF Collab.) ROSNER 94 PR D49 1363 JL. Rosser, M.P. Worah, T. Takeuchi (EFI, FNAL) ABE 92 PRI, 69 28 F. Abe et al. (CDF Collab.) ALITTI 92 PL B276 356 J. Alitti et al. (UA2 Collab.) ALITTI 92 PL B277 194 J. Alitti et al. (UA2 Collab.) ALITTI 92 PL B277 194 J. Alitti et al. (UA2 Collab.) ALITTI 92 PL B277 194 J. Alitti et al. (UA2 Collab.) ALITTI 92 PL B287 195 J. Alitti et al. (UA2 Collab.) ALITTI 92 PL B287 193 J. Alitti et al. (UA2 Collab.) ALITTI 92 PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92 PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92 PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92 PL B293 137 J. Alitti et al. (UA2 Collab.) ALITTI 92 PL B295 303 J. Alitti et al. (UA2 Collab.) ALITTI 91 PL B295 503 J. Alitti et al. (UA2 Collab.) ALITTI 91 PRI 67 99 P. Abe et al. (CDF Collab.) ALITTI 91 PRI 67 920 erratum ABE 90 PRI 64 152 PRI 67 2920 erratum ABE 90 PRI 64 152 PRI 66 PRI 67 2920 erratum ABE 90 PRI 64 152 PRI 67 2920 erratum ABE 90 PRI 64 152 PRI 66 PRI 67 2920 erratum ABE 90 PRI 64 152 PRI 66 PRI 67 2920 erratum ABE 90 PRI 64 152 PRI 66 PRI 67 2920 erratum ABE 90 PRI 64 152 PRI 66 PRI 67 2920 erratum ABE 90 PRI 64 152 PRI 66 PR	ABE	95W	PR D52 2624	F Abe et al	(CDF Collab.)
ROSNER 94 94 949 1363 J.L. Rosner, M.P. Worah, T. Takeuchi (EFI, FNAL) ABE 921 PRL 69 3398 F. Abe et al. (CDF Collab.) ABE 921 PRL 69 28 F. Abe et al. (CDF Collab.) ALITTI 922 PL B276 356 J. Ailtit et al. (UA2 Collab.) ALITTI 928 PL B276 356 J. Ailtit et al. (UA2 Collab.) ALITTI 920 PL B277 194 J. Ailtit et al. (UA2 Collab.) ALITTI 920 PL B277 194 J. Ailtit et al. (UA2 Collab.) ALITTI 927 PL B280 137 J. Ailtit et al. (UA2 Collab.) ALITTI 928 PL B280 137 J. Ailtit et al. (UA2 Collab.) ALITTI 927 PL B280 137 J. Ailtit et al. (UA2 Collab.) ABE 910 PL B253 503 C. Albajar et al. (UA1 Collab.) ALITTI 912 PL PC S2 209 T. Ailtit et al. (UA2 Collab.) ALITTI 914 PRL 67 9	Also		PRL 73 220	F. Abe et al.	(CDF Collab.)
ABE 92E PRL 69 3398 F. Abe et al. (CDF Collab.) ABE 921 PRL 69 28 F. Abe et al. (CDF Collab.) ALITTI 92 PL B276 356 J. Alitti et al. (UA2 Collab.) ALITTI 928 PL B276 356 J. Alitti et al. (UA2 Collab.) ALITTI 929 PL B277 394 J. Alitti et al. (UA2 Collab.) ALITTI 920 PL B277 194 J. Alitti et al. (UA2 Collab.) ALITTI 920 PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 920 PL B287 203 J. Alitti et al. (UA2 Collab.) ALITTI 927 PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 928 PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 929 PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 927 PL B280 137 J. Alitti et al. (UA2 Collab.) ALBAJAR 91 PL B293 503 C. Albajar et al. (CDF Collab.) ALBAJAR 91 PL B293 503 C. Albajar et al. (CDF Collab.) ABC 910 PRL 64 152 P. Abe et al. (CDF Collab.) ABC 910 PRL 64 29 F. Abe et al. (CDF Collab.) ABC 910 PRL 64 292 erratum ABE 910 PRL 67 2920 erratum ABE 910 PRL 67 3220 erratum ABE 910 PRL 67 3220 erratum ABE 910 PRL 64 152 F. Abe et al. (CDF Collab.) ALITTI 900 PL B241 1263 C. Albajar et al. (CDF Collab.) ALITTI 900 PL B241 1263 C. Albajar et al. (CDF Collab.) ALITTI 900 PL B241 1263 C. Albajar et al. (UA2 Collab.) ALITTI 900 PL B241 150 J. Alitti et al. (UA2 Collab.) ALITTI 900 PL B241 150 J. Alitti et al. (UA2 Collab.) ABE 801 PRL 62 1005 F. Abe et al. (CDF Collab.) ABBAUR 801 PRL 62 1005 F. Abe et al. (CDF Collab.) ABBAUR 802 PL 1919 137 J. Alitti et al. (UA2 Collab.) ABBAUR 803 PRL 62 1005 F. Abe et al. (CDF Collab.) ABO ALBAJAR 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 88 PL 1558 68 Erratum F. Herzog (WISC) ARNISON 80 PL 1348 469 G. T.J. Arnison et al. (UA1 Collab.) ARNISON 80 PL 128 103 G. F. Herzog (UNISC) ARNISON 80 PL 128 103 G. G. T.J. Arnison et al. (UA1 Collab.)	ROSNER	94	PR D49 1363	J.L. Rosner, M.P. Worah, T. Takeuchi	(EFI, FNAL)
ALITTI 92B PL B276 354 J. Affiti et al. (UA2 Collab.) ALITTI 92C PL B277 194 J. Alfitti et al. (UA2 Collab.) ALITTI 92D PL B277 193 J. Affitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J. Affitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J. Affitti et al. (UA2 Collab.) ABE 92P L B280 124 M.A. Samuel et al. (OKSU, CARL) ABE 91C PR D44 29 F. Abe et al. (CDF Collab.) ALITTI 91C ZPHY C52 209 J. Alfitti et al. (UA2 Collab.) ALITTI 91C ZPHY C52 209 J. Alfitti et al. (UA2 Collab.) ABI 91 PR L 67 9 M.A. Samuel et al. (UA2 Collab.) ABI 91 PR L 67 9 M.A. Samuel et al. (UA2 Collab.) ABE 90 PR L 64 152 F. Abe et al. (CDF Collab.) ABE 90 PR L 64 152 F. Abe et al. (CDF Collab.) ABB 90 PR L 65 2243 F. Abe et al. (CDF Collab.) ABB 90 PR L 65 2243 F. Abe et al. (CDF Collab.) ALITTI 90P PL B241 1263 C. Albajar et al. (UA1 Collab.) ALITTI 90P PL B241 1263 C. Albajar et al. (UA2 Collab.) ALITTI 90P PL B241 150 J. Affitti et al. (UA2 Collab.) ALITTI 90P PL B241 150 J. Affitti et al. (UA2 Collab.) ALBAJAR 89 PL B24 126 J. Affitti et al. (UA2 Collab.) ALBAJAR 89 PL B24 150 J. Affitti et al. (UA2 Collab.) ALBAJAR 89 PL B185 135 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA2 Collab.) ALBAJAR 88 PL B185 233 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 233 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 233 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 236 C. Albajar et al. (UA2 Collab.) ALBAJAR	ABE		PRL 68 3398	F. Abe et al.	(CDF Collab.)
ALITTI 92B PL B276 354 J. Affiti et al. (UA2 Collab.) ALITTI 92C PL B277 194 J. Alfitti et al. (UA2 Collab.) ALITTI 92D PL B277 193 J. Affitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J. Affitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J. Affitti et al. (UA2 Collab.) ABE 92P L B280 124 M.A. Samuel et al. (OKSU, CARL) ABE 91C PR D44 29 F. Abe et al. (CDF Collab.) ALITTI 91C ZPHY C52 209 J. Alfitti et al. (UA2 Collab.) ALITTI 91C ZPHY C52 209 J. Alfitti et al. (UA2 Collab.) ABI 91 PR L 67 9 M.A. Samuel et al. (UA2 Collab.) ABI 91 PR L 67 9 M.A. Samuel et al. (UA2 Collab.) ABE 90 PR L 64 152 F. Abe et al. (CDF Collab.) ABE 90 PR L 64 152 F. Abe et al. (CDF Collab.) ABB 90 PR L 65 2243 F. Abe et al. (CDF Collab.) ABB 90 PR L 65 2243 F. Abe et al. (CDF Collab.) ALITTI 90P PL B241 1263 C. Albajar et al. (UA1 Collab.) ALITTI 90P PL B241 1263 C. Albajar et al. (UA2 Collab.) ALITTI 90P PL B241 150 J. Affitti et al. (UA2 Collab.) ALITTI 90P PL B241 150 J. Affitti et al. (UA2 Collab.) ALBAJAR 89 PL B24 126 J. Affitti et al. (UA2 Collab.) ALBAJAR 89 PL B24 150 J. Affitti et al. (UA2 Collab.) ALBAJAR 89 PL B185 135 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA2 Collab.) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA2 Collab.) ALBAJAR 88 PL B185 233 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 233 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 233 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 235 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 PL B185 236 C. Albajar et al. (UA2 Collab.) ALBAJAR			PRL 69 28	F. Abe et al.	
ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) SAMUEL 92 PL B280 137 J. Alitti et al. (UA2 Collab.) SAMUEL 92 PL B280 137 J. Alitti et al. (OKSU, CARL) ABE 91 CP RD 44 29 F. Abe et al. (CDF Collab.) ALITTI 91 C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) SAMUEL 91 PRL 67 9 M.A. Samuel et al. (UA2 Collab.) Also 91 CPRL 67 9 M.A. Samuel et al. (UA2 Collab.) ABE 90 PRL 64 152 F. Abe et al. (CDF Collab.) ABE 90 PRL 64 152 F. Abe et al. (CDF Collab.) ABE 90 PRL 65 2243 F. Abe et al. (CDF Collab.) ABE 90 PRL 65 2243 F. Abe et al. (CDF Collab.) ALITTI 90 PL B241 1263 C. Albajar et al. (UA1 Collab.) ALITTI 90 PL B241 1263 C. Albajar et al. (UA2 Collab.) ALITTI 90 PL B241 1263 C. Albajar et al. (UA2 Collab.) ALITTI 90 PL B241 150 J. Alitti et al. (UA2 Collab.) ALITT			PL B276 365	J. Alitti et al.	(UA2 Collab.)
ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) SAMUEL 92 PL B280 137 J. Alitti et al. (UA2 Collab.) SAMUEL 92 PL B280 137 J. Alitti et al. (OKSU, CARL) ABE 91 CP RD 44 29 F. Abe et al. (CDF Collab.) ALITTI 91 C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) SAMUEL 91 PRL 67 9 M.A. Samuel et al. (UA2 Collab.) Also 91 CPRL 67 9 M.A. Samuel et al. (UA2 Collab.) ABE 90 PRL 64 152 F. Abe et al. (CDF Collab.) ABE 90 PRL 64 152 F. Abe et al. (CDF Collab.) ABE 90 PRL 65 2243 F. Abe et al. (CDF Collab.) ABE 90 PRL 65 2243 F. Abe et al. (CDF Collab.) ALITTI 90 PL B241 1263 C. Albajar et al. (UA1 Collab.) ALITTI 90 PL B241 1263 C. Albajar et al. (UA2 Collab.) ALITTI 90 PL B241 1263 C. Albajar et al. (UA2 Collab.) ALITTI 90 PL B241 150 J. Alitti et al. (UA2 Collab.) ALITT			PL B275 354	J. Antti et al.	(UA2 Collab.)
ALITTI 92F PL B280 137 J. Alitti et al. (UAZ Collab.) SAMUEL 92 PL B280 124 M.A. Samuel et al. (OKSU, CARL) ABE 91 PL B2935 503 C. Albajar et al. (UAI Collab.) ALITTI 91 ZPHY C52 209 J. Alitti et al. (UAZ Collab.) ABO 31 C. PRL 67 9 ABC 31 C. PRL 67 9 ALITTI 91 PRL 67 9 ABC 31 C. PRL 67 2920 erratum ABC 30 PRL 65 2243 F. Abe et al. (CDF Collab.) ABC 30 PRL 65 2243 F. Abe et al. (CDF Collab.) ABC 30 PRL 65 2243 F. Abe et al. (CDF Collab.) ABC 30 PRL 65 2243 F. Abe et al. (CDF Collab.) ALITTI 90 PL B241 1253 C. Albajar et al. (UAI Collab.) ALITTI 90 PL B241 1253 C. Albajar et al. (UAI Collab.) ALITTI 90 PL B241 125 C. Albajar et al. (UAI Collab.) ALITTI 90 PL B241 125 C. Albajar et al. (UAI Collab.) ALBAJAR 89 PL 62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 PL 61 2005 F. Abe et al. (CDF Collab.) ALBAJAR 80 PL 61 2005 F. Abe et al. (CDF Collab.) ALBAJAR 80 PL 61 2005 F. Abe et al. (CDF Collab.) ALBAJAR 80 PL 61 2005 F. Abe et al. (CDF Collab.) ALBAJAR 80 PL 61 2005 F. Abe et al. (CDF Collab.) ALBAJAR 80 PL 61 2005 F. Abe et al. (CDF Collab.) ALBAJAR 80 PL 61 2005 F. Abe et al. (CDF Collab.) ALBAJAR 80 PL 61 2005 F. Abe et al. (UAI Collab.) ALBAJAR 80 PL 61 2005 F. Abe et al. (UAI Collab.) ALBAJAR 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et al. (UAI Collab.) ANSARI 80 PL 61 2005 F. Abe et a		92D	Pl R277 203	J. Antti et al.	(UAZ Collab.)
SAMUEL 92 PL 8280 124 M.A. Samuel et al. (ÖKSU, CARL) ABE 91C PR D44 29 F. Abe et al. (COF Collab.) ALBAJAR 91 PL 8253 503 C. Albajar et al. (UAI Collab.) ALITTI 91 PRL 67 9 M.A. Samuel et al. (UA2 Collab.) ABE 90 PRL 67 7920 erratum M.A. Samuel et al. (OKSU, CARL) ABE 90 PRL 64 152 F. Abe et al. (CDF Collab.) ABE 90 PRL 65 2243 F. Abe et al. (CDF Collab.) ABE 90 PRL 65 2243 F. Abe et al. (CDF Collab.) ABE 90 PRL 83 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B341 1263 C. Albajar et al. (UA1 Collab.) ALITTI 900 PL B341 150 J. Altit et al. (UA2 Collab.) ALBAJAR 89 PRL 62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 PRL 64 15 F. Abe et al. (UA2 Collab.) ABBAJAR </td <td></td> <td></td> <td></td> <td>I Alitti et al</td> <td></td>				I Alitti et al	
ABE ABE ALBAJAR J P R B253 503 ALTTI J ALTTI J ABC ALBAJAR AB ABC ABC ABC ABC ABC ABC ABC ABC ABC	SAMUEL	92	PL B280 124	M.A. Samuel et al.	(OKSU, CARL)
ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) SAMUEL J. PRL 67 9 M.A. Samuel et al. (OKSU, CARL) ABE 90 PRL 61 7290 erratum ABE 90 PRL 65 72920 erratum ABE 90 PRL 65 72930 FR. Abe et al. (CDF Collab.) ABE 90G PRL 65 2243 F. Abe et al. (CDF Collab.) ABE 90G PRL 65 2243 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 150 J. Alitti et al. (UA2 Collab.) ALITTI 90B PL 241 150 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PR C42 1055 F. Abe et al. (CDF Collab.) ALBAJAR 89 PR C42 1055 F. Abe et al. (CDF Collab.) ALBAJAR 89 PR C42 1055 F. Abe et al. (CDF Collab.) ALBAJAR 80 PR L591 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 80 PR L591 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 80 PR L591 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B185 243 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B185 243 C. Albajar et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B194 155 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B195 158 R. Ansari et al. (UA2 Collab.) APPEL 87 PR D82 2553 K. Hagiwara et al. (UA2 Collab.) APPEL 88 ZPHY C27 617 G. Altarelli, R.K. Ellis, G. Martinelli ARNISON 80 PL 1548 283 A. Grau, J.A. Griols ARNISON 84D PL 1348 469 G. T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 1348 469 G. T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 1348 469 G. T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 1348 469 G. T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 1348 869 G. T.J. Arnison et al. (UA1 Collab.)		91C	PR D44 29	F. Abe et al.	(CDF Collab.)
SAMUEL 91 PRL 67 9 M.A. Samuel et al. OKSU, CARL Also 910 PRL 64 152 F. Abe et al. (CDF Collab.) Also 910 PRL 64 152 F. Abe et al. (CDF Collab.) ABE 906 PRL 65 2243 F. Abe et al. (CDF Collab.) Also 918 PR D43 2070 F. Abe et al. (CDF Collab.) Also 918 PR D43 2070 F. Abe et al. (CDF Collab.) ALITTI 908 PL B241 1263 C. Albajar et al. (LIA1 Collab.) ALITTI 907 ZPHY C47 11 J. Akitti et al. (LIA2 Collab.) ALITTI 908 PL B241 150 J. Akitti et al. (LIA2 Collab.) ALITTI 907 ZPHY C47 11 J. Akitti et al. (LIA2 Collab.) ALITTI 908 PL B241 150 J. Akitti et al. (LIA2 Collab.) ALITTI 907 ZPHY C47 11 J. Akitti et al. (LIA2 Collab.) ALBAJAR 89 PR L62 1095 F. Abe et al. (CDF Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (LIA2 Collab.) ALBAJAR 89 PR B398 127 J. Barro D. Zeppenfeld (FSU, WISC) ARSARI 87 PL B197 437 J. A. Grifols, S. Peris, J. Sola (BARC, DESY) ARSARI 87 PL B195 233 C. Albajar et al. (LIA2 Collab.) ARSARI 87 PL B185 440 R. Ansari et al. (LIA2 Collab.) ARSARI 87 PL B185 440 R. Ansari et al. (LIA2 Collab.) ARSARI 87 PL B195 188 R. Ansari et al. (LIA2 Collab.) ARNISON 86 PL 1568 243 A. Grau, J.A. Grifols ARNISON 840 PL 1568 243 A. Grau, J.A. Grifols ARNISON 840 PL 1368 269 G.T.J. Arnison et al. (LIA1 Collab.) ARNISON 840 PL 1368 669 F. Herzog (WISC) ARNISON 841 PL 1585 468 erratum F. Herzog (WISC) G.T.J. Arnison et al. (LIA1 Collab.) G.T	ALBAJAR	91	PL B253 503	C. Albajar <i>et al</i> .	(UA1 Collab.)
Also 91C PRL 67 2920 erratum ABE 90 PRL 64 152 F. Abe et al. (CDF Collab.) ABC 90 PR D44 29 F. Abe et al. (CDF Collab.) ABC 91G PR D44 29 F. Abe et al. (CDF Collab.) ABE 91G PRL 65 2243 F. Abe et al. (CDF Collab.) ABC 91G PR D43 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALITTI 90C ZPHY C47 11 J. Aftiti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Aftiti et al. (UA2 Collab.) ABE 891 PRL 62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) ALBAJAR 80 PL B197 437 U. Baur, D. Zeppenfeld (FSU, WISC) ABG ANSARI 87 PL B185 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B185 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B185 243 C. Albajar et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B194 155 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B195 158 R. Ansari et al. (UA2 Collab.) APPEL 87 PN PS80 2153 K. Hagiwara et al. (UA2 Collab.) APPEL 88 ZPHY C27 617 G. Altarelli, R.K. Ellis, G. Martinelli ARNISON 80 PL 1548 293 A. Grau, J.A. Affols ARNISON 84D PL 1348 469 G. T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 1348 469 G. T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 1348 869 G. T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 1348 869 G. T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 1348 869 G. T.J. Arnison et al. (UA1 Collab.)		91C	ZPHY C52 209	J. Alitti et al.	(UA2 Collab.)
ABE 90 PRL 64 152 F. Abe et al. (CDF Collab.) AISO PRL 65 2243 F. Abe et al. (CDF Collab.) ABE 906 PRL 65 2243 F. Abe et al. (CDF Collab.) AISO PRL 65 2243 F. Abe et al. (CDF Collab.) AISO PRL 65 2243 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 1283 C. Albajar et al. (UAL Collab.) ALITTI 90C ZPILY C47 11 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPILY C47 11 J. Alitti et al. (UA2 Collab.) ALITTI 90C ZPILY C47 11 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PRL 62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 ZPILY C44 15 C. Albajar et al. (UA1 Collab.) ALBAJAR 80 ZPILY C44 15 C. Albajar et al. (UA1 Collab.) ANDARI 80 JMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B195 233 C. Albajar et al. (UA2 Collab.) ANSARI 87 PL B195 233 C. Albajar et al. (UA2 Collab.) ANSARI 87 PL B195 233 C. Albajar et al. (UA2 Collab.) ANSARI 87 PL B195 233 C. Albajar et al. (UA2 Collab.) ANSARI 87 PR D36 2155 H. Grotch, R.W. Robinett (PSU) ANDADERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL) ARNISON 86 PL 156B 484 G.T.J. Arnison et al. (UA2 Collab.) ARNISON 84D PL 156B 283 A. Grau, J.A. Grifols ARNISON 84D PL 136B 385 F. Herzog (WISC) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 840 PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 841 PL 158B 385 F. Herzog (WISC) ARNISON 841 PL 158B 385 C. Albajar et al. (UA2 Collab.) ARNISON 841 PL 158B 385 C. Albajar et al. (UA2 Collab.) ARNISON 841 PL 158B 385 C. Albajar et al. (UA2 Collab.) ARNISON 841 PL 158B 385 C. Albajar et al. (UA2 Collab.) ARNISON 842 PL 158B 385 C. Albajar et al. (UA2 Collab.) ARNISON 842 PL 158B 385 C. Albajar et al. (UA2 Collab.) ARNISON 841 PL 154B 385 C. Albajar et al. (UA2 Collab.) ARNISON 842 PL 154B 385 C. Albajar et al. (UA2 Collab.) ARNISON 842 PL 154B 385 C. Albajar et al. (UA2 Collab.) ARNISON 844 PL 154B 385 C. Albaj		91	PRL 67 9	M.A. Samuel et al.	(OKSU, CARL)
Also 91C PR D44 29 F. Abe et al. (CDF Collab.) ABE 90G PRL 65 2243 F. Abe et al. (CDF Collab.) Also 91B PR D43 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALITTI 90C ZPHY C47 11 J. Aftiti et al. (UA2 Collab.) ALITTI 90C ZPHY C47 11 J. Aftiti et al. (UA2 Collab.) ALBAJAR 89 PR D62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA2 Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 88 NP B305 127 U. Baur, D. Zeppenfeld (FSU. WISC) GRIFOLS 88 JMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also 87 PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B194 155 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B195 158 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B196 2553 K. Hagiwara et al. (UA2 Collab.) APPEL 87 PR D820 2553 K. Hagiwara et al. (UA2 Collab.) APPEL 88 ZPHY C30 1 J.A. Appel et al. APPEL 89 ZPHY C30 1 J.A. Appel et al. ALTARELLI 85B ZPHY C30 1 J.A. Appel et al. ALTARELLI 85B ZPHY C30 1 J.A. Appel et al. ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 134B 869 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 134B 869 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 134B 869 G.T.J. Arnison et al. (UA1 Collab.)	ADE			E About at	(CDE C-U-E)
ABE 906 PRL 65 2243 F. Abe et al. (CDF Collab.) Also 91B PR DA\$ 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 263 C. Albajar et al. (LAI Collab.) ALITTI 90F LB241 150 J. Alitti et al. (LAI Collab.) ALITTI 90F LB241 150 J. Alitti et al. (LAI Collab.) ALITTI 90F LB241 150 J. Alitti et al. (LAI Collab.) ALITTI 90F LB241 150 J. Alitti et al. (LAI Collab.) ALBE 89 PRL 62 1005 F. Abe et al. (LOI Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (LAI Collab.) BAUR 88 NP B08 127 U. Baur. D. Zeppenfeld (FSU WIGC) GRIFOLS 88 JIMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 243 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 240 C. Albajar et al. (LAI Collab.) ANSARI 87 PL B185 240 R. Ansari et al. (LAI Collab.) ANSARI 87 PL B185 240 R. Ansari et al. (LAI Collab.) ANSARI 87 PL B185 240 R. Ansari et al. (LAI Collab.) ANSARI 87 PR D36 2153 H. Grotch, RW. Robinett (PSU) VANDERBIJ 87 NP B282 255 H. Grotch, RW. Robinett (PSU) VANDERBIJ 88 ZPHY C30 I. J.A. Appel et al. (LAI Collab.) ARNISON 84D PL 154B 233 A. Grau, J.A. Grifols ARNISON 84D PL 134B 469 G. T.J. Arnison et al. (LAI Collab.) ARNISON 84P L 154B 235 F. Herzog (WISC) ARNISON 84P L 154B 355 F. Herzog (WISC) ARNISON 84P L 154B 355 F. Herzog (WISC) ARNISON 84P L 154B 355 F. Herzog (WISC) ARNISON 84P L 154B 628 G. T.J. Arnison et al. (LAI Collab.)			PR D44 29	F Abe et al.	(CDF Collab.)
Also 318 PR D43 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 1830 C. Albajar et al. (UA1 Collab.) ALITTI 308 PL B241 150 J. Alitti et al. (UA2 Collab.) ALITTI 308 PL B241 150 J. Alitti et al. (UA2 Collab.) ABE 891 PRL 62 1005 F. Abe et al. (UA2 Collab.) ABE 891 PRL 62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA2 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU. WISC) GRIFOLS 88 JIMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also 87 PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B194 158 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B194 158 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B195 2135 N. Hagiwara et al. (KEK, UCLA, FSU) APPEL 87 PR 355 1088 J.J. van der Bij (CENN.) APPEL 88 ZPHY C30 1 J.A. Appel et al. APPEL 89 ZPHY C30 1 J.A. Appel et al. ALTARELLI 858 ZPHY C27 617 G. Altarelli, R.K. Ellis, G. Martinelli CRAU 85 PL 158B 283 A. Grau, J.A. Grifols ARNISON 84D PL 134B 469 G.T.J. Arnison et al. ARNISON 84D PL 134B 469 G.T.J. Arnison et al. ARNISON 84D PL 134B 869 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 841 PL 158B 288 erratum F. Herzog (WISC) ARNISON 841 PL 158B 365 erratum F. Herzog (WISC) ARNISON 841 PL 158B 688 erratum F. Herzog (WISC) ARNISON 841 PL 158B 688 erratum G. G.T.J. Arnison et al.	ABE	90G	PRL 65 2243	F. Abe et al.	(CDF Collab.)
ALITTI 90B PL B241 150 J. Afitti et al. (UA2 Collab.) ABEL 89I PRL 62 1005 F. Abe et al. (CDF Collab.) ABEL 89I PRL 62 1005 F. Abe et al. (CDF Collab.) BAUR 88 NP B308 127 U. Baur. D. Zeppenfeld (FSU, WISC) GRIFOLS 88 JIMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also 87 PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA1 Collab.) AMSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) AMSARI 87 PL B194 158 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B195 2153 K. Hagiwara et al. (UA2 Collab.) HAGIWARA 87 NP B282 2553 K. Hagiwara et al. (ERAL (CLA, FSU) VANDERB1J 87 PR D35 108B J.J. van der Bij (ERAL (CLA, FSU) APPEL 85 ZPHY C30 1 J.A. Appel et al. APPEL 86 ZPHY C30 1 J.A. Appel et al. ALTARELLI 858 ZPHY C27 617 G. Altarelli, R.K. Ellis, G. Martinelli GRAU 85 PL 1548 283 A. Grau, J.A. Grifols SUZUKI 85 PL 1548 283 A. Grau, J.A. Grifols ARNISON 84D PL 1348 469 G.T.J. Arnison et al. ARNISON 84D PL 1348 469 G.T.J. Arnison et al. ARNISON 84D PL 1348 869 G.T.J. Arnis	Also		PR D43 2070	F. Abe et al.	(CDF Collab.)
ALITTI 90B PL B241 150 J. Afitti et al. (UA2 Collab.) ABEL 89I PRL 62 1005 F. Abe et al. (CDF Collab.) ABEL 89I PRL 62 1005 F. Abe et al. (CDF Collab.) BAUR 88 NP B308 127 U. Baur. D. Zeppenfeld (FSU, WISC) GRIFOLS 88 JIMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also 87 PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA1 Collab.) AMSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) AMSARI 87 PL B194 158 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B195 2153 K. Hagiwara et al. (UA2 Collab.) HAGIWARA 87 NP B282 2553 K. Hagiwara et al. (ERAL (CLA, FSU) VANDERB1J 87 PR D35 108B J.J. van der Bij (ERAL (CLA, FSU) APPEL 85 ZPHY C30 1 J.A. Appel et al. APPEL 86 ZPHY C30 1 J.A. Appel et al. ALTARELLI 858 ZPHY C27 617 G. Altarelli, R.K. Ellis, G. Martinelli GRAU 85 PL 1548 283 A. Grau, J.A. Grifols SUZUKI 85 PL 1548 283 A. Grau, J.A. Grifols ARNISON 84D PL 1348 469 G.T.J. Arnison et al. ARNISON 84D PL 1348 469 G.T.J. Arnison et al. ARNISON 84D PL 1348 869 G.T.J. Arnis			PL B241 283	C. Albajar et al.	(UA1 Collab.)
ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UAL Collab.) BAUR 8 NP B309 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also 87 PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 233 C. Albajar et al. (UAL Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B194 158 R. Ansari et al. (UA2 Collab.) ARSARI 87 PL B194 158 R. Ansari et al. (UA2 Collab.) ANSARI 87 PR B282 253 K. Hagiwara et al. (UA2 Collab.) ANDERBIJ 87 PR D35 1088 J.J. Van der Bij (FNAL) APPEL 86 ZPHY C30 1 J.A. Appel et al. (UA2 Collab.) ARNISON 86 PL 1668 484 G.T.J. Arnison et al. (UA2 Collab.) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84P PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84P PL 134B 355 F. Herzog ARNISON 84P PL 158B 389 C.T.J. Arnison et al. (USC) (USC) ARNISON 84P L 158B 389 C.T.J. Arnison et al. (USC) (USC) (USC) (USC) (USC) (USC) (USC) (USC) (USC) (USL) (USL) (USL) (USL) (USL) (USL) (USL)	ALITTI		PL B241 150	J. Alitti et al.	(UA2 Collab.)
ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UAL Collab.) BAUR 8 NP B309 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also 87 PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 233 C. Albajar et al. (UAL Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B194 158 R. Ansari et al. (UA2 Collab.) ARSARI 87 PL B194 158 R. Ansari et al. (UA2 Collab.) ANSARI 87 PR B282 253 K. Hagiwara et al. (UA2 Collab.) ANDERBIJ 87 PR D35 1088 J.J. Van der Bij (FNAL) APPEL 86 ZPHY C30 1 J.A. Appel et al. (UA2 Collab.) ARNISON 86 PL 1668 484 G.T.J. Arnison et al. (UA2 Collab.) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84P PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84P PL 134B 355 F. Herzog ARNISON 84P PL 158B 389 C.T.J. Arnison et al. (USC) (USC) ARNISON 84P L 158B 389 C.T.J. Arnison et al. (USC) (USC) (USC) (USC) (USC) (USC) (USC) (USC) (USC) (USL) (USL) (USL) (USL) (USL) (USL) (USL)			ZPHY C47 11	J. Alitti et al.	(UA2 Collab.)
BAUR 88 NP B308 127			70HV C44 15	F. Abe et al.	(CDF Collab.)
CRIFOLS 88 IJMP A3 225 J.A. Grifols S. Peris, J. Sola (BARC, DESY) Also A87 PL B197 437 J.A. Grifols S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA2 Collab.) ANSAR1 87 PL B185 440 R. Ansari et al. (UA2 Collab.) ANSAR1 87 PL B185 440 R. Ansari et al. (UA2 Collab.) ANSAR1 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 NP B282 255 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 NP B282 255 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 PR D35 1088 J.J. Van der Bij (FNAL) ARNISON 86 PL 166B 494 G.T.J. Arnison et al. (UA2 Collab.) CHARLES SPECIAL COLLAB. CHARLES SPECIAL COLLAB. CHARLES CALLAB COLLAB. CHARLES CALLAB				L. Albajat et al.	(DAI CONAD.)
ALBAJAR 87 PL 8185 233 C. Albajar et al. (UAL Collab.) ANSARI 87 PL 8186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL 8186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL 8194 158 R. Ansari et al. (UA2 Collab.) RGOTCH 87 PR D36 2153 K. Hagiwara et al. (KEK. UCLA, FSU) ANDERBIJ 87 PR D35 1088 J. J. van der Bij (KEK. UCLA, FSU) APPEL 86 ZPHY C30 1 J.A. Appel et al. (UA2 Collab.) APPEL 85 ZPHY C30 1 J.A. Appel et al. (UA2 Collab.) ARNISON 85 PL 1548 283 A. Grau, J.A. Griols SUZUKI 85 PL 1548 283 A. Grau, J.A. Griols SUZUKI 85 PL 1548 283 A. Grau, J.A. Griols ARNISON 84D PL 1348 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 1348 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84P PL 1488 355 F. Herzog ARNISON 84P PL 1588 68 erratum F. Herzog (WISC) ARNISON 83 PL 1258 103 G.T.J. Arnison et al. (UA1 Collab.)			IIMP A3 225	LA Grifols S Peris I Sola	(BARC DESV)
ALBAJAR 87 PL 8185 233 C. Albajar et al. (UAL Collab.) ANSARI 87 PL 8186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL 8186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL 8194 158 R. Ansari et al. (UA2 Collab.) RGOTCH 87 PR D36 2153 K. Hagiwara et al. (KEK. UCLA, FSU) ANDERBIJ 87 PR D35 1088 J. J. van der Bij (KEK. UCLA, FSU) APPEL 86 ZPHY C30 1 J.A. Appel et al. (UA2 Collab.) APPEL 85 ZPHY C30 1 J.A. Appel et al. (UA2 Collab.) ARNISON 85 PL 1548 283 A. Grau, J.A. Griols SUZUKI 85 PL 1548 283 A. Grau, J.A. Griols SUZUKI 85 PL 1548 283 A. Grau, J.A. Griols ARNISON 84D PL 1348 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84D PL 1348 469 G.T.J. Arnison et al. (UA1 Collab.) ARNISON 84P PL 1488 355 F. Herzog ARNISON 84P PL 1588 68 erratum F. Herzog (WISC) ARNISON 83 PL 1258 103 G.T.J. Arnison et al. (UA1 Collab.)	Also		PL B197 437	J.A. Grifols, S. Peris. J. Sola	(BARC, DESY)
AMSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ANSARI 87 PL B194 158 R. Ansari et al. (UA2 Collab.) GROTCH 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) HAGMWARA 87 NP B828 253 H. Grotch, R.W. Robinett (PSU) VANDERBIJ 87 PR D35 1088 J.J. van der Bij (KEK, UCLA, FSU) VANDERBIJ 87 PR D35 1088 J.J. van der Bij (UA2 Collab.) APPEL 85 ZPHY C30 1 J.A. Appel et al. (UA2 Collab.) ARNISON 86 PL 1656 484 G.T.J. Arnison et al. (UA1 Collab.) J. ALTARELLI 858 ZPHY C27 617 G. Altarelli, R.K. Ellis, G. Martinelli (CERN+) GRAU 85 PL 1548 283 M. Suzuki (LBL) ARNISON 84D PL 1348 469 G.T.J. Arnison et al. (UA1 Collab.) HERZOG 84 PL 148B 355 F. Herzog (WISC) ARNISON 84B PL 155B 468 erratum F. Herzog (WISC) ARNISON 83 PL 1228 103 G.T.J. Arnison et al. (UA1 Collab.)	ALBAJAR		PL B185 233	C. Albajar et al.	(UAL Collab.)
AMSARI 87C PL B194 158 R. Ansari et al. (UA2 Collab.) GROTCH 87 PR D36 2153 K. Hagiwara et al. (EXL ULLA, FSU) HAGIWARA 87 NP B282 253 K. Hagiwara et al. (EXL ULLA, FSU) VANDERBIJ 87 PR D35 108B J.J. van der Bij (EXL ULLA, FSU) APPEL 85 ZPHY C30 1 J.A. Appel et al. (UA2 Collab.) ARNISON 86 PL 156B 434 (G.T.J. Arnison et al. (UA1 Collab.) ALTARELLI 858 ZPHY C27 617 G. Altarelli, R.K. Ellis, G. Martinelli (ERN+) GRAU 85 PL 159B 283 A. Grau, J.A. Grfols (BARC) SUZUKI 85 PL 153B 289 M. 5 SUZUKI (BL) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) HERZOG AS 9 PL 148B 355 F. Herzog (WISC) ARNISON 84P PL 155B 458 erratum F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)	ANSARI		PL B186 440	R. Ansari et al.	(UA2 Collab.)
HAGIMARA			PL B194 158	R. Ansari et al.	(UA2 Collab.)
VANDERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL) APPEL 86 ZPHY C30 1 J.A. Appel et al. (UA2 Collab.) ARNISON 86 PL 166B 484 G.T.J. Arnison et al. (UA1 Collab.) ALTARELLI 85B ZPHY C27 617 G. Altarelli, R.K. Ellis, G. Martinelli (CERN+) GRAU 85 PL 156B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 151B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 459 G.T.J. Arnison et al. (UA1 Collab.) HERZOG 84 PL 148B 355 F. Herzog (WISC) ARNISON 38 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)			PK D36 2153	H. Grotch, R.W. Robinett	(PSU)
AKNISON 86 PL 1668 484 G.T.J. Arnison et al. (UA1 Collab.) J. (CERN+) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols SUZUKI 85 PL 155B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) HERZOG ABS 84 PL 148B 355 F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)			NP B282 253	K. Hagiwara et al.	(KEK, UCLA, FSU)
AKNISON 86 PL 1668 484 G.T.J. Arnison et al. (UA1 Collab.) J. (CERN+) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols SUZUKI 85 PL 155B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) HERZOG ABS 84 PL 148B 355 F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)			7PHY C30 1	J.J. Van der Bij	(FNAL)
ALTARELLI 85B ZPHY C27 617 G. Altarelli, R.K. Ellis, G. Martinelli (CERN+) GRAU 85 PL 154B 283 A. Gray, J.A. Grifols SIZUKI 85 PL 153B 289 M. Suzuki (IBL) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UAI Collab.) HERZOG 84 PL 148B 355 F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UAI Collab.) G.T.J. Arnison et al. (UAI Collab.) (UNISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UAI Collab.)			PL 166B 484	G.T.I. Arnison et al	(UA1 Collab.)
GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 153B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UAI Collab.) HERZOG 84 PL 148B 355 F. Herzog (WISC) Akso 84B PL 155B 468 erratum F. Herzog (WISC) ARNISON 33 PL 122B 103 G.T.J. Arnison et al. (UAI Collab.)	ALTARELLI		ZPHY C27 617	G. Altarelli, R.K. Ellis. G. Martinelli	(CERN+)
ARNISON 84D PL 1348 469 G.T.J. Arnison et al. (UA1 Collab.) HERZOG 84 PL 148B 355 F. Herzog (WISC) ARO 84B PL 155B 468 erratum F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)	GRAU		PL 154B 283	A. Grau, J.A. Grifols	(BARC)
ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UAI Collab.) HERZOG 84 PL 148B 355 F. Herzog (WISC) AKO 84B PL 155B 46B erratum F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UAI Collab.)	SUZUKI		PL 153B 289	M. Suzuki	(LBL)
ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)	ARNISON		PL 134B 469	G.T.J. Arnison et al.	(UA1 Collab.)
ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)		84	PL 148B 355	F. Herzog	(WISC)
			PL 1008 468 erratum	F. Herzog	(WISC)
UAZ CONAD.)			PL 122B 103	M. Ranner et al.	(UAI CONAD.)
					(Ora Collab.)

Ζ

J = 1

THE Z BOSON

Revised March 2000 by C. Caso (Univ. of Genova) and A. Gurtu (Tata Inst.)

Precision measurements at the Z-boson resonance using electron-positron colliding beams began in 1989 at the SLC and at LEP. During 1989–95, the four CERN experiments have made high-statistics studies of the Z. The availability of longitudinally polarized electron beams at the SLC since 1993 has enabled a precision determination of the effective electroweak mixing angle $\sin^2 \bar{\theta}_W$ that is competitive with the CERN results on this parameter.

The Z-boson properties reported in this section may broadly be categorized as:

- The standard 'lineshape' parameters of the Z consisting of its mass, M_Z , its total width, Γ_Z , and its partial decay widths, $\Gamma(\text{hadrons})$, and $\Gamma(\ell\bar{\ell})$ where $\ell=e,\mu,\tau,\nu$;
- Z asymmetries in leptonic decays and extraction of Z couplings to charged and neutral leptons;
- The b- and c-quark-related partial widths and charge asymmetries which require special techniques;
- Determination of Z decay modes and the search for modes that violate known conservation laws;
- Average particle multiplicities in hadronic Z decay;
- Z anomalous couplings.

Details on Z-parameter determination and the study of $Z\to b\bar{b}, c\bar{c}$ at LEP and SLC are given in this note.

The standard 'lineshape' parameters of the Z are determined from an analysis of the production cross sections of these final states in e^+e^- collisions. The $Z \to \nu \bar{\nu}(\gamma)$ state is identified directly by detecting single photon production and indirectly by subtracting the visible partial widths from the total width. Inclusion in this analysis of the forward-backward asymmetry of charged leptons, $A_{FB}^{(0,\ell)}$, of the τ polarization, $P(\tau)$, and its forward-backward asymmetry, $P(\tau)^{fb}$, enables the separate determination of the effective vector (\bar{g}_V) and axial vector (\bar{g}_A) couplings of the Z to these leptons and the ratio (\bar{g}_V/\bar{g}_A) which is related to the effective electroweak mixing angle $\sin^2\!\bar{\theta}_W$ (see the "Electroweak Model and Constraints on New Physics" Review).

Determination of the b- and c-quark-related partial widths and charge asymmetries involves tagging the b and c quarks. Traditionally this was done by requiring the presence of a prompt lepton in the event with high momentum and high transverse momentum (with respect to the accompanying jet). Precision vertex measurement with high-resolution detectors enabled one to do impact parameter and lifetime tagging. Neural-network techniques have also been used to classify events as b or non-b on a statistical basis using event—shape variables. Finally, the presence of a charmed meson (D/D^*) has been used to tag heavy quarks.

Z-parameter determination

LEP was run at energy points on and around the Zmass (88-94 GeV) constituting an energy 'scan.' The shape of the cross-section variation around the Z peak can be described by a Breit-Wigner ansatz with an energy-dependent total width [1-3]. The three main properties of this distribution, viz., the position of the peak, the width of the distribution, and the height of the peak, determine respectively the values of M_Z , Γ_Z , and $\Gamma(e^+e^-) \times \Gamma(f\overline{f})$, where $\Gamma(e^+e^-)$ and $\Gamma(f\overline{f})$ are the electron and fermion partial widths of the Z. The quantitative determination of these parameters is done by writing analytic expressions for these cross sections in terms of the parameters and fitting the calculated cross sections to the measured ones by varying these parameters, taking properly into account all the errors. Single-photon exchange (σ_{γ}^{0}) and γ -Z interference $(\sigma_{\gamma Z}^{0})$ are included, and the large (~25 %) initial-state radiation (ISR) effects are taken into account by convoluting the analytic expressions over a 'Radiator Function' [1-6] H(s,s'). Thus for the process $e^+e^- \to f\overline{f}$:

$$\sigma_f(s) = \int H(s, s') \ \sigma_f^0(s') \ ds' \tag{1}$$

$$\sigma_f^0(s) = \sigma_Z^0 + \sigma_\gamma^0 + \sigma_{\gamma Z}^0 \tag{2}$$

$$\sigma_{Z}^{0} = \frac{12\pi}{M_{Z}^{2}} \; \frac{\Gamma(e^{+}e^{-})\Gamma(f\overline{f})}{\Gamma_{Z}^{2}} \; \frac{s \; \Gamma_{Z}^{2}}{(s - M_{Z}^{2})^{2} \; + \; s^{2}\Gamma_{Z}^{2}/M_{Z}^{2}} \; (3)$$

$$\sigma_{\gamma}^{0} = \frac{4\pi\alpha^{2}(s)}{3s} Q_{f}^{2} N_{c}^{f} \tag{4}$$

$$\sigma_{\gamma Z}^0 = -\; rac{2\sqrt{2} lpha(s)}{3} \; \left(Q_f G_F N_c^f \mathcal{G}_{Ve} \mathcal{G}_{Vf}
ight)$$

$$\times \frac{(s - M_Z^2)M_Z^2}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2/M_Z^2} \tag{5}$$

where Q_f is the charge of the fermion, $N_c^f=3(1)$ for quark (lepton) and \mathcal{G}_{Vf} is the neutral vector coupling of the Z to the fermion-antifermion pair $f\overline{f}$.

Since $\sigma_{\gamma Z}^0$ is expected to be much less than σ_Z^0 , the LEP Collaborations have generally calculated the interference term in the framework of the Standard Model. This fixing of $\sigma_{\gamma Z}^0$ leads to a tighter constraint on M_Z and consequently a smaller error on its fitted value.

In the above framework, the QED radiative corrections have been explicitly taken into account by convoluting over the ISR and allowing the electromagnetic coupling constant to run [10]: $\alpha(s) = \alpha/(1-\Delta\alpha)$. On the other hand, weak radiative corrections that depend upon the assumptions of the electroweak theory and on the values of the unknown M_{top} and M_{Higgs} are accounted for by absorbing them into the couplings, which are then called the effective couplings \mathcal{G}_V and \mathcal{G}_A (or alternatively the effective parameters of the \star scheme of Kennedy and Lynn [11]).

 \mathcal{G}_{Vf} and \mathcal{G}_{Af} are complex numbers with a small imaginary part. As experimental data does not allow simultaneous extraction of both real and imaginary parts of the effective couplings,

the convention $g_{Af} = \text{Re}(\mathcal{G}_{Af})$ and $g_{Vf} = \text{Re}(\mathcal{G}_{Vf})$ is used and the imaginary parts are added in the fitting code [4].

Defining

$$A_f = 2 \frac{g_{Vf} \cdot g_{Af}}{(g_{Vf}^2 + g_{Af}^2)} \tag{6}$$

the lowest-order expressions for the various lepton-related asymmetries on the Z pole are [7-9] $A_{FB}^{(0,\ell)}=(3/4)A_eA_f$, $P(\tau)=-A_{\tau},\ P(\tau)^{fb}=-(3/4)A_e,\ A_{LR}=A_e$. The full analysis takes into account the energy dependence of the asymmetries. Experimentally A_{LR} is defined as $(\sigma_L-\sigma_R)/(\sigma_L+\sigma_R)$ where $\sigma_{L(R)}$ are the $e^+e^-\to Z$ production cross sections with left-(right)-handed electrons.

The definition of the partial decay width of the Z to $f\overline{f}$ includes the effects of QED and QCD final state corrections as well as the contribution due to the imaginary parts of the couplings:

$$\Gamma(f\overline{f}) = \frac{G_F M_Z^3}{6\sqrt{2}\pi} N_c^f (\left| \mathcal{G}_{Vf} \right|^2 R_A^f + \left| \mathcal{G}_{VA} \right|^2 R_V^f) + \Delta_{ew/QCD}$$
(7)

where R_V^f and R_A^f are radiator factors to account for final state QED and QCD corrections as well as effects due to nonzero fermion masses, and $\Delta_{ew/QCD}$ represents the non-factorizable electroweak/QCD corrections.

S-matrix approach to the Z

While practically all experimental analyses of LEP/SLC data have followed the 'Breit-Wigner' approach described above, an alternative S-matrix-based analysis is also possible. The Z, like all unstable particles, is associated with a complex pole in the S matrix. The pole position is process independent and gauge invariant. The mass, \overline{M}_Z , and width, $\overline{\Gamma}_Z$, can be defined in terms of the pole in the energy plane via [12–15]

$$\bar{s} = \overline{M}_Z^2 - i\overline{M}_Z\overline{\Gamma}_Z \tag{8}$$

leading to the relations

$$\overline{M}_Z = M_Z / \sqrt{1 + \Gamma_Z^2 / M_Z^2}$$

$$\approx M_Z - 34.1 \text{ MeV}$$

$$\overline{\Gamma}_Z = \Gamma_Z / \sqrt{1 + \Gamma_Z^2 / M_Z^2}$$
(9)

$$pprox \Gamma_Z - 0.9 \; \mathrm{MeV} \; .$$
 (10)

Some authors [16] choose to define the Z mass and width via

$$\overline{s} = (\overline{M}_Z - \frac{i}{2}\overline{\Gamma}_Z)^2 \tag{11}$$

which yields $\overline{M}_Z \approx M_Z - 26$ MeV, $\overline{\Gamma}_Z \approx \Gamma_Z - 1.2$ MeV.

The L3 and OPAL Collaborations at LEP (ACCIARRI 97K and ACKERSTAFF 97C) have analyzed their data using the S-matrix approach as defined in Eq. (8), in addition to the conventional one. They observe a downward shift in the Z mass as expected.

Handling the large-angle e^+e^- final state

Unlike other $f\bar{f}$ decay final states of the Z, the e^+e^- final state has a contribution not only from the s-channel but also from the t-channel and s-t interference. The full amplitude is not amenable to fast calculation, which is essential if one has to carry out minimization fits within reasonable computer time. The usual procedure is to calculate the non-s channel part of the cross section separately using the Standard Model programs ALIBABA [17] or TOPAZO [18] with the measured value of $M_{\rm top}$, and $M_{\rm Higgs}=150$ GeV and add it to the schannel cross section calculated as for other channels. This leads to two additional sources of error in the analysis: firstly, the theoretical calculation in ALIBABA itself is known to be accurate to ~ 0.5%, and secondly, there is uncertainty due to the error on $M_{\rm top}$ and the unknown value of $M_{\rm Higgs}$ (100–1000 GeV). These additional errors are propagated into the analysis by including them in the systematic error on the e^+e^- final state. As these errors are common to the four LEP experiments, this is taken into account when performing the LEP average.

Errors due to uncertainty in LEP energy determination [19-23]

The systematic errors related to the LEP energy measurement can be classified as:

- The absolute energy scale error;
- Energy-point-to-energy-point errors due to the nonlinear response of the magnets to the exciting currents.
- Energy-point-to-energy-point errors due to possible higher-order effects in the relationship between the dipole field and beam energy;
- Energy reproducibility errors due to various unknown uncertainties in temperatures, tidal effects, corrector settings, RF status, etc.

Precise energy calibration was done outside normal data taking using the resonant depolarization technique. Run-time energies were determined every 10 minutes by measuring the relevant machine parameters and using a model which takes into account all the known effects, including leakage currents produced by trains in the Geneva area and the tidal effects due to gravitational forces of the Sun and the Moon. The LEP Energy Working Group has provided a covariance matrix from the determination of LEP energies for the different running periods during 1993–1995 [5].

Choice of fit parameters

The LEP Collaborations have chosen the following primary set of parameters for fitting: M_Z , Γ_Z , $\sigma^0_{\rm hadron}$, $R({\rm lepton})$, $A^{(0,\ell)}_{FB}$, where $R({\rm lepton}) = \Gamma({\rm hadrons})/\Gamma({\rm lepton})$, $\sigma^0_{\rm hadron} = 12\pi\Gamma(e^+e^-)\Gamma({\rm hadrons})/M_Z^2\Gamma_Z^2$. With a knowledge of these fitted parameters and their covariance matrix, any other parameter can be derived. The main advantage of these parameters is that they form the **least correlated** set of parameters, so that it becomes easy to combine results from the different LEP experiments.

7

Thus, the most general fit carried out to cross section and asymmetry data determines the nine parameters: M_Z , Γ_Z , $\sigma^0_{\rm hadron}$, R(e), $R(\mu)$, $R(\tau)$, $A^{(0,e)}_{FB}$, $A^{(0,\mu)}_{FB}$, $A^{(0,\tau)}_{FB}$. Assumption of lepton universality leads to a five-parameter fit determining M_Z , Γ_Z , $\sigma^0_{\rm hadron}$, $R({\rm lepton})$, $A^{(0,\ell)}_{FB}$. The use of only cross-section data leads to six- or four-parameter fits if lepton universality is or is not assumed, i.e., $A^{(0,\ell)}_{FB}$ values are not determined.

In order to determine the best values of the effective vector and axial vector couplings of the charged leptons to the Z, the above mentioned nine- and five-parameter fits are carried out with added constraints from the measured values of A_{τ} and A_{e} obtained from τ polarization studies at LEP and the determination of A_{LR} at SLC.

Combining results from the LEP and SLC experiments [24]

Each LEP experiment provides the values of the parameters mentioned above together with the full covariance matrix. The statistical and experimental systematic errors are assumed to be uncorrelated among the four experiments. The sources of **common** systematic errors are i) the LEP energy uncertainties, ii) the effect of theoretical uncertainty in calculating the small-angle Bhabha cross section for luminosity determination and in estimating the non-s channel contribution to the large-angle Bhabha cross section, and iii) common theory errors. Using this information, a full covariance matrix, V, of all the input parameters is constructed and a combined parameter set is obtained by minimizing $\chi^2 = \Delta^T V^{-1} \Delta$, where Δ is the vector of residuals of the combined parameter set to the results of individual experiments.

Non-LEP measurement of a Z parameter, $(e.g., \Gamma(e^+e^-)$ from SLD) is included in the overall fit by calculating its value using the fit parameters and constraining it to the measurement.

Study of $Z \to b\bar{b}$ and $Z \to c\bar{c}$

In the sector of c- and b-physics the LEP experiments have measured the ratios of partial widths $R_b = \Gamma(Z \rightarrow$ $b\bar{b})/\Gamma(Z \to {
m hadrons}) \ {
m and} \ R_c = \Gamma(Z \to c\bar{c})/\Gamma(Z \to {
m hadrons})$ and the forward-backward (charge) asymmetries $A_{FB}^{b\bar{b}}$ and $A_{FB}^{c\bar{c}}$. Several of the analyses have also determined other quantities, in particular the semileptonic branching ratios, $B(b \to \ell)$, $B(b \to c \to \ell^+)$, and $B(c \to \ell)$, the average $B^0 \overline{B}^0$ mixing parameter $\overline{\chi}$ and the probabilities for a c-quark to fragment into a D^+ , a D_s , a D^{*+} , or a charmed baryon. The latter measurements do not concern properties of the Z boson and hence they do not appear in the listing below. However, for completeness, we will report at the end of this minireview their values as obtained fitting the data contained in the Z section. All these quantities are correlated with the electroweak parameters, and since the mixture of b hadrons is different from the one at the $\Upsilon(4S)$, their values might differ from those measured at the $\Upsilon(4S)$.

All the above quantities are correlated to each other since:

- Several analyses (for example the lepton fits) determine more than one parameter simultaneously;
- Some of the electroweak parameters depend explicitly on the values of other parameters (for example R_b depends on R_c);
- Common tagging and analysis techniques produce common systematic uncertainties.

The LEP Electroweak Heavy Flavour Working Group has developed [25] a procedure for combining the measurements taking into account known sources of correlation. The combining procedure determines twelve parameters: the four parameters of interest in the electroweak sector, R_b , R_c , $A_{FB}^{b\bar{b}}$, and $A_{FB}^{c\bar{c}}$ and, in addition, $B(b \to \ell)$, $B(b \to c \to \ell^+)$, $B(c \to \ell)$, $\bar{\chi}$, $f(D^+)$, $f(D_s)$, $f(c_{\rm baryon})$ and $P(c \to D^{*+}) \times B(D^{*+} \to \pi^+ D^0)$, to take into account their correlations with the electroweak parameters. Before the fit both the peak and off-peak asymmetries are translated to the common energy $\sqrt{s} = 91.26$ GeV using the predicted dependence from ZFITTER [6].

Summary of the measurements and of the various kinds of analysis

The measurements of R_b and R_c fall into two classes. In the first, named single-tag measurement, a method for selecting b and c events is applied and the number of tagged events is counted. The second technique, named double-tag measurement, is based on the following principle: if the number of events with a single hemisphere tagged is N_t and with both hemispheres tagged is N_{tt} , then given a total number of N_{had} hadronic Z decays one has:

$$\frac{N_t}{2N_{\text{had}}} = \varepsilon_b R_b + \varepsilon_c R_c + \varepsilon_{uds} (1 - R_b - R_c)$$
 (12)

$$\frac{N_{tt}}{N_{\text{had}}} = \mathcal{C}_b \varepsilon_b^2 R_b + \mathcal{C}_c \varepsilon_c^2 R_c + \mathcal{C}_{uds} \varepsilon_{uds}^2 (1 - R_b - R_c)$$
 (13)

where ε_b , ε_c , and ε_{uds} are the tagging efficiencies per hemisphere for b, c, and light quark events, and $C_q \neq 1$ accounts for the fact that the tagging efficiencies between the hemispheres may be correlated. In tagging the b one has $\varepsilon_b \gg \varepsilon_c \gg \varepsilon_{uds}$, $C_b \approx 1$. Neglecting the c and uds background and the hemisphere correlations, these equations give:

$$\varepsilon_b = 2N_{tt}/N_t \tag{14}$$

$$R_b = N_t^2 / (4N_{tt}N_{had}) . {15}$$

The double-tagging method has thus the great advantage that the tagging efficiency is directly derived from the data, reducing the systematic error of the measurement. The backgrounds, dominated by $c\bar{c}$ events, obviously complicate this simple picture, and their level must still be inferred by other means. The rate of charm background in these analyses depends explicitly on the value of R_c . The correlations in the tagging efficiencies between the hemispheres (due for instance to correlations in momentum between the b hadrons in the two hemispheres) are small but nevertheless lead to further systematic uncertainties.

The measurements in the b- and c-sector can be essentially grouped in the following categories:

- Lifetime (and lepton) double-tagging measurements of R_b . These are the most precise measurements of R_b and obviously dominate the combined result. The main sources of systematics come from the charm contamination and from estimating the hemisphere b-tagging efficiency correlation. The charm rejection has been improved (and hence the systematic errors reduced) by using either the information of the secondary vertex invariant mass or the information from the energy of all particles at the secondary vertex and their rapidity;
- Analyses with $D/D^{*\pm}$ to measure R_c . These measurements make use of several different tagging techniques (inclusive/exclusive double tag, exclusive double tag, reconstruction of all weakly decaying charmed states) and no assumptions are made on the energy dependence of charm fragmentation;
- Lepton fits which use hadronic events with one or more leptons in the final state to measure A^{b̄̄}_{FB} and A^{c̄̄}_{FB}. Each analysis usually gives several other electroweak parameters. The dominant sources of systematics are due to lepton identification, to other semileptonic branching ratios and to the modeling of the semileptonic decay;
- Measurements of A^{b\bar{b}}_{FB} using lifetime tagged events
 with a hemisphere charge measurement. Their contribution to the combined result has roughly the
 same weight as the lepton fits;
- Analyses with $D/D^{*\pm}$ to measure $A_{FB}^{c\bar{c}}$ or simultaneously $A_{FB}^{b\bar{b}}$ and $A_{FB}^{c\bar{c}}$;
- Measurements of A_b and A_c from SLD, using several tagging methods (lepton, kaon, D/D^* , and vertex mass). These quantities are directly extracted from a measurement of the left-right forward-backward asymmetry in $c\bar{c}$ and $b\bar{b}$ production using a polarized electron beam.

Averaging procedure

All the measurements are provided by the LEP Collaborations in the form of tables with a detailed breakdown of the systematic errors of each measurement and its dependence on other electroweak parameters.

The averaging proceeds via the following steps:

 Define and propagate a consistent set of external inputs such as branching ratios, hadron lifetimes, fragmentation models etc. All the measurements are also consistently checked to ensure that all use a common set of assumptions (for instance since the QCD corrections for the forward-backward asymmetries are strongly dependent on the experimental conditions, the data are corrected before combining);

- Form the full (statistical and systematic) covariance matrix of the measurements. The systematic correlations between different analyses are calculated from the detailed error breakdown in the measurement tables. The correlations relating several measurements made by the same analysis are also used;
- Take into account any explicit dependence of a measurement on the other electroweak parameters. As an example of this dependence we illustrate the case of the double-tag measurement of R_b , where c-quarks constitute the main background. The normalization of the charm contribution is not usually fixed by the data and the measurement of R_b depends on the assumed value of R_c , which can be written as:

$$R_b = R_b^{\text{meas}} + a(R_c) \frac{(R_c - R_c^{\text{used}})}{R_c} , \qquad (16)$$

where R_b^{meas} is the result of the analysis which assumed a value of $R_c = R_c^{\text{used}}$ and $a(R_c)$ is the constant which gives the dependence on R_c ;

• Perform a χ^2 minimization with respect to the combined electroweak parameters.

After the fit the average peak asymmetries $A_{FB}^{c\bar{c}}$ and $A_{FB}^{b\bar{b}}$ are corrected for the energy shift from 91.26 GeV to M_Z and for QED (initial state radiation), γ exchange, and γZ interference effects to obtain the corresponding pole asymmetries $A_{FB}^{0,c}$ and $A_{cD}^{0,c}$.

This averaging procedure, using the twelve parameters described above and applied to the data contained in the Z particle listing below, gives the following results:

$$R_b^0 = 0.21644 \pm 0.00075$$
 $R_c^0 = 0.1671 \pm 0.0048$
 $A_{FB}^{0,c} = 0.1003 \pm 0.0022$
 $A_{FB}^{0,c} = 0.0701 \pm 0.0045$
 $B(b \to \ell) = 0.1056 \pm 0.0026$
 $B(b \to c \to \ell^+) = 0.0807 \pm 0.0034$
 $B(c \to \ell) = 0.0990 \pm 0.0037$
 $\overline{\chi} = 0.1177 \pm 0.0055$
 $f(D^+) = 0.239 \pm 0.016$
 $f(D_s) = 0.116 \pm 0.025$
 $f(c_{\text{baryon}}) = 0.084 \pm 0.023$
 $P(c \to D^{*+}) \times B(D^{*+} \to \pi^+ D^0) = 0.1657 \pm 0.0057$

References

- 1. R.N. Cahn, Phys. Rev. **D36**, 2666 (1987).
- F.A. Berends et al., "Z Physics at LEP 1", CERN Report 89-08 (1989), Vol. 1, eds. G. Altarelli, R. Kleiss, and C. Verzegnassi, p. 89.
- 3. A. Borrelli et al., Nucl. Phys. B333, 357 (1990).
- 4. D. Bardin and G. Passarino, "Upgrading of Precision Calculations for Electroweak Observables," hep-ph/9803425; D. Bardin, G. Passarino, and M. Grünewald, "Precision Calculation Project Report," hep-ph/9902452.
- 5. R. Billen et al. (Working Group on LEP Energy), Eur. Phys. J. C6, 187 (1999).
- 6. D. Bardin et al., Nucl. Phys. **B351**, 1 (1991).
- 7. M. Consoli et al., "Z Physics at LEP 1", CERN Report 89-08 (1989), Vol. 1, eds. G. Altarelli, R. Kleiss, and C. Verzegnassi, p. 7.
- 8. M. Bohm et al., ibid, p. 203.
- 9. S. Jadach et al., ibid, p. 235.
- 10. G. Burgers et al., ibid, p. 55.
- 11. D.C. Kennedy and B.W. Lynn, SLAC-PUB 4039 (1986, revised 1988).
- 12. R. Stuart, Phys. Lett. **B262**, 113 (1991).
- 13. A. Sirlin, Phys. Rev. Lett. 67, 2127 (1991).
- 14. A. Leike, T. Riemann, and J. Rose, Phys. Lett. B273, 513
- 15. See also D. Bardin et al., Phys. Lett. **B206**, 539 (1988).
- 16. S. Willenbrock and G. Valencia, Phys. Lett. B259, 373 (1991).
- 17. W. Beenakker, F.A. Berends, and S.C. van der Marck, Nucl. Phys. **B349**, 323 (1991).
- 18. K. Miyabayashi et al. (TOPAZ Collaboration) Phys. Lett. **B347**, 171 (1995).
- 19. R. Assmann et al. (Working Group on LEP Energy), Z. Phys. C66, 567 (1995).
- 20. L. Arnaudon et al. (Working Group on LEP Energy and LEP Collaborations), Phys. Lett. B307, 187 (1993).
- 21. L. Arnaudon et al. (Working Group on LEP Energy), CERN-PPE/92-125 (1992).
- 22. L. Arnaudon et al., Phys. Lett. B284, 431 (1992).
- 23. R. Bailey et al., 'LEP Energy Calibration' CERN-SL 90-
- The LEP Collaborations: ALEPH, DELPHI, L3, OPAL, the LEP Electroweak Working Group, and the SLD Heavy Flavour Group:

CERN-EP/2000-016 (1999); CERN-EP/99-15 (1998); CERN-PPE/97-154 (1997); CERN-PPE/96-183 (1996); CERN-PPE/95-172 (1995); CERN-PPE/94-187 (1994); CERN-PPE/93-157 (1993).

The LEP Experiments: ALEPH, DELPHI, L3, and OPAL Nucl. Instrum. Methods A378, 101 (1996).

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the $\it Z$ boson"). The fit is performed using the Z mass and width, the Z hadronic pole cross section, the ratios of hadronic to leptonic partial widths, and the Z pole forward-backward lepton asymmetries. This set is believed to be most free of correlations

The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. The value is 34 MeV greater than the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator. Also the LEP experiments have generally assumed a fixed value of the $\gamma - \lambda$ interferences term based on the standard model. Keeping this term as free parameter leads to a somewhat larger error on the fitted \boldsymbol{Z} mass. See ACCIARRI 97K and ACKERSTAFF 97C for a detailed investigation of both

VALUE (EVTS	DOCUMENT ID		TECN	COMMENT
91.1882	± 0.0022	OUR FIT					
91.1863	± 0.0028		4.08M	¹ ABREU	00F	DLPH	Ecm = 88-94 GeV
91.1898	±0.0031		3.96M	² ACCIARRI	00c	L3	Eee = 88-94 GeV
91.1885	± 0.0031		4.57M	³ BARATE	00C	ALEP	Eee = 88-94 GeV
\	Ne do no	t use the fo	ollowing da	ta for averages, fit	s, lin	nits, etc.	• • •
91.193	±0.010		1.2M	4 ACCIARRI	97ĸ	L3	Ecm = LEP1 + 130-136 GeV +
91.185	±0.010			⁵ ACKERSTAFF	97c	OPAL	161-172 GeV Eee LEP1 + 130-136 GeV + 161 GeV
91.162	±0.011		1.2M	⁶ ACCIARRI	96B	L3	Repl. by ACCIA- RRI 97K
91.192	±0.011		1.33M	⁷ ALEXANDER	96x	OPAL	Repl. by ACKER- STAFF 97c
91.151	$800.0 \pm$			⁸ MIYABAYASHI	95	TOPZ	Ecm = 57.8 GeV
91.187	±0.007	±0.006	1.16M	⁹ ABREU	94	DLPH	Repl. by ABREU 00F
91.195	±0.006	±0.007	1.19M	⁹ ACCIARRI	94	L3	Repl. by ACCIA- RRI 00c
91.182	± 0.007	± 0.006	1.33M	9 AKERS	94	OPAL	Ecm = 88-94 GeV
91.187	± 0.007	±0.006	1.27M	⁹ BU S KULIC	94	ALEP	Repl. by BARATE 00c
91.74	±0.28	±0.93	156	¹⁰ ALITTI	92B	UA2	$E_{Cm}^{p\bar{p}} = 630 \text{ GeV}$
89.2	+2.1 -1.8			¹¹ ADACHI	90F	RVUE	
90.9	± 0.3	±0.2	188	¹² ABE	89C	CDF	$E_{CM}^{p\overline{p}} = 1.8 \; TeV$
91.14	± 0.12		480	¹³ ABRAMS	89B		Eee = 89-93 GeV
93.1	± 1.0	± 3.0	24	¹⁴ ALBAJAR	89	UA1	$E_{Cm}^{p\widetilde{p}} = 546,630 \; GeV$

¹ The error includes 1.6 MeV due to LEP energy uncertainty.

5ACKERSTAFF 97C obtain this using the S-matrix formalism for a combined fit to their cross-section and asymmetry data at the Z peak (AKERS 94) and their data at 130, 136, and 161 GeV. The authors have corrected the measurement for the 34 MeV shift with respect to the Breit-Wigner fits.

6 ACCIARRI 96B interpret the s-dependence of the cross sections and lepton forward-backward asymmetries in the framework of the S-matrix ansatz. The 130–136 GeV data constrains the γZ interference terms. As expected, this result is below the mass values obtained with a standard Breit-Wigner parametrization.

7 ALEXANDER 96x obtain this using the S-matrix formalism for a combined fit to their cross-section and asymmetry data at the Z peak (AKERS 94) and their data at 130 and 136 GeV. The authors have corrected the measurement for the 34 MeV shift with respect

⁸ MIYABAYASHI 95 combine their low energy total hadronic cross-section measurement with the ACTON 930 data and perform a fit using an S-matrix formalism. As expected, this result is below the mass values obtained with the standard Breit-Wigner parametriza-

The second error of 6.3 MeV is due to a common LEP energy uncertainty.

- 10 Enters fit through W/Z mass ratio given in the W Particle Listings. The ALITTI 92B systematic error (± 0.93) has two contributions: one (± 0.92) cancels in m_W/m_Z and one (± 0.12) is noncancelling. These were added in quadrature
- 11 ADACHI 90F use a Breit-Wigner resonance shape fit and combine their results with published data of PEP and PETRA
- 12 First error of ABE 89 is combination of statistical and systematic contributions; second
- is mass scale uncertainty.

 13 ABRAMS 898 uncertainty includes 35 MeV due to the absolute energy measurement.
- ¹⁴ ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.

² The error includes 1.8 MeV due to LEP energy uncertainty.

³BARATE 00c error includes approximately 2.4 MeV due to statistics, 0.2 MeV due to experimental systematics, and 1.7 MeV due to LEP energy uncertainty.

⁴ ACCIARRI 97k interpret the s-dependence of the cross sections and lepton forward-backward asymmetries in the framework of the S-matrix formalism with a combined fit to their cross section and asymmetry data at the Z peak (ACCIARRI 94) and their data at 130, 136, 161, and 172 GeV. The authors have corrected the measurement for the 34.1 MeV shift with respect to the Breit-Wigner fits. The error contains a contribution of ± 3 MeV due to the uncertainty on the γZ interference.

Z WIDTH

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson").

(GeV)		EVT5	DOCUMENT ID		TECN	COMMENT
± 0.0026	OUR FIT	•				
± 0.0041	4	M80.	¹⁵ ABREU	00F	DLPH	E_{cm}^{ee} = 88-94 GeV
±0.0042	: 3	3.96M	¹⁶ ACCIARRI	00c	L3	Ecm = 88-94 GeV
±0.0043	. 4	1.57M	¹⁷ BARATE	00 C	ALEP	E ^{ee} _{Cm} = 88−94 GeV
We do n	ot use the	followin	g data for averages	, fits	, limits,	etc. • • •
±0.010	:	1.2M	¹⁸ ACCIARRI	97K	L3	Eem = LEP1 + 130-136 GeV + 161-172 GeV
±0.21	±0.06		¹⁹ ABREU	96R	DLPH	Eee 91.2 GeV
±0.010	:	1.2M	²⁰ ACCIARRI	96B	L3	Repl. by ACCIARRI 97k
± 0.011	± 0.00451	.16M		94	DLPH	Repl. by ABREU 00F
± 0.009	± 0.00451	.19M	²¹ ACCIARRI	94	L3	Repl. by ACCIARRI 00c
± 0.011	± 0.00451	.33M	²¹ AKERS	94	OPAL	Ecm = 88-94 GeV
±0.011	±0.00451	.27M	²¹ BUSKULIC	94	ALEP	Repl. by BARATE 00c
± 0.8	± 1.0	188	ABE	89c	CDF	$E_{\text{cm}}^{\rho \overline{\rho}} = 1.8 \text{ TeV}$
+0.45 -0.35		480	²² ABRAMS	89в	MRK2	<i>E</i> cm = 89–93 GeV
$+1.2 \\ -1.0$	± 1.3	24	²³ ALBAJAR	89	UA1	$E_{\text{CM}}^{\rho \overline{\rho}} = 546,630 \text{ GeV}$
±2.0	±1.0	25	²⁴ ANSARI	87	UA2	$E_{cm}^{p\overline{p}} = 546,630 \text{ GeV}$
	$\begin{array}{l} \pm 0.0026 \\ \pm 0.0041 \\ \pm 0.0041 \\ \pm 0.0042 \\ \pm 0.0043 \\ \text{We do n} \\ \pm 0.010 \\ \pm 0.010 \\ \pm 0.011 \\ \pm 0.009 \\ \pm 0.011 \\ \pm 0.009 \\ \pm 0.011 \\ \pm 0.009 \\ \pm 0.011 \\ \pm 0.041 \\ \pm 0.011 \\ \pm 0.009 \\ \pm 0.011 \\ \pm$	±0.0026 OUR FIT ±0.0041 ±0.0042 ±0.0043 4 ±0.0043 4 ±0.010 ±0.011 ±0.010 ±0.011 ±0.0045 ±0.010 ±0.011 ±0.0045 ±0.011 ±0.0045 ±0.011 ±0.0045 ±0.011 ±0.0045 ±0.011 ±0.0045 ±0.011 ±0.0045 ±0.011 ±0.0045 ±0.011 ±0.0045 ±0.011	\pm 0.0026 OUR FIT \pm 0.0041 4.08 M \pm 0.0042 3.96 M \pm 0.0043 4.57 M We do not use the followin \pm 0.010 1.2 M \pm 0.011 \pm 0.004 51.16 M \pm 0.011 \pm 0.00451.19 M \pm 0.011 \pm 0.00451.33 M \pm 0.011 \pm 0.00451.27 M \pm 0.011 \pm 0.00451.27 M \pm 0.011 \pm 0.0451.27 M \pm 0.011 \pm 0.0451.27 M \pm 0.011 \pm 0.0451.27 M \pm 0.11 \pm 0.0451.27 M \pm 0.11 \pm 0.0451.27 M \pm 0.11 \pm 0.12 480	±0.0026 OUR FIT ±0.0041	### 10.0026 OUR FIT ### 0.0041	### 10.0026 OUR FIT ### 20.0041

Z DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁ Γ ₂ Γ ₃ Γ ₄ Γ ₅ Γ ₆ Γ ₇ Γ ₈ Γ ₉	$\begin{array}{ll} e^+ e^- \\ \mu^+ \mu^- \\ \tau^+ \tau^- \\ \ell^+ \ell^- \\ \text{invisible} \\ \text{hadrons} \\ \left(u \overline{u} + c \overline{c} \right) / 2 \\ \left(d \overline{d} + s \overline{s} + b \overline{b} \right) / 3 \\ c \overline{c} \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) %
Γ ₁₀ Γ ₁₁	ь <u>Б</u> ь <u>Б</u> ь <u>Б</u>	(15.13 ± 0.05) (4.2 ± 1.6)) %) × 10 ⁻⁴
Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₅ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉ Γ ₂₀	$\begin{array}{c} \mathcal{E}\mathcal{E}\mathcal{E}\\ \pi^0\gamma\\ \gamma\\ \eta\gamma\\ \omega\gamma\\ \eta'(958)\gamma\\ \gamma\gamma\\ \gamma\gamma\gamma\\ \pi^\pm W^\mp\\ \rho^\pm W^\mp\\ J/\psi(1S)X \end{array}$	<pre></pre>	% CL=95% × 10 ⁻⁵ CL=95% × 10 ⁻⁵ CL=95% × 10 ⁻⁴ CL=95% × 10 ⁻⁵ CL=95%
	$\psi(2S)X$ $\chi_{c1}(1P)X$	(1.60 ± 0.29) (2.9 ± 0.7)	$) \times 10^{-3}$ $) \times 10^{-3}$

Γ ₂₄	$\chi_{c2}(1P)X$		< 3.2	$\times 10^{-3} \text{ CL} = 90\%$
	$\Upsilon(1S) \times + \Upsilon(2S) \times$			0.5) × 10 ⁻⁴
- 23	+ \((3S) \(\text{X} \)		(=	,
Γ_{26}	r(1S)X		< 4.4	$\times 10^{-5} \text{ CL} = 95\%$
Γ ₂₇	r(25)X		< 1.39	$\times 10^{-4} \text{ CL} = 95\%$
Γ ₂₈	<i>τ</i> (3 <i>s</i>)x		< 9.4	$\times 10^{-5} \text{ CL} = 95\%$
Γ29	$(D^0 / \overline{D}^0) \times$		(20.7 ±	2.0) %
Γ30	D±X ′		•	1.7) %
Γ31	D*(2010)±X		[b] (11.4 ±	1.3) %
Γ ₃₂	BX		•••	,
Γ33	B*X			
Γ ₃₄	$B_s^0 X$		seen	
Γ ₃₅	$B_c^+ X$		searched for	
Γ ₃₆	anomalous $\gamma+$ hadrons		[c] < 3.2	$\times 10^{-3} \text{ CL} = 95\%$
	$e^+e^-\gamma$		[c] < 5.2	$\times 10^{-4} \text{ CL} = 95\%$
Γ ₃₈	$\mu^+\mu^-\gamma$		[c] < 5.6	$\times 10^{-4} \text{ CL} = 95\%$
Γ_{39}	$\tau^+\tau^-\gamma$		[c] < 7.3	$\times 10^{-4} \text{ CL} = 95\%$
Γ_{40}	$\ell^+\ell^-\gamma\gamma$		[d] < 6.8	× 10 ⁻⁶ CL=95%
Γ ₄₁	वविभग		[d] < 5.5	$\times 10^{-6} \text{ CL} = 95\%$
	$ u \overline{ u} \gamma \gamma$		[d] < 3.1	$\times 10^{-6} \text{ CL} = 95\%$
Γ_{43}	$e^{\pm}\mu^{\mp}$	LF	[b] < 1.7	$\times 10^{-6} \text{ CL} = 95\%$
Γ_{44}	$e^{\pm} au^{\mp}$	LF	[b] < 9.8	$\times 10^{-6} \text{ CL} = 95\%$
	$\mu^{\pm} au^{\mp}$	LF	[b] < 1.2	$\times 10^{-5} \text{ CL} = 95\%$
Γ ₄₆	pe	L,B	< 1.8	$\times 10^{-6} \text{ CL} = 95\%$
Γ ₄₇	ρμ	L,B	< 1.8	$\times 10^{-6} \text{ CL} = 95\%$

- [a] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [b] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [c] See the Particle Listings below for the γ energy range used in this mea-
- [d] For $m_{\gamma\gamma}=$ (60 \pm 5) GeV.

Z PARTIAL WIDTHS

 $\Gamma(e^+e^-)$ For the LEP experiments, this parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.'

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
84.015 ± 0.139 OUR FIT				
83.54 ±0.27	117.8k	ABREU	00F DLPH	<i>E</i> ee = 88-94 GeV
84.16 ±0.22	124.4k	ACCIARRI	00C L3	<i>Ec</i> m= 88-94 GeV
83.88 ±0.19		BARATE	00c ALEP	<i>Ec</i> m= 88-94 GeV
$82.89 \pm 1.20 \pm 0.89$		²⁵ ABE	95」SLD	Ecm= 91.31 GeV
• • • We do not use the f	ollowing da	ta for averages, fit	s, limits, etc.	• • •
83.63 ±0.53	42k	AKERS	94 OPAL	Ecm = 88-94 GeV

 $^{^{25}}$ ABE 95J obtain this measurement from Bhabha events in a restricted fiducial region to improve systematics. They use the values 91.187 and 2.489 GeV for the $\it Z$ mass and total decay width to extract this partial width.

 $\Gamma(\mu^+\mu^-)$ This parameter is not directly used in the overall fit but is derived using the fit results;

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
84.003 ± 0.210 OUF	FIT				
84.48 ±0.40	157.6k	ABREU	00F DLPF	I <i>E</i> ee = 88-94 GeV	
83.95 ±0.44	113.4k	ACCIARRI	00c L3	Eee = 88-94 GeV	
84.02 ±0.28		BARATE	00c ALEP	Eee = 88-94 GeV	
• • • We do not u	se the following	g data for averag	es, fits, limit	s, etc. • • •	
83.83 ±0.65	57k	AKERS	94 OPAL	Eee = 88-94 GeV	

This parameter is not directly used in the overall fit but is derived using the fit results;

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
84.113 ± 0.245 OUR	FIT				
83.71 ±0.58	104.0k	ABREU	00F DLPH	1 <i>Ecm</i> = 88-94 GeV	
84.23 ±0.58	103.0k	ACCIARRI	00c L3	<i>E^{ee}</i> _{Cm} = 88-94 GeV	
84.38 ± 0.31		BARATE	00c ALEF	Eee = 88-94 GeV	
• • • We do not us	e the following	g data for averag	es, fits, limit	s, etc. • • •	
82.90 ±0.77	47k	AKERS	94 OPAL	. Ecm = 88-94 GeV	

¹⁶ The error includes 1.3 MeV due to LEP energy uncertainty.

 ¹⁰ The error includes 1.3 MeV due to LEP energy uncertainty.
 17 BARATE 00C error includes approximately 3.8 MeV due to statistics, 0.9 MeV due to experimental systematics, and 1.3 MeV due to LEP energy uncertainty.
 18 ACCIARRI 97k interpret the s-dependence of the cross sections and lepton forward-backward asymmetries in the framework of the S-matrix formalism with a combined fit to their cross section and asymmetry data at the Z peak (ACCIARRI 94) and their data at 130, 136, 161, and 172 GeV. The authors have corrected the measurement for the 0.9 MeV shift with respect to the Breit-Wigner fits.
 19 ARBELL 96c obtain this value from a study of the interference between initial and final

 $^{^{19}\}mathsf{ABREU}$ 96R obtain this value from a study of the interference between initial and final

state radiation in the process $e^+e^- \to Z \to \mu^+\mu^-$. 20 ACCIARRI 968 interpret the s-dependence of the cross sections and lepton forward-backward asymmetries in the framework of the S-matrix ansatz. The 130–136 GeV data constrains the γZ interference terms. The fitted width is expected to be 0.9 MeV less than that obtained using the standard Breit-Wigner parametrization (see 'Note on the Z Boscot')

²¹ The second error of 4.5 MeV is due to a common LEP energy uncertainty.

²² ABRAMS 89B uncertainty includes 50 MeV due to the miniSAM background subtraction

error. 23 ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.

events. The property of the state of the property of the prop

Ζ

$\Gamma(\ell^+\ell^-)$	Γ4
to any the tight and to define a cash a control of control for the december of the control of	

In our fit $\Gamma(\ell^+\ell^-)$ is defined as the partial Z width for the decay into a pair of massless charged leptons. This parameter is not directly used in the 5-parameter fit assuming lepton universality but is derived using the fit results. See the 'Note on the Z Boson.

VALUE (MeV)	EVTS	DOCUMENT ID	<u>TECN</u>	COMMENT	
84.057±0.099 OUF	FIT				
83.85 ±0.17	379.4k	ABREU	00F DLPH	Ecm = 88-94 GeV	
84.14 ± 0.17	340.8k	ACCIARRI	00c L3	Ecm= 88-94 GeV	
84.02 ± 0.15	500k	BARATE	00c ALEP	<i>E</i> ^{ee} = 88−94 GeV	
• • • We do not u	se the following	data for averag	es, fits, limits	i, etc. • • •	
83.55 ±0.44	146k	AKERS	94 OPAL	Eee = 88-94 GeV	

T(invisible)

We use only direct measurements of the invisible partial width using the single photon channel to obtain the average value quoted below. OUR FIT value is obtained as a difference between the total and the observed partial widths assuming lepton

VALU	E (MeV	2	EVTS	DOCUMENT ID		TECN	COMMENT
499.	4± 1.	7 OUR	FIT				
503	±16	OUR	AVERAGE Er	ror includes scale	factor	of 1.2.	
498	± 12	±12	1791	ACCIARRI	98G	L3	<i>E^{ee}</i> = 88-94 GeV
539	±26	±17	410	AKERS	95⊂	OPAL	<i>E</i> cm = 88−94 GeV
450	± 34	± 34	258	BUSKULIC	93L	ALEP	Eee = 88-94 GeV
540	± 80	± 40	52	ADEVA	92	L3	Ecm = 88-94 GeV
• •	• We	do not	use the followin	g data for average	s, fits,	limits,	etc. • • •
498.	1 ± 3.	2		²⁶ ABREU	00F	DLPH	Eee = 88-94 GeV
499.	1 ± 2.	9		²⁶ ACCIARRI	0 0c	L3	Ecm = 88-94 GeV
499.	1 ± 2.	5		²⁶ BARATE	00c	ALEP	Eee = 88-94 GeV
490.	3± 7.	3		²⁶ AKERS	94	OPAL	Ecm = 88-94 GeV
524	+40	+20	172	27 ADRIANI	92F	1 3	Rent by ACCIARRI 980

 $^{^{26}}$ This is an indirect determination of $\Gamma(\text{invisible})$ from a fit to the visible Z decay modes. 27 ADRIANI 92E improves but does not supersede ADEVA 92, obtained with 1990 data

T(hadrons)

This parameter is not directly used in the 5-parameter fit assuming lepton universality, but is derived using the fit results. See the 'Note on the Z Boson.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
1743.8± 2.2 OUR	FIT			
1738.1 ± 4.0	3.70M	ABREU	00F DLPH	<i>E</i> ^{ee} = 88−94 GeV
1751.1 ± 3.8	3.54M	ACCIARRI	00c L3	<i>E</i> ee = 88–94 GeV
1744.0± 3.4	4.07M	BARATE	00c ALEP	<i>E</i> ^{ee} cm= 88−94 GeV
• • • We do not u	se the following	g data for average	es, fits, limits,	etc. • • •
1741 ±10	1.19M	²⁸ AKERS	94 OPAL	<i>E</i> ^{ee} cm= 88−94 GeV
28 AKERS 94 assu	imes lepton uni	versality. Without	this assumpt	tion, it becomes 1742 \pm 11

Z BRANCHING RATIOS

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson").

$\Gamma(\text{hadrons})/\Gamma(e^+e^-)$				Γ_6/Γ_1
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
20.766 ± 0.056 OUR FIT				
$20.88 ~\pm~ 0.12$	117.8k	ABREU	00F DLPH	<i>E</i> ^{ee} cm≃ 88−94 GeV
20.816± 0.089	124.4k	ACCIARRI	00C L3	<i>E</i> ^{ee} _{Cm} = 88–94 GeV
20.677 ± 0.075		²⁹ BARATE	OOC ALEP	Eee = 88-94 GeV
\bullet \bullet \bullet We do not use the	following o	lata for averages, fi	ts, limits, etc	. • • •
20.74 ± 0.18	31.4k	ABREU	94 DLPH	Repl. by ABREU 00F
20.96 ± 0.15	38k	ACCIARRI	94 L3	Repl. by ACCIA- RRI 00C
20.83 ± 0.16	42k	AKERS	94 OPAL	$E_{\rm CM}^{ee} = 88-94 \; {\rm GeV}$
20.59 ± 0.15	45.8k	BUSKULIC	94 ALEP	Repl. by BARATE 00c
27.0 +11.7 - 8.8	12	³⁰ ABRAMS	890 MRK2	Eee = 89-93 GeV
29				

BARATE 00c error includes approximately 0.062 due to statistics, 0.033 due to experimental systematics, and 0.026 due to the theoretical uncertainty in t-channel pre-

 3.344 ± 0.026

 $\Gamma(\text{hadrons})/\Gamma(\mu^+\mu^-) \qquad \qquad \Gamma_6/\Gamma_2$ OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson").

VALUE 20.769 ± 0.041 OUR FIT	EVTS	DOCUMENT ID	TECN	COMMENT
20.65 ± 0.08	157.6k	ABREU	00F DLPH	Eee = 88-94 GeV
20.861 ± 0.097	113.4k	ACCIARRI	00¢ L3	Ecm = 88-94 GeV
20.799 ± 0.056		31 BARATE	00c ALEP	Eee = 88-94 GeV

• • •	We do not use	the following da	ta for averages,	fits, lir	n its, etc.	• • •
20.54	± 0.14	45.6k	ABREU	94	DLPH	Repl. by ABREU 00F
21.02	± 0.16	34k	ACCIARRI	94		Repl. by ACCIA- RRI 00c
20.78	± 0.11	57k	AKERS	94	OPAL	RRI 00C <i>Eee</i> = 88-94 GeV
	±0.15	46.4k	BUSKULIC	94	ALEP	Repl. by BARATE 00c
18.9	+7.1 -5.3	13	³² ABRAMS	89 D	MRK2	E ^{ee} _{CM} = 89–93 GeV

 $^{^{31}\,\}mathrm{BARATE}$ 00c error includes approximately 0.053 due to statistics and 0.021 due to experimental systematics.

 $\frac{\Gamma(\text{hadrons})/\Gamma(\tau^+\tau^-)}{\text{OUR FIT is obtained using the fit procedure and correlations as determined by the}}$ LEP Electroweak Working Group (see the "Note on the Z boson").

VALUE	EVT5	DOCUMENT ID		TECN	COMMENT
20.742 ± 0.051 OUR FIT					
20.84 ±0.13	104.0k	ABREU	00F	DLPH	E ^{ee} _{CM} = 88-94 GeV
20.792 ± 0.133	103.0k	ACCIARRI	00c	L3	Eee = 88-94 GeV
20.707 ± 0.062	33	BARATE	00c	ALEP	Eee = 88-94 GeV
• • • We do not use the f	ollowing data	for averages, fit	s, lin	nits, etc.	• • •
20.68 ±0.18	25k	ABREU	94	DLPH	Repl. by ABREU 00F
20.80 ±0.20	25k	ACCIARRI	94	L3	Repl. by ACCIA- RRI 00c
21.01 ± 0.15	47k	AKERS	94	OPAL	Eee = 88-94 GeV
20.70 ±0.16	45.1k	BUSKULIC	94	ALEP	Repl. by BARATE 00c
$15.2 \begin{array}{c} +4.8 \\ -3.9 \end{array}$	21 34	ABRAMS	89 D	MRK2	<i>E</i> ee = 89-93 GeV

 $^{^{33}\,\}mathrm{BARATE}$ 00c error includes approximately 0.054 due to statistics and 0.033 due to experimental systematics.

 Γ_6/Γ_4

$\Gamma(\text{hadrons})/\Gamma(\ell^+\ell^-)$

 ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.

Our fit result is obtained requiring lepton universality. **EVTS** DOCUMENT ID TECN COMMENT 20.744 ± 0.029 OUR FIT 00F DLPH Eee 88-94 GeV 20.730 ± 0.060 379.4k ABREU 20.810 ± 0.060 340.8k ACCIARRI 00C L3 Eee = 88-94 GeV 35 BARATE 20.725 ± 0.039 500k 00C ALEP Ecm = 88-94 GeV • • • We do not use the following data for averages, fits, limits, etc. • • • 20.62 ±0.10 ABREU 94 DLPH Repl. by ABREU 00F 20.93 ± 0.10 97k ACCIARRI 94 L3 Repl. by ACCIARRI 00C 94 OPAL $E_{
m CM}^{ee} = 88-94 \; {
m GeV}$ 20.835 ± 0.086 146k AKERS 20.69 ±0.09 137.3k BUSKULIC 94 ALEP Repl. by BARATE 00c $18.9 \begin{array}{c} +3.6 \\ -3.2 \end{array}$ ABRAMS 89в MRK2 Ee 89-93 GeV 46

 35 BARATE 00C error includes approximately 0.033 due to statistics, 0.020 due to experimental systematics, and 0.005 due to the theoretical uncertainty in t-channel pre-

 $\Gamma(\text{hadrons})/\Gamma_{\text{total}}$ This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.' DOCUMENT ID TECN COMMENT EVTS 69.886±0.065 OUR FIT

BUSKULIC 94 ALEP Eem = 88-94 GeV $\Gamma(e^+e^-)/\Gamma_{\text{total}}$

This parameter is not directly used in the overall fit but is derived using the fit results: see the 'Note on the Z Boson.' VALUE (%) EVTS DOCUMENT ID TECN COMMENT 3.3671 ±0.0047 OUR FIT

 3.383 ± 0.013 45.8k BUSKULIC 94 ALEP Ecm = 88-94 GeV This parameter is not directly used in the overall fit but is derived using the fit results;

see the 'Note on the Z Boson.'

VALUE (%)

EVTS DOCUMENT ID TECN COMMENT EVTS 3.3666 ± 0.0079 OUR FIT

BUSKULIC 94 ALEP $E_{CM}^{ee} = 88-94 \text{ GeV}$ $\Gamma(\tau^+\tau^-)/\Gamma_{\text{total}}$

46.4k

This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.' DOCUMENT ID TECN COMMENT EVTS 3.3710±0.0094 OUR FIT

 • • We do not use the following data for averages, fits, limits, etc. • • • BUSKULIC 94 ALEP Eee = 88-94 GeV 45.1k 3.366 ± 0.028

diction.

30 ABRAMS 89D have included both statistical and systematic uncertainties in their quoted

³² ABRAMS 89D have included both statistical and systematic uncertainties in their quoted

³⁴ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted

$\Gamma(\ell^+\ell^-)/\Gamma_{\text{total}}$

 Γ_4/Γ

 ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.

Our fit result assumes lepton universality.

This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.' DOCUMENT ID TECN COMMENT

3.3688 ± 0.0026 OUR FIT

• • We do not use the following data for averages, fits, limits, etc.

 3.375 ± 0.009

137.3k

BUSKULIC 94 ALEP Ecm = 88-94 GeV

 $\frac{\Gamma(\text{invisible})}{\Gamma(\text{total})} = \frac{\Gamma(\text{invisible})}{\Gamma(\text{total})} = \frac{\Gamma(\text{invisible})}{\Gamma(\text{total})} = \frac{\Gamma(\text{invisible})}{\Gamma(\text{invisible})} = \frac{\Gamma($

VALUE (%)

DOCUMENT ID

20.016 ± 0.063 OUR FIT

 $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$ This parameter is not directly used in the overall fit but is derived using the fit results;

see the 'Note on the Z Boson.'

0.9999±0.0032 OUR FIT

 $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-)$

 Γ_5/Γ

This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson

DOCUMENT ID

1.0012±0.0036 OUR FIT

 $\Gamma((u\overline{u}+c\overline{c})/2)/\Gamma(hadrons)$ This quantity is the branching ratio of $Z \rightarrow$ "up-type" quarks to $Z \rightarrow$ hadrons. Except ACKERSTAFF 97T the values of $Z \to$ "up-type" and $Z \to$ "down-type" branchings are extracted from measurements of $\Gamma(\text{hadrons})$, and $\Gamma(Z \to \gamma + \text{jets})$ where γ is a high-energy (>5 GeV) isolated photon. As the experiments use different procedures and slightly different values of M_Z , $\Gamma({\rm hadrons})$ and α_S in their extraction procedures, our average has to be taken with caution.

VALUE	DOCUMENT ID	TECN	COMMENT
0.145±0.015 OUR AVERAGE			
$0.160 \pm 0.019 \pm 0.019$	³⁶ ACKERSTAFF	97T OPAL	<i>Ee</i> e = 88–94 GeV
$0.137^{+0.038}_{-0.054}$	37 ABREU	95x DLPH	<i>E</i> ^{ee} = 88−94 GeV
0.139 ± 0.026	³⁸ ACTON	93F OPAL	<i>E</i> ^{ee} = 88−94 GeV
0.137 ± 0.033	³⁹ ADRIANI	93 L3	$E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$

 36 ACKERSTAFF 97T measure $\Gamma_{u\overline{u}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})=0.258\pm0.031\pm0.032.$ To obtain this branching ratio authors use $R_{c}+R_{b}=0.380\pm0.010.$ This measurement is fully negatively correlated with the measurement of $\Gamma_{d\overline{d},s\overline{s}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})$ given

in the next data block. 37 ABREU 95x use $M_Z=91.187\pm0.009$ GeV, $\Gamma({\rm hadrons})=1725\pm12$ MeV and α 0.123 ± 0.005 . To obtain this branching ratio we divide their value of $C_{2/3} = 0.91 + 0.25 = 0.001$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.66 \pm 0.05$.

³⁸ ACTON 93F use the LEP 92 value of $\Gamma(\text{hadrons}) = 1740 \pm 12 \text{ MeV}$ and $\alpha_s =$ $0.122^{+0.006}_{-0.005}$

 39 ADRIANI 93 use $M_Z=91.181\pm0.022$ GeV, Γ (hadrons) = 1742 \pm 19 MeV and $\alpha_S=0.125\pm0.009$. To obtain this branching ratio we divide their value of $C_{2/3}=0.92\pm0.22$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.720 \pm 0.076$.

$\Gamma((d\overline{d}+s\overline{s}+b\overline{b})/3)/\Gamma(\text{hadrons})$

This quantity is the branching ratio of $Z \to$ "down-type" quarks to $Z \to$ hadrons Except ACKERSTAFF 97T the values of $Z \to$ "up-type" and $Z \to$ "down-type" branchings are extracted from measurements of $\Gamma(\text{hadrons})$, and $\Gamma(Z \to \gamma + \text{jets})$ where γ is a high-energy (>5 GeV) isolated photon. As the experiments use different procedures and slightly different values of M_Z , $\Gamma(\text{hadrons})$ and α_S in their extraction procedures, our average has to be taken with caution.

VALUE	DOCUMENT ID	TECN_	COMMENT
0.237 ± 0.009 OUR AVERAGE			
$0.230 \pm 0.010 \pm 0.010$	⁴⁰ ACKERSTAFF	97T OPAL	Eee = 88-94 GeV
$0.243^{+0.036}_{-0.026}$	⁴¹ ABREU	95x DLPH	$E_{CM}^{\mathit{ee}} =$ 88–94 GeV
0.241 ± 0.017	⁴² ACTON	93F OPAL	Een = 88-94 GeV
0.243 ± 0.022	⁴³ ADRIANI	93 L3	$E_{cm}^{ee} = 91.2 \text{ GeV}$

- 40 ACKERSTAFF 97T measure $\Gamma_{d\overline{d},S\overline{s}'}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{S\overline{s}})=0.371\pm0.016\pm0.016$. To obtain this branching ratio authors use $R_{c}+R_{b}=0.380\pm0.010$. This measurement is fully negatively correlated with the measurement of $\Gamma_{u\overline{u}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{S\overline{s}})$ presented in the state of th in the previous data block.
- ⁴¹ ABREU 95x use $M_Z=91.187\pm0.009$ GeV, $\Gamma({
 m hadrons})=1725\pm12$ MeV and $\alpha_{
 m S}$ 0.123 ± 0.005 . To obtain this branching ratio we divide their value of $C_{1/3} = 1.62 + 0.24$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.66 \pm 0.05$.
- ⁴²ACTON 93F use the LEP 92 value of $\Gamma(\text{hadrons}) = 1740 \pm 12 \text{ MeV}$ and $\alpha_{\text{S}} =$
- 43 ADRIANI 93 use $M_Z=91.181\pm0.022$ GeV, $\Gamma({\rm hadrons})=1742\pm19$ MeV and $\alpha_S=0.125\pm0.009$. To obtain this branching ratio we divide their value of $C_1/3=1.63\pm0.15$ by their value of (3 $C_{1/3}$ + 2 $C_{2/3}$) = 6.720 \pm 0.076.

 $R_c = \Gamma(c\overline{c})/\Gamma(\text{hadrons})$

 Γ_9/Γ_6

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the "Note on the Z boson." As a cross check we have also performed a weighted average of the $R_{\mathcal{C}}$ measurements taking into account the various common systematic errors. Assuming that the smallest common systematic error is fully correlated, we obtain $R_{C}=0.1683\pm0.0049$.

Because of the high current interest, we mention the following preliminary results here, but do not average them or include them in the Listings or Tables. Combining published and unpublished preliminary LEP and SLD electroweak results (as of March 2000) yields $R_C=0.1674\pm0.0038$. The Standard Model predicts $R_C=0.1723$ for $m_t = 174.3$ GeV and $M_H = 150$ GeV.

VALUE	DOCUMENT ID	TECN	COMMENT
0.1671 ± 0.0048 OUR FIT			
$0.1665 \pm 0.0051 \pm 0.0081$	44 ABREU	00 DLPH	Een = 88-94 GeV
0.1698 ± 0.0069	⁴⁵ BARATE	00B ALEP	E ^{ee} _{Cm} = 88-94 GeV
$0.180 \pm 0.011 \pm 0.013$	⁴⁶ ACKERSTAFF	98E OPAL	E ^{ee} _{Cm} = 88–94 GeV
$0.167 \pm 0.011 \pm 0.012$	⁴⁷ ALEXANDER	96R OPAL	<i>E</i> ^{ee} _{Cm} = 88−94 GeV
• • • We do not use the f	ollowing data for a	verages, fits,	limits, etc. • • •
$0.1675 \pm 0.0062 \pm 0.0103$	⁴⁸ BARATE	98T ALEP	Repl. by BARATE 00B
$0.1689 \pm 0.0095 \pm 0.0068$	⁴⁹ BARATE	98T ALEP	Repl. by BARATE 00B
$0.1623 \pm 0.0085 \pm 0.0209$	⁵⁰ ABREU	95D DLPH	Ecm = 88-94 GeV
$0.142 \pm 0.008 \pm 0.014$	⁵¹ AKERS	950 OPAL	Repl. by ACKERSTAFF 98E
$0.165 \pm 0.005 \pm 0.020$	⁵² BUSKULIC	94G ALEP	Repl. by BARATE 00B

- 44 ABREU 00 obtain this result properly combining the measurement from the $D^{\bullet+}$ production rate $(R_c=0.1610\pm0.0104\pm0.007\pm0.0043$ (BR)) with that from the overall charm counting $(R_c=0.1692\pm0.0047\pm0.0063\pm0.0074$ (BR)) in $C\bar{c}$ events. The systematic error includes an uncertainty of ±0.0054 due to the uncertainty on the charmed hadron branching fractions.
- 45 BARATE 00B use exclusive decay modes to independently determine the quantities $R_c \times f(c \to X)$, $X = D^0$, D^+ , D_s^+ , and Λ_c . Estimating $R_c \times f(c \to Z_c/\Omega_c) = 0.0034$, they simply sum over all the charm decays to obtain $R_c = 0.1738 \pm 0.0047 \pm 0.0088 \pm 0.0075 (BR)$. This is combined with all previous ALEPH measurements (BARATE 98T and BUSKULIC 94G, $R_c = 0.1681 \pm 0.0054 \pm 0.0062$) to obtain the quoted value.
- 46 ACKERSTAFF 98c use an inclusive/exclusive double tag. In one jet D*± mesons are exclusively reconstruced in several decay channels and in the opposite jet a slow pion exclusively reconstructed in several decay channels and in the opposite jet a slow pion (opposite charge inclusive $D^{*\pm}$) tag is used. The b content of this sample is measured by the simultaneous detection of a lepton in one jet and an inclusively reconstructed $D^{*\pm}$ meson in the opposite jet. The systematic error includes an uncertainty of ± 0.006 due to the external branching ratios.
- 47 ALEXANDER 96R obtain this value via direct charm counting, summing the partial contributions from D^0 , D^+ , D_s^+ , and Λ_c^+ , and assuming that strange-charmed baryons account for the 15% of the Λ_c^+ production. An uncertainty of ± 0.005 due to the uncertainties in the charm hadron branching ratios is included in the overall systematics.
- ⁴⁸ BARATE 98T perform a simultaneous fit to the p and p_T spectra of electrons from hadronic Z decays. The semileptonic branching ratio $B(c \rightarrow e)$ is taken as 0.098 \pm 0.005 and the systematic error includes an uncertainty of \pm 0.0084 due to this.
- ⁵⁰ ABREU 950 perform a maximum likelihood fit to the combined p and p_T distributions of single and dilepton samples. The second error includes an uncertainty of ± 0.0124 due to models and branching ratios.
- 51 AKERS 950 use the presence of a $D^{*\pm}$ to tag $Z \to c\overline{c}$ with $D^* \to D^0\pi$ and $D^0 \to D^0\pi$ $K\pi$. They measure $P_C*\Gamma(c\overline{c})/\Gamma(\text{hadrons})$ to be $(1.006\pm0.055\pm0.061)\times10^{-3}$, where P_c is the product branching ratio $B(c \to D^*)B(D^* \to D^0\pi)B(D^0 \to K\pi)$. Assuming that P_c remains unchanged with energy, they use its value $(7.1\pm0.5)\times10^{-3}$ determined at CESR/PETRA to obtain $\Gamma(c\bar{c})/\Gamma(\text{hadrons})$. The second error of AKERS 950 includes an uncertainty of ±0.011 from the uncertainty on P_c .
- 52 BUSKULIC 94G perform a simultaneous fit to the p and p_{T} spectra of both single and

 $R_b = \Gamma(b\overline{b})/\Gamma(\text{hadrons})$

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the "Note on the Z boson." As a cross check we have also performed a weighted average of the $R_{\rm b}$ measurements taking into account the various common systematic errors. We have assumed that the smallest common systematic error is fully correlated. For $R_C=0.1671$ (as given by OUR FIT above), we obtain $R_b=0.21653\pm0.00070$. For an expected Standard Model value of $R_C=0.1723$, our weighted average gives $R_b = 0.21631 \pm 0.00070$.

Because of the high current interest, we mention the following preliminary results here, but do not average them or include them in the Listings or Tables. Combining published and unpublished preliminary LEP and SLD electroweak results (as of March 2000) yields $R_b=0.21642\pm0.00073$. The Standard Model predicts $R_b=0.21581$ for $m_t=174.3$ GeV and $M_H=150$ GeV.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.21644 ± 0.00075	OUR FIT				
0.2174 ± 0.0015	± 0.0028 5	³ ACCIARRI	00	L3	<i>E</i> ^{ee} cm = 89−93 GeV
0.2178 ±0.0011 :	±0.0013 5	⁴ ABBIENDI	99B	OPAL	<i>E</i> ^{ee} cm= 88−94 GeV
0.21634±0.00067	±0.00060 5	⁵ ABREU	99B	DLPH	Ecm= 88-94 GeV
0.2142 ±0.0034 :	±0.0015 5	⁶ ABE	98D	SLD	Eee = 91.2 GeV
0.2159 ±0.0009 :	±0.0011 5	⁷ BARATE	97F	ALEP	Ecm = 88-94 GeV

• • • We do not use the followi	ng data for averages,	, fits, limits,	etc. • • •
$0.2175 \pm 0.0014 \pm 0.0017$	⁵⁸ ACKERSTAFF	97k OPAL	Repl. by ABBIEND! 998
$0.2167 \pm 0.0011 \pm 0.0013$		97E ALEP	Eee = 88-94 GeV
0.229 ±0.011		96E SLD	Repl. by ABE 980
$0.2216 \pm 0.0016 \pm 0.0021$		96 DLPH	Repl. by ABREU 998
$0.2145 \pm 0.0089 \pm 0.0067$	⁶² ABREU	95D DLPH	<i>E</i> ^{ee} cm = 88-94 GeV
$0.219 \pm 0.006 \pm 0.005$	⁶³ BUSKULIC	94G ALEP	<i>E</i> cm = 88−94 GeV
$0.251 \pm 0.049 \pm 0.030$ 32	64 JACOBSEN	91 MRK2	E ^{ee} cm = 91 GeV

⁵³ ACCIARRI 00 obtain this result using a double-tagging technique, with a high ρ_T lepton

tag and an impact parameter tag in opposite hemispheres. ⁵⁴ ABBIENDI 998 tag $Z \rightarrow b\bar{b}$ decays using leptons and/or separated decay vertices. The b-tagging efficiency is measured directly from the data using a double-tagging technique. 55 ABREU 998 obtain this result combining in a multivariate analysis several tagging methods (impact parameter and secondary vertex reconstruction, complemented by event shape variables). For $R_{\rm C}$ different from its Standard Model value of 0.172, $R_{\rm D}$ varies as

 $-0.024\times(R_c-0.172)$.

56 ABE 98D use a double tag based on 3D impact parameter with reconstruction of secondary vertices. The charm background is reduced by requiring the invariant mass at the secondary vertex to be above 2 GeV. The systematic error includes an uncertainty of ± 0.0002 due to the uncertainty on R_{c} .

57 BARATE 97F combine the lifetime-mass hemisphere_tag (BARATE 97E) with event shape information and lepton tag to identify $Z \to b \overline{b}$ candidates. They further use cand uds-selection tags to identify the background. For R_C different from its Standard Model value of 0.172, $R_{\overline{b}}$ varies as $-0.019 \times (R_C - 0.172)$.

58 ACKERSTAFF 97K use lepton and/or separated decay vertex to tag independently each hemisphere. Comparing the numbers of single- and double-tagged events, they determine the b-tagging efficiency directly from the data.

59 BARATE 97E combine a lifetime tag with a mass cut based on the mass difference between c hadrons and b hadrons. Included in BARATE 97F.
60 ABE 96ε obtain this value by combining results from three different b-tagging methods (2D impact parameter, 3D impact parameter, and 3D displaced vertex).

(2) impact parameter, 30 impact parameter, and 30 displaced vertex). 61 ABREU 96 obtain this result combining several analyses (double lifetime tag, mixed tag and multivariate analysis). This value is obtained assuming $R_c = f(c\bar{c})/f(\text{hadrons}) = 0.172$. For a value of R_C different from this by an amount ΔR_C the change in the value is given by $-0.087 \cdot \Delta R_C$.

 62 ABREU 95D perform a maximum likelihood fit to the combined p and p_T distributions of single and dilepton samples. The second error includes an uncertainty of ± 0.0023 due to models and branching ratios.

 63 BUSKULIC 94G perform a simultaneous fit to the p and p_T spectra of both single and

 64 JACOBSEN 91 tagged $b\,\overline{b}$ events by requiring coincidence of $\,\geq$ 3 tracks with significant impact parameters using vertex detector. Systematic error includes lifetime and decay uncertainties ($\pm\,0.014).$

$\Gamma(b\overline{b}b\overline{b})/\Gamma(hadrons)$				Γ_{11}/Γ_{6}
VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT	
60410414	65 ADDELL	Qui DI DU	E66 - 88-04 Co.	V

⁶⁵ ABREU 990 force hadronic Z decays into 3 jets to use all the available phase space and require a b tag for every jet. This decay mode includes primary and secondary 4b production, e.g., from gluon splitting to $b\bar{b}$.

$\Gamma(ggg)/\Gamma(hadrons)$				Г ₁	2/Г6
VALUE	CL%	DOCUMENT ID	TECN_	COMMENT	
<1.6 × 10 ⁻²	95	⁶⁶ ABREU	96s DLPH	Ecm = 88-94 GeV	

 66 This branching ratio is slightly dependent on the jet-finder algorithm. The value we quote is obtained using the JADE algorithm, while using the DURHAM algorithm ABREU 965 obtain an upper limit of 1.5 \times $10^{-2}.\;$

$\Gamma(\pi^0\gamma)/\Gamma_{\text{total}}$				Γ ₁₃ /Γ	
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
<5.2 × 10 ⁻⁵	95	⁶⁷ ACCIARRI	95G L3	Eee = 88-94 GeV	
$< 5.5 \times 10^{-5}$	95	ABREU	94B DLPH	Eee = 88-94 GeV	
$< 2.1 \times 10^{-4}$	95	DECAMP	92 ALEP	Eee = 88-94 GeV	
$<1.4 \times 10^{-4}$	95	AKRAWY	91F OPAL	Eee = 88-94 GeV	

 67 This limit is for both decay modes $Z
ightarrow ~\pi^0 \gamma/\gamma\gamma$ which are indistinguishable in ACCIA-

$\Gamma(\eta\gamma)/\Gamma_{\text{total}}$					Γ ₁₄ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 7.6 \times 10^{-5}$	95	ACCIARRI	95G	L3	Ecm = 88-94 GeV
$< 8.0 \times 10^{-5}$	95	ABREU	94B	DLPH	Ecm = 88-94 GeV
<5.1 × 10 ⁻⁵	95	DECAMP	92	ALEP	Ecm = 88-94 GeV
<2.0 × 10 ⁴	95	AKRAWY	91F	OPAL	E ^{ee} _{Cm} = 88-94 GeV
$\Gamma(\omega\gamma)/\Gamma_{\text{total}}$					Γ ₁₅ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<6.5 × 10 ⁻⁴	95	ABREU	94 B	DLPH	E ^{ee} _{cm} = 88-94 GeV
$\Gamma(\eta'(958)\gamma)/\Gamma_{\text{total}}$					Γ ₁₆ /Γ
VALUE	CL%	DOCUMENT ID		<u>TECN</u>	COMMENT
<4.2 × 10 ⁻⁵	95	DECAMP	92	ALEP	<i>E</i> ee = 88-94 GeV

Γ(γγ)/Γ _{total} This decay wo	ould violate t	the Landau-Yang the	eorem.	Γ ₁₇ /Γ
VALUE	<u>CL%</u> _	DOCUMENT ID	<u>TECN</u>	COMMENT
<5.2 × 10 ⁻⁵	95	⁶⁸ ACCIARRI	95G L3	Eee = 88-94 GeV
$< 5.5 \times 10^{-5}$	95	ABREU	948 DLPH	Ecm = 88-94 GeV
$<1.4 \times 10^{-4}$	95	AKRAWY	91F OPAL	<i>E</i> ^{ee} cm= 88−94 GeV
⁶⁸ This limit is for l	both decay r	nodes $Z ightarrow \pi^0 \gamma/\gamma$	γ which are i	ndistinguishable in ACCIA-

$\Gamma(\gamma\gamma\gamma)/\Gamma_{\text{total}}$				Γ ₁₈ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$< 1.0 \times 10^{-5}$	95	⁶⁹ ACCIARRI	95C L3	Ecm= 88-94 GeV
$< 1.7 \times 10^{-5}$	95	⁶⁹ ABREU	94B DLPH	<i>Ec</i> m= 88-94 GeV
$<6.6 \times 10^{-5}$	95	AKRAWY	91F OPAL	Ecm= 88-94 GeV

⁶⁹Limit derived in the context of composite Z model.

 $\Gamma(\pi^{\pm}W^{\mp})/\Gamma_{\text{total}}$ Γ_{19}/Γ The value is for the sum of the charge states indicated. VALUE DOCUMENT ID TECN COMMENT ___ <u>CL%</u>__ $< 7 \times 10^{-5}$ DECAMP 92 ALEP Ecm = 88-94 GeV 95

 $\Gamma(\rho^{\pm}W^{\mp})/\Gamma_{ ext{total}}$ The value is for the sum of the charge states indicated. Γ_{20}/Γ VALUE CL% DOCUMENT ID TECN COMMENT 95 DECAMP

<8.3 × 10⁻⁵ 92 ALEP Ecm = 88-94 GeV $\Gamma(J/\psi(1S)X)/\Gamma_{total}$ Γ_{21}/Γ VALUE (units 10⁻³) EVTS DOCUMENT ID TECN COMMENT

3.51 $^{+0.23}_{-0.25}$ OUR AVERAGE Error includes scale factor of 1.1. $3.21 \pm 0.21 + 0.19 \\ -0.28$ 70 ACCIARRI 553 *E*^{ee}_{cm}= 88-94 GeV 99F L3 3.9 ±0.2 ±0.3 71 ALEXANDER 96B OPAL Ecm = 88-94 GeV 511 72 ABREU 94P DLPH Ecm = 88-94 GeV $3.73 \pm 0.39 \pm 0.36$ 153 • • • We do not use the following data for averages, fits, limits, etc. • • • $3.40\pm0.23\pm0.27$ 441 73 ACCIARRI 97J L3 Repl. by A

Repl. by ACCIARRI 99F 70 ACCIARRI 99F combine $\mu^+\mu^-$ and $e^+e^-J/\psi(15)$ decay channels. The branching ratio

⁷¹ ALEXANDER 96B identify $J/\psi(1S)$ from the decays into lepton pairs.

this branching ratio is due to prompt $J/\psi(15)$ production (ALEXANDER 96N). ⁷² Combining $\mu^+\mu^-$ and e^+e^- channels and taking into account the common systematic errors. $(7.7^{+6.3}_{-5.4})\%$ of this branching ratio is due to prompt $J/\psi(15)$ production.

73 ACCIARRI 971 combine $\mu^+\mu^-$ and $e^+e^ J/\psi(1.5)$ decay channels and take into account the common systematic error.

$\Gamma(\psi(2S)X)/\Gamma_{total}$				Γ ₂₂ /Γ
VALUE (units 10-3)	EVTS	DOCUMENT ID	TECN	COMMENT
1.60±0.29 OUR AVE	RAGE			
$1.6 \pm 0.5 \pm 0.3$	39	⁷⁴ ACCIARRI	97J L3	<i>E</i> ee = 88-94 GeV
$1.6 \pm 0.3 \pm 0.2$	46.9	⁷⁵ ALEXANDER	96B OPAL	Eee = 88-94 GeV
$1.60 \pm 0.73 \pm 0.33$	5.4	⁷⁶ ABREU	94P DLPH	<i>E</i> ee = 88-94 GeV

⁷⁴ ACCIARRI 97J measure this branching ratio via the decay channel $\psi(25) \rightarrow \ell^+\ell^-$ (ℓ

75 ALEXANDER 96B measure this branching ratio via the decay channel $\psi(25)$ ightarrow $J/\psi \pi^+ \pi^-$, with $J/\psi \to \ell^+ \ell^-$

76 ABREU 94P measure this branching ratio via decay channel $\psi(2S) o J/\psi \, \pi^+ \, \pi^-$, with $J/\psi \to \ \mu^+ \, \mu^-.$

$\Gamma(\chi_{c1}(1P)X)/\Gamma_{tot}$	tal			I	Γ ₂₃ /Γ
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN	COMMENT	
2.9±0.7 OUR AVER/	AGE				
$2.7 \pm 0.6 \pm 0.5$	33	⁷⁷ ACCIARRI	97J L3	<i>E</i> ee = 88-94 GeV	
$5.0 \pm 2.1 ^{+1.5}_{-0.9}$	6.4	⁷⁸ ABREU	94P DLPH	Eee = 88-94 GeV	

⁷⁷ ACCIARRI 97J measure this branching ratio via the decay channel $\chi_{C1}
ightarrow J/\psi + \gamma$, with $J/\psi \to \ell^+\ell^-$ ($\ell=\mu$, e). The $M(\ell^+\ell^-\gamma)-M(\ell^+\ell^-)$ mass difference spectrum is fitted with two gaussian shapes for χ_{C1} and χ_{C2} .

⁷⁸This branching ratio is measured via the decay channel $\chi_{C1} \rightarrow J/\psi + \gamma$, with $J/\psi \rightarrow$

$\Gamma(\chi_{c2}(1P)X)/\Gamma_{tc}$	otal				Γ ₂₄ /Γ
VALUE	CL%_	DOCUMENT ID	TECN	COMMENT	
$< 3.2 \times 10^{-3}$	90	⁷⁹ ACCIARRI	97. L3	Eee = 88-94 G	eV

 79 ACCIARRI 97J derive this limit via the decay channel $\chi_{c2}
ightarrow J/\psi + \gamma$, with $J/\psi
ightarrow$ $\ell^+\ell^-$ ($\ell=\mu,\ e$). The $M(\ell^+\ell^-\gamma)-M(\ell^+\ell^-)$ mass difference spectrum is fitted with two gaussian shapes for χ_{c1} and χ_{c2} .

$\Gamma(\Upsilon(1S) \times + \Upsilon(2S) \times + \Upsilon(3S) \times) / \Gamma_{\text{total}}$			۲ ₂₅ /	$\Gamma_{25}/\Gamma = (\Gamma_{26} + \Gamma_{27} + \Gamma_{28})/\Gamma_{25}$		
VALUE (units 10-4)	EVTS	DOCUMENT ID	TECN	COMMENT		
$1.0 \pm 0.4 \pm 0.22$	6.4	80 ALEXANDER	96F OPAL	<i>E</i> ee = 88−94 GeV		

 80 ALEXANDER 96F identify the $\,\mathcal{T}$ (which refers to any of the three lowest bound states) through its decay into e^+e^- and $\mu^+\mu^-$. The systematic error includes an uncertainty of ± 0.2 due to the production mechanism.

DECAMP

95

 $< 0.6 \times 10^{-5}$

 $<\!2.6\times10^{-5}$

$\Gamma(T(1S)X)/\Gamma_{total}$	Γ ₂₆ /Ι	93 BARATE 97H searched for the decay modes $B_{\mathcal{C}} \to J/\psi \pi^+$ and $J/\psi \ell^+ u_\ell$ with
VALUE	CL% DOCUMENT ID TECN COMMENT	$J/\psi \rightarrow \ell^+\ell^-$, $\ell=e_i\mu$. The number of candidates (background) for the two de-
<4.4 × 10 ⁻⁵	95 ⁸¹ ACCIARRI 99F L3 <i>E</i> ^{ee} _{CM} = 88-94 GeV	cay modes is 0 (0.44) and 2 (0.81) respectively. They report the following 90% CL limits: $\Gamma(B_C^+X)*B(B_C \to J/\psi \pi^+)/\Gamma(\text{hadrons}) < 3.6 \times 10^{-5}$ and $\Gamma(B_C^+X)*B(B_C \to J/\psi \pi^+)/\Gamma(\text{hadrons}) < 3.6 \times 10^{-5}$
81 ACCIARRI 99F search	n for $\Upsilon(15)$ through its decay into $\ell^+\ell^-$ ($\ell=e$ or μ).	$\frac{1}{J/\psi \ell^+ \nu_{\theta}} / \Gamma(\text{hadrons}) < 5.2 \times 10^{-5}.$
$\Gamma(\Upsilon(2S)X)/\Gamma_{\text{total}}$	Γ ₂₇ /Ι	-
VALUE	CL% DOCUMENT ID TECN COMMENT	$\Gamma(B^*X)/[\Gamma(BX) + \Gamma(B^*X)]$ 33/(132+133)
<13.9 × 10 ⁻⁵	95 82 ACCIARRI 97R L3 E ee = 88-94 GeV	As the experiments assume different values of the b-baryon contribution, our average should be taken with caution. If we assume a common baryon production fraction or
82 ACCIARRI 97R search	h for $\Upsilon(2S)$ through its decay into $\ell^+\ell^-$ ($\ell=e$ or μ).	(10.1 + 3.9)% as given in the 1998 edition of this <i>Review</i> OUR AVERAGE becomes
		0.74 ± 0.04 .
$(T(3S)X)/\Gamma_{total}$	F28/	VALUE EVIS DOCUMENT ID TECH COMMENT
/ALUE <9.4 × 10 ⁻⁵	CL% DOCUMENT ID TECN COMMENT 95 83 ACCIARRI 97R L3 E ^{ee} _{Cm} = 88-94 GeV	- 0.75 ±0.04 OUR AVERAGE
		0.760±0.036±0.083 94 ACKERSTAFF 97M OPAL E ^{cc} _{Cm} = 88-94 GeV
OS ACCIARRI 97R searci	h for $\Upsilon(35)$ through its decay into $\ell^+\ell^-$ ($\ell=e$ or μ).	0.771 \pm 0.026 \pm 0.070 95 BUSKULIC 96D ALEP $E_{\rm m}^{\rm em} = 88$ –94 GeV 0.72 \pm 0.03 \pm 0.06 96 ABREU 95R DLPH $E_{\rm m}^{\rm em} = 88$ –94 GeV
$((D^0/\overline{D}^0)X)/\Gamma(ha)$	drons) Γ_{29}/Γ_{0}	0.72 ±0.03 ±0.06 90 ABREU 95R DLPH E_{m}^{ce} = 88-94 GeV 0.76 ±0.08 ±0.06 1378 97 ACCIARRI 95B L3 E_{m}^{ce} = 88-94 GeV
ALUE	EVTS DOCUMENT ID TECN COMMENT	94 ACKERSTAFF 97M use an inclusive B reconstruction method and assume a (13.2 :
$0.296 \pm 0.019 \pm 0.021$	369 ⁸⁴ ABREU 931 DLPH <i>E</i> cm = 88-94 GeV	4.1)% b-baryon contribution. The value refers to a b-flavored meson mixture of B_{μ} , B_{σ}
⁸⁴ The (D^0/\overline{D}^0) states	s in ABREU 931 are detected by the $K\pi$ decay mode. This is	a and $B_{arsigma}$.
corrected result (see	the erratum of ABREU 931).	95 BUSKULIC 96D use an inclusive reconstruction of B hadrons and assume a $(12.2\pm4.3)\%$ b -baryon contribution. The value refers to a b -flavored mixture of B_u , B_d , an
$(D^{\pm}X)/\Gamma(hadrons)$	Γ ₃₀ /Γ	6 $B_{\rm s}$.
VALUE	EVTS DOCUMENT ID TECN COMMENT	96 ABREU 95R use an inclusive <i>B</i> -reconstruction method and assume a $(10\pm4)\%$ <i>b</i> -baryo
0.174±0.016±0.018	539 ⁸⁵ ABREU 931 DLPH <i>E</i> cm = 88–94 GeV	contribution. The value refers to a <i>b</i> -flavored meson mixture of B_u , B_d , and B_5 .
	BREU 931 are detected by the $K\pi\pi$ decay mode. This is a correcte	d ACCIARRI 95B assume a 9.4% <i>b</i> -baryon contribution. The value refers to a <i>b</i> -flavore mixture of B_{u} , B_{d} , and B_{s} .
result (see the erratu	m of ABREU 931).	
(D*(2010)±X)/Γ(h	nadrons) \Gamma_{31} / \Gamma	Γ (anomalous γ + hadrons)/ Γ total
The value is for the	e sum of the charge states indicated.	 Limits on additional sources of prompt photons beyond expectations for final-state bremsstrahlung.
ALUE 0.163±0.019 OUR AVER	RAGE Error includes scale factor of 1.3.	VALUE CL% DOCUMENT ID TECN COMMENT
.155 ± 0.010 ± 0.013	358 86 ABREU 931 DLPH Eee = 88-94 GeV	$<3.2 \times 10^{-3}$ 95 ⁹⁸ AKRAWY 90J OPAL $E_{\rm Cm}^{ee} = 88-94$ GeV
0.21 ±0.04	362 87 DECAMP 911 ALEP Eee = 88-94 GeV	98 AKRAWY 90J report $\Gamma(\gamma X) < 8.2$ MeV at 95%CL. They assume a three-body γq
86 D*(2010)± in ABR	EU 931 are reconstructed from $D^0\pi^\pm$, with $D^0 o K^+\pi^+$. Th	
new CLEO II measur	ement of B($D^{*\pm} ightarrow~D^0\pi^\pm$) $=$ (68.1 \pm 1.6) % is used. This is	$\Gamma(e^+e^-\gamma)/\Gamma_{\text{total}}$
corrected result (see	the erratum of ABREU 931).	CLW DOCHMENT ID TECH COMMENT
DECAMP 911 report	: B($D^*(2010)^+ o D^0\pi^+$) B($D^0 o K^-\pi^+$) $\Gamma(D^*(2010)^\pm imes L1 o 0.34) imes 10^{-3}$. They obtained the above number assumin	
/ I (nadrons) = (5.1	$(3.62 \pm 0.34 \pm 0.44)\%$ and B($D^*(2010)^+ \rightarrow D^0 \pi^+$) = $(55 \pm 4)\%$	99 ACTON 91B looked for isolated photons with $E>2\%$ of beam energy (> 0.9 GeV).
We have rescaled the	eir original result of 0.26 \pm 0.05 taking into account the new CLE	n
II branching ratio B($D^*(2010)^+ \rightarrow D^0 \pi^+) = (68.1 \pm 1.6)\%.$	$\Gamma(\mu^+\mu^-\gamma)/\Gamma_{ ext{total}}$
C/BOV\/C/badrons\	Г ₃₄ /Г	VALUE CL% DOCUMENT ID TECN COMMENT
Γ(Β ⁰ X)/Γ(hadrons)	DOCUMENT ID TECN COMMENT	City Control of the City C
een	88 ABREU 92M DLPH E ^{ee} _{CM} = 88-94 GeV	$^{-100}$ ACTON 91B looked for isolated photons with $E>2\%$ of beam energy (>0.9 GeV).
een	89 ACTON 92N OPAL Eee = 88-94 GeV	$\Gamma(\tau^+\tau^-\gamma)/\Gamma_{\text{total}}$
seen	90 BUSKULIC 92E ALEP E_{cm}^{ee} = 88-94 GeV	VALUE CL% DOCUMENT ID TECN COMMENT
88 ABREU 92M reported	d value is $\Gamma(B^0_SX)*B(B^0_S o D_S\mu u_\muX)*B(D_S o\phi\pi)/\Gamma(hadron)$	$< 7.3 \times 10^{-4}$ 95 101 ACTON 91B OPAL $E_{\rm cm}^{ee} = 91.2$ GeV
$= (18 \pm 8) \times 10^{-5}$.		$^{-7}$ 101 ACTON 91B looked for isolated photons with $E>2\%$ of beam energy (> 0.9 GeV).
	dence for B_{S}^{0} production using D_{S} - ℓ correlations, with $D_{S}^{+} ightarrow \phi \pi$	+
	ssuming R_h from the Standard Model and averaging over the e are	
	measure the product branching fraction to be $f(\overline{b} \to B_s^0) \times B(B_s^0)$	
	$\rightarrow \phi \pi^-$) = (3.9 ± 1.1 ± 0.8) × 10 ⁻⁴ .	<6.8 x 10 ^{−6} 95 ¹⁰² ACTON 93E OPAL E ^{ee} _{Cm} = 88–94 GeV
	evidence for B_S^0 production using D_S - ℓ correlations, with D_S^+	
	(+) Using B($D_s^+ o \phi \pi^+$) = (2.7 ± 0.7)% and summing up the	
e and μ channels, th	he weighted average product branching fraction is measured to b	$_{\rm be}$ $\Gamma(q\overline{q}\gamma\gamma)/\Gamma_{\rm total}$ $\Gamma_{41}/\Gamma_{\rm total}$
$B(\bar{b} \rightarrow B_c^0) \times B(B_c^0)$	$\rightarrow D_5^- \ell^+ \nu_{\ell} X) = 0.040 \pm 0.011 ^{+0.010}_{-0.012}.$	VALUE CL% DOCUMENT ID TECN COMMENT
		<5.5 x 10 ^{−6} 95 ¹⁰³ ACTON 93E OPAL <i>E</i> ^{ee} _{cm} = 88-94 GeV
$\Gamma(B_c^+X)/\Gamma(hadrons)$		$6 103 \text{For } m_{\gamma\gamma} = 60 \pm 5 \text{GeV}.$
ALUE	DOCUMENT ID TECN COMMENT	— <u> </u>
searched for	91 ACKERSTAFF 980 OPAL	$\Gamma(u\overline{ u}\gamma\gamma)/\Gamma_{total}$ $\Gamma_{42}/\Gamma_{total}$ $\Gamma_{42}/\Gamma_{total}$ $\Gamma_{42}/\Gamma_{total}$ $\Gamma_{42}/\Gamma_{total}$
earched for	CIII	$\frac{VALUE}{\sqrt{3.1} \times 10^{-6}}$ 95 $\frac{OOCUMENT ID}{\sqrt{3.1} \times 10^{-6}}$ 75 $\frac{COMMENT}{\sqrt{1000}}$ 76 OPAL $\frac{E_{CM}^{ee}}{\sqrt{1000}}$ 88−94 GeV
earched for		3.11
	searched for the decay modes $B_C \rightarrow J/\psi \pi^+, J/\psi a_1^+$, and	
$J/\psi \ell^+ \nu_\ell$, with J/ψ	$\ell \to \ell^+ \ell^-$, $\ell = e, \mu$. The number of candidates (background) is	$\Gamma(e^{\pm}\mu^{\mp})/\Gamma(e^{+}e^{-})$
	es is 2 (0.63 \pm 0.2), 0 (1.10 \pm 0.22), and 1 (0.82 \pm 0.19) respective $\frac{1}{2} \frac{1}{2} $	The control of the first the control of the control
	$_{c} \rightarrow J/\psi \pi^{+}$ candidates as signal, they report $\Gamma(B_{c}^{+}X) \times B(B_{c}^{-}X) = 0.000$	states indicated
	$=(3.8^{+5.0}_{-2.4}\pm0.5)\times10^{-5}$. Interpreted as background, the 90% (
	*B($B_C \rightarrow J/\psi \pi^+$)/ Γ (hadrons) < 1.06 × 10 ⁻⁴ , $\Gamma(B_C^+ X)$ *B(B_C	
	$0 < 5.29 \times 10^{-4}, \ \Gamma(B_C^+ X) * B(B_C \rightarrow J/\psi \ell^+ \nu_{\ell}) / \Gamma(hadrons)$	$\stackrel{<}{I}$ $\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{total}$ Γ_{43}
6.96×10^{-5} .		The first of the second section of the first of the second section in the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section of the second section is a second section of the
	d for the decay modes $B_C \to J/\psi \pi^+$, $J/\psi \ell^+ \nu_{\ell}$, and $J/\psi (3\pi)^+$	states indicated.
with $J/\psi \rightarrow \ell^{+}\ell^{-}$, modes is 1 (1.7). 0 (0	$\ell=e,\mu.$ The number of candidates (background) for the three dec 0.3), and 1 (2.3) respectively. They report the following 90% CL lii	
its: Γ(B ⁺ X)*B(B ₋	$\rightarrow J/\psi \pi^+)/\Gamma(\text{hadrons}) < (1.05-0.84) \times 10^{-4}, \Gamma(B_C^+X)*B(B_C^-X)$	72.5 × 10
	$(5) < (5.8-5.0) \times 10^{-5}, \Gamma(B_C^+ X) * B(B_C \to J/\psi(3\pi)^+)/\Gamma(hadron)$	
J WE PF // I (Hadiblis	, ~(0.0 0.0) ^ *0 1.(0 / 1.) ~(0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /	$< 0.6 \times 10^{-5}$ 95 ADRIANI 931 L3 $E_{\rm cm}^{ee} = 88-94$ GeV

 $J/\psi \ell \nu_{\ell} / \Gamma (\text{hadrons}) < (5.8-5.0) \times 10^{-5}$, $\Gamma (B_c^+ X) * B(B_C \rightarrow J/\psi (3\pi)^+) / \Gamma (\text{hadrons}) < 1.75 \times 10^{-4}$, where the ranges are due to the predicted B_C lifetime (0.4-1.4) ps.

Ζ

$(e^{\pm} au^{\mp})/\Gamma_{ ext{total}}$			mercial and a	Γ44/Γ				
Test of lepton states indicated		er conservation.	The value is	for the sum of the charge	VALUE 1.08±0.09 OUR AVERAGE	DOCUMENT ID	TECN	COMMENT
ALUE	CL%	DOCUMENT ID	TECN	COMMENT	- 1.04 ± 0.04 ± 0.14	ACKERSTAFF	98A OPAL	$E_{\rm cm}^{ee}$ = 91.2 GeV
(2.2×10^{-5})	95	ABREU	97c DLPH	Eee = 88-94 GeV	1.17±0.09±0.15	ACCIARRI	97D L3	E ^{ee} _{cm} = 91.2 GeV
<9.8 × 10 ^{—6}	95	AKERS	95w OPAL	Eee = 88-94 GeV	$1.07 \pm 0.06 \pm 0.13$	BUSKULIC		Ecm = 91.2 GeV
<1.3 × 10 ⁵	95	ADRIANI	931 L3	E_{cm}^{ee} = 88-94 GeV			•	-CIII
(1.2×10^{-4})	95	DECAMP		Eee = 88-94 GeV	⟨ <i>N</i> _{y'} ⟩			
				Citi	VALUE	DOCUMENT ID		COMMENT
$(\mu^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$				Γ ₄₅ /Γ				
•		er conservation.	The value is	for the sum of the charge	$0.14 \pm 0.01 \pm 0.02$			Ecm = 91.2 GeV
states indicated	1. <u>CL%</u>	DOCUMENT ID	TECN	COMMENT	0.25 ± 0.04	107 ACCIARRI	97D L3	$E_{CM}^{\mathit{ee}} = 91.2 \; GeV$
<1.2 × 10 ⁻⁵	95	ABREU		Eee = 88-94 GeV	• • • We do not use the following the f			
<1.7 × 10 ⁻⁵					$0.068 \pm 0.018 \pm 0.016$	¹⁰⁸ BUSKULIC	92D ALEP	$E_{CM}^{\mathit{ee}} = 91.2 \; GeV$
	95	AKERS		Eee = 88-94 GeV	107 ACCIARRI 970 obtain th	nis value averaging over	the two decar	y channels $\eta' \to \pi^+ \pi$
(1.9 × 10 ⁻⁵	95	ADRIANI	93i L3	<i>E</i> ^{<i>ee</i>} _{Cm} = 88−94 GeV	and $\eta' \rightarrow \rho^0 \gamma$.			
(1.0×10^{-4})	95	DECAMP	92 ALEP	<i>E</i> ^{ee} _{Cm} = 88−94 GeV	108 BUSKULIC 92D obtain t	this value for $x>0.1$.		
(pe)/Γ _{total}				Γ ₄₆ /Γ	$\langle N_{f_0(980)} \rangle$			
	number and I	enton number co	nservations (י יאסי. Charge conjugate states are		DOCUMENT ID	TECN	COMMENT
implied.	number and i	epton number ce	inscribitions.	and go conjugate states an	0.147±0.011 OUR AVERAG			COMMENT
ALUE	CL%	DOCUMENT ID	TECN_	COMMENT	_ 0.164±0.021	ABREU	99J DLPH	$E_{\text{CM}}^{ee} = 91.2 \text{ GeV}$
<1.8 × 10 ⁻⁶	95 1	05 ABBIENDI	99I OPAL	Eee = 88-94 GeV	$0.141 \pm 0.007 \pm 0.011$		980 OPAL	Ecm = 91.2 GeV
								ÇIII .=
OBBIENDI 991 giv we have transform	ve the 95%Cl	L limit on the pa	rtial width Γ(.	$Z^0 \rightarrow pe$ < 4.6 KeV and	^d			
WE HAVE LIANSION	neu it mito di	crancing fallo.			VALUE	DOCUMENT ID	TECN	COMMENT
$(p\mu)/\Gamma_{\text{total}}$				Γ ₄₇ /Γ				<i>E</i> ee
Test of baryon i	number and I	epton number co	nservations. (Charge conjugate states are	e			Cin
implied.				country-	$\langle N_{\phi} \rangle$			
ALUE	<u>CL%</u>		TECN OF AL		- VALUE	DOCUMENT ID	TECN	COMMENT
<1.8 × 10 ⁻⁶		⁰⁶ ABBIENDI		<i>E</i> ^{ee} cm= 88−94 GeV	0.098±0.006 OUR AVERAG			
06 ABBIENDI 991 giv	ve the 95%C	L limit on the pa	rtial width Γ(.	$Z^0 \rightarrow p\mu < 4.4$ KeV and	0.105 ± 0.008	ABE		E ^{ee} _{Cm} = 91.2 GeV
we have transform	ned it into a l	branching ratio.		•	$0.091 \pm 0.002 \pm 0.003$	ACKERSTAFF		E_{CM}^{ee} = 91.2 GeV
					$0.104 \pm 0.003 \pm 0.007$	ABREU	96u DLPH	$E_{CM}^{\mathit{ee}} = 91.2 \; GeV$
AVERAGE PA	ARTICLE N	IULTIPLICITI	ES IN HADI	RONIC Z DECAY	$0.122 \pm 0.004 \pm 0.008$	BUSKULIC		$E_{CM}^{\mathit{ee}} = 91.2 \; GeV$
Cummed a	er particle a-	d antiparticle	ien appropries	Δ.	 ● ● We do not use the fo 	llowing data for average	s, fits, limits,	etc. • • •
Summed 0V6	ci particle and	d antiparticle, wh	icii appiopridti		$0.100 \pm 0.004 \pm 0.007$	AKERS	95x OPAL	Repl. by ACKER-
$\langle N_{\gamma} \rangle$								STAFF 98Q
/ALUE		DOCUMENT IN	TECN	COMMENT	WEIGHTED AVER			
		DOCUMENT ID		COMMENT	WEIGHTED AVER 0.098±0.006 (Error			
	<u></u>			COMMENT Eee 91.2 GeV				
20.97±0.02±1.15								
20.97±0.02±1.15		ACKERSTAF	F 98A OPAL	E ^{ee} _{cm} = 91.2 GeV				
20.97±0.02±1.15 (N _m ±) VALUE	/FRAGE		F 98A OPAL					
20.97±0.02±1.15 (N _x ±) 	/ERAGE	ACKERSTAF	F 98A OPAL	Eee 91.2 GeV				
(N _T ±) (N _T ±) (AUE) (6.84±0.37 (7.36±0.10±0.88	ERAGE	ACKERSTAF DOCUMENT ID ABE	F 98A OPAL TECN 99E SLD	$E_{\text{cm}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$				
(N _x ±) (ALUE 16.99±0.20 OUR AV 16.84±0.37 17.26±0.10±0.88	/ERAGE	DOCUMENT ID ABE ABREU	984 OPAL TECN 99E SLD 98L DLPH	$E_{\text{Cm}}^{\text{eg}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{ECm}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eg}} = 91.2 \text{ GeV}$				
$\langle N_{\pi^{\pm}} \rangle$ $\langle N_{\pi^{\pm}} \rangle$ ALUE 6.99±0.20 OUR AV 6.84±0.37 7.26±0.10±0.88 7.04±0.31	/ERAGE	ACKERSTAF DOCUMENT ID ABE ABREU BARATE	984 OPAL TECN 99E SLD 98L DLPH 98V ALEP	$E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{ECC}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$				
$\langle N_{\pi^{\pm}} \rangle$ $\langle N_{\pi^{\pm}} \rangle$ ALUE 6.99±0.20 OUR AV 6.84±0.37 7.26±0.10±0.88 7.04±0.31	/ERAGE	DOCUMENT ID ABE ABREU	984 OPAL TECN 99E SLD 98L DLPH 98V ALEP	$E_{\text{Cm}}^{\text{eg}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{ECm}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eg}} = 91.2 \text{ GeV}$				
$(N_{\pi^{\pm}})$ $(N_{$	/ERAGE	ACKERSTAF DOCUMENT ID ABE ABREU BARATE	984 OPAL TECN 99E SLD 98L DLPH 98V ALEP	$E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{ECC}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$				
$\begin{array}{l} (N_{x^{\pm}}) \\ N_{x^{\pm}} \\ N_{x^{\pm}}$	/ERAGE	DOCUMENT ID ABE ABREU BARATE AKERS	98A OPAL TECN 99E SLD 98L DLPH 98V ALEP 94P OPAL	$E_{\text{cm}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $E_{\text{cm}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{cm}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{cm}}^{\text{ee}} = 91.2 \text{ GeV}$				w ²
20.97±0.02±1.15 (N _T ±) ALUE 16.99±0.20 OUR AV 16.84±0.37 17.26±0.10±0.88 17.04±0.31 17.05±0.43 (N _T 0) ALUE		ACKERSTAF DOCUMENT ID ABE ABREU BARATE	98A OPAL TECN 99E SLD 98L DLPH 98V ALEP 94P OPAL	$E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{ECC}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$		scaled by 2.0)		$\frac{\chi^2}{2}$
$\langle N_{\pi^{\pm}} \rangle$		DOCUMENT ID ABE ABREU BARATE AKERS	98A OPAL TECN 99E SLD 98L DLPH 98V ALEP 94P OPAL TECN	Ee 91.2 GeV COMMENT Ee 91.2 GeV		scaled by 2.0)	BE CKFRSTAFF	99E SLD 0.8 980 OPAL 35
(N _x ±) (N _x ±) (ALUE (6.89±0.20 OUR AV (6.84±0.37 (7.26±0.10±0.88 (7.04±0.31 (17.05±0.43 (N _x 0) (N _x 0) (ALUE (9.55±0.06±0.75		DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF	98A OPAL TECN 99E SLD 98L DLPH 98V ALEP 94P OPAL TECN F 98A OPAL	$E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ee}_{\text{CM}}^{\text{ee}}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ee}_{\text{CM}}^{\text{ee}}} = 91.2 \text{ GeV}$			BE CKERSTAFF BREU	98Q OPAL 3.5
$N_{x\pm}$ $N_{x\pm}$ AUE 6.89 ± 0.20 OUR AV 6.84 ± 0.37 $7.26\pm0.10\pm0.88$ 7.04 ± 0.31 7.05 ± 0.43 N_{x0} N_{x0} N_{x0} $0.55\pm0.06\pm0.75$ $0.63\pm0.13\pm0.63$		DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE	98A OPAL TECN 99E SLD 98L DLPH 98V ALEP 94P OPAL TECN F 98A OPAL 97J ALEP	$E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CM}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CCM}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CCM}} = 91.2 \text{ GeV}$			CKERSTAFF	98Q OPAL 3.5
$\langle N_{\pm} \pm \rangle$ $\langle N_{\pm} + \rangle$		DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI	98A OPAL 99E SLD 98L DLPH 98V ALEP 94P OPAL 7ECN F 98A OPAL 97J ALEP 96 L3	$E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Cm}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Cm}} = 91.2 \text{ GeV}$ $\frac{\text{Comment}}{\text{E_{\text{Cm}}^{\text{eq}}}} = 91.2 \text{ GeV}$ $\frac{\text{E_{\text{Cm}}^{\text{eq}}}}{\text{E_{\text{Cm}}^{\text{eq}}}} = 91.2 \text{ GeV}$ $\frac{\text{E_{\text{Cm}}^{\text{eq}}}}{\text{E_{\text{Cm}}^{\text{eq}}}} = 91.2 \text{ GeV}$ $\frac{\text{E_{\text{Cm}}^{\text{eq}}}}{\text{E_{\text{Cm}}^{\text{eq}}}} = 91.2 \text{ GeV}$			CKERSTAFF BREU USKULIC	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4
$(N_{\pi^{\pm}})$	ERAGE	DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM	98A OPAL 99E SLD 98L DLPH 98V ALEP 94P OPAL 7ECN F 98A OPAL 97J ALEP 96 L3 96 DLPH	$E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $\frac{\text{Ecm}}{\text{Ecm}} = 91.2 \text{ GeV}$			CKERSTAFF BREU USKULIC	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3
$(N_{x\pm})$	ERAGE	DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM	98A OPAL 99E SLD 98L DLPH 98V ALEP 94P OPAL 7ECN F 98A OPAL 97J ALEP 96 L3 96 DLPH	$E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $\frac{\text{Ecm}}{\text{Ecm}} = 91.2 \text{ GeV}$	0.098±0.006 (Error		CKERSTAFF BREU USKULIC (Conf	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4
$N_{x\pm}$ \	ERAGE	DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM	98A OPAL 99E SLD 98L DLPH 98V ALEP 94P OPAL 7ECN F 98A OPAL 97J ALEP 96 L3 96 DLPH	$E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $\frac{\text{Ecm}}{\text{Ecm}} = 91.2 \text{ GeV}$	0.098±0.006 (Error		CKERSTAFF BREU USKULIC (Conf	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4
$\begin{array}{l} \textbf{N_{x^{\pm}}} \\ \textbf{N_{x^{\pm}}} \\ & \textbf{N_{x^{\pm}}} \\ & \textbf{M_{x^{\pm}}} \\ & \textbf$	ERAGE	ACKERSTAF DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI ADAM g data for average	998 OPAL 998 SLD 981 DLPH 98V ALEP 94P OPAL 7ECN F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits,	Eem = 91.2 GeV COMMENT Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV COMMENT Eem = 91.2 GeV	0.098±0.006 (Error		CKERSTAFF BREU USKULIC (Conf	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3
$\begin{array}{l} \textbf{N_{x\pm}} \rangle \\ \textbf{N_{x\pm}} \rangle \\ \textbf{ALUE} \\ \textbf{6.99 \pm 0.20 OUR AV} \\ \textbf{6.84 \pm 0.37} \\ \textbf{7.26 \pm 0.10 \pm 0.88} \\ \textbf{7.05 \pm 0.43} \\ \textbf{N_{x0}} \rangle \\ \textbf{ALUE} \\ \textbf{5.55 \pm 0.06 \pm 0.75} \\ \textbf{6.34 \pm 0.13 \pm 0.63} \\ \textbf{.90 \pm 0.02 \pm 0.33} \\ \textbf{.2 \pm 0.2 \pm 1.0} \\ \textbf{.8 We do not use} \\ \textbf{.18 \pm 0.03 \pm 0.73} \\ \textbf{N_{y}} \rangle \end{array}$	ERAGE	ACKERSTAF DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI ADAM g data for average ACCIARRI	99E SLD 98L DLPH 98V ALEP 94P OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3	Eee = 91.2 GeV COMMENT Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV COMMENT Eem = 91.2 GeV	0.098±0.006 (Error		CKERSTAFF BREU USKULIC (Conf	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3
$N_{x\pm}$ \ $N_{x\pm}$	ERAGE the following	ACKERSTAF DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI ADAM g data for average	99E SLD 98L DLPH 98V ALEP 94P OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits,	Eee = 91.2 GeV COMMENT Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV COMMENT Eem = 91.2 GeV	0.098±0.006 (Error		CKERSTAFF BREU USKULIC (Conf	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3
$\langle N_{\pi^{\pm}} \rangle$	ERAGE the following	ACKERSTAF DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM g data for average ACCIARRI	99E SLD 98L DLPH 98V ALEP 94P OPAL 7ECN F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3	Eem = 91.2 GeV COMMENT Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV COMMENT Eem = 91.2 GeV COMMENT Eem = 91.2 GeV	0.098±0.006 (Error		CKERSTAFF BREU USKULIC (Conf	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006)
$N_{x\pm}$ \ 2.007 ± 0.02 ± 1.15 $N_{x\pm}$ \ 2.00 OUR AV 6.84 ± 0.37 $7.26 \pm 0.10 \pm 0.88$ 7.04 ± 0.31 7.05 ± 0.43 N_{x0} \ 2.00 OUR AVE 1.55 ± 0.06 ± 0.75 $6.33 \pm 0.13 \pm 0.63$ $9.90 \pm 0.02 \pm 0.33$ $9.90 \pm 0.03 \pm 0.73$ $9.90 \pm 0.03 \pm 0.73$ $9.90 \pm 0.03 \pm 0.07$ OUR AVE 1.00 9.90 ± 0	ERAGE the following	ACKERSTAF DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM g data for average ACCIARRI	99E SLD 98L DLPH 98V ALEP 94P OPAL 7ECW F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3	$E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{ECM}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CCM}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$	0.098±0.006 (Error	0.12 0.14 0.1	CKERSTAFF BREU USKULIC (Conf	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006)
$N_{T}\pm$ \rangle ALUE 6.89 ± 0.20 OUR AV 6.84 ± 0.37 7.26 ± 0.10 ± 0.88 7.04 ± 0.31 7.05 ± 0.43 (N_{T} 0) ALUE 1.76 ± 0.26 OUR AVE 1.55 ± 0.06 ± 0.75 1.90 ± 0.02 ± 0.33 1.2 ± 0.2 ± 1.0 • • We do not use 1.18 ± 0.03 ± 0.73 (N_{T} 0) ALUE 1.95 ± 0.07 OUR AVE 1.97 ± 0.03 ± 0.11	ERAGE the following	ACKERSTAF DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM g data for average ACCIARRI	99E SLD 98L DLPH 98V ALEP 94P OPAL 7ECN F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3	Eem = 91.2 GeV COMMENT Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV COMMENT Eem = 91.2 GeV COMMENT Eem = 91.2 GeV	0.098±0.006 (Error 0.098±0.006 (Error 0.098±0.006 (Error 0.08 0.1 (N _{\$\phi\$}) (N _{\$\phi\$} (1270)) VALUE 0.169±0.025 OUR AVERAGE	0.12 0.14 0.1	CKERSTAFF BREU USKULIC (Conf 16 0.18	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006)
$N_{x\pm}$) $N_{x\pm}$	ERAGE the following	ACKERSTAF DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI DOCUMENT ID ACKERSTAF ACCIARRI	99E SLD 98L DLPH 98V ALEP 94P OPAL 7ECN F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 7ECN F 98A OPAL	$E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Cm}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Cm}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eq}} = 91.2 \text{ GeV}$	0.098±0.006 (Error 0.098±0.006 (Error 0.08 0.1 ⟨N _φ ⟩ ⟨N _ξ (1270)⟩ VALUE 0.169±0.025 OUR AVERAC 0.214±0.038	O.12 O.14 O.1 GE Error includes scale ABREU	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN 1 factor of 1.4 99J DLPH	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006)
$\langle N_{\pi^{\pm}} \rangle$ $\langle N_{\pi^{\pm}} $	ERAGE the following	ACKERSTAF DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI DOCUMENT ID ACKERSTAF ACCIARRI	99E SLD 98L DLPH 98V ALEP 94P OPAL 7ECN F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 7ECN F 98A OPAL	$E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Cm}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Cm}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{eq}} = 91.2 \text{ GeV}$	0.098±0.006 (Error 0.098±0.006 (Error 0.08 0.1 ⟨N _{\$\phi\$} ⟩ ⟨N _{\$\phi\$} ⟨1270⟩⟩ N4LUE 0.169±0.025 OUR AVERAG 0.214±0.038 0.155±0.011±0.018	O.12 O.14 O.1 GE Error includes scale ABREU	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN 1 factor of 1.4 99J DLPH	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006)
$N_{\pi\pm}$ \\ N_{π}	ERAGE the following	ACKERSTAF DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI DOCUMENT IC ACKERSTAF ACCIARRI g data for averag	99E SLD 98L DLPH 98V ALEP 94P OPAL F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 TECN F 98A OPAL 97 ALEP 96 L3 96 DLPH es, fits, limits, 94B L3	$E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CCM}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CCM}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $etc. \bullet \bullet \bullet$	0.098±0.006 (Error 0.098±0.006 (Error 0.08 0.1 ⟨N _{\$\phi\$} ⟩ ⟨N _{\$\phi\$} ⟨1270⟩⟩ N4LUE 0.169±0.025 OUR AVERAG 0.214±0.038 0.155±0.011±0.018	O.12 O.14 O.1 GE Error includes scale ABREU	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN 1 factor of 1.4 99J DLPH	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006)
$N_{\pi\pm}$ \\ N_{π}	ERAGE the following	ACKERSTAF DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI DOCUMENT IC ACKERSTAF ACCIARRI g data for averag	99E SLD 98L DLPH 98V ALEP 94P OPAL F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 TECN F 98A OPAL 97 ALEP 96 L3 96 DLPH es, fits, limits, 94B L3	$E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CCM}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CCM}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $etc. \bullet \bullet \bullet$	0.098±0.006 (Error 0.098±0.006 (Error 0.098±0.006 (Error 0.08 0.1 \langle N_\(\phi \) \langle N_\(\phi	O.12 O.14 O.1 GE Error includes scale ABREU ACKERSTAFF	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN 1 factor of 1.4 99J DLPH 98Q OPAL	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006)
0.97±0.02±1.15 N _{x±} > ALUE	ERAGE the following	ACKERSTAF DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI ACKERSTAF ACCIARRI GACKERSTAF ACCIARRI ACKERSTAF ACCIARRI ACKERSTAF ACCIARRI g data for averag ACCIARRI	F 98A OPAL 99E SLD 98L DLPH 98V ALEP 94P OPAL F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 F 98A OPAL 96 L3 96 L3 97 JALEP 98 L3 98 JALEP 98 L3	$E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{ee}} = 91.2 \text{ GeV}$	0.098±0.006 (Error 0.098±	O.12 O.14 O.1 DOCUMENT ID ACKERSTAFF	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN 16 1.4 99J DLPH 198Q OPAL	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006)
$N_{x\pm}$). $N_{x\pm}$ 0.97 ± 0.02 ± 1.15 $N_{x\pm}$ 0.97 ± 0.20 OUR AV 6.84 ± 0.37 7.26 ± 0.10 ± 0.88 7.04 ± 0.31 7.05 ± 0.43 $N_{x\pm}$ 0. ALUE 1.705 ± 0.26 OUR AVE 1.55 ± 0.06 ± 0.75 ± 0.63 ± 0.13 ± 0.63 ± 0.13 ± 0.63 ± 0.13 ± 0.63 ± 0.13 ± 0.02 ± 0.33 ± 0.21 ± 0.02 ± 1.00 ± 0.98 ± 0.07 OUR AVE 1.18 ± 0.03 ± 0.77 OUR AVE 1.97 ± 0.03 ± 0.11 1.93 ± 0.01 ± 0.09 ± • • We do not use 1.91 ± 0.02 ± 0.11 $N_{p\pm}$ 1.00 ± 0.02 ± 0.11 $N_{p\pm}$ 1.00 ± 0.01 ± 0.02 ± 0.11 $N_{p\pm}$ 1.00 ± 0.02 ± 0.11 $N_{p\pm}$ 1.00 ± 0.01 ± 0.02 ± 0.11 $N_{p\pm}$ 1.00 ± 0.00 • • We do not use	ERAGE the following	ACKERSTAF DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI ACKERSTAF ACCIARRI g data for averag ACCIARRI DOCUMENT ID DOCUMEN	99E SLD 98L DLPH 98V ALEP 94P OPAL F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 96 L3 97 ALEP 98 L3 98 DLPH 99 L3 99 DLPH 99 L3	$E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CCM}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CCM}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$	0.098±0.006 (Error 0.098±	GE Error includes scale ABREU ACKERSTAFF	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN Factor of 1.4 99J DLPH 98Q OPAL 99J DLPH 7ECN 99J DLPH	98Q OPAL 3.5 96U DLPH 97.3 12.4 idence Level = 0.006) COMMENT Eem 91.2 GeV COMMENT Eem 91.2 GeV
$N_{x\pm}$). $N_{x\pm}$ 0.97 ± 0.02 ± 1.15 $N_{x\pm}$ 0.97 ± 0.20 OUR AV 6.84 ± 0.37 7.26 ± 0.10 ± 0.88 7.04 ± 0.31 7.05 ± 0.43 N_{x0} 0. ALUE 1.55 ± 0.06 ± 0.75 ± 0.63 ± 0.13 ± 0.63 1.90 ± 0.02 ± 0.33 1.2 ± 0.2 ± 1.0 1.18 ± 0.03 ± 0.73 $N_{x\pm}$ 0.	ERAGE the following	ACKERSTAF DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI ACKERSTAF ACCIARRI g data for averag ACCIARRI DOCUMENT ID DOCUMEN	99E SLD 98L DLPH 98V ALEP 94P OPAL F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 96 L3 97 ALEP 98 L3 98 DLPH 99 L3 99 DLPH 99 L3	$E_{\text{CM}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{ee}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{Ecm}} = 91.2 \text{ GeV}$ $E_{\text{Cm}}^{\text{ee}} = 91.2 \text{ GeV}$	0.098±0.006 (Error 0.098±0.006 (Error 0.08 0.1 \langle N_\(\phi \rangle \) \[\langle N_\(\phi \rangle \rangle \) \[\langle N_\(\phi \rangle \rangle \) \[\langle N_\(\phi \rangle \rangle	O.12 O.14 O.1 O.13 O.14 O.1 O.14 O.14 O.1 O.15 O.14 O.1 O.15 O.14 O.1 O.16 O.15 O.14 O.1 O.17 O.18 O.18 O.18 O.18 O.18 O.18 O.18 O.18	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN 1 factor of 1.4 99.J DLPH 98.Q OPAL 99.J DLPH 99.J DLPH 99.J DLPH 99.J DLPH 1 factor of 1.4	98Q OPAL 3.5 96U DLPH 7.3 96H ALEP 7.3 12.4 idence Level = 0.006) COMMENT Eem 91.2 GeV COMMENT Eem 91.2 GeV
$\begin{array}{l} \textbf{N_{x\pm}} \\ \textbf{N_{x\pm}} \\ \textbf{N_{x\pm}} \\ \textbf{A}_{AUE} \\ \textbf{6.99 \pm 0.20 OUR AV} \\ \textbf{6.84 \pm 0.37} \\ \textbf{7.26 \pm 0.10 \pm 0.88} \\ \textbf{7.04 \pm 0.31} \\ \textbf{7.05 \pm 0.43} \\ \textbf{N_{x0}} \\ \textbf{A}_{LUE} \\ \textbf{7.6 \pm 0.26 OUR AVE} \\ \textbf{.76 \pm 0.26 OUR AVE} \\ \textbf{.63 \pm 0.13 \pm 0.63} \\ \textbf{.90 \pm 0.02 \pm 0.33} \\ \textbf{.2 \pm 0.2 \pm 1.0} \\ \textbf{•• We do not use} \\ \textbf{.18 \pm 0.03 \pm 0.73} \\ \textbf{N_{y}} \\ \textbf{ALUE} \\ \textbf{.97 \pm 0.03 \pm 0.11} \\ \textbf{.99 \pm 0.01 \pm 0.09} \\ \textbf{•• We do not use} \\ \textbf{.91 \pm 0.02 \pm 0.11} \\ \textbf{.91 \pm 0.02 \pm 0.11} \\ \textbf{.09 \pm 0.01 \pm 0.09} \\ \textbf{.09 \pm 0.02 \pm 0.11} \\ \textbf{.09 \pm 0.01 \pm 0.09} \\ \textbf{.09 \pm 0.01 \pm 0.01} \\ \textbf{.09 \pm 0.01} \\ .0$	ERAGE the following	ACKERSTAF DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI ACKERSTAF ACCIARRI g data for averag ACCIARRI DOCUMENT ID DOCUMEN	99E SLD 98L DLPH 98V ALEP 94P OPAL F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 96 L3 97 ALEP 98 L3 98 DLPH 99 L3 99 DLPH 99 L3	$E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CCM}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$ $\frac{\text{COMMENT}}{\text{CCM}} = 91.2 \text{ GeV}$ $E_{\text{CM}}^{\text{eq}} = 91.2 \text{ GeV}$	0.098±0.006 (Error 0.098±	GE Error includes scale ABREU ACKERSTAFF	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN 1 factor of 1.4 99.J DLPH 98.Q OPAL 99.J DLPH 99.J DLPH 99.J DLPH 99.J DLPH 1 factor of 1.4	98Q OPAL 3.5 96U DLPH 97.3 12.4 idence Level = 0.006) COMMENT Eem 91.2 GeV COMMENT Eem 91.2 GeV
$N_{x\pm}$ \\ N_{x	ERAGE the following	ACKERSTAF DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI ACKERSTAF ACCIARRI DOCUMENT IC ACKERSTAF ACCIARRI ACKERSTAF ACCIARRI DOCUMENT IC ACKERSTAF	F 98A OPAL 99E SLD 98L DLPH 98V ALEP 94P OPAL 7ECN F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 7ECN F 98A OPAL 96 L3 es, fits, limits 94B L3 7ECN F 98A OPAL	Eee 91.2 GeV COMMENT Eem 91.2 GeV Eem 91.2 GeV Eem 91.2 GeV Eem 91.2 GeV COMMENT Eem 91.2 GeV	0.098±0.006 (Error 0.098±0.006 (Error 0.098±0.006 (Error 0.008 0.1 \langle N_{\phi_2}(1270) \rangle VALUE 0.169±0.025 OUR AVERAGE 0.214±0.038 0.155±0.011±0.018 \langle N_{\psi_2}(1525) \rangle VALUE 0.012±0.006 • • We do not use the for 0.020±0.005±0.006	O.12 O.14 O.1 O.13 O.14 O.1 O.14 O.14 O.1 O.15 O.14 O.1 O.15 O.14 O.1 O.16 O.15 O.14 O.1 O.17 O.18 O.18 O.18 O.18 O.18 O.18 O.18 O.18	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN 1 factor of 1.4 99.J DLPH 98.Q OPAL 99.J DLPH 99.J DLPH 99.J DLPH 99.J DLPH 1 factor of 1.4	98Q OPAL 3.5 96U DLPH 7.3 96H ALEP 7.3 12.4 idence Level = 0.006) COMMENT Eem 91.2 GeV COMMENT Eem 91.2 GeV
$N_{x\pm}$) $N_{x\pm}$	e the following	ACKERSTAF DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI g data for averag ACCIARRI DOCUMENT ID ACKERSTAF ACCIARRI g data for averag ACCIARRI DOCUMENT ID DOCUMEN	99E SLD 98L DLPH 98V ALEP 94P OPAL F 98A OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 F 98A OPAL 96 L3 es, fits, limits 94B L3	Eee 91.2 GeV COMMENT Eem 91.2 GeV Eem 91.2 GeV Eem 91.2 GeV Eem 91.2 GeV COMMENT Eem 91.2 GeV	0.098±0.006 (Error 0.098±0.006 (Error 0.098±0.006 (Error 0.008 0.1 (N _{\$\phi_2\$} (1270)) VALUE 0.169±0.025 OUR AVERAGE 0.214±0.038 0.155±0.011±0.018 (N _{\$\psi_2\$} (1525)) VALUE 0.012±0.006 • • We do not use the for 0.020±0.005±0.006	O.12 O.14 O.1 GE Error includes scale ABREU ACKERSTAFF DOCUMENT ID ABREU ABREU ABREU ABREU ABREU ABREU	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN Factor of 1.4 99J DLPH 998Q OPAL 7ECN 99J DLPH	98Q OPAL 3.5 96U DLPH 9.7 96H ALEP 7.3 12.4 idence Level = 0.006) COMMENT Eem 91.2 GeV Eem 91.2 GeV COMMENT Eem 91.2 GeV Repl. by ABREU 99.
$N_{x\pm}$ \rangle $N_{x\pm}$ \rangle ΔLUE δ .99 \pm 0.20 OUR AV δ .84 \pm 0.37 δ .7.26 \pm 0.10 \pm 0.88 δ .7.04 \pm 0.31 δ .7.05 \pm 0.43 δ	e the following	ACKERSTAF DOCUMENT ID ABE ABREU BARATE AKERS DOCUMENT ID ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI g data for averag ACCIARRI DOCUMENT ID ACKERSTAF ACCIARRI g data for averag ACCIARRI TO COLUMENT ID DOCUMENT ID TO COLUMENT ID TO	99E SLD 98L DLPH 98V ALEP 94P OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 96 L3 97 ALEP 97 ALEP 98 A OPAL 98 A OPAL 99 L3 99 A OPAL 99 L3 99 A OPAL 90 L3 91 ALEP 91 ALEP 92 B A OPAL 93 ALEP 94 B L3 95 ALEP 96 L3 96 DLPH 97 ALEP 98 OPAL 98 OPAL 99 L3 99 A OPAL 99 L3 99 A OPAL	Eee = 91.2 GeV COMMENT Ecm = 91.2 GeV Ecm = 91.2 GeV Ecm = 91.2 GeV Ecm = 91.2 GeV COMMENT Eee = 91.2 GeV Ecm = 91.2 GeV etc. • • • • Repl. by ACCIARRI 96 COMMENT Eee = 91.2 GeV Ecm = 91.2 GeV	0.098±0.006 (Error 0.098±0.006 (Error	O.12 O.14 O.1 O.12 O.14 O.1 O.12 O.14 O.1 O.12 O.14 O.1 O.10 DOCUMENT ID ABREU ACKERSTAFF DOCUMENT ID ABREU ABREU ABREU ABREU DOCUMENT ID	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN Factor of 1.4 99J DLPH 998Q OPAL 7ECN 99J DLPH	98Q OPAL 3.5 96U DLPH 9.7 96H ALEP 7.3 12.4 idence Level = 0.006) COMMENT Eem 91.2 GeV Eem 91.2 GeV COMMENT Eem 91.2 GeV Repl. by ABREU 99.
$\langle N_{\pi}^{\pm} \rangle$	e the following	ACKERSTAF DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI COLUMENT IC ACKERSTAF ACCIARRI DOCUMENT IC ACKERSTAF ACKER	99E SLD 98L DLPH 98V ALEP 94P OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 96 DLPH 97 ALEP 97 ALEP 98 A OPAL 98 A OPAL 99 A OPAL 99 A OPAL 99 B A OPAL 99 B A OPAL 99 B A OPAL 99 DLPH	Eem = 91.2 GeV COMMENT Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV COMMENT Eem = 91.2 GeV etc. • • • • Repl. by ACCIARRI 96 COMMENT Eem = 91.2 GeV	0.098±0.006 (Error 0.098±0.006 (Error 0.098±0.006 (Error 0.008 0.1 \(N_{\phi} \) \(N_{\phi \phi} \) \(N_{\phi} \) \(O.12 O.14 O.1 O.12 O.14 O.1 O.12 O.14 O.1 O.12 O.14 O.1 O.10 DOCUMENT ID ABREU	CKERSTAFF BREU USKULIC (Conf 16 0.18 Factor of 1.4 99J DLPH 98Q OPAL TECN 99J DLPH es, fits, limits 96C DLPH	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006) COMMENT Eem 91.2 GeV Eem 91.2 GeV COMMENT Eem 91.2 GeV Repl. by ABREU 99.
(N _p ±) (1.6.99±0.20 OUR AV (1.6.84±0.37 (1.6.4±0.10±0.88 (1.0.4±0.31 (1.0.5±0.43 (1.0.5±0.43 (1.0.5±0.43 (1.0.5±0.26 OUR AVE (1.0.9±0.25 O.7 OUR AVE (1.0.9±0.25 O.7 OUR AVE (1.0.9±0.25 O.7 OUR AVE (1.0.9±0.25 O.7 OUR AVE (1.0.9±0.25 OUR AVE (1.0.9±0.25 OUR AVE (1.0.9±0.11 OUR AVE (1.0.9±0.10 OUR AVE	ERAGE ET TO STATE OF THE PROPERTY OF THE PROP	ACKERSTAF DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI COLINERI ACKERSTAF ACCIARRI ACKERSTAF ACCIARRI COLINERI COLINER	99E SLD 98L DLPH 98V ALEP 94P OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 96 DLPH 97 L3 97 DLPH 98 A OPAL 97 L3 98 OPAL 99 L3 99 DLPH 99 L3	Eee = 91.2 GeV COMMENT Eee = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV COMMENT Eee = 91.2 GeV Eem = 91.2 GeV	0.098±0.006 (Error 0.098±0.006 (Error 0.008 0.1 \langle N_\phi\rangle \langle N_\phi_2(1270) \rangle \langle \langle N_\phi_2(1270) \rangle \langle \langle N_\phi_2(1525) \rangle \langle N_\phi_2(1525) \rangle \langle N_\phi \rangle N_\phi \rangle \langle N_\phi \rangle N_\phi \rangle \langle N	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID ABREU	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN Factor of 1.4 99J DLPH 98Q OPAL TECN 99J DLPH 99LPH	98Q OPAL 3.5 96U DLPH 9.7 96H ALEP 7.3 12.4 idence Level = 0.006) COMMENT Eem 91.2 GeV Eem 91.2 GeV etc. • • • Repl. by ABREU 99. COMMENT Eem 91.2 GeV etc. • • • Repl. by ABREU 99.
(N _p ±) (1.6.99±0.20 OUR AV (1.6.84±0.37 (1.6.4±0.10±0.88 (1.0.4±0.31 (1.0.5±0.43 (1.0.5±0.43 (1.0.5±0.43 (1.0.5±0.26 OUR AVE (1.0.9±0.25 O.7 OUR AVE (1.0.9±0.25 O.7 OUR AVE (1.0.9±0.25 O.7 OUR AVE (1.0.9±0.25 O.7 OUR AVE (1.0.9±0.25 OUR AVE (1.0.9±0.25 OUR AVE (1.0.9±0.11 OUR AVE (1.0.9±0.10 OUR AVE	ERAGE ET TO STATE OF THE PROPERTY OF THE PROP	ACKERSTAF DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI COLINERI ACKERSTAF ACCIARRI ACKERSTAF ACCIARRI COLINERI COLINER	99E SLD 98L DLPH 98V ALEP 94P OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 96 DLPH 97 L3 97 DLPH 98 A OPAL 98 OPAL 99 L3 99 DLPH 99 L3 99 DLPH 99 L3	Eee = 91.2 GeV COMMENT Eee = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV COMMENT Eee = 91.2 GeV Eem = 91.2 GeV	0.098±0.006 (Error 0.098±0.006 (Error 0.098±0.006 (Error 0.008 0.1 0.008 0.1 0.008 0.1 0.008 0.1 0.009±0.025 OUR AVERAGE 0.155±0.05 OUR AVERAGE 0.012±0.006 0.020±0.005±0.006 0.020±0.005±0.006 0.020±0.005±0.006	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID ABE ABE ABE ABE ABE ABE ABE AB	CKERSTAFF BREU USKULIC (Conf 16 0.18 TECN 1 factor of 1.4 1	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006) COMMENT
$\langle N_{\pi^{\pm}} \rangle$ ALUE	ERAGE ET TO STATE OF THE PROPERTY OF THE PROP	ACKERSTAF DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI COLINERI ACKERSTAF ACCIARRI ACKERSTAF ACCIARRI COLINERI COLINER	99E SLD 98L DLPH 98V ALEP 94P OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 96 JABA 97 JABA 97 JABA 98 JABA 99	Eee = 91.2 GeV COMMENT Eee = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV Eem = 91.2 GeV COMMENT Eee = 91.2 GeV Eem = 91.2 GeV	0.098±0.006 (Error 0.098±0.006 (Error 0.098±0.006 (Error 0.008 0.1 (N _{\$\sigma\left\(\) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \}	GE Error includes scale ABREU ACKERSTAFF DOCUMENT ID ABREU ABREU ABREU ABREU ABREU ABREU ABREU BABREU BABREU BABREU BABREU BARATE	CKERSTAFF BREU USKULIC (Conf 16 0.18 Factor of 1.4 99J DLPH 98Q OPAL 99J DLPH es, fits, limits 96C DLPH 7ECN 99E SLD 98L DLPH 98V ALEP	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006) COMMENT Ecm 91.2 GeV Ecm 91.2 GeV COMMENT Ecm 91.2 GeV COMMENT Ecm 91.2 GeV Ecm 91.2 GeV
$N_{x\pm}$ \\ N_{x	ERAGE ET TO STATE OF THE PROPERTY OF THE PROP	ACKERSTAF DOCUMENT IC ABE ABREU BARATE AKERS DOCUMENT IC ACKERSTAF BARATE ACCIARRI ADAM g data for averag ACCIARRI DOCUMENT IC ACKERSTAF ACCIARRI DOCUMENT IC TO INCLUDE SEALE ABREU BUSKULIC g data for averag ACRESTAF	99E SLD 98L DLPH 98V ALEP 94P OPAL 97J ALEP 96 L3 96 DLPH es, fits, limits, 94B L3 96 JABA 97 JABA 97 JABA 98 JABA 99	Eee 91.2 GeV COMMENT Eee 91.2 GeV Eem 91.2 GeV Eem 91.2 GeV Eem 91.2 GeV COMMENT Eee 91.2 GeV Eem 91.2 GeV	0.098±0.006 (Error 0.098±0.006 (Error 0.098±0.006 (Error 0.008 0.1 0.008 0.1 0.008 0.1 0.008 0.1 0.009±0.025 OUR AVERAGE 0.155±0.05 OUR AVERAGE 0.012±0.006 0.020±0.005±0.006 0.020±0.005±0.006 0.020±0.005±0.006	O.12 O.14 O.1 O.12 O.14 O.1 O.12 O.14 O.1 O.12 O.14 O.1 O.10 DOCUMENT ID ABREU ACKERSTAFF DOCUMENT ID ABREU BARATE AKERS	CKERSTAFF BREU USKULIC (Conf 16 0.18 Factor of 1.4 99.J DLPH 98.Q OPAL 7ECN 99.J DLPH 98.C DLPH 99.C DLPH 98.C DLPH	98Q OPAL 3.5 96U DLPH 0.7 96H ALEP 7.3 12.4 idence Level = 0.006) COMMENT

⟨N _K 0⟩ VALUE	DOCUMENT IS	TECH	COMMENT		$\langle N_{D^{\bullet}(2010)^{\pm}} \rangle$			
2.013±0.022 OUR AVERAGE	DOCUMENT ID	TECN	COMMENT		VALUE 0.183 ±0.008 OUR AVERAGE	DOCUMENT ID	TECN	COMMENT
.01 ±0.08	ABE	99E SLD	E_{cm}^{ee} = 91.2 GeV	1	0.1854 ± 0.0041 ± 0.0091	112 ACKERSTAFF	98E OPAL	Eee = 91.2 GeV
$0.024 \pm 0.006 \pm 0.042$	ACCIARRI	97L L3	Eee = 91.2 GeV		0.187 ±0.015 ±0.013	BUSKULIC		E _{Cm} = 91.2 GeV
$.962 \pm 0.022 \pm 0.056$			Eee = 91.2 GeV		$0.171 \pm 0.012 \pm 0.016$	113 ABREU	931 DIPH	Eee = 91.2 GeV
.99 ±0.01 ±0.04			Eee = 91.2 GeV		• • We do not use the follow			
1.061 ± 0.047			$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$			114 AKERS		
• • We do not use the following					$0.183 \pm 0.009 \pm 0.011$	AKEKS	950 UPAL	Repl. by ACKER- STAFF 98E
2.04 ±0.02 ±0.14	=	94B L3	Repl. by ACCIARRI 97L		¹¹² ACKERSTAFF 98E systems branching ratios $B(D^{*+} \rightarrow D^{*+})$	atic error includes a $D^0\pi^+)=0.683\pm 0$	n uncertainty .014 and B(<i>D</i>	y of ± 0.0069 due to th
(N _{K*(892)} ±) VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT		0.0012. 113 See ABREU 95 (erratum). 114 AKERS 950 systematic erro	or includes an uncert	tainty of ±0.	.008 due to the $D^{*\pm}$ ar
0.72 ±0.05 OUR AVERAGE					D ⁰ branching ratios [they us	se B($D^* \rightarrow D^0 \pi$):	= 0.681 ± 0.0	016 and B($D^0 \rightarrow K\pi$)
$0.712 \pm 0.031 \pm 0.059$			E_{cm}^{ee} = 91.2 GeV		0.0401 ± 0.0014 to obtain t			
0.72 ±0.02 ±0.08	ACTON	93 OPAL	E_{CM}^{ee} = 91.2 GeV		/#/			
⟨N _{K*(892)} 0⟩					$\langle N_{D_{s1}(2536)+} \rangle$ VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
VALUE	DOCUMENT ID	TECN	COMMENT		• • • We do not use the follow	ing data for average	s, fits, limits,	etc. • • •
0.739±0.022 OUR AVERAGE			00		0.0 ± 0.7 + 0.2	115 ACKEDOTAGE		566 01 0 C V
0.707 ± 0.041		99E SLD		ı	$2.9^{+0.7}_{-0.6}\pm0.2$	115 ACKERSTAFF	97W OPAL	£cm = 91.2 GeV
0.74 ±0.02 ±0.02			Eee = 91.2 GeV		115 ACKERSTAFF 97w obtain t	this value for $x > 0.6$	and with the	assumption that its deca
0.77 ±0.02 ±0.07			$E_{\rm cm}^{\rm ee}$ = 91.2 GeV		width is saturated by the D^*			
$0.83 \pm 0.01 \pm 0.09$	BUSKULIC	96н ALEP	Eee = 91.2 GeV					
0.97 ±0.18 ±0.31			Eee = 91.2 GeV		⟨N _{B*} ⟩			
• • We do not use the following					VALUE	DOCUMENT ID	TECN	COMMENT
0.74 ±0.03 ±0.03			Repl. by ACKER- STAFF 97s		$0.28 \pm 0.01 \pm 0.03$ $116 \text{ ABREU } 95\text{R } \text{ quote this value}$	¹¹⁶ ABREU e for a flavor-average		E_{Cm}^{ee} = 91.2 GeV
$\langle N_{\kappa_2^{\bullet}(1430)} \rangle$					$\langle N_{J/\psi(1S)} angle$			
VALUE	DOCUMENT ID		COMMENT		VALUE	DOCUMENT ID		COMMENT
0.073±0.023			E cm = 91.2 GeV	ŀ	$0.0056 \pm 0.0003 \pm 0.0004$	117 ALEXANDER		
 We do not use the following 	data for averages,	, fits, limits,	etc. • • •		¹¹⁷ ALEXANDER 968 identify 3	$I/\psi(1S)$ from the de	cays into lep	ton pairs.
0.079±0.026±0.031			Repl. by ABREU 99J		, .			
0.19 ±0.04 ±0.06	⁾⁹ AKERS	95x OPAL	<i>E</i> ee		⟨N _{≠(25)} ⟩			
⁰⁹ AKERS 95x obtain this value fo	or x< 0.3.				VALUE 0.0023±0.0004±0.0003	DOCUMENT IO		COMMENT Eee = 91.2 GeV
$\langle N_{D^{\pm}} \rangle$					⟨N _D ⟩	ALEXANDER	908 OFAL	£cm = 91.2 GeV
VALUE	DOCUMENT ID		COMMENT		, r,	DOCUMENT ID	TECN	COMMENT
0.187±0.020 OUR AVERAGE Er					1.04±0.04 OUR AVERAGE	DOCUMENT ID	1200	COMMENT
$0.170 \pm 0.009 \pm 0.014$			$E_{\rm cm}^{ee}$ = 91.2 GeV		1.03±0.13	ABE	995 SID	<i>Eee</i> = 91.2 GeV
$0.251 \pm 0.026 \pm 0.025$	BUSKULIC	94J ALEP	Eee 91.2 GeV		$1.08 \pm 0.04 \pm 0.03$	ABREU		$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$
0.199±0.019±0.024	^{LO} ABREU	93i DLPH	$E_{\text{CM}}^{ee} = 91.2 \text{ GeV}$					
¹¹⁰ See ABREU 95 (erratum).					1.00 ± 0.07	BARATE		E ^{ee} _{CM} = 91.2 GeV
WEIGHTED AVERAGE					0.92 ± 0.11	AKERS		E ^{ee} _{Cm} = 91.2 GeV
WEIGHTED AVERAGE 0.187±0.020 (Error scaled	1 by 1.5)				• • • We do not use the follow $1.07 \pm 0.01 \pm 0.14$	ing data for average ABREU		etc. • • • Repl. by ABREU 98L
· ·					⟨N _{Δ(1232)++} ⟩	ABREO	751 DE111	Rep. Dy ADNEO 302
					V*Δ(1232)++/	DOCUMENT ID	TECN	COMMENT
					0.087 ± 0.033 OUR AVERAGE			
					0.079±0.009±0.011	ABREU		Eee = 91.2 GeV
					0.22 ±0.04 ±0.04			Eee = 91.2 GeV
								CIII 2 907
					$\langle N_A \rangle$			
					VALUE	DOCUMENT ID	TECN	COMMENT
					0.374±0.007 OUR AVERAGE			
			2		0.395 ± 0.022	ABE	99E SLD	E_{cm}^{ee} = 91.2 GeV
			χ^2		$0.364 \pm 0.004 \pm 0.017$	ACCIARRI	97L L3	Eee = 91.2 GeV
1	AL	EXANDER	96R OPAL 1.1		$0.374 \pm 0.002 \pm 0.010$	ALEXANDER	97D OPAL	E ee = 91.2 GeV
		JSKULIC	94J ALEP 3.1		0.386 ± 0.016	BUSKULIC		E ee = 91.2 GeV
	AB	BREU	93I DLPH <u>0.2</u>		$0.357 \pm 0.003 \pm 0.017$	ABREU		E ee = 91.2 GeV
		(Conf	4.3 idence Level = 0.114)		• • We do not use the follow			•
		1			0.37 ±0.01 ±0.04	ACCIARRI	94B L3	Repl. by ACCIARRI 97
	0.25 0.3 0.	.35 0.4				caaaa	740 20	pii by Accident 31
0.1 0.15 0.2 0					(N _{A(1520)})	DOCUMENT ID	TECN	COMMENT
$\langle N_{D^{\pm}} \rangle$					0.0213±0.0021±0.0019			$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$
$\langle N_{D^{\pm}} \rangle$						CENTROER	AN OFAL	-cm- 31.2 GeV
$\left\langle N_{D^{\pm}} \right\rangle$			501111-V-		⟨N ₅ +⟩			
$\left< N_{D^\pm} \right>$ $\left< N_{D^0} \right>$ VALUE	DOCUMENT ID	TECN	COMMENT		\' '\<u>Z</u> + /			
$\left< N_{D^\pm} \right>$ $\left< N_{D^0} \right>$ VALUE 0.462 \pm 0.026 OUR AVERAGE					VALUE	DOCUMENT ID	TECN	COMMENT
⟨ <i>N_{D±}</i> ⟩ ⟨ <i>N_{D0}</i> ⟩ <u>value</u> 0.462±0.026 OUR AVERAGE 0.465±0.017±0.027	ALEXANDER	96R OPAL	Eee = 91.2 GeV					COMMENT Ecm = 91.2 GeV
\langle N_D\(\text{\psi}\) \(\langle N_D\(\text{\psi}\) \(\value \) \(\value \	ALEXANDER BUSKULIC	96R OPAL 943 ALEP	E ^{ee} _{cm} = 91.2 GeV E ^{ee} _{cm} = 91.2 GeV		<u>VALUE</u> 0.099±0.008±0.013			
\langle N_D\(\text{\psi}\) \(\langle N_D\(\text{\psi}\) \(\value \) \(\value \	ALEXANDER BUSKULIC	96R OPAL 943 ALEP	Eee = 91.2 GeV		<u>VALUE</u> 0.099±0.008±0.013			
⟨N _{D±} ⟩ ⟨N _{D0} ⟩ VALUE 0.462±0.026 OUR AVERAGE 0.465±0.017±0.027 0.518±0.052±0.035	ALEXANDER BUSKULIC	96R OPAL 943 ALEP	E ^{ee} _{cm} = 91.2 GeV E ^{ee} _{cm} = 91.2 GeV		VALUE	ALEXANDER	97E OPAL	Eem = 91.2 GeV
\langle N_D\(\pm\) \\ \langle N_D\(\pm\) \\ \text{VALUE} \\ \text{0.462\pm\subseteq 0.026 OUR AVERAGE} \\ 0.465\pm\subsete 0.007 \pm\subsete 0.027 \\ 0.518\pm\subsete 0.052\pm\subsete 0.035 \\ 0.403\pm\subsete 0.038\pm\subsete 0.044 11 \\ 1111 \text{See ABREU 95 (erratum)}.	ALEXANDER BUSKULIC	96R OPAL 943 ALEP	E ^{ee} _{cm} = 91.2 GeV E ^{ee} _{cm} = 91.2 GeV		$0.099 \pm 0.008 \pm 0.013$ $\langle N_{\Sigma^{-}} \rangle$	ALEXANDER	97E OPAL	Eem = 91.2 GeV
\langle N_D\(\pm\) \\ \langle N_D\(\phi\) \\ \(\mathreat{VALUE}{0.462\pm\) 0.026 OUR AVERAGE \\ 0.465\pm\) 0.017\pm\) 0.027 \\ 0.518\pm\) 0.052\pm\) 0.035 \\ 0.403\pm\) 0.038\pm\) 0.044 \qquad 11	ALEXANDER BUSKULIC	96R OPAL 943 ALEP	E ^{ee} _{cm} = 91.2 GeV E ^{ee} _{cm} = 91.2 GeV		0.099±0.008±0.013	ALEXANDER	97E OPAL	E _{cm} = 91.2 GeV

Z

$\langle N_{\Sigma^{+}+\Sigma^{-}} \rangle$				
VALUE 0.181 ± 0.018 OUR AVERAGE	DOCUMENT ID	<u>TE</u>	CN COMMENT	—
$0.182 \pm 0.010 \pm 0.016$	118 ALEXANDER	97E OF	PAL <i>Eee</i> = 91.2 GeV	
$0.170 \pm 0.014 \pm 0.061$	ABREU		PH E ee = 91.2 GeV	
118 We have combined the value	es of $\langle N_{-+} \rangle$ and	⟨N ⟩ f	rom ALEXANDER 97E add	ding
118 We have combined the value the statistical and systematic isospin symmetry is assumed	errors of the two this value become	final stat s 0.174 ±	es separately in quadrature 0.010 ± 0.015 .	ı, İf
⟨N _∑ 0⟩	DOCHMENT ID	TE	CNCOMMENT	
0.070±0.011 OUR AVERAGE	DOCOMILIET ID	<u>/-</u>	CIT COMMENT	
$0.071 \pm 0.012 \pm 0.013$	ALEXANDER		PAL <i>Eee</i> = 91.2 GeV	
$0.070 \pm 0.010 \pm 0.010$	ADAM	968 DI	.PH <i>E</i> cm = 91.2 GeV	
$\langle N_{(\Sigma^{+}+\Sigma^{-}+\Sigma^{0})/3} \rangle$				
VALUE 0.084±0.005±0.008			CN COMMENT PAL Eee = 91.2 GeV	
0.004 ±0.003 ±0.008	ALEXANDER	. TE OF	AL Ecm = 91.2 GeV	
$\langle N_{\Sigma(1385)^+} \rangle$	DOCUMENT ID	TE	CN COMMENT	
0.0239±0.0009±0.0012			PAL Ecm = 91.2 GeV	
	,	31	-(III >2 44-	
$\langle N_{\Sigma(1385)^-} \rangle$				
VALUE			CN COMMENT	
$0.0240 \pm 0.0010 \pm 0.0014$	ALEXANDER	97D OF	PAL <i>E</i> ee = 91.2 GeV	
$\langle N_{\Sigma(1385)^+ + \Sigma(1385)^-} \rangle$				
0.046 ±0.004 OUR AVERAGE			CN COMMENT Of 1.6.	
$0.0479 \pm 0.0013 \pm 0.0026$	ALEXANDER			
$0.0382 \pm 0.0028 \pm 0.0045$	ABREU	950 DI	PH E ee = 91.2 GeV	
/a/ \				
⟨ N ₌ -⟩ VALUE	DOCUMENT ID	т.	CNCOMMENT	
0.0258±0.0009 OUR AVERAGE	DOCUMENT ID		CIV COMMENT	
$0.0259 \pm 0.0004 \pm 0.0009$	ALEXANDER		PAL <i>E</i> _{CM} = 91.2 GeV	
$0.0250 \pm 0.0009 \pm 0.0021$	ABREU	950 DI	.PH <i>E</i> cm = 91.2 GeV	
$\langle N_{\Xi(1530)^0} \rangle$				
VALUE 0.0053±0.0013 OUR AVERAGE			of 3.2	
0.0068 ± 0.0005 ± 0.0004	ALEXANDER		PAL E ee 91.2 GeV	
$0.0041 \pm 0.0004 \pm 0.0004$	ABREU		.PH <i>E</i> ee = 91.2 GeV	
/m \				
$\langle N_{\Omega^{-}} \rangle$	000000000000000000000000000000000000000			
0.00164±0.00028 OUR AVERAGE			CN COMMENT	
$0.0018 \ \pm 0.0003 \ \pm 0.0002$	ALEXANDER	97D OF	PAL Eee 91.2 GeV	
$0.0014 \ \pm 0.0002 \ \pm 0.0004$	ADAM	96B DI	.PH	
$\langle N_{A_c^+} \rangle$				
VALUE			CNCOMMENT	
$0.078 \pm 0.012 \pm 0.012$	ALEXANDER	96R OI	PAL Ecm = 91.2 GeV	
⟨N _{charged} ⟩	0.45141-11-11			
21.07±0.11 OUR AVERAGE	DOCUMENT ID	<u>IE</u>	CN COMMENT	
$21.21 \pm 0.01 \pm 0.20$	ABREU	99 DI	.PH <i>Eee</i> = 91.2 GeV	
21.05 ± 0.20	AKERS	95z Of		
$20.91 \pm 0.03 \pm 0.22$	BU\$KULIC	95R AL	.EP	
21.40 ± 0.43	ACTON	928 OI		
$20.71 \pm 0.04 \pm 0.77$	ABREU	91H DI		
20.7 ±0.7	ADEVA	911 L3	4	
$20.1 \pm 1.0 \pm 0.9$	ABRAMS	90 M	RK2 <i>E</i> ^{ee} _{CM} = 91.1 GeV	

Z HADRONIC POLE CROSS SECTION

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the $\it Z$ boson"). This quantity is defined as

$$\sigma_h^0 = \frac{12\pi}{M_Z^2} \frac{\Gamma(e^+e^-)\Gamma(\text{hadrons})}{\Gamma_Z^2}$$

It is one of the parameters used in the $\boldsymbol{\mathcal{Z}}$ lineshape fit.

VALUE (nb)	EVTS	DOCUMENT ID	TECN	COMMENT
41.561 ± 0.042 OUR	FIT			
41.578 ± 0.069	3.70M	ABREU	00F DLPH	<i>E</i> cm = 88-94 GeV
41.535 ± 0.055	3.54M	ACCIARRI	00c L3	<i>E</i> ^{ee} cm = 88−94 GeV
41.559 ± 0.058	4.07M	119 BARATE	00c ALEP	Eee = 88-94 GeV

• • •	We do not	use the following o	data for averag	es, fits	, limits,	etc. • • •
41.23	± 0.20	1.05M	ABREU	94	DLPH	Repl. by ABREU 00F
41.39	± 0.26	1.09M	ACCIARRI	94	L3	Rept. by ACCIARRI 00c
41.70	± 0.23	1.19M	AKERS	94	OPAL	E_{cm}^{ee} = 88–94 GeV
41.60	± 0.16	1.27M	BUSKULIC	94	ALEP	Repl. by BARATE 00c
12	+4	450	ARRAMS	ROB	MRK2	FEE - 89 2-93 0 GeV

 $^{119}\,\mathrm{BARATE}$ 00c error includes approximately 0.030 due to statistics, 0.026 due to experimental systematics, and 0.025 due to uncertainty in luminosity measurement.

Z VECTOR COUPLINGS TO CHARGED LEPTONS

These quantities are the effective vector couplings of the Z to charged leptons. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters, $A_{\rm e}$, A_{μ} , and A_{τ} . By convention the sign of $g_A^{\rm e}$ is fixed to be negative (and opposite to that of $g^{\nu_{\rm e}}$ obtained using $\nu_{\rm e}$ scattering measurements). The fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and $A_{\rm e}$, A_{μ} , and A_{τ} measurements. See "Note on the Z boson" for details.

8°V				
VALUE	EVTS	DOCUMENT ID	<u>TECN</u>	COMMENT
-0.03874±0.00094 C	UR FIT			
-0.0412 ± 0.0027	124,4k 12	²⁰ ACCIARRI	00c L3	Eee = 88-94 GeV
-0.0400 ± 0.0037		BARATE	00c ALEP	Eee = 88-94 GeV
-0.0414 ± 0.0020	13	²¹ ABE	95J \$LD	<i>E</i> ee e 91.31 GeV
120 ACCIARRI 00c us	e their mea	surement of the	τ polarizatio	n in addition to forward-

backward lepton asymmetries. 121 ABE 95J obtain this result combining polarized Bhabha results with the A_{LR} measurement of ABE 94C. The Bhabha results alone give $-0.0507 \pm 0.0096 \pm 0.0020$.

8 V				
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
-0.0359±0.0033 OL	IR FIT			
-0.0386 ± 0.0073	113.4k ¹	²² ACCIARRI	00c L3	<i>Ee</i> e = 88-94 GeV
-0.0362 ± 0.0061		BARATE	00c ALEP	<i>E</i> ee = 88-94 GeV
122 ACCIARRI 00c u		surement of the	au polarizatio	n in addition to forward-

8"				
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
-0.0366±0.0014 OU				
-0.0384 ± 0.0026	103.0k	¹²³ ACCIARRI	00c L3	<i>E</i> ee = 88-94 GeV
-0.0361 ± 0.0068		BARATE	00c ALEP	<i>E</i> ee = 88-94 GeV

 $^{123}\,\mathrm{ACCIARRI}$ 00c use their measurement of the $\tau\,\mathrm{polarization}$ in addition to forward-backward lepton asymmetries.

	•	•				
8 V						
VALUE		EVT5	DOCUMENT ID		TECN	COMMENT
-0.0379	5±0.00071 O	UR FIT				
-0.0397	± 0.0020	379.4k	¹²⁴ ABREU	00F	DLPH	Eee = 88-94 GeV
-0.0397	±0.0017	340.8k	¹²⁵ ACCIARRI	0 0c	L3	<i>Ee</i> e = 88-94 GeV
-0.0383	±0.0018	500k	BARATE	00 C	ALEP	<i>E</i> ee = 88-94 GeV
• • • W	e do not use	the follow	ing data for average	s, fits	, limits,	etc. • • •
-0.034	±0.004	146k	124 AKERS	94	OPAL	Eee = 88-94 GeV
124 Using	forward-back	ward lept	on asymmetries.	T DO	larizatio	n in addition to forware

125 ACCIARRI 00c use their measurement of the r polarization in addition to forward backward lepton asymmetries.

Z AXIAL-VECTOR COUPLINGS TO CHARGED LEPTONS

These quantities are the effective axial-vector couplings of the Z to charged leptons. Their magnitude is derived from a measurement of the Z line-shape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters, A_e , A_μ , and A_τ . By convention the sign of g_A^e is fixed to be negative (and opposite to that of g^{ν_e} obtained using ν_e scattering measurements). The fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and A_e , A_μ , and A_τ measurements. See "Note on the Z boson" for details.

ge A				
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
-0.50133±0.00040 O	UR FIT			
-0.5015 ± 0.0007	124.4k ¹	²⁶ ACCIARRI	00C L3	<i>E</i> ee = 88-94 GeV
-0.50166 ± 0.00057		BARATE	00c ALEP	Eee = 88-94 GeV
-0.4977 ± 0.0045	1	²⁷ ABE	95J \$LD	Ecm = 91.31 GeV
126 ACCIARRI 00C us		asurement of the	au polarizatio	n in addition to forward-

127 ABE 95) obtain this result combining polarized Bhabha results with the A_{LR} measurement of ABE 94c. The Bhabha results alone give $-0.4968\pm0.0039\pm0.0027$.

8 A							
VALUE	EVTS	DOCUMENT ID	TECN_	COMMENT			
-0.50139 ± 0.00066							
-0.5009 ± 0.0014	113.4k	128 ACCIARRI	00c L3	Eee = 88-94 GeV			
-0.50046 ± 0.00093		BARATE	00c ALEP	Eee = 88-94 GeV			
128 ACCIARRI 00c use their measurement of the τ polarization in addition to forward-backward lepton asymmetries.							

DOCUMENT ID TECN_ COMMENT -0.50223±0.00073 OUR FIT 103.0k 129 ACCIARRI -0.5023 ± 0.0017 00c L3 $E_{CD}^{ee} = 88-94 \text{ GeV}$

BARATE

 -0.50216 ± 0.00100 00c ALEP E ee = 88-94 GeV 129 ACCIARRI 00c use their measurement of the au polarization in addition to forward-

backwaro lepton as	symmetries	•					
8A							
VALUE	EVTS	DOCUMENT ID	TECI	COMMENT			
-0.50145±0.00030 O	UR FIT						
-0.5007 ± 0.0005	379.4k	ABREU	00F DLP	H <i>E</i> ^{ee} _{Cm} = 88-94 GeV			
-0.50153 ± 0.00053	340.8k	¹³⁰ ACCIARRI		Een = 88-94 GeV			
-0.50150 ± 0.00046	500k	BARATE	00c ALE	P <i>Ec</i> m= 88-94 GeV			
• • • We do not use	the followin	ng data for averages	s, fits, lim	ts, etc. • • •			
-0.500 ± 0.001	146k	AKERS	94 OPA	L <i>E</i> ee = 88-94 GeV			
$^{130}\mathrm{ACCIARRI}$ 00c use their measurement of the τ polarization in addition to forward-backward lepton asymmetries.							

Z COUPLINGS TO NEUTRAL LEPTONS

These quantities are the effective couplings of the ${\it Z}$ to neutral leptons. $u_e\,e$ and $u_\mu\,e$ scattering results are combined with g_A^e and g_V^e measurements at the Z mass to obtain g^{ν_e} and $g^{\nu_{\mu}}$ following NOVIKOV 93c.

VALUE	DOCUMENT ID		TECN	COMMENT		
0.528±0.085	131 VILAIN	94	CHM2	From $\nu_{\mu}e$ and $\nu_{e}e$ scat-		
131			ν	tering		
1.05 + 0.15	is value from their value	e of	g μ an	d their ratio $g^{\mu}e/g^{\mu}=$		

$g^{\nu_{\mu}}$				
VALUE	DOCUMENT ID		TECN	COMMENT
0.502±0.017	132 VILAIN	94	CHM2	From $\nu_{\mu}e$ scattering

 132 VILAIN 94 derive this value from their measurement of the couplings g_A° 0.017 and $g_V^{e\,
u}{}^\mu = -$ 0.035 \pm 0.017 obtained from $\nu_\mu\,e$ scattering. We have re-evaluated this value using the current PDG values for g_A^e and g_V^e .

Z ASYMMETRY PARAMETERS

For each fermion-antifermion pair coupling to the Z these quantities are defined as

$$A_f = \frac{2g_V^f g_A^f}{(g_V^f)^2 + (g_A^f)^2}$$

where g_V^f and g_A^f are the effective vector and axial-vector couplings. For their relation to the various lepton asymmetries see the 'Note on the Z

Using polarized beams, this quantity can also be measured as $(\sigma_L - \sigma_R)/(\sigma_L + \sigma_R)$, where σ_L and σ_R are the e^+e^- production cross sections for Z bosons produced with left-handed and right-handed electrons respectively.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.152 ±0.004 OUR AVER		rror includes scale f	actor of 1.2.	
$0.1382 \pm 0.0116 \pm 0.0005$	105000	¹³³ ABREU	OOE DLPH	Ecm= 88-94 GeV
$0.1678 \pm 0.0127 \pm 0.0030$	137092	¹³⁴ ACCIARRI	98H L3	<i>E</i> cm= 88−94 GeV
$0.162 \pm 0.041 \pm 0.014$	89838	135 ABE	97 SLD	$E_{\text{CM}}^{ee} = 91.27 \text{ GeV}$
0.1543 ± 0.0039	93644	136 ABE	97E SLD	<i>E</i> ^{ee} _{CM} = 91.27 GeV
0.152 ± 0.012		¹³⁷ ABE	97N SLD	Ecm= 91.27 GeV
$0.129 \pm 0.014 \pm 0.005$		¹³⁸ ALEXANDER	96U OPAL	$E_{ m cm}^{ee}=$ 88–94 GeV
$0.202 \pm 0.038 \pm 0.008$		¹³⁹ ABE	95J SLD	<i>Ec</i> m= 91.31 GeV
$0.129 \ \pm 0.016 \ \pm 0.005$	33000	¹⁴⁰ BUSKULIC	95Q ALEP	<i>E</i> ee = 88–94 GeV
• • • We do not use the fo	ollowing	data for averages, fi	ts, limits, etc.	. • • •
$0.136 \pm 0.027 \pm 0.003$		134 ABREU	951 DLPH	Repl. by ABREU 00E
$0.122 \pm 0.030 \pm 0.012$	30663	134 AKERS	95 OPAL	Repl. by ALEXAN- DER 96u
$0.1656 \pm 0.0071 \pm 0.0028$	49392	¹⁴¹ ABE	94C SLD	Repl. by ABE 97E
$0.157 \pm 0.020 \pm 0.005$	86000	134 ACCIARRI	94E L3	Repl. by ACCIA- RRI 98H

- 133 ABREU 00E obtain this result fitting the au polarization as a function of the polar au production angle. This measurement is a combination of different analyses (exclusive au decay modes, inclusive hadronic 1-prong reconstruction, and a neural network
- 134 Derived from the measurement of forward-backward au polarization asymmetry.
- 135 ABE 97 obtain this result from a measurement of the observed left-right charge asymmetry, $A_Q^{\rm obs} = 0.225 \pm 0.056 \pm 0.019$, in hadronic Z decays. If they combine this value of $A_Q^{
 m obs}$ with their earlier measurement of $A_{LR}^{
 m obs}$ they determine A_e to be $0.1574\,\pm\,0.0197\,\pm\,0.0067$ independent of the beam polarization.
- $^{136}\,\mathrm{ABE}$ 97E measure the left-right asymmetry in hadronic Z production. This value (statistical and systematic errors added in quadrature) leads to $\sin^2\!\theta_W^{\rm eff} = 0.23060 \pm 0.00050$.
- 137 ABE 97N obtain this direct measurement using the lef-right cross section asymmetry and the left-right forward-backward asymmetry in leptonic decays of the $\it Z$ boson obtained with a polarized electron beam.
- 138 ALEXANDER 960 measure the au-lepton polarization and the forward-backward polar-
- 139 ABE 95J obtain this result from polarized Bhabha scattering.
- 140 BUSKULIC 950 obtain this result fitting the au polarization as a function of the polar au
- 141 ABE 94c measured the left-right asymmetry in Z production. This value leads to $\sin^2\!\theta_W = 0.2292 \pm 0.0009 \pm 0.0004$.

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in $\mu^+\mu^-$ production at SLC using a polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e .

VALUE **EVTS** DOCUMENT ID TECN COMMENT 142 ABE 0.102 ± 0.034 3788 97N SLD E ee 91.27 GeV

 $^{142}\,\mathrm{ABE}$ 97N obtain this direct measurement using the lef-right cross section asymmetry and the left-right forward-backward asymmetry in $\mu^+\mu^-$ decays of the Z boson obtained with a polarized electron beam.

The LEP Collaborations derive this quantity from the measurement of the au polarization in $Z \to \tau^+ \tau^-$. The SLD Collaboration directly extracts this quantity from its measured left-right forward-backward asymmetry in $Z \to \tau^+ \tau^-$ produced using a polarized e beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_{ρ} .

VALUE	EVTS	DOCUMENT ID	<u>TECN</u>	COMMENT
0.141 ±0.006 OUR AVE	RAGE			
$0.1359 \pm 0.0079 \pm 0.0055$	105000 143	B ABREU	OOE DLPH	Eee = 88-94 GeV
$0.1476 \pm 0.0088 \pm 0.0062$	137092	ACCIARRI	98H L3	<i>E</i> ee = 88−94 GeV
0.195 ± 0.034		[‡] ABE	97N SLD	Ecm = 91.27 GeV
$0.134 \pm 0.009 \pm 0.010$	89075 14	5 ALEXANDER	96u OPAL	<i>E</i> ^{ee} _{CM} = 88-94 GeV
$0.136 \pm 0.012 \pm 0.009$	33000 140	BUSKULIC	95Q ALEP	<i>E</i> ee = 88-94 GeV
• • We do not use the f	ollowing data	for averages, fit	ts, limits, etc	. • • •
$0.148 \pm 0.017 \pm 0.014$		ABREU	95: DLPH	Repl. by ABREU 00E
$0.153 \pm 0.019 \pm 0.013$	30663	AKERS	95 OPAL	Repl. by ALEXAN-
$0.150 \ \pm 0.013 \ \pm 0.009$	86000	ACCIARRI	94E L3	DER 960 Repl. by ACCIA-

- 143 ABREU 00E obtain this result fitting the au polarization as a function of the polar au production angle. This measurement is a combination of different analyses (exclusive au decay modes, inclusive hadronic 1-prong reconstruction, and a neural network analysis).
- 144 ABE 97N obtain this direct measurement using the left-right cross section asymmetry and the left-right forward-backward asymmetry in $au^+ au^-$ decays of the Z boson obtained with a polarized electron beam.
- 145 ALEXANDER 960 measure the au-lepton polarization and the forward-backward polar-
- 146 BUSKULIC 95Q obtain this result fitting the au polarization as a function of the polar au

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in $c\overline{c}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e .

DOCUMENT ID 0.66 ±0.11 OUR AVERAGE 147 ABE Een = 91.27 GeV 990 SLD $0.642 \pm 0.110 \pm 0.063$ ¹⁴⁸ ABE,K $0.73 \ \pm 0.22 \ \pm 0.10$ 95 SLD $E_{\text{cm}}^{\text{ee}} = 91.26 \text{ GeV}$ • • • We do not use the following data for averages, fits, limits, etc. • • ¹⁴⁹ ABE $0.37 \pm 0.23 \pm 0.21$ 95L SLD Repl. by ABE 990

 147 ABE 990 tag b and c quarks through their semileptonic decays into electrons and muons.

A maximum likelihood fit is performed to extract simultaneously A_b and A_c . ¹⁴⁸ ABE,K 95 tag $Z \rightarrow c\overline{c}$ events using $D^{\bullet+}$ and D^+ meson production. To take care of the $b\overline{b}$ contamination in their analysis they use $A_b^D = 0.64 \pm 0.11$ (which is A_b from D^*/D tagging). This is obtained by starting with a Standard Model value of 0.935, assigning it an estimated error of ± 0.105 to cover LEP and SLD measurements, and finally taking into account B- \overline{B} mixing (1- $2\chi_{\rm mix}=0.72\pm0.09$).

 149 ABE 95L tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract A_b and A_c .

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in $b\overline{b}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e .

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.905 ± 0.051		¹⁵⁰ ABE	990 SLD	Eee = 91.27 GeV
• • • We do not use	the follow	ing data for average	s, fits, limits	s, etc. • • •
$0.855 \pm 0.088 \pm 0.102$	7473	¹⁵¹ ABE	99L SLD	Repl. by ABE 990
$0.911 \pm 0.045 \pm 0.045$	11092	¹⁵² ABE	981 SLD	Repl. by ABE 990
$0.91 \pm 0.14 \pm 0.07$		¹⁵³ ABE	95L SLD	Repl. by ABE 990

- 150 ABE 990 tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously A_b and A_c . The value of A_b so extracted, 0.910 \pm 0.068 \pm 0.037, is then combined with A_b from ABE 99L and ABE 99L to obtain the resulting SLD average value quoted here.

 151 ABE 99L obtain an enriched sample of $b\bar{b}$ events tagging with an inclusive vertex mass
- cut. For distinguishing b and \overline{b} quarks they use the charge of identified K^{\pm} .
- 152 ABE 981 obtain an enriched sample of 656 events tagging with an inclusive vertex mass cut. A momentum-weighted track charge is used to identify the sign of the charge of the underlying b quark.
- 153 ABE 95L tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract A_b and A_c .

TRANSVERSE SPIN CORRELATIONS IN $Z \rightarrow \tau^+\tau^-$

The correlations between the transverse spin components of $au^+ au^-$ produced in Z decays may be expressed in terms of the vector and axial-vector

$$\begin{split} C_{TT} &= \frac{|g_A^r|^2 - |g_V^r|^2}{|g_A^r|^2 + |g_V^r|^2} \\ C_{TN} &= -2 \frac{|g_A^r||g_V^r|}{|g_A^r|^2 + |g_V^r|^2} \sin(\Phi_{g_V^r} - \Phi_{g_A^r}) \end{split}$$

 $\mathcal{C}_{\mathcal{T}\mathcal{T}}$ refers to the transverse-transverse (within the collision plane) spin correlation and C_{TN} refers to the transverse-normal (to the collision plane)

The longitudinal au polarization $P_{ au}$ (= $-A_{ au}$) is given by:

$$P_{\tau} = -2\frac{|\mathbf{g}_A^{\tau}||\mathbf{g}_V^{\tau}|}{|\mathbf{g}_A^{\tau}|^2 + |\mathbf{g}_V^{\tau}|^2}\cos(\Phi_{\mathbf{g}_V^{\tau}} - \Phi_{\mathbf{g}_A^{\tau}})$$

Here Φ is the phase and the phase difference $\Phi_{{\cal g}_{V}^{\,\, T}}-\Phi_{{\cal g}_{A}^{\,\, T}}$ can be obtained using both the measurements of C_{TN} and P_{τ} .

$c_{\tau\tau}$					
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
1.01 ±0.12 OUR AVE	RAGE				
$0.87 \pm 0.20 {}^{+ 0.10}_{- 0.12}$	9.1k	ABREU	97G DLPH	$E_{ m cm}^{\it ee}$ = 91.2 GeV	
$1.06 \pm 0.13 \pm 0.05$	120k	BARATE	97D ALEP	$E_{CM}^{\mathit{ee}} = 91.2 \; GeV$	
C _{TN}					
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
$0.08 \pm 0.13 \pm 0.04$	120k	¹⁵⁴ BARATE	97D ALEP	$E_{\text{CM}}^{\text{ge}} = 91.2 \text{ GeV}$	

154 BARATE 97D combine their value of C_{TN} with the world average $P_{\tau}=-0.140\pm0.007$ to obtain $\tan(\Phi_{g_V^{\tau}}-\Phi_{g_A^{\tau}})=-0.57\pm0.97$.

$A_{FR}^{(0,e)}$ CHARGE ASYMMETRY IN $e^+e^- \rightarrow e^+e^-$

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson"). For the Z peak, we report the pole asymmetry defined by $(3/4)A_0^2$ as determined by the nine-parameter fit to cross-section and lepton forwardbackward asymmetry data.

ASYMMETRY (%)	STD. MODEL	√s (GeV)	DOCUMENT ID		TECN
1.64±0.27 OUR FIT					
1.71 ± 0.49		91.2	ABREU	00F	DLPH
1.06 ± 0.58		91.2	ACCIARRI	00c	L3
1.88 ± 0.34		91.2	¹⁵⁵ BARATE	00c	ALEP
• • We do not use the	e following data for	average	s, fits, limits, etc. •	• •	
2.5 ±0.9		91.2	ABREU	94	DLPH
1.04 ± 0.92		91.2	ACCIARRI	94	L3
0.62 ± 0.80		91.2	AKERS	94	OPAL
1.85 ± 0.66		91.2	BUSKULIC	94	ALEP
155 BARATE 00c error in systematics, and 0.13	cludes approximate 3 due to the theore	ly 0.31 di	ue to statistics, 0.06 ertainty in t-channel	due to	experimental

$A_{FB}^{(0,\mu)}$ CHARGE ASYMMETRY IN $e^+e^- ightarrow \mu^+\mu^-$

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson"). For the Z peak, we report the pole asymmetry defined by $(3/4)A_eA_\mu$ as determined by the nine-parameter fit to cross-section and lepton forwardbackward asymmetry data.

	STD.	√s (GeV)				
ASYMMETRY (%)	MODEL	(GeV)		DOCUMENT ID		TECN
1.73± 0.16 OUR FIT						
1.65 ± 0.25		91.2		ABREU		DLPH
1.88± 0.33		91.2	156	ACCIARRI	00c	
1.71 ± 0.24		91.2		BARATE		ALEP
• • We do not use the follow	ving data for	averages			•	
9 ± 30	2	20		ABREU	95M	DLPH
7 ± 26	-10	40		ABREU	95M	DLPH
-11 ± 33	- 25	57		ABREU	95M	DLPH
-62 ± 17	- 45	69		ABREU	95M	DLPH
-56 ± 10	- 58	79	157	ABREU	95M	DLPH
-13 ± 5	-23	87.5	157	ABREU	95M	DLPH
1.4 ± 0.5		91.2		ABREU	94	DLPH
1.79 ± 0.61		91.2		ACCIARRI	94	L3
0.99 ± 0.42		91.2		AKERS	94	QPAL
1.46 ± 0.48		91.2		BUSKULIC	94	ALEP
$-29.0 \ \ \begin{array}{c} + \ 5.0 \\ - \ 4.8 \end{array} \ \pm 0.5$	- 32.1	56.9	158	ABE	9 0ı	VNS
$-9.9 \pm 1.5 \pm 0.5$	-9.2	35		HEGNER	90	JADE
0.05 ± 0.22	0.026	91.14		ABRAMS	89D	MRK2
-43.4 ± 17.0	- 24.9	52.0	160		89	AMY
-11.0 ± 16.5	-29.4	55.0	160	BACALA	89	AMY
-30.0 ± 12.4	31.2	56.0	160	BACALA	89	AMY
-46.2 ± 14.9	33.0	57.0	160	BACALA	89	AMY
-29 ± 13	- 25.9	53.3		ADACHI	88C	TOPZ
$+$ 5.3 \pm 5.0 \pm 0.5	-1.2	14.0		ADEVA	88	MRKJ
$-10.4 \pm 1.3 \pm 0.5$	-8.6	34.8		ADEVA	88	MRKJ
$-12.3 \pm 5.3 \pm 0.5$	-10.7	38.3		ADEVA	88	MRKJ
$-15.6 \pm 3.0 \pm 0.5$	-14.9	43.8		ADEVA	88	MRKJ
-1.0 ± 6.0	-1.2	13.9		BRAUNSCH	88D	TASS
$-9.1 \pm 2.3 \pm 0.5$	8.6	34.5		BRAUNSCH	88D	TASS
$-10.6 \begin{array}{c} + & 2.2 \\ - & 2.3 \end{array} \pm 0.5$	-8.9	35.0		BRAUNSCH	88D	TASS
-17.6	-15.2	43.6		BRAUNSCH	88D	TASS
$-4.8 \pm 6.5 \pm 1.0$	-11.5	39		BEHREND	87c	CELL
$-18.8 \pm 4.5 \pm 1.0$	-15.5	44		BEHREND	87c	CELL
+ 2.7 ± 4.9	-1.2	13.9		BARTEL	86C	JADE
$-11.1 \pm 1.8 \pm 1.0$	-8.6	34.4		BARTEL		JADE
$-17.3 \pm 4.8 \pm 1.0$	-13.7	41.5		BARTEL		JADE
$-22.8 \pm 5.1 \pm 1.0$	-16.6	44.8		BARTEL		JADE
$-6.3 \pm 0.8 \pm 0.2$	-6.3	29		ASH	85	MAC
$-$ 4.9 \pm 1.5 \pm 0.5	- 5.9	29		DERRICK	85	HRS
-7.1 ± 1.7	-5.7	29		LEVI	83	MRK2
-16.1 ± 3.2	- 9.2	34.2		BRANDELIK	82C	TASS

- $^{156}\,\mathrm{BARATE}$ 00c error is almost entirely on account of statistics.
- 157 ABREU 95M perform this measurement using radiative muon-pair events associated with high-energy isolated photons. 158 ABE 901 measurements in the range 50 $\,\leq\,\sqrt{s}\,\leq\,$ 60.8 GeV.
- 159 ABRAMS 89D asymmetry includes both $9 \mu^+ \mu^-$ and 15 $\tau^+ \tau^-$ events.
- 160 BACALA 89 systematic error is about 5%.

$A_{FB}^{(0, au)}$ CHARGE ASYMMETRY IN $e^+e^ightarrow~ au^+ au^-$

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the $\it Z$ boson"). For the Z peak, we report the pole asymmetry defined by $(3/4)A_eA_{\tau}$ as determined by the nine-parameter fit to cross-section and lepton forwardbackward asymmetry data.

ASYMMETRY (%)	STD. MODEL	√s (GeV)	DOCUMENT ID		TECN
2.07± 0.20 OUR FIT					
2.41 ± 0.37		91.2	ABREU	00F	DLPH
2.60 ± 0.47		91.2	ACCIARRI	00c	L3
1.70 ± 0.28		91.2	¹⁶¹ BARATE	00c	ALEP
• • We do not use the follow	wing data for	averages	, fits, limits, etc. •	• •	
2.2 ± 0.7		91.2	ABREU	94	DLPH
2.65 ± 0.88		91.2	ACCIARRI	94	L3
2.05 ± 0.52		91.2	AKERS	94	OPAL
1.97 ± 0.56		91.2	BUSKULIC	94	ALEP
$-32.8 \ ^{+}_{-} \ ^{6.4}_{6.2} \ \pm 1.5$	- 32.1	56.9	¹⁶² ABE	901	VNS
$-8.1 \pm 2.0 \pm 0.6$	-9.2	35	HEGNER	90	JADE
-18.4 ± 19.2	-24.9	52.0	¹⁶³ BACALA	89	AMY
-17.7 ± 26.1	-29.4	55.0	¹⁶³ BACALA	89	AMY
-45.9 ± 16.6	-31.2	56.0	¹⁶³ BACALA	89	AMY
-49.5 ± 18.0	-33.0	57.0	¹⁶³ BACALA	89	AMY

-20 ±14	-25.9	53.3	ADACHI	88C TOPZ
$-10.6 \pm 3.1 \pm 1.5$	-8.5	34.7	ADEVA	88 MRKJ
$-$ 8.5 \pm 6.6 \pm 1.5	-15.4	43.8	ADEVA	88 MRKJ
$-6.0 \pm 2.5 \pm 1.0$	8.8	34.6	BARTEL	85F JADE
$-11.8 \pm 4.6 \pm 1.0$	14.8	43.0	BARTEL	85F JADE
$-5.5 \pm 1.2 \pm 0.5$	-0.063	29.0	FERNANDEZ	85 MAC
$- 4.2 \pm 2.0$	0.057	29	LEVI	83 MRK2
-10.3 ± 5.2	-9.2	34.2	BEHREND	82 CELL
-0.4 ± 6.6	- 9.1	34.2	BRANDELIK	82c TASS

161 BARATE 00c error includes approximately 0.26 due to statistics and 0.11 due to exper-

$A_{FR}^{(0,\ell)}$ CHARGE ASYMMETRY IN $e^+e^- \rightarrow \ell^+\ell^-$

For the Z peak, we report the pole asymmetry defined by $(3/4)A_{\delta}^{2}$ as determined by the five-parameter fit to cross-section and lepton forwardbackward asymmetry data assuming lepton universality. For details see the "Note on the Z boson."

ASYMMETRY (%)	STD. MODEL	√s (GeV)	DOCUMENT ID		TECN
1.82±0.11 OUR FIT					
1.87 ± 0.19		91.2	ABREU	00F	DLPH
1.92 ± 0.24		91.2	ACCIARRI	00C	L3
1.73 ± 0.16		91.2	164 BARATE	00c	ALEP
• • • We do not use the	e following data fo	r average	es, fits, limits, etc. •	• •	
1.77 ± 0.37		91.2	ABREU	94	DLPH
1.84 ± 0.45		91.2	ACCIARRI	94	L3
1.28 ± 0.30		91.2	AKERS	94	OPAL
1.71 ± 0.33		91.2	BUSKULIC	94	ALEP
164					

164 BARATE 00c error includes approximately 0.15 due to statistics, 0.04 due to experimental systematics, and 0.02 due to the theoretical uncertainty in t-channel prediction.

$A_{FB}^{(0,u)}$ CHARGE ASYMMETRY IN $e^+e^ightarrow u\,\overline{u}$

	STD.	√s		
ASYMMETRY (%)	MODEL	(GeV)	DOCUMENT ID	TECN
40+67+28	6	91.2	165 ACKERSTAFE 97T	OPAL

165 ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons ACKENTIAFF 9(1) measure the loward-backward asymmetry or various made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types.

$A_{FR}^{(0,s)}$ CHARGE ASYMMETRY IN $e^+e^- \rightarrow s\bar{s}$

The s-quark asymmetry is derived from measurements of the forwardbackward asymmetry of fast hadrons containing an s quark.

ASYMMETRY (%) 9.8 ±1.1 OUR AVERAG	STD. MODEL	(GeV)	DOCUMENT ID	TECN
10.08 ± 1.13 ± 0.40		91.2	166 ABREU	00B DLPH
$6.8 \pm 3.5 \pm 1.1$	10	91.2	¹⁶⁷ ACKERSTAF	F 97T OPAL
• • • We do not use the f	ollowing data fe	or average	s, fits, limits, etc. •	
$13.1 \pm 3.5 \pm 1.3$		91.2	168 ABREU	95¢ DLPH

ı

166 ABREU 00B tag the presence of an s quark requiring a high-momentum-identified charged kaon. The s-quark pole asymmetry is extracted from the charged-kaon asymmetry taking the expected d- and u-quark asymmetries from the Standard Model and using the measured values for the c- and b-quark asymmetries.
167 ACKERSTAFF 97T measure the forward-backward asymmetry and flavor independence for the control of the contro

10f ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) Isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types. The value reported here corresponds then to the forward-backward asymmetry for "down-type" quarks.
 168 ABREU 95c require the presence of a high-momentum charged kaon or 10 to tag the squark. An unresolved s- and 4-quark asymmetry of (11.2 ± 3.1 ± 5.4)% is obtained by tagging the presence of a high-energy neutron or neutral kaon in the hadron calorimeter. Superseded by ABREU 008.

$A_{FB}^{(0,c)}$ CHARGE ASYMMETRY IN $e^+e^- \rightarrow c\overline{c}$

OUR FIT, which is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the "Note on the Z boson," refers to the Z pole asymmetry. As a cross check we have also performed a weighted average of the "near peak" measurements taking into account the various common systematic errors. We have assumed that the smallest common systematic error is fully correlated. Applying to this combined "peak" measurement QED and energy-dependence corrections, our weighted average gives a pole asymmetry of $(7.18 \pm 0.49)\%$.

ASYMMETRY (%) STD. MODEL 7.01 ± 0.45 OUR FIT	√s (GeV)	DOCUMENT ID	TECN
		169 ABREU	aa DI DII
$6.59 \pm 0.94 \pm 0.35$	91.235		99Y DLPH
$6.3 \pm 0.9 \pm 0.3$	91.22	170 BARATE	980 ALEP
$6.3 \pm 1.2 \pm 0.6$	91.22	¹⁷¹ ALEXANDER	97c OPAL
$6.00 \pm 0.67 \pm 0.52$	91.24	¹⁷² ALEXANDER	96 OPAL
$8.3 \pm 2.2 \pm 1.6$	91.27	¹⁷³ ABREU	95K DLPH
$9.9 \pm 2.0 \pm 1.7$	91.24	174 BUSKULIC	94G ALEP
92 ± 29 ±27 56	91.24	175 ADRIANI	92D I 3

• • We do not use the following	g data fo	r averages, fits, limit	s, etc. • • •
- 4.96± 3.68±0.53	89.434	169 ABREU	99Y DLPH
11.80± 3.18±0.62	92.990	169 ABREU	99Y DLPH
- 1.0 ± 4.3 ±1.0	89.37	170 BARATE	980 ALEP
11.0 ± 3.3 ±0.8	92.96	170 BARATE	980 ALEP
3.9 ± 5.1 ±0.9	89.45	171 ALEXANDER	97C OPAL
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93.00	171 ALEXANDER	97C OPAL
	89.52	172 ALEXANDER	96 OPAL
	92.94	172 ALEXANDER	96 OPAL
	91.27	176 ABREU	95E DLPH
	91.24	177 BUSKULIC	95I ALEP
6.99± 2.05±1.02 -12.9 ± 7.8 ±5.5 -13.6 7.7 ±13.4 ±5.0 -22.1 -12.8 ± 4.4 ±4.1 -13.6 -10.9 ±12.9 ±4.6 -23.2 -14.9 ± 6.7 -13.3	35 43 35 44 35	BEHREND BEHREND ELSEN ELSEN OULD-SAADA	90D CELL 90D CELL 90 JADE 90 JADE

 169 ABREU 997 tag $Z \to b\overline{b}$ and $Z \to c\overline{c}$ events by an exclusive reconstruction of several D meson decay modes (D*+, D0, and D+ with their charge-conjugate states).

170 BARATE 980 tag $Z \to c\bar{c}$ events requiring the presence of high-momentum reconstructed D^{*+} , D^{+} , or D^{0} mesons.

171 ALEXANDER 97C identify the b and c events using a D/D^{*} tag.

172 ALEXANDER 96 tag heavy flavors using one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average $B^0 - \overline{B}{}^0$ mixing.

 173 ABREU 95K identify c and b quarks using both electron and muon semileptonic decays. 174 BUSKULIC 94G perform a simultaneous fit to the p and p_T spectra of both single and

 $^{175}\!$ ADRIANI 92D use both electron and muon semileptonic decays.

 176 ABREU 95E require the presence of a $D^{*\pm}$ to identify c and b quarks. Replaced by ABREU 99Y.

177 BUSKULIC 991 require the presence of a high momentum $D^{*\pm}$ to have an enriched sample of $Z \to c \bar{c}$ events. Replaced by BARATE 980.

$A_{FB}^{(0,b)}$ CHARGE ASYMMETRY IN $e^+e^- \rightarrow b\overline{b}$

OUR FIT, which is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the "Note on the Z boson," refers to the Z pole asymmetry. As a cross check we have also performed a weighted average of the "near peak" measurements taking into account the various common systematic errors. We have assumed that the smallest common systematic error is fully correlated. Applying to this combined "peak" measurement QED and energy-dependence corrections, our weighted average gives a pole asymmetry of $(10.09 \pm 0.22)\%$. For the jet-charge measurements (where the QCD effects are included since they represent an inherent part of the analysis), we use the corrections given by the authors.

ASYMMETRY (%)	STD. MODEL	√s (GeV)	DOCUMENT ID	TECN
10.03 ± 0.22 OUR FIT				
9.82 ± 0.47 ± 0.16		91.26	178 ABREU	99м DLPH
7.62± 1.94± 0.85		91.235	179 ABREU	99Y DLPH
$9.60 \pm 0.66 \pm 0.33$		91.26	180 ACCIARRI	99D L3
$9.31 \pm 1.01 \pm 0.55$		91.24	¹⁸¹ ACCIARRI	98U L3
10.40 ± 0.40 ± 0.32		91.25	182 BARATE	98м ALEP
$9.94 \pm 0.52 \pm 0.44$		91.21	¹⁸³ ACKERSTAFF	97P OPAL
$9.4 \pm 2.7 \pm 2.2$		91.22	¹⁸⁴ ALEXANDER	97c OPAL
$9.06 \pm 0.51 \pm 0.23$		91.24	¹⁸⁵ ALEXANDER	96 OPAL
$9.65\pm 0.44\pm 0.26$		91.21	¹⁸⁶ BUSKULIC	96Q ALEP
$10.4 \pm 1.3 \pm 0.5$		91.27	¹⁸⁷ ABREU	95K DLPH
• • We do not use the	following da	ita for ave	-	C. • • •
$6.8 \pm 1.8 \pm 0.13$		89.55	178 ABREU	99м DLPH
$12.3 \pm 1.6 \pm 0.27$		92.94	178 ABREU	99м DLPH
$5.67 \pm 7.56 \pm 1.17$		89.434	179 ABREU	99Y DLPH
$8.82 \pm 6.33 \pm 1.22$		92.990	179 ABREU	99Y DLPH
$6.11 \pm 2.93 \pm 0.43$		89.50	180 ACCIARRI	99D L3
$13.71 \pm 2.40 \pm 0.44$		93.10	180 ACCIARRI	99D L3
$4.95 \pm 5.23 \pm 0.40$		89.45	¹⁸¹ ACCIARRI	98U L3
$11.37 \pm 3.99 \pm 0.65$		92.99	¹⁸¹ ACCIARRI	98U L3
$7.46 \pm 1.78 \pm 0.24$		89.43	182 BARATE	98M ALEP
$9.24 \pm 1.79 \pm 0.52$		92.97	182 BARATE	98м ALEP
$4.1 \pm 2.1 \pm 0.2$		89.44	183 ACKERSTAFF	
$14.5 \pm 1.7 \pm 0.7$		92.91	183 ACKERSTAFF	
$-8.6 \pm 10.8 \pm 2.9$		89.45	184 ALEXANDER	97C OPAL
$-$ 2.1 \pm 9.0 \pm 2.6		93.00	184 ALEXANDER	97C OPAL
$5.5 \pm 2.4 \pm 0.3$	5.5	89.52	185 ALEXANDER	96 OPAL
$11.7 \pm 2.0 \pm 0.3$	11.4	92.94	185 ALEXANDER	96 OPAL
$-3.4 \pm 11.2 \pm 0.7$		88.38	186 BUSKULIC	96Q ALEP
$5.3 \pm 2.0 \pm 0.2$		89.38	186 BUSKULIC	96Q ALEP
$8.9 \pm 5.9 \pm 0.4$		90.21	186 BUSKULIC	96Q ALEP
$3.8 \pm 5.1 \pm 0.2$		92.05	186 BUSKULIC	96Q ALEP
$10.3 \pm 1.6 \pm 0.4$		92.94	186 BUSKULIC	96Q ALEP
$8.8 \pm 7.5 \pm 0.5$		93.90	186 BUSKULIC	96Q ALEP
$5.9 \pm 6.2 \pm 2.4$		91.27	188 ABREU	95E DLPH
$11.5 \pm 1.7 \pm 1.0$		91.27	189 ABREU	95K DLPH
$6.2 \pm 3.4 \pm 0.2$		89.52	¹⁹⁰ AKERS	95s OPAL
$9.63 \pm 0.67 \pm 0.38$		91.25	190 AKERS	95s OPAL
$17.2 \pm 2.8 \pm 0.7$		92.94	¹⁹⁰ AKERS	95s OPAL

imental systematics. 162 ABE 901 measurements in the range 50 $\leq \sqrt{s} \leq$ 60.8 GeV. 163 BACALA 89 systematic error is about 5%.

Ζ

$8.7 \pm 1.1 \pm 0.$ $8.7 \pm 1.4 \pm 0.$ $9.92 \pm 0.84 \pm 0.$.2	91.24 192	ACCIARRI BUSKULIC BUSKULIC		L3 ALEP ALEP
$-71 \pm 34 + 7 \\ -8$	-58	58.3	SHIMONAKA	91	TOPZ
$-22.2 \pm 7.7 \pm 3$.5 – 26.0	35	BEHREND	90D	CELL
$-49.1 \pm 16.0 \pm 5$.0 - 39.7	43	BEHREND	90D	CELL
-28 ± 11	-23	35	BRAUNSCH	90	TASS
$-16.6 \pm 7.7 \pm 4$.8 -24.3	35	ELSEN	90	JADE
$-33.6 \pm 22.2 \pm 5$.2 – 39.9	44	ELSEN	90	JADE
$3.4 \pm 7.0 \pm 3.$.5 -16.0	29.0	BAND	89	MAC
-72 ± 28 ± 13	- 56	55.2	SAGAWA	89	AMY

- 178 ABREU 99M tag $Z \to b \, \overline{b}$ events using lifetime and vertex charge. The original quark charge is obtained from the charge flow, the difference between the forward and backward hemisphere charges.
- 179 ABREU 99Y tag $Z \rightarrow b\overline{b}$ and $Z \rightarrow c\overline{c}$ events by an exclusive reconstruction of several D meson decay modes (D^{++} , D^0 , and D^+ with their charge-conjugate states).
- The analysis determines simultaneously a mixing parameter $\chi_{b}=0.1192\pm0.0068\pm0.0051$ which is used to correct the observed asymmetry.
- 181 ACCIARRI 980 tag Z → bb̄ events using lifetime and measure the jet charge using the hemisphere charge.
- 182 BARATE 98M tag Z b\(\tilde{D}\) events using lifetime and measure the jet charge using the hemisphere charge. The analysis is performed as a function of the b quark purity and b polar angle.
- 183 ACKERSTAFF 97P tag b quarks using lifetime. The quark charge is measured using both jet charge and vertex charge, a weighted sum of the charges of tracks in a jet which contains a tagged secondary vertex.
- 184 ALEXANDER 97C identify the b and c events using a D/D^{*} tag.
- 185 ALEXANDER 96 tag heavy flavors using one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average B^0 - \overline{B}^0 mixing.
- 186 BUSKULIC 96Q tag b-quark flavor and charge using high transverse momentum leptons. The asymmetry value at the Z peak is obtained using a charm charge asymmetry of 6.17%.
- 6.17%.

 187 ABREU 95k identify c and b quarks using both electron and muon semileptonic decays. The systematic error includes an uncertainty of ± 0.3 due to the mixing correction ($\chi = 0.115 \pm 0.011$).
- ¹⁸⁸ ABREU 95E require the presence of a $D^{*\pm}$ to identify c and b quarks. Replaced by ABREU 99Y.
- ABREU 99Y. 189 ABREU 95Y. tag b quarks using lifetime; the quark charge is identified using jet charge. The systematic error includes an uncertainty of ± 0.3 due to the mixing correction ($\chi=0.115\pm0.011$). Replaced by ABREU 99M.
- 190 AKERS 955 tag b quarks using lifetime; the quark charge is measured using jet charge. These asymmetry values are obtained using $R_b = \Gamma(bb)/\Gamma(\text{hadrons}) = 0.216$. For a value of R_b different from this by an amount ΔR_b , the change in the asymmetry values is given by $-K\Delta R_b$, where $K=0.082,\ 0.471$, and 0.855 for \sqrt{s} values of 89.52, 91.25, and 92.94 GeV respectively. Replaced by ACKERSTAFF 97P.
- 191 ACCIARRI 94D use both electron and muon semileptonic decays. Replaced by ACCIA-RRI 99D.
- 192 BUSKULIC 946 perform, a simultaneous fit to the p and p_T spectra of both single and dilepton events. Replaced by BUSKULIC 960.
- 193 BUSKULIC 941 use the lifetime tag method to obtain a high purity sample of Z → b D events and the hemisphere charge technique to obtain the jet charge. Replaced by BARATE 98M.

CHARGE ASYMMETRY IN $e^+e^- \rightarrow q\bar{q}$

Summed over five lighter flavors.

Experimental and Standard Model values are somewhat event-selection dependent. Standard Model expectations contain some assumptions on $\mathcal{B}^0\text{-}\overline{\mathcal{B}}^0$ mixing and on other electroweak parameters.

ASYMMETRY (%)	STD. MODEL	√s (GeV)	DOCUMENT ID		TECN
• • • We do not use the	following data i	for average	s, fits, limits, etc. •		
$-0.76\pm0.12\pm0.15$		91.2	194 ABREU	921	DLPH
$4.0 \pm 0.4 \pm 0.63$	4.0	91.3	¹⁹⁵ ACTON	92L	OPAL
$9.1 \pm 1.4 \pm 1.6$	9.0	57.9	ADACHI	91	TOPZ
$-0.84 \pm 0.15 \pm 0.04$		91	DECAMP	91B	ALEP
$8.3 \pm 2.9 \pm 1.9$	8.7	56.6	STUART	90	AMY
$11.4 \pm 2.2 \pm 2.1$	8.7	57.6	ABE	89L	VNS
6.0 ±1.3	5.0	34.8	GREENSHAW	89	JADE
8.2 +2.9	8.5	43.6	GREENSHAW	89	IADE

 $^{194}\,\mathrm{ABREU}$ 921 has 0.14 systematic error due to uncertainty of quark fragmentation.

195 ACTON 92L use the weight function method on 259k selected Z → hadrons events. The systematic error includes a contribution of 0.2 due to B⁰-B̄⁰ mixing effect, 0.4 due to Monte Carlo (MC) fragmentation uncertainties and 0.3 due to MC statistics. ACTON 92L derive a value of sin²θ^{eff}_W to be 0.2321 ± 0.0017 ± 0.0028.

CHARGE ASYMMETRY IN $p\bar{p} \rightarrow Z \rightarrow e^+e^-$

STD. MODEL	(GeV)	DOCUMENT IE	TECN
owing data fo	or averages, f	its, limits, etc. •	• • •
	91	ABE	91E CDF
	MODEL	MODEL (GeV) owing data for averages, f	MODEL (GeV) DOCUMENT ID owing data for averages, fits, limits, etc.

ANOMALOUS $ZZ\gamma$, $Z\gamma\gamma$, AND ZZV COUPLINGS

Revised March 2000 by C. Caso (Univ. of Genova) and A. Gurtu (Tata Inst.)

In the reaction $e^+e^- \to Z\gamma$, deviations from the Standard Model for the $ZV\gamma$ couplings may be described in terms of 8 parameters, h_i^V ($i=1,4;\ V=\gamma,Z$) [1]. In this formalism h_1^V and h_2^V lead to CP-violating and h_3^V and h_4^V to CP-conserving effects. All these anomalous contributions to the cross section increase rapidly with center-of-mass energy. In order to ensure unitarity, these parameters are usually described by a form-factor representation, $h_i^V(s) = h_{io}^V/(1+s/\Lambda^2)^n$, where Λ is the energy scale for the manifestation of a new phenomenon and n is a sufficiently large power. By convention one uses n=3 for $h_{1,3}^V$ and n=4 for $h_{2,4}^V$. Usually limits on h_i^V 's are put assuming some value of Λ (sometimes ∞).

Above the $e^+e^- \to ZZ$ threshold, deviations from the Standard Model may be described by means of four anomalous couplings f_i^V $(i=4,5;V=\gamma,Z)$ [2]. The anomalous couplings f_5^V lead to violation of C and P symmetries while f_4^V introduces CP violation. These couplings are zero at tree level in the Standard Model.

Reference

- U. Baur and E.L. Berger Phys. Rev. **D47**, 4889 (1993).
- 2. K. Hagiwara et al., Nucl. Phys. B282, 253 (1987).

hy DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

196 ABBOTT 98M D0
197 ABREU 98K DLPH
198 ACCIARRI 98L L3

196 ABBOTT 98M study $\rho \overline{\rho} \to Z \gamma + X$, with $Z \to e^+ e^-$, $\mu^+ \mu^-$, $\overline{\nu} \nu$ at 1.8 TeV, to obtain 95% CL limits at $\Lambda = 750$ GeV: $|h_{30}^Z| < 0.36$, $|h_{40}^Z| < 0.05$ (keeping $h_i^{\gamma} = 0$) and $|h_{30}^{\gamma}| < 0.37$, $|h_{40}^{\gamma}| < 0.05$ (keeping $h_i^{\gamma} = 0$). Limits on the *CP*-violating couplings are $|h_{10}^{\gamma}| < 0.36$, $|h_{20}^{\gamma}| < 0.05$ (keeping $h_i^{\gamma} = 0$), and $|h_{10}^{\gamma}| < 0.37$, $|h_{20}^{\gamma}| < 0.05$ (keeping $h_i^{\gamma} = 0$).

197 ABREU 98K determine a 95% CL upper limit on $\sigma(e^+e^- \to \gamma + \text{invisible particles}) < 2.5 \, \text{pb}$ using 161 and 172 GeV data. This is used to set 95% CL limits on $|h_{30}^{\gamma}| < 0.8$ and $|h_{30}^{\gamma}| < 1.3$, derived at a scale $\Lambda = 1$ TeV and with n = 3 in the form factor representation.

198 ACCIARRI 98L study 161, 172, and 183 GeV $e^+e^- \to q \overline{q} \gamma$ and $e^+e^- \to \nu \overline{\nu} \gamma$ events to derive 95% CL limits on h_i^V . For deriving each limit the others are fixed at zero. For $\Lambda = \infty$ they report: $-0.54 < h_1^Z < 0.17, -0.11 < h_2^Z < 0.37, -0.50 < h_3^Z < 0.36, -0.12 < h_4^Z < 0.39, -0.25 < h_1^{\gamma} < 0.23, -0.18 < h_2^{\gamma} < 0.18, -0.33 < h_3^{\gamma} < 0.01, -0.02 < h_4^{\gamma} < 0.24.$

Provided HTML FECT | PROCUMENT ID | TECN |

• • • We do not use the following data for averages, fits, limits, etc. • • • • • 199 ACCIARRI | 990 L3

199 ACCIARRI 990 study ZZ production in e^+e^- collisions at 183 and 189 GeV to derive 95%CL limits on f_1^V . For deriving each limit the others are fixed at zero. They report: $-1.9 < f_4^Z < 1.9, -5.0 < f_5^Z < 4.5, -1.1 < f_4^X < 1.2, -3.0 < f_5^Y < 2.9.$

Z	REFERENCES		ABREU		ZPHY C68 353	P. Abreu et al.	(DELPHI Collab.)
ABREU 00 EPJ C12 225 ABREU 00B CERN-EP/99-134	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)	ABREU ABREU ACCIARRI		V PL B361 207 ZPHY C69 1 PL B345 589	P. Abreu et al. P. Abreu et al. M. Acciarri et al.	(DELPHI Collab.) (DELPHI Collab.) (L3 Collab.)
EPJ C (to be publ.) ABREU 00E CERN-EP/99-161	P. Abreu et al.	(DELPHI Collab.)	ACCIARRI ACCIARRI	95 C	PL B345 609 PL B353 136	M. Acciarri et al. M. Acciarri et al.	(L3 Collab.) (L3 Collab.)
EPJ C (to be publ.) ABREU 00F CERN-EP/2000-037	P. Abreu et al.	(DELPHI Collab.)	AKERS AKERS	95 95C		R. Akers et al. R. Akers et al.	(OPAL Collab.) (OPAL Collab.)
ACCIARRI 00 EPJ C13 47	M. Acciarri et al.	(L3 Collab.)	AKERS AKERS AKERS	950 955 95U	ZPHY C67 365	R. Akers et al. R. Akers et al. R. Akers et al.	(OPAL Collab.) (OPAL Collab.)
ACCIARRI 00C hepex-0002046 EPJ C (to be publ.), CERN-EP/2000-022 BARATE 00B EPJ C13 29	M. Acciarri et al. R. Barate et al.	(L3 Collab.) (ALEPH Collab.)	AKERS AKERS	95 V	ZPHY C67 555 ZPHY C68 1	R. Akers et al. R. Akers et al.	(OPAL Collab.) (OPAL Collab.) (OPAL Collab.)
BARATE 00C EPJ C14 1 ABBIENDI 99B EPJ CB 217	R. Barate et al. G. Abbiendi et al.	(ALEPH Collab.) (OPAL Collab.)	AKERS ALEXANOER	95 Z	ZPHY C68 203	R. Akers et al. G. Alexander et al.	(OPAL Collab.) (OPAL Collab.)
ABBIENDI 991 PL B447 157 ABE 99E PR D59 052001	G. Abbiendi et al. K. Abe et al.	(OPAL Collab.) (SLD Collab.)	BUSKULIC BUSKULIC	951 95Q	PL B352 479 ZPHY C69 183	D. Buskulic et al. D. Buskulic et al.	(ALEPH Collab.) (ALEPH Collab.)
ABE 991 PR D59 092002 ABE 991 PRL 83 1902	F. Abe <i>et al.</i> K. Abe <i>et al.</i>	(CDF Collab.) (SLD Collab.)	BUSKULIC MIYABAYASH		PL B347 171	D. Buskulic <i>et al.</i> K. Miyabayashi <i>et al.</i>	(ALEPH Collab.) (TOPAZ Collab.)
ABE 990 PRL 83 3384 ABREU 99 EPJ C6 19	K. Abe et al. P. Abreu et al.	(SLD Collab.) (DELPHI Collab.)	ABE ABREU ABREU	94C 94 94B	NP B418 403	K. Abe et al. P. Abreu et al. P. Abreu et al.	(SLD Collab.) (DELPHI Collab.)
ABREU 99B EPJ C10 415 ABREU 99J PL B449 364 ABREU 99M EPJ C9 367	P. Abreu <i>et al.</i> P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.)	ABREU ACCIARRI	94P 94		P. Abreu et al. M. Acciarri et al.	(DELPHI Collab.) (DELPHI Collab.) (L3 Collab.)
ABREU 99U PL B462 425 ABREU 99Y EPJ C10 219	P. Abreu et al. P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)	ACCIARRI ACCIARRI	94B 94D	PL B328 223	M. Acciarri et al. M. Acciarri et al.	(L3 Collab.) (L3 Collab.)
ACCIARRI 99D PL B448 152 ACCIARRI 99F PL B453 94	M. Acciarri et al. M. Acciarri et al.	(L3 Collab.) (L3 Collab.)	ACCIARRI AKERS	94 E 94	PL B341 245 ZPHY C61 19	M. Acciarri et al. R. Akers et al.	(L3 Collab.) (OPAL Collab.)
ACCIARRI 990 PL B465 363 ABBOTT 98M PR D57 R3817	M. Acciarri <i>et al.</i> B. Abbott <i>et al.</i>	(L3 Collab.) (D0 Collab.)	AKERS BUSKULIC	94P	ZPHY C63 181 ZPHY C62 539	R. Akers et al. D. Buskulic et al.	(OPAL Collab.) (ALEPH Collab.)
ABE 98D PRL 80 660 ABE 981 PRL 81 942	K. Abe et al. K. Abe et al.	(SLD Collab.) (SLD Collab.)	BUSKULIC BUSKULIC	94 G	PL B335 99	D. Buskulic et al. D. Buskulic et al.	(ALEPH Collab.) (ALEPH Collab.)
ABREU 98K PL B423 194 ABREU 98L EPJ C5 585	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)	BUSKULIC BUSKULIC VILAIN	94 J 94 K 94		D. Buskulic et al. D. Buskulic et al. P. Vilain et al.	(ALEPH Collab.) (ALEPH Collab.) (CHARM II Collab.)
ACCIARRI 98G PL B431 199 ACCIARRI 98H PL B429 387 ACCIARRI 98L PL B436 187	M. Acciarri et al. M. Acciarri et al. M. Acciarri et al.	(L3 Collab.) (L3 Collab.)	ABREU ABREU	93 931	PL B298 236 ZPHY C59 533	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)
ACCIARRI 98U PL B439 225 ACKERSTAFF 98A EPJ C5 411	M. Acciarri et al. K. Ackerstaff et al.	(L3 Collab.) (L3 Collab.) (OPAL Collab.)	Also ABREU	95 93L	ZPHY C65 709 erratum PL B318 249		(DELPHI Collab.) (DELPHI Collab.)
ACKERSTAFF 98E EPJ C1 439 ACKERSTAFF 98O PL B420 157	K. Ackerstaff et al. K. Ackerstaff et al.	(OPAL Collab.) (OPAL Collab.)	ACTON ACTON	93 93D		P.D. Acton et al. P.D. Acton et al.	(OPAL Collab.) (OPAL Collab.)
ACKERSTAFF 98Q EPJ C4 19 BARATE 98M PL B426 217	K. Ackerstaff et al. R. Barate et al.	(OPAL Collab.) (ALEPH Collab.)	ACTON ACTON	93E 93F	ZPHY C58 405	P.D. Acton et al. P.D. Acton et al.	(OPAL Collab.) (OPAL Collab.)
BARATE 980 PL B434 415 BARATE 98T EPJ C4 557	R. Barate et al. R. Barate et al.	(ALEPH Collab.) (ALEPH Collab.)	ADRIANI ADRIANI BUSKULIC	93 931	PL B301 136 PL B316 427	O. Adriani et al. O. Adriani et al.	(L3 Collab.) (L3 Collab.)
BARATE 98V EPJ C5 205 ABE 97 PRL 78 17 ABE 97E PRL 78 2075	R. Barate et al. K. Abe et al.	(ALEPH Collab.) (SLD Collab.)	NOVIKOV ABREU	93L 93C 92I	PL B298 453	D. Buskulic et al. V.A. Novikov, L.B. Okun, M.I P. Abreu et al.	(ALEPH Collab.) I. Vysotsky (ITEP) (DELPHI Collab.)
ABE 97E PRL 78 2075 ABE 97N PRL 79 804 ABREU 97C ZPHY C73 243	K. Abe et al. K. Abe et al. P. Abreu et al.	(SLD Collab.) (SLD Collab.) (DELPHI Collab.)	ABREU ACTON	92M 92B	PL B289 199	P. Abreu et al. D.P. Acton et al.	(DELPHI Collab.) (OPAL Collab.)
ABREU 97E PL B398 207 ABREU 97G PL B404 194	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)	ACTON ACTON		PL B294 436 PL B295 357	P.D. Acton et al. P.D. Acton et al.	(OPAL Collab.) (OPAL Collab.)
ACCIARRI 97D PL B393 465 ACCIARRI 97J PL B407 351	M. Acciarri et al. M. Acciarri et al.	(L3 Collab.) (L3 Collab.)	ADEVA ADRIANI	92 92D		B. Adeva et al. O. Adriani et al.	(L3 Collab.) (L3 Collab.)
ACCIARRI 97K PL B407 361 ACCIARRI 97L PL B407 389	M. Acciarri et al. M. Acciarri et al.	(L3 Collab.) (L3 Collab.)	ADRIANI ALITTI	92E 92B	PL B276 354	O. Adriani et al. J. Alitti et al.	(L3 Collab.) (UA2 Collab.)
ACCIARRI 97R PL B413 167 ACKERSTAFF 97C PL B391 221	M. Acciarri et al. K. Ackerstaff et al.	(L3 Collab.) (OPAL Collab.)	BUSKULIC BUSKULIC DECAMP	92D 92E 92	PL B292 210 PL B294 145 PRPL 216 253	D. Buskulic et al. D. Buskulic et al. D. Oecamp et al.	(ALEPH Collab.) (ALEPH Collab.)
ACKERSTAFF 97K ZPHY C74 1 ACKERSTAFF 97M ZPHY C74 413 ACKERSTAFF 97P ZPHY C75 385	K. Ackerstaff et al. K. Ackerstaff et al. K. Ackerstaff et al.	(OPAL Collab.) (OPAL Collab.) (OPAL Collab.)	LEP ABE	92	PL B276 247 PRL 67 1502	LEP et al. F. Abe et al.	(ALEPH Collab.) (LEP Collabs.) (CDF Collab.)
ACKERSTAFF 97S PL B412 210 ACKERSTAFF 97T ZPHY C76 387	K. Ackerstaff et al. K. Ackerstaff et al.	(OPAL Collab.) (OPAL Collab.)	ABREU ACTON	91H 91B	ZPHY C50 185 PL B273 338	P. Abreu et al. D.P. Acton et al.	(DELPHI Collab.) (OPAL Collab.)
ACKERSTAFF 97W ZPHY C76 425 ALEXANDER 97C ZPHY C73 379	K. Ackerstaff et al. G. Alexander et al.	(OPAL Collab.) (OPAL Collab.)	ADACHI ADEVA	91 911	PL B255 613 PL B259 199	I. Adachi et al. B. Adeva et al.	(TOPAZ Collab.) (L3 Collab.)
ALEXANDER 97D ZPHY C73 569 ALEXANDER 97E ZPHY C73 587	G. Alexander et al. G. Alexander et al.	(OPAL Collab.) (OPAL Collab.)	AKRAWY DECAMP	91F 91B	PL B259 377	M.Z. Akrawy et al. D. Decamp et al.	(OPAL Collab.) (ALEPH Collab.)
BARATE 97D PL B405 191 BARATE 97E PL B401 150	R. Barate et al. R. Barate et al.	(ALEPH Collab.) (ALEPH Collab.)	DECAMP JACOBSEN SHIMONAKA	91 J 91 91	PL B266 218 PRL 67 3347 PL B268 457	D. Decamp et al. R.G. Jacobsen et al. A. Shimonaka et al.	(ALEPH Collab.) (Mark II Collab.) (TOPAZ Collab.)
BARATE 97F PL B401 163 BARATE 97H PL B402 213 BARATE 97J ZPHY C74 451	R. Barate et al. R. Barate et al.	(ALEPH Collab.) (ALEPH Collab.)	ABE ABRAMS	90I 91	ZPHY C48 13 PRL 64 1334	K. Abe et al. G.S. Abrams et al.	(VENUS Collab.) (Mark II Collab.)
BARATE 97J ZPHY C74 451 ABE 96E PR D53 1023 ABREU 96 ZPHY C70 531	R. Barate et al. K. Abe et al. P. Abreu et al.	(ALEPH Collab.) (SLD Collab.) (DELPHI Collab.)	ADACHI AKRAWY	90F 90J	PL B234 525	I. Adachi et al. M.Z. Akrawy et al.	(TOPAZ Collab.) (OPAL Collab.)
ABREU 96C PL B379 309 ABREU 96R ZPHY C72 31	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)	BEHREND BRAUNSCH		ZPHY C47 333 ZPHY C48 433	H.J. Behrend et al. W. Braunschweig et al.	(ČELLO Collab.) (TASSO Collab.)
ABREU 965 PL B389 405 ABREU 96U ZPHY C73 61	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)	ELSEN HEGNER	90 90	ZPHY C46 349 ZPHY C46 547	E. Elsen et al. S. Hegner et al.	(JADE Collab.) (JADE Collab.)
ACCIARRI 96 PL B371 126 ACCIARRI 96B PL B370 195	M. Acciarri et al. M. Acciarri et al.	(L3 Collab.) (L3 Collab.)	STUART ABE ABE	90 89 89C	PRL 64 983 PRL 62 613 PRL 63 720	D. Stuart et al. F. Abe et al.	(AMY Collab.) (CDF Collab.)
ADAM 96 ZPHY C69 561 ADAM 96B ZPHY C70 371	W. Adam et al. W. Adam et al.	(DELPHI Collab.) (DELPHI Collab.)	ABE ABE ABRAMS	89L 89B	PL B232 425	F. Abe et al. K. Abe et al. G.S. Abrams et al.	(CDF Collab.) (VENUS Collab.) (Mark II Collab.)
ALEXANDER 96 ZPHY C70 357 ALEXANDER 96B ZPHY C70 197 ALEXANDER 96F PL B370 185	G. Alexander et al. G. Alexander et al. G. Alexander et al.	(OPAL Collab.) (OPAL Collab.) (OPAL Collab.)	ABRAMS ALBAJAR	89D		G.S. Abrams et al. C. Albajar et al.	(Mark II Collab.) (UA1 Collab.)
ALEXANDER 96N PL B384 343 ALEXANDER 96R ZPHY C72 1	G. Alexander et al. G. Alexander et al.	(OPAL Collab.) (OPAL Collab.)	BACALA BAND	89 89	PL B218 112 PL B218 369	A. Bacala et al. H.R. Band et al.	(AMY Collab.) (MAC Collab.)
ALEXANDER 96U ZPHY C72 365 ALEXANDER 96X PL B376 232	G. Alexander et al. G. Alexander et al.	(OPAL Collab.) (OPAL Collab.)	GREENSHAW OULD-SAADA	89	ZPHY C42 1 ZPHY C44 567	T. Greenshaw et al. F. Ould-Saada et al.	(JADE Collab.) (JADE Collab.)
BUSKULIC 96D ZPHY C69 393 BUSKULIC 96H ZPHY C69 379	D. Buskulic <i>et al.</i> D. Buskulic <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.)	SAGAWA ADACHI	89 88C		H. Sagawa et al. I. Adachi et al.	(AMY Collab.) (TOPAZ Collab.) (Mark-J Collab.)
BUSKULIC 96Q PL B384 414 ABE 95J PRL 74 2880 ABE 951 PRL 74 2880	D. Buskulic et al. K. Abe et al.	(ALEPH Collab.) (SLD Collab.) (SLD Collab.)	ADEVA BRAUNSCH ANSARI	88 88E 87	PR D38 2665 ZPHY C40 163 PL B186 440	B. Adeva et al. W. Braunschweig et al. R. Ansari et al.	(Mark-J Collab.) (TASSO Collab.) (UA2 Collab.)
ABE 95L PRL 74 2895 ABE,K 95 PRL 75 3609 ABREU 95 ZPHY C65 709 erratum	K. Abe et al. K. Abe et al. P. Abreu et al.	(SLD Collab.) (SLD Collab.) (DELPHI Collab.)	BEHREND BARTEL	87C 86C	PL B191 209	H.J. Behrend et al. W. Bartel et al.	(CÈLLO Collab.) (JADE Collab.)
ABREU 95 ZPHY C65 709 erratum ABREU 95D ZPHY C66 323 ABREU 95E ZPHY C66 341	P. Abreu et al. P. Abreu et al. P. Abreu et al.	(DELPHI CONAB.) (DELPHI CONAB.) (DELPHI CONAB.)	Also Also	85B 82	ZPHY C26 507 PL 108B 140	W. Bartel et al. W. Bartel et al.	(JADE Collab.) (JADE Collab.)
ABREU 95F NP B444 3 ABREU 95G ZPHY C67 1	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)	ASH BARTEL	85 85F	PRL 55 1831 PL 161B 188	W.W. Ash et al. W. Bartel et al.	(MAC Collab.) (JADE Collab.)
ABREU 951 ZPRY C67 183 ABREU 95K ZPHY C65 569	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)	DERRICK FERNANDEZ		PR D31 2352 PRL 54 1624	M. Derrick et al. E. Fernandez et al.	(HRS Collab.) (MAC Collab.)
ABREU 95L ZPHY C65 587 ABREU 95M ZPHY C65 603	P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.)	LEVI BEHREND BRANDELIK	83 82	PRL 51 1941 PL 114B 282	M.E. Levi <i>et al.</i> H.J. Behrend <i>et al.</i> R. Brandelik <i>et al.</i>	(Mark II Collab.) (CELLO Collab.) (TASSO Collab.)
ABREU 950 ZPHY C67 543	P. Abreu et al.	(DELPHI Collab.)	DRANDELIK	820	PL 110B 173	R. Brandelik et al.	(TASSO Collab.)

Higgs Bosons — H^0 and H^{\pm}

Higgs Bosons — H^0 and H^{\pm} , Searches for

SEARCHES FOR HIGGS BOSONS

Written February 2000 by P. Igo-Kemenes (Physikalisches Institut, Heidelberg, Germany)

I. Introduction

One of the main challenges in high energy physics is the discovery of Higgs bosons. Their existence is related to the generation of elementary particle masses. In the Standard Model (SM) [1], the electroweak interaction is described by a gauge field theory based on the $SU(2)_L \times U(1)_Y$ symmetry group. Masses can be introduced by the Higgs mechanism [2], where fundamental scalar "Higgs" fields interact with each other such that they acquire a nonzero vacuum expectation value and the $SU(2)_L \times U(1)_Y$ symmetry is spontaneously broken down to the electromagnetic $U(1)_{\rm EM}$ symmetry. Gauge bosons and fermions obtain their masses by interacting with the vacuum Higgs field. Associated with this mechanism is the existence of massive scalar particles called Higgs bosons, and the proof for the above mechanism would come from the direct observation of this novel particle species.

In its minimal version, the SM requires one Higgs field doublet and predicts a single neutral Higgs boson. Beyond the SM, supersymmetric (SUSY) models [3] are considered. They provide a consistent framework for the unification of the gauge interactions at a high energy scale $\Lambda_{\rm GUT} \approx 10^{16} \ {
m GeV}$ and an explanation for the stability of the electroweak energy scale in the presence of quantum corrections (the "scale hierarchy problem"). Moreover, their predictions are compatible with existing high-precision data. The Minimal Supersymmetric Standard Model (MSSM) [4] is the SUSY extension of the SM with minimal new particle content. It needs two Higgs field doublets and predicts the existence of three neutral and a pair of charged Higgs bosons. While in the SM the mass of the Higgs boson is not predicted, in SUSY models the Higgs masses are related to the gauge couplings. As a consequence, one of the neutral Higgs bosons must have its mass close to the electroweak energy scale. In the MSSM this mass is predicted to be less than about 135 GeV [5].

Prior to 1989, when the e^+e^- collider LEP at CERN came into operation, Higgs boson searches were sensitive to masses below a few GeV only (see Ref. 6 for a review). The LEP collider, operating for five years at a center-of-mass energy $\sqrt{s}\approx M_{Z^0}$ (the LEP1 phase), definitively excluded a SM Higgs boson with a mass between zero and about 65 GeV [7]. Since 1995, the center-of-mass energy has increased each year (the LEP2 phase) and has reached $\sqrt{s}=204$ GeV in 1999, within a few GeV of the highest energy expected. When the full data of the four LEP experiments are combined, the sensitivity for discovery will extend to SM Higgs boson masses of approximately 110 GeV. After the LEP experiments finish taking data, searches for Higgs bosons will be pursued primarily

at the Tevatron $p\bar{p}$ collider. The sensitivity to Higgs bosons in the Run I data is rather limited, though the planned energy and luminosity upgrades (Run II [8]) would extend the sensitivity well beyond the LEP range. The searches will continue later at the LHC pp collider [9] covering the canonical mass range up to about 1 TeV. If Higgs bosons are discovered, the Higgs mechanism can be studied in great detail at future e^+e^- [10] and $\mu^+\mu^-$ colliders [11].

The sensitivity of current searches is continuously improving with increasing collider energies and sample sizes. There is also ongoing activity in refining the phenomenology relevant to Higgs boson searches. In order to provide an up to date description, recent documents are quoted even though in some cases they are not published. Such documents (indicated by *name* in the Reference list) can be accessed conveniently from the web page http://home.cern.ch/p/pik/www/pdg2000/index.html.

II. Higgs boson masses

In the Standard Model, the Higgs mass $m_{H^0} = \sqrt{2\lambda} \, v$ is proportional to the vacuum expectation value v of the Higgs field, which is fixed by the Fermi coupling. The quartic Higgs coupling λ , and thus m_{H^0} , is not determined, but arguments of self-consistency of the theory can be used to place upper and lower bounds on m_{H^0} .

Since the running coupling λ rises indefinitely with energy, the theory would eventually become non-perturbative. The requirement that in the SM this does not occur at a scale lower than Λ defines an upper bound for the Higgs mass [12]. On the other hand, a lower bound for m_{H^0} is obtained from top-loop induced quantum corrections to the Higgs interaction potential [13]. The requirement that the electroweak minimum is an absolute minimum up to the scale Λ yields a "vacuum stability" condition which limits m_{H^0} from below. These theoretical bounds are summarized in Fig. 1 [14] as a function of Λ . Self-consistency of the SM up to $\Lambda = \Lambda_{\rm GUT}$ allows only the narrow band from about 130 to 190 GeV for the mass. This range is beyond the reach of LEP2, which implies that the discovery of a Higgs boson at LEP would indicate new physics beyond the SM at energies lower than $\Lambda_{\rm GUT}$.

Indirect experimental bounds for the Higgs mass are obtained from fits to precision measurements of electroweak observables, primarily from Z^0 decay data, and to the measured top and W^{\pm} masses [15]. These measurements are sensitive to $\log(m_{H^0})$ through radiative corrections. Currently the best fit value is $m_{H^0} = 77^{+69}_{-39}$ GeV, and $m_{H^0} < 215$ GeV is obtained at the 95% confidence level (CL) [16], still consistent with the SM being valid up to the GUT scale.

In the MSSM, one of the two Higgs field doublets, with vacuum expectation value v_1 , couples to "down" quarks and charged leptons while the second, with v_2 , couples to "up" quarks only. Assuming CP invariance, the spectrum of physical Higgs bosons [4] consists of two CP-even neutral scalars h^0 and H^0 (h^0 is the one with the smaller mass), one CP-odd neutral scalar A^0 , and one pair of charged Higgs bosons H^{\pm} .

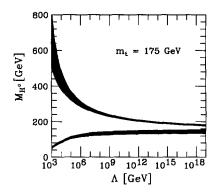


Figure 1: Bounds on the Higgs mass based on arguments of self-consistency of the SM [14]. A denotes the energy scale at which the SM would become non-perturbative or the electroweak potential unstable. The dark bands represent theoretical uncertainties.

At the tree level, only two parameters are required (beyond the Z^0 mass) to fix all Higgs masses and couplings. A convenient choice is the ratio tan $\beta = v_2/v_1$ and the mass (m_{A^0}) of the CP-odd scalar A^0 . The mixing angle α which diagonalizes the CP-even Higgs mass matrix can also be expressed in terms of $\tan \beta$ and m_{A0} . The following ordering of masses is valid at the tree level: $m_{h^0} < M_Z$, $m_{A^0} < m_{H^0}$, and m_{A^0} , $M_W < m_{H^\pm}$. These relations are modified by radiative corrections; the largest contribution is a consequence of the incomplete cancelation between virtual-top and scalar-top (stop) loops. The corrections affect mainly the masses and decay branching ratios in the neutral Higgs sector. They depend strongly on the top quark mass $(\sim m_t^4)$ and logarithmically on the stop masses, and involve a detailed parameterization of SUSY breaking and of the mixing between the SUSY partners of the left- and right-handed top quarks [17].

The Higgs masses, after radiative corrections, are displayed in Fig. 2 as a function of m_{A^0} for two representative values of $\tan \beta$ within the range from 1 to $\approx m_t/m_b$ which is preferred in grand unification schemes [18]. One observes that m_{h^0} may exceed M_Z .

III. Higgs boson production and decay

A comprehensive discussion of the Higgs boson phenomenology is given in Ref. 19. In this section the focus is on Higgs production in e^+e^- collisions at energies below 210 GeV (LEP2) [20] by which most of the recent search results have been obtained. Extensions to higher e^+e^- energies [10] and to production in hadron collisions [8,9] are discussed briefly in Sections V and VI.

Higgs boson production in e^+e^- collisions:

The principal mechanism for producing the SM Higgs particle in e^+e^- collisions at current energies is Higgs-strahlung in the s-channel [21], $e^+e^- \to H^0Z^0$, where a Higgs boson is radiated off an intermediate Z^0 boson. The Z^0 boson in the final state is either virtual (LEP1) or on the mass shell (LEP2).

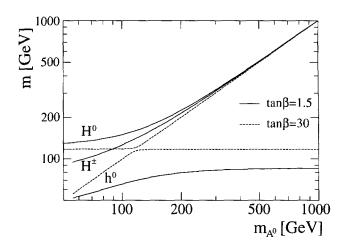


Figure 2: Higgs masses in the MSSM after radiative corrections, as a function of m_{A^0} for two representative values of $\tan \beta$; 1.5 and 30 (in the case of H^{\pm} the variation with $\tan \beta$ is invisible on the scale of the figure).

In the latter case (at energies far from the Z^0 resonance) the cross section is given by

$$\sigma(e^{+}e^{-} \to Z^{0}H^{0}) = \frac{G_{F}^{2}M_{Z}^{4}}{96\pi \ s}(v_{e}^{2} + a_{e}^{2})\lambda^{1/2} \frac{\lambda + 12M_{Z}^{2}/s}{(1 - M_{Z}^{2}/s)^{2}} \equiv \sigma_{\text{SM}}$$
(1)

where s denotes the center-of-mass energy squared, $a_e=-1$, $v_e=-1+4s_W^2$ ($s_W=\sin\theta_W$ is the sine of the weak-mixing angle), and $\lambda=[1-(m_{H^0}+M_Z)^2/s][1-(m_{H^0}-M_Z)^2/s]$ is the two-particle phase-space function. The cross section [21,22] is shown in Fig. 3 as a function of \sqrt{s} , together with that of other SM processes.

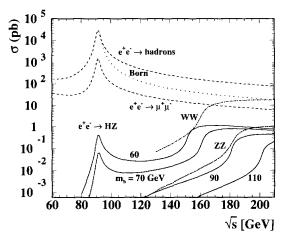


Figure 3: Cross sections for the Higgs-strahlung process in the SM for fixed values of m_{H^0} (full lines) and for other SM processes which contribute to the background, as a function of \sqrt{s} .

Gauge & Higgs Boson Particle Listings Higgs Bosons — H^0 and H^{\pm}

The SM Higgs boson can also be produced by W^+W^- fusion in the t-channel [23], $e^+e^- \to \overline{\nu}_e\nu_e H^0$, but at current energies this process has a small contribution to the cross section, except for Higgs masses which cannot be reached by the Higgs-strahlung process. The W^+W^- fusion process may extend slightly the ultimate range of sensitivity at LEP2 [20].

In the MSSM, the main production mechanisms of the neutral Higgs bosons h^0 and A^0 are [24] the Higgs-strahlung process $e^+e^- \to h^0Z^0$ and the pair-production process $e^+e^- \to h^0A^0$. As in the SM case, the fusion process plays a marginal role at current energies. Furthermore, the production of the heavy neutral CP-even Higgs boson H^0 is suppressed over most of the parameter space currently accessible. The cross sections for the Higgs-strahlung and pair-production processes may be expressed in terms of $\sigma_{\rm SM}$ given in Eq. (1) and the angles α and β introduced before:

$$\sigma(e^+e^- \to Z^0h^0) = \sin^2(\beta - \alpha)\sigma_{\rm SM} \tag{2}$$

$$\sigma(e^+e^- \to A^0h^0) = \cos^2(\beta - \alpha)\overline{\lambda}\sigma_{\rm SM} , \qquad (3)$$

with the kinematic factor $\overline{\lambda}=\lambda_{A^0h^0}^{3/2}/[\lambda_{Z^0h^0}^{1/2}(12M_Z^2/s+\lambda_{Z^0h^0})]$ and $\lambda_{ij}=[1-(m_i+m_j)^2/s][1-(m_i-m_j)^2/s]$. The cross sections are complementary due to the MSSM suppression factors $\sin^2(\beta-\alpha)$ and $\cos^2(\beta-\alpha)$. At small $\tan\beta$ the process $e^+e^-\to Z^0h^0$ has the larger cross section while at large $\tan\beta$ it is $e^+e^-\to h^0A^0$, unless the latter is suppressed kinematically.

In models with *two Higgs field doublets* (2HD models), including the MSSM, charged Higgs bosons are expected to be produced in pairs [19,25], $e^+e^- \rightarrow H^+H^-$, and the cross section is fixed at the tree level by the mass m_{H^\pm} :

$$\begin{split} &\sigma(e^+e^-\to H^+H^-) = \frac{2G_F^2 M_W^4 s_W^4}{3\pi~s} \\ &\times \left[1 + \frac{v_e v_H}{4s_W^2 c_W^2 (1-M_Z^2/s)} + \frac{(a_e^2 + v_e^2) v_H^2}{64s_W^4 c_W^4 (1-M_Z^2/s)^2}\right]~\beta_H^3~(4) \end{split}$$

with $c_W=\cos\theta_W,\,v_H=-1+2s_W^2,\,{\rm and}\,\,\beta_H=(1-4m_{H^\pm}^2/s)^{1/2}.$

Higgs boson decay:

In the case of the **SM Higgs boson**, the most relevant decay branching ratios [22,26] are summarized in Fig. 4. For masses below about 135 GeV, decays to fermion anti-fermion pairs dominate, and $H^0 \to b\bar{b}$ has the largest branching ratio. Decays to $\tau^+\tau^-$, $c\bar{c}$, and gluon pairs (via loops) are below 10%. The decay width is less than 10 MeV. For larger masses, the W^+W^- , Z^0Z^0 final states dominate [10] and the decay width rises rapidly with mass, reaching about 1 GeV for $m_{H^0}=200$ GeV and 100 GeV for $m_{H^0}=500$ GeV.

In the MSSM, the couplings of the neutral Higgs bosons to quarks, leptons, and gauge bosons are modified with respect to those of the SM Higgs boson by factors which depend upon the mixing angles α and β . These factors, valid at leading order, are summarized in Table 1. The decays are discussed in [19,24]. Some features relevant to current searches are discussed below.

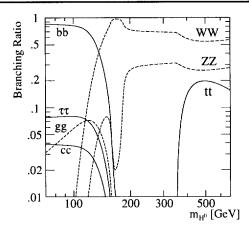


Figure 4: Branching ratios for the main decay modes of the SM Higgs boson [10].

Table 1: Factors relating the SM Higgs couplings to the corresponding couplings in the MSSM.

	"Up" fermions	"Down" fermions	Vector bosons
SM-Higgs:	1	1	1
$ {\text{MSSM } h^0:} \\ H^0: $	$\cos \alpha / \sin \beta$ $\sin \alpha / \sin \beta$	$-\sin \alpha /\cos \beta$ $\cos \alpha /\cos \beta$	$\frac{\sin(\beta - \alpha)}{\cos(\beta - \alpha)}$
A^0 :	$1/\tan eta$	aneta	0

- The h^0 boson will decay mainly to fermion pairs since the mass is smaller than about 135 GeV. The A^0 boson also decays predominantly to fermion pairs, independently of its mass, since its coupling to vector bosons is zero at leading order (see Table 1). For $\tan \beta > 1$, decays to $b\bar{b}$ and $\tau^+\tau^-$ pairs are preferred, with branching ratios of about 90% and 8%, respectively, while the decays to $c\bar{c}$ and gluon pairs are suppressed. Decays to $c\bar{c}$ may become important for $\tan \beta < 1$.
- The decay $h^0 \to A^0 A^0$ may become dominant if it is kinematically allowed [25].
- Other possible decays are into SUSY particles such as sfermions, charginos or neutralinos, which may lead to invisible or barely visible final states. The branching fractions can be large, even dominant in parts of the MSSM parameter space, thus requiring a different search strategy.

Charged Higgs bosons in 2HD models decay mainly via $H^+ \to \tau^+\nu_{\tau}$ if $\tan \beta$ is large. For small $\tan \beta$, the decay to $c\bar{s}$ is dominant at low mass, and the decay to $H^+ \to t^*\bar{b} \to W^+b\bar{b}$ is dominant for H^{\pm} masses larger than about 130 GeV [27].

IV. The search environment at LEP

During the first phase of LEP, the experiments ALEPH, DELPHI, L3, and OPAL analysed over four million Z^0 decays each. They have set lower bounds of approximately 65 GeV

Gauge & Higgs Boson Particle Listings Higgs Bosons — H^0 and H^{\pm}

on the mass of the SM Higgs boson, and of about 45 GeV on the masses of the h^0 , A^0 (valid for $\tan \beta > 1$) and also for H^{\pm} bosons. At energies above the Z^0 resonance (the LEP2 phase) the experimental environment is different in many respects. The signal-to-background ratio at LEP2 is more favorable (see Fig. 3), despite the additional backgrounds from the processes $e^+e^- \to W^+W^-$ and Z^0Z^0 . The latter have kinematic properties similar to the signal process $e^+e^- \to H^0Z^0$, but since at LEP2 the Z^0 boson is on the mass shell, constrained kinematic fits allow a good overall signal-to-background ratio to be achieved. Furthermore, since neutral Higgs bosons decay preferentially to $b\bar{b}$, the LEP Collaborations have considerably upgraded their b-tagging capabilities for the LEP2 phase. Jets with B hadrons are recognized by the presence of secondary decay vertices or tracks with large impact parameters, identified by means of high-precision silicon microvertex detectors. Other indicators for B hadron decays are high- p_T leptons ($\ell = e, \mu$) from $b \to c \ell^- \overline{\nu}_{\ell}$ decays and several jet properties.

The following final states provide good sensitivity for neutral Higgs bosons (here h^0 may designate either the SM Higgs boson or the light CP-even neutral scalar in the MSSM).

- (a) The four-jet final state is produced by the processes $(h^0 \to b\bar{b})(Z^0 \to q\bar{q})$ and $(h^0 \to b\bar{b})(A^0 \to b\bar{b})$. In the SM it occurs with a branching ratio of 58%. In the first process, the invariant mass of two of the jets is close to M_Z , while the other two jets contain B hadrons. In the second process, the Z^0 mass constraint cannot be used, but B hadrons are expected in all four jets. The Higgs mass can be reconstructed with a typical resolution of 2.5 GeV.
- (b) The missing-energy final state is produced mainly by the process $(h^0 \to b\bar{b})(Z^0 \to \nu\bar{\nu})$. In the SM it occurs with a branching ratio of 17%. The signal has two jets with B hadrons, substantial missing transverse momentum and missing mass compatible with M_Z . A similar event topology would also occur in h^0Z^0 and h^0A^0 if the h^0 or the A^0 boson decayed into "invisible" SUSY particles (e.g., neutralinos), or in the W^+W^- fusion process leading to $b\bar{b}\nu_e\bar{\nu}_e$ events. The reconstruction of the Higgs boson requires good knowledge of the detector acceptance and energy resolution; it is achieved with a typical resolution of 3 GeV, but the distribution usually has a pronounced non-Gaussian tail.
- (c) The leptonic final states are produced in the processes $(h^0 \to b\bar{b})(Z^0 \to e^+e^-, \mu^+\mu^-)$. In the SM the branching ratios add up to 6%. The two leptons reconstruct to M_Z and the two jets contain B hadrons. Although the branching ratio is small, this channel adds considerably to the overall search sensitivity since it has low background and good mass resolution, typically 1.5 GeV, if m_{h^0} is taken to be the mass recoiling against the reconstructed Z^0 boson.
- (d) The **tau final states** are produced in the SM and MSSM processes $(h^0 \to \tau^+\tau^-)(Z^0 \to q\overline{q}), \ (h^0 \to q\overline{q})(Z^0 \to \tau^+\tau^-), \ (h^0 \to \tau^+\tau^-)(A^0 \to q\overline{q}), \ \text{and} \ (h^0 \to q\overline{q})(A^0 \to \tau^+\tau^-).$ In the SM they occur with a branching ratio of about 10% in total. These channels play an important role in some subsets

of the MSSM parameter space where the decays to $b\bar{b}$ are suppressed.

To summarize, the conjunction of constrained kinematic fits and sophisticated b tagging allows the searches at LEP2 to be conducted with increased sensitivity. With the inclusion of the abundant four-jet final states, which had to be discarded at LEP1 from searches for the SM Higgs boson, about 95% of the signal cross section is utilized.

Searches for the charged Higgs process $e^+e^- \to H^+H^-$ make use of the decays $H^+ \to c\overline{s}$ and $\tau^+\nu_{\tau}$. The process $e^+e^- \to W^+W^-$ constitutes a high background at $m_{H^\pm} \approx M_W$.

In the SM and the MSSM, the signal and background rates are predicted channel by channel. The corresponding search results can thus be combined for a better overall sensitivity. Furthermore, datasets from different LEP energies and experiments can also be added. The combined LEP data are used to test two hypotheses: the background-only ("b") hypothesis, which assumes no Higgs boson to be present in the mass range investigated, and the signal + background ("s + b") hypothesis, where Higgs bosons are assumed to be produced according to the model under consideration. A global test-statistic X is constructed [28] which allows the experimental result X_{observed} to be classified between the b-like and s + b-like situations. It utilizes the number of selected events and various distributions which provide discrimination between signal and background (e.g., the reconstructed mass or b-tag variables). The test-statistic takes into account experimental details such as detection efficiencies, signal-to-background ratios, resolution functions, and provides a single value for a given model hypothesis (e.g., the test-mass m_{H^0} in the SM).

To set the scale for X, a large number of Monte Carlo experiments are generated, separately for the b and the s+b hypotheses, and separately for each model hypothesis $(e.g., m_{H^0})$. The resulting distributions of $X(m_{H^0})$ are normalized to become probability density functions, and integrated to form the confidence levels $\mathrm{CL}_b(m_{H^0})$ and $\mathrm{CL}_{s+b}(m_{H^0})$. The integration starts in both cases from the b-like end and runs up to X_{observed} ; thus $\mathrm{CL}_b(m_{H^0})$ and $\mathrm{CL}_{s+b}(m_{H^0})$ express the probabilities that the outcome of an experiment is more b-like or less s+b-like, respectively, than the outcome represented by the set of selected events.

The 95% CL lower limit for the SM Higgs mass is defined as the lowest value of the test mass m_{H^0} which yields ${}^{\bullet}$ CL_s (m_{H^0}) =CL_{s+b} (m_{H^0}) /CL_b (m_{H^0}) = 0.05. The quantity 1 – CL_b (m_{H^0}) is an indicator for a possible signal: a SM Higgs boson with true mass m_0 would produce a pronounced drop in this quantity for $m_{H^0} \approx m_0$. Values of 1 – CL_b < 5.7 × 10⁻⁷ would indicate a five-standard deviation (5σ) discovery.

If values of $X_{\rm observed}$ (and thus the integration bounds) are obtained from Monte Carlo simulations of the real experiment, the average expected confidence levels $\langle 1-{\rm CL}_b(m_{H^0})\rangle$ and $\langle {\rm CL}_s(m_{H^0})\rangle$ are obtained. Of particular interest are $\langle 1-{\rm CL}_b(m_{H^0})\rangle$ from simulated s+b experiments and

Gauge & Higgs Boson Particle Listings Higgs Bosons — H^0 and H^{\pm}

 $\langle CL_s(m_{H^0}) \rangle$ from simulated b experiments, since these indicate the expected ranges of sensitivity of the available data set for discovery and exclusion, respectively.

V. Latest results

We summaries below the search results obtained recently by the LEP Collaborations, the CDF, DØ, and other experiments. Some of the LEP results presented are obtained by combining [29] preliminary data from the four experimental groups [30] according to the procedure outlined above.

Results relevant to the SM and the MSSM:

(a) For the SM Higgs boson, the confidence levels $1-\mathrm{CL}_b$ and CL_s obtained from combining the data of the four LEP experiments are shown in Fig. 5 [29]. One can see in the upper part that the observed behavior of $1-\mathrm{CL}_b$ (full line) is compatible with the expected behaviors for background within 2σ (light-shaded band). The expected behavior in the presence of a signal (dashed line) indicates that the data have sensitivity for a 5σ discovery $(1-\mathrm{CL}_b < 5.7 \times 10^{-7})$ up to $m_{H^0} \approx 98$ GeV. In the lower part of the figure, the curves of CL_s observed (full line) and expected from background (dashed line) follow each other closely, as anticipated in the absence of a signal. The curves cross the value $\mathrm{CL}_s = 0.05$ in the vicinity of $m_{H^0} = 103$ GeV. After cross checking with several test-statistics, the value 102.6 GeV is quoted in Ref. 29 as the 95% CL lower bound for the SM Higgs mass.

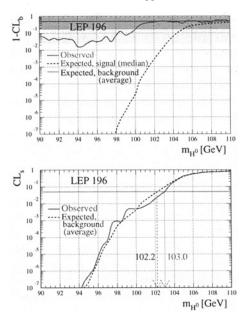
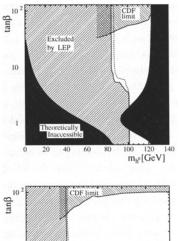


Figure 5: The confidence levels $1-\mathrm{CL}_b$ (upper) and CL_s (lower part), observed and expected, as a function of the test mass m_{H^0} , obtained from combining [29] preliminary data of the four LEP experiments. The dark (light) shaded areas represent the $\pm \mathrm{one}$ - (two-) standard deviation bands around the expected average (0.5) from simulated background only experiments.

At the Tevatron, the SM Higgs boson would be produced primarily by gluon fusion, $gg \to H^0$ [31]. However, the signal processes providing best sensitivity to masses below 140 GeV are those where a Higgs boson is produced in association with a W^{\pm} or Z^0 boson, or in association with heavy quarks, $p\bar{p} \to W^{\pm}H^0 X$, $Z^0H^0 X$, $Q\bar{Q}H^0 X$ [32]. The Run I data samples, of about 110 pb⁻¹ from both CDF and DØ, are far too small for a discovery of the SM Higgs boson but allow upper bounds to be set on the cross section. For $m_{H^0} > 70$ GeV, these bounds are higher by an order of magnitude at least than the SM prediction [33,34].

(b) For the MSSM Higgs bosons h^0 and A^0 , the search results are used to test a 'constrained' MSSM where universal SUSY-breaking masses $m_{\rm SUSY}$ and M_2 are assumed for sfermions and gauginos, respectively, at the electroweak scale. With these assumptions, the number of MSSM parameters is reduced to only six [4,19]. All masses, cross sections, and decay branching ratios can be calculated by fixing $m_{\rm SUSY}$, M_2 , $\tan \beta$, m_{A^0} , the Higgs mixing parameter μ , and the trilinear coupling A_t which controls stop mixing. The top mass has also an impact on the predictions through loop corrections.


Although more general parameter scans have been reported [35,36], most interpretations of the results are limited to less general scenarios (e.g., those proposed in Ref. 20), where some of the parameters are fixed: $m_{\rm SUSY}{=}1~{\rm TeV}/c^2$, $M_2{=}1.6~{\rm TeV}/c^2$, $\mu=-100~{\rm GeV}$, and $m_t=175~{\rm GeV}$. Two separate cases are considered, with $A_t=0$ and $\sqrt{6}~{\rm TeV}$, which correspond to no mixing and large stop-mixing. The remaining parameters, m_{A^0} and $\tan\beta$, are scanned independently.

The current LEP limits in the MSSM parameter space [29], valid for large mixing, are shown in Fig. 6 in the $(m_{h^0}, \tan \beta)$ and $(m_{A^0}, \tan \beta)$ projections (for no mixing the available parameter space is more restricted). The current 95% CL bounds are: $m_{h^0} > 84.3 \text{ GeV}$, $m_{A^0} > 84.5 \text{ GeV}$. Furthermore, values of $\tan \beta$ from 0.8 to 1.9 are excluded for the parameter sets considered; however, that exclusion can be reduced considerably in other scenarios [37].

The CDF experiment has searched for the process $p\overline{p} \to b\overline{b} \, X \to b\overline{b}b\overline{b}$ [33] where a particle $X (\equiv h^0, H^0, A^0)$ is radiated from a b quark and decays subsequently to $b\overline{b}$. This process is enhanced in the MSSM at large $\tan \beta$ where the Yukawa coupling to the b quark is large. The domains excluded by CDF are indicated in Fig. 6 together with the limits from LEP.

Interpretations in models beyond the SM and the MSSM:

Any model, to be acceptable, has to reproduce the available precision electroweak data. 2HD models with any number of additional singlet or doublet fields satisfy this criterion. This has been demonstrated [38] for 2HD models of class II where the "up" and "down" fermions couple to separate Higgs doublets. In the case of higher representations (e.g., triplet fields) the parameters can also be tuned to obtain agreement, in particular to preserve the value of $\rho = M_W^2/M_Z^2 \cos^2\theta_W$

10 | Excluded | by LEP | 0 | 50 | 100 | 150 | 200 | 250 | 300 | m_K^o [GeV]

Figure 6: The 95% CL bounds on m_{h^0} , m_{A^0} , and $\tan \beta$, for the case of large mixing, from combining the data of the four LEP experiments up to $\sqrt{s} = 196$ GeV [29]. The dashed lines indicate the expected limits. The exclusions at large $\tan \beta$ from the CDF experiment [33] are also indicated.

and to avoid excessive rates of flavor-changing neutral currents. Search results are discussed below in theoretical contexts which are more general than the SM and the MSSM.

- (a) The searches for $e^+e^- \to h^0Z^0$ and h^0A^0 have been used to derive **model-independent bounds** for the rates of generic processes where h^0 and A^0 can be any CP-even and CP-odd scalar particles [36,40]. In deriving these limits it is generally assumed that the decay properties of the generic particles are identical to those of the SM Higgs boson. Models with CP violation [39] and non-SM decay properties have also been addressed [40].
- (b) The searches for **charged Higgs bosons** are guided by predictions of 2HD models. The mass $m_{H^{\pm}}$ is not constrained. In the LEP searches [41] it is assumed that the decay modes $H^+ \to c \bar{s}$ and $\tau^+ \nu_{\tau}$ fully exhaust the decay width, but the relative branching ratio is unknown. They therefore include the $e^+e^- \to H^+H^-$ final states $(c\bar{s})(\bar{c}s)$, $(\tau^+\nu_{\tau})(\tau^-\bar{\nu}_{\tau})$ and $(c\bar{s})(\tau^-\bar{\nu}_{\tau}) + (\bar{c}s)(\tau^+\nu_{\tau})$. The current combined limits from LEP [29] are reproduced in Fig. 7 as a function of the branching ratio B($H^+ \to \tau^+\nu_{\tau}$). The lowest value, independent of the branching ratio, is currently 77 GeV.

At the Tevatron, charged Higgs bosons may be produced in the decay of the top quark, $t \to bH^+$. While the SM requires the top quark to decay almost exclusively via $t \to bW^+$, in 2HD models the process $t \to bH^+$ may compete with the SM process if $m_{H^+} < m_t - m_b$ and if $\tan \beta$ is either large (> 30)

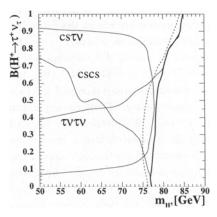


Figure 7: The 95% CL bounds on m_{H^\pm} as a function of the branching ratio $B(H^+ \to \tau^+ \nu_\tau)$, from combining the data collected by the LEP experiments at energies up to 196 GeV [29]. The expected exclusion limit is indicated by the dashed line and the observed limits, channel-by-channel (light) and total (heavy), by the full lines

or less than one. To search for H^{\pm} , the DØ experiment has adopted an indirect "disappearance technique [42]," optimized for the detection of the SM background process $t \to bW^+$. The CDF Collaboration reported on a direct search for the process $t \to H^+b \to \tau^+\nu_\tau b$ [43] and on an indirect approach [44] in which the rate of di-leptons and lepton+jets in $t\bar{t}$ decay is compared to the SM prediction. The 2HD model of class II is assumed by both collaborations, and that the H^+ decays into three channels: (i) $c\bar{s}$, which is dominant at low $\tan\beta$ and small m_{H^\pm} , (ii) $t^*b \to W^+b\bar{b}$, dominant at low $\tan\beta$ and for $m_{H^\pm} \approx m_t + m_b$ [27], and (iii) $\tau^+\nu_\tau$, dominant at high $\tan\beta$. The results are summarized in Fig. 8, where the LEP limits of Fig. 7 are also reproduced. All these limits are subject to potentially large theoretical uncertainties [45].

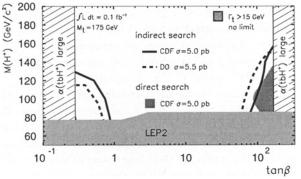


Figure 8: Summary of the 95% CL exclusions in the $(m_{H^+}, \tan \beta)$ plane obtained by the DØ [42] and CDF [43] collaborations, using various indirect and direct observation techniques. The limits quoted by the two collaborations were obtained assuming slightly different $t\bar{t}$ cross sections and using different statistical procedures. The LEP limits from Fig. 7 are also reproduced.

Gauge & Higgs Boson Particle Listings Higgs Bosons — H^0 and H^{\pm}

Indirect limits in the $(m_{H^\pm}, \tan\beta)$ plane can also be derived using experimental bounds on the branching ratio of the flavor-changing neutral current process $b \to s \gamma$. In the SM, this process is induced by virtual W^\pm exchange and gives rise to a branching ratio of $(3.28 \pm 0.33) \times 10^{-4}$ [46]. In 2HD models of class II, the branching ratio is increased [47] by contributions from charged Higgs bosons. Thus, the experimental 95% CL upper bound of 4.5×10^{-4} obtained by the CLEO Collaboration [48] can be translated into a lower bound on m_{H^\pm} , which is in the vicinity of 300 GeV and depends moderately on $\tan\beta$. Less stringent limits are obtained from measurements of the $b \to s \gamma$ and $b \to \tau^- \overline{\nu}_\tau X$ rates and from tau-lepton decay properties at LEP [49]. All these indirect bounds are model-dependent and may be invalidated, e.g., by sparticle loops or anomalous couplings.

- (c) Higgs bosons with double-electric charge, $H^{\pm\pm}$, are predicted by several models [50,19] e.g., with triplet scalar fields. The OPAL Collaboration has searched for the process $Z^0 \to H^{++}H^{--}$ in final states with four prompt electrons or muons. An alternative selection, sensitive to long-lived $H^{\pm\pm}$ and giving rise to isolated tracks with ionization energy loss typical for two electron charges, was also used. By combining the two searches, $H^{\pm\pm}$ bosons with mass less than $M_Z/2$ could almost completely be excluded [51].
- (d) The addition of a **singlet scalar field** to the MSSM [52], gives rise to two additional neutral scalars, one CP-even and one CP-odd. The radiative corrections to the masses are similar to those in the MSSM and arguments of perturbative continuation to the GUT scale lead again to an upper bound of about 135-140 GeV for the mass of the lightest neutral CP-even scalar. The DELPHI Collaboration has used the searches for neutral Higgs bosons to constrain such models [53].
- (e) Higgs bosons can be produced by **Yukawa processes** in which they are radiated from a massive fermion, e.g., b or τ^{\pm} . The CDF search for this process [33] has already been discussed in the MSSM context of Fig. 6. In a broader context, this process can be dominant in regions of the 2HD model space where the "standard" processes are suppressed. The LEP1 data have recently been reanalyzed [54], searching specifically for $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$, and $\tau^+\tau^-\tau^+\tau^-$ final states.
- (f) Decays into "invisible" particles (weakly interacting neutral particles) may occur, e.g., in the MSSM with R-parity conservation, if the Higgs bosons decay to pairs of neutralinos [55]. In a different context, Higgs bosons could also decay into pairs of massless Goldstone bosons or Majorons [56]. In Higgs-strahlung, $e^+e^- \to h^0Z^0$, the mass of the invisible Higgs boson can be inferred from the Z^0 boson which is reconstructed in the $Z^0 \to e^+e^-$, $\mu^+\mu^-$, and $q\bar{q}$ final states, and using the beam energy constraint. Assuming the SM production rate, the LEP experiments exclude the existence a Higgs boson of mass less than about 95 GeV decaying exclusively to invisible final states [57].

(g) **Photonic final states** from the processes $Z^0/\gamma^* \rightarrow$ $H^0\gamma$ and $H^0\to\gamma\gamma$ do not occur in the SM at the tree level, but may be present at a low rate due to W^{\pm} and top-quark loops [58]. Additional loops, e.g., from SUSY particles, would increase the rates only slightly [59], but models with anomalous couplings predict enhancements by orders of magnitude. Searches for the processes $e^+e^- \to (H^0 \to b\bar{b})\gamma$, $(H^0 \to \gamma\gamma)q\bar{q}$, and $(H^0 \to \gamma \gamma) \gamma$ have been used to set model-independent limits on such anomalous couplings. They were also used to constrain very specific models leading to an enhanced $H^0 \to \gamma \gamma$ rate, such as the "fermiophobic" 2HD model of class I [60], where all fermions are assumed to couple to the same scalar field, and the couplings can thus be suppressed simultaneously by appropriate parameter choices. The searches at LEP [61] exclude a fermiophobic Higgs boson with mass less than about 95 GeV. At the Tevatron, limits of 82 GeV and 78.5 GeV are obtained by CDF and DØ, respectively [33,62].

Note: Very Recent Results (March 2000)

Very recently, the LEP Higgs working group updated their results including all LEP data collected in 1999 [63]. They report no indication for a signal. The new 95% CL mass bounds, replacing the ones quoted in this section, are the following. For the SM Higgs boson, $m_{H^0} > 107.7$ GeV; for the h^0 and A^0 bosons of MSSM, $m_{h^0} > 88.3$ GeV and $m_{A^0} > 88.4$ GeV; finally, for charged Higgs bosons in 2HD models, $m_{H^\pm} > 78.6$ GeV.

VI. Outlook

The LEP collider is scheduled to stop producing data in the year 2000. At the Tevatron, the Run I sensitivity is rather limited for Higgs boson searches, but a powerful luminosity upgrade is in preparation. Performance studies [8] provide a high motivation for collecting large data samples in excess of 10 fb⁻¹ per experiment. Such samples will extend the combined sensitivity of CDF and DØ well beyond the LEP reach and allow large domains in the MSSM parameter space to be investigated.

The Large Hadron Collider (LHC) will deliver proton-proton collisions at 14 TeV energy in the year 2005. The ATLAS and CMS detectors have been optimized for Higgs boson searches [9]. The discovery of the SM Higgs boson will be possible over the full canonical mass range between 100 GeV and 1 TeV. This broad range is covered by a variety of production and decay processes. The LHC experiments will provide full coverage of the MSSM parameter space via their searches for the h^0 , H^0 , H^0 , H^0 , and H^\pm bosons and by detecting the H^0 boson in cascade decays of SUSY particles. The discovery of several Higgs bosons is possible over extended domains of the parameter space. Decay branching fractions can be determined, and masses measured with accuracies between 10^{-3} (at 400 GeV mass) and 10^{-2} (at 700 GeV).

It is conceivable that a high-energy e^+e^- linear collider will be realized after the year 2010. Initially it could run at energies up to 500 GeV, with 1 TeV and more in perspective [10]. One of the prime goals of such a collider is to extend the

Gauge & Higgs Boson Particle Listings Higgs Bosons — H^0 and H^{\pm}

precision measurements, typical of e^+e^- colliders, to the Higgs sector. The Higgs couplings to fermions and vector bosons can be measured through production cross sections and decay branching ratios, with precisions of a few percent. The MSSM parameters can be studied in great detail. At the highest collider energies and luminosities, the self-coupling of the Higgs fields can be studied directly through final states with two Higgs

At a future $\mu^+\mu^-$ collider [11], the Higgs bosons can be generated as s-channel resonances. Mass measurements with precisions of a few MeV would be possible and the widths could be obtained directly from Breit-Wigner scans. The heavy CPeven and CP-odd Higgs bosons H^0 and A^0 , degenerate over most of the MSSM parameter space, could be disentangled experimentally.

Finally, if Higgs bosons are not discovered at the TeV scale, both the LHC and the future lepton colliders will be in a position to test alternative theories of electroweak symmetry breaking such as those with strongly interacting vector bosons [65], expected in theories with dynamical symmetry breaking [66].

Notes and References

- * The ratio CL_s replaces CL_{s+b} in order to avoid situations where a downward fluctuation of the event count would exclude even the b-like hypothesis. In such situations, the exclusion of the s + b hypothesis would incorrectly appear as an exclusion of a signal for which there is insufficient experimental sensitivity.
- 1. S.L. Glashow, Nucl. Phys. 20, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, Elementary Particle Theory, ed.: N. Svartholm, Almquist, and Wiksells, Stockholm, 1968; S. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970).
- 2. P.W. Higgs, Phys. Rev. Lett. 12, 132 (1964); Phys. Rev. 145, 1156 (1966); F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964); G.S. Guralnik, C.R. Hagen, and T.W. Kibble, Phys. Rev. Lett. 13, 585 (1964).
- 3. J. Wess, B. Zumino, Nucl. Phys. B70, 39 (1974); idem, Phys. Lett. 49B, 52 (1974); P. Fayet, Phys. Lett. 69B, 489 (1977); ibid. 84B 421, (1979); **86B**, 272 (1979); H.E. Haber, Supersymmetry, elsewhere in this Review.
- 4. K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog. Theor. Phys. 68, 927 (1982); ibid. 70, 330 (1983); ibid 71, 413 (1984):
- H.E. Haber and G.L. Kane, Phys. Rep. C117, 75 (1985). 5. Y. Okada, M. Yamaguchi, and T. Yanagida, Theor. Phys. 85, 1 (1991); H. Haber and R. Hempfling, Phys. Lett. 66, 1815 (1991);
 - J. Ellis, G. Ridolfi, and F. Zwirner, Phys. Lett. B257, 83
 - R. Barbieri and M. Frigeni, Phys. Lett. **B258**, 395 (1991).
- 6. P.J. Franzini and P. Taxil, in Z physics at LEP 1, CERN 89-08 (1989).
- 7. For complete documentation of published results, the reader should consult the Particle Listings in this Review and in the 1998 Edition (Eur. Phys. J. C3, 1 (1998)).

- Tevatron Run II workshop, http://fnth37.fnal.gov/higgs.html; M. Spira, hep-ph/9810289; J.S. Conway, FERMILAB-CONF-99/156-E.
- ATLAS TDR on Physics performance, Vol. II, Chap. 19, Higgs Bosons (1999); CMS TP, CERN/LHC 94-38 (1994)...
- E. Accomando et al., Physics Reports 299, 1 (1998); H. Murayama and M.E. Peskin, Ann. Rev. Nucl. and Part. Sci. 46, 583 (1996); ACFA Workshop, KEK Report 99-12, 1999: K. Hübner, Future Accelerators, Proceedings of ICHEP'98, Vancouver, Canada, July 1998;
 - G. Borisov and F. Richard, hep-ph/9905413;
 - M. Battaglia, hep-ph/9910271.
- 11. B. Autin, A. Blondel, and J. Ellis (eds.), CERN 99-02; C.M. Ankenbrandt et al., Phys. Rev. ST Acc. Beams 2, 081001 (1999).
- 12. N. Cabibbo, L. Maiani, G. Parisi, and R. Petronzio, Nucl. Phys. **B158**, 295 (1979); R. Dashen and H. Neuberger, Phys. Rev. Lett. 50, 1897
- 13. M. Lindner, M. Sher, and H.W. Zaglauer, Phys. Lett. B228, 139 (1989); M. Sher, Phys. Lett. B317, 159 (1993); ibid. 331B, 448 G. Altarelli and I. Isidori, Phys. Lett. **B337**, 141 (1994); J.A. Casas, J.R. Espinosa, and M. Quirós, Phys. Lett. **B342**, 89 (1995).
- 14. T. Hambye and K. Riesselmann, Phys. Rev. D55, 7255 (1997).
- 15. J. Erler and P. Langacker, Electroweak Model and Constraints on New Physics, elsewhere in this Review.
- G. Quast, *ew-fits*.
- M. Carena, M. Quiros, and C.E.M. Wagner, Nucl. Phys. **B461**, 407 (1996); H. Haber, R. Hempfling, and A. Hoang, Z. Phys. C75, 539 (1997); S. Heinemeyer, W. Hollik, and G. Weiglein, Phys. Lett. **B455**, 179 (1999); idem, Eur. Phys. J. C9, 343 (1999).
- 18. M. Carena, S. Pokorski, and C. Wagner, Nucl. Phys. **B406**, 45 (1993); V. Barger, M.S. Berger, and P. Ohmann, Phys. Rev. D47, 1093 (1993); M. Carena and C. Wagner, Nucl. Phys. **B452**, 45 (1995).
- 19. J.F. Gunion, H.E. Haber, G.L. Kane, and S. Dawson, The Higgs Hunter's Guide (Addison-Wesley) 1990.
- M. Carena et al., LEP2 Workshop, CERN 96-01, (1996) Vol. 1, p. 351.
- 21. J. Ellis, M.K. Gaillard, and D.V. Nanopoulos, Nucl. Phys. B106, 292 (1976); B.L. Ioffe and V.A. Khoze, Sov. J. Nucl. Phys. 9, 50 (1978).
- 22. E. Gross, B.A. Kniehl, and G. Wolf, Z. Phys. C63, 417 (1994); erratum ibid. C66, 32 (1995).
- 23. D.R.T. Jones and S.T. Petcov, Phys. Lett. 84B, 440 G. Altarelli, B. Mele, and F. Pitolli, Nucl. Phys. B287, 205 (1987); W. Kilian, M. Krämer, and P.M. Zerwas, Phys. Lett. **B373**, 135 (1996).
- 24. J.F. Gunion and H.E. Haber, Nucl. Phys. B272, 1 (1986); ibid. B278, 449 (1986); ibid. B307, 445 (1988); erratum: ibid. B402, 567 (1993).

Gauge & Higgs Boson Particle Listings

Higgs Bosons — H^0 and H^{\pm}

- A. Brignole, J. Ellis, G. Ridolfi, and F. Zwirner, Phys. Lett. **B271**, 123 (1991).
- A. Djouadi, M. Spira, P.M. Zerwas, Z. Phys. C70, 675 (1996).
- A. Djouadi *et al.*, Z. Phys. C70, 435 (1996);
 E. Ma, D.P. Roy, and J. Wudka, Phys. Rev. Lett. 80, 1162 (1998).
- LEP Higgs working group: CERN-EP/98-046, CERN-EP/99-060;
 lephiggs-1.
- 29. LEP Higgs working group: *lephiggs-2*.
- 30. *ALEPH 99-084*, *ALEPH 99-070*; *DELPHI 99-86*, *DELPHI 99-95*, *DELPHI 99-92*; M. Acciarri et al., Phys. Lett. **B461**, 376 (1999); idem **B466**, 71 (1999); CERN-EP/99-145; *OPAL-PN/99-373*, *OPAL-PN/99-414*, CERN-EP/99-096.
- H. Georgi, S. Glashow, M. Machacek, and D.V. Nanopoulos, Phys. Rev. Lett. 40, 692 (1978);
 M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Nucl. Phys. B453, 17 (1995).
- 32. S.L. Glashow, D.V. Nanopoulos, and A. Yildiz, Phys. Rev. D18, 1724 (1978);
 Z. Kunszt, Nucl. Phys. B247, 339 (1984);
 D. Dicus and S. Willenbrock, Phys. Rev. D39, 751 (1989).
- Xin Wu, FERMILAB-CONF-99/053-E;
 J.A. Walls, FERMILAB-CONF-99/263-E.
- F. Abe et al., Phys. Rev. Lett. 79, 3819 (1997); ibid., 81, 5748 (1998);
 W.-M. Yao, FERMILAB-CONF-99/100.
- R. Barate et al., Phys. Lett. B440, 419 (1998); *DELPHI 98-124*.
- 36. G. Abbiendi et al., Eur. Phys. J. C7, 407 (1999).
- G. Weiglein, S. Heinemeyer, W. Hollik, hep-ph/9909540;
 M. Carena et al., hep-ph/9912223.
- P. Chankowski, M. Krawczyk, J. Zochowski, hep-ph/9905436.
- J.F. Gunion, B. Grzadkowski, H.E. Haber, J. Kalinowski, Phys. Rev. Lett. 79, 982 (1997).
- 40. *ALEPH 99-053*, *DELPHI 99-86*; *OPAL-PN/99-416*.
- *ALEPH 99-070*, CERN-EP/99-011, CERN-EP/98-149,
 DEPPHI 99-92, M. Acciarri et al., Phys. Lett. B466, 71 (1999); *OPAL-PN/99-373*, *OPAL-PN/99-414*.
- 42. B. Abbott et al., Phys. Rev. Lett. 82, 4975 (1999).
- F. Abe et al., Phys. Rev. Lett. 79, 357 (1997);
 T. Affolder et al., hep-ex/9912013.
- 44. B. Bevensee, FERMILAB-CONF-98/155-E.
- J.A. Coarasa, J. Guach, and J. Solá, hep-ph/9903212;
 J.A. Coarasa, J. Guach, J. Solá, and W. Hollik, hep-ph/9808278;
 F.M. Borzumati and A. Djouadi, hep-ph/9806301.
- K. Chetyrkin et al., Phys. Lett. B400, 206 (1997); idem Phys. Lett. B425, 414 (1998);
 A. Kagan and M. Neubert, Eur. Phys. J. C7, 5 (1999).
- R. Ellis et al., Phys. Lett. B179, 119 (1986);
 V. Barger, J. Hewett, and R. Phillips, Phys. Rev. D41, 3421 (1990).
- M.S. Alam et al., Phys. Rev. Lett. 74, 2885 (1995);
 S. Ahmed et al., hep-ex/9908022.
- O. Adriani et al., Phys. Lett. B317, 637 (1993);
 D. Buskulic et al., Phys. Lett. B343, 444 (1995);
 W. Adam et al., Z. Phys. C72, 207 (1996);

- R. Barate et al., Phys. Lett. **B429**, 169 (1998);
 K. Ackerstaff et al., Eur. Phys. J. C8, 3 (1999).
- G.B. Gelmini and M. Roncadelli, Phys. Lett. 99B, 411 (1981);
 R.N. Mohapatra and J.D. Vergados, Phys. Rev. Lett. 47, 1713 (1981);
 - V. Barger, H. Baer, W.Y. Keung, and R.J.N. Phillips, Phys. Rev. **D26**, 218 (1982).
- 51. P.D. Acton et al., Phys. Lett. **B295**, 347 (1992).
- 52. P. Fayet, Nucl. Phys. B90, 104 (1975);
 S.A. Abel, S. Sarkar, P.L. White, Nucl. Phys. B454, 663 (1995);
 S.F. King, P.L. White, Phys. Rev. D53, 4049 (1996).
- 53. *DELPHI 99-97*.
- 54. *ALEPH PA13-027*; *DELPHI 99-76*.
- A. Djouadi, P. Janot, J. Kalinowski, and P.M. Zerwas, Phys. Lett. **B376**, 220 (1996).
- Y. Chikashige, R.N. Mohapatra, and P.D. Peccei, Phys. Lett. 98B, 265 (1981);
 F. de Campos, O.J.Éboli, J. Rosiek, and J.W.F. Valle, Phys. Rev. D55, 1316 (1997).
- 57. *ALEPH 99-069*; *DELPHI 99-83*; *L3 Note 2435*; *OPAL-PN/99-399*.
- 58. J. Ellis, M.K. Gaillard, and D.V. Nanopoulos, Nucl. Phys. B106, 292 (1976);
 R.N. Cahn, M.S. Chanowitz, and N. Fleishon, Phys. Lett. B82, 113 (1997);
 J. Leveille, Phys. Lett. B83, 123 (1997);
 A.I. Vainshtein et al., Sov. J. Nucl. Phys. 30, 711 (1979);
 A. Barroso, J. Pulido, J.C. Romão, Nucl. Phys. B267, 509 (1986);

A. Abbasabadi et al., Phys. Rev. D52, 3919 (1995).

- 59. G. Gamberini, G.F. Giudice, and G. Ridolfi, Nucl. Phys. B292, 237 (1987);
 R. Bates, J.N. Ng, and P. Kalyniak, Phys. Rev. D34, 172 (1986);
 K. Hagiwara, R. Szalapski, and D. Zeppenfeld, Phys. Lett. B318, 155 (1993);
 O.J.P. Éboli, M.C. Gonzalez-Garcia, S.M. Lietti, and S.F. Novaes, Phys. Lett. B434, 340 (1998).
- A.G. Akeroyd, Phys. Lett. B368, 89 (1996);
 H. Haber, G. Kane, and T. Stirling, Nucl. Phys. B161, 493 (1979) 493.
- *ALEPH 99-054*, *DELPHI 99-72*, CERN-EP/99-058,
 L3 Note 2429; G. Abbiendi et al., Phys. Lett. B464,
 311 (1999).
- 62. B. Abbott et al., hep-ex/9902028.
- 63. *lephiggs-3*.
- 64. G.J. Gounaris, F. Renard, D. Schildknecht, Phys. Lett. 83B, 191 (1979);
 V. Barger, T. Han, R.J.N. Phillips, Phys. Rev. D38, 2766 (1988);
 F. Boudjema and E. Chopin, Z. Phys. C37, 85 (1996);
 A. Diouadi, W. Killan, M. Mühlleitner, and P.M. Zerwas.
 - A. Djouadi, W. Kilian, M. Mühlleitner, and P.M. Zerwas,
 Eur. Phys. J. C10, 27 (1999).
 B.W. Lee, C. Quigg, and H.B. Thacker, Phys. Rev. D16,
- B.W. Lee, C. Quigg, and H.B. Thacker, Phys. Rev. D16 1519 (1977);
 R.S. Chivukula et al., hep-ph/9503202,;
 C. Yuan, hep-ph/9712513;
 M. Chanowitz, hep-ph/9812215.
- S. Weinberg, Phys. Rev. **D13**, 974 (1976); *ibid*. **D19**, 1277 (1979);
 - L. Susskind, Phys. Rev. **D20**, 2619 (1979).

STANDARD MODEL HO (Higgs Boson) MASS LIMITS

These limits apply to the Higgs boson of the three-generation Standard Model with the minimal Higgs sector. For a review and a bibliography, see the above Note on 'Searches for Higgs Bosons' by P. Igo-Kemenes.

Limits from Coupling to Z/W^{\pm}

Limits on the Standard Model Higgs obtained from the study of Z^0 decays rule out conclusively its existence in the whole mass region $m_{H^0}\lesssim$ 60 GeV. These limits, as well as stronger limits obtained from e^+e^- collisions at LEP at energies up to 172 GeV, and weaker limits obtained from other sources, have been superseded by the most recent data of LEP. They have been removed from this compliation, and are documented in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review of Particle Physics.

In this Section, unless otherwise stated, limits from the four LEP experiments (ALEPH, $\rightarrow H^0 Z$ process, DELPHI, L3, and OPAL) are obtained from the study of the e+eat center-of-mass energies reported in the comment lines.

A recent combination (LEP 00B) of preliminary, unpublished results relative to data taken at LEP in the Summer of 1999 at energies up to 202 GeV gives the limit $m_{H^0} > 107.7 \, {\rm GeV}.$

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>91.0	95	¹ ABBIENDI	00F	OPAL	$E_{\rm cm} \leq 189 \; {\rm GeV}$
>94.6	95	¹ ABREU	00G	DLPH	$E_{\rm cm} \leq 189 \; {\rm GeV}$
>95.3	95	¹ ACCIARRI	991	L3	E _{cm} =189 GeV
>87.9	95	² BARATE	99B	ALEP	$E_{\rm cm} \leq 183 \; {\rm GeV}$
• • • We do not	use the followin	ng data for averag	es, fits,	, limits,	etc. • • •
>88.3	95	¹ ABBIENDI	99E	OPAL	E _{cm} =183 GeV
>85.7	95	¹ ABREU			$E_{\rm cm} \le 183 \; {\rm GeV}$
		³ ABE	98⊤	CDF	$p\bar{p} \rightarrow H^0WX, H^0ZX$
>87.6	95	1 ACCIARRI	981	L3	<i>E</i> _{cm} ≤ 183 GeV

1 Search for $e^+e^- o H^0 Z$ in the final states $H^0 o q \overline{q}$ with $Z o \ell^+\ell^-$, $\nu \overline{\nu}$, $q \overline{q}$, and $\tau^+\tau^-$, and $H^0 o \tau^+\tau^-$ with $Z o q \overline{q}$.
2 Search for $e^+e^- o H^0 Z$ in the final states $H^0 o q \overline{q}$ with $Z o \ell^+\ell^-$, $\nu \overline{\nu}$, $q \overline{q}$, and $\tau^+\tau^-$, and $H^0 o \tau^+\tau^-$ with $Z o \ell^+\ell^-$, $\nu \overline{\nu}$, and $q \overline{q}$.
3 ABE 98T search for associated $H^0 W$ and $H^0 Z$ production in $p \overline{\nu}$ collisions at $\sqrt{s} = 1.8$

The visith $W(Z) \rightarrow q\overline{q}^{(1)}$, $H^0 \rightarrow b\overline{b}$. The results are combined with the search ABE 97w, resulting in the cross-section limit $\sigma(H^0+W/Z) \cdot B(H^0 \rightarrow b\overline{b}) < (23-17)$ pb (95%CL) for $m_H = 70-140$ GeV. This limit is one to two orders of magnitude larger than the expected cross section in the Standard Model.

HO Indirect Mass Limits from Electroweak Analysis

For limits obtained before the direct measurement of the top quark mass, see the 1996 (Physical Review D54 1 (1996)) Edition of this Review. Other studies based on data available prior to 1996 can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review. For indirect limits obtained from other considerations of theoretical nature, see the Note on "Searches for Higgs Bosons.

Because of the high current interest, we mention here the following unpublished result (LEP 00, and update, presented by A. Straessner at the 2000 Electroweak Rencontres de Moriond) although we do not include it in the Listings or Tables: $m_{H^{\pm}}$ 66.5 $^{+30}_{-30}$ GeV. This is obtained from a fit to LEP, SLD, W mass, top mass, and neutrino scattering data available in the Spring of 2000, with $1/\alpha^{(5)}(m_Z)$ = 128.878 \pm 0.090. The 95%CL upper limit is 188 GeV.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the followin	g data for averages	, fits	, limits,	etc. • • •
		4 CHANOWITZ	99	RVUE	
<290	95	⁵ D'AGOSTINI	99	RVUE	
<211	95			RVUE	
		⁷ CHANOWITZ	98	RVUE	
$170 + 150 \\ - 90$		⁸ HAGIWARA	98в	RVUE	
$141 + 140 \\ -77$		9 DEBOER	97B	RVUE	
$127 + 143 \\ -71$		10 DEGRASSI	97	RVUE	$\sin^2 \theta_W$ (eff,lept)
158 ^{+ 1 48} - 84		¹¹ DITTMAIER	97	RVUE	
149 ^{+ 148} - 82		12 RENTON	97	RVUE	
145 ^{+ 164} 77		13 ELLIS	9 6c	RVUE	
$185 + 251 \\ -134$		¹⁴ GURTU	96	RVUE	

 4 CHANOWITZ 99 studies LEP/SLD data on 9 observables related $\sin^2\theta_{\rm eff}^{\ell}$, available in the Spring of 1998. A scale factor method is introduced to perform a global fit, in view of the conflicting data. m_H as large as 750 GeV is allowed at 95% CL.

⁵ D'AGOSTINI 99 use m_t , m_{W_t} and effective $\sin^2\!\theta_W$ from LEP/SLD available in the Fall 1998 and combine with direct Higgs search constraints from LEP2 at $E_{\rm cm}$ =183 GeV. $\alpha(m_Z)$ given by DAVIER 98.

FIELD 99 studies the data on b asymmetries from $Z^0 \rightarrow b\overline{b}$ decays at LEP and SLD (from LEP 99). The limit uses $1/\alpha(M_Z)=128.90\pm0.09$, the variation in the fitted top quark mass, $m_t{=}171.2^{+}_{-}3.8^{-}$ GeV, and excludes b-asymmetry data. It is argued that exclusion of these data, which deviate from the Standard Model expectation, from the electroweak fits reduces significantly the upper limit on m_H . Including the b-asymmetry data gives instead the 95%CL limit $m_H < 284$ GeV. See also FIELD 00.

- ⁷ CHANOWITZ 98 fits LEP and SLD Z-decay-asymmetry data (as reported in ABBANEO 97), and explores the sensitivity of the fit to the weight ascribed to measurements that are individually in significant contradiction with the direct-search limits. Various prescriptions are discussed, and significant variations of the 95%CL Higgs-mass upper limits are found. The Higgs-mass central value varies from 100 to 250 GeV and the 95%CL upper limit from 340 GeV to the TeV scale.
- BHAGIWARA 988 fit to LEP, SLD, W mass, and neutrino scattering data as reported in ALCARAZ 96, with $m_t=175\pm6$ GeV, $1/\alpha(m_Z)=128.90\pm0.09$ and $\alpha_s(m_Z)=0.118\pm0.003$. Strong dependence on m_t is found.
- ⁹ DEBOER 97B fit to LEP and SLD data (as reported in ALCARAZ 96), as well as m_W and m_t from CDF/DØ and CLEO $b\to s\gamma$ data (ALAM 95). $1/\alpha(m_Z)=128.90\pm0.99$ and 1.00 a $\alpha_{\rm S}(m_Z)=0.120\pm0.003$ are used. Exclusion of SLC data yields $m_H=241^{+218}_{-123}$ GeV. $\sin^2\theta_{\mathrm{eff}}$ from SLC (0.23061 \pm 0.00047) would give m_H =16 $^{+16}_{-9}$ GeV.
- 10 DEGRASSI 97 is a two-loop calculation of M_W and $\sin^2\! heta_{
 m eff}^{
 m lept}$ as a function of m_H , using $\sin^2\theta_{\rm eff}^{\rm lept}$ 0.23165(24) as reported in ALCARAZ 96, $m_t=175\pm 6$ GeV, and $1/\alpha(m_Z)=128.90\pm 0.09$.
- 11 DITTMAIER 97 fit to m_{W} and LEP/SLC data as reported in ALCARAZ 96, with m_{t} = 175 \pm 6 GeV, $1/\alpha(m_Z^2)$ = 128.89 \pm 0.09. Exclusion of the SLD data gives m_H = 261 $^{+224}_{-128}$ GeV. Taking only the data on m_t , m_W , $\sin^2\theta^{\text{lept}}_{\text{eff}}$, and Γ^{lept}_Z , the authors get $m_H=190^{+174}_{-102}$ GeV and $m_H=296^{+243}_{-143}$ GeV, with and without SLD data, respectively. The 95% CL upper limit is given by 550 GeV (800 GeV removing the SLD data)
- Tarenton 97 fit to LEP and SLD data (as reported in ALCARAZ 96), as well as m_W and $m_{\tilde{t}}$ from $p\bar{p}$, and low-energy ν N data available in early 1997. $1/\alpha(m_Z)=128.90\pm0.09$
- 13 ELLIS 96C fit to LEP, SLD, m_{W} , neutral-current data available in the summer of 1996, plus $m_t=175\pm 6$ GeV from CDF/DØ . The fit yields $m_t=172\pm 6$ GeV.
- 14 GURTU 96 studies the effect of the mutually incompatible SLD and LEP asymmetry data on the determination of m_H . Use is made of data available in the Summer of 1996. The quoted value is obtained by increasing the errors à la PDG. A fit ignoring the SLD data yields 267^{+242}_{-135} GeV.

MASS LIMITS FOR NON-STANDARD MODEL HIGGS BOSONS

This section covers the following cases:

- (i) Neutral scalar and pseudoscalar Higgs bosons in the MSSM,
- (ii) Neutral Higgs bosons in extended Higgs models,
- (iii) Charged Higgs bosons, and
- (iv) Doubly-charged Higgs bosons

H₁⁰ (Higgs Boson) MASS LIMITS in Supersymmetric Models

The minimal supersymmetric model has two complex doublets of Higgs bosons. The resulting physical states are two scalars $[H_1^0 \text{ and } H_2^0]$, where we define $m_{H_1^0} < m_{H_2^0}^0$, a pseudoscalar (A^0) , and a charged Higgs pair (H^\pm) . H^0_1 and H^0_2 are also called h and H in the literature. There are two free parameters in the theory which can be chosen

The interaction of the two free parameters in the theory manner of the two by A_0 and $\tan \beta = v_2/v_1$, the ratio of vacuum expectation values of the two Higgs doublets. Tree-level Higgs masses are constrained by the model to be $m_{H_0^0} \le$ m_Z , $m_{H_2^0} \ge m_Z$, $m_{A^0} \ge m_{H_1^0}$, and $m_{H^\pm} \ge m_W$. However, as described in the Review on Supersymmetry in this Volume these relations are violated by radiative

The mass region $m_{H_{\bullet}^0}\lesssim$ 45 GeV has been by now entirely ruled out by measurements at the Z pole. The relative limits, as well as other by now obsolete limits from different techniques, have been removed from this compilation, and can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review. Unless otherwise stated, the following results assume no invisible H_1^0 or A^0 decays.

A recent combination (LEP 00B) of preliminary, unpublished results relative to data taken at LEP in the Summer of 1999 at energies up to 202 GeV gives the limit $m_{H_1^0} > 88.3 \,\text{GeV}.$

VALUE (GeV)	CL%_	DOCUMENT ID	TECN	COMMENT
>74.8	95	15 ABBIENDI	00F OPAL	$E_{cm} \le 189$ GeV, $tan \beta > 1$
>82.6	95	¹⁶ ABREU	00g DLPH	$E_{\rm cm} \leq 189$ GeV, $\tan \beta > 0.6$
>77.1		¹⁷ ACCIARRI	99u L3	$E_{\rm cm} \leq 189$ GeV, $\tan \beta > 1$
>72.2	95	¹⁸ BARATE	98A ALEP	$E_{\rm cm} \leq 183 \; {\rm GeV}$
• • • We do not u	ise the fol	llowing data for aver	ages, fits, lir	nits, etc. • • •
>70.5	95	¹⁹ ABBIENDI	99E OPAL	$E_{ m cm} \leq 183$ GeV, $ aneta > 1$
>74.4	95	²⁰ ABREU	99ı DLPH	$E_{\rm cm} \leq 183$ GeV, $\tan \beta > 0.6$
>59.5	95	²¹ ABREU	98E DLPH	$E_{\rm cm} \leq 172$ GeV, $\tan \beta > 1$
>70.7	95	²² ACCIARRI	98M L3	$E_{\rm cm} \le 183$ GeV, $\tan \beta > 1$
>59.0	95	²³ ACKERSTAFF	98s OPAL	
		²⁴ ACCIARRI	97N L3	$E_{\rm cm} \le 172 \; {\rm GeV}$
>62.5	95	²⁵ BARATE	97P ALEP	÷ · · ·

¹⁵ ABBIENDI 00F search for $e^+e^- \to H_1^0 A^0$ in the final states $b \overline{b} b \overline{b}$, $b \overline{b} \tau^+ \tau^-$, and $A^0 A^0 A^0 \rightarrow b \overline{b} b \overline{b} b \overline{b}$, and $e^+ e^- \rightarrow H_1^0 Z$. Universal scalar mass of 1 TeV, SU(2) gaugino mass of 1.63 TeV and Higgsino mass parameter $\mu=-0.1$ TeV are assumed. $m_{F}=175$ GeV is used. The cases of maximal and no-stop mixing are examined. Limits obtained from scans of the Supersymmetric parameter space can be found in the paper. 16 ABREU 00G search for $e^{+}e^{-} \rightarrow H_{1}^{0}A^{0}$ in the final states $b\overline{b}b\overline{b}$ and $b\overline{b}\tau^{+}\tau^{-}$, and

 $e^+e^- \rightarrow H_1^0 Z$. $m_{A0} > 20$ GeV is assumed. Universal scalar mass of 1 TeV, SU(2) gaugino mass of 0.2 TeV, and Higgsino mass parameter $\mu=-0.2$ TeV are assumed. $m_t=175$ GeV is used. The scenarios of no-stop mixing, and of mixing with the maximal impact on the Higgs mass limit, are examined.

Gauge & Higgs Boson Particle Listings Higgs Bosons — H^0 and H^{\pm}

¹⁷ ACCIARRI 990 searched for $e^+e^- \rightarrow H_1^0 A^0$ in the final state $b \, \overline{b} \, b \, \overline{b}$ and $b \, \overline{b} \, \tau^+ \tau^-$, and $e^+e^- \rightarrow H_1^0 Z$. Universal scalar mass and SU(2) gaugino mass of 1 TeV and Higgsino mass parameter μ =-0.1 TeV are assumed. The cases of minimal and maximal stop mixing are examined.

¹⁸ BARATE 98A search for $e^+e^- \rightarrow H_1^0 A^0$ in the final states $b \overline{b} b \overline{b}$ and $b \overline{b} \tau^+ \tau^-$ and combine with BARATE 99B limit on $e^{\frac{1}{4}}e^- \rightarrow H_1^0 Z$. The limit is for $M_{\mbox{SUSY}}=1~{\rm TeV}$ with minimal/maximal stop mixing. See paper for the result from a scan in more general

¹⁹ ABBIENDI 99E search for $e^+e^- \rightarrow H_1^0 A^0$ in the final states $b \, \overline{b} \, b \, \overline{b}, \, q \, \overline{q} \, \tau^+ \tau^-$, and 6b and $e^+\,e^- \to H_1^0\,Z$ for various final states. M_{top} =175 GeV, M_{SUSY} =1 TeV, and minimal/maximal scalar top mixing. See paper for results of more general scans. ²⁰ ABREU 99I search for $e^+e^- \rightarrow H_1^0 A^0$ in the final state $b \bar{b} b \bar{b}$, and $b \bar{b} \tau^+ \tau^-$ and

 $e^+e^- o H_1^0 Z$ for various final states. The limit is for the universal scalar mass of

1 TeV, SU(2) gaugino mass of 1.6 TeV, and higgsino mass parameter μ =-100 GeV, with typical/maximal/no-stop mixing. m_t = 173.9 GeV.

21 ABREU 98E search for $e^+e^- \rightarrow H_1^0 A^0$ in the final state $b\bar{b}b\bar{b}$ and $q\bar{q}\tau^+\tau^-$. The results from the SM Higgs search described in the same paper are also used to set these limits. $m_{\text{top}} = 175 \text{ GeV}$, $M_{\text{SUSY}} = 1 \text{ TeV}$, and maximal scalar top mixings.

²² ACCIARRI 98M search for $e^+e^- \rightarrow H_1^0 A^0$ in the final state $b \overline{b} b \overline{b}$ and $b \overline{b} \tau^+ \tau^-$, and $e^+e^- \rightarrow H_1^0 Z$. $m_{\text{top}} = 175$ GeV, $M_{\text{SUSY}} = 1$ TeV, SU(2) gaugino mass of 1 TeV

and various scalar top mixing scenarios. ²³ ACKERSTAFF 98s search for $e^+e^- \rightarrow H_1^0 A^0$ in the final state $b \overline{b} b \overline{b}$, $q \overline{q} \tau^+ \tau^-$, and 6b and combine with ACKERSTAFF 98H limit on $e^+e^-
ightarrow H_1^0$ Z. $m_{\mathrm{top}}=$ 175 GeV. $M_{SUSY}=1$ TeV, SU(2) gaugino mass of 1 TeV and maximal scalar stop mixing. The more general scan of the MSSM parameter space does not reduce the limit significantly. ²⁴ ACCIARRI 97N search for $e^+e^- \rightarrow H_0^0 A^0$ in four-jet final states. Cross-section limits

are obtained for $|m_{H_1^0} - m_{A^0}| = 0$, 10, and 20 GeV.

 25 BARATE 97P search for $e^+\,e^-\to H_1^0\,A^0$ in the final state $b\,\bar{b}\,b\,\bar{b}$ and $b\,\bar{b}\,\tau^+\tau^-$ and combine with BARATE 970 limit on $e^+\,e^-\to H_1^0\,Z.$ $m_{\rm top}=175$ GeV and $M_{\rm SUSY}$ = 1 TeV, and maximal scalar top mixings. The invisible decays $H_1^0 o ilde{\chi}^0 ilde{\chi}^0$ are not allowed in the analysis, as ruled out in the relevant kinematic region by BUSKULIC 96K.

A⁰ (Pseudoscalar Higgs Boson) MASS LIMITS in Supersymmetric Models

Limits on the A^0 mass from $e^+\,e^-$ collisions arise from direct searches in the $e^+\,e^ A^0\,H_1^0$ channel and indirectly from the relations valid in the minimal supersymmetric model between m_{A^0} and $m_{H_1^0}$. As discussed in the "Note on Supersymmetry," these

relations depend on the masses of the t quark and \widetilde{t} squarks. The limits are weaker for larger t and \tilde{t} masses, while they increase with the inclusion of two-loop radiative corrections. Some specific examples of these dependences are provided in the footnotes to the listed papers. Unless otherwise stated, two-loop radiative corrections have been included, where relevant, in the limits presented here.

Limits obtained at the $\it Z$ pole have been made obsolete by more recent results from higher energy $\it e^+e^-$ collision data at LEP. Together with other by now obsolete results, they have been omitted from this compilation, and can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review. Unless otherwise stated, the following results assume no invisible H_1^0 or A^0 decays. Limits quoted for a given value of $E_{\rm cm}$ may include data from lower energies.

A recent combination (LEP 00B) of preliminary, unpublished results relative to data taken at LEP in the Summer of 1999 at energies up to 202 GeV gives the limit m_{A⁰} > 88.4 GeV.

VALUE (GeV)	CL%	DOCUMENT ID	TECN_	COMMENT
>76.5	95	²⁶ ABBIENDI	00F OPAL	$E_{\rm cm} \le 189$ GeV, $\tan \beta > 1$
>84.1	95	²⁷ ABREU	00g DLPH	$E_{\rm cm} \leq 189$ GeV, $\tan \beta > 0.6$
>77.1		²⁸ ACCIARRI	99∪ L3	$E_{\rm cm} \leq 189$ GeV, $\tan \beta > 1$
>76.1	95	²⁹ BARATE	98A ALEP	$E_{\rm cm} \le 183 \; {\rm GeV}$
• • • We do not a	se the fo	llowing data for aver	ages, fits, lir	nits, etc. • • •
>72.0	95	30 ABBIENDI	99E OPAL	$E_{ m Cm} \leq 183$ GeV, $ aneta > 1$
>75.3	95	31 ABREU	99I DLPH	
>51.0	95	³² ABREU	98E DLPH	$E_{\rm cm} \le 172 \; {\rm GeV, } \; {\rm tan} \beta > 1$
>71.0	95	33 ACCIARRI	98M L3	$E_{\rm cm} \le 183 \; {\rm GeV, } \; {\rm tan} \beta > 1$
>59.5	95	34 ACKERSTAFF	98s OPAL	$E_{\rm cm} \leq 172$ GeV, $\tan \beta > 1$
		35 DREES	98 RVUE	$p\overline{p} \rightarrow b\overline{b}H^0/A^0$ + any
		³⁶ ACCIARRI	97N L3	$E_{\rm Cm} \le 172 \; {\rm GeV}$
>62.5	95	³⁷ BARATE	97P ALEP	$E_{\rm cm} < 172 \; {\rm GeV, tan} \beta > 1$

²⁶ ABBIENDI 00F search for $e^+e^- \to H_1^0 A^0$ in the final states $b \bar{b} b \bar{b}$, $b \bar{b} \tau^+ \tau^-$, and $^{0}A^{0}A^{0} \rightarrow b \bar{b} b \bar{b} b \bar{b}$, and $e^{+}e^{-} \rightarrow H_{1}^{0}Z$. Universal scalar mass of 1 TeV, SU(2) gaugino mass of 1.63 TeV and Higgsino mass parameter μ =-0.1 TeV are assumed. m_{t} =175 GeV is used. The cases of maximal and no-stop mixing are examined. Limits obtained from scans of the Supersymmetric parameter space can be found in the paper.

²⁷ ABREU 00G search for $e^+\,e^- \to H_1^0\,A^0$ in the final states $b\,\overline{b}\,b\,\overline{b}$ and $b\,\overline{b}\,\tau^+\tau^-$, and $e^+e^- \rightarrow H_1^0 Z$. $m_{A^0} > 20$ GeV is assumed. Universal scalar mass of 1 TeV, 5U(2) gaugino mass of 0.2 TeV, and Higgsino mass parameter $\mu=-0.2$ TeV are assumed. $m_t=175$ GeV is used. The scenarios of no-stop mixing, and of mixing with the maximal impact on the Higgs mass limit, are examined.

²⁸ ACCIARRI 99U searched for $e^+e^- \rightarrow H_1^0 A^0$ in the final state $b \bar{b} b \bar{b}$ and $b \bar{b} \tau^+ \tau^-$, and $e^+e^-
ightarrow H_1^0 Z$. Universal scalar mass and SU(2) gaugino mass of 1 TeV and Higgsino mass parameter $\mu=-0.1$ TeV are assumed. The cases of minimal and maximal stop mixing are examined.

²⁹BARATE 98A search for $e^+e^- \rightarrow H_1^0 A^0$ in the final states $b\bar{b}b\bar{b}$ and $b\bar{b}\tau^+\tau^-$ and combine with BARATE 998 limit on $e^+e^- \rightarrow H_1^0 Z$. The limit is for $M_{SUSY}=1 \, {\rm TeV}$ vith minimal/maximal stop mixing. See paper for the result from a scan in more general

³⁰ ABBIENDI 99E search for $e^+e^- \rightarrow H_1^0 A^0$ in the final states $b \bar{b} b \bar{b}$, $q \bar{q} \tau^+ \tau^-$, and 6b and $e^+\,e^- \to \,H_1^0\,{\rm Z}$ for various final states . ${\it M}_{\rm top}{=}175$ GeV, ${\it M}_{\rm SUSY}{=}1$ TeV, and

minimal/maximal scalar top mixing. See paper for results of more general scans. ³¹ ABREU 99I search for $e^+e^- \rightarrow H_1^0 A^0$ in the final state $b \bar{b} b \bar{b}$, and $b \bar{b} \tau^+ \tau^-$ and $e^+e^- o H_1^0 Z$ for various final states. The limit is for the universal scalar mass of

1 TeV, SU(2) gaugino mass of 1.6 TeV, and higgsino mass parameter μ =-100 GeV, with typical/maximal/no-stop mixing. m_t = 173.9 GeV. 32 ABREU 98E search for $e^+e^- \rightarrow H_1^0 A^0$ in the final state $b\bar{b}b\bar{b}$ and $q\bar{q}\tau^+\tau^-$. The results from the SM Higgs search described in the same paper are also used to set these limits. m_{top} = 175 GeV, M_{SUSY} = 1 TeV, and maximal scalar top mixings.

³³ ACCIARRI 98M search for $e^+e^- \to H_1^0 A^0$ in the final state $b\overline{b}b\overline{b}$ and $b\overline{b}\tau^+\tau^-$, and $e^+e^- \to H_1^0$ Z. $m_{\rm top}=$ 175 GeV, $M_{\rm SUSY}=$ 1 TeV, SU(2) gaugino mass of 1 TeV and various scalar top mixing scenarios.

³⁴ ACKERSTAFF 98s search for $e^+e^- \rightarrow H_1^0 A^0$ in the final state $b \overline{b} b \overline{b}$, $q \overline{q} \tau^+ \tau^-$, and 6b and combine with ACKERSTAFF 98H limit on $e^+e^- \rightarrow H_1^0 Z$. $m_{\rm top}=175$ GeV, $M_{\rm SUSY}=1$ TeV, SU(2) gaugino mass of 1 TeV and maximal scalar stop mixing. The more general scan of the MSSM parameter space does not reduce the limit significantly.

35 DREES 98 (and Erratum in DREES 98B) use the CDF third-generation leptoquark search results (ABE 97F) to constrain possible Higgs production in association with $b\overline{b}$ in $p\overline{p}$ collision. In the framework of MSSM, m_A less than 130 GeV is excluded for tan β =100. No significant limit is obtained for tan β <80.

 36 ACCIARRI 97N search for $e^+\,e^ightarrow~H_1^0\,A^0$ in four-jet final states. Cross-section limits are obtained for $|m_{H_1^0} - m_{A^0}| = 0$, 10, and 20 GeV.

³⁷ BARATE 97P search for $e^+e^- \rightarrow H_1^0A^0$ in the final state $b\bar{b}b\bar{b}$ and $b\bar{b}\tau^+\tau^-$ and combine with BARATE 970 limit on $e^+e^- \rightarrow H_1^0Z$. $m_{\text{top}}=1$ 75 GeV and M_{SUSY} = 1 TeV, and maximal scalar top mixings. The invisible decays $H_1^0
ightarrow \widetilde{\chi}^0 \, \widetilde{\chi}^0$ are not allowed in the analysis, as ruled out in the relevant kinematic region by BUSKULIC 96K.

H⁰ (Higgs Boson) MASS LIMITS in Extended Higgs Models

This Section covers models which do not fit into either the Standard Model or its simplest minimal Supersymmetric extension (MSSM), leading to anomalous production rates, or nonstandard final states and branching ratios. In particular, this Section covers limits which may apply to generic two-Higgs-doublet models (2HDM), or to special regions of the MSSM parameter space where decays to invisible particles or to photon pairs are dominant (see the Note on 'Searches for Higgs Bosons' at the beginning of this Chapter). See the footnotes or the comment lines for details on the nature of the models to which the limits apply.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	followin	g data for averages	, fits, limits	, etc. • • •
>68.0	95	38 ABBIENDI	99E OPAL	$ an\!eta>1$
>96.2	95	³⁹ ABBIENDI	990 OPAL	$e^+e^- \rightarrow H^0Z, H^0 \rightarrow$
>78.5	95	⁴⁰ ABBOTT	99B D0	$\rho \stackrel{\gamma \gamma}{\stackrel{\sim}{p}} \stackrel{\rightarrow}{\rightarrow} H^0 W/Z, H^0 \rightarrow$
		⁴¹ ABREU	99P DLPH	
>76.1	95	⁴² ABREU	990 DLPH	$H^0 \rightarrow \gamma \gamma$ Invisible H^0
>80	95	⁴³ BARATE	99C ALEP	•
>95.4	95	⁴⁴ BARATE	990 ALEP	Invisible H ⁰
>69.6	95	45 ACCIARRI	98B L3	Invisible H ⁰
>56.0	95	⁴⁶ ACKERSTAFF	985 OPAL	taneta>1
>90	95	⁴⁷ ACKERSTAFF	98Y OPAL	$e^+e^- \rightarrow H^0Z, H^0 \rightarrow$
		48 GONZALEZ-G. 49 KRAWCZYK	97 RVUE	$(g-2)_{\mu}$
		⁵⁰ ACCIARRI	96J L3	$Z \rightarrow H^0 Z^*, H^0 \rightarrow$
		⁵¹ ACCIARRI ⁵² ALEXANDER ⁵³ ABREU ⁵⁴ PICH	95H DLPH	$Z \rightarrow H^0 \gamma$ $Z \rightarrow H^0 \gamma$ $Z \rightarrow H^0 Z^*, H^0 A^0$ Very light Higgs

³⁸ ABBIENDI 99E search for $e^+e^- \rightarrow H^0A^0$ and H^0Z at $E_{cm}=183$ GeV. The limit is with $m_H=m_A$ in general two Higgs-doublet models. See their Fig. 18 for the exclusion limit in the m_H-m_A plane. The limit includes searches at lower energy between m_Z

³⁹ ABBIENDI 990 search for associated production of a $\gamma\gamma$ resonance with a $q\overline{q}$, $\nu\overline{\nu}$, or $\ell^+\ell^-$ pair in e^+e^- collisions at 189 GeV. The limit is for a H^0 with SM production cross section and $B(H^0\to f\bar{f})=0$, for all fermions f. See their Fig. 4 for limits on $\sigma(e^+e^-\to H^0Z^0)\times B(H^0\to \gamma\gamma)\times B(X^0\to f\bar{f})$ for various masses.

 $\sigma(e^+e^- \to H^-Z^-) \times B(H^- \to TT) \times B(A^- \to$

⁴¹ ABREU 99P search for $e^+e^- \rightarrow H^0\gamma$ with $H^0 \rightarrow b\overline{b}$ or $\gamma\gamma$, and $e^+e^- \rightarrow H^0q\overline{q}$

with $H^0 \to \gamma \gamma$. See their Fig. 4 for limits on $\sigma \times B$. Explicit limits within an effective interaction framework are also given. ⁴² ABREU 990 search for $e^+e^- \to H^0 Z$ with H^0 decaying invisibly at $E_{\rm cm}$ between 161 and 183 GeV. The limit assumes SM production cross section, and holds for any $B(H^0 \rightarrow invisible)$. In the case of invisible decays in the MSSM, the excluded region of the (M₂, tanβ) plane overlaps the exclusion region from direct searches for charginos and neutralinos (ABREU 99E in the Supersymmetry Listings). See their Fig. 6(d) for limits on a Majoron model.

⁴³ BARATE 99C search for $e^+e^- \rightarrow H^0Z$ with H^0 decaying invisibly at \sqrt{s} between 161 and 184 GeV, and update the search for $Z^0 \to H^0 Z^*$ at m_Z . The limit assumes SM

ı

- production cross section, and B($H^0 \rightarrow \text{invisible}$)= 100%. See their Fig. 6 for limit on the ZZH^0 coupling vs. m_{H^0} .
- ⁴⁴BARATE 990 search for $e^+e^- \rightarrow H^0Z$ with H^0 decaying invisibly at $E_{\rm cm}=189$ GeV. The limit assumes SM production cross section and B($H^0 \rightarrow \text{invisible}$)=100%. See their Fig. 7 for limits on the ZZH^0 coupling vs. m_{H^0} .
- 45 ACCIARRI 98B searches for $e^+\,e^- o Z\,H^0$ events, with Z o hadrons and H^0 decaying invisibly. The limit assumes SM production cross section, and $B(H^0 \to \text{invisible})=1$. For limits under other assumptions, see their Fig. 5b.
- ⁴⁶ ACKERSTAFF 98s search for $e^+e^- \rightarrow H^0$ A^0 and H^0 Z at $E_{\rm cm}$ between 130 and 172 GeV. The limit is for $m_H=m_A$. The limit is 41 GeV for all values of $\tan\beta$. See also their Fig. 10 for the exclusion limit in the $m_{H^-}m_A$ plane.
- ⁴⁷ ACKERSTAFF 98Y search for associate production of a $\gamma\gamma$ resonance and a $q\,\overline{q}$, $\nu\overline{\nu}$, or $\ell^+\ell^-$ pair in e^+e^- annihilation at $E_{
 m cm}{=}183$ GeV. The limit assumes SM production cross section and B($H^0 \rightarrow \gamma \gamma$)=1. See their Fig. 3 for limit on $\sigma(H^0)$ ·B($H^0 \rightarrow \gamma \gamma$)=1. $\gamma\gamma)/\sigma(H_{ extsf{SM}}^0)$. Supersedes ACKERSTAFF 98B.
- ⁴⁸ GONZALEZ-GARCIA 98B use DØ limit for $\gamma\gamma$ events with missing $E_{\mathcal{T}}$ in $p\bar{p}$ collisions (ABBOTT 98) to constrain possible ZH or WH production followed by unconventional $H \to \gamma\gamma$ decay which is induced by higher-dimensional operators. See their Figs. 1 and 2 for limits on the anomalous couplings.
- ⁴⁹ KRAWCZYK 97 analyse the muon anomalous magnetic moment in a two-doublet Higgs model (with type II Yukawa couplings) assuming no H_1^0 Z Z coupling and obtain $m_{H_1^0} \gtrsim$
- 5 GeV or $m_{A^0} \gtrsim$ 5 GeV for $an\!eta >$ 50. Other Higgs bosons are assumed to be much
- ⁵⁰ ACCIARRI 96J give B($Z \rightarrow H^0 + \text{hadrons}$)×B($H^0 \rightarrow \gamma \gamma$) < 2.3–6.9 × 10⁻⁶ for 20 <m_H0 <70 GeV.
- ⁵¹ ACCIARRI 96J give B($Z \to H^0 \gamma$)×B($H^0 \to q \bar{q}$) < 6.9-22.9 × 10⁻⁶ (95%CL) for 20 <m_{H0} <80 GeV.
- ⁵²ALEXANDER 96H give B($Z \rightarrow H^0 \gamma$)×B($H^0 \rightarrow q \overline{q}$) < 1-4 × 10⁻⁵ (95%CL) and $B(Z \to H^0 \gamma) \times B(H^0 \to b \overline{b}) < 0.7 - 2 \times 10^{-5}$ (95%CL) in the range 20 $< m_{H^0} < 80$
- GeV. 53 See Fig. 4 of ABREU 95H for the excluded region in the $m_{H^0} m_{A^0}$ plane for general two-doublet models. For tan β >1, the region $m_{H^0}+m_{A^0}\lesssim$ 87 GeV, m_{H^0} <47 GeV is
- excluded at 95% CL. 54 PICH 92 analyse H^0 with m_{H^0} <2 m_μ in general two-doublet models. Excluded regions in the space of mass-mixing angles from LEP, beam dump, and $\pi^\pm,\,\eta$ rare decays are shown in Figs. 3,4. The considered mass region is not totally excluded.

H[±] (Charged Higgs) MASS LIMITS

Unless otherwise stated, the limits below assume B($H^+ \rightarrow \tau^+ \nu$)+B($H^+ \rightarrow c\bar{s}$)=1, and hold for all values of B($H^+ \to \tau^+ \nu_{\tau}$), and assume H^+ weak isospin of $T_3 = +1/2$. In the following, $tan\beta$ is the ratio of the two vacuum expectation values in two-doublet models (2HDM).

The limits are also applicable to point-like techniques. For a discussion of techniqueticles, see the Review of Dynamical Electroweak Symmetry Breaking in this Review.

For limits obtained in hadronic collisions before the observation of the top quark, and based on the top mass values inconsistent with the current measurements, see the 1996 (Physical Review D54 1 (1996)) Edition of this Review.

Searches in e^+e^- collisions at and above the $\it Z$ pole have conclusively ruled out the existence of a charged Higgs in the region $m_{H^+}\lesssim$ 45 GeV, and are now superseded by the most recent searches in higher energy $e^+\,e^-$ collisions at LEP. Results by now obsolete are therefore not included in this compilation, and can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review.

In the following, and unless otherwise stated, results from the LEP experiments (ALEPH, DELPHI, L3, and OPAL) are assumed to derive from the study of the H^+H^- process. Limits from $b o s\gamma$ decays are usually stronger in generic 2HDM models than in Supersymmetric models.

'OUR LIMIT' is taken from the LEP Higgs Boson Searches Working Group (LEP 99B), where the combination of the results of ABBIENDI 99E, ABREU 99R, ACCIARRI 99B, BARATE 99D was performed.

A recent combination (LEP 00B) of preliminary, unpublished results relative to data taken at LEP in the Summer of 1999 at energies up to 202 GeV gives the limit $m_{H_1^{\pm}} > 78.6 \text{ GeV}.$

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
> 69.0 (CL = 9	5%) OUR	LIMIT		
> 59.5	95	ABBIENDI	99E OPAL	$E_{\rm cm} \leq 183 \; {\rm GeV}$
> 56.3	95	ABREU	99R DLPH	<i>E</i> _{cm} ≤ 183 GeV
> 65.5	95 5	⁵ ACCIARRI	99P L3	E _{cm} =189 GeV
> 59	95	BARATE	990 ALEP	$E_{\rm cm} \le 183 \; {\rm GeV}$
• • • We do no	t use the fo	ollowing data for	averages, fits	, limits, etc. • • •
> 82.8	95 5	ABBIENDI 6 ABBOTT		$E_{\text{Cm}} \leq 189 \text{ GeV}, B(\tau \nu) = 1$ $t \rightarrow bH^+$
> 57.5	95	ACCIARRI	99B L3	$E_{\text{cm}} \leq 183 \text{ GeV}$ $\tau \rightarrow e \nu \nu, \mu \nu \nu$
> 54.5	95	ABREU	98F DLPH	$E_{\rm cm} \le 172 \; {\rm GeV}$
> 52.0	95	ACKERSTAFF	98ı RVUE	$E_{\rm cm} \leq 172 \; {\rm GeV}$

```
98G ALEP E_{cm} \le 172 \text{ GeV}
> 52
                       95
                                     BARATE
                                  58 ABE
                                                                           t \rightarrow bH^+, H \rightarrow \tau \nu
                                                           97L CDF
                                 <sup>59</sup> ACCIARRI
                                                                           B \rightarrow \tau \nu_{\tau}
                                                           97F L3
                                  60 AMMAR
                                                           97B CLEO 	au 	o 	au 
u 
u
                                  61 COARASA
                                                          97 RVUE B \rightarrow \tau \nu_{\tau} X
97 RVUE t \rightarrow b H^{+}, H \rightarrow \tau \nu
                                  62 GUCHAIT
                                  63 MANGANO
                                                          97 RVUE B_{u(c)} \rightarrow \tau \nu_{\tau}
                                  64 STAHL
                                                          97 RVUE 	au 
ightarrow \mu 
u 
u
                                  65 ALAM
>244
                                                           95 CLE2 b \rightarrow s \gamma
                                                          95 ALEP b \rightarrow \tau \nu_{\tau} X
                                  66 BUSKULIC
```

⁵⁵ The limit improves to 71.6 GeV for B($\tau \nu$)> 0.2 (see Fig. 4).

⁵⁶ ABBOTT 99E search for a charged Higgs boson in top decays in $p\bar{p}$ collisions at $E_{\rm cm}$ =1.8 TeV, by comparing the observed $t\bar{t}$ cross section (extracted from the data assuming the dominant decay $t \to b W^+$) with theoretical expectation. The search is sensitive to regions of the domains $\tan \beta \lesssim 1$, $50 < m_{H^+} (\text{GeV}) \lesssim 120$ and $\tan \beta \gtrsim 40$, $50 < m_{H^+}$ (GeV) $\lesssim\!160.$ See Fig. 3 for the details of the excluded region.

⁵⁷ ACKERSTAFF 990 measure the Michel parameters ρ , ξ , η , and $\xi\delta$ in leptonic τ decays from $Z \to \tau \tau$. Assuming e- μ universality, the limit $m_{H^+} > 0.97 \tan\beta$ GeV (95%CL) is obtained for two-doublet models in which only one doublet couples to leptons.

⁵⁸ ABE 97L search for a charged Higgs boson in top decays in $p\bar{p}$ collisions at $E_{\text{CM}}=1.8$ TeV, with $H^+ \to \tau^+ \nu_{\tau}$, τ decaying hadronically. The limits depend on the choice of the $t\bar{t}$ cross section. See Fig. 3 for the excluded region. The excluded mass region extends to over 140 GeV for tan β values above 100.

 59 ACCIARRI 97F give a limit $m_{H^+}>2.6$ tan β GeV (90%CL) from their limit on the exclusive $B\to \tau\nu_{T}$ branching ratio.

⁶⁰ AMMAR 978 measure the Michel parameter ρ from $\tau \to e \nu \nu$ decays and assmes e/μ universality to extract the Michel η parameter from $\tau \to \mu \nu \nu$ decays. The measurement is translated to a lower limit on m_{H^+} in a two-doublet model $m_{H^+} > 0.97$ tan β GeV

61 COARASA 97 reanalyzed the constraint on the $(m_{H^\pm}, \tan\beta)$ plane derived from the inclusive $B \to \tau \nu_{\tau} X$ branching ratio in GROSSMAN 958 and BUSKULIC 95. They show that the constraint is quite sensitive to supersymmetric one-loop effects.

 62 GUCHAIT 97 studies the constraints on m_{H^+} set by Tevatron data on ℓau final states in

 $t\overline{t} \to (W\,b)(H\,b),\,W \to \ell\nu,\,H \to \tau\nu_{ au}$. See Fig. 2 for the excluded region. ⁶³ MANGANO 97 reconsiders the limit in ACCIARRI 97F including the effect of the potentially large $B_C \to \tau\nu_{ au}$ background to $B_U \to \tau\nu_{ au}$ decays. Stronger limits are obtained.

 64 STAHL 97 fit au lifetime, leptonic branching ratios, and the Michel parameters and derive limit $m_{H^+} > 1.5~{\rm tan}\beta$ GeV (90% CL) for a two-doublet model. See also STAHL 94.

⁶⁵ ALAM 95 measure the inclusive $b \rightarrow s \gamma$ branching ratio at $\Upsilon(45)$ and give B(b $s\gamma$ < 4.2 × 10⁻⁴ (95% CL), which translates to the limit m_{H^+} >[244 + 63/(tan β)^{1.3}] GeV in the Type II two-doublet model. Light supersymmetric particles can invalidate this

bound. 66 BUSKULIC 95 give a limit $m_{H^+}>1.9$ tan β GeV (90%CL) for Type-II models from $b\to \tau \nu_{\tau} X$ branching ratio, as proposed in GROSSMAN 94.

MASS LIMITS for $H^{\pm\pm}$ (doubly-charged Higgs boson)

VALUE (GeV)	CL 76	DUCUMENT ID	TEUN	COMMENT
>45.6	95	67 ACTON	92M OPAL	
• • • We do not u	se the follow	ing data for averag	es, fits, limits	, etc. • • •
		⁶⁸ GORDEEV	97 SPEC	muonium conversion
		⁶⁹ ASAKA	95 THEO	ı
>30.4	95	⁷⁰ ACTON	92M OPAL	$T_3(H^{++}) = +1$
>25.5	95	⁷⁰ ACTON	92M OPAL	$T_3(H^{++})=0$
none 6.5-36.6	95	⁷¹ SWARTZ	90 MRK2	$T_3(H^{++}) = +1$
none 7.3-34.3	95	⁷¹ SWARTZ	90 MRK2	$T_3(H^{++})=0$
(7		1.1	1.1	•

- 67 ACTON 92M limit assumes $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$ or $H^{\pm\pm}$ does not decay in the detector. Thus the region $g_{\ell\ell} \approx 10^{-7}$ is not excluded.
- 68 GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M\overline{M}}/G_F<0.14$ (90% CL), where $G_{M\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}} >$ 210 GeV if the Yukawa copulings of H^{++}
- to ee and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muonium-antimuonium conversion, see the muon Particle Listings. ⁶⁹ ASAKA 95 point out that H^{++} decays dominantly to four fermions in a large region of parameter space where the limit of ACTON 92M from the search of dilepton modes does
- 70 ACTON 92M from $\Delta\Gamma_7$ <40 MeV.
- 71 SWARTZ 90 assume $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$ (any flavor). The limits are valid for the Higgsepton coupling ${\rm g}(H\ell\ell)\gtrsim 7.4\times 10^{-7}/[m_H/{\rm GeV}]^{1/2}$. The limits improve somewhat for $e\,e$ and $\mu\mu$ decay modes.

Gauge & Higgs Boson Particle Listings

Higgs Bosons — H^0 and H^{\pm} , Heavy Bosons Other than Higgs Bosons

H⁰ and H[±] REFERENCES

ABBIENDI	00F	EPJ C12 567	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI ABREU	00G 00G	EPJ C14 51	G. Abbiendi et al.	(OPAL Collab.) (OPAL Collab.)
FIELD	00	CERN-EP-2000-038 PR D61 013010	P. Abreu <i>et al.</i> J.H. Field	(DELPHI Collab.)
LEP	00	CERN-EP-2000-016	(ALEPH, DELPH (ALEPH, DELPHI, L3, OPAL, LEP H	I, L3, OPAL, SLD+)
LEP ABBIENDI	00B 99E	CERN-EP-2000-055 EPJ C7 407	(ALEPH, DELPHI, L3, OPAL, LEP H G. Abbiendi et al.	liggs Working Group) (OPAL Collab.)
ABBIENDI	990	PL B464 311	G. Abbiendi et al.	(OPAL Collab.) (D0 Collab.)
ABBOTT ABBOTT	99B 99E	PRL 82 2244 PRL 82 4975	B. Abbott et al. B. Abbott et al.	(D0 Collab.)
ABREU	99E	PL B446 75	P. Abreu et al.	(D0 Collab.) (DELPHI Collab.)
Also	99N	PL B451 447 (erraturn)		
ABREU ABREU	991 99P	EPJ C10 563 PL B458 431	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)
ABREU	99Q	PL B459 367	P. Abreu et al.	(DELPHI Collab.)
ABREU ACCIARRI	99R 99B	PL B460 484 PL B446 368	P. Abreu et al.	(DELPHI Collab.)
ACCIARRI	99J	PL B461 376	M. Acciarri et al. M. Acciarri et al.	(L3 Collab.) (L3 Collab.)
ACÇIARRI	99P	PL B466 71	M. Acciarri et al.	(L3 Collab.)
ACCIARRI ACKERSTAFF	99U 99D	PL B471 321 EPJ CB 3	M. Acciarri et al. K. Ackerstaff et al.	(L3 Collab.) (OPAL Collab.)
BARATE	99B	PL B447 336	R. Barate et al.	(ALEPH Collab.)
BARATE BARATE	99B re 99C	places the misprinted versi PL B450 301	ion in BARATE 98 Z. R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	99D	PL B450 467	R. Barate et al. R. Barate et al.	(ALEPH Collab.) (ALEPH Collab.)
BARATE CHANOWITZ	99O 99	PL B466 50	R. Barate et al.	(ALEPH Collab.)
D'AGOSTINI	99	PR D59 073005 EPJ C10 663	M.S. Chanowitz G. D'Agostini, G. Degrassi	
FIELD	99	MPL A14 1815	IH Field	
LEP LEP	99 99B	CERN-EP/99-15 CERN-EP/99-060	(ALEPH, DELPHI, L3, O (ALEPH, DELPHI, L3, OPAL, LEP H	PAL, LEP EWWG+)
ABBOTT	98	PRL 80 442	B. Abbott et al.	(D0 Collab.)
ABE	98T	PRL 81 5748	F. Abe et al.	(D0 Collab.) (CDF Collab.)
ABREU ABREU	98E 98F	EPJ C2 1 PL B420 140	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)
ACCIARRI	98B	PL B418 389	M. Acciarri et al.	(L3 Collab.)
ACCIARRI ACCIARRI	98I 98M	PL B431 437 PL B436 389	M. Acciarri et al.	(L3 Collab.)
ACKERSTAFF	98B	EP; C1 31	M. Acciarri et al. K. Ackerstaff et al.	(L3 Collab.) (OPAL Collab.)
ACKERSTAFF	98H	EPJ C1 425	K. Ackerstaff et al. K. Ackerstaff et al.	(OPAL Collab.) (OPAL Collab.)
ACKERSTAFF ACKERSTAFF	981 985	PL B426 180 EPJ C5 19	K. Ackerstaff et al. K. Ackerstaff et al.	(OPAL Collab.) (OPAL Collab.)
ACKERSTAFF ACKERSTAFF	98Y	PL B437 218	K. Ackerstaff et al.	(OPAL Collab.)
BARATE Also	98A 99H	PL B440 419 PL B447 355 (erratum)	R. Barate et al.	(ALEPH Collab.)
BARATE	98G	PL B418 419	R. Barate et al. R. Barate et al.	(ALEPH Collab.) (ALEPH Collab.)
CHANOWITZ	98	PRL 80 2521		(
			M. Chanowitz	
DAVIER	98 98	PL B435 427	M. Davier, A. Hoecker	
DAVIER DREES Also	98 98B	PL B435 427 PRL 80 2047 PRI 81 2394 (erratum)	M. Davier, A. Hoecker	
DAVIER DREES Also DREES	98 98B 98B	PL B435 427 PRL 80 2047 PRL 81 2394 (erratum) PRL 81 2394 (erratum)	M. Davier, A. Hoecker	- N
DAVIER DREES Also DREES GONZALEZ-G.	98 98B 98B 98B	PL B435 427 PRL 80 2047 PRL 81 2394 (erratum) PRL 81 2394 (erratum) PR D57 7045	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.f.	
DAVIER DREES Also DREES GONZALEZ-G.	98 98B 98B 98B	PL B435 427 PRL 80 2047 PRL 81 2394 (erratum) PRL 81 2394 (erratum) PR D57 7045	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.f.	
DAVIER DREES Also DREES GONZALEZ-G.	98 98B 98B 98B	PL B435 427 PRL 80 2047 PRL 81 2394 (erratum) PRL 81 2394 (erratum) PR D57 7045	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.f.	
DAVIER DREES Also DREES GONZALEZ-G.	98 98B 98B 98B	PL B435 427 PRL 80 2047 PRL 81 2394 (erratum) PRL 81 2394 (erratum) PR D57 7045	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.f.	
DAVIER DREES Also DREES GONZALEZ-G.	98 98B 98B 98B	PL B435 427 PRL 80 2047 PRL 81 2394 (erratum) PRL 81 2394 (erratum) PR D57 7045	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al.	Working Group. (CDF Collab.) (CDF Collab.)
DAVIER DREES Also DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABE ACCIARRI	98 98B 98B 98B 98B 97 ELPHI 97F 97L 97W 97F	PL 8435 427 PRL 80 2034 (erratum) PRL 81 2394 (erratum) PR 057 7045 EPJ C2 95 EPJ C3 1 CERN-PPE/97-154 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 3819 PRL 79 3819 PR 8396 327	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.)
DAVIER DREES Also DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABE AGE ACCIARRI	98 98B 98B 98B 98 97 ELPHI 97F 97L 97W 97F	PL 8435 427 PRL 81 2394 (erratum) PRL 81 2394 (erratum) PRL 81 2394 (erratum) PR 057 7045 EPJ C2 95 EPJ C3 1 CERN-PPE/97-154 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 357 PRL 79 3819 PL 8396 327 PL 8411 3330	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. C. Gonzaler-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumoto C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.)
DAVIER DREES Also DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABE ACCIARRI ACCIARRI AMMAR	98 98B 98B 98B 98 97 ELPHI 97F 97L 97W 97F 97N 97B	PL 8435 427 PRL 80 2094 (erratum) PRL 81 2394 (erratum) PR DS7 7045 EP) C2 95 EP) C3 1 CERN-PPE/97-154 L3, OPAL, and SLD Co PRL 78 2996 PRL 79 3819 PR B396 327 PL 8411 330 PRL 78 4666	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.I K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Ammar et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (CLEO Collab.)
DAVIER DREES Also DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABE ACCIARRI ACCIARRI AMMAR BARATE BARATE	98 98B 98B 98B 98B 97 ELPHI 97F 97L 97W 97F 97N 97B 97O	PL 8435 427 PRL 80 2047 PRL 81 2394 (erratum) PRL 81 2394 (erratum) PR 057 7045 EPJ C2 95 EPJ C3 1 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 3879 PRL 79 3819 PRL 8411 330 PRL 78 4666 PL 8412 155 PL 8412 155	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. R. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Ammar et al. R. Barate et al. R. Barate et al. Barate et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.)
DAVIER DREES Also DREES GONZALEZ-G, HAGIWARA PDG ALEPH, D ABE ABE ABE ACCIARRI ACCIARRI ACMARA BARATE BARATE COARASA	98 98B 98B 98B 98B 97 ELPHI 97F 97L 97W 97F 97N 97B 97D 97P	PL 8435 427 PRL 80 204 (erratum) PRL 81 2394 (erratum) PRL 81 2394 (erratum) PR 057 7045 EPJ C2 95 EPJ C3 1 CERN-PPE/97-154 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 357 PRL 79 3819 PRL 78 4686	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. M. Acciarri et al. M. Acciarri et al. R. Ammar et al. R. R. Barate et al. R. Barate et al. R. Barate et al. R. Barate et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (CLEO Collab.) (ALEPH Collab.)
DAVIER DREES Also DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABE ACCIARRI ACCIARRI ACMARI AMMAR BARATE COARASA DEBOER DEGRASSI	98 98B 98B 98B 98B 97 ELPHI 97F 97L 97W 97F 97N 97B 97O 97P 97	PL 8435 427 PRL 80 204 (erratum) PRL 81 2394 (erratum) PRL 81 2394 (erratum) PR 057 7045 EP) C2 95 EP) C3 1 CERN-PPE/97-154 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 357 PRL 79 3819 PRL 78 4686 PRL 78 4686 PRL 8412 173 PL 8406 337 ZPHY C75 627 PL 8397 PL 8406 337 ZPHY C75 627 PL 8191 888	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Ammar et al. R. Barate et al. R. Barate et al. R. Barate et al. R. Barate et al. V. de Boer et al. G. Borassa, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirifin	Working Group. (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ACCIARRI ACCIARRI ACCIARRI ACMAMAR BARATE BARATE COARASA DEBOER DEGRASSI DITTMAIER	98 98B 98B 98B 98B 97 ELPHI 97F 97L 97W 97F 97N 97B 97O 97P 97 97	PL 8435 427 PRL 80 2034 (erratum) PRL 81 2394 (erratum) PR 057 7045 EPJ C2 95 EPJ C3 1 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 357 PRL 79 3819 PRL 79 3819 PRL 78 4686 PL 8412 155 PL 8406 337 PL 874 6637 PL 874 6637 PL 874 675 627 PL 8394 188	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Barate et al. J. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirlin G. Degrassi, P. Gambino, A. Sirlin Degrassi, P. Gambino, A. Sirlin	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (MPIM, NYU) (BIEL)
DAVIER DREES Also DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABE ACCIARRI ACCIARRI ACMARI AMMAR BARATE COARASA DEBOER DEGRASSI	98 98B 98B 98B 98B 97 ELPHI 97F 97L 97W 97F 97N 97B 97O 97P 97	PL 8435 427 PRL 80 2094 (erratum) PRL 81 2394 (erratum) PR 057 7045 EPJ C2 95 EPJ C3 1 L3. OPAL, and SLD Co PRL 78 2906 PRL 79 357 PRL 79 3819 PRL 79 3819 PRL 78 4686 PL 8412 155 PL 8412 157 PL 8406 337 PL 874 6834 PL 88412 157 PL 8412 173 PL 8406 337 PL 874 685 PL 8412 173 PL 8406 337 PL 874 6866 PL 8412 173 PL 8406 337 PL 975 627 PL 8394 188 PL 8391 420 PAN 60 1164 PAN 60 1164	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Barate et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirlin S. Dittmaier, D. Schildnecht V.A. Gordeev et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.)
DAVIER DREES Also DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABE ABC ACCIARRI ACCIARRI ACCIARRI ACCIARRI COARASA DEBOER DEGRASSI DITTMAIER GORDEEV GUCHAIT	98 98B 98B 98B 98B 98 97 97F 97F 97N 97B 97O 97P 97 97 97 97 97 97 97 97 97 97	PL 8435 427 PRL 80 2094 (erratum) PRL 81 2394 (erratum) PR 057 7045 EPJ C2 95 EPJ C3 1 L3. OPAL, and SLD Co PRL 78 2906 PRL 79 357 PRL 79 3819 PRL 79 3819 PRL 78 4686 PL 8412 155 PL 8412 157 PL 8406 337 PL 874 6834 PL 88412 157 PL 8412 173 PL 8406 337 PL 874 685 PL 8412 173 PL 8406 337 PL 874 6866 PL 8412 173 PL 8406 337 PL 975 627 PL 8394 188 PL 8391 420 PAN 60 1164 PAN 60 1164	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Barate et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirlin S. Dittmaier, D. Schildnecht V.A. Gordeev et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L4C Collab.) (ALEPH Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNPI)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO AALEPH, D ABE ACCIARRI ACCIARRI ACCIARRI ACCIARRI ACMAMAR BARATE BARATE COARASA DEBOER DEJOER GONZALEZ-G. DITTMAJER GONZELV GUCHAIT KRAWCZYK	98 98B 98B 98B 98B 97 97P 97P 97P 97P 97P 97P 97 97 97 97 97 97 97 97 97	PL B435 427 PRL 80 294 (erratum) PRL 81 2394 (erratum) PR 597 7045 PRL 81 2394 (erratum) PR 597 7045 PRL 70 21 PRL 70 296 PRL 70 296 PRL 70 357 PRL 79 3819 PRL 79 3819 PRL 79 3819 PRL 79 4666 PRL 811 330 PRL 78 4666 PL 8412 155 PL 8412 157 PL 8406 337 PL 8406 337 PRL 79 567 PRL 8394 188 PR 8395 7263	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S. K. Hagjwara, D. Haidt, S. Matsumote C. Cao et al. D. Abbaneo et al. llaboratons, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. M. Acclari et al. C. Barate et al. J.A. Coarssa, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirlin S. Dittmaier, D. Schildknecht V.A. Gordev et al. 1291. M. Guchait, D.P. Roy M. Krawzyk, J. Zochowski	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (MPIM, NYU) (BIEL) (PNPI)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ALEPH, D ABE ACCIARRI ACCIARRI ACCIARRI ACMAMAR BARATE BARATE COARASA DEBOER DITTMAJER GORDEEV GUCHAIT KRAWCZYK MANGANO RENTON	98 98B 98B 98B 98B 97 97F 97F 97F 97F 97F 97 97 97 97 97 97 97 97 97 97 97	PL 8435 427 PRL 80 2047 PRL 81 2394 (erratum) PRL 81 2394 (erratum) PR 057 7045 EP) C2 95 EP) C2 95 EP) C3 16 CERN-PPE/97-154 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 357 PRL 79 3819 PRL 78 4686 PL 8411 330 PRL 78 4686 PL 8412 155 PL 8412 173 PL 8406 337 ZPHY C75 627 PL B394 188 PL 8391 420 PAN 60 1164 Translated from YAF 60 PR D55 6968	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. C. Barate et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirfin S. Dittmaier, D. Schildknecht V.A. Gordeev et al. [191] M. Guchait, D.P. Roy M. Krawcyk, J. Zochowski M. Krawcyk, J. Zochowski M. Mangano, S. Slabospitsky	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (ALCPH Collab.) (ALEPH Collab.) (MPIM, NYU) (BIEL) (PNPI) (TATA) (WARS)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABC ACCIARRI ACCIARRI ACCIARRI ACCIARRI COARASA DEBOER DEGRASSI DITTMAIER GORDEEV GUCHAIT KRAWCZYK MANGANO RENTON STAHL	98B 98B 98B 98B 98B 97 97F 97F 97F 97R 97P 97P 97P 97 97 97 97 97 97 97 97 97 97 97	PL 8435 427 PRL 80 2034 (erratum) PRL 81 2394 (erratum) PR 057 7045 EP) C2 95 EP) C2 95 EP) C3 16 CERN-PPE/97-154 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 357 PRL 79 3819 PR 1836 327 PL 8411 330 PRL 78 4686 PL 8412 155 PL 8412 155 PL 8406 337 ZPHY C75 627 PL 8394 188 PL 8391 420 PAN 50 1164 Translated from YAF 60 PR D55 7263 PR D55 6968 PR D55 6968 PR D58 1696 PR 169 1099 JIMP A12 4109 ZPHY C7 73	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. D. Sabala et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. S. Dittmaier, D. Schildknecht V.A. Gordeev et al. 1291. M. Guchait, D.P. Roy M. Krawczyk, J. Zochowski M. Mangano, S. Slabospitsky P.B. Renton A. Stahl, H. Voss	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABC ACCIARRI ACCIARRI ACCIARRI ACCIARRI COARASA DEBOER DEGRASSI DITTMAIER GORDEEV GUCHAIT KRAWCZYK MANGANO RENTON STAHL	98B 98B 98B 98B 98B 97 97F 97F 97F 97R 97P 97P 97P 97 97 97 97 97 97 97 97 97 97 97	PL 8435 427 PRL 80 2034 (erratum) PRL 81 2394 (erratum) PR 057 7045 EP) C2 95 EP) C2 95 EP) C3 16 CERN-PPE/97-154 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 357 PRL 79 3819 PR 1836 327 PL 8411 330 PRL 78 4686 PL 8412 155 PL 8412 155 PL 8406 337 ZPHY C75 627 PL 8394 188 PL 8391 420 PAN 50 1164 Translated from YAF 60 PR D55 7263 PR D55 6968 PR D55 6968 PR D58 1696 PR 169 1099 JIMP A12 4109 ZPHY C7 73	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. D. Sabala et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. S. Dittmaier, D. Schildknecht V.A. Gordeev et al. 1291. M. Guchait, D.P. Roy M. Krawczyk, J. Zochowski M. Mangano, S. Slabospitsky P.B. Renton A. Stahl, H. Voss	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABC ACCIARRI ACCIARRI ACCIARRI ACCIARRI COARASA DEBOER DEGRASSI DITTMAIER GORDEEV GUCHAIT KRAWCZYK MANGANO RENTON STAHL	98B 98B 98B 98B 98 97 97F 97F 97F 97F 97P 97P 97P 97 97 97 97 97 97 97 97 97 97 97	PL 8435 427 PRL 80 2034 (erratum) PRL 81 2394 (erratum) PR 057 7045 EP) C2 95 EP) C2 95 EP) C3 16 CERN-PPE/97-154 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 357 PRL 79 3819 PR 1836 327 PL 8411 330 PRL 78 4686 PL 8412 155 PL 8412 155 PL 8406 337 ZPHY C75 627 PL 8394 188 PL 8391 420 PAN 50 1164 Translated from YAF 60 PR D55 7263 PR D55 6968 PR D55 6968 PR D58 1696 PR 169 1099 JIMP A12 4109 ZPHY C7 73	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. D. Sabala et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. S. Dittmaier, D. Schildknecht V.A. Gordeev et al. 1291. M. Guchait, D.P. Roy M. Krawczyk, J. Zochowski M. Mangano, S. Slabospitsky P.B. Renton A. Stahl, H. Voss	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABC ACCIARRI ACCIARRI ACCIARRI ACCIARRI COARASA DEBOER DEGRASSI DITTMAIER GORDEEV GUCHAIT KRAWCZYK MANGANO RENTON STAHL	98B 98B 98B 98B 98 97 97F 97F 97F 97F 97P 97P 97P 97 97 97 97 97 97 97 97 97 97 97	PL 8435 427 PRL 80 2034 (erratum) PRL 81 2394 (erratum) PR 057 7045 EP) C2 95 EP) C2 95 EP) C3 16 CERN-PPE/97-154 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 357 PRL 79 3819 PR 1836 327 PL 8411 330 PRL 78 4686 PL 8412 155 PL 8412 155 PL 8406 337 ZPHY C75 627 PL 8394 188 PL 8391 420 PAN 50 1164 Translated from YAF 60 PR D55 7263 PR D55 6968 PR D55 6968 PR D58 1696 PR 169 1099 JIMP A12 4109 ZPHY C7 73	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. D. Sabala et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. S. Dittmaier, D. Schildknecht V.A. Gordeev et al. 1291. M. Guchait, D.P. Roy M. Krawczyk, J. Zochowski M. Mangano, S. Slabospitsky P.B. Renton A. Stahl, H. Voss	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABE ABE ACCIARRI ACCIARRI ACCIARRI ACCIARRI COARASA DEBOER DEBOER DEBOER DEGRASSI DITTMAJER GORDEEV GUCHAIT KRAWCZYK MANGANO RENTON STAHL ACCIARRI ACCIARRI ACCIARRI ACCIARRI ACCIARRI ALCARAZ The ALEP BUSKULIC ELLIS	98 98B 98B 98B 98B 97F 97F 97F 97F 97F 97F 97F 97P 97 97 97 97 97 97 97 97 97 97	PL 8435 427 PRL 80 2394 (erratum) PRL 81 2394 (erratum) PR 181 2394 (erratum) PR 187 2394 (erratum) PR 187 2394 (erratum) PR 187 2394 (erratum) PR 187 2395 PRL 79 3819 PRL 79 3819 PRL 79 3819 PRL 79 3819 PRL 78 4686 PL 8411 330 PRL 78 4686 PL 8412 155 PL 8412 157 PL 8406 337 PL 8406 337 PL 8406 337 PRL 79 3819 PR 18394 188 PL 8391 188 PL 8391 188 PR 1855 6968 PR 1858 409 PR 1957 7263 PR 1957 2763 PR 1957 2764 PR 1957	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. E. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. D. Abbaneo et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. M. Genait, D. Schildknecht V.A. Gordeev et al. J. Gordeev et al. J. Gordeev et al. J. Gordeev et al. J. J	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS) (BONN) (L3 Collab.)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA POG ABBANEO ALEPH, D ABE ABE ACCIARRI ACCIARRI ACCIARRI ACCIARRI AMMAR BARATE COARASA DEBOGE GUCHAIT KRAWCZYK MANGANO STAHL ACCIARRI ALCARAZ The ALEP ALEXANDER BUSKULIC ELLIS GURTU GU	98 98B 98B 98B 98B 97 97 97 97 97 97 97 97 97 97	PL B435 427 PRL 80 2047 PRL 81 2394 (erratum) PR D57 7045 PRL 91 2394 (erratum) PR D57 7045 PR D67 7045 PR D67 7045 PR D67 7045 PR D78 PR D67 PR D68 PR D78	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S. Hagiwara, D. Haidt, S. Matsumote C. Cao et al. D. Abbaneo et al. llaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Barate et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirlin S. Dittmaier, D. Schildknecht V.A. Gordeev et al. 1291. M. Guchait, D.P. Roy M. Krawczyk, J. Zochowski M. Mangano, S. Slabospitsky M. Macciarri et al. J. Alcaraz et al. J. Alcaraz et al. J. Alcaraz et al. J. Alcaraz et al. J. Buskulic et al. Levelander et al. J. Buskulic et al. D. Buskulic et al. D. Buskulic et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (MPIM, NYU) (BIEL) (PNPI) (TATA) (WARS) (BONN) (L3 Collab.) eak Working Group (OPAL Collab.)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ABE ALEPH, D ABE ABE ACCIARRI ACCIARRI ACCIARRI ACCIARRI ACMARA BARATE BARATE COARASA DEBOER DEGRASSI DITTMAIER GORDEEV GUCHAIT KRAWCZYK MANGANO RENTON STAHL ACCIARRI ALCARAZ The ALEP ALEXANDER BUSKUJIC ELLIS GURTU PDG GURTU PDG GURTU PDG GURTU PDG GURTU PDG GURTU PDG ALSO GURTU PDG GURTU PDG GURTU PDG ALBO GURTU PDG GURTU PDG ABREU	98 98B 98B 98B 97 FELPHI 97F 97F 97F 97F 97F 97F 97F 97F 97 97 97 97 97 96 J H, DE H 966C 96 95 95 95 95 95 95 95 95 95 95 95 95 95	PL B435 427 PRL 80 2047 PRL 81 2394 (erratum) PR D57 7045 PRL 91 2394 (erratum) PR D57 7045 PR D67 7045 PR D67 7045 PR D67 7045 PR D77 154 L3. OPAL, and SLD Co- PRL 78 296 PRL 79 357 PRL 79 387 PRL 79 387 PRL 79 387 PRL 78 4686 PRL 911 330 PRL 78 4686 PR D78 12 173 PL B412 173 PL B412 173 PL B406 337 PL B412 173 PL B406 337 PR D55 6767 PR D55 7263 PR D55 7668 PL B410 299 IMP A12 4109 ZPHY C74 73 IMPA A12 4109 ZPHY C74 73 PR L B398 409 CERN-PPE/96-183 ZPHY C71 PL B373 246 PL B389 321 PR D55 64 1 ZPHY C71 F9 L B389 321 PL B389 321 PR D55 64 1 ZPHY C76 76 9	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S. Matsumote C. Caso et al. D. Abbaneo et al. llaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Barate et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirlin S. Dittmaier, D. Schildknecht V.A. Gordeev et al. I. Sordeev et al. M. Krawczyk, J. Zochowski M. Mangano, S. Slabospitsky M. Mangano, S. Slabospitsky M. Acciarri et al. J. Alcaraz et al. J. Alcaraz et al. J. Alcaraz et al. J. Buskulic et al. J. Bliski, G.I. Fogli, E. Lisi A. Gurtu P. Abreu et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (ALGO Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS) eak Working Group (OPAL Collab.) (ALEPH Collab.) (CERN. BARI) (CERN. BARI) (DELPHI Collab.)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ANEO ALEPH, D ABE ABE ABE ACCIARRI ACCIARRI ACCIARRI ACCIARRI ACCIARRI EN E	98 98B 98B 98B 98B 97 97F 97F 97F 97F 97F 97 97 97 97 97 97 97 97 97 97	PL 8435 427 PRL 80 2047 PRL 81 2394 (erratum) PR 181 2394 (erratum) PR 181 2394 (erratum) PR 181 2394 (erratum) PR 187 2394 (erratum) PR 187 2905 PRL 78 2906 PRL 78 2906 PRL 78 2906 PRL 78 2907 PRL 79 3819 PRL 79 3819 PRL 79 3819 PRL 79 3819 PRL 78 4686 PL 8411 330 PRL 78 4686 PL 8412 155 PL 8412 157 PL 8406 337 ZPHY C75 627 PL 8394 188 PL 8394 188 PL 8394 188 PL 8310 429 PAN 50 1164 Translated from YAF 60 PR D55 7263 PR 185 4068 PL 8410 299 PAN 50 1164 Translated from YAF 60 PR D55 7263 PR D55 698 PL 8410 299 PR 195 410 299 ZPHY C74 73 PL 8388 409 ZPHY C74 73 PL 8388 409 ZPHY C74 71 PL 8373 246 PL 8385 415 PR D54 1 ZPHY C67 69 PR D54 1 ZPHY C67 69 PR D55 1 ZPHY C67 69 PR D54 1 ZPHY C67 69	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. D. Samate et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirlin S. Dittmaier, D. Schildknecht V.A. Gordeev et al. I291. M. Guchait, D.P. Roy M. Krawcyk, J. Zochowski M. Mangano, S. Slabospitsky P.B. Renton A. Stahl, H. Voss M. Acciarri et al. D. Buskulic et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS) (BONN) (L3 Collab.) (L4 Collab.) (L5 Collab.) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS) (BONN) (L3 Collab.) (ALEPH Collab.) (CERN. BARI) (CERN. BARI) (CELO Collab.)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ANEO ALEPH, D ABE ABE ABE ACCIARRI ACCIARRI ACCIARRI ACCIARRI ACCIARRI EN E	988 988 988 988 997 971 971 971 971 971 970 970 977 97 97 97 97 97 97 97 97 9	PL 8435 427 PRL 80 2047 PRL 81 2394 (erratum) PR 181 2394 (erratum) PR 181 2394 (erratum) PR 181 2394 (erratum) PR 187 2394 (erratum) PR 187 2905 PRL 79 287 PRL 79 287 PRL 79 3879 PRL 79 387 PRL 7	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. M. Carasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirlin S. Dittmaier, D. Schildknecht V.A. Gordeev et al. I291. M. Guchait, D.P. Roy M. Krawcyk, J. Zochowski M. Mangano, S. Slabospitsky P.B. Renton A. Stahl, H. Voss M. Acciarri et al. D. Buskulic et al. D. Buskulic et al. L. Elis, G.L. Fogli, E. Lisi A. Gurtu P. Abreu et al. N. S. Alam et al. T. Asaka, K.I. Hikasa D. Buskulic et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS) eak Working Group (OPAL Collab.) (ALEPH Collab.) (CERN. BARI) (CERN. BARI) (DELPHI Collab.) (CLEC Collab.) (CLEC Collab.)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABE ACCIARRI ACCIARRI ACCIARRI ACCIARRI AMMAR BARATE BARATE COARASA DEBOER DEBOER GORDEEV GUCHAIT KRAWCZYK MANGANO STAHL ACCIARRI A	98 98B 98B 98B 98B 97 97ELPHH 97TF 97TP 97TP 97TP 97 97 97 97 97 97 97 97 97 97	PL 8435 427 PRL 80 2047 PRL 81 2394 (erratum) PR 181 2394 (erratum) PR 181 2394 (erratum) PR 181 2394 (erratum) PR 187 2394 (erratum) PR 187 2905 PRL 79 2817 PRL 79 2819 PRL 79 3819 PRL 337 PRL 84666 PL 8412 155 PRL 8412 157 PL 84666 PL 8412 157 PRL 8394 188 PRL 8394 189 PRL 955 7263 PR 1955 7263 PR 1956 189 PR 1957 189 PR 1958 1959 PR 1954 1885 PR 1834 3444	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. C. Gonzalez-Garcia, S.M. Lietti, S.I. K. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. Ilaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. M. Carasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirlin S. Dittmaier, D. Schildknecht V.A. Gordeev et al. I291. M. Guchait, D.P. Roy M. Krawcyk, J. Zochowski M. Mangano, S. Slabospitsky P.B. Renton A. Stahl, H. Voss M. Acciarri et al. D. Buskulic et al. D. Buskulic et al. L. Elis, G.L. Fogli, E. Lisi A. Gurtu P. Abreu et al. N. S. Alam et al. T. Asaka, K.I. Hikasa D. Buskulic et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L4 Collab.) (ALEPH Collab.) (MPIM. NYU) (MISCOLLAB.) (MPIM. NYU) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS) (BONN) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ANEO ALEPH, D ABE ABE ABE ACCIARRI ACCIARRI ACCIARRI ACCIARRI ACCIARRI EN E	988 988 988 988 987 987 977 977	PL B435 427 PRL 80 2047 PRL 81 2394 (erratum) PR B1 2394 (erratum) PR B1 2394 (erratum) PR D57 7045 EPJ C3 95 EPJ C3 95 EPJ C3 95 EPJ C3 16 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 3879 PRL 79 3879 PRL 79 3879 PRL 79 3819 PRL 84666 PL B411 330 PRL 84666 PL B412 1575 PL B412 173 PL B406 337 ZPHY C75 627 PL B394 188 PL B391 420 PAN 60 1164 Translated from YAF 60 PR D55 7263 PR D55 6989 PL B410 299 JMP A12 4109 ZPHY C74 73 PL B388 409 CERN-PPE/36-183 LPHI, L3, OPAL, and SLE ZPHY C71 PL B373 246 PL B385 415 PR D54 198 PR D55 198 L B410 299 ZPHY C74 73 PL B388 409 CERN-PPE/36-183 LPHI, L3, OPAL, and SLE ZPHY C71 PL B373 246 PR D55 198 L B410 299 ZPHY C74 73 PL B388 409 PR D55 198 L B410 299 ZPHY C74 73 PL B388 409 PR D55 198 L B410 299 ZPHY C74 73 PL B388 409 PR D54 188 ZPHY C74 73 PL B385 415 PR D54 188 ZPHY C74 73 PL B385 415 PR D54 18 ZPHY C74 74 PL B385 415 PR D54 18 ZPHY C67 69 ZPH D54 34 ZPHY C67 69 ZPHY C67 69 ZPHY C67 69 ZPHY C71 73 ZPHY C67 69 ZPHY C71 73 ZPHY C67 69 ZPHY C71 73 ZPHY C71 73 ZPHY C71 73 ZPHY C71 74 ZPHY C71 75 ZPHY	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. C. Gonzalez-Garcia, S.M. Lietti, S. K. Hagiwara, D. Haidt, S. Matsumote C. Cao et al. D. Abbaneo et al. llaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. M. Acciarri et al. D. Abbaneo et al. J.A. Coarása, R.A. Jimenez, J. Sola W. de Boer et al. J. Coarása, R.A. Jimenez, J. Sola W. de Boer et al. J. Coarása, R.A. Jimenez, J. Sola W. de Boer et al. J. Cordeva et al. 1291. M. Guchait, D.P. Roy M. Krawczyk, J. Zochowski M. Mangano, S. Slabospitsky P.B. Renton A. Staht, H. Voss M. Acciarri et al. J. Alcaraz et al. J. Alcaraz et al. D. Buskulic et al. J. Alcaraz et al. D. Buskulic et al. J. Alcaraz et al. D. Buskulic et al. J. Alcarsa et al. D. Buskulic et al. J. Alcarsa et al. D. Buskulic et al. V. Grossman, H. Haber, Y. Nir Y. Grossman, L. Ligeti	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNP) (TATA) (WARS) (BONN) (L3 Collab.) (L4 Collab.) (ALEPH Collab.)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ABBANEO ALLEPH, D ABE ABE ACCIARRI ACCIARRI ACCIARRI ACCIARRI ACMASA DEBOER DEBOER DEBOER DEBOER DEBOER DEGRASSI DITTMAJER GORDEEV GUCHAIT KRAWCZYK MANGANO STAHL ACCIARRI ALCARAZ The ALEP ALEXANDER BUSKULIC GUSTANI GUSTANI GUSTANI GROSSMAN STAHL ASAKA ACGROSSMAN STAHL ASAKA AGROSSMAN STAHL ACTON	98 98B 98B 98B 98B 98 97 97 97 97 97 97 97 97 97 97	PL B435 427 PRL 80 2047 PRL 81 2394 (erratum) PR B1 2394 (erratum) PR B57 7045 PRL 81 2394 (erratum) PR D57 7045 PRL 91 2395 PPL C3 1 CERN-PPE/97-154 L3, OPAL, and SLD Co PRL 78 2906 PRL 78 3979 PRL 79 3819 PRL 79 3819 PRL 79 3819 PRL 79 3819 PRL 78 4686 PL B411 330 PRL 78 4686 PL B412 157 PL B412 173 PL B406 337 ZPHY C75 627 PL B394 188 PL B319 420 PAN 50 1164 Translated from YAF 60 PR D55 7263 PR D55 698 PL B410 299 JMP A12 4109 ZPHY C74 73 PL B388 409 CERN-PPE/96-183 LPHI, L3. OPAL, and SLE ZPHY C77 PL B373 246 PR D55 183 LPHI, L3. OPAL, and SLE ZPHY C71 PL B373 246 PR D55 183 LPHI, C67 69 PRL 74 2885 PL B345 36 PL B345 36 PL B3157 530 PL B337 344 PL B338 444 PL B357 530 PL B337 373 PL B324 121 PL B328 415 PR D54 189 PR D54 189 PR D55 199 PR D54 189 PR D55 189 PR D54 189 PR D55 189 PR D54 189 PR D55 189 PR D54 189 PR D54 189 PR D55 189 PR D55 189 PR D55 189 PR D56 189 PR D57	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. C. Gonzalez-Garcia, S.M. Lietti, S. Hagiwara, D. Haidt, S. Matsumote C. Caso et al. D. Abbaneo et al. llaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. M. Acclari et al. M. Acclari et al. M. Acclari et al. M. Acclari et al. M. Acclari, D. Roy M. Barate et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J.A. Coarasa, R.A. Jimenez, J. Sola W. de Boer et al. J. Congrassi, P. Gambino, A. Sirlin S. Dittmier, D. Schildknecht V.A. Gordeev et al. 1291. M. Guchait, D.P. Roy M. Krawczyk, J. Zochowski M. Mangano, S. Slabospitsky P.B. Renton A. Stahl, H. Voss M. Acclari et al. J. Alcaraz et al. J. Buskulic et al. J. Bills, G.L. Fogli, E. Lisi A. Gurtu P. Abreu et al. M. S. Alam et al. T. Assaka, K.I. Hikasa D. Buskulic et al. J. Buskulic et al. J. Buskulic et al. J. Sossman, H. Haber, Y. Nir Y. Grossman, Z. Ligeti A. Stahl P. D. Acton et al.	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS) (BONN) (L3 Collab.) (L4 Collab.) (BONN) (L5 Collab.) (ALEPH Collab.) (CERN. BARI) (CERN. BARI) (CLEC Collab.) (CHOHOK) (ALEPH Collab.) (CHOHOK)
DAVIER DREES AISO DREES GONZALEZ-G. HAGIWARA PDG ABBANEO ALEPH, D ABE ABE ACCIARRI ALCARAZ The ALEP ALEXANDER BUSKULIC ELLIS GURTU PDG GURTU PDG GURTU ALAMA ASAKA BUSKULIC GROSSMAN GROSSMAN STAHL	98 98B 98B 98B 98B 97 97B 97F 97F 97F 97 97 97 97 97 97 97 97 97 97	PL B435 427 PRL 80 2047 PRL 81 2394 (erratum) PR B1 2394 (erratum) PR B1 2394 (erratum) PR D57 7045 EPJ C3 95 EPJ C3 95 EPJ C3 95 EPJ C3 16 L3, OPAL, and SLD Co PRL 78 2906 PRL 79 3879 PRL 79 3879 PRL 79 3879 PRL 79 3819 PRL 84666 PL B411 330 PRL 84666 PL B412 1575 PL B412 173 PL B406 337 ZPHY C75 627 PL B394 188 PL B391 420 PAN 60 1164 Translated from YAF 60 PR D55 7263 PR D55 6989 PL B410 299 JMP A12 4109 ZPHY C74 73 PL B388 409 CERN-PPE/36-183 LPHI, L3, OPAL, and SLE ZPHY C71 PL B373 246 PL B385 415 PR D54 198 PR D55 198 L B410 299 ZPHY C74 73 PL B388 409 CERN-PPE/36-183 LPHI, L3, OPAL, and SLE ZPHY C71 PL B373 246 PR D55 198 L B410 299 ZPHY C74 73 PL B388 409 PR D55 198 L B410 299 ZPHY C74 73 PL B388 409 PR D55 198 L B410 299 ZPHY C74 73 PL B388 409 PR D54 188 ZPHY C74 73 PL B385 415 PR D54 188 ZPHY C74 73 PL B385 415 PR D54 18 ZPHY C74 74 PL B385 415 PR D54 18 ZPHY C67 69 ZPH D54 34 ZPHY C67 69 ZPHY C67 69 ZPHY C67 69 ZPHY C71 73 ZPHY C67 69 ZPHY C71 73 ZPHY C67 69 ZPHY C71 73 ZPHY C71 73 ZPHY C71 73 ZPHY C71 74 ZPHY C71 75 ZPHY	M. Davier, A. Hoecker M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M. Drees, M. Guchait, P. Roy M.C. Gonzalez-Garcia, S.M. Lietti, S. Matsumote C. Caso et al. D. Abbaneo et al. llaborations, and the LEP Electroweak F. Abe et al. F. Abe et al. H. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Barate et al. J. A. Coarsas, R.A. Jimenez, J. Sola W. de Boer et al. G. Degrassi, P. Gambino, A. Sirlin S. Dittmaier, D. Schildknecht V.A. Gordeev et al. M. Krawczyk, J. Zochowski M. Mangano, S. Slabospitsky P.B. Renton A. Stahl, H. Vosa G. Alexander et al. J. Alcaraz et al. J. Colaborations and the LEP Electrow	Working Group. (CDF Collab.) (CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (MPIM. NYU) (BIEL) (PNPI) (TATA) (WARS) eak Working Group (OPAL Collab.) (ALEPH Collab.) (CERN. BARI) (CERN. BARI) (DELPHI Collab.) (CLEC Collab.) (CLEC Collab.)

Heavy Bosons Other Than Higgs Bosons, Searches for

We list here various limits on charged and neutral heavy vector bosons (other than W's and Z's), heavy scalar bosons (other than Higgs bosons), vector or scalar leptoquarks, and axigluons.

WR (Right-Handed W Boson) MASS LIMITS

Assuming a light right-handed neutrino, except for BEALL 82, LANGACKER 89B, and COLANGELO 91. $g_R = g_L$ assumed. [Limits in the section MASS LIMITS for W' below are also valld for W_R if $m_{\nu_R} \ll m_{W_R}$.] Some limits assume manifest left-right symmetry, i.e., the equality of left- and right Cabibbo-Kobayashi-Maskawa matrices. For a comprehensive review, see LANGACKER 89B. Limits on the W_L - W_R mixing angle ζ are found in the next section. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL%	DOCUMENT ID TECN COMMENT
> 715	90	1 CZAKON 99 RVUE Electroweak
• • • We do not us	e the fol	lowing data for averages, fits, limits, etc. • • •
> 137	95	² ACKERSTAFF 99D OPAL τ decay
>1400	68	³ BARENBOIM 98 RVUE Electroweak, Z-Z ¹ mixing
> 549	68	⁴ BARENBOIM 97 RVUE μ decay
> 220	95	⁵ STAHL 97 RVUE τ decay
> 220	90	⁶ ALLET 96 CNTR β ⁺ decay
> 281	90	7 KUZNETSOV 95 CNTR Polarized neutron decay
> 282	90	8 KUZNETSOV 94B CNTR Polarized neutron decay
> 439	90	⁹ BHATTACH 93 RVUE Z-Z ¹ mixing
> 250	90	10 SEVERIJNS 93 CNTR Ø+ decay
		11 IMAZATO 92 CNTR K+ decay
> 475	90	12 POLAK 92B RVUE µ decay
> 240	90	13 AQUINO 91 RVUE Neutron decay
> 496	90	13 AQUINO 91 RVUE Neutron and muon decay
> 700		14 COLANGELO 91 THEO mK0 - mK0
> 477	90	15 POLAK 91 RVUE μ decay
[none 540-23000]		16 BARBIERI 89B ASTR SN 1987A; light ν_R
> 300	90	17 LANGACKER 898 RVUE General
> 160	90	¹⁸ BALKE 88 CNTR $\mu \rightarrow e \nu \overline{\nu}$
> 406	90	19 JODIDIO 86 ELEC Any ζ
> 482	90	¹⁹ JODIDIO 86 ELEC $\zeta = 0$
> 800		MOHAPATRA 86 RVUE $SU(2)_I \times SU(2)_R \times U(1)$
> 400	95	20 STOKER 85 ELEC Any C
> 475	95	²⁰ STOKER 85 ELEC ζ <0.041
		²¹ BERGSMA 83 CHRM $\nu_{\mu}e \rightarrow \mu\nu_{e}$
> 380	90	²² CARR 83 ELEC μ^+ decay
>1600		²³ BEALL 82 THEO $m_{K_0^0} - m_{K_0^0}$
[> 4000]		STEIGMAN 79 COSM Nucleosynthesis; light ν_R

- ¹ CZAKON 99 perform a simultaneous fit to charged and neutral sectors.
- 2 ACKERSTAFF 99D limit is from τ decay parameters. Limit increase to 145 GeV for zero mixing.
- BARENBOIM 98 assumes minimal left-right model with Higgs of $SU(2)_R$ in $SU(2)_L$ doublet. For Higgs in $SU(2)_L$ triplet, $m_{W_R} > 1100$ GeV. Bound calculated from effect of corresponding Z_{LR} on electroweak data through $Z Z_{LR}$ mixing.
- ⁴ The quoted limit is from μ decay parameters. BARENBOIM 97 also evaluate limit from K_L - K_S mass difference.
- 5 STAHL 97 limit is from fit to au-decay parameters.
- 6 ALLET 96 measured polarization-asymmetry correlaton in $^{12}{\rm N}\beta^+$ decay. The listed limit assumes zero $\it L-R$ mixing.
- Think assumes zero E-n image measurements of the asymmetry $\langle \vec{p}_{\nu} \cdot \sigma_{\rho} \rangle$ in the β decay of polarized neutrons. Zero mixing assumed. See also KUZNETSOV 94B.
- 9 BHATTACHARYYA 93 uses Z-Z' mixing limit from LEP '90 data, assuming a specific Higgs sector of SU(2) $_L\times$ SU(2) $_R\times$ U(1) gauge model. The limit is for $m_t=$ 200 GeV and slightly improves for smaller m_t .
- 10 SEVERIJNS 93 measured polarization-asymmetry correlation in 107 In β^+ decay. The listed limit assumes zero ι -R mixing. Value quoted here is from SEVERIJNS 94 erratum. 11 IMAZATO 92 measure positron asymmetry in $^{K^+}$ \rightarrow $^{\mu^+}$ $^{\nu}$ $^{\mu}$ decay and obtain
- $\xi P_{\mu} > 0.990$ (90%CL). If W_R couples to $u\bar{s}$ with full weak strength ($V_{u\bar{s}}^R = 1$), the result corresponds to $m_{W_R} > 653$ GeV. See their Fig. 4 for m_{W_R} limits for general $|V_{u\bar{s}}^R|^2 = 1 |V_{u\bar{s}}^R|^2$.
- $|V_{us}^R|^2 = 1 |V_{ud}^R|^2$.

 12 POLAK 92B limit is from fit to muon decay parameters and is essentially determined by JODIDIO 86 data assuming C = 0. Supersedes POLAK 91
- JODIDIO 66 data assuming <=0. Supersedes POLAK 91.

 13 AQUINO 91 limits obtained from neutron lifetime and asymmetries together with unitarity of the CKM matrix. Manifest left-right symmetry assumed. Stronger of the two limits also includes muon decay results.
- 14 COLANGELO 91 limit uses hadronic matrix elements evaluated by QCD sum rule and is less restrictive than BEALL 82 limit which uses vacuum saturation approximation. Manifest left-right symmetry assumed.
- 15 POLAK 91 limit is from fit to muon decay parameters and is essentially determined by JODIDIO 86 data assuming ζ=0. Superseded by POLAK 92B.
- ¹⁶ BARBIERI 89B limit holds for $m_{\nu_R} \le 10$ MeV.
- 17 LANGACKER 898 limit is for any ν_R mass (either Dirac or Majorana) and for a general class of right-handed quark mixing matrices.

Gauge & Higgs Boson Particle Listings Heavy Bosons Other than Higgs Bosons

 18 BALKE 88 limit is for $m_{
u_{eR}} = 0$ and $m_{
u_{\mu R}} \leq 50$ MeV. Limits come from precise

measurements of the muon decay asymmetry as a function of the positron energy.

19 JODIDIO 86 is the same TRIUMF experiment as STOKER 85 (and CARR 83); however, it uses a different technique. The results given here are combined results of the two techniques. The technique here involves precise measurement of the end-point e+ spectrum in the decay of the highly polarized μ^+

 20 STOKER 85 is same TRIUMF experiment as CARR 83. Here they measure the decay e^+ spectrum asymmetry above 46 MeV/c using a muon-spin-rotation technique. A a light right-handed neutrino. Quoted limits are from combining with CARR 83.

²¹ BERGSMA 83 set limit m_{W_2}/m_{W_1} >1.9 at CL = 90%.

 22 CARR 83 is TRIUMF experiment with a highly polarized μ^+ beam. Looked for deviation from V-A at the high momentum end of the decay ${\rm e^+}$ energy spectrum. Limit from previous world-average muon polarization parameter is $m_{W_{\rm co}} >$ 240 GeV. Assumes a previous world-average muon polarization parameter is m_{W_R} ight right-handed neutrino.

23 BEALL 82 limit is obtained assuming that W_R contribution to $K_L^0 - K_S^0$ mass difference is smaller than the standard one, neglecting the top quark contributions. Manifest left-right

Limit on W_l - W_R Mixing Angle ζ Lighter mass eigenstate $W_1 = W_L \cos \zeta - W_R \sin \zeta$. Light ν_R assumed unless noted. Values in brackets are from cosmological and astrophysical considerations.

ALUE	CL%	DOCUMENT ID		TECN	COMMENT
• • We do not use the	ne follow	ing data for averages	, fits	, limits,	etc. • • •
0.12	95	24 ACKERSTAFF	99D	OPAL	τ decay
0.013	90	²⁵ CZAKON	99	RVUE	Electroweak
0.0333		²⁶ BARENBOIM	97	RVUE	μ decay
0.04	90	²⁷ MISHRA	92	CCFR	ν N scattering
-0.0006 to 0.0028	90	²⁸ AQUINO	91	RVUE	
ne 0.00001-0.02		²⁹ BARBIERI	89B	ASTR	SN 1987A
0.040	90	OIDIDIO 08	86	ELEC	μ decay
-0.056 to 0.040	90	30 JODIDIO	86	ELEC	μ decay

25 CZAKON 99 perform a simultaneous fit to charged and neutral sectors.

 26 The quoted limit is from μ decay parameters. BARENBOIM 97 also evaluate limit from K_L - K_S mass difference.

²⁷MISHRA 92 limit is from the absence of extra large-x, large-y \overline{v}_{μ} N ightarrow \overline{v}_{μ} X events at Tevatron, assuming left-handed u and right-handed $\overline{\nu}$ in the neutrino beam. The result gives $\zeta^2(1-2m_{W_1}^2/m_{W_2}^2)<$ 0.0015. The limit is independent of u_R mass.

²⁸AQUINO 91 limits obtained from neutron lifetime and asymmetries together with unitarity of the CKM matrix. Manifest left-right asymmetry is assumed.

 $^{29}\,\mathrm{BARBIERI}$ 898 limit holds for $m_{\nu_R} \leq 10$ MeV.

 30 First JODIDIO 86 result assumes $m_{W_R} = \infty$, second is for unconstrained m_{W_R}

THE W' SEARCHES

Written October 1997 by K.S. Babu, C. Kolda, and J. March-Russell (IAS/Princeton).

Any electrically charged gauge boson outside of the Standard Model is generically denoted W'. A W' always couples to two different flavors of fermions, similar to the W boson. In particular, if a W' couples quarks to leptons it is a leptoquark gauge boson.

The most attractive candidate for W' is the W_R gauge boson associated with the left-right symmetric models [1]. These models seek to provide a spontaneous origin for parity violation in weak interactions. Here the gauge group is extended to $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ with the Standard Model hypercharge identified as $Y = T_{3R} + (B-L)/2$, T_{3R} being the third component of $SU(2)_R$. The fermions transform under the gauge group in a left-right symmetric fashion: $q_L(3, 2, 1, 1/3) +$ $q_R(3,1,2,1/3)$ for quarks and $\ell_L(1,2,1,-1) + \ell_R(1,1,2,-1)$ for leptons. Note that the model requires the introduction of right-handed neutrinos, which can facilitate the see-saw mechanism for explaining the smallness of the ordinary neutrino masses. A Higgs bidoublet $\Phi(1,2,2,0)$ is usually employed to generate quark and lepton masses and to participate in the electroweak symmetry breaking. Under left-right (or parity) symmetry, $q_L \leftrightarrow q_R$, $\ell_L \leftrightarrow \ell_R$, $W_L \leftrightarrow W_R$ and $\Phi \leftrightarrow \Phi^{\dagger}$.

After spontaneous symmetry breaking, the two W bosons of the model, W_L and W_R , will mix. The physical mass eigenstates are denoted as

$$W_1 = \cos \zeta W_L + \sin \zeta W_R, \qquad W_2 = -\sin \zeta W_L + \cos \zeta W_R$$
 (1)

with W_1 identified as the observed W boson. The most general Lagrangian that describes the interactions of the $W_{1,2}$ with the quarks can be written as [2]

$$\mathcal{L} = -\frac{1}{\sqrt{2}}\overline{u}\gamma_{\mu} \left[\left(g_{L}\cos\zeta V^{L}P_{L} - g_{R}e^{i\omega}\sin\zeta V^{R}P_{R} \right) W_{1}^{\mu} \right.$$
$$+ \left. \left(g_{L}\sin\zeta V^{L}P_{L} + g_{R}e^{i\omega}\cos\zeta V^{R}P_{R} \right) W_{2}^{\mu} \right] d + h.c.(2)$$

where $g_{L,R}$ are the SU(2)_{L,R} gauge couplings, $P_{L,R} = (1 \mp \gamma_5)/2$ and $V^{L,R}$ are the left- and right-handed CKM matrices in the quark sector. The phase ω reflects a possible complex mixing parameter in the W_L - W_R mass-squared matrix. Note that there is CP violation in the model arising from the right-handed currents even with only two generations. The Lagrangian for leptons is identical to that for quarks, with the replacements $u
ightarrow
u, \ d
ightarrow e$ and the identification of $V^{L,R}$ with the CKM matrices in the leptonic sector.

If parity invariance is imposed on the Lagrangian, then $g_L = g_R$. Furthermore, the Yukawa coupling matrices that arise from coupling to the Higgs bidoublet Φ will be Hermitian. If in addition the vacuum expectation values of Φ are assumed to be real, the quark and lepton mass matrices will also be Hermitian, leading to the relation $V^L = V^R$. Such models are called manifest left-right symmetric models and are approximately realized with a minimal Higgs sector [3]. If instead parity and CP are both imposed on the Lagrangian, then the Yukawa coupling matrices will be real symmetric and, after spontaneous CP violation, the mass matrices will be complex symmetric. In this case, which is known in the literature as pseudo-manifest left-right symmetry, $V^L = (V^R)^*$.

Indirect constraints: In minimal version of manifest or pseudo-manifest left-right symmetric models with $\omega = 0$ or π , there are only two free parameters, ζ and M_{W_2} , and they can be constrained from low energy processes. In the large M_{W_2} limit, stringent bounds on the angle ζ arise from three processes. (i) Nonleptonic K decays: The decays $K \to 3\pi$ and $K \rightarrow 2\pi$ are sensitive to small admixtures of right-handed currents. Assuming the validity of PCAC relations in the Standard Model it has been argued in Ref. 4 that the success in the $K \to 3\pi$ prediction will be spoiled unless $|\zeta| \le 4 \times 10^{-3}$. (ii) $b \to s\gamma$: The amplitude for this process has an enhancement factor m_t/m_b relative to the Standard Model and thus can be used to constrain ζ yielding the limit $-0.01 \le \zeta \le 0.003$ [5]. (iii) Universality in weak decays: If the right-handed neutrinos are heavy, the right-handed admixture in the charged current will contribute to β decay and K decay, but not to the μ decay. This will modify the extracted values of V_{ud}^L and V_{us}^L Demanding that the difference not upset the three generation

Gauge & Higgs Boson Particle Listings Heavy Bosons Other than Higgs Bosons

unitarity of the CKM matrix, a bound $|\zeta| \le 10^{-3}$ has been derived [6].

If the ν_R are heavy, leptonic and semileptonic processes do not constrain ζ since the emission of ν_R will not be kinematically allowed. However, if the ν_R is light enough to be emitted in μ decay and β decay, stringent limits on ζ do arise. For example, $|\zeta| \leq 0.039$ can be obtained from polarized μ decay [7] in the large M_{W_2} limit of the manifest left-right model. Alternatively, in the $\zeta = 0$ limit, there is a constraint $M_{W_2} \geq 484$ GeV from direct W_2 exchange. For the constraint on the case in which M_{W_2} is not taken to be heavy, see Ref. 2. There are also cosmological and astrophysical constraints on M_{W_2} and ζ in scenarios with a light ν_R . During nucleosynthesis the process $e^+e^- \to \nu_R \overline{\nu}_R$, proceeding via W_2 exchange, will keep the ν_R in equilibrium leading to an overproduction of ⁴He unless M_{W_2} is greater than about 1 TeV [8]. Likewise the ν_{eR} produced via $e_R^- p \rightarrow n \nu_R$ inside a supernova must not drain too much of its energy, leading to limits $M_{W_2} > 16$ TeV and $|\zeta| \leq 3 \times 10^{-5}$ [9]. Note that models with light ν_R do not have a see-saw mechanism for explaining the smallness of the neutrino masses, though other mechanisms may arise in variant models [10].

The mass of W_2 is severely constrained (independent of the value of ζ) from K_L – K_S mass-splitting. The box diagram with exchange of one W_L and one W_R has an anomalous enhancement and yields the bound $M_{W_2} \geq 1.6$ TeV [11] for the case of manifest or pseudo-manifest left-right symmetry. If the ν_R have Majorana masses, another constraint arises from neutrinoless double β decay. Combining the experimental limit from ⁷⁶Ge decay with arguments of vacuum stability, a limit of $M_{W_2} \geq 1.1$ TeV has been obtained [12].

Direct search limits: Limits on M_{W_2} from direct searches depend on the available decay channels of W_2 . If ν_R is heavier than W_2 , the decay $W_2^+ \to \ell_R^+ \nu_R$ will be forbidden kinematically. Assuming that ζ is small, the dominant decay of W_2 will be into dijets. UA2 [13] has excluded a W_2 in the mass range of 100 to 251 GeV in this channel. DØ excludes the mass range of 340 to 680 GeV [14], while CDF excludes the mass range of 300 to 420 GeV for such a W_2 [15]. If ν_R is lighter than W_2 , the decay $W_2^+ \to e_R^+ \nu_R$ is allowed. The ν_R can then decay into $e_RW_R^*$, leading to an eejj signature. DØ has a limit of $M_{W_2} > 720$ GeV if $m_{\nu_R} \ll M_{W_2}$; the bound weakens, for example, to 650 GeV for $m_{\nu_R} = M_{W_2}/2$ [16]. CDF finds $M_{W_2} > 652$ GeV if ν_R is stable and much lighter than W_2 [17]. All of these limits assume manifest or pseudo-manifest left-right symmetry. See [16] for some variations in the limits if the assumption of left-right symmetry is relaxed.

Alternative models: W' gauge bosons can also arise in other models. We shall briefly mention some such popular models, but for details we refer the reader to the original literature. The alternate left-right model [18] is based on the same gauge group as the left-right model, but arises in the following way:

In E6 unification, there is an option to identify the righthanded down quarks as $SU(2)_R$ singlets or doublets. If they are $SU(2)_R$ doublets, one recovers the conventional left-right model; if they are singlets it leads to the alternate left-right model. A similar ambiguity exists in the assignment of lefthanded leptons; the alternate left-right model assigns them to a (1, 2, 2, 0) multiplet. As a consequence, the ordinary neutrino remains exactly massless in the model. One important difference from the usual left-right model is that the limit from the K_L - K_S mass difference is no longer applicable, since the d_R do not couple to the W_R . There is also no limit from polarized μ decay, since the $SU(2)_R$ partner of e_R can receive a large Majorana mass. Other W' models include the un-unified Standard Model of Ref. 19 where there are two different SU(2) gauge groups, one each for the quarks and leptons; models with separate SU(2) gauge factors for each generation [20]; and the $SU(3)_C \times$ $SU(3)_L \times U(1)$ model of Ref. 21.

Leptoquark gauge bosons: The $SU(3)_C \times U(1)_{B-L}$ part of the gauge symmetry discussed above can be embedded into a simple $SU(4)_C$ gauge group [22]. The model then will contain leptoquark gauge boson as well, with couplings of the type $\{(\overline{e}_L\gamma_\mu d_L + \overline{\nu}_L\gamma_\mu u_L)W'^\mu + (L \to R)\}$. The best limit on such leptoquark W' comes from nonobservation of $K_L \to \mu e$, which requires $M_{W'} \geq 1400$ TeV; for the corresponding limits on less conventional leptoquark flavor structures, see Ref. 23. Thus such a W' is inaccessible to direct searches with present machines which are sensitive to vector leptoquark masses of order 300 GeV only.

References

- J.C. Pati and A. Salam, Phys. Rev. D10, 275 (1974);
 R.N. Mohapatra and J.C. Pati, Phys. Rev. D11, 566 (1975); *ibid.* Phys. Rev. D11, 2558 (1975);
 G. Senjanovic and R.N. Mohapatra, Phys. Rev. D12, 1502 (1975).
- P. Langacker and S. Uma Sankar, Phys. Rev. **D40**, 1569 (1989).
- A. Masiero, R.N. Mohapatra, and R. Peccei, Nucl. Phys. B192, 66 (1981);
 - J. Basecq, et al., Nucl. Phys. B272, 145 (1986).
- J. Donoghue and B. Holstein, Phys. Lett. 113B, 383 (1982).
- K.S. Babu, K. Fujikawa, and A. Yamada, Phys. Lett. B333, 196 (1994);
 P. Cho and M. Misiak, Phys. Rev. D49, 5894 (1994);
 - T.G. Rizzo, Phys. Rev. **D50**, 3303 (1994).
- L. Wolfenstein, Phys. Rev. **D29**, 2130 (1984).
- 7. P. Herczeg, Phys. Rev. **D34**, 3449 (1986).
- G. Steigman, K.A. Olive, and D. Schramm, Nucl. Phys. B180, 497 (1981).
- R. Barbieri and R.N. Mohapatra, Phys. Rev. **D39**, 1229 (1989):
 - G. Raffelt and D. Seckel, Phys. Rev. Lett. 60, 1793 (1988).
- D. Chang and R.N. Mohapatra, Phys. Rev. Lett. 58, 1600 (1987);
 - K.S. Babu and X.G. He, Mod. Phys. Lett. A4, 61 (1989).

Gauge & Higgs Boson Particle Listings Heavy Bosons Other than Higgs Bosons

- G. Beall, M. Bender, and A. Soni, Phys. Rev. Lett. 48, 848 (1982).
- R.N. Mohapatra, Phys. Rev. **D34**, 909 (1986).
- J. Alitti, et al. (UA2 Collaboration), Nucl. Phys. B400, 3
- 14. B. Abbott, et al. (DØ Collaboration), International Europhysics Conference on High Energy Physics, August 19-26, 1997, Jerusalem, Israel.
- F. Abe, et al. (CDF Collaboration), Phys. Rev. D55, R5263 (1997).
- S. Abachi, et al. (DØ Collaboration), Phys. Rev. Lett. 76, 3271 (1996).
- 17. F. Abe, et al. (CDF Collaboration), Phys. Rev. Lett. 74, 2900 (1995).
- 18. E. Ma, Phys. Rev. **D36**, 274 (1987); K.S. Babu, X-G. He and E. Ma, Phys. Rev. D36, 878
- 19. H. Georgi and E. Jenkins, Phys. Rev. Lett. 62, 2789 (1989);
 - Nucl. Phys. **B331**, 541 (1990).
- 20. X. Li and E. Ma, Phys. Rev. Lett. 47, 1788 (1981); R.S. Chivukula, E.H. Simmons, and J. Terning, Phys. Lett. **B331**, 383 (1994); D.J. Muller and S. Nandi, Phys. Lett. B383, 345 (1996).
- 21. F. Pisano, V. Pleitez, Phys. Rev. **D46**, 410 (1992); P. Frampton, Phys. Rev. Lett. 69, 2889 (1992).
- 22. J.C. Pati and A. Salam, Phys. Rev. D10, 275 (1974).
- 23. A. Kuznetsov and N. Mikheev, Phys. Lett. B329, 295
 - G. Valencia and S. Willenbrock, Phys. Rev. D50, 6843 (1994).

MASS LIMITS for W' (A Heavy-Charged Vector Boson Other Than W) in Hadron Collider Experiments

Couplings of W' to quarks and leptons are taken to be identical with those of W. The following limits are obtained from $p\bar{p} \rightarrow W'X$ with W' decaying to the mode indicated in the comments. New decay channels (e.g., $W' \rightarrow WZ$) are assumed to

				t b channel is not open.
VALUE (GeV)	CL%	DOCUMENT IL) TECN	COMMENT
>720	95	31 ABACHI	96c D0	$W' \rightarrow e \nu_{\rho}$
• • • We do not u	ise the follow	ing data for avera	ges, fits, limits,	etc. • • •
none 300-420	95	32 ABE	97G CDF	$W' \rightarrow q \overline{q}$
>610	95	33 ABACHI	95E D0	$W' \rightarrow e \nu_e \text{ and } W' \rightarrow \tau \nu_{\tau} \rightarrow e \nu \nu \overline{\nu}$
				$\tau \nu_{\tau} \rightarrow e \nu \nu \overline{\nu}$
>652	95	³⁴ ABE	95M CDF	$W' \rightarrow e \nu_e$
>251	90	35 ALITTI	93 UA2	$W' \rightarrow q \overline{q}$
none 260600	95	36 RIZZO	93 RVUE	$W' \rightarrow q \overline{q}$
>520	95	37 ABE	91F CDF	$W' \rightarrow e \nu, \mu \nu$
none 101-158	90	38 ALITTI	91 UA2	$W' \rightarrow q \overline{q}$
>220	90	³⁹ ALBAJAR	89 UA1	$W' \rightarrow e \nu$
>209	90	⁴⁰ ANSARI	87D UA2	$W' \rightarrow e \nu$
>210	90	⁴¹ ARNISON	86B UA1	$W' \rightarrow e \nu$
>170	90	⁴² ARNISON	83D UA1	$W' \rightarrow e \nu$

 $^{^{31}\,\}mathrm{For}$ bounds on W_R with nonzero right-handed mass, see Fig. 5 from ABACHI 96c.

³⁸ ALITTI 91 search is based on two-jet invariant mass spectrum, assuming B($W' \rightarrow q\overline{q}$) = 67.6%. Limit on $\sigma\cdot B$ as a function of two-jet mass is given in Fig. 7 39 ALBAJAR 89 cross section limit at 630 GeV is $\sigma(W')$ B(e ν) < 4.1 pb (90% CL).

⁴⁰See Fig. 5 of ANSARI 87D for the excluded region in the $m_{W^{\prime}}^{-}[(g_{W^{\prime}q})^{2}]$ B($W^{\prime}\to$ $(e\overline{\nu})$ plane. Note that the quantity $(g_{W'q})^2$ B($W' \to e\overline{\nu}$) is normalized to unity for the standard ${\it W}$ couplings.

41 ARNISON 868 find no excess at large p_T in 148 $W\to e\nu$ events. Set limit $\sigma\times B(e\nu)$ <10 pb at CL = 90% at $E_{\rm cm}$ = 546 and 630 GeV.

42 ARNISON 83D find among 47 $W \rightarrow e \nu$ candidates no event with excess p_T . Also set $\sigma \times B(e \nu) < 30$ pb with CL = 90% at $E_{\rm cm} = 540$ GeV.

THE Z' SEARCHES

Written October 1997 by K.S. Babu, C. Kolda, and J. March-Russell (IAS/Princeton).

If the Standard Model is enhanced by additional gauge symmetries or embedded into a larger gauge group, there will arise new heavy gauge bosons, some of which generically are electrically neutral. Such a gauge boson is called a Z'. Consider the most general renormalizable Lagrangian describing the complete set of interactions of the neutral gauge bosons among themselves and with fermions, which is that of the Standard Model plus the following new pieces [1,2,3]:

$$\mathcal{L}_{Z'} = -\frac{1}{4} \widehat{F}'_{\mu\nu} \widehat{F}'^{\mu\nu} - \frac{\sin \chi}{2} \widehat{F}'_{\mu\nu} \widehat{F}^{\mu\nu} + \frac{1}{2} \widehat{M}_{Z'}^2 \widehat{Z}'_{\mu} \widehat{Z}'^{\mu}$$
$$+ \delta \widehat{M}^2 \widehat{Z}'_{\mu} \widehat{Z}^{\mu} - \frac{\widehat{g}'}{2} \sum_{i} \overline{\psi}_{i} \gamma^{\mu} (f_V^i - f_A^i \gamma^5) \psi_{i} \widehat{Z}'_{\mu} \qquad (1)$$

where $\hat{F}_{\mu\nu}$, $\hat{F}'_{\mu\nu}$ are the field strength tensors for the hypercharge \hat{B}_{μ} gauge boson and the Z' respectively before any diagonalizations are performed, ψ_i are the matter fields with Z'vector and axial charges f_V^i and f_A^i , and \widehat{Z}_μ is the electroweak Z boson in this basis. (See the Review on "Electroweak Model and Constraints on New Physics" for the Standard Model pieces of the Lagrangian.) The mass terms are assumed to come from spontaneous symmetry breaking via scalar expectation values. The above Lagrangian is general to all abelian and non-abelian extensions, except that $\chi = 0$ for the non-abelian case since then $\hat{F}'_{\mu\nu}$ is not gauge invariant. Most analyses take $\chi=0$ even for the abelian case.

Going to the physical eigenbasis requires diagonalizing both the gauge kinetic and mass terms, with mass eigenstates denoted Z_1 and Z_2 , where we choose Z_1 to be the observed Z boson. The interaction Lagrangian for Z_1 has the form, to leading order in the mixing angle ξ ($s_W \equiv \sin \theta_W$, etc.):

$$\mathcal{L}_{Z_{1}} = -\frac{e}{2s_{W}c_{W}} \left(1 + \frac{\alpha T}{2} \right) \overline{\psi}_{i} \gamma^{\mu} \left\{ \left(g_{V}^{i} + \xi \tilde{f}_{V}^{i} \right) - \left(g_{A}^{i} + \xi \tilde{f}_{A}^{i} \right) \gamma^{5} \right\} \psi_{i} Z_{1\mu}$$

$$(2)$$

$$\xi \simeq \frac{-\cos\chi(\delta\widehat{M}^2 + \widehat{M}_Z^2 s_W \sin\chi)}{\widehat{M}_{Z'}^2 - \widehat{M}_Z^2 \cos^2\chi + \widehat{M}_Z^2 s_W^2 \sin^2\chi + 2\,\delta\widehat{M}^2 \,s_W \sin\chi} \ . \ \ (3)$$

We have made the identifications $g_A^i = T_3^i$, $g_V^i = T_3^i - 2Q^i s_*^2$, $ilde{f}^i_{V,A}=(\widetilde{g}'s_Wc_W/e\cos\chi)f^i_{V,A}$, and s^2_W is identified to be the $s^2_{M_Z}$ defined in the "Electroweak Model and Constraints on New Physics" review. Note that the value of the weak angle

³² ABE 976 search for new particle decaying to dijets.

 $^{^{33}}$ ABACHI 95E assume that the decay $W^{\prime} \rightarrow WZ$ is suppressed and that the neutrino from W' decay is stable and has a mass significantly less $m_{W'}$.

³⁴ ABE 95M assume that the decay $W' \rightarrow WZ$ is suppressed and the (right-handed) neutrino is light, noninteracting, and stable. If m_{ν} =60 GeV, for example, the effect on the mass limit is neglibible.

³⁵ ALITTI 93 search for resonances in the two-jet invariant mass. The limit assumes $\Gamma(W')/m_{W'} = \Gamma(W)/m_W$ and $B(W' \rightarrow jj) = 2/3$. This corresponds to W_R with $m_{\nu_R} > m_{W_R}$ (no leptonic decay) and $W_R \to t \, \overline{b}$ allowed. See their Fig. 4 for limits in the $m_{W'}$ $-B(q\overline{q})$ plane.

 $^{^{76}}$ RIZZO 93 analyses CDF limit on possible two-jet resonances. The limit is sensitive to the inclusion of the assumed K factor. 37 ABE 91F assume leptonic branching ratio of 1/12 for each lepton flavor. The limit from the $e\nu$ ($\mu\nu$) mode alone is 490 (435) GeV. These limits apply to W_R if $m_{\nu_R}\lesssim 15$ GeV and ν_R does not decay in the detector. Cross section limit $\sigma\cdot {\rm B}<(1$ –10) pb is given for $m_{W'}=100$ –550 GeV; see Fig. 2.

Gauge & Higgs Boson Particle Listings Heavy Bosons Other than Higgs Bosons

- G. Beall, M. Bender, and A. Soni, Phys. Rev. Lett. 48, 848 (1982).
- R.N. Mohapatra, Phys. Rev. **D34**, 909 (1986).
- J. Alitti, et al. (UA2 Collaboration), Nucl. Phys. B400, 3
- 14. B. Abbott, et al. (DØ Collaboration), International Europhysics Conference on High Energy Physics, August 19-26, 1997, Jerusalem, Israel.
- F. Abe, et al. (CDF Collaboration), Phys. Rev. D55, R5263 (1997).
- S. Abachi, et al. (DØ Collaboration), Phys. Rev. Lett. 76, 3271 (1996).
- 17. F. Abe, et al. (CDF Collaboration), Phys. Rev. Lett. 74, 2900 (1995).
- 18. E. Ma, Phys. Rev. **D36**, 274 (1987); K.S. Babu, X-G. He and E. Ma, Phys. Rev. D36, 878
- 19. H. Georgi and E. Jenkins, Phys. Rev. Lett. 62, 2789 (1989);
 - Nucl. Phys. **B331**, 541 (1990).
- 20. X. Li and E. Ma, Phys. Rev. Lett. 47, 1788 (1981); R.S. Chivukula, E.H. Simmons, and J. Terning, Phys. Lett. **B331**, 383 (1994); D.J. Muller and S. Nandi, Phys. Lett. B383, 345 (1996).
- 21. F. Pisano, V. Pleitez, Phys. Rev. **D46**, 410 (1992); P. Frampton, Phys. Rev. Lett. 69, 2889 (1992).
- 22. J.C. Pati and A. Salam, Phys. Rev. D10, 275 (1974).
- 23. A. Kuznetsov and N. Mikheev, Phys. Lett. B329, 295
 - G. Valencia and S. Willenbrock, Phys. Rev. D50, 6843 (1994).

MASS LIMITS for W' (A Heavy-Charged Vector Boson Other Than W) in Hadron Collider Experiments

Couplings of W' to quarks and leptons are taken to be identical with those of W. The following limits are obtained from $p\bar{p} \rightarrow W'X$ with W' decaying to the mode indicated in the comments. New decay channels (e.g., $W' \rightarrow WZ$) are assumed to

				t b channel is not open.
VALUE (GeV)	CL%	DOCUMENT IL) TECN	COMMENT
>720	95	31 ABACHI	96c D0	$W' \rightarrow e \nu_{\rho}$
• • • We do not u	ise the follow	ing data for avera	ges, fits, limits,	etc. • • •
none 300-420	95	32 ABE	97G CDF	$W' \rightarrow q \overline{q}$
>610	95	33 ABACHI	95E D0	$W' \rightarrow e \nu_e \text{ and } W' \rightarrow \tau \nu_{\tau} \rightarrow e \nu \nu \overline{\nu}$
				$\tau \nu_{\tau} \rightarrow e \nu \nu \overline{\nu}$
>652	95	³⁴ ABE	95M CDF	$W' \rightarrow e \nu_e$
>251	90	35 ALITTI	93 UA2	$W' \rightarrow q \overline{q}$
none 260-600	95	36 RIZZO	93 RVUE	$W' \rightarrow q \overline{q}$
>520	95	37 ABE	91F CDF	$W' \rightarrow e \nu, \mu \nu$
none 101-158	90	38 ALITTI	91 UA2	$W' \rightarrow q \overline{q}$
>220	90	³⁹ ALBAJAR	89 UA1	$W' \rightarrow e \nu$
>209	90	⁴⁰ ANSARI	87D UA2	$W' \rightarrow e \nu$
>210	90	⁴¹ ARNISON	86B UA1	$W' \rightarrow e \nu$
>170	90	⁴² ARNISON	83D UA1	$W' \rightarrow e \nu$

 $^{^{31}\,\}mathrm{For}$ bounds on W_R with nonzero right-handed mass, see Fig. 5 from ABACHI 96c.

³⁸ ALITTI 91 search is based on two-jet invariant mass spectrum, assuming B($W' \rightarrow q\overline{q}$) = 67.6%. Limit on $\sigma\cdot B$ as a function of two-jet mass is given in Fig. 7 39 ALBAJAR 89 cross section limit at 630 GeV is $\sigma(W')$ B(e ν) < 4.1 pb (90% CL).

⁴⁰See Fig. 5 of ANSARI 87D for the excluded region in the $m_{W^{\prime}}^{-}[(g_{W^{\prime}q})^{2}]$ B($W^{\prime}\to$ $(e\overline{\nu})$ plane. Note that the quantity $(g_{W'q})^2$ B($W' \to e\overline{\nu}$) is normalized to unity for the standard ${\it W}$ couplings.

41 ARNISON 868 find no excess at large p_T in 148 $W\to e\nu$ events. Set limit $\sigma\times B(e\nu)$ <10 pb at CL = 90% at $E_{\rm cm}$ = 546 and 630 GeV.

42 ARNISON 83D find among 47 $W \rightarrow e \nu$ candidates no event with excess p_T . Also set $\sigma \times B(e \nu) < 30$ pb with CL = 90% at $E_{\rm cm} = 540$ GeV.

THE Z' SEARCHES

Written October 1997 by K.S. Babu, C. Kolda, and J. March-Russell (IAS/Princeton).

If the Standard Model is enhanced by additional gauge symmetries or embedded into a larger gauge group, there will arise new heavy gauge bosons, some of which generically are electrically neutral. Such a gauge boson is called a Z'. Consider the most general renormalizable Lagrangian describing the complete set of interactions of the neutral gauge bosons among themselves and with fermions, which is that of the Standard Model plus the following new pieces [1,2,3]:

$$\mathcal{L}_{Z'} = -\frac{1}{4} \widehat{F}'_{\mu\nu} \widehat{F}'^{\mu\nu} - \frac{\sin \chi}{2} \widehat{F}'_{\mu\nu} \widehat{F}^{\mu\nu} + \frac{1}{2} \widehat{M}_{Z'}^2 \widehat{Z}'_{\mu} \widehat{Z}'^{\mu}$$
$$+ \delta \widehat{M}^2 \widehat{Z}'_{\mu} \widehat{Z}^{\mu} - \frac{\widehat{g}'}{2} \sum_{i} \overline{\psi}_{i} \gamma^{\mu} (f_V^i - f_A^i \gamma^5) \psi_{i} \widehat{Z}'_{\mu} \qquad (1)$$

where $\hat{F}_{\mu\nu}$, $\hat{F}'_{\mu\nu}$ are the field strength tensors for the hypercharge \hat{B}_{μ} gauge boson and the Z' respectively before any diagonalizations are performed, ψ_i are the matter fields with Z'vector and axial charges f_V^i and f_A^i , and \widehat{Z}_μ is the electroweak Z boson in this basis. (See the Review on "Electroweak Model and Constraints on New Physics" for the Standard Model pieces of the Lagrangian.) The mass terms are assumed to come from spontaneous symmetry breaking via scalar expectation values. The above Lagrangian is general to all abelian and non-abelian extensions, except that $\chi = 0$ for the non-abelian case since then $\hat{F}'_{\mu\nu}$ is not gauge invariant. Most analyses take $\chi=0$ even for the abelian case.

Going to the physical eigenbasis requires diagonalizing both the gauge kinetic and mass terms, with mass eigenstates denoted Z_1 and Z_2 , where we choose Z_1 to be the observed Z boson. The interaction Lagrangian for Z_1 has the form, to leading order in the mixing angle ξ ($s_W \equiv \sin \theta_W$, etc.):

$$\mathcal{L}_{Z_{1}} = -\frac{e}{2s_{W}c_{W}} \left(1 + \frac{\alpha T}{2} \right) \overline{\psi}_{i} \gamma^{\mu} \left\{ \left(g_{V}^{i} + \xi \tilde{f}_{V}^{i} \right) - \left(g_{A}^{i} + \xi \tilde{f}_{A}^{i} \right) \gamma^{5} \right\} \psi_{i} Z_{1\mu}$$

$$(2)$$

$$\xi \simeq \frac{-\cos\chi(\delta\widehat{M}^2 + \widehat{M}_Z^2 s_W \sin\chi)}{\widehat{M}_{Z'}^2 - \widehat{M}_Z^2 \cos^2\chi + \widehat{M}_Z^2 s_W^2 \sin^2\chi + 2\,\delta\widehat{M}^2 \,s_W \sin\chi} \ . \ \ (3)$$

We have made the identifications $g_A^i = T_3^i$, $g_V^i = T_3^i - 2Q^i s_*^2$, $ilde{f}^i_{V,A}=(\widetilde{g}'s_Wc_W/e\cos\chi)f^i_{V,A}$, and s^2_W is identified to be the $s^2_{M_Z}$ defined in the "Electroweak Model and Constraints on New Physics" review. Note that the value of the weak angle

³² ABE 976 search for new particle decaying to dijets.

 $^{^{33}}$ ABACHI 95E assume that the decay $W^{\prime} \rightarrow WZ$ is suppressed and that the neutrino from W' decay is stable and has a mass significantly less $m_{W'}$.

³⁴ ABE 95M assume that the decay $W' \rightarrow WZ$ is suppressed and the (right-handed) neutrino is light, noninteracting, and stable. If m_{ν} =60 GeV, for example, the effect on the mass limit is neglibible.

³⁵ ALITTI 93 search for resonances in the two-jet invariant mass. The limit assumes $\Gamma(W')/m_{W'} = \Gamma(W)/m_W$ and $B(W' \rightarrow jj) = 2/3$. This corresponds to W_R with $m_{\nu_R} > m_{W_R}$ (no leptonic decay) and $W_R \to t \, \overline{b}$ allowed. See their Fig. 4 for limits in the $m_{W'}$ $-B(q\overline{q})$ plane.

 $^{^{76}}$ RIZZO 93 analyses CDF limit on possible two-jet resonances. The limit is sensitive to the inclusion of the assumed K factor. 37 ABE 91F assume leptonic branching ratio of 1/12 for each lepton flavor. The limit from the $e\nu$ $(\mu\nu)$ mode alone is 490 (435) GeV. These limits apply to W_R if $m_{\nu_R}\lesssim 15$ GeV and ν_R does not decay in the detector. Cross section limit $\sigma\cdot B<(1$ –10) pb is given for $m_{W'}=100$ –550 GeV; see Fig. 2.

Gauge & Higgs Boson Particle Listings Heavy Bosons Other than Higgs Bosons

that appears in the vector coupling is shifted by the S and T oblique parameters:

$$s_{*}^{2} = s_{W}^{2} + \frac{1}{s_{W}^{2} - c_{W}^{2}} \left(\frac{1}{4} \alpha S - c_{W}^{2} s_{W}^{2} \alpha T \right) . \tag{4}$$

Recall that $\rho = 1 + \alpha T$ defines the usual ρ parameter. In the presence of Z-Z' mixing, the oblique parameters receive contributions [4]:

$$\alpha S = 4\xi c_W^2 s_W \tan \chi$$

$$\alpha T = \xi^2 \left(\frac{M_{Z_2}^2}{M_{Z_1}^2} - 1 \right) + 2\xi s_W \tan \chi$$

$$\alpha U = 0$$
(5)

to leading order in small ξ . These contributions are in addition to those coming from top quark and Higgs boson loops in the Standard Model. (This is in contrast to the "Electroweak Model and Constraints on New Physics" Review in which oblique parameters are defined to be zero for reference values of m_t and M_H .) Note that nonzero Z-Z' contributions to S arise only in the presence of kinetic mixing.

The corresponding $Z_2\overline{\psi}\psi$ interaction Lagrangian is:

$$\mathcal{L}_{Z_2} = -\frac{e}{2s_W c_W} \overline{\psi}_i \gamma^{\mu} \left\{ \left(h_V^i - g_V^i \xi \right) - \left(h_A^i - g_A^i \xi \right) \gamma^5 \right\} \psi_i Z_{2\mu}$$
(6)

with the following definitions:

$$\begin{aligned} h_V^i &\doteq \tilde{f}_V^i + \tilde{s}(T_3^i - 2Q^i) \tan \chi \\ h_A^i &= \tilde{f}_A^i + \tilde{s}T_3^i \tan \chi \\ \tilde{s} &= s_W + \frac{s_W^3}{c_W^2 - s_W^2} \left(\frac{1}{4c_W^2} \alpha S - \frac{1}{2} \alpha T \right) \end{aligned} \tag{7}$$

where the last equation defines a weak angle appropriate for the \mathbb{Z}_2 interactions.

If the Z' charges are generation-dependent, there exist severe constraints in the first two generations coming from precision measurements such as the K_L - K_S mass splitting and $B(\mu \to 3e)$ owing to the lack of GIM suppression in the Z' interactions; however, constraints on a Z' which couples differently only to the third generation are somewhat weaker. (It will be assumed in the Z-pole constraint section that the Z' couples identically to all three generations of matter; all other results are general.) If the new Z' interactions commute with the Standard Model gauge group, then per generation, there are only five independent $Z'\overline{\psi}\psi$ couplings; we can choose them to be \tilde{f}_V^u , \tilde{f}_A^u , \tilde{f}_V^d , \tilde{f}_V^e , and \tilde{f}_A^e . All other couplings can be determined in terms of these, e.g., $\tilde{f}_V^v = (\tilde{f}_V^v + \tilde{f}_A^e)/2$.

Canonical models: One of the prime motivations for an additional Z' has come from string theory in which certain compactifications lead naturally to an E_6 gauge group, or one of its subgroups. E_6 contains two U(1) factors beyond the Standard Model, a basis for which is formed by the two groups $\mathrm{U}(1)_\chi$ and $\mathrm{U}(1)_\psi$, defined via the decompositions $E_6 \to \mathrm{SO}(10) \times \mathrm{U}(1)_\psi$ and $\mathrm{SO}(10) \to \mathrm{SU}(5) \times \mathrm{U}(1)_\chi$; one special case

often encountered is $U(1)_{\eta}$ where $Z_{\eta} = \sqrt{\frac{3}{8}}Z_{\chi} + \sqrt{\frac{5}{8}}Z_{\psi}$. The charges of the SM fermions under these U(1)'s, and a discussion of their experimental signals, can be found in Ref. 5.

It is also common to express experimental bounds in terms of a toy Z' usually denoted $Z_{\rm SM}$. This $Z_{\rm SM}$, of arbitrary mass, couples to the SM fermions identically to the usual Z.

Almost all analyses of Z' physics have worked with one of these canonical models and have assumed zero kinetic mixing at the weak scale.

Experimental constraints: There are three primary sets of constraints on the existence of a Z' which will be considered here: precision measurements of neutral-current processes at low energies, Z-pole constraints on Z-Z' mixing, and direct search constraints from production at very high energies. In principle, one usually expects other new states to appear at the same scale as the Z', including its symmetry-breaking sector and any additional fermions necessary for anomaly cancellation. However, because these states are highly model-dependent, we will not include searches for them, or Z' decays to them, in the bounds that follow.

Low-energy constraints: After the breaking of the new gauge group and the usual electroweak breaking, the Z of the Standard Model can mix with the Z', with mixing angle ξ defined above. As already discussed, this Z-Z' mixing implies a shift in the usual oblique parameters [S,T,U] defined in Eq. (5). Current bounds on S and T translate into stringent constraints on the mixing angle, ξ , requiring $\xi \ll 1$; similar constraints on ξ arise from the LEP Z-pole data. Thus we will only consider the small- ξ limit henceforth.

Whether or not the new gauge interactions are parity violating, stringent constraints can arise from atomic parity violation (APV) and polarized electron-nucleon scattering experiments [6]. At low energies, the effective neutral-current Lagrangian is conventionally written:

$$\mathcal{L}_{\mathrm{NC}} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d} \left\{ C_{1q}(\overline{e}\gamma_{\mu}\gamma^5 e)(\overline{q}\gamma^{\mu}q) + C_{2q}(\overline{e}\gamma_{\mu}e)(\overline{q}\gamma^{\mu}\gamma^5 q) \right\}$$
(8)

APV experiments are sensitive only to C_{1u} and C_{1d} (see the "Electroweak Model and Constraints on New Physics" Review for the nuclear weak charge, Q_W , in terms of the C_{1q}) where in the presence of the Z and Z':

$$C_{1q} = 2(1 + \alpha T)(g_A^e + \xi \tilde{f}_A^e)(g_V^q + \xi \tilde{f}_V^q) + 2r(h_A^e - \xi g_A^e)(h_V^q - \xi g_V^q)$$
(9)

where $r=(M_{Z_1}/M_{Z_2})^2$. The r-dependent terms arise from Z_2 exchange and can interfere constructively or destructively with the Z_1 contribution. In the limit $\xi=r=0$, this reduces to the Standard Model expression. Polarized electron scattering is sensitive to both the C_{1q} and C_{2q} couplings, again as discussed in the "Electroweak Model and Constraints on New Physics" Review. The C_{2q} can be derived from the expression for C_{1q} with the complete interchange $V \leftrightarrow A$.

Table 1: Expansion coefficients for shifts in Z-pole observables normalized to the Standard Model value of the observable [7,3].

O	$\mathcal{A}_{\mathcal{O}}^{S}$	$\mathcal{A}_{\mathcal{O}}^{T}$	$\mathcal{B}^{Vu}_{\mathcal{O}}$	$\mathcal{B}^{Au}_{\mathcal{O}}$	$\mathcal{B}^{Vd}_{\mathcal{O}}$	$\mathcal{B}^{Ve}_{\mathcal{O}}$	$\mathcal{B}^{Ae}_{\mathcal{O}}$
$\overline{\Gamma_Z}$	-0.49	1.35	-0.89	-0.40	0.37	0.37	0
R_ℓ	-0.39	0.28	-1.3	-0.56	0.52	0.30	4.0
σ_h	0.046	-0.033	0.50	0.22	-0.21	-1.0	-4.0
R_b	0.085	-0.061	-1.4	-2.1	0.29	0	0
R_c	-0.16	0.12	2.7	4.1	-0.59	0	0
\overline{A}_e	-24.9	17.7	0	0	0	-26.7	2.0
\overline{A}_b	-0.32	0.23	0.71	0.71	-1.73	0	0
\overline{A}_c	-2.42	1.72	3.89	-1.49	0	0	0
$\frac{M_W^2}{}$	-0.93	1.43	0	0	0	0	0

Stringent limits also arise from neutrino-hadron scattering. One usually expresses experimental results in terms of the effective 4-fermion operators $(\overline{\nu}\gamma_{\mu}\nu)(\overline{q}_{L,R}\gamma^{\mu}q_{L,R})$ with coefficients $(2\sqrt{2}G_F)\epsilon_{L,R}(q)$. (Again, see the "Electroweak Model and Constraints on New Physics" Review.) In the presence of the Z and Z', the $\epsilon_{L,R}(q)$ are given by:

$$\begin{split} \epsilon_{L,R}(q) = & \frac{1 + \alpha T}{2} \left\{ (g_V^q \pm g_A^q) [1 + \xi (\tilde{f}_V^{\nu} \pm \tilde{f}_A^{\nu})] + \xi (\tilde{f}_V^q \pm \tilde{f}_A^q) \right\} \\ & + \frac{r}{2} \left\{ (h_V^q \pm h_A^q) (h_V^{\nu} \pm h_A^{\nu}) - \xi (g_V^q \pm g_A^q) (h_V^{\nu} \pm h_A^{\nu}) - \xi (h_V^q \pm h_A^q) \right\} \; . \end{split}$$

$$(10)$$

Again, the r-dependent terms arise from \mathbb{Z}_2 -exchange.

Z-pole constraints: Electroweak measurements made at LEP and SLC while sitting on the Z resonance are generally sensitive to Z' physics only through the mixing with the Z unless the Z and Z' are very nearly degenerate, a possibility we ignore. Constraints on the allowed mixing angle and Z couplings arise by fitting all data simultaneously to the ansatz of Z-Z' mixing. For any observable, \mathcal{O} , the shift in that observable, $\Delta\mathcal{O}$, can be expressed (following the procedure of Ref. 7) as:

$$\frac{\Delta \mathcal{O}}{\mathcal{O}} = \mathcal{A}_{\mathcal{O}}^{S} \alpha S + \mathcal{A}_{\mathcal{O}}^{T} \alpha T + \xi \sum_{i} \mathcal{B}_{\mathcal{O}}^{(i)} \tilde{f}^{i}$$
 (11)

where i runs over the 5 independent $Z'\overline{\psi}\psi$ couplings listed earlier (assuming a Z' couplings commute with the generation and gauge symmetries of the Standard Model; this is the only place where we enforce such a restriction). The coefficients $\mathcal{A}_{\mathcal{O}}^{S,T}$ and $\mathcal{B}_{\mathcal{O}}^{(i)}$, which are functions only of the Standard Model parameters, are given in Table 1. The first 5 observables are directly measured at LEP and SLC, while \overline{A}_e , \overline{A}_b and \overline{A}_c are measured via the asymmetries $\overline{A}_{FB}^{(0,f)} = \frac{3}{4} \overline{A}_e \overline{A}_f$ and $A_{LR}^0 = \overline{A}_e$ as defined in the "Electroweak Model and Constraints on New Physics" Review. As an example, the shift in \overline{A}_e due to Z' physics is given by

$$\frac{\Delta \overline{A}_e}{\overline{A}_e} = -24.9 \,\alpha S + 17.7 \,\alpha T - 26.7 \,\xi \,\tilde{f}_V^e + 2.0 \,\xi \,\tilde{f}_A^e \quad . \tag{12}$$

High-energy indirect constraints: At $\sqrt{s} < M_{Z_2}$, but off the Z_1 pole, strong constraints on new Z' physics arise from measurements of deviations of asymmetries and leptonic and hadronic cross sections from their Standard Model predictions. These processes are sensitive not only to Z-Z' mixing but also to direct Z_2 exchange primarily through $\gamma-Z_2$ and Z_1-Z_2 interference; therefore information on the Z_2 couplings and mass can be extracted that is not accessible via Z-Z' mixing alone.

Far below the Z_2 mass scale, experiment is only sensitive to the scaled Z_2 couplings $(\sqrt{s}/M_{Z_2}) \cdot h_{V,A}^i$ so the Z_2 mass and overall magnitude of the couplings cannot both be extracted. However as \sqrt{s} approaches M_{Z_2} the Z_2 exchange can no longer be approximated by a contact interaction and the mass and couplings can be simultaneously extracted.

Z' studies done before LEP relied heavily on this approach; see, e.g., Ref. 8. LEP has also done similar work using data collected above the Z peak; see, e.g., Ref. 9. For indirect Z' searches at future facilities, see, e.g. Refs. 10 and 11.

Direct-search constraints: Finally, high-energy experiments have searched for on-shell Z' (here Z_2) production and decay. Searches can be classified by the initial state off of which the Z' is produced, and the final state into which the Z' decays; we will not include here exotic decays of a Z'. Experiments to date have been sensitive to Z' production via their coupling to quarks $(p\overline{p}$ colliders), to electrons (e^+e^-) or to both (ep).

For a heavy Z' $(M_{Z_2}\gg M_{Z_1})$, the best limits come from $p\bar{p}$ machines via Drell-Yan production and subsequent decay to charged leptons. For $M_{Z_2}>600\,\mathrm{GeV}$, CDF [12] quotes limits on $\sigma(p\bar{p}\to Z_2X)\cdot B(Z_2\to \ell^+\ell^-)<0.04\,\mathrm{pb}$ at 95% C.L. for $\ell=e+\mu$ combined; DØ [13] quotes $\sigma\cdot B<0.025\,\mathrm{pb}$ for $\ell=e$. For $M_{Z_2}<600\,\mathrm{GeV}$, the mass dependence is complicated and one should refer to the original literature. For studies of the search capabilities of future facilities, see e.g. Ref. 10.

If the Z' has suppressed, or no, couplings to leptons (i.e., it is leptophobic) then experimental sensitivities are much weaker. In particular, searches for a Z' via hadronic decays at DØ [14] are able to rule out a Z' with quark couplings identical to those of the Z only in the mass range 365 GeV $< M_{Z_2} < 615$ GeV; CDF [15] cannot exclude even this range. Additionally, UA2 [16] finds $\sigma \cdot B(Z' \to jj) < 11.7$ pb at 90% C.L. for $M_{Z'} > 200$ GeV and more complicated bounds in the range 130 GeV $< M_{Z'} < 200$ GeV.

For a light Z' $(M_{Z'} < M_Z)$ direct searches in e^+e^- colliders have ruled out any Z' unless it has extremely weak couplings to leptons. For a combined analysis of the various pre-LEP experiments see Ref. 8.

References

- 1. B. Holdom, Phys. Lett. 166B, 196 (1986).
- F. del Aguila, Acta Phys. Polon. B25, 1317 (1994);
 F. del Aguila, M. Cvetič and P. Langacker, Phys. Rev. D52, 37 (1995).

Gauge & Higgs Boson Particle Listings Heavy Bosons Other than Higgs Bosons

- K.S. Babu, C. Kolda and J. March-Russell, Phys. Rev. **D54**, 4635 (1996); K.S. Babu, C. Kolda, and J. March-Russell, Phys. Rev. **D57**, 6788 (1998).
- 4. B. Holdom, Phys. Lett. **B259**, 329 (1991).
- 5. J. Hewett and T. Rizzo, Phys. Rept. 183, 193 (1989).
- J. Kim, et al., Rev. Mod. Phys. 53, 211 (1981); U. Amaldi, et al., Phys. Rev. **D36**, 1385 (1987); W. Marciano and J. Rosner, Phys. Rev. Lett. 65, 2963 (1990) (Erratum: 68 898 (1992)); K. Mahanthappa and P. Mohapatra, Phys. Rev. D43, 3093 (1991) (Erratum: **D44** 1616 (1991));
 - P. Langacker and M. Luo, Phys. Rev. **D45**, 278 (1992); P. Langacker, M. Luo and A. Mann, Rev. Mod. Phys. 64, 87 (1992).
- 7. G. Altarelli, et al., Mod. Phys. Lett. A5, 495 (1990); ibid., Phys. Lett. **B263**, 459 (1991).
- 8. L. Durkin and P. Langacker, Phys. Lett. 166B, 436 (1986).
- P. Abreu et al., (DELPHI Collaboration), Eur. Phys. J. C11, 383 (1999); R. Barate et al., (ALEPH Collaboration), Eur. Phys. J. C12, 183 (1999).
- 10. M. Cvetiĉ and S. Godfrey, hep-ph/9504216, in Electroweak Symmetry Breaking and Beyond the Standard Model, Eds. T. Barklow, et al. (World Scientific 1995).
- 11. T. Rizzo, Phys. Rev. D55, 5483 (1997).
- F. Abe et al., (CDF Collaboration), Phys. Rev. Lett. 79, 2191 (1997).
- 13. DØ Collab., XVIII International Conf. on Lepton Photon Interactions (June 1997), http://www-d0.fnal.gov/ public/new/conferences/lp97.html.
- 14. DØ Collaboration, XVIII International Conference on Lepton Photon Interactions (June 1997), see URL above.
- 15. F. Abe et al., (CDF Collaboration), Phys. Rev. D55, 5263R (1997).
- 16. J. Alitti, et al., (UA2 Collaboration), Nucl. Phys. B400, 3 (1993).

MASS LIMITS for Z' (Heavy Neutral Vector Boson Other Than Z)

DOCUMENT ID

CL%

Limits for $Z_{\rm SM}^{'}$

VALUE (GeV)

 $Z_{\rm SM}'$ is assumed to have couplings with quarks and leptons which are identical to those of Z, and decays only to known fermions.

TECN COMMENT

>898	95	43 BARATE	001 ALEP	
>690	95	⁴⁴ ABE	97s CDF	$p\overline{p}; Z'_{SM} \rightarrow e^+e^-,$
181				$\mu^+\mu^-$
 • • We do not us 	se the followi	ng data for averaj	ges, fits, limits,	etc. • • •
>809	95	⁴⁵ ERLER		Electroweak
>490	95	ABACHI	960 D0	$p\overline{p}; Z'_{SM} \rightarrow e^+e^-$
>505	95	⁴⁶ ABE	95 CDF	$ \rho \overline{\rho}; Z'_{SM} \rightarrow e^+ e^- $ $ \rho \overline{\rho}; Z'_{SM} \rightarrow e^+ e^- $
>398	95	47 VILAIN	94B CHM2	$\nu_{\mu}e \rightarrow \nu_{\mu}e$ and
				$\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$
>237	90	48 ALITTI	93 UA2	$ \begin{array}{ccc} \nu_{\mu}e & \rightarrow & \nu_{\mu}e \text{ and} \\ \overline{\nu_{\mu}}e & \rightarrow & \overline{\nu_{\mu}}e \\ p\overline{p}; Z'_{SM} & \rightarrow & q\overline{q} \\ p\overline{p}; Z_{SM} & \rightarrow & q\overline{q} \end{array} $
none 260-600	95	⁴⁹ RIZZO	93 RVUE	$p\bar{p}; Z_{SM}^{jW} \rightarrow q\bar{q}$
>426	90	⁵⁰ ABE	90F VNS	e^+e^-

- $^{
 m 43}$ BARATE 001 search for deviations in cross section and asymmetries in $e^+\,e^$ at $\sqrt{s}=90$ to 183 GeV. Assume $\theta=0$. Bounds in the mass-mixing plane are shown in their Figure 18.
- 44 ABE 975 find $\sigma(Z')\times B(e^+e^-,\mu^+\mu^-)<$ 40 fb for $m_{Z'}>$ 600 GeV at $\sqrt{s}=$ 1.8 TeV.
- 45 ERLER 99 give 90%CL limit on the Z-Z' mixing -0.0041 < heta < 0.0003. $ho_0 = 1$ is
- 46 assumed. ABE 97s find $\sigma(Z')\times {\rm B}(e^+\,e^-)<$ 350 fb for $m_{Z'}>$ 350 GeV at $\sqrt{s}=$ 1.8 TeV.
- $^{\rm 47}\,\rm VILAIN$ 94B assume $m_{t}=150$ GeV.
- 48 ALITTI 93 search for resonances in the two-jet invariant mass. The limit assumes B(Z'
 ightarrow $q\overline{q})=0.7$. See their Fig. 5 for limits in the $m_{Z'}-B(q\overline{q})$ plane.
- 49 RIZZO 93 analyses CDF limit on possible two-jet resonances.
- ⁵⁰ ABE 90F use data for R, $R_{\ell\ell}$, and $A_{\ell\ell}$. They fix $m_W = 80.49 \pm 0.43 \pm 0.24$ GeV and $m_Z = 91.13 \pm 0.03 \text{ GeV}.$

Limits for Z_{LR} Z_{LR} is the extra neutral boson in left-right symmetric models. $g_L = g_R$ is assumed unless noted. Values in parentheses assume stronger constraint on the Higgs sector, usually motivated by specific left-right symmetric models (see the Note on the W'). Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino. Direct search bounds assume decays to Standard Model fermions only, unless noted.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>564	95	⁵¹ ERLER	99	RVUE	
>630	95	⁵² ABE	975	CDF	$p\overline{p}; Z'_{LR} \rightarrow e^+e^-,$
					$\mu^{+}\mu^{-}$
 • • We do not us 	se the fol	lowing data for avera	ges,	fits, lim	its, etc. • • •
>436	95	53 BARATE	001	ALEP	e+ e-
>550	95	⁵⁴ CHAY			Electroweak
		55 ERLER	00	RVUE	Cs
>230	95	⁵⁶ ABREU	99A	DLPH	e^+e^-
		57 CASALBUONI	99	RVUE	Cs
(> 1205)	90	⁵⁸ CZAKON	99		Electroweak
(> 1673)	95	⁵⁹ ERLER	99	RVUE	Electroweak
(> 1700)	68	60 BARENBOIM	98	RVUE	Electroweak
>244	95	61 CONRAD	98		ν_{μ} N scattering
>190	95	62 BARATE	97B	ALEP	$e^+e^- \rightarrow \mu^+\mu^-$ and hadronic cross section
>445	95	63 ABE	95	CDF	$p\overline{p}; Z_{IB} \rightarrow e^+e^-$
>253	95	⁶⁴ VILAIN	94B	СНМ2	
					· _{Pµ} e · · ·
>130	95	⁶⁵ ADRIANI	93D	L3	Z parameters
(> 1500)	90	66 ALTARELLI	93B	RVUE	Z parameters
none 200-600	95	67 RIZZO	93	RVUE	pp; Z _{LR} → qq
[> 2000]		WALKER	91	COSM	Nucleosynthesis; light ν_R
none 200-500		68 GRIFOLS			SN 1987A; light VR
none 350-2400		⁶⁹ BARBIERI			SN 1987A; light VR

- RLER 99 give 90%CL limit on the Z-Z' mixing $-0.0009 < \theta < 0.0017$.
- ⁵² ABE 97S find $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) <$ 40 fb for $m_{Z'} >$ 600 GeV at $\sqrt{s} = 1.8$ TeV.
- 53 BARATE 00I search for deviations in cross section and asymmetries in $e^+\,e^- o$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.
- 54 CHAY $\overset{\circ}{00}$ also find $-0.0003 < \theta < 0.0019.$ For g_R free, $m_{Z^{\prime}} >$ 430 GeV.
- ⁵⁵ ERLER 00 discuss the possibility that a discrepancy between the observed and predicted values of $Q_{W}(Cs)$ is due to the exchange of Z^{I} . The data are better described in a certain class of the Z' models including Z_{LR} and Z_{χ} .
- 56 ABREU 99A give 95%CL limit on the $\emph{Z-Z'}$ mixing | heta| < 0.0031. For the limit contour in the mass-mixing plane, see their Fig. 16. Data taken at \sqrt{s} = 130–172 GeV.
- 57 CASALBUONI 99 discuss the discrepancy between the observed and predicted v $Q_W({\rm Cs}).$ It is shown that the data are better described in a class of models including the Z_{LR} model.
- 58 CZAKON 99 perform a simultaneous fit to charged and neutral sectors. Assumes manifest left-right symmetric model. Finds $|\theta|<0.0042$.
- 59 ERLER 99 assumes 2 Higgs doublets, tranforming as 10 of SO(10), embedded in E_6 .
- 60 BARENBOIM 98 also gives 68% CL limits on the $Z\text{-}Z^{\prime}$ mixing $-0.0005 < \theta < 0.0033$. Assumes Higgs sector of minimal left-right model.
- 61 CONRAD 98 limit is from measurements at CCFR, assuming no $Z\text{-}Z^{\prime}$ mixing.
- 62 BARATE 97B gives 95% CL limits on Z- Z^I mixing $-0.0017 < \theta < 0.0035$. The bounds are computed with $\alpha_{\rm S}=0.120\pm0.003$, $m_{t}=175\pm6$ GeV, and $M_{H}=150^{+150}_{-90}$ GeV. Data taken at $\sqrt{5}$ =20-136 GeV.
- 63 ABE 97s find $\sigma(Z') \times \mathrm{B}(e^+\,e^-) <$ 350 fb for $m_{\gamma^i} >$ 350 GeV at $\sqrt{s} =$ 1.8 TeV. See their Fig. 3 for the mass bound of Z' decaying to all allowed fermions and supersymmetric
- 64 VILAIN 94B assume $m_t=$ 150 GeV and heta=0. See Fig. 2 for limit contours in the mass-mixing plane.
- 65 ADRIANI 93D give limits on the Z-Z' mixing $-0.002 < \theta < 0.015$ assuming $m_{Z'} > 310$ GeV.
- 66 ALTARELLI 93B limit is from LEP data available in summer '93 and is for $m_{ au}=110$ GeV. $m_H=100$ GeV and $\alpha_S=0.118$ assumed. The limit improves for larger m_t (see their Fig. 5). The 90%CL limit on the $Z-Z^{f}$ mixing angle is in Table 4.
- 67 RIZZO 93 analyses CDF limit on possible two-jet resonances.
- 68 GRIFOLS 90 limit holds for $m_{\nu_R} \lesssim 1$ MeV. A specific Higgs sector is assumed. See also GRIFOLS 90D, RIZZO 91.
- 69 BARBIERI 89B limit holds for $m_{\nu_R} \leq 10$ MeV. Bounds depend on assumed supernova core temperature.

ı

Limits for Z_X $Z_{\chi} \text{ is the extra neutral boson in SO(10)} \rightarrow \text{SU(5)} \times \text{U(1)}_{\chi}, \quad g_{\chi} = e/\text{cos}\theta_{W} \text{ is assumed unless otherwise stated. We list limits with the assumption } \rho = 1 \text{ but with } \rho = 1 \text{ but with the assumption } \rho = 1 \text{ but with the assumption } \rho = 1 \text{ but with } \rho = 1 \text{$ constraint on the Higgs sector motivated by superstring models. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>545	95	70 ERLER	99	RVUE	Electroweak
>595	95	⁷¹ ABE	97s	CDF	$p\bar{p}; Z'_{\gamma} \rightarrow e^+e^-, \mu^+\mu^-$

• • • We do not u	se the foll	owing data for averages, fits, limits, etc. • • •	
>533	95	72 BARATE 001 ALEP e+e-	
		⁷³ ERLER 00 RVUE Cs	
		74 ROSNER 00 RVUE Cs	
>250	95	⁷⁵ ABREU 99A DLPH e ⁺ e ⁻	
(> 1368)	95	76 ERLER 99 RVUE Electroweak	
>470	95	⁷⁷ CHO 98 RVUE	
>451	95	78 CHO 988 RVUE Electroweak	
>215	95	79 CONRAD 98 RVUE ν _μ N scattering	
>190	95	80 ARIMA 97 VNS Bhabha scattering	
>236	95	81 BARATE 97B ALEP $e^+e^- \rightarrow \mu^+\mu^-$	
>425	95	82 ABE 95 CDF $p\overline{p}$; $Z'_{\chi} \rightarrow e^+e^-$	ection
>147	95	83 ABREU 95M DLPH Z parameters and	
>262	95	$e^+e^- \rightarrow \mu^+\mu$ $\nu_\mu e \rightarrow \nu_\mu e$ and $\bar{\nu}$ $\bar{\nu}_\mu e$	
>117	95	85 ADRIANI 93D L3 Z parameters	
(>900)	90	86 ALTARELLI 93B RVUE Z parameters	
[>1470]		87 FARAGGI 91 COSM Nucleosynthesis; lig	ht $ u_R$
>231	90	88 ABE 90F VNS e+e-	
[> 1140]		89 GONZALEZ-G900 COSM Nucleosynthesis; lig	ht ν_R
[> 2100]		90 GRIFOLS 90 ASTR SN 1987A; light ν _E	, "
70			

- 70 ERLER 99 give 90%CL limit on the Z-Z' mixing -0.0020 < heta < 0.0015.
- 71 ABE 97s find $\sigma(Z')\times B(e^+e^-,\mu^+\mu^-)<$ 40 fb for $m_{Z'}>$ 600 GeV at $\sqrt{s}=$ 1.8 TeV.
- 72 BARATE 00I search for deviations in cross section and asymmetries in $e^+e^- \rightarrow$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.
- 73 ERLER 00 discuss the possibility that a discrepancy between the observed and predicted values of $Q_W(Cs)$ is due to the exchange of Z^1 . The data are better described in a certain class of the \mathbf{Z}^{t} models including \mathbf{Z}_{LR} and $\mathbf{Z}_{\chi}.$
- 74 ROSNER 00 discusses the possibility that a discrepancy between the observed and predicted values of $Q_W({\rm Cs})$ is due to the exchange of Z' . The data are better described in a certain class of the Z^{I} models including Z_{χ} .
- 75 ABREU 99A give 95%CL limit on the Z-Z' mixing $|\theta| < 0.0033$. For the limit contour in the mass-mixing plane, see their Fig. 16. Data taken at \sqrt{s} = 130-172 GeV.
- 76 ERLER 99 assumes 2 Higgs doublets, tranforming as 10 of SO(10), embedded in E_6 .
- 77 CHO 98 limit is from constraints on four-Fermi contact interactions obtained from low-energy electroweak experiments, and assumes no Z- Z^I mixing.
- ⁷⁶CHO 98B use various electroweak data to constrain Z^I models assuming m_H =100 GeV. ρ =1 is not assumed. See their Eq. (4.8) for their fit in mass-mixing plane, and Table 10 for limits assuming E_6 -motivated Higgs sector.
- 79 CONRAD 98 limit is from measurements at CCFR, assuming no Z-Z' mixing.
- 80 Z-Z' mixing is assumed to be zero. \sqrt{s} = 57.77 GeV.
- ⁸¹ BARATE 97B gives 95% CL limits on Z-Z' mixing $-0.0016 < \theta < 0.0036$. The are computed with $\alpha_{\rm S}=0.120\pm0.003$, $m_{\rm f}=175\pm6$ GeV, and $M_{H}=150^{+150}_{-90}$ GeV. Data was taken at \sqrt{s} = 20-136 GeV.
- $82\,\mathrm{ABE}$ 95 limit is obtained assuming that Z' decays to known fermions only. See their Fig. 3 for the mass bound of Z' decaying to all allowed fermions and supersymmetric
- termions. Say Breu 95M limit is for α_s =0.123, m_t =150 GeV, and m_H =300 GeV. For the limit contour in the mass-mixing plane, see their Fig. 13.
- 84 VILAIN 94B assume $m_t=150$ GeV and $\theta=0$. See Fig. 2 for limit contours in the mass-mixing plane.
- 85 ADRIANI 93D give limits on the Z-Z $^{\prime}$ mixing -0.004 < θ < 0.015 assuming the
- ABE 928 mass limit.

 86 ALTARELLI 93B limit is from LEP data available in summer '93 and is for m_t = 110 GeV. $m_H=100$ GeV and $lpha_5=0.118$ assumed. The limit improves for larger m_t (see their Fig. 5). The 90%CL limit on the Z-Z' mixing angle is in their Fig. 2.
- 87 FARAGGI 91 limit assumes the nucleosynthesis bound on the effective number of neutrinos $\Delta N_{\nu}~<~0.5$ and is valid for $m_{\nu_R}~<1$ MeV.
- 88 ABE 90r use data for R , $R_{f\ell}$, and $A_{\ell\ell}$. ABE 90r fix $m_W=80.49\pm0.43\pm0.24$ GeV and $m_Z=91.13\pm0.03$ GeV.
- 89 Assumes the nucleosynthesis bound on the effective number of light neutrinos ($\delta N_{
 u} < 1$) and that ν_R is light ($\lesssim 1$ MeV).
- 90 GRIFOLS 90 limit holds for $m_{\nu_R}\,\lesssim 1$ MeV. See also GRIFOLS 90D, RIZZO 91.

Limits for Z_{ψ} is the extra neutral boson in E $_6 \to SO(10) \times U(1)_{\psi}$. $g_{\psi} = e/\cos\theta_W$ is assumed unless otherwise stated. We list limits with the assumption $\rho = 1$ but with no further constraints on the Higgs sector. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
>294	95	⁹¹ BARATE	001	ALEP	e+ e-
>590	95	⁹² ABE	975	CDF	$p\bar{p}; Z'_{\psi} \rightarrow e^+e^-, \mu^+\mu^-$
• • • We do not	use the foll	owing data for aver	rages,	fits, lim	its, etc. • • •
>280	95	93 ABREU	9 9A	DLPH	e+ e-
>146	95	94 ERLER	99	RVUE	Electroweak
>140	95	⁹⁵ CHO	98	RVUE	
>136	95	⁹⁶ CHO	98B	RVUE	Electroweak

> 54	95	97 CONRAD	98 RVUE	ν _μ N scattering
>160	95	98 BARATE	97B ALEP	$e^+e^- \rightarrow \mu^+\mu^-$ and hadronic cross section
>415	95	99 ABE	95 CDF	$p\overline{p}; Z'_{\psi} \rightarrow e^+e^-$
>105	95	100 ABREU		Z parameters and
>135	95	101 VILAIN	94B CHM2	$e^+e^- \rightarrow \mu^+\mu^ \nu_{\mu}e \rightarrow \nu_{\mu}e \text{ and } \overline{\nu}_{\mu}e \rightarrow$ $\overline{\nu}_{\mu}e$
>118	95	102 ADRIANI	93D L3	Z parameters
>105	90	¹⁰³ ABE	90F VNS	e+e-
[> 160]		104 GONZALEZ-G	90D COSM	Nucleosynthesis; light ν_R
[> 2000]		105 GRIFOLS	90D ASTR	SN 1987A; light vp

- ⁹¹ BARATE 001 search for deviations in cross section and asymmetries in $e^+e^- \rightarrow$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.
- 92 ABE 97s find $\sigma(Z')\times B(e^+e^-,\mu^+\mu^-)<$ 40 fb for $m_{Z'}>$ 600 GeV at $\sqrt{s}=$ 1.8 TeV.
- 93 ABREU 99A give 95%CL limit on the Z-Z' mixing | heta| < 0.0021. For the limit contour in the mass-mixing plane, see their Fig. 16. Data taken at \sqrt{s} = 130-172 GeV.
- 94 ERLER 99 give 90%CL limit on the Z-Z' mixing $-0.0013 < \theta < 0.0024$.
- 95 CHO 98 limit is from constraints on four-Fermi contact interactions obtained from low-energy electroweak experiments and assumes no Z-Z' mixing.
- 96 CHO 98B use various electroweak data to constrain Z^t models. See their Eq. (4.9) for their fit in mass-mixing plane.
- 97 CONRAD 98 limit is from measurements at CCFR, assuming no Z-Z' mixing. 98 BARATE 97B gives 95% CL limits on Z-Z' mixing $-0.0020 < \theta < 0.0038$. The bounds are computed with $\alpha_S = 0.120 \pm 0.003$, $m_t = 175 \pm 6$ GeV, and $M_H = 150 + 150 - 90$ GeV. Data taken at \sqrt{s} = 20–136 GeV.
- 99 See ABE 95 Fig. 3 for the mass bound of Z^\prime decaying to all allowed fermions and supersymmetric fermions
- 100 ABREU 95M limit is for $\alpha_{\rm S}$ =0.123, m_t =150 GeV, and m_H =300 GeV. For the limit contour in the mass-mixing plane, see their Fig. 13.
- 101 VILAIN 94B assume $m_t=$ 150 GeV and heta=0. See Fig. 2 for limit contours in the mass-mixing plane.
- 102 ADRIANI 930 give limits on the Z-Z^I mixing $-0.003 < \theta < 0.020$ assuming the ABE 928 mass limit.
- ABE 928 mass limit. 103 ABE 90F use data for R, $R_{\ell\ell}$, and $A_{\ell\ell}$. ABE 90F fix $m_W=80.49\pm0.43\pm0.24$ GeV and $m_Z=91.13\pm0.03$ GeV.
- 104 Assumes the nucleosynthesis bound on the effective number of light neutrinos ($\delta N_{
 u} < 1$) and that ν_R is light ($\lesssim 1$ MeV).
- $^{105}\,\mathrm{GRIFOLS}$ 90D limit holds for $m_{\nu_R}\,\lesssim\,1$ MeV. See also RIZZO 91.

 Z_η is the extra neutral boson in E $_6$ models, corresponding to $Q_\eta=\sqrt{3/8}~Q_\chi-\sqrt{5/8}~Q_\psi$, $g_\eta=e/\cos\theta_W$ is assumed unless otherwise stated. We list limits with the assumption $\rho=1$ but with no further constraints on the Higgs sector. Values in parentheses assume stronger constraint on the Higgs sector motivated by superstring models. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL%	DOCUMENT ID		TECN_	COMMENT
>365	95	106 ERLER	99	RVUE	Electroweak
>620	95	¹⁰⁷ ABE	975	CDF	$\rho \overline{\rho}; Z'_{\eta} \rightarrow e^+e^-, \mu^+\mu^-$
• • • We do not use	the fol	lowing data for aver	ages,	fits, lim	its, etc. • • •
>329	95	108 BARATE	001	ALEP	e+ e-
>200	95	¹⁰⁹ ABREU	99A	DLPH	e+ e-
>340	95	¹¹⁰ сно	98	RVUE	
>317	95	¹¹¹ CHO	98B	RVUE	Electroweak
> 87	95	¹¹² CONRAD	98	RVUE	ν_{μ} N scattering
>173	95	113 BARATE	97B	ALEP	$e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}$ and hadronic cross section
>440	95	¹¹⁴ ABE	95	CDF	$p\bar{p}; Z'_{\eta} \rightarrow e^+e^-$
>109	95	115 ABREU	95M	DLPH	
>100	95	116 VILAIN	94B	СНМ2	$v_{\mu} \stackrel{e}{=} \rightarrow v_{\mu} \stackrel{e}{=} \text{and } \overline{v}_{\mu} \stackrel{e}{=} \rightarrow \overline{v}_{\mu} \stackrel{e}{=}$
>100	95	117 ADRIANI	93D	L3	Z parameters
(>500)	90	¹¹⁸ ALTARELLI	93B	RVUE	Z parameters
>125	90	¹¹⁹ ABE	90F	VNS	e+ e-
[> 820]		120 GONZALEZ-G	90 D	соѕм	Nucleosynthesis; light ν_R
[> 3300]		121 GRIFOLS	90	A5TR	SN 1987A; light VR
[> 1040]		120 LOPEZ	90	COSM	Nucleosynthesis; light ν_R

- 106 ERLER 99 give 90%CL limit on the Z-Z' mixing $-0.0062 < \theta < 0.0011$.
- 107 ABE 97s find $\sigma(Z') \times \mathrm{B}(e^+e^-, \mu^+\mu^-) <$ 40 fb for $m_{Z'} >$ 600 GeV at $\sqrt{s} = 1.8$ TeV.
- 108 BARATE 001 search for deviations in cross section and asymmetries in $e^+e^- \rightarrow$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in
- 109 ABREU 99A give 95%CL limit on the Z-Z' mixing $|\theta| < 0.0046$. For the limit contour in the mass-mixing plane, see their Fig. 16. Data taken at \sqrt{s} = 130-172 GeV
- in the mass-mixing piane, see their Fig. 10. Data taken at γ3 = 130-112 GeV.
 110 CHO 98 limit is from constraints on four-Fermi contact interactions obtained from low-energy electroweak experiments, and assumes no Z-Z^T mixing.
 111 CHO 98B use various electroweak data to constrain Z^T models assuming m_H=100 GeV.
 ρ=1 is not assumed. See their Eq. (4.8) for their fit in mass-mixing plane, and Table 10 for limits assuming E₆-motivated Higgs sector.
- 112 CONRAD 98 limit is from measurements at CCFR, assuming no $Z\text{-}Z^I$ mixing.

Gauge & Higgs Boson Particle Listings Heavy Bosons Other than Higgs Bosons

- 113 BARATE 97B gives 95% CL limits on Z-Z' mixing $-0.021 < \theta < 0.012$. The bounds are computed with $\alpha_{\rm S}=0.120\pm0.003$, $m_t=175\pm6$ GeV, and $M_H=150^{+150}_{-90}$ GeV. Data was taken at $\sqrt{s} = 20-136$ GeV.
- 114 See ABE 95 Fig. 3 for the mass bound of Z^\prime decaying to all allowed fermions and supersymmetric fermions.
- 115 ABREU 95M limit is for $\alpha_{\rm S}$ =0.123, $m_{\rm t}$ =150 GeV, and $m_{\rm H}$ =300 GeV. For the limit contour in the mass-mixing plane, see their Fig. 13.
- 116 VILAIN 94B assume $m_t=$ 150 GeV and $\theta=$ 0. See Fig. 2 for limit contours in the mass-mixing plane.
- 117 ADRIANI 93D give limits on the Z-Z f mixing -0.029 < θ < 0.010 assuming the ABE 92B mass limit.
- 118 ALTARELLI 93B limit is from LEP data available in summer '93 and is for $m_{ ilde t}=110$ GeV. $m_H=100$ GeV and $\alpha_{\rm S}=0.118$ assumed. The 90%CL limit on the $Z\text{-}Z^{\prime}$ mixing angle is in Fig. 2.
- 119 ABE 90F use data for R, $R_{\ell\ell}$, and $A_{\ell\ell}$. ABE 90F fix $m_W=80.49\pm0.43\pm0.24$ GeV and $m_Z=91.13\pm0.03$ GeV.
- 120 These authors claim that the nucleosynthesis bound on the effective number of light neutrinos ($\delta N_{\nu} < 1$) constrains Z' masses if ν_R is light (\lesssim 1 MeV). 121 GRIFOLS 90 limit holds for $m_{\nu_R} \lesssim$ 1 MeV. See also GRIFOLS 90D, RIZZO 91.

Limits for other Z'

 $Z_{oldsymbol{eta}} = Z_{oldsymbol{\chi}} \cos\!eta + Z_{oldsymbol{\psi}} \sin\!eta$ VALUE (GeV) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹²² CHO 98 RVUE E6-motivated ¹²³ CHO 98B RVUE E6-motivated

122 CHO 98 study constraints on four-Fermi contact interactions obtained from low-energy electroweak experiments, assuming no Z-Z' mixing

 123 CHO 98B use various electroweak data to constrain Z^\prime models.

LEPTOQUARK QUANTUM NUMBERS

Written December 1997 by M. Tanabashi (Tohoku U.).

Leptoquarks are particles carrying both baryon number (B)and lepton number (L). They are expected to exist in various extensions of the Standard Model (SM). The possible quantum numbers of leptoquark states can be restricted by assuming that their direct interactions with the ordinary SM fermions are dimensionless and invariant under the SM gauge group. Table 1 shows the list of all possible quantum numbers with this assumption [1]. The columns of $SU(3)_C$, $SU(2)_W$, and $U(1)_Y$ in Table 1 indicate the QCD representation, the weak isospin representation, and the weak hypercharge, respectively. Naming conventions of leptoquark states are taken from Ref. 1. The spin of a leptoquark state is taken to be 1 (vector leptoquark) or 0 (scalar leptoquark).

Table 1: Possible leptoquarks and their quantum numbers.

Leptoquarks	Spin	3B+L	$SU(3)_c$	$\mathrm{SU}(2)_W$	$\mathrm{U}(1)_Y$
$\overline{S_1}$	0	-2	3	1	1/3
$ ilde{S}_1$	0	-2	$\bar{3}$	1	4/3
S_3	0	-2	$\bar{3}$	3	1/3
V_2	1	-2	$\bar{3}$	2	5/6
$ ilde{V}_2$	1	-2	$\bar{3}$	2	-1/6
R_2	0	0	3	2	7/6
$ ilde{R}_2$	0	0	3	2	1/6
U_1	1	0	3	1	$^{2/3}$
$ ilde{U}_1$	1	0	3	1	5/3
U_3	1	0	3	3	2/3

If we do not require leptoquark states to couple directly with SM fermions, different assignments of quantum numbers become possible.

The Pati-Salam model [2] is an example predicting the existence of a leptoquark state. In this model a vector leptoquark appears at the scale where the Pati-Salam SU(4) "color" gauge group breaks into the familiar QCD $SU(3)_C$ group (or $SU(3)_C \times U(1)_{B-L}$). The Pati-Salam leptoquark is a weak isosinglet and its hypercharge is 2/3 (U₁ leptoquark in Table 1). The coupling strength of the Pati-Salam leptoquark is given by the QCD coupling at the Pati-Salam symmetry breaking scale.

Bounds on leptoquark states are obtained both directly and indirectly. Direct limits are from their production cross sections at colliders, while indirect limits are calculated from the bounds on the leptoquark induced four-fermion interactions which are obtained from low energy experiments.

The pair production cross sections of leptoquarks are evaluated from their interactions with gauge bosons. The gauge couplings of a scalar leptoquark are determined uniquely according to its quantum numbers in Table 1. The magneticdipole-type and the electric-quadrupole-type interactions of a vector leptoquark are, however, not determined even if we fix its gauge quantum numbers as listed in the table [3]. We need extra assumptions about these interactions to evaluate the pair production cross section for a vector leptoquark.

If a leptoquark couples to fermions of more than a single generation in the mass eigenbasis of the SM fermions, it can induce four-fermion interactions causing flavor-changing-neutralcurrents and lepton-family-number violations. Non-chiral leptoquarks, which couple simultaneously to both left- and righthanded quarks, cause four-fermion interactions affecting the $(\pi \to e\nu)/(\pi \to \mu\nu)$ ratio [4]. Indirect limits provide stringent constraints on these leptoquarks. Since the Pati-Salam leptoquark has non-chiral coupling with both e and μ , indirect limits from the bounds on $K_L \to \mu e$ lead to severe bounds on the Pati-Salam leptoquark mass. For detailed bounds obtained in this way, see the Boson Particle Listings for "Indirect Limits for Leptoquarks" and its references.

It is therefore often assumed that a leptoquark state couples only to a single generation in a chiral interaction, where indirect limits become much weaker. This assumption gives strong constraints on concrete models of leptoquarks, however. Leptoquark states which couple only to left- or right-handed quarks are called chiral leptoquarks. Leptoquark states which couple only to the first (second, third) generation are referred as the first (second, third) generation leptoquarks in this section.

Reference

- W. Buchmüller, R. Rückl, and D. Wyler, Phys. Lett. B191, 442 (1987).
- 2. J.C. Pati and A. Salam, Phys. Rev. D10, 275 (1974).
- J. Blümlein, E. Boos, and A. Kryukov, Z. Phys. C76, 137 (1997).
- O. Shanker, Nucl. Phys. B204, 375 (1982).

none 5-20.8

none 7-20.5

none 10.2-23.2

95

Gauge & Higgs Boson Particle Listings Heavy Bosons Other than Higgs Bosons

MASS LIMITS for Leptoquarks from Pair Production

VALUE (GeV)	CL% I	VTS	DOCUMENT ID		TECN	COMMENT	_
>200	95		124 ABBOTT	00C	D0	Second generation	1
>225	95		¹²⁵ АВВОТТ	98E	D0	First generation	_
> 94	95		¹²⁶ ABBOTT	98)	D0	Third generation	1
>202	95		¹²⁷ ABE	985	CDF	Second generation	ı
> 99	95		¹²⁸ ABE	97F	CDF	Third generation	
• • • We do no	t use the	followii	ng data for averag	es, fits	, limits,	etc. • • •	
>160	95		129 ABBOTT	99)	D0	Second generation	- 1
>213	95		¹³⁰ ABE	97x	CDF	First generation	
> 45.5	95		¹³² ABREU	931	DLPH	First + second genera- tion	
> 44,4	95		¹³³ ADRIANI	93M	L3	First generation	
> 44.5	95		133 ADRIANI	93M	L3	Second generation	
> 45	95		133 DECAMP	92	ALEP	Third generation	
none 8.9-22.6	95		¹³⁴ KIM	90	AMY	First generation	

136 BEHREND 124 ABBOTT 00c search for scalar leptoquarks using $\mu\mu jj$, $\mu\nu jj$, and $\nu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm CM}=1.8$ TeV. The limit above assumes B(μq)=1. For B(μq)=0.5 and 0, the bound becomes 180 and 79 GeV respectively. Bounds for vector leptoquarks are also

134 KIM

135 BARTEL

90 AMY

878 JADE

868 CELL

Second generation

- given.

 15 ABBOTT 98E search for scalar leptoquarks using $e\nu jj$, eejj, and $\nu\nu jj$ events in $p\overline{p}$ collisions at $E_{Cm}=1.8$ TeV. The limit above assumes B(eq)=1. For B(eq)=0.5 and 0, the bound becomes 204 and 79 GeV, respectively.

 126 ABBOTT 98J search for charge -1/3 third generation scalar and vector leptoquarks in $p\overline{p}$ collisions at $E_{Cm}=1.8$ TeV. The quoted limit is for scalar leptoquark with $B(\nu b)=1$.
- 127 ABE 98S search for scalar leptoquarks using $\mu\mu jj$ events in $p\overline{p}$ collisions at $E_{\text{CM}}=1.8\,\text{TeV}$. The limit is for B(μq)= 1. For B(μq)=B(νq)=0.5, the limit is > 160 GeV. 128 ABE 97F search for third generation scalar and vector leptoquarks in $p\overline{p}$ collisions at
- $c_{\rm cm}=1.8$ TeV. The quoted limit is for scalar leptoquark with $B(\tau\,b)=1.8$
- 129 ABBOTT 99) search for leptoquarks using $\mu\nu jj$ events in $p\bar{p}$ collisions at $E_{\rm Cm}=1.8{\rm TeV}$. The quoted limit is for a scalar leptoquark with $B(\mu q)=B(\nu q)=0.5$. Limits on vector leptoquarks range from 240 to 290 GeV.
- 130 ABBOTT 97B, ABE 97x search for scalar leptoquarks using eejj events in pp collisions at $E_{cm}=1.8$ TeV. The limit is for B(eq)=1.
- 131 Limit is for charge -1/3 isospin-0 leptoquark with B(ℓq) = 2/3.
- 132 First and second generation leptoquarks are assumed to be degenerate. The limit is slightly lower for each generation.
- 133 Limits are for charge -1/3, isospin-0 scalar leptoquarks decaying to $\ell^- q$ or νq with any branching ratio. See paper for limits for other charge-isospin assignments of leptoquarks.
- 134 KIM 90 assume pair production of charge 2/3 scalar-leptoquark via photon exchange.

 The decay of the first (second) generation leptoquark is assumed to be any mixture of $d\,e^+$ and $u\overline{\nu}$ ($s\,\mu^+$ and $c\,\overline{\nu}$). See paper for limits for specific branching ratios.
- 135 BARTEL 87B limit is valid when a pair of charge 2/3 spinless leptoquarks X is produced with point coupling, and when they decay under the constraint $B(X \to c \overline{\nu}_{\mu}) + B(X \to c \overline{\nu}_{\mu})$
- 136 BEHREND 86B assumed that a charge 2/3 spinless leptoquark, χ , decays either into $s\mu^+$ or $c\overline{\nu}$: $B(\chi \to s\mu^+) + B(\chi \to c\overline{\nu}) = 1$.

MASS LIMITS for Leptoquarks from Single Production

These limits depend on the q- ℓ -leptoquark coupling g_{LQ} . It is often assumed that $g_{LQ}^2/4\pi$ =1/137. Limits shown are for a scalar, weak isoscalar, charge -1/3 lepto-

VALUE (GeV)	CL%	OOCUMENT ID		TECN	COMMENT
>200	95	137 ADLOFF	99	H1	First generation
> 73	95	138 ABREU	93 J	DLPH	Second generation
• • • We do not	use the follow	ing data for averag	ges, fits	, limits,	etc. • • •
>161	95	139 ABREU	99G	DLPH	First generation
		140 DERRICK	97	ŽEUS	Lepton-flavor violation
>237	95	¹⁴¹ AID	96B	H1	First generation
> 65	95	138 ABREU	93 J	DLPH	First generation
>168	95	142 DERRICK	93	ZEUS	First generation

- 137 For limits on states with different quantum numbers and the limits in the mass-coupling plane, see their Fig. 13 and Fig. 14. ADLOFF 99 also search for leptoquarks with lepton-liavor violating couplings. ADLOFF 99 supersedes AID 968.

 18 Limit from single production in Z decay. The limit is for a leptoquark coupling of electromagnetic strength and assumes B(\ellqq) = 2/3. The limit is 77 GeV if first and second leptoquarks are degenerate.
- 139 ABREU 996 limit obtained from process $e\gamma \rightarrow LQ+q$. For limits on vector and scalar states with different quantum numbers and the limits in the coupling-mass plane, see their Fig. 4 and Table 2.
- 140 DERRICK 97 search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 5–8 and Table 1 for detailed limits.
- 141 AID 96B also search for leptoquarks with lepton-flavor violating couplings. For limits on states with different quantum numbers and the limits in the coupling-mass plane, see their Fig. 2, Fig. 3, and Table 2.
- 142 DERRICK 93 search for single leptoquark production in ep collisions with the decay eq and $\nu\,q$. The limit is for leptoquark coupling of electromagnetic strength and assumes $B(e\,q)=B(\nu\,q)=1/2$. The limit for $B(e\,q)=1$ is 176 GeV. For limits on states with different quantum numbers, see their Table 3.

Indirect Limits for Leptoquarks

VALUE (TeV)	CL%	DOCUMENT ID TECN COMMENT
• • • We do not use the	ne followi	ing data for averages, fits, limits, etc. • • •
> 0.2	95	143 BARATE 00: ALEP e+e- 144 ABBIENDI 99 OPAL
> 19.3	95	ABE 98V CDF $B_s \rightarrow e^{\pm} \mu^{\mp}$, Pati-Salam type
		146 ACCIARRI 98 JL3 $e^+e^- \rightarrow q\bar{q}$
		147 ACKERSTAFF 98V OPAL $e^+e^- \rightarrow q\overline{q}$, $e^+e^- \rightarrow b\overline{b}$
> 0.76	95	148 DEANDREA 97 RVUE \tilde{R}_2 leptoquark
,		149 DERRICK 97 ZEUS Lepton-flavor violation
		¹⁵⁰ GROSSMAN 97 RVUE $B \rightarrow \tau^+\tau^-(X)$
		¹⁵¹ JADACH 97 RVUE $e^+e^- \rightarrow q\bar{q}$
> 0.31	95	152 AID 95 H1 First generation
>1200		153 KUZNETSOV 95B RVUE Pati-Salam type
		154 MIZUKOSHI 95 RVUE Third generation scalar leptoquark
> 0.3	95	155 BHATTACH 94 RVUE Spin-0 leptoquark coupled to $\overline{e}_R t_I$
		156 DAVIDSON 94 RVUE
> 18		157 KUZNETSOV 94 RVUE Pati-Salam type
> 0.43	95	158 LEURER 94 RVUE First generation spin-1 leptoquark
> 0.44	95	158 LEURER 94B RVUE First generation spin-0 leptoquark
		159 MAHANTA 94 RVUE P and T violation
> 350		160 DESHPANDE 83 RVUE Sup. by KUZNETSOV 958
> 1		161 SHANKER 82 RVUE Nonchiral spin-0 lepto- quark
> 125		161 SHANKER 82 RVUE Nonchiral spin-1 lepto-

- 143 BARATE 001 search for deviations in cross section and jet-charge asymmetry in $e^+\epsilon$
- 7q due to t-channel exchange of a leptoquark at √s=130 to 183 GeV. Limits for other scalar and vector leptoquarks are also given in their Table 22.

 144 ABBIENDI 99 limits are from e⁺e⁻ → qq̄ cross section at 130–136, 161–172, 183 GeV. See their Fig. 8 and Fig. 9 for limits in mass-coupling plane.
- 145 ABE 98v quoted limit is from B($B_5 \to e^{\pm} \mu^{\mp}$)< 8.2 \times 10⁻⁶. ABE 98v also obtain a similar limit on $M_{LQ}>20.4$ TeV from B($B_d\to e^\pm\mu^\mp$)< 4.5 \times 10⁻⁶. Both bounds assume the non-canonical association of the b quark with electrons or muons
- 146 ACCIARRI 981 limit is from $e^+e^- \rightarrow q\bar{q}$ cross section at $\sqrt{s}=130-172$ GeV which can be affected by the t- and u-channel exchanges of leptoquarks. See their Fig. 4 and Fig. 5 for limits in the mass-coupling plane.
- 147 ACKERSTAFF 989 limits are from $e^+e^- \to q\bar{q}$ and $e^+e^- \to b\bar{b}$ cross sections at \sqrt{s} = 130-172 GeV, which can be affected by the t- and u-channel exchanges of leptoquarks. See their Fig. 21 and Fig. 22 for limits of leptoquarks in mass-coupling plane.
- 148 DEANDREA 97 limit is for R_2 leptoquark to the production at one production (APV). The coupling of leptoquark is assumed to be electromagnetic strength. See Table 2 for limits of the four-fermion interactions induced by various scalar leptoquark exchange. DEANDREA 97 combines APV limit and limits from Tevatron and HERA. See Fig. 1–4 for combined limits of leptoquark in mass-coupling plane.
- 149 DERRICK 97 search for lepton-flavor violation in ep collision. See their Tables 2–5 for limits on lepton-flavor violating four-fermion interactions induced by various leptoquarks.
- 150 GROSSMAN 97 estimate the upper bounds on the branching fraction $B \to \tau^+\tau^-(X)$ from the absence of the B decay with large missing energy. These bounds can be used to constrain leptoquark induced four-fermion interactions.
- 151 JADACH 97 limit is from $e^+e^- \rightarrow q\overline{q}$ cross section at \sqrt{s} =172.3 GeV which can be affected by the t- and u-channel exchanges of leptoquarks. See their Fig. 1 for limits on ector leptoquarks in mass-coupling plane.
- 152 AID 95 limit is for the weak isotriplet spin-1 leptoquark with the electromagnetic coupling strength. For the limits of leptoquarks with different quantum number, see their Table 2. AID 95 limits are from the measurements of the Q^2 spectrum measurement of $e\,p\,\rightarrow$
- 153 KUZNETSOV 95B use π, K, B, τ decays and μe conversion and give a list of bounds on the leptoquark mass and the fermion mixing matrix in the Pati-Salam model. The quoted limit is from K_L → μe decay assuming zero mixing. See also KUZNETSOV 94, DESHPANDE 83, and DIMOPOULOS 81.
- 154 MIZUKOSHI 95 calculate the one-loop radiative correction to the Z-physics parameters in various scalar leptoquark models. See their Fig. 4 for the exclusion plot of third generation leptoquark models in mass-coupling plane.
- 155 BHATTACHARYYA 94 limit is from one-loop radiative correction to the leptonic decay width of the Z. m_H =250 GeV, $\alpha_S(m_Z)$ =0.12, m_t =180 GeV, and the electroweak strength of leptoquark coupling are assumed. For leptoquark coupled to $\overline{e}_L t_R$, $\overline{\mu}t$, and $\overline{\tau}t$, see Fig. 2 in BHATTACHARYYA 948 erratum and Fig. 3.
- 156 DAVIDSON 94 gives an extensive list of the bounds on leptoquark-induced four-fermion insteractions from π, K, D, B, μ, τ decays and meson mixings, etc. See Table 15 of DAVIDSON 94 for detail.
 157 KUZNETSOV 94 gives mixing independent bound of the Pati-Salam leptoquark from
- the cosmological limit on $\pi^0 \to \overline{\nu}\nu$.
- 158 LEURER 94, LEURER 94B limits are obtained from atomic parity violation and apply to any chiral leptoquark which couples to the first generation with electromagnetic strength. For a nonchiral leptoquark, universality in $\pi_{\ell 2}$ decay provides a much more stringent
- bound. See also SHANKER 82.

 159 MAHANTA 94 gives bounds of P- and T-violating scalar-leptoquark couplings from atomic and molecular experiments.
- 160 DESHPANDE 83 used upper limit on $K_L^0
 ightarrow \mu e$ decay with renormalization-group equations to estimate coupling at the heavy boson mass. See also DIMOPOULOS 81. $161\,{\rm From}~(\pi\to e\nu)/(\pi\to \mu\nu)$ ratio. SHANKER 82 assumes the leptoquark induced
- four-fermion coupling $4g^2/M^2$ (\overline{v}_{eL} u_R) ($\overline{d}_L e_R$)with g=0.004 for spin-0 leptoquark and g^2/M^2 $(\overline{\nu}_{eL} \ \gamma_{\mu} \ ^{\mu} \iota_L) \ (\overline{d}_R \ \gamma^{\mu} \ ^{e}_R)$ with $g \simeq 0.6$ for spin-1 leptoquark.

Gauge & Higgs Boson Particle Listings

Heavy Bosons Other than Higgs Bosons

MASS LIMITS for Diquarks

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following	data for averages	s, fits, limits,	etc. • • •
none 290-420		⁵² ABE	97G CDF	E ₆ diquark
none 15-31.7	95 16	⁵³ ABREU	940 DLPH	SUSY Es diquark

 $^{162}\,\mathrm{ABE}$ 97G search for new particle decaying to dijets.

163 ABREU 940 limit is from $e^+e^- \rightarrow \overline{c}\overline{s}cs$. Range extends up to 43 GeV if diquarks are degenerate in mass.

MASS LIMITS for g_A (axigiuon)

Axigluons are massive color-octet gauge bosons in chiral color models and have axial-vector coupling to quarks with the same coupling strength as gluons.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not u	se the followi	ing data for average:	s, fits,	limits,	etc. • • •
>365	95	164 DONCHESKI	98	RVUE	$\Gamma(Z \rightarrow hadron)$
none 200-980	95	165 ABE			$p\overline{p} \rightarrow g_A X, X \rightarrow 2 \text{ jets}$
none 200-870	95	¹⁶⁶ ABE	95N	CDF	$p\overline{p} \rightarrow g_A X, g_A \rightarrow q\overline{q}$
none 240-640	95	167 ABE			p p → g _A X, g _A → 2iets
> 50	95	168 CUYPERS	91	RVUE	$\sigma(e^+e^- \rightarrow hadrons)$
none 120-210	95	¹⁶⁹ ABE	9 0н	CDF	$p \stackrel{\sim}{p} \rightarrow g_A X, g_A \rightarrow$ 2 iets
> 29		170 ROBINETT	89	THEO	Partial-wave unitarity
none 150-310	95	¹⁷¹ ALBAJAR	888	UA1	$p\overline{p} \rightarrow g_A X, g_A \rightarrow$ 2jets
> 20		BERGSTROM	88	RVUE	$p\overline{p} \rightarrow \Upsilon X \text{ via } g_A g$
> 9		172 CUYPERS			γ decay
> 25		¹⁷³ DONCHESKI	888	RVUE	γ decay
	98 compare «	173 DONCHESKI			

- $lpha_{\mathsf{S}}$ derived from low-energy data and that from $\Gamma(\mathsf{Z} \, o \, lacksquare$ hadrons)/ $\Gamma(Z \rightarrow \text{leptons})$.
- 165 ABE 97G search for new particle decaying to dijets.
- 166 ABE 95N assume axigluons decaying to quarks in the Standard Model only.
- 167 ABE 936 assume $\Gamma(g_A)=N\alpha_S m_{g_A}/6$ with N=10.
- 168 CUYPERS 91 compare α_{S} measured in Υ decay and that from R at PEP/PETRA
- energies. 169 ABE 90H assumes $\Gamma(g_A) = N\alpha_S m_{g_A}/6$ with N = 5 ($\Gamma(g_A) = 0.09 m_{g_A}$). For N = 10, the excluded region is reduced to 120–150 GeV.
- $170\, {\sf ROBINETT}$ 89 result demands partial-wave unitarity of J=0 $t \bar t \to t \bar t$ scattering amplitude and derives a limit $m_{
 m g_A} > 0.5 \ m_{
 m t}$. Assumes $m_{
 m t} > 56$ GeV.
- 171 ALBAJAR 88B result is from the nonobservation of a peak in two-jet invariant mass distribution. $\Gamma(g_A) < 0.4~m_{g_A}$ assumed. See also BAGGER 88.
- 172 CUYPERS 88 requires $\Gamma(T \to g g_A) < \Gamma(T \to g g g)$. A similar result is obtained by
- 173 DONCHESKI 88B requires $\Gamma(\Upsilon \to g q \bar{q})/\Gamma(\Upsilon \to g g g) < 0.25$, where the former decay proceeds via axigluon exchange. A more conservative estimate of < 0.5 leads to $m_{g_A} > 21$ GeV.

X⁰ (Heavy Boson) Searches in Z Decays

Searches for radiative transition of Z to a lighter spin-0 state x^0 decaying to hadrons, a lepton pair, a photon pair, or invisible particles as shown in the comments. The limits are for the product of branching ratios.

minus are for	the product	or branching ratios	•		
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
• • • We do not us	e the follow	ving data for averag	ges, fits, limits,	etc. • • •	
		174 BARATE	98u ALEP	$X^0 \rightarrow \ell \bar{\ell}, q\bar{q}, gg, \gamma\gamma,$	
		¹⁷⁵ ACCIARRI	97Q L3	$X^0 \stackrel{\nu}{\rightarrow}$ invisible parti-	
		176 ACTON	93E OPAL	$x^0 \rightarrow \gamma \gamma$	
		177 ABREU	92D DLPH	$X^0 \rightarrow \text{hadrons}$	
		178 ADRIANI	92F L3	$X^0 \rightarrow \text{hadrons}$	
		179 ACTON	91 OPAL	$X^0 \rightarrow anything$	
$< 1.1 \times 10^{-4}$	95	180 ACTON	91B OPAL	$X^0 \rightarrow e^+e^-$	
$< 9 \times 10^{-5}$	95	180 ACTON	91B OPAL	$X^0 \rightarrow \mu^+\mu^-$	
$<1.1 \times 10^{-4}$	95	180 ACTON	91B OPAL	$X^0 \rightarrow \tau^+ \tau^-$	
$< 2.8 \times 10^{-4}$	95	¹⁸¹ ADEVA	91b L3	$X^0 \rightarrow e^+e^-$	
$< 2.3 \times 10^{-4}$	95	¹⁸¹ ADEVA	91D L3	$\chi^0 \rightarrow \mu^+\mu^-$	
$< 4.7 \times 10^{-4}$	95	¹⁸² ADEVA	91D L3	$X^0 \rightarrow \text{hadrons}$	
<8 × 10 ⁻⁴	95	183 AKRAWY	90J OPAL	$X^0 \rightarrow hadrons$	
<9 × 10 ⁻⁵ <1.1 × 10 ⁻⁴ <2.8 × 10 ⁻⁴ <2.3 × 10 ⁻⁴ <4.7 × 10 ⁻⁴	95 95 95 95 95	180 ACTON 180 ACTON 181 ADEVA 181 ADEVA 182 ADEVA	91B OPAL 91B OPAL 91D L3 91D L3 91D L3	$\begin{array}{cccc} X^0 &\rightarrow & \mu^+\mu^- \\ X^0 &\rightarrow & \tau^+\tau^- \\ X^0 &\rightarrow & e^+e^- \\ X^0 &\rightarrow & \mu^+\mu^- \\ X^0 &\rightarrow & \text{hadrons} \end{array}$	

- 174 BARATE 980 obtain limits on B($Z \to \gamma X^0$)B($X^0 \to \ell \bar{\ell}, q \bar{q}, gg, \gamma \gamma, \nu \bar{\nu}$). See
- ¹⁷⁵See Fig. 4 of ACCIARRI 97Q for the upper limit on B($Z \rightarrow \gamma X^0; E_{\gamma} > E_{min}$) as a function of Emin.
- 176 ACTON 93E give $\sigma(e^+e^- \rightarrow X^0\gamma)$ ·B($X^0 \rightarrow \gamma\gamma$)< 0.4 pb (95%CL) for m_{X^0} =60 \pm 2.5 GeV. If the process occurs via s-channel γ exchange, the limit translates to $\Gamma(X^0)\cdot B(X^0\to\gamma\gamma)^2<20$ MeV for $m_{X^0}=60\pm1$ GeV.
- ¹⁷⁷ABREU 92D give σ_Z · B(Z $\rightarrow \gamma X^0$) · B($X^0 \rightarrow \text{hadrons}$) <(3-10) pb for m_{X^0} = 10-78 GeV. A very similar limit is obtained for spin-1 X^0 .
- 178 ADRIANI 92F search for isolated γ in hadronic Z decays. The limit $\sigma_Z + \mathrm{B}(Z \to \gamma X^0)$ \cdot B(X 0 \rightarrow hadrons) <(2–10) pb (95%CL) is given for $m_{\chi 0}=$ 25–85 GeV.
- 179 ACTON 91 searches for $Z \to Z^* X^0$, $Z^* \to e^+ e^-$, $\mu^+ \mu^-$, or $\nu \overline{\nu}$. Excludes any new scalar ${\it X}^0$ with $m_{{\it X}^0} <$ 9.5 GeV/c if it has the same coupling to ${\it ZZ}^*$ as the MSM
- 180 ACTON 91B limits are for $m_{\chi^0}=$ 60-85 GeV.

- $^{181}\,\mathrm{ADEVA}$ 91D limits are for $m_{\chi^0}=$ 30–89 GeV.
- ¹⁸² ADEVA 91D limits are for $m_{\chi^0} = 30$ -86 GeV.
- ¹⁸³ AKRAWY 90J give $\Gamma(Z \to \gamma X^0)$ ·B($X^0 \to \text{hadrons}$) < 1.9 MeV (95%CL) for m_{X^0} = 32-80 GeV. We divide by $\Gamma(Z) = 2.5$ GeV to get product of branching ratios. For nonresonant transitions, the limit is $B(Z \to \gamma q \bar{q}) < 8.2$ MeV assuming three-body phase space distribution.

MASS LIMITS for a Heavy Neutral Boson Coupling to e+e-

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not t	use the fol	lowing data for aver	ages,	fits, lim	its, etc. • • •
none 55-61		¹⁸⁴ ODAKA	89	VNS	$\Gamma(X^0 \rightarrow e^+e^-)$
					$\cdot B(X^0 \rightarrow hadrons) \gtrsim$
>45	95	185 DERRICK		HRS	$\Gamma(X^0 \rightarrow e^+e^-)=6 \text{ MeV}$
>46.6	95	¹⁸⁶ ADEVA	85	MRKJ	$\Gamma(X^0 \rightarrow e^+e^-)=10 \text{ keV}$
>48	95	¹⁸⁶ ADEVA	85	MRKJ	$\Gamma(X^0 \rightarrow e^+e^-)=4 \text{ MeV}$
		¹⁸⁷ BERGER	85B	PLUT	,
none 39.8-45.5		¹⁸⁸ ADEVA	84	MRKJ	$\Gamma(X^0 \rightarrow e^+e^-)=10 \text{ keV}$
>47.8	95	188 ADEVA	84	MRKJ	$\Gamma(X^0 \rightarrow e^+e^-)=4 \text{ MeV}$
none 39.8-45.2		188 BEHREND	84C	CELL	
>47	95	188 BEHREND	84C	CELL	$\Gamma(X^0 \rightarrow e^+e^-)=4 \text{ MeV}$

- 184 ODAKA 89 looked for a narrow or wide scalar resonance in $e^+\,e^-\,
 ightarrow\,$ hadrons at $E_{
 m cm}$
- 185 DERRICK 86 found no deviation from the Standard Model Bhabha scattering at $E_{\rm CM}=$ 29 GeV and set limits on the possible scalar boson e^+e^- coupling. See their figure 4 for excluded region in the $\Gamma(X^0 o e^+e^-)$ - m_{X^0} plane. Electronic chiral invariance requires a parity doublet of X^0 , in which case the limit applies for $\Gamma(X^0 \to e^+e^-) =$
- 186 ADEVA 85 first limit is from 2γ , $\mu^+\mu^-$, hadrons assuming X^0 is a scalar. Second limit is from e^+e^- channel. $E_{\rm cm}=40-47$ GeV. Supersedes ADEVA 84.
- ¹⁸⁷ BERGER 85B looked for effect of spin-0 boson exchange in $e^+e^- \rightarrow e^+e^-$ and $\mu^+\mu^$ at $E_{\rm cm}=$ 34.7 GeV. See Fig. 5 for excluded region in the $m_{\chi^0}-\Gamma(\chi^0)$ plane.
- 188 ADEVA 84 and BEHREND 84C have $E_{
 m cm}=39.8$ –45.5 GeV. MARK-J searched ${\it X}^{0}$ in $e^+e^- o hadrons, 2\gamma, \mu^+\mu^-, e^+e^-$ and CELLO in the same channels plus τ pair. No narrow or broad X^0 is found in the energy range. They also searched for the effect of x^0 with $m_{X} > E_{cm}$. The second limits are from Bhabha data and for spin-0 singlet. The same limits apply for $\Gamma(X^0 \to e^+e^-) = 2$ MeV if X^0 is a spin-0 doublet. The second limit of BEHREND 84c was read off from their figure 2. The original papers also

Search for X⁰ Resonance in e⁺e⁻ Collisions

The limit is for $\Gamma(X^0 \to e^+e^-) \cdot B(X^0 \to f)$, where f is the specified final state. Spin 0 is assumed for X^0 .

Jpiii 0 is ass	unica for A .			
VALUE (keV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not	use the following	g data for averag	es, fits, limits,	etc. • • •
<10 ³		⁸⁹ ABE	93c VNS	Г(ее)
<(0.4-10)		.90 ABE	93C VNS	$f = \gamma \gamma$
<(0.3-5)	95 191,1		93D TOPZ	$f = \gamma \gamma$
<(2-12)	95 191,1		93D TOPZ	f = hadrons
<(4-200)	95 192,1		93D TOPZ	f = ee
<(0.1-6)	95 192,1		93D TOPZ	$f = \mu \mu$
<(0.5-8)	90 1	.94 STERNER	93 AMY	$f = \gamma \gamma$
189 Limit is for F/	v0 +	- EC 63 E	CAV 60= F(V)) - 0 E COV

- ¹⁸⁹Limit is for $\Gamma(X^0 \to e^+e^-) \ m_{X^0} = 56-63.5 \ \text{GeV} \ \text{for} \ \Gamma(X^0) = 0.5 \ \text{GeV}.$
- 190 Limit is for $m_{\chi 0}=56-61.5$ GeV and is valid for $\Gamma(\chi^0)\ll 100$ MeV. See their Fig. 5 for limits for $\Gamma=1,2$ GeV.
- 191 Limit is for $m_{\chi^0} = 57.2$ -60 GeV.
- ¹⁹² Limit is valid for $\Gamma(X^0) \ll 100$ MeV. See paper for limits for $\Gamma=1$ GeV and those for J = 2 resonances.193 Limit is for $m_{\chi 0} = 56.6-60 \text{ GeV.}$
- 194 STERNER 93 limit is for $m_{\chi^0}=57\text{--}59.6$ GeV and is valid for $\Gamma(\chi^0){<}100$ MeV. See their Fig. 2 for limits for $\Gamma=1,3$ GeV.

Search for X⁰ Resonance In Two-Photon Process

The limit is for $\Gamma(X^0) \cdot B(X^0 \rightarrow \gamma \gamma)^2$. Spin 0 is assumed for X^0 . DOCUMENT ID <u>CL%</u> TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 195 ACTON 95 93E OPAL $m_{\chi 0} = 60 \pm 1 \text{ GeV}$ 95 BUSKULIC 93F ALEP $m_{\chi^0} \sim 60 \text{ GeV}$ $^{195}\,\mathrm{ACTON}$ 93E limit for a J=2 resonance is 0.8 MeV.

Search for X^0 Resonance in $e^+e^- \rightarrow X^0\gamma$

VALUE (GeV) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹⁹⁶ ADAM 96c DLPH X⁰ decaying invisibly

196 ADAM 96c is from the single photon production cross at \sqrt{s} =130, 136 GeV. The upper bound is less than 3 pb for X^0 masses between 60 and 130 GeV. See their Fig. 5 for the exact bound on the cross section $\sigma(e^+e^- \rightarrow \gamma X^0)$.

Search for X^0 Resonance in $Z \to f\overline{f}X^0$ The limit is for $B(Z \to f\overline{f}X^0) \cdot B(X^0 \to F)$ where f is a fermion and F is the specified final state. Spin 0 is assumed for x^0 .

VALUE (MeV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not u	se the following	ng data for average	s, fits, limits,	, etc. • • •
		¹⁹⁷ ABREU	96T DLPH	$f=e,\mu,\tau; F=\gamma\gamma$
$< 3.7 \times 10^{-6}$		¹⁹⁸ ABREU	96T DLPH	$f=\nu$; $F=\gamma\gamma$
		¹⁹⁹ ABREU	96T DLPH	f=q; F=γγ
$< 6.8 \times 10^{-6}$		¹⁹⁸ ACTON	93E OPAL	$f=e,\mu,\tau; F=\gamma\gamma$
<5.5 × 10 ⁻⁶		¹⁹⁸ ACTON	93E OPAL	$f=q; F=\gamma\gamma$
$< 3.1 \times 10^{-6}$	95	¹⁹⁸ ACTON	93E OPAL	$f=\nu$; $F=\gamma\gamma$
<6.5 × 10 ⁻⁶	95	198 ACTON	93E OPAL	$f=e,\mu; F=\ell\bar{\ell}, q\bar{q}, \nu\bar{\nu}$
$< 7.1 \times 10^{-6}$		198 BUSKULIC		$f=e,\mu$; $F=\ell\bar{\ell}$, $q\bar{q}$, $\nu\bar{\nu}$
		²⁰⁰ ADRIANI	92F L3	$f=q; F=\gamma\gamma$

- $^{197}\mathrm{ABREU}$ 96T obtain limit as a function of $m_{\chi0}$. See their Fig. 6.
- $^{198}\mathrm{Limit}$ is for m_{χ^0} around 60 GeV.
- $^{199}\mathrm{ABREU}$ 96T obtain limit as a function of $m_{\chi0}.$ See their Fig. 15.
- ²⁰⁰ ADRIANI 92F give σ_Z · B($Z \to q \overline{q} \, X^0$) · B($X^0 \to \gamma \gamma$)<(0.75–1.5) pb (95%CL) for $m_{X^0} = 10$ –70 GeV. The limit is 1 pb at 60 GeV.

Search for X⁰ Resonance in nT - W X⁰

SCALCITION A INCOMMENCE III	pp mn			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
• • We do not use the following	ng data for average	s, fits, limits,	etc. • • •	
	²⁰¹ ABE	97w CDF	$X^0 \rightarrow b\overline{b}$	

201 ABE 97w search for X^0 production associated with W in $p\bar{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV. The 95%CL upper limit on the production cross section times the branching ratio for $X^0 \to b\bar{b}$ ranges from 14 to 19 pb for X^0 mass between 70 and 120 GeV. See their Fig. 3 for upper limits of the production cross section as a function of m_{χ^0} .

Search for Resonance X, Y in $e^+e^- \rightarrow XY$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not	use the following data	for averages	, fits, limits, etc. • • •	
	²⁰² ABREU	99H DLPH	$X \rightarrow 2$ jets, $Y \rightarrow 2$ jets	- 1
	²⁰³ ACKERSTAFF	98x OPAL	$X \rightarrow 2$ jets, $Y \rightarrow 2$ jets	
	204 ACKERSTAFF	98Y OPAL	$X \to \gamma \gamma, Y \to f \overline{f}$	
			$X \rightarrow 2$ jets, $Y \rightarrow 2$ jets	-
	²⁰⁶ BUSKULIC,D	96 ALEP	$X \rightarrow 2$ jets, $Y \rightarrow 2$ jets	

- 202 ABREU 99H refutes the hypothesis that the excess reported in BUSKULIC,D 96 is a sign of new physics at over 99%CL.
- ²⁰³ACKERSTAFF 98x search for $e^+e^- \rightarrow XY \rightarrow 4$ jets at $\sqrt{s}=$ 130–184 GeV. The upper limits on $\sigma(e^+e^- \to XY)$, which are well below the excess reported by BUSKULIC,D 96, are shown in their Fig. 5. 204 ACKERSTAFF 98Y search for $e^+e^- \to XY$, with $X \to \gamma\gamma$, $Y \to f\bar{t}$ where $f\bar{t}$ may
- be $q\bar{q}$, $\ell\bar{\ell}$, or $\nu\bar{\nu}$ at $\sqrt{s}=$ 183 GeV. The upper limits on $\sigma(e^+e^-\to XY)\times B(X\to XY)$ $\gamma\gamma$) are shown in their Fig. 4.
- 205 ALEXANDER 97B search for the associated production of two massive particles decaying into quarks in e^+e^- collisions at \sqrt{s} =130-136 GeV. The 95%CL upper limits on $\sigma(e^+e^- \to XY)$ range from 2.7 to 4.5 pb for 95< $m_X + m_Y <$ 120 GeV.
- 206 BUSKULIC,D 96 observed an excess of four-jet production cross section in e^+e^- collisions at \sqrt{s} =130–136 GeV and find an enhancement in the sum of two dijet masses lisions at $\sqrt{s}=13$ around 105 GeV.

Heavy Particle Production in Quarkonium Decays

Limits are for branching ratios to modes shown. CL% DOCUMENT ID TECN COMMENT VALUE

• • We do not use the	e follow	ing data for average:	s, fit	s, limits,	etc. • • •
$<1.5 \times 10^{5}$	90	207 BALEST	95	CLE2	$\Upsilon(15) \rightarrow X^0 \gamma$, $m_{X^0} < 5 \text{ GeV}$
$< 3 \times 10^{-5}$ -6 $\times 10^{-3}$	90	²⁰⁸ BALEST	95	CLE2	$ \begin{array}{c} X^0 \\ 7(15) \to X^0 \overline{X}^0 \gamma, \\ m_{X^0} < 3.9 \text{ GeV} \end{array} $
$< 5.6 \times 10^{-5}$	90	²⁰⁹ ANTREASYAN	∤ 900	CBAL	
		²¹⁰ ALBRECHT	89	ARG	™X0 < 1.2 dcv

- $^{207}\, {\rm BALEST}$ 95 two-body limit is for pseudoscalar $X^0.$ The limit becomes $<10^{-4}$ for $m_{X^0}<7.7$ GeV.
- 208 BALEST 95 three-body limit is for phase-space photon energy distribution and angular distribution same as for $T \to gg\gamma$.

 209 ANTREASYAN 90c assume that X^0 does not decay in the detector.
- ANTHERS TRIVE 900 assume that X and account and account X^0 ALBRECHT 89 give limits for B(Y(15), $Y(25) \rightarrow X^0 \gamma$)·B($X^0 \rightarrow \pi^+\pi^-$, K^+K^- , $p\bar{p}$) for $m_{X^0} < 3.5$ GeV.

REFERENCES FOR Searches for Heavy Bosons Other Than Higgs Bosons

KEFEKE	NCE	S FUR Searches II	or neavy bosons Other In	ian miggs boson:
ABBOTT	00C	PRL 84 2088	B. Abbott et al.	(D0 Collab.)
BARATE CHAY	00I 00	EPJ C12 183 PR D61 035002	R. Barate et al. J. Chay, K.Y. Lee, S. Nam	(ALEPH Collab.)
ERLER	00	PRL 84 212	J. Erler, P. Langacker	
ROSNER ABBIENDI	00 99	PR D61 016006 EPJ C6 1	J.L. Rosner G. Abbiendi et al,	(OPAL Collab.)
ABBO*T	99J	PRL 83 2896	B. Abbott et al.	(D0 Collab.)
ABREU ABREU	99A 99G	EPJ C11 383 PL B446 62	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)
ABREU	99H	PL B448 311 EPJ C8 3	P. Abreu et al.	(DELPHI Collab.)
ACKERSTAFF ADLOFF	99D 99	EPJ C0 3	K. Ackerstaff et al. C. Adloff et al.	(OPAL Collab.) (H1 Collab.)
CASALBUDNI CZAKON	99 99	PL B460 135 PL B458 355	R. Casalbuoni et al.	· · ·
ERLER	99	PL B456 68	M. Czakon, J. Gluza, M. Zralek J. Erler, P. Langacker	
ABBOTT ABBOTT	98E 9BJ	PRL 80 2051 PRL 81 38	B. Abbott et al. B. Abbott et al.	(D0 Collab.) (D0 Collab.)
ABE	985	PRL 81 4806	F. Abe et al.	(CDF Collab.)
ABE ACCIARRI	98V 98J	PRL 81 5742 PL B433 163	F. Abe et al. M. Acciarri et al.	(CDF Collab.) (L3 Collab.)
ACKERSTAFF	98V	EPJ C2 441	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF ACKERSTAFF	98X 98Y	PL B429 399 PL B437 218	K. Ackerstaff et al. K. Ackerstaff et al.	(OPAL Collab.) (OPAL Collab.)
BARATE	98U	EPJ C4 571	R. Barate et al.	(ALEPH Collab.)
BARENBOIM CHO	98 98	EPJ C1 369 EPJ C5 155	G. Barenboim G. Cho, K. Hagiwara, S. Matsumoti	2
CHO	98B	NP B531 65	G. Cho, K. Hagiwara, Y. Umeda	
CONRAD DONCHESKI	98 98	RMP 70 1341 PR D58 097702	J.M. Conrad, M.H. Shaevitz, T. Bo M.A. Doncheski, R.W. Robinett	lton
ABBOTT	97B	PRL 79 4321	B. Abbott et ai.	(D0 Collab.)
ABE ABE	97F 97G	PRL 78 2906 PR D55 R5263	F. Abe et al. F. Abe et al.	(CDF Collab.) (CDF Collab.)
ABE	975	PRL 79 2192	F. Abe et al.	(CDF Collab.) (CDF Collab.)
ABE ABE	97W 97X	PRL 79 3819 PRL 79 4327	F. Abe et al. F. Abe et al.	(CDF Collab.) (CDF Collab.)
ACCIARRI	97Q	PL B412 201	M. Acciarri et al.	(L3 Collab.)
ALEXANDER	97B	ZPHY C73 201 PR D55 19	G. Alexander et al.	(OPAL Collab.)
ARIMA BARATE	97 97B	PL B399 329	T. Arima et al. R. Barate et al.	(VENUS Collab.) (ALEPH Collab.)
BARENBOIM	97	PR D55 4213	G. Barenboim et al.	(VALE, IFIC)
DEANDREA DERRICK	97 97	PL B409 277 ZPHY C73 613	A. Deandrea M. Derrick et al.	(MARS) (ZEUS Collab.)
GROSSMAN	97	PR D55 2768	M. Derrick et al. Y. Grossman, Z. Ligeti, E. Nardi	(REHO, CIT)
JADACH STAHL	97 97	PL B408 281 ZPHY C74 73	S. Jadach, B.F.L. Ward, Z. Was A. Stahl, H. Voss	(CERN, INPK+) (BONN)
ABACHI	96C	PRL 76 3271	S. Abachi et al.	(D0 Collab.)
ABACHI ABREU	96D 96⊤	PL B385 471 ZPHY C72 179	S. Abachi et al. P. Abreu et al.	(D0 Collab.) (DELPHI Collab.)
ADAM	96 C	PL B380 471	W. Adam et al.	(DELPHI Collab.)
AID ALLET	96B 96	PL B369 173 PL B383 139	S. Aid et al. M. Allet et al. (VILL,	(H1 Collab.) LEUV, LOUV, WISC)
BUSKULIC,D	96	ZPHY C71 179	D. Buskulic et al.	(ALEPH Collab.)
ABACHI ABE	95E 95	PL B358 405 PR D51 R949	S. Abachi et al. F. Abe et al.	(D0 Collab.) (CDF Collab.)
ABE	95M	PRL 74 2900	F. Abe et al.	(CDF Collab.)
ABE ABREU	95N 95M	PRL 74 3538 ZPHY C65 603	F. Abe et al. P. Abreu et al.	(CDF Collab.) (DELPHI Collab.)
AID	95	PL B353 578	S. Aid et al.	(H1 Collab.)
BALEST KUZNETSOV	95 95	PR D51 2053 PRL 75 794	R. Balest et al. I.A. Kuznetsov et al. ((CLEO Collab.) PNPI, KIAE, HARV+)
KUZNETSOV	95B	PAN 58 2113	A.V. Kuznetsov, N.V. Mikheev	(YARO)
MIZUKOSHI	95	Translated from YAF 58 NP B443 20	2228. J.K. Mizukoshi, O.J.P. Eboli, M.C.	Gonzalez-Garcia
ABREU	940	ZPHY C64 183	P. Abreu et al.	(DELPHI Collab.)
BHATTACH Also	94 94B	PL B336 100	G. Bhattacharyya, J. Ellis, K. Sridh G. Bhattacharyya, J. Ellis, K. Sridh	ar (CERN) ar (CERN)
BHATTACH	94B	PL B338 522 (erratum)	G. Bhattacharyya, J. Ellis, K. Sridh	ar (CERN)
DAVIDSON KUZNETŠOV	94 94	ZPHY C61 613 PL B329 295	S. Davidson, D. Bailey, B.A. Campl A.V. Kuznetsov, N.V. Mikheev	bell (CFPA+) (YARO)
KUZNETSOV	94B	JETPL 60 315	I.A. Kuznetsov et al. (PNPI, KIAE, HARV+)
LEURER	94	Translated from ZETFP PR D50 536	60 311. M. Leurer	(REHO)
LEURER	94B	PR D49 333 PRL 71 1324	M. Leurer	(REHO)
Also MAHANTA	93 94	PRL 71 1324 PL B337 128	M. Leurer U. Mahanta	(REHO) (MEHTA)
SEVERIJNS	94	PRL 73 611 (erratum)	N. Severijns et al. (L	OUV, WISC, LEUV+)
VILAIN ABE	94B 93C	PL B332 465 PL B302 119	P. Vilain et al. K. Abe et al.	(CHARM II Collab.) (VENUS Collab.)
ABE	930	PL B304 373	T. Abe et al.	(TOPAZ Collab.)
ABE ABREŲ	93G 93J	PRL 71 2542 PL B316 620	F. Abe et al. P. Abreu et al.	(CDF Collab.) (DELPHI Collab.)
ACTON	93E	PL B311 391 PL B306 187	P.D. Acton et ai.	(OPAL Collab.)
ADRIANI ADRIANI	93D	PL B306 187 PRPL 236 1	O. Adriani et al. O. Adriani et al.	(L3 Collab.) (L3 Collab.)
ALITTI	93 93	NP B400 3	J. Alitti et al.	(UA2 Collab.)
ALTARELLI BHATTACH	93B 93	PL B318 139 PR D47 R3693	G. Altarelli et al. (G. Bhattacharyya et al. (CERN, FÍRZ, GEVA+) CALC, JADA, ICTP+)
BUSKULIC	93F	PL B308 425	D. Buskulic et al.	(ALEPH Collab.)
DERRICK RIZZO	93	PL B306 173	M. Derrick et al.	(ZEUS Collab.) (ANL)
SEVERIJNS	93 93	PR D48 4470 PRL 70 4047	T.G. Rizzo N. Severijns et al. (1	OUV, WISC, LEUV+)
Also	94	PRL 73 611 (erratum)	N. Severijns et al. (I	OUV, WISC, LEUV+) (AMY Collab.)
STERNER ABE	93 92B	PL B303 385 PRL 68 1463	K.L. Sterner et al. F. Abe et al.	(CDF Collab.)
ABREU	92D	ZPHY C53 555	P. Abreu et al.	(DELPHI Collab.)
ADRIANI DECAMP	92F 92	PL B292 472 PRPL 216 253	O. Adriani et al. D. Decamp et al.	(L3 Collab.) (ALEPH Collab.)
IMAZATO		PRL 69 877	J. Imazato et al.	(KEK, INUS, TOKY+)
MISHRA POLAK	92		S.R. Mishra et al. (COLU, CHIC, FNAL+)
ABE	92 92 92B	PRL 68 3499 PR D46 3871		(SILES)
	92 92B 91F	PR D46 3871 PRL 67 2609	J. Polak, M. Zralek F. Abe et al.	(SILES) (CDF Collab.)
ACTON ACTON	92 92B 91F 91	PR D46 3871 PRL 67 2609 PL B268 122	J. Polak, M. Zralek F. Abe et al. D.P. Acton et al.	(CDF Collab.) (OPAL Collab.)
ACTON ACTON ADEVA	92 928 91F 91 918 91D	PR D46 3871 PRL 67 2609 PL B268 122 PL B273 338 PL B262 155	J. Polak, M. Zralek F. Abe et al. D.P. Acton et al. D.P. Acton et al. B. Adeva et al.	(CDF Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.)
ACTON ACTON ADEVA ALITTI	92 92B 91F 91 91B 91D 91	PR D46 3871 PRL 67 2609 PL B268 122 PL B273 338 PL B262 155 ZPHY C49 17	J. Polak, M. Zralek F. Abe et al. D.P. Acton et al. D.P. Acton et al. B. Adeva et al. J. Alitti et al.	(CDF Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (UA2 Collab.)
ACTON ACTON ADEVA ALITTI AQUINO COLANGELO	92 92B 91F 91 91B 91D 91 91	PR D46 3871 PRL 67 2609 PL B268 122 PL B273 338 PL B262 155 ZPHY C49 17 PL B261 280 PL B253 154	J. Polak, M. Zralek F. Abe et al. D.P. Acton et al. D.P. Acton et al. B. Adeva et al. J. Alitti et al. M. Aquino, A. Fernandez, A. Garcia P. Colangelo, G. Nardulli	(CDF Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (UA2 Collab.) (CINV, PUEB) (BARI)
ACTON ACTON ADEVA ALITTI AQUINO COLANGELO CUYPER5	92 928 91F 91 918 91D 91 91 91	PR D46 3871 PRL 67 2609 PL B268 122 PL B273 338 PL B262 155 ZPHY C49 17 PL B261 280 PL B253 154 PL B259 173	J. Polak, M. Zralek F. Abe et al. D.P. Acton et al. D.P. Acton et al. B. Adeva et al. J. Alitti et al. M. Aquino, A. Fernandez, A. Garcia, P. Colangelo, G. Nardulli F. Cuypers, A.F. Falk, P.H. Frampt	(CDF Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (UA2 Collab.) (CINV, PUEB) (BARI) On (DURH, HARV+)
ACTON ACTON ADEVA ALITTI AQUINO COLANGELO CUYPERS FARAGGI POLAK	92 928 91F 91 918 91D 91 91 91 91	PR D46 3871 PRL 67 2609 PL B268 122 PL B273 338 PL B262 155 ZPHY C49 17 PL B261 280 PL B253 154 PL B259 173 MPL A6 61 NP B363 385	J. Polak, M. Zralek F. Abe et al. D.P. Acton et al. D.P. Acton et al. B. Adeva et al. J. Alitti et al. M. Aquino, A. Fernandez, A. Garcix P. Colangelo, G. Nardulli F. Cuypers, A.F. Falk, P.H. Frampt A.E. Faraggi, D.V. Nanopoulos J. Polak, M. Zralek	(CDF Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (UA2 Collab.) (CINV, PUEB) (BARI) on (DURH, HARV+) (TAMU)
ACTON ACTON ADEVA ALITTI AQUINO COLANGELO CUYPERS FARAGGI POLAK RIZZO	92 928 91F 91 918 91D 91 91 91 91 91	PR D46 3871 PRL 67 2609 PL B268 122 PL B273 338 PL B262 155 ZPHY C49 17 PL B261 280 PL B253 154 PL B259 173 MPL A6 61 NP B363 385 PR D44 202	J. Polak, M. Zralek F. Abe et al. D.P. Acton et al. D.P. Acton et al. B. Adeva et al. J. Alitti et al. M. Aquino, A. Fernandez, A. Garcii P. Colangelo, G. Nardulli F. Colypers, A.F. Falik, P.H. Frampt A.E. Faraggi, D.V. Nanopoulos J. Polak, M. Zralek T.G. Rizzo	(CDF Collab.) (OPAL Collab.) (OPAL Collab.) (UAZ Collab.) (UAZ Collab.) (UAZ Collab.) (UAX HARV+) (ON (DURH, HARV+) (TAMU) (SILES) (WISC, ISU)
ACTON ACTON ADEVA ALITTI AQUINO COLANGELO CUYPERS FARAGGI POLAK	92 928 91F 91 918 91D 91 91 91 91	PR D46 3871 PRL 67 2609 PL B268 122 PL B273 338 PL B262 155 ZPHY C49 17 PL B261 280 PL B253 154 PL B259 173 MPL A6 61 NP B363 385	J. Polak, M. Zralek F. Abe et al. D.P. Acton et al. D.P. Acton et al. J. Altitt et al. J. Altitt et al. M. Aquino, A. Fernandez, A. Garci; P. Colangelo, G. Nardulli F. Cuypers, A.F. Falk, P.H. Frampt A.E. Faraggi, D.V. Nanopoulos J. Polak, M. Zralek T.G. Rizzo	(CDF Collab.) (OPAL Collab.) (OPAL Collab.) (UAZ Collab.) (UAZ Collab.) (UAZ Collab.) (IAZ Collab.)
ACTON ACTON ACTON ADEVA ALITTI AQUINO COLANGELO CUYPERS FARAGGI POLAK RIZZO WALKER ABE ABE	92 928 91F 91 918 91D 91 91 91 91 91 90F 90H	PR D46 3871 PRL 67 2609 PL 8268 122 PL 8273 338 PL 8262 155 ZPHY C49 17 PL 8261 280 PL 8253 154 PL 8269 173 MPL A6 61 NP B363 385 PR D44 202 APJ 3/6 51 PL 8246 297 PR D41 1722	J. Polak, M. Zralek F. Abe et al. D.P. Acton et al. D.P. Acton et al. B. Adeva et al. J. Alitti et al. M. Aquino, A. Fernandez, A. Garci; P. Colangelo, G. Nardulli F. Cuypers, A.F. Falk, P.H. Frampt A.E. Faraggi, D.V. Nanopoulos J. Polak, M. Zralek T.G. Rizzo T.P. Walker et al. K. Abe et al.	(CDF Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (UA2 Collab.) (GINV, PUEB) (GARI) (OF (DURH, HARV+) (TAMU) (SILES) (WISC, ISU) (HSCA, OSU, CHIC+) (VENUS Collab.) (CDF Collab.)
ACTON ACTON ACTON ACTON ADEVA ALITTI AQUINO COLANGELO CUYPERS FARAGGI POLAK RIZZO WALKER ABE ABE AKRAWY ANTREASYAN	92 928 91F 91 918 91D 91 91 91 91 91 91 91 90F 90H 90J	PR D46 3871 PRL 67 2609 PL 8268 122 PL 8273 338 PL 8262 155 ZPHY C49 17 PL 8253 134 PL 8253 134 PL 8253 134 PN 8363 385 PR D44 202 APJ 3/6 51 PL 8246 297 PR D41 1722 PL 8246 285 PL B246 285 PL B241 204	J. Polak, M. Zralek F. Abe et al. D.P. Acton et al. D.P. Acton et al. B. Adeva et al. J. Alitti et al. M. Aquino, A. Fernandez, A. Garci; P. Cuypers, A.F. Falik, P.H. Frampt A.E. Faraggi, D.V. Nanopoulos J. Polak, M. Zralek T.G. Rizzo T.P. Walker et al. K. Abe et al. M.Z. Akrawy et al. D. Antreasyan et al. D. Antreasyan et al. D. Antreasyan et al.	(CDF Collab.) (OPAL Collab.) (OPAL Collab.) (J3 Collab.) (J42 Collab.) (J63 (CINV. PUEB) (MR) (DURH, HARV+) (SILES) (WSC, ISU) (HSCA, OSU, CHIC+) (VENUS Collab.) (CDF Collab.) (COPAL Collab.) (COPAL Collab.) (COPAT Collab.)
ACTON ACTON ACTON ADEVA ALITTI AQUINO COLANGELO CUYPERS FARAGGI POLAK RIZZO WALKER ABE ABE AKRAWY	92 928 91F 91 918 91D 91 91 91 91 91 91 91 90F 90H 90J	PR D46 3871 PRL 67 2609 PL B268 122 PL B273 338 PL B262 135 ZPHY C49 17 PL B261 280 PL B253 154 PL B259 173 MPL A6 61 NP B363 385 PR D44 202 APJ 376 51 PL B246 297 PR D41 1722 PL B246 285	J. Polak, M. Zralek F. Abe et al. D.P. Acton et al. D.P. Acton et al. B. Adeva et al. J. Alitti et al. M. Aquino, A. Fernandez, A. Garcir P. Colangelo, G. Nardulli F. Cuypers, A.F. Falk, P.H. Frampt A.E. Faraggi, D.V. Nanopoulos J. Polak, M. Zralek T.G. Rizzo T.P. Walker et al. K. Abe et al. F. Abe et al. F. Abe et al. M.Z. Akrawy et al.	(CDF Collab.) (OPAL Collab.) (OPAL Collab.) (JAS Collab.) (JAS Collab.) (CINV. PUEB) (BARI) On (DURH, HARV-1) (WISC, ISU) (HSCA, OSU, CHICL-) (VENUS Collab.) (CDF Collab.) (OPAL Collab.)

Gauge & Higgs Boson Particle Listings

Heavy Bosons Other than Higgs Bosons, Axions (A^0) and Other Very Light Bosons

GRIFOLS	90	NP B331 244	J.A. Grifols, E. Masso	(BARC)
GRIFOLS	90D	PR D42 3293	J.A. Grifols, E. Masso, T.G. Rizzo	(BARC, CERN+)
KIM	90	PL B240 243	G.N. Kim et al.	(AMY Collab.)
LOPEZ	90	PL B241 392	J.L. Lopez, D.V. Nanopoulos	(TAMU)
ALBAJAR	B9	ZPHY C44 15	C. Albajar et al.	(UA1 Collab.)
ALBRECHT	B9	ZPHY C42 349	H. Albrecht et al.	(ARGUS Collab.)
	89B	PR D39 1229		
BARBIERI			R. Barbieri, R.N. Mohapatra	(PISA, UMD)
LANGACKER	B9B	PR D40 1569	P. Langacker, S. Uma Sankar	(PENN)
ODAKA	B9	JPSJ 58 3037	S. Odaka et al.	(VENUS Collab.)
ROBINETT	89	PR D39 834	R.W. Robinett	(PSU)
ALBAJAR	88B	PL B209 127	C. Albajar et al.	(UA1 Collab.)
BAGGER	88	PR D37 1188	J. Bagger, C. Schmidt, S. King	(HARV, BOST)
BALKE	88	PR D37 587		JCB, COLO, NWES+)
BERGSTROM		PL B212 386	L. Bergstrom	(STOH)
CUYPERS	88	PRL 60 1237	F. Cuypers, P.H. Frampton	(UNCCH)
DONCHESKI	88	PL B206 137	M.A. Doncheski, H. Grotch, R. Rot	
DONCHESKI	888	PR D38 412	M.A. Doncheski, H. Grotch, R.W. F	Robinett (PSU)
ANSARI	B7D	PL B195 613	R. Ansari et al.	(UA2 Coliab.)
BARTEL	87B	ZPHY C36 15	W. Bartel et al.	(JADE Collab.)
ARNISON	B6B	EPL 1 327	G.T.J. Arnison et al.	(UA1 Collab.)
BEHRENO	86B	PL B178 452	H.J. Behrend et al.	(CELLO Collab.)
DERRICK	86	PL 166B 463	M. Derrick et al.	(HRS Collab.)
Also	86B	PR D34 3286	M. Derrick et al.	(HRS Collab.)
JODIDIO	86	PR D34 1967	A. Jodidio et al.	(LBL, NWES, TRIU)
Also	88	PR D37 237 erratum	A. Jodidio et al.	(LBL, NWES, TRIU)
MOHAPATRA	86	PR D34 909	R.N. Mohapatra	(UMD)
ADEVA	85	PL 152B 439	B. Adeva et al.	(Mark-J Collab.)
BERGER	85B	ZPHY C27 341	C. Berger et al.	(PLUTO Collab.)
STOKER	85	PRL 54 1887	D.P. Stoker et al.	(LBL, NWES, TRIU)
ADEVA	84	PRL 53 134	B. Adeva et al.	(Mark-J Collab.)
BEHREND	84C	PL 140B 130	H.J. Behrend et al.	(CELLO Collab.)
ARNISON	83D	PL 129B 273	G.T.J. Arnison et al.	(UA1 Collab.)
BERGSMA	83	PL 122B 465	F. Bergsma et al.	(CHARM Collab.)
CARR	83	PRL 51 627	J. Carr et al.	(LBL. NWES, TRIU)
DESHPANDE	83	PR D27 1193	N.G. Deshpande, R.J. Johnson	(OREG)
BEALL	82	PRL 48 848	G. Beall, M. Bander, A. Soni	(UCI, UCLA)
SHANKER	82	NP B204 375	O. Shanker	(TRIU)
DIMOPOUL	81	NP B182 77	S. Dimopoulos, S. Raby, G.L. Kane	
STEIGMAN	79	PRL 43 239	G. Steigman, K.A. Olive, D.N. Schi	
Ç. Z. GAIFII			or occupancy that only out our	

Axions (A^0) and Other Very Light Bosons, Searches for

AXIONS AND OTHER VERY LIGHT BOSONS

Written October 1997 by H. Murayama (University of California, Berkeley) Part I; April 1998 by G. Raffelt (Max-Planck Institute, München) Part II; and April 1998 by C. Hagmann, K. van Bibber (Lawrence Livermore National Laboratory), and L.J. Rosenberg (Massachusetts Institute of Technology) Part III.

This review is divided into three parts:

Part I (Theory)

Part II (Astrophysical Constraints)

Part III (Experimental Limits)

AXIONS AND OTHER VERY LIGHT BOSONS, PART I (THEORY)

(by H. Murayama)

In this section we list limits for very light neutral (pseudo) scalar bosons that couple weakly to stable matter. They arise if there is a global continuous symmetry in the theory that is spontaneously broken in the vacuum. If the symmetry is exact, it results in a massless Nambu–Goldstone (NG) boson. If there is a small explicit breaking of the symmetry, either already in the Lagrangian or due to quantum mechanical effects such as anomalies, the would-be NG boson acquires a finite mass; then it is called a pseudo-NG boson. Typical examples are axions (A^0) [1], familons [2], and Majorons [3,4], associated, respectively, with spontaneously broken Peccei-Quinn [5], family, and lepton-number symmetries. This Review provides brief descriptions of each of them and their motivations.

One common characteristic for all these particles is that their coupling to the Standard Model particles are suppressed by the energy scale of symmetry breaking, *i.e.* the decay constant f, where the interaction is described by the Lagrangian

$$\mathcal{L} = \frac{1}{f} (\partial_{\mu} \phi) J^{\mu}, \tag{1}$$

where J^{μ} is the Noether current of the spontaneously broken global symmetry.

An axion gives a natural solution to the strong CP problem: why the effective θ -parameter in the QCD Lagrangian $\mathcal{L}_{\theta} = \theta_{eff} \frac{\alpha_s}{8\pi} F^{\mu\nu a} \tilde{F}^a_{\mu\nu}$ is so small $(\theta_{eff} \lesssim 10^{-9})$ as required by the current limits on the neutron electric dipole moment, even though $\theta_{eff} \sim O(1)$ is perfectly allowed by the QCD gauge invariance. Here, θ_{eff} is the effective θ parameter after the diagonalization of the quark masses, and $F^{\mu\nu a}$ is the gluon field strength and $\tilde{F}^a_{\mu\nu} = \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}F^{\rho\sigma a}$. An axion is a pseudo-NG boson of a spontaneously broken Peccei–Quinn symmetry, which is an exact symmetry at the classical level, but is broken quantum mechanically due to the triangle anomaly with the gluons. The definition of the Peccei–Quinn symmetry is model dependent. As a result of the triangle anomaly, the axion acquires an effective coupling to gluons

$$\mathcal{L} = \left(\theta_{eff} - \frac{\phi_A}{f_A}\right) \frac{\alpha_s}{8\pi} F^{\mu\nu a} \tilde{F}^a_{\mu\nu} , \qquad (2)$$

where ϕ_A is the axion field. It is often convenient to define the axion decay constant f_A with this Lagrangian [6]. The QCD nonperturbative effect induces a potential for ϕ_A whose minimum is at $\phi_A = \theta_{eff} f_A$ cancelling θ_{eff} and solving the strong CP problem. The mass of the axion is inversely proportional to f_A as

$$m_A = 0.62 \times 10^{-3} \text{eV} \times (10^{10} \text{GeV}/f_A)$$
 (3)

The original axion model [1,5] assumes $f_A \sim v$, where $v = (\sqrt{2}G_F)^{-1/2} = 247$ GeV is the scale of the electroweak symmetry breaking, and has two Higgs doublets as minimal ingredients. By requiring tree-level flavor conservation, the axion mass and its couplings are completely fixed in terms of one parameter $(\tan \beta)$: the ratio of the vacuum expectation values of two Higgs fields. This model is excluded after extensive experimental searches for such an axion [7]. Observation of a narrow-peak structure in positron spectra from heavy ion collisions [8] suggested a particle of mass 1.8 MeV that decays into e^+e^- . Variants of the original axion model, which keep $f_A \sim v$, but drop the constraints of tree-level flavor conservation, were proposed [9]. Extensive searches for this particle, $A^0(1.8 \text{ MeV})$, ended up with another negative result [10].

The popular way to save the Peccei-Quinn idea is to introduce a new scale $f_A\gg v$. Then the A^0 coupling becomes weaker, thus one can easily avoid all the existing experimental limits; such models are called invisible axion models [11,12]. Two classes of models are discussed commonly in the literature. One introduces new heavy quarks which carry Peccei-Quinn charge while the usual quarks and leptons do not (KSVZ axion or "hadronic axion") [11]. The other does not need additional quarks but requires two Higgs doublets, and all quarks and leptons carry Peccei-Quinn charges (DFSZ axion or "GUT-axion") [12]. All models contain at least one electroweak singlet scalar boson which acquires an expectation value and breaks Peccei-Quinn symmetry. The invisible axion with a large decay

Gauge & Higgs Boson Particle Listings Axions (A⁰) and Other Very Light Bosons

constant $f_A \sim 10^{12}$ GeV was found to be a good candidate of the cold dark matter component of the Universe [13](see Dark Matter review). The energy density is stored in the low-momentum modes of the axion field which are highly occupied and thus represent essentially classical field oscillations.

The constraints on the invisible axion from astrophysics are derived from interactions of the axion with either photons, electrons or nucleons. The strengths of the interactions are model dependent (i.e., not a function of f_A only), and hence one needs to specify a model in order to place lower bounds on f_A . Such constraints will be discussed in Part II. Serious experimental searches for an invisible axion are underway; they typically rely on axion-photon coupling, and some of them assume that the axion is the dominant component of our galactic halo density. Part III will discuss experimental techniques and limits.

Familons arise when there is a global family symmetry broken spontaneously. A family symmetry interchanges generations or acts on different generations differently. Such a symmetry may explain the structure of quark and lepton masses and their mixings. A familon could be either a scalar or a pseudoscalar. For instance, an SU(3) family symmetry among three generations is non-anomalous and hence the familous are exactly massless. In this case, familons are scalars. If one has larger family symmetries with separate groups of left-handed and right-handed fields, one also has pseudoscalar familons. Some of them have flavor-off-diagonal couplings such as $\partial_{\mu}\phi_{F}\bar{d}\gamma^{\mu}s/F_{ds}$ or $\partial_{\mu}\phi_{F}\bar{e}\gamma^{\mu}\mu/F_{\mu e}$, and the decay constant F can be different for individual operators. The decay constants have lower bounds constrained by flavor-changing processes. For instance, B(K $^+$ \rightarrow $\pi^+\phi_F)$ < 3×10^{-10} [14] gives $F_{ds} > 3.4 \times 10^{11} \text{ GeV [15]}$. The constraints on familous primarily coupled to third generation are quite weak [15].

If there is a global lepton-number symmetry and if it breaks spontaneously, there is a Majoron. The triplet Majoron model [4] has a weak-triplet Higgs boson, and Majoron couples to Z. It is now excluded by the Z invisible-decay width. The model is viable if there is an additional singlet Higgs boson and if the Majoron is mainly a singlet [16]. In the singlet Majoron model [3], lepton-number symmetry is broken by a weak-singlet scalar field, and there are right-handed neutrinos which acquire Majorana masses. The left-handed neutrino masses are generated by a "seesaw" mechanism [17]. The scale of lepton number breaking can be much higher than the electroweak scale in this case. Astrophysical constraints require the decay constant to be $\gtrsim 10^9$ GeV [18].

There is revived interest in a long-lived neutrino, to improve Big-Bang Nucleosynthesis [19] or large scale structure formation theories [20]. Since a decay of neutrinos into electrons or photons is severely constrained, these scenarios require a familion (Majoron) mode $\nu_1 \rightarrow \nu_2 \phi_F$ (see, e.g., Ref. 15 and references therein).

Other light bosons (scalar, pseudoscalar, or vector) are constrained by "fifth force" experiments. For a compilation of constraints, see Ref. 21.

It has been widely argued that a fundamental theory will not possess global symmetries; gravity, for example, is expected to violate them. Global symmetries such as baryon number arise by accident, typically as a consequence of gauge symmetries. It has been noted [22] that the Peccei-Quinn symmetry, from this perspective, must also arise by accident and must hold to an extraordinary degree of accuracy in order to solve the strong CP problem. Possible resolutions to this problem, however, have been discussed [22,23]. String theory also provides sufficiently good symmetries, especially using a large compactification radius motivated by recent developments in M-theory [24].

References

- S. Weinberg, Phys. Rev. Lett. 40, 223 (1978);
 F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
- 2. F. Wilczek, Phys. Rev. Lett. 49, 1549 (1982).
- Y. Chikashige, R.N. Mohapatra, and R.D. Peccei, Phys. Lett. 98B, 265 (1981).
- G.B. Gelmini and M. Roncadelli, Phys. Lett. 99B, 411 (1981).
- R.D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977); also Phys. Rev. D16, 1791 (1977).
- Our normalization here is the same as f_a used in G.G. Raffelt, Phys. Reports 198, 1 (1990). See this Review for the relation to other conventions in the literature.
- T.W. Donnelly et al., Phys. Rev. D18, 1607 (1978);
 S. Barshay et al., Phys. Rev. Lett. 46, 1361 (1981);
 A. Barroso and N.C. Mukhopadhyay, Phys. Lett. 106B, 91 (1981);
 R.D. Peccei, in Proceedings of Neutrino '81, Honolulu, Hawaii, Vol. 1, p. 149 (1981);
 L.M. Krauss and F. Wilczek, Phys. Lett. B173, 189 (1986).
- J. Schweppe et al., Phys. Rev. Lett. 51, 2261 (1983);
 T. Cowan et al., Phys. Rev. Lett. 54, 1761 (1985).
- R.D. Peccei, T.T. Wu, and T. Yanagida, Phys. Lett. B172, 435 (1986).
- W.A. Bardeen, R.D. Peccei, and T. Yanagida, Nucl. Phys. B279, 401 (1987).
- J.E. Kim, Phys. Rev. Lett. 43, 103 (1979);
 M.A. Shifman, A.I. Vainstein, and V.I. Zakharov, Nucl. Phys. B166, 493 (1980).
- A.R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980);
 M. Dine and W. Fischler, Phys. Lett. 120B, 137 (1983).
- J. Preskill, M. Wise, F. Wilczek, Phys. Lett. 120B, 127 (1983);
 L. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983);
 M. Dine and W. Fischler, Phys. Lett. 120B, 137 (1983);
 M.S. Turner, Phys. Rev. D33, 889 (1986).
- 14. S. Adler et al., hep-ex/9708031.
- J. Feng, T. Moroi, H. Murayama, and E. Schnapka, UCB-PTH-97/47.
- 16. K. Choi and A. Santamaria, Phys. Lett. **B267**, 504 (1991).
- T. Yanagida, in Proceedings of Workshop on the Unified Theory and the Baryon Number in the Universe, Tsukuba,

Gauge & Higgs Boson Particle Listings Axions (A^0) and Other Very Light Bosons

Japan, 1979, edited by A. Sawada and A. Sugamoto (KEK, Tsukuba, 1979), p. 95;

M. Gell-Mann, P. Ramond, and R. Slansky, in *Supergravity*, Proceedings of the Workshop, Stony Brook, New York, 1979, edited by P. Van Nieuwenhuizen and D.Z. Freedman (North-Holland, Amsterdam, 1979), p. 315.

- For a recent analysis of the astrophysical bound on axionelectron coupling, see G. Raffelt and A. Weiss, Phys. Rev. D51, 1495 (1995). A bound on Majoron decay constant can be inferred from the same analysis..
- M. Kawasaki, P. Kernan, H.-S. Kang, R.J. Scherrer, G. Steigman, and T.P. Walker, Nucl. Phys. B419, 105 (1994);
 - S. Dodelson, G. Gyuk, and M.S. Turner, Phys. Rev. **D49**, 5068 (1994);
 - J.R. Rehm, G. Raffelt, and A. Weiss, astro-ph/9612085; M. Kawasaki, K. Kohri, and K. Sato, astro-ph/9705148.
- M. White, G. Gelmini, and J. Silk, Phys. Rev. **D51**, 2669 (1995);
 - S. Bharadwaj and S.K. Kethi, astro-ph/9707143.
- E.G. Adelberger, B.R. Heckel, C.W. Stubbs, and W.F. Rogers, Ann. Rev. Nucl. and Part. Sci. 41, 269 (1991).
- M. Kamionkowski and J. March-Russell, Phys. Lett. B282, 137 (1992);
 R. Holman et al., Phys. Lett. B282, 132 (1992).
- R. Kallosh, A. Linde, D. Linde, and L. Susskind, Phys. Rev. **D52**, 912 (1995).
- See, for instance, T. Banks and M. Dine, Nucl. Phys. B479, 173 (1996); Nucl. Phys. B505, 445 (1997).

AXIONS AND OTHER VERY LIGHT BOSONS: PART II (ASTROPHYSICAL CONSTRAINTS)

(by G.G. Raffelt)

Low-mass weakly-interacting particles (neutrinos, gravitons, axions, baryonic or leptonic gauge bosons, etc.) are produced in hot plasmas and thus represent an energy-loss channel for stars. The strength of the interaction with photons, electrons, and nucleons can be constrained from the requirement that stellar-evolution time scales are not modified beyond observational limits. For detailed reviews see Refs. [1,2].

The energy-loss rates are steeply increasing functions of temperature T and density ρ . Because the new channel has to compete with the standard neutrino losses which tend to increase even faster, the best limits arise from low-mass stars, notably from horizontal-branch (HB) stars which have a helium-burning core of about 0.5 solar masses at $(\rho) \approx 0.6 \times 10^4 \, \mathrm{g \, cm^{-3}}$ and $\langle T \rangle \approx 0.7 \times 10^8 \, \mathrm{K}$. The new energy-loss rate must not exceed about $10 \, \mathrm{ergs \, g^{-1} \, s^{-1}}$ to avoid a conflict with the observed number ratio of HB stars in globular clusters. Likewise the ignition of helium in the degenerate cores of the preceding red-giant phase is delayed too much unless the same constraint holds at $\langle \rho \rangle \approx 2 \times 10^5 \, \mathrm{g \, cm^{-3}}$ and $\langle T \rangle \approx 1 \times 10^8 \, \mathrm{K}$. The white-dwarf luminosity function also yields useful bounds.

The new bosons X^0 interact with electrons and nucleons with a dimensionless strength g. For scalars it is a Yukawa coupling, for new gauge bosons (e.g., from a baryonic or leptonic gauge symmetry) a gauge coupling. Axion-like pseudoscalars couple derivatively as $f^{-1}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi \,\partial^{\mu}\phi_{X}$ with f an energy scale.

Usually this is equivalent to $(2m/f)\bar{\psi}\gamma_5\psi \phi_X$ with m the mass of the fermion ψ so that g=2m/f. For the coupling to electrons, globular-cluster stars yield the constraint

$$g_{Xe} \lesssim \begin{cases} 0.5 \times 10^{-12} & \text{for pseudoscalars [3]} \\ 1.3 \times 10^{-14} & \text{for scalars [4]} \end{cases}, \tag{1}$$

if $m_X \lesssim 10 \, \text{keV}$. The Compton process $\gamma + {}^4\text{He} \to {}^4\text{He} + X^0$ limits the coupling to nucleons to $g_{XN} \lesssim 0.4 \times 10^{-10}$ [4].

Scalar and vector bosons mediate long-range forces which are severely constrained by "fifth-force" experiments [5]. In the massless case the best limits come from tests of the equivalence principle in the solar system, leading to

$$g_{B,L} \lesssim 10^{-23} \tag{2}$$

for a baryonic or leptonic gauge coupling [6].

In analogy to neutral pions, axions A^0 couple to photons as $g_{A\gamma}\mathbf{E}\cdot\mathbf{B}\,\phi_A$ which allows for the Primakoff conversion $\gamma\leftrightarrow A^0$ in external electromagnetic fields. The most restrictive limit arises from globular-cluster stars [2]

$$g_{A\gamma} \lesssim 0.6 \times 10^{-10} \,\text{GeV}^{-1}$$
 . (3)

The often-quoted "red-giant limit" [7] is slightly weaker.

The duration of the SN 1987A neutrino signal of a few seconds proves that the newborn neutron star cooled mostly by neutrinos rather than through an "invisible channel" such as right-handed (sterile) neutrinos or axions [8]. Therefore,

$$3 \times 10^{-10} \lesssim g_{AN} \lesssim 3 \times 10^{-7}$$
 (4)

is excluded for the pseudoscalar Yukawa coupling to nucleons [2]. The "strong" coupling side is allowed because axions then escape only by diffusion, quenching their efficiency as an energy-loss channel [9]. Even then the range

$$10^{-6} \lesssim g_{AN} \lesssim 10^{-3} \tag{5}$$

is excluded to avoid excess counts in the water Cherenkov detectors which registered the SN 1987A neutrino signal [11].

In terms of the Peccei-Quinn scale f_A , the axion couplings to nucleons and photons are $g_{AN}=C_Nm_N/f_A$ (N=n or p) and $g_{A\gamma}=(\alpha/2\pi f_A)\,(E/N-1.92)$ where C_N and E/N are model-dependent numerical parameters of order unity. With $m_A=0.62\,\mathrm{eV}\,(10^7\,\mathrm{GeV}/f_A)$, Eq. (3) yields $m_A\lesssim 0.4\,\mathrm{eV}$ for E/N=8/3 as in GUT models or the DFSZ model. The SN 1987A limit is $m_A\lesssim 0.008\,\mathrm{eV}$ for KSVZ axions while it varies between about 0.004 and 0.012 eV for DFSZ axions, depending on the angle β which measures the ratio of two Higgs vacuum expectation values [10]. In view of the large uncertainties it is good enough to remember $m_A\lesssim 0.01\,\mathrm{eV}$ as a generic limit (Fig. 1).

In the early universe, axions come into thermal equilibrium only if $f_A \lesssim 10^8\,\mathrm{GeV}$ [12]. Some fraction of the relic axions end up in galaxies and galaxy clusters. Their decay $a\to 2\gamma$ contributes to the cosmic extragalactic background light and to line emissions from galactic dark-matter haloes and galaxy

Gauge & Higgs Boson Particle Listings Axions (A°) and Other Very Light Bosons

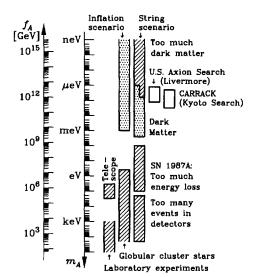


Figure 1: Astrophysical and cosmological exclusion regions (hatched) for the axion mass m_A or equivalently, the Peccei-Quinn scale f_A . An "open end" of an exclusion bar means that it represents a rough estimate; its exact location has not been established or it depends on detailed model assumptions. The globular cluster limit depends on the axion-photon coupling; it was assumed that E/N = 8/3 as in GUT models or the DFSZ model. The SN 1987A limits depend on the axion-nucleon couplings; the shown case corresponds to the KSVZ model and approximately to the DFSZ model. The dotted "inclusion regions" indicate where axions could plausibly be the cosmic dark matter. Most of the allowed range in the inflation scenario requires fine-tuned initial conditions. In the string scenario the plausible dark-matter range is controversial as indicated by the step in the low-mass end of the "inclusion bar" (see main text for a discussion). Also shown is the projected sensitivity range of the search experiments for galactic dark-matter axions.

clusters. An unsuccessful "telescope search" for such features yields $m_a < 3.5 \, \mathrm{eV}$ [13]. For $m_a \gtrsim 30 \, \mathrm{eV}$, the axion lifetime is shorter than the age of the universe.

For $f_A \gtrsim 10^8$ GeV cosmic axions are produced nonthermally. If inflation occurred after the Peccei-Quinn symmetry breaking or if $T_{\rm reheat} < f_A$, the "misalignment mechanism" [14] leads to a contribution to the cosmic critical density of

$$\Omega_A h^2 \approx 1.9 \times 3^{\pm 1} (1 \,\mu\text{eV}/m_A)^{1.175} \,\Theta_i^2 F(\Theta_i)$$
 (6)

where h is the Hubble constant in units of $100\,\mathrm{km\,s^{-1}\,Mpc^{-1}}$. The stated range reflects recognized uncertainties of the cosmic conditions at the QCD phase transition and of the temperature-dependent axion mass. The function $F(\Theta)$ with F(0)=1 and $F(\pi)=\infty$ accounts for anharmonic corrections to the axion potential. Because the initial misalignment angle Θ_{i} can be very small or very close to π , there is no real prediction for

the mass of dark-matter axions even though one would expect $\Theta_i^2 F(\Theta_i) \sim 1$ to avoid fine-tuning the initial conditions.

A possible fine-tuning of Θ_i is limited by inflation-induced quantum fluctuations which in turn lead to temperature fluctuations of the cosmic microwave background [15,16]. In a broad class of inflationary models one thus finds an upper limit to m_A where axions could be the dark matter. According to the most recent discussion [16] it is about 10^{-3} eV (Fig. 1).

If inflation did not occur at all or if it occurred before the Peccei-Quinn symmetry breaking with $T_{\rm reheat} > f_A$, cosmic axion strings form by the Kibble mechanism [17]. Their motion is damped primarily by axion emission rather than gravitational waves. After axions acquire a mass at the QCD phase transition they quickly become nonrelativistic and thus form a cold dark matter component. Battye and Shellard [18] found that the dominant source of axion radiation are string loops rather than long strings. At a cosmic time t the average loop creation size is parametrized as $\langle \ell \rangle = \alpha t$ while the radiation power is $P = \kappa \mu$ with μ the renormalized string tension. The loop contribution to the cosmic axion density is [18]

$$\Omega_A h^2 \approx 88 \times 3^{\pm 1} \left[(1 + \alpha/\kappa)^{3/2} - 1 \right] (1 \, \mu \text{eV}/m_A)^{1.175} ,$$
 (7)

where the stated nominal uncertainty has the same source as in Eq. (6). The values of α and κ are not known, but probably $0.1 < \alpha/\kappa < 1.0$ [18], taking the expression in square brackets to 0.15-1.83. If axions are the dark matter, we have

$$0.05 \lesssim \Omega_A h^2 \lesssim 0.50 , \qquad (8)$$

where it was assumed that the universe is older than 10 Gyr, that the dark-matter density is dominated by axions with $\Omega_A \gtrsim 0.2$, and that $h \gtrsim 0.5$. This implies $m_A = 6-2500~\mu\text{eV}$ for the plausible mass range of dark-matter axions (Fig. 1).

Contrary to Ref. 18, Sikivie et al. [19] find that the motion of global strings is strongly damped, leading to a flat axion spectrum. In Battye and Shellard's treatment the axion radiation is strongly peaked at wavelengths of order the loop size. In Sikivie et al.'s picture more of the string radiation goes into kinetic axion energy which is redshifted so that ultimately there are fewer axions. In this scenario the contributions from string decay and vacuum realignment are of the same order of magnitude; they are both given by Eq. (6) with Θ_i of order one. As a consequence, Sikivie et al. allow for a plausible range of dark-matter axions which reaches to smaller masses as indicated in Fig. 1.

The work of both groups implies that the low-mass end of the plausible mass interval in the string scenario overlaps with the projected sensitivity range of the U.S. search experiment for galactic dark-matter axions (Livermore) [20] and of the Kyoto search experiment CARRACK [21] as indicated in Fig. 1. (See also Part III of this Review by Hagmann, van Bibber, and Rosenberg.)

In summary, a variety of robust astrophysical arguments and laboratory experiments (Fig. 1) indicate that $m_A \lesssim 10^{-2}$ eV.

Gauge & Higgs Boson Particle Listings Axions (A^0) and Other Very Light Bosons

The exact value of this limit may change with a more sophisticated treatment of supernova physics and/or the observation of the neutrino signal from a future galactic supernova, but a dramatic modification is not expected unless someone puts forth a completely new argument. The stellar-evolution limits shown in Fig. 1 depend on the axion couplings to various particles and thus can be irrelevant in fine-tuned models where, for example, the axion-photon coupling strictly vanishes. For nearly any m_A in the range generically allowed by stellar evolution, axions could be the cosmic dark matter, depending on the cosmological scenario realized in nature. It appears that our only practical chance to discover these "invisible" particles rests with the ongoing or future search experiments for galactic dark-matter.

References

- M.S. Turner, Phys. Reports 197, 67 (1990); G.G. Raffelt, Phys. Reports 198, 1 (1990).
- G.G. Raffelt, Stars as Laboratories for Fundamental Physics (Univ. of Chicago Press, Chicago, 1996).
- D.A. Dicus, E.W. Kolb, V.L. Teplitz, and R.V. Wagoner, Phys. Rev. **D18**, 1829 (1978); G.G. Raffelt and A. Weiss, Phys. Rev. **D51**, 1495 (1995).
- J.A. Grifols and E. Massó, Phys. Lett. B173, 237 (1986); J.A. Grifols, E. Massó, and S. Peris, Mod. Phys. Lett. A4, 311 (1989).
- 5. E. Fischbach and C. Talmadge, Nature 356, 207 (1992).
- 6. L.B. Okun, Yad. Fiz. 10, 358 (1969) [Sov. J. Nucl. Phys. 10, 206 (1969)];
 - S.I. Blinnikov et al., Nucl. Phys. B458, 52 (1996).
- 7. G.G. Raffelt, Phys. Rev. **D33**, 897 (1986); G.G. Raffelt and D. Dearborn, ibid. 36, 2211 (1987).
- J. Ellis and K.A. Olive, Phys. Lett. B193, 525 (1987); G.G. Raffelt and D. Seckel, Phys. Rev. Lett. 60, 1793 (1988).
- M.S. Turner, Phys. Rev. Lett. 60, 1797 (1988); A. Burrows, T. Ressel, and M. Turner, Phys. Rev. D42, 3297 (1990).
- 10. H.-T. Janka, W. Keil, G. Raffelt, and D. Seckel, Phys. Rev. Lett. 76, 2621 (1996); W. Keil et al., Phys. Rev. D56, 2419 (1997).
- 11. J. Engel, D. Seckel, and A.C. Hayes, Phys. Rev. Lett. 65, 960 (1990).
- 12. M.S. Turner, Phys. Rev. Lett. 59, 2489 (1987).
- 13. M.A. Bershady, M.T. Ressell, and M.S. Turner, Phys. Rev. Lett. 66, 1398 (1991); M.T. Ressell, Phys. Rev. **D44**, 3001 (1991); J.M. Overduin and P.S. Wesson, Astrophys. J. 414, 449 (1993).
- 14. J. Preskill, M. Wise, and F. Wilczek, Phys. Lett. B120, 127 (1983); L. Abbott and P. Sikivie, ibid. 133;

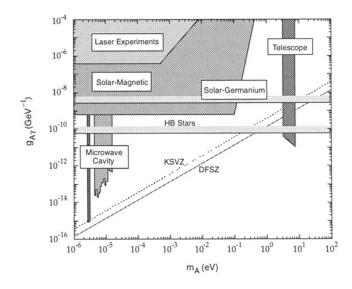
 - M. Dine and W. Fischler, ibid. 137;
 - M.S. Turner, Phys. Rev. **D33**, 889 (1986).
- 15. D.H. Lyth, Phys. Lett. **B236**, 408 (1990); M.S. Turner and F. Wilczek, Phys. Rev. Lett. 66, 5 (1991); A. Linde, Phys. Lett. **B259**, 38 (1991).
- 16. E.P.S. Shellard and R.A. Battye, "Inflationary axion cosmology revisited", in preparation (1998);

- The main results can be found in: E.P.S. Shellard and R.A. Battye, astro-ph/9802216.
- R.L. Davis, Phys. Lett. **B180**, 225 (1986); R.L. Davis and E.P.S. Shellard, Nucl. Phys. B324, 167
- R.A. Battye and E.P.S. Shellard, Nucl. Phys. B423, 260 18. (1994);Phys. Rev. Lett. 73, 2954 (1994) (E) ibid. 76, 2203 (1996); astro-ph/9706014, to be published in: Proceedings Dark Matter 96, Heidelberg, ed. by H.V. Klapdor-Kleingrothaus and Y. Ramacher.
- D. Harari and P. Sikivie, Phys. Lett. **B195**, 361 (1987); C. Hagmann and P. Sikivie, Nucl. Phys. B363, 247 (1991).
- C. Hagmann et al., Phys. Rev. Lett. 80, 2043 (1998).
- I. Ogawa, S. Matsuki, and K. Yamamoto, Phys. Rev. D53, R1740 (1996).

AXIONS AND OTHER VERY LIGHT BOSONS, PART III (EXPERIMENTAL LIMITS)

(by C. Hagmann, K. van Bibber, and L.J. Rosenberg)

In this section we review the experimental methodology and limits on light axions and light pseudoscalars in general. (A comprehensive overview of axion theory is given by H. Murayama in the Part I of this Review, whose notation we follow [1].) Within its scope are searches where the axion is assumed to be dark matter, searches where the Sun is presumed to be a source of axions, and purely laboratory experiments. We restrict the discussion to axions of mass $m_A < O(eV)$, as the allowed range for the axion mass is nominally $10^{-6} < m_A < 10^{-2}$ eV. Experimental work in this range predominantly has been through the axion-photon coupling $g_{A\gamma}$, to which the present review is confined. As discussed in Part II of this Review by G. Raffelt, the lower bound derives from a cosmological overclosure argument, and the upper bound from SN1987A [2]. Limits from stellar evolution overlap seamlessly above that, connecting with accelerator-based limits which ruled out the original axion. There it was assumed that the Peccei-Quinn symmetry-breaking scale was the electroweak scale, i.e., $f_A \sim 250$ GeV, implying axions of mass $m_A \sim O(100\,{\rm keV})$. These earlier limits from nuclear transitions, particle decays, etc., while not discussed here, are included in the Listings.


While the axion mass is well determined by the Peccei-Quinn scale, i.e., $m_A = 0.62 \text{ eV } (10^7 \text{ GeV}/f_A)$, the axionphoton coupling $g_{A\gamma}$ is not: $g_{A\gamma} = (\alpha/\pi f_A) g_{\gamma}$, with $g_{\gamma} =$ (E/N-1.92)/2, where E/N is a model-dependent number. It is noteworthy however, that two quite distinct models lead to axion-photon couplings which are not very different. For the case of axions imbedded in Grand Unified Theories, the DFSZ axion [3], $g_{\gamma} = 0.37$, whereas in one popular implementation of the "hadronic" class of axions, the KSVZ axion [4], $g_{\gamma} = -0.96$. The Lagrangian $L = g_{A\gamma} \mathbf{E} \cdot \mathbf{B} \phi_A$, with ϕ_A the axion field, permits the conversion of an axion into a single real photon in an external electromagnetic field, i.e., a Primakoff interaction. In the case of relativistic axions, $k_{\gamma}-k_{A}\sim m_{A}^{2}/2\omega\ll\omega,$ pertinent to several experiments below, coherent axion-photon

mixing in long magnetic fields results in significant conversion probability even for very weakly coupled axions [5].

Below are discussed several experimental techniques constraining $g_{A\gamma}$, and their results. Also included are recent but yet-unpublished results, and projected sensitivities for experiments soon to be upgraded.

III.1. Microwave cavity experiments: Possibly the most promising avenue to the discovery of the axion presumes that axions constitute a significant fraction of the dark matter halo of our galaxy. The maximum likelihood density for the Cold Dark Matter (CDM) component of our galactic halo is $\rho_{\rm CDM} = 7.5 \times 10^{-25} {\rm g/cm^3 (450 \, MeV/cm^3)}$ [6]. That the CDM halo is in fact made of axions (rather than e.g. WIMPs) is in principle an independent assumption, however should very light axions exist they would almost necessarily be cosmologically abundant [2]. As shown by Sikivie [7], halo axions may be detected by their resonant conversion into a quasi-monochromatic microwave signal in a high-Q cavity permeated by a strong magnetic field. The cavity is tunable and the signal is maximum when the frequency $\nu = m_A(1 + O(10^{-6}))$, the width of the peak representing the virial distribution of thermalized axions in the galactic gravitational potential. The signal may possess ultra-fine structure due to axions recently fallen into the galaxy and not yet thermalized [8]. The feasibility of the technique was established in early experiments of small sensitive volume, V = O(1 liter) [9,10] with High Electron Mobility Transistor (HEMT) amplifiers, which set limits on axions in the mass range $4.5 < m_A < 16.3 \,\mu\text{eV}$, but at power sensitivity levels 2-3 orders of magnitude too high to see KSVZ and DFSZ axions (the conversion power $P_{A\to\gamma}\propto g_{A\gamma}^2$). A recent large-scale experiment (B \sim 7.5 T, V \sim 200 liter) has achieved sensitivity to KSVZ axions over a narrow mass range $2.77 < m_A < 3.3 \,\mu\text{eV}$, and continues to take data [11]. The exclusion regions shown in Fig. 1 for Refs. [9-12] are all normalized to the best-fit Cold Dark Matter density $\rho_{\rm CDM} = 7.5 \times 10^{-25} {\rm g/cm^3 (450 \, MeV/cm^3)}$, and 90% CL. Recent developments in DC SQUID amplifiers [12] and Rydberg atom single-quantum detectors [13] promise dramatic improvements in noise temperature, which will enable rapid scanning of the axion mass range at or below the DFSZ limit. The region of the microwave cavity experiments is shown in detail in Fig. 2.

III.2. Telescope search for eV axions: For axions of mass greater than about 10^{-1} eV, their cosmological abundance is no longer dominated by vacuum misalignment or string radiation mechanisms, but rather by thermal production. Their contribution to the critical density is small, $\Omega \sim 0.01 \, (m_A/\text{eV})$. However, the spontaneous-decay lifetime of axions, $\tau(A \to 2\gamma) \sim 10^{25} \text{sec}(m_A/\text{eV})^{-5}$ while irrelevant for μeV axions, is short enough to afford a powerful constraint on such thermally produced axions in the eV range, by looking for a quasimonochromatic photon line from galactic clusters. This line, corrected for Doppler shift, would be at half the axion mass and its width would be consistent with the observed virial motion,

Figure 1: Exclusion region in mass vs. axion-photon coupling $(m_A, g_{A\gamma})$ for various experiments. The limit set by globular cluster Horizontal Branch Stars ("HB Stars") is shown for Ref. 2.

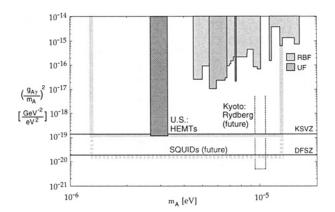


Figure 2: Exclusion region from the microwave cavity experiments, where the plot is flattened by presenting $(g_{A\gamma}/m_A)^2$ vs. m_A . The first-generation experiments (Rochester-BNL-FNAL, "RBF" [9]; University of Florida, "UF" [10]) and the US large-scale experiment in progress ("US" [11]) are all HEMT-based. Shown also is the full mass range to be covered by the latter experiment (shaded line), and the improved sensitivity when upgraded with DC SQUID amplifiers [12] (shaded dashed line). The expected performance of the Kyoto experiment based on a Rydberg atom single-quantum receiver (dotted line) is also shown [13].

typically $\Delta \lambda/\lambda \sim 10^{-2}$. The expected line intensity would be of the order $I_A \sim 10^{-17} (m_A/3\,\mathrm{eV})^7 \mathrm{erg\,cm^{-2}arcsec^{-2}\AA^{-1}sec^{-1}}$ for DFSZ axions, comparable to the continuum night emission.

Gauge & Higgs Boson Particle Listings Axions (A^0) and Other Very Light Bosons

The conservative assumption is made that the relative density of thermal axions fallen into the cluster gravitational potential reflects their overall cosmological abundance. A search for thermal axions in three rich Abell clusters was carried out at Kitt Peak National Laboratory [14]; no such line was observed between 3100–8300 Å ($m_A=3$ –8 eV) after "on-off field" subtraction of the atmospheric molecular background spectra. A limit everywhere stronger than $g_{A\gamma}<10^{-10}{\rm GeV}^{-1}$ is set, which is seen from Fig. 1 to easily exclude DFSZ axions throughout the mass range.

III.3. A search for solar axions: As with the telescope search for thermally produced axions above, the search for solar axions was stimulated by the possibility of there being a "1 eV window" for hadronic axions (i.e., axions with no treelevel coupling to leptons), a "window" subsequently closed by an improved understanding of the evolution of globular cluster stars and SN1987A [2]. Hadronic axions would be copiously produced within our Sun's interior by a Primakoff process. Their flux at the Earth of $\sim 10^{12} {\rm cm}^{-2} {\rm sec}^{-1} (m_A/{\rm eV})^2$, which is independent of the details of the solar model, is sufficient for a definitive test via the axion reconversion to photons in a large magnetic field. However, their average energy is ~ 4 keV, implying an oscillation length in the vacuum of $2\pi (m_A^2/2\omega)^{-1} \sim O(\text{mm})$, precluding the mixing from achieving its theoretically maximum value in any practical magnet. It was recognized that one could endow the photon with an effective mass in a gas, $m_{\gamma} = \omega_{\rm pl}$, thus permitting the axion and photon dispersion relationships to be matched [15]. A first simple implementation of this proposal was carried out using a conventional dipole magnet with a conversion volume of variable-pressure helium gas and a xenon proportional chamber as the x-ray detector [16]. The magnet was fixed in orientation to take data for $\sim 1000 \, \mathrm{sec/day}$. Axions were excluded for $g_{A\gamma} < 3.6 \times 10^{-9} \text{GeV}^{-1}$ for $m_A <$ $0.03\,\mathrm{eV}$, and $g_{A\gamma} < 7.7 \times 10^{-9} \mathrm{GeV}^{-1}$ for $0.03\,\mathrm{eV} < m_A < 0.11$ eV (95% CL). A more ambitious experiment has recently been commissioned, using a superconducting magnet on a telescope mount to track the Sun continuously. A preliminary exclusion limit of $g_{A\gamma} < 6 \times 10^{-10} \text{GeV}^{-1}$ (95% CL) has been set for $m_A < 0.03 \text{ eV}$ [17].

Another search for solar axions has been carried out, using a single crystal germanium detector. It exploits the coherent conversion of axions into photons when their angle of incidence satisfies a Bragg condition with a crystalline plane. Analysis of 1.94 kg-yr of data from a 1 kg germanium detector yields a bound of $g_{A\gamma} < 2.7 \times 10^{-9} {\rm GeV^{-1}}$ (95% CL), independent of mass up to $m_A \sim 1$ keV [18].

III.4. Photon regeneration ("invisible light shining through walls"): Photons propagating through a transverse field (with E||B) may convert into axions. For light axions with $m_A^2 l/2\omega \ll 2\pi$, where l is the length of the magnetic field, the axion beam produced is colinear and coherent with the photon beam, and the conversion probability Π is given by $\Pi \sim (1/4)(g_{A\gamma}Bl)^2$. An ideal implementation for this limit

is a laser beam propagating down a long, superconducting dipole magnet like those for high-energy physics accelerators. If another such dipole magnet is set up in line with the first, with an optical barrier interposed between them, then photons may be regenerated from the pure axion beam in the second magnet and detected [19]. The overall probability $P(\gamma \to A \to \gamma) = \Pi^2$. Such an experiment has been carried out, utilizing two magnets of length l=4.4 m and B=3.7 T. Axions with mass $m_A < 10^{-3}$ eV, and $g_{A\gamma} > 6.7 \times 10^{-7} {\rm GeV}^{-1}$ were excluded at 95% CL [20,21]. With sufficient effort, limits comparable to those from stellar evolution would be achievable. Due to the $g_{A\gamma}^4$ rate suppression however, it does not seem feasible to reach standard axion couplings.

III.5. Polarization experiments: The existence of axions can affect the polarization of light propagating through a transverse magnetic field in two ways [22]. First, as the E_{\parallel} component, but not the E_{\perp} component will be depleted by the production of real axions, there will be in general a small rotation of the polarization vector of linearly polarized light. This effect will be a constant for all sufficiently light m_A such that the oscillation length is much longer than the magnet $(m_A^2 l/2\omega \ll 2\pi)$. For heavier axions, the effect oscillates and diminishes with increasing m_A , and vanishes for $m_A > \omega$. The second effect is birefringence of the vacuum, again because there can be a mixing of virtual axions in the E_{\parallel} state, but not for the E_{\perp} state. This will lead to light which is initially linearly polarized becoming elliptically polarized. Higher-order QED also induces vacuum birefringence, and is much stronger than the contribution due to axions. A search for both polarizationrotation and induced ellipticity has been carried out with the same magnets described in Sec. (III.4) above [21,23]. As in the case of photon regeneration, the observables are boosted linearly by the number of passes the laser beam makes in an optical cavity within the magnet. The polarization-rotation resulted in a stronger limit than that from ellipticity, $g_{A\gamma}$ < $3.6 \times 10^{-7} {
m GeV^{-1}}$ (95% CL) for $m_A < 5 \times 10^{-4}$ eV. The limits from ellipticity are better at higher masses, as they fall off smoothly and do not terminate at m_A . There are two experiments in construction with greatly improved sensitivity which while still far from being able to detect standard axions, should measure the QED "light-by-light" contribution for the first time [24,25]. The overall envelope for limits from the laser-based experiments in Sec. (III.4) and Sec. (III.5) is shown schematically in Fig. 1.

References

- 1. H. Murayama, Part I (Theory) of this Review.
- G. Raffelt, Part II (Astrophysical Constraints) of this Review.
- M. Dine et al., Phys. Lett. B104, 199 (1981);
 A. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980).
- J. Kim, Phys. Rev. Lett. 43, 103 (1979);
 M. Shifman et al., Nucl. Phys. B166, 493 (1980).
- G. Raffelt and L. Stodolsky, Phys. Rev. D37, 1237 (1988).

Gauge & Higgs Boson Particle Listings Axions (A^0) and Other Very Light Bosons

- E. Gates et al., Ap. J. 449, 123 (1995). 7. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983); **52**(E), 695 (1984); Phys. Rev. **D32**, 2988 (1985).
- 8. P. Sikivie and J. Ipser, Phys. Lett. **B291**, 288 (1992); P. Sikivie et al., Phys. Rev. Lett. 75, 2911 (1995).
- S. DePanfilis et al., Phys. Rev. Lett. 59, 839 (1987); W. Wuensch et al., Phys. Rev. **D40**, 3153 (1989).
- 10. C. Hagmann et al., Phys. Rev. D42, 1297 (1990).
- 11. C. Hagmann et al., Phys. Rev. Lett. 80, 2043 (1998).
- 12. M. Mück et al., to be published in Appl. Phys. Lett.
- 13. I. Ogawa et al., Proceedings II. RESCEU Conference on "Dark Matter in the Universe and its Direct Detection," p. 175, Universal Academy Press, ed. M. Minowa (1997).
- 14. M. Bershady et al., Phys. Rev. Lett. 66, 1398 (1991); M. Ressell, Phys. Rev. **D44**, 3001 (1991).
- 15. K. van Bibber et al., Phys. Rev. **D39**, 2089 (1989).
- 16. D. Lazarus et al., Phys. Rev. Lett. 69, 2333 (1992).
- 17. M. Minowa, Proceedings International Workshop Non-Accelerator New Physics, Dubna (1997), and private communication (1998).
- 18. F. Avignone III et al., ibid.
- 19. K. van Bibber et al., Phys. Rev. Lett. 59, 759 (1987). A similar proposal has been made for exactly massless pseudoscalars: A. Ansel'm, Sov. J. Nucl. Phys. 42, 936 (1985).
- G. Ruoso et al., Z. Phys. C56, 505 (1992).
- 21. R. Cameron et al., Phys. Rev. D47, 3707 (1993).
- 22. L. Maiani et al., Phys. Lett. B175, 359 (1986).
- 23. Y. Semertzidis et al., Phys. Rev. Lett. 64, 2988 (1990).
- S. Lee et al., Fermilab proposal E-877 (1995).
- D. Bakalov et al., Quantum Semiclass. Opt. 10, 239

A⁰ (Axion) MASS LIMITS from Astrophysics and Cosmology

on a combination of These bounds depend on model-dependent assumptions (i.e. axion parameters).

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT _
• • We do not use the	ne following data for average	s, fits	, limits,	etc. • • •
>0.2	BARROSO	82	ASTR	Standard Axion
>0.25	¹ RAFFELT	82	ASTR	Standard Axion
>0.2	² DICUS	78C	ASTR	Standard Axion
	MIKAELIAN	78	ASTR	Stellar emission
>0.3	² SATO	78	ASTR	Standard Axion
>0.2	VYSOTSKII	78	ASTR	Standard Axion

Lower bound from 5.5 MeV γ -ray line from the sun.

A^0 (Axion) and Other Light Boson (X^0) Searches in Stable Particle Decays Limits are for branching ratios.

VALUE		CL% EVTS	DOCUMENT ID	TEC	N COMMENT	
• • •	We do not use	e the following da	ta for averages, fit	s, limits, et	ic. • • •	
<3.3	× 10 ⁻⁵	90	³ ALTEGOER	98 NO	$MD \pi^0 \rightarrow \gamma X^0, \\ m_{X^0} < 120.$	ı
<3.0	× 10 ⁻¹⁰	90	⁴ ADLER	97 B78		
<5.0	× 10 ⁸	90	⁵ KITCHING	97 B78	$ \begin{array}{ccc} 7 & K^+ \rightarrow \pi^+ A^0 \\ (A^0 \rightarrow \gamma \gamma) \\ 7 & K^+ \rightarrow \pi^+ A^0 \end{array} $	
<5.2	\times 10 ⁻¹⁰	90	6 ADLER	96 B78	$7 K^+ \rightarrow \pi^+ A^0$	
<2.8	× 10 ⁻⁴	90	⁷ AMSLER	96B CB/	$\begin{array}{ccc} \text{AR} & \pi^0 ightarrow \gamma X^0, & \\ & m_{X^0} < 65 \text{ MeV} \end{array}$	
<3	×10 ⁻⁴	90	7 AMSLER	968 CB	AR $\eta \to \gamma X^0$, $m_{\chi^0} =$	
<4	×10 ⁻⁵	90	7 AMSLER	96B CB/	AR $\eta' \rightarrow \gamma X^0$,	
<6	× 10 ⁻⁵	90	⁷ AMSLER	948 CB/	$m_{\chi^0} = 50-925$ MeV $m_{\chi^0} \rightarrow \gamma \chi^0,$ $m_{\chi^0} = 65-125$	
					MeV	

<6	× 10 ⁻⁵	90		⁷ AMSLER	94B		$\eta \to \gamma X^0, \\ m_{X^0} = 200 - 525$
< 0.007	7	90		8 MEIJERDREES	94	CNTR	MeV .
< 0.002	2	90		⁸ MEIJERDREES	94	CNTR	$m_{\chi^0} \xrightarrow{\gamma} \chi^0$ $m_{\chi^0} = 100 \text{ MeV}$
<2	$\times 10^{-7}$	90		9 ATIYA	93B	B787	$K^+ \xrightarrow{\Lambda^+} \pi^+ A^0$
<3	$\times 10^{-13}$			¹⁰ NG	93	COSM	$\pi^0 \rightarrow \gamma X^0$
<1.1	× 10 ⁻⁸	90		11 ALLIEGRO	92	SPEC	$(A^{0} \rightarrow e^{+}e^{-})$
<5	×10 ⁻⁴	90		12 ATIYA	92	B787	$\pi^0 \rightarrow \gamma X^0$
<4	×10 ⁻⁶	90		13 MEIJERDREES	92	SPEC	$ \pi^0 \rightarrow \gamma X^0, $ $ X^0 \rightarrow e^+ e^ $
							m _{x0} = 100 MeV
<1	$\times 10^{-7}$	90		14 ATIYA	90B	B787	Sup. by KITCH-
<1.3	× 10 ⁻⁸	90		¹⁵ KORENCHE	87	SPEC	$ \begin{array}{ccc} \text{ING 97} \\ \pi^{+} & & e^{+} \nu A^{0} \\ (A^{0} & \rightarrow & e^{+} e^{-}) \end{array} $
<1	× 10 ⁻⁹	90	0	¹⁶ EICHLER	86	SPEC	Stopped $\pi^+ \rightarrow \pi^+ \mu A^0$
<2	× 10 ⁻⁵	90		¹⁷ YAMAZAKI	84	SPEC	For 160< m< 260 MeV
<(1.5-	$(4) \times 10^{-6}$	90		¹⁷ YAMAZAKI	84	SPEC	K decay, m _A 0 ≪
			0	¹⁸ ASANO	82	CNTR	100 MeV Stopped $K^+ \rightarrow \pi^+ A^0$
			0	¹⁹ ASANO	818	CNTR	Stopped $K^+ \rightarrow$
				²⁰ ZHITNITSKII	79		$\pi^+ A^0$ Heavy axion

³ALTEGOER 98 looked for X^0 from π^0 decay which penetrate the shielding and convert

to π^0 in the external Coulomb field of a nucleus. ADLER 97 bound is for massless A^0 . 5 KITCHING 97 limit is for B($K^+ \to \pi^+ A^0$)·B($A^0 \to \gamma \gamma$) and applies for $m_{A^0} \simeq 50$ MeV, $\tau_{A^0} < 10^{-10}$ s. Limits are provided for $0 < m_{A^0} < 100$ MeV, $\tau_{A^0} < 10^{-8}$ s.

⁶ ADLER 96 looked for a peak in missing-mass distribution. This work is an update of ATIYA 93. The limit is for massless stable A^0 particles and extends to $m_{A^0} = 80$ MeV at the same level. See paper for dependence on finite lifetime.

7 AMSLER 94B and AMSLER 96B looked for a peak in missing-mass distribution.

⁸ The MEIJERDREES 94 limit is based on inclusive photon spectrum and is independent of X^0 decay modes. It applies to $\tau(X^0) > 10^{-23}$ sec.

⁹ ATIYA 93B looked for a peak in missing mass distribution. The bound applies for stable A^0 of m_{A^0} =150–250 MeV, and the limit becomes stronger (10⁻⁸) for m_{A^0} =180–240

MeV. The bound on extra neutrinos from nucleosyntheis $\Delta N_{\nu} < 0.3$ (WALKER 91) is employed. It applies to $m_{\chi 0} \ll 1$ MeV in order to be relativistic down to nucleosynthesis temperature. See paper for heavier x^0 .

 11 ALLIEGRO 92 limit applies for $m_{A^0} = 150 - 340$ MeV and is the branching ratio times the decay probability. Limit is $< 1.5 \times 10^{-8}$ at 99%CL.

¹² ATIYA 92 looked for a peak in missing mass distribution. $m_{\chi 0}$ =0-130 MeV in the narrow resonance limit. See paper for the dependence on

lifetime. Covariance requires X^0 to be a vector particle. 13 MEIJERDREES 92 limit applies for $\tau_{X^0} = 10^{-23} - 10^{-11}$ sec. Limits between 2×10^{-4} and 4 \times 10⁻⁶ are obtained for $m_{\chi^0}=$ 25-120 MeV. Angular momentum conservation

requires that X^0 has spin ≥ 1 . 14 ATIYA 90B limit is for B($K^+ \to \pi^+ A^0$)·B($A^0 \to \gamma \gamma$) and applies for $m_{A^0} = 50$ MeV, au_{A^0} < 10^{-10} s. Limits are also provided for $0 < m_{A^0} < 100$ MeV, $au_{A^0} < 10^{-8}$ s.

 15 KORENCHENKO 87 limit assumes $m_{A^0}=1.7$ MeV, $au_{A^0}\lesssim 10^{-12}$ s, and B($A^0\to$

¹⁶ EICHLER 86 looked for $\pi^+ \rightarrow e^+ \nu A^0$ followed by $A^0 \rightarrow e^+ e^-$. Limits on the branching fraction depend on the mass and and lifetime of A^0 . The quoted limits are valid when $au(A^0)\gtrsim 3$, $imes 10^{-10}{
m s}$ if the decays are kinematically allowed.

¹⁷YAMAZAKI 84 looked for a discrete line in $K^+ \rightarrow \pi^+ X$. Sensitive to wide mass range (5–300 MeV), independent of whether X decays promptly or not.

¹⁸ ASANO 82 at KEK set limits for B($K^+ \to \pi^+ A^0$) for m_{A^0} <100 MeV as BR $< 4. \times 10^{-8}$ for $\tau(A^0 \rightarrow n\gamma's) > 1. \times 10^{-9}$ s, BR $< 1.4 \times 10^{-6}$ for $\tau < 1. \times 10^{-9}$ s. 19 ASANO 81B is KEK experiment. Set B($K^+ \rightarrow \pi^+ A^0$) $< 3.8 \times 10^{-8}$ at CL = 90%.

 20 ZHITNITSKII 79 argue that a heavy axion predicted by YANG 78 (3 $<\!m$ $<\!40$ MeV) contradicts experimental muon anomalous magnetic moments.

AD (Axion) Searches in Quarkonium Decays

Decay or transition of quarkonium. Limits are for branching ratio. VALUE DOCUMENT ID_ TECN COMMENT CL% EVTS • • • We do not use the following data for averages, fits, limits, etc. • • • $< 1.3 \times 10^{-5}$ ²¹ BALEST 95 CLEO $\Upsilon(15) \rightarrow A^0$ $<\!4.0\times10^{-5}$ ANTREASYAN 90C CBAL 22 ANTREASYAN 90C RVUE $\Upsilon(15) \rightarrow A^0 \gamma$ $\gamma \rightarrow A^0 \gamma$ $(A^0 - 1)$ ²³ DRUZHININ 87 ND $<5 \times 10^{-5}$ 90 $(A^{0} \rightarrow e^{+}e^{-})$ $\rightarrow A^{0}\gamma (A^{0} \rightarrow \gamma\gamma)$ $< 2 \times 10^{-3}$ 24 DRUZHININ 87 ND $\begin{array}{c} \rightarrow A^0 \gamma \\ (A^0 \rightarrow \text{missing}) \end{array}$ $< 7 \times 10^{-6}$ ²⁵ DRUZHININ 90 87 ND $\begin{array}{c}
 7(15) \to A^0 \gamma \\
 (A^0 \to e^+ e^-)
 \end{array}$ $< 3.1 \times 10^{-4}$ ²⁶ ALBRECHT 90 86D ARG

²Lower bound from requiring the red giants' stellar evolution not be disrupted by axion

Gauge & Higgs Boson Particle Listings

Axions (A^0) and Other Very Light Bosons

<4 :	× 10 ⁻⁴	90	0	²⁶ ALBRECHT	86D	ARG	$\Upsilon(15) \rightarrow A^0 \gamma$
							$(A^0 \rightarrow \mu^+ \mu^-,$
	_						$\pi^{+}\pi^{-}$, $K_{-}^{+}K_{-}^{-}$)
<8 :	× 10 ⁻⁴	90	1	²⁷ ALBRECHT	86D	ARG	$\Upsilon(15) \rightarrow A^0 \gamma$
<1.3	$\times 10^{-3}$	90	0	²⁸ ALBRECHT	86D	ARG	$\gamma(15) \rightarrow A^0 \gamma$
							$(A^0 \rightarrow e^+e^-, \gamma\gamma)$
<2.	× 10 ⁻³	90		²⁹ BOWCOCK	86	CLEO	$\Upsilon(2S) \rightarrow \Upsilon(1S) \rightarrow$
							A ⁰
<5. >	× 10 ³	90		30 MAGERAS	86	CUSB	$\gamma(15) \rightarrow A^0 \gamma$
<3.	× 10 ⁻⁴	90		31 ALAM	83	CLEO	$\Upsilon(15) \rightarrow A^0 \gamma$
< 9.1 :	× 10 ⁻⁴	90		32 NICZYPORUK	83	LENA	$\gamma(15) \rightarrow A^0 \gamma$
<1.4	× 10 ⁻⁵	90		33 EDWARDS	82	CBAL	$J/\psi \rightarrow A^0 \gamma$
<3.5	× 10 ⁻⁴	90		34 SIVERTZ	82	CUSB	$\gamma(15) \rightarrow A^0 \gamma$
<1.2	× 10 ⁻⁴	90		34 SIVERTZ	82	CUSB	$\gamma(35) \rightarrow A^0 \gamma$
21	1 FCT 0- 1						

- $<1.2 \times 10^{-7}$ yu $_{A0}$ < BALEST 95 looked for a monochromatic γ from T(15) decay. The bound is for m_{A0} < They also quote a bound 5.0 GeV. See Fig. 7 in the paper for bounds for heavier $m_{\underline{A}0}$. They also quote a bound on branching ratios 10^{-3} – 10^{-5} of three-body decay $\gamma X \overline{X}$ for $0 < m_X < 3.1$ GeV.
- The combined limit of ANTREASYAN 90c and EDWARDS 82 excludes standard axion with $m_{A0} < 2m_e$ at 90% CL as long as $C_T C_{J/\psi} > 0.09$, where $C_V (V = T, J/\psi)$ is the reduction factor for $\Gamma(V \to A^0 \gamma)$ due to QCD and/or relativistic corrections. The same data excludes 0.02 < x < 260 (90% CL) if $C_T = C_{J/\psi} = 0.5$, and further combining with ALBRECHT 86D result excludes $5 \times 10^{-5} < x < 260$. x is the ratio of the vacuum expectation values of the two Higgs fields. These limits use conventional assumption $\Gamma(A^0 \to ee) \propto x^{-2}$. The alternative assumption $\Gamma(A^0 \to ee) \propto x^2$ gives a somewhat different excluded region 0.00075 < x < 44.
- The first DRUZHININ 87 limit is valid when au_{A^0}/m_{A^0} $< 3 imes 10^{-13}$ s/MeV and $m_{\mbox{$A^0$}} < 20 \mbox{ MeV}.$
- ²⁴The second DRUZHININ 87 limit is valid when $au_{A^0}/m_{A^0} < 5 imes 10^{+13} ext{ s/MeV}$ and m_{A^0} < 20 MeV.
- ²⁵The third DRUZHININ 87 limit is valid when $au_{A^0}/m_{A^0} > 7 imes 10^{-12}$ s/MeV and m_{A^0} < 200 MeV.
- $^{26}\tau_{A0}^{A0}<1\times10^{-13}{\rm s}$ and $m_{A0}<1.5$ GeV. Applies for $A^0\to\gamma\gamma$ when $m_{A0}<100$ MeV. $^{27}\tau_{A0}>1\times10^{-7}{\rm s}.$
- 28 Independent of τ_{A^0} .
- ²⁹BOWCOCK 86 looked for A^0 that decays into e^+e^- in the cascade decay $T(2S) \rightarrow$ $T(15)\pi^{+}\pi^{-}$ followed by $T(15) \rightarrow A^{0}\gamma$. The limit for $B(T(15) \rightarrow A^{0}\gamma)B(A^{0} \rightarrow$ $e^+\,e^-)$ depends on m_{A^0} and au_{A^0} . The quoted limit for m_{A^0} =1.8 MeV is at au_{A^0} \sim 2×10^{-12} s, where the limit is the worst. The same limit 2×10^{-3} applies for all lifetimes for masses $2m_e < m_{A^0} < 2m_{\mu}$ when the results of this experiment are
- 2. \times 10⁻¹⁴s, where the limit is the worst. The same limit 2. \times 10⁻¹³ applies for all lifetimes for masses $2m_e < m_{A^0} < 2m_{\mu}$ when the results of this experiment are combined with the results of ALAM 83. 30 MAGERAS 86 looked for $\Upsilon(15) \to \gamma A^0$ ($A^0 \to e^+e^-$). The quoted branching fraction limit is for $m_{A^0} = 1.7$ MeV, at $\tau(A^0) \sim 4 \times 10^{-13}$ s where the limit is the
- 31 ALAM 83 is at CESR. This limit combined with limit for B $(J/\psi \to A^0 \gamma)$ (EDWARDS 82) excludes standard axion
- excludes standard axion. 32 NICZYPORUK 83 is DESY-DORIS experiment. This limit together with lower limit 9.2×10^{-4} of B($T \to A^0 \gamma$) derived from B($J/\psi(1S) \to A^0 \gamma$) limit (EDWARDS 82) and the standard with les standard axion.
- 33 EDWARDS 82 looked for $J/\psi \to \gamma A^0$ decays by looking for events with a single γ [of energy $\sim 1/2$ the $J/\psi(1S)$ mass], plus nothing else in the detector. The limit is inconsistent with the axion interpretation of the FAISSNER 81B result.
- ³⁴ SIVERTZ 82 is CESR experiment. Looked for $\Upsilon \to \gamma A^0$, A^0 undetected. Limit for 15 (35) is valid for $m_{A^0} < 7$ GeV (4 GeV).

A⁰ (Axion) Searches in Positronium Decays

Decay or transition of positronium. Limits are for branching ratio. CL% DOCUMENT ID TECN COMMENT

• • • We do not use	the follow	ing data for average	es, fit	s, limits,	etc. • • •
$<2 \times 10^{-4}$	90	MAENO	95	CNTR	$o\text{-Ps} \rightarrow A^0 \gamma$
<3.0 × 10 ⁻³	90	³⁵ ASAI	94	CNTR	m_{A^0} =850-1013 keV o-Ps $\rightarrow A^0 \gamma$ m_{A^0} =30-500 keV
$<\!\!2.8\times10^{-5}$	90	36 AKOPYAN	91	CNTR	o -Ps $\rightarrow A^0 \gamma$
					$(A^0 \rightarrow \gamma \gamma),$ $m_{A^0} < 30 \text{ keV}$
$< 1.1 \times 10^{-6}$	90	37 ASAI	91	CNTR	$o\text{-Ps} \rightarrow A^0 \gamma$,
<3.8 × 10 ⁻⁴	90	GNINENKO	90	CNTR	m_{A^0} < 800 keV o-Ps \rightarrow $A^0 \gamma$, m_{A^0} <
		20			30 keV o-Ps $\rightarrow A^0 \gamma$, $m_{A^0} =$
$<(1-5)\times10^{-4}$	95	³⁸ TSUCHIAKI	90	CNTR	$o\text{-Ps} \rightarrow A^0 \gamma, m_{A^0} =$
$< 6.4 \times 10^{-5}$	90	³⁹ ORITO	89	CNTR	300–900 keV o-Ps $\rightarrow A^0 \gamma$,
		⁴⁰ AMALDI ⁴¹ CARBONI	85 83		m _{A⁰} < 30 keV Ortho-positronium Ortho-positronium

⁸³ CNTR Ortho-positronium 35 The ASAI 94 limit is based on inclusive photon spectrum and is independent of A^0 decay

- 39 ORITO 89 limit translates to $g_{A^0\,e\,e}^2/4\pi~<6.2 imes10^{-10}$. Somewhat more sensitive limits are obtained for larger m_{A0} : $B < 7.6 \times 10^{-6}$ at 100 keV.
- 40 AMALDI 85 set limits B(A⁰ $\gamma)$ / B($\gamma\gamma\gamma$) < (1–5) \times 10⁻⁶ for $m_{A^0}=$ 900-100 keV which are about 1/10 of the CARBONI 83 limits.
- ⁴¹ CARBONI 83 looked for orthopositronium $\rightarrow A^0$ γ . Set limit for A^0 electron coupling squared, $g(eeA^0)^2/(4\pi) < 6. \times 10^{-10}$ –7. $\times 10^{-9}$ for m_{A^0} from 150–900 keV (CL = 99.7%). This is about 1/10 of the bound from g–2 experiments.

A⁰ (Axion) Search in Photoproduction

DOCUMENT ID COMMENT

- • We do not use the following data for averages, fits, limits, etc. •
 - 42 BASSOMPIE... 95 $m_{A^0}=1.8\pm0.2~{
 m MeV}$
- 42 BASSOMPIERRE 95 is an extension of BASSOMPIERRE 93. They looked for a peak in the invariant mass of e^+e^- pairs in the region $m_{e^+e^-}=1.8\pm0.2$ MeV. They obtained bounds on the production rate A^0 for $\tau(A^0)=10^{-18}-10^{-9}$ sec. They also found an excess of events in the range $m_{e^+e^-}=2.1$ -3.5 MeV.

A⁰ (Axion) Production in Hadron Collisions

Limits are for $\sigma(A^0) / \sigma(\pi^0)$.

	<u>CL%</u>			DOCUMENT ID			
• • • We do no	t use the	followir		iata for averages	, fits	, limits,	
				AHMAD	97	SPEC	e ⁺ production
				LEINBERGER	97	SPEC	$A^0 \rightarrow e^+ e^-$
				GANZ	96	SPEC	$A^0 \rightarrow e^+ e^-$
				KAMEL	96	EMUL	325 emulsion, A ⁰ →
				BLUEMLEIN	92	BDMP	$A^0 \stackrel{e^+ e^-}{N_Z} \rightarrow \ell^+ \ell^- N_Z$
			48	MEIJERDREES	92	SPEC	$\pi^- p \rightarrow \pi A^0, A^0 \rightarrow$
			49	BLUEMLEIN	91	BDMP	$A^0 \rightarrow e^+e^-, 2\gamma$
			50	FAISSNER	89	OSPK	Beam dump,
			51	DEBOER	88	RVUE	$A^0 \xrightarrow{e^+ e^-} e^-$
			52	EL-NADI	88	EMUL	
			53	FAISSNER	88	OSPK	Beam dump, $A^0 \rightarrow 2\gamma$
			54	BADIER	86	BDMP	$A^0 \rightarrow e^+e^-$
<2. × 10 ⁻¹¹	90	0		BERGSMA	85	CHRM	CERN beam dump
<1. × 10 ⁻¹³	90	0		BERGSMA	85		CERN beam dump
		24	56	FAISSNER	83	OSPK	Beam dump, $A^0 \rightarrow 2\gamma$
			57	FAISSNER	83B	RVUE	LAMPF beam dump
			58	FRANK	83B	RVUE	LAMPF beam dump
			59	HOFFMAN	83	CNTR	$\pi p \rightarrow nA^0$ $(A^0 \rightarrow e^+e^-)$
			60	FETSCHER	82	RVUE	
		12	61	FAISSNER	81	OSPK	CERN PS v wideband
		15	62	FAISSNER	81B	OSPK	Beam dump, $A^0 \rightarrow 2\gamma$
		8		KIM	81	OSPK	26 GeV pN → A ⁰ X
		0		FAISSNER	80	OSPK	Beam dump, $A^0 \rightarrow e^+e^-$
(1. × 10 ⁻⁸	90		65	JACQUES	80	HLBC	28 GeV protons
$(1. \times 10^{-14})$	90		65	JACQUES	80	HLBC	Beam dump
			66	SOUKAS	80	CALO	28 GeV p beam dump
				BECHIS	79	CNTR	
$< 1. \times 10^{-8}$	90			COTEUS	79	OSPK	
<1. × 10 ⁻³	95		69	DISHAW	79	CALO	400 GeV pp
<1. ×10 ⁻⁸	90			ALIBRAN	78	HYBR	
<6. × 10 ⁻⁹	95		70	ASRATYAN		CALO	Beam dump
$< 1.5 \times 10^{-8}$	90		70	BELLOTTI	78	HLBC	Beam dump
$< 5.4 \times 10^{-14}$	90			BELLOTTI	78	HLBC	m _{A0} =1.5 MeV
$< 4.1 \times 10^{-9}$	90			BELLOTTI	78	HLBC	m _{A0} =1 MeV
<1. × 10 ⁻⁸	90			BOSETTI DONNELLY	78B 78	HYBR	Beam dump
<0.5 × 10 ⁻⁸	90			HANSL	78D	WIRE	Beam dump
			73	MICELMAC	78		•
			74	VYSOTSKII	78		

- $^{
 m 43}$ AHMAD 97 reports a result of APEX Collaboration which studied positron production in 238 U+ 232 Ta and 238 U+ 181 Ta collisions, without requiring a coincident electron. No narrow lines were found for 250 <E $_{
 ho+}$ < 750 keV.
- 44 LEINBERGER 97 (ORANGE Collaboration) at GSI looked for a narrow sum-energy e^+e^- -line at $\sim 635\,\mathrm{keV}$ in $^{238}\mathrm{U}+^{181}\mathrm{Ta}$ collision. Limits on the production probability for a narrow sum-energy e^+e^- line are set. See their Table 2.
- 45 GANZ 96 (EPos II Collaboration) has placed upper bounds on the production cross section of e⁺ e⁻ pairs from ²³⁸U+¹⁸¹Ta and ²³⁸U+²³²Th collisions at GSI. See Table 2 for limits both for back-to-back and isotropic configurations of e^+e^- pairs. These limits rule out the existence of peaks in the $e^+\,e^-$ sum-energy distribution, reported by an earlier version of this experiment.
- earner version or this experiment. 46 KAMEL 96 looked for e^+e^- pairs from the collison of 32 5 (200 GeV/nucleon) and emulsion. No evidence of mass peaks is found in the region of sensitivity $m_{ee} > 2$ MeV.
- 47 BLUEMLEIN 92 is a proton beam dump experiment at Serpukhov with a secondary target to induce Bethe-Heitler production of e⁺e⁻ or $\mu^+\mu^-$ from the produce A^0 . See Fig. 5 for the excluded region in m_{A0} -x plane. For the standard axion, 0.3 <x<25 is excluded at 95% CL. If combined with BLUEMLEIN 91, 0.008 <x<32 is excluded.

 $_{36}^{\rm modes}$ The AKOPYAN 91 limit applies for a short-lived ${\it A^0}$ with $\tau_{{\it A^0}}$ < 10 $^{-13}$ $m_{{\it A^0}}$ [keV] s. 37 ASAI 91 limit translates to $g_{A^0\,e^+\,e^-}^2/4\pi <~1.1\times10^{-11}$ (90%CL) for $m_{A^0}^2~<800$

keV.

38 The TSUCHIAKI 90 limit is based on inclusive photon spectrum and is independent of A⁰ decay modes.

- ⁴⁸ MEIJERDREES 92 give $\Gamma(\pi^- p \to nA^0)$ ·B($A^0 \to e^+ e^-$)/ $\Gamma(\pi^- p \to all) < 10^{-5}$ (90% CL) for $m_{A^0} = 100$ MeV, $\tau_{A^0} = 10^{-11}$ - 10^{-23} sec. Limits ranging from 2.5 × 10^{-3} to 10^{-7} are given for $m_{A^0} = 25-136$ MeV.
- $^{
 m 49}$ BLUEMLEIN 91 is a proton beam dump experiment at Serpukhov. No candidate event for $A^0 \rightarrow e^+e^-$, 2γ are found. Fig. 6 gives the excluded region in m_{A^0} -x plane (x =

 $\tan \beta = v_2/v_1$). Standard axion is excluded for $0.2 < m_{A^0} < 3.2$ MeV for most x > 1, 0.2-11 MeV for most x < 1. 50 FAISSNER 89 searched for $A^0 \rightarrow e^+e^-$ in a proton beam dump experiment at SIN. No excess of events was observed over the background. A standard axion with mass $2m_e$ -20 MeV is excluded. Lower limit on f_{A^0} of $\simeq 10^4$ GeV is given for $m_{A^0} = 2m_e$ -20 MeV.

⁵¹ DEBOER 88 reanalyze EL-NADI 88 data and claim evidence for three distinct states with mass ~ 1.1 , ~ 2.1 , and ~ 9 MeV, lifetimes 10^{-16} – 10^{-15} s decaying to e^+e^- and note the similarity of the data with those of a cosmic-ray experiment by Bristol group (B.M. Anand, Proc. of the Royal Society of London, Section A **A22** 183 (1953)). For a criticism see PERKINS 89, who suggests that the events are compatible with π^0 Dalitz decay. DEBOER 89B is a reply which contests the criticism.

 52 EL-NADI 88 claim the existence of a neutral particle decaying into e^+e^- with mass 1.60 ± 0.59 MeV, lifetime $(0.15\pm0.01)\times10^{-14}$ s, which is produced in heavy ion interactions with emulsion nuclei at \sim 4 GeV/c/nucleon.

53 FAISSNER 88 is a proton beam dump experiment at SIN. They found no candidate event for $A^0\to\gamma\gamma$. A standard axion decaying to 2γ is excluded except for a region $x\simeq 1$. Lower limit on f_{A^0} of 10^2-10^3 GeV is given for $m_{A^0}=0.1$ –1 MeV.

⁵⁴BADIER 86 did not find long-lived A^0 in 300 GeV π^- Beam Dump Experiment that decays into e^+e^- in the mass range $m_{A^0}=$ (20–200) MeV, which excludes the A^0 decay constant $f(A^0)$ in the interval (60-600) GeV. See their figure 6 for excluded region on $f(A^0)$ - m_{A^0} plane.

55 BERGSMA 85 look for $A^0 \rightarrow 2\gamma$, e^+e^- , $\mu^+\mu^-$. First limit above is for $m_{A^0}=1$ MeV; second is for 200 MeV. See their figure 4 for excluded region on $f_{A^0}-m_{A^0}$ plane, where f_{Δ^0} is A^0 decay constant. For Peccei-Quinn PECCEI 77 A^0 , m_{Δ^0} <180 keV and au >0.037 s. (CL = 90%). For the axion of FAISSNER 81B at 250 keV, BERGSMA 85 expect 15 events but observe zero.

⁵⁶FAISSNER 83 observed 19 1-γ and 12 2-γ events where a background of 4.8 and 2.3 respectively is expected. A small-angle peak is observed even if iron wall is set in front

⁵⁷ FAISSNER 83e extrapolate SIN γ signal to LAMPF ν experimental condition. Resulting 370 γ 's are not at variance with LAMPF upper limit of 450 γ 's. Derived from LAMPF limit that $[d\sigma(A^0)/d\nu$ at $90^\circ]m_{A^0}/\tau_{A^0} < 14 \times 10^{-35}$ cm² sr⁻¹ MeV ms⁻¹. See comment on FRANK 838.

58 FRANK 83B stress the importance of LAMPF data bins with negative net signal. By statistical analysis say that LAMPF and SIN-A0 are at variance when extrapolation by phase-space model is done. They find LAMPF upper limit is 248 not 450 γ 's. See comment on FAISSNER 83B.

⁵⁹ HOFFMAN 83 set CL = 90% limit $d\sigma/dt \ B(e^+e^-) < 3.5 \times 10^{-32} \ cm^2/GeV^2$ for 140 $< m_{A^0} < 160$ MeV. Limit assumes $\tau(A^0) < 10^{-9}$ s.

60 FETSCHER 82 reanalyzes SIN beam-dump data of FAISSNER 81. Claims no evidence for axion since $2-\gamma$ peak rate remarkably decreases if iron wall is set in front of the decay

 61 FAISSNER 81 see excess μe events. Suggest axion interactions.

 62 FAISSNER 81B is SIN 590 MeV proton beam dump. Observed 14.5 \pm 5.0 events of 2γ decay of long-lived neutral penetrating particle with $m_{2\gamma}\lesssim$ 1 MeV. Axion interpretation with η - A^0 mixing gives $m_{A^0}=250\pm25$ keV, $\tau_{(2\gamma)}=(7.3\pm3.7)\times10^{-3}$ s from above rate. See critical remarks below in comments of FETSCHER 82, FAISSNER 83,

FAISSNER 838, FRANK 83B, and BERGSMA 85. Also see in the next subsection ALEK-SEEV 82, CAVAIGNAC 83, and ANANEV 85. SEEV 82, CAVAIGNAC 83, and ANANEV 85. SEEV 82 Analyzed 8 candidates for $A^0 \rightarrow 2\gamma$ obtained by Aachen-Padova experiment at CERN with 26 GeV protons on Be. Estimated axion mass is about 300 keV and lifetime is $(0.86\sim5.6)\times10^{-3}$ s depending on models. Falssner (private communication), says axion production underestimated and mass overestimated. Correct value around 200

⁶⁴ FAISSNER 80 is SIN beam dump experiment with 590 MeV protons looking for $A^0 \rightarrow e^+e^-$ decay. Assuming $A^0/\pi^0=5.5\times 10^{-7}$, obtained decay rate limit $20/(A^0$ mass) MeV/s (CL = 90%), which is about 10^{-7} below theory and interpreted as upper limit to $m_{A^0} < 2m_{e^-}$

 65 JACQUES 80 is a BNL beam dump experiment. First limit above comes from nonobservation of excess neutral-current-type events $[\sigma(\text{production})\sigma(\text{interactaction}) < 7. \times 10^{-68}$ cm⁴, CL = 90%]. Second limit is from nonobservation of axion decays into 2γ 's or e^- , and for axion mass a few MeV.

66 SOUKAS 80 at BNL observed no excess of neutral-current-type events in beam dump. 67 BECHIS 79 looked for the axion production in low energy electron Bremsstrahlung and the subsequent decay into either 2γ or e^+e^- . No signal found. CL = 90% limits for model parameter(s) are given.

⁶⁸COTEUS 79 is a beam dump experiment at BNL.

 OTEOS 79 is a beam dump experiment at DNC.
 OISHAW 79 is a calorimetric experiment and looks for low energy tail of energy distributions due to energy lost to weakly interacting particles.
 BELLOTTI 78 first value comes from search for A⁰ → e⁺ e⁻. Second value comes from search for A⁰ → 2γ, assuming mass <2m_e. For any mass satisfying this, limit is above value×(mass $^{-4}$). Third value uses data of PL 60B 401 and quotes $\sigma({\rm production})\sigma({\rm interaction}) < 10^{-67}~{\rm cm}^4$.

71 BOSETTI 788 quotes $\sigma(\text{production})\sigma(\text{interaction}) < 2. \times 10^{-67} \text{ cm}^4$.

72 DONNELLY 78 examines data from reactor neutrino experiments of REINES 76 and GURR 74 as well as SLAC beam dump experiment. Evidence is negative.

73 MICELMACHER 78 finds no evidence of axion existence in reactor experiments of REINES 76 and GURR 74. (See reference under DONNELLY 78 below).

74 VYSOTSKII 78 derived lower limit for the axion mass 25 keV from luminosity of the sun and 200 keV from red supergiants.

A⁰ (Axion) Searches in Reactor Experiments

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 75 ALTMANN 95 CNTR Reactor; $A^0 \rightarrow e^+ e^-$ ⁷⁶ KETOV 86 SPEC Reactor, $A^0 \rightarrow \gamma \gamma$ 77 KOCH SPEC Reactor; $A^0 \rightarrow \gamma \gamma$ 86 78 DATAR 82 CNTR Light water reactor 79 VUILLEUMIER 81 CNTR Reactor, $A^0
ightarrow 2\gamma$

 75 ALTMANN 95 looked for 40 decaying into e^+e^- from the Bugey 5 nuclear reactor. They obtain an upper limit on the A^0 production rate of $\omega(A^0)/\omega(\gamma) \times \mathsf{B}(A^0)$ $e^+\,e^-)$ < 10^{-16} for $m_{A^0}=1.5$ MeV at 90% CL. The limit is weaker for heavier A^0 . In the case of a standard axion, this limit excludes a mass in the range $2m_e < m_{A^0} < 4.8$ MeV at 90% CL. See Fig. 5 of their paper for exclusion limits of axion-like resonances Z^0 in the (m_{χ^0},f_{χ^0}) plane.

⁷⁶ KETOV 86 searched for A^0 at the Rovno nuclear power plant. They found an upper limit on the A^0 production probability of 0.8 [100 keV/ m_{A^0}] $^6 \times 10^{-6}$ per fission. In the standard axion model, this corresponds to $m_{A0} > 150$ keV. Not valid for $m_{A0} \gtrsim$

77 1 MeV. The NeV MeV 1 MeV 2 MeV 1 MeV 2 MeV 1 86 searched for $A^{0} \rightarrow \gamma\gamma$ at nuclear power reactor Biblis A. They found an upper limit on the A^{0} production rate of $\omega(A^{0})/\omega(\gamma(M1)) < 1.5 \times 10^{-10}$ (CL=95%). Standard axion with $m_{A^{0}} = 250$ keV gives 10^{-5} for the ratio. Not valid for $m_{A^{0}} > 1022$

78 DATAR 82 looked for $A^0\to 2\gamma$ in neutron capture $(np\to dA^0)$ at Tarapur 500 MW reactor. Sensitive to sum of I=0 and I=1 amplitudes. With ZEHNDER 81 [(I=0)](I=1)] result, assert nonexistence of standard A^0 .

 79 VUILLEUMIER 81 is at Grenoble reactor. Set limit $m_{A^0} <$ 280 keV.

A^0 (Axion) and Other Light Boson (X^0) Searches in Nuclear Transitions

Li	mits are fo		thing ratio.				
VALUE		CL%		DOCUMENT ID		TECN	
• • • V	Ve do not	use the		data for averages	s, fits	, limits,	etc. • • •
			8	⁰ DEBOER	97c	RVUE	M1 transitions
< 5.5	$\times 10^{-10}$		8	¹ TSUNODA	95	CNTR	²⁵² Cf fission, $A^0 \rightarrow ee$
< 1.2	$\times 10^{-6}$			² MINOWA	93	CNTR	$^{139}La* \rightarrow ^{139}LaA^0$
< 2	$\times 10^{-4}$	90	8	³ HICKS	92	CNTR	35 S decay, $A^0 \rightarrow \gamma \gamma$
< 1.5	$\times 10^{-9}$	95	8	⁴ ASANUMA	90	CNTR	²⁴¹ Am decay
<(0.4-1	0) $\times 10^{-3}$	95	8	⁵ DEBOER	90	CNTR	$^8\text{Be}^* \rightarrow {}^8\text{Be}A^0$
<(0.2-1) × 10 ^{~3}	90	8	⁶ BiNI	89	CNTR	$160^{*} \rightarrow 160^{*} \times 0$
			8	⁷ AVIGNONE	88	CNTR	$X^{0} \rightarrow e^{+}e^{-}$ $Cu^{*} \rightarrow CuA^{0} (A^{0} \rightarrow 2\gamma, A^{0}e \rightarrow \gamma e,$
< 1.5	×10 ⁻⁴	90	8	⁸ DATAR	88	CNTR	$ \begin{array}{c} A^{0} Z \rightarrow \gamma Z) \\ 12C^{*} \rightarrow 12CA^{0} \end{array} $
< 5	× 10 ⁻³	90	8	9 DEBOER	88C	CNTR	$16_{O^*}^{A^0} \rightarrow 16_{O}^{+}_{O}^{-}_{X^0}$
< 3.4	× 10 ⁻⁵	95	9	0 DOEHNER	88	SPEC	$X^0 \rightarrow e^+e^-$ $^2H^*, A^0 \rightarrow e^+e^-$
< 4	×10 ⁻⁴		9	¹ SAVAGE	88	CNTR	
< 3	$\times 10^{-3}$	95	9	¹ SAVAGE	88	CNTR	
< 0.10	6	90	9	² HALLIN	86	SPEC	⁶ Li isovector decay
<10.8		90	. 9	² HALLIN	86	SPEC	10B isoscalar decays
< 2.2		90	9	² HALLIN	86	SPEC	¹⁴ N isoscalar decays
< 4	$\times 10^{-4}$	90	0 9	³ SAVAGE	86B	CNTR	14 _N *
			9	⁴ ANANEV	85	CNTR	Li*, deut* $A^0 \rightarrow 2\gamma$
			9	⁵ CAVAIGNAC	83	CNTR	97 Nb*, deut* transition $A^0 \rightarrow 2\gamma$
			9	⁶ ALEKSEEV	82в	CNTR	Li*, deut* transition $A^0 \rightarrow 2\gamma$
			9	⁷ LEHMANN	82	CNTR	$Cu^* Cu {A^0} (A^0 \rightarrow 2\gamma)$
			0 9	8 ZEHNDER	82	CNTR	
				⁹ ZEHNDER	81	CNTR	
			10	O CALAPRICE	79		Carbon

 $^{80}\,\text{DEBOER}$ 97c reanalyzed the existent data on Nuclear M1 transitions and find that a 9 MeV boson decaying into $e^+\,e^-$ would explain the excess of events with large opening

81 TSUNODA 95 looked for axion emission when ²⁵²Cf undergoes a spontaneous fission, with the axion decaying into e^+e^- . The bound is for m_{A^0} =40 MeV. It improves to 2.5×10^{-5} for $m_{\Delta0}{=}200$ MeV.

 82 MINOWA 93 studied chain process, 139 Ce \rightarrow 139 La* by electron capture and M1 transition of 139 La* to the ground state. It does not assume decay modes of A^0 . The bound applies for $m_{A^0} < 166$ keV.

⁸³ HICKS 92 bound is applicable for au_{χ^0} < 4 × 10⁻¹¹ sec.

⁸⁴ The ASANUMA 90 limit is for the branching fraction of X^0 emission per ²⁴¹Am α decay and valid for $au_{X^0} < 3 imes 10^{-11}$ s.

⁸⁵ The DEBOER 90 limit is for the branching ratio ⁸Be* (18.15 MeV, 1⁺) \rightarrow ⁸BeA⁰, $A^0 \rightarrow e^+e^-$ for the mass range $m_{A^0} = 4$ -15 MeV.

⁸⁶ The BINI 89 limit is for the branching fraction of 16 O* (6.05 MeV, 0+) \rightarrow 16 O \times 0, \times 0 \rightarrow e^+e^- for m_X = 1.5–3.1 MeV. $\tau_{X0} \lesssim 10^{-11}$ s is assumed. The spin-parity of X is restricted to 0+ or 1-.

Gauge & Higgs Boson Particle Listings Axions (A^0) and Other Very Light Bosons

- ⁸⁷ AVIGNONE 88 looked for the 1115 keV transition $C^* \to CuA^0$, either from $A^0 \to 2\gamma$ in-flight decay or from the secondary A^0 interactions by Compton and by Primakoff processes. Limits for axion parameters are obtained for $m_{A^0} < 1.1$ MeV.
- ⁸⁸ DATAR 88 rule out light pseudoscalar particle emission through its decay $A^0
 ightarrow e^+e^$ in the mass range 1.02-2.5 MeV and lifetime range 10^{-13} - 10^{-8} s. The above limit is for $\tau = 5 \times 10^{-13}$ s and m = 1.7 MeV; see the paper for the τ -m dependence of the
- ⁸⁹The limit is for the branching fraction of $^{16}O^*(6.05 \text{ MeV}, 0^+) \rightarrow ^{16}OX^0, X^0 \rightarrow$ ${\rm e^+\,e^-}$ against internal pair conversion for $m_{\chi 0}=1.7$ MeV and $\tau_{\chi 0}~<~10^{-11}\,{\rm s}.$ Similar limits are obtained for $m_{\chi^0}=1.3\text{--}3.2$ MeV. The spin parity of χ^0 must be either 0+ or 1-. The limit at 1.7 MeV is translated into a limit for the X^0 -nucleon coupling constant: $g_{X^0NN}^2/4\pi < 2.3\times 10^{-9}$.
- 90 The DOEHNER 88 limit is for $m_{A^0}=1.7$ MeV, $au(A^0)<10^{-10}$ s. Limits less than
- 10^{-4} are obtained for $m_{A^0}=1.2^{-2.2}$ MeV. 91 SAVAGE 88 looked for A^0 that decays into e^+e^- in the decay of the 9.17 MeV $J^P=2^+$ state in 14 N, 17.64 MeV state $J^P=1^+$ in 8 Be, and the 18.15 MeV state $J^P=1^+$ in 8 Be. 1^+ in 8 Be. This experiment constrains the isovector coupling of A^0 to hadrons, if m_{A^0} = (1.1 \rightarrow 2.2) MeV and the isoscalar coupling of A^0 to hadrons, if m_{A^0} = (1.1 \rightarrow 2.6) MeV. Both limits are valid only if $\tau(A^0) \lesssim 1 \times 10^{-11}$ s.
- 92 Limits are for $\Gamma(A^0(1.8 \text{ MeV}))/\Gamma(\pi M1)$; i.e., for 1.8 MeV axion emission normalized to the rate for internal emission of e^+e^- pairs. Valid for $\tau_{A^0}~<~2\times 10^{-11} {\rm s.}^{-6} {\rm Li}$ isovector decay data strongly disfavor PECCEI 86 model I, whereas the $^{10}\mathrm{B}$ and $^{14}\mathrm{N}$
- isoscalar decay data strongly reject PECCEI 86 model II and III.

 93 SAVAGE 86B looked for A^0 that decays into e^+e^- in the decay of the 9.17 MeV J^P 2+ state in 14 N. Limit on the branching fraction is valid if $\tau_{A^0}\lesssim$ 1. \times 10 $^{-11}{\rm s}$ for m_{A^0} = (1.1-1.7) MeV. This experiment constrains the iso-vector coupling of A^0 to hadrons.
- 94 ANANEV 85 with IBR-2 pulsed reactor exclude standard A^0 at CL = 95% masses below 470 keV (Li* decay) and below 2me for deuteron* decay.
- 95 CAVAIGNAC 83 at Bugey reactor exclude axion at any m97 Nb*decay and axion with m_{A^0} between 275 and 288 keV (deuteron* decay).
- 96 ALEKSEEV 82 with IBR-2 pulsed reactor exclude standard 0 at CL = 95% mass-ranges m_{A^0} <400 keV (Li* decay) and 330 keV < m_{A^0} <2.2 MeV. (deuteron* decay).
- 97 LEHMANN 82 obtained $A^0 \rightarrow 2\gamma$ rate $< 6.2 \times 10^{-5}/\text{s}$ (CL = 95%) excluding m_{A^0}
- between 100 and 1000 keV. $$^{98}\!$ ZEHNDER 82 used Goesgen 2.8GW light-water reactor to check A^0 production. No 2γ peak in Li*, Nb* decay (both single p transition) nor in n capture (combined with previous Ba* negative result) rules out standard A^0 . Set limit m_{A^0} <60 keV for any
- A0 . 99 ZEHNDER 81 looked for Ba* \rightarrow A0 Ba transition with A0 \rightarrow $^{2}\gamma$. Obtained 2 γ coincidence rate < 2.2 \times 10 $^{-5}/\text{s}$ (CL = 95%) excluding m_{A^0} >160 keV (or 200 keV depending on Higgs mixing). However, see BARROSO 81.
- 100 CALAPRICE 79 saw no axion emission from excited states of carbon. Sensitive to axion mass between 1 and 15 MeV.

A⁰ (Axion) Limits from Its Electron Coupling

VALUE (s)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	wing da	ata for averages, fits,	limi	ts, etc. •	• •
none $4 \times 10^{-16} 4.5 \times 10^{-12}$	90	101 BROSS	91	BDMP	$e N \rightarrow e A^0 N$ $(A^0 \rightarrow e e)$
		¹⁰² GUO	90	BDMP	$e \stackrel{(A \rightarrow e \stackrel{(C)}{\rightarrow} e)}{(A^0 \rightarrow e e)}$
		103 BJORKEN	88	CALO	$A \rightarrow e^+e^- \text{ or } 2\gamma$
		104 BLINOV	88	MD1	$(A^0 \rightarrow eeA^0$
none $1 \times 10^{-14} - 1 \times 10^{-10}$	90	¹⁰⁵ RIORDAN	87	BDMP	$eN \rightarrow eA^0N$ $(A^0 \rightarrow ee)$
none $1\times10^{-14}1\times10^{-11}$	90	¹⁰⁶ BROWN	86	BDMP	$e N \rightarrow e A^0 N$ $(A^0 \rightarrow e e)$
none 6 \times 10 ⁻¹⁴ -9 \times 10 ⁻¹¹	95	107 DAVIER	86	BDMP	$e N \rightarrow e A^0 N$ $(A^0 \rightarrow e e)$
none $3 \times 10^{-13} 1 \times 10^{-7}$	90	¹⁰⁸ KONAKA	86		$e \stackrel{(A^0}{\rightarrow} e \stackrel{A^0}{\rightarrow} N$

- $^{101}\,\mathrm{The}$ listed BROSS 91 limit is for $m_{A^0}=1.14\,\mathrm{MeV}.$ B(A^0 $\rightarrow~e^+\,e^-)=1$ assumed. Excluded domain in the $\tau_{A^0}^{-m} m_{A^0}$ plane extends up to $m_{A^0} \approx 7$ MeV (see Fig. 5). Combining with electron g-2 constraint, axions coupling only to e^+e^- ruled out for $m_{A0} < 4.8 \text{ MeV (90\%CL)}.$
- $102\,\mathrm{GUO}$ 90 use the same apparatus as BROWN 86 and improve the previous limit in the shorter lifetime region. Combined with g-2 constraint, axions coupling only to e^+e^- are ruled out for $m_{A^0}<2.7$ MeV (90% CL).
- 103 BJORKEN 88 reports limits on axion parameters (f_A , m_A , τ_A) for $m_{A0} < 200$ MeV from electron beam-dump experiment with production via Primakoff photoproduction, bremsstrahlung from electrons, and resonant annihilation of positrons on atomic electrons.
- $104\,\mathrm{BLINOV}$ 88 assume zero spin, m=1.8 MeV and lifetime $< 5 imes 10^{-12}\,\mathrm{s}$ and find
- $\Gamma(A^0 \to \gamma\gamma) \mathrm{B}(A^0 \to e^+e^-) < 2$ eV (CL=90%). 105 Assumes $A^0 \gamma\gamma$ coupling is small and hence Primakoff production is small. Their figure 2 shows limits on axions for $m_{A^0} < 15$ MeV.
- 106 Uses electrons in hadronic showers from an incident 800 GeV proton beam. Limits for m_{A0} < 15 MeV are shown in their figure 3.

- $^{107}m_{A^0}=1.8$ MeV assumed. The excluded domain in the $au_{A^0}-m_{A^0}$ plane extends up to $m_{A^0}^{A^0} \approx 14 \text{ MeV}$, see their figure 4.
- AO The limits are obtained from their figure 3. Also given is the limit on the $A^0\gamma\gamma-A^0\,e^+\,e^-$ coupling plane by assuming Primakoff production.

Search for A⁰ (Axion) Resonance in Bhabha Scattering

The limit is for $\Gamma(A^0)[B(A^0 \rightarrow e^+e^-)]^2$.

VALUE (10-3 eV)	CL%	DOCUMENT ID TECN COMMENT
		ring data for averages, fits, limits, etc. • •
< 1.3	97	$m_{A^0} = 1.75 - 1.88 \text{ MeV}$
none 0.0016-0.47	90	110 HENDERSON 92C CNTR $m_{A0} = 1.5 - 1.86 \text{ MeV}$
< 2.0	90	111 WU 92 CNTR $m_{A^0} = 1.56 - 1.86 \text{ MeV}$
< 0.013	95	TSERTOS 91 CNTR $m_{A0} = 1.832 \text{ MeV}$
none 0.19-3.3	95	112 WIDMANN 91 CNTR $m_{A0} = 1.78-1.92 \text{ MeV}$
< 5	97	BAUER 90 CNTR $m_{A0} = 1.832 \text{ MeV}$
none 0.09-1.5	95	113 JUDGE 90 CNTR $m_{A^0} = 1.832 \text{ MeV},$
< 1.9	97	114 TSERTOS 89 CNTR $m_{A0} = 1.82$ MeV
<(10-40)	97	114 TSERTOS 89 CNTR $m_{A0} = 1.51-1.65 \text{ MeV}$
<(1-2.5)	97	114 TSERTOS 89 CNTR $m_{A0} = 1.80-1.86 \text{ MeV}$
< 31	95	LORENZ 88 CNTR $m_{A0} = 1.646 \text{ MeV}$
< 94	95	LORENZ B8 CNTR $m_{A0} = 1.726 \text{ MeV}$
< 23	95	LORENZ 88 CNTR $m_{\Delta 0} = 1.782 \text{ MeV}$
< 19	95	LORENZ 88 CNTR $m_{\Delta 0} = 1.837 \text{ MeV}$
< 3.8	97	115 TSERTOS 88 CNTR $m_{\Delta 0} = 1.832 \text{ MeV}$
		116 VANKLINKEN 88 CNTR
		117 MAIER 87 CNTR
<2500	90	MILLS 87 CNTR $m_{A0} = 1.8 \text{ MeV}$
		118 VONWIMMER.87 CNTR

- 109 HALLIN 92 quote limits on lifetime, 8 \times 10 $^{-14}$ 5 \times 10 $^{-13}$ sec depending on mass, assuming B($A^0 \rightarrow e^+e^-$) = 100%. They say that TSERTOS 91 overstated their sensitivity by a factor of 3.
- 110 HENDERSON 92c exclude axion with lifetime $\tau_{A^0}{=}1.4\times10^{-12}$ 4.0×10^{-10} s, assuming B($A^0 \rightarrow e^+e^-$)=100%. HENDERSON 92c also exclude a vector boson with τ =1.4 × 10⁻¹² –6.0 × 10⁻¹⁰ s. 111 WU 92 quote limits on lifetime > 3.3 × 10⁻¹³ s assuming B($A^0 \rightarrow e^+e^-$)=100%.
- They say that TSERTOS 89 overestimate the limit by a factor of $\pi/2$. WU 92 also quote a bound for vector boson, $\tau > 8.2 \times 10^{-13}$ s. 112 WIDMANN 91 bound applies exclusively to the case B($A^0 \rightarrow e^+e^-$)=1, since the
- detection efficiency varies substantially as $\Gamma(A^0)_{\text{total}}$ changes. See their Fig. 6. 113 JUDGE 90 excludes an elastic pseudoscalar e^+e^- resonance for 4.5 × 10⁻¹³ s < $\tau(A^0)$ $< 7.5 \times 10^{-12} \, \mathrm{s}$ (95% CL) at $m_{A^0} = 1.832$ MeV. Comparable limits can be set for $m_{A^0} = 1.776 - 1.856$ MeV.
- $^{114}\,\mathrm{See}$ also TSERTOS 88B in references. $^{115}\,\mathrm{The}$ upper limit listed in TSERTOS 88 is too large by a factor of 4. See TSERTOS 88B,
- 116 VANKLINKEN 88 looked for relatively long-lived resonance ($au=10^{-10}$ – 10^{-12} s). The
- sensitivity is not sufficient to exclude such a narrow resonance.
 117 MAIER 87 obtained limits $RT\lesssim 60$ eV (100 eV) at $m_{A0}\simeq 1.64$ MeV (1.83 MeV) for energy resolution $\Delta E_{\rm CM}\simeq 3$ keV, where R is the resonance cross section normalized to that of Bhabha scattering, and $\Gamma = \Gamma_{e\,e}^2/\Gamma_{total}$. For a discussion implying that $\Delta E_{
 m cm}~\simeq~10$ keV, see TSERTOS 89.
- 118 VONWIMMERSPERG 87 measured Bhabha scattering for $E_{\rm cm}=1.37$ -1.86 MeV and found a possible peak at 1.73 with $\int \sigma dE_{\rm cm}=14.5\pm6.8$ keV-b. For a comment and found a possible peak at 1.73 with $\int \sigma dE_{CM} = 14.5 \pm 6.8$ keV·b. For a comment and a reply, see VANKLINKEN 88B and VONWIMMERSPERG 88. Also see CONNELL 88.

Search for A^0 (Axion) Resonance in $e^+e^- \rightarrow \gamma \gamma$

The limit is for $\Gamma(A^0 \rightarrow e^+e^-) \cdot \Gamma(A^0 \rightarrow \gamma \gamma) / \Gamma_{\text{total}}$

VALUE (10 ⁻³ eV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not us	e the follow	ing data for average	es, fit	s, limits,	etc. • • •
< 0.18	95	VO	94	CNTR	$m_{A^0} = 1.1 \text{ MeV}$
< 1.5	95	VO	94	CNTR	m _{A0} =1.4 MeV
<12	95	vo			m _{A0} =1.7 MeV
< 6.6	95	¹¹⁹ TRZASKA	91	CNTR	$m_{A^0} = 1.8 \text{ MeV}$
< 4.4	95	WIDMANN			$m_{A^0} = 1.78 - 1.92 \text{ MeV}$
		¹²⁰ FOX	89	CNTR	,,
< 0.11	95	121 MINOWA	89	CNTR	$m_{A^0} = 1.062 \text{ MeV}$
<33	97	CONNELL	88	CNTR	$m_{A^0} = 1.580 \text{ MeV}$
<42	97	CONNELL	88	CNTR	$m_{A^0} = 1.642 \text{ MeV}$
<73	97	CONNELL	88	CNTR	$m_{A^0} = 1.782 \text{ MeV}$
<79	97	CONNELL	88	CNTR	$m_{A^0} = 1.832 \text{ MeV}$

- 119 TRZASKA 91 also give limits in the range (6.6–30) \times 10⁻³ eV (95%CL) for m_{A0} =
- $^{-}$ 1.6–2.0 MeV. $^{-}$ 120 FOX 89 measured positron annihilation with an electron in the source material into two photons and found no signal at 1.062 MeV ($<9\times10^{-5}$ of two-photon annihilation at
- $^{121}\,\mathrm{Similar}$ limits are obtained for $m_{A^0}=1.045\text{--}1.085$ MeV.

Gauge & Higgs Boson Particle Listings Axions (A^0) and Other Very Light Bosons

Search for X^0 (Light Boson) Resonance in $e^+e^- o \gamma \gamma \gamma$

The limit is for $\Gamma(X^0 \to e^+e^-)\cdot \Gamma(X^0 \to \gamma\gamma\gamma)/\Gamma_{\text{total}}$. C invariance forbids spin-0 X^0 coupling to both e^+e^- and $\gamma\gamma\gamma$.

VALUE (10-3 eV)	CL%	DOCUMENT ID		TEÇN	COMMENT
• • • We do not use the	followi	ng data for averages,	fits	, limits,	etc. • • •
< 0.2	95	122 VO	94	CNTR	m _{X0} =1.1-1.9 MeV
< 1.0	95	123 VO	94	CNTR	$m_{\chi^0} = 1.1 \text{ MeV}$
< 2.5	95	123 VO			m _{X0} =1.4 MeV
<120	95	123 VO			m _{X0} =1.7 MeV
< 3.8	95				$m_{\chi 0} = 1.5 \text{ MeV}$

 122 VO 94 looked for $X^0 \to \gamma \gamma \gamma$ decaying at rest. The precise limits depend on $m_{\chi 0}$. See Fig. 2(b) in paper.

123 VO 94 looked for $X^0 \rightarrow \gamma \gamma \gamma$ decaying in flight.

 124 SKALSEY 92 also give limits 4.3 for $m_{\chi 0}=1.54$ and 7.5 for 1.64 MeV. The spin of χ^0

Light Boson (X^0) Search in Nonresonant e^+e^- Annihilation at Rest

Limits are for the ratio of $n\gamma + x^0$ production relative to $\gamma\gamma$.

VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not u	se the follow	ing data for averag	ges, fit	s, limits,	etc. • • •
< 4.2	90	125 MITSUI	96	CNTR	γX^0
< 4	68	126 SKALSEY	95	CNTR	γX^0
<40	68	¹²⁷ SKALSEY		RVUE	
< 0.18	90	128 ADACHI			$\gamma \gamma X^0, X^0 \rightarrow \gamma \gamma$
< 0.26	90	129 ADACHI			$\gamma \gamma X^0, X^0 \rightarrow \gamma \gamma$
< 0.33	90	¹³⁰ ADACHI	94	CNTR	$\gamma X^0, X^0 \rightarrow \gamma \gamma \gamma$

 125 MITSUI 96 looked for a monochromatic γ . The bound applies for a vector X^0 with C = -1 and m_{χ^0} <200 keV. They derive an upper bound on $ee\,\chi^0$ coupling and hence on the branching ratio B(o-Ps $\rightarrow \gamma \gamma X^0$) < 6.2 × 10⁻⁶. The bounds weaken for heavier

 χ^0 . 126 SKALSEY 95 looked for a monochromatic γ without an accompanying γ in e^+e^- annihilation. The bound applies for scalar and vector χ^0 with c=-1 and $m_{\chi^0}=$

 127 SKALSEY 95 reinterpreted the bound on γA^0 decay of o-Ps by ASAI 91 where 3% of delayed annihilations are not from 3S_1 states. The bound applies for scalar and vector X^0 with C = -1 and $m_{X^0} = 0$ -800 keV.

 128 ADACHI 94 looked for a peak in the $\gamma\gamma$ invariant mass distribution in $\gamma\gamma\gamma\gamma$ production from e^+e^- annihilation. The bound applies for $m_{\chi^0}=$ 70-800 keV.

 129 ADACHI 94 looked for a peak in the missing-mass mass distribution in $\gamma\gamma$ channel, using $\gamma\gamma\gamma\gamma$ production from e^+e^- annihilation. The bound applies for $m_{m{\chi}^0}$ <800 keV.

 130 ADACHI 94 looked for a peak in the missing mass distribution in $\gamma\gamma\gamma$ channel, using $\gamma\gamma\gamma\gamma$ production from e^+e^- annihilation. The bound applies for $m_{\chi 0}=$ 200–900

Searches for Goldstone Bosons (X^0)

(Including Horizontal Bosons and Majorons.) Limits are for branching ratios.

CL% EVTS DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

	43C 111C 11		we age to a consider	, ,,,,	,	• • • • •
			131 DIAZ	98	THEO	$H^0 \rightarrow X^0 X^0, A^0 \rightarrow X^0 X^0 X^0$, Majoron
			132 BOBRAKOV	91		Electron quasi-magnetic interaction
$< 3.3 \times 10^{-2}$	95		133 ALBRECHT	90E	ARG	$\tau \rightarrow \mu X^0$. Familion
$< 1.8 \times 10^{-2}$	95		133 ALBRECHT	90E	ARG	$\tau \rightarrow eX^0$. Familion
$< 6.4 \times 10^{-9}$	90		134 ATIYA	90	B787	$K^+ \rightarrow \pi^+ X^0$.
$<1.1 \times 10^{-9}$	90		135 BOLTON	88	свох	$\mu^{+} \xrightarrow{\text{Familon}} e^{+} \gamma X^{0}$. Familon
			¹³⁶ CHANDA ¹³⁷ CHOI	88	ASTR	Sun, Majoron
6	••		138 presine	88	ASTR	Majoron, SN 1987A
$< 5 \times 10^{-6}$	90		138 PICCIOTTO	88		$\pi \to e \nu X^0$, Majoron
$< 1.3 \times 10^{-9}$	90		¹³⁹ GOLDMAN	87		$\mu \rightarrow e \gamma X^0$. Familon
$< 3 \times 10^{-4}$	90		¹⁴⁰ BRYMAN	86B	RVUE	$\mu \rightarrow eX^0$. Familion
$<1. \times 10^{-10}$	90	0	¹⁴¹ EICHLER	86		$\mu^+ \rightarrow e^+ X^0$. Familion
$< 2.6 \times 10^{-6}$	90		¹⁴² JODIDIO	86	SPEC	$\mu^+ \rightarrow e^+ X^0$. Familon
				.85	MRK3	$\tau \to \ell X^0$. Familion
			144 DICUS	83	COSM	$\nu(hvy) \rightarrow \nu(light)X^0$

131 DIAZ 98 studied models of spontaneously broken lepton number with both singlet and triplet Higgses. They obtain limits on the parameter space from invisible decay $Z \rightarrow H^0 A^0 \rightarrow X^0 X^0 X^0 X^0 X^0$ and $e^+e^- \rightarrow Z H^0$ with $H^0 \rightarrow X^0 X^0$. 132 BOBRAKOV 91 searched for anomalous magnetic interactions between polarized electromagnetic productions of the production
trons expected from the exchange of a massless pseudoscalar boson (arion). A limit $x_{P}^{2}~<~2\times10^{-4}$ (95%CL) is found for the effective anomalous magneton parametrized as $x_e (G_F/8\pi\sqrt{2})^{1/2}$.

¹³³ ALBRECHT 90E limits are for B($au o \ell X^0$)/B($au o \ell
u \overline{
u}$). Valid for $m_{\chi^0} < 100$

MeV. The limits rise to 7.1% (for μ), 5.0% (for e) for $m_{\chi^0}=$ 500 MeV. ¹³⁴ ATIYA 90 limit is for $m_{\chi^0}=$ 0. The limit B < 1×10^{-8} holds for $m_{\chi^0}<$ 95 MeV.

For the reduction of the limit due to finite lifetime of X^0 , see their Fig. 3. 135 BOLTON 88 limit corresponds to $F>3.1\times10^9$ GeV, which does not depend on the chirality property of the coupling.

- 136 CHANDA 88 find $v_{\mathcal{T}}~<$ 10 MeV for the weak-triplet Higgs vev. in Gelmini-Roncadelli model, and $v_{
 m S}~>~5.8 imes10^6$ GeV in the singlet Majoron model.
- 137 CHOI 88 used the observed neutrino flux from the supernova SN 1987A to exclude the neutrino Majoron Yukawa coupling h in the range 2×10^{-5} $< h < 3\times10^{-4}$ for the interaction $L_{\rm int}=\frac{1}{2}i\hbar\overline{\psi}_{\nu}^{c}\gamma_{5}\psi_{\nu}\phi_{\rm X}$. For several families of neutrinos, the limit applies for $(\Sigma h_i^4)^{1/4}$.
- 138 PICCIOTTO 88 limit applies when $m_{\chi 0}~<55$ MeV and $\tau_{\chi 0}~>$ 2ns, and it decreases to 4×10^{-7} at $m_{\chi 0} = 125$ MeV, beyond which no limit is obtained.
- 139 GOLDMAN 87 limit corresponds to $F>2.9\times10^9$ GeV for the family symmetry breaking scale from the Lagrangian $L_{\rm int}=(1/F)\widetilde{\psi}_{\mu}\gamma^{\mu}$ $(a+b\gamma_5)$ $\psi_e\partial_{\mu}\phi_{\chi 0}$ with $a^2+b^2=1$. This is not as sensitive as the limit $F > 9.9 \times 10^9$ GeV derived from the search for $\mu^+ \rightarrow$ $^+ x^0$ by JODIDIO 86, but does not depend on the chirality property of the coupling.

140 Limits are for $\Gamma(\mu \to e X^0)/\Gamma(\mu \to e \nu \bar{\nu})$. Valid when $m_{\chi^0}=0$ –93.4, 98.1–103.5

141 EICHLER 86 looked for $\mu^+ \to e^+ X^0$ followed by $X^0 \to e^+ e^-$. Limits on the branching fraction depend on the mass and and lifetime of X^0 . The quoted limits are valid when $au_{\chi 0} \lesssim$ 3 imes 10 $^{-10}$ s if the decays are kinematically allowed.

¹⁴² JODIDIO 86 corresponds to $F>9.9\times10^9$ GeV for the family symmetry breaking scale with the parity-conserving effective Lagrangian $L_{\rm int}=(1/F)~\widehat{\psi}_{\mu}\gamma^{\mu}\psi_{e}\partial^{\mu}\phi_{\chi^{0}}$

¹⁴³BALTRUSAITIS 85 search for light Goldstone boson(X^0) of broken U(1). CL = 95%

limits are $B(\tau \to \mu^+ X^0)/B(\tau \to \mu^+ \nu \nu)$ <0.125 and $B(\tau \to e^+ X^0)/B(\tau \to e^+ \nu \nu)$ <0.04. Inferred limit for the symmetry breaking scale is m > 3000 TeV.

144 The primordial heavy neutrino must decay into ν and familion, f_A , early so that the red-shifted decay products are below critical density, see their table. In addition, $K \to e^+ \nu \nu$ πf_A and $\mu \to e f_A$ are unseen. Combining these excludes $m_{\text{heavy}\nu}$ between 5×10^{-5} and 5×10^{-4} MeV (μ decay) and $m_{\rm heavy} \nu$ between 5×10^{-5} and 0.1 MeV (K-decay).

Majoron Searches in Neutrinoless Double β Decay

Limits are for the half-life of neutrinoless $\beta\beta$ decay with a Majoron emission. Previous Indications for neutrinoless double beta decay with majoron emission have been superseded. No experiment currently claims any such evidence. Also see the recent rviews ZUBER 98 and FAESSLER 98B.

$t_{1/2}(10^{21} \text{ yr})$	CL%	ISOTOPE TRANSITION	METHOD	DOCUMENT ID
>7200	90	128 _{Te}	CNTR	145 BERNATOW 92
• • • We do not	use th	e following data for aver	ages, fits, limits,	etc. • • •
> 0.35	90	96Zr 0νχ	NEMO-2	¹⁴⁶ ARNOLD 99
> 1.2	90	116Cd 0vX	SCIN	147 DANEVICH 98
> 0.26	90	116Cd 0v2x	SCIN	148 DANEVICH 98
> 7.2	90	¹³⁶ Χe 0ν2χ	TPC	¹⁴⁹ LUESCHER 98
> 7.91	90	⁷⁶ Ge	SPEC	¹⁵⁰ GUENTHER 96
> 17	90	⁷⁶ Ge	CNTR	BECK 93
> 0.79	68	100 _{Mo}	SPEC	¹⁵¹ TANAKA 93
> 0.19	68	136Xe	CNTR	BARABASH 89
> 1.0	90	⁷⁶ Ge	CNTR	FISHER 89
> 0.33	90	100 _{Mo}	CNTR	ALSTON 88
0.6 ± 0.1	90	⁷⁶ Ge	CNTR	AVIGNONE 87
> 1.4	90	⁷⁶ Ge	CNTR	CALDWELL 87
> 0.44	90	⁸² Se	SPEC	ELLIOTT 87
> 1.2	90	⁷⁶ Ge	CNTR	FISHER 87
			CNTR	152 VERGADOS 82

 145 BERNATOWICZ 92 studied double-β decays of 128 Te and 130 Te, and found the ratio $\tau(^{130}$ Te)/ $\tau(^{128}$ Te) = $(3.52\pm0.11)\times10^{-4}$ in agreement with relatively stable theoretical predictions. The bound is based on the requirement that Majoron-emitting decay cannot be larger than the observed double-beta rate of 128 Te of $(7.7\pm0.4)\times10^{24}$ year. We calculated 90% CL limit as (7.7-1.28 × 0.4=7.2) × 10²⁴.

146 ARNOLD 99 use enriched ⁹⁶Zr and give a limit based on the matrix elements of

147 DANEVICH 98 use cadmium tungstate crystals, enriched to 83% in 116 Cd. The spectrum was analysed in the region of expected majoron emission. Using a variety of nuclear matrix elements, they obtain a limit $\langle g_{\nu\chi} \rangle < (1-3) \times 10^{-4}$.

 148 DANEVICH 98 obtain a limit on the 0ν decay with emission of 2 majorons

149 LUESCHER 98 report a limit for the 0ν decay with Majoron emission of 136 Xe using Xe TPC. This result is more stringent than BARABASH 89. Using the matrix elements of ENGEL 88, they obtain a limit on $\langle g_{\nu \, X} \rangle$ of 2.0×10^{-4} .

150 See Table 1 in GUENTHER 96 for limits on the Majoron coupling in different models. 151 TANAKA 93 also quote limit 5.3 \times 10¹⁹ years on two Majoron emission. 152 VERGADOS 82 sets limit $g_H < 4 \times 10^{-3}$ for (dimensionless) lepton-number violating coupling, g_H , of scalar boson (Majoron) to neutrinos, from analysis of data on double β decay of ⁴⁸Ca.

Invisible A⁰ (Axion) MASS LIMITS from Astrophysics and Cosmology

 $v_1=v_2$ is usually assumed ($v_i=$ vacuum expectation values). For a review of these limits, see RAFFELT 90c and TURNER 90. In the comment lines below, D and K refer to DFSZ and KSVZ axion types, discussed in the above minireview.

VALUE (eV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	ing data for averages	, fit	s, limits,	etc. • • •
3 to 20				K, hot dark matter
< 0.007	154 BORISOV	97	ASTR	D, neutron star
< 4	155 KACHELRIESS	97	ASTR	D, neutron star cooling
<(0.5-6) × 10 ⁻³	156 KEIL	97	ASTR	SN 1987A

Gauge & Higgs Boson Particle Listings

Axions (A^0) and Other Very Light Bosons

< 0.018	157	RAFFELT	95	ASTR	D, red giant
< 0.010	158	ALTHERR	94	ASTR	D, red giants, white
	150				dwarfs
	137	CHANG	93	ASTR	K, SN 1987A
< 0.01		WANG	92	ASTR	D, white dwarf
< 0.03	160	WANG		ASTR	D, C-O burning
none 3-8	100	BERSHADY	91	ASTR	D, K, intergalactic light
<10	161	KIM	916	COSM	D, K, mass density of
<10		KIM	,,,,	COSIVI	the universe, super-
					symmetry
	162	RAFFELT	91B	ASTR	D,K, SN 1987A
$< 1 \times 10^{-3}$	163	RESSELL	91	ASTR	K, intergalactic light
none 10 ⁻³ -3		BURROWS	90	ASTR	D,K, SN 1987A
		ENGEL	90	ASTR	D,K, SN 1987A
< 0.02		RAFFELT	90D	ASTR	D, red giant
$< 1 \times 10^{-3}$	166	BURROWS	89	ASTR	D,K, SN 1987A
$<(1.4-10)\times10^{-3}$	167	ERICSON	89	ASTR	D,K, SN 1987A
$< 3.6 \times 10^{-4}$	168	MAYLE	89	ASTR	D,K, SN 1987A
<12		CHANDA	88	ASTR	D, Sun
$< 1 \times 10^{-3}$		RAFFELT	88	ASTR	D,K, SN 1987A
	169	RAFFELT	88B	ASTR	red giant
< 0.07		FRIEMAN	87	ASTR	D, red giant
< 0.7	170	RAFFELT	87	ASTR	K, red giant
< 2-5		TURNER	87	COSM	K, thermal production
< 0.01	171	DEARBORN	86	ASTR	D, red giant
< 0.06		RAFFELT	86	ASTR	D, red giant
< 0.7	172	RAFFELT	86	ASTR	K, red giant
< 0.03		RAFFELT	86B	ASTR	D, white dwarf
< 1	173	KAPLAN	85	ASTR	K, red giant
< 0.003-0.02		IWAMOTO	84	ASTR	D, K, neutron star
> 1 × 10 ⁻⁵		ABBOTT	83	COSM	D,K, mass density of the
					universe
$> 1 \times 10^{-5}$		DINE	83	COSM	D,K, mass density of the universe
< 0.04		ELLIS	83B	ASTR	
> 1 × 10 ⁻⁵		PRESKILL	83		D,K, mass density of the
					universe
< 0.1		BARROSO	82	ASTR	
< 1	1/4	FUKUGITA	82	ASTR	D, stellar cooling
< 0.07		FUKUGITA	82B	ASTR	D, red giant
153 MOROL 98 points out that	a KS	VZ axion of this	mas	s range	(see CHANG 93) can be a

³ MOROI 98 points out that a KSVZ axion of this mass range (see CHANG 93) can be a

MOROI 98 points out that a KSVZ axion of this mass range (see CHANG 93) can be a viable hot dark matter of Universe, as long as the model-dependent g_{Aγ} is accidentally small enough as originally emphasized by KAPLAN 85; see Fig. 1.
 BORISOV 97 bound is on the axion-electron coupling g_{ae} < 1 × 10⁻¹³ from the photoproduction of axions off of electric fields in the outer layers of neutron stars.
 KACHELRIESS 97 bound is on the axion-electron coupling g_{ae} < 1 × 10⁻¹⁰ from the production of axions in strongly magnetized neutron stars. The authors also quote a stronger limit, g_{ae} < 9 × 10⁻¹³ which is strongly dependent on the strength of the magnetic field in white dwarfs.
 KELL 97 uses new measurements of the axial-vector coupling strength of nucleons as

156 KEIL 97 uses new measurements of the axial-vector coupling strength of nucleons, as well as a reanalysis of many-body effects and pion-emission processes in the core of the neutron star, to update limits on the invisible-axion mass.

157 RAFFELT 95 reexamined the constraints on axion emission from red giants due to the axion-electron coupling. They improve on DEARBORN 86 by taking into proper account degeneracy effects in the bremsstrahlung rate. The limit comes from requiring the red giant core mass at helium ignition not to exceed its standard value by more than 5%

 158 ALTHERR 94 bound is on the axion-electron coupling $g_{ae} < 1.5 \times 10^{-13}$, from energy ss via axion emission

159 (CHANG 93 updates ENGEL 90 bound with the Kaplan-Mahohar ambiguity in $z=m_g/m_d$ (see the Note on the Quark Masses in the Quark Particle Listings). It leaves the window $f_A=3 imes 10^5-3 imes 10^6$ GeV open. The constraint from Big-Bang Nucleosynthesis is satisfied in this window as well.

160 BERSHADY 91 searched for a line at wave length from 3100–8300 Å expected from 27 decays of relic thermal axions in intergalactic light of three rich clusters of galaxies.

161 KIM 91C argues that the bound from the mass density of the universe will change drastically for the supersymmetric models due to the entropy production of saxion (scalar component in the axionic chiral multiplet) decay. Note that it is an upperbound rather than a lowerbound.

162 RAFFELT 91B argue that previous SN 1987A bounds must be relaxed due to corrections to nucleon bremsstrahlung processes.

163 RESSELL 91 uses absence of any intracluster line emission to set limit. 164 ENGEL 90 rule out $10^{-10} \lesssim g_{AN} \lesssim 10^{-3}$, which for a hadronic axion with EMC motivated axion-nucleon couplings corresponds to $2.5 \times 10^{-3} \, {\rm eV} \lesssim m_{A^0} \lesssim 2.5 \times 10^{-3} \, {\rm eV}$ 10⁴ eV. The constraint is loose in the middle of the range, i.e. for $g_{AN} \sim 10^{-6}$.

 $^{165}\,\mathrm{RAFFELT}$ 90D is a re-analysis of DEARBORN 86.

166 The region $m_{A^0} \gtrsim 2$ eV is also allowed.

167 ERICSON 89 considered various nuclear corrections to axion emission in a supernova core, and found a reduction of the previous limit (MAYLE 88) by a large factor.

 $^{168}\,\mathrm{MAYLE}$ 89 limit based on naive quark model couplings of axion to nucleons. Limit based on couplings motivated by EMC measurements is 2-4 times weaker. The limit from axion-electron coupling is weak: see HATSUDA 88B.

169 RAFFELT 888 derives a limit for the energy generation rate by exotic processes in helium-burning stars $\epsilon <$ 100 erg g $^{-1}$ s $^{-1}$, which gives a firmer basis for the axion limits based on red giant cooling.

 170 RAFFELT 87 also gives a limit $g_{A\gamma} < 1 \times 10^{-10}~{
m GeV}^{-1}$.

 $^{171}\,\mathrm{DEARBORN}$ 86 also gives a limit $g_{A\gamma}~<~1.4\times10^{-11}~\mathrm{GeV}^{-1}.$

 172 RAFFELT 86 gives a limit $g_{A\gamma}~<~1.1 \times 10^{-10}~{
m GeV}^{-1}$ from red giants and $<~2.4 \times 10^{-9}$ GeV^{-1} from the sun

 173 KAPLAN 85 says $m_{A^0}~<$ 23 eV is allowed for a special choice of model parameters. 174 FUKUGITA 82 gives a limit $g_{A\gamma} < 2.3 \times 10^{-10}$ GeV $^{-1}$.

Search for Relic Invisible Axions

Limits are for $[G_{A\gamma\gamma}/m_{A^0}]^2 \rho_A$ where $G_{A\gamma\gamma}$ denotes the axion two-photon coupling, $L_{\rm int} = \frac{G_{A\gamma\gamma}}{4} \phi_A F_{\mu\nu} \tilde{F}^{\mu\nu} = G_{A\gamma\gamma} \phi_A \mathbf{E} \cdot \mathbf{B}$, and ρ_A is the axion energy density near the earth.

VALUE DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. <5.5 × 10⁻⁴³ 95 175 HAGMANN 98 CNTR $m_{A0} = 2.9 - 3.3 \times 10^{-6} \text{ eV}$ 176 KIM 98 THEO $< 2 \times 10^{-41}$ 177 HAGMANN 90 CNTR $m_{A^0} =$ (5.4-5.9)10⁻⁶ eV 89 CNTR $m_{A^0} = (4.5-10.2)10^{-6} \text{ eV}$ 178 WUENSCH $<1.3 \times 10^{-42}$ 95 <2 × 10⁻⁴¹ 95 178 WUENSCH 89 CNTR $m_{A^0} = (11.3-16.3)10^{-6} \text{ eV}$

 175 Based on the conversion of halo axions to microwave photons. Limit assumes ho_A =0.45 GeV cm⁻³. At 90%CL this result excludes a version of KSVZ axions as dark matter in the halo of our Galaxy, for the quoted axion mass range.

176 KIM 98 calculated the axion-to-photon couplings for various axion models and compared them to the HAGMANN 90 bounds. This analysis demonstrates a strong model dependence of $G_{A\gamma\gamma}$ and hence the bound from relic axion search.

177 HAGMANN 90 experiment is based on the proposal of SIKIVIE 83.

178 WUENSCH 89 looks for condensed axions near the earth that could be converted to photons in the presence of an intense electromagetic field via the Primakoff effect, following the proposal of SIKIVIE 83. The theoretical prediction with $[G_{A\gamma\gamma}/m_{A^0}]^2$ 2×10^{-14} MeV $^{-4}$ (the three generation DFSZ model) and $\rho_A=300$ MeV/cm 3 that makes up galactic halos gives $(G_{A\gamma\gamma}/m_{A^0})^2$ $\rho_A=4\times 10^{-44}$. Note that our definition of $G_{A\gamma\gamma}$ is $(1/4\pi)$ smaller than that of WUENSCH 89.

Invisible A⁰ (Axion) Limits from Photon Coupling

Limits are for the axion-two-photon coupling $G_{A\gamma\gamma}$ defined by $L=G_{A\gamma\gamma}\phi_A {\sf E}{\cdot}{\sf B}$. Related limits from astrophysics can be found in the "Invisible ${\it A}^{0}$ (Axion) Mass Limits from Astrophysics and Cosmology" section.

VALUE (GeV = 1)	CL%	DOCUMENT ID		TECN_	COMMENT
• • • We do no	ot use the following	ng data for averages	, fits	s, limits,	etc. • • •
		¹⁷⁹ MASSO	00	THEO	induced photon coupling
$< 2.7 \times 10^{-9}$	95	¹⁸⁰ AVIGNONE	98		$m_{\Delta^0} < 1 \text{ keV}$
$<6.0 \times 10^{-10}$	95	¹⁸¹ MORIYAMA	98		$m_{A0} < 0.03 \text{ eV}$
$< 3.6 \times 10^{-7}$	95	182 CAMERON	93		$m_{\Delta 0} < 10^{-3} \text{ eV},$
$<6.7 \times 10^{-7}$	95	¹⁸³ CAMERON	93		optical rotation $m_{A0} < 10^{-3} \text{ eV}$, photon regeneration
$< 3.6 \times 10^{-9}$	99.7	¹⁸⁴ LAZARUS	92		$m_{\Delta 0} < 0.03 \text{ eV}$
$< 7.7 \times 10^{-9}$	99.7	¹⁸⁴ LAZARUS	92		$m_{\Delta 0} = 0.03 - 0.11 \text{ eV}$
$< 7.7 \times 10^{-7}$	99	¹⁸⁵ RUOSO	92		$m_{A0} < 10^{-3} \text{ eV}$
$< 2.5 \times 10^{-6}$		¹⁸⁶ SEMERTZIDIS	90		$m_{A^0}^{A^0} < 7 \times 10^{-4} \text{ eV}$

 $179\,\text{MASSO}$ 00 studied limits on axion-proton coupling using the induced axion-photon coupling through the proton loop and CAMERON 93 bound on the axion-photon coupling using optical rotation. They obtained the bound $g_n^2/4\pi < 1.7 \times 10^{-9}$ for the coupling

180 AVIGNONE 98 result is based on the coherent conversion of solar axions to photons via the Primakoff effect in a single crystal germanium detector.

181 Based on the conversion of solar axions to X-rays in a strong laboratory magnetic field.

182 Experiment based on proposal by MAIANI 86.

183 Experiment based on proposal by VANBIBBER 87.

184 LAZARUS 92 experiment is based on proposal found in VANBIBBER 89.

185 RUOSO 92 experiment is based on the proposal by VANBIBBER 87.

186 SEMERTZIDIS 90 experiment is based on the proposal of MAIANI 86. The limit is obtained by taking the noise amplitude as the upper limit. Limits extend to $m_{A^0}=$ $4 imes 10^{-3}$ where $G_{A\gamma\gamma}$ < $1 imes 10^{-4}$ GeV $^{-1}$.

Limit on Invisible A⁰ (Axion) Electron Coupling

The limit is for $G_{Aee}\partial_{\mu}\phi_{A}\bar{e}\gamma^{\mu}\gamma_{5}e$ in GeV $^{-1}$, or equivalenty, the dipole-dipole potential $\frac{G_{APP}^2}{4\pi}$ $((\sigma_1 \cdot \sigma_2) - 3(\sigma_1 \cdot \mathbf{n}) (\sigma_2 \cdot \mathbf{n}))/r^3$ where $\mathbf{n} = \mathbf{r}/r$.

The limits below apply to invisible axion of $m_A \le 10^{-6}$ eV.

VALUE (GeV-1)	CL%	DOCUMENT ID		TECN_	COMMENT
• • • We do not use t	he follow	ing data for average	s, fits,	, limits,	etc. • • •
$< 5.3 \times 10^{-5}$	66	187 NI	94		Induced magnetism
$< 6.7 \times 10^{-5}$	66	¹⁸⁷ CHUI	93		Induced magnetism
$< 3.6 \times 10^{-4}$	66	¹⁸⁸ PAN	92		Torsion pendulum
$< 2.7 \times 10^{-5}$	95	¹⁸⁷ BOBRAKOV	91		Induced magnetism
<1.9 × 10 ³	66	189 WINELAND	91	NMR	
$< 8.9 \times 10^{-4}$	66	¹⁸⁸ RITTER	90		Torsion pendulum
$< 6.6 \times 10^{-5}$	95	187 VOROBYOV	88		Induced magnetism

- 187 These experiments measured induced magnetization of a bulk material by the spindependent potential generated from other bulk material with aligned electron spins, where the magnetic field is shielded with superconductor.
- 188 These experiments used a torsion pendulum to measure the potential between two bulk matter objects where the spins are polarized but without a net magnetic field in either
- 189 WINELAND 91 looked for an effect of bulk matter with aligned electron spins on atomic hyperfine splitting using nuclear magnetic resonance.

invisible A⁰ (Axion) Limits from Nucleon Coupling

Limits are for the axion mass in eV.

VALUE (eV)	CL%_	DOCUMENT ID		ECN	COMMENT
• • • We do not u	se the follow	ing data for averag	es, fits, l	imits,	etc. • • •
<745	90	¹⁹⁰ KRCMAR	98 C	NTR	Solar axion
190 KBCMAB OR IS	aked for cal	ar avions amitted b	w the Ma	. ++	sition of thermally excited

kRCMAR 98 looked for solar axions emitted by the M1 transition of thermally excited $^{57}{\rm Fe}$ nuclei in the Sun, using their possible resonant capture on $^{57}{\rm Fe}$ in the laboratory, following MORIYAMA 95B. The mass bound assumes $m_u/m_d{=}0.56$ and the flavor-singlet axial-vector matrix element $S{=}3F{-}D{\simeq}$ 0.5.

Axion Limits from T-violating Medium-Range Forces

The limit is for the coupling g in a T-violating potential between nucleons or nucleon and electron of the form $V=\frac{g\hbar^2}{8\pi m_\rho}(\sigma\cdot\vec{r})\left(\frac{1}{r^2}+\frac{m_Ac}{\hbar r}\right)e^{-m_Acr/\hbar}$

	,			
VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the foll	owing data for average	es, fit	s, limits,	etc. • • •
	¹⁹¹ NI	99		paramagnetic Tb F3
	192 POSPELOV	98	THEO	neutron EDM
	¹⁹³ YOUDIN	96		
	194 RITTER	93		torsion pendulum
	¹⁹⁵ VENEMA	92		nuclear spin-precession frequencies
	196 WINELAND	91	NMR	

- $^{191}\,\mathrm{NI}$ 99 searched for a $\mathit{T}\text{-violating}$ medium-range force acting on paramagnetic Tb F $_3$ salt. See their Fig. 1 for the result.
- 192 POSPELOV 98 studied the possible contribution of T-violating Medium-Range Force to the neutron electric dipole moment, which is possible when axion interactions violate CP. The size of the force among nucleons must be smaller than gravity by a factor of 2×10^{-10} (1 cm/ λ_A), where $\lambda_A = \hbar/m_A c$.
- 193 YOUDIN 96 compared the precession frequencies of atomic ¹⁹⁹Hg and Cs when a large mass is positioned near the cells, relative to an applied magnetic field. See Fig. 3 for their limits.

 194 RITTER 93 used a torsion pendulum to study the influence of bulk mass with polarized
- 195 VENEMA 92 looked for an effect of Earth's gravity on nuclear spin-precession frequencies of 199 Hg and 201 Hg atoms.

 196 WINELAND 91 looked for an effect of bulk matter with aligned electron spins on atomic
- hyperfine resonances in stored ⁹Be⁺ ions using nuclear magnetic resonance.

REFERENCES FOR Searches for Axions (A⁰) and Other Very Light Bosons

MASSO	00	PR D61 011701R	E. Masso	
ARNOLD	99	NP A658 299	R. Arnold et al.	(NEMO Collab.)
NI	99	PRL 82 2439	WT. Ni et ai.	(,
ALTEGOER	98	PL B428 197	J. Altegoer et al.	
AVIGNONE	98	PRL 61 5068	F.T. Avignone et al.	
DANEVICH	98	NP A643 317	F.A. Danevich et al.	
DIAZ	98	NP B527 44	M.A. Diaz et al.	
FAESSLER	98B	JP G24 2139		
HAGMANN	98	PRL 80 2043	C. Hagmann et al.	
KIM	98	PR D58 055006	J.E. Kim	
KRCMAR	98	PL B442 38	M. Krcmar et al.	
LUESCHER	98	PL B434 407	R. Luescher et al.	
MORIYAMA	98	PL B434 147	S. Moriyama et al.	
MOROI	98	PL B440 69	T. Moroi, H. Murayama	
POSPELOV	98	PR D58 097703	M. Pospelov	
ZUBER	98	PRPL 305 295	,	
ADLER	97	PRL 79 2204	S. Adler et al.	(BNL 787 Collab.)
AHMAD	97	PRL 78 618	l. Ahmad et al.	(APEX Collab.)
BORISOV	97	JETP 83 868	A.V. Borisov, V.Y. Grishinia	(MOSU)
DEBQER	97C	JP G23 L85	F.W.N. de Boer et al.	, ,
KACHELRIESS	97	PR D56 1313	M. Kacheiriess, C. Wilke, G.	Wunner (BOCH)
KEIL	97	PR D56 2419	W. Keil et al.	, ,
KITCHING	97	PRL 79 4079	P. Kitching et al.	(BNL 787 Collab.)
LEINBERGER	97	PL B394 16	U. Leinberger et al.	(ORANGE Collab.)
ADLER	96	PRL 76 1421	S. Adler et al.	(BNL 787 Collab.)
AMSLER	96B	ZPHY C70 219	C. Amsler et al.	(Crystal Barrel Collab.)
GANZ	96	PL B389 4	R. Ganz et al.	(GSI, HEID, FRAN, JAGL+)
GUENTHER	96	PR D54 3641	M. Gunther et al.	(MPIH, SASSO)
KAMEL	96	PL B368 291	S. Kamel	(SHAMS)
MITSUI	96	EPL 33 111	T. Mitsui et al.	`(TOKY)
YOUDIN	96	PRL 77 2170	A.N. Youdin et al.	(AMHT, WASH)
ALTMANN	95	ZPHY C68 221	M. Altmann et al.	(MUNT, LAPP, CPPM)
BALEST	95	PR D51 2053	R. Baiest et al.	(CLEO Collab.)
BA5SOMPIE	95	PL B355 584	G. Bassompierre et al.	(LAPP, LCGT, LYON)
MAENO	95	PL B351 574	T. Maeno et al.	(TOKY)
MORIYAMA	95B	PRL 75 3222	S. Moriyama	, ,
RAFFELT	95	PR D51 1495	G. Raffelt, A. Weiss	(MPIM, MPIA)
SKALSEY	95	PR D51 6292	M. Skalsey, R.S. Conti	(MICH)
TSUNODA	95	EPL 30 273	T. Tsunoda et al.	(ŤOKY)
ADACHI	94	PR A49 3201	S. Adachi et al.	`(TMU)
ALTHERR	94	ASP 2 175	T. Altherr, E. Petitgirard, de	l Rio Gaztelurrutia
AMSLER	94B	PL B333 271	C. Amsier et al.	(Crystal Barrel Collab.)
ASAI	94	PL B323 90	S. Asai et al.	(TOKY)
MEIJERDREES	94	PR D49 4937	M.R. Drees et al.	(BRCO, OREG, TRIU)
NI	94	Physica B194 153	W.T. Ni et al.	(NTHU)
vo	94	PR C49 1551	D.T. Vo et al.	(ISU, LBL, LLNL, UCD)
ATIYA	93	PRL 70 2521	M.S. Atiya et al.	(BNL 787 Collab.)
Also	93C	PRL 71 305 (erratum)	M.S. Atiya et al.	(BNL 787 Collab.)

ATIYA	93B	PR D48 R1	M.S. Atiya et al.	(BNL 787 Collab.)
BASSOMPIE		EPL 22 239 PRL 70 2853	G. Bassompierre et al.	(LAPP, TORI, LYON) (MPIH, KIAE, SASSO)
BECK CAMERON	93 93	PRL 70 2853 PR D47 3707	M. Beck et al.	(MPIH, KIAE, SASSO)
CHANG	93	PL B316 51	R.E. Cameron et al. S. Chang, K. Choi	(ROCH, BNL, FNAL+)
CHUI	93	PRL 71 3247	T.C.P. Chui, W.T. Ni	(NTHU)
MINOWA	93	PRL 71 4120	M. Minowa et al.	(TOKY)
NG	93	PR D48 2941	K.W. Ng	(AST)
RITTER	93	PRL 70 701	R.C. Ritter et al.	, ,
TANAKA	93	PR D48 5412	J. Tanaka, H. Ejiri	(OSAK)
ALLIEGRO	92	PRL 68 278	C. Alliegro et al.	(BNL, FNAL, PSI+)
ATIYA	92	PRL 69 733	M.S. Atiya et al.	(BNL, LANL, PRIN+)
BERNATOW	92 92	PRL 69 2341 IJMP A7 3835	T. Bernatowicz et al.	(WUSL, TATA)
BLUEMLEIN HALLIN	92	PR D45 3955	J. Blumlein <i>et al.</i> A.L. Hallin <i>et al.</i>	(BERL, BUDA, JINR+)
HENDERSON	92C	PRL 69 1733	S.D. Henderson et al.	(PRIN) (YALE, BNL) (OHIO, BNL)
HICKS	92	PL B276 423	K.H. Hicks, D.E. Alburger	(OHIO, BNL)
LAZARUS	92	PRL 69 2333	D.M. Lazarus et al.	(BNL, RDCH, FNAL)
MEIJERDREES	92	PRL 68 3845	R. Meijer Drees et al.	(SINDRUM 1 Collab.)
PAN	92	MPL 7 1287 ZPHY C56 505	S.S. Pan, W.T. Ni, S.C. Chen	(NTHU) H, BNL, FNAL, TRST) (MICH, NDAM)
RUOSO	92	ZPHY C56 505	G. Ruoso et al. (ROC	H, BNL, FNAL, TRST)
SKALSEY	92	PRL 68 456	M. Skalsey, J.J. Kolata	(MICH, NDAM)
VENEMA	92	PRL 68 135		
WANG	92	MPL A7 1497	J. Wang	(ILL)
WANG	92C	PL B291 97	J. Wang	(ILL)
WU AKOPYAN	92 91	PRL 69 1729 PL B272 443	X.Y. Wu et al. M.V. Akopyan et al.	(BNL, YALE, CUNY) (INRM)
ASAI	91	PRL 66 2440	S. Asai et al.	(ICEPP)
BERSHADY	91	PRL 66 1398	M.A. Bershady, M.T. Ressell, M.S.	Turner (CHIC+)
BLUEMLEIN	91	ZPHY C51 341	J. Blumlein et al.	(BERL, BUDA, JINR+)
BOBRAKOV	91	ZPHY C51 341 JETPL 53 294	V.F. Bobrakov et al.	(PNPI)
		Translated from ZETFP !	53 283.	
BROSS	91	PRL 67 2942	A.D. Bross et al.	(FNAL, ILL)
KIM	91C	PRL 67 3465	J.E. Kim	(SEOUL)
RAFFELT	91B	PRL 67 2605	G. Raffelt, D. Seckel	(MPIM, BART)
RESSELL TRZASKA	91 91	PR D44 3001 Pt B269 54	M.T. Ressell W.H. Trzaska et al.	(CHIC, FNAL) (TAMU)
TSERTOS	91	PL B269 54 PL B266 259	H. Tsertos et al.	(ILLG, GSI)
WALKER	91	APJ 376 51	T.P. Walker et al.	(HSCA, OSU, CHIC+)
WIDMANN	91	ZPHY A340 209	E. Widmann et al.	(STUT, GSI, STUTM)
WINELAND	91	PRL 67 1735	D.J. Wineland et al.	(NBSB)
ALBRECHT	90E	PL B246 278	H. Albrecht et al.	(NBSB) (ARGUS Collab.)
ANTREASYAN	90C	PL B251 204	D. Antreasyan et al.	(Crystal Ball Collab.)
ASANUMA	90	PL B237 588	T. Asanuma et al.	(TOKY)
ATIYA	90	PRL 64 21	M.S. Atiya et al.	(BNL 787 Collab.)
ATIYA	90B	PRL 65 1188	M.S. Atiya et al.	(BNL 787 Collab.)
BAUER BURROWS	90 90	NIM B50 300 PR D42 3297	W. Bauer et al.	(ŠTUT, VILL, GSI)
DEBDER	90	JPG 16 L1	A. Burrows, M.T. Ressell, M.S. Tu	urner (ARIZ+) Steyaert (LOUV)
ENGEL	90	PRL 65 960	F.W.N. de Boer, J. Lehmann, J. S J. Engel, D. Seckel, A.C. Hayes	(BART, LANL)
GNINENKO	90	PL B237 287	S.N. Gninenko et al.	(INRM)
GUO	90	PR D41 2924	R. Guo et al. (NIU,	LANL, FNAL, CASE+)
HAGMANN	90	PR D42 1297	C. Hagmann et al.	(FLOR)
JUDGE	90	PRL 65 972	S.M. Judge et al.	(ILLĠ, GSI)
RAFFELT	90C	PRPL 198 1	G.G. Raffelt	(MPIM)
RAFFELT	90D	PR D41 1324	G.G. Raffeit R.C. Ritter et al.	(MPIM)
RITTER	90	PR D42 977 PRL 64 2988	R.C. Ritter et al.	(VIRG) (ROCH, BNL, FNAL+)
SEMERTZIDIS STAUDT	90	EPL 13 31	Y.K. Semertzidis et al. A. Staudt, K. Muto, H.V. Klapdor	
TSUCHIAKI	90	PL B236 81	M. Tsuchiaki et al.	(ICEPP)
TURNER	90	PRPL 197 67	M.S. Turner	(FNAL)
BARABASH	89	PL B223 273	A.S. Barabash et al.	(ITEP, INRM)
BINI	89	PL B221 99	M. Bini et al.	(FIRZ, CERN, AARH)
BURROW\$	89	PR D39 1020	A. Burrows, M.S. Turner, R.P. Bri	(FIRZ, CERN, AARH) nkmann (ARIZ+)
BURROW\$ Also	89 88	PR D39 1020	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI)
BURROWS Also DEBOER	89 86 89B	PR D39 1020 PRL 60 1797 PRL 62 2639	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig	(FIRZ, CERN, AARH) inkmann (ARIZ+) (FNAL, EFI) (ANIK)
BURROWS Also DEBOER ERICSON	89 86 89B 89	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot	(FIRZ, ČERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN)
BURROWS Also DEBOER ERICSON FAISSNER	89 88 89B 89 89	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner <i>et al.</i>	(FIRZ, ČERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN)
BURROWS Also DEBOER ERICSON	89 86 89B 89	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al.	(FIRZ, ČERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI)
BURROWS Also DEBOER ERICSON FAISSNER FISHER	89 88 89B 89 89	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al. J.D. Fox et al. R. Mayle et al.	(FIRZ, ČERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (FSU) CERN, MINN, FNAL+)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also	89 88 89B 89 89 89 89	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner <i>et al.</i> P.H. Fisher <i>et al.</i> J.D. Fox <i>et al.</i> R. Mayle <i>et al.</i> (LLL, R. Mayle <i>et al.</i> (LLL, R. Mayle <i>et al.</i> (LLL,	(FIRZ, CERN, AARH) nokmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) CERN, MINN, FNAL+)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA	89 88 89B 89 89 89 89 89	PR D39 1020 PRL 60 1797 PRK 62 2639 PL 8219 507 ZPHY C44 557 PL 8218 257 PR C39 288 PL 8219 515 PL B203 188 PRL 62 1091	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faisner et al. P.H. Fisher et al. J.D. Fox et al. R. Mayle et al. (LLL, R. Mayle et al. I. Minowa et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (CERN, IPN) (AACH3, BERL, PSI) (CLT, NEUC, PSI) (CERN, MINN, FNAL+) CERN, MINN, FNAL+) (ICEPP)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO	89 88 89B 89 89 89 89 89 86 89	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al. 1.D. Fox et al. R. Mayle et al. K. Mayle et al. H. Minowa et al. S. Orito et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (AGNE) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (FSU) CERN, MINN, FNAL+) CERN, MINN, FNAL+) (ICEPP) (ICEPP)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS	89 88 89B 89 89 89 89 89 88 89	PR D39 1020 PRL 60 1297 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al. J.D. Fox et al. R. Mayle et al. R. Mayle et al. H. Minowa et al. S. Orito et al. D.H. Perkins	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) CERN, MINN, FNAL+) (ICEPP) (ICEPP) (ICEPP)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS TSERTOS	89 88 89B 89 89 89 89 88 89 89	PR D39 1020 PRL 50 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al. 1.D. Fox et al. R. Mayle et al. (LLL, H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (AACH3, BERL, PSI) (CIT, NEUC, PSI) CERN, MINN, FNAL+) CERN, MINN, FNAL+) (ICEPP) (OXF) (GSI, ILLG)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS TSERTOS VANDIBBER	89 88 89B 89 89 89 89 88 89 89 89	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 638 PR D40 1397 PR D39 2089	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Fäissner et al. P.H. Fisher et al. J.D. Fox et al. R. Mayle et al. (LLL, H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) CERN, MINN, FNAL+) (ICEPP) (ICEPP) (ICEPP) (GSI, ILLG) (LLL, TAMU, LBL)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH	89 86 89B 89 89 89 89 88 89 89 89 89	PR D39 1020 PRL 50 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397 PR D40 1397 PR D40 3153	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. R. Mayle et al. H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. W.U. Wuensch et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) CERN, MINN, FNAL+) CERN, MINN, FNAL+) (ICEPP) (ICEPP) (ICEPP) (GSI, ILLG) (ROCH, BNL, FNAL) (ROCH, BNL, FNAL)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO	89 86 89B 89 89 89 89 86 89 89 89 89	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PL B218 257 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397 PR D39 2009 PR D40 3153 PRL 59 839	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Fäissner et al. P.H. Fisher et al. J.D. Fox et al. R. Mayle et al. (LLL, H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. W.U. Wuensch et al. S. G. Panfilis et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (ICEPP) (ICEPP) (OSF, (LLL, TAMU, LBL) (ROCH, BNL, FNAL)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON	89 86 89B 89 89 89 89 88 89 89 89 89	PR D39 1020 PRL 50 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397 PR D40 1397 PR D40 3153	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Fäissner et al. P.H. Fisher et al. J.D. Fox et al. R. Mayle et al. (LLL, H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. W.U. Wuensch et al. S. G. Panfilis et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (ICEPP) (ICEPP) (OSF, (LLL, TAMU, LBL) (ROCH, BNL, FNAL)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO	89 86 89B 89 89 89 89 88 89 89 89 89 89 89 89	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PL B218 257 PL B218 257 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397 PR D39 2089 PR D40 3153 PRL 50 1928	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al. J.D. Fox et al. R. Mayle et al. (LLL, R. Mayle et al. LLL, H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. W.U. Wuensch et al. S. de Panfilis et al. M. Alston-Garnjost et al. F. Avignone et al. M. Alston-Garnjost et al. F.T. Avignone et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC, PSI) (ERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (ICE
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE	89 88 89 89 89 89 89 88 89 89 89 89 89 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PL B218 257 PL B218 257 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397 PR D39 2089 PR D40 3153 PR D59 2089 PR D40 3153 PRL 60 1928 PR D37 618 PR D38 3375 SINP 47 563	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al. J.D. Fox et al. R. Mayle et al. (LLL, R. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. V.U. Wuensch et al. W.U. Wuensch et al. W.U. Wuensch et al. W.U. Wuensch et al. M. Alston-Garnjost et al. F.T. Avignone et al. J.D. Bjorken et al. J.D. Bjorken et al. AE Blinow et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (ICEPP) (ICEPP) (OSF, (LLL, TAMU, LBL) (ROCH, BNL, FNAL)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV	89 88 89 89 89 89 88 89 88 89 89 89 87 88 88 88 88 88	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 62 597 PRC 103 928 PR D40 1397 PR D40 3153 PRL 59 839 PRL 60 1928 PR D33 7618 PR D33 3375 SJNP 47 563 Iranslated from YAF 47	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. L.D. Fox et al. L.D. H. Mayle et al. LLL, H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. L. Tsertos et al. L. Tsertos et al. S. de Panfilis et al. S. de Panfilis et al. J. M. Alston-Garnjost et al. F.T. Avignone et al. E. Binov et al. A.E. Blinov et al. Blinov e	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (ICEPP) (GSI, ILLG) (GSI, ILLG) (ROCH, BNL, FNAL) (ROCH, BNL, FNAL) (LEL, MTHO+) (PRIN, SCUC, ORNL+) (FNAL, SLAC, VPI) (NOVO)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BJORKEN BOLTON	89 88 89 89 89 89 89 89 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PL B218 257 PL B218 257 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 3153 PR D40 3153 PRL 59 399 PR D40 3153 PRL 59 399 PRL 60 1928 PR D39 3375 SJNP 47 563 Translated from YAF 47 PR D38 207	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al. J.D. Fox et al. R. Mayle et al. (LLL, R. Mayle et al. LLL, H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. W.U. Weensch et al. S. de Panfilis et al. M. Alston-Garnjost et al. J.D. Bjorken et al. J.D. Bjorken et al. A.E. Blinov et al. 889. R.D. Bolton et al. R.D. Bolton et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC, PSI) (ERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (ICE
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also ORITO PERKINS VANBIBBER WUENSCH Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON Also	89 88 89 89 89 89 89 88 89 89 89 89 89 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397 PR D40 3153 PRL 59 839 PRL 60 1928 PR D38 3375 SJMP 47 563 Translated from YAF 47 PR D38 2079 PR D38 2077 PR D38 2077 PR D39 3375 PRL 59 839 PRL 60 1928 PR D37 618 PR D38 3375 SJMP 47 563 Translated from YAF 47 PR D38 2077 PR D38 2077 PR D38 2077 PR D38 2077	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. K. Mayle et al. J. L. H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. J. The Perkins J. J. J. M. J.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (ICEPP) (ICEPP) (ICEPP) (ICEP) (OXF) (ILL, TAMU, LBL) (ROCH, BNL, FNAL) (ROWO) (LANL, STAN, CHIC+) (LANL, STAN, CHIC+)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO AISO	89 88 89 89 89 89 89 88 88 88 89 87 88 88 88 88 88 88 88 88 88 88 88 88	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397 PR D40 3153 PRL 59 839 PRL 60 1928 PR D38 3375 SJMP 47 563 Translated from YAF 47 PR D38 2079 PR D38 2077 PR D38 2077 PR D39 3375 PRL 59 839 PRL 60 1928 PR D37 618 PR D38 3375 SJMP 47 563 Translated from YAF 47 PR D38 2077 PR D38 2077 PR D38 2077 PR D38 2077	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al. J.D. Fox et al. R. Mayle et al. (LLL, R. Mayle et al. LLL, H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. W.U. Wuensch et al. S. de Panfilis et al. M. Alston-Garnjost et al. F.T. Avignone et al. J.D. Bjorken et al. AE. Blinov et al. 889. R.D. Bolton et al. R.D. Grosnick et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC, PSI) (ERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (ICE
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also ORITO PERKINS VANBIBBER WUENSCH Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON Also	89 88 89 89 89 89 89 88 89 89 89 89 89 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PL B218 257 PL B218 257 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 3153 PR D40 3153 PRL 59 399 PR D40 3153 PRL 59 399 PRL 60 1928 PR D39 3375 SJNP 47 563 Translated from YAF 47 PR D38 207	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. K. Mayle et al. J. L. H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. J. The Perkins J. J. J. M. J.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (ICEPP) (ICEPP) (ICEPP) (ICEP) (OXF) (ILL, TAMU, LBL) (ROCH, BNL, FNAL) (ROWO) (LANL, STAN, CHIC+) (LANL, STAN, CHIC+)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS VANBIBBER WUENSCH Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON Also CHANDA	89 88 89 89 89 89 89 89 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 63 597 PR D40 1397 PR D40 1397 PR D40 3153 PRL 59 839 PRL 60 1928 PR D33 375 SJNP 47 563 Translated from YAF 47 PR D38 2079 PRL 53 241 PR D37 3214 PR D37 3214 PR D37 32214 PR D37 3225 PRL 59 37 3225 PRL 59 37 3225	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. H. Perkins H. Tisertos et al. J.D. H. Perkins H. Tsertos et al. J. S. de Panfilis et al. S. de Panfilis et al. J. J. J. P. J.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (I
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI CONNELL DATAR	89 88 89 89 89 89 89 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL 8219 507 ZPHY C44 557 PL 8218 257 PL 8218 257 PL 8218 257 PL 8219 515 PL 8203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397 PR D39 2089 PR D40 1397 PR D39 2089 PR D40 1395 PR D40 1928 PR D37 618 PR D37 618 PR D38 3375 SJNP 47 563 Translated from YAF 47 PR D38 2077 PRL 56 2461 PR D37 2714 PR D37 2714 PR D37 3225 PRL 60 2242 PRL 60 2242 PRL 60 2242	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al. 1.D. Fox et al. R. Mayle et al. R. Mayle et al. H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. K. van Bibber et al. S. de Panfilis et al. M.U. Wuensch et al. F.T. Avignone et al. J.D. Bjorken et al. R.D. Bolton et al. R.D. Grosnick et al. R.C. handa, J.F. Nieves, P.B. Pal K. Choi et al. S.H. Connell et al. S.H. Connell et al. S.H. Connell et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACHA, BERL, PSI) (CIT, NEUC., PSI) (ETI, NEUC., PSI) (ERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI DATAR DEBOER	89 88 89 89 89 89 89 88 89 89 89 87 88 88 88 88 88 88 88 88 88 88 88 88	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 63 597 PRL 62 2638 PR D40 1397 PR D40 1397 PR D40 3153 PRL 59 839 PRL 50 1928 PR D33 3375 SJNP 47 563 Translated from YAF 47 PR D33 2077 PR D33 2077 PR D33 2077 PR D37 3225 PRL 57 3241 PR D37 3225 PRL 59 337 2714 PR D37 3225 PRL 59 237 PRL 50 2424 PR C37 250 PRL 61 1274	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. R. Mayle et al. L. H. Minowa et al. S. Orito et al. L. H. Minowa et al. S. Orito et al. H. Tsertos et al. K. van Bibber et al. K. van Bibber et al. S. de Panfilis et al. S. de Panfilis et al. J.D. Bjorken et al. A.E. Blinov et al. C. Grosnick et al. C. Chanda, J.F. Niewes, P.B. Pal K. Choi et al. C. Chanda, J.F. Niewes, P.B. Pal K. Choi et al. V.M. Datar et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (CEPP) (ICEPP) (IC
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI CONNELL DATAR DEBOER AISO	89 88 89 89 89 89 89 89 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397 PR D39 2089 PR D40 1397 PR D39 2089 PR D40 1397 PR D39 2089 PR D40 3153 PRL 59 839 PRL 60 1928 PR D37 618 PR D38 3755 SJNP 47 563 ZPR 563 2451 PR D37 2714 PR D37 2725 PRL 60 2242 PRL 61 1274	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al. J.D. Fox et al. R. Mayle et al. R. Mayle et al. H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. K. van Bibber et al. S. de Panfilis et al. M.J. W.U. Wuensch et al. F.T. Avignone et al. J.D. Bjorken et al. A.E. Blinov et al. R.D. Botton et al. S. Choi et al. R.C. handa, J.F. Nieves, P.B. Pal K. Choi et al. S.H. Connell et al. V.M. Datar et al. S.H. Connell et al. V.M. Datar et al. F.W.N. de Boer, R. van Dantzig F.W.N. de Boer, R. van Dantzig F.W.N. de Boer, R. van Dantzig	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC., PSI) (ETN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (IC
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI CONNELL DATAR DEBOER AISO AISO AISO AISO AISO AISO AISO AISO	89 88 89 89 89 89 89 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PR C49 288 PR D40 1397 PR D40 1397 PR D40 13153 PRL 59 839 PRL 50 1928 PR D33 375 SJNP 47 563 SJNP 47 5	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. (LLL, R. Mayle et al. L. Minowa et al. S. Orito et al. S. Orito et al. H. Tsertos et al. K. van Bibber et al. K. van Bibber et al. S. de Panfilis et al. J.D. Bjorken et al. S. de Panfilis et al. J.D. Bjorken et al. A.E. Blinov et al. Blinov et al. D. Grosnick et al. R.D. Bolton et al. D. Grosnick et al. K. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. K. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. K. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. K. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. F.W.N. de Boer, R. van Dantzig	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (CEPP) (ICEPP) (IN SCUC, ORNL+) (INVO) (IANIL, STAN, CHIC+) (I
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO AISO AISO AISO CHON AISO AISO CHON AISO AISO AISO AISO AISO AISO AISO AISO	89 88 89 89 89 89 89 89 89 89 89 89 88 88	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397 PR D40 3153 PRL 59 839 PRL 64 1397 PR D40 3153 PRL 59 839 PRL 60 1928 PR D37 618 PR D38 3375 SJNP 47 563 Translated from YAF 47 PR D38 2077 PRL 52 2641 PRL 57 3241 PR D37 2714 PR D37 3245 PRL 60 2242 PRL 61 1274 PRL 52 2644 PRL 62 2644	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. L.L. Mayle et al. L.L. Mayle et al. L. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. S. de Panfilis et al. M.J. W.U. Wuensch et al. S. de Panfilis et al. A.E. Bilnov et al. B. Bilnov et al. B. B. Botton et al. D. Grosnick et al. C. Grosnick et al. S. H. Conell et al. C. H. Conell et al. S. H. Connell et al. S. M. D. Botton et al. S. H. Connell et al. S. H. Connell et al. S. H. Connell et al. S. M. Oa Boer, R. van Dantzig D. H. Perkins S. W. N. de Boer, R. van Dantzig D. H. Perkins S. W. N. Dalarer	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACHA, BERL, PSI) (CIT, NEUC., PSI) (ETI, NEUC., PSI) (ERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ICEPP) (
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI CONNELL DATAR DEBOER AISO AISO AISO AISO CHANDA AISO CHONELL DATAR DEBOER AISO AISO DEBOER	89 88 89 89 89 89 89 89 89 89 89 89 88 88	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PR C49 288 PR D40 1397 PR D40 1397 PR D40 13153 PRL 59 839 PRL 50 1928 PR D33 375 SJNP 47 563 SJNP 47 563 SJNP 47 563 SJNP 47 563 PR D39 2027 PR D37 3225 PR D37 2214 PR D37 22	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig F.W.N. de Boer, W. M. S. Turner F.W.N. de Boer, B. V. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. H. Minowa et al. S. Orito et al. J. L. H. Minowa et al. S. Orito et al. J. J. H. Tsertos et al. J. J. H. Tsertos et al. J. J. J. W. J. J. J. J. W. J. J. J. J. J. M. J.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACH3, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ERP) (ICEPP) (IN SCUC, ORNL+) (IN STAN, CHIC+) (IN
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI CONNELL DATAR AUSO AISO AISO AISO AISO AISO AISO AISO AI	89 88 89 89 89 89 89 89 89 89 89 89 88 88	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 62 2638 PR D40 1397 PR D40 3153 PRL 59 839 PRL 60 1928 PR D37 618 PR D38 3375 SJNP 47 563 Translated from YAF 47 PR D38 2077 PRL 52 2641 PRL 57 3241 PR D37 3214 PR D37 3225 PRL 60 2242 PR C37 2504 PRL 62 2644 PR D37 325 PRL 62 2644 PR D37 2504 PRL 62 2644	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. L.D. H. Hisher et al. J.D. H. Hisher et al. J.D. H. Perkins J. H. H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. S. de Panfilis et al. S. de Panfilis et al. J.D. Bjorken et al. J.D. Bjorken et al. A.E. Blinov et al. Binov et al. Binov et al. S. H. Consell et al. V.M. Datar et al. D. Grosnick et al. S. H. Connell et al. V.M. Datar et al. F.W.N. de Boer, R. van Dantzig D.H. Perkins F.W.N. de Boer, R. van Dantzig F.W.N. de Boer et al. J. Dohner et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH, BERL, PSI) (CIT, NEUC., PSI) (ERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ERN, MINN, FNAL+) (CEPP) (OXF) (GSI, ILLG) (LLL, TAMU, BBI, (ROCH, BNL, FNAL) (ROCH, BNL, FNAL) (PRIN, SCUC, ORNL+) (FNAL, STAN, CHIC+) (LANL, STAN, CHIC+) (LOUV) (LANL, STAN, CHIC+) (LOUV) (LANL, STAN, CHIC+) (LOUV)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI CONNELL DATAR DEBOER AISO AISO AISO AISO CHANDA AISO CHONELL DATAR DEBOER AISO AISO DEBOER	89 88 89 89 89 89 89 89 89 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PR C49 288 PR D40 1397 PR D40 1397 PR D40 13153 PRL 59 839 PRL 50 1928 PR D33 375 SJNP 47 563 SJNP 47 563 SJNP 47 563 SJNP 47 563 PR D39 2027 PR D37 3225 PR D37 2214 PR D37 22	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. (LLL, R. Mayle et al. L. Mayle et al. L. Mayle et al. J.D. Fox et al. S. Orito et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. W.U. Weensch et al. S. de Panfilis et al. J. D. Bjorken et al. F.T. Avignone et al. J.D. Bjorken et al. R.D. Bolton et al. R.D. Bolton et al. D. Grosnick et al. K. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. K. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. F.W.N. de Boer, R. van Dantzig F.W.N. de Boer et al. J. Dohner et al. J. Dohner et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (AACHA, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ECEPP) (ICEPP) (ILLI, TAMU, LBL, (ROCH, BNL, FNAL) (ROCH, BNL, FNAL) (ROCH, BNL, FNAL) (ROCH, BNL, FNAL) (FNAL, STAN, CHIC+) (LANL, S
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO AISO AISO AISO AISO CHANDA CHOI CONNELL DATAR DEBOER AISO AISO AISO CHANDA CHOI CONNELL DATAR DEBOER AISO DEBOER EL-NADI ENGEL FAISSNER	89 88 89 89 89 89 89 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PR C43 597 PR C49 3193 PR D40 1397 PR D40 1397 PR D40 1398 PR D40 1398 PR D40 1398 PR D40 1398 PR D40 1397 PR D40 3153 PRL 59 839 PRL 50 3183 PRL 59 839 PRL 50 383 PRL 59 839 PRL 50 383 PRL 59 839 PRL 50 2641 PRL 57 3241 PR D37 3212 PR D37 3222 PR C37 250 PRL 52 2649 PR D37 2214 PR D37 3225 PRL 52 2649 PRL 52 2639 PRL 62 2637 PRL 61 1271 PR C37 731	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. (LLL, R. Mayle et al. L. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. W.U. Wuensch et al. S. de Panfilis et al. J.D. Bjorken et al. S. de Panfilis et al. J.D. Bjorken et al. Blinov et al. Blinov et al. Blinov et al. D. Grosnick et al. R.D. Bolton et al. D. Grosnick et al. K. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. V.M. Datar et al. V.M. Datar et al. F.W.N. de Boer, R. van Dantzig F.W.N. de Boer et al. J. Dohner et al. J. F.W.N. de Boer et al. J. Dohner et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK-) (CERN, IPN) (AACHA, BERL, PSI) (CIT, NEUC, PSI) (ERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ECRP) (ICEPP) (ICHO, INAL, ISTAN, CHIC+) (INOVO) (IANIL, STAN, CHIC+) (ICHC, LANL, STAN, CHIC+) (
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON Also CHANDA CHOI CONNELL DATAR DEBOER Also Also Also Also Also Also CHANDA CHOI CONNELL DATAR DEBOER Also Also Also Also Also Also Also Also	89 88 88 89 89 89 89 89 89 88 88 88 88	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PR C39 288 PR D40 1397 PR D40 3153 PRL 59 839 PRL 62 1091 PRL 63 597 PR D40 3153 PRL 59 839 PRL 50 1928 PR D38 3375 SJMP 47 563 Translated from YAF 47 PR D38 2077 PR D38 2077 PR D39 2089 PR D37 618 PR D38 3275 SJMP 47 563 FR D38 3275 PRL 60 22638 PR L52 2639 PRL 60 2644 PR D37 3225 PRL 61 1274 PRL 62 2644 PR C37 250 PRL 61 1274 PRL 62 2648 PRL 62 2639 PRL 62 2639 PRL 62 2639 PRL 61 1271 PR D 37 2722 PRL 61 1271 PR D 38 2722 PRL 61 1271 PR C37 731 PR PL 820 3649	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. P.H. Fisher et al. J.D. For et al. J.D. For et al. J.D. For et al. J.D. H.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC., PSI) (CERN, MINN, FNAL+) CERN, MINN, FNAL+) (CEPP) (ICEPP) (IC
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO AISO AISO AISO AISO AISO CHANDA CHOIN DATAR AISO CHONELL DATAR AISO AISO DEBOER AISO DEBOER EL-NADI ENGL ENGL ENGL ENGL ENGL ENGL ENGL ENGL	89 88 88 89 89 89 89 89 89 89 89 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PR C49 288 PR D40 1399 PR D40 1399 PR D40 1399 PR D40 1397 PRL 63 153 PRL 59 839 PRL 59 839 PRL 59 839 PRL 50 1928 PR D37 618 PR D38 3375 SJNP 47 563 SJNP 47 563 SJNP 47 563 PRL 59 2646 PRL 57 3241 PRL 57 3241 PR D37 3225 PRL 58 2646 PRL 57 3241 PR D37 3225 PRL 50 2242 PR C37 250 PRL 61 1274 PRL 62 2638 PRL 62 2639 PRL 61 1271 PR C37 731 PR PRL 61 1271 PR C37 731 PRL 67 727 PRL 61 1271 PR C37 731 PRL 61 1271 PR C37 731 PRL PRL 57 7211 PRL 63 737 PRL 61 1271 PRL 63 737 PRL 63 1271 PRL 64 1271	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig F.W.N. de Boer et al. J.D. Fox et al. (LLL, R. Mayle et al. J.D. Fox et al. (LLL, R. Mayle et al. J.D. Fox et al. (LLL, R. Mayle et al. J.D. Fox et al. (LLL, R. Mayle et al. J.D. H. Perkins H. Serros et al. J.D. H. Perkins et al. J. J. M. Minowa et al. S. Orito et al. J. J. M. M. M. J. J. M. J. J. J. M. J. J. J. J. M. J.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK-) (CERN, IPN) (AACHA, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ERP) (ICEPP) (IC
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI CONNELL DATAR DEBOER AISO AISO DEBOER DOEINER EL-NAOI ENGEL FAISSNER HATSUDA LORENZ MAYLE	89 88 89 89 89 89 89 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PR C39 288 PR D40 1397 PR D40 3153 PR D50 3153 PRL 59 839 PRL 62 1091 PRL 63 597 PR D40 3153 PRL 59 839 PRL 60 1928 PR D31 618 PR D38 3375 SJMP 47 563 Translated from YAF 47 PR D38 2077 PR D39 2074 PR D53 2077 PR D54 274 PR D57 3241 PR D58 2722 PRL 61 1271 PR D58 2723 PR	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. H. Hisher et al. J.D. H. Hisher et al. J.D. H. Perkins H. Tsertos et al. K. van Bibber et al. J.D. Biorken et al. S. de Panfilis et al. F.T. Avignone et al. J.D. Bjorken et al. A.E. Blinov et al. By. R.D. Botton et al. D. Grosnick et al. R.D. Botton et al. D. Grosnick et al. V.M. Datar et al. V.M. Datar et al. F.W.N. de Boer, R. van Dantzig	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC., PSI) (CERN, MINN, FNAL+) (ECPP) (CEPP) (COXF) (LLL, TAMU, BBL, GOXF) (ROCH, BNL, FNAL) (FNAL, SLAC, VPI) (NOVO) (LANL, STAN, CHIC+) (CHC, LANL, STAN, CHIC+) (CHC, LANL, STAN, CHIC+) (LANL, STAN, CHIC+) (CHC, LANL, STAN, CHIC+) (LANL, STAN, CHIC+) (LOUV) (LO
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO AISO AISO AISO AISO AISO CHANDA CHOI DATAR AISO DEBOER AISO DEBOER EL-NADI ENGL ENGL ENGL ENGL ENGL ENGL ENGL ENGL	89 88 88 89 89 89 89 89 89 89 89 87 88 88 88 88 88 88 88 88 88 88 88 88	PR D39 1020 PRL 60 1797 PRL 62 2639 PL 8219 507 ZPHY C44 557 PR C39 288 PL 8219 515 PL 8203 188 PRL 62 1091 PRL 63 597 PR D39 2089 PR D40 1399 PR D40 3153 PRL 59 839 PRL 62 1091 PRL 63 197 PR D39 3089 PR D40 3153 PRL 59 839 PRL 59 839 PRL 50 1928 PR D37 618 PR D38 3375 S.JNP 47 563 S.JNP 47 563 Translated from YAF 47 PR D38 2077 PR D39 2077 PR D37 3212 PR D37 3225 PR D37 3214 PR D37 2714 PR D37 2714 PR D37 2714 PR D37 3225 PR D37 2714 PR D37 3225 PR D37 2714 PR D37 3215 PR D38 2772 PRL 61 1274 PRL 62 2638 PRL 62 2638 PRL 62 2638 PRL 62 2638 PRL 62 2639 PRL 61 1271 PR C37 731 PR D38 2772 PRL 61 1271 PR C37 731 PR D38 2772 PRL 61 1271 PR C37 731 PR D38 2722 PPL 61 1271 PR C37 731 PL 8203 469 PL 8214 10 PL 8203 188 PR D37 1131	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. (LLL, R. Mayle et al. L. Mayle et al. L. Mayle et al. L. Mayle et al. L. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. W.U. Wuensch et al. S. de Panfilis et al. F.T. Avignone et al. J.D. Bjorkne et al. Blinov et al. D. Botton et al. R.D. Botton et al. R.D. Botton et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. P. W.N. de Boer, R. van Dantzig F.W.N. de Boer, R. van Dantzig F.W.N. de Boer, R. van Dantzig F.W.N. de Boer et al. J. Dohner et al. J. Dohner et al. J. Dohner et al. T. Hatsuda, M. Yoshimura E. Lorenz et al. T. Hatsuda, M. Yoshimura E. Lorenz et al. R. Mayle et al. (LLL, C.E. Picciotto et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (ACRN, IPN) (ACRN, IPN) (ACRN, IPN) (ACRN, IPN) (ERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ERN, MINN, FNAL+) (CEPP) (ICEPP) (IND SCUC, ORNL+) (IND)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON Also CHANDA CHOI CONNELL DATAR DEBOER ALSO ALSO ALSO ALSO CHANDA CHOI CONNELL DATAR DEBOER DOEHNER EL-NAOI ENGEL FAISSNER HATSUDA LORENZ MAYLE PICCIOTTO RAFFELT	89 88 88 88 88 88 88 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PL B203 188 PR 162 1091 PRL 63 597 PR C39 288 PR D40 1397 PR D40 3153 PR D59 3198 PR D40 1397 PR D40 3153 PRL 59 839 PRL 63 198 PR D40 1928 PR D38 3375 SJMP 47 563 Translated from YAF 47 PR D38 2077 PR D38 2077 PR D59 2089 PR D40 1928 PR D37 618 PR D38 3275 SJMP 47 563 FR D38 3275 SJMP 47 563 FR D38 2077 PR D38 2074 PR D37 2214 PR D37 3225 PRL 60 2644 PR D37 3225 PRL 61 1274 PRL 62 2639 JFG 14 L131 PR D37 2722 PRL 61 1271 PR C37 731 ZPHY C37	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. H. Hisher et al. J.D. H. Hisher et al. J.D. H. Perkins H. Tsertos et al. K. van Bibber et al. K. van Bibber et al. S. de Panfilis et al. S. de Panfilis et al. S. de Panfilis et al. J.D. Bjorken et al. A.E. Blinov et al. Bl. Botton et al. D. Grosnick et al. D. Grosnick et al. R.D. Botton et al. D. Grosnick et al. S. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. V.M. Datar et al. Y.M. Datar et al. F.W.N. de Boer, R. van Dantzig F.W. de Boer, R. van Dantzig	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH, BERL, PSI) (CIT, NEUC., PSI) (CERN, MINN, FNAL+) (ECPP) (CEPP) (COXF) (CEPP) (CEPP) (COXF) (CEPP) (CEPP) (COXF) (CEPP) (COXF) (CANL, STAN, CHIC+) (CHIC, LANL, STAN, CHIC+) (LANL, STAN, CHIC+) (CHIC, LANL, STAN+) (UMD, UPR+) (WITW) (WITW) (WITW) (ANIK) (ANIK) (ANIK) (CAFI) (AACH3, BERL, SIN) (KEK) (MPIM, PSI) CERN, MINN, FNAL+) (TRIU, CARC) (UCB, LLL, UCSC)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO AISO AISO AISO AISO AISO AISO CHANDA CHOIN DATAR AISO DEBOER AISO DEBOER ELI-NADI ENGL ENGL FAISSNER HATSUDA LORENZ MAYLE PICCIOTTO RAFFELT	89 88 89 89 89 87 88 88 88 88 88 88 88 88 88 88 88 88	PR D39 1020 PRL 60 1797 PRL 62 2639 PL 8219 507 ZPHY C44 557 PR C39 288 PL 8219 515 PL 8203 188 PRL 62 1091 PRL 63 597 PR C39 2089 PR D40 3153 PRL 59 839 PR D37 618 PR D37 2714 PR D37 2724 PR D37 2724 PR D37 2725 PRL 60 2242 PR C37 250 PRL 61 1274 PRL 62 2638 PRL 62 2639 PRL 61 1271 PR C37 731 PR D38 2722 PPRL 61 1271 PR C37 731 PR D37 9214 PR D38 2722 PRL 61 1271 PR C37 731 PR D38 2722 PPL 81 1271 PR C37 731 PR D37 1131 PR D37 1131 PRL 60 1793 PR D37 1131 PRL 60 1793	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. (LLL, R. Mayle et al. L. van Bibber et al. R. van Bibber et al. R. V. M. Bibber et al. L. Mayle et al. R. D. Botton et al. R. D. Botton et al. R. D. Botton et al. R. Chanda, J.F. Nieves, P.B. Pal R. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal R. Choi et al. R. M. G. Boer, R. van Dantzig F.W.N. de Boer, R. van Dantzig F.W.N. de Boer, R. van Dantzig F.W.N. de Boer et al. J. Dohner et al. J. Dohner et al. J. Dohner et al. T. Hatsuda, M. Yoshimura E. Lorenz et al. R. Mayle et al. C.E. Picciotto et al. R. Mayle et al. C.E. Picciotto et al. G. Raffelt, D. Serborn	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH, BERL, PSI) (CIT, NEUC., PSI) (CERN, MINN, FNAL+) CERN, MINN, FNAL+) (CEPP) (ICEPP) (INCOUC) (IANL, STAN, CHIC+) (INCOUC) (IANL, STAN, CHIC+) (INCOUC) (IANL, STAN, CHIC+) (INCOUC) (IANL, STAN, CHIC+) (INCOUC) (ICEN, ININ, ILLG) (ICAR) (ICAR) (ICAR) (ICAR) (ICAR) (ICER) (ICEP)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON Also CHANDA CHOI CONNELL DATAR DEBOER ALSO ALSO ALSO ALSO CHANDA CHOI CONNELL DATAR DEBOER DOEHNER EL-NAOI ENGEL FAISSNER HATSUDA LORENZ MAYLE PICCIOTTO RAFFELT	89 88 88 88 88 88 88 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PL B203 188 PR 162 1091 PRL 63 597 PR C39 288 PR D40 1397 PR D40 3153 PR D59 3198 PR D40 1397 PR D40 3153 PRL 59 839 PRL 63 198 PR D40 1928 PR D38 3375 SJMP 47 563 Translated from YAF 47 PR D38 2077 PR D38 2077 PR D59 2089 PR D40 1928 PR D37 618 PR D38 3275 SJMP 47 563 FR D38 3275 SJMP 47 563 FR D38 2077 PR D38 2074 PR D37 2214 PR D37 3225 PRL 60 2644 PR D37 3225 PRL 61 1274 PRL 62 2639 JFG 14 L131 PR D37 2722 PRL 61 1271 PR C37 731 ZPHY C37	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. H. Hisher et al. J.D. H. Hisher et al. J.D. H. Perkins H. Tsertos et al. K. van Bibber et al. K. van Bibber et al. S. de Panfilis et al. S. de Panfilis et al. S. de Panfilis et al. J.D. Bjorken et al. A.E. Blinov et al. Bl. Botton et al. D. Grosnick et al. D. Grosnick et al. R.D. Botton et al. D. Grosnick et al. S. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. V.M. Datar et al. Y.M. Datar et al. F.W.N. de Boer, R. van Dantzig F.W. de Boer, R. van Dantzig	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH, BERL, PSI) (CIT, NEUC., PSI) (CERN, MINN, FNAL+) CERN, MINN, FNAL+) (CEPP) (ICEPP) (INCOUC) (IANL, STAN, CHIC+) (INCOUC) (IANL, STAN, CHIC+) (INCOUC) (IANL, STAN, CHIC+) (INCOUC) (IANL, STAN, CHIC+) (INCOUC) (ICEN, ININ, ILLG) (ICAR) (ICAR) (ICAR) (ICAR) (ICAR) (ICER) (ICEP)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI CONNELL DATAR DEBOER DOEHNER LINADI ENGEL FAISSNER HATSUDA LORENZ MAYLE RAFFELT SAVAGE TSERTOS TSERTOS	89 88 89 89 89 89 89 89 89 89 89 89 89 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PR C39 288 PR L 8219 515 PR C30 3189 PRL 62 1031 PR D30 3193 PR D30 3153 PRL 59 839 PRL 62 1037 PR D30 32089 PR D40 3153 PRL 59 839 PRL 60 1928 PR D31 618 PR D33 3375 SJNP 47 563 Translated from YAF 47 PR D38 2077 PR D37 2214 PR D37 3224 PR C37 321 PRL 52 2644 PR D37 3225 PRL 60 2644 PR D37 3225 PRL 61 1274 PR D37 2714 PR D37 3225 PRL 62 2649 PRL 61 1274 PRL 62 2644 PR C37 731 PRL 62 2649 PRL 61 1274 PRL 62 2639 PRL 62 37 31 PRL 67 37 311 PR D37 37 31 PRL 820 37 731 PRL 820 37 731 PRL 820 37 731 PRL 820 37 131 PRL 820 37 731 PRL 820 37 131 PRL 820 37 731	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. H. Hisher et al. J.D. H. Hisher et al. J.D. H. Perkins H. Tsertos et al. K. van Bibber et al. J.D. Bjorken et al. J.D. Bjorken et al. A.E. Blinov et al. Blinov et al. Blinov et al. Blinov et al. D. Grosnick et al. C. Grosnick et al. V.M. Delton et al. D. Grosnick et al. V.M. Datar et al. T. W.N. de Boer, R. van Dantzig E.W.N. de Boer, R. van Dantzig E.W.N. de Boer, R. van Dantzig F.W.N. de Boer, R. van Dantzig	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC., PSI) (CERN, MINN, FNAL+) (ECPP) (CEPP) (COF, ILLG (NOVO) (LAUL, TAMU, LBL (NOVO) (LANL, STAN, CHIC+) (LANL, STAN,
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO AISO AISO AISO AISO CHOME BJORKEN BJORK	89 88 88 88 88 88 88 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL 8219 507 ZPHY C44 557 PR C39 288 PL 8219 515 PL 8203 188 PRL 62 1091 PRL 63 597 PR C39 208 PR D40 3193 PRL 52 638 PR D40 3193 PRL 59 839 PR D40 3153 PRL 59 839 PRL 50 242 PR D37 3225 PRL 50 2441 PR D37 2714 PR D37 2714 PR D37 3225 PRL 50 2242 PR C37 250 PRL 61 1274 PRL 62 2638 PRL 62 137 PRL 61 1271 PR C37 731 PR D37 731 PR D37 731 PR D37 731 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1733 PRL B207 773 ZPHY 7331 103 PL B205 7273	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig F.W.N. Me Boer et al. J.D. Fox et al. J.D. H. Perkins H. Tsertos et al. J.D. Bjorken et al. J.D. Grosnick et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choit et al. J.D. Bjorken et al. J.D. Bjorken et al. J.D. Bjorken et al. J. D. Bjorken et al. J. G. Raffelt, D. Seckel G. Raffelt, D. Seckel G. Raffelt, D. Seckel G. Raffelt, D. Seckel al. A. Tsertos et al. A. Tsertos et al. J. Van Klinken et al. Van D. Van Klinken et al. J. Van Klinken et al. J. Van Klinken et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (ACHA, BERL, PSI) (CIT, NEUC, PSI) (ERN, MINN, FNAL+) (ERN, MINN, FNAL+) (ECPP) (ICEPP) (
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI CONNELL DATAR DEBOER AISO ALSO DEBOER AISO ALSO AISO AISO CHANDA CHOI CONNELL DATAR DEBOER AISO AISO AISO AISO AISO AISO AISO AISO	89 88 89 89 89 89 89 89 89 89 89 89 89 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL 8219 507 ZPHY C44 557 PR C39 288 PL 8219 515 PL 8203 188 PRL 62 1091 PRL 63 597 PR C39 208 PR D40 3193 PRL 52 638 PR D40 3193 PRL 59 839 PR D40 3153 PRL 59 839 PRL 50 242 PR D37 3225 PRL 50 2441 PR D37 2714 PR D37 2714 PR D37 3225 PRL 50 2242 PR C37 250 PRL 61 1274 PRL 62 2638 PRL 62 137 PRL 61 1271 PR C37 731 PR D37 731 PR D37 731 PR D37 731 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1733 PRL B207 773 ZPHY 7331 103 PL B205 7273	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. R. Mayle et al. L. Mayle et al. L. H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. K. van Bibber et al. K. van Bibber et al. S. de Panfilis et al. S. de Panfilis et al. J. D. Bjorken et al. A.E. Blinov et al. D. Grosnick et al. C. Grosnick et al. J. Dohone et al. J. Van Klinken et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC., PSI) (CERN, MINN, FNAL+) (ECPP) (CEPP) (CONF) (CEPP) (CONF) (CANL, STAN, LBLC, PNOVO) (LANL, STAN, CHIC+) (LANL, STAN, C
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO AISO AISO AISO AISO AISO CHANDA CHOINELL DATAR DEBOER AISO AISO AISO AISO AISO AISO AISO AISO	89 88 89 89 89 89 89 89 89 89 89 89 89 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL 8219 507 ZPHY C44 557 PR C39 288 PL 8219 515 PL 8203 188 PRL 62 1091 PRL 63 597 PR C39 2089 PR D40 3153 PRL 52 638 PR D40 3183 PRL 59 839 PR D40 3153 PRL 59 839 PR D40 3153 PRL 59 839 PR D40 3153 PRL 59 839 PRL 61 1028 PR D37 618 PR D38 376 PR D38 377 PRL 56 2461 PR D37 2714 PR D37 272 PRL 60 2242 PRL 61 2244 PR D37 2714 PR D37 272 PRL 61 1274 PRL 62 2648 PRL 62 2649 PRL 61 1271 PR C37 731 PR D38 2722 PPRL 61 1271 PR C37 731 PR D37 3731 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 1134 PR D37 1134 PR D37 137 PR D37 549 PR D37 1134 PR D37 1137 PR D37 1137 PRL 60 2443 PRL 60 2443	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. (LLL, R. Mayle et al. L. van Bibber et al. L. van Bibber et al. R. van Bibber et al. L. V. Wuensch et al. L. S. de Panfilis et al. L. T. Avignone et al. L. D. Bionon et al. R.D. Botton et al. R.D. Botton et al. R.D. Botton et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. M. Datar et al. J. M. Datar et al. J. Dohner et al. J. Dohner et al. J. Dohner et al. J. Dohner et al. T. Hatsuda, M. Yoshimura E. Lorenz et al. R. Mayle et al. C.E. Picciotto et al. G. Raffelt, D. Seckel A. Tsertos et al. J. van Klinken et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACA), BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ECRN, MINN, FNAL+) (CEPP) (ICEPP) (IC
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON Also CHANDA CHOI DATAR DEBOER Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON Also CHANDA CHOI DATAR DEBOER Also DEBOER ALSO DEBOER ALSO ALSO ALSO ALSO ALSO ALSO CHANDA CHOI DATAR DEBOER ALSO ALSO ALSO ALSO ALSO ALSO ALSO ALSO	89 88 88 88 88 88 88 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PR C39 288 PL B219 515 PR C30 3188 PRL 62 1091 PRL 63 597 PR C39 2089 PR D40 1397 PR D39 2089 PR D40 1397 PR D39 2089 PR D40 3153 PRL 59 839 PRL 60 1928 PR D33 3375 SJNP 47 563 Translated from YAF 47 PR D38 2077 PR D39 2072 PRL 61 1274 PR D37 2214 PR D37 3225 PRL 62 2644 PR C37 3250 PRL 62 2644 PR C37 3250 PRL 62 2644 PR C37 273 PRL 62 2644 PR D38 2772 PRL 61 1271 PR D38 2722 PRL 61 1274 PR D39 2722 PRL 61 1271 PR C37 731 PR C37 731 PR C37 731 PR C37 731 PR D39 3722 PRL 61 1271 PR C37 731 PR C37 731 PR C37 731 PR C37 731 PR D37 1313 PR D37 1313 PR D37 549 PR B37 1134 PR B305 223 PRR G0 2442 PRL 60 2442 PRL 60 2442 PRL 60 2442 PRL 60 2442	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. K. Mayle et al. L. H. Minowa et al. S. Orito et al. L. H. Minowa et al. S. Orito et al. K. van Bibber et al. J. D. H. Ferkins M. J. Serben et al. S. de Panfilis et al. F.T. Avignone et al. J.D. Bjorken et al. A.E. Binov et al. B.B. Bolton et al. D. Grosnick et al. R.D. Bolton et al. D. Grosnick et al. K. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. V.M. Datar et al. F.W.N. de Boer, R. van Dantzig F.W.N. de Boer et al. J. Dohner et al. J. Dohner et al. H. Faissner et al. T. Hatsuda, M. Yoshimura E. Lorenz et al. T. Hatsuda, M. Yoshimura E. Lorenz et al. G. Raffelt, D. Seckel G. Raffelt, D. Seckel G. Raffelt, D. Seckel J. van Klinken et al. J. Van Chimer, Y.J. Gitarts	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC., PSI) (CERN, MINN, FNAL+) (ECPP) (CEPP) (COXF) (CANL, STAN, LBL) (FNAL, STAN, CHIC+) (LANL, STAN, CHIC+) (LEPP) (LANL, STAN, CHIC+) (LEPP) (CEP)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO AISO AISO AISO AISO AISO CHANDA CHOINELL DATAR DEBOER AISO AISO AISO AISO AISO AISO AISO AISO	89 88 89 89 89 89 89 89 89 89 89 89 89 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PR C39 288 PL B219 515 PR C39 288 PR D40 1397 PR C54 257 PR C39 288 PR D40 1397 PR D40 3153 PRL 59 839 PRL 62 1091 PRL 63 597 PR D40 3153 PRL 59 839 PRL 60 1928 PR D33 3375 SJNP 47 563 Translated from YAF 47 PR D38 2077 PR D37 2214 PR D37 3225 PRL 60 2442 PR C37 731 ZPHY C37 231 PRL 62 2649 PR C37 731 ZPHY C37 731 ZPHY C37 231 PRL 62 2649 PRL 61 1271 PR C37 731 ZPHY C37 231 PRL 62 2649 PRL 61 1271 PR C37 731 ZPHY C37 231 PRL 62 2639 PRL 62 1274 PRL 63 731 PRL 62 2649 PRL 61 1271 PR C37 731 ZPHY C37 231 PRL 62 2639 PRL 61 1271 PR C37 731 ZPHY C37 231 PRL 62 2639 PRL 61 1271 PR C37 731 ZPHY C37 231 PRL 62 2639 PRL 61 1271 PR C37 731 ZPHY C37 231 PRL 62 2639 PRL 61 1271 PR C37 731 ZPHY C37 231 PRL 62 2639 PRL 62 1271 PR C37 731 ZPHY 331 103 PR D37 1134 PL B208 126 PRL 60 2442 PRL 60 2443 PRL 60 2442 PRL 60 2442 PRL 60 2443 PRL 60 2443 PRL 60 2442 PRL 60 2442 PRL 60 2442 PRL 60 2442 PRL 60 2443 PRL 62 2442 PRL 60 2443 PRL 60 2443 PRL 60 2442 PRL 60 2443 PRL 60 2443 PRL 60 2442 PRL 60 2442 PRL 60 2442 PRL 60 2442 PRL 60 2443 PRL 60 2442 PRL 60 2443 PRL 60 2442 P	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. J.D. H. Hisher et al. J.D. Fox et al. J.D. H. Fisher et al. J.D. H. H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. J.D. Bjorken et al. A.E. Blinov et al. D. Grosnick et al. C. Grosnick et al. C. H. Choniet al. D. Grosnick et al. J. Dohner et al. J. Dohner et al. J. M. Datar et al. F.W.N. de Boer, R. van Dantzig F.W.N. de Boer, R. van Dantzig F.W.N. de Boer et al. J. Dohner et al. J. Dohner et al. J. Dohner et al. J. J. Engel, P. Vogel, M.R. Zirnbauer H. Faissner et al. J. T. Hatsuda, M. Yoshimura E. Lorenz et al. C.E. Picciotto et al. G. Raffelt, D. Seckel G.G. Raffelt, D. Seckel G.G. Raffelt, D. Seckel J. van Klinken et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC., PSI) (CERN, MINN, FNAL+) (ECPP) (CEPP) (COXF) (COXF) (CEPP) (COXF)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON ALSO CHANDA CHOI CONNELL DATAR DEBOER ALSO ALSO ALSO ALSO CHANDA CHOI CONNELL DATAR DEBOER BLINOV BOLTON ALSO ALSO ALSO ALSO ALSO ALSO ALSO ALSO	89 88 88 88 88 88 88 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL 8219 507 ZPHY C44 557 PR C39 288 PL 8219 515 PL 8203 188 PRL 62 1091 PRL 63 597 PR C39 2089 PR D30 3153 PRL 59 839 PR D37 618 PR D37 618 PR D38 327 PRL 50 3241 PR D37 2714 PR D37 2714 PR D37 272 PRL 56 2451 PR D37 272 PRL 57 252 PRL 60 2242 PR C37 250 PRL 61 1274 PRL 57 3241 PR D37 2714 PR D37 272 PRL 57 325 PRL 60 2242 PR C37 250 PRL 61 1274 PRL 57 3241 PR D37 2714 PRL 57 3241 PR D37 272 PRL 61 1274 PRL 52 2644 PR D37 37 312 PRL 503 469 PRL 62 639 PRL 63 7 311 PR D37 731 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 1134 PRL 60 1793 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1131 PRL 60 2442 PRL 60 2443 PL B208 146 PRL 59 419 PRL 59	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. L. (LLL, R. Mayle et al. J.D. Fox et al. L. (LLL, R. Mayle et al. J.D. Fox et al. J.D. Fox et al. L. (LLL, R. Mayle et al. L. V. Muensch et al. L. van Bibber et al. L. V. M. U. Wuensch et al. L. V. M. Panfills et al. L. T. Avignone et al. L. D. Bionon et al. R.D. Botton et al. R.D. Botton et al. R.D. Botton et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. M. Datar et al. F.W.N. de Boer, R. van Dantzig F.W.N. de Boer, R. van Dantzig F.W.N. de Boer, R. van Dantzig F.W.N. de Boer et al. J. Dohner et al. J. Dohner et al. J. Dohner et al. R. Mayle et al. C.E. Picciotto et al. G. Raffelt, D. Seckel G. Raffelt, D. Seckel G. Raffelt, D. Seckel J. van Klinken et al. D.O. Caldwell et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACHA, BERL, PSI) (CIT, NEUC, PSI) (EEN, MINN, FNAL+) (ECPP) (ICEPP)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI DATAR DEBOER AISO ALSTON AISO CHANDA CHOI DATAR DEBOER AISO DEBOER DEBOER DEBOER DEBOER AISO AISO DEBOER TSERTOS TSERTOS TSERTOS TSERTOS VANKLINKEN VONWIMMER VONWIMMER AIP CONC CALDWELL DRUZLININ	89 88 88 88 88 88 88 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PRL 62 1039 PRL 62 1031 PRL 63 597 PRL 63 1037 PR D39 2089 PR D40 3153 PRL 59 839 PRL 60 1928 PR D31 618 PR D33 3375 S.INP 47 563 S.INP 47 563 Translated from YAF 47 PR D38 2077 PR D38 2077 PR D38 2077 PR D37 214 PR D37 2214 PR D37 3225 PRL 60 2641 PRL 57 3241 PRL 58 2641 PRL 58 2641 PRL 58 2641 PRL 58 36 364 PRL 58 2641 P	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. K. Mayle et al. L. H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. J. D. Borken et al. S. de Panfilis et al. F.T. Avignone et al. J.D. Bjorken et al. A.E. Binov et al. B.B. Botton et al. D. Grosnick et al. R.D. Botton et al. D. Grosnick et al. K. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. V.M. Datar et al. F.W.N. de Boer, R. van Dantzig F.W.N. de Boer et al. J. Dohner et al. J. Dohner et al. J. Ce. Picciotto et al. G. Raffelt, D. Seckel G. Raffelt, D. Seckel G. Raffelt, D. Seckel J. van Klinken et al. D.O. Caldwell et al. V.P. Druzhinin et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (CARN, IPN) (ACH3, BERL, PSI) (CIT, NEUC., PSI) (CERN, IPN) (CERN, MINN, FNAL+) (CERN, MINN, FNAL+) (ECPP) (COXF) (CEPP) (COXF) (CEPP) (COXF) (CULL, TAMU, LBL) (ROCH, BNL, FNAL) (ROCH, BNL, FNAL) (ROCH, BNL, FNAL) (PRIN, SCUC, ORNL+) (FNAL, STAN, CHIC+) (LANL, STAN, CHIC+) (LEPP) (CEP) (CAP, LILL) (MICHEL (CIT) (GS, ILLG) (GS, ILLG) (GGN) (GSN, GSI) (GRON, GSI) (COXP) (CAP, LILL) (CIT) (CAP, CAPPA (CAPPA) (CAPPA (CAPPA (CAPPA) (CAPPA (
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON Also CHANDA CHOI CONNELL DATAR DEBOER Also Also Also Also CHANDA CHOI CONNELL DATAR DEBOER EL-NADI ENGEL FAISSNER HATSUDA LORENZ MAYLE PICCIOTTO RAFFELT RAFFELT SAVAGE TSERTOS VANKLINKEN VONWIMMER. VOROBYOV AVIGNONE CALDWELL DRUZHININ CALDWELL DRUZHININ CALDWELL DRUZHININ	89 88 88 88 88 88 88 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL 8219 507 ZPHY C44 557 PR C39 288 PL 8219 515 PL 8203 188 PRL 62 1091 PRL 63 597 PR C39 288 PR D40 3183 PR D30 3183 PR D30 3183 PR D30 3183 PRL 59 839 PR D40 3153 PRL 59 839 PR D40 3153 PRL 59 839 PR D30 3153 PRL 59 839 PR D37 618 PR D37 618 PR D38 377 PRL 56 2641 PR D37 2714 PR D37 2724 PR D37 2714 PR D37 2725 PRL 60 2242 PRL 60 2242 PRL 61 1274 PRL 57 37 31 PR D38 2722 PRL 61 1271 PR C37 731 PR D37 731 PR D37 731 PR D37 549 PR D37 1131 PR D37 1134 PR D37 1134 PR D37 1137 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 1134 PR D37 1134 PR D37 1134 PR D37 1137 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1134 PR D37 273 PRH 7331 103 PL B205 223 PRL 60 2443 PR B00 2443 PR B00 2443 PR L 800 1464	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. (LLL, R. Mayle et al. L. H. Minowa et al. S. Orito et al. D.H. Perkins H. Tsertos et al. K. van Bibber et al. W.U. Wuensch et al. W.U. Wuensch et al. S. M. S. Briton et al. M. Alston-Garnjost et al. F.T. Avignone et al. J.D. Bjorken et al. Binov et al. Binov et al. R.D. Botton et al. R.D. Botton et al. S.H. Connell et al. V.M. Oblar et al. S.H. Connell et al. V.M. Oblar et al. S.H. Connell et al. J. D. Borken et al. J. D. Borken et al. S.H. Connell et al. V.M. Oblar et al. J. D. Borken et al. J. Dohner et al. J. Dohner et al. J. Dohner et al. J. Dohner et al. J. Conspictor et al. J. S.H. Conspictor et al. J. Conspictor et al. J. Conspictor et al. J. S.H. Conspictor et al. J. Van Klinken et al. J. R. Elliott, A.A. Hahn, M.K. Moe	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (CARN, IPN) (ACH3, BERL, PSI) (CIT, NEUC., PSI) (CERN, IPN) (CERN, MINN, FNAL+) (CERN, MINN, FNAL+) (ECPP) (COXF) (CEPP) (COXF) (CEPP) (COXF) (CULL, TAMU, LBL) (ROCH, BNL, FNAL) (ROCH, BNL, FNAL) (ROCH, BNL, FNAL) (PRIN, SCUC, ORNL+) (FNAL, STAN, CHIC+) (LANL, STAN, CHIC+) (LEPP) (CEP) (CAP, LILL) (MICHEL (CIT) (GS, ILLG) (GS, ILLG) (GGN) (GSN, GSI) (GRON, GSI) (COXP) (CAP, LILL) (CIT) (CAP, CAPPA (CAPPA) (CAPPA (CAPPA (CAPPA) (CAPPA (
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI DATAR DEBOER AISO ALSTON AISO CHANDA CHOI DATAR DEBOER AISO DEBOER DEBOER DEBOER DEBOER AISO DEBOER TSERTOS TSERTOS TSERTOS TSERTOS VANKLINKEN VONWIMMER VONWIMMER AIP CONF. CALDWELL DRUZHININ ELLIOTT FISHER	89 88 89 89 89 89 89 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1091 PRL 63 597 PRL 63 1397 PR D40 3153 PRL 59 839 PRL 60 1928 PR D30 3153 PRL 59 839 PRL 60 1928 PR D33 3375 S.INP 47 563 S.INP 47 563 Translated from YAF 47 PR D38 2077 PR D38 2077 PR D38 2077 PR D37 214 PR D37 2214 PR D37 2214 PR D37 3225 PRL 60 2242 PR C37 320 PRL 60 1274 PRL 62 2644 PR C37 731 ZPHY C37 131 PRL 60 2442 PRL 60 2446	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. R. Mayle et al. L. Mayle et al. L. H. Minowa et al. S. Orito et al. H. Tisertos et al. K. van Bibber et al. J.D. Borken et al. S. de Panfilis et al. F.T. Avignone et al. J.D. Bjorken et al. A.E. Binov et al. B.B. Botton et al. D. Grosnick et al. R.D. Botton et al. D. Grosnick et al. S. de Panfils et al. F.T. Avignone et al. D. Grosnick et al. J. Chonel et al. V.M. Datar et al. V.M. Datar et al. F.W.N. de Boer, R. van Dantzig F.W.N. de Boer et al. J. Dohner et al. J. Dohner et al. J. Dohner et al. J. Dohner et al. H. Faissner et al. T. Hatsuda, M. Yoshimura E. Lorenz et al. T. Hatsuda, M. Yoshimura E. Lorenz et al. T. Hatsuda, M. Yoshimura E. Lorenz et al. J. Van Klinken et al.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC., PSI) (CERN, MINN, FNAL+) (ECPP) (CEPP) (COXF) (CEPP) (COXF) (GSI, ILLG) (GLLL, TAMU, LBL) (ROCH, BNL, FNAL) (ROCH, BNL, FNAL) (ROCH, BNL, FNAL) (PRIN, SCUC, ORNL+) (FNAL, STAN, CHIC+) (LANL, STAN, CHIC+) (LEPP) (LANL, STAN, CHIC+) (LEPP) (CEP) (CAP, LINC, SIN) (ANIK) (LANL, STAN, CHIC+) (LEPP) (CEP) (CEP) (CAP, CAP (CEP) (CAP, CAP (CEP) (
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON Also CHANDA CHOI CONNELL DATAR DEBOER Also Also Also Also CHANDA CHOI CONNELL DATAR DEBOER EL-NADI ENGEL FAISSNER HATSUDA LORENZ MAYLE PICCIOTTO RAFFELT RAFFELT SAVAGE TSERTOS VANKLINKEN VONWIMMER. VOROBYOV AVIGNONE CALDWELL DRUZHININ CALDWELL DRUZHININ CALDWELL DRUZHININ	89 88 88 88 88 88 88 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL 8219 507 ZPHY C44 557 PR C39 288 PL 8219 515 PL 8203 188 PRL 62 1091 PRL 63 597 PR C39 288 PR D40 3183 PR D30 3183 PR D30 3183 PR D30 3183 PR D30 3183 PRL 59 839 PR D40 3153 PRL 59 839 PR D40 3153 PRL 59 839 PR D36 3153 PRL 59 839 PR D37 618 PR D37 618 PR D38 377 PRL 56 2641 PR D37 2714 PR D37 3711 PR D37 3711 PR D37 571 PR D37 571 PR D37 731 PR D37 571 PR D37 731 PR D37 5749 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1131 PRL 60 2443 PL B208 146 AIP Conf. 1987 Salt Lake City, UT PRL 59 419 PR L59 1649 PL B192 460 PR D36 2201	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. (LLL, R. Mayle et al. R. J. Mayle et al. R. V. M. Wiensch et al. R. V. M. Wiensch et al. R. J. Mayle et al. R. J. Mayle et al. R. D. Bolton et al. R. D. Grosnick et al. R. Choi et al. R. M. Onlar et al. R. M. Onlar et al. R. M. M. Ge Boer, R. van Dantzig F.W.N. de Boer et al. J. Dohner et al. J. Dohner et al. R. Mayle et al. C.E. Picciotto et al. G. Raffelt, D. Seckel G. Raffelt, D. Seckel G. Raffelt, D. Seckel J. van Klinken et al. D. O. Caldwell et al. V.P. Druzhinin et al. D. O. Caldwell et al. V.P. Druzhinin et al. A. Freiras, S. Dimopoulos, M.S.	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACHA, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ECPP) (ICEPP)
BURROWS Also DEBOER ERICSON FAISSNER FISHER FOX MAYLE Also MINOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH Also ALSTON AVIGNONE BJORKEN BLINOV BOLTON ALSO CHANDA CHOI CONNELL DATAR DEBOER ALSO ALSO ALSO CHANDA CHOI CONNELL DATAR DEBOER DOEHNER EL-NADI ENGEL FAISSNER HATSUDA LORENZ MAYLE PICCIOTTO RAFFELT SAVAGE TSERTOS VANKLINKEN VONWIMMER. VOROBYOV AVIGNONE CALDWELL DRUZHININ ERICE CALDWELL ERICE CALDWELL DRUZHININ ERICE CALDWELL ERIC CALDWELL ERICE CALDWELL ERICE CALDWELL ERICE CALDWELL ERIC CALDWELL ERIC CALDWELL ERIC CALDWELL ERIC CALDWELL ERIC CALDWELL ERIC	89 88 88 88 88 88 88 88 88 88 88 88 88 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL 8219 507 ZPHY C44 557 PL 8218 257 PR C39 288 PL 8219 515 PL 8203 188 PRL 62 1091 PRL 63 597 PR C39 2089 PRL 62 1091 PRL 63 597 PR D39 2089 PR D40 3153 PRL 59 839 PRL 59 839 PRL 50 188 PR D47 618 PR D37 618 PR D37 618 PR D38 375 SJNP 47 563 PR D38 375 SJNP 47 563 PR D39 2722 PR C37 250 PRL 62 2642 PR C37 250 PRL 63 2242 PR C37 250 PRL 64 1274 PRL 57 3241 PR D37 3225 PRL 69 2242 PR C37 250 PRL 61 1274 PRL 57 3241 PR D37 3225 PRL 60 2442 PR C37 731 PR D38 2722 PRL 61 1271 PR C37 731 PR D37 731 PR D37 731 PR D37 731 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 1134 PR D37 1131 PRL 60 1793 PR D37 1134 PR D37 1131 PRL 60 1793 PR D37 1134 PR D37 1131 PRL 60 1793 PR D37 1134 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 1131 PRL 60 1793 PR D37 549 PR D37 173 PRL 8008 146 AIP Conf. 1987 Salt Lake City, UT PRL 59 419 PRL 59 419 PRL 59 419 PR D36 2201 PR D36 2201 PR D36 2201 PR D36 5201 PR D36 5201	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. L. (LLL, R. Mayle et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. L. (LLL, R. Mayle et al. L. V. J. (LLL, R. Mayle et al. L. V. J. (LLL, R. Mayle et al. L. V. J. (LLL, R. Mayle et al. L. J. (LLL, R. Mayle et al. R. D. Botton et al. R. D. Botton et al. R. D. Botton et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Mayle et al. J. Dohner et al. R. Mayle et al. C.E. Picciotto et al. R. Mayle et al. C.E. Picciotto et al. G. Raffelt, D. Seckel G. Raffelt, D. Seckel J. Van Klinken et al. J. Van Klin	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACHA, BERL, PSI) (CIT, NEUC, PSI) (CERN, MINN, FNAL+) (ECPP) (ICEPP)
BURROWS AISO DEBOER ERICSON FAISSNER FISHER FOX MAYLE AISO MINIOWA ORITO PERKINS TSERTOS VANBIBBER WUENSCH AISO ALSTON AVIGNONE BJORKEN BLINOV BOLTON AISO CHANDA CHOI DATAR DEBOER AISO AISO CHANDA CHOI DATAR DEBOER AISO DEBOER DEBOER AISO DEBOER TSERTOS TSERTOS TSERTOS TSERTOS TSERTOS TSERTOS VANKLINKEN VONWIMMER VONWIMMER VONWIMMER AIP CONF. CALDWELL DRUZHININ ELLIOTT FISHER FRIEMAN GOLDMAN	89 88 89 89 89 89 89 89 89 89 89 89 89 8	PR D39 1020 PRL 60 1797 PRL 62 2639 PL B219 507 ZPHY C44 557 PL B218 257 PR C39 288 PL B219 515 PL B203 188 PRL 62 1031 PRL 63 597 PRL 63 1387 PR D39 2089 PR D40 3153 PRL 59 839 PRL 50 1928 PR D33 3375 SJNP 47 563 SJNP 47 563 Translated from YAF 47 PR D33 2077 PR D33 2077 PRL 50 2461 PRL 57 3241 PR D37 3225 PRL 59 2839 PRL 61 1274 PR D37 2714 PR D37 2714 PR D37 2714 PR D37 3225 PRL 62 2644 PR C37 37 PRL 58 2641 PRL 57 3241 PR D37 3225 PRL 61 1274 PRL 52 2644 PR C37 731 ZPHY C37 231 PL B203 469 PL B214 10 PL B203 188 PR D37 1131 PRL 60 1793 PR D37 1131 PRL 60 2442 PL 60 2442 PRL 60	A. Burrows, M.S. Turner, R.P. Bri M.S. Turner F.W.N. de Boer, R. van Dantzig T.E.O. Ericson, J.F. Mathiot H. Faissner et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. L. (LLL, R. Mayle et al. J.D. Fox et al. J.D. Fox et al. J.D. Fox et al. L. (LLL, R. Mayle et al. L. V. J. (LLL, R. Mayle et al. L. V. J. (LLL, R. Mayle et al. L. V. J. (LLL, R. Mayle et al. L. J. (LLL, R. Mayle et al. R. D. Botton et al. R. D. Botton et al. R. D. Botton et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Chanda, J.F. Nieves, P.B. Pal K. Choi et al. R. Mayle et al. J. Dohner et al. R. Mayle et al. C.E. Picciotto et al. R. Mayle et al. C.E. Picciotto et al. G. Raffelt, D. Seckel G. Raffelt, D. Seckel J. Van Klinken et al. J. Van Klin	(FIRZ, CERN, AARH) nkmann (ARIZ+) (FNAL, EFI) (ANIK) (CERN, IPN) (ACH3, BERL, PSI) (CIT, NEUC., PSI) (CERN, MINN, FNAL+) (ECPP) (CEPP) (COXF) (LLL, TAMU, LBL) (ROCH, BNL, FNAL) (PRIN, SEUC, ORNL+) (FNAL, STAN, CHIC+) (LANL, CHIC, STAN, MINN, FNAL+) (CER) (CER) (LIL, UCSC) (UCB, LLL) (UCB, LLL) (UCSB, LLL) (UCSB, LLL) (UCSB, LBL) (UCSB, LBL) (UCCIT, NEUC, SIN) (UCCIT, NEUC, SIN) (LANL, CALC+) (LANL, CRIC, STAN+) (UCI) (LCTI, NEUC, STAN+) (LANL, CRIC, STAN+) (

Gauge & Higgs Boson Particle Listings Axions (A^0) and Other Very Light Bosons

	MAIER	87	ZPHY A326 527	K. Maier et al.	(STL	IT, GSI)	ASANO	82	PL 113B 195	Y. Asano et al. (K	EK, TOKY, INUS.	OSAK)
	AILLS	87	PR D36 707	A.P. Mills, J. Levy		(BELL)	BARROSO	82	PL 116B 247	A. Barroso, G.C. Branco		(LISB)
	RAFFELT	87	PR D36 2211	G.G. Raffelt, D.S.P. Dearborn	(LLI	L, UCB)	DATAR	82	PL 114B 63	V.M. Datar et al.		(BHAB)
1	RIORDAN	87	PRL 59 755	E.M. Riordan et al.	(ROCH	, CłT+j̇̀	EDWARDS	82	PRL 48 903	C. Edwards et al.	(Crystal Ball	Collab.
	TURNER	87	PRL 59 2489	M.S. Turner	(FN/	AL, EFI)	FETSCHER	82	JPG 8 L147	W. Fetscher	, ,	(ETH)
4	ANBIBBER	87	PRL 59 759	K. van Bibber et al.	(LLL, ČIT,	MIT+)	FUKUGITA	82	PRL 48 1522	M. Fukugita, S. Watamura, M.	Yoshimura	(KEK)
,	ONWIMMER	87	PRL 59 266	U. von Wimmersperg et al.		(WITW)	FUKUGITA	82B	PR D26 1840	M. Fukugita, S. Watamura, M.		(KEK)
,	LBRECHT	86D	PL B179 403	H. Albrecht et al.	(ARGUS	Collab.)	LEHMANN	82	PL 115B 270	P. Lehmann et al.		(SACL)
- 1	BADIER	86	ZPHY C31 21	J. Badier et al.		Collab.)	RAFFELT	82	PL 119B 323	G. Raffelt, L. Stodolsky		(MPIM)
- 1	BOWCOCK	86	PRL 56 2676	T.J.V. Bowcock et al.	(ČLEO	Collab.)	SIVERTZ	82	PR D26 717	J.M. Sivertz et al.	(CUSB	Collab.)
- 1	BROWN	86	PRL 57 2101	C.N. Brown et al.	(FNAL, WASH, F	(YOT+)	VERGADO5	82	PL 109B 96	J.D. Vergados	(***-	(CERN)
- 1	BRYMAN	86B	PRL 57 2787	D.A. Bryman, E.T.H. Clifford		(TRIU)	ZEHNDER	82	PL 110B 419	A. Zehnder, K. Gabathuler, J.L.	Vuilleumier	(ETH+)
- 1	AVIER	86	PL B180 295	M. Davier, J. Jeanjean, H. Ngu	ven Ngoc	(LALO)	ASANO	81B	PL 107B 159		EK, TOKY, INUS	
- 1	DEARBORN	86	PRL 56 26	D.S.P. Dearborn, D.N. Schramm		(LLL+)	BARROSO	81	PL 106B 91	A. Barroso, N.C. Mukhopadhya		(SIN)
- 1	ICHLER	86	PL B175 101	R.A. Eichler et al.	(SINDRUM		FAISSNER	81	ZPHY C10 95	H. Faissner et al.		AACH3)
- 1	IALLIN	86	PRL 57 2105	A.L. Hallin et al.	(***********	(PRIN)	FAISSNER		PL 103B 234	H. Faissner et al.		AACH3)
	ODIDIO	86	PR D34 1967	A. Jodidio et al.	(LBL, NWES		KIM	81	PL 105B 55	B.R. Kim, C. Stamm		AACH3)
	Also	88	PR D37 237 erratum	A. Jodidio et al.	(LBL, NWES		VUILLEUMIER		PL 101B 341	J.L. Vuilleumier et al.		, MUNI)
- 1	KETOV	86	JETPL 44 146	S.N. Ketov et al.	(102,	(KIAE)	ZEHNDER	81	PL 104B 494	A. Zehnder	(01)	(ETH)
			Translated from ZETFP	44 114.		(**************************************	FAISSNER	80	PL 96B 201	H. Faissner et al.		AACH3)
- 1	(OCH	86	NC 96A 182	H.R. Koch, O.W.B. Schult		(JULI)	JACQUES	80	PR D21 1206	P.F. Jacques et al.	(RUTG. STEV	
- 1	ONAKA	86	PRL 57 659	A. Konaka et al.	(KYO	r, KEK)	SOUKAS	80	PRL 44 564		NL, HARV, ORNL	
	/AGERAS	86	PRL 56 2672	G. Mageras et al.	(MPIM, COLU,		BECHIS	79	PRL 42 1511	D.J. Bechis et al.	(UMD. COLU	
	IAIANI	86	PL B175 359	L. Maiani, R. Petronzio, E. Zav		(CERN)	CALAPRICE	79	PR D20 2708	F.P. Calaprice et al.	(UMD, COLU	(PRIN)
	ECCEI	86	PL B172 435	R.D. Peccei, T.T. Wu, T. Yana		(DESY)	COTEUS	79	PRL 42 1438	P. Coteus et al.	(60.11.11	
	RAFFELT	86	PR D33 897	G.G. Raffelt		(MPIM)	DISHAW	79	PRL 42 1436 PL 85B 142		(COLU, IL	
	RAFFELT		PL 166B 402	G.G. Raffelt		(MPIM)		79		J.P. Dishaw et al.		AC, CIT)
	AVAGE		PRL 57 178	M.J. Savage et al.		(CIT)	ZHELNITSKII	79	SJNP 29 517 Translated from YAF 29	A.R. Zhitnitsky, Y.I. Skovpen		(NOVO)
	MALDI	85	PL 153B 444	U. Amaldi et al.		(CERN)	ALIBRAN	78	PL 74B 134	P. Alibran et al.	(Gargamelle	Collab)
	NANEV	85	SJNP 41 585	V.D. Ananey et al.		(JINR)	ASRATYAN		PL 79B 497			
•		03	Translated from YAF 41			(SH4K)	BELLOTTI	78	PL 76B 223	A.E. Asratyan et al.		SERP)
8	ALTRUSAIT	. 85	PRL 55 1842	R.M. Baltrusaitis et al.	(Mark III	Collab)	BOSETTI			E. Bellotti, E. Fiorini, L. Zanot		(MILA)
	BERGSMA	85	PL 157B 458	F. Bergsma et al.	CHARM		DICUS		PL 74B 143	P.C. Bosetti et al.		Collab.)
	APLAN		NP B260 215	D.B. Kaplan		(HARV)	DONNELLY		PR D18 1829	D.A. Dicus et al.	(TEXA, VPI	
	WAMOTO	84	PRL 53 1198	N. Iwamoto	(UCSB.			78	PR D18 1607	T.W. Donnelly et al.		(STAN)
		84	PRL 52 1089	T. Yamazaki et al.		5. KEK)	Also	76	PRL 37 315	F. Reines, H.S. Gurr, H.W. Sol		(UCI)
	BBOTT	83	PL 120B 133	L.F. Abbott, P. Sikivie		FLOR)	Also	74	PRL 33 179	H.S. Gurr, F. Reines, H.W. Sol		(UCI)
	LAM	83	PR D27 1665		O, CORN, ITHA, I		HAN5L		PL 74B 139	T. Hansi et al.		Collab.)
	ARBONI	83	PL 123B 349	G. Carboni, W. Dahme		MUNI)	MICELMAC	78	LNC 21 441	G.V. Mitselmakher, B. Ponteco		(JINR)
		83	PL 123B 349	J.F. Cavaignac et al.		LAPP)	MIKAELIAN	78	PR D18 3605	K.O. Mikaelian		NWES)
	ICUS	83	PR D28 1778	D.A. Dicus, V.L. Teplitz			SATO	78	PTP 60 1942	K. Sato		(KYOT)
	INE	83	PL 120B 137	M. Dine, W. Fischler		, UMD)	VYSOTSKII	78	JETPL 27 502	M.I. Vysotsky et al.		(ASCI)
	LLIS				(IAS,	PENN)			Translated from ZETFP			
	AISSNER		NP B223 252 PR D28 1198	J. Ellis, K.A. Olive		(CERN)	YANG	78	PRL 41 523	T.C. Yang		(MASA)
	AISSNER	83		H. Faissner et al.		(AACH)	PECCEI	77	PR D16 1791	R.D. Peccei, H.R. Quinn		i, SLAC)
			PR D28 1787	H. Faissner et al.		AACH3)	Also		PRL 38 1440	R.D. Peccei, H.R. Quinn		i, SLAC)
	RANK		PR D28 1790	J.S. Frank et al.	(LANL, YALE,		REINES	76	PRL 37 315	F. Reines, H.S. Gurr, H.W. Sol		(UCI)
	IOFFMAN	83	PR D28 660	C.M. Hoffman et al.		ARZS)	GURR	74	PRL 33 179	H.S. Gurr, F. Reines, H.W. Sol	pel	(UCI)
	ICZYPORUK		ZPHY C17 197	B. Niczyporuk et al.		Collab.)	ANAND	53	PRSL A22 183	Anand		
	RESKILL	83	PL 120B 127	J. Preskill, M.B. Wise, F. Wilcz	ek (HARV,							
	IKIVIE	83	PRL 51 1415	P. Sikivie		(FLOR)			OTHER	RELATED PAPERS -		
	Also	84	PRL 52 695 erratum	P. Sikivie		(FLOR)			OTHER	nee iieb ini end		
-	LEKSEEV	82	JETP 55 591	E.A. Alekseeva et al.		(KIAE)	enenueur.		NB 8-48 444			
	LEWSER		Translated from ZETF 8				SREDNICKI	85	NP B260 689	M. Srednicki		(UCSB)
,	LEKSEEV	82B	JETPL 36 116	G.D. Alekseev et al.	(MOSI	J, JINR)	BARDEEN	78	PL 74B 229	W.A. Bardeen, SH.H. Tye		(FNAL)
			Translated from ZETFP	36 94.								

LEPTONS

e MASS

The mass is known much more precisely in u (atomic mass units) than in MeV; see the footnote. The conversion from u to MeV, 1 u = 931.494013 \pm 0.000037 MeV/ c^2 (MOHR 99, the 1998 CODATA value), involves the relatively poorly known electronic charge.

VALUE (MEV)	DUCUMENTID		TECN	COMMENT
0.510998902±0.000000021	¹ MOHR	99	RVUE	1998 CODATA value
• • • We do not use the folio	owing data for aver	ages,	fits, limi	ts, etc. • • •
0.51099907 ±0.00000015	² FARNHAM	95	CNTR	Penning
0.51099906 ±0.00000015	³ COHEN	87	RVUE	1986 CODATA value
0.5110034 ±0.0000014	COHEN	73	RVUE	1973 CODATA value
1				

MOHR 99 (1998 CODATA) value in atomic mass units is 0.0005485799110(12). FARNHAM 95 compares cyclotron frequency of trapped electrons with that of a single trapped $^{12}\text{C}^{+6}$ ion. The result is $m_e=0.0005485799111(12)$ u, where the figure in parenthesis is the 1σ uncertainty in the last digit. The uncertainty after conversion to MeV is dominated by the uncertainty in the electron charge.

³ COHEN 87 (1986 CODATA) value in atomic mass units is 0.000548579903(13). See footnote on FARNHAM 95.

$(m_{e^+} - m_{e^-}) / m_{\text{average}}$

A test of CPT invariance.

VALUE	CL%	DOCUMENT	ID	TECN	COMMENT	
<8 × 10 ⁻⁹	90	⁴ FEE	93	CNTR	Positronium spec- troscopy	
• • • We do not use	the following	ng data for ave	rages, fits	s, limits,	etc. • • •	
<4 × 10 ⁻⁸	90	CHU	84	CNTR	Positronium spec- troscopy	

FEE 93 value is obtained under the assumption that the positronium Rydberg constant is exactly half the hydrogen one.

$|q_{e^+} + q_{e^-}|/e$

A test of CPT invariance. See also similar tests involving the proton.

VALUE	DOCUMENT ID	TEÇN	COMMENT	
<4 × 10 ⁻⁸	⁵ HUGHES	92 RVUE		
• • • We do not use the followi	ng data for averag	es, fits, limits	, etc. • • •	
$< 2 \times 10^{-18}$	⁶ SCHAEFER	95 THEO	Vacuum polarization	
$<1 \times 10^{-18}$	⁷ MUELLER	92 THEO	Vacuum polarization	

⁵ HUGHES 92 uses recent measurements of Rydberg-energy and cyclotron-frequency ra-

tios. 6 SCHAEFER 95 removes model dependency of MUELLER 92.

7 MUELLER 92 argues that an inequality of the charge magnitudes would, through higher-order vacuum polarization, contribute to the net charge of atoms.

e MAGNETIC MOMENT ANOMALY

$\mu_e/\mu_B - 1 = (g-2)/2$

For the most accurate theoretical calculation, see KINOSHITA 81.

VALUE (units 10 ⁻⁶)	DOCUMENT ID		TECN	CHG	COMMENT
1159.6521869±0.0000041	8 MOHR	99	RVUE		1998 CODATA value
• • • We do not use the folk	owing data for avera	iges,	fits, limi	ts, etc.	. • • •
1159.652193 ±0.000010	8 COHEN	87	RVUE		1986 CODATA value
1159.6521884±0.0000043	VANDYCK	87	MR5	_	Single electron
$1159.6521879 \pm 0.0000043$	VANDYCK	87	MRS	+	Single positron

$(g_{e^+} - g_{e^-}) / g_{average}$

A test of CPT invariance.

ollowing data for av	erages, fit	ts, limits,	
-	-		
5 10 WASSER	4461 07	CNTD	
J #//JJEIN	VIAIN 87	CNIR	Assumes $m_{\rho+} = m_{\rho-}$
d $(g_{\perp}/g_{\perp})-1$ and	we conve	rted it.	
			lied by $(g-2)/g = 1.2$
	d (g_{\perp}/g_{+}) –1 and	d (g_{\perp}/g_{+}) -1 and we conve	SCHWINBERG 81 MRS d $(g/g_+)-1$ and we converted it. ured $(g_+-g)/(g-2)$. We multip

e ELECTRIC DIPOLE MOMENT

A nonzero value is forbidden by both T invariance and P invariance.

VALUE (10 ⁻²⁶ ecm) CL%	DOCUMENT ID	TECN	COMMENT
0.18± 0.12±0.10	¹¹ COMMINS 94	MRS	205 TI beams
• • • We do not use the following	data for averages, fits	, limits,	etc. • • •
- 0.27 ± 0.83	11 ABDULLAH 90	MRS	205 TI beams
14 ± 24	CHO · 89	NMR	TI F molecules
$-$ 1.5 \pm 5.5 \pm 1.5	MURTHY 89		Cesium, no B field
- 50 ±110	LAMOREAUX 87	NMR	199 _{Hg}
190 ±340 90	SANDARS 75	MRS	Thallium
70 ±220 90	PLAYER 70	MRS	Xenon
< 300 90	WEISSKOPF 68	MRS	Cesium

 $^{11}\,\mathrm{ABDULLAH}$ 90 and COMMINS 94 use the relativistic enhancement of a valence electron's electric dipole moment in a high-Z atom.

e- MEAN LIFE / BRANCHING FRACTION

A test of charge conservation. See the "Note on Testing Charge Conservation and the Pauli Exclusion Principle" following this section in our 1992 edition (Physical Review D45, 1 June, Part II (1992), p. VI.10).

Most of these experiments are one of three kinds: Attempts to observe (a) the (K) shell \times ray produced when an electron decays without additional energy deposit, e.g., $e^- \to \nu_e \overline{\nu}_e \nu_e$ ("disappearance" experiments), (b) the 255.5 keV gamma ray produced in $e^-
ightarrow
u_e \gamma$, and (c) nuclear (b) the 23.3. We gaining ray include the $v = v_0$, and (c) indeed de-excitation gamma rays after the electron disappears from an atomic shell and the nucleus is left in an excited state. The last can include both weak boson and photon mediating processes. We use the best "disappearance" limit for the Summary Tables. The best limit for the specific channel $e^- \to \nu \gamma$ is much better.

Note that we use the mean life rather than the half life, which is often reported.

VALUE (yr)	CL%	DOCUMENT ID		TECN	COMMENT
>4.2 × 10 ²⁴	68	BELLI	99	DAMA	I L-shell disappearance
• • • We do not	use the	following data for av	erage	s, fits, I	imits, etc. • • •
>6.4 × 10 ²⁴	68	12 BELLI			Disappearance in 129Xe
$>2.4 \times 10^{23}$	90	13 BELLI	99 D	DAMA	Disappear in ¹²⁷ l (in Nal)
$>4.3 \times 10^{23}$	68	AHARONOV	95B	CNTR	Ge K-shell disappearance
$>3.7 \times 10^{25}$	68	AHARONOV	95B	CNTR	$e^- \rightarrow \nu \gamma$
$>$ 2.35 \times 10 ²⁵	68	BALYSH	93	CNTR	$e^- \rightarrow \nu \gamma$, ⁷⁶ Ge detector
$>2.7 \times 10^{23}$	68	REUSSER	91	CNTR	Ge K-shell disappearance
$>1.5 \times 10^{25}$	68	AVIGNONE	86	CNTR	$e^- \rightarrow \nu \gamma$
$>1 \times 10^{39}$		¹⁴ ORITO	85	ASTR	Astrophysical argument
$>3 \times 10^{23}$	68	BELLOTTI	83B	CNTR	$e^- \rightarrow \nu \gamma$
>2 × 10 ²²	68	BELLOTTI	83B	CNTR	Ge K-shelf disappearance

¹²BELLI 99B limit on charge nonconserving e⁻ capture involving excitation of the 236.1 keV nuclear state of 129Xe. Less stringent limits for other states are also given.

13 BELLI 990 limit on charge nonconserving e⁻ capture involving excitation of the 57.6 keV nuclear state of ¹²⁷I. Less stringent limits for the other states and for the state of ²³Na are also given.

14 ORITO 85 assumes that electromagnetic forces extend out to large enough distances and that the age of our galaxy is 10¹⁰ years.

e REFERENCES

		·	INCI ENCINCES	
BELLI	99	PL B460 236	P. Belli et al.	(DAMA Collab.)
BELLI	99B	PL B465 315	P. Belli et al.	(DAMA Collab.)
BELLI	99D	PR C60 065501	P. Beili et al.	(DAMA Collab.)
MOHR	99	JPCRD 28 1713	P.J. Mohr, B.N. Taylor	` (NIST)
Also	00	RMP 72 351	P.J. Mohr, B.N. Taylor	(NIST)
AHARONOV	95B	PR D52 3785	Y. Aharonov et al.	(SCUC, PNL, ZAGR+)
Also	95	PL B353 168	Y. Aharonov et al.	(SCUC, PNL, ZAGR+)
FARNHAM	95	PRL 75 3598	D.L. Farnham, R.S. van Dyck, P.B.	3. Schwinberg (WASH)
SCHAEFER	95	PR A51 838	A. Schaefer, J. Reinhardt	(FRAN)
COMMINS	94	PR A50 2960	E.D. Commins et al.	
BALYSH	93	PL B298 278	A. Balysh <i>et al</i> .	(KIAE, MPIH, \$ASSO)
FEE	93	PR A48 192	M.S. Fee et al.	
HUGHES	92	PRL 69 578	R.J. Hughes, B.I. Deutch	(LANL, AARH)
MUELLER	92	PRL 69 3432	B. Muller, M.H. Thoma	(DUKE)
PDG .	92	PR D45, 1 June, Part II		(KEK, LBL, BOST+)
REUSSER	91	PL B255 143	D. Reusser et al.	(NEUC, CIT, PSI)
ABDULLAH	90	PRL 65 2347	K. Abdullah et al.	(LBL, UCB)
СНО	89	PRL 63 2559	D. Cho, K. Sangster, E.A. Hinds	
MURTHY	89	PRL 63 965	S.A. Murthy et al.	(AMHT)
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	(RISC, NBS)
LAMOREAUX	87	PRL 59 2275	S.K. Lamoreaux et al.	(WASH)
VANDYCK	87	PRL 59 26	R.S. van Dyck, P.B. Schwinberg,	
VASSERMAN	87	PL B198 302	I.B. Vasserman et al.	(NOVO)
Also	87B	PL B187 172	I.B. Vasserman et al.	(NOVO)
AVIGNONE	86	PR D34 97	F.T. Avignone et al.	(PNL, SCUC)
ORITO	85	PRL 54 2457	S. Orito, M. Yoshimura	(TOKY, KEK)
CHU	84	PRL 52 1689	S. Chu, A.P. Mills, J.L. Hall	(BELL, NBS, COLO)
BELLOTTI	83B	PL 124B 435 PRL 47 1573	E. Bellotti et al.	(MILA) (CORN)
KINOSHITA SCHWINBERG	81	PRL 47 1573 PRL 47 1679	T. Kinoshita, W.B. Lindquist	
	81 75		P.B. Schwinberg, R.S. van Dyck, I P.G.H. Sandars, D.M. Sternheimer	
SANDARS COHEN	73	PR A11 473 JPCRD 2 663	E.R. Cohen, B.N. Taylor	(RISC, NBS)
PLAYER	70	JPB 3 1620	M.A. Player, P.G.H. Sandars	(NISC, NES)
WEISSKOPF	68	PRL 21 1645	M.C. Weisskopf et al.	(BRAN)
MEISTROLL	ΨO	FRE 21 1043	MI.C. TTCISSNOPI EL al.	(DICAIN)

 $J = \frac{1}{2}$

μ MASS

The mass is known much more precisely in u (atomic mass units) than in MeV. The conversion from u to MeV, 1 u = 931.494013 \pm 0.000037 MeV/ c^2 (MOHR 99, the 1998 CODATA value), involves the relatively poorly known electronic charge.

Where $m_\mu/m_{\rm e}$ was measured, we have used the 1986 CODATA value for $m_e=0.51099906\pm0.00000015$ MeV.

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT		
$105.6583568 \pm 0.0000052$	¹ MOHR	99	RVUE		1998 CODATA value		
• • • We do not use the followi	ng data for avera	ges,	fits, limi	ts, etc.			
105.658389 ±0.000034	² COHEN	87	RVUE		1986 CODATA value		
105.658386 ± 0.000044	³ MARIAM	82	CNTR	+			
105.65836 ± 0.00026	⁴ CROWE	72	CNTR		•		
105.65865 ± 0.00044	⁵ CRANE	71	CNTR				
1 The mass is known much more precisely in u: 0.1134289168(34) u. 2 The mass is known more precisely in u: $m=0.113428913\pm0.000000017$ u, COHEN 87 makes use of the other entries below. 3 MARIAM 82 gives $m_\mu/m_e=206.768259(62)$.							
⁴ CROWE 72 gives $m_{\mu}/m_e = 206.7682(5)$.							
⁵ CRANE 71 gives $m_{\mu}/m_{\rm e} =$							

μ MEAN LIFE τ

Measurements with an error $> 0.001 \times 10^{-6}$ s have been omitted.

VALUE (10 ⁻⁶ s)	DOCUMENT ID		TECN	ÇHG
2.19703 ±0.00004 OUR AVERA	\GE			
2.197078 ± 0.000073	BARDIN	84	CNTR	+
2.197025 ± 0.000155	BARDIN	84	CNTR	
2.19695 ±0.00006	GIOVANETTI	84	CNTR	+
2.19711 ±0.00008	BALANDIN	74	CNTR	+
2.1973 ±0.0003	DUCLOS	73	CNTR	+

τ_{u^+}/τ_{u^-} MEAN LIFE RATIO

A test of CPT invariance.

VALUE	DOÇUMENT IL		TECN_	COMMENT
1.000024±0.000078	BARDIN	84	CNTR	
• • • We do not use the following	g data for averag	ges, fits	s, limits,	etc. • • •
1.0008 ±0.0010	BAILEY	79	CNTR	Storage ring
1.000 ± 0.001	MEYER	63	CNTR	Mean life μ^+/μ^-

$$(\tau_{\mu^+} - \tau_{\mu^-}) / \tau_{average}$$

A test of CPT invariance. Calculated from the mean-life ratio, above.

DOCUMENT ID $(2\pm8)\times10^{-5}$ OUR EVALUATION

μ MAGNETIC MOMENT ANOMALY

The CODATA value (MOHR 99) comes from the current theoretical expression, based on the Standard Model and implicitly assuming that corrections beyond the Standard Model are negligible at the level of the quoted uncertainty. See reviews HUGHES 99 and FARLEY 90.

$\mu_{\mu}/(e\hbar/2m_{\mu})-1=(g_{\mu}-2)/2$

VALUE (unit	s 10 ⁻⁶)		DOCUMEN	T ID	TECN	CHG	COMMENT
1165.9160	± 0.0006	OUR EVALU	JATION	From MC)HR 99	(theore	etical)
1165.923	± 0.008	OUR AVERA		or includes	scale fa	actor o	f 1.1.
1165.925	± 0.015		CAREY		CNTR	+	Storage ring
1165.910	± 0.011		BAILEY		CNTR	+	Storage ring
1165.936	± 0.012	7	BAILEY	79	CNTR	-	Storage ring
• • • We	do not use	the following	g data for	averages,	fits, limi	its, etc.	. • • •
1165.91602	2±0.00064	ļ	MOHR	99	RVUE		1998 CODATA value
1165.9230	± 0.0084		COHEN	87	RVUE		1986 CODATA value
1162.0	± 5.0		CHARPAI	K 62	CNTR	+	
6 CARE	Y 99 measi	ure ratio R to	o the free	proton L:	armor pr	ecessio	on frequency, and then

convert this to the magnetic moment anomaly using $\mu_{\mu}/\mu_{D}=3.18334547(47)$ (CO-

⁷BAILEY 79 values recalculated by HUGHES 99 using the COHEN 87 μ/p magnetic moment. The improved MOHR 99 value does not change the result.

$(g_{\mu^+} - g_{\mu^-}) / g_{average}$

A test of CPT invariance. VALUE (units 10⁻⁸) DOCUMENT ID -2.6±1.6 BAILEY

μ/ρ MAGNETIC MOMENT RATIO

This ratio is used to obtain a precise value of the muon mass and to reduce experimental muon Larmor frequency measurements to the muon magnetic moment anomaly. Measurements with an error > 0.00001 have been omitted.

VALUE	DOCUMENT ID		TECN	CHG	COMMENT
3.18334539±0.00000010	8 MOHR	99	RVUE		1998 CODATA value
• • • We do not use the foll	owing data for avera	ges,	fits, limi	ts, etc.	
$3.18334513 \pm 0.00000039$	LIU	99	CNTR	+	HFS in muonium
$3.18334547 \pm 0.00000047$	⁸ COHEN	87	RVUE		1986 CODATA value
3.1833441 ± 0.0000017	KLEMPT	82	CNTR	+	Precession strob
3.1833461 ±0.0000011	MARIAM	82	CNTR	+	HFS splitting
3.1833448 ±0.0000029	CAMANI	78	CNTR	+	See KLEMPT 82
3.1833403 ±0.0000044	CASPERSON	77	CNTR	+	HFS splitting
3.1833402 ± 0.0000072	COHEN	73	RVUE		1973 CODATA value
3.1833467 ±0.0000082	CROWE	72	CNTR	+	Precession phase
⁸ CODATA values fitted usi	ng their selection of	data,	plus oth	er dat	a from multiparameter

μ ELECTRIC DIPOLE MOMENT

A nonzero value is forbidden by both T invariance and P invariance.

VALUE (10 ⁻¹⁹ ecm)	DOÇUMENT ID		TECN	CHG	COMMENT
3.7±3.4	9 BAILEY	78	CNTR	±	Storage ring
• • • We do not use the	following data for average	es, fits	i, limits,	etc.	
8.6 ± 4.5	BAILEY	78	CNTR	+	Storage rings
0.8 ± 4.3	BAILEY	78	CNTR	_	Storage rings
⁹ This is the combination	on of the two BAILEY 78	result	s given l	elow.	

μ- DECAY MODES

 μ^+ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)			Confidence level	
Γ_1	$e^- \overline{\nu}_e \nu_{\mu}$		≈ 100%	-		
Γ_2	$e^-\overline{ u}_e u_\mu\gamma$		[a] (1.4±0	.4) %		
Γ_3	$e^-\overline{ u}_e \nu_\mu e^+e^-$		[b] (3.4 ± 0)	.4) ×.10 ⁻⁵		
	Lepton Fa	amily number (LF) violatin	g modes		
Γ_4	$e^- \nu_e \overline{\nu}_{\mu}$	LF	[c] < 1.2	%	90%	
Γ_5	$e^-\gamma$	LF	< 1.2	$\times 10^{-11}$	90%	
Γ_6	e-e+e-	LF	< 1.0	$\times 10^{-12}$		
Γ_7	$e^-2\gamma$	LF	< 7.2	$\times 10^{-11}$	90%	

- [a] This only includes events with the γ energy > 10 MeV. Since the $e^-\,\overline{\nu}_e\,\nu_\mu$ and $e^-\overline{\nu}_e \nu_\mu \gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [b] See the Particle Listings below for the energy limits used in this mea-
- [c] A test of additive vs. multiplicative lepton family number conservation.

μ- BRANCHING RATIOS

$\Gamma(e^{-\overline{\nu}_e\nu_{\mu}\gamma})/\Gamma_{to}$	tal						Γ_2/Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMM	MENT	
0.014 ±0.004		CRITTENDEN	61	CNTR	γ ΚΕ	> 10 MeV	
 • • We do not use 	e the follow	ing data for average	s, fit	s, limits,	etc.		
	862	BOGART	67	CNTR	γ ΚΕ	> 14.5 MeV	,
0.0033 ± 0.0013		CRITTENDEN	61	CNTR	γ ΚΕ	> 20 MeV	
	27	ASHKIN	59	CNTR			
$\Gamma(e^-\overline{\nu}_e u_\mue^+e^-)$)/F _{total}						Γ3/Ι
VALUE (units 10 ⁻⁵)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
3.4±0.2±0.3	7443	¹⁰ BERTL	85	SPEC	+	SINDRUM	
 • • We do not us 	e the follow	ing data for average	s, fit	s, limits,	etc. •	• •	
2.2 ± 1.5	7	¹¹ CRITTENDEN	61	HLBC	+	E(e+e-)>	10
2	1	¹² GUREVICH				IVIC V	
1.5 ± 1.0	3	¹³ LEE	59	HBC	+		
10 BERTL 85 has a increased by us.	transverse r	nomentum cut p _T	>	17 MeV	/c. S	ystematic en	or wa

11 CRITTENDEN 61 count only those decays where total energy of either (e^+, e^-) com- $^{12}\,\text{bination}$ is >10 MeV. $^{12}\,\text{GUREVICH}$ 60 interpret their event as either virtual or real photon conversion. e^+ and

 e^- energies not measured. ¹³ In the three LEE 59 events, the sum of energies ${\sf E}(e^+)+{\sf E}(e^-)+{\sf E}(e^+)$ was 51 MeV, 55 MeV, and 33 MeV.

Neutrinos

NEUTRINO MASS

Written February 1998 and updated October 1999 by B. Kayser (NSF).

There is now rather convincing evidence that neutrinos have nonzero masses. This evidence comes from the apparent observation of neutrino oscillation. Let us recall the physics of this phenomenon, and its relation to neutrino mass.

In the decay

$$W^+ \to \ell^+ \nu_{\ell} \tag{1}$$

of a W boson into a charged lepton of "flavor" $\ell(e,\mu,\text{ or }\tau)$, the accompanying neutrino is referred to as ν_{ℓ} , the neutrino of flavor ℓ . Neutrinos of different flavor are different objects. When an energetic ν_{ℓ} undergoes a charged-current weak interaction, it produces a charged lepton ℓ of the same flavor as the neutrino [1].

If neutrinos have masses, then a neutrino of definite flavor, ν_{ℓ} , need not be a mass eigenstate. Indeed, if leptons behave like quarks, the ν_{ℓ} is a coherent linear superposition of mass eigenstates, given by

$$|\nu_{\ell}\rangle = \sum_{m} U_{\ell m} |\nu_{m}\rangle . \qquad (2)$$

Here, the ν_m are the mass eigenstates, and the coefficients $U_{\ell m}$ form a matrix U known as the leptonic mixing matrix. There are at least three ν_m , and perhaps more. However, it is most often assumed that no more than three ν_m make significant contributions to Eq. (2). Then U is a 3×3 matrix, and according to the electroweak Standard Model (SM), extended to include neutrino masses, it is unitary.

The relation Eq. (2) means that when, for example, a W^+ decays to an e^+ and a neutrino, the neutrino with probability $|U_{e2}|^2$ is a ν_1 , with probability $|U_{e2}|^2$ is a ν_2 , and so on. This behavior is an exact leptonic analogue of what is known to occur when a W^+ decays to quarks.

If each neutrino of definite flavor is a coherent superposition of mass eigenstates, then a neutrino of one flavor can spontaneously change into one of another flavor as it propagates [2]. This is the phenomenon referred to as neutrino oscillation.

To understand neutrino oscillation, let us consider how a neutrino born as the ν_{ℓ} of Eq. (2) evolves in time. First, we apply Schrödinger's equation to the ν_m component of ν_{ℓ} in the rest frame of that component. This tells us that [3]

$$|\nu_m(\tau_m)\rangle = e^{-iM_m\tau_m}|\nu_m(0)\rangle , \qquad (3)$$

where M_m is the mass of ν_m , and τ_m is time in the ν_m frame. In terms of the time t and position L in the laboratory frame, the Lorentz-invariant phase factor in Eq. (3) may be written

$$e^{-iM_m\tau_m} = e^{-i(E_mt - p_mL)} . (4)$$

Here, E_m and p_m are respectively the energy and momentum of ν_m in the laboratory frame. In practice, our neutrino will be extremely relativistic, so we will be interested in evaluating

the phase factor of Eq. (4) where $t \approx L$, where it becomes $\exp[-i(E_m - p_m)L]$.

Imagine now that our ν_ℓ has been produced with a definite momentum p, so that all of its mass-eigenstate components have this common momentum. Then the ν_m component has $E_m = \sqrt{p^2 + M_m^2} \approx p + M_m^2/2p$, assuming that all neutrino masses M_m are small compared to the neutrino momentum. The phase factor of Eq. (4) is then approximately

$$e^{-i(M_m^2/2p)L} (5)$$

Alternatively, suppose that our ν_ℓ has been produced with a definite energy E, so that all of its mass-eigenstate components have this common energy [4]. Then the ν_m component has $p_m = \sqrt{E^2 - M_m^2} \approx E - M_m^2/2E$. The phase factor of Eq. (4) is then approximately

$$e^{-i(M_m^2/2E)L} (6)$$

Since highly relativistic neutrinos have $E \approx p$, the phase factors (5) and (6) are approximately equal. Thus, it doesn't matter whether our ν_{ℓ} is created with definite momentum or definite energy.

From Eq. (2) and either Eq. (5) or Eq. (6), it follows that after a neutrino born as a ν_{ℓ} has propagated a distance L, its state vector has become

$$|\nu_{\ell}(L)\rangle \approx \sum_{m} U_{\ell m} e^{-i(M_{m}^{2}/2E)L} |\nu_{m}\rangle$$
 (7)

Using the unitarity of U to invert Eq. (2), and inserting the result in Eq. (7), we find that

$$|\nu_{\ell}(L)\rangle \approx \sum_{\ell'} \left[\sum_{m} U_{\ell m} e^{-i(M_m^2/2E)L} U_{\ell'm}^* \right] |\nu_{\ell'}\rangle .$$
 (8)

We see that our ν_{ℓ} , in traveling the distance L, has turned into a superposition of all the flavors. The probability that it has flavor ℓ' , $P(\nu_{\ell} \to \nu_{\ell'}; L)$, is obviously given by

$$P(\nu_{\ell} \to \nu_{\ell'}; L) = |\langle \nu_{\ell'} | \nu_{\ell}(L) \rangle|^2 = \left| \sum_{m} U_{\ell m} e^{-i(M_m^2/2E)L} U_{\ell'm}^* \right|^2.$$
(9)

If it should turn out that the number of neutrino flavors, N, is greater than three, and that the N neutrinos of definite flavor are made up out of N light neutrino mass eigenstates, then the neutrino oscillation probability will still be given by this equation, but with U an $N \times N$, rather than 3×3 , unitary matrix.

The mixing matrix U is often called the "Maki-Nakagawa-Sakata matrix" in recognition of the very insightful early work of these three authors on neutrino mixing and oscillation [2].

The quantum mechanics of neutrino oscillation leading to the result Eq. (9) is somewhat subtle. It has been analyzed using wave packets [5], treating a propagating neutrino as a virtual particle [6], evaluating the phase acquired by a propagating mass eigenstate in terms of the proper time of propagation [3], requiring that a neutrino's flavor cannot change

Lepton Particle Listings Neutrinos

unless the neutrino travels [4], and taking different neutrino mass eigenstates to have both different momenta and different energies [7]. The subtleties of oscillation are still being explored.

Frequently, a neutrino oscillation experiment is analyzed assuming that only two neutrino flavors, ν_e and ν_μ for example, mix appreciably. Then the mixing matrix U takes the form

$$U = \begin{pmatrix} \cos \theta_{e\mu} & \sin \theta_{e\mu} \\ -\sin \theta_{e\mu} & \cos \theta_{e\mu} \end{pmatrix} , \qquad (10)$$

where $\theta_{e\mu}$ is the ν_e - ν_μ mixing angle. Inserting this matrix into Eq. (9), we find that

$$P(\nu_e \to \nu_\mu; L) = \sin^2 2\theta_{e\mu} \sin^2 \left(\Delta M_{21}^2 L/4E\right)$$
 (11)

Here, $\Delta M_{21}^2 \equiv M_2^2 - M_1^2$, where ν_1 and ν_2 are the mass eigenstates which make up ν_e and ν_μ . If the omitted factors of \hbar and c are inserted into the argument $\Delta M_{21}^2 L/4E$ of the oscillatory sine function, it becomes 1.27 ΔM_{21}^2 (eV²)L (km)/E (GeV). The probability that a ν_e will retain its original flavor during propagation over a distance L is simply

$$P(\nu_e \to \nu_e; L) = 1 - P(\nu_e \to \nu_\mu; L)$$
 (12)

When ν_e , ν_μ , and ν_τ all mix, but two of the three corresponding mass eigenstate neutrinos ν_m are nearly degenerate, neutrino oscillation is described by an expression nearly identical to the "two-neutrino formula" of Eq. (11). To be more precise, suppose that $|\Delta M_{21}^2| \ll |\Delta M_{31}^2| \cong |\Delta M_{32}^2|$, where $\Delta M_{mm'}^2 \equiv M_m^2 - M_{m'}^2$ is the splitting between the squared masses of mass eigenstates ν_m and $\nu_{m'}$. That is, ν_2 and ν_1 form a pair with a much smaller splitting than that between ν_3 and this pair. Now, suppose an oscillation experiment has L/E such that $|\Delta M_{31}^2|L/E$ is of order unity, so that $|\Delta M_{21}^2|L/E \ll 1$. For this experiment, it follows from Eq. (9) and the unitarity of U that [8]

$$P(\nu_{\ell} \to \nu_{\ell' \neq \ell}; L) \cong |2U_{\ell 3}U_{\ell' 3}|^2 \sin^2(\Delta M_{31}^2 L/4E)$$
 (13)

Because $|\Delta M_{21}^2|L/E \ll 1$, this experiment cannot "see" the splitting between ν_2 and ν_1 , so these two mass eigenstates behave as if they were a single one. Thus, in this experiment there appear to be only two mass eigenstates altogether, so it is no surprise that the expression for neutrino oscillation, Eq. (13), is very similar to the "two-neutrino" result of Eq. (11).

In a beam of neutrinos born with flavor ℓ_a , neutrino oscillation can be sought in two ways: First, one may seek the appearance in the beam of neutrinos of a different flavor, ℓ_b . Secondly, one may seek a disappearance of some of the original ν_{ℓ_a} flux, or an L- or E-dependence of this flux.

Clearly, no oscillation is expected unless L/E of the experiment is sufficiently large that the phase factors $\exp(-iM_m^2\ L/2E)$ in Eq. (9) differ appreciably from one another. Otherwise, $P(\nu_\ell \to \nu_{\ell'}; L) = |\sum_m U_{\ell m} U_{\ell'm}^*|^2 = \delta_{\ell\ell'}$. Now, with omitted factors of \hbar and c inserted, the relative phase of $\exp(-iM_m^2\ L/2E)$ and $\exp(-iM_{mm'}^2 L/2E)$ is 2.54 $\Delta M_{mm'}^2 ({\rm eV}^2)\ L({\rm km})/E({\rm GeV})$. Thus, for example, an

experiment in which neutrinos with $E\approx 1~{\rm GeV}$ travel 1 km between production and detection will be sensitive to $\Delta M^2\gtrsim 1~{\rm eV}^2$.

A more direct way than neutrino oscillation experiments to search for neutrino mass is to look for its kinematical effects in decays which produce a neutrino. In the decay $X \rightarrow$ $Y\ell^+\nu_\ell$, where X is a hadron and Y is zero or more hadrons, the momenta of ℓ^+ and the particles in Y will obviously be modified if ν_{ℓ} has a mass. If ν_{ℓ} is a superposition of mass eigenstates ν_m , then $X \to Y \ell^+ \nu_\ell$ is actually the sum of the decays $X \to Y \ell^+ \nu_m$ yielding every ν_m light enough to be emitted. Thus, if, for example, one ν_m is much heavier than the others, the energy spectrum of ℓ^+ may show a threshold rise where the ℓ^+ energy becomes low enough for the heavy ν_m to be emitted [9]. However, if neutrino mixing is small, then the decays $X \to Y \ell^+ \nu_m$ yield almost always the neutrino mass eigenstate which is the dominant component of ν_{ℓ} . The kinematics of ℓ^+ and Y then reflect the mass of this mass eigenstate.

From kinematical studies of the particles produced in ${}^3{\rm H} \to {}^3{\rm He}\ e^-\,\bar{\nu}_e,\pi\to\mu\nu_\mu$, and $\tau\to n\pi\nu_\tau$, various upper bounds on neutrino mass have been obtained. In the case of the decay ${}^3{\rm H}\to{}^3{\rm He}\ e^-\,\bar{\nu}_e$, the upper bound on the neutrino mass is derived from study of the e^- energy spectrum. It should be noted that in several experiments, the observed spectrum is not well fit by the standard theoretical expression, either with vanishing or nonvanishing neutrino mass. However, progress is being made in understanding the spectral anomalies [10].

Neutrinos carry neither electric charge nor, as far as we know, any other charge-like quantum numbers. To be sure, it may be that the reason an interacting "neutrino" creates an ℓ^- , while an "antineutrino" creates an ℓ^+ , is that neutrinos and antineutrinos carry opposite values of a conserved "lepton number." However, there may be no lepton number. Even then, the fact that "neutrinos" and "antineutrinos" interact differently can be easily understood. One need only note that, in practice, the particles we call "neutrinos" are always left-handed, while the ones we call "antineutrinos" are right-handed. Since the weak interactions are not invariant under parity, it is then possible to attribute the difference between the interactions of "neutrinos" and "antineutrinos" to the fact that these particles are oppositely polarized.

If the neutrino mass eigenstates do not carry any chargelike attributes, they may be their own antiparticles. A neutrino which is its own antiparticle is called a Majorana neutrino, while one which is not is called a Dirac neutrino.

If neutrinos are of Majorana character, we can have neutrinoless double beta-decay $(\beta\beta_{0\nu})$, in which one nucleus decays to another by emitting two electrons and nothing else. This process can be initiated through the emission of two virtual W bosons by the parent nucleus. One of these W bosons then emits an electron and an accompanying virtual "antineutrino." In the Majorana case, this "antineutrino" is no different from a "neutrino," except for its right-handed helicity. If the virtual

Neutrinos

neutrino has a mass, then (like the e^+ in nuclear β -decay), it is not fully right-handed, but has a small amplitude, proportional to its mass, for being left-handed. Its left-handed component is precisely what we call a "neutrino," and can be absorbed by the second virtual W boson to create the second outgoing electron. This mechanism yields for $\beta\beta_{0\nu}$ an amplitude proportional to an effective neutrino mass $\langle M \rangle$, given in a common phase convention by [11]

$$\langle M \rangle = \sum_{m} U_{em}^{2} M_{m} . \tag{14}$$

Experimental upper bounds on the $\beta\beta_{0\nu}$ rate are used to derive upper bounds on $\langle M \rangle$. Note that, owing to possible phases in the mixing matrix elements U_{em} , the relation between $\langle M \rangle$ and the actual masses M_m of the neutrino mass eigenstates can be somewhat complicated. The process $\beta\beta_{0\nu}$ is discussed further by P. Vogel in this Review.

If neutrinos are their own antiparticles, then their magnetic and electric dipole moments must vanish. To see why, recall that CPT invariance requires that the dipole moments of the electron and its antiparticle be equal and opposite. Similarly, CPT invariance would require that the dipole moments of a neutrino and its antiparticle be equal and opposite. But, if the antiparticle of the neutrino is the neutrino itself, this means that the dipole moments must vanish [12].

If neutrinos are not their own antiparticles, then they can have dipole moments. However, for a Dirac neutrino mass eigenstate ν_m , the magnetic dipole moment μ_m predicted by the Standard Model (extended to include neutrino masses) is only [13]

$$\mu_m = 3.2 \times 10^{-19} M_m (\text{eV}) \mu_B ,$$
 (15)

where μ_B is the Bohr magneton.

Whether neutrinos are their own antiparticles or not, there may be *transition* magnetic and electric dipole moments. These induce the transitions $\nu_m \to \nu_{m'} \neq_m \gamma$.

A Majorana neutrino, being its own antiparticle, obviously consists of just two states: spin up and spin down. In contrast, a Dirac neutrino, together with its antiparticle, consists of four states: the spin-up and spin-down neutrino states, plus the spin-up and spin-down antineutrino states. A four-state Dirac neutrino may be pictured as comprised of two degenerate two-state Majorana neutrinos. Conversely, in the field-theory description of neutrinos, by introducing so-called Majorana mass terms, one can split a Dirac neutrino, D, into two nondegenerate Majorana neutrinos, ν and N. In some extensions of the SM, it is natural for the D, ν , and N masses, M_D , M_{ν} , and M_N , to be related by

$$M_{\nu}M_{N} \approx M_{D}^{2} . \tag{16}$$

In these extensions, it is also natural for M_D to be of the order of $M_{\ell \text{ or } q}$, the mass of a typical charged lepton or quark. Then we have [14]

$$M_{\nu}M_N \sim M_{\ell \text{ or } g}^2 \ . \tag{17}$$

Suppose now that $M_N\gg M_{\ell \text{ or }q}$, so that N is a very heavy neutrino which has not yet been observed. Then relation Eq. (17), known as the seesaw relation, implies that $M_{\nu}\ll M_{\ell \text{ or }q}$. Thus, ν is a candidate for one of the light neutrino mass eigenstates which make up ν_e , ν_μ , and ν_τ . So long as N is heavy, the seesaw relation explains, without fine tuning, why a mass eigenstate component of ν_e , ν_μ , or ν_τ will be light. Interestingly, the picture from which the seesaw relation arises predicts that the mass eigenstate components of ν_e , ν_μ , and ν_τ are Majorana neutrinos.

There are three reported indications that neutrinos actually oscillate in nature, and thus have mass. There is rather convincing evidence that the atmospheric neutrinos oscillate, fairly strong evidence that the solar neutrinos do, and so-far unconfirmed evidence that the neutrinos studied by the LSND experiment do as well.

The atmospheric neutrinos are produced in the earth's atmosphere by cosmic rays, and then detected in an underground detector. Incident on this detector are neutrinos coming from all directions, created in the atmosphere all around the earth. The most compelling evidence that something very interesting happens to these atmospheric neutrinos en route to the detector is the fact that the detected upward-going atmospheric ν_{μ} flux U (coming from all directions below the horizontal at the detector) differs from the corresponding downward-going flux D. Suppose that neither neutrino oscillation nor any other mechanism decreases or increases the ν_{μ} flux as the neutrinos travel from their points of origin to the detector. Then, as illustrated in Fig. 1, any ν_{μ} that enters the sphere S defined in the figure caption will later exit this sphere. Thus, since we are dealing with a steady-state situation, the total ν_{μ} fluxes entering and exiting S per unit time must be equal. Now, for neutrino energies above a few GeV, the flux of cosmic rays which produce the atmospheric neutrinos is isotropic. Consequently, these neutrinos are being created at the same rate all around the earth. Owing to this spherical symmetry, the equality between the ν_{μ} fluxes entering and exiting S must hold at any point of S, such as the location of the detector. Now, as shown in Fig. 1, a ν_{μ} entering S through the detector must be part of the downward-going flux D. One exiting S through the detector must be part of the upward-going flux U. Thus, the equality of the ν_{μ} fluxes entering and exiting S at the detector implies that D = U. (It is easily shown that this equality must hold not only for the integrated downward and upward fluxes, but angle by angle. That is, the flux coming down from zenith angle θ_Z must equal that coming up from angle $\pi - \theta_Z$.)

The underground Super-Kamiokande detector (Super-K) finds that for multi-GeV atmospheric muon neutrinos [15],

$$\frac{\text{Flux Up}(-1.0 < \cos \theta_Z < -0.2)}{\text{Flux Down}(+0.2 < \cos \theta_Z < +1.0)} = 0.52 \pm 0.05 , \quad (18)$$

in strong disagreement with the requirement that the upward and downward fluxes be equal. Thus, some mechanism must be changing the ν_{μ} flux as the neutrinos travel to the detector.

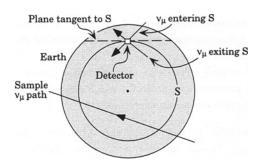


Figure 1: Atmospheric muon neutrino fluxes at an underground detector. S is a sphere centered at the center of the earth and passing through the detector.

The most attractive candidate for this mechanism is neutrino oscillation. Since the atmospheric ν_e flux is compatible with up-down symmetry, the electron neutrinos do not seem to be involved significantly in this oscillation. All of the detailed Super-K atmospheric neutrino data are well described by the hypothesis that $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation is occurring, with [16]

$$2 \times 10^{-3} \text{eV}^2 \lesssim \Delta M^2 \lesssim 6 \times 10^{-3} \text{eV}^2$$
 (19)

and

$$\sin^2 2\theta \approx 1 . {(20)}$$

Other experiments favor roughly similar regions of parameter space [17].

The order of magnitude of the splitting ΔM^2 in Eq. (19) may be understood by noting that for $E\sim 1$ GeV, upward-going neutrinos have $L/E\sim 10^4{\rm km/1}$ GeV, while downward-going ones have $L/E\sim 10~{\rm km/1}$ GeV. Thus, if $\Delta M^2\sim 10^{-3}~{\rm eV^2}$, the argument $[1.27\Delta M^2({\rm eV^2})L({\rm km})/E({\rm GeV})]$ of the oscillatory factor in Eq. (11) (applied to the relevant observation channel) exceeds unity for the upward-going neutrinos, but is quite small for the downward-going ones. As a result, the upward-going muon neutrinos oscillate away into neutrinos of another flavor, but the downward-going ones do not. This explains why the flux ratio of Eq. (18) is less than unity.

Conceivably, upward-going muon neutrinos are disappearing, not as a result of neutrino oscillation, but through neutrino decay. This possibility is theoretically less likely than oscillation. However, it is interesting to note that it is not at all excluded by the present data [18]. Of course, neutrino decay, like neutrino oscillation, implies neutrino mass.

The flux of solar neutrinos has been detected on earth by several experiments [19] with different neutrino energy thresholds. In every experiment, the flux is found to be below the corresponding prediction of the Standard Solar Model (SSM) [20]. The discrepancies between the observed fluxes and the SSM predictions have proven very difficult to explain by simply modifying the SSM, without invoking neutrino mass [21]. Indeed, we know of no attempt which has succeeded despite very serious

and clever attempts [22–24]. By contrast, all the existing observations can successfully and elegantly be explained if one does invoke neutrino mass. The most popular explanation of this type is based on the Mikheyev-Smirnov-Wolfenstein (MSW) effect—a matter-enhanced neutrino oscillation [25].

The neutrinos produced by the nuclear processes that power the sun are electron neutrinos ν_e . With some probability, the MSW effect converts a ν_e into a neutrino ν_x of another flavor. Depending on the specific version of the effect, ν_x is a ν_μ , a ν_τ , a ν_μ - ν_τ mixture, or perhaps a sterile neutrino ν_s . Since present solar neutrino detectors are sensitive to a ν_e , but wholly, or at least largely, insensitive to a ν_μ , ν_τ , or ν_s , the flavor conversion accounts for the low observed fluxes.

The MSW $\nu_e \to \nu_x$ conversion results from interaction between neutrinos and solar electrons as the neutrinos travel outward from the solar core, where they were produced. When, for example, the neutrino mixing is small, the conversion requires that, somewhere in the sun, the total energy of a ν_e of given momentum, including the energy of its interaction with the solar electrons, equal the total energy of the ν_x of the same momentum, so that we have an energy level crossing. Given the typical density of solar electrons, and the typical momenta of solar neutrinos, the condition that there be a level crossing requires that

$$M_{\nu_{\tau}}^2 - M_{\nu_{e}}^2 \equiv \Delta M_{\nu_{\tau}\nu_{e}}^2 \sim 10^{-5} \text{eV}^2 ,$$
 (21)

where M_{ν_e} , continuing to assume small mixing, is the mass of the dominant mass eigenstate component of ν_e , and similarly for M_{ν_x} .

The observed solar neutrino fluxes can also be explained by supposing that on their way from the sun to the earth, the electron neutrinos produced in the solar core undergo vacuum oscillation into neutrinos of another flavor [26]. Assuming that only two neutrino flavors are important to this oscillation, the oscillation probability is described by an expression of the form given by Eq. (11). To explain the observed suppression of the solar ν_e flux to less than half the predicted value at some energies, and to accommodate the observation that the suppression is energydependent, the argument $[1.27\Delta M^2(\text{eV}^2)L(\text{km})/E(\text{GeV})]$ of the oscillatory factor in Eq. (11) must be of order unity when L is the distance from the sun to the earth, and $E \simeq 1~{
m MeV}$ is the typical energy of a solar neutrino. Perhaps this apparent coincidence makes the vacuum oscillation explanation of the solar neutrino observations less likely than the MSW explanation. To have $[1.27\Delta M^2(\text{eV}^2)L(\text{km})/E(\text{GeV})] \sim 1$, we require that $\Delta M^2 \sim 10^{-10} \text{ eV}^2$.

In addition to measuring the solar neutrino fluxes, one can explore the physics of the solar neutrinos by studying the solar ν_e energy spectrum [27], by probing the dependence of the solar ν_e flux on whether it is day or night, and on the time of night [28], and by measuring the solar ν_e flux as a function of the season of the year. The Super-K experiment is doing all of these things [29].

Neutrinos

The solar neutrino experiments, and the comparison between their results and theoretical predictions, are discussed in some detail by K. Nakamura in this *Review*.

The LSND experiment [30] has studied neutrinos from stopped positively-charged pions, which decay via the chain

$$\pi^{+} \to \mu^{+} \nu_{\mu}$$

$$\longrightarrow e^{+} \nu_{e} \overline{\nu}_{\mu} \tag{22}$$

We note that this chain does not produce $\overline{\nu}_e$, but an excess of $\overline{\nu}_e$ over expected background is reported by the experiment. This excess is interpreted as arising from oscillation of the $\overline{\nu}_{\mu}$ which the chain does produce into $\overline{\nu}_e$. Since the experiment has $L(\text{km})/E(\text{GeV}) \sim 1$, the implied mass splitting is $\Delta M^2 \gtrsim 1 \text{ eV}^2$. LSND finds supporting evidence for its reported oscillation in a study of the neutrinos from the decay

$$\pi^+ \to \mu^+ \nu_{\mu} \tag{23}$$

of positively-charged pions in flight [31].

Other experiments do not observe the oscillation seen by LSND, and allow only some of the $(\Delta M^2, \sin^2 2\theta)$ region favored by LSND. However, these other experiments do not exclude the oscillation interpretation of the LSND data [32,33].

Suppose we assume that the behavior of the atmospheric, solar, and LSND neutrinos are all to be understood in terms of neutrino oscillation. What neutrino masses are then suggested?

If there are only three neutrinos of definite flavor, ν_e , ν_μ , and ν_τ , made up out of just three neutrinos of definite mass, ν_1 , ν_2 , and ν_3 , then there are only three mass splittings $\Delta M^2_{mm'}$, and they obviously satisfy

$$\Delta M_{32}^2 + \Delta M_{21}^2 + \Delta M_{13}^2 =$$

$$(M_3^2 - M_2^2) + (M_2^2 - M_1^2) + (M_1^2 - M_3^2) = 0.$$
 (24)

Now, as we have seen, the ΔM^2 values required to explain the atmospheric, solar, and LSND oscillations are of three different orders of magnitude. Thus, they cannot possibly obey the constraint of Eq. (24). Hence, to explain all three of the reported neutrino oscillations, one must introduce a fourth neutrino. Since this neutrino is known to make no contribution to the width of the Z^0 [34], it must be a neutrino which does not participate in the normal weak interactions—a "sterile" neutrino.

One four-neutrino scheme which accounts for all three reported oscillations contains the following neutrino mass eigenstates: A nearly degenerate pair, ν_3 , ν_2 , with $M_3 \approx M_2 \sim 1$ eV, and a much lighter pair, ν_1 , ν_0 , with the mass of ν_0 , M_0 , roughly 3×10^{-3} eV, and $M_1 \ll M_0$. The mass splitting $M_3^2 - M_2^2$ is chosen to be $\sim 4 \times 10^{-3}$ eV² to explain the oscillation of the atmospheric neutrinos. Interpreting that oscillation as $\nu_\mu \to \nu_\tau$ with near maximal mixing, we take ν_2 and ν_3 to be approximately 50–50 mixtures of ν_μ and ν_τ . The splitting $M_0^2 - M_1^2 \approx M_0^2 \sim 10^{-5}$ eV² allows us to interpret the solar neutrino observations in terms of the MSW effect. We take ν_1

to be largely ν_e , and ν_0 to be largely a sterile neutrino ν_s , so that the MSW effect converts ν_e to a sterile neutrino. Finally, the mass-squared splitting of $\sim 1~{\rm eV}^2$ between the heavier pair and the lighter one enables us to explain the oscillation reported by LSND [35].

The existing indications of neutrino oscillation, and the possible neutrino-mass scenarios which they suggest, will be probed in future neutrino experiments.

In addition to the ν_e , ν_{μ} , and ν_{τ} sections, the *Review of Particle Physics* includes sections on "Number of Light Neutrino Types," "Heavy Lepton Searches," and "Searches for Massive Neutrinos and Lepton Mixing." Also see other recent reviews [36].

References

- 1. G. Danby et al., Phys. Rev. Lett. 9, 36 (1962).
- Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962);
 - B. Pontecorvo, Zh. Eksp. Teor. Fiz. 53, 1717 (1967) [Sov. Phys. JETP 26, 984 (1968)];
 - V. Gribov and B. Pontecorvo, Phys. Lett. B28, 493 (1969);
 - S. Bilenky and B. Pontecorvo, Phys. Reports C41, 225 (1978);
 - A. Mann and H. Primakoff, Phys. Rev. D15, 655 (1977).
- B. Kayser and L. Stodolsky, Phys. Lett. **B359**, 343 (1995).
 See also Y. Srivastava, A. Widom, and E. Sassaroli,
 Z. Phys. **C66**, 601 (1995).
- Y. Grossman and H. Lipkin, Phys. Rev. D55, 2760 (1997);
 H. Lipkin, Phys. Lett. B348, 604 (1995).
- B. Kayser, Phys. Rev. **D24**, 110 (1981);
 C. Giunti, C. Kim, and U. Lee, Phys. Rev. **D44**, 3635 (1991).
- J. Rich, Phys. Rev. **D48**, 4318 (1993);
 W. Grimus and P. Stockinger, Phys. Rev. **D54**, 3414 (1996):
 - W. Grimus, S. Mohanty, and P. Stockinger, eprint hep-ph/9904340.
- T. Goldman, eprint hep-ph/9604357;
 - F. Boehm and P. Vogel, *Physics of Massive Neutrinos* (Cambridge University Press, Cambridge, 1987) p. 87.
- S. Bilenky, Proceedings of the XV Workshop on Weak Interactions and Neutrinos, eds. G. Bonneaud, V. Brisson, T. Kafka, and J. Schneps (Tufts University, Medford, 1995) p. 1122.
- R. Shrock, Phys. Lett. B96, 159 (1980); Phys. Rev. D24, 1232 (1981); Phys. Rev. D24, 1275 (1981).
- E. Otten, talk presented at the Workshop on Low-Energy Neutrino Physics, Institute for Nuclear Theory, Univ. of Wahsington, July 1999;
 - V. Lobashev, *ibid.*;
 - R.G.H. Robertson et al., Phys. Rev. Lett. 67, 957 (1991);
 - H. Kawakami et al., Phys. Lett. **B256**, 105 (1991);
 - E. Holzschuh et al., Phys. Lett. B287, 381 (1992);
 - W. Stoeffl and D. Decman, Phys. Rev. Lett. **75**, 3237 (1995);
 - H. Backe et al., Proceedings of the 17th Int. Conf. on Neutrino Physics and Astrophysics, eds. K. Engvist, K. Huitu, and J. Maalampi (World Scientific, Singapore, 1997) p. 259;
 - V. Lobashev et al., ibid., p. 264.

- 11. M. Doi et al., Phys. Lett. B102, 323 (1981);
 - L. Wolfenstein, Phys. Lett. **B107**, 77 (1981);
 - B. Kayser and A. Goldhaber, Phys. Rev. **D28**, 2341 (1983):
 - B. Kayser, Phys. Rev. **D30**, 1023 (1984);
 - S. Bilenky, N. Nedelcheva, and S. Petcov, Nucl. Phys. **B247**, 61 (1984).
- For further discussion of the physics of Majorana neutrinos, see, for example, B. Kayser. F. Gibrat-Debu, and F. Perrier, *The Physics of Massive Neutrinos* (World Scientific, Singapore, 1989).
- B.W. Lee and R. Shrock, Phys. Rev. D16, 1444 (1977);
 K. Fujikawa and R. Shrock, Phys. Rev. Lett. 45, 963 (1980).
- M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, eds. D. Freedman and P. van Nieuwenhuizen (North Holland, Amsterdam, 1979) p. 315;
 - T. Yanagida, in Proceedings of the Workshop on Unified Theory and Baryon Number in the Universe, eds. O. Sawada and A. Sugamoto (KEK, Tsukuba, Japan, 1979):
 - R. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980) and Phys. Rev. **D23**, 165 (1981).
- A. Mann, talk presented at the XIX Int. Symposium on Lepton-Photon Interactions, Stanford University, August, 1999, eprint hep-ex/9912007.
- 16. R. Wilkes, talk presented on behalf of the Super-K Collaboration on 27 July 1999, at the Workshop on Low-Energy Neutrino Physics at the Inst. for Nucl. Theory, Univ. of Washington, Seattle.
- D. Michael, for the MACRO Collaboration, in Proc. 29th Int. Conf. High Energy Phys., edited by A. Astbury, D. Axen, and J. Robinson (World Scientific, Singapore, 1999) p. 584;
 - H. Gallagher, for the Soudan 2 Collaboration, *ibid.* p. 579; Y. Fukuda *et al.*, Phys. Lett. **B335**, 237 (1994).
- 18. V. Barger et al., Phys. Lett. **B462**, 109 (1999).
- Y. Fukuda et al., Phys. Rev. Lett. 81, 1158 (1998);
 B. Cleveland et al., Ap. J. 496, 505 (1998);
 - T. Kirsten for the GALLEX and GNO Collaborations, Nucl. Phys. Proc. Suppl. 77, 26 (1999);
 - Dzh. Abdurashitov for the SAGE Collaboration, *ibid.*, p. 20.
- J. Bahcall, S. Basu, and M. Pinsonneault, Phys. Lett. B433, 1 (1998).
- J. Bahcall and H. Bethe, Phys. Rev. Lett. 65, 2233 (1990) and Phys. Rev. D44, 2962 (1991);
 N. Hata and P. Langacker, Phys. Rev. D56, 6107 (1997).
- N. Hata, S. Bludman, and P. Langacker, Phys. Rev. **D49**, 3622 (1994).
- K.M. Heeger and R.G.H. Robertson, Phys. Rev. Lett. 77, 3720 (1996).
- J.N. Bahcall, P.I. Krastev, and A.Yu. Smirnov, Phys. Rev. D58, 096016 (1998).
- L. Wolfenstein, Phys. Rev. **D17**, 2369 (1978) and Phys. Rev. **D20**, 2634 (1979);
 S. Mikheyev and A. Smirnov, Yad. Fiz. **42**, 1441 (1985) [Sov. J. Nucl. Phys. **42**, 913 (1985)]; Nuovo Cimento **9C**, 17 (1986).
- 26. P. Krastev and S. Petcov, Phys. Rev. **D53**, 1665 (1996).
- However, this spectrum may be modified by unexpectedly large contributions from sources other than ⁸B decay, as

- emphasized in R. Escribano, J.-M. Frere, A. Gevaert, and D. Monderen, Phys. Lett. **B444**, 397 (1998).
- M. Maris and S. Petcov, Phys. Rev. **D56**, 7444 (1997);
 S. Petcov, Phys. Lett. **B434**, 321 (1998).
- Y. Fukuda et al., (the Super-Kamiokande Collaboration), Phys. Rev. Lett. 82, 2430 (1999); ibid. p. 1810.
- C. Athanassopoulos et al., (LSND Collaboration), Phys. Rev. C54, 2685 (1996) and Phys. Rev. Lett. 77, 3082 (1996).
- C. Athanassopoulos et al., (LSND Collaboration), Phys. Rev. Lett. 81, 1774 (1998) and Phys. Rev. C58, 2511 (1998).
- R. Maschuw, talk presented at the 17th Int. Workshop on Weak Interactions and Neutrinos, Cape Town, South Africa, January 1999;
 K. Eitel, eprint hep-ex/9909036.
- 33. There is an interesting argument that the r process in supernovae may be an additional hint of neutrino oscillation. See Y.-Z. Qian and G. Fuller, Phys. Rev. **D52**, 656 (1995), and references therein.
- 34. D. Karlen, in this Review.
- 35. This is a somewhat modified version of a neutrino-mass scenario proposed in D. Caldwell and R. Mohapatra, Phys. Rev. D48, 3259 (1993). In constructing this scenario, we have not assumed that neutrinos are a component of the dark matter in the universe. See also J. Peltoniemi, D. Tommasini, and J. Valle, Phys. Lett. B298, 383 (1993); V. Barger, S. Pakvasa, T. Weiler, and K. Whisnant, Phys. Rev. D58, 093016 (1998).
- Recent detailed reviews of neutrino mass and oscillation include K. Zuber, Phys. Rept. 305, 295 (1998);
 S. Bilenky, C. Giunti, and W. Grimus, Prog. Part. Nucl. Phys. 43, 1 (1999);
 - G. Altarelli and F. Feruglio, in Venice 1999, Neutrino Telescopes, 2, 353;
 - P. Fisher, B. Kayser, and K. McFarland, Ann. Rev. Nucl. Part. Sci., 49, eds. C. Quigg, V. Luth, and P. Paul (Annual Reviews, Palo Alto, California, 1999) p. 481.

Number of Light Neutrino Types

The neutrinos referred to in this section are those of the Standard SU(2)×U(1) Electroweak Model possibly extended to allow nonzero neutrino masses. Light neutrinos are those with $m_{\nu} < m_Z/2$. The limits are on the number of neutrino families or species, including $\nu_{e},~\nu_{\mu},~\nu_{\tau}$

THE NUMBER OF LIGHT NEUTRINO TYPES FROM COLLIDER EXPERIMENTS

Revised August 1999 by D. Karlen (Carleton University).

The most precise measurements of the number of light neutrino types, N_{ν} , come from studies of Z production in e^+e^- collisions. The invisible partial width, $\Gamma_{\rm inv}$, is determined by subtracting the measured visible partial widths, corresponding to Z decays into quarks and charged leptons, from the total Z width. The invisible width is assumed to be due to N_{ν} light neutrino species each contributing the neutrino partial width Γ_{ν} as given by the Standard Model. In order to reduce the model dependence, the Standard Model value for the ratio of the neutrino to charged leptonic partial widths, $(\Gamma_{\nu}/\Gamma_{\ell})_{\rm SM}=1.991\pm0.001$, is used instead of $(\Gamma_{\nu})_{\rm SM}$ to determine the number of light neutrino types:

$$N_{\nu} = \frac{\Gamma_{\rm inv}}{\Gamma_{\ell}} \left(\frac{\Gamma_{\ell}}{\Gamma_{\nu}} \right)_{\rm SM} . \tag{1}$$

The combined result from the four LEP experiments is $N_{\nu} = 2.984 \pm 0.008$ [1].

In the past, when only small samples of Z decays had been recorded by the LEP experiments and by the Mark II at SLC, the uncertainty in N_{ν} was reduced by using Standard Model fits to the measured hadronic cross sections at several center-of-mass energies near the Z resonance. Since this method is much more dependent on the Standard Model, the approach described above is favored.

Before the advent of the SLC and LEP, limits on the number of neutrino generations were placed by experiments at lower-energy e^+e^- colliders by measuring the cross section of the process $e^+e^- \to \nu \bar{\nu} \gamma$. The ASP, CELLO, MAC, MARK J, and VENUS experiments observed a total of 3.9 events above background [2], leading to a 95% CL limit of $N_{\nu} < 4.8$. This process has a much larger cross section at center-of-mass energies near the Z mass and has been measured at LEP by the ALEPH, DELPHI, L3, and OPAL experiments [3]. These experiments have observed several thousand such events, and the combined result is $N_{\nu} = 3.00 \pm 0.08$. The same process has been measured by the LEP experiments at center-of-mass energies approaching 100 GeV above the Z mass, in searches for new physics. Combined, the measured cross section is 0.965 \pm 0.028 of that expected for 3 light neutrino generations [1].

Experiments at $p\bar{p}$ colliders also placed limits on N_{ν} by determining the total Z width from the observed ratio of $W^{\pm} \to \ell^{\pm}\nu$ to $Z \to \ell^{+}\ell^{-}$ events [4]. This involved a calculation that assumed Standard Model values for the total W width and the ratio of W and Z leptonic partial widths, and used an estimate of the ratio of Z to W production cross sections.

Now that the Z width is very precisely known from the LEP experiments, the approach is now one of those used to determine the W width.

References

- The LEP Collaborations and the LEP Electroweak Working Group, as reported by J. Mnich at the International Europhysics Conference, Tampere, Finland (July 1999).
- VENUS: K. Abe et al., Phys. Lett. B232, 431 (1989);
 ASP: C. Hearty et al., Phys. Rev. D39, 3207 (1989);
 CELLO: H.J. Behrend et al., Phys. Lett. B215, 186 (1988);
 MAC: W.T. Ford et al., Phys. Rev. D33, 3472 (1986);
 MARK J: H. Wu, Ph.D. Thesis, Univ. Hamburg (1986).
- L3: M. Acciarri et al., Phys. Lett. B431, 199 (1998);
 DELPHI: P. Abreu et al., Z. Phys. C74, 577 (1997);
 OPAL: R. Akers et al., Z. Phys. C65, 47 (1995);
 ALEPH: D. Buskulic et al., Phys. Lett. B313, 520 (1993).
- UA1: C. Albajar et al., Phys. Lett. B198, 271 (1987);
 UA2: R. Ansari et al., Phys. Lett. B186, 440 (1987).

Number from e+e- Colliders

Number of Light ν Types

Our evaluation uses the invisible and leptonic widths of the Z boson from our combined fit shown in the Particle Listings for the Z Boson, and the Standard Model value $\Gamma_{\nu}/\Gamma_{\ell}=1.9908\pm0.0015$.

¹ Simultaneous fits to all measured cross section data from all four LEP experiments.

Number of Light ν Types from Direct Measurement of Invisible Z Width

In the following, the invisible Z width is obtained from studies of single-photon events from the reaction $e^+e^-\to \nu\bar{\nu}\gamma$. All are obtained from LEP runs in the $E_{\rm CM}^{\rm ee}$ range 88–94 GeV.

VALUE	DOCUMENT ID	TECN	COMMENT
3.00±0.06 OUR AVERAGE			
3.01 ± 0.08	ACCIARRI	99R L3	1998 LEP run
$2.98 \pm 0.07 \pm 0.07$	ACCIARRI	98G L3	LEP 1991-1994
$2.89 \pm 0.32 \pm 0.19$	ABREU	97」DLPH	1993-1994 LEP runs
$3.23 \pm 0.16 \pm 0.10$	AKERS	95c OPAL	1990-1992 LEP runs
$2.68 \pm 0.20 \pm 0.20$	BUSKULIC	93L ALEP	1990-1991 LEP runs
• • • We do not use the following	data for average	s, fits, limits,	etc. • • •
$3.1 \pm 0.6 \pm 0.1$	ADAM	96c DLPH	$\sqrt{\mathfrak{s}}=$ 130, 136 GeV

Limits from Astrophysics and Cosmology

Number of Light ν Types

("light" means < about 1 MeV). See also OLIVE 81. For a review of limits based on Nucleosynthesis, Supernovae, and also on terrestial experiments, see DENEGRI 90. Also see "Big-Bang Nucleosynthesis" in this Review.

BE DOCUMENT ID COMMENT

VALUE	DOCUMENT ID_		COMMENT
• • • We do not	use the following data	for	averages, fits, limits, etc. • • •
$2 < N_{\nu} < 4$	LISI	99	BBN
< 4.3	OLIVE	99	BBN
< 4.9	COPI	97	Cosmology
< 3.6	HATA	97B	High D/H quasar abs.
< 4.0	OLIVE	97	BBN; high ⁴ He and ⁷ Li
< 4.7	CARDALL	96B	Cosmology, High D/H quasar abs.
< 3.9	FIELDS	96	Cosmology, BBN; high ⁴ He and ⁷ Li
< 4.5	KERNAN	96	Cosmology, High D/H quasar abs.
< 3.6	OLIVE	95	BBN; ≥ 3 massless ν
< 3.3	WALKER	91	Cosmology
< 3.4	OLIVE	90	Cosmology
< 4	YANG	84	Cosmology
< 4	YANG	79	Cosmology
< 7	STEIGMAN	77	Cosmology
	PEEBLES	71	Cosmology
<16	² SHVARTSMA	N 69	Cosmology
	HOYLE	64	Cosmology

Number Coupling with Less Than Full Weak Strength

² SHVARTSMAN 69 limit inferred from his equations.

 VALUE
 DOCUMENT ID
 TECN

 • • We do not use the following data for averages, fits, limits, etc. • • •

 <20</td>
 3 OLIVE
 81 C COSM

 <20</td>
 3 STEIGMAN
 79 COSM

³ Limit varies with strength of coupling. See also WALKER 91.

Number of Light Neutrino Types, Massive Neutrinos and Lepton Mixing

REFERENCES FOR Limits on Number of Light Neutrino Types

ACCIARRI	99R	PL B470 268	M. Acciarri et al.	(L3 Collab.)
LIŞI	99	PR D59 123520	E. Lisi, S. Sarkar, F.L. Villante	• • •
OLIVE	99	ASP 11 403	K.A. Olive, D. Thomas	
ACCIARRI	9BG	PL B431 199	M. Acciarri et al.	(L3 Collab.)
ABREU	97J	ZPHY C74 577	P. Abreu et al.	(DELPHI Collab.)
COPI	97	PR D55 3389	C.J. Copi, D.N. Schramm, M.S.	Turner (CHIC)
HATA	97B	PR D55 540	N. Hata et al.	(OSU, PENN)
OFINE	97	ASP 7 27	K.A. Olive, D. Thomas	(MINN, FLOR)
AOAM	96C	PL B380 471	W. Adam et al.	(DELPHI Collab.)
CARDALL	96B	APJ 472 435	C.Y. Cardall, G.M. Fuller	` (UCSD)
FIELDS	96	New Ast 1 77	B.D. Fields et al.	(NDAM, CERN, MINN+)
KERNAN	96	PR D54 3681	P.S. Kernan, S. Sarkar	(CASE, OXFTP)
AKERS	95C	ZPHY C65 47	R. Akers et al.	(OPAL Collab.)
OLIVE	95	PL B354 357	K.A. Olive, G. Steigman	(MINN, OSU)
BUSKULIC	93L	PL B313 520	D. Buskulic et al.	(ALEPH Collab.)
LEP	92	PL B276 247	LEP et al.	(LEP Collabs.)
WALKER	91	APJ 376 51	T.P. Walker et al.	(HSCA, OSU, CHIC+)
DENEGRI	90	RMP 62 1	D. Denegri, B. Sadoulet, M. Spi	
OLIVE	90	PL B236 454	K.A. Olive et al.	(MINN, CHIC, OSU+)
YANG	84	APJ 281 493	J. Yang et al.	(CHIC, BART)
OLIVE	81	APJ 246 557	K.A. Olive et al.	(CHIC, BART)
OLIVE	B1C	NP B180 497	K.A. Olive, D.N. Schramm, G. S	steigman (EFI+)
STEIGMAN	79	PRL 43 239	G. Steigman, K.A. Olive, D.N. S	Schramm (BART+)
YANG	79	APJ 227 697	J. Yang et al.	(CHIC, YALE, VIRG)
STEIGMAN	77	PL 66B 202	G. Steigman, D.N. Schramm, J.I	
PEEBLES	71	Physical Cosmology	P.Z. Peebles	(PRIN)
Princeton	Univ.	Press (1971)		· · · · · · ·
SHVART5MA		JETPL 9 184	Shvartsman	(MOSU)
		Translated from ZETFP		(/
HOYLE	64	Nature 203 1108	Hoyle, Tayler	(CAMB)

Massive Neutrinos and Lepton Mixing, Searches for

SEARCHES FOR MASSIVE NEUTRINOS

Revised April 2000 by D.E. Groom (LBNL).

Searches for massive neutral leptons and the effects of nonzero neutrino masses are listed here. These results are divided into the following main sections:

- A. Heavy neutral lepton mass limits;
- B. Sum of neutrino masses;
- C. Searches for neutrinoless double- β decay (see the note by P. Vogel on "Searches for neutrinoless double- β decay" preceding this section);
- D. Other bounds from nuclear and particle decays;
- E. Solar ν experiments (see the note on "Solar Neutrinos" by K. Nakamura preceding this section);
- F. Astrophysical neutrino observations;
- G. Reactor $\overline{\nu}_e$ disappearance experiments;
- H. Accelerator neutrino appearance experiments;
- Disappearance experiments with accelerator and radioactive source neutrinos.

Direct searches for masses of dominantly coupled neutrinos are listed in the appropriate sections on ν_e , ν_μ , or ν_τ , where it is assumed that the mass eigenstates ν_1 , ν_2 , and ν_3 predominately couple to ν_e , ν_μ , and ν_τ , respectively. Note that the assumptions made in these Listings, that ν_2 predominately couples to ν_μ and ν_3 to ν_τ , may not be true. Searches for massive charged leptons are listed elsewhere, and searches for the mixing of (μ^-e^+) and (μ^+e^-) are given in the muon Listings.

Discussion of the current neutrino mass limits and the theory of mixing are given in the note on "Neutrino Mass" by Boris Kayser just before the ν_e Listings.

In many of the following Listings (e.g. neutrino disappearance and appearance experiments), results are presented assuming that mixing occurs only between two neutrino species, such as $\nu_{\tau} \leftrightarrow \nu_{e}$. This assumption is also made for lepton-number violating mixing between two states, such as $\nu_{e} \leftrightarrow \overline{\nu}_{u}$

or $\nu_{\mu} \leftrightarrow \overline{\nu}_{\mu}$. As discussed in Kayser's review, the assumption of mixing between only two states is valid if (a) all mixing angles are small or (b) there is a mass hierarchy such that one ΔM_{ij}^2 , e.g. $\Delta M_{21}^2 = M_{\nu_2}^2 - M_{\nu_1}^2$, is small compared with the others, so that there is a region in L/E (the ratio of the distance L that the neutrino travels to its energy E) where $\Delta M_{21}^2 L/E$ is negligible, but $\Delta M_{32}^2 L/E$ is not.

In this case limits or results can be shown as allowed regions on a plot of $|\Delta M^2|$ as a function of $\sin^2 2\theta$. The simplest situation occurs in an "appearance" experiment, where one searches for interactions by neutrinos of a variety not expected in the beam. An example is the search for ν_e interactions in a detector in a ν_{μ} beam. For oscillation between two states, the probability that the "wrong" state will appear is given by Eq. 11 in Kayser's review, which may be written as

$$P = \sin^2 2\theta \, \sin^2(1.27\Delta M^2 L/E) , \qquad (1)$$

where $|\Delta M^2|$ is in eV² and L/E is in km/GeV or m/MeV. In a real experiment L and E have some spread, so that one must average P over the distribution of L/E. As an example, let us make the somewhat unrealistic assumption that $b \equiv 1.27L/E$ has a Gaussian distribution with standard deviation σ_b about a central value b_0 . Then:

$$\langle P \rangle = \frac{1}{2} \sin^2 2\theta [1 - \cos(2b_0 \Delta M^2) \exp(-2\sigma_b^2 (\Delta M^2)^2)]$$
 (2)

The value of $\langle P \rangle$ is set by the experiment. For example, if 230 interactions of the expected flavor are detected and none of the wrong flavor are seen, then P=0.010 at the 90% CL.* We can then solve the above expression for $\sin^2 2\theta$ as a function of $|\Delta M^2|$. This function is shown in Fig. 1.[†] Note that:

- (a) since the fast oscillations are completely washed out by the resolution for large |ΔM²|, sin² 2θ = 2⟨P⟩ in this region (If b is taken as much smaller than experimental resolution, Eq. (2) can be used in Monte Carlo calculations to avoid the pathology if Eq. (1) at large Δm²);
- (b) the maximum excursion of the curve to the left is to $\sin^2 2\theta = \langle P \rangle$ with good resolution, with smaller excursion for worse resolution. This "bump" occurs at $|\Delta M^2| = \pi/2b_0 \text{ eV}^2$;
- (c) for large $\sin^2 2\theta$, $\Delta M^2 \approx (\langle P \rangle / \sin^2 2\theta)^{1/2}/b_0$; and, consequently,
- (d) the intercept at $\sin^2 2\theta = 1$ is at $\Delta M^2 = \sqrt{\langle P \rangle}/b_0$.

The intercept for large $|\Delta M^2|$ is a measure of running time and backgrounds, while the intercept at $\sin^2 2\theta = 1$ depends also on the mean value of L/E. The wiggles depend on experimental features such as the size of the source, the neutrino energy distribution, and detector and analysis features. Aside from such details, the two intercepts completely describe the exclusion region: For large $|\Delta M^2|$, $\sin^2 2\theta$ is constant and equal to $2\langle P \rangle$, and for large $\sin^2 2\theta$ the slope is known from the intercept. For these reasons, it is (nearly) sufficient to summarize the results of an experiment by stating the two intercepts, as is done in the

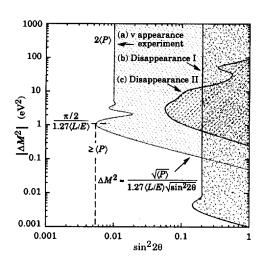


Figure 1: Neutrino oscillation parameter ranges excluded by two hypothetical experiments

(a and b) described by Eq. (2) and one real one (c). Parameters for the first two cases are given in the footnotes. In case (a) one searches for the appearance of neutrinos not expected in the beam. The probability of appearance, in this case 0.5% at some specified CL, is set by the number of right-flavor events observed and/or information about the flux and cross sections. Case (b) represents a disappearance experiment in which the flux is known in the absence of mixing. In case (c), the information comes from measured fluxes at two distances from the target [4].

following tables. The reader is referred to the original papers for the two-dimensional plots expressing the actual limits.

If a positive effect is claimed, then the excluded region is replaced by an allowed band or allowed regions. This is the case for the LSND experiment [2] and the SuperKamiokande analysis of $R(\mu/e)$ for atmospheric neutrinos [3].

In a "disappearance" experiment, one looks for the attenuation of the beam neutrinos (for example, ν_k) by mixing with at least one other neutrino eigenstate. (We label such experiments as $\nu_k \not\rightarrow \nu_k$.) The probability that a neutrino remains the same neutrino from the production point to detector is given by

$$P(\nu_k \to \nu_k) = 1 - P(\nu_k \to \nu_j) , \qquad (3)$$

where mixing occurs between the kth and jth species with $P(\nu_k \to \nu_j)$ given by Eq. (1) or Eq. (2).

In contrast to the detection of even a few "wrong-flavor" neutrinos establishing mixing in an appearance experiment, the disappearance of a few "right-flavor" neutrinos in a disappearance experiment goes unobserved because of statistical fluctuations. For this reason, disappearance experiments usually cannot establish small-probability (small $\sin^2 2\theta$) mixing.

Disappearance experiments fall into two general classes:

- I. Those in which the beam neutrino flux is known, from theory or from other measurements. Examples are reactor $\overline{\nu}_e$ experiments and certain accelerator experiments. Although such experiments cannot establish very small- $\sin^2 2\theta$ mixing, they can establish small limits on ΔM^2 for large $\sin^2 2\theta$ because L/E can be very large. An example, based on the Chooz reactor measurements [5], is labeled "Disappearance I" in Fig. 1.‡
- II. Those in which attenuation or oscillation of the beam neutrino flux is measured in the apparatus itself (two detectors, or a "long" detector). Above some minimum $|\Delta M^2|$ the equilibrium is established upstream, and there is no change in intensity over the length of the apparatus. As a result, sensitivity is lost at high $|\Delta M^2|$, as can be seen by the curve labeled "Disappearance II" in Fig. 1 [4]. Such experiments have not been competititive for a long time. However, a new generation of long-baseline experiments with a "near" detector and a "far" detector with very large L, e.g., MINOS, will be able to use this strategy to advantage.

Finally, there are more complicated cases, such as analyses of solar neutrino data in terms of the MSW parameters [6]. For a variety of physical reasons, an irregular region in the $|\Delta M^2|$ vs $\sin^2 2\theta$ plane is allowed. It is difficult to represent these graphical data adequately within the strictures of our tables.

Experimental two-neutrino mixing limits and positive signals are shown on the following page.

Footnotes and References

- * A superior statistical analysis of confidence limits in the $\sin^2 2\theta |\Delta M^2|$ plane is given in Ref. 1.
- [†] Curve generated with $\langle P \rangle = 0.005$, $\langle L/E \rangle = 1.11$, and $\sigma_b/b_0 = 0.08$.
- [‡] Curve parameters $\langle P \rangle = 0.1$, $\langle L/E \rangle = 237$, and $\sigma_b/b_0 = 0.5$. For the actual Chooz experiment [5], $\langle L/E \rangle \approx 300$ and the limit on $\langle P \rangle$ is 0.09.
- 1. G.J. Feldman and R.D. Cousins, Phys. Rev. D3873 (1998).
- 2. C. Athanassopoulos et al., Phys. Rev. C54 (1996).
- 3. Y. Fukuda *et al.*, eprint hep-ex/9803005.
- 4. F. Dydak et al., Phys. Lett. 134B (1984).
- M. Apollonio et al., Phys. Lett. B420, 397 (1998).
- 6. N. Hata and P. Langacker, Phys. Rev. D56, 6107 (1997).

Lepton Particle Listings Massive Neutrinos and Lepton Mixing

TWO-FLAVOR OSCILLATION PARAMETERS AND LIMITS

Written April 2000 by H. Murayama (LBNL).

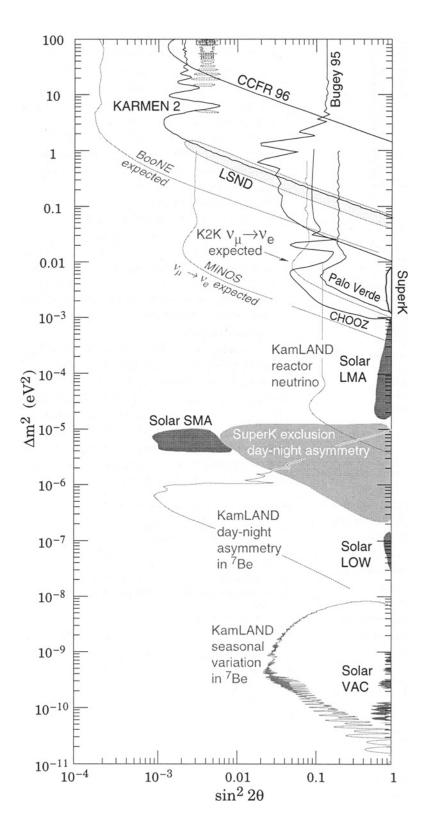


Figure 1: The most important exclusion limits as well as preferred parameter regions from neutrino oscillation experiments in the context of two-flavor oscillations. Beware that the plot shows oscillation modes on different pairs of neutrinos at the same time. All of them are 90% confidence limits unless otherwise noted. From the top,

- CCFR 96 limit is on ν_{μ} to ν_{e} oscillation from ROMOSAN 97
- KARMEN 2 excluded region and LSND preferred region are for ν̄_e appearance from ν̄_μ taken from Klaus Eitel, New J. Phys. 2, 1 (2000), Fig. 12
- Bugey 95 limit is on $\bar{\nu}_e$ disappearance from ACHKAR 95
- CHOOZ limit is on \(\bar{\nu}_e\) disappearance from APOLLONIO 99,
 Fig. 9
- Palo Verde limit is on $\bar{\nu}_e$ disappearance from BOEHM 00, Fig. 3, curve (b)
- SuperKamiokande preferred region is on [']ν̄[']_μ disappearance from FUKUDA 98C
- Solar neutrino preferred regions (solar LMA, solar SMA, solar LOW, and solar VAC) are on ν_e disappearance from J.N. Bahcall, P.I. Krastev, and A.Yu. Smirnov, Phys. Rev. D58, 096016 (1998) based on solar neutrino rates only at 99% CL
- SuperKamiokande exclusion is based on the absence of day-night asymmetry in the neutrino rate from FUKUDA 99, Fig. 2, at 99% CL
- Some projected improvements by near-future experiments on ν_e oscillations are shown in grey

Note that the plot shows only half of the parameter space $\Delta m^2\cos 2\theta > 0$, while the other half $\Delta m^2\cos 2\theta < 0$ should show different regions excluded/preferred, especially for solar neutrino oscillations (de Gouvêa et al., hep-ph/0002064) once experiments report their data. References in upper-case letters are given at the end of the Listings for "Massive Neutrinos and Lepton Mixing."

(A) Heavy neutral leptons

Stable Neutral Heavy Lepton MASS LIMITS -

Note that LEP results in combination with REUSSER 91 exclude a fourth stable neutrino with m< 2400 GeV.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>45.0	95	ABREU	928 DLPH	Dirac
>39.5	95	ABREU	92B DLPH	Majorana
>44.1	95	ALEXANDER	91F OPAL	Dirac
>37.2	95	ALEXANDER	91F OPAL	Majorana
none 3-100	90	SATO	91 KAM2	Kamiokande II
>42.8	95	¹ ADEVA	90s L3	Dirac
>34.8	95	¹ ADEVA	90s L3	Majorana
>42.7	95	DECAMP	90F ALEP	Dirac

 1 ADEVA 90s limits for the heavy neutrino apply if the mixing with the charged leptons satisfies $|U_1j|^2+|U_2j|^2+|U_3j|^2>6.2\times 10^{-8}$ at $m_{L^0}=$ 20 GeV and $>5.1\times 10^{-10}$ for $m_{L^0}=$ 40 GeV.

Neutral Heavy Lepton MASS LIMITS -

Limits apply only to heavy lepton type given in comment at right of data Listings. See review above for description of types.

See the "Quark and Lepton Compositeness, Searches for" Listings for limits on radiatively decaying excited neutral leptons, i.e. $\nu^* \rightarrow \nu \gamma$.

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
>76.5	95	ABREU	990 DLPH	Dirac coupling to e
>79.5	95	ABREU	990 DLPH	Dirac coupling to μ
>60.5	95	ABREU	990 DLPH	Dirac coupling to $ au$
>92.4	95	ACCIARRI	99L L3	Dirac coupling to e
>81.8	95	ACCIARRI	99L L3	Majorana coupling to e
>93.3	95	ACCIARRI	99L L3	Dirac coupling to μ
>84.1	95	ACCIARRI	99L L3	Majorana coupling to μ
> 83.3	95	ACCIARRI	99L L3	Dirac coupling to τ
> 73.5	95	ACCIARRI	99∟ L3	Majorana coupling to τ
>69.8	95	2 ACKERSTAFF	98c OPAL	Majorana, coupling to e
>79.1	95	2 ACKERSTAFF	98c OPAL	Dirac, coupling to e
>68.7	95	² ACKERSTAFF	98c OPAL	Majorana, coupling to μ
>78.5	95	² ACKERSTAFF	98C OPAL	Dirac, coupling to μ
>54.4	95	2 ACKERSTAFF	98c OPAL	Majorana, coupling to τ
>69.0	95	² ACKERSTAFF	98c OPAL	Dirac, coupling to τ
>63	95	3,4 BUSKULIC	96s ALEP	Dirac
>54.3	95	3,5 BUSKULIC	96s ALEP	Majorana

 $^{^2}$ The decay length of the heavy lepton is assumed to be < 1 cm, limiting the square of the mixing angle $|{\it U}_{\ell j}|^2$ to $10^{-12}.$

- Astrophysical Limits on Neutrino MASS for $m_{ m p}~>1$ GeV -

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the follow	ring data for average	s, fits	, limits,	etc. • • •
none 60-115		6 FARGION	95	ASTR	Dirac
попе 9.2-2000		⁷ GARCIA	95	COSM	Nucleosynthesis
none 26-4700		⁷ BECK	94	COSM	Dirac
none 6 – hundreds		^{8,9} MORI	92B	KAM2	Dirac neutrino
none 24 – hundreds		^{8,9} MORI	92B	KAM2	Majorana neutrino
none 10~2400	90	¹⁰ REUSSER	91	CNTR	HPGe search
none 3-100	90	SATO	91	KAM2	Kamiokande II
		¹¹ ENQVIST	89	COSM	
none 12~1400		7 CALDWELL	88	COSM	Dirac v
none 4–16	90	^{7,8} OLIVE	88	COSM	Dirac v
none 4-35	90	OLIVE	88	COSM	Majorana ν
>4.2 to 4.7		SREDNICKI	88		Dirac v
>5.3 to 7.4		SREDNICKI	88	COSM	Majorana v
none 20-1000	95	7 AHLEN	87	COSM	•
>4.1		GRIEST	87	COSM	Dirac v

 $^{^6}$ FARGION 95 bound is sensitive to assumed u concentration in the Galaxy. See also

(B) Sum of neutrino masses

Revised April 1998 by K.A. Olive (University of Minnesota).

The limits on low mass $(m_{\nu} \lesssim 1 \text{ MeV})$ neutrinos apply to $m_{\rm tot}$ given by

$$m_{
m tot} = \sum_
u (g_
u/2) m_
u \; ,$$

where g_{ν} is the number of spin degrees of freedom for ν plus $\overline{\nu}$: $g_{\nu} = 4$ for neutrinos with Dirac masses; $g_{\nu} = 2$ for Majorana neutrinos. Stable neutrinos in this mass range make a contribution to the total energy density of the Universe which is given by

$$\rho_{\nu} = m_{\rm tot} n_{\nu} = m_{\rm tot} (3/11) n_{\gamma} ,$$

where the factor 3/11 is the ratio of (light) neutrinos to photons. Writing $\Omega_{\nu} = \rho_{\nu}/\rho_{c}$, where ρ_{c} is the critical energy density of the Universe, and using $n_{\gamma} = 412 \text{ cm}^{-3}$, we have

$$\Omega_{\nu}h^2 = m_{\rm tot}/(94 \text{ eV})$$
.

Therefore, a limit on $\Omega_{\nu}h^2$ such as $\Omega_{\nu}h^2 < 0.25$ gives the limit

$$m_{
m tot} < 24~{
m eV}$$
 .

The limits on high mass $(m_{\nu} > 1 \text{ MeV})$ neutrinos apply separately to each neutrino type.

Limit on Total ν MASS, $m_{\rm tot}$ (Defined in the above note), of effectively stable neutrinos (i.e., those with mean lives greater than or equal to the age of the universe). These papers assumed Dirac neutrinos. When necessary, we have generalized the results reported so they apply to m_{tot}. For other limits, see SZALAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84, and COWSIK 85.

VALUE (eV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use	the following data for average	s, fit	s, limits,	etc. • • •	
< 5.5	12 CROFT	99	ASTR	Ly α power spec	
<180	SZALAY	74	COSM		
<132	COWSIK	72	COSM		
<280	MARX	72	COSM		
<400	GERSHTEIN	66	COSM		
12 CROFT 00	hazad au Ala -autar anastrum		ha 1	forest If O	- 0 -

y lpha forest. If $\Omega_{ extsf{matter}} < 0.5$, the limit is improved to $m_{\nu} <$ 2.4 ($\Omega_{\rm matter}/0.17\text{--}1)$ eV.

Limits on MASSES of Light Stable Right-Handed v (with necessarily suppressed interaction strengths)

(with necessarily sup	prosoca interaction so	C. Per	٠,		
VALUE (eV)	DOCUMENT I	D D	TECN	COMMENT	
• • • We do not use the	ne following data for avera	ges, fits	s, limits,	etc. • • •	
<100-200	13 OLIVE	82	COSM	Dirac v	
<200-2000	13 OLIVE	82	COSM	Majorana ν	

13 Depending on interaction strength G_R where $G_R < G_F$.

Limits on MASSES of Heavy Stable Right-Handed v (with necessarily suppressed interaction strengths)

VALUE (GeV)	DOCUMENT	ID	TECN	COMMENT	
• • • We do not use the	following data for avera	iges, fits	, limits,	etc. • • •	
> 10	14 OLIVE	82	соѕм	G_R/G_F <0.1	
>100	¹⁴ OLIVE	82	COSM	$G_R/G_F < 0.01$	

¹⁴ These results apply to heavy Majorana neutrinos and are summarized by the equation: $m_{\nu} > 1.2$ GeV (G_F/G_R) . The bound saturates, and if G_R is too small no mass range

 $^{^3}$ BUSKULIC 96s requires the decay length of the heavy lepton to be < 1 cm, limiting the square of the mixing angle $|\upsilon_{\ell j}|^2$ to 10^{-10} .

⁴ BUSKULIC 96s limit for mixing with τ . Mass is > 63.6 GeV for mixing with e or μ . ⁵ BUSKULIC 96s limit for mixing with τ . Mass is > 55.2 GeV for mixing with e or μ .

KONOPLICH 94.

7 These results assume that neutrinos make up dark matter in the galactic halo.

⁸Limits based on annihilations in the sun and are due to an absence of high energy neutrinos detected in underground experiments.

⁹ MORI 92B results assume that neutrinos make up dark matter in the galactic halo. Limits based on annihilations in earth are also given.

 $^{^{10}}$ REUSSER 91 uses existing etaeta detector (see FISHER 89) to search for CDM Dirac 11 ENQVIST 89 argue that there is no cosmological upper bound on heavy neutrinos.

Massive Neutrinos and Lepton Mixing

(C) Searches for neutrinoless double- β decay LIMITS FROM NEUTRINOLESS $\beta\beta$ DECAY

Revised September 1999 by P. Vogel (Caltech).

Neutrinoless double beta decay, if observed, would signal violation of the total lepton number conservation. The process can be mediated by an exchange of light Majorana neutrino, or by an exchange of other particles. As long as only a limit on its lifetime is available, limits on the effective Majorana neutrino mass, and on the lepton-number violating right-handed current admixture can be obtained, independently on the actual mechanism. These are considered in the following three tables.

The derived quantities are nuclear model-dependent, so the half-life measurements are given first. Where possible, we list the references for the nuclear matrix elements used in the subsequent analysis. Since rates for the more conventional $2\nu\beta\beta$ decay serve to calibrate the theory, results for this process are also given. As an indication of the spread among different ways of evaluating the matrix elements, we show in Fig. 1 some representative examples for the most popular nuclei.

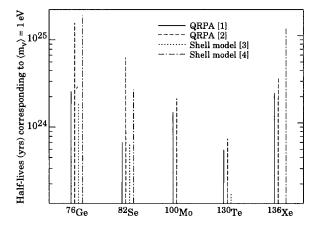


Figure 1: Half-lives (in years) calculated for $\langle m_{\nu} \rangle = 1$ eV by various representative methods and different authors for the most popular double-beta decay candidate nuclei. Solid lines are QRPA from [1], dashed lines are QRPA from [2] (recalculated for $g_A=1.25$ and $\alpha'=-390$ MeV fm³, dotted lines are shell model [3], and dot-and-dashed lines are shell model [4].

To define the limits on lepton-number violating right-handed current admixtures, we display the relevant part of a phenomenological current-current weak interaction Hamiltonian:

$$\begin{split} H_W = & (G_F/\sqrt{2}) \\ \times & (J_L \cdot j_L^\dagger + \kappa J_R \cdot j_L^\dagger + \eta J_L \cdot j_R^\dagger + \lambda J_R \cdot j_R^\dagger) + \text{h.c.} \end{split}$$

where $j_L^{\mu} = \bar{e}_L \gamma^{\mu} \nu_{eL}$, $j_R^{\mu} = \bar{e}_R \gamma^{\mu} \nu_{eR}$, and J_L^{μ} and J_R^{μ} are left-handed and right-handed hadronic weak currents. Experiments are not sensitive to κ , but quote limits on quantities

(1)

proportional to η and λ .* In analogy to $\langle m_{\nu} \rangle$ (see Eq. 17 in the "Neutrino mass" at the beginning of the Neutrino Particle Listings), the quantities extracted from experiments are $\langle \eta \rangle = \eta \sum U_{1j} V_{1j}$ and $\langle \lambda \rangle = \lambda \sum U_{1j} V_{1j}$, where V_{ij} is a matrix analogous to U_{ij} (see Eq. 2 in the "Neutrino mass"), but describing the mixing among right-handed neutrinos. The quantities $\langle \eta \rangle$ and $\langle \lambda \rangle$ therefore vanish for massless or unmixed neutrinos. Also, as in the case of $\langle m_{\nu} \rangle$, cancellations are possible in $\langle \eta \rangle$ and $\langle \lambda \rangle$. The limits on $\langle \eta \rangle$ are of order 10^{-8} while the limits on $\langle \lambda \rangle$ are of order 10^{-6} . The reader is warned that a number of earlier experiments did not distinguish between η and λ . Because of evolving reporting conventions and matrix element calculations, we have not tabulated the admixture parameters for experiments published earlier than 1989.

See the section on Majoron searches for additional limits set by these experiments.

Footnotes and References

- * We have previously used a less accepted but more explicit notation in which η_{RL} ≡ κ, η_{LR} ≡ η, and η_{RR} ≡ λ.
- A. Staudt, K. Muto, and H.V. Klapdor-Kleingrothaus, Europhys. Lett. 13, 31 (1990).
- J. Engel, P. Vogel, and M.R. Zirnbauer, Phys. Rev. C37, 731 (1988).
- W.C. Haxton and G.J. Stephenson Jr., Prog. in Part. Nucl. Phys. 12, 409 (1984).
- E. Caurier, F. Nowacki, A. Poves, and J. Retamosa Phys. Rev. Lett. 77, 1954 (1996).

Half-life Measurements and Limits for Double β Decay

In all cases of double beta decay, $(Z,A) \rightarrow (Z+2,A) + 2e^- + (0 \text{ or } 2)\overline{\nu}_e$. In the following Listings, only best or comparable limits or lifetimes for each isotope are reported.

t _{1/2} (10 ²¹ yr)	CL%	ISOTOPE	TA	ANSITION	METHOD	DOCUMENT ID	
• • • We do not u	se th	e follow	ing data	for average	s, fits, limits, etc.	• • •	
> 8000	90	⁷⁶ Ge	0ν		Enriched HPGe	¹⁵ AALSETH	99
$0.021^{+0.008}_{-0.004} \pm 0.0$	002	⁹⁶ Zr	2ν		NEMO-2	¹⁶ ARNOLD	99
> 1.0	90	⁹⁶ Zr	0ν		NEMO-2	¹⁶ ARNOLD	99
> 0.39	90	96 Zr	0ν	$0^0 \rightarrow 2^+$	NEMO-2	¹⁶ ARNOLD	99
>16000(57000)	90	⁷⁶ Ge	0ν		Enriched HPGe	¹⁷ BAUDIS	99B
> 56	90	130 Te	0ν		Cryog. det.	18 ALESSAND	98
> 16	90	¹³⁰ Te	0ν	$0^{+} \rightarrow 2^{+}$	Cryog. det.	18 ALESSAND	98
> 17	90	¹²⁸ Te	0ν		Cryog. det.	18 ALESSAND	98
> 440	90	136 Xe	0ν		Xe TPC	19 LUESCHER	98
> 0.36	90	136 Xe	2ν		Xe TPC	²⁰ LUESCHER	98
$(7.6^{+2.2}_{-1.4})$ E-3		100 _{Mo}	2ν		Si(Li)	²¹ ALSTON	97
> 0.19	90	⁹² Mo	$0\nu + 2\nu$	$0^{+} \rightarrow 0^{+}$	γ in HPGe	²² BARABASH	97
> 0.81	90	⁹² Mo	$0\nu+2\nu$	$0^+ \to 0_1^+$	γ in HPGe	²² BARABASH	97
> 0.89	90	⁹² Mo	$0\nu+2\nu$	$0^+ \to 2_1^+$	γ in HPGe	²² BARABASH	97
>11000	90	⁷⁶ Ge	0ν	$0^{+} \rightarrow 0^{+}$	Enriched HPGe	²³ BAUDIS	97
$(6.82^{+0.38}_{-0.53}\pm0.68$)E-3	100 _{Mo}	2ν		TPC	²⁴ DESILVA	97
$(6.75 + 0.37 \pm 0.68)$)E-3	^{150}Nd	2ν		TPC	²⁵ DESILVA	97
> 1.2	90	150 Nd	0ν		TPC	²⁶ DESILVA	97
$1.77 \pm 0.01 ^{+0.13}_{-0.11}$		⁷⁶ Ge	2ν		Enriched HPGe	²⁷ GUENTHER	97
$(3.75 \pm 0.35 \pm 0.2)$	1)E-	2 ¹¹⁶ Cd	2ν	$0^+ \to 0^+$	NEMO 2	²⁸ ARNOLD	96
$0.043^{+0.024}_{-0.011} \pm 0.0$		⁴⁸ Ca	2ν		TPC	²⁹ BALYSH	96
> 52	68	100 _{Mo}	$0\nu_i\langle m_{\nu}$	$+0 \leftarrow +0$	ELEGANT V	30 EJIRI	96
> 39	68	100 Mo	$0\nu,\langle\lambda\rangle$	$0^{+} \rightarrow 0^{+}$	ELEGANT V	30 EJIRI	96
> 51	68	100 Mo	$0\nu_{i}(n)$	$0^+ \rightarrow 0^+$	ELEGANT V	30 EJIRI	96
0.79 ± 0.10		¹³⁰ Te	0ν+2ν		Geochem	³¹ TAKAOKA	96
$0.61^{+0.18}_{-0.11}$		100 _{Mo}	$0\nu+2\nu$	$0^+ \rightarrow 0_1^+$	γ in HPGe	32 BARABASH	95
> 0.00013	99	160 _{Gd}	2ν	$0^{+} \rightarrow 0^{+}$	Gd ₂ SiO ₅ :Ce scin	t ³³ BURACHAS	95
> 0.00012	99	160 Gd	2ν		Gd ₂ SiO ₅ :Ce scin	t ³³ BURACHAS	95

Massive Neutrinos and Lepton Mixing

>	0.014	90	¹⁶⁰ Gd	0ν	$0^{+} \rightarrow 0^{+}$	Gd2SiO5:Ce scin	₋ 33	BURACHAS	95
>	0.013	90	$^{160}\mathrm{Gd}$	0ν	$0^{+} \rightarrow 2^{+}$	Gd2SiO5:Ce scin	_t 33	BURACHAS	95
(9.5 :	± 0.4 ± 0.9)E	18	100 Mo	2ν		NEMO 2		DASSIE	95
>	0.6	90	100 Mo	0ν	$0^+ \rightarrow 0_1^+$	NEMO 2		DASSIE	95
0.026	+0.009 -0.005		¹¹⁶ Cd	2ν	$0^+ \to 0^+$	ELEGANT IV		EJIRI	95
>	29	90	116 _{Cd}	0ν	$0^+ \to 0^+$	116 CdWO ₄ scint	34	GEORGADZE	95
>	0.3	68	$^{160}\mathrm{Gd}$	0ν		Gd2SiO5: Ce sci	nt	KOBAYASHI	95
>	2.37	90	116 _{Cd}	$0\nu+2\nu$	$0^{+} \rightarrow 2^{+}$	γ in HPGe	35	PIEPKE	94
>	2.05	90			$0^+ \rightarrow 0_1^+$	γ in HPGe	35	PIEPKE	94
>	2.05	90	116 _{Cd}	$0\nu+2\nu$	$0^+ \to 0^+_2$	γ in HPGe	35	PIEPKE	94
0.017	$^{+0.010}_{-0.005}\pm0.0$	0035	^{150}Nd	2ν	$0^+ \to 0^+$	TPC		ARTEMEV	93
	± 0.009		⁹⁶ Zr	$0\nu+2\nu$		Geochem		KAWASHIMA	93
> 4	130	90	⁷⁶ Ge	0ν	$0^{+} \rightarrow 2^{+}$	Enriched HPGe		BALYSH	92
2.7 ±	0.1		130 Te			Geochem		BERNATOW	92
7200	± 400		128 _{Te}			Geochem	36	BERNATOW	92
>	27	68	82 _{Se}	0ν	$0^{+} \rightarrow 0^{+}$	TPC		ELLIOTT	92
0.108	+0.026 -0.006		82 _{Se}	2ν	$0^{+} \rightarrow 0^{+}$	TPC		ELLIOTT	92
0.92	-0.07 -0.04		76 _{Ge}	2ν	$0^{+} \rightarrow 0^{+}$	Enriched HPGe	37	AVIGNONE	91
>	3.3	95	136 _{Xe}	0ν	$0^{+} \rightarrow 2^{+}$	Prop cntr		BELLOTTI	91
>	0.16	95	136 _{Xe}	2ν		Prop cntr		BELLOTTI	91
2.0 ±	0.6		238 _U			Radiochem	39	TURKEVICH	91
>	9.5	76	⁴⁸ Ca	0ν		CaF ₂ scint.		YOU	91
1.12	+0.48 -0.26		⁷⁶ Ge	2ν	$0^+ \rightarrow 0^+$		40	MILEY	90
0.9 ±			76 Ge	2ν		Enriched Ge(Li)		VASENKO	90
>	4.7	68	128 _{Te}		$0^{+} \rightarrow 2^{+}$	Ge(Li)	33	BELLOTTI	87
>	4.5	68	130 _{Te}		0 ⁺ → 2 ⁺	Ge(Li)	33	BELLOTTI	87
> 1	800	95	128 Te			Geochem	41	KIRSTEN	83
2.60	± 0.28		130 _{Te}			Geochem	41	KIRSTEN	83
15 🗚	ALCETU OO I	::	in bassal	- 74.0	4 0041 01				

15 AALSETH 99 limit is based on 74.84 active mol-yr of data using enriched Ge detectors at several locations. It is not competive with BAUDIS 998.

16 ARNOLD 99 measure directly the 2ν decay of 2r for the first time, using the NEMO-2 tracking detector and an isotopically enriched source. The lifetime is more accurate than the geochemical result of KAWASHIMA 93.

the geochemical result of NAVYASTIMA 93.

17 BAUDIS 998 is a continuation of the work of BAUDIS 97. The limit is based on a subset of data using a pulse shape event selection. The exposure time is 24.2 kg-yr. The more stringent limit, in parentheses, results from unphysical data (measured rate significantly below expected background), while the smaller value is the experimental sensitivity as defined by FELDMAN 98.

18 ¹⁸ ALESSANDRELLO 98 report limits using an array of 20 cryogenic detectors of 340 grams of TeO₂ each. Supersedes ALESSANDRELLO 968.

19 LUESCHER 98 report a limit for the 0ν decay of ^{136}Xe TPC. Supersedes VUILLEU-

MIER 93. ²⁰ LUESCHER 98 report a limit for the 2ν decay of ¹³⁶Xe using Xe TPC. Supersedes VUILLEUMIER 93.

VOILLEUMIER 93.
 21 ALSTON-GARN JOST 97 report evidence for 2ν decay of ¹⁰⁰Mo. This decay has been also observed by EJIRI 91, DASSIE 95, and DESILVA 97.
 22 BARABASH 97 measure limits for β+, EC, and ECEC decay of ⁹²Mo to the ground

and excited states of 92 Ru, respectively. Limits are not competive compared to $\beta^-\beta^-$ searches as far as sensitivity to $\langle m_{\nu} \rangle$ or RHC admixtures is concerned.

23 BAUDIS 97 limit for 0ν decay of enriched 76 Ge using Ge calorimeters supersedes GUEN-

THER 97. 24 DESILVA 97 result for 2ν decay of 100 Mo is in agreement with ALSTON-GARNJOST 97 and DASSIE 95. This measurement has the smallest errors. 25 DESILVA 97 result for 2ν decay of 150 Nd is in marginal agreement with ARTEMEV 93.

It has smaller errors. 26 DESILVA 97 do not explain whether their efficiency for 0
u decay of 150 Nd was calculated

27 GUENTHER 97 half-life for the 2ν decay of 76 Ge is not in good agreement with the previous measurements of BALYSH 94, AVIGNONE 91, and MILEY 90.

28 ARNOLD 96 measure the 2ν decay of 16 Ge. This result is in agreement with EJIRI 95, but has smaller errors. Supersedes ARNOLD 95.

 29 BALYSH 96 measure the $^{2}\nu$ decay of 48 Ca, using a passive source of enriched 48 Ca in

30 EJIRI 96 use energy and angular correlations of the $2\,\beta$ -rays in efficiency estimate to give limits for the 0ν decay modes associated with $\langle m_{\nu} \rangle$, $\langle \lambda \rangle$, and $\langle \eta \rangle$, respectively. Enriched 100 Mo source is used in tracking calorimeter. These are the best limits for

100 Mo. Limit is more stringent than ALSTON-GARNJOST 97. 31 TAKAOKA 96 measure the geochemical half-life of 130 Te. Their value is in disagreemnt with the quoted values of BERNATOWICZ 92 and KIRSTEN 83; but agrees with several other unquoted determinations, e.g., MANUEL 91.

other unquoted determinations, e.g., MANULL 91. 32 BARABASH 95 cannot distinguish 0 ν and 2 ν , but it is inferred indirectly that the 0 ν mode accounts for less than 0.026% of their event sample. They also note that their result disagrees with the previous experiment by the NEMO group (BLUM 92). 33 BELLOTTI 87 searches for γ rays for 2 $^+$ state decays in corresponding Xe isotopes. Limit for 130 Te case argues for dominant $^{0+}{}\rightarrow ^{0+}$ transition in known decay of this instance.

isotope.

³⁴GEORGADZE 95 result for this and other modes are also give in DANEVICH 95. Result for 2*a* decay omitted because of authors' caveats.

35 In PIEPKE 94, the studied excited states of ¹¹⁶Sn have energies above the ground state

of 1.2935 MeV for the 2^+ state, 1.7568 MeV for the 0_1^+ state, and 2.0273 for the 0_2^+

36 BERNATOWICZ 92 finds 128 Te/130 Te activity ratio from slope of 128 Xe/132 Xe vs 130 Xe/132 Xe ratios during extraction, and normalizes to lead-dated ages for the 130 Te lifetime. The authors state that their results imply that "(a) the double beta decay of 128 Te has been firmly established and its half-life has been determined ... without any ambiguity due to trapped Xe interferences... (b) Theoretical calculations ... underestimated to the control of the contro amonguity due to trapped Ae interferences... (b) Theoretical variations ... indecessment the [long half-likes of $128 \, \mathrm{Ft} \, 30 \, \mathrm{Te}$] by 1 or 2 orders of magnitude, pointing to a real supression in the 2ν decay rate of these isotopes. (c) Despite [this], most $\beta\beta$ -models

predict a ratio of 2ν decay widths ... in fair agreement with observation." Further details of the experiment are given in BERNATOWICZ 93. Our listed half-life has been revised downward from the published value by the authors, on the basis of reevaluated cosmic-ray ¹²⁸Xe production corrections.

 37 AVIGNONE 91 reports confirmation of the MILEY 90 and VASENKO 90 observations of $2\nu\beta\beta$ decay of 76 Ge. Error is 2σ .

 38 BELLOTTI 91 uses difference between natural and enriched 136 Xe runs to obtain $\beta\beta0\nu$ limits, leading to "less stringent, but safer limits."

limits, leading to "less stringent, but safer limits."

39 TURKEVICH 91 observes activity in old U sample. The authors compare their results with theoretical calculations. They state "Using the phase-space factors of Boehm and Vogel (BOEHM 87) leads to matrix element values for the ²³⁸U transition in the same range as deduced for ¹³⁰Te and ⁷⁶Ge. On the other hand, the latest theoretical estimates (STAUDT 90) give an upper limit that is 10 times lower. This large discrepancy implies either a defect in the calculations or the presence of a faster path than the standard two-neutrino mode in this case." See BOEHM 87 and STAUDT 90.

40 MILEY 90 claims only "suggestive evidence" for the decay. Error is 20.

41 KIRSTEN 83 reports ""20" error. References are given to earlier determinations of the

 41 KIRSTEN 83 reports " 2σ " error. References are given to earlier determinations of the

$\langle m_{\nu} \rangle$, The Effective Weighted Sum of Majorana Neutrino Masses Contributing to Neutrinoless Double β Decay

 $\langle m_{
u}
angle = |\Sigma|U_{1\,j}^2 m_{
u_j}|$, where the sum goes from 1 to n and where n= number of neutrino generations, and ν_j is a Majorana neutrino. Note that U_{ej}^2 , not $|U_{ej}|^2$, occurs in the sum. The possibility of cancellations has been stressed. In the following Listings, only best or comparable limits or lifetimes for each isotope are reported.

VALUE (eV)	CL%	<u>ISOTOP</u> E		TRANSITION	METHOD	DOCUMENT ID	
• • • We do not u	se th	e followi	ng da	ita for avera	ges, fits, limits, etc.	• • •	
< 0.5-1.5		⁷⁶ Ge			Enriched HPGe	⁴² AALSETH	99
<23		⁹⁶ Zr			NEMO-2	⁴³ ARNOLD	99
< 0.4(0.2)-1.0(0.6)		76 Ge			Enriched HPGe	44 BAUDIS	99B
< 2.4-2.7	90	¹³⁶ Xe	0ν		Xe TPC	⁴⁵ LUESCHER	98
<9.3	68	¹⁰⁰ Mo	0ν		Si(Li)	46 ALSTON	97
< 0.46	90		0ν	$0^{+} \rightarrow 0^{+}$	Enriched HPGe	⁴⁷ BAUDIS	97
<2.2	68	100 _{Mo}	0ν	$0^{+} \rightarrow 0^{+}$	ELEGANT V	48 EJIRI	96
<4.1	90	116 _{Cd}			116CdWO ₄ scint	49 DANEVICH	95
< 2.8-4.3	90	136 _{Xe}	0ν	$0^{+} \rightarrow 0^{+}$	TPC .	⁵⁰ VUILLEUMIER	93
< 1.1-1.5		128 _{Te}			Geochem	51 BERNATOW	92
<5	68	⁸² 5e			TPC	52 ELLIOTT	92
<8.3			0ν		CaF ₂ scint.	YOU	91
< 5.6	95	¹²⁸ Te			Geochem	KIRSTEN	83

⁴² In AALSETH 99, the range given in the limit reflects the spread of the corresponding nuclear matrix elements. This limit is not competive with BAUDIS 99B.

43 ARNOLD 99 limit based on the nuclear matrix elements of STAUDT 90. 44 BAUDIS 998 derive a limit for $\langle m_{\nu} \rangle$ using the matrix elements of STAUDT 90. The uncertainty given for $\langle m_{\nu} \rangle$ reflects theoretical uncertainty in the matrix element calculations. The less restrictive limit is based on the quoted experimental sensitivity while the lower value in parentheses makes use of measured rates significantly below background. 45 LUESCHER 98 limit for $\langle m_{
u}
angle$ is based on the matrix elements of ENGEL 88.

46 ALSTON-GARNJOST 97 obtain the limit for (m) using the matrix elements of EN-GEL 88. The limit supersedes ALSTON-GARNJOST 93.

⁴⁷BAUDIS 97 limit for $\langle m_{\nu} \rangle$ is based on the matrix elements of STAUDT 90. This is the most stringent bound on $\langle m_{\nu} \rangle$. It supersedes the limit of GUENTHER 97.

⁴⁸ EJIRI 96 obtain the limit for $\langle m_{\nu} \rangle$ using the matrix elements of TOMODA 91.

⁴⁹ DANEVICH 95 is identical to GEORGADZE 95.

SO VUILLEUMIER 93 mass range from parameter range in the Caltech calculations (ENGL 88). On the basis of these calculations, the BALYSH 92 mass range would be < 2.2–4.4 eV.

51 BERNATOWICZ 92 finds these majoron mass limits assuming that the measured geochemical decay width is a limit on the 0ν decay width. The range is the range found using matrix elements from HAXTON 84, TOMODA 87, and SUHONEN 91. Further details of the experiment are given in BERNATOWICZ 93.

52 ELLIOTT 92 uses the matrix elements of HAXTON 84.

Limits on Lepton-Number Violating (V+A) Current Admixture

For reasons given in the discussion at the beginning of this section, we list only results from 1989 and later. $\langle \lambda \rangle = \lambda \sum U_{ej} V_{ej}$ and $\langle \eta \rangle = \eta \sum U_{ej} V_{ej}$, where the sum is over the number of neutrino generations. This sum vanishes for massless or unmixed neutrinos. In the following Listings, only best or comparable limits or lifetimes for each isotope are reported.

(λ) (10 ⁻	6) CL%	$\langle \eta \rangle$ (10 ⁻	8) CL%	ISOTOPE	METHOD	DOCUMENT ID	
• • • V	Ve do n	ot use the	followin	ng data for	averages, fits, limit	s, etc. • • •	
<1.1	90	< 0.64	90	⁷⁶ Ge	Enriched HPGe	53 GUENTHER	97
<3.7	68	<2.5	68	100 Mo	Elegant V	⁵⁴ EJIRI	96
<5.3	90	< 5.9	90	116 _{Cd}	116 CdWO ₄ scint	⁵⁵ DANEVICH	95
<4.4	90	<2.3	90	136 Xe	TPC .	56 VUILLEUMIE	R 93
		<5.3		128 Te	Geochem	57 BERNATOW.	92

- $^{53}\,\mathrm{GUENTHER}$ 97 limits use the matrix elements of STAUDT 90. Supersedes BALYSH 95
- and BALYSH 92. 54 EJIRI 96 obtain limits for $\langle\lambda\rangle$ and $\langle\eta\rangle$ using the matrix elements of TOMODA 91.

55 DANEVICH 95 is identical to GEORGADZE 95.

56 VUILLEUMIER 93 uses the matrix elements of MUTO 89, 57 BERNATOWICZ 92 takes the measured geochemical decay width as a limit on the 0ν width, and uses the SUHONEN 91 coefficients to obtain the least restrictive limit on η. Further details of the experiment are given in BERNATOWICZ 93.

Massive Neutrinos and Lepton Mixing

(D) Other bounds from nuclear and particle decays – Limits on $|U_{e_X}|^2$ as Function of $m_{ u_X}$ –

Peak and kink search tests Limits on $|U_{e_X}|^2$ as function of m_{ν_i}

VALU		<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1	× 10 ⁻⁷	90 51	BRITTON	92B	CNTR	50 MeV $< m_{ u_{\nu}} < 130$
						MeV
• • •	• We do not use the	following	data for averages	, fits	, limits,	etc. • • •
<5	× 10 ⁻⁶	90	DELEENER	91		m_{ν_x} =20 MeV
<5	× 10 ⁻⁷	90	DELEENER	91		$m_{\nu_x} = 40 \text{ MeV}$
<3	$\times 10^{-7}$	90	DELEENER	91		$m_{\nu_{\chi}} = 60 \text{ MeV}$
<1	$\times 10^{-6}$	90	DELEENER	91		$m_{\nu_{\nu}} = 80 \text{ MeV}$
<1	× 10 ⁻⁶	90	DELEENER	91		m_{ν} =100 MeV
<5	\times 10 ⁻⁷	90	AZUELOS	86	CNTR	$m_{\nu_{\chi}} = 60 \text{ MeV}$
<2	$\times 10^{-7}$	90	AZUELOS	86	CNTR	$m_{\nu_{\nu}} = 80 \text{ MeV}$
<3	$\times 10^{-7}$	90	AZUELOS	86	CNTR	$m_{\nu_x} = 100 \text{ MeV}$
<1	$\times 10^{-6}$	90	AZUELOS	86	CNTR	$m_{\nu_{\nu}} = 120 \text{ MeV}$
<2	× 10 ⁻⁷	90	AZUELOS	86	CNTR	$m_{\nu_{\chi}} = 130 \text{ MeV}$
<1	$\times 10^{-4}$	90 5	BRYMAN		CNTR	$m_{\nu_{\nu}} = 5 \text{ MeV}$
<1.5	5×10^{-6}	90	BRYMAN	83B	CNTR	$m_{\nu_{\nu}} = 53 \text{ MeV}$
<1	$\times 10^{-5}$	90	BRYMAN	83B	CNTR	m _v =70 MeV
<1	× 10 ⁻⁴	90	BRYMAN	83B	CNTR	$m_{\nu_s} = 130 \text{ MeV}$
<1	× 10 ⁻⁴	68 61	⁾ SHROCK	81	THEO	m _v =10 MeV
<5	$\times 10^{-6}$	68 61) SHROCK	81	THEO	$m_{\nu_{\nu}} = 60 \text{ MeV}$
<1	× 10 ⁻⁵	68 6	^I SHROCK	80	THEO	m _v =80 MeV
<3	$\times 10^{-6}$	68 6	¹ SHROCK	80	THEO	$m_{\nu_{\nu}} = 160 \text{ MeV}$

⁵⁸ BRITTON 92B is from a search for additional peaks in the ${
m e^+}$ spectrum from ${
m \pi^+}$ ightarrow $e^+\nu_e$ decay at TRIUMF. See also BRITTON 92.

Kink search in nuclear β decay

High-sensitivity follow-up experiments show that indications for a neutrino with mass 17 keV (Simpson, Hime, and others) were not valid. Accordingly, we no longer list the experiments by these authors and some others which made positive claims of 17 keV neutrino emission. Complete listings are given in the 1994 edition (Physical Review **D50** 1173 (1994)) and in the 1998 edition (The European Physical Journal C3 1 (1998)). We list below only the best limits on $|U_{ex}|^2$ for each m_{ν_χ} . See WIETFELDT 96 for a comprehensive review.

VALUE (units 10 ⁻³)	CL%	m_{ν_j} (keV)	ISOTOPE	METHOD	DOCUMENT ID	
• • • We do no	ot use t	he following da	ta for average	es, fits, limits, etc.		
< 4 × 10	3 95	14-17	241 Pu	Electrostatic spec	62 DRAGOUN	99
< 1	95	4-30	63 Ni	Mag spect	63 HOLZSCHUH	99
10-40	90	370-640	37 _{Ar}	EC ion recoil	64 HINDI	98
< 10	95	1	3 _H	SPEC	65 HIDDEMANN	95
< 6	95	2	3 _H	SPEC	65 HIDDEMANN	95
< 2	95	3	3 _H	SPEC	65 HIDDEMANN	95
< 0.7	99	16.3-16.6	3 _H	Prop chamber	66 KALBFLEISCH	93
< 2	95	1340	35 _S	Si(Li)	67 MORTARA	93
< 0.73	95	17	63 _{Ni}	Mag spect	OHSHIMA	93
< 1.0	95	10-24	63 _{Ni}	Mag spect	KAWAKAMI	92
< 8	90	80	35 _S	Mag spect	68 APALIKOV	85
< 1.5	90	60	35 _S	Mag spect	APALIKOV	85
< 3.0	90	5-50		Mag spect	MARKEY	85
< 0.62	90	48	35 _S	Si(Li)	ОНІ	85
< 0.90	90	30	35 _S	Si(Li)	оні	85
< 4	90	140	64Cu	Mag spect	69 SCHRECK	83
< 8	90	440	64 Cu	Mag spect	69 SCHRECK	83
<100	90	0.1-3000		THEO	⁷⁰ SHROCK	80
< 0.1	68	80		THEO	⁷¹ SHROCK	80

 $^{^{62}}$ DRAGOUN 99 analyze the β decay spectrum of 241 Pu in the energy range 0.2–9.2 keV to derive limits for the admixture of heavy neutrinos. It is not competive with HOLZSCHUH 99.

- ⁶⁶ KALBFLEISCH 93 extends the 17 keV neutrino search of BAHRAN 92, using an improved proportional chamber to which a small amount of ${}^3\mathrm{H}$ is added. Systematics are significantly reduced, allowing for an improved upper limit. The authors give a 99% confidence limit on $|U_{e_X}|^2$ as a function of m_{ν_χ} in the range from 13.5 keV to 17.5 keV. See also the related papers BAHRAN 93, BAHRAN 93B, and BAHRAN 95 on theoretical aspects of beta spectra and fitting methods for heavy neutrinos.
- aspects of beta spectra and fitting methods for nearly neutrinos.

 67 MORTARA 93 limit is from study using a high-resolution solid-state detector with a superconducting solenoid. The authors note that "The sensitivity to neutrino mass is verified by measurement with a mixed source of ³⁵S and ¹⁴C, which artificially produces a distortion in the beta spectrum similar to that expected from the massive neutrino."
- ⁶⁸ This limit was taken from the figure 3 of APALIKOV 85; the text gives a more restrictive limit of 1.7×10^{-3} at CL = 90%.
- ⁶⁹ SCHRECKENBACH 83 is a combined measurement of the β^+ and β^- spectrum.
- 70 SHROCK 80 was a retroactive analysis of data on several superallowed eta decays to search for kinks in the Kurie plot.

DOCUMENT ID TECN COMMENT

 71 Application of test to search for kinks in eta decay Kurie plots.

Searches for Decays of Massive v

Limits on $|U_{e_X}|^2$ as function of m_{ν_1}

• • • We do not use the	following	g da	ata for averages	, fits	, limits,	etc. • • •
$<4 \times 10^{-3}$	95		ACCIARRI	99ĸ	L3	m _{ν_x} =80 MeV
<5 × 10 ⁻²	95		ACCIARRI	99K	L3	$m_{\nu_{\chi}}^{\lambda} = 175 \text{ GeV}$
$< 2 \times 10^{-5}$	95		ABREU	971	DLPH	$m_{\nu_{\chi}} = 6 \text{ GeV}$
$<3 \times 10^{-5}$	95		ABREU	97ı	DLPH	m _{ν_x} =50 GeV
$<1.8 \times 10^{-3}$	90	73	HAGNER	95	MWPC	$m_{\nu_h} = 1.5 \text{ MeV}$
$< 2.5 \times 10^{-4}$	90		HAGNER	95	MWPC	$m_{\nu_h} = 4 \text{ MeV}$
$< 4.2 \times 10^{-3}$	90		HAGNER	95	MWPC	$m_{\nu_h}^{"}=9 \text{ MeV}$
<1 × 10 ⁻⁵	90		BARANOV	93		$m_{\nu_x} = 100 \text{ MeV}$
$<1 \times 10^{-6}$	90		BARANOV	93		$m_{\nu_x} = 200 \text{ MeV}$
$< 3 \times 10^{-7}$	90		BARANOV	93		$m_{\nu_{\chi}} = 300 \text{ MeV}$
$< 2 \times 10^{-7}$	90	74	BARANOV	93		$m_{\nu_{\chi}} = 400 \text{ MeV}$
$<6.2 \times 10^{-8}$	95		ADEVA	90s	L3	$m_{\nu_{\nu}} = 20 \text{ MeV}$
$< 5.1 \times 10^{-10}$	95		ADEVA	90\$	L3	$m_{\nu_x} = 40 \text{ MeV}$
all values ruled out	95		BURCHAT	90	MRK2	$m_{ u_{\chi}}$ < 19.6 GeV
$< 1 \times 10^{-10}$	95		BURCHAT	90	MRK2	$m_{\nu_{\nu}} = 22 \text{ GeV}$
$<1 \times 10^{-11}$	95	75	BURCHAT	90	MRK2	$m_{\nu_{\nu}} = 41 \text{ GeV}$
all values ruled out	95		DECAMP	90F	ALEP	$m_{\nu_{\nu}} = 25.0-42.7 \text{ GeV}$
<1 × 10 ⁻¹³	95		DECAMP	90F	ALEP	$m_{\nu_{\chi}} = 42.7-45.7 \text{ GeV}$
<5 × 10 ⁻³	90		AKERLOF	88	HRS	$m_{\nu_{\chi}} = 1.8 \text{ GeV}$
<2 × 10 ⁻⁵	90		AKERLOF	88	HRS	$m_{\nu_{\chi}} = 4 \text{ GeV}$
<3 × 10 ⁻⁶	90		AKERLOF	88	HRS	$m_{\nu_x} = 6 \text{ GeV}$
$<1.2 \times 10^{-7}$	90		BERNARDI	88	CNTR	$m_{\nu_x} = 100 \text{ MeV}$
$<1 \times 10^{-8}$	90		BERNARDI	88	CNTR	$m_{\nu_x} = 200 \text{ MeV}$
$< 2.4 \times 10^{-9}$	90		BERNARDI	88	CNTR	$m_{\nu_X} = 300 \text{ MeV}$
$< 2.1 \times 10^{-9}$	90		BERNARDI	88	CNTR	$m_{\nu_{\chi}}$ =400 MeV
<2 × 10 ⁻²	68		OBERAUER	87		$m_{\nu_{\chi}} = 1.5 \text{ MeV}$
<8 × 10 ⁻⁴	68	76	OBERAUER	87		$m_{\nu_{\chi}} = 4.0 \text{ MeV}$
<8 × 10 ⁻³	90		BADIER	86	CNTR	m_{ν_x} =400 MeV
<8 × 10 ⁻⁵	90		BADIER	86	CNTR	$m_{\nu_{\chi}} = 1.7 \text{ GeV}$
<8 × 10 ⁻⁸	90		BERNARDI	86	CNTR	$m_{\nu_{\chi}} = 100 \text{ MeV}$
<4 × 10 ⁻⁸	90		BERNARDI	86	CNTR	$m_{\nu_x}^2 = 200 \text{ MeV}$
<6 × 10 ⁻⁹	90		BERNARDI	86	CNTR	$m_{\nu_{\chi}} = 400 \text{ MeV}$
<3 × 10 ⁻⁵	90		DORENBOS		CNTR	$m_{\nu_{\chi}}$ =150 MeV
<1 × 10 ⁻⁶	90		DORENBOS		CNTR	$m_{\nu_{\chi}}^2 = 500 \text{ MeV}$
<1 × 10 ⁻⁷	90		DORENBOS	86	CNTR	$m_{\nu_{\chi}} = 1.6 \text{ GeV}$
<7 × 10 ⁻⁷	90		COOPER	85	HLBC	$m_{\nu_x} = 0.4 \text{ GeV}$
<8 × 10 ⁻⁸	90		COOPER	85	HLBC	$m_{\nu_{\chi}} = 1.5 \text{ GeV}$
<1 × 10 ⁻²	90		BERGSMA		CNTR	$m_{\nu_x} = 10 \text{ MeV}$
<1 × 10 ⁻⁵	90		BERGSMA		CNTR	$m_{\nu_{\chi}}$ =110 MeV
<6 × 10 ⁻⁷	90	18	BERGSMA	83B	CNTR	$m_{\nu_{\chi}} = 410 \text{ MeV}$
<1 × 10 ⁻⁵	90		GRONAU	83		$m_{\nu_{\chi}}$ =160 MeV
$<1 \times 10^{-6}$	90		GRONAU	83		$m_{\nu_x} = 480 \text{ MeV}$

 $^{^{72}}$ ABREU 97I long-lived $\nu_{\rm X}$ analysis. Short-lived analysis extends limit to lower masses with decreasing sensitivity except at 3.5 GeV, where the limit is the same as at 6 GeV.

 $^{^{59}}$ BRYMAN 83B obtain upper limits from both direct peak search and analysis of B(π ightarrow $e\nu$)/B($\pi \to \mu \nu$). Latter limits are not listed, except for this entry (i.e. — we list the most stringent limits for given mass).

⁶⁰ Analysis of $(\pi^+ \rightarrow e^+ \nu_e)/(\pi^+ \rightarrow \mu^+ \nu_\mu)$ and $(K^+ \rightarrow e^+ \nu_e)/(K^+ \rightarrow \mu^+ \nu_\mu)$

⁶¹ Analysis of $(K^+ \rightarrow e^+ \nu_e)$ spectrum.

⁶³ HOLZSCHUH 99 use an iron-free β spectrometer to measure the 63 Ni β decay spectrum. An analysis of the spectrum in the energy rage 33–67.8 keV is used to derive limits for the admixture of heavy neutrinos.

the admixture of heavy neutrinos. 64 HINDI 98 obtain a limit on heavy neutrino admixture from EC decay of 37 Ar by measuring the time-of-flight distribution of the recoiling ions in coincidence with x-rays or Auger electrons. The authors report upper limit for $|U_{\rm ex}|^2$ of $\approx 3\%$ for $m_{\nu_\chi} = 500$ keV, 1% for $m_{\nu_\chi} = 550$ keV, 2% for $m_{\nu_\chi} = 600$ keV, and 4% for $m_{\chi} = 650$ keV. Their reported limits for $m_{\nu_\chi} \leq 450$ keV are inferior to the limits of SCHRECKENBACH 83.

 $^{^{65}}$ In the beta spectrum from tritium $m{eta}$ decay nonvanishing or mixed $m_{\overline{
u}_1}$ state in the mass region 0.01–4 keV. For $m_{
u_\chi}$ <1 keV, their upper limit on $|U_{eX}|^2$ becomes less

T3 HAGNER 95 obtain limits on heavy neutrino admixture from the decay $\nu_h \rightarrow \nu_e \, e^+ \, e^-$ at a nuclear reactor for the ν_h mass range 2–9 MeV.

 $^{^{74}}$ BARANOV 93 is a search for neutrino decays into $e^+e^-\nu_e$ using a beam dump experiment at the 70 GeV Serpukhov proton synchrotron. The limits are not as good as those achieved earlier by BERGSMA 83 and BERNARDI 86, BERNARDI 88.

⁷⁵ BURCHAT 90 includes the analyses reported in JUNG 90, ABRAMS 89C, and WENDT 87.

⁷⁶ OBERAUER 87 bounds from search for $\nu \rightarrow \nu' ee$ decay mode using reactor

⁷⁷ COOPER-SARKAR 85 also give limits based on model-dependent assumptions for ν_{τ} flux. We do not list these. Note that for this bound to be nontrivial, x is not equal

to 3, i.e. ν_χ cannot be the dominant mass eigenstate in $\nu_ au$ since $m_{
u_3}$ <70 MeV (ALBRECHT 851). Also, of course, x is not equal to 1 or 2, so a fourth generation would

to the required for this bound to be nontrivial. The ERGSMA 83B also quote limits on $|U_{e3}|^2$ where the index 3 refers to the mass eigenstate dominantly coupled to the τ . Those limits were based on assumptions about the D_S mass and $D_S \rightarrow \tau \nu_{\tau}$ branching ratio which are no longer valid. See COOPER-CAPKAD as

Limits on Coupling of μ to $\nu_{\rm X}$ as Function of $m_{\nu_{\rm X}}$

Peak search test

Limits on B(π (or K) $\rightarrow \mu\nu_{\nu}$).

VALUE	,	CL%	DOCUMENT ID		TECN C	OMMENT
• • •	We do not us	e the follow	ing data for average	s, fits,	limits, e	tc. • • •
< 0.22		90	⁷⁹ ASSAMAGAN	98	SILI <i>i</i>	$n_{\nu_{\nu}} = 0.53 \text{ MeV}$
< 0.02	9	90	⁷⁹ ASSAMAGAN	98 9		$n_{\nu_{\star}} = 0.75 \text{ MeV}$
< 0.01	6	90	⁷⁹ ASSAMAGAN	98 9		$n_{\nu_{\nu}} = 1.0 \text{ MeV}$
	× 10 ^{~5}		80 BRYMAN	96 (CNTR r	$n_{\nu_{\nu}} = 30-33.91 \text{ MeV}$
~ 1 ×	₁₀ -16		81 ARMBRUSTE	R95 I		$m_{\nu_{\star}} = 33.9 \text{ MeV}$
<4	× 10 ⁻⁷	95	⁸² BILGER	95 I	LEPS 1	$m_{\overline{\nu}_{v}} = 33.9 \text{ MeV}$
<7	$\times 10^{-8}$	95	82 BILGER	95 l		$m_{ u_{\mathbf{x}}} = 33.9 \text{ MeV}$
<2.6	$\times 10^{-8}$	95	⁸² DAUM	95B ⁻		$n_{\nu_{a}} = 33.9 \text{ MeV}$
<2	$\times 10^{-2}$	90	DAUM	87	,	$n_{\nu_x} = 1 \text{ MeV}$
<1	$\times 10^{-3}$	90	DAUM	87		$n_{\nu_{\chi}} = 2 \text{ MeV}$
<6	\times 10 ⁻⁵	90	DAUM	87	3	$\hat{MeV} < m_{oldsymbol{ u}_{oldsymbol{x}}} < 19.5$
<3	×10 ⁻²	90	83 MINEHART	84	,	MeV n _v =2 MeV
<1	$\times 10^{-3}$	90	83 MINEHART	84		$m_{\nu_{\chi}} = 4 \text{ MeV}$
<3	$\times 10^{-4}$	90	83 MINEHART	84		$n_{\nu_{\chi}} = 10 \text{ GeV}$
<5	$\times 10^{-6}$	90	84 HAYANO	82		n _v =330 MeV
<1	$\times 10^{-4}$	90	84 HAYANO	82		n _v =70 MeV
<9	$\times 10^{-7}$	90	84 HAYANO	82		n _v =250 MeV
<1	$\times 10^{-1}$	90	83 ABELA	81		$n_{\nu_x} = 4 \text{ MeV}$
<7	$\times 10^{-5}$	90	83 ABELA	81	r	n _v =10.5 MeV
<2	× 10 ⁻⁴	90	83 ABELA	81		n _v =11.5 MeV
<2	$\times 10^{-5}$	90	83 ABELA	81		n _{vx} =16-30 MeV
						~x

⁷⁹ ASSAMAGAN 98 obtain a limit on heavy neutrino admixture from π^+ decay essentially at rest, by measuring with good resolution the momentum distribution of the muons. However, the search uses an ad hoc shape correction. The authors report upper limit for $|U_{\mu X}|^2$ of 0.22 for $m_{
u}=$ 0.53 MeV, 0.029 for $m_{
u}=$ 0.75 MeV, and 0.016 for $m_{
u}=$

1.0 MeV at 90%CL. 80 BRYMAN 96 search for massive unconventional neutrinos of mass $m_{\nu_{\chi}}$ in π^+ decay. 81 ARMBRUSTER 95 study the reactions 12 C(ν_e , e^-) 12 N and 12 C($\nu_e \nu'$) 12 C* induced by neutrinos from π^+ and μ^+ decay at the ISIS neutron spallation source at the Rutherford-Appleton laboratory. An anomaly in the time distribution can be interpreted as the decay $\pi^+ \to \mu^+ \nu_X$, where ν_X is a neutral weakly interacting particle with mass ≈ 33.9 MeV and spin 1/2. The lower limit to the branching ratio is a function of the lifetime of the

new massive neutral particle, and reaches a minimum of a few \times 10⁻¹⁶ for $\tau_{\chi} \sim 5$ s. ⁸² From experiments of π^+ and π^- decay in flight at PSI, to check the claim of the KARMEN Collaboration quoted above (ARMBRUSTER 95).

83 $\pi^+ \rightarrow \mu^+ \nu_\mu$ peak search experiment.

 $84~{
m K}^+
ightarrow ~\mu^+ \stackrel{r}{
u_{\mu}}$ peak search experiment.

Peak search test

Limits on $|U_{n,x}|^2$ as function of m_p

μ	XI 03 .011C	ν_{x}			
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use	e the followi	ing data for average	s, fit	s, limits,	etc. • • •
$< 1 10 \times 10^{-4}$		85 BRYMAN	96	CNTR	$m_{\nu_{\tau}} = 30-33.91 \text{ MeV}$
$< 2 \times 10^{-5}$	95	⁸⁶ ASANO	81		$m_{\nu_{\chi}}^{\chi}$ =70 MeV
$< 3 \times 10^{-6}$	95	⁸⁶ ASANO	81		m _v =210 MeV
$< 3 \times 10^{-6}$	95	⁸⁶ ASANO	81		m _v =230 MeV
$< 6 \times 10^{-6}$	95	87 ASANO	81		m _v = 240 MeV
$< 5 \times 10^{-7}$	95	⁸⁷ ASANO	81		m_{ν} = 280 MeV
$< 6 \times 10^{-6}$	95	87 ASANO	81		$m_{\nu} = 300 \text{ MeV}$
$<1 \times 10^{-2}$	95	CALAPRICE	81		$m_{\nu_{\nu}}^{2}=7 \text{ MeV}$
$< 3 \times 10^{-3}$	95	88 CALAPRICE	81		$m_{\nu_{u}}^{\chi}$ =33 MeV
$<1 \times 10^{-4}$	68	⁸⁹ SHROCK	81	THEO	m _v =13 MeV
$< 3 \times 10^{-5}$	68	⁸⁹ SHROCK	81	THEO	m _ν =33 MeV
$<6 \times 10^{-3}$	68	90 SHROCK	81		$m_{\nu}^{2} = 80 \text{ MeV}$
$< 5 \times 10^{-3}$	68	⁹⁰ SHROCK	81		$m_{\nu_x}^{\chi} = 120 \text{ MeV}$
					· A

 85 BRYMAN 96 search for massive unconventional neutrinos of mass $m_{
u_\chi}$ in π^+ decay. They interpret the result as an upper limit for the admixture of a heavy sterile or otherwise 86 K+ $\rightarrow ~\mu^+ \nu_\mu$ peak search experiment.

⁸⁷ Analysis of experiment on $K^+ \to \mu^+ \nu_\mu \nu_\chi \overline{\nu}_\chi$ decay.

88 $_{\pi}^{\,+} \, \rightarrow \, \, \mu^{+} \, \nu_{\mu} \,$ peak search experiment.

⁸⁹ Analysis of magnetic spectrometer experiment, bubble chamber experiment, and emulsion experiment on $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ decay.

 90 Analysis of magnetic spectrometer experiment on $K
ightarrow \ \mu, \
u_{\mu}$ decay.

Peak Search in Muon Capture

Limits on $|U_{\mu x}|^2$ as function of m_{ν_x}

VALUE	DOCUMENT ID		COMMENT
• • • We do not use the following	data for average	s, fits	, limits, etc. • • •
$<1 \times 10^{-1}$	DEUTSCH	83	$m_{\nu_{a}} = 45 \text{ MeV}$
$< 7 \times 10^{-3}$	DEUTSCH	83	m _v =70 MeV
$<1 \times 10^{-1}$	DEUTSCH	83	m _v =85 MeV

Searches for Decays of Massive ν Limits on $|U_{\nu,\nu}|^2$ as function of m

as funct	ion of $m_{ u_{\pi}}$
CL%	DOCUMENT ID TECN COMMENT
	ng data for averages, fits, limits, etc. • • •
	91 VAITAITIS 99 CCFR $m_{\nu_{\chi}}$ =0.28 GeV
	⁹¹ VAITAITIS 99 CCFR $m_{\nu} = 0.37 \text{ GeV}$
	VAITAITIS 99 CCFR $m_{\nu_{\nu}} = 0.50 \text{ GeV}$
	91 VAITAITIS 99 CCFR $m_{\nu_{\chi}} = 1.50 \text{ GeV}$
	92 ABREU 971 DLPH $m_{\nu_{\chi}} = 6 \text{ GeV}$
95	⁹² ABREU 97: DLPH m_{ν_x} =50 GeV
90	GALLAS 95 CNTR $m_{\nu_\chi}=1~{ m GeV}$
90	93 VILAIN 95C CHM2 $m_{\nu_{\nu}} = 2 \text{ GeV}$
95	ADEVA 90s L3 $m_{\nu_{\chi}} = 20 \text{ MeV}$
95	ADEVA 90s L3 $m_{\nu_X} = 40 \text{ MeV}$
95	94 BURCHAT 90 MRK2 m_{ν_χ} < 19.6 GeV
95	94 BURCHAT 90 MRK2 $m_{\nu_{\chi}}^{\lambda} = 22 \text{ GeV}$
95	⁹⁴ BURCHAT 90 MRK2 $m_{\nu_x} = 41 \text{ GeV}$
95	DECAMP 90F ALEP $m_{\nu_{\chi}} = 25.0-42.7 \text{ GeV}$
95	DECAMP 90F ALEP $m_{\nu_{\chi}} = 42.7-45.7 \text{ GeV}$
90	AKERLOF 88 HRS $m_{\nu_{\chi}}^{-x} = 1.8 \text{ GeV}$
90	AKERLOF 88 HRS $m_{\nu_{\chi}}^{-x} = 4 \text{ GeV}$
90	AKERLOF 88 HRS $m_{\nu_X}^{-x}$ =6 GeV
90	BERNARDI 88 CNTR $m_{\nu_{\chi}}^{-\chi}$ =200 MeV
90	BERNARDI 88 CNTR $m_{\nu_X}^{\nu_X}$ =300 MeV
90	95 MISHRA 87 CNTR $m_{\nu_{\chi}} = 1.5 \text{ GeV}$
90	95 MISHRA 87 CNTR $m_{\nu_{\chi}} = 2.5 \text{ GeV}$
90	95 MISHRA 87 CNTR $m_{\nu_{\chi}} = 5 \text{ GeV}$
90	95 MISHRA 87 CNTR $m_{\nu_x} = 10 \text{ GeV}$
90	BADIER 86 CNTR $m_{\nu_{\chi}}^{\nu_{\chi}}$ =600 MeV
	BADIER 86 CNTR $m_{\nu_x} = 1.7 \text{ GeV}$
90	BERNARDI 86 CNTR $m_{\nu_x} = 200 \text{ MeV}$
90	BERNARDI 86 CNTR $m_{\nu_x} = 350 \text{ MeV}$
	DORENBOS 86 CNTR $m_{\nu_x} = 500 \text{ MeV}$
90	DORENBOS 86 CNTR $m_{\nu_x} = 1600 \text{ MeV}$
90	96 COOPER 85 HLBC m_{ν_x} =0.4 GeV
	96 COOPER 85 HLBC $m_{\nu_x} = 1.5$ GeV
	V See page for rather complicated limit or function
	90 90 90 90 95 95 95 95 95 95 95 95 95 90 90 90 90 90 90 90 90 90 90

⁹¹ VAITAITIS 99 search for $L^0_\mu o \mu X$. See paper for rather complicated limit as function

of m_{ν_χ} . 92 ABREU 97I long-lived ν_χ analysis. Short-lived analysis extends limit to lower masses with decreasing sensitivity except at 3.5 GeV, where the limit is the same as at 6 GeV. 93 VILAIN 95c is a search for the decays of heavy isosinglet neutrinos produced by neutral current neutrino interactions. Limits were quoted for masses in the range from 0.3 to 24 GeV. The best limit is listed above. BURCHAT 90 includes the analyses reported in JUNG 90, ABRAMS 89c, and WENDT 87. 95 See also limits on $|U_{3x}|$ from WENDT 87. 96 COOPER-SARKAR 85 also give limits based on model-dependent assumptions for ν_τ flux. We do not list these. Note that for this bound to be nontrivial, x is not equal to 3, i.e. ν_χ cannot be the dominant mass eigenstate in ν_τ since $m_{\nu_3} <$ 70 MeV (ALBRECHT 851). Also, of course, x is not equal to 1 or 2, so a fourth generation would be required for this bound to be nontrivial. be required for this bound to be nontrivial.

Limits on $|U_{\tau x}|^2$ as a Function of m_{ν_x}

VALUE	CL%	DOCUMENT ID		<u>TECN</u>	COMMENT
• • We do not use the	followin	g data for averages	, fits	, limits,	etc. • • •
$<2 \times 10^{-5}$		⁹⁷ ABREU	971	DLPH	$m_{\nu_{\nu}} = 6 \text{ GeV}$
$< 3 \times 10^{-5}$	95	97 ABREU	971	DLPH	$m_{\nu_{z}} = 50 \text{ GeV}$
$<6.2 \times 10^{-8}$	95	ADEVA	90s	L3	$m_{\nu_{\star}} = 20 \text{ MeV}$
$< 5.1 \times 10^{-10}$	95	ADEVA	90s	L3	$m_{\nu_{\nu}} = 40 \text{ MeV}$
all values ruled out	95	98 BURCHAT	90	MRK2	^
$<1 \times 10^{-10}$	95	⁹⁸ BURCHAT	90	MRK2	$m_{\nu_{\nu}} = 22 \text{ GeV}$
$<1 \times 10^{-11}$	95	⁹⁸ BURCHAT	90		$m_{\nu_{\nu}} = 41 \text{ GeV}$
all values ruled out	95	DECAMP	90F	ALEP	$m_{\nu_{\nu}} = 25.0-42.7 \text{ GeV}$
$< 1 \times 10^{-13}$	95	DECAMP	90F	ALEP	$m_{\nu_{o}} = 42.7 - 45.7 \text{ GeV}$
<5 × 10 ⁻²	80	AKERLOF	88	HRS	$m_{\nu_x}^2 = 2.5 \text{ GeV}$
<9 × 10 ⁻⁵	80	AKERLOF	88	HRS	$m_{\nu_{\mu}}^{\chi} = 4.5 \text{ GeV}$

 97 ABREU 97I long-lived ν_{χ} analysis. Short-lived analysis extends limit to lower masses with decreasing sensitivity. 98 BURCHAT 90 includes the analyses reported in JUNG 90, ABRAMS 89C, and WENDT 87.

Massive Neutrinos and Lepton Mixing

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • We do not i	use the followin	ng data for average	s, fits,	, limits,	etc. • • •
$<1 \times 10^{-2}$	68	SHROCK	8 1B	THEO	$m_{\nu_{\nu}} = 10 \text{ GeV}$
$< 2 \times 10^{-3}$	68	SHROCK	8 1B	THEO	m _v = 40 MeV
$<4 \times 10^{-2}$	68	SHROCK	8 1B	THEO	$m_{\nu_X} = 70 \text{ MeV}$
imits on $ U_{1j} angle$	(U _{2j} as Fur	action of $m_{ u_i}$			
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • We do not u	use the following	ng data for average	s, fits,	, limits,	etc. • • •
$< 3 \times 10^{-5}$	90	⁹⁹ BARANOV	93		$m_{ u_i} = 80 \; { m MeV}$
<3 × 10 ⁻⁶	90	⁹⁹ BARANOV	93		$m_{\nu_i} = 160 \text{ MeV}$
$< 6 \times 10^{-7}$	90	⁹⁹ BARANOV	93		$m_{\nu_i} = 240 \text{ MeV}$
$< 2 \times 10^{-7}$	90	⁹⁹ BARANOV	93		$m_{\nu_i} = 320 \text{ MeV}$
<9 × 10 ⁻⁵	90	BERNARDI	86	CNTR	$m_{\nu_i}^{I}$ =25 MeV
$< 3.6 \times 10^{-7}$	90	BERNARDI	86		$m_{\nu_i} = 100 \text{ MeV}$
<3 × 10 ⁻⁸	90	BERNARDI			$m_{\nu_i} = 200 \text{ MeV}$
$< 6 \times 10^{-9}$	90	BERNARDI			$m_{\nu_i}^{J}$ =350 MeV
$<1 \times 10^{-2}$	90	BERGSMA			$m_{\nu_i} = 10 \text{ MeV}$
<1 × 10 ⁻⁵	90	BERGSMA			$m_{\nu_i}^{-1}$ =140 MeV
					- 1

 $^{^{99}}$ BARANOV 93 is a search for neutrino decays into $e^+\,e^-\,\nu_e$ using a beam dump experiment at the 70 GeV Serpukhov proton synchrotron.

(E) Solar v Experiments

SOLAR NEUTRINOS

Revised January 2000 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan).

The Sun is a main-sequence star at a stage of stable hydrogen burning. It produces an intense flux of electron neutrinos as a consequence of nuclear fusion reactions which generate solar energy, and whose combined effect is

$$4p + 2e^- \rightarrow {}^4\text{He} + 2\nu_e + 26.73 \text{ MeV} - E_\nu ,$$
 (1)

where E_{ν} represents the energy taken away by neutrinos, with an average value being $\langle E_{\nu} \rangle \sim 0.6$ MeV. Each neutrino-producing reaction, the resulting flux, and contributions to the event rates in chlorine and gallium solar-neutrino experiments predicted by the recent Bahcall, Basu, and Pinsonneault standard solar model (SSM) calculation [1] are listed in Table 1. This SSM is regarded as the best with helium and heavy-element diffusion. Figure 1 shows the energy spectra of solar neutrinos from these reactions quoted from Ref. 1. Recently, the SSM has been shown to predict accurately the helioseismological sound velocities with a precision of 0.1% rms throughout essentially the entire Sun, greatly strengthening confidence in the solar model [1,2].

Observation of solar neutrinos directly addresses the SSM and, more generally, the theory of stellar structure and evolution which is the basis of the SSM. The Sun as a well-defined neutrino source also provides extremely important opportunities to investigate nontrivial neutrino properties such as nonzero mass and mixing, because of the wide range of matter density and the very long distance from the Sun to the Earth. In fact, the currently available solar-neutrino data seem to require such neutrino properties, if one tries to understand them consistently.

So far, five solar-neutrino experiments have published results. Three of them are radiochemical experiments using 37 Cl

Table 1: Neutrino-producing reactions in the Sun (the first column) and their abbreviations (second column). The neutrino fluxes and event rates in chlorine and gallium solar-neutrino experiments predicted by Bahcall, Basu, and Pinsonneault [1] are listed in the third, fourth, and fifth columns respectively.

		BAHCALL 98C [1]						
Reaction	Abbr.	Flux (cm ⁻² s ⁻¹)	Cl (SNU*) Ga	(SNU*)				
$pp \rightarrow d e^+ \nu$	pp	$5.94(1.00^{+0.01}_{-0.01}) \times 10^{10}$	_	69.6				
$pe^-p o d u$	pep	$1.39(1.00^{+0.01}_{-0.01}) \times 10^{8}$	0.2	2.8				
$^3{ m He}~p ightarrow{}^4{ m He}~e^+ u$	hep	2.10×10^{3}	0.0	0.0				
$^7\mathrm{Be}\;e^- o {}^7\mathrm{Li}\; \nu + (\gamma)$	⁷ Be	$4.80(1.00^{+0.09}_{-0.09})\times10^{9}$	1.15	34.4				
$^8\mathrm{B} ightarrow ^8\mathrm{Be^*} \ e^+ u$	⁸ B	$5.15(1.00^{+0.19}_{-0.14}) \times 10^6$	5.9	12.4				
$^{13}\mathrm{N} ightarrow ^{13}\mathrm{C}~e^+ u$	^{13}N	$6.05(1.00^{+0.19}_{-0.13}) \times 10^8$	0.1	3.7				
$^{15}\mathrm{O} ightarrow ^{15}\mathrm{N}~e^+ u$	¹⁵ O	$5.32(1.00^{+0.22}_{-0.15}) \times 10^8$	0.4	6.0				
$^{17}\mathrm{F} ightarrow ^{17}\mathrm{O}~e^+ \nu$	$^{17}\mathrm{F}$	$6.48(1.00^{+0.12}_{-0.11}) \times 10^6$	0.0	0.1				
Total			$7.7^{+1.2}_{-1.0}$	129+8				

^{* 1} SNU (Solar Neutrino Unit) = 10^{-36} captures per atom per second.

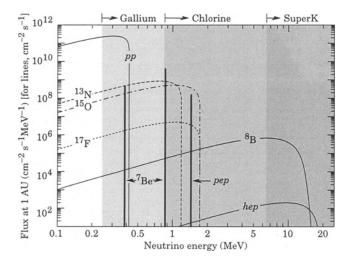


Figure 1: The solar neutrino spectrum predicted by the standard solar model. The neutrino fluxes from continuum sources are given in units of number cm⁻²s⁻¹MeV⁻¹ at one astronomical unit, and the line fluxes are given in number cm⁻²s⁻¹. Spectra for the *pp* chain, shown by the solid curves, are courtesy of J.N. Bahcall (1999), and reflect updates in BAH-CALL 98C. Spectra for the CNO chain are shown by the dotted curves, and are courtesty of J.N. Bahcall (1995).

(Homestake in USA) or ^{71}Ga (GALLEX at Gran Sasso in Italy and SAGE at Baksan in Russia) to capture neutrinos: $^{37}\text{Cl}~\nu_e$ \rightarrow $^{37}\text{Ar}~e^-$ (threshold 814 keV) or $^{71}\text{Ga}~\nu_e$ \rightarrow $^{71}\text{Ge}~e^-$ (threshold 233 keV). The produced ^{37}Ar and ^{71}Ge are both radioactive nuclei, with half lives $(\tau_{1/2})$ of 34.8 days and 11.43 days, respectively. After an exposure of the detector for two to three times $\tau_{1/2}$, the reaction products are extracted and introduced into

Lepton Particle Listings Massive Neutrinos and Lepton Mixing

a low-background proportional counter, and are counted for a sufficiently long period to determine the exponentially decaying signal and a constant background. In the chlorine experiment, the dominant contribution comes from ⁸B neutrinos, but ⁷Be, pep, ¹³N, and ¹⁵O neutrinos also contribute. At present, the most abundant pp neutrinos can be detected only in gallium experiments. Even so, almost half of the capture rate in the gallium experiments is due to other solar neutrinos.

The other experiments are real-time experiments utilizing νe scattering in a large water-Čerenkov detector (Kamiokande and Super-Kamiokande in Japan). These experiments take advantage of the directional correlation between the incoming neutrino and the recoil electron. This feature greatly helps the clear separation of the solar-neutrino signal from the background. Due to the high thresholds (7 MeV in Kamiokande and 5.5 MeV at present in Super-Kamiokande) the experiments observe pure ⁸B solar neutrinos because hep neutrinos contribute negligibly according to the SSM. (However, the recent Super-Kamiokande results on the recoil-electron energy spectrum at > 13 MeV raised some discussion on the possibility of an enhanced hep neutrino contribution [3,4].)

In May, 1999, a new realtime solar-neutrino experiment, SNO (Sudbury Neutrino Observatory) started observation. This experiment uses 1000 tons of heavy water (D₂O) to measure solar neutrinos through both inverse β decay ($\nu_e d \rightarrow e^- pp$) and neutral-current interactions ($\nu_x d \rightarrow \nu_x pn$). In addition, νe scattering events will be measured.

Solar neutrinos were first observed in the Homestake chlorine experiment in the late 1960's. From the very beginning, it was recognized that the observed capture rate was significantly smaller than the SSM prediction provided nothing happens to the electron neutrinos after they are created in the solar interior. This deficit has been called "the solar-neutrino problem."

The Kamiokande-II Collaboration started observing the $^8\mathrm{B}$ solar neutrinos at the beginning of 1987. Because of the strong directional correlation of νe scattering, this result gave the first direct evidence that the Sun emits neutrinos (no directional information is available in radiochemical solar-neutrino experiments.) The observed solar-neutrino flux was also significantly less than the SSM prediction. In addition, Kamiokande-II obtained the energy spectrum of recoil electrons and the fluxes separately measured in the daytime and nighttime. The Kamiokande-II experiment came to an end at the beginning of 1995.

GALLEX presented the first evidence of pp solar-neutrino observation in 1992. Here also, the observed capture rate is significantly less than the SSM prediction. SAGE, after the initial confusion which is ascribed to statistics by the group, observed a similar capture rate to that of GALLEX. Both GALLEX and SAGE groups tested the overall detector response with intense man-made 51 Cr neutrino sources, and observed good agreement between the measured 71 Ge production rate and that predicted from the source activity, demonstrating the reliability of these

experiments. The GALLEX Collaboration formally finished observations in early 1997. Since April, 1998, a newly defined collaboration, GNO (Gallium Neutrino Observatory) resumed the observations.

Super-Kamiokande is a 50-kton second-generation solar-neutrino detector, which is characterized by a significantly larger counting rate than the first-generation experiments. This experiment started observation in April 1996. The average solar-neutrino flux is smaller than, but consistent with, the Kamiokande-II result. However, the flux measured in the night-time shows an excess over that measured in the daytime [5,6], though the significance is not yet high. Super-Kamiokande also observed the recoil-electron energy spectrum [7]. Its shape showed an excess at the high-energy end (> 13 MeV) compared to the SSM expectation, though its statistical significance is not very high. More recent results indicate that the high-energy excess is reduced with the accumulation of statistics.

The most recent published results on the average capture rates or flux from solar-neutrino experiments are listed in Table 2 and compared to the results from SSM calculations which are taken from "Lepton Particle Listings (E) Solar ν Experiments" in this edition of "Review of Particle Physics." In these calculations, BAHCALL 98C [1], BRUN 98 [12], BAH-CALL 95B [14], and DAR 96 [13] take into account helium and heavy-element diffusion, but other calculations do not. SSM calculations give essentially the same results for the same input parameters and physics. This statement applies to the most recent BAHCALL 98C [1] and BRUN 98 [12] models. The BAHCALL 98C model [1] differs from the BAHCALL 95B model [14] in that BAHCALL 98C [1] uses the nuclear fusion rates systematically reevaluated and recommended by Adelberger et al. [24], and other best available input data. The ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ cross section adopted by Adelberger et al. [24] is 15% lower than the value used by BAHCALL 95B [14]. This is the principal reason why the ⁸B neutrino flux and the ³⁷Cl and ⁷¹Ga capture rates calculated by the BAHCALL 98C model [1] are lower than those calculated by the BAH-CALL 95B model [14]. The BAHCALL 95B [14] model and the TURCK-CHIEZE 93B [15] model differ primarily in that BAH-CALL 95B [14] includes element diffusion. The DAR 96 [13] model differs significantly from the BAHCALL 95B [14] model mostly due to the use of nonstandard reaction rates, different treatments of diffusion, and the equation of state.

All results from the present solar-neutrino experiments indicate significantly less flux than expected from SSM calculations except those of DAR 96 [13]. The DAR 96 [13] model predicts the ⁸B solar-neutrino flux which is consistent with the Kamiokande-II and Super-Kamiokande results, but even this model predicts ³⁷Cl and ⁷¹Ga capture rates significantly larger than the Homestake, GALLEX, and SAGE results.

Is there any possible consistent explanation of all the results of solar-neutrino observations in the framework of the standard solar model? This is difficult because the Homestake result and the Kamiokande result, taken at face value, are mutually

Massive Neutrinos and Lepton Mixing

Table 2: Recent results from the five solar-neutrino experiments and a comparison with theoretical solar-model predictions. Solar model calculations are also presented. The evolution of these results over the years gives some feeling for their robustness as the models have become more sophisticated and complete.

	$^{37}\text{Cl} \rightarrow ^{37}\text{Ar}$ (SNU)	71 Ga \rightarrow 71 Ge (SNU)	8 B ν flux $(10^{6} \text{cm}^{-2} \text{s}^{-1})$
Homestake			
(CLEVELAND 98)[8]	$2.56 \pm 0.16 \pm 0.1$	6	
GALLEX			
(HAMPEL 99)[9]		$77.5 \pm 6.2^{+4}_{-4}$	3 —
SAGE			
(ABDURASHI99B)[10]	_	$67.2^{+7.2+3.5}_{-7.0-3.0}$	_
Kamiokande		****	
(FUKUKDA 96)[11]			$2.80 \pm 0.19 \pm 0.33$
Super-Kamiokande			
(FUKUKDA 99)[5]	_	_	$2.436^{+0.053+0.085}_{-0.047-0.071}$
(BAHCALL 98C)[1]	$7.7^{+1.2}_{-1.0}$	129^{+8}_{-6}	$5.15(1.00^{+0.19}_{-0.14})$
(BRUN 98)[12]	7.18	127.2	4.82
(DAR 96)[13]	4.1 ± 1.2	115 ± 6	2.49
(BAHCALL 95B)[14]	$9.3^{+1.2}_{-1.4}$	137^{+8}_{-7}	$6.6(1.00^{+0.14}_{-0.17})$
(TURCK-CHIEZE 93B)[15	$] \qquad 6.4 \pm 1.4$	123 ± 7	$\textbf{4.4} \pm \textbf{1.1}$
(BAHCALL 92)[16]	$8.0\pm3.0^{\dagger}$	$132^{+21\dagger}_{-17}$	$5.69(1.00\pm0.43)$
(BAHCALL 88)[17]	$7.9\pm2.6^{\dagger}$	$132^{+20\dagger}_{-17}$	$5.8(1.00\pm0.37)^{\dagger}$
(TURCK-CHIEZE 88)[18]	5.8 ± 1.3	125 ± 5	$3.8 (1.00 \pm 0.29)$
(FILIPPONE 83)[19]	5.6		-
(BAHCALL 82)[20]	$7.6\pm3.3^{\dagger}$	106^{+13}_{-8} †	5.6
(FILIPPONE 82)[21]	7.0 ± 3.0	111 ± 13	4.8
(FOWLER 82)[22]	6.9 ± 1.0	_	_
(BAHCALL 80)[23]	7.3	_	_

^{* 1} SNU (Solar Neutrino Unit) = 10^{-36} captures per atom per second. † " 3σ " errors.

inconsistent if one assumes standard neutrino spectra. That is, with the reduction factor of the ⁸B solar-neutrino flux as determined from the Kamiokande result, the Homestake ³⁷Cl capture rate would be oversaturated, and there would be no room to accommodate the ⁷Be solar neutrinos. This makes astrophysical solutions untenable because ⁸B nuclei are produced from ⁷Be nuclei in the Sun.

Several authors made more elaborate analyses using the constraint of observed solar luminosity, and found (see for example, Refs. 25–28)

- that both the comparison of the Kamiokande and gallium results and the comparison of the gallium and chlorine results also indicate strong suppression of the ⁷Be solar-neutrino flux, and
- that not only the SSM but also nonstandard solar models are incompatible with the observed data.

In view of the above situation, it is attractive to invoke nontrivial neutrino properties. Neutrino oscillation in matter (MSW mechanism) is particularly attractive in explaining all the experimental data on the average solar-neutrino flux consistently, without any a priori assumptions or fine tuning. Several authors made extensive MSW analyses using all the available data and ended up with similar results. For example, Bahcall, Krastev, and Smirnov [28] analyzed the solar-neutrino data as of 1998 in terms of two-flavor oscillations. In addition, they analyzed the case of vacuum oscillations. They obtained the following solutions for the BAHCALL 98C [1] SSM: Using only the total event rates in the five solar-neutrino experiments, there are three MSW solutions and one vacuum-oscillation solution at the 99% confidence level for oscillations into active neutrinos $(\nu_{\mu}$ or ν_{τ}).

- Small mixing-angle (SMA) solution: $\Delta m^2 = 5.4 \times 10^{-6} \text{ eV}^2, \sin^2 2\theta = 6.0 \times 10^{-3}$
- Large mixing-angle (LMA) solution: $\Delta m^2 = 1.8 \times 10^{-5} \text{ eV}^2$, $\sin^2 2\theta = 0.76$
- LOW (low probability or low mass) solution: $\Delta m^2 = 7.9 \times 10^{-8} \text{ eV}^2, \sin^2 2\theta = 0.96$
- Vacuum (VAC) solution: $\Delta m^2 = 8.0 \times 10^{-11} \text{ eV}^2, \sin^2 2\theta = 0.75.$

In the case of oscillations into sterile neutrinos, only the SMA and VAC solutions are allowed at the 99% confidence level with the best-fit parameters similar to the ones given above.

Bahcall, Krastev, and Smirnov [28] also made global analyses using all of the available solar-neutrino data, *i.e.*, total event rates plus the Super-Kamiokande recoil-electron energy spectrum and day-night asymmetry. At the 99% confidence level, acceptable solutions are found to be SMA (oscillations into both active and sterile neutrinos) and VAC. The LMA and LOW solutions are marginally ruled out.

Assuming that the solution to the solar-neutrino problem will really be provided by neutrino oscillations, how can one discriminate various solutions? The MSW SMA solution causes an energy-spectrum distortion. In the Super-Kamiokande and SNO observations, the flux will be more suppressed at lower energies. The MSW LMA solution predicts the day-night flux difference, a hint of which is seen in the recent Super-Kamiokande results [6]. However, the LMA solution gives almost no spectrum distortion. Thus, should LMA be a correct solution, one needs to explain the high-energy excess in the recoil-electron spectrum observed by Super-Kamiokande [7], if it turns out to be a real effect, due to a very large contribution from hep neutrinos or from other possibilities [4]. The VAC solution is characterized by seasonal variation of the flux, which is different from the trivial variation due to the eccentricity of Earth's orbit [29,30]. Also, the VAC solution can explain the high-energy excess of the recoil-electron spectrum observed by Super-Kamiokande [30].

SNO's observations of solar-neutrino flux by neutral-current reactions will give decisive evidence for neutrino oscillations into active neutrinos, if that flux is consistent with the SSM prediction and larger than the flux measured by charged-current reactions. On the other hand, the signal for oscillations into sterile neutrinos will be the same amount of reduction of the fluxes measured by neutral- and charged-current reactions.

Lepton Particle Listings Massive Neutrinos and Lepton Mixing

An important task of the second-generation solar neutrino experiments is the measurement of monochromatic ⁷Be solar neutrinos. If the VAC solution is correct, the flux of ⁷Be neutrinos shows larger seasonal variations than the flux of ⁸B neutrinos. The ⁷Be neutrino flux will be measured by a new experiment, Borexino, at Gran Sasso via ve scattering in 300 tons of ultra-pure liquid scintillator with a detection threshold as low as 250 keV. The Borexino detector is expected to be completed in 2001.

KamLAND, which is under construction at Kamioka and will be completed in 2001, is a multi-purpose neutrino experiment with 1000 tons of ultra-pure liquid scintillator. This experiment will also observe ⁷Be neutrinos if the detection threshold can be lowered to a level similar to that of Borexino. However, one of the primary purposes of this experiment is the observation of oscillations of neutrinos produced by power reactors. The sensitivity region of KamLAND includes the MSW LMA solution. Thus, the LMA solution may be proved or excluded by KamLAND.

The second-generation solar-neutrino experiments, Super-Kamiokande, SNO, and Borexino, as well as KamLAND, will provide a variety of data with high statistical accuracy. It is hoped that these experiments will solve the long-standing solar-neutrino problem in coming years.

References

- 1. J.N. Bahcall, S. Basu, and M.H. Pinsonneault, Phys. Lett. **B433**, 1 (1998).
- 2. J.N. Bahcall et al., Phys. Rev. Lett. 78, 171 (1997).
- 3. J.N. Bahcall and P.I. Kratsev, Phys. Lett. B436, 243
- 4. J.N. Bahcall, P.I. Krastev, and A.Yu. Smirnov, Phys. Rev. **D60**, 093001 (1999).
- Y. Fukuda et al., Phys. Rev. Lett. 82, 1810 (1999).
- Y. Suzuki, talk at the XIX Int. Symposium on Lepton and Photon Interactions at High Energies, Stanford (August 1999).
- 7. Y. Fukuda et al., Phys. Rev. Lett. 82, 2430 (1999).
- 8. B.T. Cleveland et al., Ap. J. 496, 505 (1998).
- W. Hampel et al., Phys. Lett. B447, 127 (1999); W. Hampel et al., Phys. Lett. **B388**, 384 (1996).
- 10. J.N. Abdurashitov et al., Phys. Rev. C60, 0055801 (1999)
- 11. Y. Fukuda et al., Phys. Rev. Lett. 77, 1683 (1996).
- 12. A.S. Brun, S. Turck-Chieze, and P. Morel, Astrophys. J. **506**, 913 (1998).
- 13. A. Dar and G. Shaviv, Astrophys. J. 468, 933 (1996).
- 14. J.N. Bahcall and M. H. Pinsonneault, Rev. Mod. Phys. **67**, 781 (1995).
- 15. S. Turck-Chieze and I. Lopez, Astrophys. J. 408, 347
- J.N. Bahcall and M. H. Pinsonneault, Rev. Mod. Phys. **64**, 885 (1992).
- 17. J.N. Bahcall and R.K. Ulrich, Rev. Mod. Phys. 60, 297 (1988).
- 18. S. Turck-Chieze et al., Astrophys. J. 335, 415 (1988).

- B.W. Filippone et al., Phys. Rev. Lett. 50, 412 (1938).
- 20. J.N. Bahcall et al., Rev. Mod. Phys. 54, 767 (1982) .
- B.W. Filippone and D.N. Schramm, Astrophys. J. 253, 393 (1982) .
- W.A. Fowler, AIP Conf. Proceedings 96 80 (1982).
- J.N. Bahcall et al., Phys. Rev. Lett. 45, 945 (1980) .
- 24. E.G. Adelberger et al., Rev. Mod. Phys. 70, 1265 (1998).
- N. Hata and P. Langacker, Phys. Rev. **D52**, 420 (1995).
- N. Hata and P. Langacker, Phys. Rev. **D56**, 6107 (1997).
- K.M. Heeger and R.G.H. Robertson, Phys. Rev. Lett. 77, 3720 (1996).
- J.N. Bahcall, P.I. Krastev, and A.Yu. Smirnov, Phys. Rev. **D58**, 096016 (1998).
- S.L. Glashow, P.J. Kerman, and L.M. Krauss, Phys. Lett. B445, 412 (1999).
- 30. V. Barger and K. Whismant, Phys. Lett. B456, 54 (1999).

1 SNU (Solar Neutrino Unit) $= 10^{-36}$ captures per atom per second.

VALUE	DOCUMENT ID		TECN	COMMENT
67.2+7.2+3.5 SNU	100 ABDURASHI	99в	SAGE	71 Ga \rightarrow 71 Ge
$(2.44 \pm 0.05 + 0.09) \times 10^6 \text{ cm}^{-2}\text{s}^{-1}$	¹⁰¹ FUKUDA	99	SKAM	BB v flux (all)
$(2.37 \pm 0.07) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$	¹⁰¹ FUKUDA	99	SKAM	⁸ Βν flux (day)
$(2.48^{+0.07}_{-0.06}) \times 10^6 \text{ cm}^{-2}\text{s}^{-1}$	¹⁰¹ FUKUDA	99	SKAM	⁸ Βν flux (night)
0.00	¹⁰² FUKUDA	99в	SKAM	Recoil e spectrum
$77.5 \pm 6.2^{+4.3}_{-4.7}$ SNU	103 HAMPEL	99	GALX	71 Ga \rightarrow 71 Ge
2.56 ± 0.16 ± 0.16 SNU	104 CLEVELAND	98	HOME	³⁷ CI radiochem.
$(2.80 \pm 0.19 \pm 0.33) \times 10^{6} \text{cm}^{-2} \text{s}^{-1}$	¹⁰⁵ FUKUDA	96	KAMI	⁸ Βν flux
$(2.70 \pm 0.27) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$	¹⁰⁵ FUKUDA	96	KAMI	⁸ Βν flux (day)
$(2.70 \pm 0.27) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$ $(2.87 + 0.27) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$	¹⁰⁵ FUKUDA	96	KAMI	⁸ B _V flux (night)

100 ABDURASHITOV 99B is a detailed report of the SAGE solar-neutrino experiment during the period January 1990 through December 1997, and updates the ABDURASHITOV 94 result. However the data in the period November 1993 through June 1994 were not used in determining the neutrino capture rate due to some uncertainty with respect to experimental control. A total of 211 71 Ge events were observed.

 101 FUKUDA 99 results are for a total of 503.8 live days with Super-Kamiokande between 31 May 1996 and 25 March 1998, with threshold $E_e>6.5$ MeV, and replace FUKUDA 988 results. The day-night solar-neutrino flux asymmetry is given as N/D-1=0.047 \pm 0.042 \pm 0.008. The results are also given for night fluxes subdivided into five data sets according to nadir of the Sun at the time of the neutrino event. FUKUDA 99 set an absolute flux-independent exclusion region in the two-neutrino oscillation parameter space from the absence of a significant day-night variation. Except for +0.6%/-0.5%, the systematic errors are common to day and night fluxes.

102 FUKUDA 998 reports the energy spectrum of recoil electrons from elastic scattering of solar neutrinos for a total of 503.8 live days of Super-Kamiokande observation. A comparison of the observed spectrum with the expectation is in poor agreement at the

103 HAMPEL 99 report the combined result for GALLEX I+II+III+IV (65 runs in total), which update the HAMPEL 96 result. The GALLEX IV result (12 runs) is $118.4 \pm 17.8 \pm 6.6$ SNU. (HAMPEL 99 discuss the consistency of partial results with the mean. The GALLEX experimental program has been completed with these runs. The total run data cover the period 14 May 1991 through 23 January 1997. A total of 300 $^{71}\mathrm{Ge}$ events

were observed. 104 CLEVELAND 98 is a detailed report of the 37 Cl experiment at the Homestake Mine. The average solar neutrino-induced 37 Ar production rate from 108 runs between 1970

and 1994 updates the DAVIS 89 result.

 $^{105}\,\text{FUKUDA}$ 96 results are for a total of 2079 live days with Kamiokande II and III from January 1987 through February 1995, covering the entire solar cycle 22, with threshold $E_{\rho} > 9.3$ MeV (first 449 days), > 7.5 MeV (middle 794 days), and > 7.0 MeV (last 836 days). These results update the HIRATA 90 result for the average $^{8}\mathrm{B}$ solar-neutrino flux and HIRATA 91 result for the day-night variation in the 8 B solar-neutrino flux. The total data sample was also analyzed for short-term variations: within experimental errors, no strong correlation of the solar-neutrino flux with the sunspot numbers was found.

(F) Astrophysical neutrino observations

Neutrinos and antineutrinos produced in the atmosphere induce μ -like and e-like events in underground detectors. The ratio of the numbers of the two kinds of events is defined as μ/e . It has the advantage that systematic effects, such as flux uncertainty, tend to cancel, for both experimental and theoretical values of the ratio. The "ratio of the ratios" of experimental to theoretical μ/e , $R(\mu/e)$, or that of experimental to theoretical $\mu/{
m total}$, $R(\mu/\text{total})$ with total = $\mu+e$, is reported below. If the actual value is not unity, the value obtained in a given experiment may depend on the experimental conditions.

$R(\mu/e) = (Measured Ratio \mu/e) / (Expected Ratio \mu/e)$

DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • 106 ALLISON $0.64 \pm 0.11 \pm 0.06$

 $0.61 \pm 0.03 \pm 0.05$

107 FUKUDA

99 SOU2 Calorimeter SKAM sub-GeV

Massive Neutrinos and Lepton Mixing

$0.66 \pm 0.06 \pm 0.08$	¹⁰⁸ FUKUDA ¹⁰⁹ FUKUDA			multi-GeV Water Cerenkov
$1.00 \pm 0.15 \pm 0.08$	110 DAUM	95	FREJ	Calorimeter
$0.60^{+0.06}_{-0.05} \pm 0.05$	¹¹¹ FUKUDA	94	KAMI	sub-GeV
$0.57^{+0.08}_{-0.07}\pm0.07$	¹¹² FUKUDA	94	KAMI	multi-Gev
	113 BECKER-SZ	92B	IMB	Water Cerenkov

106 ALLISON 99 result is based on an exposure of 3.9 kton yr, 2.6 times the exposure reported in ALLISON 97, and replaces that result.

 107 FUKUDA 98 result is based on an exposure of 25.5 kton yr. The analyzed data sam ple consists of fully-contained e-like events with 0.1 GeV/c< p_e and μ -like events with 0.2 GeV/c< p_{μ} , both having a visible energy < 1.33 GeV. These criteria match the definition used by FUKUDA 94.

108 FUKUDA 9BE result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained single-ring events with visible energy > 1.33 GeV and partially contained events. All partially contained events are classified as µ-like.

109 FUKUDA 968 studied neutron background in the atmospheric neutrino sample observed in the Kamiokande detector. No evidence for the background contamination was found.

110 DAUM 95 results are based on an exposure of 2.0 kton yr which includes the data by BERGER 90B. This ratio is for the contained and semicontained events. DAUM 95 also report $R(\mu/e) = 0.99 \pm 0.13 \pm 0.08$ for the total neutrino induced data sample which includes upward going stopping muons and horizontal muons in addition to the contained and semicontained events.

111 FUKUDA 94 result is based on an exposure of 7.7 kton yr and updates the HIRATA 92

result. The analyzed data sample consists of fully-contained e-like events with 0.1 < $p_e < 1.33~{\rm GeV}/c$ and fully-contained μ -like events with 0.2 < $p_\mu < 1.5~{\rm GeV}/c$.

 $^{112} extsf{FUKUDA}$ 94 analyzed the data sample consisting of fully contained events with visible energy > 1.33 GeV and partially contained μ -like events.

113 BECKER-SZENDY 92B reports the fraction of nonshowering events (mostly muons from atomospheric neutrinos) as $0.36 \pm 0.02 \pm 0.02$, as compared with expected fraction $0.51 \pm 0.01 \pm 0.05$. After cutting the energy range to the Kamiokande limits, BEIER 92 finds $R(\mu/e)$ very close to the Kamiokande value.

$R(\nu_{\mu}) = (Measured Flux of \nu_{\mu}) / (Expected Flux of \nu_{\mu})$

VALUE	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following data for average:	s, fits, limits,	etc. • • •
$0.74 \pm 0.036 \pm 0.046$	114 AMBROSIO	98 MCRO	Streamer tubes
	115 CASPER	91 IMB	Water Cherenkov
	116 AGLIETTA	89 NUSX	
0.95 ± 0.22	117 BOLIEV	81	Baksan
0.62 ± 0.17	CROUCH	78	Case Western/UCI

114 AMBROSIO 98 result is for all nadir angles and updates AHLEN 95 result. The lower cutoff on the muon energy is 1 GeV. In addition to the statistical and systematic errors, there is a Monte Carlo flux error (theoretical error) of ±0.13. With a neutrino oscillation hypothesis, the fit either to the flux or zenith distribution independently yields $\sin^2 2\theta = 1.0$ and $\Delta(m^2) \sim a$ few times 10^{-3} eV². However, the fit to the observed zenith distribution gives a maximum probability for χ^2 of only 5% for the best oscillation

115 CASPER 91 correlates showering/nonshowering signature of single-ring events with parent atmospheric-neutrino flavor. They find nonshowering ($\approx \nu_{\mu}$ induced) fraction is 0.41 \pm 0.03 \pm 0.02, as compared with expected 0.51 \pm 0.05 (syst).

116 AGLIETTA 89 finds no evidence for any anomaly in the neutrino flux. They define $\rho=(\text{measured number of }\nu_e\text{'s})/(\text{measured number of }\nu_\mu\text{'s})$. They report ρ (measured)= ρ (expected) = 0.96 $^{+0.32}_{-0.28}$.

117 From this data BOLIEV 81 obtain the limit $\Delta(m^2) \le 6 \times 10^{-3}$ eV 2 for maximal mixing, $\nu_\mu \not\to \nu_\mu$ type oscillation.

$R(\mu/total) = (Measured Ratio \mu/total) / (Expected Ratio \mu/total)$

VALUE					MENT ID		<u>TECN</u>	CON	IME	VT.
• • • W	e do	not us	e the following	data fo	r averages	, fits	, limits,	etc.		•
	7		•							

 $1.1^{+0.07}_{-0.12}\pm0.11$ 118 CLARK 97 IMB multi-GeV

 $^{118}\mathsf{CLARK}$ 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cerenkov detector with visible energy > 0.95 GeV.

M (a)/M. (a)

ייען nwop*י /יין que'י			
VALUE	DOCUMENT IL	TECN COMMENT	
• • • We do not use the fo	lowing data for averag	ges, fits, limits, etc. • • •	
$0.52^{+0.07}_{-0.06}\pm0.01$	¹¹⁹ FUKUDA	98E SKAM multi-GeV	

119 FUKUDA 98E result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained single-ring μ -like events with visible energy > 1.33 GeV and partially contained events. All partially contained events are classified as μ -like. Upwardgoing events are those with $-1 < \cos(zenith angle) < -0.2$ and downward-going events with those with $0.2 < \cos(zenith angle) < 1$. FUKUDA 98E result strongly deviates from $z = zenetated value of 5.08 <math>\pm 0.03 \pm 0.02$ an expected value of 0.98 \pm 0.03 \pm 0.02.

N...(e\/N....(e\

"up(c)/ regown(c)				
VALUE	DOCUMENT ID	TECN	COMMENT	
• • We do not use the following the fol	lowing data for average	s, fits, limits, e	tc. • • •	
$0.84^{+0.14}_{-0.12}\pm0.02$	¹²⁰ FUKUDA	98E SKAM	multi-GeV	ļ

 $^{120}\,\text{FUKUDA}$ 98E result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained single-ring e-like events with visible energy > 1.33 GeV. Upward-going events are those with $-1 < \cos$ (zenith angle) < -0.2 and downward-going events are those with $-1 < \cos$ (zenith angle) < 1.5 FUKUDA 98E result is conpared to an expected value of $1.01 \pm 0.06 \pm 0.03$.

$\sin^2(2\theta)$ for given $\Delta(m^2)$ ($\nu_e \leftrightarrow \nu_\mu$)

	review see E	BAHÇALL 89.			
VALUE	<u>CL%</u>	DDCUMENT ID		TECN	COMMENT
• • • We de	o not use th	e following data for	avera	ges, fits	, limits, etc. • • •
< 0.6	90	121 OYAMA	98	KAMI	$\Delta(m^2) > 0.1 \text{ eV}^2$
< 0.5		¹²² CLARK	97	IMB	$\Delta(m^2) > 0.1 \text{ eV}^2$
>0.55	90	¹²³ FUKUDA			$\Delta(m^2) = 0.007 - 0.08 \text{ eV}^2$
< 0.47	90	124 BERGER	90B	FREJ	$\Delta(m^2) > 1 \text{ eV}^2$
< 0.14	90	LOSECCO	87	IMB	$\Delta(m^2) = 0.00011 \text{ eV}^2$

 $^{121}\mathrm{OYAMA}$ 98 obtained this result by an analysis of upward-going muons in Kamlokande. The data sample used is essentially the same as that used by HATAKEYAMA 98

122 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cerenkov detector with visible energy > 0.95 GeV.

123 FUKUDA 94 obtained this result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande.

124 BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos Bounds are for both neutrino and antinuetrino oscillations.

$\Delta(m^2)$ for $\sin^2(2\theta) = 1 (\nu_e \leftrightarrow \nu_\mu)$

VALUE (10 ⁻⁵ eV ²)	CL%	DOCUMENT ID	_	TECN
• • • We do not use the	following o	lata for averages	, fits	, limits, etc. • • •
< 560		OYAMA	98	KAMI
<980		CLARK	97	IMB
$700 < \Delta(m^2) < 7000$		FUKUDA	94	KAMI
<150	90 128	BERGER	908	FREJ

125 OYAMA 98 obtained this result by an analysis of upward-going muons in Kamiokande.

The data sample used is essentially the same as that used by HATAKEYAMA 98.

 $^{126}\mathsf{CLARK}$ 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cerenkov detector with visible energy > 0.95 GeV.

127 FUKUDA 94 obtained this result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande.

128 BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antinuetrino oscillations

$\sin^2(2\theta)$ for given $\Delta(m^2)$ ($\nabla_e \leftrightarrow \nabla_\mu$)

(, 6	, ,	μ,			
VALUE (10 ⁻⁵ eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e follow	ring data for average	es, fits	s, limits,	etc. • • •
< 0.9	99	129 SMIRNOV	94	THEO	$\Delta(m^2) > 3 \times 10^{-4} \text{ eV}^2$
< 0.7	99	129 SMIRNOV	94	THEO	$\Delta(m^2) < 10^{-11} \text{ eV}^2$

 129 SMIRNOV 94 analyzed the data from SN 1987A using stellar-collapse models. They also give less stringent upper limits on $\sin^22\theta$ for $10^{-11}<\Delta(m^2)<3\times10^{-7}~\rm eV^2$ and $10^{-5} < \Delta(m^2) < 3 \times 10^{-4} \ {
m eV}^2$. The same results apply to $\overline{\nu}_e \leftrightarrow \overline{\nu}_{ au}$, u_{μ} , and $u_{ au}$.

$\sin^2(2\theta)$ for given $\Delta(m^2)$ $(\nu_{\mu} \leftrightarrow \nu_{\tau})$

VALUE	<u>CL%</u>	DOCUMENT ID	<u>TECN</u> _	COMMENT
• • • We do not	use the	following data for a	verages, fits	, limits, etc. • • •
>0.4				$\Delta(m^2) = 0.001 - 0.1 \text{ eV}^2$
>0.7			99D SKAM	$\Delta(m^2) = 0.0015 - 0.015 \text{ eV}^2$
>0.82			98 MCRO	$\Delta(m^2) \sim 0.0025 \text{ eV}^2$
>0.82	90	¹³³ FUKUDA	98c SKAM	$\Delta(m^2) = 0.0005 - 0.006 \text{ eV}^2$
>0.3	90	134 HATAKEYAMA	98 KAMI	$\Delta(m^2) = 0.00055 - 0.14 \text{ eV}^2$
>0.73			98 KAMI	$\Delta(m^2) = 0.004 - 0.025 \text{ eV}^2$
< 0.7		¹³⁶ CLARK	97 IMB	$\Delta(m^2) > 0.1 \text{ eV}^2$
>0.65	90	¹³⁷ FUKUDA	94 KAMI	$\Delta(m^2) = 0.005 - 0.03 \text{ eV}^2$
< 0.5	90	138 BECKER-SZ	92 IMB	$\Delta(m^2) = 1 - 2 \times 10^{-4} \text{ eV}^2$
< 0.6	90	139 BERGER	90B FREJ	$\Delta(m^2) > 1 \text{ eV}^2$

130 FUKUDA 99C obtained this result from a total of 537 live days of upward through going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muons is (1.74 \pm 0.07 \pm 0.02) \times 10⁻¹³ cm⁻² s⁻¹ sr⁻¹. The zenith-angle dependence of the flux does not agree with no-oscillation predictions. For the $u_{\mu}
ightarrow
u_{ au}$ hypothesis, FUKUDA 99C obtained the best fit at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 5.9 \times 10^{-3}$ eV². FUKUDA 99C also reports 68% and 99% confidence-level allowed regions for the same hypotheis.

68% and 99% confidence-level allowed regions for the same hypotheis.
131 FUKUDA 990 obtained this result from a simultaneous fitting to zenlth angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is $(0.39 \pm 0.04 \pm 0.02) \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1}$. This is compared to the expected flux of $(0.73 \pm 0.16$ (theoretical error)) $\times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. The flux of upward throughgoing muons is taken from FUKUDA 99c. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99c poing muons is taken from FUKUDA 99c. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99c. obtained the best fit in the physical region at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.9 \times 10^{-3} \ eV^2$. FUKUDA 990 also reports 68% and 99% confidence-level allowed regions for the same hypothesis. FUKUDA 990 further reports the result of the oscillation analysis using the zenith-angle dependence of upward-stopping/through-going flux ratio. The best fit in the physical region is obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.1 \times 10^{-3} \text{ eV}^2$.

132 AMBROSIO 98 result is only 17% probable at maximum because of relatively low flux

AMBROSIO 98 result is only 11% probable at maximum because of relatively low flux for cos <-0.8.

133 FUKUDA 98c obtained this result by an analysis of 33.0 kton yr atmospheric-neutrino data which include the 25.5 kton yr data used by FUKUDA 98 (sub-GeV) and FUKUDA 98c (multi-GeV). Inside the physical region, the best fit was obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 2.2 \times 10^{-3} \text{ eV}^2$. In addition, FUKUDA 98c gave the 99% confidence interval, $\sin^2 2\theta > 0.73$ and $3 \times 10^{-4} < \Delta(m^2) < 8.5 \times 10^{-3} \text{ eV}^2$. FUKUDA 98c also tested the $\nu_{\mu} \rightarrow \nu_{\theta}$ hypothesis, and concluded that it is not favored.

134 HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muon is

 $(1.94 \pm 0.10^{+0.07}_{-0.06}) \times 10^{-13} \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$. This is compared to the expected flux of (2.46 \pm 0.54 (theoretical error)) \times 10⁻¹³ cm⁻² s⁻¹ sr⁻¹. For the ν_{μ} \rightarrow ν_{τ} hypothesis, the best fit inside the physical region was obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2)=3.2\times 10^{-3} \text{ eV}^2$.

135 HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande's contained events (FUKUDA 94) and upward-going muon events. The best fit was obtained at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 1.3 \times 10^{-2} \text{ eV}^2$.

136 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cerenkov detector with visible energy > 0.95 GeV.

137 FUKUDA 94 obtained this result by a combined analysis of sub-and multi-GeV atmospheric neutrino events in Kamiokande.

138 BECKER-SZENDY 92 uses upward-going muons to search for atmospheric ν_{μ} oscillations. The fraction of muons which stop in the detector is used to search for deviations in the expected spectrum. No evidence for oscillations is found.

139 BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antinuetrino oscillations.

$\Delta(m^2)$ for $\sin^2(2\theta) = 1 (\nu_{\mu} \leftrightarrow \nu_{\tau})$

VALUE (10 ⁻⁵ eV ²)	CL%	DOCUMENT ID		TECN
• • • We do not use the	followi	ng data for averages	, fits	, limits, etc. • • •
$100 < \Delta(m^2) < 5000$	90	¹⁴⁰ FUKUDA	99c	SKAM
$150 < \Delta(m^2) < 1500$	90			SKAM
$50 < \Delta(m^2) < 600$	90	142 AMBROSIO		MCRO
$50 < \Delta(m^2) < 600$	90	¹⁴³ FUKUDA	98 C	SKAM
$55 < \Delta(m^2) < 5000$ $400 < \Delta(m^2) < 2300$	90	144 HATAKEYAMA	98	KAMI
$400 < \Delta(m^2) < 2300$	90	145 HATAKEYAMA	98	KAMI
<1500			97	IMB
$500 < \Delta(m^2) < 2500$	90		94	KAMI
< 350	90	¹⁴⁸ BERGER	90B	FREJ

 140 FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muon is (1.74 \pm 0.07 \pm 0.02×10^{-13} cm $^{-2}$ s $^{-1}$ sr $^{-1}$. The zenith-angle dependence of the flux does not agree with no-oscillation predictions. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99c obtained the best fit at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 5.9 \times 10^{-3} \text{ eV}^2$. FUKUDA 99C also reports

the best fit at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 5.9 \times 10^{-3}$ eV². FUKUDA 99c also reports 68% and 99% confidence-level allowed regions for the same hypotheis. 141 FUKUDA 990 obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is $(0.39 \pm 0.04 \pm 0.02) \times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. This is compared to the expected flux of $(0.73 \pm 0.16$ (theoretical error)) $\times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. The flux of upward through-going muons is taken from FUKUDA 99c. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99c.

obtained the best fit in the physical region at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.9 \times 10^{-3}$ eV². FUKUDA 990 also reports 68% and 99% confidence-level allowed regions for the same hypothesis. FUKUDA 99D further reports the result of the oscillation analysis using the zenith-angle dependence of upward-stopping/through-going flux ratio. The best fit in the physical region is obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.1 \times 10^{-3}$ eV².

 142 AMBROSIO 98 result is only 17% probable at maximum because of relatively low flux

for cos\(\text{e} < -0.8.\)

143 FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric-neutrino data which include the 25.5 kton yr data used by FUKUDA 98 (sub-GeV) and FUKUDA 98E (multi-GeV). Inside the physical region, the best fit was obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 2.2 \times 10^{-3}$ eV². In addition, FUKUDA 98c gave the 99% confidence interval, $\sin^2 2\theta > 0.73$ and $3 \times 10^{-4} < \Delta(m^2) < 8.5 \times 10^{-3}$ eV². FUKUDA 98c also tested the $u_{\mu}
ightarrow
u_{e}$ hypothesis, and concluded that it is not favored

144 HATAKEYAMA 98 obtained this result from a total of 2456 live days of upwardgoing muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muon is $(1.94 \pm 0.10^{+0.06}) \times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. This is compared to the expected flux of (2.46 \pm 0.54 (theoretical error)) \times 10⁻¹³ cm⁻²s⁻¹sr⁻¹. For the ν_{μ} – $u_{ au}$ hypothesis, the best fit inside the physical region was obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2)=3.2\times 10^{-3} \text{ eV}^2$.

145 HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande's contained events (FUKUDA 94) and upward-going muon events. The best fit was obtained at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 1.3 \times 10^{-2} \text{ eV}^2$.

146 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cerenkov detector with visible energy > 0.95 GeV.

147 FUKUDA 94 obtained this result by a combined analysis of sub-and multi-GeV atmospheric neutrino events in Kamiokande.

148 BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antinuetrino oscillations.

 $\Delta(\emph{m}^2)$ for $\sin^2(2\theta)=1~(\emph{ν_{μ}}\rightarrow\emph{ν_{5}})$ $\emph{$\nu_{5}$}$ means $\emph{$\nu_{\tau}$}$ or any sterile (noninteracting) $\emph{$\nu$}$.

VALUE (10-3 eV2)	<u> </u>	DOCUMENT ID)	TECN	COMMENT
• • • We do not use	the following	ng data for averag	ges, fits	, limits,	etc. • • •
<3000 (or <550)	90	¹⁴⁹ OYAMA	89	KAMI	Water Cerenkov
< 4.2 or > 54.	90	BIONTA	88	IMB	Flux has ν_{μ} , $\overline{\nu}_{\mu}$, ν_{e} ,
					and \overline{u} .

149 OYAMA 89 gives a range of limits, depending on assumptions in their analysis. They argue that the region $\Delta(m^2)=(100-1000)\times 10^{-5}~{\rm eV}^2$ is not ruled out by any data for large mixing.

(G) Reactor v_e disappearance experiments

In most cases, the reaction $\overline{v}_e p \rightarrow e^+ n$ is observed at different distances from one or more reactors in a complex.

Events (Observed/Expected) from Reactor v_e Experiments

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following data for average:	s, fit	s, limits,	etc. • • •
$1.01 \pm 0.028 \pm 0.027$	150 APOLLONIO		CHOZ	Chooz reactors 1 km
$0.987 \pm 0.006 \pm 0.037$	151 GREENWOOD	96		Savannah River, 18.2 m
$0.988 \pm 0.004 \pm 0.05$	ACHKAR	95	CNTR	Bugey reactor, 15 m
$0.994 \pm 0.010 \pm 0.05$	ACHKAR	95	CNTR	Bugey reactor, 40 m
$0.915 \pm 0.132 \pm 0.05$	ACHKAR	95	CNTR	Bugey reactor, 95 m
$0.987 \pm 0.014 \pm 0.027$	152 DECLAIS	94	CNTR	Bugey reactor, 15 m
$0.985 \pm 0.018 \pm 0.034$	KUVSHINN	91	CNTR	Rovno reactor
$1.05 \pm 0.02 \pm 0.05$	VUILLEUMIER	82		Gösgen reactor
$0.955 \pm 0.035 \pm 0.110$	¹⁵³ KWON	81		$\overline{\nu}_e p \rightarrow e^+ n$
0.89 ±0.15	¹⁵³ ВОЕНМ	80		$\overline{\nu}_e p \rightarrow e^+ n$
0.38 ±0.21	154,155 REINES	80		C.
0.40 ±0.22	154,155 REINES	80		

 150 APOLLONIO 99, APOLLONIO 98 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. They use $\overline{v}_e p \to e^+ n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98.

151 GREENWOOD 96 search for neutrino oscillations at 18 m and 24 m from the reactor at

Savannah River.
152 DECLAIS 94 result based on integral measurement of neutrons only. Result is ratio of measured cross section to that expected in standard V-A theory. Replaced by ACHKAR 95.

153 KWON 81 represents an analysis of a larger set of data from the same experiment as

154 REINES 80 involves comparison of neutral- and charged-current reactions $\overline{v}_e d \rightarrow n p \overline{v}_e$ and $\overline{v}_e d \to nne^+$ respectively. Combined analysis of reactor \overline{v}_e experiments was performed by SILVERMAN 81.

 155 The two REINES 80 values correspond to the calculated \overline{v}_e fluxes of AVIGNONE 80 and DAVIS 79 respectively.

$- \overline{\nu}_e \not \rightarrow \overline{\nu}_e -$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV2)	CL%	DOCUMENT ID		TECN	COMMENT
	CLA				****
<0.0007	90	156 APOLLONIO	99	CHOZ	Chooz reactors 1 km
• • • We do n	ot use th	e following data for	r aver	ages, fits	, limits, etc. • • •
< 0.0011	90	157 BOEHM	00		Palo Verde react. 0.8 km
< 0.01	90	¹⁵⁸ ACHKAR	95	CNTR	Bugey reactor
< 0.0075	90	159 VIDYAKIN	94		Krasnoyark reactors
< 0.04	90	¹⁶⁰ AFONIN	88	CNTR	Rovno reactor
< 0.014	68	¹⁶¹ VIDYAKIN	87		$\overline{\nu}_{e} p \rightarrow e^{+} n$
< 0.019	90	162 ZACEK	86		Gösgen reactor

156 APOLLONIO 99 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. They use $v_e p \rightarrow e^+ n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98. This is the most sensitive search in terms of $\Delta(m^2)$ for $\bar{\nu}_e$ disappearance.

 $^{157}\mathrm{BOEHM}$ 00 is a disappearance search for neutrino oscillations at 0.75 and 0.89 km distance from Palo Verde reactors. The detection reaction is $\overline{v}_{\rho} p \to e^+ n$ in a segmented Gd loaded scintillator target. Result is less restrictive than APOLLONIO 99.

158 ACHKAR 95 bound is for L=15, 40, and 95 m.

159 VIDYAKIN 94 bound is for L=57.0 m, 57.6 m, and 231.4 m. Supersedes VIDYAKIN 90. 160 AFONIN 86 and AFONIN 87 also give limits on $\sin^2(2 heta)$ for intermediate values of $\Delta(m^2)$. (See also KETOV 92). Supersedes AFONIN 87, AFONIN 86, AFONIN 85, AFONIN 83, and BELENKII 83.

 161 VIDYAKIN 87 bound is for L=32.8 and 92.3 m distance from two reactors. 162 This bound is from data for L=37.9 m, 45.9 m, and 64.7 m.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

s eV ²
•
0.8 km
km
) eV ²
eV ²
10^{-2} eV^2

 163 ACHKAR 95 bound is from data for L=15, 40, and 95 m distance from the Bugey reactor.

164 BOEHM 00 search for neutrino oscillations at 0.75 and 0.89 km distance from Pao Verde

reactors. 165 APOLLONIO 99 search for neutrino oscillations at 1.1 km fixed distance from Chooz

reactors.

166 GREENWOOD 96 search for neutrino oscillations at 18 m and 24 m from the reactor at Savannah River by observing $\overline{\nu}_e p \rightarrow e^+ n$ in a Gd loaded scintillator target. Their region of sensitivity in $\Delta(m^2)$ and $\sin^2 2\theta$ is already excluded by ACHKAR 95.

167 The VYRODOV 95 bound is from data for L=15 m distance from the Bugey-5 reactor.

Massive Neutrinos and Lepton Mixing

- 168 The VIDYAKIN 94 bound is from data for L=57.0 m, 57.6 m, and 231.4 m from three reactors in the Krasnoyark Reactor complex. ¹⁶⁹ Several different methods of data analysis are used in AFONIN 88. We quote the most
- stringent limits. Different upper limits on $\sin^2 2\theta$ apply at intermediate values of $\Delta(m^2)$. Supersedes AFONIN 87, AFONIN 85, and BELENKII 83.
- 170 VIDYAKIN 87 bound is for L=32.8 and 92.3 m distance from two reactors. 171 This bound is from data for L=37.9 m, 45.9 m, and 64.7 m distance from Gosgen reactor.
- 172 ZACEK 85 gives two sets of bounds depending on what assumptions are used in the data analysis. The bounds in figure 3(a) of ZACEK 85 are progressively poorer for large Δ(m²) whereas those of figure 3(b) approach a constant. We list the latter. Both sets of bounds use combination of data from 37.9, 45.9, and 64.7m distance from reactor. ZACEK 85 states "Our experiment excludes this area (the oscillation parameter region allowed by the Bugey data, CAVAIGNAC 84) almost completely, thus disproving the indications of neutrino oscillations of CAVAIGNAC 84 with a high degree of confidence."
 This bound comes from a combination of the VUILLEUMIER 82 data at distance 37.9m
- from Gosgen reactor and new data at 45.9m.

(H) Accelerator neutrino appearance experiments $- \nu_e \rightarrow \nu_\tau -$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV2)	CL%_	DOCUMENT ID	TEC	N COMMENT	
< 0.77		74 ARMBRUSTER	98 KA	RM	
• • • We do not	use the following	data for averages	fits, lin	nits, etc. • • •	
<17	90	NAPLES	99 CC	FR FNAL	
<44	90	TALEBZADEH	87 HL	BC BEBC	
- a	90	TICHIDA	DEC EM	III ENAI	

 174 ARMBRUSTER 98 use KARMEN detector with u_e from muon decay at rest and observe 12 C(u_e,e^-) 12 N $_{gs}$ essentially free from this background. The reported limits on the parameters of ν_e° disappearance are not competitive. A three-flavor analysis is also

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.21	90	NAPLES	99	CCFR	FNAL
• • • We do no	t use the following	data for averages	s, fits	i, limits,	etc. • • •
< 0.338	90 17	⁵ ARMBRUSTEI	398	KARM	
< 0.36	90	TALEBZADEH	87	HLBC	BEBC
< 0.25	90 17	6 USHIDA	86C	EMUL	FNAL

- 175 See foonote in preeding table (ARMBRUSTER 98) for further details, and see the paper
- for a plot showing allowed regions. A three-flavor analysis is also presented here. 176 USHIDA 86C published result is $\sin^2 2\theta < 0.12$. The quoted result is corrected for a nu-The quoted result is sin- $2\theta < 0.12$. The quoted result is corrected for a numerical mistake incurred in calculating the expected number of ν_e CC events, normalized to the total number of neutrino interactions (3886) rather than to the total number of ν_μ CC events (1870).

$-\overline{\nu}_e \rightarrow \overline{\nu}_\tau -$

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

 $\Delta(m^2)$ for $\sin^2(2\theta) = 1$

() · · · · · · · ·		,		
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<0.7	90	177 FRITZE 80	HYBR	BEBC CERN SPS

177 Authors give P($\nu_e \rightarrow \ \nu_{ au}$) <0.35, equivalent to above limit.

$$-\nu_{\mu} \rightarrow \nu_{e}$$

_(,,,) ()	_					
VALUE (eV ²)	CL%		DOCUMENT ID		TECN	COMMENT
< 0.09	90		ANGELINI	86	HLBC	BEBC CERN PS
• • • We do not use the	e follow	ing c	lata for averages	, fits	, limits,	etc. • • •
0.03 to 0.3	95		ATHANASSO	.98	LSND	$\nu_{\mu} \rightarrow \nu_{e}$
<2.3	90	179	LOVERRE	96		CHARM/CDHS
< 0.9	90		VILAIN	94C	CHM2	CERN SPS
< 0.1	90		BLUMENFELD	89	CNTR	
<1.3	90		AMMOSOV	88	HLBC	SKAT at Serpukhov
< 0.19	90		BERGSMA	88	CHRM	
		180	LOVERRE	88	RVUE	
<2.4	90		AHRENS	87	CNTR	BNL AGS
<1.8	90		BOFILL	87	CNTR	FNAL
<2.2	90	181	BRUCKER	86	HLBC	15-ft FNAL
< 0.43	90		AHRENS	85	CNTR	BNL AGS E734
<0.20	90		BERGSMA	84	CHRM	
<1.7	90		ARMENISE	81	HLBC	GGM CERN PS
< 0.6	90		BAKER	81	HLBC	15-ft FNAL
<1.7	90		ERRIQUEZ	81	HLBC	BEBC CERN PS
<1.2	95		BLIETSCHAU	78	HLBC	GGM CERN PS
<1.2	95		BELLOTTI	76	HLBC	GGM CERN PS

- 178 ATHANASSOPOULOS 98 is a search for the $\nu_{\mu} \to \nu_{e}$ oscillations using ν_{μ} from π^{+} decay in flight. The 40 observed beam-on electron events are consistent with ν_{e} C \to e^- X; the expected background is 21.9 \pm 2.1. Authors interpret this excess as evidence for an oscillation signal corresponding to oscillations with probability (0.26 \pm 0.10 \pm 0.05)%. Although the significance is only 2.3 σ , this measurement is an important and consistent cross check of ATHANASSOPOULOS 96 who reported evidence for $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillations
- from μ^+ decay at rest. See also ATHANAS5OPOULOS 98B. 179 LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.
- 180 LOVERRE 88 reports a less stringent, indirect limit based on theoretical analysis of neutral to charged current ratios.
- 181 15ft bubble chamber at FNAL.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VAL	.UE (units 10 ⁻³)	CL%		DOCUMENT ID		TECN	COMMENT
<	3.0	90	182	LOVERRE	96		CHARM/CDH\$
<	2.5	90		AMMOSOV	88	HLBC	SKAT at Serpukhov
• •	 We do not use the 	followi	ng d	ata for averages	, fits	, limits,	etc. • • •
	0.0005 to 0.03	95	183	ATHANASSO	.98	LSND	$\nu_{\mu} \rightarrow \nu_{e}$
<	9.4	90		VILAIN			CERN SPS
<	5.6	90	184	VILAIN	94C	CHM2	CERN SPS
<	16	90		BLUMENFELD		CNTR	
<	8	90		BERGSMA	88	CHRM	$\Delta(m^2) \geq 30 \text{ eV}^2$
			185	LOVERRE	88	RVUE	
<	10	90		AHRENS	87	CNTR	BNL AGS
<	15	90		BOFILL	87	CNTR	FNAL
<	20	90	186	ANGELIN	86		BEBC CERN PS
	20 to 40		187	BERNARDI	86B	CNTR	$\Delta(m^2)\approx 5-10$
<	11	90	188	BRUCKER	86	HLBC	15-ft FNAL
<	3.4	90		AHRENS	85	CNTR	BNL AGS E734
<2	240	90		BERGSMA	84	CHRM	
<	10	90		ARMENISE	81	HLBC	GGM CERN PS
<	6	90		BAKER	81	HLBC	15-ft FNAL
<	10	90		ERRIQUEZ	81	HLBC	BEBC CERN PS
<	4	95		BLIETSCHAU	78	HLBC	GGM CERN PS
<	10	95		BELLOTTI	76	HLBC	GGM CERN PS

- $^{182}\text{LOVERRE}$ 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986. $^{183}\text{ATHANASSOPOULOS}$ 98 report (0.26 \pm 0.10 \pm 0.05)% for the oscillation probability; the value of $\sin^2\!2\theta$ for large Δm^2 is deduced from this probability. See footnote in the value of sin-2 ℓ for large Δm^2 is deduced from this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. If effect is due to oscillation, it is most likely to be intermediate $\sin^2 2\theta$ and Δm^2 . See also ATHANASSOPOULOS 988.

 184 VILAIN 94C limit derived by combining the ν_{μ} and $\overline{\nu}_{\mu}$ data assuming CP conservation.
- $185\,\text{LOVERRE}$ 88 reports a less stringent, indirect limit based on theoretical analysis of neutral to charged current ratios.
- ¹⁸⁶ ANGELINI 86 limit reaches 13×10^{-3} at $\Delta(m^2) \approx 2 \text{ eV}^2$.
- 187 BERNARDI 86B is a typical fit to the data, assuming mixing between two species. As the authors state, this result is in conflict with earlier upper bounds on this type of neutrino oscillations.
 188 15ft bubble chamber at FNAL.

$-\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV2)	CL%	DOCUMENT ID		TECN	COMMENT	
<0.14	90	¹⁸⁹ FREEDMAN	93	CNTR	LAMPF	
• • • We do not u	se the follow	ing data for average	s, fits	, limits,	etc. • • •	
0.05-0.08	90	190 ATHANASSO.		LSND	LAMPF	
0.048-0.090	80	¹⁹¹ ATHANASSO.	95			
< 0.07	90	192 HILL	95			
< 0.9	90	VILAIN	94C	CHM2	CERN SPS	
<3.1	90	BOFILL	87	CNTR	FNAL	
<2.4	90	TAYLOR	83	HLBC	15-ft FNAL	
< 0.91	90	193 NEMETHY	81B	CNTR	LAMPF	
<1	95	BLIETSCHAU	78	HLBC	GGM CERN PS	

- 189 FREEDMAN 93 is a search at LAMPF for $\bar{\nu}_e$ generated from any of the three neutrino types ν_μ , $\bar{\nu}_\mu$, and ν_e which come from the beam stop. The $\bar{\nu}_e$'s would be detected by the reaction $\overline{v}_e p \rightarrow e^+ n$. FREEDMAN 93 replaces DURKIN 88.
- 190 ATHANASSOPOULOS 96 is a search for \overline{v}_e 30 m from LAMPF beam stop. Neutrinos 190 ATHANASSOPOULOS 96 is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly from π^+ decay at rest. $\overline{\nu}_e$ could come from either $\overline{\nu}_\mu \to \overline{\nu}_e$ or $\nu_e \to \overline{\nu}_e$; our entry assumes the first interpretation. They are detected through $\overline{\nu}_e \, p \to e^+ n$ (20 MeV $< E_{e^+} < 60$ MeV) in delayed coincidence with $np \to d \gamma$. Authors observe 51 ± 20 ± 8 total excess events over an estimated background 12.5 ± 2.9. ATHANASSOPOULOS 968 is a shorter version of this paper.

 191 ATHANASSOPOULOS 95 error corresponds to the 1.6σ band in the plot. The expected background is 2.7 ± 0.4 events. Corresponds to an oscillation probability of (0.34 $^+$ 0.20 ± 0.07)%. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96.

 192 HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_\mu \to \overline{\nu}_e$ and obtains only upper limits.
- oscillation $\overline{v}_{\mu} \rightarrow \ \overline{v}_{e}$ and obtains only upper limits.
- ¹⁹³ In reaction $\vec{v}_e p \rightarrow e^+ n$.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
< 0.004	95	BLIETSCHAU	78	HLBC	GGM CERN PS
• • • We do not use the	following	data for averages	, fits	, limits,	etc. • • •
$0.0062 \pm 0.0024 \pm 0.0010$	19	4 ATHANASSO	96	LSND	LAMPF
0.003-0.012	80 19	⁵ ATHANASSO			
< 0.006	90 19	¹⁶ HILL	95		
<4.8	90	VILAIN	94C	CHM2	CERN SPS
< 5.6			94c	CHM2	CERN SPS
< 0.024	90 19	⁾⁸ FREEDMAN	93	CNTR	LAMPF
< 0.04	90	BOFILL	87	CNTR	FNAL
< 0.013	90	TAYLOR	83	HLBC	15-ft FNAL
<n2< td=""><td>an 19</td><td>9 NEMETHY</td><td>91 R</td><td>CNTR</td><td>LAMPE</td></n2<>	an 19	9 NEMETHY	91 R	CNTR	LAMPE

1

- $^{194}\,\text{ATHANASSOPOULOS}$ 96 reports (0.31 \pm 0.12 \pm 0.05)% for the oscillation probability; the value of $\sin^2 2\theta$ for large $\Delta(m^2)$ should be twice this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions.
- preceding table for further details, and see the paper for a plot showing allowed regions.
 195 ATHANASSOPOULOS 95 error corresponds to the 1.6 σ band in the plot. The expected background is 2.7 \pm 0.4 events. Corresponds to an oscillation probability of $(0.34^{+0.20}_{-0.18}\pm0.07)\%$. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96.

 196 HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ and obtains only upper limits.
- 197 VILAIN 94C limit derived by combining the ν_{μ} and $\overline{\nu}_{\mu}$ data assuming *CP* conservation.
- 198 FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types $\nu_\mu,\ \overline{\nu}_\mu,$ and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e \, p \, \rightarrow \, e^+ \, n$. FREEDMAN 93 replaces DURKIN 88.
- ¹⁹⁹ In reaction $\overline{\nu}_e p \rightarrow e^+ n$.

$$-- \nu_{\mu}(\overline{\nu}_{\mu}) \rightarrow \nu_{e}(\overline{\nu}_{e})$$
 $---$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID	TECN	COMMENT
< 0.075	90	BORODOV 92	CNTR	BNL E776
• • • We do not use th	e following	data for averages, fit	s, limits,	etc. • • •
<16	90 20	O ROMOSAN 97	CCER	FNAI

 $^{200}\,\mathrm{ROMOSAN}$ 97 uses wideband beam with a 0.5 km decay region.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE (units 10 ⁻³)	CL%	DOCUMENT ID TECN COMMENT	
<1.8	90	201 ROMOSAN 97 CCFR FNAL	
• • • We do not use	the follow	ing data for averages, fits, limits, etc. • • •	
<3.8	90	²⁰² MCFARLAND 95 CCFR FNAL	
/3	90	BORODOV 92 ONTR BNI F776	

201 ROMOSAN 97 uses wideband beam with a 0.5 km decay region.

²⁰²MCFARLAND 95 state that "This result is the most stringent to date for 250< $\Delta(m^2)$ <450 eV 2 and also excludes at 90%CL much of the high $\Delta(m^2)$ region favored by the recent LSND observation." See ATHANASSOPOULOS 95 and ATHANASSOPOU

$-\nu_{\mu} \rightarrow \nu_{\tau} -$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
< 1.1	90 20	³ ESKUT	98B	CHRS	CERN SPS
• • • We do not use the	following	data for averages	, fits	, limits,	etc. • • •
< 1.2		4 ASTIER	99	NOMD	CERN SPS
< 1.4		⁵ ALTEGOER	98B	NOMD	CERN SPS
< 1.5		⁶ ESKUT	98	CHRS	CERN SPS
< 3.3	90 20	7 LOVERRE	96		CHARM/CDHS
< 1.4	90	MCFARLAND	95	CCFR	FNAL
< 4.5	90	BATUSOV	90B	EMUL	FNAL
<10.2	90	BOFILL	87	CNTR	FNAL
< 6.3	90	BRUCKER	86	HLBC	15-ft FNAL
< 0.9	90	USHIDA	86 C	EMUL	FNAL
< 4.6	90	ARMENISE	81	HLBC	GGM CERN SPS
< 3	90	BAKER	81	HLBC	15-ft FNAL
< 6	90	ERRIQUEZ	81	HLBC	BEBC CERN SPS
< 3	90	USHIDA	81	EMUL	FNAL

 203 ESKUT 98B search for $\tau^-\to~\mu^-\nu_{\tau}\overline{\nu}_{\mu}$ or $h^-\nu_{\tau}\overline{\nu}_{\mu},$ where h^- is a negatively charged hadron. The μ^- sample is somewhat larger than in ESKUT 98, which this result super-

 204 ASTIER 99 limits are based on data corresponding to \sim 950000 $\nu_{\mu}{\rm CC}$ interactions in the 1995, 1996, and (most) 1997 runs. This is a "blind" analysis using the FELD-MAN 98 classical CL approach, and other algorithms have also been improved since ALTEGOER 988

205 ALTEGOER 98B is the NOMAD 1995 data sample result, searching for events with $au^-\to e^-\nu_ au \overline{\nu}_e$, hadron $^-\nu_ au$, or $\pi^-\pi^+\pi^-$ decay modes using classical CL approach of FELDMAN 98.

206 ESKUT 98 search for events with one μ^- with indication of a kink from τ^- decay in the nuclear emulsion. No candidates were found in a 31,423 event subsample.

207 LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<0.0012	90	²⁰⁸ ASTIER	99	NOMD	CERN SPS	
• • • We do not	use the followi	ing data for average	s, fits	, limits,	etc. • • •	
< 0.0042		²⁰⁹ ALTEGOER	98 B	NOMD	CERN SPS	
< 0.0035	90	²¹⁰ ESKUT	98	CHRS	CERN SPS	

< 0.0018	90	²¹¹ ESKUT	98B CHRS	CERN SPS
< 0.006	90	²¹² LOVERRE	96	CHARM/CDHS
< 0.0081	90	MCFARLAND	95 CCFR	FNAL
< 0.06	90	BATUSOV	90B EMUL	FNAL
< 0.34	90	BOFILL	87 CNTR	FNAL
< 0.088	90	BRUCKER	86 HLBC	15-ft FNAL
< 0.004	90	USHIDA	86c EMUL	FNAL
< 0.11	90	BALLAGH	84 HLBC	15-ft FNAL
< 0.017	90	ARMENISE	81 HLBC	GGM CERN SPS
< 0.06	90	BAKER	81 HLBC	15-ft FNAL
< 0.05	90	ERRIQUEZ	81 HLBC	BEBC CERN SPS
< 0.013	90	USHIDA	81 EMUL	FNAL

²⁰⁸ ASTIER 99 limits are based on data corresponding to \sim 950000 $\nu_{\mu}{\rm CC}$ interactions in the 1995, 1996, and (most) 1997 runs. This is a "blind" analysis using the FELD-MAN 98 classical CL approach, and other algorithms have also been improved since ALTEGOER 98B.

209 ALTEGOER 988 is the NOMAD 1995 data sample result, searching for events with $r^- \to {\rm e}^- \nu_\tau \overline{\nu}_e$, hadron $^- \nu_\tau$, or $\pi^- \pi^+ \pi^-$ decay modes using classical CL approach of FELDMAN 98.

210 ESKUT 98 search for events with one μ^- with indication of a kink from τ^- decay in the nuclear emulsion. No candidates were found in a 31,423 event subsample. 211 ESKUT 98B search for $\tau^- \to \mu^- \nu_\tau \overline{\nu}_\mu$ or $h^- \nu_\tau \overline{\nu}_\mu$, where h^- is a negatively charged

hadron. The μ^{-} sample is somewhat larger than in ESKUT 98, which this result super-

212 LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$

$\Delta(m^2) \text{ for } \sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
<2.2	90	ASRATYAN	81	HLBC	FNAL
• • • We do not use th	e following	data for average	s, fit	s, limits,	etc. • • •
<1.4	90	MCFARLAND	95	CCFR	FNAL
<6.5	90	BOFILL	87	CNTR	FNAL .
<7.4	90	TAYLOR	83	HLBC	15-ft FNAL

$\sin^2(2\theta)$ for "Large" $\Lambda(m^2)$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<4.4 × 10 ⁻²	90	ASRATYAN	81	HLBC	FNAL
• • We do not use	the following	data for average	s, fit	s, limits,	etc. • • •
< 0.0081	90	MCFARLAND	95	CCFR	FNAL
< 0.15	90	BOFILL	87	CNTR	FNAL
$< 8.8 \times 10^{-2}$	90	TAYLOR	83	HLBC	15-ft FNAL

$- u_{\mu}(\overline{ u}_{\mu}) ightarrow u_{\tau}(\overline{ u}_{\tau}) =$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV2)	CL%	DOCUMENT ID		TEÇN	COMMENT
<1.5	90	213 GRUWE	93	CHM2	CERN SPS

 $^{213}\mathsf{GRUWE}$ 93 is a search using the CHARM II detector in the CERN SPS wide-band neutrino beam for $\nu_{\mu} \to ~\nu_{ au}$ and $ar{v}_{\mu} \to ~\overline{v}_{ au}$ oscillations signalled by quasi-elastic $\nu_{ au}$ and $\bar{\nu}_{\tau}$ interactions followed by the decay $\tau \to \nu_{\tau} \pi$. The maximum sensitivity in $\sin^2 2\theta$ $(< 6.4 \times 10^{-3}$ at the 90% CL) is reached for $\Delta(m^2) \simeq 50 \text{ eV}^2$.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE (units 10 ⁻³)	CL%	DOCUMENT ID		TECN	COMMENT
<8	90	214 GRUWE	93	CHM2	CERN SPS

214 GRUWE 93 is a search using the CHARM II detector in the CERN SP5 wide-band neutrino beam for $\nu_{\mu} \rightarrow \nu_{\tau}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscillations signalled by quasi-elastic ν_{τ} and $\overline{\nu}_{ au}$ interactions followed by the decay $au
ightarrow
u_{ au} \pi$. The maximum sensitivity in $\sin^2 2\theta$ (< 6.4 \times 10⁻³ at the 90% CL) is reached for $\Delta(m^2) \simeq 50 \text{ eV}^2$.

$$-- \nu_e \rightarrow (\overline{\nu}_e)_L$$
 $----$

This is a limit on lepton family-number violation and total lepton-number violation. $(\overline{
u}_e)_L$ denotes a hypothetical left-handed $\overline{
u}_e$. The bound is quoted in terms of Δ (m²), $\sin(2\theta)$, and α , where α denotes the fractional admixture of (V+A) charged current.

$\alpha\Delta(m^2)$ for $\sin^2(2\theta)=1$

()				
VALUE (eV ²)	CL%	DOCUMENT ID	TECN	COMMENT
<0.14	90	²¹⁵ FREEDMAN 93	CNTR	LAMPF
• • • We do not use the	follow	ing data for averages, fits	s, limits,	etc. • • •
<7	90	216 COOPER 82	HLBC	BEBC CERN SPS

215 FREEDMAN 93 is a search at LAMPF for $\bar{\nu}_e$ generated from any of the three neutrino types ν_μ , $\bar{\nu}_\mu$, and ν_e which come from the beam stop. The $\bar{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e \, \rho \to e^+ \, n$.

²¹⁶ COOPER 82 states that existing bounds on V+A currents require α to be small.

α ² sin ² (2θ) for	"Large" Δ(
<0.032	90	217 FREEDMAN 93 CNTR LAMPF
• • • We do not	use the follow	wing data for averages, fits, limits, etc. • • •
< 0.05	90	218 COOPER 82 HLBC BEBC CERN SPS
FREEDMAN types $ u_{\mu}$, $\overline{ u}_{\mu}$	93 is a search and ν_e which	at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino h come from the beam stop. The $\overline{\nu}_e$'s would be detected by
	$\hat{r}_e p \rightarrow e^+ n.$ states that exi	isting bounds on V+A currents require $lpha$ to be small.
		$\nu_{\mu} \rightarrow (\overline{\nu}_{e})_{L}$
See note	above for ν_{μ}	$\rightarrow (\overline{\nu}_{e})_{I}$ limit
_	_	
$\alpha\Delta(m^2)$ for sign		
VALUE (eV ²)	<u>CL%</u>	
<0.16	90	²¹⁹ FREEDMAN 93 CNTR LAMPF
		wing data for averages, fits, limits, etc. • • •
<0.7	90	²²⁰ COOPER 82 HLBC BEBC CERN SPS
219 FREEDMAN types ν _μ , ν _μ	93 is a search , and ν_e whic	at LAMPF for \overline{v}_e generated from any of the three neutrinoch come from the beam stop. The \overline{v}_e 's would be detected
by the reacti	on $\overline{\nu}_e p \rightarrow e$	e^+ n. The limit on $\Delta(m^2)$ is better than the CERN BEBC
experiment, t	out the limit or	in $\sin^2 \theta$ is almost a factor of 100 less sensitive. isting bounds on V+A currents require $lpha$ to be small.
$\alpha^2 \sin^2(2\theta)$ for	"l arge" \/	(m^2)
VALUE	CL%	•
<0.001	90	221 COOPER 82 HLBC BEBC CERN SPS
		wing data for averages, fits, limits, etc. • • •
< 0.07	90	²²² FREEDMAN 93 CNTR LAMPF

(I) Disappearance experiments with accelerator & radioactive source neutrinos

221 COOPER 82 states that existing bounds on V+A currents require α to be small.
222 FREEDMAN 93 is a search at LAMPF for ν_e generated from any of the three neutrino types ν_μ , ν_μ , and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected

by the reaction $\overline{\nu}_e p \to e^+ n$. The limit on $\Delta(m^2)$ is better than the CERN BEBC

		ν.	4	ν.	
--	--	----	---	----	--

$\Delta(m^2)$	for	sin²	(2θ)	=	1
---------------	-----	------	-------------	---	---

experiment, but the limit on $\sin^2\!\theta$

VALUE (eV2)	CL%	DOCUMENT ID		TECN	COMMENT	_
< 0.18	90	223 HAMPEL	98	GALX	51 Cr source	
• • • We do not e	ise the follow	ing data for average	es, fits	s, limits,	etc. • • •	
<40	90	²²⁴ BORISOV	96	CNTR	IHEP-JINR detector	
<14.9	90	BRUCKER	86	HLBC	15-ft FNAL	
< 8	90	BAKER	81	HLBC	15-ft FNAL	
<56	90	DEDEN	81	HLBC	BEBC CERN SPS	
<10	90	ERRIQUEZ	81	HLBC	BEBC CERN SPS	
<2.3 OR >8	90	NEMETHY	81B	CNTR	LAMPF	
000						_

 223 HAMPEL 98 analyzed the GALLEX calibration results with ^{51}Cr neutrino sources and updates the BAHCALL 95 analysis result. They also gave 95% and 99% CL limits of

Q.0.2 and < 0.22, respectively.
 224 BORISOV 96 exclusion curve extrapolated to obtain this value; however, it does not have the right curvature in this region.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<7 × 10 ⁻²	90	225 ERRIQUEZ	81	HLBC	BEBC CERN SPS
• • • We do not	use the follow	ing data for average	es, fit	s, limits,	etc. • • •
< 0.4	90	226 HAMPEL	98	GALX	51 Cr source
< 0.115	90	²²⁷ BORISOV	96	CNTR	$\Delta(m^2)=175~\text{eV}^2$
< 0.54	90	BRUCKER	86	HLBC	15-ft FNAL
< 0.6	90	BAKER	81	HLBC	15-ft FNAL
< 0.3	90	²²⁵ DEDEN	81	HLBC	BEBC CERN SPS

²²⁵ Obtained from a Gaussian centered in the unphysical region.
²²⁶ HAMPEL 98 analyzed the GALLEX calibration results with ⁵¹Cr neutrino sources and updates the BAHCALL 95 analysis result. They also gave 95% and 99% CL limits of

< 0.45 and < 0.56, respectively. 227 BORISOV 96 sets less stringent limits at large $\Delta(m^2)$, but exclusion curve does not have clear asymptotic behavior.

$-\nu_{\mu} \not\rightarrow \nu_{\mu}$ —

$\Delta(m^2)$ for	or sin ² (2 0)	= 1
VALUE INV2	١	CIN

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT	
<0.23 OR >1500 OL	JR LIMIT					
<0.23 OR >100	90	DYDAK	84	CNTR		
<13 OR >1500	90	STOCKDALE	84	CNTR		
• • • We do not use	the followin	g data for average	s, fit	s, limits,	etc. • • •	
< 0.29 OR >22	90	BERGSMA	88	CHRM		
<7	90	BELIKOV	85	CNTR	Serpukhov	
<8.0 OR >1250	90	STOCKDALE	85	CNTR		
<0.29 OR >22	90	BERGSMA	84	CHRM		
<8.0	90	BELIKOV	83	CNTR		

$\sin^2(2\theta)$ for $\Delta(m^2) = 100 \text{eV}^2$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<0.02	90	228 STOCKDALE	85	CNTR	FNAL	
• • • We do no	t use the follow	ing data for average	s, fits	s, limits,	etc. • • •	
< 0.17	90	229 BERGSMA		CHRM		
< 0.07	90	230 BELIKOV	85	CNTR	Serpukhov	
< 0.27	90	²²⁹ BERGSMA	84	CHRM	CERN PS	
< 0.1	90	²³¹ DYDAK			CERN PS	
< 0.02	90	²³² STOCKDALE	84	CNTR	FNAL	
< 0.1	90	²³³ BELIKOV	83	CNTR	Serpukhov	
						_

²²⁸ This bound applies for $\Delta(m^2)=100~{\rm eV}^2$. Less stringent bounds apply for other $\Delta(m^2)$;

²²⁸ This bound applies for $\Delta(m^2) = 100 \text{ eV}^2$. Less stringent bounds apply for other $\Delta(m^2)$; these are nontrivial for $8 < \Delta(m^2) < 1250 \text{ eV}^2$. Less stringent bounds apply for other $\Delta(m^2)$; these are nontrivial for $0.28 < \Delta(m^2) < 22 \text{ eV}^2$. Less stringent bounds apply for other $\Delta(m^2)$; these are nontrivial for $0.28 < \Delta(m^2) < 22 \text{ eV}^2$. For some values of $\Delta(m^2)$, the value is less stringent; the least restrictive, nontrivial bound occurs approximately at $\Delta(m^2) = 300 \text{ eV}^2$ where $\sin^2(2\theta) < 0.13$ at CL = 90%.

²³¹ This bound applies for $\Delta(m^2) = 1.-10$. eV². Less stringent bounds apply for other $\Delta(m^2)$; these are nontrivial for $0.23 < \Delta(m^2) < 90 \text{ eV}^2$.

²³² This bound applies for $\Delta(m^2) = 110 \text{ eV}^2$. Less stringent bounds apply for other $\Delta(m^2)$; these are nontrivial for $13 < \Delta(m^2) < 1500 \text{ eV}^2$.

these are nontrivial for $13 < \Delta(m^2) < 1500 \text{ eV}^2$.

233 Bound holds for $\Delta(m^2) = 20-1000 \text{ eV}^2$.

-- ν_μ ≁ ν_μ ---

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV2)	CL%	DOCUMENT ID		TECN
<7 OR >1200 OUR	LIMIT			-
<7 OR >1200	90	STOCKDALE	85	CNTR

$\sin^2(2\theta)$ for 190 eV² < $\Delta(m^2)$ < 320 eV²

		• •		
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<0.02	90	234 STOCKDALE 85	CNTR	FNAI

²³⁴ This bound applies for $\Delta(m^2)$ between 190 and 320 or = 530 eV². Less stringent bounds apply for other $\Delta(m^2)$; these are nontrivial for $7 < \Delta(m^2) < 1200 \text{ eV}^2$.

REFERENCES FOR Searches for Massive Neutrinos and Lepton Mixing

		BB1 41 /1 1 111		
	00	PRL 64 (to be publ.)	F. Boehm et al.	ACEN C-U-L)
	99	PR C59 2108	C.E. Aalseth et al.	(IGEX Collab.)
ABDURASHI		PR C60 055801	J.N. Abdurashitov et al.	(SAGE Collab.)
	990	EPJ CB 41	P. Abreu et al.	(DELPHI Collab.)
	99K	PL B461 397	M. Acciarri et al.	(L3 Collab.)
	99L	PL B462 354	M. Acciarri et al.	(L3 Collab.)
	99	PL B449 137	W.W.M. Allison et al.	(Soudan 2 Collab.)
	99	PL B466 415	M. Apollonio et al.	(CHOOZ Collab.)
	99	NP A658 299	R. Arnold et al.	(NEMO Collab.)
	99	PL B453 169	P. Astier et al.	(NOMAD Collab.)
	99B	PRL 83 41	L. Baudis et al.	
	99	PRL 83 1092	R.A.C. Croft, W. Hu, R. Dave	
	99 99	JP G25 1839	O. Dragoun et al.	(Super-Kamiokande Collab.)
		PRL 82 1810 PRL 82 2430	Y. Fukuda et al. Y. Fukuda et al.	(Super-Kamiokande Collab.)
	99B 99C	PRL 82 2644	Y. Fukuda et al.	(Super-Kamiokande Collab.)
	99D	PL B467 185	Y. Fukuda et al.	(Super-Kamiokande Collab.)
	99 73D	PL B447 127	W. Hampel et ai.	(GALLEX Collab.)
	99	PL B451 247	E. Holzschuh et al.	(GALLEX COMBD.)
	99	PR D59 031101	D. Naples et al.	(CCFR Collab.)
	99	PRL 83 4943	A. Vaitaitis et al.	(CCFR Collab.)
	98C	EPJ C1 45	K. Ackerstaff et al.	(OPAL Collab.)
	98 98	PL B433 156	A. Alessandrello et al.	(OFAL COMBD.)
	98B	PL B431 219	S. Altegoer et al.	(NOMAD Collab.)
	988	PL B431 219 PL B434 451	M. Ambrosio et al.	(MACRO Collab.)
	98	PL B420 397	M. Apollonio et al.	(CHOOZ Collab.)
ARMBRUSTER		PR C57 3414	B. Armbruster et al.	(KARMEN Collab.)
ASSAMAGAN		PL B434 158	K. Assamagan et al.	(MARKETE CONSD.)
ATHANASSO		PRL 81 1774	C. Athanassopoulos et al.	(LSND Collab.)
ATHANASSO		PR C58 2489	C. Athanassopoulos et al.	(LSND Collab.)
CLEVELAND		APJ 496 505	B.T. Cleveland et al.	(Homestake Collab.)
	98	PL B424 202	E. Eskut et al.	(CHORUS Collab.)
		PL B434 205	E. Eskut et al.	(CHORUS Collab.)
	98	PR D57 3873	G.J. Feldman, R.D. Cousins	(CITOROS COMBS.)
	98	PL B433 9	Y. Fukuda et al.	(Super-Kamiokande Collab.)
	98B	PRL 81 1158	Y. Fukuda et al.	(Super-Kamiokande Collab.)
	98C	PRL 81 1562	Y. Fukuda et al.	(Super-Kamiokande Collab.)
	98E	PL B436 33	Y. Fukuda et al.	(Super-Kamiokande Collab.)
	98	PL B420 114	W. Hampel et al.	(GALLEX Collab.)
HATAKEYAMA		PRL 81 2016	S. Hatakeyama et al.	(Kamiokande Collab.)
	98	PR C58 2512	M.M. Hindi et al.	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	98	PL B434 407	R. Luescher et al.	
	98	PR D57 R6594	Y. Oyama	
	98	EPJ C3 1	C. Caso et ai.	
	971	ZPHY C74 57	P. Abreu et al.	(DELPHI Collab.)
	97L	ZPHY C75 580 erratum	P Abreu et al	(DELPHI Collab.)
	97	PL B391 491	W,W.M. Allison et al.	(Soudan 2 Collab.)
	97	PR C55 474	M. Alston-Garniost et al.	(LBL, MTHO+)
	97	ZPHY A357 351	A.S. Barabash et al.	(ITEP, BCEN)
	97	PL B407 219	L. Baudis et al.	(MPIH, KIAE, SASSO)
	97	PRL 79 345	R. Clark et al.	(IMB Collab.)
	97	PR C56 2451	A. de Silva et al.	(UCI)
	97	PR D55 54	M. Gunther et al.	(MPIH, KIAE, SASSO)
	97	PRL 78 2912	A. Romosan et al.	(CCFR Collab.)
	96B	NPBP5 48 238	A. Alessandrello et al.	(MILA, SASSO)
	96	ZPHY C72 239	R. Arnold et al.	(BCEN, CAEN, JINR+)
ATHANASSO		PR C54 2685	C. Athanassopoulos et al.	(LSND Collab.)
ATHANASSO		PRL 77 3082	C. Athanassopoulos et al.	(LSND Collab.)
	96	PRL 77 5186	A. Balysh et al.	(KÌAE, UCI, CIT)
	96	PL B369 39	A.A. Borisov et al.	(SERP, JINR)
	96	PR D53 558	D.A. Bryman, T. Numao	(TRIU)
	965	PL B384 439	D. Buskulic et al.	(ALEPH Collab.)
	96	NP A611 85	H. Ejiri et al.	(OSAK)
	96	PRL 77 1683	Y. Fukuda et al.	(Kamiokande Collab.)
	96B		Y. Fukuda et al.	(Kamiokande Collab.)
GREENWOOD		PR D53 6054	Z.D. Greenwood et al.	(UCI, SVR, SCUC)
	96	PL B388 384	W. Hampel et al.	(GALLEX Collab.)

LOVERRE	96	PL B370 156	P.F. Loverre N. Takaoka, Y. Motomura, K. N	(10/1151) 0/400
TAKAOKA WIETFELDT	96 96	PR C53 1557 PRPL 273 149	F.E. Wietfeldt, E.B. Norman	agao (KYUSH, OKAY) (LBL)
ACHKAR	95	NP B434 503	B. Achkar et al. (SING, :	SACLD, CPPM, CDEF+)
AHLEN ARMBRUSTER	95 95	PL B357 481 PL B348 19	S.P. Ahlen et al. B. Armbruster et al.	(MACRO Collab.) (KARMEN Collab.)
ARNOLD	95	JETPL 61 170 Translated from ZETFP	R.G. Arnold et al.	(NEMO Collab.)
ATHANASSO		PRL 75 2650	C. Athanassopoulos et al.	(LSND Collab.)
BAHCALL BAHRAN	95 95	PL B348 121 PL B354 481	J.N. Bahcall, P.I. Krastev, E. Lis M.Y. Bahran, G.R. Kalbfleisch	(IAS) (OKLA)
BALYSH	95	PL B356 450	A. Balysh et al.	(MPIH, KIAE, SASSO) (ITEP, SCUC, PNL+)
BARABASH BILGER	95 95	PL B345 408 PL B363 41	A.S. Barabash et al. R. Bilger et al.	(ITEP, SCUC, PNL+) (TUBIN, KARLE, PSI)
BURACHAS	95	PAN 58 153	S.F. Burachas et al.	(KIEV)
DANEVICH	95	Translated from YAF 58 PL B344 72	195. F.A. Danevich et al.	(KIEV)
DASSIE	95	PR D51 2090	D. Dassie et al.	(NEMO Collab.)
DAUM DAUM	95 95B	ZPHY C66 417 PL B361 179	K. Daum <i>et al.</i> M. Daum <i>et al.</i>	(FREJUS Collab.) (PSI, VIRG)
EJIRI	95	JPSJ 64 339	H. Ejiri <i>et al.</i>	(OSAK, KIEV)
FARGION GALLAS	95 95	PR D52 1828 PR D52 6 PR D51 1458	D. Fargion et al. E. Gallas et al. (N	(ROMA, KIAM, MPEI) ISU, FNAL, MIT, FLOR)
GARCIA	95		E. Gallas et al. (N E. Garcia et al.	(ZARA, SCUC, PNL)
GEORGADZE	95	PAN 58 1093 Translated from YAF 58	1170.	
HAGNER HIDDEMANN	95 95	PR D52 1343 JP G21 639	C. Hagner et al. K.H. Hiddemann, H. Daniel, O. :	(MUNT, LAPP, CPPM) Schwentker (MUNT)
HILL	95	PRL 75 2654	J.E. Hill	(PENN)
KOBAYASHI MCFARLAND	95 95	NP A586 457 PRL 75 3993	M. Kobayashi, M. Kobayashi K.S. McFarland <i>et al.</i>	(KEK, SAGA) (CCFR Collab.)
VILAIN	95C	PL B351 387	P. Vilain et al.	(CHARM II Collab.)
Also VYRODOV	95 95	PL B343 453 JETPL 61 163	P. Vilain et al. V.N. Vyrodov et al.	(CHARM II Collab.) (KIAE, LAPP, CDEF)
		Translated from ZETFP	61 161.	,
ABDURASHI BALYSH	94 94	PL B328 234 PL B322 176	J.N. Abdurashitov et al. A. Balysh et al.	(SAGE Collab.) (MPIH, KIAE, SASSO)
BECK	94	PL B336 141	M. Beck et al.	(MPIH, KIAE, SASSO)
DECLAIS FUKUDA	94 94	PL B338 383 PL B335 237	Y. Declais et al. Y. Fukuda et al.	(Kamiokande Collab.)
KONOPLICH	94	PAN 57 425	R.V. Konoplich, M.Y. Khlopov	(MPEI)
PDG PIEPKE	94 94	PR D50 1173 NP A577 493	L. Montanet et al. A. Piepke et al.	(CERN, LBL, BÖST+) (MPIH, ITEP)
SMIRNOV	94	PR D49 1389	A.Y. Smirnov, O.N. Spergel, J.N.	Bahcall (IAS+)
VIDYAKIN	94	JETPL 59 390 Translated from ZETFP	G.S. Vidyakin et al. 59 364.	(KIAE)
VILAIN	94C	ZPHY C64 539	P. Vilain et al.	(CHARM II Collab.) (LBL, MTHO+)
ALSTON ARTEMEV	93 93	PRL 71 831 JETPL 58 262	M. Alston-Garnjost et al. V.A. Arterniev et al.	(ITEP, INRM)
BAHRAN	93	Translated from ZETFP PR D47 R754	58 256. M. Bahran, G.R. Kalbfleisch	(OKLA)
BAHRAN	93B	PR D47 R759	M. Bahran, G.R. Kalbfleisch	(OKLA)
BARANOV BERNATOW	93 93	PL B302 336 PR C47 806	S.A. Baranov et al. T. Bernatowicz et al.	(JINR, SERP, BUDA) (WUSL, TATA)
FREEDMAN	93	PR D47 811	S.J. Freedman et al.	(LAMPE E645 Collab.)
GRUWE KALBFLEISCH	93 93	PL B309 463 PL B303 355	M. Gruwe et al. G.R. Kalbfleisch, M.Y. Bahran	(CHARM II Collab.) (OKLA)
KAWASHIMA	93	PR C47 R2452	A. Kawashima, K. Takahashi, A.	Masuda (TOKYC+)
MORTARA	93	PRL 70 394 PR D47 4840	J.L. Mortara et al. T. Ohshima et al.	(ANL, LBL, UCB) (KEK, TUAT, RIKEN+) (NEUC, CIT, VILL) (DELPHI Collab.)
OHSHIMA VUILLEUMIER	93 93	PR D48 1009	J.C. Vuilleumier et al.	(NEUC, CIT, VILL)
ABREU BAHRAN	92B 92	PL B274 230 PL B291 336	P. Abreu et al.	(DELPHI Collab.)
BALYSH	92	PL B283 32	M.Y. Bahran, G.R. Kalbfleisch A. Balysh et al.	(OKLA) (MPIH, KIAE, SASSO)
BECKER-\$Z BECKER-\$Z	92 92B	PRL 69 1010 PR D46 3720	R.A. Becker-Szendy et al. R.A. Becker-Szendy et al.	(IMB Collab.) (IMB Collab.)
BEIER	92	PL B283 446	E.W. Beier et al.	(KAM2 Collab.)
Also BERNATOW	94 92	PTRSL A346 63 PRL 69 2341	E.W. Beier, E.D. Frank T. Bernatowicz et al.	(PENN)
BLUM	92	PL B275 506	D. Blum et al.	(WUSL, TATA) (NEMO Collab.)
BORODOV BRITTON	92 92	PRL 68 274 PRL 68 3000	L. Borodovsky et al. D.I. Britton et al.	(COLU, JHU, ILL) (TRIU, CARL)
Also	94	PR D49 28	D.I. Britton et ai.	(TRIU, CARL)
BRITTON ELLIOTT	92B 92	PR D46 R885 PR C46 1535	D.I. Britton et al. S.R. Elliott et al.	(TRIU, CARL) (UCI)
HIRATA	92	PL B280 146	K.S. Hirata et al.	(Kamiokande II Collab.)
KAWAKAMI KETOV	92 92	PL B287 45 IETPL 55 564	H. Kawakami <i>et al.</i> S.N. Ketov <i>et al</i>	(INUS, KEK, SCUC+) (KIAE)
		JETPL 55 564 Translated from ZETFP	55 544.	
MORI ALEXANDER	92B 91F	PL B289 463 ZPHY C52 175	M. Mori et al. G. Alexander et al.	(KAM2 Collab.) (OPAL Collab.)
AVIGNONE	91	PL B256 559	F.T. Avignone et al.	(OPAL Collab.) (SCUC, PNL, ITEP+)
B E LLOTTI CASPER	91 91	PL B266 193 PRL 66 2561	E. Bellotti et al. D. Casper et al.	(MILA, INFN) (IMB Collab.)
DELEENER	91	PR D43 3611	N. de Leener-Rosier et al.	(LÒUV, ZURI+)
EJIRI HIRATA	91 91	PL B2S8 17 PRL 66 9	H. Ejiri et al. K.S. Hirata et al.	(OSAK) (Kamiokande II Collab.)
KUVSHINN	91	JETPL 54 253	A.A. Kuvshinnikov et al.	(KIAE)
MANUEL REUSSER	91 91	JP G17 S221 PL B255 143	O.K. Manuel D. Reusser et al.	(MISSR) (NEUC, CIT, PSI)
SATO	91	PR D44 2220 NP A535 509	N. Sato et al. J. Suhonen, S.B. Khadkikar, A. I	(Kamiokande Collab.)
SUHONEN TOMODA	91 91	RPP 54 53	T. Tomoda	
TURKEVICH	91	PRL 67 3211	A. Turkevich, T.E. Economou, G	
YOU ADEVA	91 90\$	PL 8265 53 PL 8251 321	K. You et al. B. Adeva et al.	(BHEP, CAST+) (L3 Collab.)
BATUSOV	90B	ZPHY C48 209	Y.A. Batusov et al.	(JINR, ITEP, SERP)
BERGER BURCHAT	90B 90	PL B245 305 PR D41 3542	C. Berger et al. P.R. Burchat et al.	(FREJUS Collab.) (Mark II Collab.)
DECAMP	90F	PL B236 511	D. Decəmp et al.	(ALEPH Collab.)
HIRATA JUNG	90 90	PRL 65 1297 PRL 64 1091	K.S. Hirata et al. C. Jung et al.	(Kamiokande II Collab.) (Mark II Collab.)
MILEY	90	PRL 65 3092	H.S. Miley et al.	(5CUC, PNL)
STAUOT VASENKO	90 90	EPL 13 31 MPL A5 1299	A. Staudt, K. Muto, H.V. Klapd A.A. Vasenko et al.	or-Kleingrothaus (ITEP, YERE)
VIDYAKIN	90	JETP 71 424 Translated from ZETF 9	A.A. Vasenko <i>et al.</i> G.S. Vidyakin <i>et al.</i>	(KIAE)
ABRAMS	89C	PRL 63 2447	G.S. Abrams et al.	(Mark II Collab.)
AGLIETTA BAHCALL	89 89	EPL 8 611	M. Aglietta et al. J.N. Bahcall	(FREJUS Collab.)
Cambridge	Unive	Neutrino Astrophysics rsity Press		(IAS)
BLUMENFELD DAVIS	89 89	PRL 62 2237 ARNPS 39 467	B.J. Blumenfeld et al. R. Davis, A.K. Mann, L. Wolfen:	(COLU, ILL, JHU) stein (BNL, PENN+)
ENQVIST	89	NP B317 647	K. Enqvist, K. Kainulainen, J. M	laalampi (HELS)
FISHER MUTO	89 89	PL B218 257 ZPHY A334 187	P.H. Fisher et al. K. Muto, E. Bender, H.V. Klapd	(CIT, NEUC, PSI)
OYAMA	89	PR D39 1481	Y. Oyama et al.	(Kamiokande II Collab.)
AFONIN	88	JETP 67 213 Translated from ZETF 9	A.I. Afonin et al.	(KIAE)
AKERLOF	88	PR D37 577	C.W. Akerlof et al.	(HRS Collab.)
AMMOSOV BERGSMA	88 88	ZPHY C40 487 ZPHY C40 171	V.V. Ammosov et al. F. Bergsma et al.	(SKAT Collab.) (CHARM Collab.)
BERNARDI	88	PL B203 332	G. Bernardi et al.	(PARIN, CERN, INFN+)

				
BIONTA	88	PR D38 768	R.M. Bionta et al.	(IMB Collab.)
CALDWELL DURKIN	88 88	PRL 61 510 PRL 61 1811	D.O. Caldwell et al. L.S. Durkin et al.	(UCSB, UCB, LBL) (OSU, ANL, CIT+)
ENGEL	88	PR C37 731	J. Engel, P. Vogel, M.R. Zirnbaue	r
LOVERRE OLIVE	88 88	PL B206 711 PL B205 553	P.F. Loverre K.A. Olive, M. Srednicki	(INFN) (MINN, UCSB)
SREDNICKI AFONIN	88 87	NP B310 693 IETPL 45 257	M. Srednicki, R. Watkins, K.A. O A.I. Afonin et al.	live (MINN, UCSB) (KIAE)
AHLEN	87	JETPL 45 257 Translated from ZETFP PL B195 603	45 201. S.P. Ahlen <i>et al.</i> (BOST, SCUC, HARV+)
AHRENS	87	PR D36 702	L.A. Ahrens et al.	(BNL, BROW, UCI+)
BELLOTTI BOEHM	87 87	EPL 3 889 Massive Neutrinos Press, Cambridge	E. Bellotti et al. A. Bohm, H. Vogel	(MILA) (CIT)
Cambridge BOFILL	Univ. 87	PR D36 3309	J. Bofill et al.	(MIT, FNAL, MSU)
DAUM GRIEST	87 87	PR D36 2624 NP B783 681	M. Daum et al. K. Griest D. Seckel	(MIT, FNAL, MSU) (SIN, VIRG) (UCSC, CERN)
Aiso LOSECCO	88	NP B283 681 NP B296 1034 erratum PL B184 305	K. Griest, D. Seckel	(UCSC, CERN) (UCSC, CERN) (IMB Collab.)
MISHRA	87 87	PRL 59 1397	J.M. LoSecco et al. S.R. Mishra et al.	(COLU, CIT, FNAL+)
OBERAUER TALEBZADEH	87 87	PL B198 113 NP B291 503	L.F. Oberauer, F. von Feilitzsch, I M. Talebzadeh et al.	(BEBC WA66 Collab.)
TOMODA VIDYAKIN	87 87	PL B199 475 JETP 66 243	T. Tomoda, A. Faessler G.S. Vidyakin <i>et al</i> .	(TUBIN) (KIAE)
WENDT	87	Translated from ZETF 9: PRL 58 1810	3 424. C. Wendt <i>et al.</i>	(Mark II Collab.)
ABRAMOWICZ	86	PRI 57 298	H. Abramowicz et al.	(CDHS Collab.)
AFONIN	86	JETPL 44 142 Translated from ZETFP	A.I. Afonin <i>et al.</i> 44 111.	(KIAE)
ALLABY ANGELINI	86 86	PL B177 446 PL B179 307	J.V. Allaby et al. C. Angelini et al.	(CHARM Collab.) (PISA, ATHU, PADO+)
AZUELOS BADIER	86 86	PRL 56 2241 ZPHY C31 21	G. Azuelos et al. J. Badier et al.	(TRIU, CNRC) (NA3 Collab.)
BERNARDI	86	PL 166B 479	G. Bernardi et al.	(CURIN, INFN, CDEF+)
BERNARDI BRUCKER	86B 86	PL B181 173 PR D34 2183	E.B. Brucker et al.	(CURIN, INFN, CDEF+) (RUTG, BNL, COLU)
DORENBOS USHIDA	86 86C	PL 166B 473 PRL 57 2897	J. Dorenbosch et al. N. Ushida et al.	(CHARM Collab.) (FNAL E531 Collab.)
ZACEK	86	PR D34 2621	G. Zacek et al.	(CIT-SIN-TUM Collab.)
AFONIN	85 es p	JETPL 41 435 Translated from ZETFP	A.I. Afonin <i>et al.</i> 41 355.	(KIAE)
Also	85B	JETPL 42 285 Translated from ZETFP	A.I. Afonín et al. 42 230.	(KIAE)
AHRENS ALBRECHT	85 851	PR D31 2732 PL 163B 404	L.A. Ahrens et al. H. Albrecht et al.	(BNL, BROW, KEK+) (ARGUS Collab.)
APALIKOV	85	JETPL 42 289 Translated from ZETFP	A.M. Apalikov et al. 42 233.	(ITEP)
BELIKOV	85	SJNP 41 589 Translated from YAF 41	S.V. Belikov et al.	(SERP)
COOPER COWSIK	85 85	PL 160B 207 PL 151B 62	A.M. Cooper-Sarkar et al. R. Cowsik	(CERN, LOIC+) (TATA)
MARKEY	85	PR C32 2215	J. Markey, F. Boehm	(CIT)
STOCKDALE	85 85	PL 160B 322 ZPHY C27 53	T. Ohi et al. I.E. Stockdale et al.	(TOKY, INUS, ŘEK) (ROCH, CHIC, COLU+)
ZAÇEK BALLAGH	85 84	PL 164B 193 PR D30 2271	V. Zacek et al. H.C. Ballagh et al.	(MUNI, CIT, SIN) (UCB, LBL, FNAL+)
BERGSMA	84	PL 142B 103	F. Bergsma et al.	(CHARM Collab.)
CAVAIGNAC DYDAK	84 84	PL 148B 387 PL 134B 281	J.F. Cavaignac et al. F. Dydak et al. (CERN, i	(I\$NG, LAPP) DORT, HEIDH, SACL+)
FREESE GABATHULER	84 84	NP B233 167 PL 138B 449	K. Freese, D.N. Schramn	(CHIC, FNAL) (CIT, SIN, MUNI)
HAXTON	84	PPNP 12 409	K. Gabathuler et al. W.C. Haxton, Stevenson	
MINEHART SCHRAMM	84 84	PRL 52 804 PL 141B 337	R.C. Minehart <i>et al.</i> D.N. Schramm, G. Steigman	(VIRG, SIN) (FNAL, BART)
STOCKDALE AFONIN	84 83	PRL 52 1384 JETPL 38 436	I.E. Stockdale et al. A.I. Afonin et al.	(ROCH, ČHIC, COLU+) (KIAE)
BELENKII	83	Translated from ZETFP JETPL 38 493	38 361. S.N. Belenky <i>et al.</i>	(KIAE)
BELIKOV	83	Translated from ZETFP	38 406.	(SERP)
BERGSMA	83	JETPL 38 661 Translated from ZETFP PL 122B 465	38 547. F. Bergsma <i>et al.</i>	(CHARM Collab.)
BERGSMA	83B 83B	PL 128B 361	F. Bergsma et al.	(CHARM Collab.)
BRYMAN Also	83	PRL 50 1546 PRL 50 7	D.A. Bryman et al. O.A. Bryman et al.	(TRIU, CNRC) (TRIU, CNRC)
DEUTSCH GRONAU	83 83	PR D27 1644 PR D28 2762	J.P. Deutsch, M. Lebrun, R. Pried M. Gronau	els (LOUV) (HAIF)
KIRSTEN	83 83B	PRL 50 474 ZPHY 16 189	T. Kirsten, H. Richter, E. Jessber T. Kirsten, H. Richter, E.K. Jesst	ger (MPIH)
Also SCHRECK	83	PL 129B 265	K. Schreckenbach et al.	(ISNG, ILLG)
TAYLOR COOPER	83 82	PR D28 2705 PL 112B 97	G.N. Taylor et al. A.M. Cooper et al.	(HAWA, LBL, FNAL) (RL)
HAYANO OLIVE	82 82	PRL 49 1305	R.S. Hayano et al.	(TOKY, KEK, TSUK) (CHIC, UCSB)
VUILLEUMIER	82	PR D25 213 PL 114B 298	K.A. Olive, M.S. Turner J.L. Vuilleumier et al.	(CIT, SIN, MUNI)
ABELA ARMENISE	81 81	PL 105B 263 PL 100B 182	R. Abela et al. N. Armenise et al.	(SIN) (BARI, CERN, MILA+)
ASANO Also	81 81	PL 104B 84 PR D24 1232	Y. Asano et al. (KEI R.E. Shrock	K, TOKY, INUS, OSAK) (STON)
ASRATYAN	81	PL 105B 301	A.E. Asratyan et al.	(ITEP, FNAL, SERP+)
BAKER Also	81 78	PRL 47 1576 PRL 40 144	N.J. Baker et al. A.M. Cnops et al.	(BNL, COLU) (BNL, CDLU)
BERNSTEIN BOLIEV	81 81	PL 101B 39 SJNP 34 787	J. Bernstein, G. Feinberg M.M. Boliev et al.	(ŠTEV, COLU) (INRM)
CALAPRICE	81	Translated from YAF 34 PL 106B 175	1418. F.P. Calaprice et al.	(PRIN, IND)
DEDEN ERRIQUEZ	81	PL 98B 310	H. Deden et al.	(BÈBC Collab.)
KWON	81 81	PL 102B 73 PR D24 1097	O. Erriquez et al. H. Kwon et al.	(BARI, BIRM, BRUX+) (CIT, ISNG, MUNI)
NEMETHY SHROCK	81B	PR D23 262 PR D24 1232	P. Nemethy et al. R.E. Shrock	(YALE, LBL, LASL+) (STON)
SHROCK SILVERMAN	81B 81	PR D24 1275 PRL 46 467	R.E. Shrock R.E. Shrock D. Silyerman, A. Soni	(STON) (UCL UCLA)
USHIDA	81	PRL 47 1694	N Ushida et al (AICH	ENAL KOBE SEOU+)
AVIGNONE BOEHM	80 80	PR C22 594 PL 97B 310	F.T. Avignone, Z.D. Greenwood F. Boehm et al. (I	(SCUC) LLG, CIT, ISNG, MUNI) N, CERN, LOIC, OXF+) (UCI)
FRITZE REINES	80 80	PL 96B 427 PRL 45 1307	P. Fritze (AACH3, BON. F. Reines, H.W. Sobel, E. Pasiert	N, CERN, LOIC, OXF+) (UCI)
Also	59	PR 113 273	F. Reines, C.L. Cowan	(LASL)
Also Also	66 76	PR 142 852 PRL 37 315	F.A. Nezrick, F. Reines F. Reines, H.S. Gurr, H.W. Sobel	(CASE) (UCI)
SHROCK DAVIS	80 79	PL 96B 159 PR C19 2259	R.E. Shrock R. Davis et al.	(SŤON) (CIT)
BLIETSCHAU	78	NP B133 205	J. Blietschau et al.	(Gargamelle Collab.)
CROUCH VYSOTSKY	78 77	PR D18 2239 JETPL 26 188	M.F. Crouch et al. M.I. Vysotsky, A.D. Dolgov, Y.B.	(CASE, UCI, WITW) Zeldovich (ITEP)
BELLOTTI	76	JETPL 26 188 Translated from ZETFP LNC 17 553 AA 49 437	E. Bellotti et al.	(MILA)
SZALAY SZALAY	76 74	AA 49 437 APAH 35 8	A.S. Szałay, G. Marx A.S. Szałay, G. Marx	(ÉOTV) (EOTV)
COWSIK MARX	72 72	PRL 29 669	R. Cowsik, J. McClelland G. Marx, A.S. Szalay	(UCB) (EOTV)
GERSHTEIN	66	Nu Conf. Budapest JETPL 4 120 Translated from ZETFP	S.S. Gershtein, Y.B. Zeldovich	(KIAM)
		Hadiated Holl ZE IFF	7 107	

QUARKS

QUARK MASSES

Written by A. Manohar (University of California, San Diego).

A. Introduction

This note discusses some of the theoretical issues involved in the determination of quark masses. Unlike the leptons, quarks are confined inside hadrons and are not observed as physical particles. Quark masses cannot be measured directly, but must be determined indirectly through their influence on hadron properties. As a result, the values of the quark masses depend on precisely how they are defined; there is no one definition that is the obvious choice. Though one often speaks loosely of quark masses as one would of the electron or muon mass, any careful statement of a quark mass value must make reference to a particular computational scheme that is used to extract the mass from observations. It is important to keep this scheme dependence in mind when using the quark mass values tabulated in the data listings.

The simplest way to define the mass of a quark is by making a fit of the hadron mass spectrum to a nonrelativistic quark model. The quark masses are defined as the values obtained from the fit. The resulting masses only make sense in the limited context of a particular quark model. They depend on the phenomenological potential used, and on how relativistic effects are modelled. The quark masses used in potential models also cannot be connected with the quark mass parameters in the QCD Lagrangian. Fortunately, there exist other definitions of the quark mass that have a more general significance, though they also depend on the method of calculation. The purpose of this review is to explain the most important such definitions and their interrelations.

B. Mass parameters and the QCD Lagrangian

The QCD Lagrangian for N_F quark flavors is

$$\mathcal{L} = \sum_{k=1}^{N_F} \overline{q}_k \left(i \not \! D - m_k \right) q_k - \frac{1}{4} G_{\mu\nu} G^{\mu\nu} , \qquad (1)$$

The QCD Lagrangian has a chiral symmetry in the limit that the quark masses vanish. This symmetry is spontaneously broken by dynamical chiral symmetry breaking, and explicitly broken by the quark masses. The nonperturbative scale of dynamical chiral symmetry breaking, Λ_{χ} , is around 1 GeV. It is conventional to call quarks heavy if $m>\Lambda_{\chi}$, so that explicit chiral symmetry breaking dominates, and light if $m<\Lambda_{\chi}$, so that spontaneous chiral symmetry breaking dominates. The $c,\ b,\$ and t quarks are heavy, and the $u,\ d$ and s quarks are light. The computations for light quarks involve an expansion in m_q/Λ_{χ} about the limit $m_q=0$, whereas for heavy quarks, they involve an expansion in Λ_{χ}/m_q about $m_q=\infty$. The corrections are largest for the s and c quarks, which are the heaviest light quark and the lightest heavy quark, respectively.

At high energies or short distances, nonperturbative effects such as chiral symmetry breaking are unimportant, and one can in principle analyze mass-dependent effects using QCD perturbation theory to extract the quark mass values. The QCD computations are conventionally performed using the $\overline{\rm MS}$ scheme at a scale $\mu\gg\Lambda_\chi$, and give the $\overline{\rm MS}$ "running" mass $\overline{m}(\mu)$. The μ dependence of $\overline{m}(\mu)$ at short distances can be calculated using the renormalization group equations.

For heavy quarks, one can obtain useful information on the quark masses by studying the spectrum and decays of hadrons containing heavy quarks. One method of calculation uses the heavy quark effective theory (HQET), which defines a HQET quark mass m_Q . Other commonly used definitions of heavy quark masses such as the pole mass are discussed in Sec. C. QCD perturbation theory at the heavy quark scale $\mu = m_Q$ can be used to relate the various heavy quark masses to the $\overline{\rm MS}$ mass $\overline{m}(\mu)$, and to each other.

For light quarks, one can obtain useful information on the quark mass ratios by studying the properties of the light pseudoscalar mesons using chiral perturbation theory, which utilizes the symmetries of the QCD Lagrangian Eq. (1). The quark mass ratios determined using chiral perturbation theory are those in a subtraction scheme that is independent of the quark masses themselves, such as the $\overline{\rm MS}$ scheme.

A more detailed discussion of the masses for heavy and light quarks is given in the next two sections. The $\overline{\text{MS}}$ scheme applies to both heavy and light quarks. It is also commonly used for predictions of quark masses in unified theories, and for computing radiative corrections in the Standard Model. For this reason, we use the $\overline{\text{MS}}$ scheme as the standard scheme in reporting quark masses. One can easily convert the $\overline{\text{MS}}$ masses into other schemes using the formulæ given in this review.

C. Heavy quarks

The commonly used definitions of the quark mass for heavy quarks are the pole mass, the $\overline{\rm MS}$ mass, the Georgi-Politzer mass, the potential model mass used in ψ and Υ spectroscopy, and the HQET mass.

The strong interaction coupling constant at the heavy quark scale is small, and one can compute the heavy quark propagator using QCD perturbation theory. For an observable particle such as the electron, the position of the pole in the propagator is the definition of the particle mass. In QCD this definition of the quark mass is known as the pole mass m_P , and is

Quark Particle Listings

Quarks

independent of the renormalization scheme used. It is known that the on-shell quark propagator has no infrared divergences in perturbation theory [1], so this provides a perturbative definition of the quark mass. The pole mass cannot be used to arbitrarily high accuracy because of nonperturbative infrared effects in QCD. The full quark propagator has no pole because the quarks are confined, so that the pole mass cannot be defined outside of perturbation theory.

The $\overline{\rm MS}$ running mass $\overline{m}(\mu)$ is defined by regulating the QCD theory using dimensional regularization, and subtracting the divergences using the modified minimal subtraction scheme. The $\overline{\rm MS}$ scheme is particularly convenient for Feynman diagram computations, and is the most commonly used subtraction scheme.

The Georgi-Politzer mass \widehat{m} is defined using the momentum space subtraction scheme at the spacelike point $-p^2 = \widehat{m}^2$ [2]. A generalization of the Georgi-Politzer mass that is often used in computations involving QCD sum rules [3] is $\widehat{m}(\xi)$, defined at the subtraction point $p^2 = -(\xi+1)m_P^2$. QCD sum rules are discussed in more detail in the next section on light quark masses.

Lattice gauge theory calculations can be used to obtain heavy quark masses from ψ and Υ spectroscopy. The quark masses are obtained by comparing a nonperturbative computation of the meson spectrum with the experimental data. The lattice quark mass values can then be converted into quark mass values in the continuum QCD Lagrangian Eq. (1) using lattice perturbation theory at a scale given by the inverse lattice spacing. A recent computation determines the b-quark pole mass to be 5.0 ± 0.2 GeV, and the $\overline{\rm MS}$ mass to be 4.0 ± 0.1 GeV [4].

Potential model calculations of the hadron spectrum also involve the heavy quark mass. There is no way to relate the quark mass as defined in a potential model to the quark mass parameter of the QCD Lagrangian, or to the pole mass. Even in the heavy quark limit, the two masses can differ by nonperturbative effects of order $\Lambda_{\rm QCD}$. There is also no reason why the potential model quark mass should be independent of the particular form of the potential used.

Recent work on the heavy quark effective theory [5-9] has provided a definition of the quark mass for a heavy quark that is valid when one includes nonperturbative effects and will be called the HQET mass m_Q . The HQET mass is particularly useful in the analysis of the $1/m_Q$ corrections in HQET. The HQET mass agrees with the pole mass to all orders in perturbation theory when only one quark flavor is present, but differs from the pole mass at order α_s^2 when there are additional flavors [10]. Physical quantities such as hadron masses can in principle be computed in the heavy quark effective theory in terms of the HQET mass m_Q . The computations cannot be done analytically in practice because of nonperturbative effects in QCD, which also prevent a direct extraction of the quark masses from the original QCD Lagrangian, Eq. (1). Nevertheless, for heavy quarks, it is possible to parametrize the nonperturbative effects to a given order in the $1/m_Q$ expansion

in terms of a few unknown constants that can be obtained from experiment. For example, the B and D meson masses in the heavy quark effective theory are given in terms of a single nonperturbative parameter $\overline{\Lambda}$,

$$M(B) = m_b + \overline{\Lambda} + \mathcal{O}\left(\frac{\overline{\Lambda}^2}{m_b}\right) ,$$

$$M(D) = m_c + \overline{\Lambda} + \mathcal{O}\left(\frac{\overline{\Lambda}^2}{m_c}\right) . \tag{2}$$

This allows one to determine the mass difference $m_b - m_c =$ $M(B)-M(D)=3.4~{
m GeV}$ up to corrections of order $\overline{\Lambda}^2/m_b$ — $\overline{\Lambda}^2/m_c$. The extraction of the individual quark masses m_b and m_c requires some knowledge of $\overline{\Lambda}$. An estimate of $\overline{\Lambda}$ using QCD sum rules gives $\overline{\Lambda} = 0.57 \pm 0.07$ GeV [11]. The HQET masses with this value of $\overline{\Lambda}$ are $m_b = 4.74 \pm 0.14$ GeV and $m_c = 1.4 \pm 0.2$ GeV, where the spin averaged meson masses $(3M(B^*) + M(B))/4$ and $(3M(D^*) + M(D))/4$ have been used to eliminate the spin-dependent $\mathcal{O}(\overline{\Lambda}^2/m_Q)$ correction terms. The errors reflect the uncertainty in $\overline{\Lambda}$ and the unknown spinaveraged $\mathcal{O}(\overline{\Lambda}^2/m_Q)$ correction. The errors do not include any theoretical uncertainty in the QCD sum rules, which could be large. A quark model estimate suggests that $\overline{\Lambda}$ is the constituent quark mass (≈ 350 MeV), which differs significantly from the sum rule estimate. In HQET, the $1/m_Q$ corrections to heavy meson decay form-factors are also given in terms of $\overline{\Lambda}$. Thus an accurate enough measurement of these form-factors could be used to extract $\overline{\Lambda}$ directly from experiment, which then determines the quark masses up to corrections of order

The quark mass m_Q of HQET can be related to other quark mass parameters using QCD perturbation theory at the scale m_Q . The relation between m_Q and $\widehat{m}_Q(\xi)$ at one loop is [12]

$$m_Q = \widehat{m}_Q(\xi) \left[1 + \frac{\widehat{\alpha}_s(\xi)}{\pi} \frac{\xi + 2}{\xi + 1} \log \left(\xi + 2 \right) \right], \tag{3}$$

where $\hat{\alpha}_s(\xi)$ is the strong interaction coupling constant in the momentum space subtraction scheme. The relation between m_Q and the $\overline{\text{MS}}$ mass \overline{m}_Q is known to two loops [13],

$$\begin{split} m_Q &= \overline{m}_Q(\overline{m}_Q) \left[1 + \frac{4\overline{\alpha}_s(\overline{m}_Q)}{3\pi} \right. \\ &+ \left(13.44 - 1.04 \sum_k \left(1 - \frac{4}{3} \frac{\overline{m}_{Q_k}}{\overline{m}_Q} \right) \right) \left(\frac{\overline{\alpha}_s(\overline{m}_Q)}{\pi} \right)^2 \right] , \ (4) \end{split}$$

where $\overline{\alpha}_s(\mu)$ is the strong interaction coupling constants in the $\overline{\text{MS}}$ scheme, and the sum on k extends over all flavors Q_k lighter than Q. For the b-quark, Eq. (4) reads

$$m_b = \overline{m}_b \left(\overline{m}_b \right) \left[1 + 0.09 + 0.05 \right], \tag{5}$$

where the contributions from the different orders in α_s are shown explicitly. The two loop correction is comparable in size and has the same sign as the one loop term. There is

presumably an error of order 0.05 in the relation between m_b and $\overline{m}_b(\overline{m}_b)$ from the uncalculated higher order terms.

D. Light quarks

For light quarks, one can use the techniques of chiral perturbation theory to extract quark mass ratios. The light quark part of the QCD Lagrangian Eq. (1) has a chiral symmetry in the limit that the light quark masses are set to zero, under which left- and right-handed quarks transform independently. The mass term explicitly breaks the chiral symmetry, since it couples the left- and right-handed quarks to each other. A systematic analysis of this explicit chiral symmetry breaking provides some information on the light quark masses.

It is convenient to think of the three light quarks u, d and s as a three component column vector Ψ , and to write the mass term for the light quarks as

$$\overline{\Psi}M\Psi = \overline{\Psi}_L M\Psi_R + \overline{\Psi}_R M\Psi_L, \tag{6}$$

where M is the quark mass matrix M,

$$M = \begin{pmatrix} m_u & 0 & 0 \\ 0 & m_d & 0 \\ 0 & 0 & m_s \end{pmatrix}. \tag{7}$$

The mass term $\overline{\Psi}M\Psi$ is the only term in the QCD Lagrangian that mixes left- and right-handed quarks. In the limit that $M \to 0$, there is an independent SU(3) flavor symmetry for the left- and right-handed quarks. This $G_{\chi} = \mathrm{SU}(3)_L \times \mathrm{SU}(3)_R$ chiral symmetry of the QCD Lagrangian is spontaneously broken, which leads to eight massless Goldstone bosons, the π 's, K's, and η , in the limit $M \to 0$. The symmetry G_{χ} is only an approximate symmetry, since it is explicitly broken by the quark mass matrix M. The Goldstone bosons acquire masses which can be computed in a systematic expansion in M in terms of certain unknown nonperturbative parameters of the theory. For example, to first order in M one finds that [14,15]

$$m_{\pi^0}^2 = B (m_u + m_d) ,$$

$$m_{\pi^{\pm}}^2 = B (m_u + m_d) + \Delta_{em} ,$$

$$m_{K^0}^2 = m_{\overline{K}^0}^2 = B (m_d + m_s) ,$$

$$m_{K^{\pm}}^2 = B (m_u + m_s) + \Delta_{em} ,$$

$$m_{\eta}^2 = \frac{1}{3} B (m_u + m_d + 4m_s) ,$$
(8)

with two unknown parameters B and Δ_{em} , the electromagnetic mass difference. From Eq. (8), one can determine the quark mass ratios [14]

$$\begin{split} \frac{m_u}{m_d} &= \frac{2m_{\pi^0}^2 - m_{\pi^+}^2 + m_{K^+}^2 - m_{K^0}^2}{m_{K^0}^2 - m_{K^+}^2 + m_{\pi^+}^2} = 0.56 , \\ \frac{m_s}{m_d} &= \frac{m_{K^0}^2 + m_{K^+}^2 - m_{\pi^+}^2}{m_{K^0}^2 + m_{\pi^+}^2 - m_{K^+}^2} = 20.1 , \end{split} \tag{9}$$

to lowest order in chiral perturbation theory. The error on these numbers is the size of the second-order corrections, which are discussed at the end of this section. Chiral perturbation theory cannot determine the overall scale of the quark masses, since it uses only the symmetry properties of M, and any multiple of M has the same G_{χ} transformation law as M. This can be seen from Eq. (8), where all quark masses occur only in the form Bm, so that B and m cannot be determined separately.

The mass parameters in the QCD Lagrangian have a scale dependence due to radiative corrections, and are renormalization scheme dependent. Since the mass ratios extracted using chiral perturbation theory use the symmetry transformation property of M under the chiral symmetry G_{χ} , it is important to use a renormalization scheme for QCD that does not change this transformation law. Any quark mass independent subtraction scheme such as $\overline{\text{MS}}$ is suitable. The ratios of quark masses are scale independent in such a scheme.

The absolute normalization of the quark masses can be determined by using methods that go beyond chiral perturbation theory, such as QCD sum rules [3]. Typically, one writes a sum rule for a quantity such as B in terms of a spectral integral over all states with certain quantum numbers. This spectral integral is then evaluated by assuming it is dominated by one (or two) of the lowest resonances, and using the experimentally measured resonance parameters [16]. There are many subtleties involved, which cannot be discussed here [16].

Another method for determining the absolute normalization of the quark masses, is to assume that the strange quark mass is equal to the SU(3) mass splitting in the baryon multiplets [14,16]. There is an uncertainty in this method since in the baryon octet one can use either the Σ -N or the Λ -N mass difference, which differ by about 75 MeV, to estimate the strange quark mass. But more importantly, there is no way to relate this normalization to any more fundamental definition of quark masses.

One can extend the chiral perturbation expansion Eq. (8) to second order in the quark masses M to get a more accurate determination of the quark mass ratios. There is a subtlety that arises at second order [17], because

$$M\left(M^{\dagger}M\right)^{-1}\det M^{\dagger}\tag{10}$$

transforms in the same way under G_{χ} as M. One can make the replacement $M \to M(\lambda) = M + \lambda M \left(M^{\dagger}M\right)^{-1} \det M^{\dagger}$ in all formulæ,

$$M(\lambda) = \operatorname{diag}(m_u(\lambda), m_d(\lambda), m_s(\lambda))$$

$$= \operatorname{diag} (m_u + \lambda m_d m_s, \ m_d + \lambda m_u m_s, \ m_s + \lambda m_u m_d) , (11)$$

so it is not possible to determine λ by fitting to data. One can only determine the ratios $m_i(\lambda)/m_j(\lambda)$ using second-order chiral perturbation theory, not the desired ratios $m_i/m_j = m_i(\lambda = 0)/m_j(\lambda = 0)$.

Dimensional analysis can be used to estimate [18] that second-order corrections in chiral perturbation theory due to the

Quark Particle Listings

Quarks

strange quark mass are of order $\lambda m_s \sim 0.25$. The ambiguity due to the redefinition Eq. (11) (which corresponds to a second-order correction) can produce a sizeable uncertainty in the ratio m_u/m_d . The lowest-order value $m_u/m_d = 0.56$ gets corrections of order $\lambda m_s (m_d/m_u - m_u/m_d) \sim 30\%$, whereas m_s/m_d gets a smaller correction of order $\lambda m_s (m_u/m_d - m_u m_d/m_s^2) \sim 15\%$. A more quantitative discussion of second-order effects can be found in Refs. 17,19,20. Since the second-order terms have a single parameter ambiguity, the value of m_u/m_d is related to the value of m_s/m_d .

The ratio m_u/m_d is of great interest since there is no strong CP problem if $m_u=0$. To determine m_u/m_d requires fixing λ in the mass redefinition Eq. (11). There has been considerable effort to determine the chiral Lagrangian parameters accurately enough to determine m_u/m_d , for example from the analysis of the decays $\psi' \to \psi + \pi^0$, η , the decay $\eta \to 3\pi$, using sum rules, and from the heavy meson mass spectrum [16,21–24]. A recent paper giving a critique of these estimates is Ref. 25.

Eventually, lattice gauge theory methods will be accurate enough to be able to compute meson masses directly from the QCD Lagrangian Eq. (1), and thus determine the light quark masses. For a reliable determination of quark masses, these computations will have to be done with dynamical fermions, and with a small enough lattice spacing that one can accurately compute the relation between lattice and continuum Lagrangians.

The quark masses for light quarks discussed so far are often referred to as current quark masses. Nonrelativistic quark models use constituent quark masses, which are of order 350 MeV for the u and d quarks. Constituent quark masses model the effects of dynamical chiral symmetry breaking, and are not related to the quark mass parameters m_k of the QCD Lagrangian Eq. (1). Constituent masses are only defined in the context of a particular hadronic model.

E. Numerical values and caveats

The quark masses in the particle data listings have been obtained by using the wide variety of theoretical methods outlined above. Each method involves its own set of approximations and errors. In most cases, the errors are a best guess at the size of neglected higher-order corrections. The expansion parameter for the approximations is not much smaller than unity (for example it is $m_K^2/\Lambda_Y^2 \approx 0.25$ for the chiral expansion), so an unexpectedly large coefficient in a neglected higher-order term could significantly alter the results. It is also important to note that the quark mass values can be significantly different in the different schemes. For example, assuming that the b-quark pole mass is 5.0 GeV, and $\overline{\alpha}_s(m_b) \approx 0.22$ gives the $\overline{\rm MS}$ b-quark mass $\overline{m}_b(\mu=m_b)=4.6$ GeV using the one-loop term in Eq. (4), and $\overline{m}_b(\mu = m_b) = 4.3$ GeV including the one-loop and two-loop terms. The heavy quark masses obtained using HQET, QCD sum rules, or lattice gauge theory are consistent with each other if they are all converted into the same scheme. When using the data listings, it is important to remember that the numerical value for a quark mass is meaningless without specifying the particular scheme in which it was obtained. All non- $\overline{\rm MS}$ quark masses have been converted to $\overline{\rm MS}$ values in the data listings using one-loop formulæ, unless an explicit two-loop conversion is given by the authors in the original article.

References

- 1. R. Tarrach, Nucl. Phys. B183, 384 (1981).
- H. Georgi and H.D. Politzer, Phys. Rev. D14, 1829 (1976).
- M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov, Nucl. Phys. **B147**, 385 (1979).
- C.T.H. Davies, et al., Phys. Rev. Lett. 73, 2654 (1994).
- N. Isgur and M.B. Wise, Phys. Lett. B232, 113 (1989), ibid B237, 527 (1990);
 M.B. Voloshin and M. Shifman, Sov. J. Nucl. Phys. 45, 292 (1987), ibid 47, 511 (1988);
 S. Nussinov and W. Wetzel, Phys. Rev. D36, 130 (1987).
- H. Georgi, Phys. Lett. B240, 447 (1990).
- 7. E. Eichten and B. Hill, Phys. Lett. B234, 511 (1990).
- H. Georgi, in Perspectives of the Standard Model, ed. R.K. Ellis, C.T. Hill, and J.D. Lykken (World Scientific, Singapore, 1992);
 B. Grinstein, in High Energy Phenomenology, ed. R. Huerta and M.A. Pérez (World Scientific, Singapore, 1992).
- A.F. Falk, M. Neubert, and M.E. Luke, Nucl. Phys. B388, 363 (1992).
- 10. A.V. Manohar and M.B. Wise, (unpublished).
- 11. M. Neubert, Phys. Reports 245, 259 (1994).
- 12. S. Narison, Phys. Lett. B197, 405 (1987).
- N. Gray, D.J. Broadhurst, W. Grafe, and K. Schilcher, Z. Phys. C48, 673 (1990);
 D.J. Broadhurst, N. Gray, and K. Schilcher, Z. Phys. C52, 111 (1991);
 K.G. Chetyrkin, J.H. Kuhn, and A. Kwiatkowski, Phys. Reports 277, 189 (1996).
- 14. S. Weinberg, Trans. N.Y. Acad. Sci. 38, 185 (1977).
- See for example, H. Georgi, Weak Interactions and Modern Particle Theory (Benjamin/Cummings, Menlo Park, 1984).
- 16. J. Gasser and H. Leutwyler, Phys. Reports 87, 77 (1982).
- D.B. Kaplan and A.V. Manohar, Phys. Rev. Lett. 56, 2004 (1986).
- A.V. Manohar and H. Georgi, Nucl. Phys. **B234**, 189 (1984).
- J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
- 20. H. Leutwyler, Nucl. Phys. B337, 108 (1990).
- P. Langacker and H. Pagels, Phys. Rev. D19, 2070 (1979);
 H. Pagels and S. Stokar, Phys. Rev. D22, 2876 (1980);
 H. Leutwyler, Nucl. Phys. B337, 108 (1990);
 J. Donoghue and D. Wyler, Phys. Rev. Lett. 69, 3444 (1992);
 K. Maltman, T. Goldman and G.L. Stephenson Jr., Phys. Lett. B234, 158 (1990).
- 22. K. Choi, Nucl. Phys. **B383**, 58 (1992).
- 23. J. Donoghue and D. Wyler, Phys. Rev. **D45**, 892 (1992).
- 24. M.A. Luty and R. Sundrum, e-print hep-ph/9502398.
- T. Banks, Y. Nir, and N. Seiberg, Proceedings of the 2nd IFT Workshop on Yukawa Couplings and the Origins of Mass, Gainesville, Florida (1994).

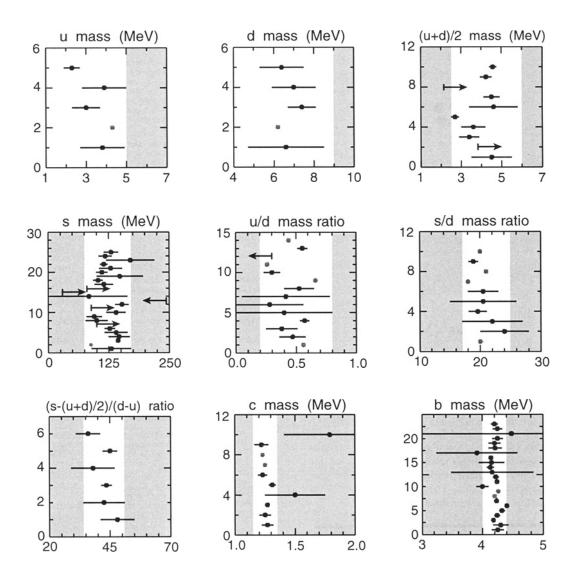


Figure 1: The values of each quark mass parameter taken from the Data Listings. Points from papers reporting no error bars are colored grey. Arrows indicate limits reported. The grey regions indicate values excluded by our evaluations; some regions were determined in part though examination of Fig. 2.

Quark Particle Listings

Quarks, u, d, s, Light Quarks (u, d, s)

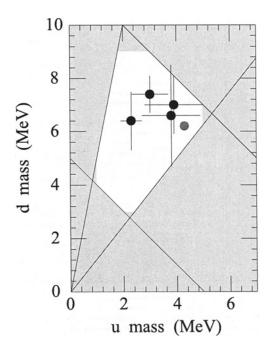


Figure 2: The allowed region (shown in white) for up quark and down quark masses. This region was determined in part from papers reporting values for m_u and m_d (data points shown) and in part from analysis of the allowed ranges of other mass parameters (see Fig. 1). The parameter $(m_u + m_d)/2$ yields the two downward-sloping lines, while m_u/m_d yields the two rising lines originating at (0,0). The grey point is from a paper giving no error bars.

$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Mass m = 1.5 to 5 MeV Charge $= \frac{2}{3}$ e $I_z = +\frac{1}{2}$ $m_u/m_d = 0.20$ to 0.70

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Mass $m=3$ to 9 MeV Charge $=-\frac{1}{3}$ e $I_z=-\frac{1}{2}$ $m_s/m_d=17$ to 25 $\overline{m}=(m_u+m_d)/2=2$ to 6 MeV

$$I(J^P) = 0(\frac{1}{2}^+)$$
 Mass $m = 60$ to 170 MeV Charge $= -\frac{1}{3}e$ Strangeness $= -1$ $(m_s - (m_u + m_d)/2)/(m_d - m_u) = 34$ to 51

LIGHT QUARKS (u, d, s)

OMITTED FROM SUMMARY TABLE

U-QUARK MASS

The ν -, d-, and s-quark masses are estimates of so-called "current-quark masses," in a mass- independent subtraction scheme such as $\overline{\rm MS}$. The ratios m_u/m_d and m_s/m_d are extracted from pion and kaon masses using chiral symmetry. The estimates of d and u masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from SU(3) splittings in hadron masses.

We have normalized the $\overline{\text{MS}}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

VALUE (MeV)	DOCUMENT ID	TECN COMMENT
to 5 OUR EVALUATI	ON	
• • We do not use the	following data for averag	es, fits, limits, etc. • • •
2.3±0.4	¹ NARISON	99 THEO MS scheme
3.9±1.1	² JAMIN	95 THEO MS scheme
3.0±0.7	³ NARISON	95¢ THEO MS scheme
	⁴ CHOI	92B THEO
4.3	⁵ BARDUCCI	88 THEO
3.8±1.1	⁶ GASSER	82 THEO
	1	

I

- 1 NARISON 99 uses sum rules to order α_y^3 for ϕ meson decays to get $m_5,$ and finds m_u by combining with sum rule estimates of m_u+m_d and Dashen's formula.
- ² JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled $m_U(1~{\rm GeV})=5.3\pm1.5$ to $\mu=2~{\rm GeV}.$
- ³ For NARISON 95c, we have rescaled $m_H(1 \text{ GeV}) = 4 \pm 1$ to $\mu = 2 \text{ GeV}$.
- 4 CHOI 928 argues that $m_{_{\rm H}}=0$ is okay based on instanton contributions to the chiral coefficients. Disagrees with DONOGHUE 92 and DONOGHUE 92B.
- 5 BARDUCCI 88 uses a calculation of the effective potential for $\overline{\psi}\,\psi$ in QCD, and estimates for $\Sigma(\rho^2)$. We have rescaled $m_U(1~{\rm GeV})=5.8$ to $\mu=2~{\rm GeV}.$
- ⁶ GASSER 82 uses chiral perturbation theory for the mass ratios, and uses QCD sum rules to extract the absolute values. We have rescaled $m_U(1~{\rm GeV})=5.1\pm1.5$ to $\mu=2~{\rm GeV}$.

d-QUARK MASS

See the comment for the u quark above.

We have normalized the $\overline{\text{MS}}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

VALUE (MeV)	DOCUMENT ID	TECN COMMENT	
 to 9 OUR EVALUATION • • We do not use the follow 	wing data for average	, fits, limits, etc. • • •	
6.4±1.1	7 NARISON	99 THEO MS scheme	
7.0 ± 1.1	8 JAMIN	95 THEO MS scheme	
7.4 ± 0.7	⁹ NARISON	95¢ THEO MS scheme	
	10 ADAMI	93 THEO	
	¹¹ NEFKENS	92 THEO	
6.2	¹² BARDUCCI	88 THEO	
	¹³ DOMINGUEZ	87 THEO	
	14 KREMER	84 THEO	
6.6±1.9	¹⁵ GASSER	82 THEO	

- ⁷ NARISON 99 uses sum rules to order α_d^3 for ϕ meson decays to get m_s , and finds m_d by combining with sum rule estimates of m_u+m_d and Dashen's formula.
- 8 JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled $m_d(1\,{\rm GeV})=9.4\pm1.5$ to $\mu=2\,{\rm GeV}.$
- ⁹ For NARISON 95C, we have rescaled $m_d(1 \text{ GeV}) = 10 \pm 1 \text{ to } \mu = 2 \text{ GeV}$.
- 10 ADAMI 93 obtain m_d-m_y =3 \pm 1 MeV at μ =0.5 GeV using isospin-violating effects in QCD sum rules.
- 11 NEFKENS 92 results for m_d-m_u are 3.1 \pm 0.4 MeV from meson masses and 3.6 \pm 0.4 MeV from baryon masses.
- ¹² BARDUCCI 88 uses a calculation of the effective potential for $\overline{\psi}\psi$ in QCD, and estimates for $\Sigma(\rho^2)$. We have rescaled $m_q(1~{\rm GeV})=8.4$ to $\mu=2~{\rm GeV}$.
- 13 DOMINGUEZ 87 uses QCD sum rules to obtain $m_u+m_d=15.5\pm2.0$ MeV and $m_d-m_u=6\pm1.5$ MeV.
- 14 KREMER 84 obtain $m_u+m_d=21\pm 2$ MeV at $Q^2=1$ GeV 2 using SVZ values for quark condensates; they obtain $m_u+m_d=35\pm 3$ MeV at $Q^2=1$ GeV 2 using factorization values for quark condensates.
- ¹⁵ GASSER 82 uses chiral perturbation theory for the mass ratios, and uses QCD sum rules to extract the absolute values. We have rescaled $m_d(1~{\rm GeV})=8.9\pm2.6$ to $\mu=2~{\rm GeV}$.

$\overline{m} = (m_v + m_d)/2$

See the comments for the u quark above.

We have normalized the $\overline{\mathsf{MS}}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2.5 to 6 OUR EVALUATIO	N			
• • We do not use the follow	wing data for average	es, fit	s, limits,	etc. • • •
4.57 ± 0.18	¹⁶ AOKI	00	LATT	
4.23 ± 0.29	¹⁷ AOKI	99	LATT	MS scheme
≥ 2.1	¹⁸ STEELE	99	THEO	MS scheme
4.5 ±0.4	¹⁹ BECIREVIC	98	LATT	MS scheme
4.6 ±1.2	²⁰ DOSCH	98	THEO	MS scheme
2.7 ±0.2	²¹ EICKER	97	LATT	MS scheme
3.6 ±0.6	²² GOUGH	97	LATT	MS scheme
$3.4 \pm 0.4 \pm 0.3$	²³ GUPTA	97	LATT	MS scheme
>3.8	²⁴ LELLOUCH	97	THEO	MS scheme
4.5 ±1.0	²⁵ BIJNENS	95		

- 16 AOKI 00 obtain the light quark masses from a quenched lattice simulation of the meson and baryon spectrum with the Wilson quark action.
- 17 AOKI 99 obtain the light quark masses from a quenched lattice simulation of the meson spectrum with the Staggered quark action employing the regularization independent
- 18 STEELE 99 obtain a bound on the light quark masses by applying the Holder inequality to a sum rule. We have converted their bound of $(m_u+m_d)/2 \geq 3$ GeV at $\mu=1$ GeV to u=2 GeV.
- ¹⁹ BECIREVIC 98 compute the quark mass using the Alpha action in the quenched approximation. The conversion from the regularization independent scheme to the MS scheme
- 20 DOSCH 98 use sum rule determinations of the quark condensate and chiral perturbation theory to obtain $9.4 \le (m_u + m_d)(1 \text{ GeV}) \le 15.7 \text{ MeV}$. We have converted to result to $\mu = 2 \text{ GeV}$.
- 21 EICKER 97 use lattice gauge computations with two dynamical light flavors.
- 22 GOUGH 97 use lattice gauge computations in the quenched approximation. Correcting for quenching gives $2.1 < \overline{m} < 3.5$ MeV at μ =2 GeV.
- ²³ GUPTA 97 use Lattice Monte Carlo computations in the quenched approximation. The value for two light dynamic flavors at $\mu=2$ GeV is $2.7\pm0.3\pm0.3$ MeV.
- ²⁴LELLOUCH 97 obtain lower bounds on quark masses using hadronic spectral functions. ²⁵ BIJNENS 95 determines $m_U + m_d$ (1 GeV) = 12 \pm 2.5 MeV using finite energy sum rules. We have rescaled this to 2 GeV.

s-QUARK MASS

See the comment for the u quark above.

We have normalized the $\overline{\text{MS}}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35.

VALUE (MeV)		DOCUMENT ID		TECN	COMMENT
		OUR EVAL				
• • •	We do	not use the fo	ollowing data for averag	es, fit	s, limits,	etc. • • •
130	±15		²⁶ AOKI	00	LATT	
118	± 14		²⁷ AOKI	99	LATT	MS scheme
170	+ 44 55		28 BARATE	99R		MS scheme
115	± 8		²⁹ MALTMAN	99	THEO	MS scheme
129	±24		30 NARISON	99	THEO	MS scheme
111	±12		31 BECIREVIC	98		MS scheme
148	±48		32 CHETYRKIN	98	THEO	MS scheme
103	± 10		33 CUCCHIERI	98	LATT	MS scheme
115	±19		34 DOMINGUEZ	98	THEO	MS scheme
> 90	± 9		³⁵ DOSCH	98	THEO	MS scheme
> 30			36 LEBED	98	THEO	MS scheme
84	±80		37 MALTMAN	98	THEO	MS scheme
<163	±81		³⁸ MALTMAN	988	THEO	MS scheme
152.	4±14.	1	39 CHETYRKIN	97	THEO	MS scheme
≥ 89			40 COLANGELO	97	THEO	MS scheme
140	±20		⁴¹ EICKER		LATT	MS scheme
95	± 16		⁴² GOUGH	97	LATT	MS scheme
100	± 21	±10	⁴³ GUPTA	97	LATT	MS scheme
>100			44 LELLOUCH	97	THEO	MS scheme
127	±11		45 CHETYRKIN	95	THEO	MS scheme
140	± 24		⁴⁶ JAMIN		THEO	MS scheme
146	± 22		47 NARISON	950	THEO	MS scheme
			⁴⁸ NEFKENS		THEO	
144	± 3		49 DOMINGUEZ	91	THEO	
88			⁵⁰ BARDUCCI	88	THEO	
			51 KREMER	84	THEO	
130	± 41		52 GASSER	82	THEO	

- ²⁶ AOKI 00 obtain the light quark masses from a quenched lattice simulation of the meson and baryon spectrum with the Wilson quark action. We have averaged their results of $m_S=115.6\pm2.3$ and $m_S=143.7\pm5.8$ obtained using m_K and m_ϕ , respectively, to normalize the spectrum.
- 27 AOKI 99 obtain the light quark masses from a quenched lattice simulation of the meson spectrum with the Staggered quark action employing the regularization independent

- scheme. We have averaged their results of m_S =106.0 \pm 7.1 and m_S =129 \pm 12 obtained using m_K and m_{ϕ} , respectively, to normalize the spectrum.
- ²⁸ BARATE 99R obtain the strange quark mass from an analysis of the observed mass spectra in τ decay. We have converted their value of $m_s(m_\tau) = 176 ^{+46}_{-57}$ MeV to $\mu = 2$ GeV.
- 29 MALTMAN 99 determines the strange quark mass using finite energy sum rules. 30 NARISON 99 uses sum rules to order α_s^3 for ϕ meson decays.
- 31 BECIREVIC 98 compute the quark mass using the Alpha action in the quenched approximation. The conversion from the regularization independent scheme to the $\overline{\text{MS}}$ scheme
- ination. The conversion from the regularization inacpendent samples to the most state NLO. 32 CHETYRKIN 98 uses spectral moments of hadronic τ decays to determine $m_{\rm S}(1~{\rm GeV}){=}200\pm70$ MeV. We have rescaled the result to $\mu{=}2$ GeV.
- 33 CUCCHIERI 98 obtains the quark mass using a quenched lattice computation of the hadronic spectrum.
- ³⁴DOMINGUEZ 98 uses hadronic spectral function sum rules (to four loops, and including dimension six operators) to determine $m_5(1~{\rm GeV}) < 155 \pm 25~{\rm MeV}$. We have rescaled the result to $\mu=2$ GeV
- 35 DOSCH 98 use sum rule determinations of the quark condensate and chiral perturbation theory to obtain $m_{\rm S}(1~{\rm GeV})>121\pm12~{\rm MeV}$. We have converted the result to μ =2 GeV.
- 36 LEBED 98 obtain lower bounds of 41, 90, and 139 MeV for $m_{\rm S}(1~{\rm GeV})$ using dispersion relations and chiral perturbation theory. The numbers assume the chiral perturbation theory form factor is accurate to 5%, 1%, and 0.05%, respectively. We have used the first number converted to $\mu=2$.
- 37 MALTMAN 98 uses τ -decay-like sum rules involving electromagnetic spectral data to determine $m_{\rm S}(1~{\rm GeV}){=}113\pm107~{\rm MeV}.$ We have rescaled the result to $\mu{=}2~{\rm GeV}.$
- 38 MALTMAN 98B uses spectral moments of hadronic τ decays to determine $m_{\rm S}(1~{\rm GeV})<220\pm110$ MeV. We have rescaled the result to $\mu{=}2$ GeV.
- 39 CHETYRKIN 97 obtains 205.5 ± 19.1 MeV at μ =1 GeV from QCD sum rules including fourth-order QCD corrections. We have rescaled the result to 2 GeV.
- 40 COLANGELO 97 is QCD sum rule computation. We have rescaled $m_{\rm S}(1~{\rm GeV})>120~{\rm to}$
- 41 EICKER 97 use lattice gauge computations with two dynamical light flavors.
- 42 GOUGH 97 use lattice gauge computations in the quenched approximation. Correcting for quenching gives 54 $<\!m_S^{}<$ 92 MeV at $\mu=2$ GeV. 43 GUPTA 97 use Lattice Monte Carlo computations in the quenched approximation. The
- value for two light dynamical flavors at $\mu=2\,\text{GeV}$ is 68 \pm 12 \pm 7 MeV
- 44 LELLOUCH 97 obtain lower bounds on quark masses using hadronic spectral functions. 45 CHETYRKIN 95 uses QCD sum rules at next-to-leading order. We have rescaled
- $m_S(1 \text{ GeV}) = 171 \pm 15 \text{ to } \mu = 2 \text{ GeV}.$ 46 JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled $m_{\rm S}(1~{\rm GeV})$ $= 189\pm32$ to $\mu=2~{\rm GeV}.$
- ⁴⁷ For NARISON 95c, we have rescaled $m_{\rm S}(1~{\rm GeV})=197\pm29~{
 m to}~\mu=2~{\rm GeV}.$
- 48 NEFKENS 92 results for $m_{\rm S}-(m_u+m_d)/2$ are 111 \pm 10 MeV from meson masses and 163 \pm 15 MeV from baryon masses.
- ⁴⁹ DOMINGUEZ 91 uses QCD sum rules with $\Lambda_{\rm QCD} = 100-200$ MeV and the SVZ value for the gluon condensate. We have rescaled $m_{\rm S}(1~{\rm GeV}) = 194 \pm 9$ to $\mu = 2~{\rm GeV}$.
- 50 BARDUCCI 88 uses a calculation of the effective potential for $\overline{\psi}\,\psi$ in QCD, and estimates for $\Sigma(\rho^2)$. We have rescaled $m_{\rm S}(1~{\rm GeV})=118$ to $\mu=2~{\rm GeV}.$
- 51 KREMER 84 obtain $m_u + m_s = 245 \pm 10$ MeV at $Q^2 = 1~{
 m GeV}^2$ using SVZ values for quark condensates; they obtain $m_U+m_S=270\pm10$ MeV at $Q^2=1$ GeV 2 using factorization values for quark condensates.
- ⁵² GASSER 82 uses chiral perturbation theory for the mass ratios, and uses QCD sum rules to extract the absolute values. We have rescaled $m_{\rm S}(1~{\rm GeV})=175\pm55$ to $\mu=2~{\rm GeV}$.

LIGHT QUARK MASS RATIOS

u/d MASS RATIO

ALUE		DOCUMENT	ID	TECN	COMMENT
0.2	to 0.8 OUR EVALUATION				
	We do not use the following d	lata for avera	ges, fits	, limits,	etc. • • •

0.44	⁵³ GAO	97 THEO MS scheme	
0.553 ± 0.043	⁵⁴ LEUTWYLER	96 THEO Compilation	
< 0.3	55 CHOI	92 THEO	
0.26	⁵⁶ DONOGHUE	92 THEO	
0.30 ±0.07	⁵⁷ DONOGHUE	92B THEO	
0.66	⁵⁸ GERARD	90 THEO	
0.4 to 0.65	⁵⁹ LEUTWYLER	90B THEO	
0.05 to 0.78	60 MALTMAN	90 THEO	
0.0 to 0.56	⁶¹ CHOI	89B THEO	
0.0 to 0.8	62 KAPLAN	86 THEO	
0.57 ±0.04	63 GASSER	82 THEO	
0.38 ±0.13	64 LANGACKER	79 THEO	
0.47 ± 0.11	65 LANGACKER	79B THEO	
0.56	66 WEINBERG	77 THEO	

- ⁵³ GAO 97 uses electromagnetic mass splittings of light mesons.
- 54 LEUTWYLER 96 uses a combined fit to $\eta\to 3\pi$ and $\psi^I\to J/\psi$ (π,η) decay rates, and the electromagnetic mass differences of the π and K.

 55 CHOI 92 result obtained from the decays $\psi(2S)\to J/\psi(1S)\pi$ and $\psi(2S)\to J/\psi(1S)\eta$,
- and a dilute instanton gas estimate of some unknown matrix elements.
- 56 DONOGHUE 92 result is from a combined analysis of meson masses, η ing second-order chiral perturbation theory including nonanalytic terms, and $(\psi(25) \to J/\psi(1S)\pi)/(\psi(2S) \to J/\psi(1S)\eta)$.
- ⁵⁷DONOGHUE 92B computes quark mass ratios using $(\psi(2S) \rightarrow J/\psi(1S)\pi)/(\psi(2S) \rightarrow$ $J/\psi(15)\,\eta)$, and an estimate of L_{14} using Weinberg sum rules.
- 58 GERARD 90 uses large N and η - η' mixing.
- 59 LEUTWYLER 908 determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L₇.

Quark Particle Listings

Light Quarks (u, d, s), c

- 60 MALTMAN 90 uses second-order chiral perturbation theory including nonanalytic terms for the meson masses. Uses a criterion of "maximum reasonableness" that certain coefficients which are expected to be of order one are \leq 3.
- ⁶¹ CHOI 89 uses second-order chiral perturbation theory and a dilute instanton gas estimate of second-order coefficients in the chiral lagrangian.
- 62 KAPLAN 86 uses second-order chiral perturbation theory including nonanalytic terms for the meson masses. Assumes that less than 30% of the mass squared of the pion is due to second-order corrections.
- 63 GASSER 82 uses chiral perturbation theory for the meson and baryon masses.
- 64 LANGACKER 79 result is from a fit to the meson and baryon mass spectrum, and the decay $\eta \to 3\pi$. The electromagnetic contribution is taken from Socolow rather than from Dashen's formula.
- 65 LANGACKER 79B result uses LANGACKER 79 and also ρ - ω mixing.
- 66 WEINBERG 77 uses lowest-order chiral perturbation theory for the meson and baryon masses and Dashen's formula for the electromagnetic mass differences.

s/d MASS RATIO

ALUE	DOCUMENT ID		TECN	COMMENT
7 to 25 OUR EVAL	UATION			
• We do not use t	he following data for average	s, fits	, limits,	etc. • • •
0.0	67 GAO			MS scheme
8.9 ± 0.8	68 LEUTWYLER	96	THEO	Compilation
1	69 DONOGHUE		THEO	·
8	⁷⁰ GERARD	90	THEO	
8 to 23	71 LEUTWYLER	90B	THEO	
5 to 26	⁷² KAPLAN	86	THEO	
9.6 ± 1.5	⁷³ GASSER		THEO	
2 ±5	74 LANGACKER	79	THEO	
4 ±4	⁷⁵ LANGACKER	79B	THEO	
0	⁷⁶ WEINBERG	77	THEO	

- 67 GAO 97 uses electromagnetic mass splittings of light mesons.
- 68 LEUTWYLER 96 uses a combined fit to $\eta\to 3\pi$ and $\psi^I\to J/\psi~(\pi,\eta)$ decay rates, and the electromagnetic mass differences of the π and K.
- for DONOGHUE 92 result is from a combined analysis of meson masses, $\eta \to 3\pi$ using second-order chiral perturbation theory including nonanalytic terms, and $(\psi(25) \to J/\psi(15)\pi)/(\psi(25) \to J/\psi(15)\eta)$.
- ⁷⁰ GERARD 90 uses large N and η - η ¹ mixing.
- 71 LEUTWYLER 90s determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L₇.
- 72 KAPLAN 86 uses second-order chiral perturbation theory including nonanalytic terms for the meson masses. Assumes that less than 30% of the mass squared of the pion is due to second-order corrections.
- 73 GASSER 82 uses chiral perturbation theory for the meson and baryon masses.
- 74 LANGACKER 76 result is from a fit to the meson and baryon mass spectrum, and the decay η → 3π. The electromagnetic contribution is taken from Socolow rather than from Dashen's formula.
- 75 LANGACKER 79B result uses LANGACKER 79 and also $ho\omega$ mixing.
- TAMORERG 77 uses lowest-order chiral perturbation theory for the meson and baryon masses and Dashen's formula for the electromagnetic mass differences.

$(m_s - m)/(m_d - m_u)$ MASS RATIO $\overline{m} \equiv (m_u + m_d)/2$

VALUE DOCUMENT ID TECN 34 to 51 OUR EVALUATION

• • • We do not use the following data for averages, fits, limits, etc. • • •

		77 ANISOVICH	96	THEO
36	±5	⁷⁸ NEFKENS		THEO
45	±3	⁷⁹ NEFKENS	92	THEO
38	±9	⁸⁰ AMETLLER	84	THEO
43.	5 ± 2.2	GASSER	82	THEO
34	to 51	GASSER	81	THEO
48	±7	MINKOWSKI	80	THEO

- ⁷⁷ ANISOVICH 96 find $Q=22.7\pm0.8$ with $Q^2\equiv(m_{\rm S}^2-m^2)/(m_{\rm d}^2-m_{\rm S}^2)$ from $\eta\to$
- $\pi^+\pi^-\pi^0$ decay using dispersion relations and chiral perturbation theory.
- 78 NEFKENS 92 result is from an analysis of meson masses, mixing, and decay. 79 NEFKENS 92 result is from an analysis of of baryon masses.
- ⁸⁰ AMETLLER 84 uses $\eta \to \pi^+\pi^-\pi^0$ and ρ dominance.

LIGHT QUARKS (u, d, s) REFERENCES

AOKI	00	PRL 84 238	S. Aoki et al.	(CP-PACS Collab.)
AOKI	99	PRL 82 4392	S. Aoki et al.	(JLQCD Collab.)
BARATE	99R	EPJ C11 599	R. Barate et al.	(ALEPH Collab.)
MALTMAN	99	PL B462 195	K. Maltman	(**************************************
NARISON	99	PL B466 345	S. Narison	
STEELE	99	PL B451 201	T.G. Steele, K. Kostuik, J. Kwan	
BECIREVIC	98	PL B444 401	D. Becirevic et al.	
CHETYRKIN	98	NP B533 473	K.G. Chetyrkin, J.H. Kuehn, A.A.	Pivovarov
CUCCHIERI	98	PL B422 212	A. Chucchieri et al.	
DOMINGUEZ	98	PL B425 193	C.A. Dominguez, L. Pirovano, K. S	chilcher
DOSCH	98	PL B417 173	H.G. Dosch, S. Narison	
LEBED	98	PL B430 341	R.F. Lebed, K. Schilcher	
MALTMAN	98	PL B428 179	K. Maltman	
MALTMAN	98B	PR D58 093015	K. Maltman	
CHETYRKIN	97	PL B404 337	K.G. Chetyrkin, D. Pirjol, K. Schik	ther
COLANGELO	97	PL B408 340	P. Colangelo et al.	
EICKER	97	PL B407 290	N. Eicker et al.	(SESAM Collab.)

GAO	97	PR D56 4115	D. M. Cov. D. A. L. M. L. Mar.
GOUGH	97	PRL 79 1622	DN. Gao, B.A. Li, ML. Yan
GUPTA			B. Gough et al.
	97	PR D55 7203	R. Gupta, T. Bhattacharya
LELLOUCH	97	PL B414 195	L. Lellouch, E. de Rafael, J. Taron
ANISOVICH	96	PL B375 335	A.V. Anisovich, H. Leutwyler
LEUTWYLER	96	PL B378 313	H. Leutwyler
BIJNENS	95	PL B348 226	J. Bijnens, J. Prades, E. de Rafael (NORO, BOHR+)
CHETYRKIN	95	PR D51 5090	K.G. Chetyrkin et al. (INRM, CAPE, MANZ)
JAMIN	95	ZPHY C66 633	M. Jamin, M. Munz (HEIDT, MUNT)
NARISON	95C	PL B358 113	S. Narison (MONP)
ADAMI	93	PR D48 2304	C. Adami, E.G. Drukarev, B.L. Ioffe (CIT, ITEP+)
CHOI	92	PL B292 159	K.W. Choi (UCSD)
CHOI	92B	NP B383 58	K.W. Choi (UCSD)
DONOGHUE	92	PRL 69 3444	J.F. Donoghue, B.R. Holstein, D. Wyler (MASA+)
DONOGHUE	92B	PR D45 892	J.F. Donoghue, D. Wyler (MASA, ZURI, UCSBT)
NEFKENS	92	CNPP 20 221	B.M.K. Nefkens, G.A. Miller, I. Slaus (UCLA+)
DOMINGUEZ	91	PL B253 241	C.A. Dominguez, C. van Gend, N. Paver (CAPE+)
GERARD	90	MPL A5 391	J.M. Gerard (MPIM)
LEUTWYLER	90B	NP B337 108	H. Leutwyler (BERN)
MALTMAN	90	PL B234 158	K. Maltman, T. Goldman, Stephenson Jr. (YORKC+)
CHOI	89	PRL 62 849	(Totale)
CHOI	89B	PR D40 890	K. Choi, C.W. Kim (CMU, JHU)
BARDUCCI	68	PR D3B 238	A. Barducci et al. (FIRZ, INFN, LECE+)
Also	87	PL B193 305	A. Barducci et al. (FIRZ, INFN, LECE+)
DOMINGUEZ	87	ANP 174 372	C.A. Dominguez, E. de Rafael (ICTP, MARS, WIEN)
KAPLAN	86	PRL 56 2004	D.D. Kaplan, A.V. Manohar (HARV)
AMETLLER	84	PR D30 674	L. Ametiler, C. Ayala, A. Bramon (BARC)
KREMER	B4	PL 143B 476	M. Kremer, N.A. Papadopoulos, K. Schilcher (MANZ)
GASSER	82	PRPL 87 77	J. Gasser, H. Leutwyler (BERN)
GASSER	81	ANP 136 62	J. Gasser (BERN)
MINKOWSKI	80	NP B164 25	
LANGACKER	79	PR D19 2070	
LANGACKER	79B	PR D20 2983	
WEINBERG	77	ANYAS 38 185	P. Langacker (PENN)
VYEHVERU	"	WIA1WO 30 102	5. Weinberg (HARV)

VALUE (GeV)

$$I(J^P) = O(\frac{1}{2}^+)$$
Charge = $\frac{2}{3}$ e Charm = +1

c-QUARK MASS

The c-quark mass is estimated from charmonium and D masses. It corresponds to the "running" mass m_C ($\mu=m_C$) in the $\overline{\rm MS}$ scheme. We have converted masses in other schemes to the $\overline{\rm MS}$ scheme using one-loop QCD pertubation theory with $\alpha_5(\mu=m_C)=0.39$. The range 1.0–1.6 GeV for the $\overline{\rm MS}$ mass corresponds to 1.2–1.9 GeV for the pole mass (see the "Note on Quark Masses").

PAROL (GEV)	DOCUMENTIO		LECIV	COMMENT
1.15 to 1.35 OUR EVALUA • • • We do not use the form		- 61+	c limite	ata
• • • • • • • • • • • • • • • • • • •		», III	5, HIIIILS,	etc. • • •
1.79±0.38	1 VILAIN			Assumes MS scheme
1.22 ± 0.06	² DOMINGUEZ	94	THEO	MS scheme
≥ 1.23	³ LIGETI	94	THEO	M5 scheme
≥ 1.25	⁴ LUKE	94	THEO	MS scheme
1.23±0.04	⁵ NARISON	94	THEO	MS scheme
1.31 ± 0.03	⁶ TITARD	94	THEO	MS scheme
$1.5 \begin{array}{c} +0.2 \\ -0.1 \end{array} \pm 0.2$	7 ALVAREZ	93	THEO	
1.27 ± 0.02	⁸ NARISON	89	THEO	
1.25 ± 0.05	9 NARISON	87	THEO	
1.27 ± 0.05	¹⁰ GASSER	82	THEO	

- n the charm quark mass from an analysis of charm production in neutrino scattering.
- 2 DOMINGUEZ 94 uses QCD sum rules for $J/\psi(15)$ system and finds a pole mass of
- 3 LIGETI 94 computes lower bound of 1.43 GeV on pole mass using HQET, and experimental data on inclusive B and D decays. 4 LUKE 94 computes lower bound of 1.46 GeV on pole mass using HQET, and experimental
- data on inclusive B and D decays. 5 NARISON 94 uses spectral sum rules to two loops, and $J/\psi(1S)$ and \varUpsilon systems.
- 6 TITARD 94 uses one-loop computation of the quark potential with nonperturbative gluon condensate effects to fit $J/\psi(15)$ and \varUpsilon states.
- 7 ALVAREZ 93 method is to fit the measured x_F and p_T^2 charm photoproduction distributions to the theoretical predictions of ELLIS 89c.
- bothons of the intercent processors of the Secretary of
- 9 NARISON 87 computes pole mass of 1.46 ± 0.05 GeV using QCD sum rules, with $\Lambda(\overline{\text{MS}})$
- $10\,\text{GASSER}$ 82 uses SVZ sum rules. The renormalization point is $\mu=\text{quark}$ mass.

c-QUARK REFERENCES

VILAIN	99	EPJ C11 19	P. Vilain et al.	(CHARM II Collab.)
DOMINGUEZ	94	PL B333 184	C.A. Dominguez, G.R. Gluckman	. N. Paver (CAPE+)
LIGETI	94	PR D49 R4331	Z. Ligeti, Y. Nir	(REHO)
LUKE	94	PL B321 88	M. Luke, M.L. Savage	(TNTO, UCSD), CMU)
NARISON	94	PL B341 73	S. Narison	(CERN, MONP)
TITARD	94	PR D49 6007	S. Titard, F.J. Yndurain	(MICH, MADU)
ALVAREZ	93	ZPHY C60 53	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ELLIS	B9C	NP B312 551	R.K. Ellis, P. Nason	(FNAL, ETH)
NARISON	89	PL B216 191	5. Narison	(ICTP)
NARISON	87	PL B197 405	S. Narison	(CERN)
GASSER	82	PRPL 87 77	J. Gasser, H. Leutwyler	(BERN)

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge $= -\frac{1}{3} e$

b-QUARK MASS

The b-quark mass is estimated from bottomonium and B masses. It corresponds to the "running" mass $m_{\rm B}$ ($\mu=m_{\rm B}$) in the MS scheme. We have converted masses in other schemes to the MS scheme using one-loop QCD pertubation theory with $\alpha_S(\mu=m_b)=0.22$. The range 4.1–4.5 GeV for the $\overline{\rm MS}$ mass corresponds to 4.5–4.9 GeV for the pole mass (see the "Note on Quark Masses").

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT
4.0 to 4.4 OUR EVALUATION				
 We do not use the following 	ig data for average:	s, fits	, limits,	etc. • • •
4.20 ±0.06	¹ HOANG	00	THEO	Assumes MS scheme
4.25 ±0.08	² BENEKE	99	THEO	Assumes MS scheme
4.48 +1.1 -2.7	³ BRANDENB	99		Assumes M\$ scheme
4.25 ±0.09	⁴ HOANG	99	THEO	MS scheme
4.2 ±0.1	5 MELNIKOV	99	THEO	Assumes MS scheme
4.21 ±0.11	⁶ PENIN	99	THEO	Assumes MS scheme
3.91 ±0.67	⁷ ABREU	981	DLPH	MS scheme
4.14 ±0.04	8 KUEHN	98	THEO	MS scheme
$4.15 \pm 0.05 \pm 0.20$	⁹ GIMENEZ	97	LATT	MS scheme
4.13 ±0.06	10 JAMIN	97	THEO	MS scheme
4.16 ±0.32 ±0.60	11 RODRIGO	97	THEO	MS scheme
4.22 ±0.05	12 NARISON	95B	THEO	MS scheme
4.238 ± 0.006	¹³ VOLOSHIN	95	THEO	MS scheme
4.0 ± 0.1	¹⁴ DAVIES	94	THEO	MS scheme
≥ 4.26	¹⁵ LIGETI	94	THEO	MS scheme
≥ 4.2	¹⁶ LUKE	94	THEO	MS scheme
4.23 ±0.04	17 NARISON	94	THEO	MS scheme
4.397 ± 0.025	¹⁸ TITARD	94	THEO	MS scheme
4.32 ±0.05	¹⁹ DOMINGUEZ	92	THEO	
4.24 ±0.05	²⁰ NARISON	89	THEO	
4.18 ±0.02	²¹ REINDERS	88	THEO	
4.30 ±0.13	²² NARISON	87	THEO	
4.25 ±0.1	²³ GASSER	82	THEO	

- $^{1}\,\mathrm{HOANG}$ 00 uses a NNLO calculation of the vacuum polarization function to determine spectral moments of the masses and electronic decay widths of the $oldsymbol{arphi}$ mesons
- spectral moments of the masses and electronic decay middle of the τ mass of the τ meson at NNLO.

 3 BRANDENBURG 99 obtain a b-quark mass of $m_b(M_Z) = 2.56 \pm 0.27 + 0.28 + 0.49$ from
- a study of three-jet events at the Z. We have converted this to $\mu=m_{D}$.
- ⁴HOANG 99 uses a NNLO calculation of the vacuum polarization function to determine ectral moments of the masses and electronic decay widths of the Υ mesons.
- MELNIKOV 99 compute the quark mass using T sum rules at NNLO.
 6 PENIN 99 compute the quark mass using T sum rules at NNLO.
- The property of the production at LEP. ABREU 981 have rescaled the result to $\mu = m_Z$ from three jet heavy quark production at LEP. ABREU 981 have rescaled the result to $\mu = m_D$ using $\alpha_S = 0.118 \pm 0.003$.
- ⁸ KUEHN 98 uses a calculation of the vacuum polarization function, including resumming threshold effects, to determine spectral moments of the masses of the Υ mesons. We have converted their extracted value of 4.75 \pm 0.04 for the pole mass to the $\overline{\text{MS}}$ scheme.
- GIMENEZ 97 uses lattice computations of the B-meson propagator and the B-meson binding energy \overline{A} in the HQET. Their systematic (second) error for the \overline{MS} mass is an estimate of the effects of higher-order corrections in the matching of the HQET operators
- 10 JAMIN 97 apply the QCD moment method to the Υ system. They also find a pole mass
- of 4.60 \pm 0.02. ¹¹ RODRIGO 97 determines the $\overline{\rm MS}$ mass $m_b = 2.85 \pm 0.22 \pm 0.20 \pm 0.36$ GeV at μ = M_Z from three jet heavy quark production at LEP. We have rescaled the result.
- 12 NARISON 95B uses finite energy sum rules to two-loop accuracy to determine a b-quark pole mass of 4.61 ± 0.05 GeV.
- pole mass of 4.01 \pm 0.05 GeV.

 13 VOLOSHIN 95 uses moments of the total cross section for e^+ have converted the value of of 4.827 \pm 0.007 MeV for the pole mass to the $\overline{\text{MS}}$ scheme using the two-loop formula.
- 14 Sing the two-loop formula.

 14 DAVIES 94 uses lattice computation of Υ spectroscopy. They also quote a value of 5.0 ± 0.2 GeV for the *b*-quark pole mass. The numerical computation includes quark vacuum polarization (unquenched); they find that the masses are independent of n_f to within their errors. Their error for the pole mass is larger than the error for the MS mass because both are computed from the bare lattice quark mass, and the conversion for the pole mass is less accurate.
- pole mass is less accurate.

 5 LIGET J 94 computes lower bound of 4.66 GeV on pole mass using HQET, and experimental data on inclusive B and D decays.
- mental data on inclusive B and D decays.

 16 LUKE 94 computes lower bound of 4.60 GeV on pole mass using HQET, and experimental data on inclusive B and D decays.

 17 NARISON 94 uses spectral sum rules to two loops, and $J/\psi(1S)$ and Υ systems.
- $^{18}\,\text{TITARD}$ 94 uses one-loop computation of the quark potential with nonperturbative gluon condensate effects to fit $J/\psi(15)$ and Υ states.
- $^{19}\,\text{DOMINGUEZ}$ 92 determines pole mass to be 4.72 \pm 0.05 using next-to-leading order in
- 20 NARISON 89 determines the Georgi-Politzer mass at $p^2=-m^2$ to be 4.23 \pm 0.05 GeV
- ²¹REINDERS 88 determines the Georgi-Politzer mass at $p^2=-m^2$ to be 4.17 \pm 0.02 using moments of $\bar{b}\gamma^{\mu}b$. This technique leads to a value for the mass of the B meson of 5.25 \pm 0.15 GeV. 22 NARISON 87 determines the pole mass to be 4.70 \pm 0.14 using QCD sum rules, with
- $\Lambda(\overline{MS}) = 180 \pm 80 \text{ MeV}$
- ²³ GASSER 82 uses SVZ sum rules. The renormalization point is $\mu=$ quark mass.

mb - mc MASS DIFFERENCE

The mass difference m_b-m_ζ in the HQET scheme is 3.4 \pm 0.2 GeV (see the "Note on Quark Masses").

VALUE (GeV)	DOCUMENT ID	
• • • We do not use t	following data for averages, fits, limits, etc. • • •	
≥ 3.29	²⁴ GROSSE 78	
²⁴ GROSSE 78 obtain	$m_b - m_c) \geq 3.29$ GeV based on eigenvalue inequalities in potentia	ıl

b-QUARK REFERENCES

HOANG	00	PR D61 034005	A.H .Hoang	
BENEKE	99	PL B471 233	M. Beneke, A. Signer	
BRANDENB	99	PL B468 168	A. Brandenburg et al.	
HOANG	99	PR D59 014039	A.H. Hoang	
MELNIKOV	99	PR D59 114009	K. Melnikov, A. Yelkhovsky	
PENIN	99	NP B549 217	A.A. Penin, A.A. Pivovarov	
ABREU	981	PL B418 430	P. Abreu et al.	(DELPHI Collab.)
KUEHN	98	NP B534 356	J.H. Kuehn, A.A. Penin, A.A.	
GIMENEZ	97	PL B393 124	V. Girnenez, G. Martinelli, C.T	. Sachraida
JAMIN	97	NP B507 334	M. Jamin, A. Pich	•
RODRIGO	97	PRL 79 193	G. Rodrigo, A. Santamaria, M.	S. Bilenky
NARISON	95B	PL B352 122	5. Narison	(MONP)
VOLOSHIN	95	IJMP A10 2865	M.B. Voloshin	`(MINN)
DAVIES	94	PRL 73 2654	C.T.H. Davies et al.	(GLAS, SMU, CÒRN+)
LIGETI	94	PR D49 R4331	Z. Ligeti, Y. Nir	(REHO)
LUKE	94	PL B321 88	M. Luke, M.L. Savage	(TNTO, UCSD) CMU)
NARISON	94	PL B341 73	S. Narison	(CERN, MONP)
TITARD	94	PR D49 6007	S. Titard, F.J. Yndurain	(MICH, MADU)
DOMINGUEZ	92	PL B293 197	C.A. Dominguez, N. Paver	(CAPE, TRST, INFN)
NARISON	89	PL B216 191	S. Narison	(ICTP)
REINDERS	88	PR D38 947	L.J. Reinders	(BONN)
NARISON	87	PL B197 405	S. Narison	(CERN)
GASSER	82	PRPL 67 77	J. Gasser, H. Leutwyler	(BERN)
GROSSE	78	PL 79B 103	H. Grosse, A. Martin	(CERN)
				` '

Charge $=\frac{2}{3}e$ Top = +1

 $I(J^P) = 0(\frac{1}{2}^+)$

THE TOP QUARK

Revised April 2000 by M. Mangano (CERN) and T. Trippe (LBNL).

A. Introduction: The top quark is the Q = 2/3, $T_3 = +1/2$ member of the weak-isospin doublet containing the bottom quark (see our review on the "Standard Model of Electroweak Interactions" for more information). This note summarizes its currently measured properties, and provides a discussion of the experimental and theoretical issues involved in the determination of its parameters (mass, production cross section, decay branching ratios, etc.); it also comments on prospects for future improvements.

B. Top quark production at the Tevatron: All direct measurements of top quark production and decay have been made by the CDF and DØ experiments at the Fermilab Tevatron collider in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. Here top quarks are produced dominantly in pairs from the QCD processes $q\overline{q} \to t\overline{t}$ and $gg \to t\bar{t}$. At this energy, the production cross section in these channels is expected to be approximately 5 pb for m_t = 175 GeV/c², with a 90% contribution from $q\bar{q}$ annihilation. Smaller contributions are expected from electroweak single-top production mechanisms, namely $q\overline{q}' \to W^* \to t\overline{b}$ and $qg \to q't\overline{b}$, the latter mediated by virtual-W exchange ("W-gluon fusion"). The combined rate from these processes is approximately 2.5 pb at $m_t = 175 \text{ GeV/c}^2$ (see Ref. 1 and references therein). The expected contribution of these channels is further reduced relative to the dominant pair-production mechanisms because of larger backgrounds and poor detection efficiency.

With a mass above the Wb threshold, the decay width of the top quark is expected to be dominated by the two-body

channel $t \to Wb$. Neglecting terms of order m_b^2/m_t^2 , α_s^2 and those of order $(\alpha_s/\pi)m_W^2/m_t^2$, this is predicted in the Standard Model to be [2]:

$$\Gamma_{t} = \frac{G_{F} m_{t}^{3}}{8\pi\sqrt{2}} \left(1 - \frac{M_{W}^{2}}{m_{t}^{2}}\right)^{2} \left(1 + 2\frac{M_{W}^{2}}{m_{t}^{2}}\right) \left[1 - \frac{2\alpha_{s}}{3\pi} \left(\frac{2\pi^{2}}{3} - \frac{5}{2}\right)\right]. \tag{1}$$

The use of G_F in this equation accounts for the largest part of the one-loop electroweak radiative corrections, providing an expression accurate to better than 2%. The width increases with mass, going for example from 1.02 GeV/c² at $m_t = 160 \text{ GeV/c}^2$ to 1.56 GeV/c² at $m_t = 180 \text{ GeV/c}^2$ (we used $\alpha_S(\mathrm{M_Z}) = 0.118$). With such a correspondingly short lifetime, the top quark is expected to decay before top-flavored hadrons or $t\bar{t}$ -quarkonium bound states can form [3]. Recently, the order α_s^2 QCD corrections to Γ_t have also been calculated [4], thereby improving the overall theoretical accuracy to better than 1%.

In top decay, the Ws and Wd final states are expected to be suppressed relative to Wb by the square of the CKM matrix elements V_{ts} and V_{td} , whose values can be estimated under the assumption of unitarity of the three-generation CKM matrix to be less than 0.043 and 0.014, respectively (see our review "The Cabibbo-Kobayashi-Maskawa Mixing Matrix" in the current edition for more information). Typical final states for the leading pair-production process therefore belong to three classes:

- A. $t\overline{t} \to W b W \overline{b} \to q \overline{q}' b q'' \overline{q}''' \overline{b}$,
- B. $t\bar{t} \to W b W \bar{b} \to q \bar{q}' b \ell \bar{\nu}_{\ell} \bar{b} + \bar{\ell} \nu_{\ell} b q \bar{q}' \bar{b}$,
- C. $t\bar{t} \to W b W \bar{b} \to \bar{\ell} \nu_{\ell} b \ell' \bar{\nu}_{\ell'} \bar{b}$,

where A, B, and C are referred to as the all-jets, lepton + jets, and dilepton channels, respectively.

The final state quarks can emit radiation and eventually evolve into jets of hadrons. The precise number of jets reconstructed by the detectors varies event by event, as it depends on the decay kinematics, as well as on the precise definition of jet used in the analysis. (Additional gluon radiation can also be emitted from the initial states.) The transverse momenta of the neutrinos are reconstructed via the large imbalance in detected transverse momentum of the event (missing E_T).

The observation of $t\bar{t}$ pairs has been reported in all of the above decay modes. As discussed below, the production and decay properties of the top quark extracted from the above three decay channels are all consistent with each other within experimental uncertainty. In particular, the $t \to Wb$ decay mode is supported through the reconstruction of the $W \to jj$ invariant mass in the $\ell \overline{\nu}_{\ell} b \bar{b} jj$ final state [5].

The extraction of top-quark properties from Tevatron data requires a good understanding of the production and decay mechanisms of the top, as well as of the large background processes. Because only leading order QCD calculations are available for most of the relevant processes (W+3 and 4 jets, or WW+2 jets), theoretical estimates of the backgrounds have large uncertainties. While this limitation affects estimates of the overall $t\bar{t}$ production rates, it is believed that the LO

determination of the event kinematics and of the fraction of W + multi-jet events containing b quarks is relatively accurate. In particular, for the background one expects the E_T spectrum of jets to fall rather steeply, the jet direction to peak at small angles to the beams, and the fraction of events with b quarks to be of the order of a few percent. On the contrary, for the top signal, the b fraction is $\sim 100\%$ and the jets are rather energetic, since they come from the decay of a massive object. It is therefore possible to improve the S/B ratio either by requiring the presence of a b quark, or by selecting very energetic and central kinematic configurations.

A detailed study of control samples with features similar to those of the relevant backgrounds, but free from possible top contamination, is required to provide a reliable check on background estimates.

C. Measured top properties: Current measurements of top properties are based on the full Run I integrated luminosity of 109 pb⁻¹ for CDF and 125 pb⁻¹ for DØ. DØ and CDF determine the $t\bar{t}$ cross section $\sigma_{t\bar{t}}$ from their number of observed top candidates, estimated background, $t\bar{t}$ acceptance, and integrated luminosity, assuming the Standard-Model decay $t \to Wb$ with unity branching ratio. Table 1 shows the measured cross sections from DØ and CDF along with the range of theoretical expectations, evaluated at the m_t values used by the experiments in calculating their acceptances. The DØ results have been updated in conference proceedings [7] to adjust to the current DØ value of the top mass. The CDF results have been updated in conference proceedings [16] to include improvements in their Monte Carlo determination of secondary-vertex tagging efficiency, calibration of the background estimate of the heavyflavor fraction in inclusive W+jets events, and an updated total luminosity. This has brought the CDF cross section into better agreement with theoretical expectations. The agreement of both DØ and CDF $t\bar{t}$ cross sections with theory supports the hypothesis that the excess of events over background in all of these channels can be attributed to $t\bar{t}$ production.

More precise measurements of the top production cross section will test current understanding of the production mechanisms [9-12]. This is important for the extrapolation to higher energies of colliders such as the LHC, where the larger expected cross section will permit more extensive studies [17]. Discrepancies in rate between theory and data, even at the Tevatron, would be quite exciting, and might indicate the presence of exotic production or decay channels, as predicted in certain models. Such new sources of top would lead to a modification of kinematic distributions such as the invariant mass of the top pair or the transverse momentum of the top quark. Studies by CDF of the former [18] and of the latter [19] distributions, show no deviation from expected QCD behavior. DØ [20] also finds these kinematic distributions consistent with Standard Model expectations.

The top mass has been measured in the lepton + jets and dilepton channels by both $D\emptyset$ and CDF, and in the

Table 1: Cross section for $t\bar{t}$ production in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV from DØ $(m_t = 172.1$ GeV/c²), CDF $(m_t = 175 \text{ GeV/c}^2)$, and theory.

$\sigma_{t ilde{t}}(pb)$	Source	Ref.	Method	
4.1 ± 2.1	DØ	[6,7]	$\ell + {\rm jets/topological}$	
8.3 ± 3.5	DØ	[6,7]	ℓ + jets/soft μ b-tag	
6.4 ± 3.3	DØ	[6,7]	$\ell\ell + e u$	
7.1 ± 3.2	DØ	[8]	all jets	
5.9 ± 1.7	DØ	[8]	all combined	
5.2 - 6.0	Theory	[9-12]	$m_t=172.1~{\rm GeV/c^2}$	
5.1 ± 1.5	CDF	[13,16]	ℓ + jets/vtx b-tag	
9.2 ± 4.3	CDF	[13,16]	ℓ + jets/soft ℓ b-tag	
$8.4^{+4.5}_{-3.5}$	CDF	[14,16]	$\ell\ell$	
$7.6^{+3.5}_{-2.7}$	CDF	[15,16]	all jets	
$6.5^{+1.7}_{-1.4}$	CDF	[16]	all combined	
4.75 - 5.5	Theory	[9–12]	$m_t = 175 \text{ GeV/c}^2$	

all-jets channel by CDF. At present, the most precise measurements come from the lepton + jets channel, with four or more jets and large missing E_T . In this channel, each event is subjected to a two-constraint kinematic fit to the hypothesis $t\bar{t} \to W^+ \, b \, W^- \, \bar{b} \to \ell \, \nu_\ell \, q \, \bar{q}' \, b \, \bar{b}$, assuming that the four highest E_T jets are the quarks from $t\bar{t}$ decay. The shape of the distribution of fitted top masses from these events is compared to templates expected from a mixture of background and signal distributions for a series of assumed top masses. This comparison yields values of the likelihood as a function of top mass, from which a best value of the top mass and its uncertainty can be obtained. The results are shown in Table 2. The systematic uncertainty (second uncertainty shown) is comparable to the statistical uncertainty, and is primarily due to uncertainties in the jet energy scale and in the Monte Carlo modeling.

Less precise determinations of the top mass come from the dilepton channel with two or more jets and large missing E_T , and from the all-jets channel. In the dilepton channel, a kinematically constrained fit is not possible because there are two missing neutrinos, so experiments must use other mass estimators than the reconstructed top mass. In principle, any quantity which is correlated with the top mass can be used as such an estimator. The DØ method uses the fact that if a value for m_t is assumed, the $t\bar{t}$ system can be reconstructed (up to a four-fold ambiguity). They compare the resulting kinematic configurations to expectations from $t\bar{t}$ production, and obtain an m_t -dependent weight curve for each event, which they histogram in five bins to obtain four shape-sensitive quantities as their multidimensional mass estimator. This method yields a significant increase in precision over one-dimensional estimators. CDF has employed a similar method, thereby reducing their previous systematic uncertainty in the $\ell\ell$ + jets channel by a factor of two. DØ and CDF obtain the top mass and uncertainty from these mass estimators using the same type of template likelihood method as for the lepton + jets channel. CDF also measures the mass in the all-jets channel using events with six or more jets, at least one of which is tagged as a b jet through the detection of a secondary vertex.

Table 2: Top mass measurements from $D\emptyset$ and CDF

$m_t~({ m GeV/c^2})$	Source	Ref.	Method
$\overline{173.3 \pm 5.6 \pm 5.5}$	DØ	[20]	ℓ + jets
$168.4 \pm 12.3 \pm 3.6$	DØ	[21]	$\ell\ell$
$172.1 \pm 5.2 \pm 4.9$	DØ	[20]	DØ comb.
$175.9 \pm 4.8 \pm 5.3$	CDF	[22,23]	ℓ + jet
$167.4 \pm 10.3 \pm 4.8$	CDF	[22]	$\ell\ell$
$186.0 \pm 10.0 \pm 5.7$	CDF	[22,15]	all jets
$176.0 \pm 4.0 \pm 5.1$	CDF	[22]	CDF comb.
$174.3 \pm 3.2 \pm 4.0$ *	DØ & CDF	[24]	PDG best

^{*} PDG uses this Top Averaging Group result as its best value

As seen in Table 2, all results are in good agreement with a unique mass for the top quark, giving further support to the hypothesis that these events are due to $t\bar{t}$ production. The Top Averaging Group, a joint CDF/DØ working group, produced the combined CDF/DØ average top mass in Table 2, taking into account correlations between systematic uncertainties in different measurements. They assume that the uncertainty in jet energy scale is completely correlated within CDF and within DØ but uncorrelated between the two experiments, and that the signal model and Monte Carlo generator uncertainties are completely correlated between all measurements. The uncertainties from uranium noise and multiple interactions relate only to DØ and are assumed completely correlated between their two measurements. The uncertainty on the background model is taken to be completely correlated between the CDF and the DØ ℓ +jets measurements, and similarly for the $\ell\ell$ measurements. The Particle Data Group uses this combined top mass, $m_t = 174.3 \pm 5.1 \text{ GeV/c}^2$ (statistical and systematic uncertainties combined in quadrature), as our PDG best value.

Given the experimental technique used to extract the top mass, these mass values should be taken as representing the top pole mass (see our review "Note on Quark Masses" in the current edition for more information).

With a smaller uncertainty on the top mass, and with improved measurements of other electroweak parameters, it will be possible to get important constraints on the value of the Higgs mass. Current global fits performed within the Standard Model and its minimal supersymmetric extension provide indications for a relatively light Higgs (see the review "H⁰ Indirect Mass Limits from Electroweak Analysis" in the Particle Listings of the current edition for more information).

Quark Particle Listings

t

Other properties of top decays are being studied. CDF reports a direct measurement of the $t \to Wb$ branching ratio [25]. Their preliminary result, obtained by comparing the number of events with 0, 1 and 2 tagged b jets and using the known btagging efficiency, is: $R = B(t \to Wb) / \sum_{q=d,s,b} B(t \to Wq) =$ 0.99 ± 0.29 where statistical and systematic uncertainties are included, or as a lower limit, R > 0.58 at 95% CL. Assuming that non-W decays of top can be neglected, that only three generations of fermions exist, and that the CKM matrix is unitary, they extract a CKM matrix-element $|V_{tb}| = 0.99 \pm 0.15$ or $|V_{th}| > 0.76$ at 95% CL. A more direct measurement of the Wtb coupling constant will be possible when enough data are accumulated to detect the less frequent single-top production processes, such as $q\overline{q}' \rightarrow W^* \rightarrow t\overline{b}$ (a.k.a. s-channel W exchange) and $qb \rightarrow q't$ via W exchange (a.k.a. Wg fusion). The cross sections for these processes are proportional to $|V_{tb}|^2$, and there is no assumption needed on the number of families or the unitarity of the CKM matrix in the extraction of $|V_{tb}|$. Preliminary CDF results [19] give 95% CL limits of 15.8 and 15.4 pb for the single-top production rates in the s-channel and Wg-fusion channels, respectively. Comparison with the expected Standard Model rates of 0.73 ± 0.10 pb and 1.70 ± 0.30 pb, respectively, shows that far better statistics will be required before significant measurements can be achieved. For the prospects of these measurements at the LHC, see [17].

Both CDF and DØ have searched for non-Standard Model top decays [26,27], particularly those expected in supersymmetric models. These studies search for $t \to H^+b$, followed by $H^+ \to \tau \nu$ or $c\bar{s}$. The $t \to H^+ b$ branching ratio is a minimum at $\tan \beta = \sqrt{m_t/m_h} \simeq 6$ and is large in the region of either $\tan \beta \ll 6$ or $\tan \beta \gg 6$. In the former range $H^+ \to c\overline{s}$ is the dominant decay, while $H^+ \to \tau \nu$ dominates in the latter range. These studies are based either on direct searches for these final states, or on top disappearance. In the standard lepton + jets or dilepton cross section analyses, the charged Higgs decays are not detected as efficiently as $t \to W^{\pm}b$, primarily because the selection criteria are optimized for the standard decays, and because of the absence of energetic isolated leptons in the Higgs decays. With a significant $t \to H^+b$ contribution, this would give rise to measured cross sections lower than the prediction from the Standard Model (assuming that non-Standard contributions to $t\bar{t}$ production are negligible). More details, and the results of these studies, can be found in the review "Search for Higgs bosons" and in the "H+ Mass Limits" section of the Higgs Particle Listings of the current edition.

CDF reports a search for flavor changing neutral current (FCNC) decays of the top quark $t \to q\gamma$ and $t \to qZ$ [28], for which the Standard Model predicts such small rates that their observation here would indicate new physics. They assume that one top decays via FCNC while the other decays via Wb. For the $t \to q\gamma$ search, they examine two signatures, depending on whether the W decays leptonically or hadronically. For leptonic W decay, the signature is $\gamma\ell$ and missing E_T and two or more jets, while for hadronic W decay, it is γ plus four or more jets,

one with a secondary vertex b tag. They observe one event $(\mu\gamma)$ with an expected background of less than half an event, giving an upper limit on the top branching ratio of B $(t \to q\gamma) < 3.2\%$ at 95% CL.

For the $t\to qZ$ FCNC search, they look for $Z\to \mu\mu$ or ee and $W\to$ hadrons, giving a Z+ four jets signature. They observe one $\mu\mu$ event with an expected background of 1.2 events, giving an upper limit on the top branching ratio of $B(t\to qZ)<33\%$ at 95% CL. Both the γ and Z limits are non-background subtracted (i.e. conservative) estimates.

Indirect constraints on FCNC couplings of the top quark can be obtained from single-top production in e^+e^- collisions, via the process $e^+e^- \to \gamma, Z^* \to t\bar{q}$ and its charge-conjugate (q=u,c). Limits on the cross-section for this reaction have been obtained by DELPHI [29] using LEP2 data at energies between 183 and 189 GeV. When interpreted in terms of top decay branching ratios [30,17], these limits lead to a bound of $B(t\to qZ) < 22\%$ at 95% CL, which is stronger than the direct CDF limit.

Studies of the decay angular distributions allow a direct analysis of the V-A nature of the Wtb coupling, and provide information on the relative coupling of longitudinal and transverse W bosons to the top quark. In the Standard Model, the fraction of decays to longitudinally polarized W bosons is expected to be $\mathcal{F}_0^{\rm SM} = x/(1+x), \ x = m_t^2/2M_W^2$ ($\mathcal{F}_0^{\rm SM} \sim 70\%$ for $m_t = 175~{\rm GeV/c^2}$). Deviations from this value would bring into question the validity of the Higgs mechanism of spontaneous symmetry breaking. CDF has recently measured $\mathcal{F}_0^{\rm SM} = 0.91 \pm 0.37_{\rm stat} \pm 0.13_{\rm syst}$ [31], in agreement with the expectations.

 $D\emptyset$ has studied $t\bar{t}$ spin correlation [32]. Top quark pairs produced at the Tevatron are expected to be unpolarized but to have correlated spins. Since top quarks decay before hadronizing, their spins are transmitted to their decay daughters. Spin correlation is studied by analyzing the joint decay angular distribution of one t daughter and one \bar{t} daughter. The sensitivity to top spin is greatest when the daughters are charged leptons or d-type quarks, in which case, the joint distribution is

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d(\cos \theta_+) d(\cos \theta_-)} = \frac{1 + \kappa \cos \theta_+ \cos \theta_-}{4},\tag{2}$$

where θ_+ and θ_- are the angles of the daughters in the top rest frames with respect to a particular quantization axis, the optimal off-diagonal basis [33]. In this basis, the Standard Model predicts maximum correlation with $\kappa=0.88$ at the Tevatron. DØ analyzes their six dilepton events and obtains a likelihood as a function of κ which weakly favors the Standard Model ($\kappa=0.88$) over no correlation ($\kappa=0$) or anticorrelation ($\kappa=-1$, as would be expected for $t\bar{t}$ produced via an intermediate scalar). They quote a limit $\kappa>-0.25$ at 68% CL. With improved statistics, an observation of $t\bar{t}$ spin correlation could yield a lower limit on $|V_{tb}|$, independent of the assumption of three quark families [34].

References

- T. Stelzer, Z. Sullivan, and S. Willenbrock, Phys. Rev. D56, 5919 (1997).
- 2. M. Jeżabek and J.H. Kühn, Nucl. Phys. B314, 1 (1989).
- I.I.Y. Bigi, Yu.L. Dokshitzer, V. Khoze, J.H. Kühn, P. Zerwas, Phys. Lett. B181, 157 (1986).
- A. Czarnecki, K. Melnikov, Nucl. Phys. B544, 520 (1999);
 K.G. Chetyrkin, R. Harlander, T. Seidensticker, M. Steinhauser, Phys. Rev. D60, 114015 (1999).
- F. Abe et al., CDF Collab., Phys. Rev. Lett. 80, 5720 (1998)
- S. Abachi et al., DØ Collab., Phys. Rev. Lett. 79, 1203 (1997).
- R. Partridge, 29th Intl. Conf. on High Energy Physics (ICHEP 98), Vancouver, Canada, 23-29 July, 1998, hep-ex/9811035.
- B. Abbott et al., DØ Collab., Phys. Rev. Lett. 83, 1908 (1999);
 B. Abbott et al., DØ Collab., Phys. Rev. D60, 012001 (1999)
- P. Nason, S. Dawson, and R.K. Ellis, Nucl. Phys. B303, 607 (1988);
 W. Beenakker, H. Kuijf, W.L. van Neerven, and J. Smith, Phys. Rev. D40, 54 (1989).
- E. Berger and H. Contopanagos, Phys. Lett. **B361**, 115 (1995).
- E. Laenen, J. Smith, and W. van Neerven, Phys. Lett. B321, 254 (1994).
- S. Catani, M. Mangano, P. Nason, and L. Trentadue, Phys. Lett. B378, 329 (1996);
 R. Bonciani, S. Catani, M.L. Mangano, P. Nason, Nucl. Phys. B529, 424 (1998);
 M.L. Mangano, hep-ph/9911256, to appear in Procs. of Intl. Europhysics Conf. on High Energy Physics (EPS-HEP 99), Tampere, Finland, 15-21 Jul 1999.
- F. Abe et al., CDF Collab., Phys. Rev. Lett. 80, 2773 (1998).
- F. Abe et al., CDF Collab., Phys. Rev. Lett. 80, 2779 (1998).
- F. Abe et al., CDF Collab., Phys. Rev. Lett. 79, 1992 (1997).
- F. Ptohos, Representing the CDF Collab., Procs. of Intl. Europhysics Conf. on High Energy Physics (EPS-HEP 99), Tampere, Finland, 15-21 July 1999, to be publ.
- M. Beneke, I. Efthymiopoulos, M.L. Mangano, J. Womersley et al., hep-ph/0003033, to appear in Proceedings of 1999 CERN Workshop on Standard Model Physics (and more) at the LHC, G. Altarelli and M.L. Mangano eds.
- T. Affolder et al., CDF Collab., FERMILAB-PUB-00-051, hep-ex/0003005.
- P. Koehn, for the CDF Collab., FERMILAB-CONF-99-306-E, to be publ. in Procs. of Intl. Europhysics Conf. on High-Energy Physics (EPS-HEP 99), Tampere, Finland, 15-21 Jul 1999.
- B. Abbott *et al.*, DØ Collab., Phys. Rev. **D58**, 052001 (1998);
 S. Abachi *et al.*, DØ Collab., Phys. Rev. Lett. **79**, 1197 (1997).
- B. Abbott et al., DØ Collab., Phys. Rev. D60, 052001 (1999);

- B. Abbott *et al.*, DØ Collab., Phys. Rev. Lett. **80**, 2063 (1998).
- F. Abe et al., CDF Collab., Phys. Rev. Lett. 82, 271 (1999).
- F. Abe et al., CDF Collab., Phys. Rev. Lett. 80, 2767 (1998).
- L. Demortier et al., The Top Averaging Group, For the CDF and DØ Collaborations, FERMILAB-TM-2084, September, 1999.
- 25. G. Chiarelli, Int. J. Mod. Phys. A13, 2883 (1998).
- 26. F. Abe et al., CDF Collab., Phys. Rev. Lett. 79, 357 (1997);
 B. Bevensee, for the CDF Collab., FERMILAB-CONF-98/155-E;
 T. Affolder et al., CDF Collab., hep-ex/9912013.
- 27. B. Abbott et al., Phys. Rev. Lett. 82, 4975 (1999).
- F. Abe et al., CDF Collab., Phys. Rev. Lett. 80, 2525 (1998).
- P. Abreu et al., DELPHI Collab., Phys. Lett. B446, 62 (1998);
 P. Abreu et al., DELPHI Collab., DELPHI Note 99-85, submitted to the Intl. Europhysics Conference on High Energy Physics, Tampere, Finland, 15-21 July 1999.
- V.F. Obraztsov, S.R. Slabospitsky, O.P. Yushchenko, Phys. Lett. B426, 393 (1998).
- T. Affolder et al., CDF Collab., Phys. Rev. Lett. 84, 216 (2000).
- B. Abbott et al., DØ Collaboration, FERMILAB-Pub-00/046-E, submitted to Phys. Rev. Lett., hep-ex/0002058.
- G. Mahlon and S. Parke, Phys. Rev. D53, 4886 (1996); G. Mahlon and S. Parke, Phys. Lett. B411, 173 (1997).
- T. Stelzer and S. Willenbrock, Phys. Lett. **B374**, 169 (1996).

t-Quark Mass in pp Collisions

The t quark has been observed. Its mass is sufficiently high that decay is expected to occur before hadronization. OUR EVALUATION is an AVERAGE which incorporates correlations between systematic errors of the five different measurements. The average was done by a joint CDF/DØ working group and is reported in DEMORTIER 99, an FNAL Technical Memo. They report $174.3 \pm 3.2 \pm 4.0$ GeV, which yields "OUR EVALUATION" when statistical and systematic errors are combined.

For earlier search limits see the Review of Particle Physics, Phys. Rev. D54,1 (1996).

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT	
174.3± 5.1 OUR EVALUATION				_
167.4 ± 10.3 ± 4.8	1 ABE	99B CDF	dilepton	ı
$168.4 \pm 12.3 \pm 3.6$	² ABBOTT	98D D0	dilepton	
173.3± 5.6± 5.5	² ABBOTT	98F D0	lepton + jets	
175.9± 4.8± 5.3	^{1,3} ABE	98E CDF	lepton + jets	
186 ±10 ± 5.7	1,4 ABE	97R CDF	6 or more jets	
• • • We do not use the followi	ng data for average	es, fits, limit	s, etc. • • •	
172.1 ± 5.2 ± 4.9	5 ABBOTT	99G D0	di-lepton, lepton+jets	1
176.0 ± 6.5	⁶ ABE	998 CDF	dilepton, lepton+jets, and all jets	I
161 ±17 ±10	¹ ABE	98r CDF	dilepton	
$172.1 \pm 5.2 \pm 4.9$	⁷ BHAT	98B RVUE	dilepton and lepton+jets	ı
173.8 ± 5.0	⁸ BHAT	988 RVUE	dilepton, lepton+jets, and all jets	ı
173.3 ± 5.6 ± 6.2	² ABACHI	97E D0	lepton + jets	
$199 \begin{array}{c} +19 \\ -21 \end{array} \pm 22$	ABACHI	95 D0	lepton + jets	
176 ± B ±10	ABE	95F CDF	lepton + b-jet	
$174 \pm 10 \begin{array}{c} +13 \\ -12 \end{array}$	ABE	94E CDF	lepton + b-jet	

¹ Result is based on 109 \pm 7 pb⁻¹ of data at $\sqrt{s} \approx$ 1.8 TeV.

² Result is based on $125 \pm 7 \,\mathrm{pb}^{-1}$ of data at $\sqrt{s} = 1.8$ TeV. ³ The updated systematic error is listed. See ABE 998.

⁴ ABE 97R result is based on the first observation of all hadronic decays of $t\,\bar{t}$ pairs. Single b-quark tagging with jet-shape variable constraints was used to select signal enriched multi-jet events. The updated systematic error is listed. See ABE 998.

5 ABBOTT 996 result is obtained by combining the D0 result m_t (GeV) = 168.4 \pm 12.3 \pm 3.6 from 6 di-lepton events (see also ABBOTT 98D) and m_t (GeV) = 173.3 \pm 5.6 \pm 5.5 from lepton+jet events (ABBOTT 98F).

Quark Particle Listings

t

⁶ ABE 99B result is obtained by combining the CDF results of m_t (GeV)=167.4±10.3±4.8 from 8 dilepton events, m_t (GeV)=175.9 ±4.8 ±5.3 from lepton+jet events (ABE 98E), and m_t (GeV)=186.0 ±10.0 ±5.7 from all-jet events (ABE 97R). The systematic errors in the latter two measurements are changed in this paper.

⁷ BHAT 988 result is obtained by combining the DØ results of $m_t(\text{GeV})$ =168.4 \pm 12.3 \pm 3.6 from 6 dilepton events and $m_t(\text{GeV})$ =173.3 \pm 5.6 \pm 5.5 from 77 lepton+jet events.

Indirect t-Quark Mass from Standard Model Electroweak Fit

"OUR EVALUATION" below is from the fit to electroweak data described in the "Electroweak Model and Constraints on New Physics" section of this Review. This fit result does not include direct measurements of m_t .

The RVUE values are based on the data described in the footnotes. RVUE's published before 1994 and superseded analyses are now omitted. For more complete listings of earlier results, see the 1994 edition (Physical Review D50 1173 (1994)).

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT	
168.2 + 9.6 OUR EVALUATION				

• • • We do not use the following data for averages, fits, limits, etc. • •

$171.2 + 3.7 \\ - 3.8$	⁹ FIELD	99	RVUE	Z parameters without b jet + Direct
172.0 ⁺ 5.8 5.7	10 DEBOER	97в	RVUE	Electroweak + Direct
157 +16 -12	¹¹ ELLIS	96c	RVUE	Z parameters, m _W , lov
$175 \pm 11 \begin{array}{c} +17 \\ -19 \end{array}$	12 ERLER	95	RVUE	Z parameters, m_W , low energy
$180 \pm 9^{+19}_{-21} \mp 2.6 \pm 4.8$	13 MATSUMOTO	95	RVUE	chergy
$157 \begin{array}{ccc} +36 & +19 \\ -48 & -20 \end{array}$	¹⁴ ABREU	94	DLPH	Z parameters
158 $^{+32}_{-40}$ ±19	¹⁵ ACCIARRI	94	L3	Z parameters
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 AKERS	94	OPAL	Z parameters
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 ARROYO	94	CCFR	$ u_{m{\mu}}$ iron scattering
184 +25 +17 -29 -18	¹⁸ BUSKULIC	94	ALEP	Z parameters
153 ±15	¹⁹ ELLIS	94B	RVUE	Electroweak
$177 \pm 9 \begin{array}{c} +16 \\ -20 \end{array}$	²⁰ GURTU	94	RVUE	Electroweak
$174 \begin{array}{ccc} +11 & +17 \\ -13 & -18 \end{array}$	²¹ MONTAGNA	94	RVUE	Electroweak
$171 \pm 12 \begin{array}{c} +15 \\ -21 \end{array}$	²² NOVIKOV	94B	RVUE	Electroweak
160 +50 -60	23 ALITTI	92B	UA2	m_{W}, m_{Z}

⁹ FIELD 99 result is from the two-parameter fit with free m_t and m_H , yielding also $m_{H^{\pm}}$ $47.2^{+29.8}_{-24.5}$ GeV. Only the lepton and charm-jet asymmetry data are used together with the direct measurement constraint $m_t = 173.8 \pm 5.0$ GeV, and $1/\alpha(m_Z) = 128.896$.

 10 DEBOER 97B result is from the five-parameter fit which varies $m_Z,\ m_t,\ m_H,\ \alpha_s,$ and $\alpha(m_Z)$ under the contraints: $m_t{=}175\pm 6$ GeV, $1/\alpha(m_Z){=}128.896\pm 0.09.$ They found $m_H = 141 + 140 \over 77$ GeV and $\alpha_S(m_Z) = 0.1197 \pm 0.0031$.

 11 ELLIS 96C result is a the two-parameter fit with free $m_{ extstyle t}$ and $m_{ extstyle H}$, yielding also $m_H = 65 + \frac{117}{37}$ GeV.

 12 ERLER 95 result is from fit with free m_t and $\alpha_s(m_Z)$, yielding $\alpha_s(m_Z)=0.127(5)(2)$.

 13 MATSUMOTO 95 result is from fit with free m_t to Z parameters, M_W , and low-energy neutral-current data. The second error is for $m_H=300^{+700}_{-240}$ GeV, the third error is for $\alpha_{\rm s}(m_Z)=0.116\pm0.005$, the fourth error is for $\delta\alpha_{\rm had}=0.0283\pm0.0007$.

 14 ABREU 94 value is for $\alpha_S(m_Z)$ constrained to 0.123 \pm 0.005. The second error corresponds to $m_H=300^{+700}_{-240}$ GeV.

 15 ACCIARRI 94 value is for $\alpha_{\rm S}(m_Z)$ constrained to 0.124 \pm 0.006. The second error corresponds to $m_H=300^{+700}_{-240}$ GeV.

 16 AKERS 94 result is from fit with free α_{S} . The second error corresponds to $m_H = 300 + 700_{-240}$ GeV. The 95%CL limit is $m_t < 210$ GeV.

 17 ARROYO 94 measures the ratio of the neutral-current and charged-current deep inelastic scattering of ν_{μ} on an iron target. By assuming the SM electroweak correction, they obtain $1-m_W^2/m_Z^2=$ 0.2218 \pm 0.0059, yielding the quoted m_t value. The second error corresponds to $m_{H} = 300 + 700_{-240}$ GeV.

 18 BUSKULIC 94 result is from fit with free $\alpha_{\rm S}$. The second error is from $m_{H}=300^{+700}_{-240}$

GeV. 19 ELLIS 94B result is fit to electroweak data available in spring 1994, including the 1994 A_{LR} data from SLD. m_t and m_H are two free parameters of the fit for $\alpha_S(m_Z) = 2\pi^{-1/2}$ CoV. ELLIS 04B also give results 0.118 \pm 0.007 yielding m_t above, and $m_H = 35 + \frac{70}{-22}$ GeV. ELLIS 948 also give results for fits including constraints from CDF's direct measurement of m_t and CDF's and DØ's production cross-section measurements. Fits excluding the A_{LR} data from SLD are also given.

20 GURTU 94 result is from fit with free m_t and $\alpha_s(m_Z)$, yielding m_t above and $\alpha_s(m_Z)$

= $0.125\pm0.005^{+0.003}_{-0.001}$. The second errors correspond to $m_H=300^{+700}_{-240}$ GeV. Uses LEP, M_W , ν N, and SLD electroweak data available in spring 1994.

²¹ MONTAGNA 94 result is from fit with free m_t and $\alpha_s(m_Z)$, yielding m_t above and $\alpha_{\rm S}(m_Z)=0.124$. The second errors correspond to $m_H=300^{+700}_{-240}$ GeV. Errors in $\alpha(m_Z)$ and m_D are taken into account in the fit. Uses LEP, SLC, and M_W/M_Z data available in spring 1994. ²² NOVIKOV 94B result is from fit with free m_t and $\alpha_{\rm S}(m_Z)$, yielding m_t above and

 $\alpha_s(m_Z) = 0.125 \pm 0.005 \pm 0.002$. The second errors correspond to $m_H = 300 {+} 700 - 240$ GeV. Uses LEP and CDF electroweak data available in spring 1994.

 23 ALITTI 92B assume m_H = 100 GeV. The 95%CL limit is m_t < 250 GeV for m_H <

t DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ ₁ Γ ₂ Γ ₃	Wb $\ell \nu_{\ell}$ anything $\tau \nu_{\tau} b$ $\gamma q(q=u,c)$	[a,b] (9.4 ± 2.4) $[c]$ < 3.2	
' 4	, , , , ,	eak neutral current ($T1$) mod	
Γ_5	Zq(q=u,c)	T1 [d] < 33	% 95%

[a] ℓ means e or μ decay mode, not the sum over them.

[b] Assumes lepton universality and W-decay acceptance.

[c] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.

[d] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

t BRANCHING RATIOS

$\Gamma(\ell \nu_{\ell} \text{anything})/\Gamma_{\text{total}}$					Γ_2/Γ
VALUE	DOCUMEN:	T ID	TECN		
0.094±0.024	24 ABE	98x	CDF		
24 t means e or u decay mode	not the sum	Assumes	lenton i	iniversality a	and W-decay

acceptance.

$\Gamma(\tau \nu_{\tau} b) / \Gamma_{\text{total}}$				Гз/Г
VALUE	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the follo	wing data for average	s, fits, limits	etc. • • •	
	25 ABE	97∨ CDF	$\ell\tau$ + jets	

²⁵ ABE 97V searched for $t\, \bar t\, \to\, (\ell \nu_\ell)\, (\tau\, \nu_\tau\,)\, b\, \bar b$ events in 109 pb $^{-1}$ of $p\, \bar p$ collisions at $\sqrt{s}=1.8$ TeV. They observed 4 candidate events where one expects ~ 1 signal and ~ 2 background events. Three of the four observed events have jets identified as b candidates.

$\Gamma(\gamma q(q=u,c))$	r _{total}			Γ 4/Γ
VALUE	<u>CL%</u>	DOCUMEN'	T ID TECN	
<0.032	95	²⁶ ABE	98G CDF	

 26 ABE 98G looked for $t\bar{t}$ events where one t decays into $q\gamma$ while the other decays into bW. The quoted bound is for $\Gamma(\gamma q)/\Gamma(W b)$.

 $\Gamma(Zq(q=u,c))/\Gamma_{total}$ Test for $\Delta T=1$ weak neutral current. Allowed by higher-order electroweak interaction.

VALUE	CL%	DOCUMENT ID	TECN
<0.33	95	²⁷ ABE	98G CDF

 27 ABE 98G looked for $t\bar{t}$ events where one t decays into three jets and the other decays into qZ with $Z \to \ell\ell$. The quoted bound is for $\Gamma(Zq)/\Gamma(Wb)$.

t-Quark REFERENCES

ABBOTT	99G	PR D60 052001	B. Abbott et al.	(D0 Collab.)
ABE	99B	PRL 82 271	F. Abe et al.	(CDF Collab.)
Also	99G	PRL 82 2808 (erratum)	F. Abe et al.	(CDF Collab.)
DEMORTIER	99	FNAL-TM-2084	L. Demortier et al.	(CDF/D0 Working Group)
FIELD	99	MPL A14 1815	J.H. Field	
ABBOTT	98D	PRL 80 2063	B. Abbott et al.	(D0 Collab.)
ABBOTT	98F	PR D58 052001	B. Abbott et al.	(D0 Collab.)
ABE	98E	PRL 80 2767	F. Abe et al.	(CDF Collab.)
ABE	98F	PRL 80 2779	F. Abe et al.	(CDF Collab.)
ABE	98G	PRL 80 2525	F. Abe et al.	(CDF Collab.)
ABE	98X	PRL 80 2773	F. Abe et al.	(CDF Collab.)
BHAT	98B	IJMP A13 5113	P.C. Bhat, H.B. Prosper, S.S.	Snyder
ABACHI	97E	PRL 79 1197	5. Abachi et al.	(D0 Collab.)
ABE	97R	PRL 79 1992	F. Abe et ai.	(CDF Collab.)
ABE	97V	PRL 79 3585	F. Abe et al.	(CDF Collab.)
DEBOER	97B	ZPHY C75 627	W. de Boer et al.	·
ELLIS	96 C	PL B389 321	J. Ellis, G.L. Fogli, E. Lisi	(CERN, BARI)
ABACHI	95	PRL 74 2632	5. Abachi et al.	(D0 Collab.)
ABE	95F	PRL 74 2626	F. Abe et al.	(CDF Collab.)
ERLER	95	PR D52 441	J. Erler, P. Langacker	` (PENN)
MATSUMOTO	95	MPL A10 2553	5. Matsumoto	`(KEK)
ABE	94E	PR D50 2966	F. Abe et al.	(CDF Collab.)
Also	94F	PRL 73 225	F. Abe et al.	(CDF Collab.)
ABREU	94	NP B418 403	P. Abreu et al.	(DELPHI Collab.)
ACCIARRI	94	ZPHY C62 551	M. Acciarri et al.	` (L3 Collab.)
AKERS	94	ZPHY C61 19	R. Akers et al.	(OPAL Collab.)
ARROYO	94	PRL 72 3452	C.G. Arroyo et al.	(COLU, CHIC, FNAL+)
BUSKULIC	94	ZPHY C62 539	D. Buskulic et al.	(ALEPH Collab.)
ELLIS	94B	PL B333 118	J. Ellis, G.L. Fogli, E. Lisi	`(CERN, BARI)
GURTU	94	MPL A9 3301	A. Gurtu	` (TATA)
MONTAGNA	94	PL B335 484	G. Montagna et al.	(INFN, PAVI, CÈRN+)
NOVIKOV	94B	MPL A9 2641	V.A. Novikov et al.	(GUEL, CERN, ITEP)
PDG	94	PR D50 1173	L. Montanet et al.	(CERN, LBL, BOST+)
ALITTI	92B	PL B276 354	J. Alitti et al.	(UA2 Collab.)

⁸ BHAT 988 result is obtained by combining the DØ results from dilepton and lepton+jet events, and the CDF results (ABE 998) from dilepton, lepton+jet events, and all-jet

b' (4th Generation) Quark, Searches for

MASS LIMITS for b' (4th Generation) Quark or Hadron in pp Collisions

VALUE (GeV)	CL%	DOCUMENT ID		<u>TECN</u>	COMMENT
>199	95	¹ AFFOLDER	00	CDF	NC: $b' \rightarrow bZ$
>128	95	² ABACHI	95F	D0	$\ell\ell$ + jets, ℓ + jets
• • • We do r	ot use t	he following data for	aver	ages, fit	s, limits, etc. • • •
>148	95	³ ABE	98N	CDF	NC: $b' \rightarrow bZ + decay vertex$
> 96	95	⁴ ABACHI	97D	D0	NC: $b' \rightarrow b\gamma$
> 75	95	⁵ MUKHOPAD	. 93	RVUE	NC: $b^{\prime} \rightarrow b \ell \ell$
> 85	95	6 ABE	92	CDF	CC: LL
> 72	95	⁷ ABE	90B	CDF	CC: e + μ
> 54	95	⁸ AKESSON	90	UA2	CC: $e + jets + missing E_T$
> 43	95	⁹ ALBAJAR	90B	UA1	CC: μ + jets
> 34	95	¹⁰ ALBAJAR	88	UA1	CC: e or μ + jets

- ¹ AFFOLDER 00 looked for b' that decays in to b+Z. The signal searched for is bbZZevents where one Z decays into $e^+\,e^-$ or $\mu^+\,\mu^-$ and the other Z decays hadronically. The bound assumes B($b^I \rightarrow bZ$)= 100%. Between 100 GeV and 199 GeV, the 95%CL upper bound on $\sigma(b' \to \overline{b}') \times B^2(b' \to bZ)$ is also given (see their Fig. 2).
- 2 ABACHI 95F bound on the top-quark also applies to b^\prime and t^\prime quarks that decay predominantly into W. See FROGGATT 97.
- 3 ABE 98N looked for $Z
 ightharpoonup e^+\,e^-$ decays with displaced vertices. Quoted limit assumes B($b'\to bZ$)=1 and $c\tau_{b'}$ =1 cm. The limit is lower than 96 GeV (m_Z+m_b) if $c\tau>$ 22 cm or $c\tau<$ 0.009 cm. See their Fig. 4.
- ⁴ABACHI 97D searched for b' that decays mainly via FCNC. They obtained 95%CL upper bounds on B($b'\bar{b}' \to \gamma + 3$ jets) and B($b'\bar{b}' \to 2\gamma + 2$ jets), which can be interpreted as the lower mass bound $m_{b'} > m_Z + m_{b'}$.
- ⁵ MUKHOPADHYAYA 93 analyze CDF dilepton data of ABE 92G in terms of a new quark decaying via flavor-changing neutral current. The above limit assumes $\mathsf{B}(b' \to b')$ $b\ell^+\ell^-$)=1%. For an exotic quark decaying only via virtual Z [B($b\ell^+\ell^-$) = 3%], the limit is 85 GeV.
- Illmit is 60 GeV.

 6 ABE 92 dilepton analysis limit of >85 GeV at CL=95% also applies to b' quarks, as discussed in ABE 90B.

 7 ABE 90B exclude the region 28–72 GeV.
- 8 AKESSON 90 searched for events having an electron with $p_T>12$ GeV, missing momentum >15 GeV, and a jet with ${\cal E}_T>10$ GeV, $|\eta|<2.2$, and excluded $m_{B'}$ between 30 and 69 GeV.

 9 For the reduction of the limit due to non-charged-current decay modes, see Fig. 19 of
- ALBAJAR 90B.
- TO ALBAJAR 898.

 ACCOMPANIES AND STATES THE STATES AND limit is obtained by using a conservative estimate for the $b^\prime\,\overline{b}^\prime$ production cross section and by assuming that it cannot be produced in W decays. The value quoted here is revised using the full $\mathcal{O}(\alpha_s^3)$ cross section of ALTARELLI 88.

MASS LIMITS for b' (4th Generation) Quark or Hadron in e^+e^- Collisions

Search for hadrons containing a fourth-generation -1/3 quark denoted b'.

The last column specifies the assumption for the decay mode (CC denotes the con-

VALUE (GeV)	CL%	<u>D</u> OCUMENT ID		TECN	COMMENT
>46.0	95	11 DECAMP	90F	ALEP	any decay
• • • We do not us	e the follow	ng data for average	s, fits,	, limits,	etc. • • •
		¹² ADRIANI	93G	L3	Quarkonium
>44.7	95	ADRIANI	93M	L3	Γ(Z)
>45	95	ABREU	91F	DLPH	$\Gamma(Z)$
none 19.4-28.2	95	ABE	90D	VN5	Any decay; event shape
>45.0	95	ABREU	90 D	DLPH	B(CC) = 1; event shape
>44.5	95	¹³ ABREU	90D	DLPH	$b^{\prime} \rightarrow cH^{-}, H^{-} \rightarrow cs, \tau^{-}\nu$
>40.5	95	14 ABREU	90D	DLPH	$\Gamma(Z \rightarrow hadrons)$
>28.3	95	ADACHI	90	TOPZ	B(FCNC)=100%; isol. γ or 4 jets
>41.4	95	¹⁵ AKRAWY	90B	OPAL	Any decay; acoplanarity
>45.2	95	¹⁵ AKRAWY	90B	OPAL	B(CC) = 1; acopla- narity
>46	95	¹⁶ AKRAWY	90 J	OPAL	$b' \rightarrow \gamma + any$
>27.5	95	¹⁷ ABE	89E	VNS	$B(CC) = 1; \mu, e$
none 11.4-27.3	95	¹⁸ ABE	89G	VNS	$B(b' \rightarrow b\gamma) > 10\%;$ isolated γ
>44.7	95	¹⁹ ABRAMS	89C	MRK2	B(CC)= 100%; isol. track
>42.7	95	¹⁹ ABRAMS	89C	MRK2	

>42.0	95	¹⁹ ABRAMS	89c MRK	2 Any decay; event shape
>28.4	95	^{20,21} ADACHI	89c TOP	Z B(CC) =1; μ
>28.8	95	²² ENO	89 AMY	$B(C C) \gtrsim 90\%$; μ , e
>27.2	95	22,23 ENO	89 AMY	
>29.0	95	²² ENO	89 AMY	$B(b' \rightarrow bg) \gtrsim 85\%;$ event shape
>24.4	95	²⁴ IGARASHI	88 AMY	μ, e
>23.8	95	²⁵ SAGAWA	88 AMY	event shape
>22.7	95	²⁶ ADEVA	86 MRK	Jμ
>21		27 ALTHOFF	84c TASS	R, event shape
>19		²⁸ ALTHOFF	84I TASS	Aplanarity

- $^{11}\,\mathrm{DECAMP}$ 90F looked for isolated charged particles, for isolated photons, and for four-jet final states. The modes $b'\to bg$ for B($b'\to bg$) > 65% $b'\to b\gamma$ for B($b'\to b\gamma$) > 5% are excluded. Charged Higgs decay were not discussed.
- 12 ADRIANI 93G search for vector quarkonium states near Z and give limit on quarkonium-Z mixing parameter $\delta m^2 < (10{\text -}30) \text{ GeV}^2$ (95%CL) for the mass 88–94.5 GeV. Using Richardson potential, a 1S $(b'\,\overline{b}')$ state is excluded for the mass range 87.7–94.7 GeV. This range depends on the potential choice.
- 13 ABREU 90D assumed $m_{H^-} < m_{b^\prime} 3$ GeV.
- 14 Superseded by ABREU 91F.
- ¹⁵ AKRAWY 90B search was restricted to data near the Z peak at $\mathcal{E}_{cm} = 91.26$ GeV at LEP. The excluded region is between 23.6 and 41.4 GeV if no H^+ decays exist. For charged Higgs decays the excluded regions are between ($m_{H^+} + 1.5$ GeV) and 45.5
- GeV. 16 AKRAWY 90J search for isolated photons in hadronic Z decay and derive B($Z \to b' \overline{b}'$)·B($b' \to \gamma X$)/B($Z \to \text{hadrons}$) < 2.2×10^{-3} . Mass limit assumes
- 17 ABE 89s search at $E_{\rm CM}=56-57$ GeV at TRISTAN for multihadron every spherical shape (using thrust and acoplanarity) or containing isolated leptons. = 56-57 GeV at TRISTAN for multihadron events with a
- 18 ABE 89G search was at $E_{\rm cm} = 55-60.8$ GeV at TRISTAN.
- ¹⁹ If the photonic decay mode is large (B($b' \to b\gamma$) > 25%), the ABRAMS 89c limit is 45.4 GeV. The limit for for Higgs decay ($b' \to cH^-, H^- \to \overline{c}s$) is 45.2 GeV.
- 20 ADACHI 89C search was at $E_{
 m cm}=56.5$ -60.8 GeV at TRISTAN using multi-hadron events accompanying muons.

 ADACHI 89c also gives limits for any mixture of C C and bg decays.
- ²²ENO 89 search at $E_{\rm cm} = 50-60.8$ at TRISTAN.
- 23 ENO 89 considers arbitrary mixture of the charged current, bg, and $b\gamma$ decays.
- ²⁴ IGARASHI 88 searches for leptons in low-thrust events and gives $\Delta R(b^i) < 0.26$ (95% CL) assuming charged current decay, which translates to $m_{b^i} > 24.4$ GeV.
- 25 SAGAWA 88 set limit $\sigma(top)<6.1$ pb at CL=95% for top-flavored hadron production from event shape analyses at $E_{\rm cm}=52$ GeV. By using the quark parton model cross-section formula near threshold, the above limit leads to lower mass bounds of 23.8 GeV
- ²⁶ ADEVA 86 give 95%CL upper bound on an excess of the normalized cross section, ΔR , as a function of the minimum c.m. energy (see their figure 3). Production of a pair of 1/3 charge quarks is excluded up to $E_{\rm cm} = 45.4$ GeV.
- 27 ALTHOFF 84C narrow state search sets limit $\Gamma(e^+e^-)$ B(hadrons) <2.4 keV CL = 95% and heavy charge 1/3 quark pair production m >21 GeV, CL = 95%.
- 28 ALTHOFF 84! exclude heavy quark pair production for 7 $<\!m<\!19$ GeV (1/3 charge) using aplanarity distributions (CL = 95%).

REFERENCES FOR Searches for (Fourth Generation) b' Quark

AFFOLDER	00	PRL 84 835	A. Affolder et al.	(CDF Collab.)
ABE	98N	PR D58 051102	F. Abe et al.	(CDF Collab.)
ABACHI	97D	PRL 78 3818	S. Abachi et al.	(D0 Collab.)
FROGGATT	97	ZPHY C73 333	C.D. Froggatt, D.J. Smith, H.B. f	Vielsen (GLAS+)
ABACHI	95F	PR D52 4877	S. Abachi et al.	(D0 Collab.)
ADRIANI	93G	PL B313 326	O. Adriani et al.	(L3 Collab.)
ADRIANI	93M	PRPL 236 1	O. Adriani et al.	(L3 Collab.)
MUKHOPAD	93	PR D48 2105	B. Mukhopadhyaya, D.P. Roy	` (TATA)
ABE	92	PRL 68 447	F. Abe et al.	(CDF Collab.)
Also	92G	PR D45 3921	F. Abe et al.	(CDF Collab.)
ABE	92G	PR D45 3921	F. Abe et al.	(CDF Collab.)
ABREU	91F	NP B367 511	P. Abreu et al.	(DELPHI Collab.)
ABE	90B	PRL 64 147	F. Abe et al.	` (CDF Collab.)
ABE	90D	PL B234 382	K. Abe et al.	(VENUS Collab.)
ABREU	90D	PL B242 536	P. Abreu et al.	(DELPHI Collab.)
ADACHI	90	PL B234 197	I. Adachi et al.	(TOPAZ Collab.)
AKESSON	90	ZPHY C46 179	T. Akesson et al.	(UA2 Collab.)
AKRAWY	90B	PL B236 364	M.Z. Akrawy et ai.	(OPAL Collab.)
AKRAWY	903	PL B246 285	M.Z. Akrawy et al.	(OPAL Collab.)
ALBAJAR	90B	ZPHY C48 1	C. Albajar et al.	(UA1 Collab.)
DECAMP	90F	PL B236 511	D. Decamp et al.	(ALEPH Collab.)
ABE	89E	PR D39 3524	K. Abe et al.	(VENUS Collab.)
ABĘ	89G	PRL 63 1776	K. Abe et al.	(VENUS Collab.)
ABRAMS	89C	PRL 63 2447	G.S. Abrams et al.	(Mark II Collab.)
ADACHI	B9C	PL B229 427	I. Adachi et al.	(TOPAZ Collab.)
ENO	89	PRL 63 1910	S. Eno et al.	(AMY Collab.)
ALBAJAR	88	ZPHY C37 505	C. Albajar et al.	(UA1 Collab.)
ALTARELLI	88	NP B308 724	G. Altarelli et al.	(CERN, ROMA, ETH)
IGARASHI	88	PRL 60 2359	S. Igarashi et al.	(AMY Collab.)
SAGAWA	88	PRL 60 93	H. Sagawa et al.	(AMY Collab.)
ADEVA	86	PR D34 681	B. Adeva et al.	(Mark-J Collab.)
ALTHOFF	84C	PL 138B 441	M. Althoff et al.	(TASSO Collab.)
ALTHOFF	841	ZPHY C22 307	M. Althoff et al.	(TASSO Collab.)

Quark Particle Listings

Free Quark Searches

Free Quark Searches

FREE QUARK SEARCHES

The basis for much of the theory of particle scattering and hadron spectroscopy is the construction of the hadrons from a set of fractionally charged constituents (quarks). A central but unproven hypothesis of this theory, Quantum Chromodynamics, is that quarks cannot be observed as free particles but are confined to mesons and baryons.

Experiments show that it is at best difficult to "unglue" quarks. Accelerator searches at increasing energies have produced no evidence for free quarks, while only a few cosmic-ray and matter searches have produced uncorroborated events.

This compilation is only a guide to the literature, since the quoted experimental limits are often only indicative. Reviews can be found in Refs. 1-3.

References

- 1. P.F. Smith, Ann. Rev. Nucl. and Part. Sci. 39, 73 (1989).
- 2. L. Lyons, Phys. Reports 129, 225 (1985).
- 3. M. Marinelli and G. Morpurgo, Phys. Reports 85, 161 (1982).

Quark Pro	duction	Cross S	ection -	- Acce	lerator	Searches		
X-SECT	CHG	MASS	ENERGY					
(cm ²)	(e/3)	(Ge <u>V)</u>	(GeV)	BEAM	EVTS	DOCUMENT ID		TECN
<1.3E-36	±2	45-84	130-172	e+ e-	0		97D	DLPH
< 2.E - 35	+2	250	1800	ρĪ	0	¹ ABE	92J	CDF
<1.E-35	+4	250	1800	ρP̄	0		92J	CDF
<3.8E-28			14.5A	285i-P	b 0		91	PLAS
<3.2E-28			14.5A	²⁸ Si−Ç	u 0	² HE	91	PLAS
<1.E-40	±1,2	<10		$p, \nu, \overline{\nu}$	0	BERGSMA	84B	CHRM
<1.E-36	$\pm 1,2$	<9	200	μ	0		83C	SPEC
<2.E-10	$\pm 2,4$	1-3	200	p	0		80	CNTR
<5.E-38	+1,2	>5	300	p	0	^{4,5} STEVENSON	79	CNTR
<1.E-33	±1	< 20	52	PΡ	0		78	SPEC
<9.E-39	±1,2	<6	400	P	0		77	SPEC
<8.E-35	+1,2	<20	52	pР	0	⁶ FABJAN	75	CNTR
<5.E-38	-1,2	4-9	200	p	0	NASH	74	CNTR
<1.E32	+2,4	4-24	52	PP	0	ALPER	73	SPEC
<5.E-31	+1,2,4	<12	300	p	0	LEIPUNER	73	CNTR
<6.E-34	±1,2	<13	52	PP	0	BOTT	72	CNTR
<1.E-36	-4	4	70	P	0	ANTIPOV	71	CNTR
<1.E-35	±1,2	2	28	p	0		69B	CNTR
<4.E-37	-2	<5	70	p	0	3 ANTIPOV	69	CNTR
<3.E-37	-1,2	2-5	70	P	0	⁷ ANTIPOV	69B	CNTR
<1.E-35	+1,2	<7	30	p	0	DORFAN	65	CNTR
<2.E-35	-2	< 2.5-5	30	ρ	0	⁸ FRANZINI	65B	CNTR
<5.E-35	+1,2	<2.2	21	p	0	BINGHAM	64	HLBÇ
<1.E-32	+1,2	<4.0	28	p	0	BLUM	64	HBÇ
<1.E-35	+1,2	<2.5	31	P	0	8 HAGOPIAN	64	HBC
<1.E-34	+1	<2	28	P	0	LEIPUNER	64	CNTR
<1.E-33	+1,2	<2.4	24	ρ	0	MORRISON	64	HBC

				s Section	on — Ad	ccelerator Search	es	
X-SECT (cm ² sr ¹ GeV	CHG -1) e/3	MASS (GeV)	ENERGY (GeV)	BEAM	EVTS	DOCUMENT ID		TECN
<4.E-36	-2,4	1.5-6	70	p	0	BALDIN	76	CNTR
<2.E-33	±4	5-20	52	PΡ	0	ALBROW	75	SPEC
<5.E-34	<7	7~15	44	PP	. 0	VONAVOL	75	CNTR
<5.E-35			20	γ	0	⁹ GALIK	74	CNTR
<9.E-35	-1,2		200	p	0	NASH	74	CNTR
<4.E-36	-4	2.3-2.7	70	p	0 .	ANTIPOV	71	CNTR
<3.E-35	$\pm 1,2$	<2.7	27	P	0	ALLABY	69B	CNTR
<7.E-38	-1,2	<2.5	70	p	0	ANTIPOV	69B	CNTR
⁹ Cross sec	ction in c	m ² /sr/equ	ivalent q	uanta.				

Quark Flux - Accelerator Searches

The definition of FLUX depends on the experiment

- (a) is the ratio of measured free quarks to predicted free quarks if there is no "con-
- (b) is the probability of fractional charge on nuclear fragments. Energy is in GeV/nucleon.
- (c) is the 90%CL upper limit on fractionally-charged particles produced per interaction.
- (d) is quarks per collision.
- (e) is inclusive quark-production cross-section ratio to $\sigma(e^+e^- \to \mu^+\mu^-)$.
- (f) is quark flux per charged particle.
- (g) is the flux per $\nu\text{-event}$.
- (h) is quark yield per π^- yield.
- (i) is 2-body exclusive quark-production cross-section ratio to $\sigma(e^+\,e^-\,
 ightarrow$

	μ	μ.).							
FLUX		CHG (e/3)	MASS (GeV)	ENRGY (GeV)	BEAM E	VTS	DOCUMENT ID		TECN
<1.6E-3	ь — b	see note		200	32 _{S~Pb}	0	10 HUENTRUP	96	PLAS
<6.2E-4	b	see note		10.6	32 _{S-Pb}	0	10 HUENTRUP	96	PLAS
<0.94E-4	e	±2	2-30	88-94	e^+e^-	0	AKERS	95R	OPAL
<1.7E-4	e	±2	30-40	88-94	e^+e^-	0	AKERS	95R	OPAL
<3.6E-4	e	±4	5-30	88-94	e^+e^-	0	AKERS	95R	OPAL
<1.9E-4	e	±4	30-45	88-94	e+ e-	0	AKERS	95R	OPAL
<2.E-3	e	+1	5-40	88-94	e^+e^-	0	¹¹ BUSKULIC	93C	ALEP
<6.E-4	e	+2	5-30	88-94	e^+e^-	0	¹¹ BUSKULIC	93C	ALÉP
<1.2E-3	e	+4	15-40	88-94	e^+e^-	0	¹¹ BUSKULIC	93C	ALEP
<3.6E-4	i	+4	5.0-10.2	88-94	e^+e^-	0	BUSKULIC	93C	ALEP
<3.6E-4	i	+4	16.5-26.0	88-94	e+e-	0	BUSKULIC	93C	ALEP
<6.9E-4	i	+4	26.0-33.3	88-94	e^+e^-	0	BUSKULIC	93C	ALEP
<9.1E-4	i	+4	33.3-38.6	88-94	e^+e^-	0	BUSKULIC	93C	ALEP
<1.1E-3	i	+4	38.6-44.9	88-94	e+ e~	0	BUSKULIC	93c	ALEP
<1.6E-4	þ	see note	Se	e note		0	12 CECCHINI	93	PLAS
	b	4,5,7,8		2.1A	¹⁶ O 0,	2,0,6	¹³ GHOSH	92	EMUL
<6.4E-5	g	1			$ u,\overline{ u}$	1	14 BASILE	91	CNTR
<3.7E-5	g	2			$ u,\overline{ u}$	0	14 BASILE	91	CNTR
<3.9E-5	g	1			$ u,\overline{ u}$	1	15 BASILE	91	CNTR
<2.8E-5	g	2			$ u$, $\overline{\nu}$	0	15 BASILE	91	CNTR
<1.9E-4	c			14.5A	28 Si-Pb	0	16 HE	91	PLAS
< 3.9E – 4	C			14.5A	²⁸ Si–Cu		¹⁶ HE	91	PLAS
<1.E-9	c	$\pm 1,2,4$		14.5A	¹⁶ O-Ar		MATIS	91	MDRP
< 5.1E - 10	c	$\pm 1,2,4$		14.5A	¹⁶ O-Hg	0	MATIS	91	MDRP
< 8.1E - 9	C	$\pm 1,2,4$		14.5A	Si-Hg	0	MATIS	91	MDRP
<1.7E6	C	$\pm 1,2,4$		60A	¹⁶ O-Hg		MATIS	91	MDRP
	C	$\pm 1,2,4$		200A	¹⁶ O-Hg		MATIS	91	MDRP
	c	$\pm 1,2,4$		200A	S-Hg	0	MATIS	91	MDRP
	е	2		52-60	$e^+ e^-$	0	ADACHI		TOPZ
	e	4		52-60	e+ e-	0	ADACHI		TOPZ
	e	+2	<3.5	10	e+e-	0	BOWCOCK		CLEO
	d	±1,2		60	¹⁶ O-Hg		CALLOWAY	89	MDRP
	d	±1,2		200	¹⁶ O-Hg		CALLOWAY	89	MDRP
	d	±1,2		200	S-Hg	0	CALLOWAY	89	MDRP
<1.2E-10		±1	1	800	<i>p</i> −Hg	0	MATIS	89	MDRP
<1.1E-10		±2	1	800	<i>p</i> −Hg	0	MATIS	89	MDRP
<1.2E-10		±1	1	800	p−N ₂	0	MATIS	89	MDRP
<7.7E-11		±2	1	800	p-N ₂	0	MATIS	89	MDRP
	h	-5	0.9-2.3	12	P	0	NAKAMURA	89	SPEC
	g	1,2	<0.5		ν,⊽d 16 _{O-Pb}	0	ALLASIA 17 HOFEMANN	88	BEBC
	b	See note		14.5			HOLLMAN	88	PLAS
<2.E~4	b	See note		200	¹⁶ O-Pb	0	18 HOFFMANN	88	PLAS

 $^{^1}$ ABE 92J flux limits decrease as the mass increases from 50 to 500 GeV. 2 HE 91 limits are for charges of the form $N\pm1/3$ from 23/3 to 38/3.

³ Hadronic or leptonic quarks.

⁴Cross section cm²/GeV².

 $^{^5}$ 3 \times 10 $^{-5}$ $\,$ < lifetime < 1 \times 10 $^{-3}$ s. 6 Includes BOTT 72 results. 7 Assumes isotropic cm production.

⁸ Cross section inferred from flux.

Quark Particle Listings Free Quark Searches

												29	
	19,20,22,23		200 <i>A</i>		GERBIER	87 PLAS	< 1,E-10	+1,2			0	²⁸ HAZEN	71 CC
<2.E-4 a	±1,2	<300	320 $\overline{\rho} \rho$	0	LYONS	87 MLEV	<5.E-10	+1,2		3.5 ∗	0	BOSIA	70 CNTR
<1.E-9 c	$\pm 1,2,4,5$		14.5 ¹⁶ O-		SHAW	87 MDRP		+1,2	<6.5		1	²⁸ CHU	70 HLBC
< 3.E - 3 d	-1,2,3,4,6	<5	2 Si–Si	0	¹⁹ ABACHI	86c CNTR	<2.E-9	+1			0	FAISSNER	70B CNTR
<1.E-4 e	$\pm 1,2,4$	<4	10 e ⁺ e	- 0	ALBRECHT	85G ARG	<2.E-10	+1,2		0.8 ∗	0	KRIDER	70 CNTR
<6.E-5 b	$\pm 1,2$	1	540 pp	0	BANNER	85 UA2	<5.E-11	+2			4	CAIRNS	69 CC
<5.E−3 e	-4	1-8	29 e ⁺ e	- 0	AIHARA	84 TPC	<8.E~10	+1,2	<10		0	FUKUSHIMA	69 CNTR
<1.E-2 e	±1,2	1-13	29 e+e	- o	AIHARA	84B TPC		+2			1 4	28,30 MCCUSKER	69 CC
<2.E4 b	± 1		72 ⁴⁰ Ar	0	²⁰ BARWICK	84 CNTR	< 1.E - 10		>5	1.7,3.6	0	27 BJORNBOE	68 CNTR
<1.E-4 e		< 0.4	1.4 e+e	- 0		84 OLYA	<1.E-8	±1,2,4		6.3,.2 *	0	²⁵ BRIATORE	68 CNTR
<5.E-1 e		<13	29 e+e		GURYN	84 CNTR	<3.E-8		>2		0	FRANZINI	68 CNTR
<3.E-3 b		<2	540 pp	ő	BANNER	83 CNTR	<9.E-11	±1,2			0	GARMIRE	68 CNTR
<1.E-4 b		`-	106 56Fe	0		83 CNTR	<4.E-10	±1			Ð	HANAYAMA	68 CNTR
<3.E-3 b			74 ⁴⁰ Ar		20	83 PLAS	<3.E-8		>15		0	KASHA	68 OSPK
<1.E-2 e		<14	29 e+e	_		82B CNTR	<2.E-10	+2			0	KASHA	68B CNTR
<8.E-2 e		<12	29 e+e			82 CNTR	<2.E~10	+4			0	KASHA	68c CNTR
	- •		7 e+e			81 MRK2	<2.E-10	+2		. 6	0	BARTON	67 CNTR
<3.E-4 e		1.8~2					<2.E-7	+4		0.008,0.5 +	0	BUHLER	67 CNTR
<5.E-2 e	. ,-, .,-	2-12	27 e ⁺ e		BARTEL 14,15 BASILE	80 JADE	<5.E-10	1,2		0.008,0.5 *	0	BUHLER	67B CNTR
<2.E-5 g			ν			80 CNTR	<4.E-10	+1,2			0	GOMEZ	67 CNTR
<3.E-10 f	,	1-3	200 p	0		79 CNTR	<2.E-9	+2			0	KASHA	67 CNTR
<6.E-11 f		<21	52 <i>pp</i>	0		78 SPEC	<2.E-10	+2		220	0	BARTON	66 CNTR
<5.E3 g			$^{ u}{}_{\mu}$	0		78B CNTR	<2.E-9	+1.2		0.5 *	0	BUHLER	66 CNTR
<2.E-9 f	±1	<26	62 <i>pp</i>	0		77 SPEC	<3.E-9	+1,2			0	KASHA	66 CNTR
<7.E~10 f	+1,2	<20	52 p	0		75 CNTR	<2.E-9	+1,2			0	LAMB	66 CNTR
	+1,2	>4.5	γ		14,15 GALIK	74 CNTR	<2.E8	+1,2	>7	2.8 *	0	DELIŞE	65 CNTR
	+1,2	>1.5	12 e-	0	14,15 BELLAMY	68 CNTR	<5.E-8	+2	>2.5	0.5 *	0	MASSAM	65 CNTR
	+1,2	>0.9	γ	0		67 CNTR	<2.E-8	+1		2.5 *	0	BOWEN	64 CNTR
	+1,2	>0.9	6 γ	0	¹⁵ FOSS	67 CNTR	<2.E-7	+1		0.8	0	SUNYAR	64 CNTR
10.000	NID 06	0.0/ (1 1:-		!	6 fan		23					ro-te	

 $^{^{10}}$ HUENTRUP 96 quote 95% CL limits for production of fragments with charge differing by as much as $\pm 1/3$ (in units of e) for charge 6 \leq Z \leq 10.

Quark Flux — Cosmic Ray Searches

Shielding values followed with an asterisk indicate altitude in km. Shielding values not followed with an asterisk indicate sea level in kg/cm^2 . MASS

(cm - 2 _{sr} - 1 _s - 1	(e/3)	(GeV)	SHIELDING	EVTS	DOCUMENT ID		TECN
<2.1E-15	±1			0	MORI	91	KAM2
< 2.3E - 15	±2			0	MORI	91	KAM2
<2.E10	±1,2		0.3	0	WADA	88	CNTR
	±4		0.3	12	23 WADA	88	CNTR
	±4		0.3	9	²⁴ WADA	86	CNTR
<1.E-12	$\pm 2.3/2$		-7 0.	0	²⁵ KAWAGOE	84 B	PLAS
< 9.E - 10	$\pm 1,2$		0.3	0	WADA	84B	CNTR
<4.E~9	±4		0.3	7	WADA	84B	CNTR
<2.E-12	$\pm 1,2,3$		- 0.3 *	0	MASHIMO	63	CNTR
<3.E-10	$\pm 1,2$		0.3	0	MARINI	82	CNTR
<2.E-11	$\pm 1,2$			0	MASHIMO	82	CNTR
<8.E-10	$\pm 1,2$		0.3	0	25 NAPOLITANO		CNTR
				3	²⁶ YOCK	78	CNTR
<1.E-9				0	27 BRIATORE	76	ELEC
<2.E-11	+1			0	²⁸ HAZEN	75	CC
<2.E~10	+1,2			0	KRISOR	75	CNTR
<1.E~7	+1,2			0	28,29 CLARK	74B	CC
< 3.E - 10	+1	>20		0	KIFUNE	74	CNTR
<8.E-11	+1			0	²⁸ ASHTON	73	CNTR
<2.E~8	+1,2			0	HICKS	73B	CNTR
<5.E~10	+4		2.8 *	0	BEAUCHAMP	72	CNTR
< 1.E - 10	+1,2			0	²⁸ вонм	72B	CNTR
<1.E-10	+1,2		2.8 *	0	COX	72	ELEC
<3.E-10	+2			0	CROUCH	72	CNTR
<3.E-8			7	0	27 DARDO	72	CNTR
<4.E-9	+1			0	28 EVANS	72	CC
<2.E-9		>10		0	²⁷ TONWAR	72	CNTR
< 2.E - 10	+1		2.8 *	0	CHIN	71	CNTR
<3.E-10	+1,2			0	²⁸ CLARK	71B	CC

Quark Density — Matter Searches

For a review, see SMITH 89.

QUARKS/ NUCLEON	CHG (e/3)	MA55 (GeV)	MATERIAL/METHOD E	VT5	DOCUMENT ID	
<4.7E-21	±1,2		silicone oil drops	0	MAR	96
<8.E-22	+2		Si/infrared photoionizatio	п О	PERERA	93
<5.E-27	±1.2		sea water/levitation	0	HOMER	92
<4.E-20	±1,2		meteorites/mag. levitatio	п О	JONES	89
<1.E-19	±1,2		various/spectrometer	0	MILNER	87
<5.E-22	±1,2		W/levitation	0	SMITH	87
<3.E-20	+1,2		org liq/droplet tower	0	VANPOLEN	87
<6.E-20	-1,2		org liq/droplet tower	0	VANPOLEN	87
<3.E-21	±1		Hg drops-untreated	0	SAVAGE	86
<3.E-22	±1,2		levitated niobium	0	SMITH	86
<2.E-26	±1,2		⁴ He/levitation	0	SMITH	868
<2.E-20	$> \pm 1$	0.2-250	niobium+tungs/ion	0	MILNER	85
< 1.E - 21	±1		levitated niobium	0	SMITH	85
	+1,2	<100	niobium/mass spec	0	KUTSCHERA	84
<5.E-22			levitated steel	0	MARINELLI	84
<9.E-20	± <13		water/oil drop	0	JOYCE	83
<2.E-21	> ± 1/2		levitated steel	0	LIEBOWITZ	83
<1.E-19	±1,2		photo ion spec	0	VANDESTEEG	83
<2.E-20			mercury/oil drop	0	31 HODGES	81
1.E-20	+1		levitated niobium	4	³² LARUE	81
1.E 20	-1		levitated nioblum	4	³² LARUE	81
<1.E-21			levitated steel	0	MARINELLI	80B
< 6.E - 16			helium/mass spec	0	BOYD	79
1.E - 20	+1		levitated niobium	2	³² LARUE	79
<4.E-28			earth+/ion beam	0	OGOROD	79
<5.E-15	+1		tungs./mass spec	0	BOYD	78
<5.E-16	+3	<1.7	hydrogen/mass spec	0	BOYD	78B
<1.E-21	± 2.4		water/ion beam	0	LUND	78
<6.E-15	>1/2		levitated tungsten	0	PUTT	78
<1.E-22			metals/mass spec	0	S CHIFFER	78
<5.E-15			levitated tungsten ox	0	BLAND	77
< 3.E - 21			levitated iron	0	GALLINARO	77
2.E-21	~1		levitated niobium	1	32 LARUE	77
4.E-21	+1		levitated niobium	2	³² LARUE	77
<1.E-13	+ 3	<7.7	2	0	MULLER	77
<5.E-27			water+/ion beam	0	OGOROD	77
< 1.E - 21			lunar+/ion spec	0	STEVENS	76
< 1.E - 15	+1	<60	oxygen+/ion spec	0	ELBERT	70
<5.E-19			levitated graphite	0	MORPURGO	70

¹¹ BUSKULIC 93c limits for inclusive quark production are more conservative if the ALEPH

hadronic fragmentation function is assumed. 12 CECCHINI 93 limit at 90%CL for 23/3 $\,\leq Z \leq$ 40/3, for 16A GeV O, 14.5A Si, and 200A S incident on Cu target. Other limits are 2.3×10^{-4} for $17/3 \le Z \le 20/3$ and 1.2×10^{-4} for $20/3 \le Z \le 23/3$.

¹³ GHOSH 92 reports measurement of spallation fragment charge based on ionization in emulsion. Out of 650 measured tracks, 2 were consistent with charge 5e/3, and 4 with 7e/3.

¹⁴ Hadronic quark.

¹⁵ Leptonic quark.
16 HE 91 limits are for charges of the form N±1/3 from 23/3 to 38/3, and correspond to cross-section limits of 380µb (Pb) and 320µb (Cu).
17 The limits apply to projectile fragment charges of 17, 19, 20, 22, 23 in units of e/3.

¹⁸ The limits apply to projectile fragment charges of 16, 17, 19, 20, 22, 23 in units of e/3.

19 Flux limits and mass range depend on charge.

²⁰ Bound to nuclei. 21 Quark lifetimes $> 1 \times 10^{-8}$ s.

²² One candidate m < 0.17 GeV.

²³ Distribution in celestial sphere was described as anisotropic.

²⁴ With telescope axis at zenith angle 40° to the south.

²⁵ Leptonic quarks.

 $^{^{26}}$ Lifetime $> 10^{-8}$ s; charge ± 0.70 , 0.68, 0.42; and mass >4.4, 4.8, and 20 GeV, respec-

tively.

27 Time delayed air shower search.

²⁸ Prompt air shower search.

²⁹ Also e/4 and e/6 charges.

³⁰ No events in subsequent experiments.

Quark Particle Listings

Free Quark Searches

<5.E~23		water+/atom beam	0	COOK	69
<1.E-17	$\pm 1,2$	levitated graphite	0	BRAGINSK	68
<1.E-17		water+/uv spec	0	RANK	68
<3.E-19	±1	levitated iron	0	STOVER	67
< 1.E - 10		sun/uv spec	0	33 BENNETT	66
<1.E~17	+1,2	meteorites+/ion beam	0	CHUPKA	66
<1.E-16	±1	levitated graphite	0	GALLINARO	66
<1.E-22		argon/electrometer	0	HILLAS	59
	-2	levitated oil	0	MILLIKAN	10
21					

REFERENCES FOR Free Quark Searches

ABREU	97D	PL B396 315	P. Abreu et al.	(DELPHI Collab.)
HUENTRUP MAR	96 96	PR C53 358 PR D53 6017	G. Huentrup <i>et al.</i> N.M. Mar <i>et al.</i>	(SIEG) (SLAC, SCHAF, LANL, UCI)
AKERS	95R	ZPHY C67 203		(SLAC, SCHAF, LANE, UCI) (OPAL Collab.)
BUSKULIC	93C	PL B303 198	D. Buskulic et ai.	(ALEPH Collab.)
CECCHINI	93	ASP 1 369	S. Cecchini et al.	
PERERA ABE	93 92J	PRL 70 1053 PR 046 R1889	A.G.U. Perera et al. F. Abe et al.	(PITT) (CDF Collab.)
GHOSH	92	NC 105A 99	D. Ghosh et al.	(JADA, BANGB)
HOMER	92	ZPHY C55 549	G.J. Homer et al.	(RAL, SHMP, LOQM)
BASILE	91	NC 104A 405	M. Basile et al.	(BGNA, INFN, CERN, PLRM+)
HE MATIS	91 91	PR C44 1672 NP A525 513c	Y.B. He, P.B. Price H.S. Matis et al.	(UCB)
MORI	91	PR D43 2843	M. Mori et al.	(LBL, SFSU, ÙCI+) (Kamiokande II Collab.)
ADACHI	90C	PL B244 352	I. Adachi et al.	(TOPAZ Collab.)
BOWCOCK	89B	PR D40 263	T.J.V. Bowcock et al.	(CLEO Collab.)
CALLOWAY JONES	89 89	PL B232 549 ZPHY C43 349	D. Calloway et al.	(SFSÙ, UCI, LBL+)
MATIS	89	PR D39 1851	W.G. Jones et al. H.S. Matis et al.	(LOIC, RAL) (LBL, SFSU, UCI+)
NAKAMURA	89	PR D39 1261	T.T. Nakamura et al.	(KYOT, TMTC)
SMITH	89	ARNPS 39 73 PR D37 219	Smith	(RAL)
ALLASIA HOFFMANN	88 88	PR D37 219	D. Allasia et al.	(WA25 Còllab.)
PHILLIPS	88	PL B200 583 NIM A264 125	A. Hofmann et al. J.D. Phillips, W.M. Fairt	(SIEG, USF) Dank, J. Navarro (STAN)
WADA	88	NC 11C 229	T. Wada, Y. Yamashita,	I. Yamamoto (OKAY)
GERBIER	87	PRL 59 2535	G. Gerbier et al.	I. Yamamoto (OKAY) (UCB, CERN) (OXF, RAL, LOIC)
LYON5	87	ZPHY C36 363	L. Lyons et al.	(OXF, RAL, LOIC)
MILNER SHAW	87 87	PR D36 37 PR D36 3533	R.E. Milner et al. G.L. Shaw et al.	(CIT) (UCI, LBL, LANL, SFSU)
SMITH	87	PL B197 447	P.F. Smith et al.	(RAL, LOIC)
VANPOLEN	87	PR D36 1983	J. van Polen, R.T. Hags	trom, G. Hirsch (ANL+)
ABACHI	B6C	PR D33 2733	S. Abachi et al.	(UĆLA, LBL, UCD)
SAVAGE SMITH	86 86	PL 167B 481 PL B171 129	M.L. Savage et al. P.F. Smith et al. P.F. Smith et al.	(SFSU) (RAL, LOIC)
SMITH	86B	PL B181 407	P.F. Smith et al.	(RAL, LOIC)
WADA	86	PL B181 407 NC 9C 358	T. Wada	(OKAY)
ALBRECHT	85G	PL 156B 134	H. Albrecht et al.	(OKAY) (ARGUS Collab.)
BANNER MILNER	85 85	PL 156B 129 PRL 54 1472	M. Banner et al.	(UA2 Collab.)
SMITH	85	PL 153B 188	R.E. Milner et al. P.F. Smith et al.	(CIT) (RAL, LOIC)
AIHARA	84	PRL 52 168	H. Aihara et al.	(TPC Collab.)
AIHARA	84B	PRL 52 2332	H. Aihara et al.	(TPC Collab.) (TPC Collab.)
BARWICK	84	PR D30 691	S.W. Barwick, J.A. Muss	er. J.D. Stevenson (UCB)
BERGSMA BONDAR	84B 84	ZPHY C24 217 JETPL 40 1265	F. Bergsma et al. A.E. Bondar et al.	(CHARM Collab.) (NOVO)
		Translated from	ZETFP 40 440. W. Guryn et al.	` '
GURYN	84	PL 139B 313	W. Guryn et al.	(FRAS, LBL, NWES, STAN+)
KAWAGOE KUTSCHERA	84B 84	LNC 41 604 PR D29 791	K. Kawagoe et al. W. Kutschera et al.	(TOKY) (ANL, FNAL)
MARINELLI	84	PL 137B 439	M. Marinelli, G. Morpura	
WADA	84B	LNC 40 329	T. Wada, Y. Yamashita,	I. Yamamoto (OKAY)
AUBERT	83C	PL 133B 461	J.J. Aubert et al.	(EMC Collab.)
BANNER JOYCE	83 83	PL 121B 187 PRL 51 731	M. Banner et al.	(UA2 Collab.)
LIEBOWITZ	83	PRL 50 1640	D.C. Joyce et al. D. Liebowitz, M. Binder,	(SFSU)
LINDGREN	83	PRL 51 1621	M.A. Lindgren et al.	(SFSU, UCR, UCI+)
MASHIMO	83	PL 128B 327	T. Mashimo et al.	(ICEPP)
PRICE	83	PRL 50 566	P.B. Price et al.	(UCB)
VANDESTEEG MARINI	83 82	PRL 50 1234 PR D26 1777	M.J.H. van de Steeg, H. A. Marini <i>et al.</i>	W.H.M. Jongbloets, P. Wyder (FRAS IRI NWES STANL)
MARINI	82B	PRL 48 1649	A. Marini et al.	(FRAS, LBL, NWES, STAN+) (FRAS, LBL, NWES, STAN+)
MASHIMO	82	JPSJ 51 3067	T. Mashimo, K. Kawago	e. M. Koshiba (INUS)
NAPOLITANO ROSS	82 82	PR D25 2837	J. Napolitano et al.	(STAN, FRAS, LBL+)
HODGES	81	PL 118B 199 PRL 47 1651	M.C. Ross et al. C.L. Hodges et al.	(FRAS, LBL, NWES, STAN+) (UCR, SFSU)
LARUE	B1	PRL 46 967	G.S. Larue, J.D. Phillins	W.M. Fairbank (STAN)
WEISS	81	PL 101B 439	J.M. Weiss et al.	(SLAC, LBL, UCB)
BARTEL	80	ZPHY C6 295	W. Bartel et al.	(JADE Collab.)
BASILE BUSSIERE	80 80	LNC 29 251 NP B174 1	M. Basile <i>et al.</i> A. Bussiere <i>et al.</i>	(BGNA, CERN, FRAS, ROMA+) (BGNA, SACL, LAPP)
MARINELLI	80B	PL 94B 433	M. Marinelli, G. Moroura	(GENO)
Aiso	60	PL 94B 427	M. Marinelli, G. Morpurg	(GENO)
BOYD	79	PRL 43 1288	R.N. Boyd et ai.	(OSU)
BOZZOLI LARUE	79 79	NP B159 363 PRL 42 142	W. Bozzoli et al.	(BGNA, LAPP, SACL+)
Also	79 79B	PRL 42 142 PRL 42 1019	G.S. Larue, W.M. Fairba G.S. Larue, W.M. Fairba	nk, J.D. Phillips (STAN) nk, J.D. Phillips
OGOROD	79	IFTP 49 953	D.D. Ogorodnikov I.M.	Samoilov, A.M. Solntsev
CTEVENCON	79	Translated from	ZETF 76 1881.	
STEVENSON BASILE	79 78	PR D20 82 NC 45A 171	M.L. Stevenson M. Basile <i>et al</i> .	(LBL) (CERN, BGNA)
BASILE	78B	NC 45A 281	M. Basile et al.	(CERN, BGNA)
BOYD	78	PRL 40 216	R.N. Boyd et al.	(ROCH)

BOYD	78B	PL 72B 484	R.N. Boyd et al. (ROCH) T. Lund, R. Brandt, Y. Fares (MARB) G.D. Putt, P.C.M. Yook (AUCK) J.P. Schilfer et al. (CHC, ANL) P.C.M. Yook (AUCK) D. Antreasyan et al. (EFI, PRIM) M. Bassie et al. (CERN, BGNA) K.W. Bland et al. (SFSU) G. Gallinaro, M. Marinelli, G. Morpurgo (SENO) L.W. Jones G.S. Larue, W.M. Fairbank, A.F. Hebard R.A. Muller et al. (LBL) D. Ogorodnikov, I.M. Samoilov, A.M. Sointsev 12 1833.
LUND	78	RA 25 75	T. Lund, R. Brandt, Y. Fares (MARB)
	78 78	PR D17 1466	G.D. Putt, P.C.M. Yock (AUCK) J.P. Schiffer et al. (CHIC, ANL)
	78	PR D18 641	P.C.M. Yock (AUCK)
ANTREASYAN	77	PRL 39 513	D. Antreasyan et al. (EFI, PRIN)
BASILE	77	NC 40A 41	M. Basile et al. (CERN, BGNA)
BLAND GALLINARO	77 77	PRI 39 369 PRI 38 1255	R.W. Bland et al. (SFSU) G. Gallinaro, M. Marinelli, G. Morpurgo (GENO)
GALLINARO JONES	77B	RMP 69 717	L.W. Jones
LARUE	77	PRL 38 1011	G.S. Larue, W.M. Fairbank, A.F. Hebard (STAN)
MULLER	77	Science 521	R.A. Muller et al. (LBL)
OGOROD	77	Translated from ZETE	72 1633.
BALDIN	76	Translated from ZETF SJNP 22 264	B.Y. Baldin et al. (JINR)
RRIATORE	76	Translated from YAF 2	2 512.
STEVENS	76	PR D14 716	C.M. Stevens, J.P. Schiffer, W. Chuoka (ANL)
ALBROW	75	NP B97 189	M.G. Albrow et al. (CERN, DARE, FOM+)
FABJAN	75	NP B101 349	C.W. Fabjan et al. (CERN, MPIM)
HAZEN IOVANOV	/5 7E	NP B95 189	W.E. Hazen et al. (MICH, LEED)
KRISOR	75	NC 27A 132	K. Krisor (AACH3)
CLARK	74B	PR D10 2721	A.F. Clark et al. (LLL)
GALIK	74	PR 09 1856	R.S. Galik et al. (SLAC, FNAL)
NASH	74	JPSJ 36 629 PRI 32 858	T. Niture et al. (TORY, KEK) T. Nach et al. (ENAL CORN NVII)
ALPER	73	PL 46B 265	B. Alper et al. (CERN, LIVP, LUND, BOHR+)
ASHTON	73	JPA 6 577	F. Ashton et al. (DURH)
HICKS	73B	NC 14A 65	R.B. Hicks, R.W. Flint, S. Standil (MANI)
REAUCHAMP	72	PR D6 1211	W.T. Beauchamo et al. (DNL, TALE)
вонм	72B	PRL 28 326	A. Bohm et al. (AACH)
BOTT	72	PL 40B 693	M. Bott-Bodenhausen et al. (CERN, MPIM)
COX	72	PR D6 1203	A.J. Cox et al. (ARIZ)
DARDO	72	NC 9A 319	M. Dardo et al. (TORI)
EVANS	72	PRSE A70 143	G.R. Evans et al. (EDIN, LEED)
TONWAR	72	JPA 5 569	S.C. Tonwar, S. Naranan, B.V. Sreekantan (TATA)
ANTIPOV	71	NP B27 374	Y.M. Antipov et al. (SERP)
CLARK	71B	PRL 27 51	A.F. Clark et al. (ULL IRL)
HAZEN	71	PRL 26 582	W.E. Hazen (MICH)
BOSIA	70	NC 66A 167	G.F. Bosia, L. Briatore (TORI)
CHU Also	70 70B	PRL 24 917 PRI 25 550	W.T. Chu et al. (OSU, ROSE, KANS)
ELBERT	70	NP B20 217	72 163.3 B.Y. Baldin et al. 2 532. B.Y. Baldin et al. 2 512. L. Briatore et al. C.M. Stevens, J.P. Schiffer, W. Chupka M.G. Albrow et al. C.M. Stevens, J.P. Schiffer, W. Chupka M.G. Albrow et al. C.K. Pabjan et al. C.K. Pabjan et al. C.K. DARE, FOM+) C.K. Fabjan et al. C.K. MCH, LEED J.V. Jovanovich et al. K. Krisor K. Krisor A.F. Clark et al. C. Schik et al. C. S
FAISSNER	70B	PRL 24 1357	H. Faissner et al. (AACH3)
KRIDER	70	PR D1 835	E.P. Krider, T. Bowen, R.M. Kalbach (ARIZ)
ALLARY	70 69R	NIM 79 95 NC 644 75	G. Morpurgo, G. Gallinaro, G. Palmieri (GENO)
ANTIPOV	69	PL 29B 245	Y.M. Antipov et al. (SERP)
ANTIPOV	69B	PL 30B 576	Y.M. Antipov et al. (SERP)
CAIRNS	69	PR 186 1394	I. Cairns et al. (SYDN)
FUKUSHIMA	69	PR 178 2058	Y. Fukushima et al. (TOKY)
MCCUSKER	69	PRL 23 658	C.B.A. McCusker, I. Cairns (SYDN)
BELLAMY	68	PR 166 1391	E.H. Bellamy et al. (STAN, SLAC)
BRAGINSK	68	NC B53 241 IFTP 37 51	J. Bjornboe et al. (BOHK, IAIA, BERN+) V.B. Bradinsky et al. (MOSII)
BIOGUNIA	00	Translated from ZETF	54 91. (MOSO)
BRIATORE FRANZINI	68	NC 57A 850	L. Briatore et al. (TORI, CERN, BGNA)
GARMIRE	68	PRL 21 1013 DR 166 166	P. Franzini, S. Shulman (COLU) G. Garmira, C. Legon, V. Szeekantan (MIT)
HANAYAMA	68	CJP 46 S734	Y. Hanayama et al. (OSAK)
KASHA	68	PR 172 1297	H. Kasha, R.J. Stefanski (BNL, YALE)
KASHA	68B 68C	PRL 20 217	H. Kasha et al. (BNL, YALE)
RASHA	68 C	CJP 46 5730 PR 176 1635	D. Rank (BNL, YALE)
BARTON	67	PRSL 90 87	J.C. Barton (NPOL)
HANAYAMA KASHA KASHA KASHA KASHA RANK BARTON BATHOW BUHLER FOSS GOMEZ KASHA STOVER BARTON BENNETT BUHLER CHUPKA GALLINIADO	57	PL 25B 163 NC 49A 209 NC 51A 837 PL 25B 166	V.B. Braginsky et al. (MOSU) L. Briatore et al. (TORI, CERN, BGNA) P. Franzini, S. Shulman G. Garmire, C. Leong, V. Sreekantan (MIT) H. Hanayama et al. (OSAK) H. Kasha, R.J. Stefanski H. Kasha et al. D. Rank (MICH) J.C. Barton (MPOU) J.C. Barton (MPOU) J.C. Barton (DESY) A. Buhler-Broglin et al. CERN, BGNA4 A. Buhler-Broglin et al. (CERN, BGNA4) H. Kasha et al. (MIT) R. Gomez et al. R. Gomez et al. R. J. W. Stover, T.I. Moran, J.W. Trischka J.C. Barton, C.T. Stockel W.R. Bennett W.A. Buhler-Broglin et al. (CERN, BGNA4) W.A. Chupka, J.P. Schilfer, C.M. Stevens Gallinaro, G. Morpurgo (GEN) H. Kasha, L.B. Leipuner, R.K. Adair (BNL, YALE) (GEN)
BUHLER	67B	NC 49A 209 NC 51A 937	A. Buhler-Broglin et al. (CERN, BGNA) A. Buhler-Broglin et al. (CERN, BGNA)
FOSS	67	PL 25B 166	j. Foss et al. (MIT)
GOMEZ	67	PRL 18 1022	R. Gomez et al. (CIT)
KASHA	67	PR 154 1263	H. Kasha et al. (BNL, YALE)
BARTON	66	PK 164 1599 PL 21 360	K.W. Stover, I.I. Moran, J.W. Irischka (SYKA)
BENNETT	66	PRL 17 1196	W.R. Bennett (YALE)
BUHLER	66	NC 45A 520	A. Buhler-Broglin et al. (CERN, BĞNA+)
CHUPKA	66	PRL 17 60	W.A. Chupka, J.P. Schiffer, C.M. Stevens (ANL)
GALLINARO KASHA	66	PR 150 1140	H. Kasha, L.B. Leipuner, R.K. Adair (BNL, YALE)
LAMB	66		R.C. Lamb et al. (ANL)
DELISE	65	PR 140B 458	D.A. de Lise, T. Bowen (ARIZ)
DORFAN FRANZINI	65 65B	PRL 14 999 PRL 14 196	D.E. Dorfan et al. (COLU) P. Franzini et al. (BNL, COLU)
MASSAM	65	NC 40A 589	T. Massam, T. Muller, A. Zichichi (CERN)
BINGHAM	64	PL 9 201	H.H. Bingham et al. (CERN, EPOL)
BLUM	64	PRL 13 353A	W. Blum et al. (CERN)
BOWEN HAGOPIAN	64 64	PRL 13 728 PRL 13 280	T. Bowen <i>et al.</i> (ARIZ) V. Hagopian <i>et al.</i> (PENN, BNL)
LEIPUNER	64	PRL 12 423	L.B. Leipuner et al. (BNL, YALE)
MORRISON	64	PL 9 199	D.R.O. Morrison (CERN)
SUNYAR	64 50	PR 136B 1157	A.W. Sunyar, A.Z. Schwarzschild, P.I. Connors (BNL)
HILLAS MILLIKAN	59 10	Nature 184 B92 Phil Mag 19 209	Hillas, Cranshaw (ÁERE) R.A. Millikan (CHIC)
	-•		(cinc)
		OTHER	R RELATED PAPERS
		•	
LYONS Raview	85	PRPL C129 225	L. Lyons (OXF)

LYONS Review	85	PRPL C129 225	L. Lyons	(OXF)
MARINELLI Review	82	PRPL 85 161	M. Marinelli, G. Morpurgo	(GENO)

³¹ Also set limits for $Q=\pm e/6$. 32 Note that in PHILLIPS 88 these authors report a subtle magnetic effect which could account for the apparent fractional charges. 33 Limit inferred by JONES 77B.

LIGHT UNFLAVORED MESONS (S = C = B = 0)

For I=1 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for I=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

PSEUDOSCALAR-MESON DECAY CONSTANTS Revised April 2000 by M. Suzuki (LBNL).

Charged mesons

The decay constant f_P for a charged pseudoscalar meson P is defined by

$$\langle 0|A_{\mu}(0)|P(\mathbf{q})\rangle = if_P \ q_{\mu} \ , \tag{1}$$

where A_{μ} is the axial-vector part of the charged weak current after a Cabibbo-Kobayashi-Maskawa mixing-matrix element $V_{qq'}$ has been removed. The state vector is normalized by $\langle P(\mathbf{q})|P(\mathbf{q}')\rangle=(2\pi)^3~2E_q~\delta(\mathbf{q}-\mathbf{q}')$, and its phase is chosen to make f_P real and positive. Note, however, that in many theoretical papers our $f_P/\sqrt{2}$ is denoted by f_P .

In determining f_P experimentally, radiative corrections must be taken into account. Since the photon-loop correction introduces an infrared divergence that is canceled by soft-photon emission, we can determine f_P only from the combined rate for $P^{\pm} \to \ell^{\pm} \nu_{\ell}$ and $P^{\pm} \to \ell^{\pm} \nu_{\ell} \gamma$. This rate is given by

$$\Gamma\left(P \to \ell\nu_{\ell} + \ell\nu_{\ell}\gamma\right) = \frac{G_F^2 |V_{qq'}|^2}{8\pi} f_P^2 m_{\ell}^2 m_P \left(1 - \frac{m_{\ell}^2}{m_P^2}\right)^2 [1 + \mathcal{O}(\alpha)] .$$
(2)

Here m_{ℓ} and m_P are the masses of the lepton and meson. Radiative corrections include inner bremsstrahlung, which is independent of the structure of the meson [1-3], and also a structure-dependent term [4,5]. After radiative corrections are made, there are ambiguities in extracting f_P from experimental measurements. In fact, the definition of f_P is no longer unique.

It is desirable to define f_P such that it depends only on the properties of the pseudoscalar meson, not on the final decay products. The short-distance corrections to the fundamental electroweak constants like $G_F|V_{qq'}|$ should be separated out. Following Marciano and Sirlin [6], we define f_P with the following form for the $\mathcal{O}(\alpha)$ corrections:

$$1 + \mathcal{O}(\alpha) = \left[1 + \frac{2\alpha}{\pi} \ln\left(\frac{m_Z}{m_\rho}\right)\right] \left[1 + \frac{\alpha}{\pi} F(x)\right]$$

$$\times \left\{1 - \frac{\alpha}{\pi} \left[\frac{3}{2} \ln\left(\frac{m_\rho}{m_P}\right) + C_1 + C_2 \frac{m_\ell^2}{m_\rho^2} \ln\left(\frac{m_\rho^2}{m_\ell^2}\right) + C_3 \frac{m_\ell^2}{m_\rho^2} + \ldots\right]\right\},$$
(3)

where m_{ρ} and m_{Z} are the masses of the ρ meson and Z boson. Here

$$F(x) = 3\ln x + \frac{13 - 19x^2}{8(1 - x^2)} - \frac{8 - 5x^2}{2(1 - x^2)^2} x^2 \ln x$$
$$-2\left(\frac{1 + x^2}{1 - x^2} \ln x + 1\right) \ln(1 - x^2) + 2\left(\frac{1 + x^2}{1 - x^2}\right) L(1 - x^2) ,$$

with

$$x \equiv m_\ell/m_P \; , \qquad L(z) \equiv \int_0^z \frac{\ln(1-t)}{t} \; dt \; .$$
 (4)

The first bracket in the expression for $1+\mathcal{O}(\alpha)$ is the short-distance electroweak correction. A quarter of $(2\alpha/\pi) \ln(m_Z/m_\rho)$ is subject to the QCD correction $(1-\alpha_s/\pi)$, which leads to a reduction of the total short-distance correction of 0.00033 from the electroweak contribution alone [6]. The second bracket together with the term $-(3\alpha/2\pi) \ln(m_\rho/m_P)$ in the third bracket corresponds to the radiative corrections to the point-like pion decay $(\Lambda_{\rm cutoff} \approx m_\rho)$ [2]. The rest of the corrections in the third bracket are expanded in powers of m_ℓ/m_ρ . The expansion coefficients C_1 , C_2 , and C_3 depend on the hadronic structure of the pseudoscalar meson and in most cases cannot be computed accurately. In particular, C_1 absorbs the uncertainty in the matching energy scale between short- and long-distance strong interactions and thus is the main source of uncertainty in determining f_{π^+} accurately.

With the experimental value for the decay $\pi^+ \to \mu^+ \nu_\mu + \mu^+ \nu_\mu \gamma$, one obtains

$$f_{\pi^+} = 130.7 \pm 0.1 \pm 0.36 \text{ MeV}$$
, (5)

where the first error comes from the experimental uncertainty on $|V_{ud}|$ and the second comes from the uncertainty on C_1 (= 0 ± 0.24) [6]. Similarly, one obtains from the decay $K^+ \rightarrow \mu^+\nu_\mu + \mu^+\nu_\mu\gamma$ the decay constant

$$f_{K^+} = 159.8 \pm 1.4 \pm 0.44 \text{ MeV}$$
 , (6)

where the first error is due to the uncertainty on $|V_{us}|$.

For the heavy pseudoscalar mesons, uncertainties in the experimental values for the decay rates are much larger than the radiative corrections. For the D^+ , a value (as opposed to an upper limit) has been obtained for the first time:

$$f_{D^+} = 300^{+180+80}_{-150-40} \text{ MeV} ,$$
 (7)

but it is based on only one $D^+ \to \mu^+ \nu_\mu$ event [7]. For the D_s^+ , the decay constant has been obtained from both the $D_s^+ \to \mu^+ \nu_\mu$ and the $D_s^+ \to \tau^+ \nu_\tau$ branching fractions. There are altogether six reported values ranging from about 200 to 450 MeV, but the errors are getting smaller; the best and most recent value, from 182 $D_s^+ \to \mu^+ \nu_\mu$ events, gives [8]

$$f_{D_{-}^{\pm}} = 280 \pm 19 \pm 28 \pm 34 \text{ MeV}$$
 . (8)

(See the measurements of the $D_s^+ \to \ell^+ \nu_\ell$ modes in the Particle Listings for the numbers quoted by individual experiments.)

There have been many attempts to extract f_P from spectroscopy and nonleptonic decays using theoretical models. Since it is difficult to estimate uncertainties for them, we have listed here only values of decay constants that are obtained directly from the observation of $P^{\pm} \to \ell^{\pm} \nu_{\ell}$.

 π^{\pm}

Light neutral mesons

The decay constants for the light neutral pseudoscalar mesons π^0 , η , and η' are defined by

$$\sqrt{2} \langle 0|A^a_\mu(0)|P(q)\rangle = i f_P^a q_\mu \tag{9}$$

where A^a_μ is a neutral axial-vector current [9,10]. Restricting ourselves to the three light flavors, the index a=0,3,8 refers to the usual set of Gell-Mann matrices, including the flavor singlet. In case of exact isospin symmetry (which is for most applications a very good approximation) we have only one decay constant for the π^0 meson $(f^3_{\pi^0} \equiv f_{\pi^0})$ and two decay constants each for η and η' $(f^3_{\eta}, f^0_{\eta}, and f^0_{\eta'}, f^0_{\eta'})$.

In the limit of $m_P \to 0$, the Adler-Bell-Jackiw anomaly [11,12] determines the matrix elements of the two-photon decay $P \to \gamma \gamma$ through the decay constants f_P^a . In the case of f_{π^0} , the extrapolation to $m_\pi \neq 0$ gives only a tiny effect, and the value of f_{π^0} can be extracted from the $\pi^0 \to \gamma \gamma$ decay width. The experimental uncertainty in the π^0 lifetime dominates in the uncertainty of f_{π^0} :

$$f_{\pi^0} = 130 \pm 5 \text{ MeV}$$
. (10)

This value is compatible with $f_{\pi^{\pm}}$, as it is expected from isospin symmetry.

The four decay constants of the η - η' system cannot be extracted from the two-photon decay widths alone. Also, the extrapolation to $m_{\eta(\eta')} \neq 0$ may give a larger effect here, and therefore the dominance of the Adler-Bell-Jackiw anomaly is perhaps questionable. Thus, an assessment of the values of the η and η' decay constants requires additional theoretical and phenomenological input about flavor symmetry breaking and η - η' mixing; see Ref. 13 for a review. Most analyses find similar values for the octet decay constants: $f_{\eta}^{8} \simeq 1.2 \, f_{\pi}$ and $f_{\eta'}^{8} \simeq -0.45 \, f_{\pi}$. The situation concerning the singlet decay constants, f_{P}^{9} , is less clear.

References

- 1. S. Berman, Phys. Rev. Lett. 1, 468 (1958).
- 2. T. Kinoshita, Phys. Rev. Lett. 2, 477 (1959).
- 3. A. Sirlin, Phys. Rev. D5, 436 (1972).
- M.V. Terent'ev, Yad. Fiz. 18, 870 (1973) [Sov. J. Nucl. Phys. 18, 449 (1974)].
- T. Goldman and W.J. Wilson, Phys. Rev. **D15**, 709 (1977).
- W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 71, 3629 (1993).
- 7. J.Z. Bai et al., Phys. Lett. **B429**, 188 (1998).
- 8. M. Chada et al., Phys. Rev. D58, 032002 (1998).
- 9. J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
- 10. H. Leutwyler, Nucl. Phys. Proc. Suppl. 64, 223 (1998).
- 11. S.L. Adler, Phys. Rev. 177, 2426 (1969).
- 12. J.S. Bell and R. Jackiw, Nuovo Cimento **60A**, 46 (1969).
- T. Feldmann, Int. J. Mod. Phys. A15, 159 (2000).

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition Physics Letters **B204** (1988).

π[±] MASS

The most accurate charged pion mass measurements are based upon x-ray wavelength measurements for transitions in π^- -mesonic atoms. The observed line is the blend of three components, corresponding to different K-shell occupancies. JECKELMANN 94 revisits the occupancy question, with the conclusion that two sets of occupancy ratios, resulting in two different pion masses (Solutions A and B), are equally probable. We choose the higher Solution B since only this solution is consistent with a positive mass-squared for the muon neutrino, given the precise muon momentum measurements now available (DAUM 91, ASSAMAGAN 94, and ASSAMAGAN 96) for the decay of pions at rest. Earlier mass determinations with pi-mesonic atoms may have used incorrect K-shell screening corrections.

Measurements with an error of > 0.005 MeV have been omitted from this Listing.

```
DOCUMENT ID
139.57018±0.00035 OUR FIT Error includes scale factor of 1.2.
139.57018±0.00035 OUR AVERAGE Error includes scale factor of 1.2.
                                     1 LENZ
                                                                           pionic N2-atoms
139.57071 \pm 0.00053
                                                        98 CNTR -
                                                                               gas target
                                     <sup>2</sup> JECKELMANN 94 CNTR -
139.56995 \pm 0.00035
                                                                            π atom, Soln. B

    • • We do not use the following data for averages, fits, limits, etc.

                                     <sup>3</sup> ASSAMAGAN 96 SPEC +
                                                                            \pi^+ \to ~\mu^+ \nu_\mu
139.57022 \pm 0.00014
                                                                            \pi^- atom, Soln. A \pi^+ \rightarrow \mu^+ \nu
139.56782 ± 0.00037
                                     <sup>4</sup> JECKELMANN 94 CNTR -
139.56996 ± 0.00067
                                                        91 SPEC
                                     6 JECKELMANN B6B CNTR
139.56752 \pm 0.00037
                                                                            Mesonic atoms
                                     5 ABELA
\begin{array}{ccc} 139.5704 & \pm 0.0011 \\ 139.5664 & \pm 0.0009 \end{array}
                                                                            See DAUM 91
                                                       84 SPEC +
                                                        80
                                                            CNTR
                                                                            Mesonic atoms
                                       CARTER
139.5686 ±0.0020
                                                            CNTR
                                   7,8 MARUSHEN... 76 CNTR
                                                                            Mesonic atoms
139.5660 ±0.0024
```

- ¹LENZ 98 reslut does not suffer K-electron configuration uncertainties as does JECKEL-MANN 94.
- ² JECKELMANN 94 Solution B (dominant 2-electron K-shell occupancy), chosen for consistency with positive $m_{\nu_e}^2$.
- 3 ASSAMAGAN 96 measures the μ^+ momentum ρ_μ in $\pi^+\to\mu^+\nu_\mu$ decay at rest to be 29.79200 \pm 0.00011 MeV/c. Combined with the μ^+ mass and the assumption m_{ν_μ}
- = 0, this gives the π^+ mass above; if $m_{
 u\mu} > 0$, m_{π^+} given above is a lower limit. Combined instead with m_μ and (assuming *CPT*) the π^- mass of JECKELMANN 94, ρ_μ gives an upper limit on m_{ν_μ} (see the ν_μ).
- 4 JECKELMANN 94 Solution A (small 2-electron K-shell occupancy) in combination with either the DAUM 91 or ASSAMAGAN 94 pion decay muon momentum measurement yields a significantly negative $m_{\nu_\mu}^2$. It is accordingly not used in our fits.
- ⁵ The DAUM 91 value includes the ABELA 84 result. The value is based on a measurement of the μ^+ momentum for π^+ decay at rest, $p_\mu=29.79179\pm0.00053$ MeV, uses $m_\mu=105.658389\pm0.000034$ MeV, and assumes that $m_{\nu_\mu}=0$. The last assumption means that in fact the value is a lower limit.
- that in fact the value is a lower influt. $m_R = 273.12677(71)$. We use $m_e = 0.51099906(15)$ MeV from COHEN 87. The authors note that two solutions for the probability distribution of K-shell occupancy fit equally well, and use other data to choose the lower of the two possible π^{\pm} masses.
- ⁷These values are scaled with a new wavelength-energy conversion factor $V\lambda=1.23984244(37)\times10^{-6}$ eV m from COHEN 87. The LU 80 screening correction relies upon a theoretical calculation of inner-shell refilling rates.
- 8 This MARUSHENKO 76 value used at the authors' request to use the accepted set of calibration γ energies. Error increased from 0.0017 MeV to include QED calculation error of 0.0017 MeV (12 ppm).

$$m_{\pi^+} - m_{\mu^+}$$

Measurements with an error $> 0.05 \; \text{MeV}$ have been omitted from this Listing.

VALUE (MeV)	EVTS	DOCUMENT I	D	TECN	CHG	COMMENT
• • • We do not use	the following	g data for avera	ges, fits	, limits,	etc. •	• •
33.91157 ± 0.00067		9 DAUM	91	SPEC	+	$\pi^+ \rightarrow \mu^+ \nu$
33.9111 ±0.0011		ABELA	84	SPEC		See DAUM 91
33.925 ±0.025		BOOTH	70	CNTR	+	Magnetic spect.
33.881 ±0.035	145	HYMAN	67	HEBC	+	κ^- He
0						

 9 The DAUM 91 value assumes that $m_{\nu_{\mu}}=0$ and uses our $m_{\mu}=105.658389\pm0.000034$ MeV.

$(m_{\pi^+} - m_{\pi^-}) / m_{\text{average}}$

A test of CPT invariance.

VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	
2±5	AYRES	71	CNTR

π[±] MEAN LIFE

Measurements with an error $> 0.02 \times 10^{-8} \, \text{s}$ have been omitted.

VALUE (10 ⁻⁸ s)	DOCUMENT IE	<u> </u>	TECN	CHG	COMMENT
2.6033 ±0.0005 OUR	AVERAGE Error include	s scale	factor o	f 1.2.	
2.60361 ± 0.00052	¹⁰ KOPTEV	95	SPEC	+	Surface μ^+ 's
$2.60231 \pm 0.00050 \pm 0.00$	0084 NUMAO	95	SPEC	+	Surface μ ⁺ 's
2.609 ± 0.008	DUNAITSEV	73	CNTR	+	
2.602 ± 0.004	AYRES	71	CNTR	±	
2.604 ± 0.005	NORDBERG	67	CNTR	+	
2.602 ± 0.004	ECKHAUSE	65	CNTR	+	
• • • We do not use th	e following data for averag	ges, fits	, limits,	etc.	• •
2.640 ±0.008	11 KINSEY	66	CNTR	+	

¹⁰ KOPTEV 95 combines the statistical and systematic errors; the statistical error dominates.

$(au_{\pi^+} - au_{\pi^-}) / au_{average}$

A test of CPT invariance.

VALUE (units 10 ⁻⁴)	DOCUMENT ID TECN
5.5± 7.1	AYRES 71 CNTR
• • We do not use the following the fol	wing data for averages, fits, limits, etc. • • •
-14 ± 29	PETRUKHIN 68 CNTR
40 ±70	BARDON 66 CNTR
23 ±40	¹² LOBKOWICZ 66 CNTR
12 This is the most conserval	ive value given by LOBKOWICZ 66.

π⁺ DECAY MODES

 π^- modes are charge conjugates of the modes below.

	Mode Fraction $(\Gamma_{\hat{i}}/\Gamma)$				Confidence level		
$\overline{\Gamma_1}$	$\mu^+ \nu_{\mu}$	[<i>a</i>]	(99.9877	0±0.0000	04) %		
Γ_2	$\mu^{\dot+} u_{\mu}\gamma$	[b]	(2.00	± 0.25	$) \times 10^{-4}$		
Гз	$e^+ \nu_e$	[<i>a</i>]	(1.230	±0.004	$) \times 10^{-4}$		
Γ ₄	$e^+ \nu_e \gamma$	[b]			$) \times 10^{-7}$		
Γ_5	$e^+ u_e\pi^0$		(1.025	± 0.034	$) \times 10^{-8}$		
۲ ₆	$e^+ u_e e^+ e^-$		(3.2	± 0.5) × 10 ⁻⁹		
Γ ₇	$e^+ \nu_e \nu \overline{\nu}$		< 5		× 10 ⁻⁶	90%	

Lepton Family number (LF) or Lepton number (L) violating modes

Γ8	$\mu^+ \overline{\nu}_e$	L	[c] < 1.5	×10 ⁻³	90%
Г9	$\mu^+ \nu_e$	LF	[c] < 8.0	× 10 ⁻³	90%
Γ_{10}	$\mu^- e^+ e^+ u$	LF	< 1.6	× 10 ⁻⁶	90%

- [a] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include low-energy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\text{total}} = 100\%$.
- [b] See the Particle Listings below for the energy limits used in this measurement; low-energy γ 's are not included.
- [c] Derived from an analysis of neutrino-oscillation experiments.

π+ BRANCHING RATIOS

1.230 ± 0.004 OUR EVALUATION

 $\left[\Gamma(e^+\nu_e) + \Gamma(e^+\nu_e\gamma) \right] / \left[\Gamma(\mu^+\nu_\mu) + \Gamma(\mu^+\nu_\mu\gamma) \right]$ (\$\Gamma_3 + \Gamma_4\)/(\$\Gamma_1 + \Gamma_0
VALUE	(units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT	
1.230	±0.004 OUR AVI	RAGE					
1.2346	$\pm 0.0035 \pm 0.0036$	120k	CZAPEK	93	CALO	Stopping π^+	
1.2265	±0.0034±0.0044	190k	BRITTON	92	CNTR	Stopping π^+	
1.218	± 0.014	32k	BRYMAN	86	CNTR	Stopping π^+	
	We do not use the	following	data for averages,	fits,	limits, e	etc. • • •	
1.273	±0.028	11k	¹³ DICAPUA	64	CNTR		
1.21	± 0.07		ANDERSON	60	SPEC		

 $^{13} \mbox{DICAPUA}$ 64 has been updated using the current mean life.

 14 BRESSI 98-result is given for $E_{\gamma}>1$ MeV only. Result agrees with QED expectation, 2.283×10^{-4} and does not confirm discrepancy of earlier experiment CASTAGNOLI 58.

$\Gamma(e^+ u_e\gamma)/\Gamma_{total}$ Note that measurements here do not cover the full kinematic range. <u>VALUE (units 10^-8) EVTS DOCUMENT ID TECN COMMENT</u>

16.1±2.3 15 BOLOTOV 90B SPEC 17 GeV $\pi^- \rightarrow e^- \overline{\nu}_e \gamma$ • • • We do not use the following data for averages, fits, limits, etc. • • • 5.6±0.7 226 16 STETZ 78 SPEC $P_e > 56$ MeV/c 3.0 143 DEPOMMIER 63B CNTR (KE) $_{e^+ \gamma} > 48$ MeV

 15 BOLOTOV 90B is for $E_{\gamma}~>$ 21 MeV, $E_{e}~>~70~-~0.8~E_{\gamma}.$

 $^{16}{\rm STETZ}$ 78 is for an $e^-\,\gamma$ opening angle $>132^{\rm o}.$ Obtains 3.7 when using same cutoffs as DEPOMMIER 63B.

$\Gamma(e^+\nu_e\pi^0)/\Gamma_{\rm tota}$	ı					Г ₅ /Г
VALUE (units 10 ⁻⁸)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1.025 ± 0.034 OUR A	VERAGE					
1.026 ± 0.039	1224	¹⁷ MCFARLANE	85	CNTR	+	Decay in flight
1.00 +0.08	332	DEPOMMIER	68	CNTR	+	
1.07 ±0.21	38	¹⁸ BACASTOW		OSPK		
1.10 ±0.26		¹⁸ BERTRAM	65	OSPK	+	
1.1 ±0.2	43	¹⁸ DUNAITSEV				
0.97 ±0.20	36	18 BARTLETT	64	OSPK	+	
• • • We do not use	the followi	ing data for averages	s, fit	s, limits,	etc.	• • •
1.15 ±0.22	52	18 DEPOMMIER	63	CNTR	+	See DEPOM-

 17 MCFARLANE 85 combines a measured rate (0.394 \pm 0.015)/s with 1982 PDG mean

Ilife.
18 DEPOMMIER 68 says the result of DEPOMMIER 63 is at least 10% too large because of a systematic error in the x⁰ detection efficiency, and that this may be true of all the previous measurements (also V. Soergel, private communication, 1972).

• • • We do not use the following data for averages, fits, limits, etc. • • • $0.46\pm0.16\pm0.07$ 7 19 BARANOV 92 SPEC Stopped π^+

< 4.8 90 KORENCHE... 768 SPEC <34 90 KORENCHE... 71 OSPK

 19 This measurement by BARANOV 92 is of the structure-dependent part of the decay. The value depends on values assumed for ratios of form factors.

 $\Gamma(\mu^+ \overline{\nu}_e)/\Gamma_{total}$ Forbidden by total lepton number conservation.

VALUE (units 10⁻³) CL% DOCUMENT ID TECN COMMENT

 VALUE (units 10⁻³)
 CL%
 DOCUMENT ID
 TECN
 COMMENT

 <1.5</td>
 90
 20 COOPER
 82
 HLBC
 Wideband ν beam

nates.

11 Systematic errors in the calibration of this experiment are discussed by NORDBERG 67.

 $^{^{20}}$ COOPER 82 limit on $\overline{\nu}_{\rm e}$ observation is here interpreted as a limit on lepton number violation.

 π^{\pm}

Forbidden by				TECH	COMMENT	
VALUE (units 10 ⁻³)	CL%	DOCUMENT ID		TECN	COMMENT	
<8.0	90	²¹ COOPER	82	HLBC	Wideband $ u$	beam
²¹ COOPER 82 lim violation.	it on $ u_e$ obse	ervation is here interp	oreteo	l as a lim	nit on lepton fa	mily number
$\Gamma(\mu^-e^+e^+ u)/\Gamma$ Forbidden by	total lepton family	y number conservati	on.			Γ ₁₀ /Γ
Forbidden by	total lepton family <u>CL%</u>	y number conservati <u>DOCUMENT ID</u>	on.	TECN	<u>сн6</u>	Γ ₁₀ /Γ
$\Gamma(\mu^-e^+e^+\nu)/\Gamma$ Forbidden by VALUE (units 10^{-6}) <1.6	lepton family	•				Γ ₁₀ /Γ
Forbidden by VALUE (units 10 ⁻⁶)	lepton family CL% 90	DOCUMENT ID BARANOV	918	SPEC	+	Г ₁₀ /Г

π^+ — POLARIZATION OF EMITTED μ^+

$$\pi^+ \rightarrow \mu^+ \nu$$
Tests the Lorentz structure of leptonic charged weak interactions.

MALUE CL** DOCUMENT ID TECN CHG COMMENT**

• • We do not use the following data for averages, fits, limits, etc. • • •

<[-0.9959] 90 22 FETSCHER 84 RVUE +
-0.99 \pm 0.16 23 ABELA 83 SPEC - μ X-rays

22 FETSCHER 84 uses only the measurement of CARR 83.

23 Sign of measurement reversed in ABELA 83 to compare with μ^+ measurements.

$\pi^{\pm} \to \ell^{\pm} \nu \gamma$ AND $K^{\pm} \to \ell^{\pm} \nu \gamma$ FORM FACTORS

Written by H.S. Pruys (Zürich University).

In the radiative decays $\pi^{\pm} \to \ell^{\pm}\nu\gamma$ and $K^{\pm} \to \ell^{\pm}\nu\gamma$, where ℓ is an e or a μ and γ is a real or virtual photon $(e^+e^-$ pair), both the vector and the axial-vector weak hadronic currents contribute to the decay amplitude. Each current gives a structure-dependent term (SD_V and SD_A) from virtual hadronic states, and the axial-vector current also gives a contribution from inner bremsstrahlung (IB) from the lepton and meson. The IB amplitudes are determined by the meson decay constants f_{π} and f_K [1]. The SD_V and SD_A amplitudes are parameterized in terms of the vector form factor F_V and the axial-vector form factors F_A and R [1-4]:

$$M(\mathrm{SD}_V) = \frac{-\epsilon G_F \, V_{qq'}}{\sqrt{2} \; m_P} \epsilon^\mu \, \ell^\nu \, F_V \, \epsilon_{\mu\nu\sigma\tau} \, k^\sigma \, q^\tau \; , \label{eq:MSDV}$$

$$M(\mathrm{SD}_A) = \frac{-ie \, G_F V_{qq'}}{\sqrt{2} \, m_P} \, \epsilon^{\mu} \, \ell^{\nu} \left\{ F_A \left[(s-t) g_{\mu\nu} - q_{\mu} \, k_{\nu} \right] + R \, t \, g_{\mu\nu} \right\} \, . \tag{1}$$

Here $V_{qq'}$ is the Cabibbo-Kobayashi-Maskawa mixing-matrix element; ϵ^{μ} is the polarization vector of the photon (or the effective vertex, $\epsilon^{\mu}=(e/t)\overline{u}(p_{-})\gamma^{\mu}v(p_{+})$, of the $e^{+}e^{-}$ pair); $\ell^{\nu}=\overline{u}(p_{\nu})\gamma^{\nu}(1-\gamma_{5})v(p_{\ell})$ is the lepton-neutrino current; q and k are the meson and photon four-momenta, with $s=q\cdot k$ and $t=k^{2}(=(p_{+}+p_{-})^{2})$; and P stands for π or K. In the analysis of data, the s and t dependence of the form factors is neglected, which is a good approximation for pions [2] but not for kaons [4]. The pion vector form factor F_{V}^{π} is related via CVC to the π^{0} lifetime, $|F_{V}^{\pi}|=(1/\alpha)\sqrt{2\Gamma_{\pi^{0}}/\pi m_{\pi^{0}}}$ [1]. PCAC relates R to the electromagnetic radius of the meson [2,4], $R^{P}=\frac{1}{3}m_{P}f_{P}\langle r_{P}^{2}\rangle$. The calculation of the other form factors, F_{A}^{π} , F_{V}^{K} , and F_{A}^{K} , is model dependent [1,4].

When the photon is real, the partial decay rate can be given analytically [1,5]:

$$\frac{d^2\Gamma_{P\to\ell\nu\gamma}}{dxdy} = \frac{d^2\left(\Gamma_{\rm IB} + \Gamma_{\rm SD} + \Gamma_{\rm INT}\right)}{dxdy} , \qquad (2)$$

where Γ_{IB} , Γ_{SD} , and Γ_{INT} are the contributions from inner bremsstrahlung, structure-dependent radiation, and their interference, and the Γ_{SD} term is given by

$$\frac{d^{2}\Gamma_{SD}}{dxdy} = \frac{\alpha}{8\pi} \Gamma_{P \to \ell\nu} \frac{1}{r(1-r)^{2}} \left(\frac{m_{P}}{f_{P}}\right)^{2} \times \left[(F_{V} + F_{A})^{2} \text{SD}^{+} + (F_{V} - F_{A})^{2} \text{SD}^{-} \right] . (3)$$

Here

$$SD^{+} = (x + y - 1 - r) [(x + y - 1)(1 - x) - r] ,$$

$$SD^{-} = (1 - y + r) [(1 - x)(1 - y) + r] ,$$
(4)

where $x=2E_{\gamma}/m_P$, $y=2E_{\ell}/m_P$, and $r=(m_{\ell}/m_P)^2$.

In $\pi^{\pm} \to e^{\pm}\nu\gamma$ and $K^{\pm} \to e^{\pm}\nu\gamma$ decays, the interference terms are small, and thus only the absolute values $|F_A+F_V|$ and $|F_A-F_V|$ can be obtained. In $K^{\pm} \to \mu^{\pm}\nu\gamma$ decay, the interference term is important, and thus the signs of F_V and F_A can be obtained. In $\pi^{\pm} \to \mu^{\pm}\nu\gamma$ decay, bremsstrahlung completely dominates. In $\pi^{\pm} \to e^{\pm}\nu e^{+}e^{-}$ and $K^{\pm} \to \ell^{\pm}\nu e^{+}e^{-}$ decays, all three form factors, F_V , F_A , and R, can be determined.

We give the π^{\pm} form factors F_V , F_A , and R in the Listings below. In the K^{\pm} Listings, we give the sum $F_A + F_V$ and difference $F_A - F_V$.

The electroweak decays of the pseudoscalar mesons are investigated to learn something about the unknown hadronic structure of these mesons, assuming a standard V-A structure of the weak leptonic current. The experiments are quite difficult, and it is not meaningful to analyse the results using parameters for both the hadronic structure (decay constants, form factors) and the leptonic weak current (e.g., to add pseudoscalar or tensor couplings to the V-A coupling). Deviations from the V-A interactions are much better studied in purely leptonic systems such as muon decay.

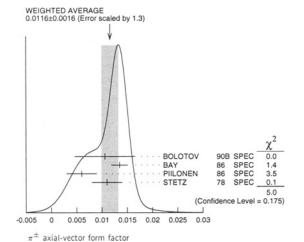
References

- D.A. Bryman et al., Phys. Reports 88, 151 (1982). See also our note on "Pseudoscalar-Meson Decay Constants," above.
- 2. A. Kersch and F. Scheck, Nucl. Phys. **B263**, 475 (1986).
- 3. W.T. Chu et al., Phys. Rev. 166, 1577 (1968).
- D.Yu. Bardin and E.A. Ivanov, Sov. J. Part. Nucl. 7, 286 (1976).
- S.G. Brown and S.A. Bludman, Phys. Rev. 136, B1160 (1964).

π^{\pm} FORM FACTORS

 F_V , VECTOR FORM FACTOR
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 0.017 ± 0.008 OUR AVERAGE
 0.014 ± 0.009 2^4 BOLOTOV
 908 SPEC
 17 GeV $\pi^- \rightarrow e^- \nu_e \gamma$
 0.023 ± 0.015 98
 EGLI
 89
 SPEC
 $\pi^+ \rightarrow e^+ \nu_e e^+ e^-$


 $^{^{\}rm 24}\,{\rm BOLOTOV}$ 90B only determines the absolute value.

F _A , AXIAL-VECTOR FORM FAC ⁻	ΓOR
---	-----

VALUE	EV15	DOCUMENT ID		TECN	COMMENT
0.0116±0.0016 OUR A	VERAGE	Error includes so	ale fa	ctor of 1	.3. See the ideogram
		below.			· ·
0.0106 ± 0.0060		²⁵ BOLOTOV	90B	SPEC	17 GeV $\pi^- \rightarrow e^- \overline{\nu}_\rho \gamma$
0.0135 ± 0.0016		²⁵ BAY	86	SPEC	$\pi^+ \rightarrow e^+ \nu \gamma$
0.006 ± 0.003		²⁵ PHLONEN	86	SPEC	$\pi^+ \rightarrow e^+ \nu \gamma$
0.011 ± 0.003	25	^{,26} STETZ	78	SPEC	$\pi^+ \rightarrow e^+ \nu \gamma$
• • • We do not use the	ne followir	g data for averag	es, fits	, limits,	etc. • • •
$\begin{array}{ccc} 0.021 & +0.011 \\ -0.013 \end{array}$	98	EGLI	89	SPEC	$\pi^+ \rightarrow \ e^+ \nu_e e^+ e^-$

 $^{^{25}}$ Using the vector form factor from CVC prediction $F_V=0.0259\pm0.0005$. Only the absolute value of F_A is determined. 26 The result of STETZ 78 has a two-fold ambiguity. We take the solution compatible with

later determinations.

R. SECOND AXIAL-VECTOR FORM FACTOR

THE SECOND POINTE		TORM TACE	, , ,	
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.059 + 0.009	98	EGLI	89 SPEC	$\pi^+ \rightarrow e^+ \nu_e e^+ e^-$

π[±] REFERENCES

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1988 edition Physics Letters **B204** (1988).

BRESSI	98	NP B513 555	G. Bressi et al.	
LENZ	98	PL B416 50	S. Lenz et al.	
ASSAMAGAN	96	PR D53 6065	K.A. Assamagan et al.	(PSI, ZURI, VILL+)
KOPTEV	95	JETPL 61 877	V.P. Koptev et al.	(PNPI)
		Translated from ZETFP 6:		, ,
NUMAO	95	PR D52 4855	T. Numao et al.	(TRIU, BRCO)
ASSAMAGAN	94	PL B335 231	K.A. Assamagan et al.	(PSI, ZURI, VILL+)
JECKELMANN	94	PL B335 326	B. Jeckelmann, P.F.A. Goudsmit,	H.J. Leisi (WABRN+)
CZAPEK	93	PRL 70 17	G. Czapek <i>et al.</i>	(BERN, VILL)
BARANOV	92	SJNP 55 1644	V.A. Baranov et al.	(JINR)
		Translated from YAF 55 2		(=0 6.0.)
BRITTON	92	PRL 68 3000	D.I. Britton et al.	(TRIU, CARL)
Also	94	PR D49 28	D.I. Britton et al.	(TRIU, CARL)
NUMAO	92	MPL A7 3357	T. Numao	(TRIU)
BARANOV	91B	SJNP 54 790	V.A. Baranov et al.	(JINR)
DAUM	91	Translated from YAF 54 1	M. Daum et al.	(VILL)
BOLOTOV	90B	PL B265 425 PL B243 308	V.N. Bolotov et al.	(INRM)
EGLI	89	PL B222 533	S. Egli et al.	(SINDRUM Collab.)
Also	86	PL B222 533 PL B175 97	S. Egli et al.	(AACH3, ETH, SIN, ZURI)
PDG	88	PL B204	G.P. Yost et al.	
	88		C.E. Picciotto et al.	(LBL+)
PICCIOTTO	87	PR D37 1131 RMP 59 1121		(TRIU, CNRC)
COHEN		SJNP 46 192	E.R. Cohen, B.N. Taylor S.M. Korenchenko et al.	(RISC, NBS)
KORENCHE	87	Translated from YAF 46 3		(JINR)
BAY	86	PL B174 445	A. Bay et al.	(LAUS, ZURI)
BRYMAN	86	PR D33 1211	D.A. Bryman et al.	(TRIU, CNRC)
Also	83	PRL 50 7	D.A. Bryman et al.	(TRIU, CNRC)
JECKELMANN		NP A457 709	B. Jeckelmann et al.	(ETH, FRIB)
Aiso	86	PRL 56 1444	B. Jeckelmann et al.	(ETH, FRIB)
PHLONEN	86	PRL 57 1402	L.E. Pillonen et al.	(LANL, TEMP, CHIC)
MCFARLANE	85	PR D32 547	W.K. McFarlane et al.	(TEMP, LANL)
ABELA	84	PL 146B 431	R. Abela et al.	(SIN)
Also	78	PL 74B 126	M. Daum et al.	(SIN)
Also	79	PR D20 2692	M. Daum et al.	(SIN)
FETSCHER	84	PL 140B 117	W. Fetscher	(ÈTH)
ABELA	83	NP A395 413	R. Abela et al.	(BASL, KARLK, KARLE)
CARR	В3	PRL 51 627	J. Carr et al.	(LBL, NWES, TRIU)
COOPER	82	PL 112B 97	A.M. Cooper et al.	(RL)
LU	80	PRL 45 1066	D.C. Lu et al.	(YALE, COLU, JHU)
STETZ	78	NP B138 285	A.W. Stetz et al.	(LBL, UCLA)
CARTER	76	PRL 37 1380	A.L. Carter et al.	(CARL, CNRC, CHIC+)
KORENCHE	76B	JETP 44 35	S.M. Korenchenko et al.	(JINR)
		Translated from ZETF 71	69.	(0)
MARUSHEN	76	JETPL 23 72	V.I. Marushenko et al.	(PNPI)
		Translated from ZETFP 2		400.443
Also	76	Private Comm.	R.E. Shafer	(FNAL)
Also	78	Private Comm.	Smirnov	(PNPI)
OUNAITSEV	73	SJNP 16 292	A.F. Dunaitsev et al.	(SERP)
		Translated from YAF 16 5	24,	

AYRES	71	PR D3 1051	D.S. Ayres et al.	(LRL, UCSB)
Also	67	PR 157 1288	D.S. Ayres et al.	(LRL)
Aiso	68	PRL 21 261	D.S. Ayres et al.	(LRL, UCSB)
Aiso	69	Thesis UCRL 18369	D.S. Ayres	(LRL)
Also	59	PRL 23 1267	A.J. Greenberg et al.	(LRL, UCSB)
KORENCHE	71	SJNP 13 189 Translated from YAF 13 3	S.M. Korenchenko et al.	(JINR)
BOOTH	70	PL 32B 723	P.S.L. Booth et al.	(LIVP)
DEPOMMIER	68	NP B4 189	P. Depommier et al.	(ČERN)
PETRUKHIN	68	JINR P1 3862	V.I. Petrukhin et al.	`(JINR)
HYMAN	67	PL 25B 376	L.G. Hyman et al. (ANL	, CMU, NWES)
NORDBERG	67	PL 24B 594	M.E. Nordberg, F. Lobkowicz, R.L. Burman	(ROCH)
BAROON	66	PRL 16 775	M. Bardon et al.	(COLU)
KINSEY	66	PR 144 1132	K.F. Kinsey, F. Lobkowicz, M.E. Nordberg	(ROCH)
LOBKOWICZ	66	PRL 17 548	F. Lobkowicz et al.	(ROCH, BNL)
BACASTOW	65	PR 139B 407	R.B. Bacastow et al.	(LRL, SLAC)
BERTRAM	65	PR 139B 617	W.K. Bertram et al.	(MICH, CMU)
DUNAITSEV	65	JETP 20 58 Translated from ZETF 47	A.F. Dunaitsev et al. 84.	(JINR)
ECKHAUSE	65	PL 19 348	M. Eckhause et al.	(WILL)
BARTLETT	64	PR 136B 1452	D. Bartlett et al.	(COLU)
DICAPUA	64	PR 133B 1333	M. di Capua et al.	(COLU)
Also	86	Private Comm.	L. Pondrom	(WISC)
DEPOMMIER	63	PL 5 61	P. Depommier et al.	(CERN)
DEPOMMIER	63B	PL 7 285	P. Depommier et al.	(CERN)
ANDERSON	60	PR 119 2050	H.L. Anderson et al.	(EFI)
CASTAGNOLI	58	PR 112 1779	C. Castagnoli, M. Muchnik	(ROMA)
			- ·	. ,

$$I^G(J^{PC}) = 1^{-(0-+)}$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition Physics Letters **B204** (1988).

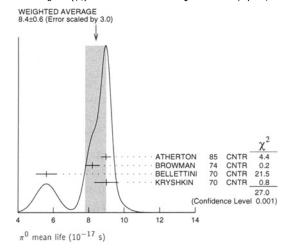
π^0 MASS

The value is calculated from m_{π^\pm} and $(m_{\pi^\pm}-m_{\pi^0}).$ See notes under the π^{\pm} Mass Listings concerning recent revision of the charged pion mass.

VALUE (MeV) DOCUMENT ID

134.9766±0.0006 OUR FIT Error includes scale factor of 1.1.

$m_{\pi^{\pm}} - m_{\pi^{0}}$


Measurements with an error > 0.01 MeV have been omitted.

VALUE (MeV)	DOCUMENT ID TECN COMMENT
4.5936 ±0.0005 OUR FIT 4.5936 ±0.0005 OUR AVER	AGE
4.59364 ± 0.00048	CRAWFORD 91 CNTR $\pi^- p \rightarrow \pi^0 n$, n TOF
4.5930 ±0.0013	CRAWFORD 86 CNTR $\pi^- p \rightarrow \pi^0 n$, n TOF
• • We do not use the follow	wing data for averages, fits, limits, etc. • • •
4.59366 ± 0.00048	CRAWFORD 88B CNTR See CRAWFORD 91
4.6034 ±0.0052	VASILEVSKY 66 CNTR
4.6056 ±0.0055	CZIRR 63 CNTR

₹0 MEAN LIFE

Measurements with an error $> 1 \times 10^{-17}$ s have been omitted.

VALUE (10 ⁻¹⁷ s)	EVTS	DOCUMENT ID		TECN	COMMENT
8.4 ±0.6 OUR AVI	ERAGE Erro	r includes scale fa	ctor	of 3.0.	See the ideogram below.
$8.97 \pm 0.22 \pm 0.17$		ATHERTON	85	CNTR	
8.2 ± 0.4		1 BROWMAN	74	CNTR	Primakoff effect
5.6 ±0.6		BELLETTINI	70	CNTR	Primakoff effect
9 ±0.68		KRYSHKIN	70	CNTR	Primakoff effect
 • • We do not use 	the following	g data for average	s, fit	s, limits,	etc. • • •
$8.4 \pm 0.5 \pm 0.5$	1182	² WILLIAMS	88	CBAL	$e^+e^- \rightarrow e^+e^-\pi^0$
1 BROWMAN 74	gives a π ⁰ wiα	$fth \Gamma = 8.02 \pm 0.$	42 e'	V. The r	mean life is \hbar/Γ .
² WILLIAMS 88 gi	ves $\Gamma(\gamma\gamma) =$	7.7 ± 0.5 ± 0.5 e	v. v	e give h	here $\tau = \hbar/\Gamma(\text{total})$.

			π ⁰ DECAY M	ODES	,			
	Mode			Fract	ion (Γ _[]	(Γ)		ale factor/ dence level
	2γ			(98	3.798±0	0.032)	%	S=1.1
	e [∔] e⁻γ				.198±0			S=1.1
	γ positroni	um		(1	.82 ±0).29) :	× 10 ⁻⁹	
	e+ e+ e- e-				3.14 ±0		_	
	$e^+ e^-$				5.2 ±0		_	
	4γ			< 2			× 10 ⁻⁸	CL=90%
	$\nu \overline{\overline{\nu}}$		ſ	a] < 8	3.3	,	× 10 ⁻⁷	CL=90%
	$\nu_e \overline{\nu}_e$			< 1			× 10 ⁻⁶	CL=90%
	$\nu_{\mu}\overline{\nu}_{\mu}$			< 3			× 10 ⁻⁶	CL=90%
)	$\nu_{\tau} \overline{\nu}_{\tau}$			< 2			× 10-6	CL=90%
					-			
CI	harge conjugat	tion (C) σ	r Lepton Fami	ily nun	nber (<i>l</i>	.F) vi	olating	modes
l	$^{3\gamma}_{\mu^+e^-}$		С	< 3	3.1	:	× 10 ⁻⁸	CL=90%
2		- ,,+	LF	< 1	1 72		× 10-8	CL=90%
3	μ ι + ι	μ	Lr	` '			× 10	CL = 30 /6
[a] Astrophysical			nents (give lin	nits of	order 1	0 ⁻¹³ ; see
	the Particle I	Listings be	elow.					
		CONST	RAINED FIT I	NFOR	MATIC	ON		
			anching ratios u					
			ne 3 parameter:					
	1.9 for 2 de	egrees of fr	reedom.					
	following off-							
	$\langle x_j \rangle / (\delta x_i \cdot \delta x_j),$							
_i /Γ	The fit							
	TOTAL THE TE	constrains	the x, whose	labels	appear	in thi	s array	to sum to
e.	total.	constrains	the x_i whose	labels	appear	in thi	s array	to sum to
e.	total. The he	constrains	the x_i whose	labels	appear	in thi	s array	to sum to
e. <i>x</i> 2	1	constrains	the x_i whose	Iabels	appear	in thi	s array	to sum to
e. x ₂ x ₄	-100	constrains	the x_i whose	labels	appear	in thi	s array	to sum to
<i>x</i> ₂	-100 -1	0	the x_i whose	labels	appear	in thi	s array	to sum to
<i>x</i> 2	-100 -1		the x_i whose	labels	appear	in thi	s array	to sum to
<i>x</i> 2	-100 -1	0 x ₂	the x _i whose			in thi	s array	to sum to
x ₂ x ₄	-100 -1 x ₁	0 x ₂				in thi	s array	to sum to
x ₂ x ₄ •	-100 -1 x ₁	0 x ₂		RATI				
× ₂ × ₄	$ \begin{array}{c c} & -100 \\ & -1 \\ \hline & x_1 \end{array} $ $ + e^- \gamma) / \Gamma(2\gamma) $	0 x ₂ π0	BRANCHING	i RATI	OS TECN			
×2 ×4 e ⁺	$\frac{\begin{bmatrix} -100 \\ -1 \\ x_1 \end{bmatrix}}{(2\gamma)}$	$\frac{0}{x_2}$ $\frac{0}{\pi^0}$ $\frac{EVTS}{T}$ Error in	BRANCHING	i RATI	OS TECN			
×2 ×4 e ⁺ . <u>UE</u>	$ \begin{array}{c c} -100 \\ -1 \\ \hline x_1 \end{array} $ $ + e^- \gamma)/\Gamma(2\gamma) $ $ \pm 0.033 \text{ OUR FI} $	$\frac{0}{x_2}$ $\frac{0}{\pi^0}$ $\frac{EVTS}{T}$ Error in	BRANCHING	i RATI	OS	сомы		Г2/Г1
×2 ×4 e ⁺ 13	$ \begin{array}{c c} -100 \\ -1 \\ \times_1 \end{array} $ $ \begin{array}{c c} +e^-\gamma/\Gamma(2\gamma) \\ \hline = (\%) \\ \pm 0.033 \text{ OUR FI} \\ \pm 0.030 \text{ OUR AV} $	$\frac{0}{x_2}$ $\frac{0}{\pi^0}$ $\frac{EVTS}{T}$ Error in	BRANCHING DOCUMENT I	D Or of 1.	**************************************	<u>сомь</u> π ⁻ р	1ENT	Г2/Г1
×2 ×4 e ⁺ 13 13	$ \begin{array}{c c} -100 \\ -1 \\ \times_{1} \end{array} $ $ \begin{array}{c c} + e^{-} \gamma)/\Gamma(2\gamma) \\ \pm 0.033 \text{ OUR FI} \\ \pm 0.033 \text{ OUR AN} \\ \pm 0.04 $	0 ×2 π0 T EVTS T Error in	BRANCHING DOCUMENT I	or of 1.	**************************************	<u>сомь</u> π ⁻ р	DENT $ o n\pi^0$	Г2/Г1
x ₂ x ₄ e ⁺ . <u>ue</u> 13 13 5 66 7	$ \begin{array}{c c} -100 \\ -1 \\ \hline x_1 \end{array} $ $ + e^- \gamma)/\Gamma(2\gamma) $ $ \pm 0.033 \text{ OUR FI} $ $ \pm 0.030 \text{ OUR AV} $ $ \pm 0.04 $ $ \pm 0.047 $	0 x ₂ T EVTS Error in /ERAGE	BRANCHING DOCUMENT I Icludes scale fact SCHARDT 3 SAMIOS BUDAGOV	6 RATI O or of 1.	TECN 1. SPEC HBC HBC	<u>сомм</u>	$\begin{array}{c} \rightarrow & n\pi^0 \\ \rightarrow & n\pi^0 \end{array}$	Г2/Г1
×2 ×4 13 13 5 66 7	$ \begin{array}{c c} -100 \\ -1 \\ \hline x_1 \end{array} $ $ \begin{array}{c c} +e^-\gamma)/\Gamma(2\gamma) \\ \pm 0.033 \text{ OUR FI} \\ \pm 0.030 \text{ OUR AV} \\ \pm 0.04 \\ \pm 0.047 \\ \pm 0.015 $ We do not use	0 x ₂ T EVTS Error in /ERAGE	BRANCHING DOCUMENT I Icludes scale fact SCHARDT 3 SAMIOS BUDAGOV	or of 1. 81 61 60 ges, fits	TECN 1. SPEC HBC HBC s, limits,	<u>COMM</u> π ⁻ p π ⁻ p etc. •	$\begin{array}{c} \rightarrow & n\pi^0 \\ \rightarrow & n\pi^0 \end{array}$	Γ2/Γ1
×2 ×4 13 13 5 66 7	$ \begin{array}{c c} -100 \\ -1 \\ \hline x_1 \end{array} $ $ \begin{array}{c c} +e^-\gamma)/\Gamma(2\gamma) \\ \pm 0.033 \text{ OUR FI} \\ \pm 0.030 \text{ OUR AV} \\ \pm 0.04 \\ \pm 0.047 \\ \pm 0.015 $ We do not use	T EVTS T Error in /ERAGE 3071 27 the followin	DOCUMENT II icludes scale fact SCHARDT 3 SAMIOS BUDAGOV ng data for avera JOSEPH	or of 1. 81 61 60 ges, fits	TECN 1. SPEC HBC HBC s, limits,	<u>COMM</u> π ⁻ p π ⁻ p etc. •	$ \begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$	Γ2/Γ1
*2 *4 • *13 • *5 • *6 • *7 • *9 • *8 • *8	$ \begin{array}{c c} -100 \\ -1 \\ \hline & \times_1 \end{array} $ $ \begin{array}{c} + e^- \gamma)/\Gamma(2\gamma) \\ = (\%) \\ \pm 0.033 \text{ OUR FI} \\ \pm 0.030 \text{ OUR AV} \\ \pm 0.04 \\ \pm 0.047 \\ \pm 0.015 $ We do not use	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{FVTS}{T}$ $\frac{FVTS}{T}$ $\frac{FVTS}{T}$ $\frac{1}{27}$ $\frac{1}{$	DOCUMENT II icludes scale fact SCHARDT 3 SAMIOS BUDAGOV ng data for avera JOSEPH	or of 1. 81 61 60 ges, fits	TECN 1. SPEC HBC HBC s, limits,	<u>COMM</u> π ⁻ p π ⁻ p etc. •	$ \begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$	Γ ₂ /Γ ₁
×2 ×4 • + υε 13 13 5 66 7 96 96 97	-100 -1 x_1 $+ e^- \gamma / \Gamma(2\gamma)$ $= (\%)$ $= (\%)$ $= 0.033$ OUR FI $= 0.030$ OUR AV $= 0.04$ $= 0$	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{1}{27}$	DOCUMENT II cludes scale fact SCHARDT 3 SAMIOS BUDAGOV ng data for avera JOSEPH ofsky ratio = 1.6	FRATION OF 1. 81 61 60 60 60 62.	TECN 1. SPEC HBC HBC S, limits, THEO	$\pi^- p$ etc. • QED	$ \begin{array}{ccc} & & & & & & & \\ & & & & & & \\ & & & & &$	Γ2/Γ1
×2 ×4 13 13 5 66 7 96 5 	-100 -1 x_1 $+ e^- \gamma / \Gamma(2\gamma)$ $= (\%)$ $± 0.033$ OUR FI $± 0.030$ OUR AV $± 0.04$ $± 0.04$ $± 0.04$ $± 0.05$ $• We do not use$ AMIOS 61 value positronium)/Γ $= (units 10^{-9})$	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{1}$ the following uses a Pan $\Gamma(2\gamma)$ $\frac{EVTS}{2}$	DOCUMENT I	b r r r r r r r r r r r r r r r r r r r	DS TECN 1. SPEC HBC HBC S, limits, THEO	$\pi^- p$ etc. • QED	$ \frac{n\pi^0}{n\pi^0} $ • • calculation	Γ ₂ /Γ ₁
*2 ×4 • UE 13 13 15 66 7	$ \begin{array}{c c} & -100 \\ & -1 \\ \hline & \times_1 \\ \hline & + e^- \gamma / \Gamma(2\gamma) \\ & \pm 0.033 \text{ OUR FI} \\ & \pm 0.033 \text{ OUR AV} \\ & \pm 0.047 \\ & \pm 0.047 \\ & \pm 0.05 \\ \hline & \text{We do not use} \\ \hline & \text{AMIOS 61 value} \\ & \text{positronium} / \Gamma \\ & \pm 0.29 $	$\frac{0}{x_2}$ $\frac{T}{T} \frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{T}$ the following uses a Pan $T(2\gamma)$ $\frac{EVTS}{277}$	DOCUMENT II cludes scale fact SCHARDT 3 SAMIOS BUDAGOV ng data for avera JOSEPH ofsky ratio = 1.6	b r r r r r r r r r r r r r r r r r r r	DS TECN 1. SPEC HBC HBC S, limits, THEO	$\pi^- p$ etc. • QED	$ \frac{n\pi^0}{n\pi^0} $ • • calculation	Γ ₂ /Γ ₁
*2 ×4 • 13 • 13 • 15 • 66 • 7 • 96 • 14 • 14 • 14 • 15 • 16 • 17 • 17 • 18 •	-100 -1 x_1 $+ e^- \gamma / \Gamma(2\gamma)$ $= (\%)$ $± 0.033$ OUR FI $± 0.030$ OUR AV $± 0.04$ $± 0.04$ $± 0.04$ $± 0.05$ $• We do not use$ AMIOS 61 value positronium)/Γ $= (units 10^{-9})$	$\frac{0}{x_2}$ $\frac{T}{T} \frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{T}$ the following uses a Pan $T(2\gamma)$ $\frac{EVTS}{277}$	DOCUMENT I	b r r r r r r r r r r r r r r r r r r r	DS TECN 1. SPEC HBC HBC S, limits, THEO	$\pi^- p$ etc. • QED	$ \frac{n\pi^0}{n\pi^0} $ • • calculation	Γ ₂ /Γ ₁
*2 ×4	$ \begin{array}{c c} -100 \\ -1 \\ \hline \times_1 \end{array} $ $ \begin{array}{c c} +e^-\gamma/\Gamma(2\gamma) \\ \hline = 0.033 \text{ OUR FI} \\ \pm 0.030 \text{ OUR AV} \\ \pm 0.047 \\ \pm 0.047 \\ \pm 0.015 $ We do not use AMIOS 61 value positronium)/ Γ $ \begin{array}{c c} \hline = 0.037 \\ \hline = 0.047 \\ \pm 0.047 \\ \pm 0.047 \\ \hline =	$\frac{0}{x_2}$ $\frac{EVTS}{T} \frac{EVTS}{Error}$ The followir uses a Pan $\frac{EVTS}{27}$ $\frac{EVTS}{277}$ (2 γ)	DOCUMENT I	D or of 1. 81 61 60 60 622.	TECN 1. SPEC HBC HBC ,, limits, THEO	$\pi^- p$ etc. • QED	$ \frac{n\pi^0}{n\pi^0} $ • • calculation	Γ_2/Γ_1 on Γ_3/Γ_1
*2 ×4	-100 -1 x ₁ -1 x ₁	$\frac{0}{x_2}$ $\frac{T}{T} \frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{T}$ the following uses a Pan $T(2\gamma)$ $\frac{EVTS}{277}$	DOCUMENT I	or of 1. 81 60 60 ges, fits 60 V 90	IECN 1. SPEC HBC HBC i, limits, THEO	$\pi^- p$ etc. • QED	$ \frac{n\pi^0}{n\pi^0} $ • • calculation	Γ_2/Γ_1 on Γ_3/Γ_1
*22 ×44 = e+ UE = e+ U	$ \begin{array}{c c} -100 \\ -1 \\ \hline x_1 \end{array} $ $ \begin{array}{c c} +e^-\gamma/\Gamma(2\gamma) \\ \pm 0.033 \text{ OUR FI} \\ \pm 0.030 \text{ OUR AV} \\ \pm 0.04 \\ \pm 0.047 \\ \pm 0.15 \end{array} $ We do not use AMIOS 61 value positronium)/I $ \begin{array}{c c} \pm 0.15 \\ \pm 0.29 \end{array} $ $ \begin{array}{c c} +e^+e^-e^-/\Gamma \\ \pm 0.30 \text{ OUR FIT} \\ \pm 0.30 \text{ OUR FIT} \\ \pm 0.30 \text{ OUR FIT} $	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{\text{the followir}}$ uses a Pan $\frac{EVTS}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{46}$	DOCUMENT II SCHARDT SCHARDT SAMIOS BUDAGOV ng data for avera JOSEPH ofsky ratio = 1.6 DOCUMENT II AFANASYE DOCUMENT II 4 SAMIOS	or of 1. 81 61 60 ges, fits 60 V 90	TECN 1. SPEC HBC HBC ,, limits, THEO	$\pi^- p$ etc. • QED	$ \frac{n\pi^0}{n\pi^0} $ • • calculation	Γ_2/Γ_1 on Γ_3/Γ_1
*2 ×4	-100 -1 x ₁ -1 x ₁	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{\text{the followir}}$ uses a Pan $\frac{EVTS}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{46}$	DOCUMENT II SCHARDT SCHARDT SAMIOS BUDAGOV ng data for avera JOSEPH ofsky ratio = 1.6 DOCUMENT II AFANASYE DOCUMENT II 4 SAMIOS	or of 1. 81 61 60 ges, fits 60 V 90	IECN 1. SPEC HBC HBC i, limits, THEO	$\pi^- p$ etc. • QED	$ \frac{n\pi^0}{n\pi^0} $ • • calculation	Γ_2/Γ_1 on Γ_3/Γ_1
2 X 4	$ \begin{array}{c c} -100 \\ -1 \\ \hline x_1 \end{array} $ $ \begin{array}{c c} +e^-\gamma/\Gamma(2\gamma) \\ \pm 0.033 \text{ OUR FI} \\ \pm 0.030 \text{ OUR AV} \\ \pm 0.04 \\ \pm 0.047 \\ \pm 0.15 \end{array} $ We do not use AMIOS 61 value positronium)/I $ \begin{array}{c c} \pm 0.15 \\ \pm 0.29 \end{array} $ $ \begin{array}{c c} +e^+e^-e^-/\Gamma \\ \pm 0.30 \text{ OUR FIT} \\ \pm 0.30 \text{ OUR FIT} \\ \pm 0.30 \text{ OUR FIT} $	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{\text{the followir}}$ uses a Pan $\frac{EVTS}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{46}$	DOCUMENT II SCHARDT SCHARDT SAMIOS BUDAGOV ng data for avera JOSEPH ofsky ratio = 1.6 DOCUMENT II AFANASYE DOCUMENT II 4 SAMIOS	or of 1. 81 61 60 ges, fits 60 V 90	IECN 1. SPEC HBC HBC i, limits, THEO	$\pi^- p$ etc. • QED	$ \frac{n\pi^0}{n\pi^0} $ • • calculation	Γ_2/Γ_1 on Γ_3/Γ_1
2 X 4	-100	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{27}$ the following uses a Pan $\frac{EVTS}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{146}$ e uses a Pan sults are list	DOCUMENT I Cludes scale fact SCHARDT SAMIOS BUDAGOV and data for avera JOSEPH ofsky ratio = 1.6 DOCUMENT I AFANASYE A SAMIOS nofsky ratio = 1	Factor F	OS TECN 1. SPEC HBC HBC HBC CNTR TECN HBC HBC CNTR	$\pi^- p \pi^- p$ etc. • QED	$n = n \pi^0$ $n \pi^0$	Γ ₂ /Γ ₁ on Γ ₃ /Γ ₁ Γ ₄ /Γ ₁ ts are given
×2 ×4	$ \begin{array}{c c} -100 \\ -1 \\ \times 1 \\ \hline \\ +e^-\gamma)/\Gamma(2\gamma) \\ \pm 0.033 \text{ OUR FI} \\ \pm 0.030 \text{ OUR AV} \\ \pm 0.04 \\ \pm 0.047 \\ \pm 0.15 \\ \hline \text{We do not use} \\ \hline \\ \text{AMIOS 61 value} \\ \text{positronium})/I \\ \hline \\ \pm (\text{units } 10^{-9}) \\ \pm 0.29 \\ \hline \\ +e^+e^-e^-)/\Gamma \\ \hline \\ \pm 0.30 \text{ OUR FIT} \\ \pm 0.30 \text{ OUR FIT} \\ \pm 0.30 \text{ Experimental rein the footnotes} \\ \hline \\ \text{Experimental rein the footnotes} \\ \end{array} $	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{27}$ the following uses a Pan $\frac{F(2\gamma)}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{46}$ e uses a Pan sults are lists. BERMAN	BRANCHING DOCUMENT II icludes scale fact SCHARDT 3 SAMIOS BUDAGOV ng data for avera JOSEPH ofsky ratio = 1.6 DOCUMENT II AFANASYE 4 SAMIOS nofsky ratio = 1	Factor F	OS TECN 1. SPEC HBC HBC HBC CNTR TECN HBC HBC CNTR	$\pi^- p \pi^- p$ etc. • QED	$n = n \pi^0$ $n \pi^0$	Γ ₂ /Γ ₁ on Γ ₃ /Γ ₁ Γ ₄ /Γ ₁ ts are given
×2 ×4	-100	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{27}$ the following uses a Pan $\frac{F(2\gamma)}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{46}$ e uses a Pan sults are lists. BERMAN	BRANCHING DOCUMENT I Includes scale fact SCHARDT 3 SAMIOS BUDAGOV Ing data for avera JOSEPH ofsky ratio = 1.6 DOCUMENT II AFANASYE 4 SAMIOS Inofsky ratio = 1 Led; branching rain N 60 found B(π^0	D or of 1. 81 61 60 60 60 622. D ∨ 90 628 628. 620 628 628 628 628 628 628 628 628 628 628	IECN 1. SPEC HBC HBC, i, limits, THEO TECN CNTR TECN CNTR TECN CNTR	$\pi^- p$ $\pi^- p$ etc. • QED COMM $p \in 71$	$ \begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	Γ_2/Γ_1 on Γ_3/Γ_1 Γ_4/Γ_1 ts are giver lia an exact
*2 ×2 ×4	-100 -1 ×1	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{the followin}$ $uses a Pan$ $\frac{EVTS}{277}$ $\frac{EVTS}{146}$ $e uses a Pa$ $sults are lists. \frac{EVTS}{ERMAN} \frac{EVTS}{1}$	DOCUMENT I Cludes scale fact SCHARDT SAMIOS BUDAGOV and data for avera JOSEPH ofsky ratio = 1.6 DOCUMENT I AFANASYE A SAMIOS nofsky ratio = 1	D or of 1. 81 61 60 60 60 622. D ∨ 90 628 628. 620 628 628 628 628 628 628 628 628 628 628	IECN 1. SPEC HBC HBC, i, limits, THEO TECN CNTR TECN CNTR TECN CNTR	$\pi^- p$ $\pi^- p$ etc. • QED COMM $p \in 71$	$ \begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	Γ_2/Γ_1 on Γ_3/Γ_1 Γ_4/Γ_1 ts are giver lia an exact
x2 x4	-100 -1 × ₁ -1 × ₁	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{1}{27}$ $\frac{27}{1}$ the following uses a Pan $\frac{EVTS}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{146}$ e uses a Pan sults are lists. BERMAN in. $\frac{EVTS}{RAGE}$	DOCUMENT IS A SAMIOS DOCUMENT IS A SAMIOS BUDAGOV IN A SAMIOS BUDAGOV IN A SAMIOS DOCUMENT IN A SAMIOS IN 60 FOUND BY THE SAMIOS DOCUMENT IN A SAMIO	D Or of 1. 81 61 60 ges, fits 60 52. D 0 628 628 62. 620 620 620 620 620 620 620 620 620 620	OS TECN 1. SPEC HBC HBC S, limits, THEO TECN HBC CNTR TECN HBC TECN TECN TECN TECN	$\pi^- p$ $\pi^- p$ etc. • QED $COMM$ $pC 71$	$ \begin{array}{ccc} n\pi^{0} \\ & & & \\ & &$	Γ_2/Γ_1 on Γ_3/Γ_1 Γ_4/Γ_1 ts are given ia an exact
x2 x4 e e ve	-100 -1 ×1	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{the followin}$ $uses a Pan$ $\frac{EVTS}{277}$ $\frac{EVTS}{146}$ $e uses a Pa$ $sults are lists. \frac{EVTS}{ERMAN} \frac{EVTS}{1}$	BRANCHING DOCUMENT I Includes scale fact SCHARDT 3 SAMIOS BUDAGOV Ing data for avera JOSEPH ofsky ratio = 1.6 DOCUMENT II AFANASYE 4 SAMIOS Inofsky ratio = 1 Led; branching rain N 60 found B(π^0	D Or of 1. 81 61 60 ges, fits 60 52. D 0 628 628 62. 620 620 620 620 620 620 620 620 620 620	OS TECN 1. SPEC HBC HBC S, limits, THEO TECN HBC CNTR TECN HBC TECN TECN TECN TECN	$\pi^- p$ $\pi^- p$ etc. • QED COMM $p \in 71$	$ \begin{array}{ccc} n\pi^{0} \\ & & & \\ & &$	Γ_2/Γ_1 on Γ_3/Γ_1 Γ_4/Γ_1 ts are given ia an exact
*2	-100 -1 ×1 ×1 ×1 ×1 ×1 ×1 ×1	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{3071}{27}$ $\frac{27}{27}$ $\frac{EVTS}{277}$ $\frac{EVTS}{146}$ e uses a Pan $\frac{EVTS}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{275}$ RAGE	DOCUMENT I SCHARDT SCHARDT SCHARDT SCHARDT SCHARDT SCHARDT SCHARDT SCHARDT SCHARDT ASAMIOS DOCUMENT I AFANASYE DOCUMENT I ASAMIOS Inofsky ratio = 1 Sed; branching rat DOCUMENT II ACCOUNT III ACCOUNT II	D or of 1. 81 61 60 ges, fits 60 V 90 628 .62. AT199c	OS IECN 1. SPEC HBC HBC HBC S, limits, THEO TECN CNTR TECN TECN TECN SPEC	$\pi^- p$ $\pi^- p$ etc. • QED $COMM$ $pC 71$	$ \frac{dent}{dent} $ $ \frac{dent}{d$	on
×2 ×4 = e UE 1333	-100 -1 × ₁ -1 × ₁	$\frac{0}{x_2}$ $\frac{EVTS}{T}$ $\frac{EVTS}{Error}$ $\frac{1}{27}$ $\frac{27}{1}$ the following uses a Pan $\frac{EVTS}{277}$ $\frac{EVTS}{277}$ $\frac{EVTS}{146}$ e uses a Pan sults are lists. BERMAN in. $\frac{EVTS}{RAGE}$	DOCUMENT IS A SAMIOS DOCUMENT IS A SAMIOS BUDAGOV IN A SAMIOS BUDAGOV IN A SAMIOS DOCUMENT IN A SAMIOS IN 60 FOUND BY THE SAMIOS DOCUMENT IN A SAMIO	D or of 1. 81 61 60 ges, fits 60 V 90 D 628 628 AT199c E 93	OS IECN 1. SPEC HBC HBC is, limits, THEO TECN CNTR TECN CNTR TECN SPEC SPEC SPEC	$\pi^- p$ $\pi^- p$ etc. • QED $COMM$ $pC 71$	$ \frac{dent}{dent} $ $ \frac{dent}{d$	on Γ_3/Γ_1 Γ_5/Γ_1 ts are given in an exact ver $3\pi^0 \text{ in t}$ $t + \pi^0$

flight 5 ALAVI-HARATI 99C quote result for B[$\pi^0 \rightarrow e^+e^-$, $(m_{e^+e^-}/m_{\pi^0})^2 > 0.95$] to minimize radiative contributions from $\pi^0 \rightarrow e^+e^-\gamma$. After radiative corrections they obtain (7.04 \pm 0.46 \pm 0.28) \times 10⁻⁸. 6 The DESHPANDE 93 result with bremsstrahlung radiative corrections is (8.0 \pm 2.6 \pm 0.6) \times 10⁻⁸. 7 The MCFARLAND 93 result is for B[$\pi^0 \rightarrow e^+e^-$, $(m_{e^+e^-}/m_{\pi^0})^2 > 0.95$]. With radiative corrections it becomes (8.8 $^+$ 4.5 $^-$ 4.5 $^-$ 9.6) \times 10⁻⁸.

$\Gamma(e^+e^-)/\Gamma(2e^+)$	•	Γ ₅ /Γ ₁
VALUE (units 10 ⁻⁷)		
		ng data for averages, fits, limits, etc. • • •
<1.3 <5.3	90 90	NIEBUHR 89 SPEC $\pi^- p \rightarrow \pi^0 n$ at res ZEPHAT 87 SPEC $\pi^- p \rightarrow \pi^0 n$ 0.3 GeV/c
1.7 ±0.6 ±0.	3 59	9 FRANK 83 SPEC $\pi^- p \rightarrow n \pi^0$
1.8 ±0.6	51	_
$2.23 + 2.40 \\ -1.10$	90	8 FISCHER 78B SPRK $K^+ \rightarrow \pi^+ \pi^0$
$\Gamma(4\gamma)/\Gamma_{\text{total}}$		Γ ₆ /Ι
VALUE (units 10 ⁻⁸)		DOCUMENT ID TECN COMMENT
< 2	90 use the following	MCDONOUGH 88 CBOX π [−] p at rest ng data for averages, fits, limits, etc. • • •
<160	90	BOLOTOV 86C CALO
<440	90 0	AUERBACH 80 CNTR
		Γ_7/Γ_7 nological limits are many orders of magnitude lower, but w
		it for the Summary Tables.
VALUE (units 10 ⁻⁶)	<u>CL%</u> <u>EVT</u> 90	8 ATIYA 91 B787 $K^+ \rightarrow \pi^+ \nu \nu'$
• • • We do not		ng data for averages, fits, limits, etc. • • •
$< 2.9 \times 10^{-7}$		9 LAM 91 Cosmological limit
< 3.2 × 10 ⁻⁷ < 6.5	90	10 NATALE 91 SN 1987A DORENBOS 88 CHRM Beam dump, prompt
<24		0 8 HERCZEG 81 RVUE $K^{+} \rightarrow \pi^{+} \nu \nu'$
_		the $\nu \nu^I$ states as well as to other massless, weakly interacting
states. 9 LAM 91 cons	iders the produ	ction of right-handed neutrinos produced from the cosmi
thermal back $\gamma \gamma \rightarrow \pi^0 -$	ground at the t	temperature of about the pion mass through the reaction
$\pi^0 \rightarrow \nu \overline{\nu}$ occ	considers the ex curs, permitted i	ccess energy-loss rate from SN 1987A if the process $\gamma\gamma$ - if the neutrinos have a right-handed component. As pointe ed by Natale), there is a factor 4 error in the NATALE 9
published res $\Gamma(u_e \overline{ u}_e)/\Gamma_{ m tota}$	ult (0.8 × 10 ⁻⁷	Г _в /ч
published res $\Gamma(u_e \overline{ u}_e)/\Gamma_{ ext{tota}}$ VALUE (units 10^{-6})	ult (0.8 × 10 ⁻⁷	Γ _Β /Ι
published resingly published resingly published resingly published $\nabla (v_e \nabla_e) / \Gamma_{\text{tota}}$ <1.7	$\frac{111 (0.8 \times 10^{-7})}{\frac{CL\%}{90}}$	DOCUMENT ID TECN COMMENT DORENBOS 88 CHRM Beam dump, prompt ν
published resi $ \frac{\Gamma(\nu_e \overline{\nu}_e)}{\Gamma(\text{total})} \frac{VALUE \text{ (units } 10^{-6}\text{)}}{<1.7} $ • • • We do not <3.1	ult (0.8×10^{-7}) $\frac{CL\%}{90}$ use the following 90	DOCUMENT ID DORENBOS 88 CHRM Beam dump, prompt ν ng data for averages, fits, limits, etc. • • •
published residual published residual published $(\nu_e \overline{\nu_e})/\Gamma_{\text{tota}}$ $(\nu_e \overline{\nu_e})/\Gamma_{\text{tota}}$ $(\nu_e \overline{\nu_e})/\Gamma_{\text{tota}}$ $(\nu_e \overline{\nu_e})/\Gamma_{\text{tota}}$ $(\nu_e \overline{\nu_e})/\Gamma_{\text{tota}}$ $(\nu_e \overline{\nu_e})/\Gamma_{\text{tota}}$ $(\nu_e \overline{\nu_e})/\Gamma_{\text{tota}}$	I (0.8 × 10 ⁻⁷ CL% 90 use the following 90 8 analyzes data	DOCUMENT ID TECN COMMENT DORENBOS 88 CHRM Beam dump, prompt ν ng data for averages, fits, limits, etc. • • • 11 HOFFMAN 88 RVUE Beam dump, prompt ν 1 from a 400-GeV BEBC beam-dump experiment.
published resi $\Gamma(\nu_e \overline{\nu_e})/\Gamma_{\text{total}}$ ~ 1.7 ~ 1.7	I (0.8 × 10 ⁻⁷ CL% 90 use the following 90 8 analyzes data	T ₈ /I DOCUMENT ID TECN COMMENT DORENBOS 88 CHRM Beam dump, prompt ν ng data for averages, fits, limits, etc. • • • 11 HOFFMAN 88 RVUE Beam dump, prompt ν from a 400-GeV BEBC beam-dump experiment.
published resi $\Gamma(\nu_e \overline{\nu_e})/\Gamma_{\text{total}}$ $\times \text{ALUE (units } 10^{-6})$ < 1.7 • • • We do not < 3.1 11 HOFFMAN & $\Gamma(\nu_\mu \overline{\nu_\mu})/\Gamma_{\text{total}}$ $\times \text{ALUE (units } 10^{-6})$	ult (0.8×10^{-7}) CL% 90 use the followi 90 88 analyzes data	T ₈ /I DOCUMENT ID TECN COMMENT DORENBOS 88 CHRM Beam dump, prompt ν ng data for averages, fits, limits, etc. • • • 11 HOFFMAN 88 RVUE Beam dump, prompt ν 11 from a 400-GeV BEBC beam-dump experiment.
published resi $\Gamma(\nu_e \overline{\nu_e})/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6}) <1.7 • • • We do not <3.1 11 HOFFMAN 8 $\Gamma(\nu_\mu \overline{\nu_\mu})/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6}) <3.1	ult (0.8×10^{-7}) L CL% 90 use the following 90 88 analyzes data CL% 90	DOCUMENT ID TECN TOMBEN BOS 88 CHRM Beam dump, prompt \(\nu\) In HOFFMAN The search of the se
published resi $\Gamma(\nu_e \overline{\nu_e})/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6}) <1.7 • • • We do not <3.1 11 HOFFMAN 8 $\Gamma(\nu_\mu \overline{\nu_\mu})/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6}) <3.1	ult (0.8×10^{-7}) L CL% 90 use the following 90 88 analyzes data CL% 90	T ₈ /1 DOCUMENT ID TECN COMMENT DORENBOS 88 CHRM Beam dump, prompt ν ng data for averages, fits, limits, etc. • • • 11 HOFFMAN 88 RVUE Beam dump, prompt ν 1 from a 400-GeV BEBC beam-dump experiment. Tg/I
published resi $\Gamma(\nu_e \overline{\nu_e})/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6}) < 1.7 • • • We do not < 3.1 11 HOFFMAN 8 $\Gamma(\nu_\mu \overline{\nu_\mu})/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6}) < 3.1 • • • We do not < 7.8	ult (0.8×10^{-7}) Lose the following sea analyzes data $\frac{CL\%}{90}$ use the following sea the	DOCUMENT ID TECN COMMENT DORENBOS 88 CHRM Beam dump, prompt ν and data for averages, fits, limits, etc. • • • 11 HOFFMAN 88 RVUE Beam dump, prompt ν a from a 400-GeV BEBC beam-dump experiment. Tech COMMENT 12 HOFFMAN 88 RVUE Beam dump, prompt ν and data for averages, fits, limits, etc. • • •
published resi $\Gamma(\nu_e \overline{\nu_e})/\Gamma_{\text{total}}$ \times_{ALUE} (units 10^{-6}) < 1.7 • • • We do not < 3.1 11 HOFFMAN 8 $\Gamma(\nu_\mu \overline{\nu_\mu})/\Gamma_{\text{total}}$ \times_{ALUE} (units 10^{-6}) < 3.1 • • • We do not < 7.8 12 HOFFMAN 8	ult (0.8×10^{-7}) Location $\frac{CL\%}{90}$ use the following $\frac{CL\%}{90}$ use the following $\frac{CL\%}{90}$ use the following $\frac{CL\%}{90}$ use the following $\frac{CL\%}{90}$	Tech Comment to Tech Comment DORENBOS 88 CHRM Beam dump, prompt v ng data for averages, fits, limits, etc. • • • 11 HOFFMAN 88 RVUE Beam dump, prompt v nfrom a 400-GeV BEBC beam-dump experiment. Tech Comment 12 HOFFMAN 88 RVUE Beam dump, prompt v ng data for averages, fits, limits, etc. • • • DORENBOS 88 CHRM Beam dump, prompt v nfrom a 400-GeV BEBC beam-dump experiment.
published resi $\Gamma(\nu_e \nu_e)/\Gamma_{\text{total}}$ $VALUE (\text{units }10^{-6})$ < 3.1 11 HOFFMAN 8 $\Gamma(\nu_\mu \nu_\mu)/\Gamma_{\text{total}}$ < 3.1 • • • We do not < 7.8 12 HOFFMAN 8 $\Gamma(\nu_\mu \nu_\mu)/\Gamma_{\text{total}}$	ult (0.8×10^{-7}) Location $\frac{CL\%}{90}$ use the following $\frac{CL\%}{90}$ use the following $\frac{CL\%}{90}$ use the following $\frac{CL\%}{90}$ use the following $\frac{CL\%}{90}$	DOCUMENT ID TECN COMMENT DORENBOS 88 CHRM Beam dump, prompt \(\nu \) 11 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 15 from a 400-GeV BEBC beam-dump experiment. 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 13 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 14 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 15 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 16 If of a a 400-GeV BEBC beam-dump experiment. 17 HOFFMAN 88 CHRM Beam dump, prompt \(\nu \) 18 If of a 400-GeV BEBC beam-dump experiment.
published resi $ \Gamma(\nu_e \overline{\nu_e}) / \Gamma_{\text{total}} $ $ \sim 1.7 $ • • • We do not $ < 3.1 $ 11 HOFFMAN 8 $ \Gamma(\nu_\mu \overline{\nu_\mu}) / \Gamma_{\text{total}} $ $ \sim 1.2 $ $ \sim 1.7 $ • • • We do not $ \sim 1.2 $	ult (0.8×10^{-7}) Lose the following sea analyzes data	DOCUMENT ID TECN COMMENT DORENBOS 88 CHRM Beam dump, prompt \(\nu \) 11 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 13 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 14 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 15 HOFFMAN 88 CHRM Beam dump, prompt \(\nu \) 16 Irom a 400-GeV BEBC beam-dump experiment. 17 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 18 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \)
published resi $ \Gamma(\nu_e \overline{\nu_e})/\Gamma_{\text{total}} $ $ VALUE (units 10^{-6}) < 1.7 • • • We do not < 3.1 11 HOFFMAN & \Gamma(\nu_\mu \overline{\nu_\mu})/\Gamma_{\text{total}} VALUE (units 10^{-6}) < 7.8 12 HOFFMAN & \Gamma(\nu_\tau \overline{\nu_\tau})/\Gamma_{\text{total}} VALUE (units 10^{-6}) < 7.8 12 HOFFMAN & VALUE (units 10^{-6}) VALUE (units 10^{-6})$	ult (0.8×10^{-7}) Let $\frac{CL\%}{90}$ use the following sea analyzes data Let $\frac{CL\%}{90}$ use the following sea analyzes data Let $\frac{CL\%}{90}$ use the following sea analyzes data Let $\frac{CL\%}{90}$ use the following sea	DOCUMENT ID TECN COMMENT DORENBOS 88 CHRM Beam dump, prompt \(\nu \) 11 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 15 If form a 400-GeV BEBC beam-dump experiment. 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 13 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 14 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 15 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 16 If or a verages, fits, limits, etc. • • • 17 HOFFMAN 88 CHRM Beam dump, prompt \(\nu \) 18 If form a 400-GeV BEBC beam-dump experiment. 19 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 13 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 16 If on a 400-GeV BEBC beam-dump experiment.
published resingly published re	ult (0.8×10^{-7}) Let $\frac{CL\%}{90}$ use the following so analyzes data so use the following so use the following so analyzes data so $\frac{CL\%}{90}$ Example 10 analyzes data so $\frac{CL\%}{90}$ Example 20 analyzes data so $\frac{CL\%}{90}$ Example 20 analyzes data so $\frac{CL\%}{90}$	Tech Comment in Dorenham 88 RVUE Beam dump, prompt in Dorenham 88 RVUE
published resi $\Gamma(\nu_e \overline{\nu_e})/\Gamma_{\text{total}}$ $\frac{VALUE (units 10^{-6})}{<1.7}$ • • • We do not <3.1 $11 \text{ HOFFMAN } 8$ $\Gamma(\nu_\mu \overline{\nu_\mu})/\Gamma_{\text{total}}$ $\frac{VALUE (units 10^{-6})}{<3.1}$ • • We do not <7.8 $12 \text{ HOFFMAN } 8$ $\Gamma(\nu_\tau \overline{\nu_\tau})/\Gamma_{\text{total}}$ $\frac{VALUE (units 10^{-6})}{<2.1}$ • • We do not <4.1 $13 \text{ HOFFMAN } 8$	ult (0.8×10^{-7}) Let $\frac{CL\%}{90}$ use the following so analyzes data so use the following so use the following so analyzes data so $\frac{CL\%}{90}$ Example 10 analyzes data so $\frac{CL\%}{90}$ Example 20 analyzes data so $\frac{CL\%}{90}$ Example 20 analyzes data so $\frac{CL\%}{90}$	Tech Comment to Tech Comment to Dorenbos 88 CHRM Beam dump, prompt to data for averages, fits, limits, etc. • • • 11 HOFFMAN 88 RVUE Beam dump, prompt to differ a 400-GeV BEBC beam-dump experiment. Tech Comment to Tech Comment 12 HOFFMAN 88 RVUE Beam dump, prompt to data for averages, fits, limits, etc. • • • DORENBOS 88 CHRM Beam dump, prompt to from a 400-GeV BEBC beam-dump experiment. Tech Comment to Tech Comment Table Tech Comment Tool Document to Tech Comment Table Tech Comment Tool Document to Tech Comment Tech Comment Tool Document to Tech Comment Tech Com
published resi $\Gamma(\nu_e \overline{\nu_e})/\Gamma_{\text{total}}$ <1.7 • • • We do not <3.1 $11 \text{ HOFFMAN } 8$ $\Gamma(\nu_\mu \overline{\nu_\mu})/\Gamma_{\text{total}}$ <3.1 • • • We do not <7.8 $12 \text{ HOFFMAN } 8$ $\Gamma(\nu_\tau \overline{\nu_\tau})/\Gamma_{\text{total}}$ <7.8 $12 \text{ HOFFMAN } 8$ $\Gamma(\nu_\tau \overline{\nu_\tau})/\Gamma_{\text{total}}$ <4.1 $13 \text{ HOFFMAN } 8$ $\Gamma(3\gamma)/\Gamma_{\text{total}}$	ult (0.8×10^{-7}) Let $\frac{CL\%}{90}$ use the following so analyzes data so use the following so use the following so analyzes data so $\frac{CL\%}{90}$ Example 10 analyzes data so $\frac{CL\%}{90}$ Example 20 analyzes data so $\frac{CL\%}{90}$ Example 20 analyzes data so $\frac{CL\%}{90}$	Tech Comment to DORENBOS 88 CHRM Beam dump, prompt to some state of the some stat
published resi $\Gamma(\nu_e \overline{\nu_e})/\Gamma_{\text{total}}$ <1.7 • • • We do not <3.1 $11 \text{ HOFFMAN } 8$ $\Gamma(\nu_\mu \overline{\nu_\mu})/\Gamma_{\text{total}}$ <3.1 • • • We do not <7.8 $12 \text{ HOFFMAN } 8$ $\Gamma(\nu_\tau \overline{\nu_\tau})/\Gamma_{\text{total}}$ <7.8 $12 \text{ HOFFMAN } 8$ $\Gamma(\nu_\tau \overline{\nu_\tau})/\Gamma_{\text{total}}$ <4.1 $13 \text{ HOFFMAN } 8$ $\Gamma(3\gamma)/\Gamma_{\text{total}}$	use the following 90 analyzes data 1 CL% 90 use the following 90 analyzes data 1 CL% 90 use the following 90 analyzes data 1 CL% 90 use the following 90 analyzes data 1 CL% 90 use the following 90 analyzes data 2 CL% 90 use the following 90 analyzes data 2 CL% 90 use the following 90 analyzes data 2 CL% 90 use the following 90 analyzes data 2 CL% 90 use the following 90 use the follo	Tech Comment to Tech Comment to DORENBOS 88 CHRM Beam dump, prompt to 11 HOFFMAN 88 RVUE Beam dump, prompt to 12 HOFFMAN 88 RVUE Beam dump, prompt to 12 HOFFMAN 88 RVUE Beam dump, prompt to 12 HOFFMAN 88 RVUE Beam dump, prompt to 13 HOFFMAN 88 RVUE Beam dump, prompt to 14 HOFFMAN 88 RVUE Beam dump, prompt to 15 HOFFMAN 88 CHRM Beam dump, prompt to 16 HOFFMAN 88 RVUE Beam dump, prompt to 17 HOFFMAN 88 RVUE Beam dump, prompt to 18 HOFFMAN 88 RVUE Beam dump, prompt to 19 HOFFMAN 88 CHRM Beam dump, prompt to 19 HOFFMAN 88 RVUE Beam dump prompt to 19 HOFFMAN 88 RVUE BEAM 88 RVUE BEA
published resi $\Gamma(\nu_e \nu_e)/\Gamma_{\text{total}}$ $\frac{VALUE}{\text{(units }10^{-6})} < 1.7$ • • • We do not < 3.1 $11 \text{ HOFFMAN } 8$ $\Gamma(\nu_\mu \nu_\mu)/\Gamma_{\text{total}}$ < 3.1 • • • We do not < 7.8 $12 \text{ HOFFMAN } 8$ $\Gamma(\nu_\tau \nu_\tau)/\Gamma_{\text{total}}$ $VALUE \text{(units }10^{-6})$ < 2.1 • • • We do not < 4.1 $13 \text{ HOFFMAN } 8$ $\Gamma(37)/\Gamma_{\text{total}}$	ult (0.8×10^{-7}) Let (0.8×10^{-7}) use the following u	Tech Comment to Tech Comment DORENBOS 88 CHRM Beam dump, prompt \(\nu\) a from a 400-GeV BEBC beam-dump experiment. Tech Comment Tech Beam dump, prompt \(\nu\) and gata for averages, fits, limits, etc. \(\nu\) e \(\nu\) e DORENBOS 88 CHRM Beam dump, prompt \(\nu\) and from a 400-GeV BEBC beam-dump experiment. Tech Comment Tech Commen
published resingly published re	ult (0.8×10^{-7}) Let (0.8×10^{-7}) use the following use	Tech Comment to Tech Comment DORENBOS 88 CHRM Beam dump, prompt \(\nu \) 11 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 17 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 13 HOFFMAN 88 CHRM Beam dump, prompt \(\nu \) 16 from a 400-GeV BEBC beam-dump experiment. DORENBOS 88 CHRM Beam dump, prompt \(\nu \) 17 If TECN COMMENT 13 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 18 If TECN COMMENT 14 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 18 If TECN COMMENT 15 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 18 If TECN COMMENT 16 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 19 If TECN COMMENT 16 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 19 If TECN COMMENT 16 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 19 If TECN COMMENT 17 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 19 If TECN COMMENT 18 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 19 If TECN COMMENT 10 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 19 If TECN COMMENT 16 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 19 If TECN COMMENT 18 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 19 If TECN COMMENT 18 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 19 If TECN RY 19 If
published resingly published re	use the following on the following of th	Tech Comment to Tech Comment DORENBOS 88 CHRM Beam dump, prompt \(\nu \) at the form a 400-GeV BEBC beam-dump experiment. Tech Comment to Tech Comment DORENBOS 88 RVUE Beam dump, prompt \(\nu \) at from a 400-GeV BEBC beam-dump experiment. Tech Comment to Tech Comment 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) and gdata for averages, fits, limits, etc. \(\nu \) \(\nu \) and the form a 400-GeV BEBC beam-dump experiment. Tech Comment to Tech Comment Taboreman 88 RVUE Beam dump, prompt \(\nu \) at from a 400-GeV BEBC beam-dump experiment. Tech Comment to Tech Comment 13 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) and gdata for averages, fits, limits, etc. \(\nu \) \(\nu \) \(\nu \) DORENBOS 88 CHRM Beam dump, prompt \(\nu \) at from a 400-GeV BEBC beam-dump experiment. Tech Comment \(\nu \) at the first at first in the first at first
published resingly published re	ult (0.8×10^{-7}) Let (0.8×10^{-7}) use the following use	Tech Comment to Tech Comment DORENBOS 88 CHRM Beam dump, prompt \(\nu \) at the from a 400-GeV BEBC beam-dump experiment. Tech Comment Tech Beam dump, prompt \(\nu \) and gata for averages, fits, limits, etc. \(\nu \) \(\nu \) \(\nu \) and gata for averages, fits, limits, etc. \(\nu \) \(\nu \) \(\nu \) and gata for averages, fits, limits, etc. \(\nu \) \(\nu \) and a 400-GeV BEBC beam-dump experiment. Tech Comment to Tech Comment The Document to Tech Comment The Document to Tech Comment Tech Comment \(\nu \) and adata for averages, fits, limits, etc. \(\nu \) \(\nu \) \(\nu \) and a 400-GeV BEBC beam-dump experiment. The Document to Tech Comment \(\nu \) and a 400-GeV BEBC beam-dump experiment. The Document to Tech Comment \(\nu \) and a 400-GeV BEBC beam-dump experiment. The Document to Tech Comment \(\nu \) and a 400-GeV BEBC beam-dump experiment.
published resingly published re	CL% 90 18 analyzes data CL% EVTS 90 190	Tech Comment in December 11 HOFFMAN 88 RVUE Beam dump, prompt in Dorender 12 HOFFMAN 88 RVUE Beam dump, prompt in 13 HOFFMAN 88 RVUE Beam dump, prompt in 14 HOFFMAN 88 RVUE Beam dump, prompt in 15 HOFFMAN 88 RVUE Beam dump, prompt in 16 HOFFMAN 88 RVUE Beam dump, prompt in 17 HOFFMAN 88 RVUE Beam dump, prompt in 18 HOFFMAN 88 RVUE Beam dump, prompt in 19 HOFFMAN 8
published resingly published re	CL% 90 18 analyzes data CL% EVTS 90 190	Tech Comment to Tech Comment DORENBOS 88 CHRM Beam dump, prompt \(\nu \) 11 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 17 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 13 HOFFMAN 88 CHRM Beam dump, prompt \(\nu \) 16 from a 400-GeV BEBC beam-dump experiment. DORENBOS 88 CHRM Beam dump, prompt \(\nu \) 17 IFCN COMMENT 13 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 18 If mits, etc. \(\nu \) \(\nu \) \(\nu \) 19 DOCUMENT ID TECN COMMENT 14 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 18 If mits, etc. \(\nu \) \(\nu \) \(\nu \) 19 TOTM 10 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 19 If may a 400-GeV BEBC beam-dump experiment. DORENBOS 88 CHRM Beam dump, prompt \(\nu \) 19 If may a 400-GeV BEBC beam-dump experiment. DOCUMENT ID TECN COMMENT RECOMMENT RECOMENT RECOMMENT RECOMMENT RECOMMENT RECOMMENT RECOMENT RECOMMENT RECOMMENT RECOMMENT RECOMMENT RECOMMENT RECOMMENT RECOMMENT RECOME
published resingly published re	use the following on the following of th	Tech Comment in Document in Do
published resingly published re	use the following on the following of th	Tech Comment ID TECH COMMENT DORENBOS 88 CHRM Beam dump, prompt \(\nu \) 11 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 17 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 12 HOFFMAN 88 RVUE Beam dump, prompt \(\nu \) 13 HOFFMAN 88 CHRM Beam dump, prompt \(\nu \) 16 from a 400-GeV BEBC beam-dump experiment. DORENBOS 88 CHRM Beam dump, prompt \(\nu \) 16 from a 400-GeV BEBC beam-dump experiment. Tech COMMENT TECH COMMENT TECH TEC
published resi $\Gamma(\nu_e \nu_e)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ < 1.7 • • • We do not < 3.1 $11 \text{ HOFFMAN } 8$ $\Gamma(\nu_\mu \nu_\mu)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ < 3.1 • • • We do not < 7.8 $12 \text{ HOFFMAN } 8$ $\Gamma(\nu_\tau \nu_\tau)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ < 2.1 • • We do not < 4.1 $13 \text{ HOFFMAN } 8$ $\Gamma(3\gamma)/\Gamma_{\text{total}}$ $= \Gamma(3\gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-8}\text{)}$ < 3.1 • • We do not < 3.8 < 1.50 < 4.90 < 4.90 $14 \text{ These experience}$ $\Gamma(\mu^+ e^-)/\Gamma_{\text{total}}$ $\Gamma(\mu^+ e^-)/\Gamma_{\text{total}}$ Forbidden $VALUE \text{ (units } 10^{-8}\text{)}$ < 4.90 < 4.90 $14 \text{ These experience}$ $\Gamma(\mu^+ e^-)/\Gamma_{\text{total}}$ Forbidden	use the following on the following of th	Tech Comment in Document in Do
published resi $\Gamma(\nu_e \nu_e)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ < 1.7 • • • We do not < 3.1 $11 \text{ HOFFMAN } 8$ $\Gamma(\nu_\mu \nu_\mu)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ < 3.1 • • • We do not < 7.8 $12 \text{ HOFFMAN } 8$ $\Gamma(\nu_\tau \nu_\tau)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ < 2.1 • • We do not < 4.1 $13 \text{ HOFFMAN } 8$ $\Gamma(3\gamma)/\Gamma_{\text{total}}$ $= \Gamma(3\gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-8}\text{)}$ < 3.1 • • We do not < 3.8 < 1.50 < 4.90 < 4.90 $14 \text{ These experience}$ $\Gamma(\mu^+ e^-)/\Gamma_{\text{total}}$ $\Gamma(\mu^+ e^-)/\Gamma_{\text{total}}$ Forbidden $VALUE \text{ (units } 10^{-8}\text{)}$ < 4.90 < 4.90 $14 \text{ These experience}$ $\Gamma(\mu^+ e^-)/\Gamma_{\text{total}}$ Forbidden	use the following on the following of th	Tech Comment in December 12 Tech Comment 13 Tech Comment 14 Tech Comment 15 Tech Comment 16 Tech Comment 17 Tech Comment 17 Tech Comment 18 Tech Comment 19 Te

$[\Gamma(\mu^+e^-) + \Gamma(e^-\mu^+)]/\Gamma_{\text{total}}$ Forbidden by lepton family number conservation.							
VALUE (units 10 ⁻⁹)	CL%	DOCUMENT ID		TECN	COMMENT		
< 17.2	90	KROLAK	94	E799	In $K_I^0 \rightarrow 3\pi^0$		
• • • We do not use	e the followir						
<140		HERCZEG	84	RVUE	$K^+ \rightarrow \pi^+ \mu e$		
$< 2 \times 10^{-6}$		HERCZEG	84	THEO	$\mu^- \rightarrow e^-$ conversion		
< 70	90	BRYMAN	82	RVUE	$K^+ \rightarrow \pi^+ \mu e$		

π⁰ ELECTROMAGNETIC FORM FACTOR

The amplitude for the process $\pi^0 \rightarrow e^+e^-\gamma$ contains a form factor F(x)at the $x^0 \gamma \gamma$ vertex, where $x = [m_{e^+e^-}/m_{\pi^0}]^2$. The parameter a in the linear expansion F(x) = 1 + ax is listed below.

All the measurements except that of BEHREND 91 are in the time-like region of momentum transfer.

LINEAR COEFFICIENT OF π^0 ELECTROMAGNETIC FORM FACTOR VALUE EVTS DOCUMENT ID TECN COMMENT

± 0.004	OUR AV	ERAGE					
±0.024	± 0.048	7548					
± 0.014	± 0.026	54k		MEIJERDREES	92B	SPEC	$\pi^- p \rightarrow \pi^0 n$ at rest
5 ± 0.0026	± 0.0026	127	15	BEHREND	91	CELL	$e^+e^- \rightarrow e^+e^-\pi^0$
		32k					
Ve do not	use the fo	lowing	data	for averages, fit	s, lin	nits, etc.	. • • •
$^{+0.05}_{-0.04}$			16	TUPPER	83	THEO	FISCHER 78 data
± 0.03		31 k	17	FISCHER	78	SPEC	Radiation corr.
± 0.11		2200		DEVONS	69	OSPK	No radiation corr.
± 0.10		7676		KOBRAK	61	HBC	No radiation corr.
± 0.16		3071		SAMIOS	61	HBC	No radiation corr.
	± 0.024 ± 0.014 5 ± 0.0026 ± 0.03 Ve do not $+ 0.05$ $- 0.04$ ± 0.03 ± 0.11 ± 0.10	±0.024 ±0.048 ±0.014 ±0.026 5±0.0026±0.0026 ±0.03 ±0.08 Ye do not use the formula of the control of the con	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	### ##################################	### ### ##############################	### ##################################

¹⁵ BEHREND 91 estimates that their systematic error is of the same order of magnitude as their statistical error, and so we have included a systematic error of this magnitude. The value of a is obtained by extrapolation from the region of large space-like momentum transfer assuming vector dominance.
16 TUPPER 83 in a theoretical analysis of FISCHER 78 including 2-photon exchange in the corrections.

π⁰ REFERENCES

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1988 edition Physics Letters **B204** (1988).

ALAVI-HARATI	99C	PRL 83 922	A. Alavi-Harati et al.	(KTeV Collab.)
KROLAK	94	PL B320 407	P. Krolak et al.	(EFI, UCLA, COLO, ELMT+)
DESHPANDE	93	PRL 71 27	A. Deshpande et al.	(BNL E851 Collab.)
MCFARLAND	93	PRL 71 31	K.S. McFarland et al.	(EFI, UCLA, COLO+)
FARZANPAY	92	PL B278 413	F. Farzanpay et al.	(ORST, TRIU, BRCO+)
MEIJERDREES	92B	PR D45 1439	R. Meijer Drees et al.	(,,
ATIYA	91	PRL 66 2189	M.S. Atiya et al.	(BNL, LANL, PRIN+)
BEHREND	91	ZPHY C49 401	H.J. Behrend et al.	(CELLO Collab.)
CRAWFORD	91	PR D43 46	J.F. Crawford et al.	(VILL, VIRG)
LAM	91	PR D44 3345	W.P. Lam, K.W. Ng	(AST)
NATALE	91	PL B258 227	A.A. Natale	(SPIFT)
AFANASYEV	90	PL B236 116	L.G. Afanasyev et al.	(JINR, MOSU, SERP)
Also	90B	SJNP 51 664	L.G. Afanasyev et al.	(JINR)
		Translated from YAF 51 1	.040,	, ,
LEE	90	PRL 64 165	A.M. Lee et al.	(BNL, FNAL, VILL, WASH+)
FONVIEILLE	89	PL B233 65	H. Fonvieille et al.	(CLER, LYON, SACL)
NIEBUHR	89	PR D40 2796	C. Niebuhr et al.	(SINDRUM Collab.)
CAMPAGNARI		PRL 61 2062	C. Campagnari et al.	(BNL, FNAL, PSI+)
CRAWFORD	88B	PL B213 391	J.F. Crawford et al.	(PSI, VIRG)
DORENBOS	88	ZPHY C40 497	J. Dorenbosch et al.	(CHAŘM Collab.)
HOFFMAN	88	PL B208 149	C.M. Hoffman	(LANL)
MCDONOUGH	88	PR D38 2121	J.M. McDonough et al.	(TEMP, LANL, CHIC)
PDG	88	PL B204	G.P. Yost et al.	(LBL+)
WILLIAMS	68	PR D38 1365	D.A. Williams et al.	(Crystal Ball Collab.)
ZEPHAT	87	JPG 13 1375	A.G. Zephat et al.	(OMICRON Collab.)
BOLOTOV	86C	JETPL 43 520 Translated from ZETFP 4	V.N. Bolotov et al. 13 405.	(INRM)
CRAWFORD	86	PRL 56 1043	J.F. Crawford et al.	(SIN, VIRG)
ATHERTON	B5	PL 1588 81	H.W. Atherton et al.	(CERN, ISÚ, LUND+)
HERCZEG	84	PR D29 1954	P. Herczeg, C.M. Hoffman	(LANL)
FRANK	83	PR D28 423	J.S. Frank et al.	(LANL, ARZS)
TUPPER	83	PR D28 2905	G.B. Tupper, T.R. Grose, M.:	A. Samuel (OKSU)
BRYMAN	82	PR D26 2538	D.A. Bryman	(TRIU)
MISCHKE	82	PRL 48 1153	R.E. Mischke et al.	(LANL, ARZS)
HERCZEG	81	PL 100B 347	P. Herczeg, C.M. Hoffman	` (LANL)
SCHARDT	81	PR D23 639	M.A. Schardt et al.	(ARZS, LANL)
AUERBACH	80	PL 90B 317	L.B. Auerbach et al.	(TEMP, LASL)
HIGHLAND	80	PRL 44 628	V.L. Highland et al.	(TEMP, LASL)
AUERBACH	78	PRL 41 275	L.B. Auerbach et al.	(TEMP, LASL)
FISCHER	78	PL 73B 359	J. Fischer et al.	(GEVA, SACL)
FISCHER	78B	PL 73B 364	J. Fischer et al.	(GEVA, SACL)
BROWMAN	74	PRL 33 1400	A. Browman et al.	(CORN, BING)
BELLETTINI	70	NC 66A 243	G. Bellettini et al.	(PISA, BONN)
KRY5HKIN	70	JETP 30 1037 Translated from ZETF 57	V.I. Kryshkin, A.G. Sterligov, 1917.	Y.P. Usov (TMSK)
DEVONS	69	PR 184 1356	5. Devons et al.	(COLU, ROMA)
VASILEVSKY	66	PL 23 281	I.M. Vasilevsky et al.	(JINR)
DUCLOS	65	PL 19 253	J. Duclos et al.	(CERN, HEID)
KUTIN	65	JETPL 2 243 Translated from unknown	V.M. Kutjin, V.I. Petrukhin, 'journal.	
CZIRR	63	PR 130 341	J.B. Czirr	(LRL)
SAMIOS	62B	PR 126 1844	N.P. Samios et al.	(COLU, BNL)
KOBRAK	61	NC 20 1115	H. Kobrak	(EFI)
SAMIOS	61	PR 121 275	N.P. Samios	(COLU, BNL)
BERMAN	60	NC XVIII 1192	S. Berman, D. Geffen	(,
BUDAGOV	60	JETP 11 755	Y.A. Budagov et al.	(JINR)
		Translated from ZETF 38	1047.	, ,
JOSEPH	60	NC 16 997	D.W. Joseph	(EFI)

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition Physics Letters **B204** (1988).

n MASS

We no longer use the bubble-chamber measurements from the 1960's, which seem to have been systematically high by about 1 MeV. Some early results have been omitted altogether.

VALUE (MeV) 547.30±0.12 OUR AVE	EVTS	DOCUMENT ID	<u>TEC</u>	N COMMENT
547.12 ± 0.06 ± 0.25	······	KRUSCHE	950 SPE	$C \gamma p \rightarrow \eta p$, threshold
547.30 ± 0.15		PLOUIN		$C dp \rightarrow \eta^3 He$
547.45 ± 0.25		DUANE	74 SPE	$C \pi^- p \rightarrow n \text{ neutrals}$
• • • We do not use th	e following	data for averages	s, fits, lim	its, etc. • • •
548.2 ±0.65		FOSTER	65c HB6	_
549.0 ±0.7	148	FOELSCHE	64 HB	-
548.0 ±1.0	91	ALFF	62 HB	<u>-</u>
549.0 ±1.2	53	BASTIEN	62 HB	<u>-</u>

η WIDTH

This is the partial decay rate $\Gamma(\eta\to\gamma\gamma)$ divided by the fitted branching fraction for that mode. See the "Note on the Decay Width $\Gamma(\eta\to\gamma\gamma)$ " in our 1994 edition, Phys. Rev. **D50**, 1 August 1994, Part I, p. 1451.

VALUE (keV)	DOCUMENT ID
1.18±0.11 OUR FIT	Error includes scale factor of 1.8.

	η DECAY MODES							
	Mode		Fraction (Γ _i ,	/r)	Scale factor/ Confidence level			
		Neutral mo	der					
Γ_1	neutral modes	NEULI AI IIIC	(71.6 ±0.	4)%	S=1.2			
Γ ₂	2γ	ſ	a] (39.33±0.		S=1.1			
Γ_3	$3\pi^0$	•	(32.24±0.	•	S=1.2			
Γ4	$\pi^0 2\gamma$		(7.1 ±1.		-4			
Γ ₅	other neutral modes		< 2.8	%	CL=90%			
	(Charged mo	odes					
Γ ₆	charged modes		(28.3 ±0.	4) %	S=1.2			
Г	$\pi^+\pi^-\pi^0$		(23.0 ±0.	,	S=1.2			
Г	$\pi^+\pi^-\gamma$		(4.75±0.	,	S=1.1			
و۲	$e^+e^-\gamma$		(4.9 ±1.		-3			
Γ10	$\mu^+\mu^-\gamma$		(3.1 ±0.	4)×10 ⁻	-4			
Γ_{11}	e+ e-		< 7.7	× 10 ⁻	·5 CL=90%			
Γ_{12}	$\mu^+\mu^-$		(5.8 ± 0.6)					
Γ ₁₃	$\pi^{+} \pi^{-} e^{+} e^{-}$		$(1.3 \begin{array}{c} +1 \\ -0 \end{array})$	$\frac{2}{8}$) × 10 ⁻¹	-3			
Γ ₁₄	$\pi^+\pi^-2\gamma$		< 2.1					
Γ ₁₅	π^+ $\pi^ \pi^0$ γ		< 6	× 10				
Γ ₁₆	$\pi^0 \mu^+ \mu^- \gamma$		< 3	× 10 ⁻				
	Charge con	iugation (C), Parity (P	١.				
			Parity (CP),					
	Lepton Family							
Γ_{17}	$\pi^+\pi^-$	P,CP	< 3.3	× 10				
Γ ₁₈	$\pi^0 \pi^0$	P,CP	< 4.3	× 10	4 CL=90%			
Γ19	3γ	C	< 5	× 10	4 CL=95%			
	$\pi^{0} e^{+} e^{-}$		b] < 4	× 10 -				
	$\pi^{0} \mu^{+} \mu^{-}$	C [b] < 5	× 10				
Γ_{22}	$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF	< 6	× 10	6 CL=90%			

- [a] See the "Note on the Decay Width $\Gamma(\eta \to \gamma \gamma)$ " in our 1994 edition, Phys. Rev. D50, 1 August 1994, Part I, p. 1451.
- [b] C parity forbids this to occur as a single-photon process.

corrections.

17 The FISCHER 78 error is statistical only. The result without radiation corrections is $+0.05 \pm 0.03$.

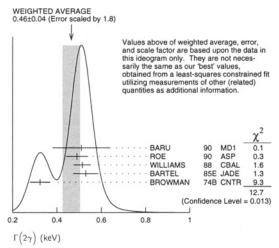
CONSTRAINED FIT INFORMATION

An overall fit to a decay rate and 16 branching ratios uses 42 measurements and one constraint to determine 9 parameters. The overall fit has a $\chi^2=32.8$ for 34 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to

<i>x</i> ₃	39							
^3 X4	1	1						
- 1	74	79	4					
х ₇	-14		~~+					
<i>x</i> 8	-58	-62	-3	64	_			
<i>X</i> 9	-12	-13	-1	-9	-8			
<i>x</i> 10	0	0	0	-1	0	0		
×13	-9	-10	0	-16	-11	-2	0	
Г	_7	-3	0	5	44	11	00	1
	х2	<i>X</i> 3	<i>x</i> ₄	<i>x</i> ₇	<i>x</i> ₈	Χg	<i>x</i> ₁₀	<i>x</i> ₁₃

	Mode	Rate (keV)	Scale factor
Γ ₂	2γ	[a] 0.46 ±0.04	1.8
Γ_3	$3\pi^{0}$	0.381 ±0.035	1.8
Γ4	$\pi^0 2\gamma$	$(8.4 \pm 1.9) \times 10^{-4}$	1.1
Γ7	$\pi^{+}\pi^{-}\pi^{0}$	0.271 ± 0.025	1.8
Γ8	$\pi^+\pi^-\gamma$	0.056 ± 0.005	1.7
Γ٩	$e^+e^-\gamma$	0.0058 ± 0.0014	
Γ ₁₀	$\mu^+\mu^-\gamma$	$(3.7 \pm 0.6) \times 10^{-4}$	1.1
Γ_{13}	$\pi^+\pi^-e^+e^-$	$0.0016 {}^{+ 0.0014}_{- 0.0010}$	


η DECAY RATES

F(27)
See the table immediately above giving the fitted decay rates. See also the "Note on "" in our 1994 edition. Phys. Rev. **D50**, 1 August 1994, Part I, p. 1451.

raiti, j	p. 1451.						
VALUE (keV)		EVTS	DOCUMENT ID		TECN	COMMENT	
0.46 ±0.04	OUR FIT	Error include	des scale factor	of 1.	В.		
0.46 ±0.04	OUR AVE	RAGE Erro	r includes scale	facto	or of 1.8.	See the id	eogram belov
0.51 ±0.12	± 0.05	36	BARU	90	MD1	$e^+e^- \rightarrow$	$e^+e^-\eta$
0.490 ± 0.010	± 0.048	2287	ROE	90	ASP	$e^+e^- \rightarrow$	$e^+e^-\eta$
0.514 ± 0.017	± 0.035	1295	WILLIAMS	88	CBAL	$e^+e^- \rightarrow$	$e^+e^-\eta$
0.53 ± 0.04	± 0.04		BARTEL	85E	JADE	$e^+e^- \rightarrow$	$e^+e^-\eta$
0.324 ± 0.046			BROWMAN	74B	CNTR	Primakoff	effect
• • • We do	not use the	e following d	ata for averages	, fits	, limits,	etc. • • •	
0.64 ±0.14	±0.13		AIHARA	86	TPC	$e^+e^- \rightarrow$	$e^+e^-\eta$

 0.56 ± 0.16 WEINSTEIN 83 CBAL $e^+e^- \rightarrow e^+e^-\eta$ ¹ BEMPORAD 67 CNTR Primakoff effect 1.00 ± 0.22 ¹ BEMPORAD 67 gives $\Gamma(2\gamma)=1.21\pm0.26$ keV assuming $\Gamma(2\gamma)/\Gamma(\text{total})=0.314$.

Bemporad private communication gives $\Gamma(2\gamma)^2/\Gamma(\text{total}) = 0.314$. Bethe point is using $\Gamma(2\gamma)/\Gamma(\text{total}) = 0.38 \pm 0.01$. Not included in average because the uncertainty resulting from the separation of the coulomb and nuclear amplitudes has apparently been underestimated.

η BRANCHING RATIOS

	ηВ	RANCHING R	ATI	OS	
		- Neutral mode	es -		-
T (neutral mod	es)/F _{total}			ſ	$\Gamma_1/\Gamma = (\Gamma_2 + \Gamma_3 + \Gamma_4)/\Gamma$
VALUE	EVTS	DOCUMENT ID		TECN	
0.716 ± 0.004 OU 0.705 ± 0.008		udes scale factor			MM spectrometer
	16k t use the following				•
0.79 ±0.08	. ase the tonoung	BUNIATOV			•••
J.19 10.00		BUILDIO	•	03110	
$\Gamma(2\gamma)/\Gamma_{\text{total}}$					Γ ₂ /Γ
VALUE	<u>EVTS</u>	DOCUMENT ID			COMMENT
	OUR FIT Error is				. 3
0.3949±0.0017±	: 0.0030 65k	ABEGG	96	SPEC	pd → ³ Heη
$\Gamma(2\gamma)/\Gamma(\text{neutr}$	ral modes)			Γ2,	$\Gamma_1 = \Gamma_2/(\Gamma_2 + \Gamma_3 + \Gamma_4)$
VALUE	<u>EVTS</u>	DOCUMENT ID			COMMENT
	OUR FIT Error in	ncludes scale fact	or of	1.1.	
0.549 ±0.004 (0.549 ±0.004	JUR AVERAGE	ALDÉ	84	GAM2	
0.535 ±0.004		BUTTRAM		OSPK	
0.59 ±0.033		BUNIATOV		OSPK	
• • • We do not	t use the following	data for average	s, fits	s, limits,	etc. • • •
0.52 ±0.09	88	ABROSIMOV	80	HLBC	
0.60 ±0.14	113	KENDALL		OSPK	
0.57 ±0.09		STRUGALSKI			
0.579 ±0.052 0.416 ±0.044		FELDMAN DIGIUGNO			Error doubled
0.410 ±0.044 0.44 ±0.07		GRUNHAUS		OSPK	
0.39 ±0.06		² JONES		CNTR	
² This result fr	om combining cro	ss sections from t	wo d	ifferent	experiments.
Γ(3π ⁰)/Γ(neu _{VALUE}	EVTS	DOCUMENT ID			$\Gamma_1 = \Gamma_3/(\Gamma_2 + \Gamma_3 + \Gamma_4)$ $\frac{COMMENT}{\Gamma_2}$
	OUR FIT Error in	ncludes scale fact	or of		COMMENT
0.450 ±0.004					
0.450 ±0.004		ALDE		GAM2	
0.439 ±0.024		BUTTRAM		OSPK	
	t use the following				etc. • • •
0.44 ±0.08	75	ABROSIMOV		HLBC	
0.32 ±0.09 0.41 ±0.033		STRUGALSKI BUNIATOV		HLBC OSPK	Not indep. of $\Gamma(2\gamma)/$
0.41 ±0.033		BOMINION	٠,	031 11	F (neutral modes)
0.177 ±0.035		FELDMAN	67	OSPK	,
0.209 ±0.054		DIGIUGNO			Error doubled
0.29 ±0.10		GRUNHAUS	66	OSPK	
Γ(3π ⁰)/Γ(2γ)					Γ ₃ /Γ ₂
VALUE		DOCUMENT ID		TECN	
0.820±0.007 OU	IR FIT Error incl				
0.825±0.011 OU					
$0.796 \pm 0.016 \pm 0.000$			00	SND	$e^+e^- \rightarrow \phi \rightarrow \eta \gamma$
$0.832 \pm 0.005 \pm 0.0.841 \pm 0.034$.012	KRUSCHE	950	CDAD	$\gamma p \rightarrow \eta p$, threshold $\overline{p}p \rightarrow \pi^+\pi^-\eta$ at rest
	t use the following				
0.822 ± 0.009		3		GAM2	
0.91 ± 0.14		COX		HBC	
0.75 ±0.09				OSPK	
0.88 ±0.16		BALTAY		DBC	
1.1 ±0.2		CENCE	67	OSPK	
1.25 ±0.39		BACCI	63		Inverse BR reported
³ This result is from the fit a	not independent o and average.	of other ALDE 84	resul	ts in thi	s Listing, and so is omitted
$\Gamma(\pi^0 2\gamma)/\Gamma(n\epsilon$	eutral modes)			Гал	$/\Gamma_1 = \Gamma_4/(\Gamma_2 + \Gamma_3 + \Gamma_4)$
VALUE	,	DOCUMENT ID		TECN	-1 -4/(-234/
(1.00 ±0.20) × 10 ⁻³ OUR				
0.0010 ±0.000	•	ALDE	84	GAM2	
$\Gamma(\pi^0 2\gamma)/\Gamma_{\text{total}}$		4 1- 46 1: 1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Γ4/Γ
	Its are summarized				
VALUE (units 10 ⁻⁴) 7.1±1.4 OUF		DOCUMENT ID		TECN	COMMENT
	t use the following	data for average	s, fits	, limits.	etc. • • •
9.5±2.3	70	BINON	82		See ALDE 84
√30 ✓30	an n	DWANDON		GAM2	

81 GAM2 $\pi^- \rho \rightarrow \eta \pi$

	Γ(π ⁺ π ⁻	π^0) + $\Gamma(\pi^+\pi^-$			$\Gamma(\mu^+\mu^-\gamma)/\Gamma_{\rm tot}$					Γ ₁₀ /
****	51.T2			+「3+「4)/(「7+「8+「9)	VALUE (units 10 ⁻⁴)	<u>EVTS</u>	DOCUMENT ID	<u>TEC</u>	OMMENT	
ALUE 2.54±0.06 OUR FIT	EVTS Error inclu	DOCUMENT ID		•	3.1±0.4 OUR FIT		DZUELVADIN		FC	
.64±0.23	Littor incid	BALTAY	67B DBC		3.1±0.4	600			EC $\pi^- p \rightarrow \eta n$	
• • We do not use th	ne followin			s, etc. • • •	• • • We do not u	_	_			DIN CC
1.5 ±1.0	280	4 JAMES	66 HBC	,	1.5 ± 0.75	100	BUSHNIN	78 SP	EC See DZHELYAI	DIN 80
.20±1.26	53	4 BASTIEN	62 HBC		$\Gamma(e^+e^-)/\Gamma_{\text{total}}$					Γ11/
2.5 ±1.0	10	⁴ PICKUP	62 HBC			G: #4	DOCUMENT ID		S. COLUMNIA	. 117
⁴ These experiments	are not us	ed in the averag	es as they d	o not separate clearly $\eta \rightarrow$	VALUE (units 10 ⁻⁴)	<u> CL%</u>	DOCUMENT ID		CN COMMENT	
				orted values thus probably	<0.77	90	BROWDER		E2 $e^+e^- \simeq 10.5$	GeV
contain some unkno				. ,		-			_	
·(a) ·(f=(+ = 0	N/ J		11	E //E . E . E .	<2	90	WHITE		EC $pd \rightarrow \eta^3 He$	_
$(2\gamma)/[\Gamma(\pi^+\pi^-\pi^0)]$				$\Gamma_2/(\Gamma_7+\Gamma_8+\Gamma_9)$	<3	90	DAVIES	/4 RV	UE Uses ESTEN 6	,
ALUE .395 ± 0.030 OUR FIT	EVTS	DOCUMENT ID		-	$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$					Γ ₁₂ /
.1 ±0.4 OUR AVE		iuues scale lactol	01 1.2.		VALUE (units 10 ⁻⁶)		DOCUMENT ID	TEC	ON COMMENT	- 12/
.51 ±0.93	75	KENDALL	74 OSPK		5.8±0.8 OUR		DOCOMENT ID		COMMENT	
.99 ±0.48		CRAWFORD	63 HBC		$5.7 \pm 0.7 \pm 0.5$	114	ABEGG	94 SP	EC $pd \rightarrow \eta^3$ He	
		۸۱	_		6.5 ± 2.1	27	DZHELYADIN	BOB SP	EC $\pi^- p \rightarrow \eta n$	
(neutral modes)/[•	•	_	$/\Gamma_7 = (\Gamma_2 + \Gamma_3 + \Gamma_4)/\Gamma_7$	• • • We do not u	se the following	data for average	s, fits, lin	nits, etc. • • •	
ALUE	EVTS	DOCUMENT ID		-	E c + 0.6 + 0.E	100	VECCI ED	02 CD	EC Son ARECG M	
.12±0.07 OUR FIT .26±0.30 OUR AVER/		ues scale factor o	1 1.5.		$5.6^{+0.6}_{-0.7} \pm 0.5$	100	KESSLER		EC See ABEGG 94	•
.26±0.30 OUR AVER/ .54±1.89	74	KENDALL	74 OSPK		<20	95 0	WEHMANN	68 OS	PK	
.4 ±1.1	29	AGUILAR	72B HBC		$\Gamma(\mu^+\mu^-)/\Gamma(2\gamma)$	١				Γ12/Γ
.83±0.80	70	5 BLOODWO				,		_		12/1
.6 ±0.6	244	FLATTE	67B HBC		VALUE (units 10 ⁻⁵)		DOCUMENT ID			
$.89 \pm 0.56$		ALFF	66 HBC		• • • We do not u	se the following	data for average			
.6 ±0.8	50	KRAEMER	64 DBC		5.9 ± 2.2		HYAMS	69 OS	PK	
.8 ±1.1		PAULI	64 DBC		r/_++ -\	/F/_+ - \				- <i>''</i>
⁵ Error increased from	n published	value 0.5 by Bio	odworth (pri	vate communication).	Γ(π ⁺ π ⁻ e ⁺ e ⁻)					Γ ₁₃ /Γ
(a_) /F/_+0\				F /F	VALUE	EVTS	DOCUMENT ID	TEC	<u> </u>	
$(2\gamma)/\Gamma(\pi^+\pi^-\pi^0)$				Γ ₂ /Γ ₇	0.028 + 0.026 OUR	FIT				
71±0.04 OUR FIT	EVTS	DOCUMENT ID		COMMENT	0.026±0.026	1	GROSSMAN	66 HB	c	
75±0.13 OUR AVER/		ues scale factor o	11.2.		0.026 ± 0.026	1	GROSSIVIAIV	00 ND		
78±0.10±0.13	1077	AMSLER	95 CBAE	$p \to \pi^+\pi^-\eta$ at rest	$\Gamma(\pi^{+}\pi^{-}e^{+}e^{-})$	/Fi				Γ ₁₃ ,
72±0.25	401	BAGLIN	69 HLBC		VALUE (units 10 ⁻²)	/ · total	DOCUMENT ID	TEC	-A1	. 13/
61 ± 0.39	101	FOSTER	65 HBC				DOCUMENTID		<u>. IV</u>	
					0.13 + 0.12 OUR	FIT				
´(3π ⁰) /Γ(π ⁺ π π ⁰)			Γ_3/Γ_7	• • • We do not u	se the following	data for average	s. fits. lin	nits, etc. • • •	
ALUE	EVTS	DOCUMENT ID		COMMENT	<0.7	1011011111g	RITTENBERG			
.404±0.034 OUR FIT					₹0.1		KILLENDERG	1 63 HD		
34 ±0.10 OUR AVE		rror includes scale			$\Gamma(\pi^+\pi^-2\gamma)/\Gamma($	$\pi^{+}\pi^{-}\pi^{0}$				Γ14/
44 ±0.09 ±0.10	1627	AMSLER	95 CBAR	$\vec{p}p \rightarrow \pi^+\pi^-\eta$ at rest	VALUE	CL%	DOCUMENT ID	TEC	:N	,
50 + 0.15 - 0.29	199	BAGLIN	69 HLBC		<0.009		PRICE	67 HB		
.47 +0.20 -0.17		BULLOCK	68 HLBC		• • • We do not u	se the following				
					< 0.016	95	BALTAY	678 DB		
3 ± 0.4		BAGLIN	67B HLBC		(0.010	93	DALIAI	0/8 00		
90 ±0.24		FOSTER	65 HBC		$\Gamma(\pi^+\pi^-\pi^0\gamma)/\Gamma$	$(\pi^{+}\pi^{-}\pi^{0})$				Γ ₁₅ /Γ
0 ±1.0 83 ±0.32		FOELSCHE	64 HBC 63 HBC		VALUE (units 10 ⁻²)	•	DOCUMENT ID	TEC	-M	-57
63 ±0.32		CRAWFORD	63 HBC			90 0	THALER	73 AS		
(other neutral mode	es)/F _{tota}	1		Γ ₅ /Γ	• • • We do not u					
These are neutral	modes of	her than $\alpha \propto 3\pi^0$	and $\pi^0 \gamma \gamma$	nearly any such mode one						
can think of would	d violate f	, or C, or both.	, // ///	, any such mode one		90 95	ARNOLD	68 HL		
ALUE	CL%	DOCUMENT ID	TECN	COMMENT		95	BALTAY FLATTE	678 DB 67 HB		
0.028	90	ABEGG		pd → ³ Heη	<7.0 <0.9		PRICE	67 HB		
				•			,cr	V, 11D	-	
		 Charged mod 	Jes		$\Gamma(\pi^0 \mu^+ \mu^- \gamma)/\Gamma$	total				Γ ₁₆ /
) T L(3-	0)1		Γ_ //Γ ₂ ±Γ.\	VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID	TEC	EN COMMENT	,
(_+0\) TI (3#		TE51 .	Γ ₇ /(Γ ₂ +Γ ₃)	<3	90	-		EC $\pi^- p \rightarrow \eta \pi$	
$(\pi^+\pi^-\pi^0)/[\Gamma(2\gamma)]$		DOCUMENT ID includes scale fac		COMMENT	~	70	DEHECTADIN	01 361	$\mu \rightarrow \eta \eta$	
ALUE	Frror	merauca scare lac		$e^+e^- \rightarrow \phi \rightarrow n\gamma$		Rai	re or forbidden	modes		
321 ±0.007 OUR F		ACHASOV	DDB Zviii	η - η - η - η - η						
321 ±0.007 OUR F		ACHASOV	00B SND		F/ + -\ '=					Γ ₁₇ /
$(\pi^{+}\pi^{-}\pi^{0})/[\Gamma(2\gamma)]$ (44.06) $(321 \pm 0.007 \text{ OUR FI}$ $(3141 \pm 0.0081 \pm 0.0086)$ $(\pi^{+}\pi^{-}\gamma)/\Gamma(\pi^{+}\pi^{-}\gamma)$	8	ACHASOV	OOR SND	Γ ₈ /Γ ₇	$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$		-1			
$\frac{1.07}{321 \pm 0.007}$ OUR FI 3141±0.0081±0.0056 $(\pi^{+}\pi^{-}\gamma)/\Gamma(\pi^{+}\pi^{-})$	8	ACHASOV		Γ ₈ /Γ ₇	Forbidden by	P and CP inva				
$\frac{1.05}{321 \pm 0.007}$ OUR FI 3141±0.0081±0.0086 $(\pi^{+}\pi^{-}\gamma)/\Gamma(\pi^{+}\pi^{-})$	8 - π ⁰) - <u>EVTS</u>	DOCUMENT ID	TECN		Forbidden by VALUE (units 10 ⁻⁴)	P and CP inva CL% <u>EVTS</u>	DOCUMENT ID		N COMMENT	
$\frac{1.0E}{321} \pm 0.007$ OUR FI 3141 ± 0.0081 ± 0.0058 $(\pi^{+}\pi^{-}\gamma)/\Gamma(\pi^{+}\pi^{-})$	8 - π ⁰) - EVTS Error inc	DOCUMENT ID		-	Forbidden by VALUE (units 10 ⁻⁴) < 3.3	<i>P</i> and <i>CP</i> inva CL% <u>EVTS</u> 90	DOCUMENT ID AKHMETSHIN	N 99B CM	D2 $e^+e^- \rightarrow \phi \rightarrow$	ηγ
$\frac{100E}{321 \pm 0.007}$ OUR FI $\frac{3141 \pm 0.0081 \pm 0.0058}{0.0058}$ $\frac{1}{(\pi^{+}\pi^{-}\gamma)}/\Gamma(\pi^{+}\pi^{+}\pi^{+})$ $\frac{100E}{207 \pm 0.004}$ OUR FIT $\frac{207 \pm 0.004}{209 \pm 0.004}$ OUR AVE $\frac{209 \pm 0.004}{209 \pm 0.004}$	EVTS Error inc ERAGE E	<u>DOCUMENT ID</u> Cludes scale factor rror includes scale THALER	<u>TECN</u> r of 1.1. e factor of 1. 73 ASPK	- 1.	Forbidden by <u>VALUE (units 10⁻⁴)</u> < 3.3 • • • We do not u	<i>P</i> and <i>CP</i> inva CL% <u>EVTS</u> 90	DOCUMENT ID AKHMETSHIN	N 99B CM	D2 $e^+e^- \rightarrow \phi \rightarrow$	ηγ
321 \pm 0.007 OUR FI 3141 \pm 0.0081 \pm 0.0082 $(\pi^{+}\pi^{-}\gamma)/\Gamma(\pi^{+}\pi^{+}\pi^{+})$ 3105 OUR FIT 207 \pm 0.004 OUR FIT 209 \pm 0.004 201 \pm 0.004 201 \pm 0.004	8 - π ⁰) EVTS Error inc ERAGE E 18k 7250	DOCUMENT ID Cludes scale factor Fror includes scale THALER GORMLEY	TECN r of 1.1. e factor of 1. 73 ASPK 70 ASPK	- 1.	Forbidden by VALUE (units 10 ⁻⁴) < 3.3 • • • We do not u < 9	<i>P</i> and <i>CP</i> inva CL% <u>EVTS</u> 90	DOCUMENT ID AKHMETSHIN data for average	N 99B CM s, fits, lim N 97c CM	D2 $e^+e^- \rightarrow \phi \rightarrow$ hits, etc. • • • D2 See AKHMETS	**
ALUE 321 ±0.007 OUR FI 3141±0.0081±0.0058	8 - π ⁰) EVTS Error inc ERAGE E 18k 7250	DOCUMENT ID Cludes scale factor Fror includes scale THALER GORMLEY	TECN r of 1.1. e factor of 1. 73 ASPK 70 ASPK	- 1.	Forbidden by <u>VALUE (units 10⁻⁴)</u> < 3.3 • • • We do not u	P and CP inva CL% EVTS 90 se the following	DOCUMENT ID AKHMETSHIN data for average	N 99B CM	D2 $e^+e^- \rightarrow \phi \rightarrow$ hits, etc. • • • D2 See AKHMETS	**
321 \pm 0.007 OUR FI 3141 \pm 0.0081 \pm 0.0082 $(\pi^{+}\pi^{-}\gamma)/\Gamma(\pi^{+}\pi^{+}\pi^{+})$ 3105 OUR FIT 207 \pm 0.004 OUR FIT 209 \pm 0.004 201 \pm 0.004 201 \pm 0.004	8 - π ⁰) EVTS Error inc ERAGE E 18k 7250	DOCUMENT ID Cludes scale factor Fror includes scale THALER GORMLEY	TECN r of 1.1. e factor of 1. 73 ASPK 70 ASPK	- 1.	Forbidden by <u>VALUE (units 10⁻⁴)</u> < 3.3 • • • We do not u < 9 <15	P and CP inva CL% EVTS 90 se the following 90	DOCUMENT ID AKHMETSHIN data for average AKHMETSHIN	N 99B CM s, fits, lim N 97c CM	D2 $e^+e^- \rightarrow \phi \rightarrow$ hits, etc. • • • D2 See AKHMETS	HIN 996
201 \pm 0.007 OUR FI 321 \pm 0.007 OUR FI 3141 \pm 0.0081 \pm 0.0058 $(\pi^{+}\pi^{-}\gamma)/\Gamma(\pi^{+}\pi^{+}\pi^{+})$ 1.002 207 \pm 0.004 OUR FIT 207 \pm 0.004 OUR AVE 209 \pm 0.004 201 \pm 0.006 • We do not use the 28 \pm 0.04 25 \pm 0.035	8 - π ⁰) EVTS Error inc ERAGE E 18k 7250	DOCUMENT ID Cludes scale factor THALER GORMLEY g data for average BALTAY LITCHFIELD	r of 1.1. e factor of 1. 73 ASPK 70 ASPK es, fits, limits 678 DBC	- 1.	Forbidden by <u>VALUE (units 10⁻⁴)</u> < 3.3 • • • We do not u < 9 <15 $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$	P and CP inva CL% EVTS 90 se the following 90	DOCUMENT ID AKHMETSHIN data for average AKHMETSHIN THALER	N 99B CM s, fits, lim N 97c CM	D2 $e^+e^- \rightarrow \phi \rightarrow$ hits, etc. • • • D2 See AKHMETS	HIN 991
$\frac{100E}{321 \pm 0.007}$ OUR FI $\frac{321 \pm 0.0081 \pm 0.0058}{141 \pm 0.0081 \pm 0.0058}$ $\frac{1}{(\pi^{+}\pi^{-}\gamma)}/\Gamma(\pi^{+}\pi^{+}\pi^{+})$ $\frac{100E}{207 \pm 0.004}$ OUR FIT $\frac{207 \pm 0.004}{201 \pm 0.006}$ OUR AVE $\frac{209 \pm 0.004}{201 \pm 0.006}$ • We do not use the $\frac{1}{2}$ $\frac{2}{2}$ $\frac{4}{2}$ $\frac{1}{2}$	8 - π ⁰) EVTS Error inc ERAGE E 18k 7250	DOCUMENT ID Cludes scale factor rror includes scale THALER GORMLEY g data for average BALTAY LITCHFIELD CRAWFORD	r of 1.1. e factor of 1. 73 ASPK 70 ASPK es, fits, limits 678 DBC 67 DBC 66 HBC	- 1.	Forbidden by VALUE (units 10^{-4}) < 3.3 • • • We do not u < 9 <15 $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ Forbidden by	P and CP inva CL% EVTS 90 se the following 90 0 P and CP inval	DOCUMENT ID AKHMETSHIN data for average AKHMETSHIN THALER	N 99B CM ss, fits, lim N 97C CM 73 ASF	D2 e ⁺ e [−] → φ → wits, etc. • • • □ D2 See AKHMETS >K	HIN 991
201 \pm 0.007 OUR FI 321 \pm 0.0081 \pm 0.0088 $(\pi^{+}\pi^{-}\gamma)/\Gamma(\pi^{+}\pi^{-})$ 1.026 207 \pm 0.004 OUR FIT 207 \pm 0.004 OUR AVE 209 \pm 0.004 0 • • We do not use the second of t	8 - π ⁰) EVTS Error inc ERAGE E 18k 7250	DOCUMENT ID Cludes scale factor THALER GORMLEY g data for average BALTAY LITCHFIELD	r of 1.1. e factor of 1. 73 ASPK 70 ASPK es, fits, limits 678 DBC 67 DBC	- 1.	Forbidden by NALUE (units 10^{-4}) < 3.3 • • • We do not u < 9 <15 $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ Forbidden by NALUE (units 10^{-4})	P and CP inva CL% EVTS 90 se the following 90 0 P and CP invai	DOCUMENT ID AKHMETSHIN data for average AKHMETSHIN THALER riance. DOCUMENT ID	N 99B CM s, fits, lim N 97C CM 73 ASE	D2 e ⁺ e ⁻ → φ → iits, etc. • • • D2 See AKHMETS >K N COMMENT	нім 99і Г ₁₈ /
100E 121 \pm 0.007 OUR FI 3141 \pm 0.0081 \pm 0.0058 $(\pi^{+}\pi^{-}\gamma)/\Gamma(\pi^{+}\pi^{+})$ 100E 207 \pm 0.004 OUR FIT 207 \pm 0.004 OUR AVE 209 \pm 0.004 201 \pm 0.006 • We do not use the 28 \pm 0.04 25 \pm 0.035 30 \pm 0.06 196 \pm 0.041	8 	DOCUMENT ID Cludes scale factor rror includes scale THALER GORMLEY g data for average BALTAY LITCHFIELD CRAWFORD	r of 1.1. e factor of 1. 73 ASPK 70 ASPK es, fits, limits 678 DBC 67 DBC 66 HBC	- 1. 5, etc. • • •	Forbidden by NALUE (units 10^{-4}) < 3.3 • • • We do not u < 9 <15 $\Gamma(\pi^0 \pi^0)/\Gamma_{\text{total}}$ Forbidden by NALUE (units 10^{-4}) <4.3	P and CP inva EVTS 90 se the following 90 0 P and CP inval CL% 90	DOCUMENT ID AKHMETSHIN data for average AKHMETSHIN THALER riance. DOCUMENT ID AKHMETSHIN	N 99B CM s, fits, lim N 97C CM 73 ASF <u>TEC</u> N 99C CM	D2 $e^+e^- \rightarrow \phi \rightarrow \phi$ iits, etc. • • • D2 See AKHMETS PK N COMMENT D2 $e^+e^- \rightarrow \phi \rightarrow \phi$	нім 99і Г ₁₈ /
100 $\frac{LUE}{221 \pm 0.007}$ OUR FI $\frac{1}{221 \pm 0.007}$ OUR FI $\frac{1}{222 \pm 0.0081} \pm 0.0081$ ± 0.0081 ± 0.0081 ± 0.0081 ± 0.0081 ± 0.004 OUR FIT $\frac{1}{207 \pm 0.004}$ OUR AVE $\frac{1}{201 \pm 0.006}$ ± 0.004	8 	DOCUMENT ID Cludes scale factor rror includes scale THALER GORMLEY g data for average BALTAY LITCHFIELD CRAWFORD	r of 1.1. e factor of 1. 73 ASPK 70 ASPK es, fits, limits 678 DBC 67 DBC 66 HBC	- 1.	Forbidden by NALUE (units 10^{-4}) < 3.3 • • • We do not u < 9 <15 $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ Forbidden by NALUE (units 10^{-4})	P and CP inva EVTS 90 se the following 90 0 P and CP inval CL% 90	DOCUMENT ID AKHMETSHIN data for average AKHMETSHIN THALER riance. DOCUMENT ID AKHMETSHIN	N 99B CM s, fits, lim N 97C CM 73 ASF <u>TEC</u> N 99C CM	D2 $e^+e^- \rightarrow \phi \rightarrow \phi$ iits, etc. • • • D2 See AKHMETS PK N COMMENT D2 $e^+e^- \rightarrow \phi \rightarrow \phi$	нім 996 Г ₁₈ /
201 \pm 0.007 OUR FI 321 \pm 0.007 OUR FI 3141 \pm 0.0081 \pm 0.0058 $(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-\nu)$ 1.02E 207 \pm 0.004 OUR FIT 207 \pm 0.004 OUR AVE 209 \pm 0.004 20 \pm 0.006 • We do not use the self of the	8 	DOCUMENT ID Cludes scale factor rror includes scale THALER GORMLEY g data for average BALTAY LITCHFIELD CRAWFORD	r of 1.1. e factor of 1. 73 ASPK 70 ASPK es, fits, limits 678 DBC 67 DBC 66 HBC	- 1. 5, etc. • • •	Forbidden by NALUE (units 10^{-4}) < 3.3 • • • We do not u < 9 <15 $\Gamma(\pi^0 \pi^0)/\Gamma_{\text{total}}$ Forbidden by NALUE (units 10^{-4}) <4.3	P and CP inva EVTS 90 se the following 90 0 P and CP inval CL% 90	DOCUMENT ID AKHMETSHIN data for average AKHMETSHIN THALER riance. DOCUMENT ID AKHMETSHIN	N 99B CM s, fits, lim N 97C CM 73 ASF <u>TEC</u> N 99C CM	D2 $e^+e^- \rightarrow \phi \rightarrow \phi$ iits, etc. • • • D2 See AKHMETS N COMMENT D2 $e^+e^- \rightarrow \phi \rightarrow \phi$ iits, etc. • • •	HIN 998
10.00 OUR FI 321 \pm 0.007 OUR FI 3141 \pm 0.0081 \pm 0.0058 $(\pi^{+}\pi^{-}\gamma)/\Gamma(\pi^{+}\pi^{+}\pi^{+})$ 10.00 OUR FIT 207 \pm 0.004 OUR FIT 209 \pm 0.004 • • We do not use the	8 - π ⁰) EVTS Error inc ERAGE E 18k 7250 he followin	DOCUMENT ID LIUdes scale factor rror includes scale THALER GORMLEY g data for average BALTAY LITCHFIELD CRAWFORD FOSTER	TECN r of 1.1. e factor of 1. 73 ASPK 70 ASPK es, fits, limits 678 DBC 67 DBC 66 HBC 65C HBC	-1. 5, etc. • • • Γ9/Γ7	Forbidden by VALUE (units 10^{-4}) < 3.3 • • • We do not u < 9 <15 $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ Forbidden by VALUE (units 10^{-4}) <4.3 • • • We do not u <6	P and CP inva CL% EVTS 90 se the following 90 0 P and CP inva CL% 90 se the following 90	DOCUMENT ID AKHMETSHIN data for average AKHMETSHIN THALER riance. DOCUMENT ID AKHMETSHIN data for average: 6 ACHASOV	N 99B CM rs, fits, lim N 97C CM 73 ASF TEC N 99C CM s, fits, lim 98 SNI	D2 $e^+e^- \rightarrow \phi \rightarrow \phi$ iits, etc. • • • D2 See AKHMETS PK N COMMENT D2 $e^+e^- \rightarrow \phi \rightarrow \phi$ iits, etc. • • •	HIN 99ε

Γ(3γ)/Γ(neutr Forbidden	al mo e	des) variance.			Γ19/	$\Gamma_1 = \Gamma_{19}/(\Gamma_2 +$	-Γ ₃ +Γ ₄)
VALUE (units 10-4)	•	CL%	DOCUMENT ID		TECN		
<7		95	ALDE	84	GAM2		
Γ(π⁰ e⁺ e⁻)/Γ			r as a single-photo	n pre	ocess.		Γ ₂₀ /Γ ₇
VALUE (units 10-4)			DOCUMENT ID	Ċ	TECN		
< 1.9	90		JANE	75			
-	use th	e following	g data for averages	s, fits		etc. • • •	
< 42	90		BAGLIN	67			
< 16	90	0	BILLING	67			
< 77		0	FOSTER		HBC		
<110		•	PRICE	65			
$\Gamma(\pi^0 e^+ e^-)/\Gamma$ C parity for	total rbids th	is to occu	r as a single-photo	n pr	ocess.		Γ ₂₀ /Γ
VALUE (units 10^{-2})			DOCUMENT ID	•	TECN		
			g data for averages	s, fits		etc. • • •	
< 0.016	90	0		76			
< 0.084	90	•	BAZIN	68	DBC		
<0.7			RITTENBERG				
Γ(π ⁰ μ ⁺ μ) / I C parity for		is to occu	r as a single-photo	n pr	ocess.		Γ ₂₁ /Γ
VALUE (units 10^{-4})					TECN	COMMENT	
<0.05		90	DZHELYADIN				
	use th	e following	g data for averages				
<5			WEHMANN	68	OSPK		
$\left[\Gamma\left(\mu^{+}e^{-}\right)+\Gamma\right]$	μ- e	+)]/Γ _{to} on family r	tal number conservatio	on.			Γ ₂₂ /Γ
VALUE (units 10 ⁻⁶)		CL%	DOCUMENT ID		TECN	COMMENT	
<6		90	WHITE	96	SPEC	$pd \rightarrow \eta^3 He$	
1	7 C-N	ONCON	SERVING DEC	AY I	PARAN	METERS	
$\pi^+\pi^-\pi^0$ LEF	T-RIG	HT ASY	MMETRY PAR	ΑM	ETER		
_	nts wit	h an error	$> 1.0 \times 10^{-2} \text{ hz}$	ave b	een om	itted.	
VALUE (units 10 ⁻²)		EVTS	DOCUMENT ID		TECN		
0.09±0.17 OU	r avei	RAGE					
0.28±0.26		165k	JANE	74	OSPK		

VALUE	(units 10 ⁻²)	EVTS	DOCUMENT ID		TECN	
0.0	±0.17 OUR AVE	RAGE				
0.28	3±0.26	165k	JANE	74	OSPK	
-0.05	5 ± 0.22	220k	LAYTER	72	ASPK	
	We do not use th	ne following	data for averag	es, fit	s, limits, etc. 🔹 🔹 🔹	
1.5	+0.5	37k	7 GORMLEY	680	ASPK	

 $^{^7}$ The GORMLEY 68c asymmetry is probably due to unmeasured (E \times B) spark chamber effects. New experiments with (E \times B) controls don't observe an asymmetry.

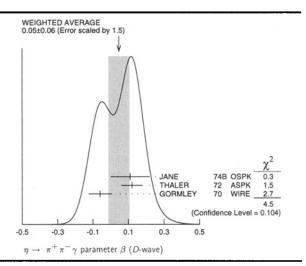
 $\pi^+\pi^-\pi^0$ SEXTANT ASYMMETRY PARAMETER Measurements with an error $>2.0\times10^{-2}$ have been omitted.

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN
0.18 ± 0.16 OUR A	VERAGE			
0.20 ± 0.25	165k	JANE	74	OSPK
0.10 ± 0.22	220k	LAYTER	72	ASPK
0.5 ± 0.5	37k	GORMLEY	68c	WIRE

$\pi^+\pi^-\pi^0$ QUADRANT ASYMMETRY PARAMETER

VALUE (units 10 ⁻²)	EVTS	DOCUMENT IL)	TECN
-0.17±0.17 OUR A	VERAGE			
-0.30 ± 0.25	165k	JANE	74	OSPK
-0.07 ± 0.22	220k	LAYTER	72	ASPK

$\pi^+\pi^-\gamma$ LEFT-RIGHT ASYMMETRY PARAMETER


Measurements with an error $> 2.0 \times 10^{-2}$ have been omitted.

VALUE (units	10 ⁻²) EVTS	DOCUMENT ID	TECN_
0.9 ±0.4	OUR AVERAGE		
$1.2\ \pm0.6$	35k	JANE	74B OSPK
0.5 ± 0.6	36k	THALER	72 ASPK
1.22 ± 1.56	7257	GORMLEY	70 ASPK

$\pi^+\pi^-\gamma$ PARAMETER β (D-wave)

Sensitive to a <i>D</i> -wave contribution: $dN/d\cos\theta = \sin^2\theta \ (1 + \beta \cos^2\theta)$								
VALUE	EVT\$	DOCUMENT ID	<u>TECN</u>					
0.05 ± 0.06	OUR AVERAGE	Error includes so	ale factor of 1.5. See the ideogram					
		below.	_					
0.11 ± 0.11	35k	JANE	74B OSPK					
0.12 ± 0.06		⁸ THALER	72 ASPK					
0.000 0.000	7050	CODMICY	70 MIDE					

⁸ The authors don't believe this indicates *D*-wave because the dependence of β on the γ energy is inconsistent with theoretical prediction. A $\cos^2\theta$ dependence may also come from P- and F-wave interference.

ENERGY DEPENDENCE OF $\eta \to 3\pi$ DALITZ PLOTS

PARAMETERS FOR $\eta \to \pi^+\pi^-\pi^0$

See the "Note on η Decay Parameters" in our 1994 edition, Phys. Rev. **D50**, 1 August 1994, Part I, p. 1454. The following experiments fit to one or more of the coefficients a, b, c, d, or e for imatrix element $|x|^2 = 1 + ay + bv^2 + cx + dx^2 + exy$.

	DOCUMENT ID	TECN	COMMENT
ALUE EVTS	· · · · · · · · · · · · · · · · · · ·		
We do not use the follow	ving data for average	s, fits, limit	s, etc. • • •
3230	⁹ ABELE		$ \overline{p}p \to \pi^0 \pi^0 \eta \text{ at rest} $
1077	¹⁰ AMSLER	95 CBAF	$R \ \overline{p}p \rightarrow \pi^+\pi^-\eta \text{ at rest}$
81k	LAYTER	73 ASPK	
220k	LAYTER	72 ASPK	
1138	CARPENTER	70 HBC	
349	DANBURG	70 DBC	
7250	GORMLEY	70 WIRE	
526	BAGLIN	69 HLBC	•
7170	CNOPS	68 OSPK	(
37k	GORMLEY	68c WIRE	
1300	CLPWY	66 HBC	
705	LARRIBE	66 HBC	

 $^{^{9}\,\}mathrm{ABELE}$ 98D obtain $a=-1.22\,\pm\,0.07$ and $b=0.22\,\pm\,0.11$ when c (our $\emph{d})$ is fixed at

α PARAMETER FOR $\eta \rightarrow 3\pi^0$

See the "Note on η Decay Parameters" in our 1994 edition, Phys. Rev. **D50**, 1 August 1994, Part I, p. 1454. The value here is of α in $|\text{matrix element}|^2 = 1 + 2\alpha z$.

233 if 1 air if p. 21	54. THE TO	ide nere is or a r	in production circuit = 1 Laz.				
VALUE	EVTS	DOCUMENT ID	TECN COMMENT				
-0.039±0.015 OUR AV	ERAGE						
$-0.052 \pm 0.017 \pm 0.010$	98k	ABELE	98c CBAR $\overline{p}p \rightarrow 5\pi^0$				
-0.022 ± 0.023	50k	ALDE	84 GAM2				
● ● We do not use the following data for averages, fits, limits, etc. ● ●							
-0.32 ± 0.37	192	BAGLIN	70 HLBC				

7 REFERENCES

ACHASOV	00	EPJ C12 25	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	00B	JETP 90 17	M.N. Achasov et al.	(Novosibirsk SND Collab.)
		Translated from ZHETF	117 22.	(,
AKHMETSHIN	99B	PL B462 371	R.R. Akhmetshin et al.	(CMD-2 Collab.)
AKHMETSHIN	99C	PL B462 380	R.R. Akhmetshin et al.	(CMD-2 Collab.)
ABELE	98C	PL B417 193	A. Abele et al.	(Crystal Barrel Collab.)
ABELE	98D	PL B417 197	A. Abele et al.	(Crystal Barrel Collab.)
ACHASOV	98	PL B425 388	M.N. Achasov et al.	(Novosibirsk SND Collab.)
AKHMETSHIN	97C	PL B415 452	R.R. Akhmetshin et al.	(CMD-2 Collab.)
BROWDER	97B	PR D56 5359	T.E. Browder et al.	(CLEO Collab.)
ABEGG	96	PR D53 11	R. Abegg et al.	(Saturne SPES2 Collab.)
WHITE	96	PR D53 6658	D.B. White et al.	(Saturne SPES2 Collab.)
AMSLER	95	PL B346 203	C. Amsler et ai.	(Crystal Barrel Collab.)
KRUSCHE	95D	ZPHY A351 237	B. Krusche et al.	(TAPS + A2 Collab.)
ABEGG	94	PR D50 92	R. Abegg et al.	(Saturne SPES2 Collab.)
AMSLER	93	ZPHY C58 175	C. Amsler et al.	(Crystal Barrel Collab.)
KESSLER	93	PRL 70 B92	R.S. Kessler et al.	(Saturne SPES2 Collab.)
PLOUIN	92	PL B276 526	F. Plouin et al.	(Saturne SPES4 Collab.)
BARU	90	ZPHY C48 581	S.E. Baru et al.	(MD-1 Collab.)
ROE	90	PR D41 17	N.A. Roe et al.	(ASP Collab.)
WILLIAMS	88	PR D38 1365	D.A. Williams et al.	(Crystal Ball Collab.)
AIHARA	86	PR D33 844	H. Aihara et al.	(TPC-2γ Collab.)
BARTEL	85E	PL 160B 421	W. Bartel et al.	(JADE Collab.)
LANDSBERG	85	PRPL 128 310	L.G. Landsberg	(SERP)
ALDE	84	ZPHY C25 225	D.M. Alde et al.	(SERP, BELG, LAPP)
Also	84B	SJNP 40 918	D.M. Alde et al.	(SERP. BELG. LAPP)
		Translated from YAF 40		,,
WEINSTEIN	83	PR D28 2896	A.J. Weinstein et al.	(Crystal Ball Collab.)
BINON	82	5JNP 36 391	F.G. Binon et al.	(SERP, BELG, LAPP+)
		Translated from YAF 36		•
Also	82B	NC 71A 497	F.G. Binon et al.	(SERP, BELG, LAPP+)
DAVYDOV	81	LNC 32 45	V.A. Davydov et al.	(SERP, BELG, LAPP+)
Also	81B	SJNP 33 825	V.A. Davydov et al.	(SERP, BELG, LAPP+)
		Translated from YAF 33		
DZHELYADIN	81	PL 105B 239	R.I. Dzhelyadin et al.	(SERP)
Also	BIC	SJNP 33 822	R.I. Dzhelyadin et al.	(SERP)
		Translated from YAF 33	1529.	

^{10 0.06.} AMSLER 95 fits to (1+ay+by²) and obtains a=-0.94 \pm 0.15 and b=0.11 \pm 0.27.

ABROSIMOV	80	SJNP 31 195 Translated from YAF 3	21	A.T. Abrosimov et al.	(JINR)
DZHELYADIN	80	PL 94B 548	3 1	R.I. Dzhelyadin et al.	(SERP)
Also	80C	SJNP 32 516		R.L. Dzhelvadin et al.	(SERP)
07/15/1/1/ 01/1		Translated from YAF	32	998.	
DZHELYADIN Also	80B 80D	PL 97B 471 SJNP 32 51B		R.I. Dzhelyadin et al. R.I. Dzhelyadin et al.	(SERP) (SERP)
AISU	600	Translated from YAF	32	1002.	(SERP)
BUSHNIN	78	PL 79B 147		Y.B. Bushnin et al.	(SERP)
Also	78B	SJNP 28 775		Y.B. Bushnin et al.	(SERP)
MARTYNOV	76	Translated from YAF 2 SJNP 23 48	28	1507. A.S. Martynov et al.	(JINR)
MAKITINOV	,,,	Translated from YAF 2	23	93.	(3114K)
JANE	75	PL 59B 99	-	M.R. Jane et al. M.R. Jane et al.	(RHEL, LOWC)
JANE	75B	PL 59B 103		M.R. Jane et al.	(RHEL, LOWC) (RHEL, LOWC)
Also	78B	PL 73B 503		M.R. Jane	
BROWMAN	74B	te communication. PRL 32 1067		A. Browman et al.	(CODM DING)
DAVIES	74	NC 24A 324		J.D. Davies, J.G. Guy, R.K.P. Zia	(CORN, BING) (BIRM, RHEL+)
DUANE	74	PRL 32 425 PL 48B 260		A. Duane et al.	(LOIC, SHMP) (RHEL, LOWC, SUSS) (RHEL, LOWC, SUSS)
JANE	74	PL 48B 260		M.R. Jane et al.	(RHEL, LOWC, SUSS)
JANE		PL 48B 265		M.R. Jane et al.	(RHEL, LOWC, SUSS)
KENDALL	74	NC 21A 387		B.N. Kendall et al.	(BROW, BARI, MII)
LAYTER THALER	73 73	PR D7 2565 PR D7 2569		J.G. Layter <i>et al.</i> J.J. Thaler <i>et al.</i>	(COLU)
AGUILAR	72B	PR D6 29		M. Aguilar-Benitez et al.	(COLU) (BNL)
BLOODWO	72B	NP B39 525		I.J. Bloodworth et al.	(TNTO)
LAYTER	72	PRL 29 316		J.G. Layter et al.	(COLU)
THALER	72	PRL 29 313		J.G. Layter et al. J.J. Thaler et al.	(COLU)
BAŞILE	71D	NC 3A 796		M. Basile et al.	(CERN, BGNA, STRB)
STRUGALSKI		NP B27 429		Z.S. Strugalski et al.	(JINR)
BAGLIN BUTTRAM	70 70	NP B22 66 PRL 25 1358		C. Baglin et al. C. Baglin et al. M.T. Buttram, M.N. Kreisler, R.E. D.W. Carpenter et al. B. Cox, L. Fortney, J.P. Golson	(EPOL, MADR, STRB)
CARPENTER	70	PR D1 1303		D.W. Carpenter et al	. MISCINE (PRIN)
ÇOX	70B	PRL 24 534		B. Cax, L. Fortney, J.P. Golson	(DUKE)
DANBURG	70	PR D2 2564		J.S. Danburg et al.	(LRL)
DEVONS	70	PR D1 1936		S. Devons et al.	(COLU, SYRA)
GORMLEY	70	PR D2 501		M. Gormley et al.	(COLU, BNL)
Aiso	70B	Thesis Nevis 181		M. Gormley	(COLU) L, UCB, MADR, STRB)
BAGLIN Also	69 70	PL 29B 445 NP B22 66		C. Baglin et al. (EPOI	L, UCB, MADR, STRB)
HYAMS	69	PL 29R 128		C. Baglin et al. B.D. Hyams et al.	(EPOL, MADR, STRB) (CERN, MPIM)
ARNOLD	68	PL 29B 128 PL 27B 466		R.G. Arnold et al. (STRB, MADR, EPOL+)
BAZIN	68	PRL 20 895		M.J. Bazin et al.	(PRIN, QUKI)
BULLOCK	68	PL 27B 402		F.W. Bullock et al.	(LOUC)
CNOPS	68	PRL 21 1609 PRL 21 402		A.M. Cnops et al.	(BNL, ORNL, UCND+)
GORMLEY	68C	PRL 21 402 PRL 20 748		M. Gormley et al.	(COLU, BNL)
WEHMANN BAGLIN	68 67	PL 24B 637		A.W. Wehmann et al. C. Baglin et al.	(HARV, CÀSE, SLAC+)
BAGLIN	67B	BAPS 12 567		C. Baglin et al.	(EPOL, UCB) (EPOL, UCB)
BALTAY	67B	PRL 19 1498		C. Baglin et al. C. Baltay et al.	(EPOL, UCB) (COLU, STON)
BALTAY	67D	PRL 19 1495		C. Baltay et ai.	(COLU, BRAN)
BEMPORAD	67	PL 25B 380		C. Bemporad et al.	(PISA, BONN)
Also	67	Private Comm.		I. lon	4. 4 4
BILLING BUNIATOV	67 67	PL 25B 435 PL 25B 560		K.D. Billing et al. S.A. Bunyatov et al.	(LOUC, OXF) (CERN, KARL)
CENCE	67	PRL 19 1393		R I Cenre et ai	(HAWA LDI)
ESTEN	67	PL 24B 115		R.J. Cence et al. M.J. Esten et al.	(HAWA, LRL) (LOUC, OXF)
FELDMAN	67	PRL 18 868		M. Feldman et al.	(PENN)
FLATTE	67	PRL 18 976		S.M. Flatte	`(LRL)
FLATTE	67B	PR 163 1441		S.M. Flatte, C.G. Wohl P.J. Litchfield et al. L.R. Price, F.S. Crawford	(LRL)
LITCHFIELD PRICE	67 67	PL 24B 486		P.J. Litchfield et al.	(RHEL, SACL)
ALFE	66	PRL 18 1207 PR 145 1072		C. Alff. Steinberger et al	(LRL)
CLPWY	66	PR 149 1044		C. Alff-Steinberger et al. C. Baltay (SCUC, LRI	(COLU, RUTG) L, PURD, WISC, YALE)
CRAWFORD	66	PRL 16 333		F.S. Crawford, L.R. Price	(LRL)
DIGIUGNO	66	PRL 16 767		G. di Giugno et al.	(NAPL, TRST, FRAS)
GROSSMAN	66	PR 146 993		R.A. Grossman, L.R. Price, F.S. C	rawford (LRL)
GRUNHAUS	66	Thesis		Grunhaus	(COLU)
JAMES JONES	66 66	PR 142 896 PL 23 597		F.E. James, H.L. Kraybill	(YALE, BNL)
LARRIBE	66	PL 23 397		W.G. Jones et al. A. Larribe et al.	(LOIC, RHEL) (SACL, RHEL)
FOSTER	65	PL 23 600 PR 138B 652		M. Foster et al.	(WISC, PURD)
FOSTER	65B	Athens Conf.		M. Foster, M. Good, M. Meer	` (WISC)
FOSTER	65C	Thesis		Foster	(WISC)
PRICE	65	PRL 15 123		L.R. Price, F.S. Crawford	(LRL)
RITTENBERG FOELSCHE	65 64	PRL 15 556 PR 134B 1138		A. Rittenberg, G.R. Kalbfleisch	(LRL, BNL)
KRAEMER	64	PR 134B 1138 PR 136B 496		H.W.J. Foelsche, H.L. Kraybill R.W. Kraemer et ai.	(YALE) (JHU, NWES, WOOD)
PAULI	64	PL 13 351		E. Pauli. A. Muller	(SACL)
BACCI	63	PRL 11 37		E. Pauli, A. Muller C. Bacci et al.	(ROMA, FRAS)
CRAWFORD	63	PRL 10 546		F.S.Jr. Crawford, L.J. Lloyd, E.C.	Fowler (LRL+)
Also	66B	PRL 16 907		F.S. Crawford, L.J. Lloyd, E.C. Fo	wler (LRL+) (COLU, RUTG)
ALFF BAŞTIEN	62 62	PRL 9 322		C. Alff-Steinberger et al.	
PICKUP	62	PRL 8 114 PRL 8 329		P.L. Bastien et al. E. Pickup, D.K. Robinson, E.O. S	(LRL) alant (CNRC+)
	V2	0 327		E. Fickap, D.R. Nobilisoli, E.O. 3	erent (CIANC+)

 $f_0(400-1200)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See "Note on scalar mesons" under $f_0(1370)$.

f₀(400-1200) T-MATRIX POLE √s

Note that $\Gamma \approx 2 \text{ Im}(\sqrt{s_{pole}})$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
(400-1200)-i(300-500) OUR	ESTIMATE		
• • • We do not use the follow	owing data for average	es, fits, limits	, etc. • • •
445 - i235	HANNAH	99 RVUE	π scalar form factor
$(523 \pm 12) - i(259 \pm 7)$	KAMINSKI	99 RVUE	$\pi\pi \rightarrow \pi\pi, K\overline{K}, \sigma\sigma$
442 - i 227	OLLER	99 RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}$
469 - i203	OLLER	99B RVUE	$\pi \pi \rightarrow \pi \pi$, $K \overline{K}$
445 i221	OLLER	99c RVUE	$\pi\pi \rightarrow \pi\pi$, $K\overline{K}$, $\eta\eta$
$(1530 + 90) - i(560 \pm 40)$	ANISOVICH	98B RVUE	Compilation
$420 - i \ 212$	LOCHER	98 RVUE	$\pi\pi \rightarrow \pi\pi$, $K\overline{K}$
$(602 \pm 26) - i(196 \pm 27)$	¹ ISHIDA	97	$\pi\pi \to \pi\pi$

```
<sup>2</sup> KAMINSKI
                                                                               978 RVUE \pi\pi \to \pi\pi, K\overline{K}, 4\pi
(537 \pm 20) - i(250 \pm 17)
                                                                               96 RVUE \pi\pi \to \pi\pi, K\overline{K}, K\pi,
470 - i250
                                                  3,4 TORNQVIST
                                                                               95B CBAR \overline{p}p \rightarrow 3\pi^0
                                                       AMSLER
\sim (1100 - i300)
                                                  <sup>4,5</sup> AMSLER
400 - i500
                                                                               95D CBAR \bar{p}p \rightarrow 3\pi^0
                                                                               95D CBAR \overline{p}p \rightarrow 3\pi^{0}
95 RVUE \pi\pi \rightarrow \pi\pi, K\overline{K}
                                                  <sup>4,6</sup> AMSLER
1100 - i137
                                                  4,7 JANSSEN
387 - i305
525 - i269
                                                     8 ACHASOV
                                                                               94 RVUE \pi\pi\to\pi\pi
(506 \pm 10) - i(247 \pm 3)
                                                       KAMINSKI
                                                                               94 RVUE \pi\pi \rightarrow \pi\pi, K\overline{K}
                                                    <sup>9</sup> zou
370 - i356
                                                                               94B RVUE \pi\pi \to \pi\pi, K\overline{K}
                                                4,9 ZOU
4,10 AU
                                                                              93 RVUE \pi\pi \rightarrow \pi\pi, K\overline{K}
87 RVUE \pi\pi \rightarrow \pi\pi, K\overline{K}
408 - i342
870 - i370
470 - i208
                                                   11 BEVEREN 86 RVUE \pi\pi \to \pi\pi, K\overline{K}, \eta\eta, ... 12 ESTABROOKS 79 RVUE \pi\pi \to \pi\pi, K\overline{K}
(750 \pm 50) - i(450 \pm 50)
                                                   PROTOPOP... 73 HBC \pi\pi \to \pi\pi, 13 BASDEVANT 72 RVUE \pi\pi \to \pi\pi
(660 \pm 100) - i(320 \pm 70)
650 - i370
```

- $^{
 m 1}$ Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77
- using the interfering amplitude method.

 Average and spread of 4 variants ("up" and "down") of KAMINSKI 97B 3-channel model. ³ Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA-SON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.

- symmetry and all light two-pseudoscalars systems. 4 Demonstrates explicitly that $f_0(400-1200)$ and $f_0(1370)$ are two different poles. 5 Coupled channel analysis of $\overline{p}p \rightarrow 3\pi^0, \pi^0\eta\eta$ and $\pi^0\pi^0\eta$ on sheet II. 6 Coupled channel analysis of $\overline{p}p \rightarrow 3\pi^0, \pi^0\eta\eta$ and $\pi^0\pi^0\eta$ on sheet III.
- ⁷ Analysis of data from FALVARD 88.
- ⁸ Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.
- ⁹ Analysis of data from OCHS 73, GRAYER 74, and ROSSELET 77.
- 10 Analysis of data from OCHS 73, GRAYER 74, BECKER 79, and CASON 83.
- 11 Uses data from PROTOPOPESCU 73, HYAM5 73, HYAM5 75, GRAYER 74, ESTABROOKS 74, ESTABROOKS 75, FROGGATT 77, CORDEN 79, BISWAS 81.
- 12 Analysis of data from APEL 73, GRAYER 74, CASON 76, PAWLICKI 77. Includes spread and errors of 4 solutions.
 13 Analysis of data from BATON 70, BENSINGER 71, COLTON 71, BAILLON 72,PRO-
- TOPOPESCU 73, and WALKER 67.

f₀(400-1200) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
(400-1200) OUR	ESTIMATE			
• • • We do not	use the following data	for a	verages,	fits, limits, etc. • • •
750 ± 4	ALEKSEEV			1.78 $\pi^- p_{polar} \rightarrow \pi^- \pi^+ n$
744 ± 5	ALEKSEEV	98	SPEC	1.78 $\pi^- p_{polar} \rightarrow \pi^- \pi^+ n$
759± 5	¹⁴ TROYAN	98		$5.2 np \rightarrow np\pi^{+}\pi^{-}$
780 ± 30	ALDE	97	GAM2	$450 pp \rightarrow pp \pi^0 \pi^0$
585 ± 20	15 ISHIDA	97		$\pi \pi \rightarrow \pi \pi$
761 ± 12	¹⁶ SVEC	96	RVUE	$6-17 \pi N_{polar} \rightarrow \pi^+ \pi^- N$
~ 860	¹⁷ TORNQVIST	96		$\pi\pi \to \pi\pi, K\overline{K}, K\pi, \eta\pi$
1165 ± 50	^{18,19} ANISOVICH	95	RVUE	$\pi^- p \rightarrow \pi^0 \pi^0 n$
	4-			$\overline{\rho}\rho \rightarrow \pi^0\pi^0\pi^0$, $\pi^0\pi^0\eta$, $\pi^0\eta\eta$
~ 1000	²⁰ ACHASOV	94	RVUE	$\pi\pi \to \pi\pi$
414 ± 20	¹⁶ AUGUSTIN	89	DM2	

- 14 Gor effect, no PWA. 15 Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.
- The fit does not include $f_0(980)$.
- 18 Uses $\pi^0 \pi^0$ GRAYER 74 and ROSSELET 77, and π^0 AMSLER 94D, and ALDE 95B, $\pi^+ \pi^-$ data from OCHS 73, GRAYER 74, CASON 83, ROSSELET 77, and BEIER 72B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.

 18 Uses $\pi^0 \pi^0$ Grayer 74 and ROSSELET 77, and π^0 data from ANISOVICH 94.
- ¹⁹The pole is on Sheet III. Demonstrates explicitly that $f_0(400-1200)$ and $f_0(1370)$ are two different poles.
- 20 Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.

fo(400-1200) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
(600-1000) OUF	RESTIMATE			
• • • We do no	t use the following data	for a	averages,	fits, limits, etc. • • •
119 ± 13	ALEKSEEV	99	SPEC	1.78 $\pi^- p_{\text{polar}} \rightarrow \pi^- \pi^+ n$
77 ± 22	ALEKSEEV	98	SPEC	$1.78 \pi^- p_{\text{polar}} \rightarrow \pi^- \pi^+ n$
35 ± 12	²¹ TROYAN	98		$5.2 np \rightarrow np\pi^{+}\pi^{-}$
780 ± 60	ALDE	97	GAM2	$450 pp \rightarrow pp \pi^0 \pi^0$
385 ± 70	²² ISHIDA	97		$\pi\pi \to \pi\pi$
290 ± 54	²³ SVEC	96	RVUE	$6-17 \pi N_{polar} \rightarrow \pi^+ \pi^- N$
~ 880	24 TORNQVIST	96		$\pi\pi \to \pi\pi, K\overline{K}, K\pi, \eta\pi$
460 ± 40	25,26 ANISOVICH	95		$\pi^- p \rightarrow \pi^0 \pi^0 n$
	27			$\overline{p}p \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta$
\sim 3200	27 ACHASOV	94	RVUE	$\pi \pi \rightarrow \pi \pi$
494 ± 58	²³ AUGUSTIN	89	DM2	

- 22 Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.

 $f_0(400-1200), \rho(770)$

- ²³ Breit-Wigner fit to S-wave intensity measured in $\pi N \rightarrow \pi^- \pi^+ N$ on polarized targets. The fit does not include $f_0(980)$.
- ²⁴ Uses data from ASTON 88, OCHS 73, HYAMS 73, ARMSTRONG 91B, GRAYER 74, CASON 83, ROSSELET 77, and BEIER 72B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.
 25 Uses $\pi^0\pi^0$ data from ANISOVICH 94, AMSLER 94D, and ALDE 95B, $\pi^+\pi^-$ data from
- OCHS 73, GRAYER 74 and ROSSELET 77, and $\eta\eta$ data fromANISOVICH 94
- 26 The pole is on Sheet III. Demonstrates explicitly that $f_0(400-1200)$ and $f_0(1370)$ are two different poles.
- ²⁷ Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.

f₀(400-1200) DECAY MODES

	Mode	Fraction (Γ_I/Γ)
$\overline{\Gamma_1}$	ππ	dominant
Γ_2	$\gamma \gamma$	seen

fo(400-1200) PARTIAL WIDTHS

Γ(γγ)				Г2
VALUE (keV)	DDCUMENT_ID		TECN	COMMENT
seen	28 MORGAN	90	RVUE	$\gamma\gamma \rightarrow \pi^{+}\pi^{-}, \pi^{0}\pi^{0}$
• • • We do not use	the following data for average	s, fit	s, limits,	etc. • • •
10±6	COURAU	86	DM1	$e^+e^{\pi^+\pi^-e^+e^-}$
²⁸ Analysis of data fr	rom BOYER 90 and MARSISK	E 90).	

fo(400-1200) REFERENCES

ALEKSEEV	99	NP B541 3	I.G. Alekseev et al.
HANNAH	99	PR D60 017502	T. Hannah
KAMINSKI	99	EPJ C9 141	R. Kaminski, L. Lesniak, B. Loiseau
OLLER	99	PR D60 099906	J.A. Oller et al.
OLLER	99B 99C	NP A652 407	J.A. Oller, E. Oset
OLLER ALEKSEEV	98	PR D60 074023	J.A. Oller, E. Oset I.G. Alekseev et al.
ANISOVICH	98B	PAN 61 174 UFN 41 419	V.V. Anisovich et al.
LOCHER	98	EPJ C4 317	M.P. Locher et al. (PSI)
TROYAN	98	JINRRC 5 33	Yu. Troyan et al.
ALDE	97	PL B397 350	D.M. Alde et al. (GAMS Collab.)
ISHIDA	97	PTP 98 1005	S. Ishida et al. (TOKY, MIYA, KEK)
KAMINSKI	97B		R. Kaminski et al. (CRAC, IPN)
Also	96	PTP 95 745	S. Ishida et al. (TOKY, MIYA, KEK)
SVEC	96		M. Svec (MCGI)
TORNOVIST	96	PRL 76 1575	N.A. Torngvist, M. Roos (HELS)
ALDE	95B	ZPHY C66 375	D.M. Alde et al. (GAMS Collab.)
AMSLER	95B	PL B342 433	C. Amsler et al. (Crystal Barrel Collab.)
AMSLER	95D		C. Amsler et al. (Crystal Barrel Collab.)
ANISOVICH	95	PL B355 363	V.V. Anisovich et al. (PNPI, SERP)
JANSSEN	95	PR D52 2690	G. Janssen et al. (STON, ADLD, JULI)
ACHASOV	94	PR D49 5779	N.N. Achasov, G.N. Shestakov (NOVM)
AMSLER		PL B333 277	C. Amsler et al. (Crystal Barrel Collab.)
ANISOVICH	94	PL B323 233	V.V. Anisovich et al.
KAMINSKI	94_		R. Kaminski et al. (CRAC, IPN)
ZOU	94B		B.S. Zou, D.V. Bugg (LOQM)
ZOU	93		B.S. Zou, D.V. Bugg (LOQM)
ARMSTRONG			T.A. Armstrong et al. (ATHU, BARI, BIRM+)
BOYER	90	PR D42 1350	J. Boyer et al. (Mark II Collab.)
MARSISKE MORGAN	90 90	PR D41 3324 ZPHY C48 623	H. Marsiske et al. (Crystal Ball Collab.) D. Morgan, M.R. Pennington (RAL, DURH)
AUGUSTIN	89	NP B320 1	J.E. Augustin, G. Cosme (OM2 Collab.)
ASTON	88	NP B296 493	D. Aston et al. (SLAC, NAGO, CINC, INUS)
FALVARD	88	PR D38 2706	A. Falvard et al. (CLER, FRAS, LALO+)
AU	87	PR D35 1633	K.L. Au, D. Morgan, M.R. Pennington (DURH, RAL)
BEVEREN	86	ZPHY C30 615	E. van Beveren et al. (NIJM, BIEL)
COURAU	86	NP B271 1	A. Courau et al. (CLER, LALO)
CASON	83	PR D28 1586	N.M. Cason et al. (NDAM, ANL)
BISWAS	81	PRL 47 1378	N.N. Biswas et al. (NDAM, ANL)
MUKHIN	80	JETPL 32 601	K.N. Mukhin et al. (KIAE)
		Translated from ZETFP	
BECKER	79	NP B151 46	H. Becker et al. (MPIM, CERN, ZEEM, CRAC)
CORDEN	79	NP B157 250	M.J. Corden et al. (BIRM, RHEL, TELA+) JP
ESTABROOKS			P. Estabrooks (CARL)
FROGGATT	77	NP B129 89	C.D. Froggatt, J.L. Petersen (GLAS, NORD)
PAWLICKI ROSSELET	77 77	PR D15 3196 PR D15 574	A.J. Pawlicki et al. (ANL) IJ L. Rosselet et al. (GEVA, SACL)
CASON	76	PRL 36 1485	N.M. Cason et al. (NDAM, ANL) IJ
ESTABROOKS		NP B95 322	P.G. Estabrooks, A.D. Martin (DURH)
HYAMS	75	NP B100 205	B.D. Hyams et al. (CERN, MPIM)
SRINIVASAN	75	PR D12 681	V. Srinivasan et al. (NDAM, ANL)
ESTABROOKS		NP B79 301	P.G. Estabrooks, A.D. Martin (DURH)
GRAYER	74	NP B75 189	G. Grayer et al. (CERN, MPIM)
APEL	73	PL 41B 542	W.D. Apel et al. (KARL, PISA)
HYAMS	73	NP B64 134	B.D. Hyams et al. (CERN, MPIM)
OCHS	73	Thesis	W. Ochs (MPIM, MUNI)
PROTOPOP		PR D7 1279	S.D. Protopopescu et al. (LBL)
BAILLON	72	PL 38B 555	P.H. Baillon et al. (SLAC)
BASDEVANT	72	PL 41B 17B	J.L. Basdevant, C.D. Froggatt, J.L. Petersen (CERN)
BEIER	72B		E.W. Beier et al. (PENN)
BENSINGER	71	PL 36B 134	J.R. Bensinger et al. (WISC)
COLTON	71	PR D3 2028	E.P. Colton et al. (LBL, FNAL, UCLA+)
BATON	70	PL 33B 52B	J.P. Baton, G. Laurens, J. Reignier (SACL)
WALKER	67	RMP 39 695	W.D. Walker (WISC)

OTHER RELATED PAPERS

BLACK	99	PR D59 074026	D. Black et al.	
IGI	99	PR D59 034005	K. Igi, K. Hikasa	
MINKDW\$KI	99	EPJ C9 283	P. Minkowski, W. Ochs	
SCADRON	99	EPJ C6 141	M. Scadron	
TAKAMATSU	99	PAN 62 435	K. Takamatsu	
ABELE	98	PR D57 3860		Crystal Barrel Collab.)
ANISOVICH	98	PL B437 209	V.V. Anisovich et al.	
DELBDURGO	98	IJMP A13 657	R. Delbourgo et al.	
OLLER	98	PRL 80 3452	J.A. Oller et al.	(Duni)
ANISOVICH	97	PL B395 123	A.V. Anisovich, A.V. Sarantsev	(PNPI)
ANISOVICH	97B	ZPHY A357 123	A.V. Anisovich et al.	(PNPI)
ANISOVICH	97C	PL B413 137		
ANISOVICH	97D	ZPHY A359 173	F (1) -1	(DAL DUTC BELLT)
CLDSE	97B 97	PR D55 5749		(RAL, RUTG. BEIJT)
MALTMAN	97	PL B393 19	K, Maitman, C.E. Wolfe J.A. Otler et al.	(YORKC) (VALE)
OLLER SVEC	97	NP A620 438 PR D55 4355	M. Svec	(VALE)
SVEC		PR D55 5727	M. Svec	(MCGI)
ABELE	96	PL B380 453		(Crystal Barrel Collab.)
AMSLER	96	PR D53 295	C. Amsler, F.E. Close	(ZURI, RAL)
BIJNENS	96	PL B374 210		DRD, BERN, WIEN+)
BONUTTI	96	PRL 77 603		RSTI, TRSTT, TRIU)
BUGG	96	NP B471 59	D.V. Bugg, A.V. Sarantsev, B.S. Zo	
HARADA	96	PR D54 1991	M. Harasa et al.	(SYRA)
ISHIDA	96	PTP 95 745	S. Ishida et al.	(TOKY, MIYA, KEK)
AMSLER	95C	PL B353 571		Crystal Barrel Collab.)
AMSLER	95F	PL B358 389		Crystal Barrel Collab.)
ANTINOR	95	PL B353 589		ATHU, BARI, BIRM+)
BUGG	95	PL B353 378		LOOM, PNPI, WASH)
GASPERO	95	NP A588 B61	M. Gaspero	(ROMA)
TORNOVIST	95	ZPHY C68 647	N.A. Torngvist	`(HELS)
AMSLER	94	PL B322 431	C. Amsler et al.	Crystal Barrel Collab.)
BUGG	94	PR D50 4412	D.V. Bugg et al.	(LOQM)
KAMINSKI	94	PR D50 3145	R. Kaminski et al.	(CRAC, IPN)
ADAMO	93	NP A558 13C	A. Adamo et al.	(OBĚLIX Collab.)
GASPERO	93	NP A562 407	M. Gaspero	(ROMAI)
MORGAN	93	PR D48 1185	D. Morgan, M.R. Pennington	(RAL, DURH)
Also	93C	NC A Conf. Suppl.	D. Morgan	(RAL)
BOLTON	92B	PRL 69 1328	T. Bolton et al.	(Mark III Collab.)
SVEC	92	PR D45 55	M. Svec, A. de Lesquen, L. van Ro	
SVEC	92B	PR D45 1518	M. Svec, A. de Lesquen, L. van Ro	
SVEC	92C	PR D46 949	M. Svec, A. de Lesquen, L. van Ro	
RIGGENBACH		PR D43 127		BERN, CERN, MASA)
BAI	90C	PRL 65 2507	Z. Bai et al.	(Mark III Collab.)
WEINSTEIN	90	PR D41 2236	J. Weinstein, N. Isgur	(TNTO)
WEINSTEIN	89	UTPT 89 03	J. Weinstein, N. Isgur	(TNTO)
ASTON	88D 86			, NAGO, CINC, INUS) BNL, BRAN, CUNY+)
LONGACRE	B4	PL B177 223 ZPHY C22 53	R.S. Longacre et al. (1 N.N. Achasov, S.A. Devyanin, G.N.	
ACHASOV GASSER	84	ANP 158 142	N.N. Aciasov, S.A. Devyanin, G.N.	SHESTAKOV (NOVMI)
	83	NC 78A 313	F.G. Binon et al. (I	BELG, LAPP, SERP+)
BINON ETKIN	82B			UNY, TUFTS, VAND)
TORNQVIST	82	PRL 49 624	N.A. Torngvist	(HELS)
COHEN	80	PR D22 2595	D. Cohen et al.	(ANL) IJF
COSTA	80	NP B175 402		ONN, CERN, GLAS+)
BECKER	79B			CERN, ZEEM, CRAC)
NAGELS	79	PR D20 1633	M.M. Nagels, T.A. Rijken, J.J. de	
POLYCHRO	79	PR D19 1317	V.A. Polychronakos et al.	(NDAM, ANL) IJF
CORDEN	78	NP B144 253		BIRM, RHEL, TELA+)
JAFFE	77	PR D15 267,281	R. Jaffe	(MIT)
FLATTE	76	PL 63B 224	S.M. Flatte	(CERN)
WETZEL	76	NP B115 208	W. Wetzel et al.	(ETH, CERN, LOIC)
DEFOIX	72	NP B44 125	C. Defoix et al.	(CDEF, CERN)
				(/

 ${}_{I}G({}_{I}PC) = 1^{+}(1^{-})$

THE $\rho(770)$

Updated March 2000 by S. Eidelman (Novosibirsk).

Determination of the parameters of the $\rho(770)$ is beset with many difficulties because of its large width. In physical region fits, the line shape does not correspond to a relativistic Breit-Wigner function with a P-wave width, but requires some additional shape parameter. This dependence on parameterization was demonstrated long ago by PISUT 68. Bose-Einstein correlations are another source of shifts in the $\rho(770)$ line shape, particularly in multiparticle final state systems (LAFFERTY 93).

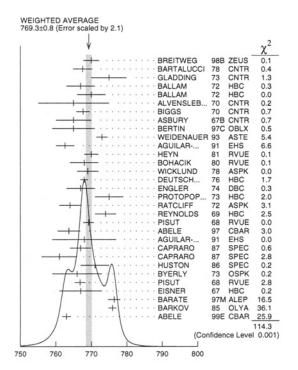
The same model dependence afflicts any other source of resonance parameters, such as the energy dependence of the phase shift δ_1^1 , or the pole position. It is, therefore, not surprising that a study of $\rho(770)$ dominance in the decays of the η and η' reveals the need for specific dynamical effects, in addition to the $\rho(770)$ pole (BENAYOUN 93, ABELE 97B). Recently, BENAYOUN 98 compared the predictions of different Vector Meson Dominance (VMD)-based models with the data on the $e^+e^- \to \pi^+\pi^-$ cross section below 1 GeV, as well as with the phase and near-threshold behavior of the time-like

I

 $\rho(770)$

pion form factor. They showed that only the model based on hidden local symmetry (HLS) is able to account consistently for all low-energy information, if one also requires a pointlike coupling $\gamma \pi^+ \pi^-$, which is excluded by common VMD but predicted by HLS.

The cleanest determination of the $\rho(770)$ mass and width comes from the e^+e^- annihilation and τ -lepton decays. BARA-TE 97M showed that the charged $\rho(770)$ parameters measured from τ -lepton decays are consistent with those of the neutral one determined from e^+e^- data of BARKOV 85. This conclusion is qualitatively supported by the high statistics study of ANDERSON 00. However, model-independent comparison of the two-pion mass spectrum in τ decays and the $e^+e^- \to \pi^+\pi^$ cross section gives indications of discrepancies between the overall normalization: τ data are about 3% higher than e^+e^- data (ANDERSON 99, EIDELMAN 99). This effect is too big to be explained by isospin violation (ALEMANY 98).


ρ(770) MASS

We no longer list 5-wave Breit-Wigner fits, or data with high combinatorial background.

MIXED CHARGES

DOCUMENT ID

769.3±0.8 OUR AVERAGE Includes data from the 5 datablocks that follow this one.
Error includes scale factor of 2.1. See the ideogram

ρ(770) MASS MIXED CHARGES

MIXED CHARGES, τ DECAYS and e^+e^- VALUE (MeV) DOCUMENT ID TECN CHG COMMENT The data in this block is included in the average printed for a previous datablock. 776.0±0.9 OUR AVERAGE $776.4 \pm 0.9 \pm 1.5$ 1 BARATE 97M ALEP ² BARKOV 775.9 ± 1.1 85 OLYA 0 • • We do not use the following data for averages, fits, limits, etc. • • • $e^+\,e^- ightarrow \, \pi^+\,\pi^-$, μ^+ 3 BENAYOUN $775.1 \pm 0.7 \pm 5.3$ 98 RVUE $770.5 \pm 1.9 \pm 5.1$ 4 GARDNER 98 **RVUE** 0.28-0.92 e+e-5 O'CONNELL \rightarrow $\pi^+\pi^-$ 97 RVUE 764.1 ± 0.7 757.5 ± 1.5 ⁶ BERNICHA **RVUE** \rightarrow $\pi^+\pi^-$ 94 ⁷ GESHKEN... 768 ±1 RVUE MIXED CHARGES, OTHER REACTIONS DOCUMENT ID <u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMEN</u> The data in this block is included in the average printed for a previous datablock. TECN CHG COMMENT 8 ABELE $763.0 \pm 0.3 \pm 1.2$ 99E CBAR 0± 600k 0.0 Dp -

CHARGED ONLY, HADROPRODUCED

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT The data in this block is included in the average printed for a previous datablock.

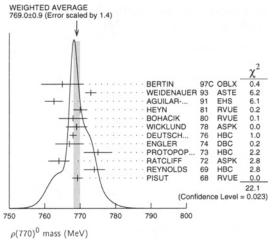
7	66	.5	±	1.1	OUR	ΑV	ERAGE
7	63	7	_	2 2			

763.7 ± 3.2		ABELE	97	CBAR		$\bar{p}n \rightarrow \pi^-\pi^0\pi^0$
768 ±9		AGUILAR	91	EHS		400 pp
767 ±3	2935	⁹ CAPRARO	87	SPEC	-	$_{\pi^{-}\pi^{0}Cu}^{-Cu} \rightarrow$
761 ±5	967	⁹ CAPRARO	87	SPEC	_	$ \begin{array}{c} \pi & \pi^{-} CU \\ 200 & \pi^{-} Pb \rightarrow \\ \pi^{-} \pi^{0} Pb \\ 202 & \pi^{+} A \rightarrow \pi^{+} \pi^{0} A \end{array} $
771 ±4		HUSTON	86	SPEC	+	$202^{\circ}\pi^{+}A \rightarrow \pi^{+}\pi^{0}A$
766 ±7	6500	10 BYERLY	73	OSPK	-	5 π ⁻ p
766.8±1.5	9650	¹¹ PISUT	68	RVUE	_	$1.7-3.2 \pi^- p$, $t < 10$
767 +6	900	9 FISNER	67	HRC		42 m n t < 10

NEUTRAL ONLY, PHOTOPRODUCED

DOCUMENT ID TECN CHG COMMENT The data in this block is included in the average printed for a previous datablock.

768.5 ± 1.1 OUR AVERAGE


,	-									
770	±	2 ±	1	79k	12	BREITWEG	98B	ZEUS	0	50-100 γp
767.	6±	2.7				BARTALUCCI	78	CNTR	0	$\gamma \rho \rightarrow e^+e^-\rho$
775	\pm	5				GLADDING	73	CNTR	0	2.9-4.7 γp
767	±	4		1930		BALLAM	72	нвс	0	2.8 γ p
770	\pm	4		2430		BALLAM	72	нвс	0	4.7 γρ
765	±	10				ALVENSLEB				γA , $t < 0.01$
767.	7±	1.9		140k		BIGGS	70	CNTR	0	$<4.1 \gamma C \rightarrow \pi^+\pi^-C$
765	±	5		4000		ASBURY	67B	CNTR	0	γ + Pb
• •	• V	Ve do	not us	e the foll	owi	ng data for avei	ages	, fits, lir	nits, e	tc. • • •
771	±	2		79k	13	BREITWEG	98B	ZEUS	0	50-100 γp

NEUTRAL ONLY, OTHER REACTIONS

TECN CHG COMMENT DOCUMENT IO VALUE (MeV) The data in this block is included in the average printed for a previous datablock.

769.0±0.9 OUR A	/ERAGE	Eri	ror includes scal	e fac	tor of 1.	4. \$ee	the ideogram below.
765 ±6			BERTIN	97c	OBLX		$0.0 \ \overline{\rho} p \rightarrow \pi^+ \pi^- \pi^0$
773 ±1.6			WEIDENAUER	93	ASTE		$\overline{p}p \rightarrow \pi^{+}\pi^{-}\omega$
762.6 ± 2.6				91	EHS		400 pp
770 ±2		14			RVUE		Pion form factor
768 ±4	1	5,16	BOHACIK	80	RVUE	0	
769 ±3		10	WICKLUND	78	ASPK	0	3,4,6 π^{\pm} N
768 ±1	76000		DEUT\$CH	76	HBC	0	16 $\pi^+ p$
767 ±4	4100		ENGLER	74	DBC	0	$6 \pi^+ n \rightarrow \pi^+ \pi^- p$
775 ±4	32000	15	PROTOPOP	73	нвс	0	7.1 $\pi^+ p$, $t < 0.4$
764 ±3	6800		RATCLIFF	72	ASPK	0	15 $\pi^- p$, t < 0.3
774 ±3	1700		REYNOLDS	69	HBC	0	2.26 π ⁻ p
769.2±1.5	13300	17	PISUT	68	RVUE	0	$1.7-3.2 \pi^- p$, $t < 10$
• • • We do not u	se the fo	llowi	ng data for aver	ages	, fits, lin	nits, et	C. • • •
762.3 ± 0.5 ± 1.2	600k	18	ABELE	99E	CBAR	0	$0.0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0$
777 ±2	4943	19	ADAMS	97	E665		$470 \mu p \rightarrow \mu XB$
770 ±2		20	BOGOLYUB	97	MIRA		$32 \overline{p}p \rightarrow \pi^{+}\pi^{-}X$
768 ±8		20	BOGOLYUB	97	MIRA		32 $pp \rightarrow \pi^+\pi^-X$
761.1 ± 2.9				89	RVUE		π form factor
777.4 ± 2.0		21		83	ASPK	0	17 $\pi^- p$ polarized
769.5 ± 0.7	1	5,16	LANG	79	RVUE	0	
770 ±9			ESTABROOKS	74	RVUE	0	$17 \pi^- \rho \rightarrow \pi^+ \pi^- \pi$
773.5 ± 1.7	11200						2.8 π ⁻ p
775 +3	2250		HYAMS	68	OSPK	0	11.2 π ⁻ p

$\rho(770)$

- $^{
 m 1}$ From the Gounaris-Sakurai parametrization of the pion form factor. The second error is a model error taking into account different parametrizations of the pion form factor.
- ² From the Gounaris-Sakurai parametrization of the pion form factor.
- ³ Using the data of BARKOV 85 in the hidden local symmetry model,
- ⁴ From the fit to $e^+e^- \to \pi^+\pi^-$ data from the compilations of HEYN 81 and BARKOV 85, including the Gounaris-Sakurai parametrization of the pion form factor.
- ⁵ A fit of BARKOV 85 data assuming the direct $\omega\pi\pi$ coupling.
- 6 Applying the S-matrix formalism to the BARKOV 85 data.
- 7 Includes BARKOV 85 data. Model-dependent width definition.
- BASSIMING the equality of ρ^+ and ρ^- masses and widths. 9 Mass errors enlarged by us to Γ/\sqrt{N} ; see the note with the $K^*(892)$ mass.
- 10 Phase shift analysis. Systematic errors added corresponding to spread of different fits.
- 11 From fit of 3-parameter relativistic P-wave Breit-Wigner to total mass distribution. Includes BATON 68, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65 and CARMONY 64.
 12 From the parametrization according to SOEDING 66.
- 13 From the parametrization according to ROSS 66.
- $^{14}\,\mathrm{HEYN}$ 81 includes all spacelike and timelike F_π values until 1978.
- 15 From pole extrapolation.
- 17 from pole extrapolation.
 16 From phase shift analysis of GRAYER 74 data.
 17 Includes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, GOLDHABER 64, ABOLINS 63.
- 18 Using relativistic Breit-Wigner and taking into account ho- ω interference.
- 19 Systematic errors not evaluated. 20 Systematic effects not studied.
- 21 From fit of 3-parameter relativistic Breit-Wigner to helicity-zero part of P-wave intensity. CHABAUD 83 includes data of GRAYER 74.

m _{e(770)} 0	_	m _{a(770)} :
DL / / U]*		DITTO1-

VALUE (MeV)	EVTS	DOCUMENT ID	TEÇN	CHG	COMMENT
0.4±0.8 OUR AVE	RAGE				
$1.6 \pm 0.6 \pm 1.7$	600k	ABELE	99E CBAR	0±	$0.0 \ \overline{\rho} \rho \rightarrow$
0.0 ± 1.0 -4 ±4 -5 ±5 2.4 ± 2.1	3000 3600 22950	22 BARATE 23 REYNOLDS 23 FOSTER 24 PISUT	97M ALEP 69 HBC 68 HBC 68 RVUE	-0 ±0	$ \begin{array}{ccc} \pi^{+}\pi^{-}\pi^{0} \\ \tau^{-} \rightarrow \pi^{-}\pi^{0} \nu_{\tau} \\ 2.26 \pi^{-}p \\ 0.0 \overline{p}p \\ \pi N \rightarrow \rho N \end{array} $

- 22 Using the compilation of e^+e^- data from BARKOV 85.
- ²³ From quoted masses of charged and neutral modes.
- ²⁴ Includes MALAMUD 69, ARMENISE 68, BATON 68, BACON 67, HUWE 67, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65, CARMONY 64, GOLDHABER 64, ABOLINS 63.

ρ(770) RANGE PARAMETER

The range parameter R enters an energy-dependent correction to the width, of the form $(1+q_r^2\ R^2)\ /\ (1+q^2\ R^2)$, where q is the momentum of one of the pions in the $\pi\pi$ rest system. At resonance, q=

VALUE (GeV-1)	DOCUMENT ID	TECN	CHG	COMMENT
5.3 ^{+0.9} -0.7	CHABAUD 83	ASPK	0	17 $\pi^- \rho$ polarized

ρ(770) WIDTH

We no longer list S-wave Breit-Wigner fits, or data with high combinatorial background.

MIXED CHARGES

DOCUMENT ID

150.2 ± 0.8 OUR AVERAGE Includes data from the 5 datablocks that follow this one.

MIXED CHARGES, τ DECAYS and e^+e^-

DOCUMENT ID TECN CHG COMMENT The data in this block is included in the average printed for a previous datablock.

150.5 ± 2.7 OUR AVERAGE

$150.5 \pm 1.6 \pm 6.3$	25 BARATE	97M ALEP	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
150.5 ± 3.0	²⁶ BARKOV	85 OLYA 0	$e^+e^- \rightarrow \pi^+\pi^-$
• • • We do not us	se the following data	for averages, fits	, limits, etc. • • •
$147.9 \pm 1.5 \pm 7.5$	27 BENAYOUN	98 RVUE	$e^+e^- \rightarrow \pi^+\pi^-, \mu^+\mu^-$
$153.5 \pm 1.3 \pm 4.6$	²⁸ GARDNER	98 RVUE	$0.28-0.92 e^+e^- \rightarrow \pi^+\pi^-$
145.0 ± 1.7	²⁹ O'CONNELL	97 RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
142.5 ± 3.5	30 BERNICHA	94 RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
138 ±1	31 GESHKEN	89 RVUE	$e^+e^- \rightarrow \pi^+\pi^-$

MIXED CHARGES, OTHER REACTIONS

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN CHG</u> <u>COMMEN</u>
The data in this block is included in the average printed for a previous datablock. TECN CHG COMMENT

149.5±1.3 32 ABELE 99E CBAR 0± $0.0\ \overline{\rho}\,\rho$

CHARGED ONLY, HADROPRODUCED

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

The data in this block is included in the average printed for a previous datablock.

150.2 ± 2.4 OUR FIT 150.2 + 2.4 OUR AVERAGE

J

152.8 ± 4.3		ABELE	97	CBAR	$\overline{\rho}n \rightarrow \pi^-\pi^0\pi^0$
155 ±11	2935	³³ CAPRARO	87	SPEC -	$\begin{array}{c} 200 \ \pi^- \ \text{Cu} \rightarrow \\ \pi^- \ \pi^0 \ \text{Cu} \end{array}$
154 ± 20	967	³³ CAPRARO	87	SPEC -	200 π [−] Pb →
150 ± 5		HUSTON	86	SPEC +	$\pi^- \pi^0 Pb$ 202 $\pi^+ A \rightarrow \pi^+ \pi^0 A$
146 ±12	6500	34 BYERLY	73	OSPK -	5 π p
148.2 ± 4.1	9650	³⁵ PISUT	68	RVUE -	$1.7-3.2 \pi^- p$, $t < 10$
146 ±13	900	EISNER	67	HBC -	4.2 $\pi^- p$. $t < 10$

NEUTRAL ONLY, PHOTOPRODUCED

TECN CHG COMMENT DOCUMENT ID The data in this block is included in the average printed for a previous datablock.

150.7± 2.9 OUR AVERAGE

$146 \pm 3 \pm 13$	79k	36 BREITWEG	98B	ZEUS	0	50-100 γp
150.9 ± 3.0		BARTALUCCI	78	CNTR	0	$\gamma p \rightarrow e^+ e^- p$
• • • We do not	use the fol	lowing data for ave	rages	, fits, lir	nits,	etc. • • •
138 ± 3	79k	37 BREITWEG	98B	ZEU5	0	50-100 γp
147 ±11		GLADDING	73	CNTR	0	2.9-4.7 γp
155 ±12	2430	BALLAM	72	HBC	0	4.7 γ p
145 ±13	1930	BALLAM	72	HBC	0	2.8 γ <i>p</i>
140 ± 5		ALVENSLEB	70	CNTR	0	γ A, $t < 0.01$
146.1 ± 2.9	140k	BIGGS	70	CNTR	0	$<$ 4.1 γ C \rightarrow $\pi^+\pi^-$ C
160 ±10		LANZEROTTI	68	CNTR	0	γp
130 + 5	4000	ASBURY	67B	CNTR	n	~ + Ph

NEUTRAL ONLY, OTHER REACTIONS

DOCUMENT ID TECN CHG COMMENT EVTS The data in this block is included in the average printed for a previous datablock.

150.9± 2.0 OUR FIT Error includes scale factor of 1.3. 150.9 \pm 1.7 OUR AVERAGE Error includes scale factor of 1.1.

122 ±2	20			BERTIN	97C	OBLX		$0.0 \overline{\rho} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
145.7±	5.3			WEIDENAUER	93	ASTE		$\overline{p} p \rightarrow \pi^+ \pi^- \omega$
144.9±	3.7			DUBNICKA	89	RVUE		π form factor
148 ±	6	38	3,39		80	RVUE	0	
$152 \pm$	9		34	WICKLUND	78	ASPK	0	3,4,6 $\pi^{\pm} \rho N$
154 ±	2	76000		DEUTSCH	76	HBC	0	16 $\pi^{+}p$
157 ±	8	6800		RATCLIFF	72	ASPK	0	15 $\pi^- p$, $t < 0.3$
143 ±	8	1700		REYNOLDS	69	HBC	0	2.26 π ⁻ p
• • • V	Ve do not u	se the fol	lowi	ng data for aver	ages	, fits, lin	nits, et	C. • • •
147.0±	2.5	600k	40	ABELE	99E	CBAR	0	$0.0 \overline{p}_D \rightarrow \pi^+ \pi^- \pi^0$
146 ±	3	4943	41	ADAM5	97	E665		$470 \mu \rho \rightarrow \mu XB$
160.0 +	4.1 4.0			CHABAUD	83	ASPK	0	17 $\pi^- p$ polarized

146 ± 3	4943	"- ADAMS	91	E665		$470 \mu p \rightarrow \mu XB$
160.0 + 4.5	1 D	⁴² CHABAUD	83	ASPK	0	17 $\pi^- p$ polarized
155 ± 1		43 HEYN	81	RVUE	0	π form factor
148.0 ± 1.3	3	^{38,39} LANG	79	RVUE	0	
146 ±14	4100			DBC		$6 \pi^+ n \rightarrow \pi^+ \pi^- p$
143 ±13		³⁹ ESTABROOI	KS 74	RVUE	0	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
160 ±10	32000		73	нвс	0	7.1 $\pi^+ p$, t < 0.4
145 ±12	2250	³³ HYAM5	68	OSPK	0	$11.2 \pi^{-} p$
163 ±15	13300) 44 PISUT	68	RVUE	0	$1.7-3.2 \pi^{-} p, t < 10$

 $^{25}\mbox{From the Gounaris-Sakurai parametrization of the pion form factor. The second error is$

The ment objuntars-Sakurai parametrization of the pion form factor. The second error is a model error taking into account different parametrizations of the pion form factor. From the Gounaris-Sakurai parametrization of the pion form factor. It is given that the first of the $\pm e^- \rightarrow \pi^+ \pi^-$ data from the compilations of HEYN 81 and BARKOV 85, including the Gounaris-Sakurai parametrization of the pion form factor. Aft of BARKOV 85 data assuming the direct $\omega \pi \pi$ coupling.

30 Applying the S-matrix formalism to the BARKOV 85 data. 31 includes BARKOV 85 data. Model-dependent width definition 32 Assuming the equality of ρ^+ and ρ^- masses and widths. 33 Width errors enlarged by us to $4\Gamma/\sqrt{N};$ see the note with the $K^*(892)$ mass.

34 Phase shift analysis. Systematic errors added corresponding to spread of different fits.

37-Phase shitt analysis. Systematic errors added corresponding to spread or university. In Charles a specific P-wave Breit-Wigner to total mass distribution. In cludes BATON 68, MILLER 678, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65 and CARMONY 64.
36-From the parametrization according to SOEDING 66.

37 From the parametrization according to ROSS 66.

38 From pole extrapolation.

39 From phase shift analysis of GRAYER 74 data.

 $^{40}\, \text{Using relativistic Breit-Wigner and taking into account } \rho\text{-}\omega$ interference.

41 Systematic errors not evaluated.

The systematic errors not evaluated. At From fit of 3-parameter relativistic Breit-Wigner to helicity-zero part of P-wave intensity. CHABAUD 83 includes data of GRAYER 74.

43 HEYN 81 includes all spacelike and timelike F_{π} values until 1978.

44 Includes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 678, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, GOLDHABER 64, ABOLINS 63.

$\Gamma_{\rho(770)^0} - \Gamma_{\rho(770)^{\pm}}$	Ŀ		
VALUE	DOCUMENT ID	TECN	COMMENT
-0.1±1.9	45 BARATE	97M ALEP	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
⁴⁵ Using the compilation	on of e^+e^- data from BARF	KOV 85.	

ρ (770) DECAY MODES

	Mode	Fraction (Γ_i/Γ) Confidence level
Γ ₁	ππ	~ 100 % 🙃
		$ ho$ (770) $^{\pm}$ decays
Γ_2	$\pi^{\pm}\pi^{0}$	~ 100 %
Γ_3	$\pi^{\pm} \pi^{0}$ $\pi^{\pm} \gamma$ $\pi^{\pm} \eta$	$(4.5 \pm 0.5) \times 10^{-4}$ S=2.2
Γ4	$\pi^{\pm}\eta$	$< 6 \times 10^{-3} \text{ CL} = 84\%$
Γ ₅	$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	$< 2.0 \times 10^{-3} \text{ CL} = 84\%$
		$ ho(770)^0$ decays
Γ_6	$\pi^+\pi^-$	~ 100 %
Γ7	$\pi^+\pi^-\gamma$	$(9.9 \pm 1.6) \times 10^{-3}$
Γ8	$\pi^0_{\cdot} \gamma$	$(6.8 \pm 1.7) \times 10^{-4}$
Γ۹	$\eta \gamma$	$(2.4^{+0.8}_{-0.9}) \times 10^{-4}$ S=1.6
Γ_{10}	$\mu^+\mu^-$	[a] $(4.60\pm0.28)\times10^{-5}$
Γ_{11}	e+ e-	[a] $(4.49 \pm 0.22) \times 10^{-5}$
Γ_{12}	$\pi^{+}\pi^{-}\pi^{0}$	$< 1.2 \times 10^{-4} \text{ CL} = 90\%$
Γ_{13}	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$(1.8 \pm 0.9) \times 10^{-5}$
Γ ₁₄	$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	$<$ 4 $\times 10^{-5}$ CL=90%

[a] The e^+e^- branching fraction is from $e^+e^- \to \pi^+\pi^-$ experiments only. The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e\mu$ universality holds, $\Gamma(\rho^0 \to \mu^+ \mu^-) = \Gamma(\rho^0 \to e^+ e^-)$ × 0.99785.

CONSTRAINED FIT INFORMATION

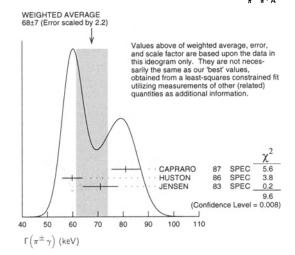
An overall fit to the total width and a partial width uses 10 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2 = 10.7$ for 8 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

$$x_3$$
 | -100 Γ | 15 -15 x_2 x_3

	Mode	Rate (MeV)	Scale factor
Γ ₂	$\pi^{\pm}\pi^{0}$	150.2 ±2.4	
Γ_3	$\pi^{\pm}\gamma$	0.068 ± 0.007	2.3

CONSTRAINED FIT INFORMATION


An overall fit to the total width, a partial width, and a branching ratio uses 10 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=9.9$ for 7 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (MeV)	Scale factor
	π+π-	150.8 ±2.0	1.3
10	$\mu^+\mu^-$	[a] 0.0069 ± 0.0004	
Γ_{11}	e ⁺ e ⁻	[a] 0.00677 ± 0.00032	

ρ(770) PARTIAL WIDTHS

				Гз
DOCUMENT ID		TECN	CHG	COMMENT
includes scale factor of 2.	3.			
Error includes scale facto	or of 2	2.2. S e	e the	ideogram below.
CAPRARO	87 S	PEC	_	$200 \pi^- A \rightarrow$
HUSTON	86 9	PEC	+	π − π ∪ A 202 π + A →
				$\pi^+\pi^0$ A
JENSEN	83 S	PEC	-	$156-260_{\Lambda}\pi^{-} A \rightarrow$
	includes scale factor of 2. Error includes scale facto CAPRARO HUSTON	includes scale factor of 2.3. Error includes scale factor of 3 CAPRARO 87 S HUSTON 86 S	includes scale factor of 2.3. Error includes scale factor of 2.2. Se CAPRARO 87 SPEC HUSTON 86 SPEC	includes scale factor of 2.3. Error includes scale factor of 2.2. See the CAPRARO 87 SPEC - HUSTON 86 SPEC +

Γ(e+e-)							Γ ₁₁
VALUE (keV)		DOCUMENT ID		TECN	COMMENT		
6.77±0.32 OUR FIT							
$6.77 \pm 0.10 \pm 0.30$		BARKOV			$e^+e^- \rightarrow$	$\pi^+\pi^-$	
• • We do not use	the following	data for average	s, fit	s, limits	, etc. • • •		
6.3 ±0.1		⁴⁶ BENAYOUN	98	RVUE	$e^+e^- \rightarrow \mu^+\mu^-$	$\pi^+\pi^-$,	
⁴⁶ Using the data of	BARKOV 85	in the hidden loo	al sy	mmetry	model.		
$\Gamma(\pi^0\gamma)$							Γg
VALUE (keV)		DOCUMENT ID		TECN	COMMENT		
• • • We do not use	the following	data for average	s, fit	s, limits,	etc. • • •		
121 ± 31		DOLINSKY	89	ND	$e^+e^-\to$	$\pi^0\gamma$	
$\Gamma(\eta\gamma)$							Г
VALUE (keV)		DOCUMENT ID		TECN	COMMENT		
• • We do not use	the following	data for average	s, fits	, limits,	etc. • • •		
62±17	•	⁴⁷ DOLINSKY	89	ND	$e^+e^- \rightarrow$	nγ	
47 Solution correspor	ding to cons	tructive ω - $ ho$ interi	eren	ce.		•	
Γ(π ⁺ π ⁻ π ⁺ π ⁻)							Γ13
VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT		
• • • We do not use	the following	data for averages	, fits	, limits,	etc. • • •		
$2.8 \pm 1.4 \pm 0.5$	153	AKHMETSHIN	00	CMD2	$0.6-0.97 e^{+}$		

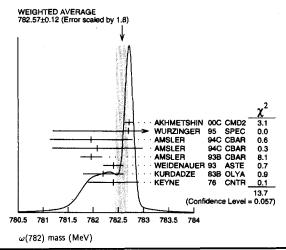
 $\rho(770)$

_, _, _, ,		, 5	G RATIOS			$\Gamma(\pi^+\pi^-\gamma)/\Gamma_{\text{total}}$	Γ,
$\lceil (\pi^{\pm}\eta) / \Gamma(\pi\pi) \rceil$					Γ_4/Γ_1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	π+π-γ
ALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID	TECN	CHG COMME	NT	• • We do not use the following data for averages, fits, limits, etc. • • •	
:60	84	FERBEL	66 HBC	± π [±] pa	bove 2.5	0.0111 ± 0.0014 55 VASSERMAN 88 ND $e^+e^- \rightarrow$	
$(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})/\Gamma$	()				Γ_5/Γ_1	<0.005 90 ⁵⁶ VASSERMAN 88 ND $e^+e^- \rightarrow$	$\pi^+\pi^-\gamma$
4LUE (units 10 ⁻⁴)	CL%	DOCUMENT ID	TECN	CHG COMME		54 Bremsstrahlung from a decay pion and for photon energy above 50 MeV.	
20	84	FERBEL	66 HBC		bove 2.5	55 Superseded by DOLINSKY 91. 56 Structure radiation due to quark rearrangement in the decay.	
• We do not use					.5010 2.5		_
35 ± 40		JAMES	66 HBC	$+$ 2.1 π^{+}	P	$\Gamma(\pi^0\gamma)/\Gamma_{\text{total}}$	Γ,
· (+ -) /= (+ ·	-1					VALUE (units 10 ⁻⁴) DOCUMENT ID TECN COMMENT	
$(\mu^+\mu^-)/\Gamma(\pi^+\pi^-)$	_)				Γ_{10}/Γ_{6}	6.8±1.7 57 BENAYOUN 96 RVUE 0.54-1.04 $\sigma^0 \gamma$:+e- →
4LUE (units 10 ⁻⁵) .60±0.28 OUR FIT		DOCUMENT ID	TECN	COMMENT		• • • We do not use the following data for averages, fits, limits, etc. • • •	
.6 ±0.2 ±0.2		ANTIPOV	89 SIGM	$\pi^- Cu \rightarrow \mu$	+ μ- π- Cu	7.9 \pm 2.0 DOLINSKY 89 ND $e^+e^- \rightarrow$	$\pi^0\gamma$
• • We do not use	the followin	g data for average	es, fits, limits	, etc. • • •		⁵⁷ Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 takin	g into acco
$2^{+1.6}_{-3.6}$		48 ROTHWELL	69 CNTR	Photoproduct	tion	a triangle anomaly contribution.	
-5.0 .6 ±1.5		49 WEHMANN	69 OSPK	12 π ⁻ C. Fe		ρ(770) REFERENCES	
7 +3.1 -3.3		50 HYAMS	67 OSPK	11 π Li, Η		, ,	
– 3.3 ⁴⁸ Possibly large <i>ρ-ω</i>	interference	loads us to incre					1D-2 Collab.) arrel Collab.)
49 Result contains 11	1 ± 11% cc	rrection using SU	(3) for centr	al value. The	error on the	BENAYOUN 98 EPJ. C2 269 M. Benayoun et al. (IPNP, NOV	/O, ADLD+) EUS Collab.)
correction takes ac				upper limit agr	ees with the	GARDNER 98 PR D57, 2716 S. Gardner, H.B. O'Connell	arrel Collab.)
upper limit of ω – 50 HYAMS 67's mass	→ μ [—] μ [—] f s resolution	om this experime is 20 MeV. The	πt. • region wa≎ 4	excluded		ADAMS 97 ZPHY C74 237 M.R. Adams et al. (I	E665 Collab.) EPH Collab.)
			0 1143			BERTIN -97C**PL B408 476 A. Bertin et al. (OBI	ELIX Collab.
(e ⁺ e ⁻)/Γ(ππ)					Γ_{11}/Γ_1	Translated from YAF 60 53.	OSU, SERP
4LUE (units 10 ⁻⁴)		DOCUMENT ID		COMMENT		BENAYOUN 96 ZPHY C72 221 M. Benayoun et al. (II	(AQLD) (AQLD) (PNP, NOVO)
.41 ± 0.05		BENAKSAS	72 OSPK	e · e ·			(LOUV+) (RIX Collab.)
$(\eta \gamma)/\Gamma_{\text{total}}$					٦/و٢	DOLINSKY 91 PRPL 202 99 S.I. Dolinsky et al.	EHS Collab.) (NOVO)
ALUE (units 10 ⁻⁴)		DOCUMENT ID	TECN	CHG COMME	NT	DOLINSKY 89 ZPHY C42 511 S.I. Dolinsky et al.	R, BGNA+) (NOVO)
.4+0.8 OUR AVERA	MGE Error	includes scale fac	tor of 1.6.			DUBNICKA 89 JPG 15 1349 S. Dubnická <i>et al.</i> (. GESHKEN 89 ZPHY 45 351 B.V. Geshkenbein	JINR, SLOV) (ITEP)
0.5						KURDADZE 88 JETPL 47 512 L.M. Kurdadze et al. Translated from ZETFP 47 432.	(NOVO)
$9^{+0.6}_{-0.8}$		51 BENAYOUN	96 RVUE	0.54-1.64	.04 e → ηγ	VASSERMAN 88 SJNP 47 1035 I.B. Vasserman et al. Translated from YAF 47 1635.	(NOVO)
.6±0.9 ,		⁵² ANDREWS	77 CNTR	0 6.7-10		VASSERMAN 88B SJNP 48 480 I.B. Vasserman et al. Translated from YAF 48 753.	(NOVO)
• We do not use	the followin					AULCHENKO 87C IYF 87-90 Preprint V.M. Aulchenko et al.	(NOVO) (AS, MILA+)
			89 ND	e+e-	$\rightarrow \eta \gamma$		(BARC)
1.0 ± 1.1		⁵² DOLINSKY	-			BRAMON 86 PL B173 97 A. Bramon, J. Casulleras	
⁵¹ Reanalysis of DRU		, DOLINSKY 89,	and DOLINS	KY 91 taking i	into account	HUSTON 86 PR 33 3199 J. Huston et al. (ROCH, F KURDADZE 86 JETPL 43 643 L.M. Kurdadze et al.	NAL, MINN)
51 Reanalysis of DRU	contribution contribution	, DOLINSKY 89, n. Constructive a	and DOLINS	KY 91 taking i	into account	HUSTON 86 PR 33 3199 J. Huston et al. (ROCH, F KURDADZE 86 JETPL 43 643 LT. M. Kurdadze et al. Translated from ZETFP 43 497. BARKOV 85 NP B256 365 LM. Barkov et al.	NAL, `MINN) (NOVO) (NOVO)
51 Reanalysis of DRU a triangle anomaly 52 Solution correspor	contribution	, DOLINSKY 89, n. Constructive a	and DOLINS	KY 91 taking i		HUSTON 86 PR 33 3199 J. Huston et al. (ROCH, F KURDADZE 86 JETPL 43 643 L.M. Kurdadze et al. Translated from ZETFP 43 497. BARKOV 85 NP B256 655 DRUZHININ 84 PL 144B 136 V.P. Druzhinin et al. CHABADUD 83 NP B223 1 V. Chabaud et al. (CERN, C	NAL, MINN (NOVO) (NOVO) (NOVO) RAC, MPIM)
⁵¹ Reanalysis of DRU a triangle anomaly 52 Solution correspor $(\pi^+\pi^-\pi^+\pi^-)/[$	y contribution iding to con - total	, DOLINSKY 89, n. Constructive ρ structive ω-ρ inte	and DOLINS ⊢w interferend rference.	KY 91 taking i ce solution.	into account Γ ₁₃ /Γ	HUSTON 86	NAL, `MINN) (NOVO) (NOVO) (NOVO) RAC, MPIM) NAL, MINN) (GRAZ)
⁵¹ Reanalysis of DRL a triangle anomaly 52 Solution correspor $(\pi^+\pi^-\pi^+\pi^-)/[$ ALUE (units $^{10^{-5}}$) CLS	y contribution inding to con total * <u>EVTS</u>	, DOLINSKY 89, n. Constructive ρ structive ω-ρ inte	and DOLINS ⊢w interferend rference. TECN	KY 91 taking ice solution. COMMENT	Г13/Г	HUSTON 86	NAL, MINN (NOVO) (NOVO) RAC, MPIM NAL, MINN (GRAZ LOV, WIEN (GRAZ
⁵¹ Reanalysis of DRU a triangle anomaly 52 Solution correspond $^{(\pi^+\pi^-\pi^+\pi^-)/5}$ (ALUE (units $^{10^{-5}}$) CLS $^{(18\pm0.9\pm0.3)}$	y contribution ding to control total ** EVTS 153	, DOLINSKY 89, n. Constructive ρ structive ω-ρ inte	and DOLINS → interference rference. TECN N 00 CMD2	KY 91 taking ice solution. COMMENT $0.6-0.97 e^{+}$ $\pi^{+}\pi^{-}\pi^{+}$	Γ ₁₃ /Γ e ⁻ → Ι	HUSTON 86	NAL, MINN) (NOVO) (NOVO) (NOVO) RAC, MPIM) NAL, MINN) (GRAZ) LOV, WIEN) (GRAZ) DESY, FRAS)
51 Reanalysis of DRU a triangle anomaly 5^2 Solution correspon $(\pi^+\pi^-\pi^+\pi^-)/[\pi t U E (units 10^{-5}) CLY 1.8 \pm 0.9 \pm 0.3 • • We do not use$	y contribution ding to control total ** EVTS 153	, DOLINSKY 89, n. Constructive ρ structive ω-ρ inte <u>DOCUMENT ID</u> AKHMETSHI g data for average	and DOLINS - w interference TECN N 00 CMD2 es, fits, limits	EXY 91 taking ice solution. COMMENT 0.6-0.97 e^+ $\pi^+\pi^-\pi^+$ etc. • • •	Γ ₁₃ /Γ e ⁻ → [HUSTON 86	NAL, `MINN) (NOVO) (NOVO) (NOVO) RAC, MPIM) NAL, MINN) (GRAZ) LOV, WIEN) (ERAZ) (ESY, FRAS) (ANL) (ROCH)
51 Reanalysis of DRU a triangle anomaly 5^2 Solution correspon $(\pi^+\pi^-\pi^+\pi^-)/[\pi t U E (units 10^{-5}) CLY 1.8 \pm 0.9 \pm 0.3 • • We do not use$	y contribution ding to control total ** EVTS 153	, DOLINSKY 89, n. Constructive ρ structive ω-ρ inte <u>DOCUMENT ID</u> AKHMETSHI g data for average	and DOLINS - w interference TECN N 00 CMD2 es, fits, limits	KY 91 taking ice solution. COMMENT $0.6-0.97 e^{+}$ $\pi^{+}\pi^{-}\pi^{+}$	Γ ₁₃ /Γ e ⁻ → [HUSTON 86	NAL, `MINN) (NOVO) (NOVO) (NOVO) RAC, MPIM) NAL, MINN) (GRAZ) LOV, WIEN) (ESY, FRAS) (ANL) (ROCH) RL, BONN+) CMU, CASE)
51 Reanalysis of DRU a triangle anomaly 52 Solution correspor $(\pi^+\pi^-\pi^+\pi^-)/[4LUE \text{ (units }10^{-5})$ $1.8\pm0.9\pm0.3$ • We do not use <20 90	y contribution of contribution	, DOLINSKY 89, n. Constructive ρ structive ω-ρ inte <u>DOCUMENT ID</u> AKHMETSHI g data for average	and DOLINS - w interference TECN N 00 CMD2 es, fits, limits	EXY 91 taking ice solution. COMMENT 0.6-0.97 e^+ $\pi^+\pi^-\pi^+$ etc. • • •	Γ ₁₃ /Γ e ⁻ → [+π ⁻	HUSTON 86	NAL, `MINN' (NOVO) (NOVO) (RAC, MPIM) NAL, MINN) (GRAZ) LOV, WIEN) (GRAZ) (ANL) (ROCH) RL, BONN+) CMU, CASE) (DURH) ERN, MPIM)
51 Reanalysis of DRU a triangle anomaly 52 Solution correspor $-(\pi^+\pi^-\pi^+\pi^-)/[4LUE (units 10^{-5}) \ 1.8 \pm 0.9 \pm 0.3$ • We do not use <20 90	total EVTS 153 the followin	, DOLINSKY 89, n. Constructive ρ structive ω-ρ inte <u>DOCUMENT ID</u> AKHMETSHI g data for average KURDADZE	and DOLINS + w interference ference. TECN N 00 CMD2 es, fits, limits 88 OLYA	COMMENT CO	Γ ₁₃ /Γ e ⁻ → [-π ⁻ Γ ₁₃ /Γ ₁	HUSTON 86	NAL, MINNÝ (NOVO) (NOVO) (NOVO) RAC, MPIM) (GRAZ) LOV, WIEN) (ERAZ) (ERAZ) (ROCH) (ROCH) (ROCH) (DURH) (MICH) (HARY)
51 Reanalysis of DRU a triangle anomaly 52 Solution correspon $(\pi^+\pi^-\pi^+\pi^-)/[4LUE (units 10^{-5}) $ $1.8 \pm 0.9 \pm 0.3$ • We do not use <20 90 $(\pi^+\pi^-\pi^+\pi^-)/[4LUE (units 10^{-4})]$	total EVTS 153 the following CL%	DOLINSKY 89, n. Constructive ρ structive ω-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE	and DOLINS → interference TECN N 00 CMD2 es, fits, limits 88 OLYA TECN	COMMENT COM	Γ ₁₃ /Γ e ⁻ → [-π ⁻ Γ ₁₃ /Γ ₁	HUSTON 86	NAL, MINN) (NOVO) (NOVO) RAC, MPIM NAL, MINN) (GRA2) LOV, WIEN) (GRA2) (EXCEPTION (GRA2) (GRA
51 Reanalysis of DRL a triangle anomaly 5^2 Solution correspor $(\pi^+\pi^-\pi^+\pi^-)/[4LUE (units 10^{-5}) $ $1.8 \pm 0.9 \pm 0.3$ • We do not use $(20 90 $ $(\pi^+\pi^-\pi^+\pi^-)/[4LUE (units 10^{-4})]$ • We do not use	total EVTS 153 the following CL%	, DOLINSKY 89, n. Constructive ρ structive ω-ρ inte <u>DOCUMENT ID</u> AKHMETSHI g data for average KURDADZE	and DOLINS → interference TECN N 00 CMD2 es, fits, limits 88 OLYA TECN	COMMENT 0.6-0.97 e ⁺ etc. • • • CHG COMME CHG COMME CHG COMME CHG COMME	Γ ₁₃ /Γ e ⁻ π ⁻ Γ ₁₃ /Γ ₁	HUSTON 86	NAL, MINN) (NOVO) (NOVO
51 Reanalysis of DRL a triangle anomaly 5^{2} Solution correspor $(\pi^{+}\pi^{-}\pi^{+}\pi^{-})/1$ 44.0£ (units 10^{-5}) CLS $1.8\pm0.9\pm0.3$ • • We do not use $(20$ 90 $(\pi^{+}\pi^{-}\pi^{+}\pi^{-})/1$ 41.0£ (units 10^{-4}) • • We do not use $(20$ 90 $(\pi^{+}\pi^{-}\pi^{+}\pi^{-})/1$ 41.0£ (units $(20$ 90 $(\pi^{+}\pi^{-}\pi^{+}\pi^{-})/1$ 90 $(\pi^{+}\pi^{-}\pi^{+}\pi^{-})/1$ 90 $(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	y contribution ding to contribution total ** EVTS 153 the followin - (** **) - CL** the followin 90	DOLINSKY 89, n. Constructive μ-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG	and DOLINS w interference. TECN N 00 CMD2 es, fits, limits 88 OLYA TECN TECN HECN HECN HECN HECN HECN HECN HECN H	COMMENT 0.6-0.97 e ⁺ $\pi^+\pi^-\pi^+$ etc. • • • $e^+e^-\to\pi^+\pi^-\pi^+$ CHG COMME , etc. • • • 0 2.5-5.8 0 3.2.4.2	Γ ₁₃ /Γ e ⁻ π ⁻ Γ ₁₃ /Γ ₁ σ _π	HUSTON 86	NAL, MINN) (NOVO) (NOVO) (NOVO) (NOVO) RAC. MPIM NAL, MINN) (RAZ) LOV, WIEN) (ROCH) (RI, BONN+) (MICH) (HARV) (BL) (JURH) (HARV) (BL) (JURH) (
51 Reanalysis of DRL a triangle anomaly 5^2 Solution correspont $(\pi^+\pi^-\pi^+\pi^-)/[4LUE (units 10^{-5}) CLS \\ 1.8 \pm 0.9 \pm 0.3$ • We do not use $(20 90)$ $(\pi^+\pi^-\pi^+\pi^-)/[4LUE (units 10^{-4})]$ • We do not use $(5^2 \times 10^{-4})$ • We do not use $(5^2 \times 10^{-4})$	/ contribution ding to contribution to contrib	DOLINSKY 89, n. Constructive μ-ρ inte DOCUMENT ID AKHMET SHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON	and DOLINS winterference. TECN N 00 CMD2 es, fits, limits 88 OLYA TECN TECN HBC 69 HBC 68 HBC 68 HLBC	COMMENT 0.6-0.97 e^+ + $\pi^-\pi^+$ etc. • • • 0 2.5-5.8 0 3.2.4.2 0 16.0 π	Γ ₁₃ /Γ	HUSTON 86	NAL, MINN) (NOVO) (NOVO) (NOVO) RAC, MPIM NAL, MINN (GRAZ) LOV, WIEN) (ROCH) (ROCH) (ROCH) (ROCH) (LBL) (HARV) (JUTS) (SACL) (SLAC) (LBL) (DESY)
51 Reanalysis of DRL a triangle anomaly 52 Solution correspon $(\pi^+\pi^-\pi^+\pi^-)/[4LUE (units 10^{-5}) CLS 1.8 \pm 0.9 \pm 0.3 • • We do not use (20 90 (\pi^+\pi^-\pi^+\pi^-)/[4LUE (units 10^{-4}) • • We do not use (55 (20 (20 (80)$	y contribution (contribution) to contribution (contribution) (DOLINSKY 89, n. Constructive μ-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG	and DOLINS w interference. TECN N 00 CMD2 es, fits, limits 88 OLYA TECN TECN HECN HECN HECN HECN HECN HECN HECN H	COMMENT 0.6-0.97 e^+ + $\pi^-\pi^+$ etc. • • • 0 2.5-5.8 0 3.2.4.2 0 16.0 π	Γ ₁₃ /Γ	HUSTON 86	NAL, MINN' (NOVO' (NOVO') (NOV
51 Reanalysis of DRL a triangle anomaly 52 Solution correspor $-(\pi^{+}\pi^{-}\pi^{+}\pi^{-})/[\frac{4LUE}{4}(units 10^{-5})]$ 1.8 ± 0.9 ± 0.3 • • We do not use <20 90 • $-(\pi^{+}\pi^{-}\pi^{+}\pi^{-})/[\frac{4LUE}{4}(units 10^{-4})]$ • • We do not use <15 <20 <20 <20 <80	y contribution (contribution) to contribution (contribution) (DOLINSKY 89, n. Constructive μ-ρ inte DOCUMENT ID AKHMET SHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON	and DOLINS winterference. TECN N 00 CMD2 es, fits, limits 88 OLYA TECN TECN HBC 69 HBC 68 HBC 68 HLBC	COMMENT 0.6-0.97 e^+ + $\pi^-\pi^+$ etc. • • • 0 2.5-5.8 0 3.2.4.2 0 16.0 π	Γ ₁₃ /Γ	HUSTON 86	NAL, MINN) (NOVO) (NOVO) (NOVO) RAC, MPIM NAL, MINN NAL, MINN (GRAZ) LOV. WIEN (GRAZ)
51 Reanalysis of DRL a triangle anomaly 5^2 Solution correspor $(\pi^+\pi^-\pi^+\pi^-)/1$ $4LUE$ (units 10^{-5}) CLS $1.8 \pm 0.9 \pm 0.3$ • • We do not use $(20$ 90 $(\pi^+\pi^-\pi^+\pi^-)/1$ $4LUE$ (units 10^{-4}) • • We do not use $(20$ 90 $(\pi^+\pi^-\pi^+\pi^-)/1$ $(20$	y contribution (contribution) to contribution (contribution) (DOLINSKY 89, n. Constructive μ-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES	and DOLINS w interference. TECN N 00 CMD2 es, fits, limits B8 OLYA TECN es, fits, limits 69 HBC 68 HBC 68 HBC 66 HBC	COMMENT COMMENT CHG CHG COMMENT CHG COMME COMME COMMENT	Γ ₁₃ /Γ e ⁻ π ⁻ Γ ₁₃ /Γ ₁ β γ ρ - ρ Γ ₁₂ /Γ	HUSTON 86	NAL, MINN' (NOVO) (NOVO) RAC, MPIM NAL, MINN NAL, MINN LOV, WIEN' (GRAZ' LOV, WIEN' (ROCH) (ROCH) (ROCH) (LBL' (ROCH) (LBL' (L
51 Reanalysis of DRL a triangle anomaly 5^2 Solution correspor $(\pi^+\pi^-\pi^+\pi^-)/1$ $4LUE$ (units 10^{-5}) CLS $1.8 \pm 0.9 \pm 0.3$ • • We do not use $(20$ 90 $(\pi^+\pi^-\pi^+\pi^-)/1$ $4LUE$ (units 10^{-4}) • • We do not use $(20$ 90 $(\pi^+\pi^-\pi^+\pi^-)/1$ $(20$	y contribution ding to contribution total ** EVTS 153 the followin . - (**\pi**) CL\(\frac{\pi}{\pi}**) ** EVTS 153 the followin 90 90 90	DOLINSKY 89, n. Constructive ρ structive ω-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES	and DOLINS w interference. TECN N 00 CMD2 es, fits, limits B8 OLYA TECN es, fits, limits 69 HBC 68 HBC 68 HBC 66 HBC	COMMENT 0.6-0.97 e ⁺ $\pi^{+}\pi^{-}\pi^{+}$ etc. • • • 0.2.5-5.6 0.3.2,4.2 0.16.0 π^{+}	Γ ₁₃ /Γ e ⁻ π ⁻ Γ ₁₃ /Γ ₁ β γ ρ - ρ Γ ₁₂ /Γ	HUSTON 86	NAL, MINN (NOVO (NOVO) RAC, MPIM NAL, MINN NAL, MINN LOV, WIEN (GRAZ) (GRA
51 Reanalysis of DRL a triangle anomaly 52 Solution correspon $(\pi^+\pi^-\pi^+\pi^-)/1$ $4LUE$ (units 10^{-5}) CLS $1.8\pm0.9\pm0.3$ • • We do not use $(20 90)$ $(\pi^+\pi^-\pi^+\pi^-)/1$ $(4LUE$ (units 10^{-4}) • • We do not use $(20 90)$ $(\pi^+\pi^-\pi^+\pi^-)/1$ $(4LUE)$ $($	y contribution (contribution) (cont	DOLINSKY 89, n. Constructive μ-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES	and DOLINS w interference. TECN N 00 CMD2 es, fits, limits B8 OLYA TECN es, fits, limits 69 HBC 68 HBC 68 HBC 66 HBC	COMMENT COMMENT CHG CHG COMMENT CHG COMME COMME COMMENT	Γ ₁₃ /Γ	HUSTON 86	NAL, MINN' (NOVO) (NOVO) RAC, MPIM NAL, MINN NAL, MINN LOV, WIEN'
51 Reanalysis of DRL a triangle anomaly 52 Solution corresport $(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ 1.8±0.9±0.3 • • We do not use (20 90 $(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ 1.0± $(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ 1.0± $(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ 1.0± $(\pi^+\pi^-\pi^-)/\Gamma$ 1.0± $(\pi^+\pi^-\pi^-)/\Gamma$ 1.0± $(\pi^+\pi^-\pi^-)/\Gamma$ 1.0± $(\pi^+\pi^-\pi^-)/\Gamma$ 1.1± $(\pi^+\pi^-\pi^-)/\Gamma$ 1.1± $(\pi^+\pi^-\pi^-)/\Gamma$ 1.1± $(\pi^+\pi^-\pi^-)/\Gamma$ 1.1± $(\pi^+\pi^-\pi^-)/\Gamma$ 1.1± $(\pi^+\pi^-\pi^-)/\Gamma$ 1.1± $(\pi^+\pi^-\pi^-\pi^-)/\Gamma$ 1.1± $(\pi^+\pi^-\pi^-)/\Gamma$ 1.1± $(\pi^-\pi^-\pi^-)/\Gamma$	y contribution (contribution) (cont	DOLINSKY 89, n. Constructive ρ structive ω-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN	TECN TECN TECN TECN TECN TECN TECN TECN	COMMENT COMMENT COMMENT COMMENT COMMENT CHG COMME CHG COMME CHG COMME CHG COMME	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HUSTON 86	NAL, MINN' (NOVO) (NOVO) RAC, MPIM NAL, MINN NAL, MINN NAL, MINN LOV, WIEN LOV, WIEN LOV, WIEN LOV, WIEN LOV, MIEN LOV, MIEN LOV, MIEN LOV
51 Reanalysis of DRL a triangle anomaly 52 Solution corresport $(\pi^+\pi^-\pi^+\pi^-)/1$ 1.8 ± 0.9 ± 0.3 • • We do not use 20 $(\pi^+\pi^-\pi^+\pi^-)/1$ 1.0 ± 0.0 ± 0.3 • • We do not use 20 $(\pi^+\pi^-\pi^+\pi^-)/1$ 1.15 1.20 1.30 $(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ 1.21 1.21 $(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ 1.22 $(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ 1.24 $(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ 1.24 $(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$	y contribution (contribution) (cont	DOLINSKY 89, n. Constructive ρ structive ω - ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN	and DOLINS w interference. TECN N 00 CMD2 es, fits, fimits 88 OLYA TECN es, fits, limits 69 HBC 68 HBC	COMMENT COMMENT COMMENT COMMENT COMMENT COMME CHG COMME CHG COMME CO	$ \begin{array}{cccc} \Gamma_{13}/\Gamma \\ \hline e^{-}_{\pi^{-}} & \Gamma \\ \hline \pi^{-} & \Gamma_{13}/\Gamma_{1} \\ \hline BYP & \pi^{-}P \\ \hline \Gamma_{12}/\Gamma & \Gamma_{12}/\Gamma_{1} \end{array} $	HUSTON 86	NAL, MINN) (NOVO) (NOVO) RAC, MPIM NAL, MINN NAL, MINN NAL, MINN LOV, GRAZ; LOV, WIEN LOV, GRAZ; LOV, WIEN LOV, GRAZ; LOV
51 Reanalysis of DRL a triangle anomaly 5^2 Solution corresport $(\pi^+\pi^-\pi^+\pi^-)/1$ $4LUE$ (units 10^{-5}) CLS $1.8 \pm 0.9 \pm 0.3$ • • We do not use $(20$ 90 $(\pi^+\pi^-\pi^+\pi^-)/1$ $4LUE$ (units 10^{-4}) $(\pi^+\pi^-\pi^0)/1$ $(\pi^+\pi^-\pi^0)/1$ total $(\pi^+\pi^-\pi^0)/1$ total $(\pi^+\pi^-\pi^0)/1$ $(\pi^-\pi^-\pi^0)/1$ $(\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	y contribution (contribution) (cont	DOLINSKY 89, n. Constructive μ-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID VASSERMAN DOCUMENT ID g data for average g data for average	and DOLINS winterference. TECN N 00 CMD2 es, fits, limits 88 OLYA TECN es, fits, limits 69 HBC 68 HBC 68 HBC 66 HBC TECN 88B ND TECN 88B ND	COMMENT CHG COMMENT COMMENT CHG COMME $e^+e^- \rightarrow \pi^+\pi^-\pi^+$ CHG COMME Γ_{13}/Γ $e^ \pi^ \Gamma_{13}/\Gamma_1$ G_{π}	HUSTON 86	NAL, MINN' (NOVO) (NOVO) RAC, MPIM NAL, MINN NAL, MINN NAL, MINN LOV, WIEN LOV, WIEN LOV, WIEN LOV, WIEN LOV, MIEN LOV, GRAZ LOV, WIEN LOV	
51 Reanalysis of DRL a triangle anomaly 52 Solution corresport $(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ 44.UE (units 10^{-5}) 1.8±0.9±0.3 • We do not use $(20 - 90)$ 44.UE (units 10^{-4}) • We do not use $(20 - 90)$ $(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ 44.UE (units 10^{-4}) • We do not use $(20 - 90)$ $(\pi^+\pi^-\pi^0)/\Gamma$ $(\pi^-\pi^-\pi^0)/\Gamma$ $(\pi^-\pi^0)/\Gamma$	y contribution for contribution to contributio	DOLINSKY 89, n. Constructive μ structive ω- μ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 53 ABRAMS	and DOLINS winterference. TECN N 00 CMD2 es, fits, limits 88 OLYA TECN HBC 68 HBC 66 HBC TECN 88B ND TECN 88B RD TECN 88B RD TECN 88B RD TECN 88B RD	COMMENT CHG COMMENT CHG COMMENT CHG COMME	Γ_{13}/Γ $e^ \pi^ \Gamma_{13}/\Gamma_1$ G_{π}	HUSTON 86	NAL, MINN' (NOVO) (NOVO) (NOVO) RAC, MPIM NAL, MINN' (GRAZ' LOV, WIEN' (GRAZ' LOV, WIEN' (GRAZ' (GRAZ' (GRAZ' (GRAZ' (GRAZ' (GRAZ' (DURH) (HARV' (SACL' (SACL' (NEAS' SACL' (REAS' SACL' (REAS'
51 Reanalysis of DRL a triangle anomaly 52 Solution correspor $(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ ALUE (units 10^{-5}) 1.8 ± 0.9 ± 0.3 • We do not use <20 90 $(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ ALUE (units 10^{-4}) • We do not use <15 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	y contribution for contribution to contributio	DOLINSKY 89, n. Constructive μ structive ω- μ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 53 ABRAMS	and DOLINS winterference. TECN N 00 CMD2 es, fits, limits 88 OLYA TECN HBC 68 HBC 66 HBC TECN 88B ND TECN 88B RD TECN 88B RD TECN 88B RD TECN 88B RD	COMMENT CHG COMMENT CHG COMMENT CHG COMME	Γ_{13}/Γ $e^ \pi^ \Gamma_{13}/\Gamma_1$ G_{π}	HUSTON 86	NAL, MINN' (NOVO) (NOVO) RAC, MPIM NAL, MINN N
51 Reanalysis of DRL a triangle anomaly 52 Solution correspor $-(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ ALUE (units 10^{-5}) CLS • We do not use <20 90 $-(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ • We do not use <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	r contribution dring to contribution to contri	DOLINSKY 89, n. Constructive μ structive ω- μ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 53 ABRAMS	and DOLINS winterference. TECN N 00 CMD2 es, fits, limits 88 OLYA TECN HBC 68 HBC 66 HBC TECN 88B ND TECN 88B RD TECN 88B RD TECN 88B RD TECN 88B RD	COMMENT CHG COMMENT CHG COMMENT CHG COMME	Γ_{13}/Γ $e^- \rightarrow \Gamma_{13}/\Gamma_1$ $G \uparrow \Gamma_{12}/\Gamma$ Γ_{12}/Γ Γ_{12}/Γ_1 Γ_{12}/Γ_1 Γ_{12}/Γ_1 Γ_{12}/Γ_1	HUSTON 86	NAL MINN) (NOVO) (NOVO) (NOVO) RAC MPIM NAL MINN NAL MINN (GRAZ) LOV, WIEN (GRAZ) LOV, WIEN (GRAZ) (
51 Reanalysis of DRL a triangle anomaly 52 Solution correspor $-(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ ALUE (units 10^{-5}) .8±0.9±0.3 • We do not use <20 90 $-(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ • We do not use <20 <20 <80 $-(\pi^+\pi^-\pi^0)/\Gamma$ • LUE (units 10^{-4}) <1.2 $-(\pi^+\pi^-\pi^0)/\Gamma$ total <1.2 $-(\pi^+\pi^-\pi^0)/\Gamma$ (<1.2 $-(\pi^+\pi^-\pi^0)/\Gamma$	y contribution contribution to	DOLINSKY 89, n. Constructive ω-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID VASSERMAN DOCUMENT ID SERVICE BRAMON 53 ABRAMS = 1, 2, or 3 for the	and DOLINS winterference. TECN N 00 CMD2 es, fits, fimits 88 OLYA TECN es, fits, limits 69 HBC 68 HBC 68 HBC 68 HBC 7 TECN 88B ND TECN 88B ND TECN 88B ND TECN 1 HBC	COMMENT COMMENT COMMENT COMMENT COMMENT CHG COMME CHG COMME CHG COMME CHG COMMENT CHG COMMENT CHG COMMENT CHG COMMENT CHG COMMENT CHG COMMENT CHG COMME COMMENT CHG CHG COMMENT CHG CHG COMMENT CHG CHG CHG CHG CHG CHG CHG CH	Γ_{13}/Γ $e^ \pi^ \Gamma_{13}/\Gamma_1$ σ_{13}/Γ_1	HUSTON 86	NAL MINN (NOVO) (NOVO) (NOVO) RAC, MPIM NAL, MINN NAL, MINN NAL, MINN LOV, WIEN LOV, W
51 Reanalysis of DRL a triangle anomaly 52 Solution correspor $(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ ALUE (units 10^{-5}) CLS • We do not use $(20 - 90)$ ($\pi^+\pi^-\pi^+\pi^-$)/I ALUE (units 10^{-4}) • We do not use $(20 - 90)$ ($(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ ALUE (units 10^{-4}) • We do not use $(20 - 90)$ ($(\pi^+\pi^-\pi^0)/\Gamma$ • We do not use $(20 - 90)$ ($(\pi^+\pi^-\pi^0)/\Gamma$ • We do not use $(20 - 90)$ ($(\pi^+\pi^-\pi^0)/\Gamma$ • We do not use $(20 - 90)$	r contribution dring to contribution to contri	DOLINSKY 89, n. Constructive μ-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 53 ABRAMS = 1, 2, or 3 for the DOCUMENT ID DO	and DOLINS winterference. TECN N 00 CMD2 es, fits, limits 88 OLYA TECN es, fits, limits 69 HBC 68 HBC 66 HBC TECN 88B ND TECN es, fits, limits 86 RVUE 71 HBC 11 HBC 12 FCN 15 FCN 16 FCN 16 FCN 17 FCN 17 FCN 17 FCN 18 FCN	COMMENT CHG COMMENT COMMENT CHG COMME $e^+e^- \rightarrow \pi^+\pi^-\pi^+$ CHG COMMENT $e^+e^- \rightarrow \pi^+\pi^-\pi^+$ CHG COMMENT $e^+e^- \rightarrow \pi^-$ COMMENT $e^+e^- \rightarrow \pi^-$ COMMENT $e^+e^- \rightarrow \pi^-$ CHG COMMENT $e^+e^- \rightarrow \pi^-$ CHG COMMENT $e^+e^- \rightarrow \pi^-$ CHG COMMENT $e^+e^- \rightarrow \pi^-$	Γ_{13}/Γ $e^ \pi^ \Gamma_{13}/\Gamma_1$ σ_{π}	HUSTON 86	NAL, MINN) (NOVO) (NOVO) RAC, MPIM NAL, MINN) (GRAZ) LOV, WIEN) (GRAZ) LOV, WIEN) (GRAZ) (GRA
51 Reanalysis of DRL a triangle anomaly 52 Solution correspont $(\pi^{+}\pi^{-}\pi^{+}\pi^{-})/\Gamma_{ALUE (units 10^{-5})}$ 1.8 ± 0.9 ± 0.3 • • We do not use $(20 - 90)$	contribution con	DOLINSKY 89, n. Constructive ω-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 53 ABRAMS = 1, 2, or 3 for the DOCUMENT ID AULCHENKO	and DOLINS w interference. TECN N 00 CMD2 es, fits, fimits 88 OLYA TECN es, fits, limits 69 HBC 68 HBC 66 HBC TECN 88B ND TECN es, fits, limits 86 RVUE 71 HBC e 3 x system.	COMMENT COMMENT COMMENT COMMENT COMMENT COMME	Γ_{13}/Γ $e^ \pi^ \Gamma_{13}/\Gamma_1$ σ_{13}/Γ_1	HUSTON 86	NAL, MINN) (NOVO) (NOVO) (NOVO) RAC, MPIM NAL, MINN NAL, MINN NAL, MINN NAL, MINN NAL, MINN (GRAZ) (
51 Reanalysis of DRL a triangle anomaly 52 Solution correspor $(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ ALUE (units 10^{-5}) .8±0.9±0.3 • We do not use <20 90 $(\pi^+\pi^-\pi^+\pi^-)/\Gamma$ • We do not use <15 <20 <20 <20 <20 <20 <20 <20 <20 <20 <30 <20 <20 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30	r contribution contribution to contribution t	DOLINSKY 89, n. Constructive ω-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID 8 BRAMON 53 ABRAMS = 1, 2, or 3 for the DOCUMENT ID AULCHENKO g data for average graph AULCHENKO g data for average g data for	and DOLINS winterference. TECN N 00 CMD2 es, fits, fimits 88 OLYA TECN es, fits, limits 69 HBC 68 HBC 68 HBC 66 HBC TECN 88B ND TECN es, fits, limits 86 RVUE 71 HBC e 3π system. 87c ND es, fits, limits	EXY 91 taking it is solution. $ \begin{array}{c} COMMENT \\ 0.6-0.97 e^{+} \\ +\pi^{-}\pi^{+} \\ \text{etc.} \bullet \bullet \\ 0 & 2.5-5.6 \\ 0 & 2.5-5.6 \\ 0 & 3.2.4.2 \\ 0 & 16.0 \pi \\ 0 & 2.1 \pi^{+} \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HUSTON	NAL, MINN) (NOVO) (NOVO) (NOVO) RAC, MPIM NAL, MINN (GRAZ) LOV, WIEN (GRAZ) (GR
51 Reanalysis of DRL a triangle anomaly 52 Solution correspor $-(\pi^{+}\pi^{-}\pi^{+}\pi^{-})/\Gamma_{ALUE (units 10^{-5})}$ 1.8 ± 0.9 ± 0.3 • We do not use <20 90 · $(\pi^{+}\pi^{-}\pi^{+}\pi^{-})/\Gamma_{ALUE (units 10^{-4})}$ • We do not use <15 <20 <20 <80 · $(\pi^{+}\pi^{-}\pi^{0})/\Gamma_{tota}$ 2.1.2 · We do not use <15 <20 <30 · We do not use <15 <30 · $(\pi^{+}\pi^{-}\pi^{0})/\Gamma_{tota}$ 2.1.2 · • We do not use <1.2 · · We do not use <1.5 · · · · · · · · · · · · · · · · · · ·	contribution con	DOLINSKY 89, n. Constructive ω-ρ inte DOCUMENT ID AKHMETSHI g data for average KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 53 ABRAMS = 1, 2, or 3 for the DOCUMENT ID AULCHENKO	and DOLINS winterference. TECN N 00 CMD2 es, fits, fimits 88 OLYA TECN es, fits, limits 69 HBC 68 HBC 68 HBC 66 HBC TECN 88B ND TECN es, fits, limits 86 RVUE 71 HBC e 3π system. 87c ND es, fits, limits	EXY 91 taking it is solution. $ \begin{array}{c} COMMENT \\ 0.6-0.97 e^{+} \\ +\pi^{-}\pi^{+} \\ \text{etc.} \bullet \bullet \\ 0 & 2.5-5.6 \\ 0 & 2.5-5.6 \\ 0 & 3.2.4.2 \\ 0 & 16.0 \pi \\ 0 & 2.1 \pi^{+} \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi $ $ \begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \pi \end{array} $	Γ_{13}/Γ $e^ \pi^ \Gamma_{13}/\Gamma_1$ σ_{π}	HUSTON	NAL MINN (NOVO)

ı

		отн	ER RELATED PAPERS -	
ANDERSON	00	CLNS 99/1635		
BENAYOUN	99	PR D59 074020	M. Benayoun et al.	
EIDELMAN	99	NPBPS 76 319	5. Eidelman, V. Ivanchenko	
MARCO	99	PL B470 20	E. Marco et al.	
ROO5	99	APS 49 N2 vii	M. Roos	
ALEMANY	98	EPJ C2 123	R. Alemany et al.	
ABELE	97B	PL B402 195	A. Abele et al.	(Crystal Barrel Collab.)
ABELE	97F	PL B411 354	A. Abele et al.	(Crystal Barrel Collab.)
BENAYOUN	93	ZPHY 58 31	M. Benayoun et al.	(CDEF, CERN, BARI)
LAFFERTY	93	ZPHY C60 659	G.D. Lafferty	(MCHS)
KAMAL	92	PL B284 421	A.N. Kamai, Q.P. Xu	(ALBE)
KUHN	90	ZPHY C48 445	J.H. Kuhn et al.	(MPIM)
ERKAL	85	ZPHY C29 485	C. Erkal, M.G. Olsson	(WISC)
RYBICKI	85	ZPHY C28 65	K. Rybicki, I. Sakrejda	(CRAC)
KURDADZE	83	JETPL 37 733	L.M. Kurdadze et al.	(NOVO)
		Translated from ZET		•
ALEKŞEEV	82	JETP 55 591	E.A. Alekseeva et al.	(KIAE)
N/ENIAIEN/		Translated from ZET		D C. II (MATELL)
KENNEY	62	PR 126 736	V.P. Kenney, W.D. Shephard, C	
SAMIOS	62	PRL 9 139	N.P. Samios et al.	(BNL, CUNY, COLU+)
XUONG	62	PR 128 1849	H. Nguyen Ngoc, G.R. Lynch	(LRL)
ANDERSON	61	PRL 6 365	J.A. Anderson et al.	(LRL)
ERWIN	61	PRL 6 628	A.R. Erwin et al.	(WISC)

$\omega(782)$


$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ω(782) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN_	COMMENT	
782.57±0.12 OUR AV	ERAGE				See the ideogram below.	
$782.71 \pm 0.07 \pm 0.04$	11200	AKHMETSHIN			$e^+e^- \rightarrow \pi^+\pi^-\pi^0$	Į
782.7 ± 0.1 ± 1.5	19500	WURZINGER			1.33 $pd \rightarrow {}^{3}He\omega$	
$781.96 \pm 0.17 \pm 0.80$	11 k	AMSLER	94C	CBAR	$0.0 \bar{\rho} \rho \rightarrow \omega \pi^0 \pi^0$	
$782.08 \pm 0.36 \pm 0.82$	3463	AMSLER	94C	CBAR	$0.0 \overline{p} \rho \rightarrow \omega \eta \pi^0$	
$781.96 \pm 0.13 \pm 0.17$	15k	AMSLER	93B	CBAR	$0.0 \overline{p} p \rightarrow \omega \pi^0 \pi^0$	
782.4 ± 0.2	270k	WEIDENAUER	93	ASTE	$\overline{p}p \rightarrow 2\pi^+ 2\pi^- \pi^0$	
782.2 ± 0.4	1488	KURDADZE	83B	OLYA	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$	
782.4 ± 0.5	7000	1 KEYNE	76	CNTR	$\pi^- \rho \rightarrow \omega n$	
• • • We do not use	the follow	ring data for average	s, fits	, limits,	etc. • • •	
781.78 ± 0.10		² BARKOV	87	CMD	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$	
783.3 ±0.4		CORDIER	80	WIRE	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$	
782.5 ±0.8	33260	ROOS	80	RVUE	0.0−3.6 p p	
782.6 ±0.8	3000	BENKHEIRI	79	OMEG	9-12 π [±] p	
781.8 ±0.6	1430	COOPER	78B	HBC	$0.7-0.8 \ \overline{p}p \rightarrow 5\pi$	
782.7 ±0.9	535	VANAPEL	78	HBC	7.2 p̄ρ → p̄ρω	
783.5 ±0.8	2100	GESSAROLI	77	HBC	11 $\pi^{} \rho \rightarrow \omega n$	
782.5 ± 0.8	418	AGUILAR	72B	HBC	3.9,4.6 K ⁻ p	
783.4 ±1.0	248	BIZZARRI	71	HBC	$0.0 \ \rho \overline{\rho} \rightarrow K^+ K^- \omega$	
781.0 ± 0.6	510	BIZZARRI	71	HBC	$0.0 \ p \overline{p} \rightarrow K_1 K_1 \omega$	
783.7 ±1.0	3583	3 COYNE	71	HBC	$3.7 \pi^+ p \rightarrow$	
					$\rho_{\pi}^{+}_{\pi}^{+}_{\pi}^{+}_{\pi}^{-}_{\pi}^{0}$	
784.1 ±1.2	750	ABRAMOVI	70	HBC	3.9 $\pi^{-}p$	
783.2 ± 1.6		⁴ BIGGS	70B	CNTR	$<$ 4.1 γ C \rightarrow $\pi^+\pi^-$ C	
782.4 ±0.5	2400	BIZZARRI	69	HBC	0.0 p	

 $^{^{1}}$ Observed by threshold-crossing technique. Mass resolution = 4.8 MeV FWHM.

 $^{^4}$ From ω -ho interference in the $\pi^+\pi^-$ mass spectrum assuming ω width 12.6 MeV.

ω (782) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID TECN COMMENT
8.44±0.09 OUR AV	ERAGE	
$8.68 \pm 0.23 \pm 0.10$	11200	AKHMETSHIN 00C CMD2 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
8.2 ±0.3	19500	WURZINGER 95 SPEC 1.33 $pd \rightarrow {}^{3}\text{He}\omega$
8.4 ± 0.1		⁵ AULCHENKO 87 ND $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
8.30 ± 0.40		BARKOV 87 CMD $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
9.8 ±0.9	1488	KURDADZE 83B OLYA $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
9.0 ±0.8		CORDIER 80 WIRE $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
9.1 ±0.8		BENAKSAS 72B OSPK e^+e^-
• • We do not use	the following	ng data for averages, fits, limits, etc. • • •
12 ±2	1430	COOPER 78B HBC 0.7-0.8 $\vec{p}p \rightarrow 5\pi$
9.4 ±2.5	2100	GESSAROLI 77 HBC $11 \pi^- p \rightarrow \omega n$
10.22 ± 0.43	20000	⁶ KEYNE 76 CNTR π ⁻ ρ → ω n
13.3 ±2	418	AGUILAR 728 HBC 3.9,4.6 K ⁻ p
10.5 ±1.5		BORENSTEIN 72 HBC 2.18 K P
$7.70 \pm 0.9 \pm 1.15$	940	BROWN 72 MMS $2.5 \pi^- p \rightarrow nMM$
10.3 ±1.4	510	BIZZARRI 71 HBC $0.0 p\bar{p} \rightarrow K_1 K_1 \omega$
12.8 ±3.0	248	BIZZARRI 71 HBC $0.0 p \overline{p} \rightarrow K^+ K^- \omega$
9.5 ±1.0	3583	COYNE 71 HBC $3.7 \pi^+ p \rightarrow$
		$_{D\pi}+_{\pi}+_{\pi}{\pi}0$

⁵ Relativistic Breit-Wigner includes radiative corrections.

ω (782) DECAY MODES

	Mode	Fraction (Γ_I/Γ)	Scale factor/ Confidence level
$\overline{\Gamma_1}$	$\pi^{+}\pi^{-}\pi^{0}$	(88.8 ± 0.7) %	
	$\pi^0 \gamma$	(8.5 ± 0.5) %	
Γ ₂ Γ ₃	$\pi^+\pi^-$	$(2.21 \pm 0.30)\%$	
Γ4	neutrals (excluding $\pi^0 \gamma$)	$(5.3 \ ^{+8.7}_{-3.5}) \times$	10-3
Γ_5	$\eta \gamma$	$(6.5 \pm 1.0) \times$	10-4
Γ ₆	$\frac{\eta \gamma}{\pi^0}e^+e^-$	(5.9 ±1.9)×	10-4
Γ,	$\pi^{0} \mu^{+} \mu^{-}$	(9.6 ±2.3)×	
Гя	e+ e-	$(7.07 \pm 0.19) \times$	10 ⁻⁵ S=1.1
و ۲	$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	< 2 %	CL=90%
Γ_{10}	$\pi^+\pi^-\gamma$	< 3.6 ×	10 ⁻³ CL=95%
Γ_{13}	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 1 ×	10 ⁻³ CL=90%
Γ ₁₂	$\pi^0 \pi^0 \gamma$	$(7.2 \pm 2.5) \times$	10-5
	$\mu^+\mu^-$	< 1.8 ×	10 ⁻⁴ CL=90%
Γ ₁₄	3γ	< 1.9 ×	10 ⁻⁴ CL=95%
	Charge conjugation (C) violating modes	
Γ_{15}	$\eta \pi^0$	< 1 ×	10 ⁻³ CL=90%
Γ ₁₆	$3\pi^0$	< 3 ×	10 ⁻⁴ CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to 6 branching ratios uses 20 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=$ 10.3 for 17 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

ω(782) PARTIAL WIDTHS

Γ(e ⁺ e ⁻)					Га
VALUE (keV)	EVTS	DOCUMENT ID	TECN	COMMENT	
0.60 ±0.02 OUF	REVALUATION	ł			
• • • We do not	use the followin	ig data for averages, f	its, limits	, etc. • • •	
$0.595 \pm 0.014 \pm 0.0$	09 11200	7 AKHMETSHIN 0	C CMD2	$e^+e^- \rightarrow \pi^+$	$\pi^{-}\pi^{0}$
⁷ Using B($\omega \rightarrow$	$\pi^+\pi^-\pi^0)=$	0.888 ± 0.007.			

ω (782) Γ (i) Γ (e^+e^-)/ Γ (total)

$\Gamma(e^+e^-) \times \Gamma(\pi^+i$	r ⁻ π ⁰)/Γt	otal			Γ ₈ Γ ₁ /Γ
VALUE (keV)	EVTS	DOCUMENT ID	TECN	COMMENT	
$0.528 \pm 0.012 \pm 0.007$	11200	AKHMETSHIN 00c	CMD2	$e^+e^- \to$	$\pi^+\pi^-\pi^0$

² Systematic uncertainties underestimated. Superseded by AKHMETSHIN 00c.

³From best-resolution sample of COYNE 71.

⁶Observed by threshold-crossing technique. Mass resolution = 4.8 MeV FWHM.

 ω (782)

	ω(78	2) BRANCHING	RATIOS			$\Gamma(\eta \pi^0)/\Gamma_{\text{total}}$ Violates C cons	ervation				Γ ₁₅ /Ι
(neutrals)/Γ(π+ π	$(-\pi^0)$			$(\Gamma_2 + \Gamma_4)$	_•)/Γ ₁	VALUE	<u>CL%</u>	DOCUMENT ID		COMMENT	
ALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT		<0.001	90	ALDE	94B GAM2	$38\pi^-\rho \rightarrow$	$\eta \pi^0 n$
102±0.008 OUR FIT						$\left[\Gamma(\eta\gamma) + \Gamma(\eta\pi^0)\right]$	1/5/_+	0)		/1	Γ ₅ +Γ ₁₅)/Γ
103 + 0.011 OUR AV	ERAGE					[(1/7) + (1/1)	[/	DOCUMENT ID	TECN_	COMMENT	י//15 י⊤5
15 ±0.04	46	AGUILAR	72B HBC	3.9,4.6 K-p		<0.016	90	10 FLATTE	66 HBC	1.2 - 1.7 K	′- n →
10 ± 0.03	19	BARASH	678 HBC	0.0 p p		V 0.020	,,		00 1.00	$\Lambda \pi^+ \pi^-$	•
34 ± 0.026	850	DIGIUGNO	66B CNTR			• • We do not use	the following	ng data for average	s, fits, limits,	etc. • • •	
97 ± 0.016	348	FLATTE	66 HBC	$1.4 - 1.7 K^- p \rightarrow$		< 0.045	95	JACQUET	698 HLBC		
06 +0.05 -0.02		JAMES	66 HBC	ΛΜΜ 21. ±-		10 Restated by us us	ing B(η →	charged modes) =	29.2%.		
				2.1 π ⁺ p				_		/r . r	\//E . E
08 ±0.03	35	KRAEMER		$1.2 \pi^+ d$		Γ(neutrals)/Γ(cha	irgeo parti	•			4)/(F ₁ +F ₃
We do not use						VALUE 0.099 ± 0.008 OUR F	i T	DOCUMENT ID	<u>TECN</u>	COMMENT	
11 ±0.02	20	BUSCHBECK	63 HBC	1.5 K ⁻ p		0.124±0.021	•	FELDMAN	67c OSPK	1.2 π ⁻ p	
$(\pi^{+}\pi^{-})/\Gamma(\pi^{+}\pi^{-})$	- ≖ 0)			Г	-3/Γ ₁		•				
See also Γ(π+π	,			·	3/-1	$\Gamma(\pi^0\pi^0\gamma)/\Gamma(\pi^+\eta)$	r-π ^υ)				Γ ₁₂ /Γ
ALUE	m. total.	DOCUMENT ID	TECN	COMMENT		VALUE	CL%	DOCUMENT ID	<u>TECN</u>	COMMENT	
0249±0.0035 OUR	FIT					< 0.00045	90	DOLINSKY	89 ND		$\pi^0\pi^0\gamma$
26 ±0.005 OUR	AVERAGE					• • • We do not use	the followi	ng data for average	s, fits, limits,	etc. • • •	
021 + 0.028 0.009		⁸ RATCLIFF	72 ASPK	$15 \pi^- p \rightarrow n2\pi$		< 0.08	95	JACQUET	698 HLBC		
0.005 028 ±0.006		BEHREND	71 ASPK	Photoproduction		[(ma) /[/=0a)					Г ₅ /Г
022 +0.009 -0.01		9 ROOS	70 RVUE			$\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$		DOCUMENT 10	TECH	COMMENT	15/1
						VALUE ■ ● ■ We do not use	the follows:	DOCUMENT ID		COMMENT .	
				es from an extrapola	ition.		. the follows	ng data for average			
⁹ ROOS 70 combine	S ABRAMO	OVICH 70 and BIZ	ZARRI 70.			0.0098 ± 0.0024		12 DOLINSKY	93 GAM2 89 ND	$38\pi^- p \rightarrow e^+ e^- \rightarrow$	
$(\pi^0\gamma)/\Gamma(\pi^+\pi^-\pi$	-0)			Г	-2/Γ ₁	0.0082 ± 0.0033 0.010 ± 0.045		APEL		4-8 π ⁻ p -	
LUE		DOCUMENT ID	TECN	COMMENT					120 031 11	4 0 x p	. 1131
096±0.006 OUR FI						¹¹ Model independer ¹² Solution correspo	nding to co	ativii, nstructive (150 inter	ference		
096±0.006 OUR AV	ERAGE			. 0				iistructive w-p iinter	referee.		
099±0.007		DOLINSKY	89 ND	$e^+e^- \rightarrow \pi^0\gamma$		$\Gamma(\pi^0 \mu^+ \mu^-)/\Gamma_{\text{tot}}$	al				$\Gamma_7/$
084±0.013		KEYNE		$\pi^- p \rightarrow \omega n$		VALUE (units 10-4)		DOCUMENT ID	TECN	COMMENT	
109±0.025 081±0.020		BENAKSAS BALDIN	72c OSPK 71 HLBC			0.96±0.23		DZHELYADIN	81B CNTR	25-33 π -	o → ωn
13 ±0.04		JACQUET	69B HLBC	2.9 π · μ							
10 10.01		3/100021	030 11200			$\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{tota}}$	ıl				Γ ₆ /
$(\pi^+\pi^-\gamma)/\Gamma(\pi^+\gamma)$	$\pi^{-} \pi^{0}$)			Г	10/Γ ₁	VALUE (units 10-4)	EVTS	DOCUMENT ID	TECN	COMMENT	
LUE	<u>CL%</u>	DOCUMENT ID		COMMENT		5.9±1.9	43	DOLINSKY	88 ND	$e^+e^- \rightarrow$	$\pi^{0} e^{+} e^{-}$
• • We do not use	the followir	ig data for average	es, fits, limits,	etc. • • •							_
(0.066	90	KALBFLEISCH	H 75 HBC	$2.18 \ K^-p \rightarrow$		$\Gamma(e^+e^-)/\Gamma_{ m total}$					Γ ₈ /
				$\Lambda \pi^+ \pi^- \gamma$		VALUE (units 10 ⁻⁴)	EVT5	DOCUMENT ID	TECN	COMMENT	
(0.05	90	FLATTE	66 HBC	$1.2 - 1.7 K^- p \rightarrow$		0.707 ±0.019 OUR A	VERAGE	Error includes scale			 _ 0
				$\Lambda \pi^+ \pi^- \gamma$		0.714 ± 0.036		DOLINSKY BARKOV	89 ND 87 CMD	e+e- → e+e- →	$\pi^{+}\pi^{-}\pi^{0}$
$(\pi^+\pi^-\gamma)/\Gamma_{\text{total}}$				ſ	Γ ₁₀ /Γ	0.72 ±0.03 0.64 ±0.04	1488	KURDADZE	83B OLYA		$\pi + \pi - \pi^0$
LUE	CL%	DOCUMENT ID	TECN	COMMENT	107	0.675 ± 0.069	1400	CORDIER	80 WIRE	e+e- →	
0.0036	95			$p\bar{p} \rightarrow \pi^{+}\pi^{-}\pi^{+}$	π-γ	0.83 ±0.10		BENAKSAS	728 OSPK		3π
We do not use	the followin				. ,	0.77 ± 0.06		¹³ AUGUSTIN	69D OSPK	$e^+e^- \rightarrow$	2π
0.004	95	BITYUKOV	886 SPEC	$32 \pi^- p \rightarrow \pi^+ \pi^-$	- ~X	• • • We do not use	the followi	ng data for average	s, fits, limits	etc. • • •	
				V= n p · n n	,,,	0.685 ± 0.016	11200	14 AKHMETSHII	N 00C CMD2	$e^+e^- \rightarrow$	$\pi^{+}\pi^{-}\pi^{0}$
(+ + + + + + + + + + + + + + + + + + + 	total			Γ	Γ ₁₁ /Γ	0.65 ± 0.13	33	15 ASTVACAT	68 OSPK	Assume SU	J(3)+mixing
LUE	CL%	DOCUMENT ID	TECN	COMMENT		13 Rescaled by us to	correspond	to ω width 8.4 Me	eV.		
1×10^{-3}	90	KURDADZE	88 OLYA	e+e_ →		¹⁴ Using B($\omega \rightarrow \pi$					
				π ⁺ π ⁻ π ⁺ π ⁻		¹⁵ Not resolved from	ηρ decay. Ε	rror statistical only			
(π [∔] π [−] π ⁰ π ⁰)/Γ _t	otal				Γ9/Γ	Γ(neutrals)/Γ _{total}					(Γ ₂ +Γ ₄)/
LUE (units 10 ⁻²)	CL%	DOCUMENT ID	TECN	COMMENT		VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	\'Z''4//
2	90	KURDADZE		$e^+e^- \rightarrow \pi^+\pi^-$	π0π0	0.090±0.006 OUR F		EQ COMERT ID	<u> </u>	- Quantities I	
		·				0.081 ±0.011 OUR A					
$(\mu^+\mu^-)/\Gamma(\pi^+\pi^-)$	- ≭ ∪)			Γ ₁	₁₃ /Г ₁	0.075 ± 0.025		BIZZARRI	71 HBC		
ALUE (units 10 ⁻³)	CL%	DOCUMENT ID	TECN	COMMENT		0.079 ± 0.019		DEINET	69B OSPK	-	
0.2	90	WILSON	69 OSPK	12 π [−] C → Fe		0.084 ± 0.015		BOLLINI	68c CNTR		
• We do not use	the followin	ng data for average	es, fits, limits,	, etc. • • •		• • • We do not use		-			
1.7	74	FLATTE	66 HBC	1.2 - 1.7 K $^-p \rightarrow$		0.073 ± 0.018	42	BASILE	72B CNTR	1.67 $\pi^{-}p$	
				$\Lambda \mu^+ \mu^-$		$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$					Γ ₃ /
1.2		BARBARO	65 HBC	2.7 K ⁻ p		See also $\Gamma(\pi^+)$	π-)/Γ(-+	0\			' 3/
$(\pi^0\pi^0\gamma)/\Gamma(\pi^0\gamma)$	١			F.	/Г.	See also I (π '	n)/ι(π '	π π°). <u>DOCUMENT ID</u>	TECN	COMMENT	
(* ****/)/!(****/) NLUE		EVTS DOC	UMENT ID		₁₂ /Γ ₂	0.0221 ± 0.0030 OUR	FIT	ID	7.20,1	20	
0.00085±0.00029	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			<u>TECN COMMENT</u> IB GAM2 38π ⁻ ρ –		0.021 ±0.004 OUR					
マ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		40 ± ALD	_ 94	18 GAM2 38π p = π0π0,		0.023 ± 0.005		BARKOV	85 OLYA	$e^+\mathrm{e}^-$	
	the followin		es, fits, limits		,	$0.016 \begin{array}{c} +0.009 \\ -0.007 \end{array}$		QUENZER	78 CNTR	e^+e^-	
		-				-0.007					
• • We do not use	90	[301]									
• We do not use	90	DOL	INSKY 89	ND $e^+e^{\pi^0\pi^0}$	Υ						
• • We do not use 0.005	95	KEY	'NE 76	$\pi^0\pi^0$, CNTR $\pi^-p o$							
• • We do not use < 0.005 < 0.18 < 0.15 < 0.14		KEY	NE 76	$\pi^0\pi^0$							

(LRL) (LRL) (JHU) (LRL)

• • We do not use the following	-			ï
0.019 ±0.003 0.023 ±0.004	¹⁶ GARDNER ¹⁷ BENAYOUN	99 RVUE 98 RVUE	$e^+e^- \rightarrow \pi^+\pi^-$ $e^+e^- \rightarrow \pi^+\pi^-$	•
0.025 10.004		30 KVOL	$\mu^+\mu^-$	
0.010 ± 0.001	18 WICKLUND	78 ASPK	3,4,6 π^{\pm} N	
0.0122±0.0030			Photoproduction	
$0.013 \begin{array}{l} +0.012 \\ -0.009 \end{array}$	MOFFEIT	71 HBC	2.8,4.7 γp	
$0.0080 + 0.0028 \\ -0.002$	¹⁹ BIGGS	70B CNTR	$4.2\gamma C \rightarrow \pi^+\pi^-C$	
¹⁶ Using the data of BARKOV	85.			ı
17 Using the data of BARKOV	85 in the hidden lo	cal symmetry	model.	1
18 From a model-dependent and 19 Re-evaluated under $\Gamma(\pi^+\pi^-)$	llysis assuming com	plete coherer	ice.	-
ρ photoproduction cross-sect		BEHKENU /	I using more accurate $\omega \rightarrow$	
			E 4/E . E \	
$\Gamma(\pi^0\pi^0\gamma)/\Gamma(\text{neutrals})$	DOCUMENT ID	TEC.	$\Gamma_{12}/(\Gamma_2+\Gamma_4)$	
• • • We do not use the followi				
0.22±0.07	²⁰ DAKIN		1.4 π ⁻ ρ → πMM	
<0.19 90	DEINET	69B OSPK	1.4 π p → πνινι	
²⁰ See $\Gamma(\pi^0\gamma)/\Gamma$ (neutrals).				
$\Gamma(\pi^0\gamma)/\Gamma(\text{neutrals})$			$\Gamma_2/(\Gamma_2+\Gamma_4)$	
• • • We do not use the followi	DOCUMENT ID			
	²¹ DAKIN			
0.78±0.07 >0.81 90	DEINET	69B OSPK	$1.4 \pi^- p \rightarrow nMM$	
²¹ Error statistical only. Autho			± ±0 α as the only neutral	
decay.	3 Obtain good in	230 233011111	g k y as the only neutral	
$\Gamma(\eta \gamma)/\Gamma_{\text{total}}$			Γ ₅ /Γ	
1	DOCUMENT ID	TECN		
VALUE (units 10 ⁻⁴) EVTS 6.5 ±1.0 OUR AVERAGE	DOCUMENT ID		COMMENT	
6.6 ±1.7	²² ABELE	97E CBAR	$0.0 \ \overline{p} p \rightarrow 5\gamma$	
8.3 ±2.1	ALDE		$38\pi^- p \rightarrow \omega n$	
7.3 ±2.9	²³ DOLINSKY	89 ND	$e^+e^- \rightarrow \eta \gamma$	
$3.0 \begin{array}{c} +2.5 \\ -1.8 \end{array}$	²³ ANDREWS		6.7−10 γCu	
• • We do not use the following				
0.7 to 5.5	²⁴ CASE			
			$0.0 \ p\bar{p} \rightarrow \eta \eta \gamma$	ł
	3,25 BENAYOUN		$0.0 \ p\bar{p} \rightarrow \eta\eta\gamma$ $e^{+}e^{-} \rightarrow \eta\gamma$	•
$6.56^{+2.41}_{-2.55}$ 3525 ² 22 No flat $\eta \eta \gamma$ background assume 23 and 24 and 25 and 2	3,25 BENAYOUN umed.	96 RVUE		1
$6.56^{+2.41}_{-2.55}$ 3525 2 No flat $\eta\eta\gamma$ background assumed 23 Solution corresponding to co	3,25 BENAYOUN umed. nstructive ω-ρ inter	96 RVUE	$e^+e^- \rightarrow \eta \gamma$!
$6.56^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background assumed 23 Solution corresponding to compare the degree of the de	3,25 BENAYOUN umed. nstructive ω-ρ inter	96 RVUE	$e^+e^- \rightarrow \eta \gamma$	1
6.56 $^{+2.41}_{-2.55}$ 3525 2 ²² No flat $\eta\eta\gamma$ background asss 23 Solution corresponding to co 24 Depending on the degree of $\pi^{0}\gamma$)=(8.5 \pm 0.5) \times 10 ⁻² .	3,25 BENAYOUN umed. enstructive ω - ρ intercoherence with the	96 RVUE rference. flat ηηγ bac	${ m e^+e^-} ightarrow\eta\gamma$ kground and using B(ω $ ightarrow$	1
$6.56^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background assumed 23 Solution corresponding to compare the degree of the de	3,25 BENAYOUN umed. instructive ω - ρ intercoherence with the 4, DOLINSKY 89,	96 RVUE rference. flat ηηγ bac	${ m e^+e^-} ightarrow\eta\gamma$ kground and using B(ω $ ightarrow$	1
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asss 23 Solution corresponding to co 24 Depending on the degree of 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Reanalysis of DRUZHININ 8 triangle anomaly contribution	3,25 BENAYOUN umed. instructive ω - ρ intercoherence with the 4, DOLINSKY 89,	96 RVUE rference. flat ηηγ bac	$e^+e^- o \eta \gamma$ kground and using $\mathrm{B}(\omega o 91$ taking into account the]
6.56 $^{+2.41}_{-2.55}$ 3525 2 No flat $\eta\eta\gamma$ background asse 23 Solution corresponding to co 24 Depending on the degree of $^{40}\gamma$)=(8.5 \pm 0.5) \times 10 ⁻² . Seanalysis of DRUZHININ 8	3,25 BENAYOUN umed. instructive ω - ρ intercoherence with the 4, DOLINSKY 89,	96 RVUE reference. flat $\eta\eta\gamma$ bac	$e^+e^- o\eta\gamma$ kground and using B(ωo 91 taking into account the Γ_7/Γ_{13}	1 1
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asst 23 Solution corresponding to co 24 Depending on the degree of $^{\pi^0}\gamma$)=(8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$	3,25 BENAYOUN armed. Instructive ω - ρ intercoherence with the 4, DOLINSKY 89, is.	96 RVUE rference. flat ηηη bac DOLINSKY '	$e^+e^- o \eta \gamma$ kground and using $B(\omega o 91$ taking into account the Γ_7/Γ_{13}	1
6.56 $^{+2}$.41 3525 2 22 No flat $\eta\eta\gamma$ background asset 23 Solution corresponding to co 24 Depending on the degree of $^{\pi}$ 0 $^{\gamma}$)=(8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^{0}\mu^{+}\mu^{-})/\Gamma(\mu^{+}\mu^{-})$	3,25 BENAYOUN armed. Instructive ω - ρ intercoherence with the 4, DOLINSKY 89, is.	96 RVUE rference. flat ηηγ bac DOLINSKY of the second	$e^+e^- o \eta \gamma$ kground and using $B(\omega o 91$ taking into account the	1
6.56 $^{+2}$.41 3525 2 22 No flat $\eta\eta\gamma$ background asset 23 Solution corresponding to co 24 Depending on the degree of $^{\pi}$ 0 $^{\gamma}$ 3=(8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^{0}\mu^{+}\mu^{-})/\Gamma(\mu^{+}\mu^{-})$ MALUE EVTS	3,25 BENAYOUN umed. nstructive ω - ρ intercoherence with the 4, DOLINSKY 89, s. DOCUMENT ID ng data for average 26 DZHELYADIN	96 RVUE rference. flat ηηγ bac DOLINSKY of the second	$e^+e^- o \eta \gamma$ kground and using $B(\omega o 91$ taking into account the	1 1
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background assized 23 Solution corresponding to corresponding to the degree of $^{-2}\eta$ Depending on the degree of $^{-2}\eta$ Depending on the degree of $^{-2}\eta$ Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^{0}\mu^{+}\mu^{-})/\Gamma(\mu^{+}\mu^{-})$ MALUE EVTS • • • We do not use the following 1.2 \pm 0.6 30 26 Superseded by DZHELYADIN	3,25 BENAYOUN umed. nstructive ω - ρ intercoherence with the 4, DOLINSKY 89, s. DOCUMENT ID ng data for average 26 DZHELYADIN	96 RVUE rference. flat ηηγ bac DOLINSKY of the second	$e^+e^- \rightarrow \eta \gamma$ kground and using $B(\omega \rightarrow 91$ taking into account the $\frac{\Gamma_7/\Gamma_{13}}{\cot \cdots \cot \Gamma}$ etc. • • • 25–33 $\pi^- p$	1 1
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asst 23 Solution corresponding to co 24 Depending on the degree of $^{47}\gamma$ }=(8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ MALUE EVTS • • • We do not use the followide 1.2 \pm 0.6 30 26 Superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{total}$	aned. Interceptive ω-ρ intercoherence with the coherence coherence with the coherence coheren	96 RVUE rference. flat ηηγ bac DOLINSKY TECN es, fits, limits,	$e^+e^- \rightarrow \eta \gamma$ kground and using B($\omega \rightarrow$ 91 taking into account the $\frac{\Gamma_7/\Gamma_{13}}{\cot \cdots \bullet \bullet}$ etc. $\bullet \bullet \bullet$ 25–33 $\pi^- p$	1 1
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background assized 23 Solution corresponding to corresponding to the degree of $^{-2}\eta$ Depending on the degree of $^{-2}\eta$ Depending on the degree of $^{-2}\eta$ Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^{0}\mu^{+}\mu^{-})/\Gamma(\mu^{+}\mu^{-})$ MALUE EVTS • • • We do not use the following 1.2 \pm 0.6 30 26 Superseded by DZHELYADIN	3,25 BENAYOUN umed. nstructive ω - ρ intercoherence with the 4, DOLINSKY 89, s. DOCUMENT ID ng data for average 26 DZHELYADIN	96 RVUE ference. flat ηηη bac DOLINSKY FECN es, fits, limits, 79 CNTR	$e^+e^- \rightarrow \eta \gamma$ kground and using B($\omega \rightarrow$ 91 taking into account the $\frac{\Gamma_7/\Gamma_{13}}{\cot \cdots \bullet \bullet}$ etc. $\bullet \bullet \bullet$ 25–33 $\pi^- p$	1 1
6.56 $^{+2}$.41 3525 2 22 No flat $\eta\eta\gamma$ background asst 23 Solution corresponding to co 24 Depending on the degree of $^{\pi^0}\gamma$)=(8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ VALUE EVTS •• We do not use the following 1.2 \pm 0.6 Superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ VALUE EVTS	3,25 BENAYOUN amed. anstructive \(\omega - \rho \) inter- coherence with the 4, DOLINSKY 89, is. \(\omega \) DOCUMENT ID ng data for average 26 DZHELYADIN 18 81B result above. \(\omega \) DOCUMENT ID DOLINSKY ng data for average data for average	96 RVUE Iference. If at \$\eta \eta \gamma \gamma \text{LECN}\$ 25, fits, limits, 79 CNTR 89 ND 25, fits, limits, limits,	$e^+e^- \rightarrow \eta \gamma$ kground and using $B(\omega \rightarrow \theta)$ P1 taking into account the $\begin{array}{c} \Gamma_7/\Gamma_{13} \\ \hline COMMENT \\ etc. \bullet \bullet \bullet \\ \hline 25-33 \ \pi^- p \\ \hline \end{array}$ $\begin{array}{c} \Gamma_1/\Gamma \\ \hline COMMENT \\ e^+e^- \rightarrow \pi^+\pi^-\pi^0 \\ etc. \bullet \bullet \bullet \end{array}$	1 1
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background assized Solution corresponding to co 24 Depending on the degree of $^{\pi^0}\gamma$ 3-(8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ •• • We do not use the following the Web Superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ MALUE EVTS 0.8942 \pm 0.0062	3,25 BENAYOUN amed. anstructive \(\omega - \rho \) inter- coherence with the 4, DOLINSKY 89, is. \(\omega \) DOCUMENT ID ng data for average 26 DZHELYADIN 18 81B result above. \(\omega \) DOCUMENT ID DOLINSKY ng data for average data for average	96 RVUE Iference. If at \$\eta \eta \gamma \gamma \text{LECN}\$ 25, fits, limits, 79 CNTR 89 ND 25, fits, limits, limits,	$e^+e^- \to \eta \gamma$ kground and using $B(\omega \to \theta)$ P1 taking into account the $\frac{\Gamma_7/\Gamma_{13}}{\cot \cdot \cdot \cdot \cdot \cdot \cdot}$ 25–33 π^-p $\frac{\Gamma_1/\Gamma}{e^+e^- \to \pi^+\pi^-\pi^0}$	1 1
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background assized Solution corresponding to co 24 Depending on the degree of $^{\pi^0}\gamma$)=(8.5 \pm 0.5) \times 10 ⁻² . 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ MALUE EVTS • • • We do not use the following 1.2 \pm 0.6 Superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ MALUE EVTS 0.8942 \pm 0.0062 • • • We do not use the following the following the following between the following the follo	3,25 BENAYOUN amed. anstructive \(\omega - \rho \) inter- coherence with the 4, DOLINSKY 89, is. \(\omega \) \(\omega \	96 RVUE Iference. If at \$\eta \eta \gamma \gamma \text{LECN}\$ 25, fits, limits, 79 CNTR 89 ND 25, fits, limits, limits,	$e^+e^- \rightarrow \eta \gamma$ kground and using $B(\omega \rightarrow \theta)$ P1 taking into account the $\begin{array}{c} \Gamma_7/\Gamma_{13} \\ \hline COMMENT \\ etc. \bullet \bullet \bullet \\ \hline 25-33 \ \pi^- p \\ \hline \end{array}$ $\begin{array}{c} \Gamma_1/\Gamma \\ \hline COMMENT \\ e^+e^- \rightarrow \pi^+\pi^-\pi^0 \\ etc. \bullet \bullet \bullet \end{array}$	
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asset 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$ >= (8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ *• • We do not use the following the following superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ **EVTS** 0.8942 \pm 0.0062 •• • We do not use the following superseded by DZHELYADIN OBSO \$\pm\$0.890 \$\pm\$0.020 \$\pm\$0.032 11200 27 Using $\Gamma(e^+e^-)$ =0.60 \pm 0.00	3,25 BENAYOUN amed. anstructive \(\omega - \rho \) inter- coherence with the 4, DOLINSKY 89, is. \(\omega \) \(\omega \	96 RVUE Iference. If at \$\eta \eta \gamma \gamma \text{LECN}\$ 25, fits, limits, 79 CNTR 89 ND 25, fits, limits, limits,	$e^+e^- \to \eta \gamma$ kground and using $B(\omega \to 91)$ taking into account the $\begin{array}{c} \Gamma_7/\Gamma_{13} \\ \hline COMMENT \\ etc. \bullet \bullet \bullet \\ 25-33 \ \pi^- p \\ \hline \\ \hline \Gamma_1/\Gamma \\ \hline COMMENT \\ e^+e^- \to \pi^+\pi^-\pi^0 \\ etc. \bullet \bullet \bullet \\ e^+e^- \to \pi^+\pi^-\pi^0 \\ \end{array}$	1 1
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asst 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$ >= (8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ •• • We do not use the following the following superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$ **EVTS** 0.8942 \pm 0.0062 •• • We do not use the following superseded by DZHELYADIN OLD STATES** 0.8942 \pm 0.0062	3,25 BENAYOUN umed. nstructive \$\omega - \rho\$ inter- coherence with the 4, DOLINSKY 89, s. \[\textit{DOCUMENT ID} \\ ng data for average \\ 26 DZHELYADIN 4 818 result above. \[\textit{DOCUMENT ID} \\ DOLINSKY \\ ng data for average \\ 27 AKHMETSHII 2 keV.	96 RVUE reference. flat ηηη bac DOLINSKY res. fits, limits, res. TECN 89 ND 85, fits, limits, N 000 CMD2	kground and using B($\omega \rightarrow 91$ taking into account the $\frac{\Gamma_7/\Gamma_{13}}{COMMENT}$ etc. • • • $25-33~\pi^-p$ $\frac{\Gamma_1/\Gamma}{e^+e^-\rightarrow \pi^+\pi^-\pi^0}$ etc. • • • $e^+e^-\rightarrow \pi^+\pi^-\pi^0$	1 1
6.56 $^{+2}$.41 22 No flat $\eta\eta\gamma$ background asset 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$)=(8.5 \pm 0.5) × 10 ⁻² . 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ VALUE EVTS • • • We do not use the following 1.2 \pm 0.6 Superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ VALUE EVTS 0.8942 \pm 0.0062 • • • We do not use the following 0.880 \pm 0.020 \pm 0.032 11200 27 Using $\Gamma(e^+e^-)$ = 0.60 \pm 0.0 $\Gamma(3\pi^0)/\Gamma_{\text{total}}$ Violates C conservation.	3,25 BENAYOUN umed. nstructive \(\omega - \rho \) inter coherence with the 4, DOLINSKY 89, s. \(\omega \) OCUMENT ID ng data for average 26 DZHELYADIN 4 818 result above. \(\omega \) DOLINSKY ng data for average 27 AKHMETSHII 2 keV.	96 RVUE Iference. Iflat ηηη bac DOLINSKY IECN IS, fits, limits, 79 CNTR B9 ND IS, fits, limits, N 00C CMD2	$e^+e^- \to \eta \gamma$ kground and using $B(\omega \to 91)$ taking into account the $\Gamma \gamma / \Gamma_{13}$ $COMMENT$ $e^+e^- \to \pi^+\pi^-\pi^0$ $e^+e^- \to \pi^+\pi^-\pi^0$ $e^+e^- \to \pi^+\pi^-\pi^0$ $e^+e^- \to \pi^+\pi^-\pi^0$	1 1
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asst 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$ >= (8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ •• We do not use the following the contribution of t	3,25 BENAYOUN umed. nstructive \(\omega - \rho \) inter coherence with the 4, DOLINSKY 89, s. \(\omega \) OCUMENT ID ng data for average 26 DZHELYADIN 4 818 result above. \(\omega \) DOLINSKY ng data for average 27 AKHMETSHII 2 keV.	96 RVUE Iference. Iflat ηηη bac DOLINSKY IECN IS, fits, limits, 79 CNTR B9 ND IS, fits, limits, N 00C CMD2	kground and using B($\omega \rightarrow 91$ taking into account the $\frac{\Gamma_7/\Gamma_{13}}{COMMENT}$ etc. • • • $25-33~\pi^-p$ $\frac{\Gamma_1/\Gamma}{e^+e^-\rightarrow \pi^+\pi^-\pi^0}$ etc. • • • $e^+e^-\rightarrow \pi^+\pi^-\pi^0$	
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asst 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$ = (8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ ••• We do not use the following the following superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$ $\frac{EVTS}{MALUE}$ •• We do not use the following the following superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$ $\frac{EVTS}{MALUE}$ •• We do not use the following the following superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$ $\frac{VALUE}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{VSTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$	3,25 BENAYOUN umed. nstructive \(\omega - \rho \) inter coherence with the 4, DOLINSKY 89, s. \(\omega \) OCUMENT ID ng data for average 26 DZHELYADIN 4 818 result above. \(\omega \) DOLINSKY ng data for average 27 AKHMETSHII 2 keV.	96 RVUE Iference. Iflat ηηη bac DOLINSKY IECN IS, fits, limits, 79 CNTR B9 ND IS, fits, limits, N 00C CMD2	$e^+e^- \rightarrow \eta \gamma$ kground and using $B(\omega \rightarrow \theta)$ P1 taking into account the $\begin{array}{c} \Gamma_7/\Gamma_{13} \\ \hline COMMENT \\ etc. \bullet \bullet \bullet \\ \hline 25-33 \ \pi^- p \\ \hline \\ \hline COMMENT \\ e^+e^- \rightarrow \pi^+\pi^-\pi^0 \\ etc. \bullet \bullet \bullet \\ e^+e^- \rightarrow \pi^+\pi^-\pi^0 \\ \hline \\ \Gamma_{16}/\Gamma \\ \hline COMMENT \\ \hline 38 \ \pi^- p \rightarrow \ 3\pi^0 \ n \\ \hline \end{array}$	
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background assized population corresponding to co constraint of the	3,25 BENAYOUN Imed. Instructive \(\omega - \rho \) inter- coherence with the 4, DOLINSKY 89, IS. \(\omega \) DOCUMENT ID \(\omega \) DOLINSKY IN BIB result above. \(\omega \) DOLINSKY IN BIB TOLINSKY 96 RVUE reference. flat ηηη bac DOLINSKY of the set	$e^+e^- \rightarrow \eta \gamma$ kground and using $B(\omega \rightarrow \theta)$ P1 taking into account the $\begin{array}{c} \Gamma_7/\Gamma_{13} \\ \hline COMMENT \\ etc. \bullet \bullet \bullet \\ \hline 25-33 \ \pi^- p \\ \hline \end{array}$ $\begin{array}{c} \Gamma_1/\Gamma \\ \hline COMMENT \\ e^+e^- \rightarrow \pi^+\pi^-\pi^0 \\ etc. \bullet \bullet \bullet \\ e^+e^- \rightarrow \pi^+\pi^-\pi^0 \\ \hline \end{array}$ $\begin{array}{c} \Gamma_{16}/\Gamma \\ \hline COMMENT \\ \hline 38 \ \pi^- p \rightarrow \ 3\pi^0 \ n \\ \hline \end{array}$	1 1	
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asst 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$ = (8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ ••• We do not use the following the following superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$ $\frac{EVTS}{MALUE}$ •• We do not use the following the following superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$ $\frac{EVTS}{MALUE}$ •• We do not use the following the following superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$ $\frac{VALUE}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{VSTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$ •• We do not use the following the following superseded by DZHELYADIN $\frac{EVTS}{VOISING}$	3,25 BENAYOUN umed. nstructive \(\omega - \rho \) inter coherence with the 4, DOLINSKY 89, s. \(\omega \) OCUMENT ID ng data for average 26 DZHELYADIN 4 818 result above. \(\omega \) DOLINSKY ng data for average 27 AKHMETSHII 2 keV.	96 RVUE Inference. Inflat 1917 bac DOLINSKY IFEN Es, fits, limits, 79 CNTR B9 ND Es, fits, limits, N 00c CMD2 TECN N 95 GAM2	$e^+e^- \rightarrow \eta \gamma$ kground and using $B(\omega \rightarrow \theta)$ P1 taking into account the $\begin{array}{c} \Gamma_7/\Gamma_{13} \\ \hline COMMENT \\ etc. \bullet \bullet \bullet \\ \hline 25-33 \ \pi^- p \\ \hline \end{array}$ $\begin{array}{c} \Gamma_1/\Gamma \\ \hline COMMENT \\ e^+e^- \rightarrow \pi^+\pi^-\pi^0 \\ etc. \bullet \bullet \bullet \\ e^+e^- \rightarrow \pi^+\pi^-\pi^0 \\ \hline \end{array}$ $\begin{array}{c} \Gamma_{16}/\Gamma \\ \hline COMMENT \\ \hline 38 \ \pi^- p \rightarrow \ 3\pi^0 \ n \\ \hline \end{array}$	1 1
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background assized population corresponding to co constraint of the constraint of th	3,25 BENAYOUN umed. Instructive \$\omega - \rho\$ inter- coherence with the 4, DOLINSKY 89, Instructive \$\omega - \rho\$ inter- g data for average 26 DZHELYADIN 14 818 result above. \[\frac{DOCUMENT ID}{DOLINSKY} \] g data for average 27 AKHMETSHII 2 keV. \[\frac{DOCUMENT ID}{DOCUMENT ID} \] PROKOSHKII \[\frac{DOCUMENT ID}{ABELE} \]	96 RVUE ference. flat ηηη bac DOLINSKY FECN PS, fits, limits, 79 CNTR B9 ND PS, fits, limits, N 000 CMD2 TECN N 95 GAM2 TECN 97E CBAR	kground and using $B(\omega \rightarrow 91$ taking into account the	
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asset 23 Solution corresponding to co 24 Depending on the degree of $\pi^{0}\gamma$)=(8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^{0}\mu^{+}\mu^{-})/\Gamma(\mu^{+}\mu^{-})$ VALUE	3,25 BENAYOUN umed. nstructive \(\alpha - \rho \) inter- coherence with the 4, DOLINSKY 89, s. \(\frac{DOCUMENT ID}{A} \) ng data for average 26 DZHELYADIN I 818 result above. \(\frac{DOCUMENT ID}{A} \) DOLINSKY ng data for average 27 AKHMETSHII 2 keV. \(\frac{DOCUMENT ID}{A} \) PROKOSHKII \(\frac{DOCUMENT ID}{A} \) \(DOC	96 RVUE ference. flat ηηη bac DOLINSKY TECN es, fits, limits, 79 CNTR B9 ND es, fits, limits, N 000 CMD2 TECN N 95 GAM2 97E CBAR es, fits, limits,	kground and using $B(\omega \rightarrow 91$ taking into account the	. 1 1
6.56 $^{+2}$.41 22 No flat $\eta\eta\gamma$ background asset 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$ = (8.5 \pm 0.5) × 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ MALUE	3,25 BENAYOUN umed. nstructive \(\alpha - \rho \) inter- coherence with the 4, DOLINSKY 89, s. \(\frac{DOCUMENT ID}{A} \) ng data for average 26 DZHELYADIN I 818 result above. \(\frac{DOCUMENT ID}{A} \) DOLINSKY ng data for average 27 AKHMETSHII 2 keV. \(\frac{DOCUMENT ID}{A} \) PROKOSHKII \(\frac{DOCUMENT ID}{A} \) \(DO	96 RVUE ference. flat ηηη bac DOLINSKY TECN es, fits, limits, 79 CNTR B9 ND es, fits, limits, N 000 CMD2 TECN N 95 GAM2 97E CBAR es, fits, limits,	kground and using $B(\omega \rightarrow 91$ taking into account the	
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asst 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$ = (8.5 ± 0.5) × 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ VALUE	3,25 BENAYOUN umed. nstructive \(\alpha - \rho \) inter- coherence with the 4, DOLINSKY 89, s. \(\frac{DOCUMENT ID}{A} \) ng data for average 26 DZHELYADIN I 818 result above. \(\frac{DOCUMENT ID}{A} \) DOLINSKY ng data for average 27 AKHMETSHII 2 keV. \(\frac{DOCUMENT ID}{A} \) PROKOSHKII \(\frac{DOCUMENT ID}{A} \) \(DO	96 RVUE ference. flat ηηη bac DOLINSKY TECN es, fits, limits, 79 CNTR B9 ND es, fits, limits, N 000 CMD2 TECN N 95 GAM2 97E CBAR es, fits, limits,	kground and using $B(\omega \rightarrow 91$ taking into account the	
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asset 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$)=(8.5 \pm 0.5) \times 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ MALUE EVTS • • • We do not use the following 1.2 \pm 0.6 Superseded by DZHELYADIN $\Gamma(\pi^+\pi^-\pi^0)/\Gamma$ total EVTS 0.8942 \pm 0.0062 • • • We do not use the following 0.880 \pm 0.020 \pm 0.032 11200 \pm 27 Using $\Gamma(e^+e^-)=0.60 \pm 0.00$ $\Gamma(3\pi^0)/\Gamma$ total Violates C conservation. MALUE CONOGE $\Gamma(3\pi^0)/\Gamma$ total Violates C conservation. MALUE CONOGE $\Gamma(3\pi^0)/\Gamma$ total Violates C conservation. MALUE $\Gamma(3\pi^0)/\Gamma$ total	3,25 BENAYOUN umed. structive \$\omega - \rho\$ intercoherence with the 4, DOLINSKY 89, s. \[\textit{DOCUMENT ID} \\ 10 BIB result above. \] \[\textit{DOCUMENT ID} \\ DOLINSKY \textit{ng data for average} \\ 27 AKHMETSHII 2 keV. \[\textit{DOCUMENT ID} \\ PROKOSHKII 28 ABELE \textit{ng data for average} \\ 28 PROKOSHKII 28 PROKOSHKII	96 RVUE Iference. Iflat ηηη bac DOLINSKY IECN IS, fits, limits, 79 CNTR B9 ND IS, fits, limits, N 000 CMD2 IECN N 95 GAM2 TECN 97E CBAR 25, fits, limits, N 95 GAM2	kground and using $B(\omega \rightarrow 91$ taking into account the	
6.56 $^{+2}$.41 6.56 $^{+2}$.45 22 No flat $\eta\eta\gamma$ background assez 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$ = (8.5 \pm 0.5) × 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ MALUE	3,25 BENAYOUN umed. nstructive \(\omega - \rho \) intercoherence with the 4, DOLINSKY 89, s. \(\omega \) DOCUMENT ID ng data for average 26 DZHELYADIN 18 18 result above. \(\omega \) DOLINSKY ng data for average 27 AKHMETSHII 2 keV. \(\omega \) DOCUMENT ID PROKOSHKII \(\omega \) DOCUMENT ID 28 ABELE ng data for average 28 PROKOSHKII \(\omega \) DOCUMENT ID 28 ABELE ng data for average 28 PROKOSHKII	96 RVUE Iference. Iflat ηηη bac DOLINSKY IECN 25, fits, limits, 79 CNTR 89 ND 26, fits, limits, N 000 CMD2 IECN 95 GAM2 76CN 97E CBAR 25, fits, limits, N 95 GAM2 IECN 76CN	$\begin{array}{c} e^+e^- \to \eta \gamma \\ \\ \text{kground and using B}(\omega \to 0) \\ \text{91 taking into account the} \\ \hline \Gamma_7/\Gamma_{13} \\ \hline COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ 25-33 \ \pi^-p \\ \hline \\ \hline \Gamma_1/\Gamma \\ \hline COMMENT \\ e^+e^- \to \pi^+\pi^-\pi^0 \\ \text{etc.} \bullet \bullet \bullet \\ e^+e^- \to \pi^+\pi^-\pi^0 \\ \hline \\ \Gamma_{16}/\Gamma \\ \hline COMMENT \\ \hline 38 \ \pi^-p \to 3\pi^0 \ n \\ \hline \hline \Gamma_{14}/\Gamma \\ \hline COMMENT \\ \hline 0.0 \ \overline{p}p \to 5\gamma \\ \text{etc.} \bullet \bullet \bullet \\ \hline 38 \ \pi^-p \to 3\gamma \ n \\ \hline \hline \\ \hline \Gamma_2/\Gamma \\ \hline COMMENT \\ \hline \end{array}$	
6.56 $^{+2.41}_{-2.55}$ 3525 2 22 No flat $\eta\eta\gamma$ background asset 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$ = (8.5 \pm 0.5) × 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ MALUE	3,25 BENAYOUN Jamed. Instructive \(\alpha - \rho \) inter- coherence with the 4, DOLINSKY 89, Instructive \(\alpha - \rho \) inter- g data for average 26 DZHELYADIN If 818 result above. \(\frac{DOCUMENT ID}{DOLINSKY} \) Ing data for average 27 AKHMETSHII 2 keV. \(\frac{DOCUMENT ID}{PROKOSHKII} \) \(\frac{DOCUMENT ID}{ABELE} \) Ing data for average 28 PROKOSHKII \(\frac{DOCUMENT ID}{ABELE} \) Ing data for average 28 PROKOSHKII	96 RVUE ference. flat ηηη bac DOLINSKY 1 FECN es, fits, limits, 79 CNTR 89 ND es, fits, limits, N 000 CMD2 7ECN 95 GAM2 97E CBAR es, fits, limits, N 95 GAM2 7ECN es, fits, limits, N 95 GAM2	kground and using $B(\omega \rightarrow 91$ taking into account the	. 1]
6.56 $^{+2}$.41 6.56 $^{+2}$.45 22 No flat $\eta\eta\gamma$ background assez 23 Solution corresponding to co 24 Depending on the degree of $\pi^0\gamma$ = (8.5 \pm 0.5) × 10 $^{-2}$. 25 Reanalysis of DRUZHININ 8 triangle anomaly contribution $\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$ MALUE	3,25 BENAYOUN Jamed. Instructive \(\omega - \rho \) inter- coherence with the 4, DOLINSKY 89, Instructive \(\omega - \rho \) inter- g data for average 26 DZHELYADIN I 818 result above. \(\omega \) DOLINSKY Instruction POCUMENT ID DOLINSKY Instruction PROKOSHKII 28 ABELE Ing data for average 28 PROKOSHKII \(\omega \)	96 RVUE ference. flat ηηη bac DOLINSKY FECN es, fits, limits, 79 CNTR B9 ND es, fits, limits, N 000 CMD2 FECN 95 GAM2 7ECN 97E CBAR es, fits, limits, N 95 GAM2 7ECN 97E CBAR es, fits, limits, N 95 GAM2	kground and using $B(\omega \rightarrow 91$ taking into account the	

AKHMETSHIN 00C CASE 00 GARDNER 98 BENAYOUN 98 ABELE 97E BENAYOUN 96 PROKOSHKIN 95 R.R. Akhmetshin et al. T. Case et al. S. Gardner, H.B. O'Connell M. Benayoun et al. A. Abele et al. M. Benayoun et al. Y.D. Prokoshkin, V.D. Samoilenko 42 610. R. Wurzinger et al. PL B476 33 PR D61 03200 PL C 269 PL B411 361 PL B412 C 273 PL S414 PL B340 122 PL B340 125 PL B340 125 PL B340 125 PL B340 125 PL B340 126 PL B340 127 PL B340 127 PL B340 126 PL B340 127 PL B340 126 PL B340 127 PL B340 127 PL B340 126 PL B341 362 PL B341 363 PL B341 362 PL B341 363 PL B341 364 (CMD2 Collab.) (Crystal Barrel Collab.) (IPNP, NOVO, ADLD+) (Crystal Barrel Collab.) (IPNP, NOVO) to (SERP) 95 94B 94C 93 (BONN, ORSAY, SACL+) (SERP, BELG, LANL, LAPP+) WURZINGER AMSLER ALDE (Crystal Barrel Collab.) (SERP, LAPP, LANL, BELG+) (SERP, LAPP, LANL, BELG+) (Crystal Barrel Collab.) (ASTERIX Collab.) (NOVO) (ASTERIX Collab.) (NOVO) (SERP) Also AMSLER WEIDENAUER OOLINSKY WEIDENAUER DOLINSKY BITYUKOV DOLINSKY 88 (NOVO) KURDADZE 68 AULCHENKO BARKOV 87 87 (NOVO) (NOVO) KURDADZE 86 (NOVO) BARKOV DRUZHININ KURDADZE 85 84 83B (SERP) DZHELYADIN 81B (LALO) (HELS) (EPOL, CERN, CDEF+) M. Roos, A. Pellinen P. Benkein et al. R.I. Dzhelyadin et al. A.M. Cooper et al. A.M. Cooper et al. G.W. van Apekloor et al. A.B. Wicklund et al. D.E. Andrews et al. J. Keyne et al. J. Keyne et al. J. Keyne et al. W.D. Apel et al. W.D. Apel et al. W.D. Apel et al. D. Benaksas et al. S.R. Borenstein et al. S.R. Borenstein et al. S.R. Borenstein et al. J.T. Dakin et al. B.N. Ractiff et al. H. Alvensleben et al. (SERP) (TATA, CERN, CDEF+) (LALO) (ZEEM) (ANL) (ROCH) (BGNA, FIRZ, GENO+) (LOIC, SHMP) (LOIC, SHMP) (BNL+) (BNL+) (BNL) (KARLK, KARLE, PISA) (CERN) (ORSAY) (ORSAY) (BNL, MICH) (ILL, ILLC) (PRIN) (SLAC) (DESY) (ITEP) (ROCH, CORN, FNAL) (CERN, CDEF) (LRL) (LRL, UCB, SLAC+) (CERN) (DARE) (ROMA, SYRA) BEHREND BIZZARRI 71 71 71 71 70 70B 70 COYNE ABRAMDVI... BIGGS BIZZARRI (ROMA, SYRA) (CERN) BIZZARNI ROOS 70 Proc. Daresbury AUGUSTIN 69D BIZZARRI 69 EVECT 69B (ORSAY) (CERN, CDEF) (KARL, CERN) (EPOL, BERG) (HARV) (HARV, CASE, SLAC+) (JINR, MOSU) (CERN, BGNA, STRB) J.E. Augustin et al. R. Bizzarri et al. W. Deinet et al. F. Jacquet et al. R. Wilson A.A. Wehmann et al. R.G. Astvatsaturov et al. JACQUET WILSON 69B 69 69 68C 67B 67C 66B 66 66 65 ASTVACAT... (COLU) (PENN) (NAPL, FRAS, TRST) BARA5H FELDMAN PR 159 1219 M. Feldman et al. NC 44A 1272 G. Di Giugno et al. PR 145 1050 S.M. Flatte et al. PR 142 896 F.E. James, H.L. Kraybill PRL 14 279 A. Barbaro-Galtieri, R.D. Tripp JEFP 18 1259 470 S.F. 1879. PR 136B 496 Siena Conf. 1 166 B. Buschbeck et al. DIGIUGNO FLATTE (LRL) (YALE, BNL) JAMES BARBARO-(LRL) (ITEP) BARMIN KRAEMER BUSCHBECK - OTHER RELATED PAPERS (Crystal Barrel Collab.) (NOVO) (NOVO) (COLU, RUTG)

ω(782) REFERENCES

 $\eta'(958)$

 $\eta'(958)$

 $I^G(J^{PC}) = 0^+(0^{-+})$

$\eta'(958)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
957.78±0.14 OUR A	VERAGE				
957.9 ±0.2 ±0.6	4800	WURZINGER	96	SPEC	1.68 $pd \rightarrow {}^{3}He\eta'$
959 ±1	630	BELADIDZE	92c	VES	$36 \pi^- Be \rightarrow \pi^- \eta' \eta Be$
958 ±1	340	ARMSTRONG	91B	OMEG	$300 pp \rightarrow pp\eta \pi^+ \pi^-$
958.2 ±0.4	622	AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
957.8 ±0.2	2420	AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
956.3 ±1.0	143	GIDAL	87	MRK2	$e^+e^-\rightarrow e^+e^-\eta\pi^+\pi^-$
957.46 ± 0.33		DUANE	74	MMS	$\pi^- p \rightarrow nMM$
958.2 ±0.5	1414	DANBURG	73	HBC	$2.2 K^- p \rightarrow \Lambda X^0$
958 ±1	400	JACOBS	73		$2.9 \ K^- p \rightarrow \Lambda X^0$
956.1 ±1.1	3415	BASILE	71	CNTR	$1.6 \pi^- p \rightarrow nX^0$
957.4 ±1.4	535	BASILE	71	CNTR	$1.6 \pi^- p \rightarrow nX^0$
957 ±1		RITTENBERG	69	нвс	1.7-2.7 K ⁻ p

η' (958) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.202 ± 0.016 OUR FIT	Error incl	udes scale factor	of 1.	3.		
0.30 ±0.09 OUR AVE	RAGE					
0.40 ±0.22	4800	WURZINGER	96	SPEC		1.68 pd →
						3 He η'
0.28 ± 0.10	1000	BINNIE	79	MMS	0	$\pi^- \rho \rightarrow nMM$

$\eta'(958)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁	$\pi^+\pi^-\eta$	(44.3 ±1.5) %	S=1.2
Γ ₂	$ ho^0 \gamma$ (including non- resonant $\pi^+ \pi^- \gamma$)	(29.5 ±1.0) %	S=1.2
Γ_3	$\pi^0 \pi^0 \eta$	(20.9 ±1.2)%	S=1.2
Γ_4	$\omega\gamma$	$(3.03 \pm 0.31)\%$	
Γ_5	$\gamma \gamma$	$(2.12\pm0.14)\%$	S=1.3
Γ_6	$3\pi^{0}$	$(1.56 \pm 0.26) \times 1$	10-3
Γ_7	$\mu^+\mu^-\gamma$	$(1.04 \pm 0.26) \times 1$.0-4
Γ8	$\pi^+\pi^-\pi^0$	< 5 %	CL=90%
Гэ	$\pi^0 \rho^0$	< 4 %	CL=90%
Γ_{10}	$\pi^{+} \pi^{+} \pi^{-} \pi^{-}$	< 1 %	CL=90%
Γ_{11}	$\pi^+\pi^+\pi^-\pi^-$ neutrals	< 1 %	CL=95%
Γ_{12}	$\pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	< 1 %	CL=90%
Γ_{13}	6π	< 1 %	CL=90%
Γ ₁₄	$\pi^{+} \pi^{-} e^{+} e^{-}$	< 6 × 1	10 ⁻³ CL=90%
Γ ₁₅	$\pi^0 \gamma \gamma$	< 8 ×:	10 ^{−4} CL=90%
Γ ₁₆	$4\pi^0$	< 5 x 1	10 ⁻⁴ CL=90%
Γ ₁₇	e ⁺ e ⁻	< 2.1 × 3	LO ⁻⁷ CL=90%

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

Γ ₁₈	$\pi^+\pi^-$	P,CP	<	2	%	CL=90%
Γ_{19}	$\pi^0 \pi^0$	P,CP	<	9	× 10 ⁻⁴	CL=90%
	$\gamma e^+ e^-$	С	<	9	$\times 10^{-4}$	CL=90%
Γ_{21}	$\pi^0e^+e^-$	c	[a] <	1.4	$\times 10^{-3}$	CL=90%
Γ_{22}	η e ⁺ e	c	[a] <	2.4	$\times 10^{-3}$	CL=90%
Γ_{23}	3γ	c	<	1.0	× 10 ⁻⁴	CL=90%
Γ_{24}	$\mu^+ \mu^- \pi^0$	c	[a] <	6.0	× 10 ⁻⁵	CL=90%
Γ_{25}	$\mu^+\mu^-\eta$	c	[a] <	1.5	$\times 10^{-5}$	CL=90%
Γ_{26}	eμ	LF	<	4.7	$\times 10^{-4}$	CL=90%

[a] C parity forbids this to occur as a single-photon process.

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, 2 combinations of partial widths obtained from integrated cross section, and 16 branching ratios uses 48 measurements and one constraint to determine 7 parameters. The overall fit has a $\chi^2=35.6$ for 42 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / \left\langle \delta p_i \cdot \delta p_j \right\rangle$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (MeV)	cale factor
Γ ₁	$\pi^+\pi^-\eta$	0.090 ±0.008	1.2
Γ_2	$ ho^0 \gamma$ (including non- resonant $\pi^+ \pi^- \gamma$)	0.060 ±0.005	1.3
Γ_3	$\pi^0 \pi^0 \eta$	0.042 ±0.004	1.6
Γ_4	$\omega \gamma$	0.0061 ± 0.0008	1.2
Γ_5	$\gamma \gamma$	0.00429 ± 0.00015	1.1
Γ_6	$3\pi^{0}$	$(3.1 \pm 0.6) \times 10^{-4}$	1.1

η'(958) PARTIAL WIDTHS

	, ,	•		_	
Γ(<i>γγ</i>)					Г ₅
VALUE (keV)	EVTS	DOCUMENT IL		TECN	COMMENT
4.29±0.15 OUR FIT		udes scale factor	of 1.1.		
4.28 ± 0.19 OUR AV	ERAGE				
$4.17 \pm 0.10 \pm 0.27$	2000	¹ ACCIARRI	98B	L3	$\stackrel{e^+e^-}{_{e^+e^-\pi^+\pi^-\gamma}}$
$4.53 \pm 0.29 \pm 0.51$	266	KARCH	92	CBAL	
$3.61 \pm 0.13 \pm 0.48$		² BEHREND	91	CELL	$e^{+}e^{-} \rightarrow e^{+}e^{-} \eta'(958)$
4.6 ±1.1 ±0.6	23	BARU	90	MD1	$e^+e^- \rightarrow e^+e^-\pi^+\pi^-\gamma$
$1.57 \pm 0.25 \pm 0.44$		BUTLER	90	MRK2	$e^{+}e^{-} \to e^{+}e^{-} \eta'(958)$
$5.08 \pm 0.24 \pm 0.71$	547	³ ROE	90	ASP	$e^+e^- \rightarrow e^+e^- 2\gamma$
$3.8 \pm 0.7 \pm 0.6$	34	AIHARA	88c	TPC	$e^+e^{e^+e^-\eta\pi^+\pi^-}$
4.9 ±0.5 ±0.5	136	4 WILLIAMS	88	CBAL	$e^+e^- \rightarrow e^+e^-2\gamma$
• • We do not us	e the followin	ng data for averag	ges, fits	, limits,	etc. • • •
4.7 ±0.6 ±0.9	143	⁵ GIDAL	87	MRK2	$e^+e^- \rightarrow e^+e^- \eta \pi^+ \pi^- e^+e^- \rightarrow e^+e^- 2\gamma$
4.0 ± 0.9		⁶ BARTEL	85E	JADE	$e^+e^- \rightarrow e^+e^-2\gamma$
¹ No non-resonant ² Revaluated by us	$\pi^+\pi^-$ cont susing B(π'	tribution found. $\rightarrow \rho(770)\gamma = 0$	30.2 ±	1.3)%.	
³ Revaluated by us					
⁴ Revaluated by us					
⁵ Superseded by B		. , ,, = (2.11	_ 5.15	, ,	

$\eta'(958) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

6 Systematic error not evaluated.

This combination of a partial width with the partial width into $\gamma\gamma$ and with the total width is obtained from the integrated cross section into channel(i) in the $\gamma\gamma$ annihilation.

$\Gamma(\gamma\gamma) \times \Gamma(\rho^0\gamma)$ (inclu	ding non-	resonant $\pi^+\pi^-$	$\gamma))/\Gamma_{\text{total}}$	$\Gamma_5\Gamma_2/\Gamma$
VALUE (keV)	EVTS	DOCUMENT ID	TECN	COMMENT
1.27±0.05 OUR FIT Err	or includes	scale factor of 1.	2.	
1.26±0.07 OUR AVERAG	E Error in	cludes scale facto	or of 1.2.	
$1.09 \pm 0.04 \pm 0.13$		BEHREND	91 CELL	$e^{+}e^{-}_{e^{+}e^{-}\rho(770)^{0}\gamma}$
$1.35 \pm 0.09 \pm 0.21$		AIHARA	87 TPC	$e^+e^- \rightarrow e^+e^-\rho\gamma$
$1.13 \pm 0.04 \pm 0.13$	867	ALBRECHT	87B ARG	$e^+e^- \rightarrow e^+e^-\rho\gamma$
$1.53 \pm 0.09 \pm 0.21$		ALTHOFF	84E TASS	$e^+ e^- \rightarrow e^+ e^- \rho \gamma$
$1.14 \pm 0.08 \pm 0.11$	243	BERGER	84B PLUT	$e^+e^- \rightarrow e^+e^-\rho\gamma$
$1.73 \pm 0.34 \pm 0.35$	95	JENNI	83 MRK2	$e^+e^- \rightarrow e^+e^-\rho\gamma$
$1.49 \pm 0.13 \pm 0.027$	213	BARTEL	828 JADE	$e^+e^- \rightarrow e^+e^-\rho\gamma$
• • • We do not use the	following da	ita for averages,	fits, limit <mark>s,</mark> etc	. • • •
$1.85 \pm 0.31 \pm 0.24$	43	BEHREND	838 CELL	$e^+e^- \rightarrow e^+e^-\rho\gamma$

 $\eta'(958)$

(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ŋ)/「 _{total}	Г ₅ Г ₃ /Г	$\Gamma(\gamma e^+ e^-)/\Gamma_{\text{total}}$					Γ20
ALUE (keV)	DOCUMENT ID TECN CO	OMMENT	VALUE (units 10 ⁻³)	CL%	DOCUMENT ID		COMMENT	
$92 \pm 0.06 \pm 0.11$	Error includes scale factor of 1.2. 7 KARCH 92 CBAL e' the following data for averages, fits, limits,	$+e^- \rightarrow e^+e^-\eta\pi^0\pi^0$	<0.9	90	BRIERE	00 CLEO	10.6 e ⁺ e ⁻	_
95 ± 0.05 ± 0.08		$+e^{-} \rightarrow e^{+}e^{-}n\pi^{0}\pi^{0}$	$\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{total}}$					Γ ₂₁ ,
00±0.08±0.10	8,9 ANTREASYAN 87 CBAL e		VALUE (units 10 ⁻³) < 1.4	<u>CL%</u> 90	DOCUMENT ID BRIERE	TECN	10.6 e+e-	
Revaluated by us t	using B $(\eta ightarrow\gamma\gamma)=(39.21\pm0.34)$ %. Sup	persedes ANTREASYAN 87	• • We do not use the					
and KARCH 90. Superseded by KA	RCH 92.		<13	90	RITTENBERG	65 HBC	2.7 K-p	
9 Using BR(η → 2-	γ)=(38.9 ± 0.5)%.		$\Gamma(\eta e^+ e^-)/\Gamma_{\text{total}}$					Γ22
	JOSEN - DADAMETED		VALUE (units 10 ⁻³)	CL%	DOCUMENT ID	TECN	COMMENT	. 22
	η'(958) α PARAMETER		< 2.4	90	BRIERE		10.6 e ⁺ e ⁻	
	$ NT ^2 = (1 + \alpha y)^2 + \alpha^2$		• • • We do not use th	e following	data for averages	s, fits, limits,	etc. • • •	
.UE 0.058 ± 0.013		COMMENT	<11	90	RITTENBERG	65 HBC	2.7 K-p	
	the following data for averages, fits, limits.	2 38 π ⁻ ρ → nη2π ⁰ i, etc. • • •	$\Gamma(\pi^0 \rho^0)/\Gamma_{\text{total}}$					Го
0.08 ±0.03	10 KALBFLEISCH 74 RVUE		VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
May not necessaril	ly be the same for $\eta^t \to \eta \pi^+ \pi^-$ and η^t		<0.04	90	RITTENBERG	65 HBC	2.7 K - p	
			$\Gamma(\pi^+\pi^-e^+e^-)/\Gamma_{to}$	fal				Γ ₁₄
	$\eta'(958) \beta$ PARAMETER		VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
	e on η Decay Parameters" in our 1994 editio	on Physical Review	<0.006	90	RITTENBERG	65 HB€	2.7 K-p	
D50 1173 (19	994), p. 1454.		Γ(6π)/Γ _{total}					Γ ₁₃
ATRIX ELEMEI	$ NT ^2 = (1 + 2\beta Z)$		VALUE	CL%	DOCUMENT ID	TECN	COMMENT	- 13
UE		COMMENT	<0.01	90	LONDON	66 HBC	Compilation	
0.1 ±0.3	ALDE 87B GAM2	$38 \pi^- \rho \rightarrow n3\pi^0$	$\Gamma(\omega\gamma)/\Gamma(\pi^+\pi^-\eta)$					Γ4/
	Waret Base Same	*************************************	VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	- 7/
	η'(958) BRANCHING RATIOS		0.069±0.008 OUR FIT 0.068±0.013		udes scale factor		* 4 = -	
$^{+}\pi^{-}\eta$ (neutral	decay)) / Freeat	0.714Γ1/Γ	0.006 ± 0.013	68	ZANFINO	77 ASPK	8.4 π p	
IE I TOUR		COMMENT	$\Gamma(\rho^0\gamma)$ (including non	-resonant	$(\pi^+\pi^-\gamma))/[\Gamma$	$(\pi^{+}\pi^{-}\eta)$	+ Γ(π ⁰ π ⁰ η)·	+
	T Error includes scale factor of 1.2.		Γ(ωγ)]		//// [-	(·· ·· ·//	Γ ₂ /(Γ ₁ ·	
14±0.026	281 RITTENBERG 69 HBC	1.7-2.7 K ⁻ p	VALUE		DOCUMENT ID	TECN	-, , -	
$r^+\pi^-$ neutrals)/	/Frotal (0.714F	1+0.286\(\Gamma_3+0.89\Gamma_4\)/\(\Gamma_4\)	0.433±0.021 OUR FIT	Error incl	ludes scale factor	of 1.2.		
UE	EVTS DOCUMENT ID TECN	COMMENT	0.25 ±0.14		DAUBER	64 HBC	1.95 K [™] p	
03±0.008 OUR FI 6 ±0.05 OUR AV	T Error includes scale factor of 1.2.		$\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$					Fs
±0.1		2.24 K ⁻ p →	WALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
		$\Lambda \pi^+ \pi^-$ neutrals	6.0212±0.0014 OUR FI 6.0196±0.0015 OUR A		ncludes scale facti	or of 1.3.		
5 ±0.06	33 BADIER 65B HBC	3 K-p	0.0200 ± 0.0018		II STANTON	80 SPEC	8.45 π ⁻ p →	
-+/charger		0.286Γ ₁ /Γ	0.025 ±0.007			74 MMS	$n\pi^+\pi^-2\gamma$ $\pi^-\rho \rightarrow nMN$	
r. μ. λέcuαιRec	decay))/F _{total}	0.20.17.					$\pi \rho \rightarrow n m n$	
UE	EVTS DOCUMENT ID TECN			68	DUANE DALPIAZ		$1.6 \pi^- p \rightarrow t$	7X'
<i>UE</i> 27±0.004 OUR FI	T Error includes scale factor of 1.2.		0.0171 ± 0.0033	68 31	DALPIAZ	72 CNTR	$1.6 \pi^{-} p \rightarrow t$ $3.65 \pi^{-} p \rightarrow t$	
<i>UE</i> 27±0.004 OUR FI 16±0.013 OUR AV	EVTS DOCUMENT ID TECN T Error includes scale factor of 1.2. /ERAGE 107 RITTENBERG 69 HBC		$\begin{array}{c} 0.0171 \pm 0.0033 \\ 0.020 & +0.008 \\ -0.006 \end{array}$	31	DALPIAZ HARVEY	72 CNTR 71 OSPK	$3.65 \pi^- p \rightarrow$	
<u>UE</u> 27±0.004 OUR FI 16±0.013 OUR AV 23±0.014	EVTS DOCUMENT ID TECN T Error includes scale factor of 1.2. /ERAGE	$ \begin{array}{c} COMMENT \\ 1.7-2.7 \text{ K}^- p \\ 2.24 \text{ K}^- p \rightarrow \end{array} $	0.0171±0.0033 0.020 +0.008 -0.006 • • • We do not use th	31 ie following	DALPIAZ HARVEY data for averages	72 CNTR 71 OSPK s, fits, limits	$3.65 \pi^- p \rightarrow$, etc. • • •	nX ⁰
7±0.004 OUR FI 6±0.013 OUR AV 3±0.014 0±0.04	EVTS DOCUMENT ID TECN T Error includes scale factor of 1.2. /ERAGE 107 RITTENBERG 69 HBC 10 LONDON 66 HBC	1.7-2.7 K ⁻ ρ	0.0171±0.0033 0.020 +0.008 -0.006 • • • We do not use th 0.018 ±0.002	31 ne following 6000 ¹	DALPIAZ HARVEY	72 CNTR 71 OSPK s, fits, limits	$3.65 \pi^- p \rightarrow$	nX ⁰
UE 27±0.004 OUR FI 16±0.013 OUR AV 23±0.014 0 ±0.04 7 ±0.04	EVT3 DOCUMENT ID TECN	1.7-2.7 K ⁻ p 2.24 K ⁻ p \rightarrow $A\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}$ 3 K ⁻ p	0.0171±0.0033 0.020 +0.008 -0.006 • • • We do not use th	31 ne following 6000 ¹ esult.	DALPIAZ HARVEY ; data for average: ¹² APEL	72 CNTR 71 OSPK s, fits, limits	$3.65 \pi^- p \rightarrow$, etc. • • •	nX ⁰
### ##################################	EVTS DOCUMENT ID TECN T Error includes scale factor of 1.2. /ERAGE 107 RITTENBERG 69 HBC 10 LONDON 66 HBC	1.7-2.7 K ⁻ p 2.24 K ⁻ p \rightarrow $\Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K ⁻ p	0.0171±0.0033 0.020 +0.008 -0.006 -0.006 0.008 ±0.002 11 Includes APEL 79 re 12 Data is included in 5	31 ne following 6000 ¹ esult.	DALPIAZ HARVEY ; data for average: ¹² APEL	72 CNTR 71 OSPK s, fits, limits	$3.65 \pi^- p \rightarrow$, etc. • • •	пХ ⁰ • п2γ
/E 77±0.004 OUR FI 6±0.013 OUR AV 3±0.014 ±0.04 ±0.04 π ⁰ π ⁰ η (charged	EVT3 DOCUMENT ID TECN	1.7-2.7 K ⁻ p 2.24 K ⁻ p \rightarrow $A\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}$ 3 K ⁻ p	0.0171±0.0033 0.020 +0.008 -0.006 0 • • We do not use th 0.018 ±0.002	31 ne following 6000 ¹ esult.	DALPIAZ HARVEY ; data for average: ¹² APEL	72 CNTR 71 OSPK s, fits, limits	$3.65 \pi^- p \rightarrow$, etc. • • •	пХ ⁰ • п2γ
$\frac{16}{6\pm0.013}$ OUR FIGURE AVER AVER AVER AVER AVER AVER AVER AV	EVT3 DOCUMENT ID TECN	1.7-2.7 K p 2.24 K $p \rightarrow \Lambda \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}$ 3 K p Frotal (0.286 Γ_{3} +0.89 Γ_{4})/ $\Gamma_{COMMENT}$	0.0171±0.0033 0.020 +0.008 0.020 -0.006 0.006 0.008 ±0.002 11 Includes APEL 79 re 12 Data is included in 5 Γ(e+e-)/Γtotal	31 ne following 6000 ¹ esult. STANTON	DALPIAZ HARVEY data for averages APEL 80 evaluation.	72 CNTR 71 OSPK s, fits, limits, 79 NICE	3.65 $\pi^- p \rightarrow$ etc. • • • 15–40 $\pi^- p -$	nX ⁰ • n2γ
UE 17±0.004 OUR FI 16±0.013 OUR AV 13±0.014 1 ±0.04 1 ±0.04 1 π ⁰ π ⁰ η (charged 17±0.005 OUR FI	EVT3 DOCUMENT ID TECN	1.7-2.7 K p 2.24 K $p \rightarrow \Lambda \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}$ 3 K p Frotal (0.286 Γ_{3} +0.89 Γ_{4})/ $\Gamma_{COMMENT}$	0.0171 ± 0.0033 0.020 +0.008 -0.006 -0.006 0 0 We do not use th 0.018 ± 0.002 11 Includes APEL 79 re 12 Data is included in 5 \(\begin{align*} ali	31 ne following 6000 sult. STANTON	DALPIAZ HARVEY data for averages APEL 80 evaluation. DOCUMENT ID	72 CNTR 71 OSPK s, fits, limits, 79 NICE	3.65 $\pi^- p \rightarrow$ etc. • • • 15–40 $\pi^- p -$	n X ⁰ • n2γ Γ ₁
72 ± 0.004 OUR FI 72 ± 0.004 OUR FI 72 ± 0.004 OUR FI 92 ± 0.005 OUR FI 92 ± 0.005 OUR FI 92 ± 0.005	EVT3 DOCUMENT ID TECN	1.7-2.7 K p 2.24 K $p \rightarrow \Lambda \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}$ 3 K p Frotal (0.286 Γ_{3} +0.89 Γ_{4})/ $\Gamma_{COMMENT}$	0.0171 \pm 0.0033 0.020 $+$ 0.008 • • • We do not use th 0.018 \pm 0.002 11 Includes APEL 79 re 12 Data is included in S $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁷) <2.1 $\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$	31 6000 ¹ esult. STANTON CL% 90	DALPIAZ HARVEY data for average: APEL 80 evaluation. DOCUMENT ID VOROBYEV	72 CNTR 71 OSPK s, fits, limits, 79 NICE TECN 88 ND	3.65 $\pi^- p \rightarrow$ etc. • • • 15–40 $\pi^- p \rightarrow$ COMMENT $e^+ e^- \rightarrow \pi^+$	n X ⁰ • n2γ Γ ₁
### (7±0.004 OUR FI) ### (6±0.013 OUR AW ### (3±0.014 ### ±0.04 ### ±0.04 ### (π ⁰ π ⁰ η (charged ### ±0.005 OUR FI ### ±0.029 #### #### #### ######################	EVTS DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow A\pi^+\pi^-\pi^+\pi^-\pi^0$ 3 K^-p Ftotal (0.286 Γ_3 +0.89 Γ_4)/ Γ COMMENT 1.7-2.7 K^-p	0.0171 ± 0.0033 0.020 +0.008 -0.006 -0.006 0 0 We do not use th 0.018 ± 0.002 11 Includes APEL 79 re 12 Data is included in 5 \(\begin{align*} ali	31 ne following 6000 sult. STANTON	DALPIAZ HARVEY data for averages APEL 80 evaluation. DOCUMENT ID VOROBYEV	72 CNTR 71 OSPK s, fits, limits, 79 NICE	3.65 $\pi^- p \rightarrow$ etc. • • • 15–40 $\pi^- p \rightarrow$ COMMENT $e^+ e^- \rightarrow \pi^+$	n X ⁰ • n2γ Γ ₁
UE 17±0.004 OUR FI 16±0.013 OUR AV 13±0.014 1 ±0.04 1 ±0.04 1 π ⁰ π ⁰ η (charged 17±0.005 OUR FI 18±0.029 18±0.029 18±0.029 18±0.005 OUR FI	EVT3 DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow A\pi^+\pi^-\pi^+\pi^-\pi^0$ 3 K^-p Fotal (0.286 Γ_3 +0.89 Γ_4)/ Γ COMMENT 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ	0.0171 \pm 0.0033 0.020 \pm 0.008 • • • We do not use th 0.018 \pm 0.002 11 Includes APEL 79 re 12 Data is included in S $\Gamma(e^+e^-)/\Gamma$ total VALUE (units 10 ⁻⁷) <2.1 $\Gamma(\pi^+\pi^-)/\Gamma$ total	31 ne following 6000 2 sult. STANTON - CL% 90 - CL% 90	DALPIAZ HARVEY data for averages APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG	72 CNTR 71 OSPK s, fits, limits, 79 NICE	3.65 $\pi^- p \rightarrow$ etc. • • • 15–40 $\pi^- p \rightarrow$ $\frac{COMMENT}{e^+ e^- \rightarrow \pi^+}$ $\frac{COMMENT}{1.7-2.7 \ K^- p}$	n X ⁰ • n2γ Γ ₁₇ π ⁻ η
UE 17±0.004 OUR FI 16±0.013 OUR AV 13±0.014 1 ±0.04 1 ±0.04 1 ±0.05 17±0.005 OUR FI 18±0.029 18±0.029 18±0.029 18±0.039 OUR FI 18±0.039 OUR F	EVT3 DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K^-p Ftotal (0.286 Γ_3 +0.89 Γ_4)/ Γ COMMENT 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ	0.0171 \pm 0.0033 0.020 \pm 0.008 • • • We do not use th 0.018 \pm 0.002 11 Includes APEL 79 re 12 Data is included in 5 $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁷) <2.1 $\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$ VALUE (0.02	31 ne following 6000 2 sult. STANTON - CL% 90 - CL% 90	DALPIAZ HARVEY data for averages APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG	72 CNTR 71 OSPK s, fits, limits, 79 NICE TECN 88 ND TECN 69 HBC s, fits, limits	3.65 $\pi^- p \rightarrow$ etc. • • • 15–40 $\pi^- p \rightarrow$ $\frac{COMMENT}{e^+ e^- \rightarrow \pi^+}$ $\frac{COMMENT}{1.7-2.7 \ K^- p}$	n X ⁰ • n2γ Γ ₁₇ π ⁻ η Γ ₁₀
UE 17±0.004 OUR FI 16±0.013 OUR AV 23±0.014 2±0.04 2±0.04 2±0.04 2±0.05 OUR FI 16±0.029 10±0.05 OUR FI 17±0.005 OUR FI 1	EVT3 DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K^-p 4 [total (0.286 Γ_3 +0.89 Γ_4)/ Γ COMMENT 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ COMMENT 2.1.6 $\pi^-p \rightarrow n X^0$	0.0171 \pm 0.0033 0.020 $+$ 0.008 0.020 $+$ 0.008 0.000 10.018 \pm 0.002 11 Includes APEL 79 re 12 Data is included in S $\Gamma(e^{+}e^{-})/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ < 0.02 0.08	31 ne following 6000 3 estat. STANTON - CL% 90 - SL% 90 ne following	DALPIAZ HARVEY data for average: 2 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG data for average:	72 CNTR 71 OSPK s, fits, limits, 79 NICE TECN 88 ND TECN 69 HBC s, fits, limits	3.65 $\pi^- p \rightarrow$ etc. • • • 15–40 $\pi^- p \rightarrow$ $\frac{COMMENT}{e^+ e^- \rightarrow \pi^+}$ $\frac{COMMENT}{1.7-2.7 \ K^- p}$ etc. • • •	n X ⁰ • n2γ Γ17 π η Γ16
### (7±0.004 OUR FIT 17±0.004 OUR FIT 18±0.004 OUR FIT 18±0.004 (π ⁰ π ⁰ π ⁰ π (charged 17±0.005 OUR FIT 18±0.029 OUR FIT 18±0.009 OUR FIT	EVT3 DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K^-p 1.7-2.7 K^-p 2.26 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^0$ 3 K^-p 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ_5 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ_5 3 1.6 $\pi^-p \rightarrow n X^0$ 1.7-2.7 K^-p	0.0171 \pm 0.0033 0.020 $+$ 0.008 0.020 $+$ 0.008 0.000 10.018 \pm 0.002 11 Includes APEL 79 re 12 Data is included in 5 $\Gamma(e^{+}e^{-})/\Gamma \text{total}$ $\frac{VALUE}{VALUE} = \frac{VALUE}{VALUE}$ <0.02 0.08 $\Gamma(\pi^{+}\pi^{-})/\Gamma \text{total}$	31 le following 6000 1 ssult. STANTON CL% 90 SL% 90 le following 95.	DALPIAZ HARVEY data for averages 2 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG data for averages DANBURG	72 CNTR 71 OSPK s, fits, limits, 79 NICE ### TECN 88 ND ### TECN 69 HBC s, fits, limits 73 HBC	3.65 $\pi^- p \rightarrow$ etc. • • • 15-40 $\pi^- p \rightarrow$ $\frac{COMMENT}{e^+ e^- \rightarrow \pi^+}$ $\frac{COMMENT}{1.7-2.7 \ K^- p}$ etc. • • • 2.2 $K^- p \rightarrow$	n X ⁰ • n2γ Γ ₁₇ π ⁻ η Γ ₁₀
## (7±0.004 OUR FIT (7±0.004 OUR FIT (8±0.004 OUR FIT (9±0.004 OUR FIT (9±0.005 OUR FIT (9±0.007 OUR AND (9±0.0026 OUR FIT (EVT3 DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ_4 3.7-2.7 K^-p 3.7-2.7 K^-p 7.7-2.7 K^-p	0.0171 \pm 0.0033 0.020 $+$ 0.008 0.020 $+$ 0.008 0.000 10.018 \pm 0.002 11 Includes APEL 79 re 12 Data is included in S $\Gamma(e^{+}e^{-})/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ < 0.02 0.08	31 ne following 6000 3 estat. STANTON - CL% 90 - SL% 90 ne following	DALPIAZ HARVEY data for averages 2 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG data for averages DANBURG	72 CNTR 71 OSPK s, fits, limits, 79 NICE TECN 88 ND TECN 69 HBC s, fits, limits 73 HBC	3.65 $\pi^- p \rightarrow$ etc. • • • 15–40 $\pi^- p \rightarrow$ $\frac{COMMENT}{e^+ e^- \rightarrow \pi^+}$ $\frac{COMMENT}{1.7-2.7 \ K^- p}$ etc. • • •	n X ⁰ • n2γ Γ ₁₇ π ⁻ η Γ ₁₀
# /E / 1 ± 0.004 OUR FI / 6 ± 0.013 OUR AV 3 ± 0.014 ± 0.04 ± 0.04	EVT3 DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K^-p 1.7-2.7 K^-p 2.26 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^0$ 3 K^-p 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ_5 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ_5 3 1.6 $\pi^-p \rightarrow n X^0$ 1.7-2.7 K^-p	0.0171 ± 0.0033 0.020 +0.008 0.020 +0.008 0.002 -0.006 0.008 ±0.002 11 Includes APEL 79 re 12 Data is included in S $\Gamma(e^{+}e^{-})/\Gamma_{total}$ $VALUE (units 10^{-7})$ <2.1 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ $VALUE$ <0.02 0.08 $\Gamma(\pi^{+}\pi^{-}\pi^{0})/\Gamma_{total}$ $VALUE$	31 te following 6000 1 esult. STANTON - CL% 90 - SL% 90 te following 95 CL% 90	DALPIAZ HARVEY data for average: 22 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG data for average: DANBURG DOCUMENT ID RITTENBERG RITTENBERG RITTENBERG	72 CNTR 71 OSPK s, fits, limits, 79 NICE ### TECN 88 ND ### TECN 69 HBC s, fits, limits 73 HBC #### TECN 69 HBC HBC 69 HBC 69 HBC	3.65 $\pi^- p \rightarrow$ etc. • • • 15-40 $\pi^- p \rightarrow$ $\frac{COMMENT}{e^+ e^- \rightarrow \pi^+}$ $\frac{COMMENT}{1.7-2.7 \ K^- p}, \text{ etc. • • •}$ 2.2 $K^- p \rightarrow$ $\frac{COMMENT}{1.7-2.7 \ K^- p}$	n X ⁰ • n2γ Γ ₁₇ π ⁻ η Γ ₁₀
UE 17±0.004 OUR FI 16±0.013 OUR AV 13±0.014 1 ±0.04 1 ±0.04 1 ±0.05 OUR FI 15±0.029 16±17±0.007 OUR FI 17±0.017 OUR AV 185±0.017 OUR AV 185±0.010 OUR FI 19±0.010 OUR FI 19±0.010 OUR FI	Terror includes scale factor of 1.2. //ERAGE 107 RITTENBERG 69 HBC 10 LONDON 66 HBC 7 BADIER 65B HBC Idecay)) + Γ(ω (charged decay) γ)]/ EVTS DOCUMENT ID TECN TError includes scale factor of 1.2. 42 RITTENBERG 69 HBC (0 EVTS DOCUMENT ID TECN TError includes scale factor of 1.2. //ERAGE 535 BASILE 71 CNTR 123 RITTENBERG 69 HBC OR-resonant π + π γ))/Γtotal EVTS DOCUMENT ID TECN TETTO Includes scale factor of 1.2.	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K^-p (0.286 Γ_3 +0.89 Γ_4)/ Γ 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ 2.1.6 $\pi^-p \rightarrow nX^0$ 1.7-2.7 K^-p 1.7-2.7 K^-p $\Gamma_{1.7-2.7} K^-p$	0.0171 \pm 0.0033 0.020 $+$ 0.008 0.020 $+$ 0.006 0.006 0.008 \pm 0.002 11 Includes APEL 79 re 12 Data is included in 5 $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ <0.02 0.08 $\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ <0.08 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ <0.08 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ <0.09 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ <0.09	31 te following 6000 1 esult. STANTON - CL% 90 - SL% 90 te following 95 CL% 90	DALPIAZ HARVEY data for average: 22 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG data for average: DANBURG DOCUMENT ID RITTENBERG RITTENBERG RITTENBERG	72 CNTR 71 OSPK s, fits, limits, 79 NICE TECN 88 ND TECN 69 HBC s, fits, limits 73 HBC TECN 69 HBC s, fits, limits	3.65 $\pi^- p \rightarrow$ etc. • • • 15-40 $\pi^- p \rightarrow$ $\frac{COMMENT}{e^+ e^- \rightarrow \pi^+}$ $\frac{COMMENT}{1.7-2.7 \ K^- p}, \text{ etc. • • •}$ 2.2 $K^- p \rightarrow$ $\frac{COMMENT}{1.7-2.7 \ K^- p}$	n x ⁰ Γ ₁₇ Γ ₁₇ Γ ₁₈ Αχ ⁰
UE 17±0.004 OUR FI 6±0.013 OUR AW 23±0.014 0 ±0.04 0 ±0.04 0 ±0.05 OUR FI 85±0.029 10±1rable 17±0.005 OUR FI 87±0.007 OUR AW 85±0.022 10±0.017 OUR AW 85±0.022 10±0.017 OUR AW 85±0.022 10±0.017 OUR AW 85±0.022 10±0.017 OUR AW 85±0.017 OUR AW	EVT3 DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K^-p Frotal (0.286 Γ_3 +0.89 Γ_4)/ Γ COMMENT 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ COMMENT 2.1.6 $\pi^-p \rightarrow nX^0$ 1.7-2.7 K^-p Γ_2/Γ COMMENT	0.0171 ± 0.0033 0.020 +0.008 0.020 +0.008 0.006 0.006 0.008 ±0.002 11 Includes APEL 79 re 12 Data is included in 9 $\Gamma(e^+e^-)/\Gamma_{total}$ $VALUE (units 10^{-7})$ <2.1 $\Gamma(\pi^+\pi^-)/\Gamma_{total}$ $VALUE$ <0.02 0.08 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{total}$ $VALUE$ <0.08 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{total}$ $VALUE$ <0.09 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{total}$ $VALUE$ <0.09	31 te following 6000 2 esult. STANTON - CL% 90 - SL% 90 te following 95 - CL% 90 te following 95	DALPIAZ HARVEY data for averages 2 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT IO RITTENBERG data for averages DANBURG DOCUMENT ID RITTENBERG data for averages DANBURG DANBURG	72 CNTR 71 OSPK s, fits, limits, 79 NICE TECN 88 ND TECN 69 HBC s, fits, limits 73 HBC TECN 69 HBC s, fits, limits	3.65 $\pi^- p \rightarrow$ etc. • • • 15-40 $\pi^- p \rightarrow$ COMMENT $e^+ e^- \rightarrow \pi^+$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$ COMMENT 1.7-2.7 $K^- p$ etc. • • •	πχ ⁰ Γ ₁ ; π ⁻ η Γ ₁ ; Λχ ⁰
## (7±0.004 OUR FI' (6±0.013 OUR AW (3±0.014 OUR FI' (3±0.04 OUR FI' (3±0.04 OUR FI' (3±0.005 OUR FI' (3±0.007 OUR AW (35±0.022 OUR FI' (3±0.007 OUR AW (35±0.022 OUR FI' (3±0.007 OUR AW (35±0.022 OUR FI' (3±0.007 OUR AW (35±0.007 OUR AW (35±0.	Terror includes scale factor of 1.2. //ERAGE 107 RITTENBERG 69 HBC 10 LONDON 66 HBC 7 BADIER 65B HBC Idecay)) + Γ(ω (charged decay) γ)]/ EVTS DOCUMENT ID TECN TError includes scale factor of 1.2. 42 RITTENBERG 69 HBC (0 EVTS DOCUMENT ID TECN TError includes scale factor of 1.2. //ERAGE 535 BASILE 71 CNTR 123 RITTENBERG 69 HBC OR-resonant π + π γ))/Γtotal EVTS DOCUMENT ID TECN TETTO Includes scale factor of 1.2.	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K^-p (0.286 Γ_3 +0.89 Γ_4)/ Γ 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ 2.1.6 $\pi^-p \rightarrow nX^0$ 1.7-2.7 K^-p 1.7-2.7 K^-p $\Gamma_{1.7-2.7} K^-p$	0.0171 \pm 0.0033 0.020 $+$ 0.008 0.020 $+$ 0.008 0.000 10.018 \pm 0.002 11 Includes APEL 79 re 12 Data is included in S $\Gamma(e^{+}e^{-})/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}(\text{units }10^{-7})$ <2.1 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ <0.02 0.08 $\Gamma(\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ <0.08 $\Gamma(\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ <0.09 $\Gamma(\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ <0.09 $\Gamma(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	31 ie following 6000 iesult. STANTON	DALPIAZ HARVEY data for average 2 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG data for average DANBURG DOCUMENT ID RITTENBERG data for average DANBURG DANBURG DANBURG	72 CNTR 71 OSPK s, fits, limits, 79 NICE ### RECN 88 ND ### TECN 69 HBC s, fits, limits 73 HBC ### HBC s, fits, limits 73 HBC #### HBC 15 HBC 16 HBC 16 HBC 17 HBC 17 HBC 17 HBC 17 HBC	3.65 $\pi^- p \rightarrow$ etc. • • • 15-40 $\pi^- p \rightarrow$ COMMENT $e^+ e^- \rightarrow \pi^+$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$	πχ ⁰ Γ ₁ Γ ₂ Γ ₃ Γ ₄ Αχ ⁰
UE 17±0.004 OUR FI 16±0.013 OUR AV 13±0.014 1 ±0.04 1 ±0.04 1 ±0.05 OUR FI 15±0.009 OUR AV	EVT3 DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda x^+ x^- x^+ x^- x^0$ 3 K^-p Febtal (0.286 Γ_3 +0.89 Γ_4)/ Γ COMMENT 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ COMMENT 7.7-2.7 K^-p Γ_2/Γ COMMENT 1.7-2.7 K^-p 2.24 $K^-p \rightarrow$	0.0171 ± 0.0033 0.020 +0.008 0.020 +0.008 0.006 0.006 0.008 ±0.002 11 Includes APEL 79 re 12 Data is included in 9 $\Gamma(e^+e^-)/\Gamma_{total}$ $VALUE (units 10^{-7})$ <2.1 $\Gamma(\pi^+\pi^-)/\Gamma_{total}$ $VALUE$ <0.02 0.08 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{total}$ $VALUE$ <0.08 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{total}$ $VALUE$ <0.09 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{total}$ $VALUE$ <0.09	31 te following 6000 2 esult. STANTON - CL% 90 - SL% 90 te following 95 - CL% 90 te following 95	DALPIAZ HARVEY data for averages 2 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT IO RITTENBERG data for averages DANBURG DOCUMENT ID RITTENBERG data for averages DANBURG DANBURG	72 CNTR 71 OSPK s, fits, limits, 79 NICE TECN 88 ND TECN 69 HBC s, fits, limits 73 HBC TECN 69 HBC s, fits, limits 73 HBC TECN 73 HBC	3.65 $\pi^- p \rightarrow$ etc. • • • 15-40 $\pi^- p \rightarrow$ COMMENT $e^+ e^- \rightarrow \pi^+$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$ COMMENT 1.7-2.7 $K^- p$ etc. • • •	nx ⁰ · n2γ Γ17 Γ18 Αχ ⁰ Γ18 Λχ ⁰ Γ19
UE 27±0.004 OUR FT 65±0.013 OUR AV 23±0.014 7 ±0.04 7 ±0.04 (π ⁰ π ⁰ η(charged 87±0.005 OUR FT 45±0.009 OUR FT 85±0.009 OUR FT 85±0.009 OUR FT 85±0.009 90 γ(including no UE 95±0.010 OUR FT 19±0.030 OUR AV 29±0.033 ±0.1 4 ±0.09	EVTS DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K^-p Febtal (0.286 Γ_3 +0.89 Γ_4)/ Γ COMMENT 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ COMMENT 2 1.6 $\pi^-p \rightarrow n X^0$ 1.7-2.7 K^-p Fall COMMENT 1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \gamma$ 3 K^-p	0.0171 \pm 0.0033 0.020 $+$ 0.008 0.020 $+$ 0.006 0.006 0.008 \pm 0.002 11 Includes APEL 79 re 12 Data is included in 5 $\Gamma(e^+e^-)/\Gamma_{total}$ $VALUE (units 10^{-7})$ <2.1 $\Gamma(\pi^+\pi^-)/\Gamma_{total}$ $VALUE = \frac{VALUE}{\sqrt{0.02}}$ 0.02 0.08 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{total}$ $VALUE = \frac{VALUE}{\sqrt{0.05}}$ 0.09 $\Gamma(\pi^+\pi^-\pi^-\pi^-)/\Gamma_{total}$ $VALUE = \frac{VALUE}{\sqrt{0.05}}$ 0.09 $\Gamma(\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-)$ $VALUE = \frac{VALUE}{\sqrt{0.05}}$	31 te following 6000 1 esult. STANTON - CL% 90 - CL% 90 te following 95 - CL% 90 te following 95 - Tals)// tot - CL% 95	DALPIAZ HARVEY (data for average: 12 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG (data for average: DANBURG DOCUMENT ID RITTENBERG (data for average: DANBURG DOCUMENT ID RITTENBERG (data for average: DANBURG DANBURG	72 CNTR 71 OSPK 85, fits, limits, 79 NICE TECN 88 ND	3.65 $\pi^- p \rightarrow$ etc. • • • 15-40 $\pi^- p \rightarrow$ COMMENT $e^+ e^- \rightarrow \pi^+$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$	nx ⁰ · n2γ Γ17 Γ18 Αχ ⁰ Γ18 Λχ ⁰ Γ19
### (15 ± 0.004 OUR FT 6 ± 0.005 OUR FT 6 ± 0.005 OUR FT 6 ± 0.009 OUR FT 6 ± 0.009 OUR FT 6 ± 0.002 OUR FT 6 ± 0.003 OUR AN 6 ± 0.003 OUR AN 6 ± 0.009 OUR FT 6 ± 0.009 OUR AN	EVTS DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K^-p 1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ 2.1.6 $\pi^-p \rightarrow n X^0$ 1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \gamma$ 3 K^-p $\Gamma_2/(\Gamma_1+\Gamma_3)$	0.0171 \pm 0.0033 0.020 $+$ 0.008 0.020 $+$ 0.006 0.006 0.008 \pm 0.002 11 Includes APEL 79 re 12 Data is included in 5 $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ <0.02 0.08 $\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$ <0.08 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ <0.09 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ <0.09 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ <0.09 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ <0.09 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ <0.09 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ <0.09 $\Gamma(\pi^+\pi^-\pi^0\pi^0)/\Gamma_{\text{total}}$ <0.09	31 te following 6000 1 esult. STANTON - CL% 90 - CL% 90 te following 95 - CL% 90 te following 95 - Tals)// tot - CL% 95	DALPIAZ HARVEY (data for average: 12 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG (data for average: DANBURG DANBURG DANBURG DANBURG DANBURG (data for average: DANBURG) DANBURG (data for average: DANBURG	72 CNTR 71 OSPK 73 NICE 79 NICE 88 ND 76 69 HBC 73 HBC 73 HBC 73 HBC 73 HBC 74 HBC 75 HBC 76 HBC 77 HBC 77 HBC 78 HBC	3.65 $\pi^- p \rightarrow$ etc. • • • 15-40 $\pi^- p \rightarrow$ COMMENT $e^+ e^- \rightarrow \pi^+$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$	πχ ⁰ Γ ₁ π ⁻ η Γ ₁ Αχ ⁰ Γ ₁
## (7±0.004 OUR FI	EVT3 DOCUMENT ID TECN	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K^-p Febtal (0.286 Γ_3 +0.89 Γ_4)/ Γ COMMENT 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ COMMENT 2 1.6 $\pi^-p \rightarrow n X^0$ 1.7-2.7 K^-p Fall COMMENT 1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \gamma$ 3 K^-p	0.0171 \pm 0.0033 0.020 $+$ 0.008 0.020 $+$ 0.008 0.000 11 Includes APEL 79 re 12 Data is included in 5 $\Gamma(e^{+}e^{-})/\Gamma_{total}$ $VALUE (units 10^{-7})$ <2.1 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ $VALUE = \frac{VALUE}{\sqrt{0.02}}$ 0.02 0.08 $\Gamma(\pi^{+}\pi^{-}\pi^{0})/\Gamma_{total}$ $VALUE = \frac{VALUE}{\sqrt{0.05}}$ 0.09 $\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	31 te following 6000 1 esult. STANTON CL% 90 e following 95 CL% 90 te following 95 rals)// tot 95 te following 96	DALPIAZ HARVEY (data for average: 12 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG (data for average: DANBURG DANBURG DANBURG DANBURG DANBURG (data for average: DANBURG) DANBURG (data for average: DANBURG	72 CNTR 71 OSPK 73 NICE 79 NICE 88 ND 76 69 HBC 73 HBC 73 HBC 73 HBC 73 HBC 74 HBC 75 HBC 76 HBC 77 HBC 77 HBC 78 HBC	3.65 $\pi^- p \rightarrow$ etc. • • • 15-40 $\pi^- p \rightarrow$ COMMENT $e^+ e^- \rightarrow \pi^+$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$ 2.2 $K^- p \rightarrow$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$ etc. • • •	nx ⁰ · n2γ Γ ₁ · π ⁻ η Γ ₁
UE 27±0.004 OUR FI 16±0.013 OUR AV 23±0.014 0 ±0.04 7 ±0.04 (π ⁰ π ⁰ η (charged 87±0.005 OUR FI 45±0.029 neutrals) / Γτοταί UE 87±0.009 OUR FI 87±0.007 OUR AV 875±0.009 OUR FI 19±0.017 OUR AV 19±0.030 OUR AV 29±0.033 ±0.1 4 ±0.09 ρ ⁰ γ (including no our AV 4 ±0.09 ρ ⁰ γ (including no our AV 4 ±0.09	Terror includes scale factor of 1.2. //FRAGE 107 RITTENBERG 69 HBC 10 LONDON 66 HBC 7 BADIER 65B HBC decay)) + Γ(ω (charged decay) γ)]/ EVTS DOCUMENT ID TECN TError includes scale factor of 1.2. 42 RITTENBERG 69 HBC (0 EVTS DOCUMENT ID TECN TError includes scale factor of 1.2. //FRAGE 535 BASILE 71 CNTR 123 RITTENBERG 69 HBC OR-resonant π + π - γ))/ΓτοταΙ EVTS DOCUMENT ID TECN TE Fror includes scale factor of 1.2. VERAGE 298 RITTENBERG 69 HBC 100-resonant π + π - γ)/ΓτοταΙ 298 RITTENBERG 69 HBC 100-resonant π + π - γ)/ΓτοταΙ 298 RITTENBERG 69 HBC 100-resonant π + π - γ)/ΓτοταΙ 100-resonant π + π - γ)/ΓτοταΙ 110 TE Fror includes scale factor of 1.2. DOCUMENT ID TECN TE TETOR Includes scale factor of 1.2. DOCUMENT ID TECN TE Fror includes scale factor of 1.2. TE TETOR Includes scale factor of 1.2. DOCUMENT ID TECN TE FROM THE TECN TE TETOR INCLUDES SCALE factor of 1.2. TE FROM THE TETOR THE TECN TE TETOR THE TETOR THE TECN TE TETOR THE TETOR TH	1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 3 K^-p 1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \pi^+ \pi^- \pi^0$ 1.7-2.7 K^-p 2.714 Γ_3 +0.09 Γ_4 + Γ_5)/ Γ 2.1.6 $\pi^-p \rightarrow n X^0$ 1.7-2.7 K^-p 2.24 $K^-p \rightarrow \Lambda \pi^+ \pi^- \gamma$ 3 K^-p $\Gamma_2/(\Gamma_1+\Gamma_3)$	0.0171 \pm 0.0033 0.020 $+$ 0.008 0 \bullet 0 We do not use th 0.018 \pm 0.002 11 Includes APEL 79 re 12 Data is included in S $\Gamma(e^{+}e^{-})/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ <0.02 0 \bullet We do not use th <0.08 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ <0.09 $\Gamma(\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ <0.09 $\Gamma(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	31 te following 6000 1 esult. STANTON CL% 90 e following 95 CL% 90 te following 95 rals)// tot 95 te following 96	DALPIAZ HARVEY (data for average: 12 APEL 80 evaluation. DOCUMENT ID VOROBYEV DOCUMENT ID RITTENBERG (data for average: DANBURG DANBURG DANBURG DANBURG DANBURG (data for average: DANBURG) DANBURG (data for average: DANBURG	72 CNTR 71 OSPK s, fits, limits, 79 NICE TECN 88 ND TECN 69 HBC s, fits, limits 73 HBC 73 HBC 73 HBC 73 HBC 73 HBC 74 HBC 75 HBC 76 HBC 77 HBC 78 HBC 78 HBC	3.65 $\pi^- p \rightarrow$ etc. • • • 15-40 $\pi^- p \rightarrow$ COMMENT $e^+ e^- \rightarrow \pi^+$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$ 2.2 $K^- p \rightarrow$ COMMENT 1.7-2.7 $K^- p$ etc. • • • 2.2 $K^- p \rightarrow$ etc. • • •	nx ⁰ • n2γ Γ1; π ⁻ η Γ14 Αx ⁰ Γ1

$\eta'(958)$

						- /-
$\Gamma(\pi^+\pi^+\pi^-\pi^-)/\Gamma_{tc}$	tal 	DOCUMENT ID		TECN	COMMENT	Γ ₁₀ /Γ
<0.01	90	RITTENBERG			1.7-2.7 K	ρ
$\Gamma(\pi^0\pi^0\eta(3\pi^0\text{decay}))$))/F _{total}					0.321Γ ₃ /Γ
VALUE	EVTS	DOCUMENT ID			COMMENT	
0.067±0.004 OUR FIT 0.11 ±0.06	Error inclu	ides scale factor BENSINGER		2. DBC	$2.2 \pi + d$	
	•					
$\Gamma(ho^0\gamma)$ (including non	-resonant	π ⁺ π ⁻ γ))/! (π ⊤ π	r=η(ne) 2/0.714Γ ₁
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	2/01/24/1
0.93±0.05 OUR FIT E 1.01±0.09 OUR AVERA		es scale factor of	1.2.			
1.07 ± 0.17		BELADIDZE		VES	36 π [−] Be →	
0.92 ± 0.14 1.11 ± 0.18	473 192	DANBURG JACOBS		HBC HBC	2.2 $K^- p \rightarrow$ 2.9 $K^- p \rightarrow$	
			13	TIBC		
$\Gamma(\gamma\gamma)/\Gamma(\pi^0\pi^0\eta)$ (new VALUE	utral decay _ <u>EVTS</u>	()) <u>DOCUMENT ID</u>		TECN		5/0.714Γ ₃
0.142±0.010 OUR FIT		ides scale factor			COMMENT	
0.188±0.058	16	APEL	72	OSPK	3.8 $\pi^- \rho \rightarrow$	nX ⁰
$\Gamma(\mu^+\mu^-\gamma)/\Gamma(\gamma\gamma)$						Γ_7/Γ_5
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT	
4.9±1.2	33	VIKTOROV	80	CNTR	25,33 π ⁻ p	→ 2μγ
$\Gamma(\mu^+\mu^-\eta)/\Gamma_{\text{total}}$						Γ ₂₅ /Γ
•	CL%	DOCUMENT ID		TECN	COMMENT	
<1.5	90	DZHELYADIN	81	CNTR	$30~\pi^-p\to$	η^I Π
$\Gamma(\mu^+\mu^-\pi^0)/\Gamma_{\text{total}}$						Γ ₂₄ /Γ
VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT	
<6.0	90	DZHELYADIN	81	CNTR	$30~\pi^-\rho\to$	$\eta^I n$
$\Gamma(3\pi^0)/\Gamma(\pi^0\pi^0\eta)$						Γ_6/Γ_3
VALUE (units 10 ⁻⁴)		DDCUMENT ID		TECN	COMMENT	
74±12 OUR FIT 74±12 OUR AVERAGE						
74±15		ALDE	87B	GAM2	38 π ρ →	π6γ
75±18		BINON	84	GAM2	30-40 π ⁻ p	\rightarrow $n6\gamma$
$\Gamma(\gamma\gamma)/\Gamma(\pi^0\pi^0\eta)$						Γ_5/Γ_3
VALUE 0.101±0.007 OUR FIT	Error inch	DOCUMENT ID			COMMENT	
0.105±0.010 OUR AVE						
0.091 ± 0.009		AMSLER			0.0 p p	
$0.112 \pm 0.002 \pm 0.006$		ALDE	878	GAM2	38 π ⁻ ρ →	π2γ
$\Gamma(\omega\gamma)/\Gamma(\pi^0\pi^0\eta)$						Γ_4/Γ_3
VALUE 0.145±0.014 OUR FIT		DOCUMENT ID		<u>TECN</u>	COMMENT	
0.147±0.016		ALDE	87E	GAM2	38 $\pi^- p \rightarrow$	π4γ
$\Gamma(3\gamma)/\Gamma(\pi^0\pi^0\eta)$						Γ ₂₃ /Γ ₃
VALUE (units 10 ⁻⁴)	<u>C1%</u>	DOCUMENT ID		TECN	COMMENT	
<4.6	90	ALDE	87E	GAM2	38 $\pi^- \rho \rightarrow$	πЗγ
$\Gamma(\pi^0\gamma\gamma)/\Gamma(\pi^0\pi^0\eta)$)					Γ ₁₅ /Γ ₃
VALUE (units 10 ⁻⁴)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<37	90	ALDE	87E	GAM2	38 $\pi^- p \rightarrow$	π4γ
$\Gamma(\pi^0\pi^0)/\Gamma(\pi^0\pi^0\eta)$						Γ ₁₉ /Γ ₃
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID				
<45	90	ALDE	87E	GAM2	38 π p →	π4γ
$\Gamma(4\pi^0)/\Gamma(\pi^0\pi^0\eta)$						Γ_{16}/Γ_{3}
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
<23	90	ALDE	87E	GAM2	38 $\pi^- p \rightarrow$	n8γ
$\Gamma(e\mu)/\Gamma_{\text{total}}$						Γ ₂₆ /Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID			COMMENT	
<4.7	90	BRIERE	00	CLEO	10.6 e ⁺ e ⁻	

√(958) C-NONCONSERVING DECAY PARAMETER

See the note on η decay parameters in the Stable Particle Particle Listings for definition of this parameter.

DECAY ASYMMETRY PARAMETER FOR $\pi^+\pi^-\gamma$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.01 ±0.04 O	UR AVERAGE				
-0.019 ± 0.056		AIHARA	87	TPC	$2\gamma \rightarrow \pi^+\pi^-\gamma$
-0.069 ± 0.078	295	GRIGORIAN	75	5TRC	2.1 π ρ
0.00 ± 0.10	103	KALBFLEISCH	75	HBC	2.18 K ⁻ p →
					$\Lambda \pi^+ \pi^- \gamma$
0.07 ± 0.08	152	RITTENBERG	65	HBC	2.1-2.7 K p

η'(958) REFERENCES

BRIERE	00	PRL 84 26		R. Briere et al.	(CLEO Collab.)
ACCIARRI	98B	PL B418 389		M. Acciarri et al.	(L3 Collab.)
BARBERIS	980	PL B440 225		D. Barberis et al.	(WA102 Collab.)
WURZINGER	96	PL B374 283		R. Wurzinger et al.	(BONN, ORSAY, SACL+)
PDG	94	PR D50 1173		L. Montanet et al.	(CERN, LBL, BOST+)
AMSLER	93	ZPHY C58 175		C. Amsler et al.	(Crystal Barrel Collab.)
BELADIDZE	92C	\$JNP 55 1535		G.M. Beladidze, S.I. Bityuko	v, G.V. Borisov (SERP+)
		Translated from YAF 5	5	2748	., (/,
KARCH	92	ZPHY C54 33	-	K. Karch et al.	(Crystal Ball Collab.)
ARMSTRONG	91B	ZPHY C52 389		T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
BEHREND	91	ZPHY C49 401		H.J. Behrend et al.	(CELLO Collab.)
AUGUSTIN	90	PR D42 10		J.E. Augustin et al.	(DM2 Collab.)
BARU	90	ZPHY C48 581		S.E. Baru et al.	(MD-1 Collab.)
BUTLER	90	PR D42 1368		F. Butler et al.	(Mark II Collab.)
KARCH	90	PL B249 353		K. Karch et al.	(Crystal Ball Collab.)
ROE	90	PR D41 17		N.A. Roe et al.	
					(ASP Collab.)
AIHARA	88C	PR D38 1		H. Aihara et al.	(TPC-2γ Collab.)
VORDBYEV	88	SJNP 48 273		P.V. Vorobiev et ai.	(NDVD)
		Translated from YAF 4	В		
WILLIAM\$	88	PR D38 1365		D.A. Williams et al.	(Crystal Ball Collab.)
AIHARA	87	PR D35 2650		H. Aihara et al.	(TPC-27 Collab.) JP
ALBRECHT	87B	PL B199 457		H. Albrecht et al.	(ARGUS Collab.)
ALDE	87B	ZPHY C36 603		D.M. Aide et al.	(LANL, BELG, SERP, LAPP)
ANTREASYAN		PR D36 2633		D. Antreasyan et al.	(Crystal Ball Collab.)
GIDAL	87	PRL 59 2012		G. Gidal et al.	(LBL, SLAC, HARV)
ALDE	86	PL B177 115		D.M. Alde et al.	(SERP, BELG, LANL, LAPP)
BARTEL	85E	PL 160B 421		W. Bartel et al.	(JADE Collab.)
ALTHOFF	84E			M. Althoff et al.	(TASSD Collab.)
BERGER	84B			C. Berger	(PLUTO Collab.)
				F.G. Binon et al.	
BINON	84	PL 140B 264			(SERP, BELG, LAPP+)
BEHREND	83B	PL 125B 518		H.J. Behrend et al.	(CELLD Collab.)
Also	82C	PL 114B 378		H.J. Behrend et al.	(CELLO Collab.)
JENNI	83	PR D27 1031		P. Jenni et at.	(SLAC, LBL)
BARTEL	82B	PL 113B 190		W. Bartel et al.	(JADE Collab.)
DZHELYADIN	81	PL 105B 239		R.I. Dzhelvadin et ai.	(SERP)
STANTON	80	PL 92 B 353		N.R. Stanton et al.	(DSU, CARL, MCGI+)
VIKTOROV	80	SJNP 32 520		V.A. Viktorov et al.	(SERP)
		Translated from YAF 3	12		
APEL	79	PL 83B 131		W.D. Apel, K.H. Augenstein	
BINNIE	79	PL 83B 141		D.M. Binnie et al.	(LOIC)
ZANFINO	77	PRL 38 930		C. Zanfino et al.	(CARL, MCGI, OHID+)
GRIGORIAN	75	NP B91 232		A. Grigorian et al.	(+)
KALBFLEISCH		PR D11 987		G.R. Kalbfleisch, R.C. Stran	
DUANE	74	PRL 32 425		A. Duane et al.	(LOIC, SHMP)
KALBFLEISCH		PR D10 916		G.R. Kalbfleisch	(BNL)
DANBURG	73	PR DB 3744		J.S. Danburg et al.	(BNL, MICH) JP
JACOBS	73	PR D8 18		S.M. Jacobs et al.	(BRAN, UMD, SYRA+) JP
APEL	72	PL 40B 680		W.D. Apel et al.	(KARLK, KARLE, PISA)
DALPIAZ	72	PL 42B 377		P.F. Dalpiaz et al.	(CERN)
BASILE	71	NC 3A 371		M. Basile et al.	(CERN, BGNA, STRB)
HARVEY	71	PRL 27 885		E.H. Harvey et al.	(MINN, MICH)
BENSINGER	70	PL 33B 505		J.R. Bensinger et al.	(WISC)
RITTENBERG	69	Thesis UCRL 18863		A. Rittenberg	(LRL) I
DAVIS	68	PL 27B 532		R. Davis et al.	(NWES, ANL)
LONDON	66	PR 143 1034		G.W. London et al.	(BNL, SYRA) IJP
BADIER		PL 17 337		J. Badier et al.	(EPOL, SACL, AMST)
RITTENBERG					
		PRL 15 556		A. Rittenberg, G.R. Kalbfleis	
DAUBER	64	PRL 13 449		P.M. Dauber et al.	(UCLA) JP

OTHER RELATED PAPERS

BENAYOUN	99B	PR D59 114027	M. Benayoun et al.	
PROKDSHKIN	99	PAN 62 356	Yu.D. Prokoshkin et al.	
		Translated from YAF 62	396.	
GRONBERG	98	PR D57 33	J. Gronberg et al.	(CLEO Collab.)
ABELE	97B	PL B402 195	A. Abele et al. (Crys	ital Barrel Collab.)
GENOVESE	94	ZPHY C61 425	M. Genovese, D.B. Lichtenberg, E. Pred	azzi (TORI+)
BENAYDUN	93	ZPHY 58 31	M. Benayoun et al. (CD	EF, CERN, BARI)
KAMAL	92	PL B284 421	A.N. Kamal, Q.P. Xu	(ALBE)
BICKERSTAFF	82	ZPHY C16 171	R.P. Bickerstaff, B.H.J. McKellar	(MELB)
KIENZLE	65	PL 19 438	W. Kienzle et al.	(CERN)
TRILLING	65	PL 19 427	G.H. Trilling et al.	`(LRL)
GOLDBERG	64	PRL 12 546	M. Goldberg et al.	(SYRA, BNL)
GOLDBERG	64B	PRL 13 249	M. Goldberg et al.	(SYRA, BNL)
KALBFLEISCH	64	PRL 12 527	G.R. Kalbfleisch et al.	(LRL) JP
KALBFLEISCH		PRL 13 349	Kalbfleisch, O.I. Dahl, A. Rittenberg	(LRL) JP

 $f_0(980)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See also the minireview on scalar mesons under $f_0(1370)$. (See the index for the page number.)

	/aaa\	
ħ	(980)	MASS

VALUE (M			ESTIMATE		DOCUMENT ID		TECN	COMMENT
				fat	a for averages, f	its, I	imits, et	C. • • •
976	± 5	±6	_	1	AKHMETSHIN	99B	CMD2	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
	± 3		268		AKHMETSHIN			
	± 4			2	AKHMETSHIN	99C	CMD2	$e^+e^- \rightarrow \pi^0\pi^0\gamma$
	± 4			3	AKHMETSHIN	9 9c	CMD2	$e^+e^- \rightarrow \pi^+\pi^-\gamma$,
985	±10				BARBERIS	99	OMEG	$ \begin{array}{c} \pi^0 \pi^0 \gamma \\ 450 \rho \rho \to \\ \rho_S \rho_f K^+ K^- \end{array} $
982	± 3				BARBERIS	99 B	OMEG	$450 pp \rightarrow p_S p_f \pi^+ \pi^-$
982	± 3				BARBERIS	99 c	OMEG	$\begin{array}{c} 450 \ \rho \rho \rightarrow \\ p_{\rm S} p_{\rm f} \pi^0 \pi^0 \end{array}$
987	± 6	±6		4	BARBERIS	99D		450 $pp \to K^+K^-$,
	±15			_	BELLAZZINI	99	GAM4	450 pp → ppπ ⁰ π ⁰
	± 3			2	KAMINSKI	99	RVUE	$\pi\pi \to \pi\pi, K\overline{K}, \sigma\sigma$
~ 980					OLLER	99	RVUE	$\pi\pi \to \pi\pi, K\overline{K}$
~ 993.5 ~ 987					OLLER		RVUE	$\pi\pi \to \pi\pi, K\overline{K}$
			164		OLLER		RVUE	$\pi\pi \rightarrow \pi\pi, K\overline{K}, \eta\eta$ $e^+e^- \rightarrow 5\gamma$
	± 12		164 164		ACHASOV ACHASOV		SND SND	$e^+e^- \rightarrow 5\gamma$ $e^+e^- \rightarrow 5\gamma$
	± 6		104		ACKERSTAFF			$e \cdot e \rightarrow 5\gamma$ $Z \rightarrow f_0 X$
	ェ 0 ±10				ALDE	98	GAM4	10 A
	±15				ANISOVICH		RVUE	Compilation
1008				9	LOCHER		RVUE	$\pi\pi \to \pi\pi$, $K\overline{K}$
955	±10			8	ALDE	97	GAM2	
994	± 9			10	BERTIN	97c	OBLX	$0.0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0$
993.2	± 6	$.5 \pm 6.9$		11	ISHIDA	96	RVUE	$\pi\pi \rightarrow \pi\pi, K\overline{K}$
1006			-	12	TORNQVIST	96	RVUE	$\pi\pi \to \pi\pi, K\overline{K}, K\pi, \eta\pi$
	± 5				ALDE		GAM2	$38 \pi^- \rho \to \pi^0 \pi^0 \eta$
	±10		10k	.,	ALDE		GAM2	
994 ~ 996	± 5			14	AMSLER AMSLER		CBAR CBAR	$\begin{array}{ccc} 0.0 \overline{p} p \to & 3\pi^{0} \\ 0.0 \overline{p} p \to & \pi^{0} \pi^{0} \pi^{0} \\ \pi^{0} \eta \eta, \pi^{0} \pi^{0} \eta \end{array}$
987	± 6			15	ANISOVICH	95	RVUE	* 99, * * 9
1015					JANSSEN	95	RVUE	$\pi\pi \rightarrow \pi\pi$, $K\overline{K}$
983				16	BUGG	94	RVUE	$\overline{p}p \rightarrow \eta 2\pi^0$
	± 2			1/	KAMINSKI	94	RVUE	$\pi\pi \to \pi\pi, K\overline{K}$
988				19	ZOU		RVUE	(1477)
	±10				MORGAN	93		$\begin{array}{c} \pi\pi(K\overline{K}) \rightarrow \\ \pi\pi(K\overline{K}), \ J/\psi \rightarrow \\ \phi\pi\pi(K\overline{K}), \ D_{S} \rightarrow \\ \pi(\pi\pi) \end{array}$
971.1				٦0 م	AGUILAR	91	EHS	400 pp
979				20	ARMSTRONG			300 pp → ppππ. ppK K ⊥
956				ρ	BREAKSTONE		SFM	$pp \rightarrow pp\pi^{+}\pi^{-}$
959.4				В	AUGUSTIN	89	DM2	$J/\psi \rightarrow \omega \pi^+ \pi^-$
978				3	ABACHI		HRS	$e^+e^- \rightarrow \pi^+\pi^-X$
985.0	_ 35	.0			ETKIN		MPS	$23 \pi^- p \rightarrow \pi 2K_S^0$
	± 4	ŀ		20	GIDAL	81	MRK2	$J/\psi \rightarrow \pi^+\pi^-X$
975				21	ACHASOV	80	RVUE	0 0
986	±10)			AGUILAR	78	HBC	$0.7 \ \overline{p}p \rightarrow \ \kappa_5^0 \ \kappa_5^0$
	± 5				LEEPER	77	ASPK	$2-2.4 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n, K^{+} K^{-} n$
	± 7			20	BINNIE	73	CNTR	$\pi^- p \rightarrow nMM$
	± 6			22	GRAYER	73	ASPK	$17 \pi^- \rho \rightarrow \pi^+ \pi^- \rho$
	±20			22	HYAMS	73	ASPK	$17 \pi^{-} \rho \to \pi^{+} \pi^{-} n$
997	± 6	•			PROTOPOP	73	нвс	$ \begin{array}{c} 7 \pi^+ p \rightarrow \\ \pi^+ p \pi^+ \pi^- \end{array} $

¹ Assuming $\Gamma(f_0) = 40$ MeV.

 13 At low |t|.

17 From sheet II pole position.

£ (980) WIDTH

Width determination very model dependent. Peak width in $\pi\pi$ is about 50 MeV, but

		wid	ÆΠ	can be	much lar	ger.				
VALUE (N					EVTS		DOCUMENT ID		TECN	COMMENT
				JR EST		٠				
			π	use the	TOHOWING		a for averages, f			
	± 2					23				$e^+e^- \rightarrow \pi^0\pi^0\gamma$
65	± 2	0					BARBERIS	99	OMEG	450 pp →
										PSPfK+K-
80	± 1	0					BARBERIS	99B	OMEG	450 <i>pp</i> →
		_								$p_S p_f \pi^+ \pi^-$
80	± 1	0					BARBERIS	99C	OMEG	450 pp →
						24				$\rho_s \rho_f \pi^0 \pi^0$
48	± 1	.2	±	8		24	BARBERIS	99D	OMEG	450 pp → K+K-
65	± 2) E					BELLAZZINI	99	GAMA	$\begin{array}{c} \pi^+\pi^- \\ 450 \ \rho\rho \rightarrow \ \rho\rho\pi^0\pi^0 \end{array}$
	± 1					25	KAMINSKI	99	RVUE	$\pi\pi \to \pi\pi K\overline{K}, \sigma$
~ 28						25	OLLER	99	RVUE	$\pi\pi \to \pi\pi, K\overline{K}$
~ 25							OLLER		RVUE	$\pi\pi \rightarrow \pi\pi, K\overline{K}$
~ 14						25	OLLER	99c	RVUE	$\pi\pi \rightarrow \pi\pi, K\overline{K}, \eta_{2}$
74	± 1	2			164	26	ACHASOV	981	SND	$e^+e^- \rightarrow 5\gamma$
188	+ 4	18			164		ACHASOV	981	SND	e ⁺ e ⁻ → 5γ
		13			104					e e - 31
70	± 2					25	ALDE	98		C"
86 54	± 1	.6				28	ANISOVICH LOCHER	988 98	RVUE RVUE	Compilation
						29	ALDE	97	GAM2	$\pi\pi \to \pi\pi$, $K\overline{K}$ $450 pp \to pp\pi^0\pi^0$
	± 1 ± 2						BERTIN		OBLX	
38 ~ 100	± 2	:0				31	ISHIDA	96	RVUE	$\pi\pi \rightarrow \pi\pi, K\overline{K}$
~ 100							TORNQVIST	96	RVUE	$\pi\pi \rightarrow \pi\pi, K\overline{K}, K$
34							I ORING VIST	90	KVOL	рπ
48	± 1	0			3k	32	ALDE	95B	GAM2	$38 \pi^- p \rightarrow \pi^0 \pi^0 r$
95	± 2	20			10k	33	ALDE	95B	GAM2	
26	± 1	0					AMSLER	95B	CBAR	
~ 112						34	AMSLER	95D	CBAR	$0.0 \ \overline{p}p \rightarrow \pi^0 \pi^0 \pi^0$
										$\pi^0\eta\eta$, $\pi^0\pi^0\eta$
	± 1	.2				35	ANISOVICH	95	RVUE	_
30						٠.	JANSSEN	95		$\pi\pi \to \pi\pi, K\overline{K}$
74							BUGG	94	RVUE	$\bar{p}p \rightarrow \eta 2\pi^0$
	±	2				30	KAMINSKI	94	RVUE	$\pi\pi \to \pi\pi, K\overline{K}$
46						30	ZOU		RVUE	444 160
48	± 1	12				3,	MORGAN	93	RVUE	$\pi\pi(K\overline{K}) \to$
										$ππ(K\overline{K}), J/ψ - φππ(K\overline{K}), DS -$
										$\pi(\pi\pi)$
37.4	1± 1	10.6	,			29	AGUILAR	91	EHS	400 pp
72		8					ARMSTRONG	91	OMEG	300 $pp \rightarrow pp\pi\pi$,
										PPKK
110	± 3						BREAKSTONE		SFM	$pp \rightarrow pp\pi^{+}\pi^{-}$
29	± 1	13				29	ABACHI	-	HRS	$e^+e^- \rightarrow \pi^+\pi^- X$
120	± 28	31	±2	20			ETKIN	82B	MPS	$23 \pi^- p \rightarrow \pi^2 K_5^0$
	± 1	10				40	GIDAL	81	MRK2	$J/\psi \rightarrow \pi^{+}\pi^{-}X$
28		300				41	ACHASOV	80	RVUE	
28 70	to :					42	AGUILAR	78	HBC	$0.7 \overline{p}p \rightarrow K_S^0 K_S^0$
	to 3							77	ASPK	
70						40	LEEPER	,,	AJEN	$2-2.4 \pi^- p \rightarrow$
70 100	± 8	30						"	ASFR	$2-2.4 \times P \rightarrow \pi^{+}\pi^{-}n, K^{+}K^{-}$
70 100	± 8	80 8				40	BINNIE	73	CNTR	$\pi^+\pi^-n$, K^+K^-
70 100 30 48	± 8	80 8 14				40	BINNIE GRAYER		CNTR ASPK	$\pi^+\pi^-n$, K^+K^- $\pi^-p \rightarrow nMM$ $17 \pi^-p \rightarrow \pi^+\pi^-$
70 100 30 48	± 8 ± 1	80 8 14 10				40 43 43	BINNIE	73 73 73	CNTR	$\pi^+\pi^-n$, K^+K^-

²³ From the combined fit of the photon spectra in the reactions $e^+e^-\to\pi^+\pi^-\gamma$, | $\pi^0\pi^0\gamma$.

 $^{^2\}mathrm{From}$ a narrow pole fit taking into account $f_0(980)$ and $f_0(1200)$ intermediate mecha-

anisms. From the combined fit of the photon spectra in the reactions $e^+e^- \to \pi^+\pi^-\gamma$, $\pi^0\pi^0\gamma$.

⁴ Supersedes BARBERIS 99 and BARBERIS 99B

⁵ T-matrix pole.

⁶In the "narrow resonance" approximation.

⁷ Using the "broad resonance" formulae of ACHASOV 97c.

⁸ From invariant mass fit.

On sheet II in a 2 pole solution. The other pole is found on sheet III at (1039–93/) MeV.

¹⁰ On sheet II in a 2 pole solution. The other pole is found on sheet III at (963-29i) MeV. 11 Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method. 12 At high |t|

 ¹⁴ On sheet II in a 4-pole solution, the other poles are found on sheet III at (953–55/) MeV and on sheet IV at (938–35/) MeV.
 15 Combined fit of ALDE 958, ANISOVICH 94, AMSLER 940.
 16 Combined fit of ALDE 958, ANISOVICH 94, INSURANCE 940.

 $^{^{16}}$ On sheet II in a 2 pole solution. The other pole is found on sheet III at (996-103) MeV.

¹⁸ On sheet II in a 2 pole solution. The other pole is found on sheet III at (797–185*i*) MeV and can be interpreted as a shadow pole.

¹⁹ On sheet II in a 2 pole solution. The other pole is found on sheet III at (978–28/) MeV. 20 From coupled channel analysis.

²¹ Coupled channel analysis with finite width corrections.

²² Included in AGUILAR-BENITEZ 78 fit.

²⁴ Supersedes BARBERIS 99 and BARBERIS 998

²⁵ T-matrix pole.

²⁶ In the "narrow resonance" approximation.
27 Using the "broad resonance" formulae of ACHASOV 97c.

²⁸ On sheet II in a 2 pole solution. The other pole is found on sheet III at (1039–93/) MeV.

 $^{^{29}}$ From invariant mass fit. 30 On sheet II in a 2 pole solution. The other pole is found on sheet III at (963-29i) MeV. 31 Reanalysis of data from HYAM\$ 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method. 32 At high |t|.

 $^{^{33}}$ At low |t|.

 $f_0(980)$

34 On sheet II in a 4-pole solution, the other poles are found on sheet III at (953-557) MeV
and on sheet IV at (938-35/) MeV.

35 Combined fit of ALDE 956, ANISOVICH 94, 36 On sheet II in a 2 pole solution. The other pole is found on sheet III at (996–103*i*) MeV.

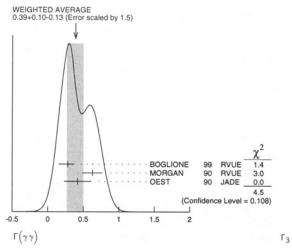
³⁷ From sheet II pole position.

- 38 On sheet II jone position.
 38 On sheet II in a 2 pole solution. The other pole is found on sheet III at (797–185i) MeV and can be interpreted as a shadow pole.
 39 On sheet II in a 2 pole solution. The other pole is found on sheet III at (978–28i) MeV.

40 From coupled channel analysis.

- 41 Coupled channel analysis with finite width corrections.
 42 From coupled channel fit to the HYAMS 73 and PROTOPOPESCU 73 data. With a simultaneous fit to the $\pi\pi$ phase-shifts, inelasticity and to the $\kappa_S^0 \kappa_S^0$ invariant mass.
- 43 Included in AGUILAR-BENITEZ 78 fit.

f₀(980) DECAY MODES


	Mode	Fraction (Γ_i/Γ)
Γ ₁	ππ Κ <u>Κ</u>	dominant
Γ ₂		seen
13 Γ ₄	γγ e+e-	

%(980) PARTIAL WIDTHS

EVTC	DOCUMENT ID		TECN	COMMENT
_ <u>EV/3</u>	DOCUMENTID		. JECN	COMMENT
RAGE Err	or includes scale f	actor	of 1.5.	See the ideogram below.
	⁴⁵ MORGAN	90	RVUE	$\gamma \gamma \rightarrow \pi^+ \pi^-, \pi^0 \pi^0$
60	⁴⁶ OEST	90	JADE	$e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{0}\pi^{0}$
the followin	g data for averag	es, fit	s, limits	, etc. • • •
47	,48 BOYER ,	90	MRK2	e+e- →
47	,48 MARSISKE	90	CBAL	$e^{+}e^{-}e^{-}\rightarrow e^{+}e^{-}\pi^{0}\pi^{0}$
AN 90.				
alysis of BO	YER 90 and MAR = 61 MeV.	RSISK	E 90, da	ta corresponds to resonanc
	60 the followin 47 47 GAN 90. nalysis of BO	RAGE Error includes scale to 44 BOGLIONE 45 MORGAN 60 46 OEST the following data for averag 47,48 BOYER 47,48 MARSISKE 5AN 90.	### RAGE Error includes scale factor ### BOGLIONE 99 ### BOGLIONE 90 ### BORGAN 90 ### 60 OEST 90 ### 60 OEST 90 ### 60 OEST 90 ### 47,48 BOYER 90 ### MARSISKE 90 ### 5AN 90. ### BOYER 90 and MARSISK	RAGE Error includes scale factor of 1.5. 44 BOGLIONE 99 RVUE 45 MORGAN 90 RVUE 60 60 FOEST 90 JADE the following data for averages, fits, limits 47,48 BOYER 90 MRK2 47,48 MARSISKE 90 CBAL 5AN 90. lalysis of BOYER 90 and MARSISKE 90, dai

46 OEST 90 quote systematic errors $\begin{array}{c} +0.08 \\ -0.18 \end{array}$. We use ± 0.18 .

47 From analysis allowing arbitrary background unconstrained by unitarity. ⁴⁸ Data included in MORGAN 90, BOGLIONE 99 analyses.

f₀(980) BRANCHING RATIOS

Γ(ππ) / [Γ(ππ) + Γ VALUE	DOCUMENT IL)	TECN	COMMENT
• • We do not use the	he following data for averag	ges, fits	, limits,	etc. • • •
~ 0.68	OLLER			$\pi\pi \rightarrow \pi\pi$, $K\overline{K}$
0.67 ± 0.09	⁴⁹ LOVERRE	80	HBC	$4 \pi^- \rho \rightarrow \pi 2 K_S^0$
$0.81 + 0.09 \\ -0.04$	⁴⁹ CASON			$7 \pi^- \rho \rightarrow n2K_S^0$
0.78 ± 0.03	⁴⁹ WETZEL	76	OSPK	$8.9 \pi^{-} p \rightarrow n2K_{S}^{0}$

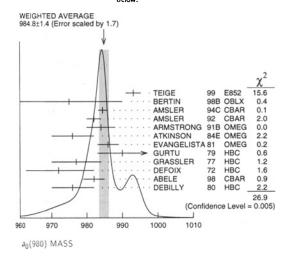
f₀(980) REFERENCES

AKHMETSHIN		PL B462 371	R.R. Akhmetshin et al.	(CMD-2 Collab.)
AKHMETŞHIN		PL B462 380	R.R. Akhmetshin et al.	(CMD-2 Collab.)
BARBERIS	99	PL B453 305	D. Barberis et al.	(Omega expt.)
BARBERIS		PL B453 316	D. Barberis et al.	(Omega expt.)
BARBERIS	99C	PL B453 325	D. Barberis et al.	(Omega expt.)
BARBERIS		PL B462 462	D. Barberis et al.	(Omega expt.)
BELLAZZINI	99	PL 8467 296	R. Bellazzini et al.	_
BOGLIONE KAMINSKI	99 99	EPJ C9 11	M. Boglione, M.R. Penning	
OLLER	99	EPJ C9 141 PR D60 099906	R. Kaminski, L. Lesniak, B. J.A. Oller et al.	. Loiseau
OLLER	99B	NP A652 407	J.A. Oller, E. Oset	
OLLER	99C	PR D60 074023	J.A. Oller, E. Oset	
ACHASOV	981	PL B440 442	M.N. Achasov et al.	
ACKERSTAFF			K. Ackerstaff et al.	(OPAL Collab.)
ALDE	98	EPJ A3 361	D. Aide et ai.	(GAM4 Collab.)
Also	99	PAN 62 405	D. Aide et al.	(GAMS Collab.)
ANISOVICH		UFN 41 419	V.V. Anisovich et al.	(Grand Condu.)
LOCHER	98	EPJ C4 317	M.P. Locher et al.	(PSI)
ACHASOV	97C	PR D56 4084	N.N. Achasov et al.	()
ALDE	97	PL B397 350	D.M. Alde et al.	(GAMS Collab.)
BERTIN	97C	PL B408 476	A. Bertin et al.	(ÔBELIX Collab.)
ISHIDA	96	PTP 95 745	S. Ishida et al.	(TOŘY, MIYA, KEK)
TORNQVIST	96	PRL 76 1575	N.A. Tornqvist, M. Roos	(HELS)
ALDE		ZPHY C66 375	D.M. Alde et al.	(GAMS Collab.)
AMSLER		PL B342 433	C. Amsler et al.	(Crystal Barrel Collab.)
AMSLER		PL B355 425	C. Amsler et al.	(Crystal Barrel Collab.)
ANISOVICH	95	PL B355 363	V.V. Anisovich et al.	(PNPI, SERP)
JANSSEN	95	PR D52 2690	G. Janssen et al.	(STON, ADLD, JULI)
AMSLER ANISOVICH	94D 94	PL B333 277 PL B323 233	C. Amsler et al. V.V. Anisovich et al.	(Crystal Barrel Collab.)
BUGG	94	PR D50 4412	D.V. Bugg et al.	(LOQM)
KAMINSKE	94	PR D50 3145	R. Kaminski et al.	(CRAC, IPN)
ZOU		PR D50 591	B.S. Zou, D.V. Bugg	(LOQM)
MORGAN	93	PR D48 1185	D. Morgan, M.R. Penningto	
AGUILAR	91	ZPHY C50 405	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
ARMSTRONG	91	ZPHY C51 351	T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
BOYER	90	PR D42 1350	J. Boyer et al.	(Mark II Collab.)
BREAKSTONE		ZPHY C48 569	A.M. Breakstone et al.	(ISU, BGNA, CERN+)
MARSISKE	90	PR D41 3324	H. Marsiske et al.	(Crystal Ball Collab.)
MORGAN	90	ZPHY C48 623	D. Morgan, M.R. Penningto	
OEST	90	ZPHY C47 343	T. Oest et al.	(JADE Collab.)
AUGUSTIN	89	NP B320 1 SJNP 48 273	J.E. Augustin, G. Cosme P.V. Vorobiev et al.	(DM2 Collab.)
VOROBYEV	88	Translated from YAF 48		(NOVO)
ABACHI	86B	PRL 57 1990	S. Abachi et al.	(PURD, ANL, IND, MICH+)
ETKIN		PR D25 1786		(BNL, CUNY, TUFTS, VAND)
GIDAL	81	PL 107B 153	G. Gidal et al.	(SLAC, LBL)
ACHASOV	80	SJNP 32 566	N.N. Achasov, S.A. Devyan	
		Translated from YAF 32		
LOVERRE	B0	ZPHY C6 187	P.F. Loverre et al.	(CERN, CDEF, MADR+) IJP
AGUILAR	78	NP B140 73	M. Aguilar-Benitez et al.	(MADR, BOMB+)
CASON LEEPER	78 77	PRL 41 271 PR D16 2054	N.M. Cason et al. R.J. Leeper et al.	(NDAM, ANL)
ROSSELET	77	PR D15 574	L. Rosselet et al.	(ISU) (GEVA, SACL)
WETZEL	76	NP B115 208	W. Wetzel et al.	(ETH, CERN, LOIC)
SRINIVASAN	75	PR D12 681	V. Srinivasan et al.	(NDAM, ANL)
GRAYER	74	NP B75 189	G. Grayer et al.	(CERN, MPIM)
BINNIE	73	PRL 31 1534	D.M. Binnie et al.	(LOIC, SHMP)
GRAYER	73	Tallahassee	G. Grayer et al.	(CERN, MPIM)
HYAMS	73	NP B64 134	B.D. Hyams et al.	(CERN, MPIM)
PROTOPOP	73	PR D7 1279	S.D. Protopopescu et al.	(LBL)

OTHER RELATED PAPERS -

ABREU	99 J	PL B449 364	P. Abreu et al.	(DELPHI Collab.)
ANISOVICH	99D	PL B452 180	A.V. Anisovich et al.	, ,
Also	99F	NP A651 253	A.V. Anisovich et al.	
ANISOVICH	99H	PL B467 289	A.V. Anisovich, V.V. Aniso	ovich
BLACK	99	PR D59 074026	D. Black et al.	
DELBOURGO	99	PL B446 332	R. Delbourgo, D. Liu, M.	Scadron
MARCO	99	PL B470 20	E. Marco et al.	
MINKOWSKI	99	EP / C9 283	P. Minkowski, W. Ochs	
ACHASOV	98C	PR D57 1987	N.N. Achasov et al.	
ACHASOV	98G	JETP 67 464	N.N. Achasov et al.	
ACHASOV	98J	SPU 41 1149	71011 710112227 22 27	
CHLIAPNIK	98	PL B423 401		
ACHASOV	97C	PR D56 4084	N.N. Achasov et al.	
ACHASOV	97D	PR D56 203	N.N. Achasov et al.	
ACHASOV	97E	IJMP A12 5019	N.N. Achasov et al.	
PROKOSHKIN		SPD 42 117	Y.D. Prokoshkin et al.	(SERP)
		Translated from DANS		(02)
AU	87	PR D35 1633	K.L. Au, D. Morgan, M.R.	. Pennington (DURH, RAL)
AKESSON	86	NP B264 154	T. Akesson et al.	(Axial Field Spec. Collab.)
BEVEREN	86	ZPHY C30 615	E. van Beveren et al.	(NIJM, BIEL)
MENNESSIER	83	ZPHY C16 241	G. Mennessier	(MONP)
BARBER	82	ZPHY C12 1	D.P. Barber et al.	(DARE, LANC, SHEF)
ETKIN	B2C	PR D25 2446	A. Etkin et al.	(BNL, CUNY, TUFTS, VAND)
SRINIVASAN	75	PR D12 681	V. Srinivasan et al.	(NDAM, ANL)
BIGI	62	CERN Conf. 247	A. Bigi et al.	(CERN)
BINGHAM	62	CERN Conf. 240	H.H. Bingham et al.	(EPOL, CERN)
ERWIN	62	PRL 9 34	A.R. Erwin et al.	(WISC, BNL)
WANG	61	JETP 13 323	Wang et al.	(JINR)
		Translated from ZETF		(/

 $a_0(980)$

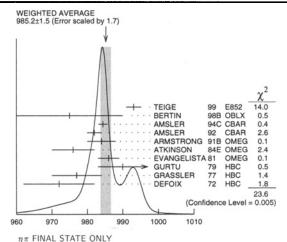

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

See our minireview on scalar mesons under $f_0(1370)$. (See the index for the page number.)

a₀(980) MASS

VALUE (MeV) DOCUMENT ID

984.8±1.4 OUR AVERAGE Includes data from the 2 datablocks that follow this one. Error includes scale factor of 1.7. See the ideogram below.



$\eta\pi$ FINAL STATE ONLY

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>
The data in this block is included in the average printed for a previous datablock.

985.2	±	1.5	OUR AVE	R	AGE Error incl	udes	scale fa	ctor of	1.7. See the ideogram
993.1	±	2.1		1	TEIGE	99	E852		18.3 $\pi^- p \to \eta \pi^+ \pi^- n$
975	± 2	15			BERTIN	98B	OBLX		$0.0 \ \overline{\rho} p \rightarrow K^{\pm} K_S \pi^{\mp}$
984.45	±	1.23	± 0.34		AMSLER	94c	CBAR		$0.0 \ \overline{p}p \rightarrow \omega \eta \pi^{0}$
982	±	2		2	AMSLER	92	CBAR		$0.0 \overline{\rho} p \rightarrow \eta \eta \pi^0$
984	±	4	1040	2	ARMSTRONG	91B	OMEG	±	$300 pp \rightarrow pp\eta\pi^{+}\pi^{-}$
976	\pm	6			ATKINSON	84E	OMEG	±	2555 $\gamma \rho \rightarrow \eta \pi \eta$
986	\pm	3	500	3	EVANGELISTA	81	OMEG	±	12 $\pi^- \rho \rightarrow$
				_					$\eta \pi^+ \pi^- \pi^- \rho$
990	±		145	3	GURTU	79	HBC	±	$4.2 K^- p \rightarrow \Lambda \eta 2\pi$
977	\pm	7			GRASSLER	77	HBC	-	$16 \pi^{\mp} \rho \rightarrow \rho \eta 3\pi$
972	± 1		150		DEFOIX	72	HBC	±	$0.7 \ \overline{p}p \rightarrow 7\pi$
• • • We	dc	not	use the fol	lo	wing data for av	erag	es, fits, I	imits,	etc. • • •
~ 1055				4	OLLER	99	RVUE		$\eta \pi$, $K \overline{K}$
~ 1009.2				4	OLLER	99B	RVUE		$\pi\pi \to \pi\pi$, $K\overline{K}$
986	+2	23 LO	20	5	ACHASOV	98в	SND		$e^+e^- \rightarrow 5\gamma$
988	\pm	6		4	ANISOVICH	98B	RVUE		Compilation
987					TORNQVIST	96	RVUE		$\pi\pi \to \pi\pi$, $K\overline{K}$, $K\pi$,
991					JANSSEN	95	RVUE		$ \eta \pi $ $ \eta \pi \to \eta \pi, K\overline{K}, K\pi, $ $ \eta \pi $
980	$\pm i$	11	47		CONFORTO	78	OSPK	_	$4.5~\pi^-p\to~pX^-$
978	±	16	50		CORDEN	78	OMEG	±	$12-15 \pi^- p \rightarrow n\eta 2\pi$
989	±	4	70		WELLS	75	HBC	-	$3.1-6 K^- \rho \rightarrow \Lambda \eta 2\pi$
970	±	15	20		BARNES	69C	HBC	_	$4-5 K^- p \rightarrow \Lambda \eta 2\pi$
980	±	10			CAMPBELL	69	DBC	±	$2.7 \pi^{+} d$
980	±	10	15		MILLER	69B	HBC	_	4.5 K N \rightarrow $\eta\pi\Lambda$
980	±	10	30		AMMAR	68	HBC	±	$5.5 K^- p \rightarrow \Lambda \eta 2\pi$
			it, average			a ₀ 0.	The fit	favors	a slightly heavier a_0^{\pm} .

² From a single Breit-Wigner fit.

KK ONLY

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>

The data in this block is included in the average printed for a previous datablock.

980.8± 2.7 OUR AVERAGE

982 ± 3		^b ABELE	98	CBAR		$0.0 \overline{\rho} \rho \rightarrow K_I^0 K^{\pm} \pi^{\mp}$
976 ± 6	316	DEBILLY	80	HBC	±	$1.2-2 \overline{p}p \rightarrow f_1(1285)\omega$
• • • We do not	use the t	following data for a	verag	ges, fits,	limits	, etc. • • •
~ 1053				RVUE		$\pi\pi \rightarrow \pi\pi, K\overline{K}$
1016 ± 10	100	⁸ ASTIER			\pm	0.0 p p
1003.3 ± 7.0	143	⁹ ROSENFELD	65	RVUE	\pm	

6 T-matrix pole on sheet II, the pole on sheet III is at 1006-i49 MeV.
7 T-matrix pole.
8 ASTIER 67 includes data of BARLOW 67, CONFORTO 67, ARMENTEROS 65.

a₀(980) WIDTH

• • • V	/e do not	use the fo	ollo	wing data for av	erag	es, fits, l	imits,	etc. • • •
~ 42			10	OLLER	99	RVUE		$\eta \pi$, $K \overline{K}$
~ 112			10	OLLER	99B	RVUE		$\pi\pi \rightarrow \eta\pi, K\overline{K}$
71	± 7			TEIGE	99	E852		18.3 $\pi^- p \to \eta \pi^+ \pi^- \pi$
92	± 20			ANISOVICH		RVUE		Compilation
65	± 10			BERTIN	98B	OBLX		$0.0 \overline{p}p \rightarrow K^{\pm}K_{5}\pi^{\mp}$
~ 100				TORNQVIST	96	RVUE		$\pi\pi \to \pi\pi, K\overline{K}, K\pi, \eta\pi$
202				JANSSEN	95	RVUE		$ \eta \pi \rightarrow \eta \pi, K\overline{K}, K\pi, \\ \eta \pi $
54.12	± 0.34±	Ŀ 0.12		AMSLER	94c	CBAR		$0.0 \overline{\rho} \rho \rightarrow \omega \eta \pi^0$
54	±10		11	AMSLER	92	CBAR		$0.0 \overline{p} p \rightarrow \eta \eta \pi^0$
95	±14	1040	11	ARMSTRONG	91B	OMEG	±	$300 pp \rightarrow pp\eta\pi^{+}\pi^{-}$
62	±15	500	12	EVANGELISTA	81	OMEG	±	12 π ⁻ p →
								$\eta \pi^+ \pi^- \pi^- \rho$
60	± 20	145	12	GURTU	79	нвс	±	$4.2 K^- \rho \rightarrow \Lambda \eta 2\pi$
60	+ 50 - 30	47		CONFORTO	78	OSPK	-	$4.5~\pi^-p\to~pX^-$
86.0	+60.0 -50.0	50		CORDEN	78	OMEG	±	$1215~\pi^+~\rho~\rightarrow~n\eta2\pi$
44	± 22			GRASSLER	77	HBC	-	$16 \pi^{\mp} p \rightarrow p \eta 3\pi$
80	to 300		13	FLATTE	76	RVUE	-	4.2 K ⁻ p $\rightarrow \Lambda \eta 2\pi$
16.0	+ 25.0 - 16.0	70		WELLS	75	нвс	-	$3.1-6 K^-p \rightarrow \Lambda \eta 2\pi$
30	± 5	150		DEFOIX	72	HBC	±	$0.7 \ \overline{p} p \rightarrow 7\pi$
40	±15			CAMPBELL	69	DBC	±	$2.7 \pi^{+} d$
60	±30	15		MILLER	69B	HBC	_	4.5 K $^-$ N $\rightarrow \eta\pi\Lambda$
80	±30	30		AMMAR	68	HBC	±	$5.5 K^- p \rightarrow \Lambda \eta 2\pi$
10								• •

¹⁰ T-matrix pole. 11 From a single Breit-Wigner fit. 12 From f_1 (1285) decay.

¹³ Using a two-channel resonance parametrization of GAY 76B data.

κ	κ	ONLY
114		- (k4-)/\

VALUE (MeV)	EVTS	DOCUMENT ID		<u>TECN</u>	CHG	COMMENT
92± 8		14 ABELE	98	CBAR		$0.0 \overline{p}p \rightarrow K_I^0 K^{\pm} \pi^{\mp}$
• • • We do i	not use the f	ollowing data for a				
~ 24		15 OLLER	990	RVUE		$\pi\pi \to \pi\pi, K\overline{K}$
~ 25	100	16 ASTIER	67	HBC	±	
57 ± 13	143	¹⁷ ROSENFELD	65	RVUE	±	
14 T-matrix n	ole on sheet	II the note on she	et III	l is at 10	06-i49	MeV.

 $^{^3}$ From $f_1(1285)$ decay.

⁴ T-matrix pole.

 $^{^{5}}$ Assuming $g_{\partial\eta\,\pi}=0.85~g_{\partial\,K^{+}\,K^{-}}.$ Systematic uncertainties not estimated.

¹⁵ T-matrix pole on since in, and part of the state of th

 $a_0(980)$, $\phi(1020)$

	a ₀ (9	80) DECAY M	IOD	ES			
Mode		i	racti	ion (Γ _i /	r)		
$ \Gamma_1 \eta_{\overline{K}} $ $ \Gamma_2 K\overline{K} $			iomii seen	nant			
$\Gamma_3 \rho \pi$ $\Gamma_4 \gamma \gamma$			een				
4 γγ Γ ₅ e ⁺ e−			occii				
	a ₀ (98	0) PARTIAL V	VID.	THS			
$\Gamma(\gamma\gamma)$							Γ4
VALUE (keV)	Aba fallandas	DOCUMENT ID			-4.0 -		
 ● ● We do not use 0.30 ± 0.10 		data for averages B AMSLER		RVUE	eic. •	••	
18 Using $\Gamma_{\gamma\gamma}$ B(a0(9			' .				
	a ₀ (98	30) Γ(I)Γ(_{γγ})/	Γ(to	rtal)			
$\Gamma(\eta\pi) \times \Gamma(\gamma\gamma)/\Gamma$							$\Gamma_1\Gamma_4/\Gamma$
VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMM	ENT	
0.24 + 0.08 OUR AVE		OFET		1455	_+ -		0
$0.28 \pm 0.04 \pm 0.10$ $0.19 \pm 0.07 + 0.10$ -0.07	44	OEST ANTREASYAN	90			- → e+ 0 - → e+ 0	,
	·	ANTICASTAN		CDAL		→ t ·	
$\Gamma(\eta \pi) \times \Gamma(e^+ e^-)$ VALUE (eV)	CL%	DOCUMENT ID		TECN	соми	IENT	Γ ₁ Γ ₅ /Γ
<1.5	90	VOROBYEV	88	ND		$\rightarrow \pi^0 \eta$	1
	a ₀ (980) BRANCHING	3 R/	TIOS			
$\Gamma(K\overline{K})/\Gamma(\eta\pi)$							Γ2/Γ1
0.177±0.024 OUR	AVERACE	DOCUMENT ID Error includes sca	la fa			COMMEN	<u> </u>
0.23 ±0.05		9 ABELE		CBAR		0.0 p p − K ⁰ _L K	
$0.166 \pm 0.01 \pm 0.02$	2 2	⁰ BARBERIS	9 8C	OMEG		450 pp -	
• • • We do not use	the following	data for average	s, fits	s, limits,	etc. •	• • •	
~ 0.60 1.16 ±0.18	2	OLLER ²¹ BUGG	99B 94	RVUE RVUE		$\begin{array}{ccc} \pi \pi \to & \eta \\ \overline{p} p \to & \eta \end{array}$	
0.7 ±0.3		OCRDEN	78	OMEG		12-15 π	
0.25 ±0.08	2	0 DEFOIX	72	нвс	±	$n\eta 2\pi$ $0.7 \bar{p} \rightarrow$	7π
19 Using $\pi^0\pi^0\eta$ fro 20 From the decay of		4D.					
²¹ BUGG 94 uses A		ata. This is a rat	io of	coupling	gs.		
$\Gamma(\rho\pi)/\Gamma(\eta\pi)$							Γ3/Γ1
ρπ forbidden. <u>VALUE</u>	<u>a%</u>	DOCUMENT ID		TECN	CHG	COMMEN	<u>r</u>
• • • We do not use							
<0.25	70	AMMAR	70	нвс	±	4.1,5.5 <i>Η</i> Λη2π	
	a 0((980) REFERE	NC	ES			
	D60 099906 A652 407	J.A. Oller et a	l. Oset				
OLLER 99C PR	D60 074023 D59 012001	J.A. Oller, E. (J.A. Oller, E. (S. Teige et al.	Oset			(BNL-852	Collab.)
ABELE 98 PR ACHASOV 98B PL	D57 3B60 B438 441	A. Abele et al. M.N. Achasov				ystal Barrel sibirsk SND	Collab.)
AMSLER 98 RM ANISOVICH 98B UF	IP 70 1293 N 41 419	C. Amsler V.V. Anisovich					C-11-1 \
BERTIN 98B PL	B440 225 B434 180	D. Barberis et A. Bertin et a	í.			(WA102 (OBELIX	Collab.)
JANSSEN 95 PR	L 76 1575 D52 2690	N.A. Tornqvist, G. Janssen et C. Amster et :	ai.	1002	(5	TON, ADLI ystai Barrei	(HELS) D, JULI) Collab)
AMSLER 94D PL	B327 425 B333 277 D50 4412	C. Amsler et a C. Amsler et a D.V. Bugg et	H.		(Ci	ystal Barrel	Collab.) (LOQM)
AMSLER 92 PL ARMSTRONG 91B ZPS	B291 347 HY C52 389	C. Amsler et a T.A. Armstron	ei.	ıl.		ystal Barrei HU, BARI,	Collab.) BIRM+)
OEST 90 ZP VOROBYEV 88 SJN	HY C47 343 NP 48 273	T. Oest et al. P.V. Vorobiev			•	(JADE	Collab.) (NOVO)
Tra	inslated from YAI	F 48 436.					

ANTREASYAN	86	PR D33 1847	D. Antreasyan et al.	(Crystal Ball Collab.)
ATKINSON	84E	PL 138B 459	M. Atkinson et al.	(BONN, CERN, GLAS+)
EVANGELISTA	81	NP B178 197	C. Evangelista et al.	(BARI, BONN, CERN+)
DEBILLY	80	NP B176 1	L. de Billy et al.	(CURIN, LAUS, NEUC+)
GURTU	79	NP B151 181	A. Gurtu et al.	(CERN, ZEEM, NIJM, OXF)
CONFORTO	7B	LNC 23 419	B. Conforto et al.	(RHEL, TNTO, CHIC+)
CORDEN	78	NP B144 253	M.J. Corden et al.	(BIRM, RHEL, TELA+)
GRASSLER	77	NP B121 189	H. Grassler et al.	(AACH3, BERL, BONN+)
FLATTE	76	PL 63B 224	S.M. Flatte	(CERN)
GAY	76B	PL 63B 220	J.B. Gav et al.	(CERN, AMST, NIJM) JP
WELLS	75	NP B101 333	J. Wells et al.	(OXF)
DEFOIX	72	NP B44 125	C. Defoix et al.	(CDEF, ČERN)
AMMAR	70	PR D2 430	R. Ammar et al.	(KANS, NWES, ANL, WISC)
BARNES	69C	PRL 23 610	V.E. Barnes et al.	(BNL, SYRA)
CAMPBELL	69	PRL 22 1204	J.H. Campbell et al.	` (PURD)
MILLER	69B	PL 29B 255	D.H. Miller et al.	(PURD)
Also	69	PR 188 2011	W.L. Yen et al.	(PURD)
AMMAR	68	PRL 21 1832	R. Ammar et al.	(NWEŠ, ANL)
ASTIER	67	PL 25B 294	A. Astier et al.	(CDEF, CERN, IRAD)
Includes da	ita of	BARLOW 67, CONFORT	O 67, and ARMENTEROS 65	
BARLOW	67	NC 50A 701	J. Barlow et al.	(CERN, CDEF, IRAD, LIVP)
CONFORTO	67	NP B3 469	G. Conforto et al.	(CERN, CDEF, IPNP+)
ARMENTEROS	65	PL 17 344	R. Armenteros et al.	(CERN, CDEF)
ROSENFELD	65	Oxford Conf. 58	A.H. Rosenfeld	(LRL)
		OTHER	RELATED PAPERS	
ANISOVICH	99D	PL B452 180	A.V. Anisovich et al.	
Also	99F	NP A651 253	A.V. Anisovich et al.	
MARCO	99	PL B470 20	E. Marco et al.	
ACHASOV	98.1	SPU 41 1149	21 110.00 01 01	
ACHASOV	97C	PR D56 4084	N.N. Achasov et al.	
ACHASOV	97D	PR D56 203	N.N. Achasov et al.	
ACHASOV	97E	IJMP A12 5019	N.N. Achasov et al.	
AMSLER	94D	PL B333 277	C. Amsler et al.	(Crystal Barrel Collab.)
TORNQVIST	90	NPBPS 21 196	N.A. Torngvist	(HELS)
WEINSTEIN	89	UTPT 89 03	J. Weinstein, N. Isgur	(ŤNTO)
ACHASOV	88B	ZPHY C41 309	N.N. Achasov, G.N. Shestako	
BEVEREN	86	ZPHY C30 615	E. van Beveren et al.	(NIJM, BIEL)
WEINSTEIN	83B	PR D27 588	J. Weinstein, N. Isgur	` (TNTO)
TORNOVIST	82	PRL 49 624	N.A. Tornqvist	`(HELS)
BRAMON	80	PL 93B 65	A. Bramon, E. Masso	(BARC)
TURKOT	63	Siena Conf. 1 661	F. Turkot et al.	(BNL, PITT)
				, , ,

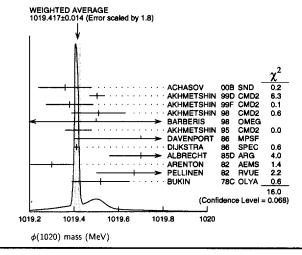
 ϕ (1020)

I

I

 $I^{G}(J^{PC}) = 0^{-}(1^{-})$

ϕ (1020) MASS


We average mass and width values only when the systematic errors have been evaluated. $\label{eq:constraint}$

VALUE (M	eV)		EVTS	DOCUMENT ID		TECN	COMMENT
1019.417	±0.014	OUR AVERA	GE Error i	ncludes scale fact below.	or of	1.8. Se	e the ideogram
1019.36	+012			1 ACHASOV	00B	SND	$e^+e^- \rightarrow \eta \gamma$
1019.504		±0.033	314k	AKHMETSHIN			e+e
1019.38	±0.07	±0.08	2200	² AKHMETSHIN	9 9 F	CMD2	$ \begin{array}{c} e^+e^- \to \\ \pi^+\pi^- \ge \\ 2\gamma \end{array} $
1019.51	±0.07	± 0.10	11169	AKHMETSHIN	98	CMD2	$e^+e^{\pi^+\pi^-\pi^0}$
1019.5	±0.4			BARBERIS	9 8	OMEG	450 pp → pp2K+2K-
1019.42	±0.06		55600	AKHMETSHIN	95	CMD2	e+e− → hadrons
1019.7	± 0.3		2012	DAVENPORT	86	MPSF	400 pA → 4KX
1019.411	±0.008	3	642k	³ DIJKSTRA	86	SPEC	100-200 π^{\pm} , \overline{p} , p , K^{\pm} , on Be
1019.7	± 0.1	±0.1	5079	ALBRECHT	85 D	ARG	10 e ⁺ e ⁻ → K ⁺ K ⁻ X
1019.3	± 0.1		1500	ARENTON	82	AEMS	11.8 polar. pp → KK
1019.67	± 0.17		25080	4 PELLINEN	82	RVUE	
1019.52			3681	BUKIN		OLYA	e ⁺ e [−] → hadrons
• • • W	/e do no	ot use the follo	wing data fo	or averages, fits, li	mits,	etc. •	• •
1019.8	±0.7			ARMSTRONG	86	OMEG	85 $\pi^+/pp \rightarrow \pi^+/p4Kp$
1020.1	±0.11		5526	5 ATKINSON	86	OMEG	20-70 γp
1019.7	±1.0			BEBEK	86	CLEO	$e^+e^- \rightarrow \Upsilon(45)$
1020.9	±0.2			⁵ FRAME	86	OMEG	13 K ⁺ p →
1021.0	±0.2			⁵ ARMSTRONG	83B	OMEG	
1020.0	± 0.5			⁵ ARMSTRONG	83B	OMEG	$18.5 \begin{array}{c} K & K & \Lambda \\ 18.5 & K - p \rightarrow \\ K - K + \Lambda \end{array}$
1019.7	±0.3			⁵ BARATE	83	GOLI	K K ' Λ 190 π Be → 2μΧ
1019.8	±0.2	±0.5	766	IVANOV	81	OLYA	1-1.4 e ⁺ e ⁻ → K ⁺ K ⁻
1019.4	±0.5		337	COOPER	78B	нвс	$0.7-0.8 \overline{p}p \rightarrow K_S^0 K_J^0 \pi^+ \pi^-$
1020	±1		383	⁵ BALDI	77	CNTR	$ \begin{array}{c} $

1018.9	± 0.6	800	COHEN	77	ASPK	6 π [±] N → K+K-N
1019.7	±0.5	454	KALBFLEISCH			$2.18 \ K^-p \rightarrow$
1019.4	±0.8	984	BESCH	74	CNTR	$AK\overline{K}$ $2 \gamma p \rightarrow$
						pK+K-
1020.3	± 0.4	100	BALLAM	73	HBC	2.8−9.3 γp
1019.4	±0.7		BINNIE	73B	CNTR	$\pi^- p \rightarrow \phi n$
1019.6	± 0.5	120 6	AGUILAR	72B	HBC	3.9,4.6 $K^-\rho \rightarrow$
1019.9	+0.5	100 6	AGUILAR	72R	нвс	$\Lambda K^{+} K^{-}$ 3.9,4.6 $K^{-} p \rightarrow$
1015.5	10.5	100	Addital	120	TIBC	K-pK+K-
1020.4	± 0.5	131	COLLEY	72	нвс	10 K+p →
						$K^+ p \phi$
1019.9	± 0.3	410	STOTTLE	71	HBC	2.9 K ⁻ p →
						$\Sigma/\Lambda K\overline{K}$

 $[\]frac{1}{2} \text{Using a total width of 4.43}\,\pm\,0.05$ MeV. Systematic uncertainty included.

⁶ Mass errors enlarged by us to Γ/\sqrt{N} ; see the note with the $K^*(892)$ mass.

ϕ (1020) WIDTH

We average mass and width values only when the systematic errors have

VALUE (MeV) 4.458 ± 0.032 OUR AV	EVTS	DOCUMENT ID TECN COMMENT	
4.477 ± 0.036 ± 0.022	314k	AKHMETSHIN 99D CMD2 $e^+e^- ightarrow \kappa^0$	ς κ ₀
4.44 ±0.09	55600	AKHMETSHIN 95 CMD2 $e^+e^- \rightarrow ha$	
4.45 ±0.06	271k	DIJKSTRA 86 SPEC $100 \pi^-$ Be	
4.5 ±0.7	1500	ARENTON 82 AEMS 11.8 polar. p	p → KK
4.2 ±0.6	766	7 IVANOV 81 OLYA 1-1.4 e+e-	→
4.3 ±0.6		⁷ CORDIER 80 WIRE $e^+e^- \rightarrow \pi^-$	$+\pi - \pi^0$
4.36 ±0.29	3681	⁷ BUKIN 78C OLYA $e^+e^- \rightarrow ha$	drons
4.4 ± 0.6	984	⁷ BESCH 74 CNTR $2 \gamma p \rightarrow p K$	+ K-
4.67 ± 0.72	681	⁷ BALAKIN 71 OSPK $e^+e^- \rightarrow ha$	drons
4.09 ±0.29		BIZOT 70 OSPK $e^+e^- \rightarrow ha$	drons
• • • We do not use	the followi	ng data for averages, fits, limits, etc. • • •	
3.6 ±0.8	337	7 COOPER 788 HBC 0.7-0.8 $\bar{p}p - \kappa_0^0 \kappa_1^0 \pi^+$	
4.5 ±0.50	1300	7,8 AKERLOF 77 SPEC 400 pA \rightarrow K	
4.5 ±0.8	500	7,8 AYRES 74 ASPK 3-6 $\pi^- p \rightarrow$	
		κ+ κ- n, κ+ κ- Λ	
3.81 ±0.37		COSME 748 OSPK $e^+e^- \rightarrow K$	0 K0
3.8 ±0.7	454	⁷ BORENSTEIN 72 HBC 2.18 $K^-p \rightarrow$	ĸĸn
⁷ Width errors enlar ⁸ Systematic errors		to $4\Gamma/\sqrt{N}$; see the note with the K^* (892) mas ted.	j.

ϕ (1020) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	Scale factor/ Confidence level
Г	K+K-	(49.2 ± 0.7) % 5=1.2
Γ_2	$\kappa_1^0 \kappa_2^0$	(33.8 ± 0.6) % 5=1.2
Γ_3	$\rho\pi^+\pi^+\pi^-\pi^0$	(15.5 ± 0.6)) % S=1.4
Γ ₄	$ ho\pi$		
Γ ₅	$\pi^+\pi^-\pi^0$		
Γ_6	ηγ	(1.297 ± 0.033)	,
Γ ₇	$\pi^0_{\ \ \gamma}$	(1.26 ± 0.10)	
Γ8	e ⁺ e ⁻	(2.91 ± 0.07)	
Гэ	$\mu^+\mu^-$		$) \times 10^{-4}$
Γ_{10}	η e ⁺ e ⁻	$(1.3 \begin{array}{c} +0.8 \\ -0.6 \end{array})$) × 10 ⁻⁴
Γ_{11}	$\pi^+\pi^-$	(7.5 ± 1.4)	$) \times 10^{-5}$
Γ12	$\omega\pi^0$		$) \times 10^{-5}$
Γ_{13}	$\omega\gamma$	< 5	% CL=84%
Γ ₁₄	$\rho\gamma$	< 1.2	$\times 10^{-5}$ CL=90%
Γ_{15}	$\pi^+\pi^-\gamma$	(4.1 ± 1.3)	
Γ ₁₆	$f_0(980)\gamma \\ \pi^0 \pi^0 \gamma$		$) \times 10^{-4}$
Γ ₁₇		(1.08 ± 0.19	
	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 8.7	× 10 ⁻⁴ CL=90%
	$\pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	< 1.5	× 10 ⁻⁴ CL=95%
Γ ₂₀	$\pi^{0} e^{+} e^{-}$	< 1.2	× 10 ⁻⁴ CL=90%
Γ ₂₁	$\pi^0 \eta \gamma$) × 10 ⁻⁵
Γ ₂₂	$a_0(980)\gamma$	< 5	× 10 ⁻³ CL=90%
Γ ₂₃	$\eta'(958)\gamma$	$(6.7 \begin{array}{c} +3.5 \\ -3.1 \end{array}$	$) \times 10^{-5}$
	$\eta \pi^0 \pi^0 \gamma$	< 2	×10 ⁻⁵ CL=90%
	$\mu^+\mu^-\gamma$	•) × 10 ⁻⁵
Γ_{26}	ργγ	< 5	×10 ⁻⁴ CL=90%
Γ ₂₇	$\eta \pi^+ \pi^-$	< 3	×10 ⁻⁴ CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to 15 branching ratios uses 42 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2 = 38.2$ for 35 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left<\delta x_i\delta x_j
ight>/(\delta x_i\!\cdot\!\delta x_j)$, in percent, from the fit to the branching fractions, $x_i\equiv$ $\Gamma_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

ϕ (1020) PARTIAL WIDTHS

	, ,	,		-			
Γ(ηγ) VALUE (keV)		DOCUMENT ID		TECN	COMMENT		Γ ₆
• • • We do not use	the followin	g data for average	s, fit	s, limits	, etc. • • •		
$58.9 \pm 0.5 \pm 2.4$		ACHASOV	00	SND	$e^+e^- \rightarrow$	$\eta \gamma$	
$\Gamma(\pi^0\gamma)$							Γ7
VALUE (keV)		DOCUMENT ID		TECN	COMMENT		
• • We do not use	the followin	g data for average	s, fit	s, limits,	etc. • • •		
$5.40 \pm 0.16 ^{+0.43}_{-0.40}$		ACHASOV	00	SND	e+e- →	$\pi^0\gamma$	
Γ(e ⁺ e ⁻)							Гв
VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT		1 1 1
• • • We do not use	the followin	g data for average	s, fits	s, limits,	etc. • • •		
$1.32 \pm 0.02 \pm 0.04$	314k	9 AKHMETSHIN	1 9 90	CMD2	$e^+e^- \rightarrow$	KOK) S
⁹ Using B($\phi \rightarrow \kappa_I^0$	K_{S}^{0})= 0.33					•	-

$\phi(1020) \Gamma(i)\Gamma(e^+e^-)/\Gamma^2(\text{total})$

$\Gamma(e^+e^-) \times \Gamma(K_L^0 K$	$\binom{0}{S} / \Gamma_{\text{total}}^2$	V 11			$\Gamma_8\Gamma_2/\Gamma^2$
VALUE (units 10 ⁻⁵)	EVTS	DOCUMENT ID	TECN	COMMENT	
9.85 ±0.22 OUR FIT					
$9.756\pm0.114\pm0.146$	314k ¹⁴	AKHMETSHIN 990	CMD2	$e^+e^- \rightarrow$	κζκζ

²Using a total width of 4.43 \pm 0.05 MeV.

³Weighted and scaled average of 12 measurements of DIJKSTRA 86.

⁴ PELLINEN 82 review includes AKERLOF 77, DAUM 81, BALDI 77, AYRE5 74, DE-GROOT 74.

⁵ Systematic errors not evaluated.

 ϕ (1020)

	$-\Gamma(\pi^+\pi^-\pi^0)]/\Gamma_{ m total}^2$	Γ ₈ Γ ₃ /Γ ²	$\Gamma(K_L^0K_S^0)/\Gamma_{\text{total}}$	FIATC	DOCUMENT ID	_	-cu c		Г
	EVTS DOCUMENT ID TECN COMMI	ENT	VALUE 0.338 ± 0.006 OUR FIT	EVTS Error	DOCUMENT ID		ECN CO	OMMENT	
	rror includes scale factor of 1.3. 1169 10 AKHMETSHIN 98 CMD2 e ⁺ e ⁻	+0	0.331 ± 0.009 OUR AV		includes scale factor	01 1.2.			
		→ N · N · N · 1	0.335 ± 0.010	40644	AKHMETSHII	N 95 C	MD2 e	+ e ⁻ →	KO KO
$(e^+e^-) \times \Gamma(\eta\gamma)/\Gamma$	-2 total	$\Gamma_8\Gamma_6/\Gamma^2$	0.326 ± 0.035		DOLINSKY	91 N	D e	+ e ⁻ →	KOKE
	EVTS DOCUMENT ID TECN COMMI	ENT	0.310 ± 0.024		DRUZHININ	84 N	D e	+ e ⁻ →	KAKE
	Error includes scale factor of 1.4.		• • We do not use to	he follow	ing data for average	s, fits, li			LS
±0.13 OUR AVER	AGE Error includes scale factor of 1.5. See the	he ideogram below.	$0.329 \pm 0.006 \pm 0.010$	314k	16 AKHMETSHII	N 99n C	MD2 e	+ e ⁻ →	KO KO
$\pm 0.04 \pm 0.11$		$\rightarrow \eta \gamma$	0.27 ±0.03	133	KALBFLEISC				→ NKO
$55 \pm 0.092 \pm 0.143$	12 ACHASOV 00B SND e+e-		0.257±0.030	95	BALAKIN			+ e- →	
	2200 12,13 AKHMETSHIN 99F CMD2 e^+e^-			167	LINDSEY				LJ
	following data for averages, fits, limits, etc. •	_	0.40 ±0.04	101	LINDSET	66 H	BC 2.	1-2.7 K ⁻ ΛΚ ⁰ Κ ⁰	
$3 \pm 0.036 \pm 0.070$	¹⁴ ACHASOV 00B SND e ⁺ e ⁻	$\rightarrow \eta \gamma$						""L"	5
WEIGHTED AVE	ERAGE		$[\Gamma(\rho\pi)+\Gamma(\pi^+\pi^-)]$	π ⁰)]/Γ ₁	ntal				Г
3.84±0.13 (Error			VALUE	EVT5	DOCUMENT ID		ECN_ CO	OMMENT	
	1.		0.155 ± 0.006 OUR FIT						
	Values above of weighted avera	age, error,	0.151 ± 0.009 OUR AV	ERAGE					
	and scale factor are based upor		0.161 ± 0.008	11761	AKHMETSHI				π ⁺ π ⁻ π
	this ideogram only. They are no sarily the same as our 'best' val		0.143 ± 0.007		DOLINSKY	91 N		+ e →	π ⁺ π ⁻ π
	obtained from a least-squares c	constrained fit	• • • We do not use t	he follow					
	utilizing measurements of other	(related)		11169	17 AKHMETSHII				$\pi^+\pi^-\pi$
	quantities as additional informat	uon.	0.139 ± 0.007		¹⁸ PARROUR	76B O	SPK e	† e	
			F(K 0 K 0) \riv∑\						г. //г -
/			Γ(κ [κ])/Γ(κκ)	F1.7T-	000000				$\Gamma_2/(\Gamma_1+$
/			VALUE	<u>EVTS</u>	DOCUMENT ID		ECN C	JMMENT	
/		_	0.407 + 0.008 OUR FIT	Error i	ncludes scale factor	of 1.2.			
/		χ^2	0.45 ±0.04 OUR AV						
/		ND 1.8	0.44 ±0.07		LONDON	66 H	BC 2.	24 K - D	→ AKT
/ -		ND 0.2	0.48 ±0.07	52	BADIER	65B H		к-р	
/	- · · · · · · · · · · · · · · · · AKHMETSHIN 99F CI		0.40 ± 0.10	34	SCHLEIN	63 H		•	→ AKĨ
	(Confidence L	4.8 evel = 0.091)	I_2	0.7	/TD				
	(Confidence E	.ever = 0.091)	$[\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)]$	≖ υ)]/Γ((KK)				$\Gamma_3/(\Gamma_1 +$
3 3.5	4 4.5 5		VALUE		DOCUMENT ID		ECN C	OMMENT	
-(+-)	-/ \ -2	2	0.186 ± 0.008 OUR FIT		includes scale factor	of 1.4.			
$\Gamma(e^+e^-) \times I$	$\Gamma(\eta \gamma)/\Gamma_{\text{total}}^2$	Γ ₈ Γ ₆ /Γ ²	0.24 ±0.04 OUR AV	ERAGE					
	2		0.237±0.039		CERRADA LONDON	77B H		2 K - p -	
$^+e^-) \times \Gamma(\pi^0\gamma)/$	/F ² total	$\Gamma_8\Gamma_7/\Gamma^2$						24 K - p	→
, , ,,,,		. 0. 17 .	0.30 ± 0.15		20110011	66 H			0
E (units 10 ⁻⁷)	DOCUMENT ID TECH COMMI					00 П		$\Lambda \pi^+ \pi^-$	- _π 0
				ѫº)]/୮(00 N			_
E (units 10 ⁻⁷) ±0.28 OUR FIT			$[\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)]$ VALUE	π ⁰)]/Γ(- <u>Εντς</u>					_
E (units 10 ⁻⁷) ±0.28 OUR FIT ±0.10 +0.27 -0.25	DOCUMENT ID TECN COMMI		$ \begin{bmatrix} \Gamma(\rho\pi) + \Gamma(\pi^+\pi^-) \\ \frac{VALUE}{1} \\ 0.457 \pm 0.020 $ OUR FIT	Error i	(KºKº) DOCUMENT ID	<u>Ti</u>		Λπ+ π-	_
E (units 10 ⁻⁷) ±0.28 OUR FIT ±0.10 +0.27 -0.25	DOCUMENT ID TECN COMMI	$\rightarrow \pi^0 \gamma$	$ \begin{bmatrix} \Gamma(\rho\pi) + \Gamma(\pi^+\pi^-\\ \frac{VALUE}{0.457 \pm 0.020} \text{ OUR FIT} \\ 0.51 \pm 0.05 \text{ OUR AVI} \end{bmatrix} $	EVTS Error i	(Kº Kº) <u>DOCUMENT ID</u> includes scale factor	of 1.3.	ECN C	Λπ ⁺ π ⁻	Γį
E (units 10 ⁻⁷) ±0.28 OUR FIT ±0.10 ^{+0.27} +e ⁻) × Γ(μ ⁺ μ ⁻	DOCUMENT ID TECN COMMIT 15 ACHASOV 00 SND e^+e^-	_{-→ π} 0 _γ Γ ₈ Γ ₉ /Γ ²	$ \begin{bmatrix} \Gamma(\rho\pi) + \Gamma(\pi^+\pi^-) \\ \frac{VALUE}{1} \\ 0.457 \pm 0.020 $ OUR FIT	Error i	(KºKº) DOCUMENT ID	of 1.3.	ECN C	Λπ+ π-	Г
E (units 10^{-7}) ±0.28 OUR FIT ±0.10 + 0.27 ±0.1 - 0.25 • e^-) × $\Gamma(\mu^+\mu^-$ E (units 10^{-8})	DOCUMENT ID TECN COMMI	_{-→ π} 0 _γ Γ ₈ Γ ₉ /Γ ²	$[\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)]$ 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI	EVTS Error i ERAGE 3681	(K⁰_L K⁰_S) <u>DOCUMENT ID</u> includes scale factor BUKIN	of 1.3.	ECN C	Λπ ⁺ π ⁻	Г
Equals 10 ⁻⁷) E0.28 OUR FIT E0.10 $^+$ 0.27 E0.10 $^+$ 0.25 E0 $^-$ × $^-$ (μ^+ μ^- (units 10 ⁻⁸) E1.4 OUR FIT	DOCUMENT ID TECN COMMI 15 ACHASOV 00 SND e^+e^- -)/ Γ^2_{total} DOCUMENT ID TECN COMMI	_{-→ π} 0 _γ Γ ₈ Γ ₉ /Γ ²	$ \begin{bmatrix} \Gamma(\rho\pi) + \Gamma(\pi^+\pi^-\\ \frac{VALUE}{0.457 \pm 0.020} \text{ OUR FIT} \\ 0.51 \pm 0.05 \text{ OUR AVI} \end{bmatrix} $	EVTS Error i	(Kº Kº) <u>DOCUMENT ID</u> includes scale factor	of 1.3.	ECN C	Λπ ⁺ π ⁻	Γ:
Equals 10 ⁻⁷) E0.28 OUR FIT E0.10 $^+$ 0.27 E0.10 $^+$ 0.25 E $^-$) \times $\Gamma(\mu^+\mu^-)$ Equals 10 ⁻⁸) E1.4 OUR FIT E1.4 OUR AVERAGE	DOCUMENT ID TECN COMMI 15 ACHASOV 00 SND e^+e^- -)/ Γ^2_{total} DOCUMENT ID TECN COMMI	_{-→ π} 0 _γ Γ ₈ Γ ₉ /Γ ²	$[\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)]$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07	EVTS Error i ERAGE 3681	(K⁰_L K⁰_S) <u>DOCUMENT ID</u> includes scale factor BUKIN	of 1.3.	ECN C	Λπ ⁺ π ⁻	κ ⁰ _L κ ⁰ _S , π ⁰ _{π+π-π}
Equals 10 ⁻⁷) £0.28 OUR FIT £0.10 ⁺ 0.25 fe^-) × $\Gamma(\mu^+\mu^-$ Equals 10 ⁻⁸) £1.4 OUR FIT £1.4 OUR AVERAGE £1.4±0.9	DOCUMENT ID TECN COMMIT 15 ACHASOV 00 SND e^+e^- Total DOCUMENT ID TECN COMMIT DOCUMENT ID TECN COMMIT E 13 ACHASOV 99C SND e^+e^-	_{-→ π} 0 _γ Γ ₈ Γ ₉ /Γ ²	$ \begin{bmatrix} \Gamma(\rho\pi) + \Gamma(\pi^{+}\pi^{-} \\ 0.457 \pm 0.020 \text{ OUR FIT} \\ 0.51 \pm 0.05 \text{ OUR AVI} \\ 0.56 \pm 0.07 \\ 0.47 \pm 0.06 \\ \Gamma(\eta\gamma)/\Gamma(\pi^{0}\gamma) \end{bmatrix} $	EVTS Error i ERAGE 3681	(K ⁰ / ₂ K ⁰ / ₃) <u>DOCUMENT ID</u> INCludes scale factor BUKIN COSME	78c O	ECN CO	$ \begin{array}{c} \Lambda \pi^{+} \pi^{-} \\ \hline OMMENT \\ + e^{-} \rightarrow \\ + e^{-} \rightarrow \end{array} $	κ ⁰ _L κ ⁰ _S , π ⁰ _{π+π-π}
Equals 10 ⁻⁷) E0.28 OUR FIT $\pm 0.10^{+0.27}$ ± 0.28 OUR FIT $\pm 0.10^{+0.25}$ $\pm e^{-}$) $\times \Gamma(\mu^{+}\mu^{-}$ $\pm 0.10^{-8}$) ± 1.4 OUR FIT ± 1.4 OUR AVERAGI $\pm 1.4 \pm 0.9$ ± 3.0	DOCUMENT ID TECN COMMI	$ \begin{array}{ccc} & & & & & & & & \\ & & & & & & & & \\ & & & &$	$[\Gamma(\rho\pi) + \Gamma(\pi^{+}\pi^{-}$ $VALUE$ 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^{0}\gamma)$ $VALUE$	EVTS Error i ERAGE 3681 516	(K?K) <u>DOCUMENT ID</u> INCLUDES SCALE FACTOR BUKIN COSME <u>DOCUMENT ID</u>	76 O 74 O	ECN CO	$ \begin{array}{c} \Lambda \pi + \pi^{-} \\ \hline OMMENT \\ + e^{-} \rightarrow \\ + e^{-} \rightarrow \\ \hline OMMENT \end{array} $	κ ⁰ _L κ ⁰ _S , π ⁰ _{π+π-π}
E (units 10^{-7}) ±0.28 OUR FIT ±0.10+0.25 +e-) × $\Gamma(\mu^+\mu^-$ E (units 10^{-8}) ±1.4 OUR FIT ±1.4 OUR AVERAGE ±1.4±0.9 ±3.0 ±5.9	DOCUMENT ID TECN COMMIT 15 ACHASOV 00 SND e^+ e^-	FOR $\mu^+ \mu^ \rightarrow \mu^+ \mu^ \rightarrow \mu^+ \mu^ \rightarrow \mu^+ \mu^ \rightarrow \mu^+ \mu^-$	[Γ(ρ π) + Γ(π ⁺ π ⁻ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 Γ(η γ)/Γ(π ⁰ γ) VALUE • • • We do not use to	EVTS Error i ERAGE 3681 516	(Kº Kº) <u>DOCUMENT ID</u> includes scale factor BUKIN COSME <u>DOCUMENT ID</u> ing data for average	78c O 74 O 75, fits, li	ECN CO	$A\pi^{+}\pi^{-}$ $OMMENT$ $+ e^{-} \rightarrow$ $\pi^{+}\pi^{-}$ $+ e^{-} \rightarrow$ $OMMENT$ $C. \bullet \bullet \bullet$	κ ⁰ κ ⁰ ς, π ⁰ π+π-π
Equals 10 ⁻⁷) EQ.28 OUR FIT $\pm 0.10^{+} \pm 0.25$ $\pm e^{-}$) $\times \Gamma(\mu^{+}\mu^{-})$ Equals 10 ⁻⁸) Equals 10 ⁻⁸ Equals 10 ⁻⁸ E1.4 OUR FIT ± 1.4 OUR AVERAGE $\pm 1.4 \pm 0.9$ ± 0	DOCUMENT ID TECN COMMIT 15 ACHASOV 00 SND e^+e^-	$ \begin{array}{ccc} & & & & & & & \\ & & & & & & & \\ & & & &$	$[\Gamma(\rho\pi) + \Gamma(\pi^{+}\pi^{-}$ $VALUE$ 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^{0}\gamma)$ $VALUE$	EVTS Error i ERAGE 3681 516	(K?K) <u>DOCUMENT ID</u> INCLUDES SCALE FACTOR BUKIN COSME <u>DOCUMENT ID</u>	76 O 74 O	ECN CO	$A\pi^{+}\pi^{-}$ $OMMENT$ $+ e^{-} \rightarrow$ $\pi^{+}\pi^{-}$ $+ e^{-} \rightarrow$ $OMMENT$ $C. \bullet \bullet \bullet$	κ ⁰ κ ⁰ ς. π ⁰ π+ π- π
(units 10 ⁻⁷) :0.28 OUR FIT :0.10 \pm 0.25 (e^-) $\times \Gamma (\mu^+\mu^-$ (units 10 ⁻⁸) :1.4 OUR AVERAGE :1.4 OUR AVERAGE :1.4 \pm 0.9 :3.0 :5.9 e^-) $\times \Gamma (\pi^+\pi^-$ (units 10 ⁻⁸)	DOCUMENT ID TECN COMMIT 15 ACHASOV 00 SND e^+ e^-	$ \begin{array}{ccc} & & & & & & & & & & & \\ & & & & & & & &$	$ \begin{bmatrix} \Gamma(\rho\pi) + \Gamma(\pi^{+}\pi^{-} \\ 0.457 \pm 0.020 \text{ OUR FIT} \\ 0.51 \pm 0.05 \text{ OUR AVI} \\ 0.56 \pm 0.07 \\ 0.47 \pm 0.06 \\ \Gamma(\eta\gamma)/\Gamma(\pi^{0}\gamma) \\ \frac{VALUE}{} \\ \bullet \bullet \text{ We do not use to} \\ 10.9 \pm 0.3 \substack{+0.7 \\ -0.8} \end{bmatrix} $	EVTS Error i ERAGE 3681 516	(Kº Kº) <u>DOCUMENT ID</u> includes scale factor BUKIN COSME <u>DOCUMENT ID</u> ing data for average	78c O 74 O 75, fits, li	ECN CO	$A\pi^{+}\pi^{-}$ $OMMENT$ $+ e^{-} \rightarrow$ $\pi^{+}\pi^{-}$ $+ e^{-} \rightarrow$ $OMMENT$ $C. \bullet \bullet \bullet$	Γ; κ ⁰ _L κ ⁰ _S , π ⁰ π ⁺ π ⁻ π Γ ₀
Equation 10 ⁻⁷) Equation 10 ⁻⁸ Equa	DOCUMENT ID TECN COMMIN	$ \begin{array}{ccc} & & & & & & & & & & & \\ & & & & & & & &$	[Γ(ρ π) + Γ(π ⁺ π ⁻ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 Γ(η γ)/Γ(π ⁰ γ) VALUE • • • We do not use to	EVTS Error i ERAGE 3681 516	(Kº Kº) <u>DOCUMENT ID</u> includes scale factor BUKIN COSME <u>DOCUMENT ID</u> ing data for average	78c O 74 O 75, fits, li	ECN CO	$A\pi^{+}\pi^{-}$ $OMMENT$ $+ e^{-} \rightarrow$ $\pi^{+}\pi^{-}$ $+ e^{-} \rightarrow$ $OMMENT$ $C. \bullet \bullet \bullet$	Γ; κ ⁰ _L κ ⁰ _S , π ⁰ π ⁺ π ⁻ π Γ ₀
(units 10^{-7}): 0.28 OUR FIT 0.10 + 0.27 0.25 (e) × $\Gamma(\mu^+\mu^-)$ 1.1.4 OUR FIT 1.4 OUR AVERAGI 1.4 + 0.9 3.0 5.5.9 (units 10^{-8}) 1.0.4 OUR FIT 1.0.4 OUR AVERAGI	DOCUMENT ID TECN COMMIT 15 ACHASOV 00 SND e+e-	$ \begin{array}{ccc} & & & & & & & & & & & \\ & & & & & & & &$	[Γ($\rho\pi$) + Γ($\pi^+\pi^-$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 Γ($\eta\gamma$)/Γ($\pi^0\gamma$) VALUE ••• We do not use t 10.9±0.3 $^{+0.7}_{-0.8}$ Γ($\mu^+\mu^-$)/Γtotal VALUE (units 10 ⁻⁴)	EVTS Error i ERAGE 3681 516	(Kº Kº) <u>DOCUMENT ID</u> includes scale factor BUKIN COSME <u>DOCUMENT ID</u> ing data for average	7/ of 1.3. 78c O 74 O 74 O 75, fits, li	ECN CO	$ \begin{array}{c} \Lambda \pi + \pi^{-} \\ \hline DMMENT \\ + e^{-} \rightarrow \\ \pi^{+} \pi^{-} \\ + e^{-} \rightarrow \end{array} $ $ \begin{array}{c} DMMENT \\ \hline C. \bullet \bullet \bullet \end{array} $	Γ; κ ⁰ _L κ ⁰ _S , π ⁰ π ⁺ π ⁻ π Γ ₀
$\frac{(\text{units } 10^{-7})}{0.28}$ OUR FIT $0.10^{+0.27}$ e^{-1} \times $\Gamma(\mu^{+}\mu^{-1})$ $\frac{(\text{units } 10^{-8})}{1.4}$ $\frac{1.4}{0.9}$ $\frac{1.4}$	DOCUMENT ID TECN COMMIT 15 ACHASOV 00 SND e+e-	$ \begin{array}{ccc} & & & & & & & & & & & \\ & & & & & & & &$	$ \begin{bmatrix} \Gamma(\rho\pi) + \Gamma(\pi^+\pi^- \\ \text{VALUE} \\ \textbf{0.457} \pm \textbf{0.020} \text{ OUR FIT} \\ \textbf{0.51} \pm \textbf{0.05} \text{ OUR AVI} \\ \textbf{0.56} \pm \textbf{0.07} \\ \textbf{0.47} \pm \textbf{0.06} $ $ \Gamma(\eta\gamma)/\Gamma(\pi^0\gamma) $	EVTS Error i ERAGE 3681 516	(KOKS) DOCUMENT ID ROUMENT ID ROUMENT ID ROUMENT ID ROUMENT ID ROUMENT ID ROUMENT ID	74 O 74 O 75, fits, li 76 Si	ECN CO	$A\pi + \pi^{-}$ $OMMENT$ $+ e^{-} \rightarrow$ $\pi^{+} \pi^{-}$ $+ e^{-} \rightarrow$ $OMMENT$ $\vdots \bullet \bullet$ $+ e^{-} \rightarrow$ $OMMENT$	Γ; κ ⁰ _L κ ⁰ _S , π ⁰ π+π-π Γ; ηγ, π ⁰ γ
(units 10^{-7}) :0.28 OUR FIT :0.10 $^+$ 0.27 :0.10 $^+$ 0.25 :e ⁻) × $\Gamma(\mu^+\mu^-$ (units 10^{-8}) :1.4 OUR FIT :1.4 OUR AVERAGE :1.4 \pm 0.9 :3.0 :5.9 × $\Gamma(\pi^+\pi^-$ (units 10^{-8}) :0.4 OUR FIT :0.4 OUR FIT :0.4 OUR FIT :0.4 OUR FIT	DOCUMENT ID TECN COMMIT 15 ACHASOV 00 SND e+e-	$ \begin{array}{ccc} & & & & & & & & & & & \\ & & & & & & & &$	[Γ($\rho\pi$) + Γ($\pi^+\pi^-$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 Γ($\eta\gamma$)/Γ($\pi^0\gamma$) VALUE ••• We do not use t 10.9±0.3 $^{+0.7}_{-0.8}$ Γ($\mu^+\mu^-$)/Γtotal VALUE (units 10 ⁻⁴)	EVTS Error i ERAGE 3681 516	(KPKS) DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID 19 HAYES	71 of 1.3. 78c O 74 O 74 O 75 fits, li 00 Si 71 C	ECN CO ECN CO INTR 8.	$A\pi + \pi^{-}$ $OMMENT$ $+ e^{-} \rightarrow \pi^{+} \pi^{-}$ $+ e^{-} \rightarrow 0$ $OMMENT$ $0. \bullet \bullet \bullet$ $+ e^{-} \rightarrow 0$ $OMMENT$ $3,9.8 \gamma C$	$ \begin{array}{c} \kappa_0^0 \kappa_0^0 \\ \kappa_0^0 \\ \kappa_0^0 \\ \pi^+ \pi^- \pi \end{array} $ $ \begin{array}{c} \kappa_0^0 \kappa_0^0 \\ \pi^+ \pi^- \pi \end{array} $ $ \begin{array}{c} \kappa_0^0 \kappa_0^0 \\ \pi^+ \pi^- \pi \end{array} $
Equation 10 ⁻⁷) EQ. 28 OUR FIT EQ. 10 ⁺ 0.25 EP) $\times \Gamma(\mu^+\mu^-)$ Eq. (units 10 ⁻⁸) E1.4 OUR FIT E1.4 OUR AVERAGE E3.0 E9) $\times \Gamma(\pi^+\pi^-)$ Eq. (units 10 ⁻⁸) E0.4 OUR FIT E0.4 OUR AVERAGE E0.4 OUR AVERAGE E0.3 ± 0.3 E1.15 E0.60.7 OUR FIT E0.7 OUR FIT E0.7 OUR FIT E0.7 OUR FIT E0.8 OUR AVERAGE E0.3 ± 0.3 E1.15 E0.8 OUR FIT E0.9 OUR FIT	DOCUMENT ID TECN COMMIT 15 ACHASOV 00 SND e+e- 13 ACHASOV 99C SND e+e- 10 VASSERMAN 81 OLYA e+e- 10 AUGUSTIN 73 OSPK e+e- 17 Total DOCUMENT ID TECN COMMIT TECN COMMIT ID TECN	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE ••• We do not use t 10.9±0.3 $^{+0.7}_{-0.8}$ $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ VALUE (units 10 $^{-4}$) 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60	EVTS Error i ERAGE 3681 516 he follow	(KPKS) DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID 19 HAYES 19 EARLES	71 C 70 C	ECN CO SPK e' SPK e' SPK e' ECN CO IMITS, etc ND e' ECN CO NTR 8.	$A\pi^{+}\pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow \pi^{+}\pi^{-}$ $+ e^{-} \rightarrow 0$ $DMMENT$ $0. \bullet \bullet \bullet$ $+ e^{-} \rightarrow 0$ $DMMENT$ $3,9.8 \gamma C$ $0 \gamma C \rightarrow 0$	$ \begin{array}{c} \kappa_0^0 \kappa_0^0 \\ \kappa_0^0 \\ \kappa_0^0 \\ \pi^+ \pi^- \pi \end{array} $ $ \begin{array}{c} \kappa_0^0 \kappa_0^0 \\ \pi^+ \pi^- \pi \end{array} $ $ \begin{array}{c} \kappa_0^0 \kappa_0^0 \\ \pi^+ \pi^- \pi \end{array} $
Equals 10 ⁻⁷) EQ.28 OUR FIT EQ.10 + 0.25 EQ.25 EQ.3 ($\mu^{+}\mu^{-}$ Eq. (units 10 ⁻⁸) E1.4 OUR FIT E1.4 OUR AVERAGE E1.4±0.9 E3.0 E5.9 EQ.3 ($\mu^{+}\pi^{-}$ Equals 10 ⁻⁸) E0.4 OUR FIT E0.4 OUR FIT E0.4 OUR AVERAGE E0.3 ±0.3 +3.19 +3.19 -2.51	DOCUMENT ID TECN COMMIN	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[Γ(ρ π) + Γ(π ⁺ π ⁻ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 Γ(η γ)/Γ(π ⁰ γ) VALUE • • • We do not use to 10.9±0.3 ^{+0.7} Γ(μ ⁺ μ ⁻)/Γtotal VALUE (units 10 ⁻⁴) 2.5 ±0.4 OUR AVER 2.69±0.46	EVTS Error i ERAGE 3681 516 he follow	(KPKS) DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID 19 HAYES 19 EARLES	71 C 70 C	ECN CO SPK e' SPK e' SPK e' ECN CO IMITS, etc ND e' ECN CO NTR 8.	$A\pi^{+}\pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow \pi^{+}\pi^{-}$ $+ e^{-} \rightarrow 0$ $DMMENT$ $0. \bullet \bullet \bullet$ $+ e^{-} \rightarrow 0$ $DMMENT$ $3,9.8 \gamma C$ $0 \gamma C \rightarrow 0$	$ \begin{array}{c} \kappa_0^0 \kappa_0^0 \\ \kappa_0^0 \\ \kappa_0^0 \\ \pi^+ \pi^- \pi \end{array} $ $ \begin{array}{c} \kappa_0^0 \kappa_0^0 \\ \pi^+ \pi^- \pi \end{array} $ $ \begin{array}{c} \kappa_0^0 \kappa_0^0 \\ \pi^+ \pi^- \pi \end{array} $
Equals 10 ⁻⁷) E0.28 OUR FIT E0.10 + 0.25 Fe ⁻) × $\Gamma(\mu^+\mu^-$ Equals 10 ⁻⁸) E1.4 OUR FIT E1.4 OUR AVERAGI E1.4 + 0.9 E3.0 E5.9 Fe ⁻) × $\Gamma(\pi^+\pi^-$ Equals 10 ⁻⁸) E0.4 OUR FIT E0.4 OUR FIT E0.4 OUR FIT E0.4 OUR AVERAGI E0.3 ± 0.3 +3.19 excalculated by us fro	DOCUMENT ID TECN COMMIT 15 ACHASOV 00 SND e+e- DOCUMENT ID TECN COMMIT DOCUMENT ID TECN COMMIT DOCUMENT ID TECN COMMIT ONE	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE ••• We do not use t 10.9±0.3 $^{+0.7}_{-0.8}$ $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ VALUE (units 10 $^{-4}$) 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60	EVTS Error i ERAGE 3681 516 he follow	(KQKQ) DOCUMENT ID INCludes scale factor BUKIN COSME DOCUMENT ID Ing data for average ACHASOV DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV	71 C 70 C s, fits, li 99c Si	ECN CO SPK e SPK e imits, etc ND e ECN CO NTR 8. NTR 8. NTR 6. imits, etc ND e NTR 6.	$A\pi + \pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow$ $\pi^{+} \pi^{-}$ $+ e^{-} \rightarrow$ $DMMENT$ $0. \bullet \bullet$ $0. \circ \circ$	$ \begin{array}{c} K_{L}^{0}K_{S}^{0}, \\ \pi^{0} + \pi^{-}\pi \\ & \Gamma_{0} \end{array} $ $ \begin{array}{c} \pi^{0}, \pi^{0} \\ & \Gamma_{0} \end{array} $ $ \begin{array}{c} \Gamma_{0} \\ \Gamma_{0} \\ & \Gamma_{0} \end{array} $ $ \begin{array}{c} \Gamma_{0} \\ \Gamma_{0} \\ & \Gamma_{0} \end{array} $ $ \begin{array}{c} \Gamma_{0} \\ \Gamma_{0} \\ & \Gamma_{0} \end{array} $
Equals 10 ⁻⁷) ±0.28 OUR FIT ±0.10 ⁺ 0.25 $+e^-$) × $\Gamma(\mu^+\mu^-)$ ±1.4 OUR FIT ±1.4 OUR FIT ±1.4 OUR AVERAGI ±1.4 ±0.9 ±3.0 ±5.9 $+e^-$) × $\Gamma(\pi^+\pi^-)$ ±6.4 OUR FIT ±0.4 OUR FIT ±0.4 OUR AVERAGI ±0.3 ±0.3 ±0.3 ±0.3 ±0.3 ±0.3 ±0.3 ±0.3	DOCUMENT ID TECN COMMIN	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE ••• We do not use t 10.9±0.3 $^{+0.7}_{-0.8}$ $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ VALUE (units 10 $^{-4}$) 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60 ••• We do not use t	EVTS Error i ERAGE 3681 516 he follow	DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV 20 VASSERMAN	7. 78c O 74 O 75. 77. 77. 77. 77. 77. 77. 77. 77. 77.	ECN CO ECN CO ECN CO ECN CO NTR 8. NTR 6. imits, etc imits, etc NTR 6. imits, etc imits etc imit	$A\pi^{+}\pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow \pi^{+}\pi^{-}$ $+ e^{-} \rightarrow 0$ $DMMENT$ $0. \bullet \bullet \bullet$ $+ e^{-} \rightarrow 0$ $0. \gamma C \rightarrow c$ $0. \gamma C \rightarrow c$ $0. \leftarrow \bullet \bullet$ $+ e^{-} \rightarrow 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Equals 10 ⁻⁷) the 28 OUR FIT \pm 0.10 \pm 0.25 Fe -) \times Γ ($\mu^+\mu^-$ Equals 10 ⁻⁸) \pm 1.4 OUR FIT \pm 1.4 OUR AVERAGE \pm 1.4 \pm 0.9 \pm 3.0 \pm 5.9 Fe -) \times Γ ($\pi^+\pi^-$ Equals 10 ⁻⁸) \pm 0.4 OUR FIT \pm 0.7 OUR AVERAGE \pm 0.3 \pm 0.3 \pm 1.15 cecalculated by us from the $\eta \to 2\gamma$ defrom the $\eta \to 2\gamma$ defrom the $\eta \to \pi^+\pi^-$	DOCUMENT ID 15 ACHASOV 00 SND e^+e^- DOCUMENT ID TECN COMMIT DOCUMENT ID TECN COMMIT TECN COMMIT TECN TECN COMMIT TECN COMMIT TECN TECN COMMIT TECN COMMIT TECN TECN COMMIT TECN TECN COMMIT TECN TECN COMMIT TECN COMMIT TECN COMMIT TECN COMMIT TECN COMMIT TECN COMMIT TECN	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE ••• We do not use t 10.9±0.3 $^{+0.7}_{-0.5}$ $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ VALUE (units 10 $^{-4}$) 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60 ••• We do not use t 3.30±0.45±0.32	EVTS Error i ERAGE 3681 516 he follow	(KQKQ) DOCUMENT ID INCludes scale factor BUKIN COSME DOCUMENT ID Ing data for average ACHASOV DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV	7. 78c O 74 O 75. 77. 77. 77. 77. 77. 77. 77. 77. 77.	ECN CO ECN CO ECN CO ECN CO NTR 8. NTR 6. imits, etc imits, etc NTR 6. imits, etc imits etc imit	$A\pi + \pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow$ $\pi^{+} \pi^{-}$ $+ e^{-} \rightarrow$ $DMMENT$ $0. \bullet \bullet$ $0. \circ \circ$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
E (units 10 ⁻⁷) ±0.28 OUR FIT ±0.10 +0.25 $+e^-$) × $\Gamma(\mu^+\mu^-$ E (units 10 ⁻⁸) ±1.4 OUR FIT ±1.4 OUR AVERAGI ±1.4±0.9 ±3.0 ±5.9 × $\Gamma(\pi^+\pi^-$ E (units 10 ⁻⁸) ±6.4 OUR FIT ±0.4 OUR AVERAGI ±0.3 ±0.3 ±1.15 -0.87 +3.19 -2.51 tecalculated by us fro from the $\eta \rightarrow 2\gamma$ due from the $\eta \rightarrow \pi^+\pi^-$ tecalculated by the al	15 ACHASOV 00 SND e^+e^- 16 ACHASOV 99c SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 COMMINICATION TECH COMMINICATION OF SND e^+e^- 10 COLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 COLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 COLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 COLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 10 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 11 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 12 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 13 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 14 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 15 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 16 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 17 OLYA e^+e^- 18 OLYA e^+e^- 19 OLYA e^+e^- 10 VASSERMAN 81 OLYA e^+e^-	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE ••• We do not use t 10.9±0.3 $^{+0.7}_{-0.9}$ 7. ($\mu^+\mu^-$)/ Γ total VALUE (units 10 $^{-4}$) 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60 ••• We do not use t 3.30±0.45±0.32 4.83±1.02 2.87±1.98	EVTS Error i ERAGE 3681 516 he follow	DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV 20 VASSERMAN	7. 78c O 74 O 75. 77. 77. 77. 77. 77. 77. 77. 77. 77.	ECN CO ECN CO ECN CO ECN CO NTR 8. NTR 6. imits, etc imits, etc NTR 6. imits, etc imits etc imit	$A\pi^{+}\pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow \pi^{+}\pi^{-}$ $+ e^{-} \rightarrow 0$ $DMMENT$ $0. \bullet \bullet \bullet$ $+ e^{-} \rightarrow 0$ $0. \gamma C \rightarrow c$ $0. \gamma C \rightarrow c$ $0. \leftarrow \bullet \bullet$ $+ e^{-} \rightarrow 0$	$ \begin{array}{c} K_L^0 K_S^0, \\ \pi^0 + \pi^- \pi \end{array} $ $ \begin{array}{c} \pi^0 \gamma, \pi^0 \gamma \end{array} $ $ \begin{array}{c} \pi^0 + \mu^+ \mu^- \\ \mu^+ \mu^- \\ \mu^+ \mu^- \\ \mu^+ \mu^- \end{array} $
Equits 10 ⁻⁷) the 28 OUR FIT \pm 0.10 + 0.27 \pm 0.25 \pm 0 - \times $\Gamma(\mu^+\mu^-)$ Equits 10 ⁻⁸) \pm 1.4 OUR AVERAGE \pm 1.4 OUR FIT \pm 1.4 OUR AVERAGE \pm 1.4 OUR FIT \pm 1.4 OUR FIT \pm 1.4 OUR FIT \pm 1.4 OUR FIT \pm 1.5 OUR FIT \pm 1.6 OUR FIT \pm 1.7 OUR AVERAGE \pm 1.9 OUR FIT \pm 2.10 OUR FIT \pm 2.2 OUR FIT \pm 3.3 OUR AVERAGE \pm 4.3 OUR FIT \pm 5.4 OUR FIT \pm 6.4 OUR FIT \pm 6.5 OUR AVERAGE \pm 6.3 \pm 7 \pm 7 \pm 8 \pm 8 \pm 9	15 ACHASOV 00 SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 20 The the cross section in the peak. 10 Gocument 10 TECN COMMINICATION OF THE	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE • • • We do not use t 10.9±0.3 $^{+0.7}_{-0.5}$ $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ VALUE (units 10 $^{-4}$) 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60 • • • We do not use t 3.30±0.45±0.32 4.83±1.02 2.87±1.98 $\Gamma(\eta\gamma)/\Gamma_{\text{total}}$	EVTS Error is ERAGE 3681 516 he follow	DOCUMENT ID 19 HAYES 19 EARLES ing data for average ACHASOV 20 VASSERMAN 20 AUGUSTIN	71 C 70 C 71 O 73 O 73 O 73 O 73 O 75 O 75 O 75 O 75	ECN CO SPK e' SPK e' imits, etc ND e' ECN CO NTR 8. NTR 6. imits, etc ND e' sPK e' SPK e'	$A\pi^{+}\pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow$ $\pi^{+}\pi^{-}$ $+ e^{-} \rightarrow$ $DMMENT$ $3,9.8 \text{ y C}$ $0 \text{ y C} \rightarrow$ $0 \text{ y C} \rightarrow$ $+ e^{-} \rightarrow$ $+ e^{-} \rightarrow$ $+ e^{-} \rightarrow$	Γ: κ ⁰ κ ⁰ κ.5. π ⁰ π + π - π Γ: ηγ, π ⁰ γ Γ: μ + μ - μ -
E (units 10^{-7}) ± 0.28 OUR FIT $\pm 0.10^{-0.25}$ $\pm e^{-}$) × $\Gamma(\mu^{+}\mu^{-}$ E (units 10^{-8}) ± 1.4 OUR FIT ± 1.4 OUR AVERAGI $\pm 1.4 \pm 0.9$ ± 3.0 ± 5.9 $\pm e^{-}$) × $\Gamma(\pi^{+}\pi^{-}$ E (units 10^{-8}) ± 0.4 OUR FIT ± 0.4 OUR FIT ± 0.4 OUR FIT ± 0.4 OUR AVERAGE ± 0.3 ± 0.3 ± 1.15 -0.87 ± 0.4 OUR AVERAGE ± 0.3 ± 0.3 ± 0.15 ± 0.15	15 ACHASOV 00 SND e^+e^- 16 ACHASOV 99c SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 COMMINICATION TECH COMMINICATION OF SND e^+e^- 10 COLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 COLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 COLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 COLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 10 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 11 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 12 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 13 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 14 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 15 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 16 COLUBER 10 VASSERMAN 81 OLYA e^+e^- 17 OLYA e^+e^- 18 OLYA e^+e^- 19 OLYA e^+e^- 10 VASSERMAN 81 OLYA e^+e^-	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE •• • We do not use t 10.9±0.3 ^{+0.7} -0.8 $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60 •• • We do not use t 3.30±0.45±0.32 4.83±1.02 2.87±1.98 $\Gamma(\eta\gamma)/\Gamma_{\text{total}}$ VALUE	EVTS Error i ERAGE 3681 516 he follow	DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN	71 C 70 C 5, 5, 5, 5, 5, 5, 73 O 73 O 73 O 75	ECN CO ECN CO imits, etc NTR 8. NTR 6. imits, etc NTR 6. imits, etc NTR 6. imits, etc NTR 6.	$A\pi^{+}\pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow \pi^{+}\pi^{-}$ $+ e^{-} \rightarrow 0$ $DMMENT$ $0. \bullet \bullet \bullet$ $+ e^{-} \rightarrow 0$ $0. \gamma C \rightarrow c$ $0. \gamma C \rightarrow c$ $0. \leftarrow \bullet \bullet$ $+ e^{-} \rightarrow 0$	Γ: κ ⁰ κ ⁰ κ.5. π ⁰ π + π - π Γ: ηγ, π ⁰ γ Γ: μ + μ - μ -
Equits 10 ⁻⁷) the 28 OUR FIT \pm 0.10 + 0.27 \pm 0.25 \pm 0 - \times $\Gamma(\mu^+\mu^-)$ Equits 10 ⁻⁸) \pm 1.4 OUR AVERAGE \pm 1.4 OUR FIT \pm 1.4 OUR AVERAGE \pm 1.4 OUR FIT \pm 1.4 OUR FIT \pm 1.4 OUR FIT \pm 1.4 OUR FIT \pm 1.5 OUR FIT \pm 1.6 OUR FIT \pm 1.7 OUR AVERAGE \pm 1.9 OUR FIT \pm 2.10 OUR FIT \pm 2.2 OUR FIT \pm 3.3 OUR AVERAGE \pm 4.3 OUR FIT \pm 5.4 OUR FIT \pm 6.4 OUR FIT \pm 6.5 OUR AVERAGE \pm 6.3 \pm 7 \pm 7 \pm 8 \pm 8 \pm 9	15 ACHASOV 00 SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 20 The the cross section in the peak. 10 Gocument 10 TECN COMMINICATION OF THE	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE • • • We do not use t 10.9±0.3 $^{+0.7}_{-0.5}$ $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ VALUE (units 10 $^{-4}$) 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60 • • • We do not use t 3.30±0.45±0.32 4.83±1.02 2.87±1.98 $\Gamma(\eta\gamma)/\Gamma_{\text{total}}$	EVTS Error is ERAGE 3681 516 he follow	DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN DOCUMENT ID 19 HAYES 19 EARLES 10 ACHASOV 20 VASSERMAN 20 AUGUSTIN	71 C 70 C 5, 5, 5, 5, 5, 5, 73 O 73 O 73 O 75	ECN CO ECN CO imits, etc NTR 8. NTR 6. imits, etc NTR 6. imits, etc NTR 6. imits, etc NTR 6.	$A\pi^{+}\pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow$ $\pi^{+}\pi^{-}$ $+ e^{-} \rightarrow$ $DMMENT$ $3,9.8 \text{ y C}$ $0 \text{ y C} \rightarrow$ $0 \text{ y C} \rightarrow$ $+ e^{-} \rightarrow$ $+ e^{-} \rightarrow$ $+ e^{-} \rightarrow$	$ \begin{array}{c} K_L^0 K_S^0, \\ \pi^0 \pi^+ \pi^- \pi \end{array} $ $ \begin{array}{c} \Gamma_1 \\ \Gamma_2 \\ \Gamma_4 \\ \Gamma_5 \\ $
Equits 10 ⁻⁷) the 28 OUR FIT \pm 0.10 + 0.27 \pm 0.25 \pm 0 - \times $\Gamma(\mu^+\mu^-)$ Equits 10 ⁻⁸) \pm 1.4 OUR AVERAGE \pm 1.4 OUR FIT \pm 1.4 OUR AVERAGE \pm 1.4 OUR FIT \pm 1.4 OUR FIT \pm 1.4 OUR FIT \pm 1.4 OUR FIT \pm 1.5 OUR FIT \pm 1.6 OUR FIT \pm 1.7 OUR AVERAGE \pm 1.9 OUR FIT \pm 2.10 OUR FIT \pm 2.2 OUR FIT \pm 3.3 OUR AVERAGE \pm 4.3 OUR FIT \pm 5.4 OUR FIT \pm 6.4 OUR FIT \pm 6.5 OUR AVERAGE \pm 6.3 \pm 7 \pm 7 \pm 8 \pm 8 \pm 9	15 ACHASOV 00 SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 20 The the cross section in the peak. 10 Gocument 10 TECN COMMINICATION OF THE	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi)$ + $\Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE • • • We do not use t 10.9±0.3 ^{+0.7} 2.5±0.4 OUR AVER 2.69±0.46 2.17±0.60 • • We do not use t 3.30±0.45±0.32 4.83±1.02 2.87±1.98 $\Gamma(\eta\gamma)/\Gamma_{\text{total}}$ VALUE 0.01297±0.00033 OUE	EVTS Error is ERAGE 3681 516 he follow AGE the follow	DOCUMENT ID 19 HAYES 19 EARLES ing data for average ACHASOV 20 VASSERMAN 20 AUGUSTIN DOCUMENT ID Tror includes scale fi	71 C 70 C 8, fits, li 990 S 10 C 73 O O O O O O O O O O O O O O O O O O	ECN CO ECN CO imits, etc NTR 8. NTR 6. imits, etc NTR 6. imits, etc NTR 6. imits, etc NTR 6.	$A\pi^{+}\pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow$ $\pi^{+}\pi^{-}$ $+ e^{-} \rightarrow$ $DMMENT$ $3,9.8 \text{ y C}$ $0 \text{ y C} \rightarrow$ $0 \text{ y C} \rightarrow$ $+ e^{-} \rightarrow$ $+ e^{-} \rightarrow$ $+ e^{-} \rightarrow$	Γ: κ ⁰ κ ⁰ κ.5. π ⁰ π + π - π Γ: ηγ, π ⁰ γ Γ: μ + μ - μ -
E (units 10^{-7}) ±0.28 OUR FIT ±0.10 +0.27 $+0.25$ $+e^-$) × $\Gamma(\mu^+\mu^-$ E (units 10^{-8}) ±1.4 OUR FIT ±1.4 OUR AVERAGE ±1.4±0.9 ±3.0 $+e^-$) × $\Gamma(\pi^+\pi^-$ E (units 10^{-8}) × $\Gamma(\pi^+\pi^-$ =0.3 ±0.3 ±0.3 +1.15 -0.87 +3.19 -0.87 +3.19 -0.87 +3.19 crom the $\eta \to 2\gamma$ defrom the $\eta \to \pi^+\pi^-$ Recalculated by us from the $\eta \to \pi^+\pi^-$ Recalculated by various decay ACHASOV OOB.	15 ACHASOV 00 SND e^+e^- 17)/ Γ_{total}^2 DOCUMENT ID TECN COMMI 18 ACHASOV 99C SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 AUGUSTIN 73 OSPK e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 11 VASSERMAN 81 OLYA e^+e^- 12 OCCUPATION 10 O	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} \Gamma(\rho\pi) + \Gamma(\pi^+\pi^-\frac{1}{2} + \pi^-\frac{1}{2} + \pi^-\frac{1}{2} + \pi^-\frac{1}{2} \end{bmatrix} \\ 0.457 \pm 0.05 \text{OUR AVI} \\ 0.51 \pm 0.05 \text{OUR AVI} \\ 0.56 \pm 0.07 \\ 0.47 \pm 0.06 \\ \hline \Gamma(\eta\gamma)/\Gamma(\pi^0\gamma) \\ \hline \frac{VALUE}{0.06} \\ \bullet \bullet We do not use to the sum of the$	EVTS Error is ERAGE 3681 516 he follow AGE the follow	(KPKS) DOCUMENT ID DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN DOCUMENT ID Tror includes scale fi	71 C 70 C 70 C 73 O 73 O 73 O 74 O 75	ECN CO SPK e' ECN CO imits, etc ND e' ECN CO NTR 8. NTR 6. imits, etc NTR 6.	$A\pi^{+}\pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow \pi^{+}\pi^{-};$ $+ e^{-} \rightarrow 0$ $DMMENT$ $3,9.8 \text{ yC}$ $0 \text{ yC} \rightarrow 0$ $0 \text{ yC} \rightarrow 0$ $+ e^{-} \rightarrow 0$ $+ e^{-} \rightarrow 0$ $COMMENT$ $e^{+}e^{-} \rightarrow 0$	$ \begin{array}{c} K_{L}^{0} & K_{S}^{0}, \\ \pi^{0} & \pi^{+} & \pi^{-} & \pi^{-} \\ & & & & & & & & & & & & \\ \pi^{0} & \pi^{+} & \pi^{-} & \pi^{-} & \pi^{-} & \pi^{-} & \pi^{-} \\ & & & & & & & & & & & & \\ \pi^{0} & \pi^{+} & \pi^{-} & \pi^{-} & \pi^{-} & \pi^{-} & \pi^{-} \\ & & & & & & & & & & & & \\ \pi^{0} & \pi^{+} & \pi^{-} & \pi^{-} & \pi^{-} & \pi^{-} & \pi^{-} \\ & & & & & & & & & & & & \\ \pi^{0} & \mu^{+} & \mu^{-} & \mu^{+} & \mu^{-} & \mu^{+} & \mu^{-} \\ & & & & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & & & & \\ \pi^{0} & \pi^{0} \\ & & & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & & \\ \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} & \pi^{0} \\ & & & & & & & \\ \pi^{0} & \pi^{$
Equits 10 ⁻⁷) the 28 OUR FIT \pm 0.10 ⁺ 0.25 Fe -) $\times \Gamma(\mu^+\mu^-$ Equits 10 ⁻⁸) \pm 1.4 OUR FIT \pm 1.4 OUR AVERAGE \pm 1.4 OUR FIT \pm 1.5 OUR FIT \pm 1.6 OUR FIT \pm 1.6 OUR FIT \pm 1.7 OUR FIT \pm 1.7 OUR FIT \pm 1.8 OUR FIT \pm 1.9 OUR FIT \pm 2.5 OUR FIT \pm 3.0 OUR FIT \pm 4.0 OUR FIT \pm 4.0 OUR FIT \pm 5.1 OUR FIT \pm 6.4 OUR FIT \pm 6.4 OUR FIT \pm 6.4 OUR FIT \pm 6.5 OUR FIT \pm 6.6 OUR FIT \pm 6.7 OUR FIT \pm 6.7 OUR FIT \pm 6.8 OUR FIT \pm 6.9 OUR FIT \pm 6.0 OUR FIT \pm 6.	15 ACHASOV 00 SND e^+e^- 17)/ Γ_{total}^2 DOCUMENT ID TECN COMMI 18 ACHASOV 99C SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 AUGUSTIN 73 OSPK e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 11 VASSERMAN 81 OLYA e^+e^- 12 OCCUPATION 10 O	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE • • • We do not use to the second of the second out of	EVTS Error is ERAGE 3681 516 he follow AGE THE ERAVERA	(KQ KQ) DOCUMENT ID DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN DOCUMENT ID Tror includes scale fi	71 C 77 C S, s, fits, li 99c Si 81 O 73 O 98c 41l 95	ECN CO ECN CO imits, etc ND e ECN CO NTR 8. NTR 6. imits, etc NTR 6. imits, etc NTR 6. imits etc STECN CO TECN CO CMD2	$A\pi^{+}\pi^{-}$ $2MMENT$ $+ e^{-} \rightarrow \pi^{+}\pi^{-}$ $+ e^{-} \rightarrow 0$ $2MMENT$ $0 \rightarrow 0$ $0 \rightarrow 0$ $0 \rightarrow 0$ $0 \rightarrow 0$ $+ e^{-} \rightarrow 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Equits 10 ⁻⁷) ±0.28 OUR FIT ±0.10 ⁺ 0.25 $+e^-$) × $\Gamma(\mu^+\mu^-)$ = (-0.25) ±1.4 OUR FIT ±1.4 OUR FIT ±1.4 OUR AVERAGE ±1.4±0.9 ±3.0 ±5.9 × $\Gamma(\pi^+\pi^-)$ ±6.4 OUR FIT ±0.4 OUR AVERAGE ±0.3 ±0.3 ±0.3 ±0.3 $+1.15$ excalculated by us from the $\eta \rightarrow 2\gamma$ due from the $\eta $	15 ACHASOV 00 SND e^+e^- 17)/ Γ_{total}^2 DOCUMENT ID TECN COMMI 18 ACHASOV 99C SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 AUGUSTIN 73 OSPK e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 11 VASSERMAN 81 OLYA e^+e^- 12 VASSERMAN 81 OLYA e^+e^- 13 Odecay and using $B(\eta \to 2\gamma) = (39.21 \pm 0.34) \times -\pi^0$ 14 decay and using $B(\eta \to 2\gamma) = (99.798 \pm 0.03)$ 15 decay and using $B(\pi^0 \to 2\gamma) = (98.798 \pm 0.03)$ 16 decay and using $B(\pi^0 \to 2\gamma) = (98.798 \pm 0.03)$ 17 DOCUMENT ID TECN COMMI	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi)$ + $\Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE •• • We do not use t 10.9±0.3 ^{+0.7} -0.8 $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60 •• • We do not use t 3.30±0.45±0.32 4.83±1.02 2.87±1.98 $\Gamma(\eta\gamma)/\Gamma_{\text{total}}$ VALUE 0.01297±0.00033 OUE 0.0126 ±0.0004 OUF 0.01246±0.00025±0.00 0.0118 ±0.0001	EVTS Error is ERAGE 3681 516 he follow AGE THE ERAVERA	DOCUMENT ID 19 HAYES 17 ACHASOV 20 AUGUSTIN 19 LATES 19 LATES 19 LATES 19 LATES 19 LATES 10 LATES 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN DOCUMENT ID 21 ACHASOV 22 LATES 21 ACHASOV 22 LATES 23 ACHASOV 24 ACHASOV 25 AKHMETSH	71 of 1.3. 78c O 74 O 77 71 C 70 C 70 C 73 O 73 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECN CO SPK e' SPK e' ECN CO Imits, etc NTR 6. Imits, etc NT	$A\pi^{+}\pi^{-}$ $2MMENT$ $+ e^{-} \rightarrow \pi^{+}\pi^{-}$ $+ e^{-} \rightarrow 0$ $2MMENT$ $0 \rightarrow 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Equivis 10 ⁻⁷) ±0.28 OUR FIT ±0.10 ⁺ 0.25 $+e^-$) × $\Gamma(\mu^+\mu^-$ Equivis 10 ⁻⁸) ±1.4 OUR FIT ±1.4 OUR AVERAGI ±1.4±0.9 ±3.0 ±5.9 $+e^-$) × $\Gamma(\pi^+\pi^-$ Equivis 10 ⁻⁸) ±0.4 OUR FIT ±0.4 OUR AVERAGI ±1.15 +0.87 ±	15 ACHASOV 00 SND e^+e^- 17)/ Γ_{total}^2 DOCUMENT ID TECN COMMI 18 ACHASOV 99C SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 AUGUSTIN 73 OSPK e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 91 OLYA e^+e^-	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE • • • We do not use t 10.9±0.3 ^{+0.7} 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60 • • We do not use t 3.0±0.45±0.32 4.83±1.02 2.87±1.98 $\Gamma(\eta\gamma)/\Gamma_{\text{total}}$ VALUE 0.01297±0.00033 OUE 0.01246±0.0004 OUE 0.0118 ±0.0001 0.0130 ±0.0006	EVTS Error is ERAGE 3681 516 he follow AGE THE ERAVERA	(KPKS) DOCUMENT ID INCLUDES SCALE FACTOR BUKIN COSME DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN TOTO Includes Scale fi GE 21 ACHASOV 22 AKHMETSH 23 DRUZHININ 24 DRUZHININ	71 Of 1.3. 78C O 74 O 7. 71 C 70 C 70 C 73 O 73	ECN CONTROLL SPK e ECN CONTROL NTR 8. NTR 6. imits, etc NTR	$A\pi^{+}\pi^{-}$ $2MMENT$ $+ e^{-} \rightarrow \pi^{+}\pi^{-}$ $+ e^{-} \rightarrow 0$ $2MMENT$ $0 \rightarrow 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Equinits 10^{-7}) ±0.28 OUR FIT ±0.10+0.25 +e-) × $\lceil (\mu^+\mu^-)^{-1} \rceil$ ±1.4 OUR FIT ±1.4 OUR AVERAGE ±1.4 ±0.9 ±3.0 ±5.9 +e-) × $\lceil (\pi^+\pi^-) \rceil$ ±0.4 OUR FIT ±0.4 OUR AVERAGE ±0.3 ±0.3 +1.15 -0.87 +3.19 -2.51 Recalculated by us from the $\eta \to 2\gamma$ derivom the	15 ACHASOV 00 SND e^+e^- 13 ACHASOV 99C SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 AUGUSTIN 73 OSPK e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 10 VASSERMAN 81 OLYA e^+e	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi)$ + $\Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE • • • We do not use t 10.9±0.3 ^{+0.7} 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60 • • We do not use t 3.30±0.45±0.32 4.83±1.02 2.87±1.98 $\Gamma(\eta\gamma)/\Gamma_{\text{total}}$ VALUE 0.01297±0.00033 OUE 0.01297±0.00033 OUE 0.01296±0.0004 OUF 0.0118 ±0.0001 0.0130 ±0.0006 0.014 ±0.002	EVTS Error is ERAGE 3681 516 he follow AGE R FIT E R AVERA 10057 10k 279	(KOKS) DOCUMENT ID INCLUDES SCALE FACTOR BUKIN COSME DOCUMENT ID Ing data for average ACHASOV DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN Tror includes scale fi GE 21 ACHASOV 22 AKHMETSH 23 DRUZHININ KURDADZE ANDREWS	71 C 70 C 71 O Ss, fits, ii 99c Sl 81 O 73 O O St 11N 95 Sl 184 S4 S 84 S 85 S 85 S 85 S 85 S 85 S 85	ECN CO SPK e SPFK	$A\pi^{+}\pi^{-}$ $DMMENT$ $+ e^{-} \rightarrow$ $\pi^{+}\pi^{-}$ $+ e^{-} \rightarrow$ $0MMENT$ $0 \rightarrow 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Equalits 10^{-7}) ±0.28 OUR FIT ±0.10 + 0.27 + e ⁻) × $\Gamma(\mu^+\mu^-$ Equalits 10^{-8}) ±1.4 OUR FIT ±1.4 OUR AVERAGE ±1.4 ±0.9 ±3.0 + e ⁻) × $\Gamma(\pi^+\pi^-$ Equalits 10^{-8}) ±0.4 OUR FIT ±0.4 OUR FIT ±0.4 OUR AVERAGE ±0.3 ±0.3 +1.15 -0.87 +3.19 -2.51 From the $\eta \to 2\gamma$ defrom the $\eta \to \pi^+\pi^-$ Recalculated by us from the $\eta \to \pi^+\pi^-$ Recalculated by the august of the $\eta \to \pi^+\pi^-$ Recalculated by the august of the $\eta \to \pi^+\pi^-$ Recalculated by the august of the $\eta \to \pi^+\pi^-$ Recalculated by the august of the $\eta \to \pi^+\pi^-$ Recalculated by the august of the $\eta \to \pi^+\pi^-$ Recalculated by the august of the $\eta \to \pi^+\pi^-$ Recalculated by the august of the $\eta \to \pi^+\pi^-$ Recalculated by the august of the $\eta \to \pi^+\pi^-$ Recalculated by the august of the $\eta \to \pi^+\pi^-$ Recalculated by $\eta \to \pi^+\pi^-$	15 ACHASOV 00 SND e^+e^- 16 ACHASOV 99C SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 AUGUSTIN 73 OSPK e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 UASSERMAN 81 OLYA e^+e^- 10 OLYA e^+e^- 11 OLYA e^+e^- 12 OLYA e^+e^- 13 ACHASOV 98F, ACH	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi)$ + $\Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE • • • We do not use to the second of the second out o	EVTS Error is ERAGE 3681 516 he follow AGE R FIT E R AVERA 10057 10k 279	(KQ KQ) DOCUMENT ID INCLUDES SCALE FACTOR BUKIN COSME DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN DOCUMENT II TITOT includes scale fi GE 21 ACHASOV 22 AKHMETSS 23 DRUZHININ KURDADZE 24 DRUZHININ KURDADZE	71 C 77 C S, s, fits, li 00 Si 71 C 70 C S, s, stes, s, s	ECN CO SPK e SPFK	$A\pi + \pi^{-}$ $2MMENT$ $+ e^{-} \rightarrow \pi^{+} \pi^{-}$ $+ e^{-} \rightarrow 0$ $2MMENT$ $0 \rightarrow 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Equality 10 ⁻⁷) ±0.28 OUR FIT ±0.10+0.27 ±0.10+0.27 ±0.10+0.25 ±0.25 ±0.25 ±0.40 OUR FIT ±1.4 OUR AVERAGE ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.4±0.9 ±1.15	15 ACHASOV 00 SND e^+e^- 17)/ Γ_{total}^2 DOCUMENT ID TECN COMMI 18 ACHASOV 99C SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 AUGUSTIN 73 OSPK e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 11 WASSERMAN 81 OLYA e^+e^- 12 WASSERMAN 81 OLYA e^+e^- 13 WASSERMAN 81 OLYA e^+e^- 14 WASSERMAN 81 OLYA e^+e^- 15 WASSERMAN 81 OLYA e^+e^- 16 WASSERMAN 81 OLYA e^+e^- 17 WASSERMAN 81 OLYA e^+e^- 18 WASSERMAN 81 OLYA e^+e^- 19 WASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 11 WASSERMAN 81 OLYA e^+e^- 12 WASSERMAN 81 OLYA e^+e^- 13 WASSERMAN 81 OLYA e^+e^- 14 WASSERMAN 81 OLYA e^+e^- 15 WASSERMAN 81 OLYA e^+e^- 16 WASSERMAN 81 OLYA e^+e^- 17 WASSERMAN 81 OLYA e^+e^- 18 WASSERMAN 81 OLYA e^+e^- 19 WASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 11 WASSERMAN 81 OLYA e^+e^- 12 WASSERMAN 81 OLYA e^+e^- 13 WASSERMAN 81 OLYA e^+e^- 14 WASSERMAN 81 OLYA e^+e^- 15 WASSERMAN 81 OLYA e^+e^- 16 WASSERMAN 81 OLYA e^+e^- 17 WASSERMAN 81 OLYA e^+e^- 18 WASSERMAN 81 OLYA e^+e^- 19 WASSERMAN 81 OLYA e^+e^- 10 WAS	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi)$ + $\Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE •• • We do not use t 10.9±0.3 ^{+0.7} 2.5 ±0.4 OUR AVE 2.69±0.46 2.17±0.60 •• • We do not use t 3.30±0.45±0.32 4.83±1.02 2.87±1.98 $\Gamma(\eta\gamma)/\Gamma$ total VALUE 0.01297±0.00033 OUF 0.0126 ±0.0004 OUF 0.0126 ±0.0004 OUF 0.01246±0.00025±0.00 0.018 ±0.0001 0.01088 ±0.00020 0.0088 ±0.0020 0.0105 ±0.00029	EVTS Error is ERAGE 3681 516 he follow AGE AGE AVERA 10057 10k 279 290 54	(KOKS) DOCUMENT ID INCLUDES SCALE FACTOR BUKIN COSME DOCUMENT ID 19 HAYES 19 EARLES 19 EARLES 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN TOTO INCLUDES SCALE F. 21 ACHASOV 22 AKHMETSI- 23 DRUZHININ KURDADZ ANDREWS 23 COSME	71 Of 1.3. 78C O 74 O 77 78, fits, li 81 O 73 O 73 O 73 O 73 O 75 O 75 O 75 O 75	ECN CO SPK e' ECN CO imits, etc NTR 6. im	$A\pi^{+}\pi^{-}$ $2MMENT$ $+ e^{-} \rightarrow \pi^{+}\pi^{-}$ $+ e^{-} \rightarrow 0$ $2MMENT$ $0 \rightarrow 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
E (units 10 ⁻⁷) \pm 0.28 OUR FIT \pm 0.10 ⁺ 0.27 \pm 0.25 \pm 0.27 \pm 0.27 \pm 0.28 \pm 1.4 OUR FIT \pm 1.4 OUR AVERAGI \pm 1.4 UR FIT \pm 1.4 OUR AVERAGI \pm 1.4 OUR FIT \pm 0.4 OUR FIT \pm 0.4 OUR FIT \pm 0.4 OUR AVERAGI \pm 0.13 \pm 0.3 \pm 1.15 \pm 0.6 OUR AVERAGI Recalculated by us from the $\eta \rightarrow 2\gamma$ derivation the $\eta \rightarrow \pi + \pi^{-1}$ Recalculated by the additional of the $\pi^{0} \rightarrow \pi^{0} \rightarrow \pi^{0}$ Recalculated by the additional of the $\pi^{0} \rightarrow \pi^{0} \rightarrow \pi^{0}$ Recalculated by the additional of the $\pi^{0} \rightarrow \pi^{0} \rightarrow \pi^{0}$ Recalculated by the additional of the $\pi^{0} \rightarrow \pi^{0} \rightarrow \pi^{0}$ Recalculated by the additional of the $\pi^{0} \rightarrow \pi^{0} \rightarrow \pi^{0}$ Recalculated by the additional of the $\pi^{0} \rightarrow \pi^{0} \rightarrow \pi^{0}$ $\pi^{0} \rightarrow \pi^{0} \rightarrow \pi^{0} \rightarrow \pi^{0} \rightarrow \pi^{0}$ $\pi^{0} \rightarrow \pi^{0} \rightarrow \pi$	DOCUMENT ID TECN 15 ACHASOV 00 SND e^+e^- TO/\frac{1}{15}} DOCUMENT ID TECN DOCUMENT ID TECN COMMI TECN TECN COMMI TECN TECN COMMI TECN TECN TECN COMMI TECN TECN COMMI TECN TECN TECN TECN COMMI TECN TECN TECN TECN COMMI TECN TE	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi)$ + $\Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE • • • We do not use to the second of the second o	EVTS Error is ERAGE 3681 516 he follow AGE AFIT ERAVERA 10057 10k 279 290 54 he follow	(KOKS) DOCUMENT ID INCLUDES SCALE FACTOR BUKIN COSME DOCUMENT ID 19 HAYES 19 EARLES 19 EARLES 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN TOTO INCLUDES SCALE F. 21 ACHASOV 22 AKHMETSI- 23 DRUZHININ KURDADZ ANDREWS 23 COSME	71 of 1.3. 78c O 74 O 77 O 81	ECN CO SPK e ECN CO Imits, etc NTR 8. NTR 6. Imits, etc Imits, etc.	$A\pi^{+}\pi^{-}$ $2MMENT$ $+ e^{-} \rightarrow \pi^{+}\pi^{-}$ $+ e^{-} \rightarrow 0$ $+ e^{-} \rightarrow 0$ $0 \gamma C \rightarrow 0$ $0 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Equaits 10^{-7}) ±0.28 OUR FIT ±0.10+0.27 $\pm 0.10+0.25$ $\pm e^-$) × $\Gamma(\mu^+\mu^-$ Equaits 10^{-8}) ±1.4 OUR FIT ±1.4 OUR AVERAGE ±1.4 ±0.9 ±3.0 ±5.9 $\pm e^-$) × $\Gamma(\pi^+\pi^-$ Equaits 10^{-8}) ±0.4 OUR FIT ±0.4 OUR AVERAGE ±0.3 ±0.3 +1.15 -0.87 +3.19 -2.51 Recalculated by us from the $\eta \to \pi^+\pi^-$ Recalculated by the and single various decay and single various decay and the $\pi^0 \to 2\gamma$ decay are the $\pi^0 \to 2\gamma$ decay and the $\pi^0 \to 2\gamma$ decay are the $\pi^0 \to 2\gamma$ decay and the $\pi^0 \to 2\gamma$ decay are the $\pi^0 \to 2\gamma$ decay ar	15 ACHASOV 00 SND e^+e^- 13 ACHASOV 99C SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 AUGUSTIN 73 OSPK e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 WASSERMAN 81 OLYA e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 11 VASSERMAN 81 OLYA e^+e^- 12 VASSERMAN 81 OLYA e^+e^- 13 ACHASOV 98F, ACHA	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi)$ + $\Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE • • • We do not use t 10.9±0.3 ^{+0.7} 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60 • • We do not use t 3.30±0.45±0.32 4.83±1.02 2.87±1.98 $\Gamma(\eta\gamma)/\Gamma_{\text{total}}$ VALUE 0.01297±0.00033 OUE 0.0126 ±0.0004 OUF 0.01296±0.0010 0.0130 ±0.0006 0.014 ±0.002 0.0088 ±0.0020 0.015 ±0.004 • • We do not use t 0.01336±0.00012±0.00	EVTS Error is ERAGE 3681 516 he follow AGE R FIT E R AVERA 10057 10k 279 290 54 he follow	DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN DOCUMENT ID 19 HAYES 19 EARLES ing data for average 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN DOCUMENT II Tror includes scale fi GE 21 ACHASOV 22 AKHMETSH 23 DRUZHININ KURDADZE ANDREWS 23 COSME ing data for average	71 C 70 C 71 C 70 C 73	ECN CONTROLL SPK e' ECN CONTROLL NTR 8. NTR 6. imits, etc SPK e' TECN TECN ND ND OLYA CNTR OSPK imits, etc SND	$A\pi^{+}\pi^{-}$ $2MMENT$ $+ e^{-} \rightarrow$ $\pi^{+}\pi^{-}$ $+ e^{-} \rightarrow$ $0MMENT$ $0 \gamma C \rightarrow$ $0 \gamma C \rightarrow$ $0 \gamma C \rightarrow$ $0 \gamma C \rightarrow$ $0 \rightarrow$	Γ: κ ⁰ κ ⁰ κ.5. π ¹ π+π-π πγ, π ⁰ γ μ+μ-γ μ+μ-γ μ+μ-γ γ π π π π π π π π π π π π π π π π π π π
E (units 10 ⁻⁷) ±0.28 OUR FIT ±0.10+0.27 +e-) × $\Gamma(\mu^+\mu^-$ E (units 10 ⁻⁸) ±1.4 OUR FIT ±1.4 OUR AVERAGE ±1.4 OUR FIT ±1.4 OUR AVERAGE ±1.4 OUR FIT ±0.4 OUR FIT ±0.4 OUR FIT ±0.4 OUR FIT ±0.4 OUR AVERAGE ±0.3 ±0.3 +1.15 -0.87 -0.87 -2.51 Recalculated by us from the $\eta \rightarrow \tau + \tau^-$ Recalculated by the allowing second the τ^0 of the	15 ACHASOV 00 SND e^+e^- 17)/ Γ_{total}^2 DOCUMENT ID TECN COMMI 18 ACHASOV 99C SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 AUGUSTIN 73 OSPK e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 OCCUMENT ID TECN COMMI THE COMMINISTRATION OF THE COMMI	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi)$ + $\Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE • • • We do not use to the second of the second out o	EVTS Error is ERAGE 3681 516 he follow AGE the follow 279 290 54 he follow 10052 10042	(KP KS) DOCUMENT ID INCLUDES SCALE FACTOR BUKIN COSME DOCUMENT ID Ing data for average ACHASOV DOCUMENT ID 19 HAYES 19 EARLES Ing data for average 17 ACHASOV 20 VASSERMAN 20 AUGUSTIN TOTO Includes Scale for GE 21 ACHASOV 22 AKHMETSH 23 DRUZHININ KURDADZE ANDREWS 23 COSME Ing data for average 25 ACHASOV	71 C O Si Si Si, si	ECN CI SPK e ¹ ECN CI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	$A\pi^{+}\pi^{-}$ $2MMENT$ $+ e^{-} \rightarrow$ $\pi^{+}\pi^{-}$ $+ e^{-} \rightarrow$ $0MMENT$ $0 \gamma C \rightarrow$ $0 \gamma C \rightarrow$ $0 \gamma C \rightarrow$ $0 \gamma C \rightarrow$ $0 \rightarrow$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
E (units 10 ⁻⁷) ± 0.28 OUR FIT $\pm 0.10 + 0.27$ ± 1.4 OUR FIT ± 1.4 OUR AVERAGE $\pm 1.4 \pm 0.9$ ± 3.0 ± 5.9 ± 0.4 OUR FIT ± 0.4 OUR FIT ± 0.4 OUR AVERAGE $\pm 0.3 \pm 0.3$ ± 0.3	15 ACHASOV 00 SND e^+e^- 17)/ Γ_{total}^2 DOCUMENT ID TECN COMMI 18 ACHASOV 99C SND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 AUGUSTIN 73 OSPK e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 GOLUBEV 86 ND e^+e^- 10 VASSERMAN 81 OLYA e^+e^- 10 OCCUMENT ID TECN COMMI THE COMMINISTRATION OF THE COMMI	FINT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[$\Gamma(\rho\pi)$ + $\Gamma(\pi^+\pi^-)$ VALUE 0.457±0.020 OUR FIT 0.51 ±0.05 OUR AVI 0.56 ±0.07 0.47 ±0.06 $\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$ VALUE • • • We do not use t 10.9±0.3 ^{+0.7} 2.5 ±0.4 OUR AVER 2.69±0.46 2.17±0.60 • • We do not use t 3.30±0.45±0.32 4.83±1.02 2.87±1.98 $\Gamma(\eta\gamma)/\Gamma_{\text{total}}$ VALUE 0.01297±0.00033 OUE 0.0126 ±0.0004 OUF 0.01296±0.0010 0.0130 ±0.0006 0.014 ±0.002 0.0088 ±0.0020 0.015 ±0.004 • • We do not use t 0.01336±0.00012±0.00	EVTS Error is ERAGE 3681 516 he follow AGE the follow 279 290 54 he follow 16052 160052 160052 160059	DOCUMENT ID TO COME DOCUMENT ID TO COME DOCUMENT ID TO COME DOCUMENT ID TO COME TO COME DOCUMENT ID TO COME T	71 of 1.3. 78C O 74 O 7. 78c, fits, li 00 Si 77 C 70 C 70 C 70 C 73 O 73 O 73 O 74 O 76 Si 5, fits, li 84 Si 5, fits, li 84 Si 5, fits, li 00 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECN CO SPK e' ECN CO imits, etc NTR 6. imits, etc SPK e' SPK e' SPK e' SPK e' SND CMD2 ND ND OLYA CNTR OSPK imits, etc SND SND SND SND SND SND	$A\pi + \pi^{-}$ $2MMENT$ $+ e^{-} \rightarrow \pi^{+} \pi^{-};$ $+ e^{-} \rightarrow 0$ $2MMENT$ $0 \rightarrow 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

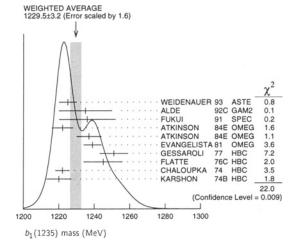
$\Gamma(\pi^+\pi^-\gamma)/\Gamma_{\text{total}}$						Γ ₁₅ /Γ
VALUE (units 10 ⁻⁴)	CL% EV	TS DOCUM	ENT ID		TECN COMMENT	
0.41 ±0.12 ±0.04	301	75 30 AKHM	IETSHIN	199B	CMD2 e+e- →	1
• • • We do not use the	e following	data for average	e fits l	imits	π ⁺ π ⁻	γ
< 0.3	90				CMD2 $e^+e^- \rightarrow$	
					π+π-	
<600	90	KALBI	FLEISCH	175	HBC 2.18 K ⁻ p Λπ ⁺ π ⁻	
< 70	90	соѕм	Е	74	OSPK $e^+e^- \rightarrow$	γ
					π ⁺ π ⁻ .	
<400	90	Linds	EY	65	HBC 2.1-2.7 K^{-1}	
					trals	
$\Gamma(\omega \gamma)/\Gamma_{\text{total}}$						Г ₁₃ /Г
VALUE	CL%	DOCUMENT ID		ECN	COMMENT	
<0.05	84	LINDSEY	66 H	BC	2.1-2.7 $K^- p \rightarrow$	
					$\Lambda \pi^+ \pi^-$ neutra	ıls
$\Gamma(\rho\gamma)/\Gamma_{\text{total}}$						Γ_{14}/Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		ECN	COMMENT	
< 0.12	90	³² AKHMETSHI	N 99B C	MD2	$e^+e^- \rightarrow \pi^+\pi^-$	· _γ [
• • • We do not use the	e following	data for average	es, fits, I	imits,	etc. • • •	
< 7	90				$e^+e^- \rightarrow \pi^+\pi^-$	~γ
<200	84	LINDSEY	66 H	IBC	$2.1-2.7 K^- p \rightarrow \Lambda \pi^+ \pi^- \text{ neutral}$	-1-
					Λπ·π neutra	
Γ(e ⁺ e ⁻)/Γ _{total}						Γ_{θ}/Γ
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		ECN	COMMENT	
2.99 ± 0.08 OUR AVERA	IGE Erro 55600	r includes scale f AKHMETSHI			$e^+e^- \rightarrow hadron$	
2.88±0.09 3.00±0.21	3681	BUKIN	78C C		$e^+e^- \rightarrow hadron$	
3.10 ± 0.14		33 PARROUR		SPK		
3.3 ±0.3		COSME		SPK	$e^+e^- \rightarrow hadron$	
2.81 ± 0.25	681	BALAKIN		SPK	$e^+e^- \rightarrow hadron$	15
3.50±0.27		CHATELUS	71 C	SPK	e+e-	
$\Gamma(\pi^0\gamma)/\Gamma_{\text{total}}$						Γ_7/Γ
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		ECN	COMMENT	
1.31 ±0.13 OUR AVE	RAGE				·	
1.30 ±0.13 '	32	DRUZHININ COSME		ID SPK	$e^+e^- \rightarrow 3\gamma$ e^+e^-	
1.4 ±0.5 • • • We do not use th						
$1.226 \pm 0.036 ^{+0.096}_{-0.089}$	-	34 ACHASOV		ND	$e^+e^- \rightarrow \pi^0 \gamma$	I
		29 BENAYOUN			,	
1.26 ±0.17		27 BENAYOUN	96 R	VUE	$0.54-1.04 e^{+}e^{-}$	-
F(+ -\/F						
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$						Γ ₁₁ /Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID			COMMENT	
• • We do not use the		g data for averag			$e^+e^- \rightarrow \pi^+\pi^-$	- 1
$0.71 \pm 0.11 \pm 0.09$			00c S			_ 1
$0.65 + 0.38 \\ -0.29$		¹⁷ GOLUBEV	86 N	ND	$e^+e^- \rightarrow \pi^+\pi^-$	
$2.01 + 1.07 \\ -0.84$		17 VASSERMAN	N 81 C	DLYA	$e^+e^- \rightarrow \pi^+\pi^-$	
<6.6	95	BUKIN			$e^+e^- \rightarrow \pi^+\pi^-$	
<2.7	95	ALVENSLEB	72	ENTR	$6.7 \gamma C \rightarrow C \pi^+$	π
$\Gamma(\omega\pi^0)/\Gamma_{\text{total}}$						Γ ₁₂ /Γ
		DOCUMENT IE	, 7	TECN	COMMENT	. 12/
VALUE (units 10 ⁻⁵)						0.0
4.8 ^{+1.9} ±0.8		ACHASOV	99 9	SND	$e^+e^- \rightarrow \pi^+\pi^-$	-π ⁰ π ⁰ '
F(V0 V0) /F(V+ V-	-1					Γ_2/Γ_1
T(KLKS)/T(K+K) EVTS	DOCUMENT IL	, 1	TECN	COMMENT	12/11
					COMMENT	
0.688 +0.022 OUR FIT		cludes scale facto	or of 1.2.	•		
0.740 ± 0.031 OUR AVE					± = 1/0 //	0
0.70 ±0.06	2732	BUKIN			$e^+e^- \rightarrow K_L^0 K$	
0.82 ±0.08 0.71 ±0.05		LOSTY LAVEN	78 H		$4.2 K^- p \rightarrow \phi h$ $10 K^- p \rightarrow K^+$	
0.71 ±0.08		LYONS	77 H		3-4 K ⁻ p → Λ	
0.89 ±0.10	144	AGUILAR			3.9,4.6 K-p	
(r/) + r/ + -	_0\1 /=/-	r+ v-1				Γ ₂ /Γ-
$\left[\Gamma(\rho\pi) + \Gamma(\pi^+\pi^{-1}\right]$, .	TECN	COMMENT	Γ_3/Γ_1
0.314±0.014 OUR FIT	Error inc	<u>DOCUMENT IL</u> cludes scale facto			COMMENT	
0.28 ±0.09	34	AGUILAR			3.9,4.6 K-p	
					-	F . /F
$\Gamma(\eta e^+ e^-)/\Gamma_{\text{total}}$						Γ ₁₀ /Γ
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT IL		TECN	COMMENT	
$1.3^{+0.8}_{-0.6}$	7	GOLUBEV	85 I	ND	$e^+e^- \rightarrow \gamma\gamma e^-$	[⊢] e

$\Gamma(\eta'(958)\gamma)/\Gamma_{\text{total}}$		Γ ₂₃ /Γ
VALUE (units 10 ⁻⁵) CL%		DOCUMENT ID TECN COMMENT
$6.7^{+3.4}_{-2.9}\pm1.0$	5	³⁵ AULCHENKO 99 SND $e^+e^- \rightarrow \pi^+\pi^- 3\gamma$
	ie followin	g data for averages, fits, limits, etc. • • •
$8.2^{+2.1}_{-1.9}\pm 1.1$	21	36 AKHMETSHIN 00B CMD2 $~e^+e^- ightarrow ~\pi^+\pi^- 3\gamma$
<11 90		AULCHENKO 98 SND $e^+e^- ightarrow 7\gamma$
$12 \begin{array}{c} +7 \\ -5 \end{array} \pm 2$	6	36 AKHMETSHIN 97B CMD2 $e^+e^- ightarrow$
<41 90		DRUZHININ 87 ND $e^+e^- ightarrow \gamma\eta\pi^+\pi^-$
$\Gamma(\eta \pi^0 \pi^0 \gamma) / \Gamma_{\text{total}}$		Γ ₂₄ /Γ
VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID TECN COMMENT
<2	90	AULCHENKO 98 SND $e^+e^- \rightarrow 7\gamma$
-		
$\Gamma(\pi^0\pi^0\gamma)/\Gamma_{ m total}$		Γ ₁₇ /Γ
VALUE (units 10 ⁻⁴)	<u>CL%</u> _I	
1.08±0.17±0.09		268 AKHMETSHIN 99C CMD2 $e^+e^{\pi^0\pi^0\gamma}$
• • • We do not use the	1e followir	g data for averages, fits, limits, etc. • • •
$1.14 \pm 0.10 \pm 0.12$		164 ACHASOV 98I SND $e^+e^- \rightarrow 5\gamma$
<10	90	DRUZHININ 87 ND $e^+e^- ightarrow 5\gamma$
$\Gamma(\pi^0\pi^0\gamma)/\Gamma(\eta\gamma)$		Γ ₁₇ /Γ ₆
VALUE (units 10 ⁻²)	EVTS	DOCUMENT ID TECN COMMENT
0.90±0.08±0.07	164	ACHASOV 981 SND $e^+e^- \rightarrow 5\gamma$
Γ(π ⁺ π ⁺ π ⁻ π ⁻ π ⁰),	/r	Г ₁₉ /Г
-		
VALUE (units 10 ⁻⁴)	- <u>CL%</u> 95	
1.5	,,	BARKOV 88 CMD $e^+e^{\pi^+\pi^-\pi^+\pi^-\pi^0}$
Γ(π ⁺ π ⁻ π ⁺ π ⁻)/Γ _t	nes!	Γ ₁₈ /Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID TECN COMMENT
<8.7	90	CORDIER 79 WIRE $e^+e^- \rightarrow 4\pi$
-(-() \ /=		F /F
$\Gamma(f_0(980)\gamma)/\Gamma_{\text{total}}$		Γ ₁₆ /Γ
VALUE (units 10 ⁻⁴) 3.4 ±0.4 OUR AV	<u>CL%</u> -	EVTS DOCUMENT ID TECN COMMENT
2.90 ± 0.21 ± 1.54	LIVIOL	³⁷ AKHMETSHIN 99C CMD2 $e^+e^- \rightarrow$
		$\frac{\pi^+\pi^-\gamma}{\pi^0\pi^0\gamma}$
3.42 ± 0.30 ± 0.36		164 38 ACHASOV 981 SND $e^+e^- \rightarrow 5\gamma$
• • We do not use t	he followi	ng data for averages, fits, limits, etc. • • •
$1.93 \pm 0.46 \pm 0.50$	2	7188 ³⁹ AKHMETSHIN 99B CMD2 $e^+e^- \rightarrow \pi^+\pi^- \gamma$
3.05 ± 0.25 ± 0.72		268 40 AKHMETSHIN 99C CMD2 $e^+e^0 \rightarrow$
		$\pi^{U}\pi^{U}\gamma$
1.5 ± 0.5		268 41 AKHMETSHIN 99C CMD2 $e^+e^{\pi^0\pi^0\gamma}$
< 1	90	⁴² AKHMETSHIN 97¢ CMD2 $e^+e^- \rightarrow e^+e^-$
< 7	90	43 AKHMETSHIN 97c CMD2 $e^+e^- \rightarrow$
•		$\pi^+\pi^-\gamma$
<20	90	DRUZHININ 87 ND $e^+e^{\pi^0\pi^0\gamma}$
r/_0 _+\		·
$\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{total}}$	نه بخ	Γ ₂₀ /Γ
<1.2 × 10 ⁻⁴	<u>CL%</u> 90	DOLINSKY 88 ND $e^+e^- \rightarrow \pi^0 e^+e^-$
	,,,	Dolling Co. M. D. C.
$\Gamma(\pi^0\eta\gamma)/\Gamma_{\text{total}}$		Γ ₂₁ /Γ
VALUE (units 10 ⁻⁴)	CL% E	VTS DOCUMENT ID TECN COMMENT
0.86±0.18 OUR AV 0.90±0.24±0.10	/ERAGE	80 AKHMETSHIN 99C CMD2 $e^+e^- \rightarrow \eta \pi^0 \gamma$
$0.90 \pm 0.24 \pm 0.10$ $0.83 \pm 0.23 \pm 0.12$		20 ACHASOV 98B SND $e^+e^- \rightarrow 5\gamma$
	he follow	ng data for averages, fits, limits, etc. • • •
<25	90	DOLINSKY 91 ND $e^+e^- ightarrow \pi^0\eta\gamma$
		Г22/Г
E/n. (000) \ /E		· · · · · · · · · · · · · · · · · · ·
$\Gamma(a_0(980)\gamma)/\Gamma_{\text{total}}$	~ ~ ~ .	DOCUMENT ID TECN COMMENT
VALUE (units 10 ⁻³)	<u>CL%</u>	DOLINGEV OI NO ATATV
	90	DOLINSKY 91 ND $e^+e^- ightarrow \pi^0 \eta \gamma$
VALUE (units 10 ⁻³)	90	DOLINSKY 91 ND $e^+e^- \rightarrow \pi^0 \eta \gamma$
VALUE (units 10 ⁻³) <5	90	
VALUE (units 10^{-3}) <5 $\Gamma(\eta'(958)\gamma)/\Gamma(\eta\gamma)$ VALUE (units 10^{-3})	90	Γ ₂₃ /Γ ₆
VALUE (units 10^{-3}) <5 $\Gamma(\eta'(958)\gamma)/\Gamma(\eta\gamma)$ VALUE (units 10^{-3}) 6.5 $^{+1.5}_{-1.5}$ ± 0.8	90) 	Γ_{23}/Γ_6

Meson Particle Listings

 $\phi(1020)$, $h_1(1170)$

$\Gamma(\mu^+\mu^-\gamma)/\Gamma_{tota}$ VALUE (units 10^{-5})			Γ ₂₅ /Γ	DRUZHININ ARMSTRONG	87 86	ZPHY C37 1 PL 166B 245	V.P. Druzhinin et al. T.A. Armstrong et al.	(NOVO) (ATHU, BARI, BIRM+)
.43±0.45±0.14	<u>EVT5</u> 27188	39 AKHMETSHIN 99B CME	$\frac{1}{1} \frac{COMMENT}{1}$	ATKINSON BEBEK	86 86	ZPHY C30 521 PRL 56 1893	M. Atkinson et al. C. Bebek et al.	(BONN, CERN, GLAS+) (CLEO Collab.)
		g data for averages, fits, limi		DAVENPORT DIJK\$TRA	86 86	PR 33 2519 ZPHY C31 375	H. Dijkstra et al.	S, ARIZ, FNAL, FSU, NDAM+) (ANIK, BRI\$, CERN+)
.3 ±1.0	824±	45 AKHMETSHIN 97¢ CME)2 $e^+e^- \rightarrow \mu^+\mu^-\gamma$	FRAME GOLUBEV	86 86	NP B276 667 SJNP 44 409	D. Frame et al. V.B. Golubev et al.	(GLAS) (NOVO)
	33			ALBRECHT	85D	Translated from YAF 4 PL 153B 343	4 633. H. Albrecht <i>et al.</i>	(ARGUS Collab.)
$(\rho \gamma \gamma)/\Gamma_{\text{total}}$			Γ ₂₆ /Γ	GOLUBEV	85	SJNP 41 756 Translated from YAF 4	V.B. Golubev et al. 1 1183.	(NOVO)
ALUE (units 10 ⁻⁴)	<u>CL%</u>	DOCUMENT ID TECH	ICOMMENT	DRUZHININ ARMSTRONG	84 83B	PL 144B 136	V.P. Druzhinin et al. T.A. Armstrong et al.	(NOVO) (BARI, BIRM, CERN+)
(5	90	AKHMETSHIN 98 CME	$02 e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma$	BARATE KURDADZE	83 83C	PL 121B 449 JETPL 3B 366	R. Barate et al. L.M. Kurdadze et al.	(5ACL, LOIC, SHMP, IND) (NOVO)
$(\eta \pi^+ \pi^-)/\Gamma_{\text{tota}}$			Γ ₂₇ /Γ	ARENTON	82	Translated from ZETFI PR D25 2241		(ANL, ILL)
4LUE (units 10 ⁻⁴)	<u>CL%_</u>	DOCUMENT ID TECH	'277' V COMMENT	PELLINEN	82	PS 25 599	A. Pellinen, M. Roos	(HELS) (AMST, BRIS, CERN, CRAC+)
<3	90		$\frac{e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma}{e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma}$	DAUM IVANOV	81 81	PL 100B 439 PL 107B 297	C. Daum et al. P.M. Ivanov et al.	(NOVO)
16 Using Fe+e-=				Also VASSERMAN	82 81	Private Comm. PL 99B 62	S.I. Eidelman (.B. Vasserman <i>et al.</i>	(NOVO) (NOVO)
17 Using B($\phi \rightarrow e$	e ⁺ e ⁻ 1=(2.99	+ 0.08) × 10 ⁻⁴ .		Also	82	SJNP 35 240 Translated from YAF 3	5 352.	
¹⁸ Using $\Gamma(\phi) = 4.1$.1 Mev. If inte	erference between the $ ho\pi$ and	1 3π modes is neglected, the	CORDIER CORDIER	80 79	NP B172 13 PL 61B 389	A. Cordier et al. A. Cordier et al.	(LALO) (LALO)
fraction of the ρ	oπ is more tha	in 80% at the 90% confidence on resonance and continuum,	e level.	BUKIN	78B	SJNP 27 521 Translated from YAF 2	A.D. Bukin <i>et al.</i> 17 985.	(NOVO)
20 Recalculated by	nerence betwe	$\rightarrow e^+e^-)=(2.99\pm0.08)$	× 10 ⁻⁴	BUKIN	78C	SJNP 27 516 Translated from YAF 2	A.D. Bukin <i>et al.</i> 17 976.	(NOVO)
²¹ Using B($\phi \rightarrow e^-$	$e^+e^-) = (2.99)$	$9 \pm 0.08 \times 10^{-4}$ and $B(\eta \rightarrow$	$3\pi^0$)= $(32.2 \pm 0.4) \times 10^{-2}$.	COOPER LOSTY	78B 78	NP B146 1 NP B133 38	A.M. Cooper et al. M.J. Losty et al.	(TATA, CERN, CDEF+) (CERN, AMST, NIJM+)
22 From $_{\pi}^{+}$ $_{\pi}^{-}$ $_{\pi}^{0}$	decay mode	of η .	•	AKERLOF ANDREWS	77 77	PRL 39 861 PRL 38 198	C.W. Akerlof et al. D.E. Andrews et al.	(FNAL, MICH, PURD)
²³ From 2γ decay r	mode of η .			BALDI	77	PL 68B 381	R. Baldi et al.	(GEVA)
24 From $3\pi^0$ decay 25 From the $n \rightarrow 1$	y inode of η. 2γ decay and	using $B(\phi \rightarrow e^+e^-) = (2.9)$	99 ± 0.08) × 10 ⁻⁴ .	CERRADA COHEN	77B 77	NP B126 241 PRL 38 269	M. Cerrada et al. D. Cohen et al.	(AMST, CERN, NIJM+) (ANL)
26 Using various	decay modes	of the η from ACHASO\	/ 98F, ACHASOV 00, and	LAVEN LYONS	77 77	NP B127 43 NP B125 207	L. Lyons, A.M. Cooper, A	
ACHASOV 00B	and $B(\phi \rightarrow \cdot)$	e^+e^-) = (2.99 ± 0.08) × 10	0-4.	COSME KALBFLEISC)	76 1 76	PL 63B 352 PR D13 22	G. Cosme et al. G.R. Kalbfleisch, R.C. Stri	(ORSAY) and, J.W. Chapman (BNL+)
From the $\eta \rightarrow 0$	π ⁺ π ⁻ π ⁰ de	cay and B($\phi \rightarrow e^+e^-$) = (of η and using B($\phi \rightarrow e^+e^-$	$2.99 \pm 0.08) \times 10^{-4}$.	PARROUR PARROUR	76 76B	PL 63B 357	G. Parrour et al. G. Parrour et al.	(ÒRSAY) (ORSAY)
ਾ From π'π π ^ω 29 Reanalysis of DF	decay mode RUZHININ 84	π and using $B(\phi \rightarrow e^{+}e^{-})$. DOLINSKY 89 and DOLIN	~)= (2.99 ± 0.08) × 10 ⁻⁴ . NSKY 91 taking into account	KALBFLEISCH AYRES	1 75 74	PR D11 987 PRL 32 1463	G.R. Kalbfleisch, R.C. Str. D.S. Ayres et al.	
a triangle anoma	aly contribution	on.		BESCH	74 74	NP 870 257	H.J. Besch et al.	(BONN)
30 For $E_{\gamma} > 20$ Me	eV and assumi	ng that B($\phi(1020) \rightarrow f_0(980)$	$(0)\gamma)$ is neglibible. Supersedes	COSME COSME	74B		G. Cosme et al. G. Cosme et al.	(ORSAY) (ORSAY)
AKHMETSHIN 31 For E., > 20 Me	97C. leV and assum	ing that B($\phi(1020) \rightarrow f_0(98)$	301~) is negligible.	DEGROOT AUGUSTIN	74 73	NP B74 77 PRL 30 462	A.J. de Groot et al. J.E. Augustin et al.	(AMST, NUM) (ORSAY)
32 Supersedes AKH	HMETSHIN 9	7c.	1	BALLAM BINNIE	73 73B	PR D7 3150 PR D8 2789	J. Ballam <i>et al.</i> D.M. Binnie <i>et al.</i>	(SLÁC, LBL) (LOIC, SHMP)
33 Using total widt	th 4.2 MeV.	They detect 3# mode and ob	oserve significant interference	AGUILAR ALVENSLEB	72B		M. Aguilar-Benitez et al. H. Alvensleben et al.	(BNL) (MIT, DESY)
with ω tail. This	is is accounted	for in the result quoted about dusing $B(\phi \rightarrow e^+e^-) = ($	/e. 2.00 ± 0.00) × 10−4	BORENSTEIN COLLEY		PR D5 1559 NP B50 1	S.R. Borenstein et al. D.C. Colley et al.	(BNL, MICH) (BIRM, GLAS)
35 Using the value	$B(n^l \rightarrow n\pi^{-l})$	π^{-})= (43.7 ± 1.5) × 10 ⁻²	and B($\eta \rightarrow \gamma \gamma$)= (39.25 ±	BALAKIN	71	PL 34B 32B	V.E. Balakin et ai.	` (NOVO)
$0.31) \times 10^{-2}$.	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	CHATELUS Also	71 70	Thesis LAL 1247 PL 32 416	Y. Chatelus J.C. Bizot <i>et al.</i>	(STRB) (OR5AY)
36 Using the value	$B(\phi \rightarrow \eta \gamma)$	$= (1.26 \pm 0.06) \times 10^{-2}$.		HAYES STOTTLE	71 71	PR D4 899 Thesis ORO 2504 170		`(CORN) (UMD)
$\pi^0 \pi^0 \gamma$.	pined fit of th	e photon spectra in the rea	ctions $e^+e^- \rightarrow \pi^+\pi^-\gamma$,	BIZOT Also	70 59	PL 32 416 Liverpool Sym. 69	J.C. Bizot et al. J.P. Perez-y-Jorba	(ORSAY)
	the $\pi^0\pi^0\gamma$ fir	nal state is completely detern	nined by the $f_0\gamma$ mechanism,	EARLES LINDSEY	70 66	PRL 25 1312 PR 147 913	D.R. Earles et al. J.S. Lindsey, G. Smith	(NEAS) (LRL)
neglecting the d	decay $B(\phi \rightarrow$	$K\overline{K}\gamma$) and using $B(f_0 \rightarrow \pi$		LONDON BADIER	66 65B	PR 143 1034	G.W. London et al. J. Badier et al.	(BNL, SŶRĀ) (EPOL, SACL, AMST)
39 For $E_{\gamma} > 20$ Mi	leV. Supersede	s AKHMETSHIN 97c.	i	LINDSEY	65	PRL 15 221 sta included in LINDSEY	J.S. Lindsey, G.A. Smith	(LRL)
40 Neglecting other	r intermediate	mechanisms $(\rho\pi, \sigma\gamma)$.		SCHLEIN	63	PRL 10 368	P.E. Schlein et al.	(UCLA)
42 For destruction	it taking into	account f_0 (980) and f_0 (1200) ith the Bremsstrahlung proce) intermediate mechanisms.			OTHE	R RELATED PAPER	s
43 For constructive	e interference w	with the Bremsstrahlung proce	55 :ess	161116011			M.N. Achasov et al.	-
44 Superseded by A	AKHMETSHII	√ 00B.	ı	ACHASOV MARCO	99B 99	PAN 62 442 Translated from YAF 6		
⁴⁵ For $E_{\gamma} > 20$ M	ΛeV.			ACHASOV	98C		N.N. Achasov et al.	
				OLLER ACHASOV		PR D56 4084	J.A. Oller N.N. Achasov <i>et al</i> .	
$\pi^+\pi^-\pi^0/\rho\pi$	# AMPLITU	IDE RATIO a ₁ IN DECA	$Y OF \phi \rightarrow \pi^+\pi^-\pi^0$	ACHASOV ACHASOV	97D 95	PLB 363 106	N.N. Achasov et al. N.N. Achasov, V.V. Gubir	
VALUE	CL%_	DOCUMENT ID TECI	N COMMENT	KAMAL GEORGIO	92 85	PL B284 421 PL 1528 428	A.N. Kamal, Q.P. Xu C. Georgiopoulos et al.	(ALBE) (TUFTS, ARIZ, FNAL+
-0.16 < a ₁ < 0.11		46 AKHMETSHIN 98 CMI		GELFAND BERTANZA	63B 62		N. Gelfand <i>et al.</i> L. Bertanza <i>et al.</i>	(COLU, RUTG (BNL, SYRA
-		ents taking into account inte	erference between the contact	DERTAILER		1112 7 250		(2.1.2, 0.1.1.)
and ρπ terms a	and assuming	zero phase for the contact ter	m	1 (1			G (PC)	= 0-(1+-)
		(1020) REFERENCES		$h_1(1)$	1/(J)	10(3, 0) =	= 0 (1 ')
CHASOV 00 E	EPJ C12 25	M.N. Achasov et al.	(Novosibirsk SND Collab.)					
ACHASOV 00B IE	JETP 90 17 Translated from Z	M.N. Achasov et al.	(Novosibirsk SND Collab.)			-	h ₁ (1170) MASS	
ACHASOV 00C PI	L B474 188 L B473 337	M.N. Achasov et al. R.R. Akhmetshin et al.	(Novosibirsk SND Collab.) (CMD-2 Collab.)	VALUE (MeV	ì		DOCUMENT ID TE	CN CHG COMMENT
ACHASOV 99 PI	PL B449 122 PL B456 304	M.N. Achasov et al. M.N. Achasov et al.	(2= = ++			ESTIMATE	-3	year-mark
KHMETSHIN 99B PI	PL B462 371	R.R. Akhmetshin et al.	(CMD-2 Collab.)	• • • We	do no	t use the following o	lata for averages, fits, lir	mits, etc. • • •
KHMETSHIN 99D PI		R.R. Akhmetshin et al. R.R. Akhmetshin et al.	(CMD-2 Collab.)	1168± 4			ANDO 92 SP	
	PL B460 242 JETPL 69 97	R.R. Akhmetshin et al. V.M. Aulchenko et al.	(CMD-2 Collab.)	1166± 5±	. 2	1	ANDO 92 SP	$\pi^+\pi^-\pi^0\pi$ PFC $8\pi^-\pi^-\pi^0\pi$
	Franslated from Z PL B438 441	ETFP 69 B7. M.N. Achasov et al.	(Novosibirsk SND Collab.)	1100± 5±	. 3			$\pi^{+}\pi^{-}\pi^{0}$
Ti	ETPL 68 573 PL B440 442	M.N. Achasov et al. M.N. Achasov et al.	(Novosibirsk SND Collab.)	1190±60			DANKOWY 81 SP	•
TI ACHASOV 98B PI ACHASOV 98F JE	PL B434 426	R.R. Akhmetshin et al. V.M. Aulchenko et al.					ng 2 variants of the mod	tel of BOWLER 75.
TI ACHASOV 98B PI ACHASOV 98F JE ACHASOV 98I PI AKHMETSHIN 98 PI	M D427 100	D. Barberis et al.	(Omega expt.)	∠ Uses th	e mo	del of BOWLER 75.		
ACHASOV 98B PI ACHASOV 98F JE ACHASOV 98I PI AKHMETSHIN 98 PI AULCHENKO 98 PI BARBERIS 98 PI	PL B436 199 PL B432 436		(NOVO, BOST, PITT+)					_
ACHASOV 98B PI ACHASOV 98F JE ACHASOV 98F JE ACHASOV 98I PI AKHMETSHIN 98 PI BARBERIS 98 PI BARBERIS 98 PI BAKHMETSHIN 97B PI		R.R. Akhmetshin et al. R.R. Akhmetshin et al.	(CMD-2 Collab.)					
ACHASOV 98B PI ACHASOV 98F JE ACHASOV 98I PI ACHASOV 98 PI ACHASOV 98 PI BARBERIS 98 PI AKHMETSHIN 97B PI AKHMETSHIN 97C PI BERNAYOUN 96 ZI	PL B432 436 PL B415 445 PL B415 452 ZPHY C72 221	R.R. Akhmetshin et al. M. Benayoun et al.	(IPNP, NOVO)					
ACHASOV 98B PI ACHASOV 98F JI ACHASOV 98F JI AKHMETSHIN 98 PI BARBERIS 98 PI BARBERIS 98 PI AKHMETSHIN 97B PI AKHMETSHIN 97C PI BENAYOUN 96 ZI AKHMETSHIN 95 PI DOLINSKY 91 PI	PL B432 436 PL B415 445 PL B415 452 ZPHY C72 221 PL B364 199 PRPL 202 99	R.R. Akhmetshin <i>et al.</i> M. Benayoun <i>et al.</i> R.R. Akhmetshin <i>et al.</i> S.I. Dolinsky <i>et al.</i>	`(IPNP, NOVO) (CMD-2 Collab.) (NOVO)					
ACHASOV 98B PI ACHASOV 98B PI ACHASOV 98I PI AKHMETSHIN 98 PI AULCHENKO 98 PI ABARBERIS 98 PI AKHMETSHIN 97B PI BENAYOUN 96 ZI AKHMETSHIN 97C PI BENAYOUN 96 ZI AKHMETSHIN 97 PI DOLINSKY 91 PI DOLINSKY 89 ZI BARKOV 88 S	PL B432 436 PL B415 445 PL B415 452 ZPHY C72 221 PL B364 199 PRPL 202 99 ZPHY C42 511 5JNP 47 248	R.R. Akhmetshin et al. M. Benayoun et al. R.R. Akhmetshin et al. S.I. Dolinsky et al. S.I. Dolinsky et al. L.M. Barkov et al.	(IPNP, NOVO) (CMD-2 Collab.)					
ACHASOV 98 PI ACHASOV 98 PI ACHASOV 98 PI ACHASOV 98 PI AKHMETSHIN 98 PI AULCHENKO 98 PI BARBERIS 98 PI AKHMETSHIN 97E PI AKHMETSHIN 97E PI AKHMETSHIN 97E PI ACHMETSHIN 97 PI DOLINSKY 91 PI DOLINSKY 91 PI DOLINSKY 98 Z BARKOV 88 S DOLINSKY 68 Z	PL B432 436 PL B415 445 PL B415 452 ZPHY C72 221 PL B364 199 PRPL 202 99 ZPHY C42 511	R.R. Akhmetshin et al. M. Benayoun et al. R.R. Akhmetshin et al. S.I. Dolinsky et al. S.I. Dolinsky et al. L.M. Barkov et al. AF 47 393. S.I. Dolinsky et al.	(IPNP, NOVO) (CMD-2 Collab.) (NOVO) (NOVO)					


 $b_1(1235)$

	<i>h</i> ₁(1170) WIDTH
VALUE (MeV)	DOCUMENT ID TECN CHG COMMENT
360 ± 40 OUR ESTIMAT	FE ■ following data for averages, fits, limits, etc. • • •
345± 6	ANDO 92 SPEC $8\pi^-p \rightarrow$
375± 6±34	$\pi^{+}\pi^{-}\pi^{0}n$ 3 ANDO 92 SPEC 8 $\pi^{-}p \rightarrow$
	++0n
320±50	⁴ DANKOWY 81 SPEC 0 $8\pi p \rightarrow 3\pi n'$
4 Uses the model of B	of values using 2 variants of the model of BOWLER 75. OWLER 75.
	h1(1170) DECAY MODES
Mode	Fraction (Γ_j/Γ)
$\Gamma_1 \rho \pi$	seen
	h1(1170) BRANCHING RATIOS
$\Gamma(\rho\pi)/\Gamma_{\text{total}}$	Γ ₁ /0
VALUE	DOCUMENT ID TECN COMMENT
• • • We do not use th	ne following data for averages, fits, limits, etc. • • •
seen	ANDO 92 SPEC $8\pi^- p \rightarrow \pi^+ \pi^- \pi^0 \pi$
seen	ATKINSON 84 OMEG 20-70 $\gamma p \rightarrow$
	$\pi^+\pi^-\pi^0\rho$
seen	DANKOWY 81 SPEC $8 \pi p \rightarrow 3\pi n$
	h ₁ (1170) REFERENCES
ANDO 92 PL B29	
ANDO 92 PL B29 ATKINSON: 84 NP B2 DANKOWY 81 PRL 46	31 15 M. Atkinson et al. (BONN, CERN, GLAS+)

٨	/1	33E)	MASS	

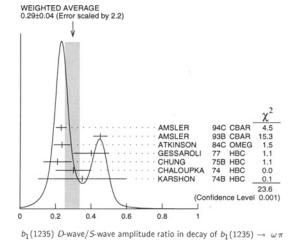
 $I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$

VALUE		EVTS	DOCUMENT ID		TECN	<u>CHG</u>	
1229.	± 3.2	OUR AVERAGE				See	the ideogram below.
1225	± 5		WEIDENAUER	93	ASTE		p p →
							$2\pi + 2\pi - \pi^{0}$
1235	± 15		ALDE	92¢	GAM2		38,100 $\pi^{-}p \rightarrow$
							ω_{π}^{0}
1236	+16		FUKUI	91	SPEC		8.95 π ⁻ p →
							$\omega \pi^0 n$
1222	+ 6		ATKINSON	845	OMEG	+	25-55 γp →
1222	Τ 0		ATTOM	042	CIVILO	_	$\omega \pi X$
1237	÷ 7		ATKINSON	84E	OMEG	0	25-55 γp →
			***************************************			•	ωπΧ
1239	± 5		EVANGELISTA	81	OMEG	_	$12 \pi^- p \rightarrow \omega \pi p$
1251	± 8	450	GESSAROLI	77	нвс	_	$11 \pi^- \rho \rightarrow$
1231		430	GESSARGE	• •			*
							$\pi^-\omega p$
1245	±11	890	FLATTE	76C	HBC	_	4.2 K ⁻ $p \rightarrow$
							$\pi^-\omega\Sigma^+$
1222	± 4	1400	CHALOUPKA	74	HBC	-	$3.9 \pi^{-} p$
1220	± 7	600	KARSHON	74B	HBC	+	$4.9 \pi^{+} p$
	We do	not use the followin	g data for averages	, fits	, limits,	etc.	
1190			AUGUSTIN		DM2	±	
	±10					_	
1213	± 5		ATKINSON		OMEG	0	
1271	± 11		COLLICK	84	SPEC	+	$200 \pi^+ Z \rightarrow$
							$Z\pi\omega$

$b_1(1235)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN_	CHG	COMMENT
142± 9 OUR AV	ERAGE Error inc	cludes scale facto	rof	1.2.		
113 ± 12		WEIDENAUER	93	ASTE		$\bar{p} p \rightarrow$
						$2\pi^{+}2\pi^{-}\pi^{0}$
160 ± 30		ALDE	92C	GAM2		38,100 $\pi^{-} \rho \rightarrow$
						$\omega \pi^0 n$
151 ± 31		FUKUI	91	SPEC		8.95 $\pi^- p \rightarrow$
						$\omega \pi^0 n$
170 ± 15		EVANGELISTA	81	OMEG	-	$12 \pi^- p \rightarrow \omega \pi p$
170 ± 50	225	BALTAY	78B	HBC	+	$15 \pi^+ p \rightarrow p4\pi$
155 ± 32	450	GESSAROLI	77	HBC	_	$11 \pi^- p \rightarrow$
						$\pi^-\omega_D$
182 ± 45	890	FLATTE	76C	HBC	-	$4.2 K^- p \rightarrow$
						$\pi^-\omega\Sigma^+$
135 ± 20	1400	CHALOUPKA	74	HBC	_	3.9 π ⁻ p
156 ± 22	600	KARSHON	74B	HBC	+	4.9 $\pi^{+}p$
• • • We do not	use the following	data for averages	. fits	. limits.	etc.	
	·	•				
210±19		AUGUSTIN		DM2	±	$e^+e^- \rightarrow 5\pi$
231 ± 14		ATKINSON		OMEG	0	20-70 γ <i>p</i>
232±29		COLLICK	84	SPEC	+	$200 \pi^+ Z \rightarrow$
						Ζπω

b1 (1235) DECAY MODES


	Mode	Fra	ctic	n (Γ _j	·/Γ)	Confidence	level
$\overline{\Gamma_1}$	$\omega \pi$ [D/S amplitude ratio = 0.29 ± 0.04]		dor	ninan	t		
Γ_2	$\pi^{\pm}\gamma$	(1.	6±0.	4) \times 10 ⁻³		
Γ_3^-	ηρ		see	n			
Γ_4	$\pi^{+} \pi^{+} \pi^{-} \pi^{0}$	<	50		%		84%
Γ_5	$(K\overline{K})^{\pm}\pi^{0}$	<	8		%		90%
Γ ₃ Γ ₄ Γ ₅ Γ ₆	$K_{S}^{0}K_{I}^{0}\pi^{\pm}$	<	6		%		90%
Γ ₇	KςKςπ±	<	2		%		90%
Γ8	$\phi\pi$	<	1.	5	%		84%

b1(1235) PARTIAL WIDTHS

Γ(π [±] γ)						Г2
VALUE (keV)	DOCUMENT ID		TECN	CHG	COMMENT	
230±60	COLLICK	84	SPEC	+	$200_{\pi}^{+}Z \rightarrow$	
					7 7 141	

$b_1(1235)$ D-wave/S-wave AMPLITUDE RATIO IN DECAY OF $b_1(1235) ightarrow \omega \pi$

VALU	Ε	<u>EVTS</u>	DOCUMENT ID		TECN	ÇНG	COMMENT
0.29	±0.04	OUR AVERAGE	Error includes scale	facto	r of 2.2.	See	the ideogram below.
0.23	± 0.03		AMSLER	94c	CBAR		$0.0 \ \overline{p}p \rightarrow \omega \eta \pi^0$
0.45	±0.04		AMSLER	93B	CBAR		$0.0 \overline{\rho} \rho \rightarrow \omega_{\pi} 0 \pi^{0}$
0.235	±0.047		ATKINSON	84C	OMEG		20-70 γp
0.4	$^{+0.1}_{-0.1}$		GE\$SAROLI	77	нвс	-	$ \begin{array}{c} 11 \ \pi^- \rho \rightarrow \\ \pi^- \omega \rho \end{array} $
0.21	±0.08		CHUNG	75B	нвс	+	7.1 $\pi^+ p$
0.3	±0.1		CHALOUPKA	74	HBC	_	3.9-7.5 π ⁻ p
0.35	±0.25	600	KARSHON	74B	нвс	+	4.9 $\pi^{+}p$

 $b_1(1235), a_1(1260)$

		b ₁ (1235) BRANCHIN	IG R	ATIOS			
Γ(ηρ)/Γ(α <u>VALUE</u>	wπ)		DOCUMENT ID		TECN	COMA	4ENT	Γ_3/Γ_1
<0.10			ATKINSON	84D	OMEG			
Γ(π+π+π VALUE	- π	$^{0})/\Gamma(\omega\pi)$	DOCUMENT IO		TECH	C11C		Γ ₄ /Γ ₁
<0.5			DOCUMENT ID ABOLINS	63	TECN HBC	<u>CHG</u> +	2.5 π ⁺ D	
Γ((<i>κK</i>)±	π ⁰),			••		,	·	Γ ₅ /Γ ₁
<0.08		<u>CL%</u> 90	DOCUMENT ID	67	TEÇN HBC	<u>снс</u> ±	COMMENT 0.0 pp	
F(KS KL 1	r±)/		DOCUMENT ID	•	TECN		.,	Γ ₆ /Γ ₁
<0.06		90	BALTAY	67	HBC	<u>CHG</u> ±	<u>COMMENT</u> 0.0 □ D	
Γ(K _S ⁰ K _S ⁰ 1 VALUE <0.02	r±),	/Γ(ωπ) <u>cι%</u> 90	DOCUMENT ID	67	<i>TECN</i> HBC	<u>снс</u> ±	<u>СОММЕНТ</u> 0.0 р р	Γ ₇ /Γ ₁
Γ(φπ)/Γ(VALUE	ωπ)	<u>CL%</u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	Г _В /Г ₁
<0.004 • • • We d	o not	95 use the following	VIKTOROV data for average	96 s, fits	SPEC , limits,	0 etc. •	32.5 π ⁻ ρ K ⁺ K ⁻	
<0.04 <0.015		95	BIZZARRI DAHL	69 67	HBC HBC	±	0.0 p p 1.6-4.2 π	- _Р
		b ₁ (1	1235) REFER	ENC	ES			
VIKTOROV AMSLER AMSLER WEIDENAUER ALDE	96 94C 93B 93 92C	PAN 59 1184 Translated from YAF PL B327 425 PL B311 362 ZPHY C59 387 ZPHY C54 553	V.A. Viktorov 59 1239. C. Amsler et a C. Amsler et a P. Weidenauer D.M. Alde et	ni. ni. et al.	(BI	(Cr	ystal Barrel C ystal Barrel C ystal Barrel C (ASTERIX C RP. KEK, LA	ollab.) ollab.)

VIKTOROV	96	PAN 59 1184	V.A. Viktorov et al.	(SERP)
		Translated from YAF 59		
AMSLER	94C	PL B327 425	C. Amsler et al.	(Crystal Barrel Collab.)
AMSLER	93B	PL B311 362	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
WEIDENAUER		ZPHY C59 387	P. Weidenauer et al.	(ASTERIX Collab.)
ALDE	92C	ZPHY C54 553	D.M. Alde et al.	(BELG, SERP, KEK, LANL+)
FUKUI	91	PL B257 241	S. Fukui et al.	(SUGI, NAGO, KEK, KYOT+)
AUGUSTIN	89	NP B320 1	J.E. Augustin, G. Cosme	(DM2 Collab.)
ATKINSON	84C	NP B243 1	M. Atkinson et al.	(BONN, CÈRN, GLAS+) JP
ATKINSON	64D	NP B242 269	M. Atkinson et al.	(BONN, CERN, GLAS+)
ATKINSON	84E	PL 138B 459	M. Atkinson et al.	(BONN, CERN, GLAS+)
COLLICK	84	PRL 53 2374	B. Collick et al.	(MINN, ROCH, FNAL)
EVANGELISTA	61	NP B178 197	C. Evangelista et al.	(BARI, BONN, CERN+)
BALTAY	78B	PR D17 62	C. Baltav et al.	(COLU. BING)
GESSAROLI	77	NP B126 382	R. Gessaroli et al.	(BGNA, FIRZ, GENO+) JP
FLATTE	76C	PL 64B 225	S.M. Flatte et al.	(CERN, AMST, NIJM+) JP
CHUNG	75B	PR O11 2426	S.U. Chung et al.	(BNL, LBL, UCSC) JP
CHALOUPKA	74	PL 51B 407	V. Chaloupka et al.	(CERN) JP
KARSHON	74B	PR D10 3608	U. Karshon et al.	(REHO) JP
BIZZARRI	69	NP B14 169	R. Bizzarri et al.	(CERN, CDEF)
BALTAY	67	PRL 18 93	C. Baltay et al.	
DAHL	67	PR 163 1377	O.I. Dahl et al.	(COLU)
ABOLINS	6.3	PRL 11 381	M.A. Abolins et al.	(LRL)
ADOLING	0.5	FKE 11 301	M.A. Abbilits et al.	(UCSD)
		ATUES	DEL 4TED DADES	
		- OTHER	RELATED PAPER	S ——
GOLOVKIN	0.7	7010/ 4250 4225	est est 12	(
	97	ZPHY A359 4335	S.V. Golovkin et al.	(SERP, ITEP)
BRAU	88	PR D37 2379	J.E. Brau et al.	JP
ATKINSON	84C	NP B243 1	M. Atkinson et al.	(BONN, CERN, GLAS+) JP
GOLDHABER	65	PRL 15 118	G. Goldhaber et al.	(LRL)
CARMONY	64	PRL 12 254	D.D. Carmony et al.	(UCB) JP
BONDAR	63B	PL 5 209	L. Bondar et al.	(AACH, BIRM, HAMB, LOIC+)

 $a_1(1260)$

 $I^{G}(J^{PC}) = 1^{-}(1^{+})$

THE $a_1(1260)$

Updated March 2000 by S. Eidelman (Novosibirsk).

The main experimental data on the $a_1(1260)$ may be grouped into two classes:

(1) Hadronic Production: This comprises diffractive production with incident π^- (DAUM 80, 81B) and charge-exchange production with low-energy π^- (DANKOWYCH 81, ANDO 92). The 1980's experiments explain the $I^GLJ^P=1^+S0^+$ data using a phenomenological amplitude consisting of a rescattered Deck amplitude, plus a direct resonance-production term. They agree on a mass of about 1270 MeV and a width of 300–380 MeV. ANDO 92 finds rather lower values for the mass (1121 MeV) and width (239 MeV), in a partial-wave analysis based on the isobar model of the $\pi^+\pi^-\pi^0$ system. However, in this analysis, only Breit-Wigner terms were considered. Recently,

BARBERIS 98B studied central production of the $\pi^+\pi^-\pi^0$ system, and observed the $a_1(1260)$ meson with a mass of 1240 MeV and a width of about 400 MeV.

(2) τ Decay: Various experiments reported good data on $\tau \to a_1(1260)\nu_{\tau} \to \rho\pi\nu_{\tau}$ (RUCKSTUHL 86, SCHMIDKE 86, ALBRECHT 86B, BAND 87, ACKERSTAFF 97R, ABREU 98G, and ASNER 00). They are somewhat inconsistent concerning the $a_1(1260)$ mass, which can, however, be attributed to model-dependent systematic uncertainties (BOWLER 86, ALBRECHT 93C, ACKERSTAFF 97R). They all find a width greater than 400 MeV.

The discrepancies between the hadronic and τ decay results have stimulated several reanalyses. BASDEVANT 77, 78 used the early diffractive dissociation and τ -decay data, and showed that they could be well reproduced with an a1 resonance mass of 1180 ± 50 MeV and width of 400 ± 50 MeV. Later, BOWLER 86, TORNQVIST 87, ISGUR 89, and IVANOV 91 have studied the process $\tau \to 3\pi\nu_{\tau}$. Despite quite different approaches, they all found a good overall description of the τ -decay data with an $a_1(1260)$ mass near 1230 MeV, consistent with the hadronic data. However, their widths remain significantly larger (400-600 MeV) than those extracted from diffractive-hadronic data. This is also the case with the later OPAL experiment (ACKER-STAFF 97R). In the high statistics analysis of ACKERSTAFF 97R, the models of ISGUR 89 and KUHN 90 are used to fit distributions of the 3π invariant mass, as well as the 2π invariant mass projections of the Dalitz plot. Neither model is found to provide a completely satisfactory description of the data. Another recent high statistics analysis of ABREU 98G obtains a good description of the $\tau \to 3\pi$ data using the model of FEINDT 90, which includes the a'_1 meson, a radial excitation of the $a_1(1260)$ meson, with a mass of 1700 MeV and a width of 300 MeV. A similar signal has been observed by AMELIN 95B in the D and S waves of the $\rho\pi$ state, as well as by GOUZ 92 in the $f_1(1285)\pi$ state. The existence of such a resonance is also suggested by the very big data sample of ASNER 00, which shows an excess of events at high 3π mass. Their data are better described by the a'_1 contribution, though at a level below that reported by ABREU 98G. Since the statistical significance of the a_1' contribution is 2-3 σ only, they conclude that more data is needed to establish the existence of the a'_1 .

ASNER 00 has also performed an analysis of the substructures in the Dalitz plot, and found significant contributions of the a_1 decay to $\sigma\pi$, $f_0(1370)\pi$, and $f_2(1270)\pi$. The contribution of the $a_1 \to \sigma\pi$ at a similar level has independently been observed in $e^+e^- \to 4\pi$ annihilation (AKHMETSHIN 99E), where the $2\pi^+2\pi^-$ final state was shown to be dominated by the $a_1(1260)\pi$ mechanism. Note that the existence of isoscalar contributions to the two-pion state, in addition to the isovector one $(\rho\pi)$, will influence the ratio $B(a_1^- \to \pi^-\pi^+\pi^-)/B(a_1^- \to \pi^-\pi^0\pi^0)$, which should be equal to 1 for the pure $\rho\pi$ state.

BOWLER 88 showed that good fits to both the hadronic and the τ -decay data could be obtained with a width of about

400 MeV. However, applying the same type of analysis to the ANDO 92 data, the low mass and narrow width they obtained with the Breit-Wigner PWA do not change appreciably.

CONDO 93 found no evidence for charge-exchange photoproduction of the $a_1(1260)$ (but found a clear signal of $a_2(1320)$ photoproduction). They show that it is consistent with either an extremely large $a_1(1260)$ hadronic width, or with a small radiative width to $\pi\gamma$, which could be accommodated if the a_1 mass is somewhat below 1260 MeV.

a ₁ (1260) MASS								
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT		
1230±40 OUR ESTIM								
• • • We do not use t	he followi	ng data for average	s, fits	, limits,	etc. •	• •		
$1331\pm10\pm~3$	37k	¹ ASNER	00	CLE2		10.6 e ⁺ e ⁻ →		
						$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$1255 \pm 7 \pm 6$	5904	² ABREU	98 G	DLPH		e+ e- '		
1207 ± 5 ± 8	5904	³ ABREU	98G	DLPH		e^+e^-		
1196± 4± 5	5904	^{4,5} ABREU	98G	DLPH		e+ e-		
1240 ± 10		BARBERIS	98B			450 pp →		
1262 ± 9 + 7		2,6 ACKERSTAFF	070	ODAI		$p_f \pi^+ \pi^- \pi^0 p_S$ $E_{cm}^{ee} = 88-94$		
1202 = 7 = 1						$\tau \rightarrow 3\pi \nu$		
1210± 7± 2		3,6 ACKER\$TAFF	97R	OPAL		Ecm= 88-94,		
1211 ± 7 + 50		3 ALBRECHT	930	ARG		$\tau \rightarrow 3\pi\nu$ $\tau^+ \rightarrow$		
0		_		-		$\pi^+\pi^+\pi^-\nu$		
1121 ± 8		⁷ ANDO	92	SPEC		$8 \pi^- p \rightarrow \pi^+ \pi^- \pi^0 p$		
1242±37		8 IVANOV	91	RVUE		$\tau \rightarrow \pi^{+}\pi^{+}\pi^{-}\nu$		
1260 ± 14		9 IVANOV	91	RVUE		$\tau \rightarrow \pi^{+}\pi^{+}\pi^{-}\nu$		
1250± 9		¹⁰ IVANOV	91	RVUE		$\tau \rightarrow \pi^+\pi^+\pi^-\nu$		
1208±15		ARMSTRONG	90	OMEG	0	$\begin{array}{c} 300.0pp \rightarrow \\ pp\pi^{+}\pi^{-}\pi^{0} \end{array}$		
1220 ± 15		¹¹ ISGUR	89	RVUE		$\tau^+ \rightarrow$		
1260±25 '		12 BOWLER	88	RVUE		$\pi^+\pi^+\pi^-\nu$		
$1166 \pm 18 \pm 11$		BAND	87	MAC		$\tau^+ \rightarrow$		
1164 ± 41 ± 23		BAND	87	MAC		$\tau^+ \xrightarrow{\pi^+ \pi^+ \pi^- \nu}$		
1250 ± 40		11 TORNQVIST	87	RVUE		$\pi^+\pi^0\pi^0\nu$		
1046 ± 11		ALBRECHT	86B	ARG		τ ⁺ → .		
$1056 \pm 20 \pm 15$		RUCKSTUHL	86	DLCO		$\tau^+ \rightarrow^+ \tau^- \nu$		
$1194 \pm 14 \pm 10$		SCHMIDKE	86	MRK2		$\tau^+ \stackrel{\pi^+ \pi^+ \pi^- \nu}{+ + -}$		
1255 ± 23		BELLINI	85	SPEC		$40 \begin{array}{c} \pi^{+} \pi^{+} \pi^{-} \nu \\ 40 \begin{array}{c} \pi^{-} A \rightarrow \\ + \end{array} $		
1240 ± 80		13 DANKOWY	81	SPEC	0	$ \begin{array}{c} \pi^-\pi^+\pi^-A \\ 8.45 \pi^-\rho \to \\ n3\pi \end{array} $		
1280 ± 30		¹³ DAUM	81B	CNTR		$63.94 \pi^{-} p \rightarrow p3\pi$		
1041 ± 13		14 GAVILLET	77	нвс	+	ρ3π 4.2 Κ~ ρ → Γ3π		

 $^{^{1}}$ From a fit to the 3π mass spectrum including the $\kappa\,\overline{\kappa}^{*}(892)$ threshold.

¹³ Uses the model of BOWLER 75. 14 Produced in K⁻ backward scattering.

a ₁ (1260) WIDTH								
VALUE (MeV) 250 to 600 OUR EST • • • We do not use		DOCUMENT ID	fit		HG COMMENT			
814± 36± 13	37k	,,,		CLE2				
					$ \begin{array}{c} 10.6 \ e^{+} e^{-} \rightarrow \\ \tau^{+} \tau^{-}, \tau^{-} \rightarrow \\ \pi^{-} \pi^{0} \pi^{0} \nu_{-} \end{array} $			
450 ± 50	22k	¹⁶ AKHMETSHIN	99E	CMD2	1.05-1.38 e+e- →			
570± 10		¹⁷ BONDAR	99	RVUE	$ \begin{array}{c} e^+e^- \rightarrow 0_{\pi}0\\ e^+e^- \rightarrow 4\pi,\\ \tau \rightarrow 3\pi\nu_{\tau} \end{array} $			
587± 27± 21	5904	¹⁸ ABREU	980	DLPH	e+e-			

478± 3± 15 425± 14± 8	5904		ABREU ABREU		DLPH DLPH	e+e- e+e-
425 ± 14 ± 6 400 ± 35	5904	,	BARBERIS	98B	DLPH	e ' e 450 pp →
400± 33			DANDENIS	300		$p_f \pi^+ \pi^- \pi^0 p_c$
$621 \pm 32 \pm 58$		18,22	ACKERSTAFF	97R	OPAL	Ecm = 88-94,
457± 15± 17		19,22	ACKERSTAFF	97R	OPAL	$ \begin{array}{ccc} \tau \to 3\pi\nu \\ E_{\text{CM}}^{ee} = 88-94, \\ \tau \to 3\pi\nu \end{array} $
$446 \pm 21 + 140 \\ - 0$		19	ALBRECHT	93 c	ARG	$r^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
239± 11			ANDO	92	SPEC	$ 8 \frac{\pi^{-} p}{\pi^{+} \pi^{-} \pi^{0} n} $
266 ± 13 ± 4		23	ANDO	92	SPEC	$ 8 \pi \frac{\pi}{p} \rightarrow \\ \pi + \frac{\pi}{\pi} \pi^{-n} $
465 ⁺²²⁸ -143		24	IVANOV	91	RVUE	$\tau \rightarrow \pi^+\pi^+\pi^-\nu$
298 ⁺ 40 - 34			IVANOV	91	RVUE	$\tau \rightarrow \pi^+\pi^+\pi^-\nu$
488 ± 32		26	IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$
430 ± 50			ARMSTRONG	90	OMEG 0	$300.0pp \rightarrow$
						$pp\pi^+\pi^-\pi^0$
420 ± 40		27	ISGUR	89	RVUE	$\tau^+ \rightarrow \tau^+ \tau^- \nu$
396± 43		28	BOWLER	88	RVUE	* * * * *
405 ± 75 ± 25			BAND	87	MAC	$\tau^+ o$
419±108± 57			BAND	87	мас	$\tau^+ \rightarrow^+ \pi^+ \pi^- \nu$
						$\pi^{+}\pi^{0}\pi^{0}\nu$
521± 27			ALBRECHT	86B	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
$476^{+132}_{-120} \pm 54$			RUCKSTUHL	86	DLCO	$ \begin{array}{c} \tau^+ \rightarrow \\ \pi^+ \rightarrow \\ \tau^+ \rightarrow \end{array} $
$462 \pm 56 \pm 30$			SCHMIDKE	86	MRK2	$\tau^{+}\overset{\circ}{\to}\overset{\circ}{\pi^{+}\pi^{+}\pi^{-}\nu}$
292± 40			BELLINI	85	SPEC	$ \begin{array}{cccc} \pi & \pi & \pi & \nu \\ 40 & \pi & A \rightarrow & \\ \pi & \pi + \pi & A \end{array} $
380 ± 100		29	DANKOWY	81	SPEC 0	$8.45 \frac{\pi}{\pi^{-}} \stackrel{\pi}{p} \rightarrow$ 0.3π
300 ± 50		29	DAUM	81B	CNTR	63,94 π ⁻ p → ρ3π
230± 50		30	GAVILLET	77	нвс +	ρ3π 4.2 K ⁻ p → Σ3π

 15 From a fit to the 3π mass spectrum including the $K\overline{K}^*(892)$ threshold.

 16 Using the $a_1(1260)$ mass of 1230 MeV.

 17 From AKHMETSHIN 99E and ASNER 00 data using the $a_1(1260)$ mass of 1230 MeV.

18 Uses the model of KUHN 90. 19 Uses the model of ISGUR 89. 20 Includes the effect of a possible a_1^r state.

21 Uses the model of FEINDT 90. 22 Supersedes AKERS 95P

23 Average and spread of values using 2 variants of the model of BOWLER 75.

24 Reanalysis of RUCKSTUHL 86. 25 Reanalysis of SCHMIDKE 86.

26 Reanalysis of ALBRECHT 86B

27 From a combined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.

28 From a combined reanalysis of ALBRECHT 86B and DAUM 81B.

29 Uses the model of BOWLER 75. 30 Produced in K⁻ backward scattering.

a1(1260) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	
$\overline{\Gamma_1}$	$(\rho\pi)_{S-wave}$	seen	
Γ2	$(\rho\pi)_{D-\text{wave}}$	seen	
Гз	$(\rho(1450)\pi)_{S-wave}$	seen	
Γ4	$(\rho(1450)\pi)_{D-\text{wave}}$	seen	
Γ_5	$\sigma\pi$	seen	
Γ ₆	$f_0(980)\pi$	not seen	
Γ_7	$f_0(1370)\pi$	seen	
Г8	$f_2(1270)\pi$	seen	
Γ٩	$K\overline{K}^*(892) + c.c.$	seen	
Γ_{10}	$\pi(1300)\pi$	not seen	
Γ11	$\pi\gamma$	seen	

a1 (1260) PARTIAL WIDTHS

$\Gamma(\pi\gamma)$				Γ ₁₁
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
640 ± 246	ZIELINSKI 840	SPEC	$200 \pi^+ Z \rightarrow Z3\pi$	

D-wave/S-wave AMPLITUDE RATIO IN DECAY OF $a_1(1260) \rightarrow \rho \pi$

VALUE	DOCUMENT ID	TECN:	COMMENT
-0.107±0.016 OUR AVER	AGE		
$-0.10 \pm 0.02 \pm 0.02$			Ecm = 88-94, τ →
-0.11 ± 0.02	31 ALBRECHT	93c ARG	$\tau^{+} \stackrel{3\pi\nu}{\rightarrow} \pi^{+}\pi^{+}\pi^{-}\nu$
31 Hees the model of ISGH	D 80		

³² Supersedes AKERS 95P.

Uses the model of KUHN 90.

³Uses the model of ISGUR 89. ⁴Includes the effect of a possible a_1^I state.

Uses the model of FEINDT 90.

⁶ Supersedes AKERS 95P

Average and spread of values using 2 variants of the model of BOWLER 75.
 Reanalysis of RUCKSTUHL 86.

⁹ Reanalysis of SCHMIDKE 86.

¹⁰ Reanalysis of ALBRECHT 86B

¹¹ From a combined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.

 $^{^{12}}$ From a combined reanalysis of ALBRECHT 86B and DAUM 81B.

 $a_1(1260)$, $f_2(1270)$

	a ₁ (1260) BRANCHIN	G R	ATIOS		
$\Gamma((\rho\pi)_{5-\text{wave}})/\Gamma_{\text{tot}}$	al				Г1	/Г
VALUE (units 10 ⁻²) • • • We do not use the	EV15	DOCUMENT ID		TECN	COMMENT	
	37k ³⁴	data for average ASNER	5, 1115			_
58.11	3/K 3-	ASNER	UU	CLE2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	'τ
$((\rho\pi)_{D-\text{wave}})/\Gamma_{\text{tot}}$					Γ ₂	/Г
ALUE (units 10 ⁻²)	EVT5	DOCUMENT ID		TECN	COMMENT	
• • We do not use the						
$36 \pm 0.17 \pm 0.06$	37k ³⁴	ASNER	00	CLE2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- , 'T
- ((ρ(1450)π) _{5-wave}					Гз	, /Г
ALUE (units 10 ⁻²)	EVTS	DOCUMENT ID		TECN	COMMENT	
• We do not use the	e following o	data for average	s. fits	. limits.	etc. • • •	
$0.30 \pm 0.64 \pm 0.17$	37k 34,35	ASNER	00	CLE2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-, T
$((\rho(1450)\pi)_{D-wave}$						/Г
ALUE (units 10 ⁻²)	EVTS	DOCUMENT ID		TECN	COMMENT	
• We do not use the	e following o	data for average	s, fits	, limits,	etc. • • •	
$.43 \pm 0.28 \pm 0.06$	37k 34,35	ASNER	00	CLE2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-, +
$(\sigma \pi)/\Gamma_{\text{total}}$					Ге	/Г
ALUE (units 10 ⁻²)	FVTS	DOCUMENT ID		TECN		,·
• We do not use the						-
6.18 ± 3.85 ± 1.28	37k 34,36	ASNER	.,s nn	,s, CLF2	10 6 e ⁺ e ⁻ +-	_
	51 N	, is it is	•••	CLL	$\begin{array}{c} 10.6 \ e^+ e^- \rightarrow \tau^+ \tau^- \\ \tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu \end{array}$	7
$(f_0(980)\pi)/\Gamma_{\text{total}}$						/Г
ALUE (units 10 ⁻²)						
• We do not use the	-	•				
ot seen	37k	ASNER	00	CLE2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-,
					$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu$	Ŧ
$(f_0(1370)\pi)/\Gamma_{\text{total}}$						/Γ
ALUE (units 10 ⁻²)	EV#5	DOCUMENT ID		TECN	COMMENT	
• • We do not use the	e following (data for average	s, fits	, limits,	etc. • • •	
.29 ± 2.29 ± 0.73	37k ^{34,37}	ASNER	00	CLE2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-, τ
$(f_2(1270)\pi)/\Gamma_{\text{total}}$					Го	/г
ALUE (units 10 ⁻²)	EVTS	DOCUMENT ID		TECN		•
• • We do not use the	e following o	data for average	s. fits	. limits.	etc. • • •	
$.14 \pm 0.06 \pm 0.02$	37k 34,38	SASNER	00	CLE2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-, -
					_	
(K K *(892)+c.c.)/	total					/Г
ALUE (units 10 ⁻²)	EVTS	DOCUMENT ID		TECN	COMMENT	_
We do not use the	_	_				_
.3±0.5±0.1	37k ³⁵	ASNER	00		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	τ
$(\pi(1300)\pi)/\Gamma_{\text{total}}$					Г ₁₀	/Γ
ALUE (units 10 ⁻²) CL%		DOCUMENT ID			COMMENT	
• We do not use the			s, fits	, limits,		-
<0.01 90	37k 40,41		00	CLE2	$10.6 e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}$	-,
<0.019 90	37k 40,42	2 ASNER	00	CLE2	$ \begin{array}{cccc} \tau^- & \rightarrow & \pi^- \pi^0 \pi^0 \nu \\ 10.6 & e^+ e^- & \rightarrow & \tau^+ \tau^- \\ \tau^- & \rightarrow & \pi^- \pi^0 \pi^0 \nu \end{array} $	Ξ,
t- Viete						
·(σπ)/Γ((ρπ) _{5—wav}	•	DOCUMENT IS		TECH	Γ ₅ /	11
• We do not use the	<u>EVTS</u> e following (DOCUMENT ID				
0.3	28k				$1.05-1.38 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$	
0.003 ± 0.003		LONGACRE		RVUE		
LET 77, DAUM 80, a	and DANK(wler model (BC	OWLE	R 75).	Uses data from GAV	IL-
³⁴ From a fit to the Dal ³⁵ Assuming for ρ (1450)	litz płot.	width of 1370 a	nd 3a	16 Ma\/	respectively	
COLUMN TO STREET	and width	of 860 and 880	MeV	respecti	velv.	
36 Assuming for σ mass		width of 1106	and 3	50 MeV	respectively.	
³⁶ Assuming for σ mass ³⁷ Assuming for $f_0(1370)$	0) mass and	MIGELL OF TIER				
36 Assuming for σ mass 37 Assuming for $f_0(1370)$ Assuming for $f_2(1270)$	mass and	width of 1275 a	and 1	85 MeV	respectively.	
36 Assuming for σ mass 37 Assuming for $f_0(1376)$ 38 Assuming for $f_2(1276)$ 39 From a fit to the 3π	0) mass and mass specti	width of 1275 : rum including th	and 1 e <i>K F</i>	85 Me∨ ₹*(892)	respectively.	to

a₁(1260) REFERENCES

ASNER	00	PR D61 012002	D.M. Asner et al.	(CLEO Collab.)
AKHMETSHIN	99E	PL B466 392	R.R. Akhmetshin et al.	(CMD2 Collab.)
BONDAR	99	PL B466 403	A.E. Bondar et al.	(CMD2 Collab.)
ABREU	9BG	PL B426 411	P. Abreu et al.	(DELPHI Collab.)
BARBERIS	98B	PL B422 399	D. Barberis et al.	(WA102 Collab.)
ACKERSTAFF	97R	ZPHY C75 593	K. Ackerstaff et al.	(OPAL Collab.)
AKERS	95P	ZPHY C67 45	R. Akers et al.	(OPAL Collab.)
ALBRECHT	93C	ZPHY C58 61	H. Albrecht et al.	(ARGUS Collab.)
ANDO	92	PL B291 496	A. Ando et al.	(KEK, KYOT, NIRS, SAGA+)
IVANOV	91	ZPHY C49 563	Y.P. Ivanov, A.A. Osipov	, M.K. Volkov (JINR)
ARMSTRONG	90	ZPHY C48 213	T.A. Armstrong, M. Ben-	ayoun, W. Beusch
FEINDT	90	ZPHY C48 681	M. Feindt	(HAMB)
KUHN	90	ZPHY C48 445	J.H. Kuhn et al.	(MPIM)
ISGUR	89	PR D39 1357	N. Isgur, C. Morningstar,	C. Reader (TNTO)
BOWLER	88	PL B209 99	M.G. Bowler	`(OXF)
BAND	87	PL B198 297	H.R. Band et al.	(MAC Còliab.)
TORNOVIST	87	ZPHY C36 695	N.A. Tornqvist	(HELS)
ALBRECHT	86B	ZPHY C33 7	H. Albrecht et al.	(ARGUS Čollab.)
RUCKSTUHL	86	PRL 56 2132	W. Ruckstuhl et al.	(DELCO Collab.)
SCHMIDKE	86	PRL 57 527	W.B. Schmidke et al.	(Mark II Collab.)
BELLINI	85	Translated from YAF 41	G. Bellini et al.	
ZIELINSKI	84C	PRL 52 1195	M. Zielinski <i>et al.</i>	(DOCH MANN FAMAL)
LONGACRE	82	PR D26 83		(ROCH, MINN, FNAL)
DANKOWY	81	PRL 46 580	R.S. Longacre	(BNL)
DAUM	81B	NP B182 269	J.A. Dankowych et al. C. Daum et al.	(TNTO, BNL, CARL+)
DAUM	80	PL 89B 281		(AMST, CERN, CRAC, MPIM+)
GAVILLET			C. Daum et al.	(AMST, CERN, CRAC, MPIM+) JP
BOWLER	77 75	PL 69B 119 NP B97 227	P. Gavillet et al.	(AMST, CERN, NIJM+) JP
DOWLER	15	NF D7/ 22/	M.G. Bowler et al.	(OXFTP, DARE)

OTHER RELATED PAPERS -

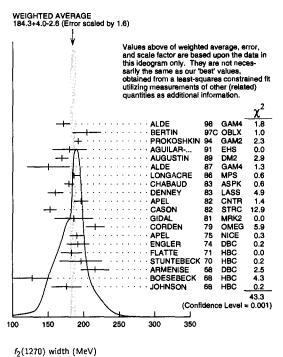
ZAIMIDOROGA	199	PAN 30 1 Translated from SJPN 3	O.A. Zaimidoroga 10 S.	
AMELIN	95B	PL B356 595	D.V. Amelin et al.	(SERP, TBIL)
BOLONKIN	95	PAN 58 1535 Translated from YAF 58	B.V. Bolonkin <i>et al.</i> 3 1628.	(ITEP)
WINGATE	95	PRL 74 4596	M. Wingate, T. de Grand	(COLO, FSU)
CONDO	93	PR D48 3045	G.T. Condo et al.	(SLAC Hybrid Collab.)
GOUZ	92	Dallas HEP 92, p. 572 I Int. Conf. on High Er	Yu.P. Gouz et al.	(VES Collab.)
Proceeding	s XXV	'i int. Conf. on High Er	nergy Physics	, ,
IIZUKA	89	PR D39 3357	J. lizuka, H. Koibuchi, F. Masu	da (NAGO, IBAR+)
BOWLER	86	PL B182 400	M.G. Bowler	(OXF)
BASDEVANT	78	PRL 40 994	J.L. Basdevant, E.L. Berger	(FNAL, ANL) JP
BASDEVANT	77	PR D16 657	J.L. Basdevant, E.L. Berger	(FNAL, ANL) JP
ADERHOLZ	64	PL 10 226	M. Aderholz et al.	(AACH3, BÈRL, BIRM+)
GOLDHABER	64	PRL 12 336	G. Goldhaber et al.	(LRL, UCB)
LANDER	64	PRL 13 346A	R.L. Lander et al.	(UCSD) JP
BELLINI	63	NC 29 896	G. Bellini et al.	(MILA)

 $f_2(1270)$

 $I^{G}(J^{PC}) = 0^{+}(2^{+})$

1

f₂(1270) MASS


	(MeV)	EVTS		DOCUMENT ID		TECN	COMMENT
1275.	4± 1.2	OUR AVERAGE					
1283	± 5			ALDE	98		$100 \pi^- \rho \to \pi^0 \pi^0 \eta$
1278	± 5		1	BERTIN		OBLX	$0.0 \ \overline{\rho}\rho \rightarrow \pi^{+}\pi^{-}\pi^{0}$
1272	± 8	200k		PROKOSHKIN	94	GAM2	$38 \pi^- p \to \pi^0 \pi^0 n$
	7 ± 5.2		_	AUGUSTIN	89	DM2	$e^+e^- \rightarrow 5\pi$
1283	±β			ALDE	87	GAM4	$100 \pi^- p \rightarrow 4\pi^0 n$
1274	± 5			AUGUSTIN	87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
1283	± 6		3	LONGACRE	86	MPS	$22 \pi^- p \rightarrow \pi 2K_5^0$
1276	± 7			COURAU	84	DLCO	$e^+e^- \rightarrow e^+e^-\pi^+\pi^-$
1273.	3± 2.3	3	4	CHABAUD	83	ASPK	17 π p polarized
1280	± 4		5	CASON	82	STRC	$8 \pi^{+} p \rightarrow \Delta^{++} \pi^{0} \pi^{0}$
1281	± 7	11600		GIDAL	81	MRK2	J/ψ decay
1282	± 5		6	CORDEN	79	OMEG	$12-15 \pi^- p \to \pi 2\pi$
1269	± 4	10k		APEL	75	NICE	$40 \pi^{-} p \rightarrow n2\pi^{0}$
1272	± 4	4600		ENGLER	74	DBC	$6 \pi^+ n \rightarrow \pi^+ \pi^- p$
1277	± 4	5300		FLATTE	71	HBC	7.0 $\pi^{+}p$
1273	± 8		2	STUNTEBECK	70	HBC	$8 \pi^{-} p$, 5.4 $\pi^{+} d$
1265	± 8			BOESEBECK	68	HBC	$8\pi^+p$
• • •	• We do	not use the following	d	ata for averages	, fits	, limits,	etc. • • •
1260	± 10		7	ALDE	97	GAM2	$450 pp \rightarrow pp\pi^0\pi^0$
1278	± 6		7	GRYGOREV	96	SPEC	$40 \pi^- N \rightarrow K_S^0 K_S^0 X$
1262	±11			AGUILAR	91	EHS	400 pp
1275	±10			AKER	91	CBAR	$0.0 \ \overline{p} p \rightarrow 3\pi^0$
1220	± 10			BREAKSTONE	90	SFM	$\rho \rho \rightarrow \rho \rho \pi^+ \pi^-$
1288	±12			ABACHI	86в	HRS	$e^+e^- \rightarrow \pi^+\pi^-X$
1284	± 30	3k		BINON	83	GAM2	$38 \pi^- p \rightarrow \pi 2\eta$
1280	± 20	3k		APEL	82	CNTR	$25 \pi^- \rho \rightarrow \pi 2\pi^0$
1284	± 10	16000		DEUTSCH	76	HBC	16 $\pi^+ p$
1258	± 10	600		TAKAHASHI	72	HBC	$8 \pi^- \rho \rightarrow n2\pi$
1275	± 13		_	ARMENISE	70	нвс	$9 \pi^+ \pi \rightarrow p \pi^+ \pi^-$
1261	± 5			ARMENISE	68	DBC	$5.1~\pi^+\pi\to~\rho\pi^+\text{MM}^-$
1270	±10			ARMENISE	68	DBC	$5.1 \pi^+ n \rightarrow p \pi^0 MM$
1268	± 6		8	JOHNSON	68	HBC	3.7-4.2 π ⁻ p
1							

- 268 \pm 6 JOHNSON 68 FIDE 3.174.2 π μ 1 T-matrix pole. 2 Mass errors enlarged by us to Γ/\sqrt{N} ; see the note with the K^* (892) mass. 3 From a partial-wave analysis of data using a K-matrix formalism with 5 poles. 4 From an energy-independent partial-wave analysis. 5 From an amplitude analysis of the reaction $\pi^+\pi^- \to 2\pi^0$. 6 From an amplitude analysis of $\pi^+\pi^- \to \pi^+\pi^-$ scattering data. 7 Systematic uncertainties not estimated. 8 JOHNSON 68 includes BONDAR 63, LEE 64, DERADO 65, EISNER 67.

		f ₂ (1270) WID	ГН		
ALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
.85.1 + 3.4 OUR FIT	Γ Error in	cludes scale factor of	f 1.5.		
.84.3+ 4.0 OUR AV	ERAGE E	Error includes scale fa	actor	of 1.6.	See the ideogram below
71 ±10		ALDE	98	GAM4	$100 \pi^- p \rightarrow \pi^0 \pi^0 n$
04 ± 20		9 BERTIN	97c	OBLX	$0.0 \ \overline{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
92 ± 5	200k	PROKOSHKIN			$38 \pi^- p \rightarrow \pi^0 \pi^0 n$
80 ±24		AGUILAR	91	EHS	400 pp
.69 ± 9	5730	¹⁰ AUGUSTIN	89	DM2	$e^+e^- \rightarrow 5\pi$
50 ± 30	400	¹⁰ ALDE	87	GAM4	$100 \pi^{-} p \rightarrow 4\pi^{0} n$
86 + 9		¹¹ LONGACRE	86	MPS	$22 \pi^- p \rightarrow n2K_5^0$
79.2 ⁺ 6.9		¹² CHABAUD	83	ASPK	17 $\pi^- p$ polarized
60 ±11		DENNEY	83	LASS	$10 \pi^{+} N$
96 ±10	3k	APEL	82	CNTR	$25 \pi^- \rho \rightarrow \pi 2\pi^0$
52 ± 9		¹³ CASON	82	STRC	$8 \pi^+ \rho \rightarrow \Delta^{++} \pi^0 \pi$
86 ±27	11600	GIDAL	81	MRK2	J/ψ decay
16 ±13		¹⁴ CORDEN	79	OMEG	$12-15 \pi^- p \rightarrow \rho 2\pi$
90 ±10	10k	APEL	75	NICE	$40 \pi^- \rho \rightarrow n2\pi^0$
92 ±16	4600	ENGLER	74	DBC	$6 \pi^+ n \rightarrow \pi^+ \pi^- p$
83 ±15	5300	FLATTE	71	нвс	$7\pi^+p \rightarrow \Delta^{++}f_2$
96 ±30		¹⁰ STUNTEBECK			
16 ±20	1960	10 ARMENISE		DBC	
28 ± 27		10 BOESEBECK		нвс	
76 ±21	1	0,15 JOHNSON		нвс	3.7-4.2 π ⁻ p
• • We do not use		ing data for averages			
87 ±20		¹⁶ ALDE	97	GAM2	$450 pp \rightarrow pp\pi^0\pi^0$
84 ±10		16 GRYGOREV		SPEC	
00 ±10		AKER	91	CBAR	$0.0 \; \overline{p} p \to \; 3\pi^0$
40 ±40	3k	BINON			$38 \pi^- p \rightarrow n2n$
87 ±30	650	10 ANTIPOV		CIBS	$25 \pi^- p \rightarrow p3\pi$
25 ± 38	16000	DEUTSCH		HBC	
66 ±28	600	¹⁰ TAKAHASHI	72	нвс	$8 \pi^- p \rightarrow p 2\pi$
73 ±53		10 ARMENISE	70	HBC	$9\pi^+\pi \rightarrow p\pi^+\pi^-$

- 10 Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass. 11 From a partial-wave analysis of data using a K-matrix formalism with 5 poles.
- 12 From an energy-independent partial-wave analysis.
- 13 From an amplitude analysis of the reaction $\pi^+\pi^-\to 2\pi^0$.

 14 From an amplitude analysis of $\pi^+\pi^-\to \pi^+\pi^-$ scattering data.
- 15 JOHNSON 68 includes BONDAR 63, LEE 64, DERADO 65, EISNER 67. 16 Systematic uncertainties not estimated.

£(1270) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁	ππ	$(84.7 \begin{array}{c} +2.4 \\ -1.3 \end{array}) \%$	S=1.3
Γ_2	$\pi^{+} \pi^{-} 2\pi^{0}$	$(7.1 \begin{array}{c} +1.5 \\ -2.6 \end{array})\%$	S=1.3
Γ_3	κ κ	(4.6 ± 0.5)%	S=2.8
Γ ₃ Γ ₄	$2\pi^{+}2\pi^{-}$	$(2.8 \pm 0.4)\%$	S=1.2
Гь	$\eta \eta$	(4.5 ±1.0)×1	0 ⁻³ S=2.4
Γ ₆ Γ ₇	$4\pi^{0}$	(3.0 ±1.0)×1	0-3
Γ_7	$\gamma \gamma$	$(1.41 \pm 0.13) \times 1$	0-5
Гв	ηππ	< 8 × 1	0 ⁻³ CL=95%
Γ٩	$K^{0}K^{-}\pi^{+}$ + c.c.	< 3.4 × 1	0 ⁻³ CL=95%
Γ ₁₀	e ⁺ e ⁻	< 9 ×1	0 ⁻⁹ CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to the total width, 4 partial widths, a combination of partial widths obtained from integrated cross sections, and 6 branching ratios uses 41 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2=73.5$ for 34 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left<\delta p_i \delta p_j \right>/(\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (M	Scale factor	
Γ_1	ππ	156.9	+3.8 -1.3	
Γ_2	$\pi^{+}\pi^{-}2\pi^{0}$	13.1	+3.0 -4.9	1.3
Γ_3	κ Κ	8.6	±0.8	2.9
Γ_4	$2\pi^{+}2\pi^{-}$	5.2	± 0.7	1.2
Γ_5	$\eta\eta$	0.83	± 0.18	2.4
Γ ₅ Γ ₆	$4\pi^0$	0.55	± 0.19	
Γ ₇	$\gamma \gamma$	0.0026	60 ± 0.00024	

f2(1270) PARTIAL WIDTHS

Γ(ππ) VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	Г1
156.9 $^{+3.8}_{-1.3}$ OUR FIT				
157.0 - 1.0	¹⁸ LONGACRE 86	MPS	$22 \pi^- p \rightarrow n2K_5^0$	
Γ(<i>κ</i> κ)				Гз
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
8.6 ±0.8 OUR FIT E	rror includes scale factor of 2.9			
9.0 ^{+0.7} -0.3	¹⁸ LONGACRE 86	MPS	$22~\pi^-\rho \to ~\pi 2 K_{\mbox{\bf S}}^{\mbox{\bf 0}}$	
$\Gamma(\eta\eta)$				Γg
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
0.83±0.18 OUR FIT E	rror includes scale factor of 2.4.			
1.0 ±0.1	18 LONGACRE 86	MPS	$22 \pi^- p \rightarrow n2K_S^0$	
with scalars give v	width depends on the theoretic alues clustering around \simeq 2.6 ke tically higher (typically around 3	V; withou		

VALUE (keV)
2.60±0.24 OUR FIT <u>EVTS</u> DOCUMENT ID TECN COMMENT

2.71 +0.26 OUR AVERAGE

99 RVUE $\gamma \gamma \rightarrow \pi^+\pi^-, \pi^0\pi^0$ 2.84 ± 0.35 BOGLIONE 19 BEHREND $2.58 \pm 0.13 + 0.36 \\ -0.27$ 92 CELL $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$

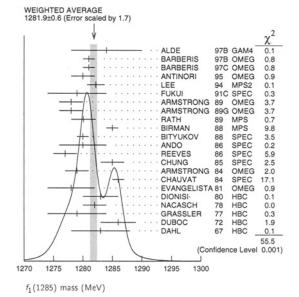
 $f_2(1270)$

• • • We do not use the following data for averages, fits, limits, etc. • • •	$\Gamma(K\overline{K})/\Gamma(\pi\pi)$
2.93 \pm 0.23 \pm 0.32	We average only experiments which either take into account $f_2(1270)$ - $a_2(1320)$ if ference explicitly or demonstrate that $a_2(1320)$ production is negligible.
2.27±0.47±0.11 ADACHI 900 TOPZ $e^+e^- \rightarrow e^-$	VALUE EVTS DOCUMENT ID TECN COMMENT
$e^+e^-\pi^+\pi^-$	$0.055 \begin{array}{l} +0.005 \\ -0.006 \end{array}$ OUR FIT Error includes scale factor of 2.8.
$e^{+}e^{-}\pi^{+}\pi^{-}$	0.040 + 0.005 OUR AVERAGE
$3.19 \pm 0.16 \stackrel{+ 0.29}{- 0.28}$ MARSISKE 90 CBAL $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$	$0.037^{+}_{-0.021}^{+0.008}$ ETKIN 828 MPS $23 \pi^- p \rightarrow n2K_S^0$
2.35±0.65 21 MORGAN 90 RVUE $\gamma \gamma \to \pi^+ \pi^-, \pi^0 \pi^0$	0.045 ± 0.009 CHABAUD 81 ASPK 17 $\pi^- p$ polarized
$3.19 \pm 0.09 ^{+0.22}_{-0.38}$ 2177 OEST 90 JADE $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$ 3.2 $\pm 0.1 \pm 0.4$ 22 AIHARA 86B TPC $e^+e^- \rightarrow$	0.039 ± 0.008 LOVERRE 80 HBC $4 \pi^- p \rightarrow K \overline{K} N$
$e^{+}e^{-}\pi^{+}\pi^{-}$	• • • We do not use the following data for averages, fits, limits, etc. • • • 0.036 ± 0.005 29 COSTA 80 OMEG 1-2.2 $\pi^- p \rightarrow$
2.5 \pm 0.1 \pm 0.5 BEHREND 84B CELL $e^+e^- \rightarrow e^+e^- \pi^+ \pi^-$	κ ⁺ κ ⁻ n
2.85 \pm 0.25 \pm 0.5 23 BERGER 84 PLUT $e^{+}e^{-} \rightarrow e^{+}e^{-} 2\pi$ 2.70 \pm 0.05 \pm 0.20 COURAU 84 DLCO $e^{+}e^{-} \rightarrow$	0.030 ± 0.005 30 MARTIN 79 RVUE 0.027 ± 0.009 31 POLYCHRO 79 STRC 7 $\pi^- p \rightarrow n2K_S^0$
$e^{+}e^{-}\pi^{+}\pi^{-}$ 2.52±0.13±0.38	0.025 ± 0.015 EMMS 75D DBC $4 \pi^+ n \rightarrow p t_2$
$e^{+}e^{-}\pi^{+}\pi^{-}$ 2.7 ±0.2 ±0.6 EDWARDS 82F CBAL $e^{+}e^{-} \rightarrow e^{+}e^{-}2\pi^{0}$	0.031 ± 0.012 20 ADERHOLZ 69 HBC 8 $\pi^+p \rightarrow K^+K^-\pi^+p$
2.9 $^{+0.6}_{-0.4}$ $^{\pm0.6}$ 25 EDWARDS 82F CBAL $e^+e^- \rightarrow e^+e^- 2\pi^0$	²⁹ Re-evaluated by CHABAUD 83.
3.2 $\pm 0.2 \pm 0.6$ BRANDELIK 81B TASS $e^+e^- \rightarrow$	30 Includes PAWLICKI 77 data. 31 Takes into account the $f_2(1270)$ - $f_2'(1525)$ interference.
$e^+e^-\pi^+\pi^-$ 3.6 ±0.3 ±0.5 ROUSSARIE 81 MRK2 $e^+e^-\rightarrow$	- <u>.</u>
$e^{+}e^{-}\pi^{+}\pi^{-}$ 2.3 ±0.8 26 BERGER 80B PLUT $e^{+}e^{-}$	$\Gamma(2\pi^+2\pi^-)/\Gamma(\pi\pi)$
¹⁷ With a narrow scalar state around 1220 MeV.	VALUE EVTS DOCUMENT ID TECN COMMENT 0.033±0.005 OUR FIT Error includes scale factor of 1.2.
$\Gamma(e^+e^-)$ Γ_{10}	0.033 \pm 0.004 OUR AVERAGE Error includes scale factor of 1.1. 0.024 \pm 0.006 160 EMMS 75D DBC 4 π^+ n \rightarrow p f ₂
VALUE (eV) CL% DOCUMENT ID TECN COMMENT	0.024 \pm 0.006 160 EMMS 75D DBC 4 π^+ $n \to pf_2$ 0.051 \pm 0.025 70 EISENBERG 74 HBC 4.9 π^+ $p \to \Delta^{++}$
<1.7 90 VOROBYEV 88 ND $e^+e^- \rightarrow \pi^0\pi^0$	$0.043^{+0.007}_{-0.011}$ 285 LOUIE 74 HBC $3.9~\pi^-p \rightarrow nf_2$
18 From a partial-wave analysis of data using a K-matrix formalism with 5 poles. 19 Using a unitarized model with a 300 - 500 keV wide scalar at 1100 MeV.	0.037 ± 0.007 154 ANDERSON 73 DBC $6 \pi^+ n \rightarrow p f_2$
²⁰ Using the unitarized model of LYTH 85.	0.047 \pm 0.013 OH 70 HBC 1.26 $\pi^- p \to \pi^+ \pi$
²¹ Error includes spread of different solutions. Data of MARK2 and CRYSTAL BALL used in the analysis. Authors report strong correlations with $\gamma\gamma$ width of $f_0(1370)$: $\Gamma(f_2)$ +	$\Gamma(\eta\eta)/\Gamma_{\text{total}}$
$1/4 \Gamma(f^0) = 3.6 \pm 0.3 \text{ KeV}.$	VALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT 4.5±1.0 OUR FIT Error includes scale factor of 2.4.
22 Radiative corrections modify the partial widths; for instance the COURAU 84 value becomes 2.66 \pm 0.21 in the calculation of LANDRO 86.	4.5±1.0 OUR FIT Error includes scale factor of 2.4. 3.1±0.8 OUR AVERAGE Error includes scale factor of 1.3.
²³ Using the MENNESSIER 83 model.	2.8 ± 0.7 ALDE 86D GAM4 $100 \pi^- p \rightarrow 2\eta n$
²³ Using the MENNESSIER 83 model. ²⁴ Superseded by BOYER 90. ²⁵ If helicity = 2 assumption is not made.	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^- p \to 2\eta n$
²³ Using the MENNESSIER 83 model.	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^- p \rightarrow 2\eta n$ Fig.
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78.	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^- p \rightarrow 2\eta \pi$ $\Gamma(\eta \eta)/\Gamma(\pi \pi) \qquad \qquad \Gamma_{1} \Gamma_{2} \Gamma_{3} \Gamma_{4} \Gamma_{5} \Gamma_{5$
23 Using the MENNESSIER 83 model. 224 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(\text{total})$	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^- p \rightarrow 2\eta n$ Fig.
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(\text{total})$ $\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_3\Gamma_7/\Gamma$	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{array}{c ccccccccccccccccccccccccccccccccccc
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78.	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma \emptyreta \pi \\ \emptyreta \pi \emptyreta \emptyreta \text{CL\fin} \\ \text{DOCUMENT ID} \text{TECN} & \text{COMMENT} \\ \text{0.05} & \text{95} & \text{EDWARDS} & \text{82F CBAL} & \text{e}^+e^- \rightarrow e^+e^-2 \\ <0.016 & \text{95} & \text{EMMS} & \text{750 DBC} & \text{4} & \pi^+n \rightarrow pf_2 \\ <0.09 & \text{95} & \text{EISENBERG} & \text{74 HBC} & \text{4.9} & \pi^+p \rightarrow \Delta^{++} \\ \end{align*} \]
23 Using the MENNESSIER 83 model. 224 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78.	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ $\Gamma(\eta\eta)/\Gamma(\pi\pi)$ YALUE • • • We do not use the following data for averages, fits, limits, etc. • • • <0.05 95 EDWARDS 82F CBAL $e^+e^- \rightarrow e^+e^-2$ <0.09 95 EISENBERG 74 HBC 4.9 $\pi^+p \rightarrow \Delta^{++}$ $\pi^-(4\pi^0)/\Gamma_{\text{total}}$
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$ $\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)/\Gamma_{total} \qquad \qquad \Gamma_3\Gamma_7/\Gamma_{VALUE(keV)} \qquad \qquad DOCUMENT\ ID \qquad TECN \qquad COMMENT \qquad T_3\Gamma_7/\Gamma_{VALUE(keV)} \qquad DOCUMENT\ ID \qquad TECN \qquad COMMENT \qquad T_3\Gamma_7/\Gamma_{VALUE(keV)} \qquad DOCUMENT\ ID \qquad TECN \qquad COMMENT \qquad T_3\Gamma_7/\Gamma_{VALUE(keV)} \qquad DOCUMENT\ ID \qquad TECN \qquad COMMENT \qquad T_3\Gamma_7/\Gamma_{VALUE(keV)} \qquad DOCUMENT\ ID \qquad TECN \qquad COMMENT \qquad T_3\Gamma_7/\Gamma_{VALUE(keV)} \qquad DOCUMENT\ ID \qquad TECN \qquad COMMENT \qquad T_3\Gamma_7/\Gamma_{VALUE(keV)} \qquad DOCUMENT\ ID \qquad TECN \qquad COMMENT \qquad T_3\Gamma_7/\Gamma_{VALUE(keV)} \qquad DOCUMENT\ ID \qquad T_3\Gamma_7/\Gamma_{V$	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma \emptyreta \pi \\ \emptyreta \pi \emptyreta \emptyreta \text{CL\fin} \\ \text{DOCUMENT ID} \text{TECN} & \text{COMMENT} \\ \text{0.05} & \text{95} & \text{EDWARDS} & \text{82F CBAL} & \text{e}^+e^- \rightarrow e^+e^-2 \\ <0.016 & \text{95} & \text{EMMS} & \text{750 DBC} & \text{4} & \pi^+n \rightarrow pf_2 \\ <0.09 & \text{95} & \text{EISENBERG} & \text{74 HBC} & \text{4.9} & \pi^+p \rightarrow \Delta^{++} \\ \end{align*} \]
23 Using the MENNESSIER 83 model. 224 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78.	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ $\Gamma(\eta\eta)/\Gamma(\pi\pi)$ VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •
23 Using the MENNESSIER 83 model. 224 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78.	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{array}{c ccccccccccccccccccccccccccccccccccc
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(\text{total})$ $\Gamma(KK) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}} \qquad $	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ $\Gamma(\eta\eta)/\Gamma(\pi\pi)$ MALUE •• • We do not use the following data for averages, fits, limits, etc. ••• <0.05 95 EDWARDS 82F CBAL $e^+e^- \rightarrow e^+e^-2$ <0.09 95 EISENBERG 74 HBC 4.9 $\pi^+p \rightarrow \Delta^{++}$ $\pi^+p \rightarrow \Delta^+p \rightarrow \Delta$
23 Using the MENNESSIER 83 model. 224 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78.	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ $\Gamma(\eta\eta)/\Gamma(\pi\pi)$ MALUE •• • We do not use the following data for averages, fits, limits, etc. ••• <0.05 95 EDWARDS 82F CBAL $e^+e^- \rightarrow e^+e^-2$ <0.09 95 EISENBERG 74 HBC 4.9 $\pi^+p \rightarrow \Delta^{++}$ $\pi^+ \rightarrow p \uparrow_2$ $\pi^+ \rightarrow p \rightarrow \Delta^{++}$ $\pi^+ \rightarrow p \uparrow_2$ $\pi^+ \rightarrow p \rightarrow \Delta^{++}$ $\pi^+ \rightarrow p \rightarrow \Delta^{$
23 Using the MENNESSIER 83 model. 224 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78.	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{array}{c ccccccccccccccccccccccccccccccccccc
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$ $\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)/\Gamma_{total}$ $\frac{DOCUMENT\ ID}{DOCUMENT\ ID} \frac{TECN}{TECN} \frac{COMMENT}{COMMENT}$ 0.121±0.015 OUR FIT Error includes scale factor of 1.3. 0.091±0.007±0.027 27 ALBRECHT 90G ARG $e^+e^- + e^- + e$	5.2±1.7 BINON 83 GAM2 $38 \pi^- p \rightarrow 2\eta n$ $\Gamma(\eta \eta)/\Gamma(\pi \pi) \qquad \Gamma_{2}$ YALUE CLY DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • <0.05 95 EDWARDS 82F CBAL $e^+e^- \rightarrow e^+e^- 2e^- 2e^- 2e^- 2e^- 2e^- 2e^- 2e^- 2$
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78.	5.2±1.7 BINON 83 GAM2 38 $\pi^- p \rightarrow 2\eta n$ $\Gamma(\eta \eta)/\Gamma(\pi \pi)$ $\frac{VALUE}{\bullet \bullet \bullet} CL\% \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ • • • We do not use the following data for averages, fits, limits, etc. • • • $< 0.05 \qquad 95 \qquad EDWARDS \qquad 82F CBAL \qquad e^+ e^- \rightarrow e^+ e^- 2000$ $< 0.016 \qquad 95 \qquad EMMS \qquad 75D DBC \qquad 4 \qquad \pi^+ n \rightarrow pf_2$ $< 0.09 \qquad 95 \qquad EISENBERG \qquad 74 HBC \qquad 4.9 \pi^+ p \rightarrow \Delta^{++}$ $\Gamma(4\pi^0)/\Gamma_{total} \qquad
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and $B(f_2(1270) \rightarrow 2\pi)$ from PDG 78.	5.2±1.7 BINON 83 GAM2 38 $\pi^- p \rightarrow 2\eta n$ Γ($\eta \eta$)/Γ($\pi \pi$) YALUE CL½ DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • <0.05 95 EDWARDS 82F CBAL $e^+ e^- \rightarrow e^+ e^- 2e^- 2e^- 2e^- 2e^- 2e^- 2e^- 2e^- $
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$ $\Gamma_3\Gamma_7/\Gamma_{VALUE(keV)}$ 0.121 \pm 0.015 OUR FIT Error includes scale factor of 1.3. 0.091 \pm 0.007 \pm 0.027 27 ALBRECHT 90G ARG $e^+e^- + e^- + e^+e^- + e^- + e^$	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma \eta \psi \\ \eta \psi \eta \psi \\ \text{MOV} \eta \psi \\ \text{VALUE} \text{CL\flux} \\ \text{OOUMENT ID} \text{TECN} \text{COMMENT} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$ $\Gamma_3\Gamma_7/\Gamma_{NALUE (keV)}$ DOCUMENT ID TECN COMMENT 0.121 \pm 0.015 OUR FIT Error includes scale factor of 1.3. 0.091 \pm 0.007 \pm 0.027 27 ALBRECHT 90G ARG $e^+e^- + e^- $	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{array}{c ccccccccccccccccccccccccccccccccccc
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78.	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma \begin{align*} \Pi \alpha \b
23 Using the MENNESSIER 83 model. 224 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total) \qquad	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma \begin{align*} \Pi \alpha \b
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total) \qquad	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma \begin{align*} \Gamma \begin{align*} \Pi \end{align*} \end{align*} \text{CM} \text{DOCUMENT ID} & \text{TECN} & \commonwedges, fits, limits, etc. • • • • • • • • • • • • • • • • • • •
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$ $\Gamma(KK) \times \Gamma(\gamma\gamma)/\Gamma_{total} \qquad	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma \begin{align*} \Gamma \begin{align*} \Pi \end{align*} \text{83 GAM2} \text{88 T} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \pi \pi \end{align*} \pi \pi \pi \end{align*} \pi \pi \end{align*} \pi \pi \end{align*} \pi \pi \pi \end{align*} \pi \pi \pi \end{align*} \pi \pi \pi \pi \pi \pi \end{align*} \pi
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$ $\Gamma(KK) \times \Gamma(\gamma\gamma)/\Gamma_{total}$ $\Gamma_{2}(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$ $\Gamma_{3}\Gamma_{7}\Gamma$ $\Gamma_{4}\Gamma_{4}\Gamma_{5}\Gamma_{5}\Gamma_{5}\Gamma_{5}\Gamma_{5}\Gamma_{5}\Gamma_{5}\Gamma_{5$	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma(\eta \eta) \begin{align*} \Gamma(\pi \pi) & \text{Sign} & \text{DOCUMENT ID} & \text{TECN} & \text{COMMENT} & \text{COMMENT} & \text{VECOMMENT} &
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total) \qquad	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma(\eta \eta)/\dagger(\pi \pi \pi) \\ \text{VALUE} \\ \cdot \cdo \cdot \c
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$ $\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)/\Gamma_{total}$ $\Gamma_{2}(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$ $\Gamma_{3}\Gamma_{7}\Gamma$ $\Gamma_{3}\Gamma_{7}\Gamma$ $\Gamma_{4}\Gamma_{4}\Gamma_{4}\Gamma_{5}\Gamma_{5}\Gamma_{5}\Gamma_{5}\Gamma_{5}\Gamma_{5}\Gamma_{5}\Gamma_{5$	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma(\eta \eta) \begin{align*} \Gamma(\pi \pi) \\ \frac{\gamma}{\gamma} \end{align*} \] \[\begin{align*} \Gamma(\eta \eta) \begin{align*} \Gamma(\pi \pi) \\ \text{VLUE} \\ \$\color{\c
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total) \qquad	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma \begin{align*} \Gamma \begin{align*} \Pi \end{align*} \pi \end{align*} \] \[\begin{align*} \Pi \end{align*} \pi \end{align*} \pi \end{align*} \] \[\begin{align*} \Pi \end{align*} \pi \end{align*} \pi \end{align*} \] \[\begin{align*} \Pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi align*
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total) \qquad	5.2 \pm 1.7 BINON 83 GAM2 38 $\pi^-p \rightarrow 2\eta n$ \[\begin{align*} \Gamma \begin{align*} \Gamma \begin{align*} \Pi \end{align*} \pi \end{align*} \] \[\begin{align*} \Pi \end{align*} \pi \end{align*} \pi \end{align*} \] \[\begin{align*} \Pi \end{align*} \pi \end{align*} \pi \end{align*} \] \[\begin{align*} \Pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \pi \end{align*} \qua
23 Using the MENNESSIER 83 model. 24 Superseded by BOYER 90. 25 If helicity = 2 assumption is not made. 26 Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78. $f_2(1270) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total) \qquad	5.2±1.7 BINON 83 GAM2 $38 \pi^- p \rightarrow 2\eta n$ \[\begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

I 1

ı

ALDE	87	PL B198 286	D.M. Alde et al.	(LANL, BRUX, SERP, LAPP)
AUGUSTIN	87	ZPHY C36 369	J.E. Augustin et al.	(LALO, CLER, FRAS+)
ABACHI	86B	PRL 57 1990	S. Abachi et al.	(PURD, ANL, IND, MICH+)
AIHARA	86B	PRL 57 404	H. Aihara et al.	(TPC-2γ Collab.)
ALDE	86D	NP B269 485	D.M. Alde et al.	(BELG, LAPP, SERP, CERN+)
LANDRO	86	PL B172 445	M. Landro, K.J. Mork,	
LONGACRE	86	PL B177 223	R.S. Longacre et al.	(BNL, BRAN, CUNY+)
LYTH	85	JPG 11 459	N.S. Longacie et al.	(BIVE, BICAIV, CONTT)
BEHREND	84B	ZPHY C23 223	H.J. Behrend et al.	(CELLO Collab.)
BERGER	84	ZPHY C26 199	C. Berger et al.	(PLUTO Collab.)
COURAU	84	PL 147B 227	A. Courau et al.	
SMITH	B4C	PR D30 851	J.R. Smith et al.	(CIT, SLAC)
BINON	83	NC 78A 313	F.G. Binon et al.	(SLAC, LBL, HARV)
	83B	SJNP 38 561		(BELG, LAPP, SERP+)
Also	838	Translated from YAF 38	F.G. Binon et al.	(BELG, LAPP, SERP+)
CHABAUD	83	NP B223 1	V. Chabaud et al.	(CERN, CRAC, MPIM)
DENNEY	83	PR D28 2726	D.L. Denney et al.	
MENNESSIER	83	ZPHY C16 241	G. Mennessier	(IOWA, MICH)
APEL	82	NP B201 197		(MDNP)
CASON	82		W.D. Apel et al.	(KARLK, KARLE, PISA, SERP+)
		PRL 48 1316	N.M. Cason et al.	(NDAM, ANL)
EDWARDS	82F	PL 110B 82	C. Edwards et al.	(CIT, HARV, PRIN+)
ETKIN	82B	PR D25 1786	A. Etkin et al.	(BNL, CUNY, TUFTS, VAND)
BRANDELIK	61B	ZPHY C10 117	R. Brandelik et al.	(TASSO Collab.)
CHABAUD	61	APP B12 575	V. Chabaud et al.	(CERN, CRAC, MPIM)
GIOAL	81	PL 107B 153	G. Gidal et al.	(SLAC, LBL)
ROUSSARIE	81	PL 105B 304	A. Roussarie et al.	(SLAC, LBL)
BERGER	60B	PL 94B 254	C. Berger et al.	(PLUTO Collab.)
COSTA	BO	NP B175 402	G. Costa de Beauregard	
LOVERRE	BO	ZPHY C6 187	P.F. Loverre et al.	(CERN, CDEF, MADR+)
CORDEN	79	NP B157 250	M.J. Corden et al.	(BIRM, RHEL, TELA+)
MARTIN	79	NP B158 520	A.D. Martin, E.N. Ozmi	utlu (DURH)
POLYCHRO	79	PR 019 1317	V.A. Polychronakos et a	v. (NDAM, ANL)
PDG	78	PL 75B	C. Bricman et al.	, ,
ANTIPOV	77	NP B119 45	Y.M. Antipov et al.	(SERP, GEVA)
PAWLICKI	77	PR D15 3196	A.J. Pawlicki et al.	(ANL)
DEUTSCH	76	NP B103 426	M. Deutschmann et al.	(AACH3, BERL, BONN+)
APEL	75	PL 57B 398	W.D. Apel et al.	(KARLK, KARLE, PISA, SERP+)
EMMS	75D	NP B96 155	M.J. Emms et al.	(BIRM, DURH, RHEL)
EISENBERG	74	PL 52B 239	Y. Eisenberg et al.	(REHO)
ENGLER	74	PR D10 2070	A. Engler et al.	(CMU, CASE)
LOUIE	74	PL 48B 385	J. Louie et al.	(SACL, CERN)
ANDERSON	73	PRL 31 562	J.C. Anderson et al.	(CMU, CASE)
TAKAHASHI	72	PR D6 1266	K. Takahashi et al.	(TOHOK, PENN, NDAM+)
BEAUPRE	71	NP B28 77	J.V. Beaupre et al.	(AACH, BERL, CERN)
FLATTE	71	PL 34B 551	S.M. Flatte et al.	(AACH, BERL, CERN)
ARMENISE	70	LNC 4 199	N. Armenise et al.	
OH	70	PR D1 2494	B.Y. Oh et al.	(BARI, BGNA, FIRZ)
				(WISC, TNTO) JF
STUNTEBECK		PL 32B 391	P.H. Stuntebeck et al.	(NDAM)
ADERHOLZ	69	NP B11 259	M. Aderholz et al.	(AACH3, BERL, CERN+)
ARMENISE	68	NC 54A 999	N. Armenise et al.	(BARI, BGNA, FIRZ+)
ASCOLI	68D	PRL 21 1712	G. Ascoli et al.	(ILL)
BOESEBECK	68	NP B4 501	K. Boesebeck et al.	(AACH, BERL, CERN)
JOHNSON	68	PR 176 1651	P.B. Johnson et al.	(NOAM, PURD, SLAC)
EISNER	67	PR 164 1699	R.L. Eisner et al.	(PURD)
DERADO	65	PRL 14 872	 Derado et ai. 	(NDAM)
LEE	64	PRL 12 342	Y.Y. Lee et al.	`(MICH)
BONDAR	63	PL 5 153	L. Bondar et al.	(AACH, BIRM, BONN, DESY+)
				•


 $f_1(1285)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})^{+}$$

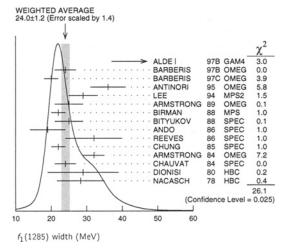
f1(1285) MASS

VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
1261.9±	0.6 OUR A	VERAGE I	Error includes scal below.	e fac	tor of 1	.7. See the ideogram
1284 ±	6	1400	ALDE	97B	GAM4	$100 \pi^- \rho \rightarrow \eta \pi^0 \pi^0 \pi$
1281 ±	1		BARBERIS	97B	OMEG	450 pp →
						$pp2(\pi^{+}\pi^{-})$
1281 ±	1		BARBERIS	97c	OMEG	450 pp →
			1 .			ppK ⁰ _S K±π [∓]
1280 ±	2		¹ ANTINORI	95	OMEG	300,450 pp →
						$\rho \rho 2(\pi^{+}\pi^{-})$
1282.2±	1.5		LEE	94	MPS2	$18 \pi^- p \rightarrow$
1279 ±			FUKUI	016	SPEC	$K^{+}\overline{K}^{0}2\pi^{-}p$ $8.95 \pi^{-}p \rightarrow n\pi^{+}\pi^{-}n$
1279 ±		140	ARMSTRONG			$300 pp \rightarrow K \vec{K} \pi pp$
1278 ±	_	140				$85 \pi^+ D \rightarrow 4\pi \pi D.$
1210 1	2		ARMSTRONG	070	CIVILG	$pp \rightarrow 4\pi pp$
1280.1 ±	2.1	60	RATH	89	MPS	21.4 $\pi^- p \rightarrow$
						$\kappa_S^0 \kappa_S^0 \pi^0 n$
1285 ±	1	4750	² BIRMAN	88	MPS	$8\pi^-p \rightarrow K^+\overline{K}^0\pi^-n$
1280 ±	1	504	BITYUKOV	88	SPEC	$32.5 \pi^- p \rightarrow$
						$\kappa^+ \kappa^- \pi^0 \eta$
1280 ±			ANDO	86	SPEC	$8 \pi^- p \rightarrow \eta \pi^+ \pi^- n$
1277 ±	_	420	REEVES	86	SPEC	$6.6 p\overline{p} \rightarrow KK\pi X$
1285 ±	_		CHUNG	85	SPEC	$8\pi^-p \rightarrow NKK\pi$
1279 ±	2	604	ARMSTRONG	84	OMEG	$85 \pi^+ p \to \underbrace{K \overline{K} \pi \pi p}_{i}$
1286 ±			CHAUVAT	84	SPEC	$pp \rightarrow K\overline{K}\pi pp$ ISR 31.5 pp
1200 ±	-		EVANGELISTA			12 π ⁻ p →
12/0 I	4		EVANGELISTA	01	OWIEG	$\eta \pi^+ \pi^- \pi^- p$
1283 ±	3	103	DIONISI	80	нвс	$4\pi^{-}p \rightarrow K\overline{K}\pi n$
1282 ±	-	320	NACASCH	78	HBC	$0.7,0.76 \overline{D}D \rightarrow K\overline{K}3\pi$
1279 ±		210	GRASSLER	77	HBC	16 π [∓] p
1286 ±	3	180	DUBOC	72	HBC	$1.2 \overline{p}p \rightarrow 2K4\pi$
1283 ±	5		DAHL	67	нвс	1.6-4.2 π ⁻ p
						•

• • • We do not use the f	ollowing data for avera	ges, fits, limits,	etc. • • •
1281.9± 0.5	3 SOSA	99 SPEC	$pp \rightarrow p_{Slow}$
			$(\kappa_S^0 \kappa^+ \pi^-) p_{\text{fast}}$
1282.8± 0.6	³ SOSA	99 SPEC	$pp \rightarrow p_{Slow}$
			$(\kappa_S^0 \kappa^- \pi^+) p_{\text{fast}}$
1270 ±10	AMELIN	95 VES	
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1280 ± 2	ABATZIS	94 OMEG	450 <i>pp</i> →
			$pp2(\pi^{+}\pi^{-})$
1282 ± 4		NG 93c E760	$\overline{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma$
$1270 \pm 6 \pm 10$		NG 92c OMEG	
1264 ± 8	AUGUSTIN	90 DM2	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
1281 ± 1	ARMSTRO	NG 89E OMEG	
			$pp2(\pi^{+}\pi^{-})$
$1279 \pm 6 \pm 10$	16 BECKER	87 MRK3	$e^+e^- \rightarrow \phi K \overline{K} \pi$
1286 ± 9	GIDAL	87 MRK2	$e^+e^- \rightarrow e^+e^- \eta \pi^+ \pi^-$
1287 ± 5	353 BITYUKOV		$32 \pi^- p \rightarrow$
	211101101	0.0 0. 20	$K^+K^-\pi^0n$
~ 1279	⁴ TORNQVIS	T 828 RVUE	
1275 ± 6	31 BROMBER	S 80 SPEC	$100 \pi^- p \rightarrow K \overline{K} \pi X$
1288 ± 9	200 GURTU	79 HBC	$4.2 K^- \rho \rightarrow n\eta 2\pi$
~ 1275.0	46 ⁵ STANTON	79 CNTR	$8.5 \pi^- p \rightarrow \pi 2 \gamma 2 \pi$
1271 ±10	34 CORDEN	78 OMEG	12-15 $\pi^- p \rightarrow$
			$K^+K^-\pi n$
1295 ±12	85 CORDEN		$12-15 \pi^- p \rightarrow n5\pi$
	150 DEFOIX	72 HBC	$0.7 \ \overline{p}p \rightarrow 7\pi$
	500 ⁶ THUN	72 MMS	13.4 $\pi^- p$
1303 ± 8	BARDADIN		$8 \pi^+ \rho \rightarrow \rho 6\pi$
1283 ± 6	BOESEBEC	K 71 HBC	$16.0 \pi \rho \rightarrow \rho 5\pi$
1270 ±10	CAMPBELL	. 69 DBC	$2.7 \pi^{+} d$
1285 ± 7	LORSTAD	69 HBC	0.7 ₱p, 4,5-body
1290 ± 7	D'ANDLAU	68 HBC	1.2 ₱p, 5−6 body
¹ Supersedes ABATZIS 9	4, ARMSTRONG 89E.		
² From partial wave anal		em.	
3 No systematic error giv	ren.		

f₁(1285) WIDTH

Only experiments giving width error less than 20 MeV are kept for averaging.


VALUE (MeV) EVTS	DOCUMENT ID	TECN	COMMENT
24.0± 1.2 OUR AVERAGE			
55 ±18 1400	ALDE	97B GAM4	$100 \pi^{-} \rho \rightarrow \eta \pi^{0} \pi^{0} \pi$
24 ± 3	BARBERIS	978 OMEG	450 pp →
			$\rho \rho 2(\pi^+\pi^-)$
20 ± 2	BARBERIS	97c OMEG	
			$ppK_S^0K^{\pm}\pi^{\mp}$
36 ± 5	⁷ ANTINORI	95 OMEG	300,450 pp →
			$\rho \rho 2(\pi^+\pi^-)$
29.0 ± 4.1	LEE	94 MP52	$18 \pi^- p \rightarrow$
			$K^+ \overline{K}{}^0 2\pi^- \rho$
25 ± 4 140	ARMSTRONG	89 OMEG	300 pp → K Kπpp
22 ± 2 4750	⁸ BIRMAN	88 MPS	$8 \pi^- p \rightarrow K^+ \overline{K}{}^0 \pi^- n$

 $^{^3}$ No systematic error given. 4 From a unitarized quark-model calculation. 5 From phase shift analysis of $\eta\pi^+\pi^-$ system. 6 Seen in the missing mass spectrum.

$f_1(1285)$

25	± 4	504	BITYUKOV	88	SPEC	32.5 $\pi^- p \rightarrow \kappa^+ \kappa^- \pi^0 n$
10	± 5		ANDO	86	SPEC	$8\pi^-p \rightarrow \eta\pi^+\pi^-n$
	± 8	420	REEVES		SPEC	6.6 pp → ηπ π π π 6.6 pp → KKπX
	± 0	420	CHUNG		SPEC	$8\pi^-\rho \rightarrow NK\overline{K}\pi$
						$85 \pi^+ D \rightarrow K\overline{K}\pi\pi D$.
32	± 3	604	ARMSTRONG	64	OMEG	$85 \pi^{+} p \rightarrow KK\pi\pi p,$ $pp \rightarrow K\overline{K}\pi pp$
24	± 3		CHAUVAT	84	SPEC	ISR 31.5 pp
29	±10	103	DIONISI	80	HBC	$4 \pi^- p \rightarrow K \overline{K} \pi n$
28.3	3± 6.7	320	NACASCH	78	HBC	$0.7,0.76 \overline{D}P \rightarrow K\overline{K}3\pi$
	We do not use the	following	data for averages	, fits	, limits,	etc. • • •
10	2± 1.2	_	9 SOSA	99	SPEC	88 . 8 .
10.4	2I 1.2		- 303A	77	3FEC	$pp \rightarrow p_{slow}$
			n .			$(\kappa_S^0 \kappa^+ \pi^-) p_{fast}$
19.4	4± 1.5		⁹ SOSA	99	SPEC	$pp \rightarrow p_{slow}$
						$(\kappa_S^0 \kappa^- \pi^+) p_{fast}$
40	± 5		ABATZIS	94	OMEG	450 pp →
						$pp2(\pi^{+}\pi^{-})$
44	±20		AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
31	± 5		ARMSTRONG	89E	OMEG	
						$pp2(\pi^{+}\pi^{-})$
41	±12		ARMSTRONG	89G	OMEG	$85 \pi^+ p \rightarrow 4\pi \pi p$
						$pp \rightarrow 4\pi pp$
17.9	9±10.9	60	RATH	89	MPS	$21.4 \pi^- p \rightarrow$
						$K_S^0 K_S^0 \pi^0 n$
14	$^{+20}_{-14}$ ±10	16	BECKER	87	MRK3	$e^+e^- \rightarrow \phi K \overline{K} \pi$
26	±12		EVANGELISTA	81	OMEG	12 $\pi^- p \rightarrow$
				-	···	$\eta \pi^+ \pi^- \pi^- p$
25	±15	200	GURTU	79	нвс	4.2 K ⁻ p → πη2π
~ 10		1	0 STANTON	79	CNTR	
	±18	210	GRASSLER	77	нвс	16 π [∓] p
28	± 5		1 DEFOIX		HBC	0.7 pp → 7π
46	± 9		¹ DUBOC		HBC	$1.2 \overline{p}p \rightarrow 2K4\pi$
37	± 5		² THUN		MMS	13.4 $\pi^{-}p$
10	±10	500	BOESEBECK		HBC	$16.0 \pi p \rightarrow p5\pi$
30	±15		CAMPBELL	69	DBC	$2.7 \pi^{+} d$
60	±15	1	1 LORSTAD	69	HBC	0.7 p̄ p, 4,5-body
35	±10	1	1 DAHL		HBC	1.6-4.2 π ⁻ p
				91	HBC	1.υ-τ.2 π μ
'Sı	upersedes ABATZIS	94, ARM	STRONG 89E.			
	rom partial wave an		⁺ K ⁰ π ⁻ system			

¹¹ Resolution is not unfolded. 12 Seen in the missing mass spectrum.

f1(1285) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁	4π	$(33.1 + 2.1 \atop -1.8) \%$	S=1.3
Γ_2	$\pi^0 \pi^0 \pi^+ \pi^-$	(22.0 + 1.4)%	S=1.3
Γ3	$2\pi^{+}2\pi^{-}$	$(11.0 + 0.7 \atop - 0.6)$ %	S=1.3
Γ4	$ ho^0\pi^+\pi^-$	$(11.0 + 0.7 \atop -0.6)$ %	S=1.3
Γ ₅	$4\pi^0$	< 7 × 10	-4 CL=90%

Γ ₆ Γ ₇	$\eta \pi \pi$ $a_0(980)\pi$ [ignoring $a_0(980) \rightarrow K\overline{K}$]	(52 ±16)% (36 ± 7)%	
Γ ₈ Γ ₉ Γ ₁₀	$ \frac{\eta \pi \pi}{K K \pi} $ [excluding $a_0(980)\pi$] $K \overline{K} \pi$ $K \overline{K}^*(892)$	(16 ± 7) % (9.0± 0.4) % not seen	S=1.1
Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄	γρ ⁰ φγ γγ* γγ	$(5.5 \pm 1.3)\%$ $(7.4 \pm 2.6) \times 10^{-4}$	5=2.8

CONSTRAINED FIT INFORMATION

An overall fit to 7 branching ratios uses 16 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^2=$ 24.7 for 12 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left<\delta x_i\delta x_j
ight>/(\delta x_i\cdot\delta x_j)$, in percent, from the fit to the branching fractions, $x_i\equiv$ $\Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to

$f_1(1285) \Gamma(I)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(\eta\pi\pi)\times\Gamma(\gamma)$	γ)/Γ _{total}			Γ ₆ Γ	$\Gamma_{14}/\Gamma = (\Gamma_7 + \Gamma_8)\Gamma_{14}/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID			COMMENT
<0.62	95	GIDAL	87	MRK2	$ \begin{array}{c} e^+e^- \rightarrow \\ e^+e^- \eta \pi^+ \pi^- \end{array} $
					$e^+e^-\eta\pi^+\pi^-$

$\Gamma(\eta\pi\pi)\times\Gamma(\gamma\gamma^*)/\Gamma$	total	Γ ₆ Γ	$\Gamma_{13}/\Gamma = (\Gamma_7 + \Gamma_8)\Gamma_{13}/\Gamma$
VALUE (keV)	EVTS DOCUMENT IL) TECN	COMMENT
1.4 ±0.4 OUR AVERA	GE Error includes scale	factor of 1.4.	
$1.18 \pm 0.25 \pm 0.20$	26 ^{13,14} AIHARA	88B TPC	$e^+e^- \rightarrow e^+e^- \eta \pi^+ \pi^-$
$2.30 \pm 0.61 \pm 0.42$	^{13,15} GIDAL	87 MRK2	$e^+e^-\eta\pi^+\pi^ e^+e^-\to$

0.5 ±0.2

 0.20 ± 0.08

f1(1285) BRANCHING RATIOS

-11-			
$\Gamma(K\overline{K}\pi)/\Gamma(4\pi)$			Γ_9/Γ_1
VALUE	DOCUMENT ID	TECN	COMMENT
0.271 ±0.016 OUR FIT Error	includes scale factor	of 1.3.	
0.271 ±0.016 OUR AVERAGE	Error includes scale	factor of 1.2.	
0.265 ± 0.014	¹⁶ BARBERIS	97C OMEG	$450 pp \rightarrow pp K_5^0 K^{\pm} \pi^{\mp}$
0.28 ±0.05	17 ARMSTRONG	89E OMEG	$300 pp \rightarrow ppf_1(1285)$
0.37 ±0.03 ±0.05	18 ARMSTRONG	896 OMEG	85 $\pi p \rightarrow 4\pi X$
16 Using $2(\pi^+\pi^-)$ data from 17 Assuming $\rho\pi\pi$ and $a_0(980)$ 18 4π consistent with being en	π intermediate state	·s.	
$\Gamma(\pi^0\pi^0\pi^+\pi^-)/\Gamma_{\text{total}}$			$\Gamma_2/\Gamma = \frac{2}{3}\Gamma_1/\Gamma$
VALUE	DOCUMENT ID		_,
0.220 + 0.014 OUR FIT Error	includes scale factor	of 1.3.	
$\Gamma(2\pi^+2\pi^-)/\Gamma_{\text{total}}$			$\Gamma_3/\Gamma = \frac{1}{3}\Gamma_1/\Gamma$
VALUE	DOCUMENT_ID_		
0.110 + 0.007 OUR FIT Error	includes scale factor	of 1.3.	
$\Gamma(ho^0\pi^+\pi^-)/\Gamma_{ m total}$			$\Gamma_4/\Gamma = \frac{1}{3}\Gamma_1/\Gamma$
VALUE	DOCUMENT ID		
0.110 +0.007 OUR FIT Error	includes scale factor	of 1.3.	
$\Gamma(K\overline{K}\pi)/\Gamma(\eta\pi\pi)$		T-C11	$\Gamma_9/\Gamma_6 = \Gamma_9/(\Gamma_7 + \Gamma_8)$
0.171 ± 0.013 OUR FIT Error	DOCUMENT ID includes scale factor	of 1 1	COMMENT
0.171±0.013 OUR FIT Effor	menutes seale ractor	0. 1.1.	
0.166 ± 0.01 ± 0.008	BARBERIS	98c OMEG	$\begin{array}{c} 450 \ pp \rightarrow \\ p_f f_1(1285) p_5 \end{array}$
0.42 ±0.15	GURTU	79 HBC	4.2 K p

⁷² HBC 0.7 $\bar{p}p \rightarrow 7\pi$ 69 DBC 2.7 $\pi^+ d$ CAMPBELL ¹⁹ $K\overline{K}$ system characterized by the I=1 threshold enhancement. (See under $a_0(980)$).

CORDEN

19 DEFOIX

78 OMEG 12-15 π P

⁹ No systematic error given.

¹⁰ From phase shift analysis of $\eta \pi^+ \pi^-$ system.

 $^{^{13}}$ Assuming a ρ -pole form factor. 14 Published value multiplied by $\eta\pi\pi$ branching ratio 0.49. 15 Published value divided by 2 and multiplied by the $\eta\pi\pi$ branching ratio 0.49.

VALUE 0.69±0.13 OUR FIT	EVTS	→ <i>К'</i> К])/Г(1 <u>DOCUMENT ID</u>			$\Gamma_7/\Gamma_6 = \Gamma_7/(\Gamma_7 + \Gamma_8)$ COMMENT
0.69±0.13 OUR AV					
	ENAGE	GURTU	70	нвс	4.2 K ⁻ p
0.72±0.15		CORDEN			4.2 K ρ 12-15 π ⁻ ρ
0.6 +0.3 -0.2 • • • We do not us	a the following				
0.28±0.07	1400	ALDE			$100 \pi^- p \rightarrow \eta \pi^0 \pi^0 n$
1.0 ±0.3	1400	GRASSLER		HBC	$160 \pi^{\mp} p \rightarrow \eta \pi^{+} \pi^{-} \eta$ $16 \pi^{\mp} p$
Γ (4π)/Γ(ηππ) VALUE		DOCUMENT ID		TECN	$\Gamma_1/\Gamma_6 = \Gamma_1/(\Gamma_7 + \Gamma_8)$ COMMENT
0.63±0.06 OUR FIT		es scale factor of	1.2.		
0.41 ± 0.14 OUR AV	EKAGE	BOLTON	92	MRK3	$J/\psi \rightarrow \gamma f_1(1285)$
0.64±0.40		GURTU		HBC	4.2 K-p
• • We do not us	-				
0.93 ± 0.30		⁰ GRASSLER		нвс	16 π [∓] p
20 Assuming $ ho\pi\pi$ a	ind a ₀ (980)π ii	ntermediate stat	es.		
「(<i>K</i> K *(892))/Γ _t	otal	DOCUMENT ID		TECH	Γ ₁₀ /Γ
VALUE not seen		DOCUMENT ID	78	TECN HBC	$ \begin{array}{c} \underline{COMMENT} \\ 0.7, 0.76 \ \overline{p}p \rightarrow K \ \overline{K} \ 3\pi \end{array} $
$\Gamma(ho^0\pi^+\pi^-)/\Gamma(2$!π ⁺ 2π)				Γ ₄ /Γ ₃
VALUE ■ ● ■ We do not us	e the following	DOCUMENT ID			
	e the following	GRASSLER	25, IIC: 77		16 GeV π [±] p
1.0±0.4		GRASSLER	"	TIBC	10 GeV x p
Γ(4π ⁰)/Γ _{total}					Γ ₅ /Γ
VALUE (units 10 ⁻⁴)	<u>CL%</u>	DOCUMENT ID			COMMENT
<7	90	ALDE	87	GAM4	$100 \pi^+ p \rightarrow 4\pi^0 n$
$\Gamma(\phi\gamma)/\Gamma(K\overline{K}\pi)$ VALUE (units 10 $^{-2}$)	CI % FVTS	DOCUMEN	מו די	TF	Г ₁₂ /Г ₉
VALUE (GIIILS 10)		DOCUMEN			
$0.82 \pm 0.21 \pm 0.20$	19				PEC 32.5 π ⁻ μ →
0.82±0.21±0.20	19	BITYUK	OV	88 SP	PEC 32.5 $\pi^- p \rightarrow \kappa^+ \kappa^- \pi^0 n$
• • • We do not us	se the following	BITYUKO	OV es, fits	88 SP	etc. • • •
		BITYUK	OV es, fits	88 SP	$\begin{array}{c} K^{+}K^{-}\pi^{0}n \\ \text{etc.} \bullet \bullet \bullet \\ \text{MEG } 450 pp \rightarrow \\ nsf (1285) n_{0} \end{array}$
• • • We do not us	se the following	BITYUKO	OV es, fits	88 SP	$\begin{array}{c} K^{+}K^{-}\pi^{0}n \\ \text{etc.} \bullet \bullet \bullet \\ \text{MEG } 450 pp \rightarrow \\ nsf (1285) n_{0} \end{array}$
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$	e the following 95 95	BITYUKO data for averag BARBER AMELIN	OV es, fits	88 SP 5, limits, 98c Of 95 VE	etc. • • • MEG 450 $pp \rightarrow pf f_1(1285) p_5$ ES $37 \pi^- N \rightarrow \pi^- \pi^+ \pi^- \gamma N$
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ VALUE	95 95 95 95 <u>06.8</u>	BITYUKO data for average BARBER AMELIN	OV es, fits	88 SP 5, limits, 98c Of 95 VE	etc. • • • MEG $450 pp \rightarrow pf_1(1285)p_S$ ES $37 \frac{\pi}{\pi} - \frac{N}{\pi} + \frac{\gamma}{\pi} - \frac{\gamma}{N}$ COMMENT
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ VALUE • • • We do not us	95 95 95 268 CL% See the following	BITYUKG data for average BARBER AMELIN DOCUMENT ID data for average	OV es, fits	88 SP 5, limits, 98C Of 95 VE <u>TECN</u> 5, limits,	etc. • • • MEG 450 $pp \rightarrow pf f_1(1285) p_S$ ES 37 $\pi - N \rightarrow \pi^-\pi^+\pi^-\gamma N$ $\frac{COMMENT}{\text{etc. • • • • }}$
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ • • • We do not us >0.035	95 95 0 CL% 10 10 10 10 10 10 10 10 10 1	BITYUKI data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN	OV es, fits IS es, fits	88 SP i, limits, 98C Of 95 VE TECN i, limits, MRK3	etc. • • • MEG 450 $pp \rightarrow pf f_1(1285) p_S$ ES 37 $\pi^- N \rightarrow \pi^- \pi^+ \pi^- \gamma N$ $\frac{\Gamma_{11}/\Gamma_9}{\cot \theta}$ etc. • • • $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ • • • We do not us >0.035	the following 95 95 95 $\frac{CL\%}{S}$ See the following 90 $\frac{CL\%}{S}$ $\frac{CL\%}{S}$ $\frac{CL\%}{S}$ $\frac{CL\%}{S}$	BITYUKI data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN	OV es, fits IS es, fits	88 SP i, limits, 98C Of 95 VE TECN i, limits, MRK3	etc. • • • MEG 450 $pp \rightarrow pf f_1(1285) p_S$ ES 37 $\pi - N \rightarrow \pi^-\pi^+\pi^-\gamma N$ $\frac{COMMENT}{\text{etc. • • • • }}$
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ VALUE • • • We do not us >0.035 21 Using B($J/\psi - \gamma K\overline{K}\pi$)= <0.75	se the following 95 95 $\frac{CL\%}{S}$ se the following 90 $\frac{7}{2}$ $\frac{7}{1}(1285)$ $\frac{7}{2}$ $\frac{10}{3}$ $\frac{10}{2}$	BITYUKI data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN	OV es, fits IS es, fits	88 SP i, limits, 98C Of 95 VE TECN i, limits, MRK3	etc. • • • MEG 450 $pp \rightarrow pf f_1(1285) p_S$ ES 37 $\pi^- N \rightarrow \pi^- \pi^+ \pi^- \gamma N$ $\frac{\Gamma_{11}/\Gamma_9}{\cot \theta}$ etc. • • • $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^{0})/\Gamma(K\overline{K}\pi)$ $ALUE$ • • • We do not us >0.035 2^{1} Using B(J/ψ → γK\overline{K}π)=<0.7: $\Gamma(\gamma \rho^{0})/\Gamma(2\pi + 2)$ WALUE	the following 95 95 95 See the following 90 $2 \times rf_1(1285) - 2 \times 10^{-3}$.	BITYUK« data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN → γγρ ⁰)=0.25	es, fit: 90 × 10	88 SP i, limits, 98c Of 95 VE TECN s, limits, MRK3 –4 and	etc. • • • MEG 450 $pp \rightarrow p_f f_1(1285) p_S$ ES $37 \pi^- N \rightarrow r^- r^+ r^- \gamma N$ $\frac{\Gamma_{11}/\Gamma_9}{\text{etc.}} \bullet \bullet \bullet$ $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$ $B(J/\psi \rightarrow \gamma f_1(1285) \rightarrow$ $\Gamma_{11}/\Gamma_3 = \Gamma_{11}/\frac{1}{3}\Gamma_1$
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ $VALUE$ • • We do not us >0.035 $^{21} \text{ Using B}(J/\psi - \gamma K\overline{K}\pi) = <0.75$ $\Gamma(\gamma \rho^0)/\Gamma(2\pi + 2)$ $VALUE$ $VALUE$ 0.050 ± 0.13 OUR FT	the following 95 95 $\frac{CL\%}{S}$ See the following 90 $\gamma f_1(1285) - 2 \times 10^{-3}$. The Error including 100 and 100 a	BITYUK data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN $\gamma \gamma \rho^0$)=0.25	OV es, fit: 90 × 10 × 10 90	88 SF, limits, 98C OF 95 VE TECN 5, limits, MRK3 4 and TECN MRK3	etc. • • • • MEG 450 $pp \rightarrow pf f_1(1285) p_5$ ES $37 \pi^- N \rightarrow \pi^- \gamma N$ $\frac{\Gamma_{11}/\Gamma_9}{\text{etc.}} \bullet \bullet$ $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$ $EJ/\psi \rightarrow \gamma f_1(1285) \rightarrow$ $\Gamma_{11}/\Gamma_3 = \Gamma_{11}/\frac{1}{3}\Gamma_1$ $\frac{COMMENT}{COMMENT}$ $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$ $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
(0.50) (0.50) (0.93)	the following 95 95 The Error include: $rf_1(1285) - rf_1(1285) - r$	BITYUK data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN $\gamma \gamma \rho^0$)=0.25 DOCUMENT ID des scale factor of 22 COFFMAN $\gamma \gamma \rho^0$)=0.25	OV es, fit: 90 × 10 × 10 90	88 SF, limits, 98C OF 95 VE TECN 5, limits, MRK3 4 and TECN MRK3	etc. • • • • MEG 450 $pp \rightarrow pf_1(1285)p_5$ ES $37 \pi^- N \rightarrow \pi^- \pi^+ \pi^- \gamma N$ $COMMENT$ Etc. • • • $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^ B(J/\psi \rightarrow \gamma f_1(1285) \rightarrow \pi^- \pi^- f_1/\frac{1}{3}\Gamma_1$ $COMMENT$
$<$ • • • We do not us $<$ 0.50 $<$ 0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ $<$ 0.94 $<$ • • • We do not us $>$ 0.035 $<$ 1 Using $B(J/\psi - \gamma K\overline{K}\pi) = <$ 0.7: $\Gamma(\gamma \rho^0)/\Gamma(2\pi + 2\gamma K) = <$ 0.50 \pm 0.13 OUR FI 0.45 \pm 0.18 $<$ 22 Using $B(J/\psi - \gamma 2\pi + 2\pi - \gamma E) = 0$.	the following 95 95 The Error include: $rf_1(1285) - rf_1(1285) - r$	BITYUK4 data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN $\gamma \gamma \rho^0$)=0.25 DOCUMENT ID des scale factor of 22 COFFMAN $\gamma \gamma \rho^0$)=0.25 en by MIR 88.	90 × 10	88 SF, i, limits, 98c Of 95 VE TECN 5, limits, MRK3 MRK3 4 and	etc. • • • • MEG 450 $pp \rightarrow pf_1(1285)p_5$ ES $37 \pi^- N \rightarrow \pi^- \pi^+ \pi^- \gamma N$ F11/F9 COMMENT etc. • • • $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$ B($J/\psi \rightarrow \gamma f_1(1285) \rightarrow $
We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ $\frac{VALUE}{\pi}$ • • We do not us >0.035 $^{21} \text{ Using B}(J/\psi - \gamma K\overline{K}\pi) = <0.75$ $\Gamma(\gamma \rho^0)/\Gamma(2\pi + 2 \frac{VALUE}{\pi})$ 0.045 ± 0.18 $^{22} \text{ Using B}(J/\psi - \gamma 2\pi + 2\pi^-) = 0$ $\Gamma(\gamma \rho^0)/\Gamma_{\text{total}}$ $VALUE$	95 95 96 97 97 98 99 90 90 90 90 90 90 90 90 90 90 90 90	BITYUK 0 data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN $\rightarrow \gamma\gamma\rho^{0}$)=0.25 DOCUMENT ID eles scale factor of 22 COFFMAN $\rightarrow \gamma\gamma\rho^{0}$)=0.25 en by MIR 88.	90 × 10 f 2.5.	88 SF, i, limits, 98c OF PS VE TECN MRK3 -4 and TECN MRK3 -4 and	etc. • • • • MEG 450 $pp \rightarrow pf_1(1285)p_5$ ES $37 \pi^- N \rightarrow \pi^- \pi^+ \pi^- \gamma N$ F11/F9 COMMENT etc. • • • $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$ B($J/\psi \rightarrow \gamma f_1(1285) \rightarrow $
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ $\frac{VKLUE}{2}$ • • • We do not us >0.035 $\frac{21}{2}$ Using B(J/ψ $\frac{1}{2}$ $\frac{1}{2}$ Using B(J/ψ $\frac{1}{2}$ $\frac{1}{2}$ Using B(J/ψ $\frac{1}{2}$ $\frac{1}{$	se the following 95 95 95 se the following 90 2×10^{-3} . $7f_1(1285) = 7f_1(1285) = 7f$	BITYUK 0 data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN $\rightarrow \gamma\gamma\rho^{0}$)=0.25 DOCUMENT ID eles scale factor of 22 COFFMAN $\rightarrow \gamma\gamma\rho^{0}$)=0.25 en by MIR 88.	90 × 10 f 2.5. 90 × 10	88 SF, i, limits, 98c OF PS VE TECN MRK3 -4 and TECN MRK3 -4 and	etc. • • • • MEG 450 $pp \rightarrow pf_1(1285)p_5$ ES $37 \pi^- N \rightarrow r^- \gamma N$ Γ_{11}/Γ_{9} etc. • • • $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$ B($J/\psi \rightarrow \gamma f_1(1285) \rightarrow r^- \gamma f_1(1285$
*• • We do not us <0.50 <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ ** We do not us >0.035 2^1 Using B(J/ψ — $\gamma K\overline{K}\pi$) <0.7: $\Gamma(\gamma \rho^0)/\Gamma(2\pi^+2)$ ** WALUE ** O.7: $\Gamma(\gamma \rho^0)/\Gamma(2\pi^+2)$ ** O.55 ± 0.13 OUR FI O.055 ± 0.13 OU O.055 ± 0.013 OU O.028 ± 0.007 ± 0.005 ± 0.007	the following 95 95 See the following 95 For the following 95 $\gamma f_1(1285) - 2 \times 10^{-3}$. The Error include 15 $\gamma f_1(1285) - 55 \times 10^{-4}$ give 1006	BITYUK 0 data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN $\rightarrow \gamma \gamma \rho^{0}$)=0.25 DOCUMENT ID des scale factor of 22 COFFMAN $\rightarrow \gamma \gamma \rho^{0}$)=0.25 en by MIR 88. DOCUMENT ID des scale factor of 24 COFFMAN $\rightarrow \gamma \gamma \rho^{0}$)=0.25 en by MIR 88.	200 es, fits 90 × 10 of 2.5. 90 × 10	88 SF, i, limits, 98c Of 95 VE TECN MRK3 -4 and TECN 2.8. VES	etc. • • • • MEG 450 $pp \rightarrow pf_1(1285)p_5$ ES $37 \pi^- N \rightarrow rh^- \gamma N$ Etc. • • • $711/\Gamma g$ Etc. • • • $711/\Gamma g \rightarrow \gamma \gamma \pi^+ \pi^ 711/\Gamma g \rightarrow rh^- rh^- rh^-$ ECOMMENT $1/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$ ECOMMENT $1/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$ B($J/\psi \rightarrow \gamma f_1(1285) \rightarrow rh^-$ ECOMMENT $1/\psi \rightarrow \gamma f_1(1285) \rightarrow rh^-$ ECOMMENT
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ $\frac{VALUE}{\bullet} \bullet \bullet \text{ We do not us}$ >0.035 $^{21} \text{ Using B}(J/\psi - \gamma K\overline{K}\pi) = <0.7$ $\Gamma(\gamma \rho^0)/\Gamma(2\pi + 2\gamma LUE)$ $^{31} \text{ Using B}(J/\psi - \gamma 2\pi + 2\pi - 2\pi) = 0$ $\Gamma(\gamma \rho^0)/\Gamma_{\text{total}}$ $\frac{VALUE}{0.055 \pm 0.013} \text{ OU}$	the following 95 95 See the following 95 For the following 95 $\gamma f_1(1285) - 2 \times 10^{-3}$. The Error include 15 $\gamma f_1(1285) - 55 \times 10^{-4}$ give 1006	BITYUK 0 data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN $\rightarrow \gamma \gamma \rho^{0}$)=0.25 DOCUMENT ID des scale factor of 22 COFFMAN $\rightarrow \gamma \gamma \rho^{0}$)=0.25 en by MIR 88. DOCUMENT ID des scale factor of 24 COFFMAN $\rightarrow \gamma \gamma \rho^{0}$)=0.25 en by MIR 88.	DV es, fit: 90 × 10 f 2.5. 90 × 10 ctor of 95 es, fit:	88 SF, i, limits, 98c Of 95 VE TECN MRK3 -4 and TECN 2.8. VES s, limits, s,	etc. • • • • MEG 450 $pp \rightarrow pf_1(1285)p_5$ ES $37 \pi^- N \rightarrow rh^- \gamma N$ Etc. • • • $711/\Gamma g$ Etc. • • • $711/\Gamma g \rightarrow \gamma \gamma \pi^+ \pi^ 711/\Gamma g \rightarrow rh^- rh^- rh^-$ ECOMMENT $1/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$ ECOMMENT $1/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$ B($J/\psi \rightarrow \gamma f_1(1285) \rightarrow rh^-$ ECOMMENT $1/\psi \rightarrow \gamma f_1(1285) \rightarrow rh^-$ ECOMMENT
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(KK\pi)$ $VALUE$ • • • We do not us >0.035 21 Using $B(J/\psi - \gamma KK\pi) = <0.73$ $\Gamma(\gamma \rho^0)/\Gamma(2\pi + 2\gamma KK\pi) = 0.055 $ 0.45 ± 0.13 OUR FI 0.45 ± 0.18 22 Using $B(J/\psi - \gamma 2\pi + 2\pi - \gamma E) = 0.055 $ $\Gamma(\gamma \rho^0)/\Gamma_{total}$ $VALUE$ 0.055 ± 0.013 OU 0.028 ± 0.007 ± 0.055 V_{total} $VALUE$ 0.055 V_{total}	the following 95 95 95 The Error include 155 × 10 ⁻⁴ give 1006 Refit Error in 1006 see the following 90 Refit Error in 1006 see the following 91 1006	BITYUKO data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN $\gamma \gamma \rho^0$)=0.25 DOCUMENT ID les scale factor of 22 COFFMAN $\gamma \gamma \rho^0$)=0.25 en by MIR 88. DOCUMENT ID ncludes scale factor of AMELIN g data for average BITYUKOV	es, fit: 90 × 10 f 2.5. 90 × 10 ctor of 95 es, fit:	88 SF, i, limits, 98c OI 95 VE TECN TECN MRK3 -4 and TECN VES S, limits, 5 SPEC	etc. • • • • MEG 450 $pp \rightarrow pf_1(1285)p_5$ ES $37 \pi^- N \rightarrow \pi^- \pi^+ \pi^- \gamma N$ etc. • • • $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^ J/\psi \rightarrow \gamma \gamma \gamma \pi^+ \pi^ J/\psi \rightarrow \gamma $
*• • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$ $\frac{VALUE}{}$ • • We do not us >0.035 $2^1 \text{ Using B}(J/\psi - \gamma K\overline{K}\pi) < 0.75$ $\Gamma(\gamma \rho^0)/\Gamma(2\pi + 2 \frac{VALUE}{}$ $0.050 \pm 0.13 \text{ OUR FI}$ 0.45 ± 0.18 $2^2 \text{ Using B}(J/\psi - \gamma 2\pi + 2\pi^-) = 0.$ $\Gamma(\gamma \rho^0)/\Gamma_{\text{total}}$ $VALUE$ $0.055 \pm 0.013 \text{ OU}$ $0.058 \pm 0.007 \pm 0.$ • • • We do not us <0.05 $(\eta \pi \pi)/\Gamma(\gamma \rho^0)$ $VALUE$	the following 95 95 See the following 90	BITYUK« data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN → γγρ ⁰)=0.25 DOCUMENT ID eles scale factor or 22 COFFMAN → γγρ ⁰)=0.25 en by MIR 88. DOCUMENT ID ncludes scale factor or 24 CAFFMAN DOCUMENT ID g data for average BITYUKOV	es, fit: 90 × 10 if 2.5. 90 × 10 ctor of 95 es, fit:	88 SF, i, limits, 98c OI 95 VE TECN TECN MRK3 -4 and TECN VES S, limits, 5 SPEC	etc. • • • • MEG 450 $pp \rightarrow pf_1(1285)p_5$ ES $37 \pi^- N \rightarrow \pi^- \pi^+ \pi^- \gamma N$ etc. • • • $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^ J/\psi \rightarrow \gamma \gamma \gamma \pi^+ \pi^ J/\psi \rightarrow \gamma $
• • • We do not us <0.50 <0.93 $ \Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi) $ \times_{NALUE} • • We do not us >0.035 $ ^{21} \text{ Using B} (J/\psi - \gamma K\overline{K}\pi) =<0.75 $ $\Gamma(\gamma \rho^0)/\Gamma(2\pi + 2 \gamma K\overline{K}\pi) =<0.75 $ \times_{NALUE} 0.55 \pm 0.13 OUR FI 0.45 \pm 0.18 $ ^{22} \text{ Using B} (J/\psi - \gamma 2\pi + 2\pi -) =0. $ $\Gamma(\gamma \rho^0)/\Gamma_{\text{total}} $ $\frac{VALUE}{VALUE} $ 0.055 \pm 0.013 OU 0.028 \pm 0.007 \pm 0. • • We do not us <0.05	se the following 95 95	BITYUK« data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN → γγρ ⁰)=0.25 DOCUMENT ID eles scale factor or 22 COFFMAN → γγρ ⁰)=0.25 en by MIR 88. DOCUMENT ID ncludes scale factor or 24 CAFFMAN DOCUMENT ID g data for average BITYUKOV	es, fit: 90 × 10 if 2.5. 90 × 10 ctor of 95 es, fit:	88 SF, i, limits, 98c OI 95 VE TECN TECN MRK3 -4 and TECN VES S, limits, 5 SPEC	etc. • • • • MEG 450 $pp \rightarrow pf_1(1285)p_5$ ES $37 \pi^- N \rightarrow \pi^- \pi^+ \pi^- \gamma N$ etc. • • • $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^ J/\psi \rightarrow \gamma \gamma \gamma \pi^+ \pi^ J/\psi \rightarrow \gamma $
• • • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(KK\pi)$ • • • We do not us >0.035 21 Using $B(J/\psi - \gamma KK\pi) = <0.7$: $\Gamma(\gamma \rho^0)/\Gamma(2\pi + 2 \frac{VALUE}{2}$ 0.50 ± 0.13 OUR FI 0.45 ± 0.18 22 Using $B(J/\psi - \gamma 2\pi + 2\pi -) = 0$. $\Gamma(\gamma \rho^0)/\Gamma \text{total}$ $VALUE$ 0.005 ± 0.013 OU $0.028 \pm 0.007 \pm 0$. • • • We do not us <0.05 $\Gamma(\eta \pi \pi)/\Gamma(\gamma \rho^0)$ $VALUE$ 9.5 ± 2.0 OUR FIT	se the following 95 95	BITYUK« data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN → γγρ ⁰)=0.25 DOCUMENT ID eles scale factor or 22 COFFMAN → γγρ ⁰)=0.25 en by MIR 88. DOCUMENT ID ncludes scale factor or 24 CAFFMAN DOCUMENT ID g data for average BITYUKOV	90 × 10 ff 2.5. 90 × 10 ff 95 ff 2.5. 91 ff 91 f	88 SF, i, limits, 98c OI PECN S, limits, 17ECN S, limits, VES S, limits, S SPEC I PECN S	etc. • • • • MEG 450 $pp \rightarrow pf_1(1285)p_5$ ES $37 \pi^- N \rightarrow r^- \gamma N$ Etc. • • • $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^ J/\psi \rightarrow \gamma \gamma \gamma \pi^+ \pi^ J/\psi \rightarrow \gamma \gamma \gamma \gamma \pi^+ \pi^ J/\psi \rightarrow \gamma \gamma \gamma \gamma \pi^+ \pi^ J/\psi \rightarrow \gamma $
*• • We do not us <0.50 <0.93 $\Gamma(\gamma \rho^0)/\Gamma(KK\pi)$ *** We do not us >0.035 >0.035 >0.035 >0.035 >0.035 $>0.50\pm0.13$ $>0.50\pm0.13$ $>0.45\pm0.18$ $>0.20\pm0.13$ $>0.055\pm0.013$ $>0.055\pm0.013$ $>0.028\pm0.007\pm0.$ • • • We do not us <0.05 <0.05 $\Gamma(\gamma \rho^0)/\Gamma(\gamma \rho^0)$ $VALUE$ $= 0.055\pm0.013$ $= 0.055\pm0.003$ $= 0.05$	se the following 95 95	BITYUKO data for average BARBER AMELIN DOCUMENT ID data for average 21 COFFMAN → γγρ ⁰)=0.25 DOCUMENT ID see a scale factor of 22 COFFMAN → γγρ ⁰)=0.25 En by MIR 88. DOCUMENT ID color of the scale factor of 30 color of	es, fit: 90 × 10 f 2.5. 90 × 10 ctor of 95 es, fit: 916 916 92 93 94 95 95 96 97 97 98	88 SF, i, limits, 98c Of PS VE TECN MRK3 –4 and TECN VES s, limits, VES s, limits, PSPEC TECN TECN COMEG	etc. • • • • MEG 450 $pp \rightarrow pf_1(1285) p_5$ ES $37 \pi^- N \rightarrow \pi^- \pi^+ \pi^- \gamma N$ etc. • • • • • $\pi^- \pi^+ \pi^- \gamma N$ $\frac{\Gamma_{11}/\Gamma_9}{COMMENT}$ etc. • • • • $\frac{J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-}{\pi^- \gamma N}$ $\frac{\Gamma_{11}/\Gamma_3 = \Gamma_{11}/\frac{1}{3}\Gamma_1}{COMMENT}$ $\frac{J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-}{\pi^- \pi^+ \pi^- \gamma N}$ $\frac{COMMENT}{\pi^- \pi^+ \pi^- \gamma N}$ etc. • • • • $\frac{32 \pi^- p \rightarrow \pi^+ \pi^- \gamma n}{\pi^- \pi^+ \pi^- \gamma N}$

f1(1285) REFERENCES

			•	
SOSA	99	PRL 83 913	M. Sosa et al.	
BARBERIS	9BC	PL B440 225	D. Barberis et al.	(WA102 Collab.)
ALDE	97B	PAN 60 386	D. Alde et al.	(GAM5 Collab.)
		Translated from YAF 60	458.	,
BARBERIS	97B	PL B413 217	D. Barberis et al.	(WA102 Collab.)
BARBĒRIS	97C	PL B413 225	D. Barberis et al.	(WA102 Collab.)
AMELIN	95	ZPHY C66 71	D.V. Amelin et al.	(VES Collab.)
ANTINORI	95	PL B353 589	F. Antinori et al.	(ATHU, BARI, BIRM+)
ABATZI\$	94	PL B324 509	S. Abatzis et al.	(ATHU, BARI, BIRM+)
LEE	94	PL B323 227	J.H. Lee et al.	(BNL, IND, KYUN, MASD+)
ARMSTRONG		PL B307 394	T.A. Armstrong et al.	(FNAL, FERR, GENO+)
ARMSTRONG		ZPHY C54 371	T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
BOLTON	92	PL B278 495	T. Bolton et al.	(Mark III Collab.)
BITYUKOV	91B	SJNP 54 318	5.I. Bityukov et al.	(SERP)
FURIN	91C	Translated from YAF 54 PL B267 293	S. Fukui <i>et al.</i>	(SUGI, NAGO, KEK, KYOT+)
FUKUI AUGUSTIN	90	PR D42 10	J.E. Augustin et al.	(DM2 Collab.)
COFFMAN	90	PR D41 1410	D.M. Coffman et al.	(Mark III Collab.)
ARMSTRONG		PL B221 216	T.A. Armstrong et al.	(CERN, CDEF, BIRM+) JPC
ARMSTRONG		PL B228 536	T.A. Armstrong, M. Ben-	
ARMSTRONG		ZPHY C43 55	T.A. Armstrong et al.	(CERN, BIRM, BARI+)
RATH	89	PR D40 693	M.G. Rath et al.	(NDAM, BRAN, BNL, CUNY+)
AIHARA	88B	PL B209 107	H. Aihara et al.	(TPC-2γ Collab.)
BIRMAN	88	PRL 61 1557	A. Birman et al.	(BNL, FSU, IND, MASD) JP
BITYUKOV	88	PL B203 327	5.1. Bityukov et al.	(SERP)
MIR	88	Pho-Pho 88 Conf., 126	R. Mir	(Mark III Collab.)
ALDE	87	PL B198 286	D.M. Alde et al.	(LANL, BRUX, SERP, LAPP)
BECKER	87	PRL 59 186	J.J. Becker et al.	(Mark III Collab.)
GIDAL	87	PRL 59 2012	G. Gidal et al.	(LBL, SLAC, HARV)
ANDO	86	PRL 57 1296	A. Ando et al.	(KEK, KYOT, NIRS, SAGA+) IJP
REEVES	86	PR 34 1960	D.F. Reeves et al.	(FLOR, BNL, IND+) JP
CHUNG	85	PRL 55 779	S.U. Chung et al.	(BNL, FLOR, IND+) JP
ARMSTRONG	84	PL 146B 273	T.A. Armstrong et al.	(ATHU, BARI, BIRM+) JP
BITYUKOV	84B	PL 144B 133	S.I. Bityukov et al.	(SERP)
CHAUVAT	84	PL 148B 382	P. Chauvat et al.	(CERN, CLER, UCLA+)
TORNQVIST	82B	NP B203 268	N.A. Tornqvist	(HELS)
EVANGELISTA	81	NP B178 197	C. Evangelista et al.	(BARI, BONN, CERN+)
BROMBERG	80	PR D22 1513	C.M. Bromberg et al.	(CIT, FNAL, ILLC+)
DIONISI	80	NP B169 1	C. Dionisi et al.	(CERN, MADR, CDEF+)
GURTU	79	NP B151 181	A. Gurtu et al.	(CERN, ZEEM, NIJM, OXF)
STANTON	79	PRL 42 346	N.R. Stanton et al.	(OSU, CARL, MCGI+) JP
CORDEN	78	NP B144 253	M.J. Corden et al.	(BIRM, RHEL, TELA+) JP
NACASCH	78	NP B135 203	R. Nacasch et al.	(PARIS, MADR, CERN)
GRASSLER	77	NP B121 189	H. Grassler et al.	(AACH3, BERL, BONN+)
DEFOIX	72	NP B44 125	C. Defoix et al.	(CDEF, CERN)
DUBOC	72	NP B46 429	J. Duboc et al.	(PARIS, LIVP)
THUN	72	PRL 28 1733	R. Thun et al.	et al. (STON, NEAS)
BARDADIN	71 71	PR D4 2711 PL 34B 659	M. Bardadin-Otwinowska K. Boesebeck (AACH	, BERL, BONN, CERN, CRAC+)
BOESEBECK	69	PRL 22 1204	J.H. Campbell et al.	(PURD)
CAMPBELL LORSTAD	69	NP B14 63	B. Lorstad et al.	(CDEF, CERN) JP
D'ANDLAU	6B	NP B5 693	C. d'Andiau et al.	(CDEF, CERN, IRAD+) IJP
DANDLAG	67	PR 163 1377	O.I. Dahl et al.	(LRL) IJP
DAIL	•	*** *** ****	o o o.	(2.12)131

--- OTHER RELATED PAPERS ---

AIHARA ASTON ATKINSON GAVILLET D'ANDLAU MILLER	85 84E 82 65	PR D38 1 PR D32 2255 PL 138B 459 ZPHY C16 119 PL 17 347 PRL 14 1074	H. Aihara et al. D. Aston et al. M. Atkinson et al. P. Gavillet et al. C. d'Andlau et al. D.H. Miller et al.	(TPC-27 Collab.) JPC (SLAC, CARL, CNRC) (BÖNN, CERN, GLAS+) (CERN, CDEF, PADO+) (CDEF, CERN, IRAD+) (LRL, UCB)
---	-----------------------	--	---	---

$\eta(1295)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

η(1295) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1297.0 ± 2.8 OUR	AVERAGE				
1299 ±4	2100	ALDE			$100 \pi^- \rho \rightarrow \eta \pi^0 \pi^0 \eta$
1295 ±4		FUKUI	91c S	SPEC	8.95 $\pi^- p \to \eta \pi^+ \pi^- n$
• • • We do not us	se the following	data for averag	es, fits,	limits,	etc. • • •
~ 1275		STANTON	79 (CNTR	$8.4 \pi^- p \rightarrow \pi \eta 2\pi$

η(1295) WIDTH

VALUE (MeV) 53±6	EVTS	DOCUMENT ID		$\frac{COMMENT}{8.95 \pi^- p \rightarrow \eta \pi^+ \pi^- n}$
• • • We do not	use the following			
<40	2100	ALDE	97B GAM4	$100 \pi^- \rho \rightarrow \eta \pi^0 \pi^0 \eta$
~ 70		STANTON	79 CNTR	$8.4 \pi^- p \rightarrow \pi \eta 2\pi$

η (1295) DECAY MODES

	Mode	Fraction (Γ_I/Γ)	_
$\overline{\Gamma_1}$	$\eta \pi^+ \pi^-$	seen	
Γ_2	$a_0(980)\pi$	seen	
Γ_3	$\gamma\gamma$		
Γ_4	$\eta \pi^0 \pi^0$	seen	
Γ_5	$\eta(\pi\pi)_{S}$ -wave	seen	

 $\eta(1295), \pi(1300), a_2(1320)$

$\eta(1295)$	$\Gamma(1)\Gamma($	$(\gamma\gamma)/\Gamma$	(total)
--------------	--------------------	-------------------------	---------

$\Gamma(\eta\pi^+\pi^-)\times 1$	$\Gamma_1\Gamma_3/\Gamma$					
VALUE (keV)	<u>CL%</u>	DOCUMENT I	D	TECN	COMMENT	
<0.3 • • • We do not u	se the followin	ANTREASY	ges, fits	s. limits.	etc. • • •	,
<0.6	90	AIHARA	886	TPC	e+e- e+e-	$7\pi^{+}\pi^{-}$

η(1295) BRANCHING RATIOS

$\Gamma(a_0(980)\pi)/\Gamma_{\text{total}}$				Γ ₂ /Γ
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
• • • We do not use the fo	ollowing data for average	s, fits	, limits,	etc. • • •
not seen	BERTIN	97		$0.0 \overline{p}p \to \\ K^{\pm}(K^0) \pi^{\mp} \pi^{+} \pi^{-}$
seen	BIRMAN	88	MPS	$8\pi^-p \rightarrow K^+\overline{K}^0\pi^-n$
large	ANDO	86	SPEC	$8 \pi^- \rho \rightarrow \eta \pi^+ \pi^- \pi$
large	STANTON	79	CNTR	$8.4~\pi^-p\to~n\eta2\pi$
$\Gamma(a_0(980)\pi)/\Gamma(\eta\pi^0\pi^0)$)			Γ ₂ /Γ ₄
VALUE	DOCUMENT ID		TECN	COMMENT
0.65±0.10	1 ALDE	97B	GAM4	$100 \pi^- p \rightarrow \eta \pi^0 \pi^0 \pi$

¹ Assuming that a_0 (980) decays only to $\eta \pi$.

$\Gamma(\eta(\pi\pi)_{S-\text{Wave}})/\Gamma(\eta\pi^0\pi^0)$					Γ ₅ /Γ ₄
VALUE	DOCUMENT ID		TECN	COMMENT	
0.35±0.10	ALDE	97B	GAM4	100 π ⁻ ρ →	$\eta \pi^0 \pi^0 \pi$

η(1295) REFERENCES

ALDE	97B	PAN 60 386 Translated from YAF 60	D. Alde et al.	(GAMS Collab.)
BERTIN	97	PL B400 226	A. Bertin et al.	(OBELIX Collab.)
FUKUI	91C	PL B267 293	S. Fukui et al.	(SUGI, NAGO, KEK, KYOT+)
AIHARA	88C	PR D38 1	H. Aihara et al.	(TPC-2γ Collab.)
BIRMAN	88	PRL 61 1557	A. Birman et al.	(BNL, FŠU, IND, MASD) JP
ANTREASYAN	87	PR D36 2633	D. Antreasvan et al.	(Crystal Ball Collab.)
ANDO	86	PRL 57 1296	A. Ando et al.	(KEK, KYOT, NIRS, SAGA+) IJF
STANTON	79	PRL 42 346	N.R. Stanton et al.	(OSU, CARL, MCGI+) JP

 $\pi(1300)$

VALUE (MeV)

$$I^{G}(J^{PC}) = 1^{-}(0^{-})$$

TECN COMMENT

π(1300) MASS DOCUMENT IN

MALUE (MEV)	DOCUMENTIO) LCN	COMMENT
1300±100 OUR ESTIMA	ATE		
• • • We do not use the fo	ollowing data for averag	es, fits, limits,	etc. • • •
1275± 15	BERTIN		$0.05 \; \overline{p} p \rightarrow 2\pi^+ 2\pi^-$
\sim 1114	ABELE	96 CBAR	$0.0 \ \overline{p}p \rightarrow 5\pi^0$
1190 ± 30	ZIELINSKI	84 SPEC	$200 \pi^+ Z \rightarrow Z 3\pi$
1240± 30	BELLINI	82 SPEC	$40 \pi^- A \rightarrow A3\pi$
1273± 50	¹ AARON	81 RVUE	
1342± 20	BONESINI	81 OMEG	$12 \pi^- p \rightarrow p 3\pi$
~ 1400	DAUM	81B SPEC	63,94 $\pi^- p$
¹ Uses multichannel Aitcl	nison-Bowler model (Be	OWLER 75).	Uses data from DAUM 80

and DANKOWYCH 81.

π(1300) WIDTH

VALUE (MeV)	DOCUMENT ID	>	TECN	COMMENT
200 to 600 OUR EST	MATE			
• • • We do not use th	e following data for averag	ges, fits	, limits,	etc. • • •
218±100	BERTIN	97D	OBLX	$0.05 \overline{p} p \rightarrow 2\pi^+ 2\pi^-$
~ 340	ABELE	96	CBAR	$0.0 \overline{p} p \rightarrow 5\pi^0$
440± 80	ZIELINSKI	84	SPEC	$200 \pi^+ Z \rightarrow Z3\pi$
360 ± 120	BELLINI	82	SPEC	$40 \pi^- A \rightarrow A3\pi$
580 ± 100	² AARON	81	RVUE	
220± 70	BONESINI	81	OMEG	$12 \pi^- p \rightarrow p 3\pi$
~ 600	DAUM	81B	SPEC	63,94 $\pi^{-}p$

π(1300) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	
Γ ₁	$ ho\pi$ $\pi(\pi\pi)_{S ext{-wave}}$	seen seen	
13	$\gamma\gamma$		

$\pi(1300) \ \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(\rho\pi)\times\Gamma(\gamma\gamma)$)/F _{total}			Γ ₁ Γ ₃ /Γ
VALUE (keV)	CL%	DOCUMENT ID	TECN	COMMENT
< 0.085	90	ACCIARRI	97T L3	$e^+e^{e^+e^-\pi^+\pi^-\pi^0}$
<0.54	90	ALBRECHT	97B ARG	$e^{+}e^{-}\pi^{+}\pi^{-}\pi^{0}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{+}\pi^{-}\pi^{0}$

 $\Gamma(\pi(\pi\pi)_{S\text{-wave}})/\Gamma(\rho\pi)$ Γ_2/Γ_1 DOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • • • 3 AARON 81 RVUE

 $^{3}\,\text{Uses}$ multichannel Aitchison-Bowler model (BOWLER 75). Uses data from DAUM 80 and DANKOWYCH 81.

π(1300) REFERENCES

ACCIARRI ALBRECHT BERTIN ABELE ZIELINISKI BELLINI AARON BONESINI DANKOWY DAUM	97T 97B 97D 96 84 82 81 81 81B	PL B413 147 ZPHY C74 469 PL B414 220 PL B380 453 PR D30 1855 PR L 48 1697 PR D24 1207 PL 103B 75 PRL 46 580 NP B182 269	M. Acciarri et al. H. Albrecht et al. A. Bettin et al. A. Abele et al. M. Zielinski et al. G. Bellini et al. R.A. Aaron, R.S. Longac M. Bonesini et al. J.A. Dankowych et al. C. Daum et al.	(MILA, LIVP, DARE+) (TNTO, BNL, CARL+) (AMST, CERN, CRAC, MPIM+)

OTHER RELATED PAPERS -

ASNER 00 ZAIMIDOROGA 99	PAN 30 1	D.M. Asner et al. O.A. Zaimidoroga	(CLEO Collab.)
	Translated from S R ZPHY C75 593 C PL B349 576	JPN 30 5. K. Ackerstaff et ai. H. Albrecht et al.	(OPAL Collab.) (ARGUS Collab.)

 $a_2(1320)$

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

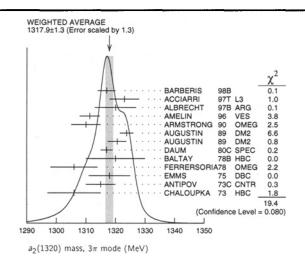
a2(1320) MASS

DOCUMENT ID

1318.0±0.6 OUR AVERAGE Includes data from the 4 datablocks that follow this one.

Error includes scale factor of 1.1.

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>


The data in this block is included in the average printed for a previous datablock. 1317.9± 1.3 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. $1317 \ \pm \ 3$ BARBERIS 450 pp → 1323 ± 4 ±3 ACCIARRI

1320 ± 7 ALBRECHT 97B ARG $1311.3 \pm 1.6 \pm 3.0$ 72400 AMELIN 96 VES 1310 ± 5 ARMSTRONG 90 OMEG 0 $\begin{array}{c} J/\psi \rightarrow \rho^{\pm} a_{2}^{\mp} \\ J/\psi \rightarrow \rho^{0} a_{2}^{0} \end{array}$ 1323.8± 2.3 4022 AUGUSTIN 89 DM2 ± 1320.6 ± 3.1 3562 AUGUSTIN 89 DM2 0 $63.94 \pi^- \rho \rightarrow 3\pi \rho$ 1317 ± 2 25000 ¹ DAUM 80c SPEC -1 BALTAY 78B HBC +0 $15 \pi^+ \rho \rightarrow \rho 4\pi$ 1320 ±10 1097 1306 ± 8 FERRERSORIA78 OMEG - $9 \pi^- p \rightarrow p3\pi$ 1318 ± 7 1 EMMS 75 DBC 0 $4 \pi^+ n \rightarrow p(3\pi)^0$ 1315 ± 5 ¹ ANTIPOV 73C CNTR -25,40 $\pi^- \rho \rightarrow$ 1306 ± 9 1580 CHALOUPKA 73 HBC -3.9 $\pi^{-}p$ • • • We do not use the following data for averages, fits, limits, etc. • • • $\gamma p \rightarrow \eta \pi^+ \pi^+ \pi^ 12 \pi^- p \rightarrow 3\pi p$ $15 \pi^+ p \rightarrow \Delta 3\pi$ 1305 ±14 CONDO 93 SHF 1310 ± 2 ¹ EVANGELISTA 81 OMEG 1343 ±11 490 BALTAY 78B HBC 0 $\pi^- p$ near a_2 threshold $1309\ \pm\ 5$ 5000 BINNIE 71 MMS BOWEN 71 MMS $5\pi^-p$ $5\pi^+p$ 1299 ± 6 28000 BOWEN 71 MM\$ 1300 ± 6 24000 BOWEN MM\$ 17000

ALSTON-...

70 HBC

 1 From a fit to $J^P=2^+~
ho\pi$ partial wave.

K±KS MODE

See key on page 239

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

The data in this block is included in the average printed for a previous datablock.

1318.	±	0.7 QUI	R AVERAGI	E				
1319	±	5	4700	^{2,3} CLELAND	828 S	PEC	+	$50 \pi^+ \rho \rightarrow \kappa_5^0 \kappa^+ \rho$
1324	±	6	5200	^{2,3} CLELAND	82B S	PEC	_	$50 \pi^+ p \rightarrow K_S^0 K^+ p$ $50 \pi^- p \rightarrow K_S^0 K^- p$
1320	±	2	4000	CHABAUD	80 S	PEC	-	17 π ⁻ A → Κ ⁰ Κ ⁻ A
1312	±	4	11000	CHABAUD	78 S	PEC	-	9.8 $\pi^- \rho \rightarrow \kappa^- \kappa_S^0 \rho$
1316	±	2	4730	CHABAUD	78 S	PEC	-	$ \begin{array}{c} 18.8 \ \pi^{-} \ \rho \rightarrow \\ \kappa^{-} \ \kappa^{0} \ \rho \end{array} $
1318	±	1		2,4 MARTIN	78D S	PEC	_	$10 \pi^- p \rightarrow K_S^0 K^- p$
1320	±	2	2724	MARGULIE	76 S	PEC	-	$23 \pi^- \rho \rightarrow \kappa^- \kappa_5^0 \rho$
1313	±	4	730	FOLEY	72 C	NTR	-	$20.3 \pi^- \rho \rightarrow K^- K_5^0 \rho$
1319	±	3	1500	⁴ GRAYER	71 A	SPK	-	$17.2 \pi^{-} \stackrel{\circ}{p} \rightarrow K^{-} \stackrel{\circ}{K} \stackrel{\circ}{p}$

• • •	AAG GO HOL N	se the ion	owing data for av	erages, nts. iii	nits,	etc. • • •
1330	±11	1000	^{2,3} CLELAND	82B SPEC	+	$30 \pi^+ \rho \rightarrow K_5^0 K^+ \rho$
1324	± 5	350	HYAMS	78 ASPK	+	12.7 $\pi^+ p \rightarrow$
						$\kappa + \kappa^0 n$

 $^{^2}$ From a fit to $J^P = 2^+$ partial wave.

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>
The data in this block is included in the average printed for a previous datablock.

1318.0±1.5 OUR AVERAGE

1317	± 1	±2		THOMPSON	97	MPS		$18 \pi^- \rho \rightarrow \eta \pi^- \rho$
1315	±5	±2		⁵ AMSLER	94D	CBAR		$0.0 \ \overline{p}p \rightarrow \pi^0 \pi^0 \eta$
1325.1	± 5.1			AOYAGI	93	BKEI		$\pi^- \rho \rightarrow \eta \pi^- \rho$
1317.7	7 ± 1.4	± 2.0		BELADIDZE	93	VES		$37\pi^- N \rightarrow \eta \pi^- N$
1323	± 8		1000	6 KEY	73	OSPK	_	$6 \pi^- \rho \rightarrow \rho \pi^- \eta$
• • •	We o	do not use	the follow	ing data for ave	rages,	fits, lim	nits, etc	C. • • •
1324	±5			ARMSTRON	G 93C	E760	0	$\bar{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma$
1336.2	2±1.7	7	2561	DELFOSSE	81	SPEC	+	$\pi^{\pm} \rho \rightarrow \rho \pi^{\pm} \eta$
1330.7	7±2.4	ļ.	1653	DELFOSSE	81	SPEC	-	$\pi^{\pm} \rho \rightarrow \rho \pi^{\pm} \eta$

^{6200 6,7} CONFORTO 73 OSPK - $6\pi^-p \to pMM^ ^{\mbox{5}}$ The systematic error of 2 MeV corresponds to the spread of solutions.

n' m MODE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
The data in this block is included in	the average printed	for a pre	vious datablock.

1327.0±10.7	BELADIDZE	93 VES	$37\pi^- N \rightarrow \eta' \pi^- N$

a (1	320)	WIDTH	

3π MODE						
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
104.7± 1.9 OUR	AVERAGE					
120 ±10		BARBERIS	98B			450 pp →
						$\rho_f \pi^+ \pi^- \pi^0 \rho_S$
$105 \pm 10 \pm 11$		ACCIARRI	97T	L3		e ⁺ e ⁻ → 0
120 ±10		ALBRECHT	070	ARG		$ \begin{array}{c} e^+ e^- \rightarrow \\ e^+ e^- \pi^+ \pi^- \pi^0 \\ e^+ e^- \rightarrow \end{array} $
120 ±10		ALBRECITI	316	ANG		$e^{+}e^{-}\pi^{+}\pi^{-}\pi^{0}$
103.0 ± 6.0 ± 3.3	3 72400	AMELIN	96	VES		$36 \pi^- \rho \rightarrow$
					_	$\pi^{+}\pi^{-}\pi^{0}n$
120 ±10		ARMSTRONG	90	OMEG	0	$300.0pp \rightarrow$
		AUGUSTIN		D140		$pp\pi^+\pi^-\pi^0$
107.0 ± 9.7	4022	AUGUSTIN	89	DM2	±	$J/\psi \to \rho^{\pm} a_{2}^{\mp}$ $J/\psi \to \rho^{0} a_{2}^{0}$
118.5 ± 12.5	3562	AUGUSTIN	89	DM2	0	
97 ± 5		8 EVANGELISTA	81	OMEG	_	$12 \pi^- \rho \rightarrow 3\pi \rho$
96 ± 9	25000	8 DAUM	80C	SPEC	-	63,94 $\pi^- p \to 3\pi p$
110 ±15	1097	8 BALTAY	78B	HBC	+0	
112 ±18	1600	⁸ EMM5	75	DBC	0	$4 \pi^+ n \rightarrow \rho(3\pi)^0$
122 ±14	1200	^{8,9} WAGNER	75	HBC	0	$7 \pi^+ \rho \rightarrow$
		_				$\Delta^{++}(3\pi)^{0}$
115 ±15		8 ANTIPOV	73C	CNTR	-	25,40 $\pi^- \rho \rightarrow$
						$\rho\eta\pi^-$
99 ±15	1580	CHALOUPKA	73	нвс	-	3.9 π p
105 ± 5	28000	BOWEN	71	MMS	-	5 π - ρ
99 ± 5	24000	BOWEN	71	MMS	+	5 π ⁺ ρ
103 ± 5	17000	BOWEN	71	MMS	-	7 π ⁻ ρ
• • • We do not	use the foll	lowing data for aver	ages,	fits, lim	nits, et	C. • • •
120 ±40		CONDO	93	SHF		$\gamma \rho \rightarrow \eta \pi^+ \pi^+ \pi^-$
115 ±14	490	BALTAY	78B	HBC	0	$15 \pi^+ \rho \rightarrow \Delta 3\pi$
72 ±16	5000	BINNIE	71	MMS	-	$\pi^- p$ near a_2 thresh-
79 ±12	941	ALSTON	70	нвс	+	$7.0 \pi^+ \rho \rightarrow 3\pi \rho$

⁸ From a fit to $J^P=2^+$ $\rho\pi$ partial wave. ⁹ Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the K^* (892) mass.

K±KS AND NA MODES

VALUE (MeV) DOCUMENT ID

107 ±5 OUR ESTIMATE

110.3±1.7 OUR AVERAGE Includes data from the 2 datablocks that follow this one.

K±K% MODE

	E (MeV)	EVTS block is include	DOCUMENT ID		TECN_	CHG	
i ne	gata in this	DIOCK IS INCIDUE	o iii the average	: print	eu ior a	previo	ous datablock.
109.6	3± 2.4 QU	R AVERAGE					
112	±20		¹ CLELAND	82B	SPEC	+	$50 \pi^{+} \rho \to K_{S}^{0} K^{+}$ $50 \pi^{-} \rho \to K_{S}^{0} K^{-}$
120	±25	5200 10,1	¹ CLELAND	82B	SPEC	-	$50 \pi^- \rho \rightarrow K_S^0 K^-$
106	± 4	4000	CHABAUD	80	SPEC	-	$\begin{array}{c} 17 \ \pi^- A \rightarrow \\ K_S^0 K^- A \end{array}$
126	±11	11000	CHABAUD	78	SPEC	_	9.8 $\pi^- p \rightarrow \kappa^- \kappa_S^0 p$
101	± 8	4730	CHABAUD	78	SPEC	-	18.8 $\pi^{-} \rho \rightarrow K^{-} K_{5}^{0} \rho$
113	± 4	10,1	² MARTIN	78D	SPEC	_	$10 \pi^- p \rightarrow \kappa_5^0 \kappa^-$
105	± 8	2724 1	² MARGULIE	76	SPEC	_	$23 \pi^- p \rightarrow K^- K_S^0$
113	±19	730	FOLEY	72	CNTR	-	$20.3 \pi^- \rho \rightarrow K^- K_5^0 \rho$
123	±13	1500 1	² GRAYER	71	ASPK	-	$17.2 \pi^{-} p \rightarrow K^{-} K_{5}^{0} p$
	• We do no	ot use the follow	ing data for ave	rages,	fits, lin	nits, et	
		10.1	1				+O

1000 10,11 CLELAND $30 \pi^+ \rho \to K_S^0 K^+ \rho$ 121 ±51 828 SPEC + $12.7 \pi^+ \rho \rightarrow K^+ K_S^0 \rho$ 110 ±18 350 HYAMS 78 ASPK +

 10 From a fit to $J^P=2^+$ partial wave. 11 Number of events evaluated by us. 12 Width errors enlarged by us to $4\Gamma/\sqrt{N};$ see the note with the $K^*(892)$ mass.

The data in this block is included in the average printed for a previous datablock.

118 ±10

111.0±	2.5	OUR	AVERAGE					
112 ±	3	±2		¹³ AMSLER	94D	CBAR		$0.0 \overline{\rho} p \rightarrow \pi^0 \pi^0 \eta$
103 ±	6	± 3		BELADIDZE	93	VES		$37\pi^-N \rightarrow \eta\pi^-N$
112.2±	5.7	,	2561	DELFOSSE		SPEC		$\pi^{\pm} \rho \rightarrow \rho \pi^{\pm} \eta$
116.6±	7.7	•	1653	DELFOSSE	81	SPEC	-	$\pi^{\pm} \rho \rightarrow \rho \pi^{\pm} \eta$
108 ±	9		1000	KEY	73	OSPK		$6 \pi^- \rho \rightarrow \rho \pi^- \eta$
V	Ve o	lo not	use the follo	owing data for aver	ages,	fits, lim	iits, e	tc. • • •
107 1	2	12		14 THOMPSON	97	MADE		18 = 0 - 25 0

^{104 ± 9}

³ Number of events evaluated by us.

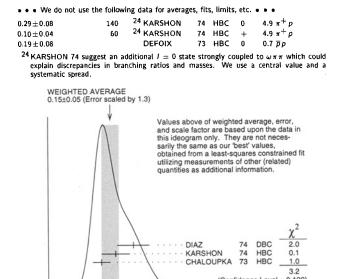
⁴ Systematic error in mass scale subtracted.

 $[\]frac{6}{2}$ Error includes 5 MeV systematic mass-scale error.

⁷ Missing mass with enriched MMS = $\eta \pi^-$, $\eta = 2\gamma$.

 $^{^{13}\,\}mathrm{The}$ systematic error of 2 MeV corresponds to the spread of solutions.

 $^{^{14}}$ Resolution is not unfolded. 15 Missing mass with enriched MMS = $\eta\,\pi^-$, $\eta=2\gamma$.


18 Using an incoherent background. 19 Using a coherent background.

η'π MODE			a2(1320) BRANCHIN
/ALUE (MeV) .06±32	DOCUMENT ID TECN COMMENT BELADIDZE 93 VES $37\pi^- N \rightarrow \eta' \pi^- N$	$\Gamma(K\overline{K})/\Gamma(ho\pi)$	
	DECADIDZE 33 VES SIN IV -> 1/2 IV	VALUE	EVTS DOCUMENT ID
	a ₂ (1320) DECAY MODES	0.070±0.012 OUR FIT 0.078±0.017	CHABAUD
	Scale factor/		following data for average:
Mode	Fraction (Γ_i/Γ) Confidence level	0.011 ± 0.003	²⁰ BERTIN
$ ho\pi$	(70.1 ± 2.7) % S=1.2	0.056 ± 0.014	50 ²¹ CHALOUPKA
$\eta\pi$ $\omega\pi\pi$	(14.5±1.2) %	0.097 ± 0.018	113 ²¹ ALSTON
$\omega\pi\pi$ $K\overline{K}$	(10.6±3.2) % S=1.3	0.06 ± 0.03	²¹ ABRAMOVI
$\eta'(958)\pi$	$(4.9\pm0.8)\%$ $(5.3\pm0.9)\times10^{-3}$	0.054 ± 0.022	²¹ CHUNG
$\pi^{\pm}\gamma$	$(2.8\pm0.6)\times10^{-3}$	20 Using 4π data from E 21 Included in CHABAUI	BERTIN 97D.
$\gamma \gamma$	$(9.4\pm0.7)\times10^{-6}$		
$\pi^+\pi^-\pi^-$ e^+e^-	< 8 % CL=90%	$\Gamma(\eta\pi)/[\Gamma(\rho\pi)+\Gamma(\eta)]$	
e+ e-	< 2.3 ×10 ⁻⁷ CL=90%	VALUE 0.162±0.012 OUR FIT	EVTS DOCUMENT ID
СО	NSTRAINED FIT INFORMATION	0.140±0.028 OUR AVER	
	5 branching ratios uses 18 measurements and one	0.13 ±0.04 0.15 ±0.04	ESPIGAT 34 BARNHAM
	termine 4 parameters. The overall fit has a $\chi^2 =$		J- DARITHAM
9.3 for 15 degre	,	$\Gamma(\eta\pi)/\Gamma(\rho\pi)$	
e following off-diag	onal array elements are the correlation coefficients	VALUE 0.207±0.018 OUR FIT	EVTS DOCUMENT ID
	percent, from the fit to the branching fractions, $x_i \equiv$	0.213±0.020 OUR AVER	
$_i/\Gamma_{ m total}$. The fit cons	trains the x_i whose labels appear in this array to sum to	0.18 ±0.05	FORINO FOR ANTIBOV
ie.		0.22 ±0.05 0.211±0.044	52 ANTIPOV 149 CHALOUPKA
x ₂ 10		0.246 ± 0.042	167 ALSTON
x ₃ -89 -46		0.25 ±0.09	15 BOECKMANN
x ₄ -1 -2	-24	0.23 ±0.08 0.12 ±0.08	22 ASCOLI CHUNG
x ₁ x ₂		0.22 ±0.09	CONTE
	a ₂ (1320) PARTIAL WIDTHS	$\Gamma(\eta'(958)\pi)/\Gamma_{\text{total}}$	
(+ \	-, ,	VALUE	CL% DOCUMENT ID
[π[±]γ) LUE (keV)	T6	< 0.006	following data for average 95 ALDE
5± 60	CIHANGIR 82 SPEC + 200 π^+ A	<0.006	95 ALDE
• • We do not use the f	ollowing data for averages, fits, limits, etc. • • •	< 0.02	97 BARNHAM
L±110	MAY 77 SPEC \pm 9.7 γ A	0.004 ± 0.004	BOESEBECK
(77)	Γ ₇	$\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$	
LUE (keV) EVTS	DOCUMENT ID TECN CHG COMMENT	VALUE	CL% <u>DOCUMENT ID</u> following data for average
00±0.06 OUR AVERAGE 08±0.05±0.09	ACCIARRI 97T L3 $e^+e^- \rightarrow$	< 0.011	90 EISENSTEIN
	$e^{+}e^{-}\pi^{+}\pi^{-}\pi^{0}$	<0.011 <0.04	ALSTON
$6 \pm 0.03 \pm 0.13$	ALBRECHT 97B ARG $e^+e^- \rightarrow e^+e^-\pi^+\pi^-\pi^0$	$0.04 \begin{array}{l} +0.03 \\ -0.04 \end{array}$	BOECKMANN
$6 \pm 0.26 \pm 0.18$ 36	BARU 90 MD1 $e^+e^- \rightarrow $ $e^+e^- \rightarrow 0$	-	
$0 \pm 0.07 \pm 0.15$ 415	BEHREND 90C CELL 0 $e^+e^- \rightarrow e^- \rightarrow $	$\Gamma(K\overline{K})/[\Gamma(\rho\pi)+\Gamma(\rho\pi)]$	
3±0.13±0.21	BUTLER 90 MRK2 $e^+e^-\pi^+\pi^-\pi^0$	0.054±0.009 OUR FIT	EVTS DOCUMENT ID
1±0.14±0.22 85	OEST 90 JADE $e^+e^{\pi}+_{\pi}{\pi}0$	0.048±0.012 OUR AVER	RAGE
	$e^+e^-\pi^0\eta$	0.05 ±0.02	TOET
$0 \pm 0.27 \pm 0.15$ 56 $4 \pm 0.20 \pm 0.26$	16 ALTHOFF 86 TASS 0 $e^+e^- \rightarrow e^+e^- 3\pi$ 17 ANTREASYAN 86 CBAL 0 $e^+e^- \rightarrow$	0.09 ±0.04 0.03 ±0.02	TOET 8 DAMERI
	$e^+e^-\pi^0\eta$	0.03 ± 0.02 0.06 ± 0.03	17 BARNHAM
6±0.18±0.19	BERGER 84C PLUT 0 $e^+e^- \rightarrow e^+e^-$ 3 π ollowing data for averages, fits, limits, etc. • • •		following data for average
		0.020 ± 0.004	²² ESPIGAT
$1\pm0.19^{+0.42}_{-0.11}$ 35	16 BEHREND 83B CELL 0 $e^+e^- \rightarrow e^+e^- 3\pi$	²² Not averaged becaus	e of discrepancy between m
$77 \pm 0.18 \pm 0.27$ 22	17 EDWARDS 82F CBAL 0 $e^+e^{e^+e^-\pi^0\eta}$	$\Gamma(\pi^+\pi^-\pi^-)/\Gamma(\rho\pi)$	
From $\rho\pi$ decay mode.	·	VALUE	CL% DOCUMENT ID
7 From $\eta\pi^0$ decay mode		<0.12	90 ABRAMOVI
e+e-) LUE (eV)	Ty DOCUMENT ID TECN COMMENT	$\Gamma(\pi^{\pm}\gamma)/\Gamma_{\text{total}}$	DOCUMENT ID
	VOROBYEV 88 ND $e^+e^- \rightarrow \pi^0\eta$		e following data for average
		$0.005 \substack{+0.005 \\ -0.003}$	²³ EISENBERG
	$a_2(1320) \Gamma(I)\Gamma(\gamma\gamma)/\Gamma(\text{total})$		
$(K\overline{K}) \times \Gamma(\gamma\gamma)/\Gamma_{tot}$		23 Pion-exchange mode $\Gamma(\omega\pi\pi)/\Gamma(\rho\pi)$	I used in this estimation.
ALUE (keV) .126±0.007±0.028	18 ALBRECHT 90g ARG e ⁺ e →	VALUE	EVTS DOCUMENT ID
	$e^+e^-K^+K^-$		rror includes scale factor of
 vve do not use the f 	ollowing data for averages, fits, limits, etc. • • •		GE Error includes scale fa
01 0 004 0 007	19 ALBRECHT ONE ARC at at	0.28 ± 0.09	60 DIAZ
$0.081 \pm 0.006 \pm 0.027$	19 ALBRECHT 90G ARG $e^+e^- ightarrow e^+e^-\kappa^+\kappa^-$	$\begin{array}{c} 0.28 \pm 0.09 \\ 0.18 \pm 0.08 \end{array}$	60 DIAZ ²⁴ KARSHON

	a ₂ (1320)	BRANCHING	G R	ATIOS		
$\Gamma(K\overline{K})/\Gamma(\rho\pi)$						Γ_4/Γ_1
0.070 ± 0.012 OUR FIT	<u>EVTS</u>	DOCUMENT ID			<u>CHG</u>	COMMENT
0.078±0.017 • • • We do not use the	following o	CHABAUD		RVUE Limits.	etc •	
0.011 ± 0.003	-	BERTIN		OBLX		$0.0 \ \overline{p}p \rightarrow K^{\pm} K_{s} \pi^{\mp}$
0.056 ± 0.014	50 21	CHALOUPKA	73	нвс	_	$3.9 \pi^- p$
0.097 ± 0.018	113 21	ALSTON	71	нвс	+	7.0 $\pi^{+}p$
0.06 ±0.03		ABRAMOVI			-	3.93 π ⁻ p
0.054 ± 0.022		CHUNG	68	нвс	_	3.2 $\pi^{-}p$
20 Using 4π data from E 21 Included in CHABAU	BERTIN 971 D 78 review	D. v.				
$\Gamma(\eta\pi)/[\Gamma(\rho\pi)+\Gamma(\eta)]$	π) + Γ (κ	(K)]				$\Gamma_2/(\Gamma_1+\Gamma_2+\Gamma_4)$
VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.162±0.012 OUR FIT 0.140±0.028 OUR AVER	AGE	ECDICAT		unc		
0.13 ± 0.04 0.15 ± 0.04	34	ESPIGAT BARNHAM	72 71	HBC HBC	± +	$0.0 \overline{p}p$ $3.7 \pi^+ p$
	•				'	·
Γ(ηπ)/Γ(ρπ) VALUE	EVTS	DOCUMENT ID		TECN	CHG	Γ ₂ /Γ ₁
0.207±0.018 OUR FIT		DOCUMENT ID	_	7207	<u> </u>	COMMENT
0.213±0.020 OUR AVER	RAGE					
0.18 ±0.05 0.22 ±0.05	52	FORINO ANTIPOV	76 73	HBC CNTR	_	11 π ⁻ ρ 40 π ⁻ ρ
0.211 ± 0.044	149	CHALOUPKA		НВС	_	$3.9 \pi^{-} p$
0.246 ± 0.042	167	ALSTON	71	нвс	+	7.0 $\pi^{+}p$
0.25 ±0.09 0.23 ±0.08	15	BOECKMANN ASCOLI	70 68	HBC HBC	+	5.0 π ⁺ p
0.23 ±0.08 0.12 ±0.08	22	CHUNG	68	HBC	_	5 π ρ 3.2 π ρ
0.22 ±0.09		CONTE	67	нвс	_	11.0 π p
$\Gamma(\eta'(958)\pi)/\Gamma_{\text{total}}$						Γ ₅ /Γ
VALUE	CL%	DOCUMENT ID				
• • • We do not use the <0.006	95	ALDE		GAM2	eic. •	38,100 π ⁻ p →
						$\eta' \pi^0 \pi$
< 0.02 0.004 ± 0.004	97	BARNHAM BOESEBECK	71 68	НВС НВС	+	$3.7 \pi^{+} p$ $8 \pi^{+} p$
		•			•	
$\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$	CI II	DOCUMENT ID		TECH	cuc	Γ ₅ /Γ ₁
• • • We do not use the	CL% following	DOCUMENT ID	s fit			COMMENT
< 0.011	90	EISENSTEIN	73	HBC	_	5 π ⁻ p
< 0.04	••	ALSTON	71	нвс	+	7.0 $\pi^{+}p$
$0.04 \begin{array}{c} +0.03 \\ -0.04 \end{array}$		BOECKMANN	70	нвс	0	5.0 $\pi^{+} p$
$\Gamma(K\overline{K})/[\Gamma(\rho\pi)+\Gamma(\rho\pi)]$	$(\eta\pi)+\Gamma($	(κ ' κ')]				$\Gamma_4/(\Gamma_1+\Gamma_2+\Gamma_4)$
0.054±0.009 OUR FIT	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.048±0.012 OUR AVE	RAGE					
0.05 ± 0.02		TOET	73	HBC	+	5 π ⁺ p
0.09 ±0.04		TOET		HBC	0	$5\pi^{+}p$
0.03 ± 0.02 0.06 ± 0.03	8 17	DAMERI BARNHAM	72	HBC HBC	+	$11 \pi^{-} p$ $3.7 \pi^{+} p$
• • We do not use the						
0.020 ± 0.004		² ESPIGAT		HBC	± Æ an	0.0 p p
22 Not averaged becaus	e or discrep	rancy between M	14556	5 11 UIII 7	v v dD	
$\Gamma(\pi^+\pi^-\pi^-)/\Gamma(\rho\pi)$	51.0/	D0611115117 10		TECN		Γ _B /Γ ₁
<u>∨ALUE</u> <0.12	90	DOCUMENT ID ABRAMOVI			<u>CHG</u>	3.93 # P
	,,	7.014		,		,
$\Gamma(\pi^{\pm}\gamma)/\Gamma_{\text{total}}$						Γ ₆ /Γ
• • • We do not use the	e following	DOCUMENT ID				
	_	-				
0.005 + 0.005 - 0.003		3 EISENBERG	72	нвс	4.3,5	.25,7.5 γρ
²³ Pion-exchange mode	i usea in th	is estimation.				r. /r
Γ(ωππ)/Γ(ρπ) VALUE	EVTS	DOCUMENT ID		TECN	CHG	Γ ₃ /Γ ₁
0.15±0.05 OUR FIT	rror include	es scale factor of	1.3.			
0.15±0.05 OUR AVERA						
0.28 ± 0.09 0.18 ± 0.08	60 2	DIAZ ⁴ KARSHON	74 74	DBC HBC	0	$6 \pi^+ n$ Avg. of above two
0.18 ± 0.08 0.10 ± 0.05	279	CHALOUPKA			_	3.9 m p

-0.2

 $\Gamma(\omega \pi \pi)/\Gamma(\rho \pi)$

$\Gamma(\eta'(958)\pi)/\Gamma(\eta\pi)$			Γ_5/Γ_2
VALUE	DOCUMENT ID	TECN	COMMENT
0.037±0.006 OUR AVERAGE			
0.032 ± 0.009	ABELE		$0.0 \overline{p}p \rightarrow \pi^0 \pi^0 \eta^i$
$0.047 \pm 0.010 \pm 0.004$			$37\pi^- N \rightarrow a_2^- N$
$0.034 \pm 0.008 \pm 0.005$	BELADIDZE	92 VES	$36\pi^- C \rightarrow a_2^- C$
25 Using B($\eta' \to \pi^+ \pi^- \eta$) = 0.236.	\approx 0.441, B($\eta \rightarrow \gamma \gamma$	γ) = 0.389	and B($\eta \rightarrow \pi^+\pi^-\pi^0$) =

0.6

0.4

0.2

0.8

$\Gamma(K\overline{K})/\Gamma(\eta\pi)$				Γ_4/Γ_2			
VALUE	DOCUMENT I	D TECN	COMMENT				
0.08 ± 0.02	²⁶ BERTIN	98B OBLX	$0.0~\bar{p}p \rightarrow$	$K^{\pm}K_{S}\pi^{\mp}$			
²⁶ Using $\eta \pi \pi$ data from AMS	LER 94D.						

a2(1320) REFERENCES

BARBERIS	98B	PL B422 399	D. Barberis et al.	(WA102 Collab.)
BERTIN	98B	PL B434 180	A. Bertin et al.	(OBELIX Collab.)
ABELE	97C	PL B404 179	A. Abele et al.	(Crystal Barrel Collab.)
ACCIARRI	97T	PL B413 147	M. Acciarri et al.	(L3 Collab.)
ALBRECHT	97B	ZPHY C74 469	H. Albrecht et al.	(ARGUS Collab.)
THOMPSON	97	PRL 79 1630	D.R. Thompson et al.	(EB52 Collab.)
AMELIN	96	ZPHY C70 71	D.V. Amelin et al.	(SERP, TBIL)
AMSLER	94D		C. Amsler et al.	(Crystal Barrel Collab.)
AOYAGI	93	PL B314 246	H. Aoyagi et al.	(BKEL Collab.)
ARMSTRONG	93C		T.A. Armstrong et al.	(FNAL, FÈRR, GENO+)
BELADIDZE	93	PL 313 276	G.M. Beladidze et al.	(VES Collab.)
CONDO	93	PR D48 3045	G.T. Condo et al.	(SLAC Hybrid Collab.)
ALDE	92B	ZPHY C54 549	D.M. Alde et al.	(SERP, BELG, LANL, LAPP+)
BELADIDZE	92	ZPHY C54 235	G.M. Beladidze et al.	(VES Collab.)
ALBRECHT	90G	ZPHY C48 183	H. Albrecht et al.	(ARGUS Collab.)
ARMSTRONG	90	ZPHY C48 213	T.A. Armstrong, M. Bena	
BARU	90	ZPHY C48 581	S.E. Baru et al.	(MD-1 Collab.)
BEHREND	90C	ZPHY C46 583	H.J. Behrend et al.	(ČELLO Collab.)
BUTLER	90	PR D42 1368	F. Butler et al.	(Mark II Collab.)
OEST	90	ZPHY C47 343	T. Oest et al.	(JADE Collab.)
AUGUSTIN	89	NP B320 1	J.E. Augustin, G. Cosme	(DM2 Collab.)
VOROBYEV	88	SJNP 48 273	P.V. Vorobiev et al.	(NOVO)
TORODIET	-	Translated from YAF 48		(
ALTHOFF	86	ZPHY C31 537	M. Althoff et al.	(TASSO Collab.)
ANTREASYAN		PR D33 1847	D. Antreasyan et al.	(Crystal Ball Collab.)
BERGER	84C	PL 149B 427	C. Berger et al.	(PLUTO Collab.)
BEHREND	83B	PL 125B 518	H.J. Behrend et al.	(CELLO Collab.)
CIHANGIR	82	PL 117B 123	S. Cihangir et al.	(FNAL, MINN, ROCH)
CLELAND	82B	NP B208 228	W.E. Cleland et al.	(DURH, GEVA, LAUS+)
EDWARDS	B2F	PL 1108 82	C. Edwards et al.	(CIT, HARV, PRIN+)
DELFOSSE	81	NP B183 349	A. Delfosse et al.	(GEVA, LAUS)
EVANGELISTA		NP B178 197	C. Evangelista et al.	(BARI, BÒNN, CERN+)
CHABAUD	80	NP B175 189	V. Chabaud et al.	(CERN, MPIM, AMST)
DAUM	80C	PL 89B 276	C. Daum et al.	(AMST, CERN, CRAC, MPIM+) JP
BALTAY	78B	PR D17 62	C. Baltay et al.	(COLU, BING)
CHABAUD	78	NP B145 349	V. Chabaud et al.	(CERN, MPIM)
FERRERSORIA		PL 74B 287	A. Ferrer Soria et al.	(ORSAY, CERN, CDEF+)
HYAMS	78	NP B146 303	B.D. Hyams et al.	(CERN, MPIM, ATEN)
MARTIN	78D	PL 74B 417	A.D. Martin et al.	(DURH, GEVA) JP
MAY	77	PR D16 1983	E.N. May et al.	(ROCH, CORN)
FORINO	76	NC 35A 465	A. Forino et al.	(BGNA, FIRZ, GENO, MILA+)
MARGULIE	76	PR D14 667	M. Margulies et al.	(BNL, CUNY)
MANGOLIC	, ,			(Bitch court)

EMMS	75	PL 58B 117	M.J. Emms et al.	(BIRM, DURH, RHEL) JP
WAGNER	75	PL 58B 201	F. Wagner, M. Tabak, D.N.	
DIAZ	74	PRL 32 260	J. Diaz et al.	(CASE, ČMU)
KARSHON	74	PRL 32 852	U. Karshon et al.	(REHO)
ANTIPOV	73	NP B63 175	Y.M. Antipov et al.	(CERN, SERP) JP
ANTIPOV	73C	NP B63 153	Y.M. Antipov et al.	(CERN, SERP) JP
CHALOUPKA	73	PL 44B 211	V. Chaloupka et al.	(CERN)
CONFORTO	73	PL 45B 154	G. Conforto et al.	(EFI, FNAL, TNTO+)
DEFOIX	73	PL 43B 141	C. Defoix et al.	(CDEF)
EISENSTEIN	73	PR D7 278	L. Eisenstein et al.	(ILL)
KEY	73	PRL 30 503	A.W. Key et al.	(TNTO, EFI, FNAL, WISC)
TOET	73	NP B63 248	D.Z. Toet et al.	(NIJM, BONN, DURH, TORI)
DAMERI	72	NC 9A 1	M. Dameri et al.	(GENO, MILA, SACL)
EISENBERG	72	PR DS 15	Y. Eisenberg et al.	(REHO, SLAC, TELA)
ESPIGAT	72	NP B36 93	P. Espigat et al.	(CERN, CDEF)
FOLEY	72	PR D6 747	K.J. Foley et al.	(BNL, CUNY)
ALSTON	71	PL 34B 156	M. Alston-Garnjost et al.	(LRL)
BARNHAM	71	PRL 26 1494	K.W.J. Barnham et al.	(LBL)
BINNIE	71	PL 36B 257	D.M. Binnie et al.	(LOIC, SHMP)
BOWEN	71	PRL 26 1663	D.R. Bowen et al.	(NEAS, STON)
GRAYER	71	PL 34B 333	G. Grayer et al.	(CERN, MPIM)
ABRAMOVI	70B	NP B23 466	M. Abramovich et al.	(CERN) JP
ALSTON	70	PL 33B 607	M. Alston-Garnjost et al.	(LRL)
BOECKMANN		NP B16 221	K. Boeckmann et al.	(BONN, DURH, NIJM+)
ASCOLI	68	PRL 20 1321	G. Ascoli et al.	(ILL) JP
BOESEBECK	68	NP B4 501	K. Boesebeck et al.	(AACH, BERL, CERN)
CHUNG	6B	PR 165 1491	S.U. Chung et al.	(LRL)
CONTE	67	NC 51A 175	F. Conte et al.	(GENO, HAMB, MILA, SACL)
CONTE	01	NC 31A 173	1. Conte et al.	(GEIGO, TIAMID, IMICA, SACE)
			DELATED DADED	
		UIREK	RELATED PAPERS	•
N.DE	99B	PAN 62 421	D. Alde et al.	(GAMS Collab.)
ALDE	330	Translated from YAF 62		(GAMS COISE.)
JENNI	83	PR D27 1031	P. Jenni et al.	(SLAC, LBL)
BEHREND	82C	PL 114B 378	H.J. Behrend et al.	(CELLO Collab.)
ADERHOLZ	65	PR 138B 897		BERL, BIRM, BONN, HAMB+)
ALITTI	65	PL 15 69	J. Alitti et al.	(SACL, BGNA) JP
CHUNG	65	PRL 15 325	S.U. Chung et al.	(LRL)
FORINO	65B	PL 19 68		(BGNA, BARI, FIRZ, ORSAY+)
LEFEBVRES	65	PL 19 434	F. Lefebyres et al.	,,,
SEIDLITZ	65	PRL 15 217	L. Seidlitz, O.I. Dahl, D.H	. Miller (LRL).
ADERHOLZ	64	PL 10 226	M. Aderholz et al.	(AACH3, BERL, BIRM+)
CHUNG	64	PRL 12 621	S.U. Chung et al.	(LRL)
GOLDHABER	64	PRL 12 336	G. Goldhaber et al.	(LRL, ÙCB)
LANDER	64	PRL 13 346A	R.L. Lander et al.	(UCSD)
	• •			(- /

$f_0(1370)$

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$

SCALAR MESONS

Written April 2000 by S. Spanier (SLAC) and N.A. Törnqvist (Helsinki).

Introduction: In contrast to the vector and tensor mesons, the identification of the scalar mesons is a long-standing puzzle. The number of publications since our last issue indicates great activity in that field. Scalar resonances are difficult to resolve because of their large decay widths causing a strong overlap between resonances and background, and at the same time, several decay channels open up within a short mass interval. In addition, especially the $\overline{K}K$ and $\eta\eta$ thresholds produce important sharp cusps in the energy dependence of the resonant amplitude. Furthermore, one expects non- $\bar{q}q$ scalar objects, like glueballs and multiquark states, in the mass range below 1800 MeV.

Scalars are produced, for example, in $\overline{p}p$ annihilation (high statistics), πN scattering on polarized/unpolarized targets, central production, J/ψ decays, D- and K-meson decays, $\gamma\gamma$ formation, and ϕ radiative decays. Experiments are accompanied by the development of theoretical models for the reaction amplitudes, which are based on common fundamental principles of two-body unitarity, analyticity, Lorentz invariance, and chiraland flavor-symmetry using different techniques (K-matrix formalism, N/D-method, Dalitz Tuan ansatz, unitarized quark models with coupled channels, effective chiral field theories like the linear sigma model, etc.).

The mass and width of a resonance are found from the position of the nearest pole in the T matrix (or equivalently, in the S matrix) at an unphysical sheet of the complex energy plane: $(E-i\frac{\Gamma}{2})$. It is important to realize that only in the

Meson Particle Listings $f_0(1370)$

case of well-separated resonances, far away from the opening of decay channels, does the naive Breit-Wigner parameterization (or K-matrix pole parameterization) agree with the T-matrix pole position in the amplitude.

In this note, we discuss all light scalars organized in the listings under the entries (I=1/2) $K^*(1430)$, (I=1) $a_0(980)$, $a_0(1450)$, and (I=0) σ or $f_0(400-1200)$, $f_0(980)$, $f_0(1370)$, and $f_0(1500)$. This list is minimal and does not necessarily exhaust the list of actual resonances. The (I=2) $\pi\pi$ and (I=3/2) $K\pi$ phase shifts do not exhibit any resonant behavior.

See also our notes in previous issues for further comments on e.g., scattering lengths and older papers.

The I=1/2 States: The $K^*(1430)$ (ASTON 88) is perhaps the least controversial of the light scalar mesons. The $K\pi$ phase shift rises smoothly from the threshold, passes 90° at 1350 MeV, and continues to rise to about 170° at 1600 MeV, the first important inelastic threshold $K\eta'(958)$. Thus, it behaves like a single broad, nearly elastic resonance. ABELE 98, analyzing the $\overline{K}K\pi$ channel of $\overline{p}p$ annihilation at rest, finds the T-matrix pole parameters, $m\approx 1430$ MeV and $\Gamma\approx 290$ MeV, while the K-matrix pole of the same data is about 1340 MeV. This agrees with the LASS (ASTON 88) determination.

It should, however, be noted that several authors (BLACK 98, 99, DELBOURGO 98, ISHIDA 99, OLLER 99,99C, BEVEREN 99) have introduced a light " $\kappa(900)$ " meson, which in the model interferes destructively with a large background. This makes the existence of a such light state very model dependent.

The I=1 States: Two isovector states are known, the established $a_0(980)$ and the $a_0(1450)$ found by the Crystal Barrel experiment (AMSLER 94D). Independently of any model about the nature of the $a_0(980)$, the $\overline{K}K$ component in the wave function of this state must be large: the $a_0(980)$ lies close to the opening of the $\overline{K}K$ channel to which it couples strongly. This gives an important cusp-like behavior in the resonant amplitude. Hence, its mass and width parameters are strongly distorted. To reveal its true coupling constants, a coupled channel model with energy-dependent widths and mass shift contributions must be applied.

In our previous editions, the relative coupling $\overline{K}K/\pi\eta$ was only determined indirectly from $f_1(1285)$ (CORDEN 78, DEFOIX 72) or $\eta(1410)$ decays (BAI 90C, BOLTON 92B, AMSLER 95C), or from the line shape observed in the $\pi\eta$ decay mode (FLATTE 76, AMSLER 94D, BUGG 94, JANSSEN 95). From the analysis of $\pi\pi\eta$ and $\overline{K}K\pi$ final states of $\overline{p}p$ annihilation at rest, a relative production ratio $B(\overline{p}p \to \pi a_0; a_0 \to \overline{K}K)/B(\overline{p}p \to \pi a_0; a_0 \to \pi\eta) = 0.23 \pm 0.05$ is obtained by (ABELE 98). Tuning of the couplings in a coupled channel formula to reproduce the production ratio for the integrated mass distributions gives a relative branching ratio $\Gamma(\overline{K}K)/\Gamma(\pi\eta) = 1.03 \pm 0.14$. The analysis of the $\overline{p}p$ annihilation data also found that the width determined from the T-matrix pole is 92 \pm 8 MeV, while the observed width of the peak in the $\pi\eta$ mass spectrum is about 45 MeV. In all

measurements listed in our table, the mass position agrees on a value near 980 MeV, but the width takes values between 50 and 300 MeV due to the different applied models.

The $a_0(1450)$ is seen by the Crystal Barrel experiment in its $\pi\eta$, $\overline{K}K$, and $\pi\eta'(958)$ decay modes. The relative couplings to the different final states are found to be close to SU(3)-flavor predictions for an ordinary $\overline{q}q$ meson. The OBELIX experiment (BERTIN 98B) finds two solutions in the $K_SK^{\pm}\pi^{\mp}$ final state of the $\overline{p}p$ annihilation, one at 1480 MeV and one with a mass value close to that of $a_2(1320)$, which is preferred by their fit, and by the low angular momentum in the production. The broad structure at about 1300 MeV observed in $\pi N \to \overline{K}KN$ reactions needs further confirmation in existence and isospin assignment.

The I=0 States: The I=0 $J^{PC}=0^{++}$ sector is the most complex one, both experimentally and theoretically. The data have been obtained from $\pi\pi$, $\overline{K}K$, $\eta\eta$, 4π , and $\eta\eta'(958)$ systems produced in S wave. From the high-statistics data sets collected from $\overline{p}p$ annihilation at rest into $\pi^0 f_0$, where the f_0 decays into the channels mentioned above, one concludes that at least four poles are needed in the mass range from the $\pi\pi$ threshold to about 1600 MeV. The claimed isoscalar resonances are found under separate entries σ or $f_0(400-1200)$, $f_0(980)$, $f_0(1370)$, and $f_0(1500)$.

Below 1100 MeV, the important data come from the $\pi\pi$ and $\overline{K}K$ final states. Information on the $\pi\pi$ S-wave phase shift $\delta_J^I = \delta_0^0$ was already extracted 20 years ago from the πN scattering with unpolarized (GRAYER 74) and polarized targets (BECKER 79), and near threshold from the K_{e4} -decay (ROSSELET 77). The $\pi\pi$ S-wave inelasticity is not accurately known, and the reported $\pi\pi \to \overline{K}K$ cross sections (WET-ZEL 76, POLYCHRONAKOS 79, COHEN 80, and ETKIN 82B) may have large uncertainties. The πN data (GRAYER 74, BECKER 79) have been reanalyzed in combination with the $\bar{p}p$ annihilation data (KAMINSKI 97). Two out of four relevant solutions are found, with the S-wave phase shift rising slower than the P wave $[\rho(770)]$, which is used as a reference. One of these corresponds to the well-known "down" solution of GRAYER 74. The other "up" solution shows a decrease of the modulus in the mass interval between 800-980 MeV. Both solutions exhibit a sudden drop in the modulus and inelasticity at 1 GeV, due to the appearance of $f_0(980)$, which is very close to the opening of the $\overline{K}K$ threshold. The phase shift δ_0^0 rises smoothly up to this point, where it jumps by 120° (in the "up") or 140° (in the "down") solution to reach 230°, and then both continue to rise slowly.

SVEC 97 suggests the existence of a narrow state at 750 MeV, with a small width of 100 to 200 MeV in his analysis of the $\pi N(\text{polarized})$ data, from 600 to 900 MeV. Such a solution is also found by (KAMINSKI 97) using the CERN-Munich (-Cracow) data considering both the π - and $a_1(1260)$ -exchange in the reaction amplitudes. However, they show that unitarity is violated for this solution. Therefore, a narrow, light f_0 state below 900 MeV is excluded (KAMINSKI 97, 00). Also, the

Meson Particle Listings $f_0(1370)$

 $2\pi^0$ invariant mass spectra of the $\bar{p}p$ annihilation at rest (AM-SLER 95, ABELE 96), and the central collision (ALDE 97), do not show a narrow resonance below 900 MeV, and these data are consistently described with the standard "down" solution (GRAYER 74, KAMINSKI 97), which allows for the existence of the broad ($\Gamma \approx 500$ MeV) σ listed under $f_0(400-1200)$. The σ is difficult to establish experimentally without models. It is expected to be very broad, and so can be easily distorted by large background from contact terms, crossed channel exchanges, the $f_0((1370)$, and other dynamical features. Further information on this object is expected from the analysis of three body decays of the D meson, e.g., $D \to \sigma \pi \to 3\pi$ (E791 experiment).

The $f_0(980)$ interferes destructively with the background leading to a dip in the $\pi\pi$ spectrum at the $\overline{K}K$ threshold. It changes from a dip into a peak structure in the $\pi^0\pi^0$ invariant mass spectrum of the reaction $\pi^-p \to \pi^0\pi^0n$ (ACHASOV 98E), with increasing four-momentum transfer to the $\pi^0\pi^0$ system, which means increasing the a_1 -exchange contribution in the amplitude, while the π -exchange decreases.

A meson resonance very well studied experimentally, is the $f_0(1500)$, seen by the Crystal Barrel experiment in five decay modes: $\pi\pi$, $\overline{K}K$, $\eta\eta$, $\eta\eta'(958)$, and 4π (AMSLER 95D, ABELE 96, and ABELE 98). Due to its interference with the $f_0(1370)$, the peak attributed to $f_0(1500)$ can appear shifted in mass to 1590 MeV, where it was observed by the GAMS Collaboration (BINON 83) in the $\eta\eta$ mass spectrum. For the dynamics in the resonant amplitude, they applied a sum of Breit-Wigner functions. In the central production (ANTINORI 95), a peak at a mass of 1450 MeV, having a width of 60 MeV, can be interpreted as the coherent sum of $f_0(1370)$ and $f_0(1500)$. The $\bar{p}p$ and $\bar{n}p/\bar{p}n$ reactions show a single enhancement at 1400 MeV in the invariant 4π mass (GASPERO 93, ADAMO 93, AMSLER 94, and ABELE 96). In the $5\pi^0$ channel (ABELE 96), this structure was resolved into $f_0(1500)$ and $f_0(1370)$, where the latter was found at somewhat lower mass at around 1300 MeV. An additional scalar had to be introduced in the reanalysis of the reaction $J/\psi(1S) \rightarrow \gamma 4\pi$ with a mass above 1700 MeV (BUGG 95). According to these investigations, the $f_0(1500)$ decay proceeds dominantly via $\sigma\sigma \to 4\pi$, where σ denotes the $\pi\pi$ S wave below the $\overline{K}K$ threshold. The $\overline{K}K$ decay of $f_0(1500)$ is suppressed (ABELE 98).

The determination of the $\pi\pi$ coupling of $f_0(1370)$ is aggravated by the strong overlap with the broad background from the $f_0(400$ –1200). Since it does not show up prominently in the 2π spectra, its mass and width are difficult to determine. As mentioned under the I=1 states section, data on $\pi\pi\to\overline{K}K$ show an enhancement in the scalar partial wave at around 1300 MeV (WETZEL 76, COHEN 80, POLYCHRONAKOS 79, COSTA 80, and LONGACRE 86). According to the phase shift, the resonance is found at about 1400 MeV (COHEN 80), while a reanalysis (BUGG 96) claims a trend towards lower mass. The recent three-channel approach (KAMINSKI 99) supports the Crystal Barrel findings, and yields a broad $f_0(1370)$

with a mass above 1400 MeV and a narrow $f_0(1500)$. Here, the $f_0(1370)$ couples more strongly to $\pi\pi$ than to $\overline{K}K$. The $f_0(1370)$ appears explicitly as $\eta\eta$ resonance in the $\pi^0\eta\eta$ final state of the $\overline{p}p$ annihilation at rest (AMSLER 95D). Further information about the $\overline{K}K$ decay of scalars are most welcome, in particular those that can clearly distinguish the I=0 from the I=1 system.

For numerical estimates of coupling constants of the lightest scalars to two pseudoscalars, see ACHASOV 89E,G,I, KAMIN-SKI 99, AKHMETSHIN 99C. For example, from these estimates, the $f_0(980)$ coupling to $K\overline{K}$ is much larger than its coupling to $\pi\pi$, which is an important constraint to model builders.

Interpretation: Almost every model on scalar states agrees that the $K^*(1430)$ is the quark model $s\overline{u}$ or $s\overline{d}$ state.

If one uses the naive quark model (which may be too naive because of lack of chiral symmetry constraints), it is natural to assume the $f_0(1370)$, $a_0(1450)$, and the $K^{\bullet}(1430)$ are in the same SU(3) flavor nonet being the $(\overline{u}u + \overline{d}d)$, $u\overline{d}$ and $u\overline{s}$ state, respectively. In this picture, the choice of the ninth member of the nonet is ambiguous. The controversially discussed candidates are $f_0(1500)$ and $f_0(1710)$ (assuming J=0). Compared to the above states, the $f_0(1500)$ is very narrow. Thus, it is unlikely to be their isoscalar partner. It is also too light to be the first radial excitation. Allowing for a gluonic admixture, one can come to an arrangement among these states. See our note on "Non- $\overline{q}q$ states."

The $f_0(980)$ and $a_0(980)$ are often interpreted as being multiquark states (JAFFE 77), $\overline{K}K$ bound states (WEIN-STEIN 90), or vacuum scalars (CLOSE 93A). These pictures are supported by the two-photon widths of these states, which are smaller than expected for naive $\overline{q}q$ mesons neglecting the large $\overline{K}K$ components in the wave function (BARNES 85, LI 91). The results from SND (ACHASOV 98I) reveal a much higher branching ratio for radiative $\phi \to \gamma f_0$ decays than expected for naive $\overline{q}q$ mesons, but also for $\overline{K}K$ molecules (CLOSE 93B).

On the other hand, the states $f_0(980)$ and $a_0(980)$ may form a low-mass state nonet with the σ as a central ingredient, and the $K^*(1430)$ (or " $\kappa(900)$ "). Attempts have been made to start directly from chiral symmetry or chiral Lagrangians (SCADRON 99, OLLER 98, 99, HANNAH 99, IGI 99, ISHIDA 99, and TORNQVIST 99), which all predict the existence of the σ meson near 500 MeV. Hence, e.g., in the chiral linear sigma model, the σ is the $(\overline{u}u + \overline{d}d)$ state, and at the same time, also the chiral partner of the π . Hence, an experimental proof of its existence has become very important.

In the unitarized quark model with coupled channels, six of the light scalars are understood as different manifestations of bare quark model $\bar{q}q$ states (TORNQVIST 82,95,96, BEV-EREN 86). The σ , $f_0(980)$, $f_0(1370)$, $a_0(980)$, $a_0(1450)$, and $K^*(1430)$ are described as unitarized remnants of strongly shifted and mixed $\bar{q}q$ 1^3P_0 states using six parameters. The $f_0(980)$ and $f_0(1370)$, as well as $a_0(980)$ and $a_0(1450)$, are two manifestations of the same $\bar{q}q$ state.

 $f_0(1370)$

QCD sum rule techniques (ELIAS 99) generally find that the lightest scalars are nearly decoupled from $q\bar{q}$, which would suggest a non- $q\bar{q}$ structure. But this is also consistent with them being unitarized remnants of $q\overline{q}$ surrounded by large "clouds" of light mesons (forming part of the $q\overline{q}$ sea).

Other detailed models exist, which arrive at different groupings of the observed resonances. Further publications discussing the light scalar resonances are (see also our previous issues): AU 87, MORGAN 93, ZOU 94B, JANSSEN 95, KLEMPT 95, ANISOVICH 98, LOCHER 98, ACHASOV 98D, NARISON 98, and MINKOWSKI 99.

f₀(1370) T-MATRIX POLE POSITION

Note that $\Gamma\approx 2\mbox{ Im}(\sqrt{s_{\mbox{pole}}}).$

VALUE (MeV)	DOCUMENT ID		CN	COMMENT	
(1200-1500)(150-250) OUF		- 65- 11		-1-	
• • We do not use the follo	-				
$(1312 \pm 25 \pm 10) - i(109 \pm$	BARBERIS	990 OI	MEG	450 $pp \rightarrow K^+K^-$,	1
22 ± 15)	1 KAMINSKI	99 R\	/UE	π+π-	ı
$(1406 \pm 27) - i(80 \pm 6)$ $(1300 \pm 20) - i(120 \pm 20)$	ANISOVICH				ı
$(1300 \pm 20) - i(120 \pm 20)$ $(1290 \pm 15) - i(145 \pm 15)$	BARBERIS			Compilation 450 pp →	ı
(1290 ± 15)-1(145 ± 15)	DARDERIS	91B ()	VIEG	$pp2(\pi^{+}\pi^{-})$	
$(1548 \pm 40) - i(560 \pm 40)$	BERT!N	97c OI	RIY		
$(1380 \pm 40) - i(380 \pm 40)$ $(1380 \pm 40) - i(180 \pm 25)$	ABELE	96B CI			
. , , ,		96 R\		O.O PP - X KLKL	
$(1300 \pm 15) - i(115 \pm 8)$	BUGG	••		0	
$(1330 \pm 50) - i(150 \pm 40)$	² AMSLER ² AMSLER			$\overline{p}p \rightarrow 3\pi^0$	
$(1360 \pm 35) - i(150 - 300)$				$\overline{p}p \rightarrow \pi^0 \eta \eta$	
$(1390 \pm 30) - i(190 \pm 40)$	³ AMSLER	95D CE	BAR	$\overline{p}p \rightarrow 3\pi^0, \pi^0\eta\eta,$	
1346 – <i>i</i> 249	4,5 JANSSEN	95 R\	/UE	$\pi \pi \rightarrow \pi \pi, K\overline{K}$	
1214 – i168	^{5,6} TORNQVIST	95 R\	/UE	$\pi\pi \to \pi\pi$, $K\overline{K}$, $K\pi$,	
1364 – i139	AMSLER	940 CF	RAR	$\overline{p} p \rightarrow \pi^0 \pi^0 \eta$	
$(1365 + \frac{20}{55}) - i(134 \pm 35)$	ANISOVICH	94 CI		$\overline{D}D \rightarrow 3\pi^0, \pi^0\eta\eta$	
$(1340 \pm 40) - i(127 + \frac{30}{20})$	7 BUGG	94 R\	/UE	$\overline{p}p \rightarrow 3\pi^0, \eta\eta\pi^0$	
(= 20)				n_{π^0}	
$(1430 \pm 5) - i(73 \pm 13)$	⁸ KAMINSKI	94 R\	/UE	$\pi\pi \rightarrow \pi\pi, K\overline{K}$	ı
1515 - i214	^{5,9} ZOU	93 R\	/UE	$\pi\pi \to \pi\pi$, $K\overline{K}$	
1420 <i>- i</i> 220	¹⁰ AU	87 R	∕UE	$\pi\pi\to\pi\pi$, $K\overline{K}$	
1 T-matrix pole on sheet					ı
² Supersedes ANISOVICH 9					Ī
³ Coupled-channel analysis of					
explicitly that f ₀ (400–1200		vo airrer	ent po	oies.	
⁴ Analysis of data from FAL					
⁵ The pole is on Sheet III.	Demonstrates explicit	ly that	₀ (400	0-1200) and f ₀ (1370) are	
two different poles. 6 Uses data from BEIER 72	0 OCUS 72 UVANAS	72 CD	AVEC	74 DOCCELET 77 CA	
SON 83, ASTON 88, and	B, OCHS 73, HTAMS A ARMSTRONG 91R	Count	ATEN	(14, KOSSELET 11, CA-	
symmetry and all light two				anner anarysis men naron	
⁷ Reanalysis of ANISOVICH					
⁸ T-matrix pole on sheet III.					ı
⁹ Analysis of data from OCH	HS 73, GRAYER 74, a	nd ROS	SELE	T 77.	•
10 Analysis of data from OCH					
•					

f₀(1370) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETER

VALUE (MeV)	DOCUMENT ID	
1200 to 1500 OUR EST	IMATE	
ππ MODE		
VALUE (MeV)	DOCUMENT ID TE	CN COMMENT
• • • We do not use th	e following data for averages, fits, li	mits, etc. • • •
1308 ± 10	BARBERIS 998 OF	MEG 450 $pp \rightarrow p_S p_f \pi^+ \pi^-$
1315 ± 50	BELLAZZINI 99 GA	$AM4 450 pp \rightarrow pp\pi^0\pi^0$
1315 ± 30	ALDE 98 GA	AM4 $100 \pi^{-} p \rightarrow \pi^{0} \pi^{0} n$
1280 ± 55	BERTIN 98 OF	BLX 0.05-0.405 \(\bar{n} \rho \rightarrow
	11	$\pi^+\pi^+\pi^-$
1186	¹¹ TORNQVIST 95 R\	VUE $\pi\pi \to \pi\pi$, $K\overline{K}$, $K\pi$,
1472±12	ADMSTDONG 01 OF	$\eta\pi$ MEG 300 $pp \rightarrow pp\pi\pi$,
14/2±12	ARMSTRONG SI OI	$ppK\overline{K}$
1275 ± 20	BREAKSTONE 90 SF	M 62 $pp \rightarrow pp\pi^+\pi^-$
1420 ± 20	AKESSON 86 SF	PEC 63 $pp \rightarrow pp\pi^{+}\pi^{-}$
1256	FROGGATT 77 RV	VUE $\pi^+\pi^-$ channel

11 Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA-
SON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavor
symmetry and all light two-pseudoscalars systems.

KK MODE VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
• • We do not use the					
1440±50	BOLONKIN	88	SPEC	$40 \pi^- p \rightarrow K_S^0 K_S^0 r$	
1463 ± 9				$23 \pi^- p \rightarrow n2K_S^0$	
1425±15				$6 \pi N \rightarrow K^+ K^- N$	
~ 1300				$7 \pi^- p \rightarrow n2K_S^0$	
4π MODE 2(ππ) _S +ρ	o				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
• • We do not use the	following data for average	es, fits	, limits,	etc. • • •	
1374±38	AMSLER	94	CBAR	$0.0 \; \bar{p}p \rightarrow \; \pi^{+}\pi^{-}3\pi$	
1345±12				$\overline{n}p \rightarrow 3\pi^+2\pi^-$	
1386 ± 30	GASPERO	93	DBC	$0.0 \ \overline{p} n \rightarrow 2\pi^+ 3\pi^-$	
ηη MODE					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the	following data for average	es, fits	, limits,	etc. • • •	
1430	AMSLER	92	CBAR	$0.0 \overline{p}p \rightarrow \pi^0 \eta \eta$	
1220 ± 40	ALDE	86D	GAM4	$100 \pi^- p \rightarrow n2\eta$	
რ(1370) BREIT-WIGNER WIDTH					
VALUE (MeV)	DOCUMENT ID				
200 to 500 OUR ESTIMA	II E				
ππ MODE VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the following data for averages	, fits	, limits,	etc. • • •
222 ± 20	BARBERIS	99B	OMEG	450 $pp \to p_5 p_f \pi^+ \pi^-$ 450 $pp \to pp \pi^0 \pi^0$
255 ± 60	BELLAZZINI	99	GAM4	$450 pp \rightarrow pp\pi^0\pi^0$
190 ± 50	ALDE	98	GAM4	$100 \pi^- \rho \rightarrow \pi^0 \pi^0 n$
323 ± 13	BERTIN	98	OBLX	0.05-0.405
350	12 TORNOVIST	95	D\/IIE	$\pi^{+}\pi^{+}\pi^{-}$ $\pi\pi \to \pi\pi$. $K\overline{K}$. $K\pi$.
330	100000131	,,	KVOL	$n\pi$
195 ± 33	ARMSTRONG	91	OMEG	300 $pp \rightarrow pp\pi\pi$,
				ppK K
285 ± 60	BREAKSTONE	90	SFM	$62 pp \rightarrow pp\pi^{+}\pi^{-}$
460 ± 50				$63 pp \rightarrow pp\pi^{+}\pi^{-}$
~ 400	13 FROGGATT	77	RVUE	$\pi^+\pi^-$ channel

¹² Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CASON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavor

symmetry and all light two-pseudoscalars systems.

13 Width defined as distance between 45 and 135° phase shift.

Κ.	MODE			
LUE	(MeV)	DOCUMENT ID	TECN	COMMENT
• •	We do not use the followi	ing data for averages, fits	, limits,	etc. • • •

THE COLUMN TO TH	DOCOMENT ID	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	COMMENT
• • • We do not use the following	data for averages	, fits, limi	ts, etc. • • •
250 ± 80	BOLONKIN	88 SPE	$C 40 \; \pi^- p \rightarrow \; K_S^0 K_S^0 n$
$118 + 138 \\ -16$	ETKIN	82B MPS	$5 23 \; \pi^- \rho \rightarrow \; n2K_S^0$
160± 30			$C = 6 \pi N \rightarrow K^+ K^- N$
~ 150	POLYCHRO	79 STR	C $7\pi^-p \rightarrow \pi^2K_S^0$

4π MODE $2(\pi\pi)_S + \rho\rho$

MLOE (MEV)	DOCOMENT ID		7207	COMMENT
ullet $ullet$ We do not use the following	data for averages	, fits	, limits,	etc. • • •
375 ± 61	AMSLER	94	CBAR	$0.0 \; \overline{p}p \rightarrow \pi^{+}\pi^{-}3\pi^{0}$
398 ± 26	ADAMO	93	OBLX	$\overline{n}p \rightarrow 3\pi^+2\pi^-$
310 ± 50	GASPERO	93	DBC	$0.0 \; \overline{p} n \rightarrow \; 2\pi^+ 3\pi^-$
nn MODE				

VALUE (MeV)	DOCUMENT II	TECN	COMMENT
• • • We do not use the following	ng data for avera	ges, fits, limits	, etc. • • •
250	AMŞLER	92 CBAR	$0.0 \ \overline{p}p \rightarrow \pi^0 \eta \eta$
320 ± 40	ALDE	86D GAM4	$100 \pi^- p \rightarrow n2\eta$

fo(1370) DECAY MODES

	Mode	Fraction $(\Gamma_{\vec{l}}/\Gamma)$	
$\overline{\Gamma_1}$	ππ	seen	
Γ_2	4π	seen	
Γ3	$4\pi^0$	seen	
Γ4	$2\pi^{+}2\pi^{-}\ \pi^{+}\pi^{-}2\pi^{0}$	seen	
Γ ₅	$\pi^{+}\pi^{-}2\pi^{0}$	seen	
Γ ₆	$\rho\rho$		
Γ_7	$2(\pi\pi)_{S\text{-wave}}$	seen	
Гв		seen	
Г _в Г ₉	η <u>η</u> Κ Κ	seen	
Γ ₁₀	$\gamma\gamma$	seen	
Γ11	e+ e-	not seen	

	TO DADTIAL MADTHE	•				.=
70(13 (77)	370) PARTIAL WIDTHS	, Γ ₁₀	ZOU	93 NP A562 407 93 PR D48 R3948 92 PL B291 347	M. Gaspero B.S. Zou, D.V. Bugg C. Amsler <i>et al.</i>	(ROMAI) (LOQM) (Crystal Barrel Collab.)
ALUE (keV)	DOCUMENT ID TECH	V_ COMMENT	ARMSTRONG S	91B ZPHY C52 389	T.A. Armstrong et al. T.A. Armstrong et al.	(ATHU, BARI, BIRM+) (ATHU, BARI, BIRM+)
We do not use the following				90 ZPHY C48 623	A.M. Breakstone et al. D. Morgan, M.R. Pennington	(ISU, BGNA, CERN+) (RAL, DURH)
		$\beta E \gamma \gamma \rightarrow \pi^+\pi^-, \pi^0\pi^0$	BOLONKIN	68 NP B296 493 88 NP B309 426	B.V. Bolonkin et al.	LAC, NAGO, CINC, INUS) (ITEP, SERP)
4±2.3	MORGAN 90 RVU	JE $\gamma\gamma ightarrow \pi^+\pi^-$, $\pi^0\pi^0$		BB PR D36 2706 88 SJNP 48 273	 A. Falvard et al. P.V. Vorobiev et al. 	(CLER, FRAS, LALO+) (NOVO)
⁴ Supersedes MORGAN 90.		•		Translated from 1 87 PR D35 1633	K.L. Au, D. Morgan, M.R. Penr	nington (DURH, RAL)
(e+e-)		Г ₁₁	ALOE	86 NP B264 154 86D NP B269 485	D.M. Alde et al. (BEL)	(Axial Field Spec. Collab.) .G, LAPP, SERP, CERN+)
LUE (eV) CL%	DOCUMENT ID TECH	$\frac{e^{+} e^{-} \rightarrow \pi^{0} \pi^{0}}{e^{+} e^{-} \rightarrow \pi^{0} \pi^{0}}$	ETKIN	83 PR D28 1586 82B PR D25 1786	N.M. Cason <i>et al.</i> A. Etkin <i>et al.</i> (BNL	(NDAM, ANL) L, CUNY, TUFTS, VAND)
90	VOROBYEV 88 ND	$e^+e^- \rightarrow \pi^0\pi^0$	BECKER	80 PRL 45 1469 79 NP B151 46		(ANL) IM, CERN, ZEEM, CRAC)
f ₀ (137	0) BRANCHING RATIO)S	FROGGATT	79 PR D19 1317 77 NP B129 89	V.A. Polychronakos et al. C.D. Froggatt, J.L. Petersen	(NDAM, ANL (GLAS, NORD)
(ππ)/Γ _{total}	•	Г1/Г	GRAYER	77 PR D15 574 74 NP B75 189	L. Rosselet et al. G. Grayer et al.	(GEVA, SACL (CERN, MPIM
("")/' total LUE	DOCUMENT ID TECH	VCOMMENT	OCHS	73 NP B64 134 73 Thesis	B.D. Hyams et al. W. Ochs	CERN, MPIM (MPIM, MUNI
We do not use the following	g data for averages, fits, limi	its, etc. • • •	BEIER	72B PRL 29 511	E.W. Beier et al.	(PENN
0.26±0.09	BUGG 96 RVU			от	HER RELATED PAPERS -	 _
0.15 0.20		AR $\overline{\rho}\rho \rightarrow \pi^{+}\pi^{-}3\pi^{0}$ C $0.0\ \overline{\rho}n \rightarrow \text{hadrons}$		00C PL B476 33 00 APP B31 895	R.R. Akhmetshin et al.	(CMD2 Collab.)
⁵ Using AMSLER 95B (3π ⁰).	•		SADOVSKY	00 NP A655 131c 99 EPJ C10 469	S.A. Sadovsky E. Van Beveren, G. Rupp	
		F- /F /F- + F- + F- \/F	GODFREY	99 RMP 71 1411 99 PTP 101 661	S. Godfrey, J. Napolitano	
(4π) / Γ _{total}	DOCUMENT ID TECH	$\Gamma_2/\Gamma = (\Gamma_3 + \Gamma_4 + \Gamma_5)/\Gamma$ N COMMENT	MINKOWSKI	99 EPJ C9 283 99 EPJ C11 359	P. Minkowski, W. Ochs N. Torngvist	
We do not use the following			ACHASOV	98D PAN 61 224 98E PR D58 054011	reconstruct	
30±0.04	GASPERO 93 DBC	$0.0 \ \overline{p} n \rightarrow \text{hadrons}$	AMSLER	98 RMP 70 1293 98 PL B437 209	C. Amsler V.V. Anisovich et al.	
$(4\pi^0)/\Gamma_{ m total}$		Г ₃ /Г	BLACK	98 PR D58 054012 98 EPJ C4 317	M.P. Locher et al.	(PS
LUE	DOCUMENT ID TECH		NARISON	98 NP B509 312 97 PL B395 123	A.V. Anisovich, A.V. Sarantsev	(PNPI
 We do not use the following 	-		ANISOVICH	97B ZPHY A357 123 97C PL B413 137	A.V. Anisovich et al.	(PNP
n	ABELE 96 CBA	$AR 0.0 \ \overline{\rho}p \rightarrow 5\pi^0$		97E PAN 60 1892 Translated from	A.V. Anisovich et al. YAF 60 2065.	(PNP
$2\pi^+2\pi^-)/\Gamma(4\pi)$	ı	$\Gamma_4/\Gamma_2 = \Gamma_4/(\Gamma_3 + \Gamma_4 + \Gamma_5)$		97 ZPHY C74 79 97 SPD 42 117	R. Kaminski et al. Y.D. Prokoshkin et al.	(CRAC (SERF
UE	DOCUMENT ID TECH	N COMMENT		Translated from 96 PRL 76 1575		(HELS
We do not use the followin	-		GASPERO	95 NP A588 861 95 PL B361 160	M. Gaspero	(ROMA
	¹⁶ GASPERO 93 DBC	$0.0 \ \overline{p} n \rightarrow 2\pi^{+} 3\pi^{-}$		94B PR D50 591 93A PL B319 291	B.S. Zou, D.V. Bugg	(LOQN
⁶ Model-dependent evaluation.				93B NP B389 513 93 PR D48 1185	D. Morgan, M.R. Pennington	(RAL, DURH
$(\pi^+\pi^-2\pi^0)/\Gamma(4\pi)$		$\Gamma_5/\Gamma_2 = \Gamma_5/(\Gamma_3 + \Gamma_4 + \Gamma_5)$		91 PR D43 2161 85 PL B165 434	Z.P. Li et al.	` (TENN
• We do not use the followin	DOCUMENT ID TECH or data for averages, fits, lim			69 NP B14 169 66 NC 42A 695	R. Bizzarri <i>et al.</i> A. Bettini <i>et al.</i>	(CERN, CDEF (PADO, PISA
		C 0.0 pn → hadrons				
	" GASPERU 93 DBC					
¹⁷ Model-dependent evaluation.	GASPERO 93 DBC		b /13	80)	$I^{G}(J^{PC}) = ?^{-1}$	-(1 + -)
17 Model-dependent evaluation.	- GASPERO 93 DBC	·	$h_1(13)$	80)	$I^G(J^{PC}) = ?^{-1}$	-(1 + -)
		Γ ₆ /Γ ₇	OMITTED	FROM SUMM	ARY TABLE	,
17 Model-dependent evaluation.	<u>DOÇUMENT ID</u> <u>TEC</u> ig data for averages, fits, lim	Γ ₆ /Γ ₇ N_ <u>COMMENT</u> its, etc. • • •	OMITTED See	FROM SUMM n in partial-wave	` ,	,
17 Model-dependent evaluation. $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ 14.UE • • We do not use the followin 6 ± 0.2	<u>DOÇUMENT ID</u> <u>TEC</u> og data for averages, fits, lim AMSLER 94 CBA	$ \begin{array}{ccc} \Gamma_6/\Gamma_7 \\ N & \underline{COMMENT} \\ \text{its, etc.} & \bullet & \bullet \\ AR & \overline{\rho}\rho \rightarrow \pi^+\pi^-3\pi^0 \end{array} $	OMITTED	FROM SUMM n in partial-wave	ARY TABLE	,
17 Model-dependent evaluation. $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ $\frac{UUE}{\bullet \bullet}$ • We do not use the followin 6 ± 0.2 58 ± 0.16	DOÇUMENT ID TEC ig data for averages, fits, lim AMSLER 94 CBA	$ \begin{array}{ccc} \Gamma_6/\Gamma_7 \\ N & COMMENT \\ \text{ids, etc.} & \bullet & \bullet \\ AR & \overline{p}p \rightarrow \pi^+\pi^-3\pi^0 \\ C & 0.0 & \overline{p}n \rightarrow 2\pi^+3\pi^- \end{array} $	OMITTED See	FROM SUMM n in partial-wave	ARY TABLE	,
17 Model-dependent evaluation. $ \frac{(\rho \rho)}{\Gamma(2(\pi \pi)s\text{-wave})} $ • • We do not use the followin 6 ± 0.2 58 ± 0.16 $(K\overline{K})/\Gamma_{\text{total}}$	<u>DOCUMENT ID</u> <u>TEC</u> Ig data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBO	$ \begin{array}{c c} \hline \Gamma_6/\Gamma_7\\ \hline N & COMMENT\\ \text{ids, etc.} \bullet \bullet \bullet\\ AR & \overline{p}p \to \pi^+\pi^-3\pi^0\\ \hline C & 0.0 & \overline{p}n \to 2\pi^+3\pi^-\\ \hline \Gamma_9/\Gamma \end{array} $	OMITTED See tion	FROM SUMM n in partial-wave	ARY TABLE analysis of the $K\overline{K}\pi$ system. Nh. (1380) MASS	Needs confirma-
7 Model-dependent evaluation. $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ •• We do not use the followin 6 ± 0.2 58 ± 0.16 $(KK)/\Gamma_{total}$	DOCUMENT ID TEC. Ig data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBO DOCUMENT ID TEC.	Ints, etc. • • • AR $\vec{p}p \rightarrow \pi^{+}\pi^{-}3\pi^{0}$ C $0.0 \vec{p}n \rightarrow 2\pi^{+}3\pi^{-}$	OMITTED See tion	FROM SUMM n in partial-wave	PARY TABLE analysis of the $K\overline{K}\pi$ system. No half (1380) MASS	Needs confirma-
7 Model-dependent evaluation. $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ $(\rho\rho)/\Gamma(2(\pi)s\text{-wave})$ $(\rho\rho)/\Gamma(2(\pi)s\text{-wave})$ $(\rho\rho)/\Gamma(2(\pi)s\text{-wave})$ $(\rho\rho)/\Gamma(2(\pi)s\text{-wave})$ $(\rho\rho)/\Gamma(2(\pi)s\text{-wave})$ $(\rho\rho)/\Gamma(2(\pi)s-wave$	DOCUMENT ID TEC. Ig data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBO DOCUMENT ID TEC.	Interpretation of the proof of	OMITTED See tion VALUE (MeV) 1366±19 Ol 1440±60	FROM SUMM n in partial-wave i.	ARY TABLE analysis of the $K\bar{K}\pi$ system. No half (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR	Needs confirma- $\frac{COMMENT}{PP \rightarrow K_{c}^{0}K_{c}^{0}\pi^{0}\pi^{0}}$
7 Model-dependent evaluation. $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ LUE • • We do not use the followin 6 ± 0.2 88 ± 0.16 $(KK)/\Gamma_{\text{total}}$ LUE • • We do not use the followin 35 ± 0.13	DOCUMENT ID TEC. Ig data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBO DOCUMENT ID TEC. Ig data for averages, fits, lim	$ \begin{array}{c c} \hline \Gamma_6/\Gamma_7\\ \hline N & \underline{COMMENT}\\ \text{idts, etc.} \bullet \bullet \bullet\\ AR & \overline{\rho}p \to \pi^+\pi^-3\pi^0\\ \hline C & 0.0 & \overline{\rho}n \to 2\pi^+3\pi^-\\ \hline \Gamma_9/\Gamma\\ \text{vits, etc.} \bullet \bullet \bullet\\ JE $	OMITTED See tion VALUE (MeV) 1386±19 OU	FROM SUMM n in partial-wave i.	ARY TABLE analysis of the $K\bar{K}\pi$ system. No half (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR	Needs confirma- $\frac{COMMENT}{PP \rightarrow K_{c}^{0}K_{c}^{0}\pi^{0}\pi^{0}}$
7 Model-dependent evaluation. $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ UE • • We do not use the followin 6 ± 0.2 58 ± 0.16 $(KK)/\Gamma_{\text{total}}$ UUE • • We do not use the followin 35 ± 0.13	DOCUMENT ID TEC. Ig data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBO DOCUMENT ID TEC. Ig data for averages, fits, lim BUGG 96 RVI	Interpretation of the proof of	OMITTED See tion VALUE (MeV) 1366±19 Ol 1440±60	FROM SUMM n in partial-wave i.	ARY TABLE analysis of the $K\bar{K}\pi$ system. No half (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR	Needs confirma-
7 Model-dependent evaluation. $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ $\bullet \cdot \text{We do not use the followin}$ 6 ± 0.2 58 ± 0.16 $(KK)/\Gamma_{\text{total}}$ $\frac{hUE}{4}$ $\bullet \cdot \text{We do not use the followin}$ 35 ± 0.13 $(KK)/\Gamma(\pi\pi)$ $\frac{hUE}{4}$	DOCUMENT ID TECT To g data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBC DOCUMENT ID TECT $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OMITTED See tion VALUE (MeV) 1366±19 Ol 1440±60	FROM SUMM n in partial-wave i.	ARY TABLE analysis of the $K\bar{K}\pi$ system. No half (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR	Needs confirma- $\frac{COMMENT}{PP \rightarrow K_0^0 K_0^0 \pi^0 \pi^0}$	
7 Model-dependent evaluation. $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ LUE • • We do not use the followin 6 ± 0.2 58 ± 0.16 $(K\overline{K})/\Gamma_{\text{total}}$ LUE • • We do not use the followin 35 ± 0.13 $(K\overline{K})/\Gamma(\pi\pi)$ LUE • • We do not use the followin	DOCUMENT ID TECT To g data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBC DOCUMENT ID TECT Interpretation of the property of the propert	OMITTED See tion VALUE (MeV) 1386±19 OI 1440±60 1380±20	FROM SUMM n in partial-wave i.	ARY TABLE analysis of the KKπ system. No h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH	Needs confirma- $\frac{COMMENT}{\overline{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^0}$ 11 $K^-p \rightarrow K_S^0 K^{\pm} \pi^{\mp} A$	
7 Model-dependent evaluation. $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ $0.00000000000000000000000000000000000$	DOCUMENT ID TECT To g data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBC DOCUMENT ID TECT $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OMITTED See tion VALUE (MeV) 1366±19 Ot 1440±60 1380±20	FROM SUMM n in partial-wave in the sum of th	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1.	Needs confirma- $\frac{COMMENT}{\vec{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^0}$ $11 K^- p \rightarrow K_S^0 K^{\pm} \pi^{\mp} \Lambda$ $COMMENT$	
7 Model-dependent evaluation. $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ LUE • • We do not use the followin 6 ± 0.2 58 ± 0.16 $(KK)/\Gamma_{\text{total}}$ LUE • • We do not use the followin 35 ± 0.13 $(KK)/\Gamma(\pi\pi)$ LUE • • We do not use the followin 46 $\pm 0.15 \pm 0.11$	DOCUMENT ID TECT To g data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBC DOCUMENT ID TECT Interpretation of the property of the propert	OMITTED See tior VALUE (MeV) 1386±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80	FROM SUMM n in partial-wave in the sum of th	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1. ABELE 97H CBAR	Needs confirma- $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow & K_L^0 K_S^0 \pi^0 \pi^0 \\ 11 K^- p \rightarrow & K_S^0 K^{\pm} \pi^{\mp} \Lambda \end{array} $ $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow & K_L^0 K_S^0 \pi^0 \pi^0 \end{array} $	
7 Model-dependent evaluation. $(\rho\rho)/\Gamma(2(\pi\pi)s\text{-wave})$ LUE • • We do not use the followin 6 ± 0.2 58 ± 0.16 (KK)/ Γ total LUE • • We do not use the followin 35 ± 0.13 (KK)/ $\Gamma(\pi\pi)$ LUE • • We do not use the followin 46 $\pm 0.15 \pm 0.11$	DOCUMENT ID Ig data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBG DOCUMENT ID Ig data for averages, fits, lim BUGG 96 RVU DOCUMENT ID TEC. AND ARREERIS 990 OM (1370) REFERENCES	Interpretation of the property of the propert	OMITTED See tion VALUE (MeV) 1366±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU	FROM SUMM n in partial-wave in the sum of th	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1. ABELE 97H CBAR	Needs confirma- $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow & K_L^0 K_S^0 \pi^0 \pi^1 \\ 11 K^- p \rightarrow & K_S^0 K^{\pm} \pi^{\mp} \Lambda \end{array} $ $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow & K_L^0 K_S^0 \pi^0 \pi^1 \end{array} $
7 Model-dependent evaluation. ($\rho\rho$)/ Γ (2($\pi\pi$) s -wave) LUE • • We do not use the followin 6 \pm 0.2 58 \pm 0.16 (KK)/ Γ total LUE • • We do not use the followin 35 \pm 0.13 (KK)/ Γ ($\pi\pi$) LUE • • We do not use the followin 46 \pm 0.15 \pm 0.11	DOCUMENT ID TEC. g data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBO DOCUMENT ID TEC. g data for averages, fits, lim BUGG 96 RVU DOCUMENT ID TEC. g data for averages, fits, lim BARBERIS 99D OM	Interpretation of the property of the propert	OMITTED See tior VALUE (MeV) 1386±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80	FROM SUMM n in partial-wave in the sum of th	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1. ABELE 97H CBAR	Needs confirma- $\frac{COMMENT}{\vec{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^1}$ $11 K^- p \rightarrow K_L^0 K_S^0 \pi^{\pm} \pi^{\mp} \Lambda$ $COMMENT$
7 Model-dependent evaluation. (PP)/ Γ (2($\pi\pi$) s -wave) LUE • • We do not use the followin is ± 0.2 68 ± 0.16 (KK)/ Γ total LUE • • We do not use the followin is ± 0.13 (KK)/ Γ ($\pi\pi$) LUE • • We do not use the followin is ± 0.13 (KK)/ Γ ($\pi\pi$) LUE • • We do not use the followin is ± 0.13 (KK)/ Γ ($\pi\pi$) LUE • • We do not use the followin is ± 0.13 ± 0.13 ± 0.13 (KK)/ Γ ($\pi\pi$) LUE • • We do not use the followin is ± 0.13	DOCUMENT ID TEG ag data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBG DOCUMENT ID TEG ag data for averages, fits, lim BUGG 96 RVU DOCUMENT ID TEG ag data for averages, fits, lim BARBERIS 990 OM 10(1370) REFERENCES D. Barberis et al. D. Barberis et al. R. Bellazzini et al. M. Bogione, M.R. Penning	Interpretation of the property of the propert	OMITTED See tior VALUE (MeV) 1386±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80	FROM SUMM n in partial-wave in. JR AVERAGE R AVERAGE Erro	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1. ABELE 97H CBAR	Needs confirma- $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow & K_L^0 K_S^0 \pi^0 \pi^1 \\ 11 K^- p \rightarrow & K_S^0 K^{\pm} \pi^{\mp} \Lambda \end{array} $ $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow & K_L^0 K_S^0 \pi^0 \pi^1 \end{array} $
Model-dependent evaluation. (PPP)/ $\Gamma(2(\pi\pi)s\text{-wave})$ (UE • • We do not use the following to the followi	DOCUMENT ID Ig data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBG DOCUMENT ID Ig data for averages, fits, lim BUGG 96 RVU DOCUMENT ID TEC AND DOCUMENT ID TEC TEC TEC TEC DATE D	Interpretation of the property of the propert	OMITTED See tior 136±19 OI 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80 80±30	FROM SUMM n in partial-wave n. UR AVERAGE R AVERAGE Erro	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1. ABELE 97H CBAR ASTON 88C LASS	Needs confirma- $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow & K_L^0 K_S^0 \pi^0 \pi^0 \\ 11 K^- p \rightarrow & K_S^0 K^{\pm} \pi^{\mp} \Lambda \end{array} $ $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow & K_L^0 K_S^0 \pi^0 \pi^0 \end{array} $
Model-dependent evaluation. (PPP)/ $\Gamma(2(\pi\pi)s\text{-wave})$ LUE • • We do not use the following to the followi	DOCUMENT ID Ig data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBG DOCUMENT ID Ig data for averages, fits, lim BUGG 96 RVU DOCUMENT ID TEC AND DOCUMENT ID TEC TEC AND DOCUMENT ID TEC TEC TEC TEC TEC TEC TEC TE	Ints, etc. • • • AR $\vec{p}p \rightarrow \pi^+\pi^- 3\pi^0$ C $0.0 \vec{p}n \rightarrow 2\pi^+ 3\pi^-$ F9/F Notes, etc. • • • UE F9/F1 Notes, etc. • • • (Omega expt.) (Omega expt.) (Omega expt.) (Omega expt.) (GAM4 Collab.) (GAM5 Collab.)	MITTED See tior MALUE (MeV) 1386±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80 80±30 Mode	FROM SUMM n in partial-wave : h. JR AVERAGE R AVERAGE Erro	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1. ABELE 97H CBAR ASTON 88C LASS	Needs confirma- $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow & K_L^0 K_S^0 \pi^0 \pi^0 \\ 11 K^- p \rightarrow & K_S^0 K^{\pm} \pi^{\mp} \Lambda \end{array} $ $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow & K_L^0 K_S^0 \pi^0 \pi^0 \end{array} $
7 Model-dependent evaluation. (PP)/ Γ ($2(\pi\pi)s$ -wave) LUE • • We do not use the followin 5 ± 0.2 58 ± 0.16 (KK)/ Γ total LUE • • We do not use the followin 35 ± 0.13 (KK)/ Γ ($\pi\pi$) LUE • • We do not use the followin 46 $\pm 0.15 \pm 0.11$ Formula (KK)/ K) K	DOCUMENT ID TEG g data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBG DOCUMENT ID TEG g data for averages, fits, lim BUGG 96 RVU DOCUMENT ID TEG g data for averages, fits, lim BARBERIS 99D OM 10(1370) REFERENCES D. Barberis et al. D. Barberis et al. D. Alde et al. D. Alde et al. A. Bertin et al. A. Bertin et al. D. Barberis et al.	Ints, etc. • • • • • • • • • • • • • • • • • • •	MITTED See tior MALUE (MeV) 1386±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80 80±30 Mode	FROM SUMM n in partial-wave n. UR AVERAGE R AVERAGE Erro	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1. ABELE 97H CBAR ASTON 88C LASS	Needs confirma- $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^1 \\ 11 K^- p \rightarrow K_S^0 K^{\pm} \pi^{\mp} \Lambda \end{array} $ $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^1 \end{array} $
7 Model-dependent evaluation. (ρρ)/Γ(2(ππ)s-wave) LUE • • We do not use the followin 6 ±0.2 58±0.16 (KK)/Γtotal LUE • • We do not use the followin 35±0.13 (KK)/Γ(ππ) LUE • • We do not use the followin 46±0.15±0.11 ARBERIS 99B PL 8453 316 ARBERIS 99D PL 8467 296 2010Me 99 EPJ C9 11 ANIONIC 99B UFN 41 419 ERTIN 98 UFN 41 419 ERTIN 98 PN D57 55 ERTIN 97 PN D808 476 BELE 96 PL 8380 453	DOCUMENT ID TEG g data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBG DOCUMENT ID TEG g data for averages, fits, lim BUGG 96 RVC DOCUMENT ID TEG ag data for averages, fits, lim BARBERIS 99D OM (1370) REFERENCES D. Barberis et al. R. Bellazzini et al. R. Bellazzini et al. R. Kamintski, L. Lesniak, B D. Alde et al. D. Alde et al. A. Bertin et al. A. Bertin et al. A. Bertin et al. A. Abetet al. A. Bertin et al. A. Abetet al.	Ints, etc. • • • AR $\vec{p}p \rightarrow \pi^+\pi^-3\pi^0$ C $0.0 \vec{p} n \rightarrow 2\pi^+3\pi^-$ Fg/F Notits, etc. • • • UE Fg/F1 Notits, etc. • • • (Omega expt.) (Omega expt.) (Omega expt.) (GAM4 Collab.) (GAM5 Collab.) (GAM4 Collab.) (Crystal Barrel Collab.)	MITTED See tior MALUE (MeV) 1386±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80 80±30 Mode	FROM SUMM n in partial-wave and the second summer in partial wave and	ARY TABLE analysis of the KKπ system. No half (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS half (1380) WIDTH DOCUMENT ID TECN Trincludes scale factor of 1.1. ABELE 97H CBAR ASTON 88C LASS 1 (1380) DECAY MODES	Needs confirma- $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^1 \\ 11 K^- p \rightarrow K_S^0 K^{\pm} \pi^{\mp} \Lambda \end{array} $ $ \begin{array}{c} COMMENT \\ \bar{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^1 \end{array} $
17 Model-dependent evaluation. (ρρ)/Γ(2(ππ)s-wave) 14.UE • • We do not use the followin 6 ± 0.2 58 ± 0.16 (ΚΚ)/Γtotal 14.UE • • We do not use the followin 35 ± 0.13 (ΚΚ)/Γ(ππ) 14.UE • • We do not use the followin 15.0 ± 0.13 16.0 + 0.15 ± 0.11 ABBERIS 99B PL 8467 99 191 99 191 191 191 191 191	DOCUMENT ID TEG g data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBG DOCUMENT ID TEG g data for averages, fits, lim BUGG 96 RVG DOCUMENT ID TEG ag data for averages, fits, lim BARBERIS 99D OM MARPERIS 99D OM J(1370) REFERENCES D. Barberis et al. R. Bellazzini et al. R. Barberis et al. D. Alde et al. D. Alde et al. A. Bettin et al. A. Bettin et al. A. Abete et al.	Ints, etc. • • • • • • • • • • • • • • • • • • •	MITTED See tior MALUE (MeV) 1386±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80 80±30 Mode	FROM SUMM n in partial-wave in. JR AVERAGE R AVERAGE Erro (892) + c.c.	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN or includes scale factor of 1.1. ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) DECAY MODES	Needs confirma- $\frac{COMMENT}{PP \rightarrow K_L^0 K_S^0 \pi^0 \pi^0}$ $11 KP \rightarrow K_S^0 K^{\pm} \pi^{\mp} \Lambda$ $\frac{COMMENT}{PP \rightarrow K_L^0 K_S^0 \pi^0 \pi^0}$ $11 KP \rightarrow K_S^0 K^{\pm} \pi^{\mp} \Lambda$
1.7 Model-dependent evaluation. (ρρ)/Γ(2(ππ)s-wave) 1.4UE • • We do not use the followin 6 ± 0.2 58 ± 0.16 (ΚΚ)/Γtotal 1.4UE • • We do not use the followin 35 ± 0.13 (ΚΚ)/Γ(ππ) 1.4UE • • We do not use the followin 35 ± 0.13 (ΚΚ)/Γ(ππ) 1.4UE • • We do not use the followin 36 ± 0.15 ± 0.11 ARBERIS 99B PL 845 236 ARBERIS 99D PL 846 2 425 OGLIONE 99 EPJ C9 11 AMINSKI 99 EPJ C9 11 TERTIN 98 PR D57 55 ARBERIS 97B PL B413 217 ERTIN 97 EPT B408 476 BBLE 96B PL B385 425 UGG 96 NP B471 59 MSLER 95B PL B424 243 MSLER 95B PL B4342 433 MSLER 95B PL B4342 433 MSLER 95C PL B335 571	DOCUMENT ID TEG ag data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBG DOCUMENT ID TEG ag data for averages, fits, lim BUGG 96 RVA DOCUMENT ID TEG ag data for averages, fits, lim BARBERIS 99D OM AND BARBERIS 99D OM SARBERIS 99D OM AND BARBERIS 99D OM BARBERIS 99D	Its, etc. • • • AR $\overline{p}p \rightarrow \pi^+\pi^-3\pi^0$ C $0.0 \overline{p}n \rightarrow 2\pi^+3\pi^-$ F9/F N its, etc. • • • UE F9/F1 N COMMENT its, etc. • • • UE GAM4 Collab. (GAM4 Collab.) (GAM5 Collab.) (GAM6 Collab.) (Crystal Barrel Collab.)	MITTED See tior MALUE (MeV) 1386±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80 80±30 Mode	FROM SUMM n in partial-wave and the second summer in partial wave and	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1. ABELE 97H CBAR ASTON 88C LASS 1(1380) DECAY MODES h ₁ (1380) REFERENCES A. Abele et al.	Needs confirma- $ \begin{array}{c} COMMENT \\ \bar{p}_{P} \rightarrow & K_{L}^{0} K_{S}^{0} \pi^{0} \pi^{0} \\ 11 K^{-}_{P} \rightarrow & K_{S}^{0} K^{\pm} \pi^{\mp} \Lambda \end{array} $ $ \begin{array}{c} COMMENT \\ \bar{p}_{P} \rightarrow & K_{L}^{0} K_{S}^{0} \pi^{0} \pi^{0} \end{array} $
7 Model-dependent evaluation. (ρρ)/Γ(2(ππ)s-wave) LUE • • We do not use the followin 6 ± 0.2 58 ± 0.16 (KK)/Γtotal LUE • • We do not use the followin 35 ± 0.13 (KK)/Γ(ππ) LUE • • We do not use the followin 46 ± 0.15 ± 0.11 ARBERIS 99B PL B452 316 ARBERIS 99D PL B462 426 20CLIONE 99 EPJ C9 11 AMINSKI 99 EPJ C9 11 AMINSKI 99 EPJ C9 14 AMINSKI 90 EPJ C9 14 AMINSKI 91 EPJ C9 14	DOCUMENT ID TEG g data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBG DOCUMENT ID TEG g data for averages, fits, lim BUGG 96 RVA DOCUMENT ID TEG ag data for averages, fits, lim BARBERIS 99D OM SARBERIS 99D OM JAMES 10 Barberis et al. D. Barberis et al. R. Bellazzini et al. R. Bellazzini et al. D. Alde et al. D. Alde et al. D. Barberis et al. A. Bettin et al. A. Bettin et al. A. Abele et al. A. Abele et al. A. Abele et al. A. Abele et al. C. Amsler et al. G. Janssen et al.	Its, etc. • • • AR $\overline{p}p \rightarrow \pi^+\pi^-3\pi^0$ C $0.0 \overline{p}n \rightarrow 2\pi^+3\pi^-$ F9/F N its, etc. • • • UE F9/F1 N COMMENT its, etc. • • • UE GAM4 Collab. (GAM4 Collab.) (GAM5 Collab.) (GAM5 Collab.) (Crystal Barrel Collab.)	VALUE (MeV) 1386±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80 80±30 Mode Γ ₁ Κ Κ	FROM SUMM n in partial-wave and the second summer in partial wave and	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1. ABELE 97H CBAR ASTON 88C LASS 1(1380) DECAY MODES h ₁ (1380) REFERENCES A. Abele et al.	Needs confirma- $\frac{COMMENT}{\overline{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^0}$ $11 K^- p \rightarrow K_S^0 K^{\pm} \pi^{\mp} \Lambda$ $\frac{COMMENT}{\overline{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^0}$ $11 K^- p \rightarrow K_S^0 K^{\pm} \pi^{\mp} \Lambda$ $(Crystal Barrel Collab.)$
7 Model-dependent evaluation. (ρρ)/Γ(2(ππ)s-wave) LUE • • We do not use the followin 6 ± 0.2 58 ± 0.16 (KK)/Γtotal LUE • • We do not use the followin 35 ± 0.13 (KK)/Γ(ππ) LUE • • We do not use the followin 46 ± 0.15 ± 0.11 ARBERIS * • We do not use the followin 46 ± 0.15 ± 0.11 ARBERIS * • We do not use the followin 46 ± 0.15 ± 0.11 ARBERIS * • We do not use the followin 46 ± 0.15 ± 0.11 ARBERIS * • We do not use the followin 46 ± 0.15 ± 0.11 ARBERIS * • We do not use the followin 46 ± 0.15 ± 0.11 ARBERIS * • PL B467 295 DGLIONE * • PL B467 295 DGLIONE * • PL B467 295 DGLIONE * • PL B47 295 DGLIONE * • PL B47 295 DGLIONE * • PR D57 55 * • PR D57 55 * • PR D58 245 SELE * • • PL B430 453 SELE * • • PL B330 453 SELE * • • PL B330 453 SELE * • • PL B330 453 SELE * • • PL B335 371 MSLER * • PL B325 433 * • PL B325 431 * • PL B325 431 * • PL B325 431	DOCUMENT ID TEG. g data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBG DOCUMENT ID TEC. g data for averages, fits, lim BUGG 96 RVA DOCUMENT ID TEC. ag data for averages, fits, lim BARBERIS 99D OM SARBERIS 99D OM DOCUMENT ID TEC. ABOUT TEC. BARBERIS 99D OM ABOUT TEC. D. Barberis et al. R. Beltazzini et al. R. Beltazzini et al. A. Bettin et al. D. Alde et al. A. Bettin et al. A. Abele et al. A. Abele et al. A. Abele et al. A. Abele et al. C. Amsler et al. C. Amsler et al. C. Amsler et al. N. A. Tornqvist C. Amsler et al.	Its, etc. • • • AR $\overline{p}p \rightarrow \pi^+\pi^-3\pi^0$ C $0.0 \overline{p}n \rightarrow 2\pi^+3\pi^-$ F9/F N its, etc. • • • UE F9/F1 N COMMENT its, etc. • • • UE GAM4 Collab. (GAM5 Collab.) (GAM5 Collab.) (GAM5 Collab.) (Crystal Barrel Collab.)	VALUE (MeV) 1386±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80 80±30 Mode Γ ₁ Κ Κ	FROM SUMM n in partial-wave and the second summer in partial wave and	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1. ABELE 97H CBAR ASTON 88C LASS 1(1380) DECAY MODES h ₁ (1380) REFERENCES A. Abele et al.	Needs confirma- $\frac{COMMENT}{\overline{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^0}$ $11 K^-p \rightarrow K_S^0 K^{\pm} \pi^{\mp} \Lambda$ $\frac{COMMENT}{\overline{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^0}$ $11 K^-p \rightarrow K_S^0 K^{\pm} \pi^{\mp} \Lambda$ $(Crystal Barrel Collab.)$
7 Model-dependent evaluation. (ρρ)/Γ(2(ππ)s-wave) LUE • • We do not use the followin 6 ± 0.2 58 ± 0.16 (KK)/Γtotal LUE • • We do not use the followin 35 ± 0.13 (KK)/Γ(ππ) LUE • • We do not use the followin 46 ± 0.15 ± 0.11 ARBERIS 99B PL B453 316 46 ± 0.15 ± 0.11 f0 ARBERIS 99B PL B462 452 21LLAZZINI 99 PL B467 296 21LLAZZINI 99 PL B467 296 21LLAZZINI 99 PAN 62 405 31 50 14 119 21	DOCUMENT ID g data for averages, fits, lim AMSLER 94 CBA GASPERO 93 DBG DOCUMENT ID g data for averages, fits, lim BUGG 96 RVU DOCUMENT ID TEC. g data for averages, fits, lim BARBERIS 99D OM 10 DB Barberis et al. D. Barberis et al. D. Barberis et al. R. Bellazzini et al. M. Bogione, M.R. Penning, R. Kaminiski, L. Lesniak, B D. Alde et al. V.V. Anisovich et al. A. Bettin et al. A. Bettin et al. A. Abele et al. A. Abele et al. A. Abele et al. C. Amsler et al. A. NA. Tornquist	Its, etc. • • • AR $\vec{p}p \rightarrow \pi^+\pi^- 3\pi^0$ C $0.0 \vec{p}n \rightarrow 2\pi^+ 3\pi^-$ Fg/F N COMMENT its, etc. • • • JE Fg/F1 N COMMENT its, etc. • • • (Omega expt.) (Omega expt.) (Omega expt.) (Omega expt.) (GAMS Collab.) (GAMS Collab.) (GAMS Collab.) (CPystal Barrel Collab.) (Crystal Barrel Collab.)	VALUE (MeV) 1386±19 OL 1440±60 1380±20 VALUE (MeV) 91±30 OU 170±80 80±30 Mode Γ ₁ Κ Κ	FROM SUMM n in partial-wave and the second summer in partial wave and	ARY TABLE analysis of the KKπ system. N h ₁ (1380) MASS DOCUMENT ID TECN ABELE 97H CBAR ASTON 88C LASS h ₁ (1380) WIDTH DOCUMENT ID TECN r includes scale factor of 1.1. ABELE 97H CBAR ASTON 88C LASS 1(1380) DECAY MODES h ₁ (1380) REFERENCES A. Abele et al.	Needs confirma- $\frac{COMMENT}{\overline{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^0}$ $11 K^-p \rightarrow K_S^0 K^{\pm} \pi^{\mp} \Lambda$ $\frac{COMMENT}{\overline{p}p \rightarrow K_L^0 K_S^0 \pi^0 \pi^0}$ $11 K^-p \rightarrow K_S^0 K^{\pm} \pi^{\mp} \Lambda$ $(Crystal Barrel Collab.)$

 $\pi_1(1400), f_1(1420)$

 $\pi_1(1400)$ was $\hat{\rho}(1405)$

 $I^{G}(J^{PC}) = 1^{-}(1^{-})$

OMITTED FROM SUMMARY TABLE

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

$\pi_1(1400)$ MASS

VALUE (MeV)	DOCUMENT ID		TECN CHG	COMMENT
1376 ±17 OUR AVERAGE				
1360 ±25	ABÉLE	99	CBAR	$0.0 \overline{p}p \rightarrow \pi^0 \pi^0 \eta$
1400 ±20 ±20	ABELE	98B	CBAR	$0.0 \overline{p} n \rightarrow \pi^{-} \pi^{0} \eta$
1370 $\pm 16 \begin{array}{c} +50 \\ -30 \end{array}$	¹ THOMPSON	97	MPS	$18 \pi^- p \rightarrow \eta \pi^- p$
• • • We do not use the following	data for averages	, fits	, limits, etc. •	• •
	•		BKEI GAM4 0	$ \begin{array}{ccc} \pi^- p \to \eta \pi^- p \\ 100 \pi^- p \to \\ \eta \pi^0 p \end{array} $

 $[\]overset{1}{\circ}$ Natural parity exchange.

$\pi_1(1400)$ WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
300 ±40 OUR AVERAGE					
220 ±90	ABELE	99	CBAR		$\begin{array}{c} 0.0 \ \overline{\rho} \rho \rightarrow \\ \pi^0 \pi^0 \eta \end{array}$
$310 \pm 50 + 50 \\ - 30$	ABELE	98в	CBAR		$0.0 \ \overline{p} n \rightarrow \pi^{-} \pi^{0} \eta$
$385 \pm 40 \begin{array}{c} + 65 \\ -105 \end{array}$	⁴ THOMPSON	97	MPS		$18 \pi^- p \rightarrow \eta \pi^- p$
• • • We do not use the following	ng data for average	s, fits	, limits, e	etc. •	
143.2 ± 12.5	⁵ AOYAGI	93	BKEI		$\pi^- p \rightarrow \eta \pi^- p$
180 ±20	⁶ ALDE	88B	GAM4	0	$\begin{array}{c} 100 \ \pi^- p \rightarrow \\ \eta \pi^0 n \end{array}$

⁴ Resolution is not unfolded, natural parity exchange. ⁵ Unnatural parity exchange.

$\pi_1(1400)$ DECAY MODES

	Mode	Fraction (Γ_j/Γ)
$\overline{\Gamma_1}$	$\eta \pi^0$	seen
Γ2	$\eta \pi^-$	seen
Γ3	$\eta'\pi$	possibly seen

π₁(1400) BRANCHING RATIOS

$\Gamma(\eta \pi^0)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use the	following data for average	s, fit	s, limits,	etc. •	• •
not seen	PROKOSHKIN	V 958	GAM4		$100 \pi^- \rho \rightarrow$
	7				$\eta \pi^0 \Pi$ $\overline{p}p \rightarrow \eta 2\pi^0$
not seen	⁷ BUGG	94	RVUE		$\overline{p}p \rightarrow \eta 2\pi^0$
not seen	8 APEL	81	NICE	0	$40 \pi^- \rho \rightarrow$
					$n\pi^0 n$

⁷Using Crystal Barrel data.

_/ 15 /-

<0.80

⁸ A general fit allowing S, D, and P waves (including m=0) is not done because of limited

Γ(ηπ ⁻)/Γ _{total} VALUE	DOCUMENT ID	TECN	COMMENT	Γ ₂ /Γ
• • We do not use the f	ollowing data for averages,	fits, limits,	etc. • • •	
possibly seen	BELADIDZE	93 VES	$37\pi^- N \rightarrow$	$\eta \pi^- N$
$\Gamma(\eta'\pi)/\Gamma_{\text{total}}$	DOCUMENT IN	TECH	COLUENT	Гз/Г
• • • We do not use the f	DOCUMENT ID DILLOWING data for averages,		etc. • • •	
possibly seen	BELADIDZE	93 VES	37π ⁻ N →	$\eta \pi^- N$
$\Gamma(\eta'\pi)/\Gamma(\eta\pi^0)$				Γ_3/Γ_1
	L% DOCUMENT ID	TECN	COMMENT	

BOUTEMEUR 90 GAM4 100 $\pi^- p \rightarrow 4 \gamma n$

₹1(1400) REFERENCES

ABELE	99	PL B446 349	A. Abele et al.	(Crystal Barrel Collab.)
ABELE	98B	PL B423 175	A. Abele et al.	(Crystal Barrel Collab.)
THOMPSON	97	PRL 79 1630	D.R. Thompson et al.	(E852 Collab.)
PROKOSHKIN	95B	PAN 58 606	Y.D. Prokoshkin, S.A. Sadov	sky (SERP)
		Translated from YAF 58	662.	
BUGG	94	PR D50 4412	D.V. Bugg et al.	(LOQM)
AOYAGI	93	PL B314 246	H. Aoyagi et al.	(BKEI Collab.)
BELADIDZE	93	PL 313 276	G.M. Beladidze et al.	(VES Collab.)
BOUTEMEUR	90	Hadron 89 Conf. p 119	M. Boutemeur, M. Poulet	(\$ERP, BÈLG, LANL+)
ALDE	88B	PL B205 397	D.M. Alde et al.	(SERP, BELG, LANL, LAPP) IGJPC
APEL	81	NP B193 269	W.D. Apel et al.	(SERP, CERN)

OTHER RELATED PAPERS -

SADOVSKY	00	NP A655 131c	S.A. Sadovsky	
ALDE	99B	PAN 62 421	D. Alde et al.	(GAM\$ Collab.)
		Translated from YAF 62	462.	,
CHUNG	99	PR D60 092001	S.U. Chung et al.	(BNL E852 Collab.)
GODFREY	99	RMP 71 1411	S. Godfrey, J. Napolitano	
DONNACHIE	98	PR D58 114012	A. Donnachie et al.	
LACOCK	97	PL B401 308	P. Lacock et al.	(EDIN, LIVP)
SVEC	97C	PR D56 4355	M. Svec	(MCGI
PROKOSHKIN	95C	PAN 58 853	Y.D. Prokoshkin, S.A. Sadovsky	(SERP
		Translated from YAF 58		•
KALASHNIK	94	ZPHY C62 323	Y.S. Kalashnikova	(ITEP)
IDDIR	88	PL B205 564	F. Iddir et al.	(ORSAY, ŤOKY)
TUAN	88	PL B213 537	S.F. Tuan, T. Ferbel, R.H. Dalitz	(HAWA, ROCH+)
ZIELINSKI	87	ZPHY C34 255	M. Zielinski	` (ROCH)

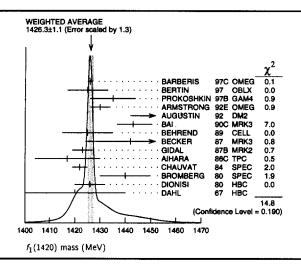
 $f_1(14\overline{20})$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

See the minireview under $\eta(1440)$.

f₁(1420) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1426.3± 1.1 C	OUR AVERAGE	Error includes scal below.	le fac	tor of 1	.3. See the ideogram
1426 ± 1			97 C	OMEG	450 pp → pp K ⁰ _S K [±] π [∓]
1425 ± 8		BERTIN	97	OBLX	$0.0 \overline{p} p \xrightarrow{\bullet} \\ K^{\pm} (K^0) \pi^{\mp} \pi^{+} \pi^{-}$
1435 ± 9		PROKOSHKIN	97B	GAM4	$100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0} n$
1430 ± 4					85,300 $\pi^+ p$, $pp \rightarrow \pi^+ p$, $pp(K\overline{K}\pi)$
1462 ±20		² AUGUSTIN	92	DM2	$J/\psi \rightarrow \gamma K \overline{K} \pi$
1443 + 7 +	3 1100	BAI	90c	MRK3	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
1425 ±10	17	BEHREND	89	CELL	$\gamma\gamma \rightarrow K_S^0 K^{\pm} \pi^{\mp}$
1442 ± 5 +	10 17	BECKER	87	MRK3	e^+e^- , $\omega K\overline{K}\pi$
1423 ± 4		GIDAL	87в	MRK2	$e^+e^- \rightarrow e^+e^- K \overline{K} \pi$
1417 ± 13	13	AIHARA	86C	TPC	$e^+e^- \rightarrow e^+e^- K \overline{K} \pi$
1422 ± 3		CHAUVAT	84	SPEC	ISR 31.5 pp
1440 ± 10		3 BROMBERG	80	SPEC	$100 \pi^- p \rightarrow K \overline{K} \pi X$
1426 ± 6	221	DIONISI	80	HBC	$4\pi^-p \rightarrow K\overline{K}\pi n$
1420 ± 20		DAHL	67	HBC	1.6-4.2 π ⁻ ρ
• • • We do not	use the following	data for averages	, fits,	, limits,	etc. • • •
1430.8± 0.9		⁴ SOSA	99	SPEC	$pp \rightarrow p_{slow}$
1433.4± 0.8		4 SOSA	99	SPEC	$(K_5^0 K^+ \pi^-) p_{fast}$ $pp \to p_{slow}$ $(K_5^0 K^- \pi^+) p_{fast}$
1429 ± 3	389	ARMSTRONG	89	OMEG	300 pp → K Kπpp
1425 ± 2	1520	ARMSTRONG	84	OMEG	85 $\pi^+ \rho$, $\rho \rho \rightarrow$
					$(\pi^+, \rho)(K\overline{K}\pi)\rho$
~ 1420		BITYUKOV	84	SPEC	$32 K^- p \rightarrow K^+ K^- \pi^0 Y$
1 This result su	percedes ARMST	RONG 84 ARMS	TRO	NG 89	, , ,


 $^{^1}$ This result supersedes ARMSTRONG 84, ARMSTRONG 89. 2 From fit to the $K^{\star}(892)\,K$ 1 $^+$ + partial wave.

³ Seen in the P_0 -wave intensity of the $\eta\pi^0$ system, unnatural parity exchange.

⁶ Seen in the P_0 -wave intensity of the $\eta\pi^0$ system, unnatural parity exchange.

 $^{^3}$ Mass error increased to account for $a_0(980)$ mass cut uncertainties.

⁴ No systematic error given.

				14(-1-4)			
VALUE (EVTS	DOCUMENT ID		TECN	COMMENT
	5 ± 2.9 ± 4	OUR A	ERAGE	BARBERIS	076	OMEC	450 pp →
30	Ξ 4			DANDENIS	910	CIVIEG	$ppK_S^0K^{\pm}\pi^{\mp}$
45	+10			BERTIN	97	OBLX	$0.0 \overline{p}p \rightarrow$
	±10			BERTIN	٠.	ODEX	$K^{\pm}(K^{0})_{\pi} + \pi^{+} \pi^{-}$
90	± 25			PROKOSHKIN	97B	GAM4	$100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0} n$
58	±10			⁵ ARMSTRONG	92E	OMEG	85,300 $\pi^+ p$, $pp \rightarrow$
				,			$\pi^+ \rho$, $\rho \rho (K \overline{K} \pi)$
129	±41			⁶ AUGUSTIN			$J/\psi \rightarrow \gamma K \overline{K} \pi$
68	+29 -18	+ 8 9	1100	BAI	90c		$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
42	±22		17	BEHREND	89	CELL	$\gamma\gamma \rightarrow K_S^0 K^{\pm} \pi^{\mp}$
40	+17 -13	±5	111	BECKER	87	MRK3	$e^+e^- \rightarrow \omega K \overline{K} \pi$
35	+47 -20		13	AIHARA	86c	TPC	$e^+e^- \rightarrow e^+e^- K \overline{K} \pi$
47	± 10			CHAUVAT	84	SPEC	ISR 31.5 pp
62	±14			BROMBERG	80	SPEC	$100 \pi^- p \rightarrow K \overline{K} \pi X$
40	±15		221	DIONISI	80	HBC	$4 \pi^- \rho \rightarrow K \overline{K} \pi n$
60	±20			DAHL	67	HBC	$1.6-4.2 \pi^{-} p$
• • •	We do	not use t	he following	data for averages	, fits	, limits,	etc. • • •
68.	7± 2.9)		⁷ SOSA	99	SPEC	$pp \rightarrow p_{slow}$
				_			$(K_S^0 K^+ \pi^-) p_{fast}$
58.	8± 3.3	3		⁷ SOSA	99	SPEC	$p p \rightarrow p_{Slow}$
							$(\kappa_5^0 \kappa^- \pi^+) \rho_{\text{fast}}$
58	± 8		389	ARMSTRONG	89	OMEG	$300 pp \rightarrow K\overline{K}\pi pp$
62	± 5		1520	ARMSTRONG	84	OMEG	85 π ⁺ p, pp →
							$(\pi^+,p)(K\overline{K}\pi)p$
~ 50				BITYUKOV	84	SPEC	32 K ⁻ p →
							$\kappa^+ \kappa^- \pi^0 Y$

 $^{^5}$ This result supersedes ARMSTRONG 84, ARMSTRONG 89. 6 From fit to the $K^{\star}(892)\,K$ 1 $^+$ + partial wave. 7 No systematic error given.

f1(1420) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
$\overline{\Gamma_1}$	$K\overline{K}\pi$	dominant	
Γ_2	$K\overline{K}^*(892) + c.c.$	dominant	
Γ_3	$\eta \pi \pi$	possibly seen	
Γ_4	$a_0(980)\pi$		
Γ_5	$\pi\pi\rho$		
Γ_6	4π		
Γ ₇	$ ho^0 \gamma$		
۲8	$\phi\gamma$	seen	

$f_1(1420) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}\pi) \times /\Gamma_{total}$					Γ ₁ Γ ₀ /Γ
VALUE (keV)	CL%	DOCUMENT ID		TECN	COMMENT
1.7±0.4 OUR AVE	RAGE				
$3.0 \pm 0.9 \pm 0.7$		^{8,9} BEHREND	89	CELL	$e^+e^- \rightarrow \kappa_S^0 \kappa \pi$
$2.3^{+1.0}_{-0.9}\pm0.8$		HILL			$e^+e^{e^+e^-}\stackrel{\rightarrow}{\underset{\kappa^{\pm}}{\rightarrow}}_{\kappa^{\pm}\kappa^0_5\pi^{\mp}}$
$1.3 \pm 0.5 \pm 0.3$		AIHARA	88B	TPC	$e^+e^- \rightarrow e^+e^- K^{\pm}K^0_c\pi^{\mp}$
$1.6 \pm 0.7 \pm 0.3$		8,10 GIDAL	87B	MRK2	$e^+e^- \rightarrow e^+e^- K \overline{K} \pi$

	_	lata for average				
< 8.0	95	JENNI	83	MRK2	$e^+e^- \rightarrow e^-$	e+e−KK
8 Assume a ρ-pole form	factor.	ridorable aalle	. د این د	·hc		
⁹ A φ - pole form facto ¹⁰ Published value divide	rgives cons ed by 2	siderably smaller	widt	.ns.		
	-					
	f ₁ (1420)	BRANCHIN	G R/	ATIOS		
Γ (Κ / K *(892)+ c.c.)/	Γ(<i>K</i> K π)					Γ2/Γ
VALUE		DOCUMENT ID				
• • We do not use the	tollowing c	_				
0.76±0.06 0.86±0.12		BROMBERG DIONISI	80 80	SPEC HBC	$100 \pi^- p - 4 \pi^- p \rightarrow$	
		DIONISI	60	пвс	4 x p →	N N N D
$\Gamma(\pi\pi\rho)/\Gamma(K\overline{K}\pi)$						Γ ₅ /Ι
	<u>CL%</u>	DOCUMENT ID				
• • We do not use the	_	_				
<0.3 <2.0	95	CORDEN DAHL	78 67	OMEG HBC	12-15 π ⁻ p 1.6-4.2 π	
			•1		n	-
$\Gamma(\eta\pi\pi)/\Gamma(K\overline{K}\pi)$						Г3/І
VALUE	<u>CL%</u>	DOCUMENT ID				
<0.1 • • • We do not use the	95 following o	ARMSTRONG				<i>ppηπ</i> ⁺ π ⁻
1.35±0.75	onoming (KOPKE	s, 1165 89		$J/\psi \rightarrow \omega \eta$	**/KV-
<0.6	90	GIDAL	87	MRK2	$e^+e^- \rightarrow e^+e^- \eta$	
				011-5	e ⁺ e ⁻ η	π+ π-
<0.5 1.5 ±0.8	95	CORDEN DEFOIX	78 72		12-15 π ⁻ p 0.7 p̄ p	
$\Gamma(a_0(980)\pi)/\Gamma(\eta\pi\pi)$	•					Γ4/Ι
VALUE	<u>CL%</u>	DOCUMENT ID				n n
>0.1 • • • We do not use the	90 following o	PROKOSHKIN				 ηπ°π° π
not seen in either mode	ooming (ANDO	86	SPEC		
not seen in either mode		CORDEN	78		8π p 12-15π p	
0.4±0.2		DEFOIX	72		$0.7 \ \overline{p}p \rightarrow$	
Γ(4π)/Γ(<i>K</i> K *(892)-	ا د د ا					г. //
	<u> </u>	DOCUMENT ID		TECN	COMMENT	Γ ₆ /Ι
• • We do not use the						
<0.90	95	DIONISI		нвс	4 π ⁻ p	
=/WW \ \			1			- //
$\Gamma(K\overline{K}\pi)/[\Gamma(K\overline{K}^*(8))]$	92) + C.C.					1/(F ₂ +F
• • • We do not use the	following :	<u>DOCUMENT ID</u> data for average				
0.65 ± 0.27	_	uata ioi average ^I DIONISI		HBC	4 π ⁻ p	
11 Calculated using Γ(K					•	
	~//·(4×)	- U.Z- I U.U!	.01 4	0(200)	. 400113.	
· `						
Γ(a ₀ (980)π)/Γ(<i>K</i> \overline{K}^4						Γ ₄ /
Γ(a ₀ (980)π)/Γ(ΚΚ [*]	'(892) + c <u>ឩ%</u>	.c.)			COMMENT	Γ4/Ι
Γ(a ₀ (980)π)/Γ(<i>K</i> \overline{K}^4		.c.)			450 <i>pp</i> →	
Γ(a ₀ (980)π)/Γ(ΚΚ [*]	<u>CL%</u>	.c.) DOCUMENT ID BARBERIS	98 C	OMEG	$\begin{array}{c} 450 \ pp \rightarrow \\ p_f \ f_1(14) \end{array}$	
Γ(a ₀ (980)π)/Γ(ΚΚ ⁴ 0.04 ±0.01 ±0.01	CL%	.c.) DOCUMENT ID BARBERIS	98C s, fits	OMEG s, limits,	450 $pp \rightarrow p_f f_1(14)$ etc. • • •	
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^4)$ $0.04 \pm 0.01 \pm 0.01$ • • • We do not use the <0.04	<u>CL%</u>	DOCUMENT ID BARBERIS data for average	98C s, fits	OMEG s, limits,	450 $pp \rightarrow p_f f_1(14)$ etc. • • •	20) p _S
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^4)$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ 0.04 ± 0.04 0.04 ± 0.04	CL% following of	DOCUMENT ID BARBERIS data for average	98C s, fits 6 84	OMEG s, limits, OMEG	$450 pp \rightarrow p_f f_1(14)$ etc. • • • $85 \pi^+ p$	20) p _S
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^4)$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ 0.04 ± 0.04 $0.$	CL% following (68 CL%	DOCUMENT ID BARBERIS data for average ARMSTRONG	98C es, fite 5 84	OMEG s, limits, OMEG	$\begin{array}{c} 450 \ pp \rightarrow \\ p_f \ f_1(14) \\ \text{etc.} \bullet \bullet \bullet \\ 85 \ \pi^+ \ p \end{array}$	^{20) ρ_s}
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^4)$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ 0.04 ± 0.04 0.04 ± 0.04	CL% following of	DOCUMENT ID BARBERIS data for average	98C es, fite 5 84	OMEG s, limits, OMEG	$\begin{array}{c} 450 \ pp \rightarrow \\ p_f \ f_1(14) \\ \text{etc.} \bullet \bullet \bullet \\ 85 \ \pi^+ \ p \end{array}$	^{20) ρ_s} Γ ₆ /Ι
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^4)$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ 0.04 ± 0.04 $0.$	CL% following (68 CL%	DOCUMENT ID BARBERIS data for average ARMSTRONG	98C es, fite 5 84	OMEG s, limits, OMEG	$\begin{array}{c} 450 \ pp \rightarrow \\ p_f \ f_1(14) \\ \text{etc.} \bullet \bullet \bullet \\ 85 \ \pi^+ \ p \end{array}$	²⁰⁾ ρ _s Γ ₆ /
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^4)$ $0.04 \pm 0.01 \pm 0.01$ $\bullet \bullet \bullet \text{ We do not use the}$ < 0.04 $\Gamma(4\pi)/\Gamma(K\overline{K}\pi)$ $VALUE$ < 0.62	CL% collowing of the c	BARBERIS data for average ARMSTRONC DOCUMENT ID ARMSTRONC	98C es, fits 6 84 6 89G	OMEG s, limits, OMEG TECN OMEG	$450 \ pp \rightarrow p_f \ f_1(14)$ etc. • • • $85 \ \pi^+ p$ $\frac{COMMENT}{85 \ \pi p \rightarrow 4}$	²⁰⁾ ρ _s Γ ₆ /
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^4)$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ 0.04 ± 0.04 $0.$	CL% e following of 68 CL% 95 CL% 95	DOCUMENT ID DOCUMENT ID ARMSTRONG ARMSTRONG ARMSTRONG ARMSTRONG DOCUMENT ID ARMSTRONG	98c es, fits 6 84 6 89G	OMEG 5, limits, OMEG TECN OMEG TECN SPEC	$450 \ pp \rightarrow p_f \ f_1(14)$ etc. • • • $85 \ \pi^+ p$ $\frac{COMMENT}{85 \ \pi p \rightarrow 4}$	^{20) ρ₅} Γ 6/ 4π Χ
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^4)$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ 0.04 ± 0.04 $0.$	CL% e following of 68 CL% 95 CL% 95	DOCUMENT ID DOCUMENT ID ARMSTRONG ARMSTRONG ARMSTRONG ARMSTRONG DOCUMENT ID ARMSTRONG	98c es, fits 6 84 6 89G	OMEG 5, limits, OMEG TECN OMEG TECN SPEC	450 $pp \rightarrow p_f f_1(14)$ etc. • • • 85 $\pi^+ p$ $\frac{COMMENT}{85 \pi p \rightarrow 4}$	^{20) ρ₅} Γ 6/ 4π Χ
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^4)$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ 0.04 ± 0.04 0.062 0.062 0.08 0.08 0.08 0.09	CL% e following of 68 CL% 95 CL% 95	DOCUMENT ID DOCUMENT ID ARMSTRONG ARMSTRONG ARMSTRONG ARMSTRONG DOCUMENT ID ARMSTRONG	98c es, fits 6 84 6 89G	OMEG 5, limits, OMEG TECN OMEG TECN SPEC	450 $pp \rightarrow p_f f_1(14)$ etc. • • • 85 $\pi^+ p$ $\frac{COMMENT}{85 \pi p \rightarrow 4}$	20) ρ _S Γ ₆ / 1π × Γ _{7/} ρρπ ⁺ π ⁻
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^4)$ $0.04 \pm 0.01 \pm 0.01$ $\bullet \bullet \bullet \text{ We do not use the}$ <0.04 $\Gamma(4\pi)/\Gamma(K\overline{K}\pi)$ $VALUE$ <0.62 $\Gamma(\rho^0\gamma)/\Gamma_{\text{total}}$ $VALUE$ <0.08 12 Using the data on the $\Gamma(\rho^0\gamma)/\Gamma(K\overline{K}\pi)$	CL% e following c 68 CL% 95 CL% 95 LC Kπ mo	DOCUMENT ID DOCUMENT ID ARMSTRONG DOCUMENT ID ARMSTRONG DOCUMENT ID ARMSTRONG ARMSTRONG DOCUMENT ID ARMSTRONG ARMSTRONG DOCUMENT ID ARMSTRONG	98c es, fite 6 84 6 89G 5 92C TROI	OMEG s, limits, OMEG TECN OMEG TECN SPEC NG 89.	450 $pp \rightarrow p_f f_1(14)$ etc. • • • • 85 $\pi^+ p$ COMMENT 85 $\pi p \rightarrow q$ COMMENT 300 $pp \rightarrow q$	20) ρ _S Γ6/Ι 1π × Γ ₇ ρρπ ⁺ π ⁻
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^4)$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ 0.04 ± 0.04 0.062 0.062 0.08 0.08 0.08 0.09	CL% e following of 68 CL% 95 CL% 95	DOCUMENT ID DOCUMENT ID ARMSTRONG ARMSTRONG ARMSTRONG ARMSTRONG DOCUMENT ID ARMSTRONG	98c	OMEG s, limits, OMEG TECN OMEG TECN SPEC NG 89.	450 $pp \rightarrow p_f f_1(14)$ etc. • • • 85 π^+p COMMENT 85 $\pi p \rightarrow q$ COMMENT 300 $pp \rightarrow q$	Γ ₆ /Ι Γ ₇ /Γ
$\Gamma(a_0(980)\pi)/\Gamma(KK^4)$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ 0.04 ± 0.04 0.05 ± 0.04 0.08 ± 0.08 0.08 ± 0.08 0.08 ± 0.08 0.08 ± 0.09	CL% collowing of 68 collowing of 6	DOCUMENT ID DOCUMENT ID ARMSTRONC DOCUMENT ID ARMSTRONC DOCUMENT ID ARMSTRONC ARMSTRONC DOCUMENT ID ARMSTRONC DOCUMENT ID DOCUMENT ID	98c	OMEG s, limits, OMEG TECN OMEG TECN SPEC NG 89.	450 $pp \rightarrow p_f f_1(14)$ etc. • • • 85 π^+p COMMENT 300 $pp \rightarrow$	Γ ₆ /Ι Γ ₇ /Γ
Γ (a ₀ (980)π)/ Γ ($K\overline{K}^4$ 0.04 ±0.01 ±0.01 • • • We do not use the <0.04 Γ (4π)/ Γ ($K\overline{K}$ π) VALUE <0.62 Γ (ρ 0 γ)/ Γ total VALUE <0.08 12 Using the data on the Γ (ρ 0 γ)/ Γ ($K\overline{K}$ π) VALUE <0.02	CL% collowing of 68 collowing of 6	DOCUMENT ID DOCUMENT ID ARMSTRONC DOCUMENT ID ARMSTRONC DOCUMENT ID ARMSTRONC ARMSTRONC DOCUMENT ID ARMSTRONC DOCUMENT ID DOCUMENT ID	98c	OMEG s, limits, OMEG TECN OMEG TECN SPEC NG 89.	450 $pp \rightarrow p_f f_1(14)$ etc. • • • 85 π^+p COMMENT 85 $\pi p \rightarrow q$ COMMENT 300 $pp \rightarrow q$	Γ ₆ /Ι π × Γ ₇ /Γ Γ ₇ /Γ
$\Gamma(a_0(980)\pi)/\Gamma(KK^4)$ $0.04 \pm 0.01 \pm 0.01$ $0.04 \pm 0.01 \pm 0.01$ 0.04 ± 0.04 0.05 ± 0.04 0.08 ± 0.08 0.08 ± 0.08 0.08 ± 0.08 0.08 ± 0.09	CL% collowing of 68 collowing of 6	DOCUMENT ID DOCUMENT ID ARMSTRONC DOCUMENT ID ARMSTRONC DOCUMENT ID ARMSTRONC ARMSTRONC DOCUMENT ID ARMSTRONC DOCUMENT ID DOCUMENT ID	98c 98c 98c 98c	OMEG s, limits, OMEG TECN OMEG TECN SPEC NG 89. TECN OMEG	450 $pp \rightarrow p_f f_1(14)$ etc. • • • 85 π^+p COMMENT 85 $\pi p \rightarrow q$ COMMENT 300 $pp \rightarrow q$	Γ ₆ /Ι 1π × Γ ₇ /Γ Γ ₇ /Γ

 $f_1(1420)$, $\omega(1420)$, $f_2(1430)$

f₁(1420) REFERENCES

SOSA	99	PRL 83 913	M. Sosa et al.	
BARBERIS	98C	PL B440 225	D. Barberis et al.	(WA102 Collab.)
BARBERIS	97C	PL B413 225	D. Barberis et ai.	(WA102 Collab.)
BERTIN	97	PL B400 226	A. Bertin et al.	(OBELIX Collab.)
PROKOSHKIN	97B	SPD 42 298		(
		Translated from DANS		
ARM5TRONG	92C	ZPHY C54 371	T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
ARMSTRONG	92E	ZPHY 56 29	T.A. Armstrong et al.	(ATHU, BARI, BIRM+) JPC
AUGUSTIN	92	PR D46 1951	J.E. Augustin, G. Cosme	(DM2 Collab.)
ARMSTRONG	91B		T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
BAI	90C	PRL 65 2507	Z. Bai et al.	(Mark III Collab.)
ARM5TRONG	89	PL B221 216	T.A. Armstrong et al.	(CERN, CDEF, BIRM+) JPC
ARM5TRONG		ZPHY C43 55	T.A. Armstrong et al.	(CERN, BIRM, BARI+)
BEHREND	89	ZPHY C42 367	H.J. Behrend et al.	(CELLO Collab.)
HILL	89	ZPHY C42 355	P. Hill et al.	(JADE Collab.) JP
KOPKE	89	PRPL 174 67	L. Kopke et al.	(CERN)
AIHARA	66B	PL B209 107	H. Aihara et al.	(TPC-2γ Collab.)
BECKER	87	PRL 59 186	J.J. Becker et al.	(Mark III Collab.) JP
GIDAL	87	PRL 59 2012	G. Gidal et al.	(LBL, SLAC, HARV)
GIDAL	87B	PRL 59 2016	G. Gidal et al.	(LBL, SLAC, HARV)
AIHARA	86C	PRL 57 2500	H. Aihara et al.	(TPC-2γ Collab.) JP
ANDO	86	PRL 57 1296	A. Ando et al.	(KEK, KYOT, NIRS, SAGA+)
ARMSTRONG	84	PL 146B 273	T.A. Armstrong et al.	(ATHU, BARI, BIRM+) JP
BITYUKOV	84	SJNP 39 735	S. Bityukov et al.	(SERP)
	_	Translated from YAF 3		
CHAUVAT	84	PL 148B 382	P. Chauvat et al.	(CERN, CLER, UCLA+)
JENNI	83	PR D27 1031	P. Jenni et al.	(SLAC, LBL)
BROMBERG	80	PR D22 1513	C.M. Bromberg et əl.	(CIT, FNAL, ILLC+)
DIONISI	80	NP B169 1	C. Dionisi et al.	(CERN, MADR, CDEF+) IJP
CORDEN	78	NP B144 253	M.J. Corden et al.	(BIRM, RHEL, TELA+)
DEFOIX	72	NP B44 125	C. Defoix et al.	(CDEF, CERN)
DAHL	67	PR 163 1377	O.I. Dahl et al.	(LRL) IJP
Also	65	PRL 14 1074	D.H. Miller et al.	(LRL, UCB)
				• • •

OTHER RELATED PAPERS -

GODFREY	99	RMP 71 1411	5. Godfrey, J. Napolitano	
PROKOSHKIN	99	PAN 62 356	Yu.D. Prokoshkin et al.	
		Translated from YAF 62	396.	
IIZUKA	91	PTP 86 885	J. lizuka, H. Koibuchi	(NAGO)
ISHIDA	89	PTP 82 119	S. Ishida et al.	(NIHO)
AIHARA	88C	PR D38 1	H. Aihara et al.	(TPC-2γ Collab.) JPG
BITYUKOV	88	PL B203 327	S.I. Bityukov et al.	(SERP)
PROTOPOP	87B	Hadron 87 Conf.	S.D. Protopopescu, S.U. Chung	(BNI)

 ω (1420)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ω(1420) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1419± 31	315	¹ ANTONELLI	92	DM2	$1.34-2.4e^{+}e^{-} \rightarrow \rho\pi$
• • • We do not use					
1170 ± 10		² ACHASOV	99E	RVUE	$0.75-1.80 e^{+}_{\pi^{+}\pi^{-}\pi^{0}} e^{-} \rightarrow$
$1400 + 100 \\ -200$		³ ACHASOV			$e^+e^- \rightarrow \pi^+\pi^-\pi^0$
~ 1400		⁴ ACHASOV			$e^+e^- \rightarrow \omega \pi^+\pi^-$
~ 1460		5 ACHASOV	98H	RVUE	$e^+e^- \rightarrow K^+K^-$
1440 ± 70		⁶ CLEGG	94	RVUE	

From a fit to two Breit-Wigner functions interfering between them and with the ω,φ tails with fixed (+,-,+) phases.
 Using the data of DOLINSKY 91, ANTONELLI 92, AKHMETSHIN 98, and ACHASOV 99ε. From a fit to two Breit-Wigner functions interfering between them and with the ω,φ tails with fixed (+,-,+) phases.

³Using data from BARKOV 87, DOLINSKY 91, and ANTONELLI 92.

⁴Using the data from ANTONELLI 92.

⁵ Using the data from IVANOV 81 and BISELLO 88B.

⁶Using data published by ANTONELLI 92.

$\omega(1420)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	_
174±59	315	⁷ ANTONELLI	92	DM2	$1.34-2.4e^{+}e^{-} \rightarrow \rho\pi$	
• • • We do not use	the following	ng data for average	s, fit	s, limits,	etc. • • •	
187±15		⁸ ACHASOV	99E	RVUE	$0.75-1.80 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$	
240 ± 70		9 CLEGG		B\/IIE	$\pi^+\pi^-\pi^0$	

⁷From a fit to two Breit-Wigner functions interfering between them and with the ω , ϕ tails

with fixed (+,-,+) phases.

8 Using the data of DOLINSKY 91, ANTONELLI 92, AKHMETSHIN 98, and ACHASOV 99E. From a fit to two Breit-Wigner functions interfering between them and with the ω,ϕ tails with fixed (+,-,+) phases.

 9 Using data published by ANTONELLI 92.

ω(1420) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
Γ ₁	ρπ e+e-	dominant

$\omega(1420) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(\rho\pi) \times \Gamma(e^+e^-)$	·-)/r _{total}				Γ ₁ Γ ₂ /Γ
VALUE (eV)	EVTS	DOCUMENT ID		TECN	COMMENT
81 ± 31	315	¹⁰ ANTONELLI	92	DM2	$1.34-2.4e^{+}e^{-} \rightarrow \rho\pi$
• • • We do not u	se the followi	ng data for average	s, fit	s, limits	etc. • • •
$137 \pm 3 \pm 15$		¹¹ ACHASOV	99E	RVUE	$0.75-1.80 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$

 10 From a fit to two Breit-Wigner functions interfering between them and with the ω,ϕ tails with fixed (+,-,+) phases.

With the (+,-,+) phases.

I'l Using the data of DOLINSKY 91, ANTONELLI 92, AKHMETSHIN 98, and ACHASOV 99E. From a fit to two Breit-Wigner functions interfering between them and with the ω , ϕ tails with fixed (+,-,+) phases.

ω(1420) REFERENCES

ACHA5OV	99E	PL B462 365	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHA5OV	98H	PR D57 4334	N.N. Achasov, A.A. Kozhevniko	
AKHMETSHIN	98	PL B434 426	R.R. Akhmetshin et al.	
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC, MCH5)
ANTONELLI	92	ZPHY C56 15	A. Antonelli et al.	(DM2 Collab.)
DOLINSKY	91	PRPL 202 99	5.I. Dolinsky et al.	(NOVO)
BISELLO	88B	ZPHY C39 13	D. Bisello et al.	(PADO, CLER, FRAS+)
BARKOV	87	JETPL 46 164	L.M. Barkov et al.	(NOVO)
		Translated from ZETFF		,,
IVANOV	81	PL 107B 297	P.M. Ivanov et al.	(NOVO)

- OTHER RELATED PAPERS ---

ABELE	99D	PL B468 178	A. Abele et al.	(Crystal Barrel Collab.)
BELOZEROVA	98	PPN 29 63 Translated from	T.S. Belozerova, V.K. Henner FECAY 29 148.	, ,
ACHA5OV	97F		N.N. Achasov, A.A. Kozhevnikov	(NOVM)
ATKIN5ON	B7	ZPHY C34 157	M. Atkinson et al.	(BONN, CERN, GLAS+)
ATKINSON	84	NP B231 15	M. Atkinson et al.	(BONN, CERN, GLAS+)
ATKINSON	83B	PL 127B 132	M. Atkinson et al.	(BONN, CERN, GLAS+)

 $f_2(1430)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

OMITTED FROM SUMMARY TABLE

This entry lists nearby peaks observed in the D wave of the $K\overline{K}$ and $\pi^+\pi^-$ systems. Needs confirmation.

f2(1430) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 1430 OUR ESTIMATE				
• • • We do not use the	following data for average	es, fit	s, limits,	etc. • • •
1421 ± 5	AUGUSTIN			$J/\psi \rightarrow \gamma \pi^+ \pi^-$
1480 ± 50	AKESSON	86	SPEC	$pp \rightarrow pp\pi^{+}\pi^{-}$
1436^{+26}_{-16}	DAUM			17-18 π ⁻ ρ →
1412± 3	DAUM	84	CNTR	$63 \ \pi^{-} p \to K_{5}^{0} K_{5}^{0} n,$
1439 ⁺ 5	¹ BEUSCH	67	OSPK	$K^{+}K^{-}n$ 5,7,12 $\pi^{-}p \rightarrow K_{0}^{0}K_{0}^{0}n$
1				^5^5"

¹ Not seen by WETZEL 76.

£(1430) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use t	the following data for average	s, fit	, limits,	etc. • • •
30 ± 9	AUGUSTIN			$J/\psi \rightarrow \gamma \pi^+ \pi^-$
150 ± 50	AKESSON	86	SPEC	$pp \rightarrow pp\pi^{+}\pi^{-}$
81 + 56 - 29	DAUM			$17-18 \pi^{-} p \rightarrow \kappa^{+} \kappa^{-} p$
14± 6	DAUM	84	CNTR	$63 \begin{array}{c} K^+ K^- n \\ 63 \begin{array}{c} \pi^- p \rightarrow \\ K^+ K^- n \end{array}$
43+17	² BEUSCH	67	OSPK	$5,7,12 \pi^{-} p \rightarrow K_{0}^{0} K_{0}^{0} \pi$

² Not seen by WETZEL 76.

f2(1430) DECAY MODES

	Mode
Γ_1	κ κ
Γ_2	$\pi \pi$

f2(1430) REFERENCES

AUGUSTIN	87	ZPHY C36 369	J.E. Augustin et al.	(LALO, CLER, FRAS+) (Axial Field Spec. Collab.) (AMST, CERN, CRAC, MPIM+) JP (ETH, CERN, LOIC) (ETH, CERN)
AKESSON	86	NP B264 154	T. Akesson et al.	
DAUM	84	ZPHY C23 339	C. Daum et al.	
WETZEL	76	NP B115 208	W. Wetzel et al.	
BEUSCH	67	PL 25B 357	W. Beusch et al.	

$$\eta$$
(1440)

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

THE $\eta(1440)$, $f_1(1420)$, AND $f_1(1510)$

Written April 2000 by M. Aguilar-Benitez (CIEMAT, Madrid), C. Amsler (Zürich), and A. Masoni (INFN Cagliari).

The first observation of $\eta(1440)$ was made in $p\overline{p}$ annihilation at rest into $\eta(1440)\pi^+\pi^-$, $\eta(1440)\to K\overline{K}\pi$ (BAILLON 67). This state was reported to decay through $a_0(980)\pi$ and $K^*(892)\overline{K}$ with roughly equal contributions. The $\eta(1440)$ has also been observed in radiative $J/\psi(1S)$ decay to $K\overline{K}\pi$ (SCHARRE 80, EDWARDS 82E, AUGUSTIN 90).

The $f_1(1420)$, decaying to $K^*\overline{K}$, was reported in π^-p reactions at 4 GeV/c (DIONISI 80). However, later analyses found that the 1400–1500 MeV region is far more complex. In π^-p experiments, (CHUNG 85, REEVES 86, BIRMAN 88) reported 0^{-+} with a dominant $a_0(980)\pi$ contribution to $K\overline{K}\pi$. The π^-p data of RATH 89 at 21 GeV/c suggest the presence of two pseudoscalars decaying to $K\overline{K}\pi$, one around 1410 MeV decaying through $a_0(980)\pi$, and the other around 1470 MeV, decaying to $K^*\overline{K}$. A reanalysis of the MARK III data in radiative $J/\psi(1S)$ decay to $K\overline{K}\pi$ (BAI 90C) also claims the existence of two pseudoscalars in the 1400–1500 MeV range, the lower mass state decaying through $a_0(980)\pi$, and the higher mass state decaying via $K^*\overline{K}$. In addition, $f_1(1420)$ is observed to decay into $K^*\overline{K}$.

In $\pi^- p \to \eta \pi \pi n$ charge-exchange reactions at 8-9 GeV/c, the $\eta \pi \pi$ mass spectrum is dominated by $\eta(1440)$ and $\eta(1295)$ (ANDO 86, FUKUI 91C), and at 100 GeV/c, ALDE 97B reports $\eta(1295)$ and $\eta(1440)$ decaying to $\eta \pi^0 \pi^0$ with a weak $f_1(1285)$ signal, and no evidence for $f_1(1420)$.

An experiment in $\overline{p}p$ annihilation at rest into $K\overline{K}3\pi$ (BERTIN 95) reports two pseudoscalars with decay properties similar to BAI 90C, although the lower state shows, apart from $a_0(980)\pi$, a large contribution from the direct decay $\eta(1440) \to K\overline{K}\pi$.

The result of BERTIN 95 was supported by further $\overline{p}p$ data from the same experiment (BERTIN 97, CICALO 99). In particular, the data of CICALO 99 provided a decisive evidence for the presence of two pseudoscalar states.

We note that the data from AUGUSTIN 92 also suggest two states, but their intermediate states, $a_0(980)\pi$ and $K^*\overline{K}$, are reversed relative to BAI 90C.

Actually the interpretation of AUGUSTIN 92 is disfavored for several reasons: first, it disagrees with all the other $K\overline{K}3\pi$ results reporting two pseudoscalar states (they all agree in assigning the $K^*(892)\overline{K}$ decay mode to the higher mass pseudoscalar); second, it also disagrees with the $\eta\pi\pi$ results, because if the high mass pseudoscalar decays into $a_0(980)\pi$, then this state (and not the one at lower mass) should be seen in $\eta\pi\pi$ (see below).

In $J/\psi(1S)$ radiative decay, the $\eta(1440)$ decays to $K\overline{K}\pi$ through $a_0(980)\pi$, and hence a signal is also expected in the $\eta\pi\pi$

mass spectrum. This has indeed been observed by MARK III in $\eta \pi^+ \pi^-$ (BOLTON 92B), which report a mass of 1400 MeV, in line with the existence of a low mass pseudoscalar, in the $\eta(1440)$ structure, decaying to $a_0(980)\pi$. This state is also observed in $\overline{p}p$ annihilation at rest into $\eta \pi^+ \pi^- \pi^0 \pi^0$, where it decays to $\eta \pi \pi$ (AMSLER 95F). The intermediate $a_0(980)\pi$ accounts for roughly half of the $\eta \pi \pi$ signal, in agreement with MARK III (BOLTON 92B) and DM2 (AUGUSTIN 90). However, ALDE 97B reports only a very small contribution due to $a_0(980)\pi$.

There is now a fairly consistent picture for the existence of two pseudoscalars. We call them η_L and η_H . The first one decays mainly through $a_0(980)\pi$ or direct $K\overline{K}\pi$. The second one decays mainly to $K^*(892)\overline{K}$. The η_L is seen both in $K\overline{K}\pi$ and $\eta\pi\pi$ experiments. The η_H is seen only in $K\overline{K}\pi$ experiments. The simultaneous observation of two pseudoscalars is reported in three production mechanisms by four different experiments: π^-p (RATH 89); radiative $J/\psi(1S)$ decay (BAI 90C, AUGUSTIN 92); and $\overline{p}p$ annihilation at rest (BERTIN 95, BERTIN 97, CICALO 99). All of them give values for the masses, widths and decay modes (with the exception of AUGUSTIN 92 quoted above) in reasonable agreement.

A recent paper reports only one pseudoscalar state seen in $J/\psi(1S)$ decay to $K\overline{K}\pi$ (BAI 98C), but its statistics are poorer, by a factor six, with respect to MARK III on the same final state (BAI 90C), and by more than an order of magnitude with respect to $\overline{p}p$ data (BERTIN 95, BERTIN 97, CICALO 99). It is, therefore, not surprising that their analysis is not capable to discriminate between the two states.

One of these two pseudoscalars could be the first radial excitation of the η' , with the $\eta(1295)$ being the first radial excitation of the η . Ideal mixing, suggested by the $\eta(1295)$ and $\pi(1300)$ mass degeneracy, would then imply that the second isoscalar in the nonet is mainly $s\overline{s}$, and hence, couples to $K^*\overline{K}$, in agreement with observations for the upper $\eta(1440)$ state.

Also its width matches the expected width for the radially excited $\eta^{s\bar{s}}$ (CLOSE 97, BARNES 97).

This scheme then favors an exotic interpretation of the lower state, perhaps gluonium mixed with $q\overline{q}$ (CLOSE 97B) or a bound state of gluinos (FARRAR 96). The gluonium interpretation is, however, not favored by lattice gauge theories, which predict the 0^{-+} state above 2 GeV (BALI 93).

Axial (1^{++}) mesons are not observed in $\overline{p}p$ annihilation at rest in liquid hydrogen, which proceeds dominantly through S-wave annihilation. However, in gaseous hydrogen, P-wave annihilation is enhanced and, indeed, BERTIN 97 reports $f_1(1420)$ decaying to $K^*\overline{K}$, while confirming their earlier evidence for two pseudoscalars (BERTIN 95).

In $\gamma\gamma$ fusion from e^+e^- annihilations, a signal around 1420 MeV is seen in single-tag events (GIDAL 87B, AIHARA 88B, BEHREND 89, HILL 89), where one of the two photons is off-shell. However, it is totally absent in the untagged events where both photons are real. This points to a spin 1 object, which is not produced by two real (massless) photons (Yang-Landau theorem). The 2γ decay also implies C=+1. For the

$\eta(1440)$

parity, AIHARA 88C and BEHREND 89 both find angular distributions with positive parity preferred, but negative parity cannot be excluded.

The $f_1(1420)$, decaying in $K\overline{K}\pi$, is definitely seen in pp central production at 300 and 450 GeV/c, together with $f_1(1285)$. The latter decays via $a_0(980)\pi$, and the former only via $K^*\overline{K}$, while $\eta(1440)$ is absent (ARMSTRONG 89, BARBERIS 97C). The $K_S K_S \pi^0$ decay mode of $f_1(1420)$ establishes unambiguously C=+1. On the other hand, there is no evidence for any state decaying to $\eta\pi\pi$ around 1400 MeV, and hence, the $\eta\pi\pi$ mode of $f_1(1420)$ is suppressed (ARMSTRONG 91B).

We now turn to the experimental evidence for $f_1(1510)$. Two states, $f_1(1420)$ and $f_1(1510)$, decaying to $K^*\overline{K}$, compete for the $s\overline{s}$ assignment in the 1⁺⁺ nonet. The $f_1(1510)$ was seen in $K^-p \to \Lambda K \overline{K} \pi$ at 4 GeV/c (GAVILLET 82), and at 11 GeV/c (ASTON 88C). Evidence is also reported in π^-p at 8 GeV/c, based on the phase motion of the 1^{++} $K^*\overline{K}$ wave (BIRMAN 88).

The absence of $f_1(1420)$ in K^-p (ASTON 88C) argues against $f_1(1420)$ being the $s\overline{s}$ member of the 1⁺⁺ nonet. However, $f_1(1420)$ has been reported in K^-p , but not in $\pi^- p$ (BITYUKOV 84) while two experiments do not observe $f_1(1510)$ in K^-p (BITYUKOV 84, KING 91). It is also not seen in radiative $J/\psi(1S)$ decay (BAI 90C, AUGUSTIN 92), central collisions (BARBERIS 97C), or in $\gamma\gamma$ collisions (AIHARA 88C), although, surprisingly for an $s\bar{s}$ state, a signal is reported in 4π decays (BAUER 93B). These facts led to the conclusion that $f_1(1510)$ is not well established, and that its assignment as $s\bar{s}$ member of the 1⁺⁺ nonet is premature (CLOSE 97D). The Particle Data Group has removed this state from the Summary Table. Assigning, instead, the $f_1(1420)$ to the 1⁺⁺ nonet, one finds a nonet mixing angle of $\sim 50^{\circ}$ (CLOSE 97D). This is derived from the mass formula, and from $f_1(1285)$ radiative decays to $\phi\gamma$ (BITYUKOV 88) and $\rho\gamma$ (AMELIN 95).

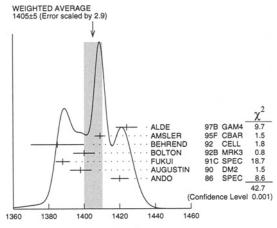
Arguments favoring $f_1(1420)$ being a hybrid $q\bar{q}g$ meson or a four-quark state are put forward by ISHIDA 89 and CALDWELL 90, respectively, while LONGACRE 90 argues that this particle is a molecular state formed by the π orbiting in a P-wave around an S-wave $K\overline{K}$ state.

Summarizing, there is rather convincing evidence for $f_1(1420)$, mostly produced in central collisions and decaying to $K^*\overline{K}$, and for $\eta(1440)$, mostly produced in radiative $J/\psi(1S)$ decay and $\overline{p}p$ annihilation at rest, and decaying to $K^*\overline{K}$ and $a_0(980)\pi$. Confusion remains as to which states are observed in $\pi^- p$ interactions. The $f_1(1510)$ is not well established.

Furthermore, there are fairly strong experimental indications for the presence of two pseudoscalars in the $\eta(1440)$

The available information has led the Particle Data Group to split the $K\overline{K}\pi$ entry for $\eta(1440)$ into $a_0(980)\pi$ and $K^*\overline{K}$.

η(1440) MASS


DOCUMENT ID 1400 - 1470 OUR ESTIMATE Contains possibly two overlapping pseudoscalars.

ηππ MODE

•					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1405± 5 OUR AVERA	GE Error	includes scale fact	or of	2.9. Se	e the ideogram below.
1424± 6	2200	ALDE	97в	GAM4	$100 \pi^- \rho \rightarrow \eta \pi^0 \pi^0 \pi$
1409± 3		AMSLER `	95F	CBAR	$0 \overline{\rho} \rho \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \eta$
1385 ± 15		1 BEHREND	92	CELL	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
1400 ± 6		1 BOLTON	92B	MRK3	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
1388 ± 4		FUKUI	91c	SPEC	8.95 $\pi^{-} \rho \rightarrow \eta \pi^{+} \pi^{-} \eta$
1398± 6	261	² AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
1420 ± 5		ANDO	86	SPEC	$8 \pi^- \rho \rightarrow \eta \pi^+ \pi^- \eta$
• • • We do not use the	ne following	data for averages	, fits	, limits,	etc. • • •
1385 + 7		RΔI	aa	REC	1/4 . ~ +

 $^{^{1}}$ From fit to the $a_{0}(980)\pi$ 0 $^{-\,+}$ partial wave

² Best fit with a single Breit Wigner.

 $\eta(1440)$ mass, $\eta \pi \pi$ mode (MeV)

ππη MODE

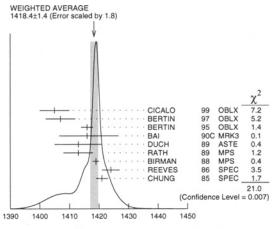
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the following data for average	es, fit	s, limits,	etc. • • •
1401 ± 18	3,4 AUGUSTIN	90	DM2	$J/\psi \rightarrow \pi^+\pi^-\gamma\gamma$
1432 ± 8	⁴ COFFMAN	90	MRK3	$J/\psi \rightarrow \pi^{+}\pi^{-}2\gamma$
_				

³ Best fit with a single Breit Wigner.

4π MODE

VALUE (MeV)	EVTS	DOCUMENT ID	TECI	V COMMENT	
• • • We do not use	the following	g data for averag	es, fits, limi	its, etc. • • •	
1420 ± 20		BUGG	95 MRI	K3 $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$	
1489 ± 12	3270	⁵ BISELLO	89B DM2	$2 J/\psi o 4\pi\gamma$	
5					

timated by us from various fits.

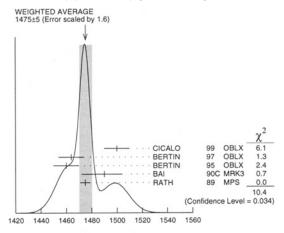

KK# MODE	$(a_0(980) \pi$	dominant)
VALUE (MeV)	EVTS	DOCUM

VALUE (MeV)	EVIS	DOCUMENT ID		TECN	COMMENT
1418.4 ± 1.4	OUR AVERAGE	Error includes scale	factor	of 1.8.	See the ideogram below.
1405 ±5		⁶ CICALO	99	OBLX	$ \begin{array}{c} 0 \ \overline{\rho} \rho \to \\ K^{\pm} K^{0}_{5} \pi^{\mp} \pi^{+} \pi^{-} \end{array} $
1407 ±5		⁶ BERTIN	97	OBLX	$ \begin{array}{c} 0 \overline{\rho}\rho \to \\ K^{\pm}(K^{0})\pi^{\mp}\pi^{+}\pi^{-} \end{array} $
1416 ±2		6 BERTIN	95	OBLX	0 p̄ p → K K πππ
1416 ±8	+7 -5 700	⁷ BAI	90c	MRK3	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
1413 ±8	500	DUCH	89	ASTE	$\overline{p}p \rightarrow \pi^{+}\pi^{-}K^{\pm}\pi^{\mp}K^{0}$
1413 ±5		⁷ RATH	89	MPS	$ \begin{array}{c} \pi^{+}\pi^{-}K^{+}\pi^{+}K^{0} \\ 21.4 \pi^{-}p \rightarrow \\ \pi K_{5}^{0} K_{5}^{0}\pi^{0} \end{array} $
1419 ±1	8800	BIRMAN	88	MPS	$8 \pi^- \rho \rightarrow K^+ \overline{K}^0 \pi^- n$
1424 ±3	620	REEVES	86	SPEC	6.6 pp → KKπX
1421 ±2		CHUNG	85	SPEC	$8 \pi^- p \rightarrow K \overline{K} \pi n$
• • • We do	not use the follo	wing data for averag	es, fits	, limits,	etc. • • •
1459 ±5		8 AUGUSTIN	92	DM2	$J/\psi \rightarrow \gamma K \overline{K} \pi$

⁶ Decaying into $(K\overline{K})_S\pi$, $(K\pi)_S\overline{K}$, and $a_0(980)\pi$.

⁴This peak in the $\gamma \rho$ channel may not be related to the $\eta(1440)$.

⁷ From fit to the $a_0(980)\pi$ 0 $^{-+}$ partial wave. Cannot rule out a $a_0(980)\pi$ 1 $^{++}$ partial 8 Excluded from averaging because averaging would be meaningless.



 $\eta(1440)$ mass, $K\overline{K}\pi$ mode ($a_0(980)$ π dominant) (MeV)

KKπ MODE (K*(892) K dominant)

MAN MODE (N	(032) N u	Ommant)				
VALUE	EVTS	DOCUMENT ID		ECN	COMMENT	
1475 ± 5 OUR AVER	AGE Error	includes scale fa	ctor of 1	.6. Se	e the ideogram below.	
1500 ± 10		CICALO	99 (BLX	$0 \ \overline{\rho} \rho \rightarrow \kappa^{\pm} \kappa^{0}_{5} \pi^{\mp} \pi^{+} \pi^{-}$	١
1464±10		BERTIN	97 (DBLX	$ \begin{array}{c} 0 \overline{p}p \to \\ K^{\pm}(K^0)\pi^{\mp}\pi^{+}\pi^{-} \end{array} $	
1460 ± 10		BERTIN	95 C	DBLX	$0 \overline{p} p \rightarrow K \overline{K} \pi \pi \pi$	
$1490 + 14 + 3 \\ - 8 - 16$	1100	BAI	90c N	ARK3	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$	
1475± 4		RATH	89 N	/IPS	21.4 $\pi^- p \rightarrow \pi K_S^0 K_S^0 \pi^0$	
 • • We do not use 	the followin	g data for averag	es, fits,	limits,	etc. • • •	
1442±10 1421±14	410	BAI ⁹ AUGUSTIN	98c E 92 E	BES DM2	$J/\psi \to \gamma K^+ K^- \pi^0$ $J/\psi \to \gamma K \overline{K} \pi$	

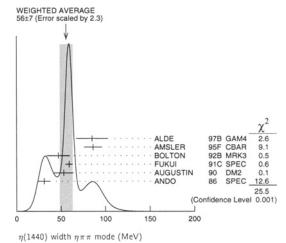
 $^{^{9}\,\}mbox{Excluded}$ from averaging because averaging would be meaningless.

 $\eta(1440)$ mass, $K\overline{K}\pi$ mode ($K^*(892)$ K dominant)

KK MODE (unresolved)

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the followin	g data for averag	es, fits	, limits	etc. • • •
1445 ± 8	693	AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
1433 ± 8	296	AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma K^{+} K^{-} \pi^{0}$
1453± 7	170	RATH	89	MP\$	$21.4 \pi^{-} p \rightarrow 0.00$
1440 + 20 - 15	174	EDWARDS	82E	CBAL	$K_S^0 K_S^0 \pi^0 n$ $J/\psi \to \gamma K^+ K^- \pi^0$
1440^{+10}_{-15}		SCHARRE	80	MRK2	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
1425 ± 7	800	¹⁰ BAILLON	67	нвс	$0 \overline{p} p \rightarrow K \overline{K} \pi \pi \pi$
10 From best fit	of 0 - + partial	wave , 50% K*(892) <i>K</i>	, 50%	$a_0(980)\pi$.

η(1440) WIDTH


DOCUMENT ID 50 - 80 OUR ESTIMATE Contains possibly two overlapping pseudoscalars.

ηππ MODE

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
56± 7 OUR	AVERAGE	Error includes scale	e factor of 2	.3. See the ideogram below.
$\textbf{85} \pm \textbf{18}$	2200	ALDE		$1 \ 100 \ \pi^- p \rightarrow \eta \pi^0 \pi^0 n$
86 ± 10		AMSLER	95F CBAF	$0 \bar{\rho} \rho \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \eta$
47 ± 13		11 BOLTON	928 MRK	$3 J/\psi o \gamma \eta \pi^+ \pi^-$
59 ± 4		FUKUI	91c SPEC	8.95 $\pi^- p \rightarrow \eta \pi^+ \pi^- n$
53 ± 11		¹² AUGUSTIN		$J/\psi ightarrow \gamma \eta \pi^+ \pi^-$
31 ± 7		ANDO	86 SPEC	$8 \pi^- \rho \rightarrow \eta \pi^+ \pi^- \rho$
• • • We do no	ot use the fo	llowing data for ave	erages, fits,	imits, etc. • • •
~ 50		12 BEHREND	92 CELL	$J/\psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$

 $^{^{11}\,\}mathrm{From}$ fit to the $a_0(980)\,\pi$ 0 $^-$ + partial wave.

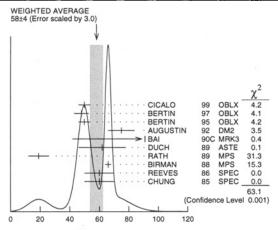
¹² From $\eta \pi^+ \pi^-$ mass distribution - mainly $a_0(980)\pi$ - no spin-parity determination avail-

ππη MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • We do not use	the following data for average	es, fit	s, limits,	etc. • • •
174 ± 44	AUGUSTIN	90	DM2	$J/\psi \rightarrow \pi^+\pi^-\gamma\gamma$
90 ± 26	¹³ COFFMAN	90	MRK3	$J/\psi \rightarrow \pi^{+}\pi^{-}2\gamma$
12				

13 This peak in the $\gamma \rho$ channel may not be related to the $\eta(1440)$.

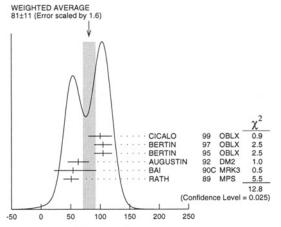
4T MODE


VALUE (MeV)	EVTS	DOCUMENT I	TECN	COMMEN	(T
• • • We do not us	e the followin	g data for avera	ges, fits, limit	s, etc. • •	•
160 ± 30		BUGG	95 MRK	$3J/\psi \rightarrow$	$\gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
144 ± 13	3270	14 BISELLO	89B DM2	$J/\psi \rightarrow$	$4\pi\gamma$
14 Estimated by us	from various	fits.			

$K\overline{K}\pi$ MODE (a₀(980) π dominant)

VALUE (MeV)	EVTS	DOCUM	ENT ID	TECN	COMMENT
58± 4 OUR AVERAGE	Error i	ncludes scal	e factor of 3	.0. See	the ideogram below.
50± 4		CICALO) 99	OBLX	$0 \ \overline{p} p \rightarrow$
					$\kappa^{\pm} \kappa_{S}^{0} \pi^{\mp} \pi^{+} \pi^{-}$
48± 5		15 BERTII	N 97	OBLX	0.0 p p →
					$\kappa^{\pm}(\kappa^{0})\pi^{\mp}\pi^{+}\pi^{-}$
50± 4		15 BERTII	N 95	OBLX	$0 \overline{\rho} \rho \rightarrow K \overline{K} \pi \pi \pi$
75± 9		AUGUS	5TIN 92	DM2	$J/\psi ightarrow \gamma K \overline{K} \pi$
$91 + 67 + 15 \\ -31 - 38$		16 BAI	900	MRK3	$J/\psi \rightarrow \gamma K_c^0 K^{\pm} \pi^{\mp}$
62±16	500	DUCH	89	ASTE	$\overline{p}p \rightarrow K\overline{K}\pi\pi\pi$
19± 7		16 RATH	89	MPS	21.4 π ⁻ ρ →
					nK0 K0 x0
66± 2	8800	BIRMA	N 88	MP\$	$8 \pi^- p \rightarrow K^+ \overline{K}^0 \pi^- n$
60 ± 10	620	REEVE	S 86	SPEC	6.6 ρ̄ρ → Κ ΚπΧ
60±10		CHUNG	3 85	SPEC	$8\pi^-p \rightarrow K\overline{K}\pi n$

 $^{^{15}}$ Decaying into $(K\overline{K})_S\pi$, $(K\pi)_S\overline{K}$, and $a_0(980)\pi$. 16 From fit to the $a_0(980)\pi$ 0 $^{-}$ + partial wave , but $a_0(980)\pi$ 1 $^{+}$ + cannot be excluded.


$\eta(1440)$

 $\eta(1440)$ width $K\overline{K}\pi$ mode ($a_0(980)$ π dominant)

KKπ MODE (K*(892) K dominant)

VALUE	DOCUMENT ID		TEÇN	COMMENT
81±11 OUR AVERAGE	Error includes scale facto	r of	1.6. See	the ideogram below.
100 ± 20	CICALO	99	OBLX	$ \begin{array}{c} 0 \overline{p} p \rightarrow \\ \kappa^{\pm} \kappa^{0}_{5} \pi^{\mp} \pi^{+} \pi^{-} \end{array} $
105 ± 15	BERTIN	97		$0.0 \overline{p} \rho \to \\ \kappa^{\pm} (\kappa^{0}) \pi^{\mp} \pi^{+} \pi^{-}$
105±15	BERTIN	95	OBLX	$0 \overline{p} p \rightarrow K \overline{K} \pi \pi \pi$
63±18	AUGUSTIN	92	DM2	$J/\psi \rightarrow \gamma K \overline{K} \pi$
54 + 37 + 13 -21 - 24	BAI	90c	MRK3	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
51 ± 13	RATH	89	MPS	21.4 $\pi^- p \rightarrow nK_c^0 K_c^0 \pi^0$

 η (1440) width $K\overline{K}\pi$ mode (K^* (892) K dominant)

KKπ MODE (unresolved)

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the following	ng data for average	s, fits	, limits,	etc. • • •
93±14	296	AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma K^+ K^- \pi^0$
105 ± 10	693	AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma K_5^0 K^{\pm} \pi^{\mp}$
100±11	170	RATH		MPS	21.4 $\pi^- p \rightarrow K_S^0 K_S^0 \pi^0 n$
55^{+20}_{-30}	174	EDWARDS	82E	CBAL	$J/\psi \rightarrow \gamma K^+ K^- \pi^0$
$50 + \frac{30}{20}$		SCHARRE	80	MRK2	$J/\psi \to \gamma K_S^0 K^{\pm} \pi^{\mp}$
80±10	800	17 BAILLON	67	HBC	$0.0 \overline{p}p \rightarrow K \overline{K} \pi \pi \pi$

η(1440) DECAY MODES

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	
$\overline{\Gamma_1}$	$K\overline{K}\pi$	seen	
Γ_2	$K\overline{K}^*(892) + c.c.$	seen	
Γ_3	$\eta \pi \pi$	seen	
Γ_4	$a_0(980)\pi$	seen	
Γ_5	$\eta(\pi\pi)_{S ext{-wave}}$	seen	

$f_0(980)\eta$ $7 4\pi$			seen seen			
$\begin{bmatrix} 7 & 77 \\ 8 & 77 \\ 9 & \rho^0 \gamma \end{bmatrix}$			Jeen			
	η(14	I40) Γ(i)Γ(γγ)	/Γ(to	tal)		
$\Gamma(K\overline{K}\pi) \times \Gamma(\gamma)$	γ)/Γ _{total}					Γ ₁ Γ ₈ /Ι
/ALUE (keV)	CL%	DOCUMENT ID				
<1.2	95	BEHREND		CELL	$\gamma\gamma \to \kappa_S^0 \kappa$	± _π ∓
• • We do not us						
<1.6	95	AIHARA	860	TPC	$e^+e^{e^+e^-}$	$\kappa^{\pm}\pi^{\mp}$
<2.2	95	ALTHOFF	_	TASS	$e^+e^- \rightarrow e^-$	⊤е−ккπ
<8.0	95	JENNI	83	MRK2	$e^+e^- \rightarrow e^-$	re-KKπ
$\Gamma(\eta\pi\pi)\times\Gamma(\gamma\gamma)$)/F _{total}					Г ₃ Г ₈ /
/ALUE (keV)	 .	DOCUMENT ID				
• • We do not us	e the following	=				
<0.3		ANTREASYA	N 87	CRAL	e ⁺ e ⁻ → e ⁻	' ε' ηππ
$\Gamma(\rho^0\gamma) \times \Gamma(\gamma\gamma)$	/F _{total}					$\Gamma_9\Gamma_8/1$
/ALUE (keV)	<u>CL%</u>	DOCUMENT ID			COMMENT	
• • We do not us		-				
<1.5	95	ALTHOFF	84E	TASS	$\stackrel{e^+e^-}{\stackrel{e^+e^-}{e^+e^-}}_{\pi^+}$	$\pi^-\gamma$
	(144	0) BRANCHIN	IC DA	TIOS		
·/- \#/#7		U) BRANCHIN	IG IV-	11103		F /F
(ηππ)/Γ(ΚΚπ _{ΑLUE}	CL%_	DOCUMENT ID		TECN	COMMENT	Гз/Г
• • We do not us						
<0.5	90	EDWARDS		CBAL		γ
<1.1	90	SCHARRE			$J/\psi \rightarrow \eta \pi \pi$	·γ
<1.5	95	FOSTER	68B	HBC	0.0 p p	
「(a ₀ (980)π)/Γ(/						Γ ₄ /Γ
ALUE • • We do not us	<u>EVTS</u>	DOCUMENT ID				
~ 0.15	e the lonowin	18 BERTIN			0 pp → KF	(πππ
~ 0.8	500	18 DUCH	89	ASTE	$\overline{p} p \rightarrow$	
~ 0.75		¹⁸ REEVES	86	SPEC	$\pi^+\pi^-K^=$ 6.6 $p\bar{p} \to K$	
18 Assuming that t	he a _n (980) de				• •	
	1					Γ4/Γ
Γ(a ₀ (980)π)/Γ(1 VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	14/1
• • We do not us						
0.29±0.10		ABELE			$0 \ \rho \overline{\rho} \rightarrow \ \eta \pi^{l}$	
0.19 ± 0.04	2200	19 ALDE			$100 \pi^- p \rightarrow$	
0.56±0.04±0.03	h (000) J.	19 AMSLER		CBAR	$0\ \overline{p}p \rightarrow \pi^+$	π π π :
¹⁹ Assuming that t			۲.			
「(ュ(980)ま)/[(4	η(яя) _{S-Wav}					Γ4/Γ
					COMMENT etc	
VALUE	e the followin			limits		
VALUE • • • We do not us	se the followin	g data for averag	es, fits			+ _π -
<u>VALUE</u> • • • We do not us 0.70±0.12±0.20		g data for averag ²⁰ BAI	es, fits 99	i, limits, BES	$J/\psi \rightarrow \gamma \eta \tau$	+ π-
0.70 ± 0.12 ± 0.20 20 Assuming that t	he a ₀ (980) de	g data for averag 20 BAI ecays only into η_{7}	es, fits 99			
VALUE • • • We do not us 0.70 ± 0.12 ± 0.20 20 Assuming that t Γ(ΚΚ•(892) + c	he a ₀ (980) de	g data for averag 20 BAI ecays only into $\eta \tau$	es, fits 99 T.	BES	$J/\psi \rightarrow \gamma \eta \tau$	
VALUE • • • We do not us 0.70 \pm 0.12 \pm 0.20 20 Assuming that t $\Gamma(K\overline{K}^{\bullet}(892) + C)$ VALUE	he a ₀ (980) de	g data for averag 20 BAI ecays only into η_{7}	es, fits	BES	$J/\psi o \gamma \eta \tau$	Γ ₂ /Γ
watue • • • We do not us $0.70 \pm 0.12 \pm 0.20$ ²⁰ Assuming that transfer (KK* (892) + c watue 0.50 ± 0.10	he a ₀ (980) de .c.)/ Г(К Ж	g data for averag ²⁰ BAI ecays only into $\eta \tau$ DOCUMENT ID BAILLON	99 7.	BES TECN HBC	$J/\psi \rightarrow \gamma \eta \tau$ $\frac{COMMENT}{0.0 \ \overline{p}p \rightarrow \ K}$	Γ ₂ /Γ
value • • • We do not us 0.70±0.12±0.20 20 Assuming that t $\Gamma(K\overline{K}^{\bullet}(892) + c)$ value 0.50±0.10 $\Gamma(K\overline{K}^{\bullet}(892) + c)$	he a ₀ (980) de .c.)/ Г(К Ж: 	g data for averag 20 BAI exays only into η_1 $0000MENT_{10}$ BAILLON [*(892) + c.c.)	es, fits 99 τ. 67 + Γ(ε	BES <u>7ECN</u> HBC •0(980)	$J/\psi \rightarrow \gamma \eta \pi$ $\frac{COMMENT}{0.0 \ \overline{p}p \rightarrow K}$ (π)	Γ ₂ /Γ
walue •• We do not us $0.70 \pm 0.12 \pm 0.20$ 20 Assuming that t $\Gamma(K\overline{K}^{\bullet}(892) + C)$ $VALUE$ 0.50 ± 0.10 $\Gamma(K\overline{K}^{\bullet}(892) + C)$ $VALUE$ $VALUE$.c.)/[(KK: .c.)/[(KK: .c.)/[[(KK:	g data for averag 20 BAI exays only into nn DOCUMENT ID BAILLON TO (892) + C.C.) DOCUMENT ID	es, fits 99 τ. 67 + Γ(ε	TECN HBC TECN TECN	$J/\psi \rightarrow \gamma \eta \eta$ $\frac{COMMENT}{0.0 \ \overline{p}p \rightarrow K}$ (3π)	Γ ₂ /Γ
watue •• We do not us $0.70 \pm 0.12 \pm 0.20$ 20 Assuming that t $\Gamma(K\overline{K}^{\bullet}(892) + C$ VALUE 0.50 ± 0.10 $\Gamma(K\overline{K}^{\bullet}(892) + C$ VALUE •• We do not us	.c.)/[(KK: .c.)/[(KK: .c.)/[[(KK:	g data for averag 20 BAI exays only into η_{II} BAILLON DOCUMENT ID A G data for averag	es, fits 99 τ. 67 + Γ(a	TECN HBC TECN TECN TECN S, limits,	$J/\psi \rightarrow \gamma \eta \tau$ $\frac{COMMENT}{0.0 \ \overline{p} p \rightarrow K}$ (π) $COMMENT$ etc. • • •	Γ ₂ /Γ
watue •• • We do not us $0.70 \pm 0.12 \pm 0.20$ 20 Assuming that the state of th	.c.)/[(KK:	g data for averag 20 BAI exays only into nn DOCUMENT ID BAILLON TO (892) + C.C.) DOCUMENT ID	es, fits 99 τ. 67 + Γ(a	TECN HBC TECN TECN TECN S, limits,	$J/\psi \rightarrow \gamma \eta \eta$ $\frac{COMMENT}{0.0 \ \overline{p}p \rightarrow K}$ (3π)	Γ ₂ /Γ
value • • • We do not us 0.70 \pm 0.12 \pm 0.20 20 Assuming that t $\Gamma(K\overline{K}^{\bullet}(892) + c)$ $VALUE$ 0.50 \pm 0.10 $\Gamma(K\overline{K}^{\bullet}(892) + c)$ $VALUE$ • • • We do not us (0.25)	.c.)/[(KK:	g data for averag 20 BAI cays only into η_{1} BAILLON F*(892) + C.C.) DOCUMENT ID DOCUMENT ID g data for averag EDWARDS	99 7. 67 + (6	TECN HBC 10(980) TECN 5, limits,	$\begin{array}{ccc} J/\psi \to \gamma \eta \pi \\ \hline & \frac{COMMENT}{0.0 \; \overline{p} p \to \; K} \\ \hline (0.0 \; \overline{p} p \to \; K \\ \hline & \frac{COMMENT}{2} \\ \hline & \text{etc.} \bullet \bullet \\ \hline & J/\psi \to \; K^+ \\ \end{array}$	Γ ₂ /Γ
walue •• We do not us $0.70 \pm 0.12 \pm 0.20$ 20 Assuming that t $\Gamma(K\overline{K}^{\bullet}(892) + C$ 0.50 ± 0.10 $\Gamma(K\overline{K}^{\bullet}(892) + C$ $VALUE$ •• We do not us <0.25 $\Gamma(\rho^{0}\gamma)/\Gamma(K\overline{K}^{\bullet}(K\overline{K}^{\bullet}))$.c.)/[(KK:	g data for average 20 BAI exays only into η_{1} BAILLON DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID EDWARDS	67 + Γ(ε ges, fits 82E	TECN HBC TECN S, limits, CBAL	$J/\psi \rightarrow \gamma \eta \pi$ $\frac{COMMENT}{0.0 \ \overline{p} p \rightarrow K}$ $(\pi) \begin{bmatrix} \Gamma_{2} \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \end{bmatrix}$ $J/\psi \rightarrow K^{+}$ $COMMENT$	Γ ₂ /Γ
walue •• We do not us 0.70 \pm 0.12 \pm 0.20 20 Assuming that t $\Gamma(K\overline{K}^{\bullet}(892) + C)$ Γ	.c.)/[(K\overline{K}) .c.)/[(K\overline{K}) .c.)/[[(K\overline{K}) .c.)/[0] .c.)/[0] .c.)/[0] .c.)/[0]	g data for average 20 BAI ecays only into 7,7 DOCUMENT ID BAILLON (892) + C.C.) DOCUMENT ID BAILLON EDWARDS DOCUMENT ID COMMENT	99 77. 67 + \(\Gamma\) (es, fits 82E	TECN HBC 30 (980) TECN 5, limits, CBAL TECN MRK3	$J/\psi \rightarrow \gamma \eta \tau$ $\frac{COMMENT}{0.0 \ \overline{p}p \rightarrow K}$ $\frac{COMMENT}{0.0 \ \overline{p}p \rightarrow K}$ etc. • • • $J/\psi \rightarrow K^{+}$ $\frac{COMMENT}{J/\psi \rightarrow \gamma \gamma \tau}$	Γ ₂ /Γ
WALUE •• We do not us $0.70 \pm 0.12 \pm 0.20$ 20 Assuming that t $\Gamma(K\overline{K}^{\bullet}(892) + C)$ 0.50 ± 0.10 $\Gamma(K\overline{K}^{\bullet}(892) + C)$ 0.50 ± 0.10 $\Gamma(K\overline{K}^{\bullet}(892) + C)$ 0.00 ± 0.10 $\Gamma(K\overline{K}^{\bullet}(892) + C)$ 0.00 ± 0.10 0	he $a_0(980)$ de .c.)/ $\Gamma(K\overline{K})$.c.)/ $\Gamma(K\overline{K})$ se the followin 90	g data for average 20 BAI ecays only into 7,7 DOCUMENT ID BAILLON (892) + C.C.) DOCUMENT ID BAILLON EDWARDS DOCUMENT ID COMMENT	99 77. 67 + \(\frac{1}{6}\) 90 2 × 10	TECN HBC TECN G, limits, CBAL TECN MRK3 —3 and	$J/\psi \rightarrow \gamma \eta \tau$ $\frac{COMMENT}{0.0 \ \overline{p} p \rightarrow K}$ $(T) \left[\begin{array}{c} COMMENT \\ \hline 0.0 \ \overline{p} p \rightarrow K \end{array} \right]$ $\begin{array}{c} COMMENT \\ \hline J/\psi \rightarrow K^{+} \\ \hline J/\psi \rightarrow \gamma \gamma \gamma \\ \hline B(J/\psi \rightarrow \gamma $	Γ ₂ /Γ Κπππ ε/(Γ ₂ +Γ ₄ κ-π ⁰ γ Γ ₉ /Γ ε+π- γη(1440)
ALUE No We do not us $0.70 \pm 0.12 \pm 0.20$ Assuming that t $\Gamma(K\overline{K}^{\bullet}(892) + C)$ ALUE 0.50 ± 0.10 $\Gamma(K\overline{K}^{\bullet}(892) + C)$ ALUE 0.025 $\Gamma(\rho^{0}\gamma)/\Gamma(K\overline{K}\pi)$ ALUE 0.0152 ± 0.0038	.c.)/[(K\overline{K}\sigma_0(980) de .c.)/[(K\overline{K}\sigma_0(980) de .c.)/[Γ(K\overline{K}\sigma_0(980) de .c.)/[Γ(K\overline{K}\sigma_0(980) de .c.)/(Γ(K\overline{K}\sigma_0(980) de .c.)/(Γ(K\overline{K}\sigma_0(98	g data for average 20 BAI ecays only into η_{7} BAILLON (892) + C.C.) DOCUMENT ID BOUWARDS EDWARDS DOCUMENT ID COLOMENT ID CO	99 77. 67 + \(\frac{1}{6}\) 90 2 × 10	TECN HBC TECN G, limits, CBAL TECN MRK3 —3 and	$J/\psi \rightarrow \gamma \eta \tau$ $\frac{COMMENT}{0.0 \ \overline{p} p \rightarrow K}$ $(T) \left[\begin{array}{c} COMMENT \\ \hline 0.0 \ \overline{p} p \rightarrow K \end{array} \right]$ $\begin{array}{c} COMMENT \\ \hline J/\psi \rightarrow K^{+} \\ \hline J/\psi \rightarrow \gamma \gamma \gamma \\ \hline B(J/\psi \rightarrow \gamma $	Γ_2/Γ $\overline{K}\pi\pi\pi$ $2/(\Gamma_2+\Gamma_4)$ $K^-\pi^0\gamma$ Γ_9/Γ $\tau^+\pi^ \gamma \gamma \gamma (1440)$ the $f_1(1420)$
AND EVALUE 1.70 \pm 0.12 \pm 0.20 20 Assuming that to $\Gamma(K\overline{K}^*(892) + C)$ AND EVALUE 1.50 \pm 0.10 $\Gamma(K\overline{K}^*(892) + C)$ AND EVALUE 1.50 \pm 0.10 $\Gamma(K\overline{K}^*(892) + C)$ 1.50 \pm 0.10 1.	.c.)/[(K\overline{K}\sigma_0(980) de .c.)/[(K\overline{K}\sigma_0(980) de .c.)/[Γ(K\overline{K}\sigma_0(980) de .c.)/[Γ(K\overline{K}\sigma_0(980) de .c.)/(Γ(K\overline{K}\sigma_0(980) de .c.)/(Γ(K\overline{K}\sigma_0(98	g data for average 20 BAI exays only into $\eta \tau$ BAILLON F*(892) + C.C.) DOCUMENT ID DOCUMENT ID 19 data for average EDWARDS 21 COFFMAN $\rightarrow \gamma K \overline{K} \pi$)=4.3 ning that the $\gamma \rho^0$	99 7. 67 + \(\sum_{\text{def}} \) 7. 82E 90 2 × 10 836 837 848 858 858 868 878 878 878 878 87	TECN HBC (980) TECN Ilmits, CBAL TECN MRK3 —3 and does no	$\begin{array}{ccc} J/\psi \rightarrow \gamma \eta \pi \\ \hline & \frac{COMMENT}{0.0 \ \overline{p} p} \rightarrow \kappa \\ \hline \end{pmatrix} \pi \\ \end{bmatrix} \qquad	Γ_2/Γ $\overline{K}\pi\pi\pi$ $2/(\Gamma_2+\Gamma_4)$ $K^-\pi^0\gamma$ Γ_9/Γ $\tau^+\pi^ \gamma\eta(1440)$ the $f_1(1420)$
walue • • We do not us 0.70 \pm 0.12 \pm 0.20 20 Assuming that t $\Gamma(K\overline{K}^{\bullet}(892) + C)$ $VALUE$ • • • We do not us <0.25 $\Gamma(\rho^{0}\gamma)/\Gamma(K\overline{K}\pi)$ $VALUE$ 0.0152 \pm 0.0038 21 Using B(J/ψ $-$	he $a_0(980)$ de .c.)/ $\Gamma(KK)$.c.)/ $\Gamma(KK)$ se the followin 90) $\gamma \eta(1440)$	g data for average 20 BAI ecays only into η_7 BAILLON FOR (892) + C.C.) DOCUMENT ID EQUATION EDWARDS DOCUMENT ID 21 COFFMAN $\rightarrow \gamma K K \pi$ = 4.2 DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID	99 77. 67 + \(\sum_{\text{def}} \) 92 es, fits 82E 90 2 × 10 3 signal	TECN HBC TECN TECN TECN MRK3 —3 and does no	$\begin{array}{c} J/\psi \to \gamma \eta \pi \\ \hline \\ \frac{COMMENT}{0.0 \ \overline{p} p \to K} \\ \hline \\ \frac{COMMENT}{J/\psi \to K^+} \\ \hline \\ \frac{COMMENT}{J/\psi \to \gamma \gamma \pi} \\ \hline \\ \frac{COMMENT}{J/\psi \to \gamma \eta \eta} \\ \hline $	Γ ₂ /Γ Κπππ 2/(Γ ₂ +Γ ₄ κ ⁻ π ⁰ γ Γ ₉ /Γ γη(1440) -

$\Gamma(a_0(980)\pi)/\Gamma(\eta)$	Γ#)S-wave) Γ4/ DOCUMENT ID TECN COMMENT
• • • We do not use t	he following data for averages, fits, limits, etc. • • •
0.32 ± 0.07	²² ANISOVICH 991 SPEC $0.9-1.2 \bar{p}p \rightarrow \eta 3\pi^0$
²² Using preliminary (rystal Barrel data.

η(1440) REFERENCES

ANISOVICH	991	PL B468 304	A.V. Anisovich et al.		
BAI	99	PL B446 356	J.Z. Bai et al.	(BES Collab.)	
CICALO	99	PL B462 453	C. Cicalo et al.	(OBELIX Collab.)	
ABELE	98E	NP B514 45	A. Abele et al.	(Crystal Barrel Collab.)	
BAI	98C	PL B440 217	J.Z. Bai et al.	(BES Collab.)	
ALDE	97B	PAN 60 386	D. Alde et al.	(GAMS Collab.)	
		Translated from YAF 60		(=====	
BERTIN	97	PL B400 226	A. Bertin et al.	(OBELIX Collab.)	
AMSLER	95F	PL B358 389	C. Amsler et al.	(Crystal Barrel Collab.)	
BERTIN	95	PL B361 187	A. Bertin et al.	(OBELIX Collab.)	
BUGG	95	PL B353 378	D.V. Bugg et al.	(LOQM, PNPI, WASH)	
AUGUSTIN	92	PR D46 1951	J.E. Augustin, G. Cosme	(DM2 Collab.)	
BEHREND	92	ZPHY C56 381	H.J. Behrend	(CÈLLO Collab.)	
BOLTON	92B	PRL 69 1328	T. Bolton et al.	(Mark III Collab.)	
FUKUI	91C	PL B267 293	S. Fukui et al.	(SUGI, NAGO, KEK, KYOT+)	
AUGUSTIN	90	PR D42 10	J.E. Augustin et al.	(DM2 Collab.)	
BAI	90C	PRL 65 2507	Z. Bai et al.	(Mark III Collab.)	
COFFMAN	90	PR D41 1410	D.M. Coffman et al.	(Mark III Collab.)	
BEHREND	89	ZPHY C42 367	H.J. Behrend et al.	(CELLO Collab.)	
BISELLO	89B	PR D39 701	G. Busetto et al.	(DM2 Collab.)	
DUCH	89	ZPHY 45 223	K.D. Duch et al.	(ASTERIX Collab.)	JΡ
RATH	89	PR D40 693	M.G. Rath et al.	(NDAM, BRAN, BNL, CUNY+)	
BIRMAN	88	PRL 61 1557	A. Birman et al.	(BNL, FSU, IND, MASD)	IΡ
ANTREASYAN	87	PR D36 2633	D. Antreasyan et al.	(Crystal Ball Collab.)	
AIHARA	86D	PRL 57 51	H. Aihara et al.	(TPC-2γ Collab.)	
ANDO	86	PRL 57 1296	A. Ando et al.	(KEK, KYOT, NIRS, SAGA+)	
REEVES	86	PR 34 1960	D.F. Reeves et al.	(FLOR, BNL, IND+)	
ALTHOFF	85B	ZPHY C29 189	M. Althoff et al.	(TASSO Collab.)	
CHUNG	85	PRL 55 779	S.U. Chung et al.	(BNL, FLOR, IND+)	
ALTHOFF	84E	PL 147B 487	M. Althoff et al.	(TASSO Collab.)	
EDWARDS	83B	PRL 51 859	C. Edwards et al.	(CIT, HARV, PRIN+)	
JENNI	83	PR D27 1031	P. Jenni et al.	(SLAC, LBL)	
EDWARDS	82E	PRL 49 259	C. Edwards et al.	(CIT, HARV, PRIN+)	
Also	83	PRL 50 219	C. Edwards et al.	(CIT, HARV, PRIN+)	
SCHARRE	80	PL 97B 329	D.L. Scharre et al.	(SLAC, LBL)	
FOSTER	68B	NP B8 174	M. Foster et al.	(CERN, CDEF)	
BAILLON	67	NC 50A 393	P.H. Baillon et al.	(CERN, CDEF, IRAD)	
			• • • • • • • • • • • • • • • • • • • •	, ,,	

- OTHER RELATED PAPERS -

CARVALHO	99	EPJ C7 95	W.S. Carvalho et al.	
GOOFREY	99	RMP 71 1411	S. Godfrey, J. Napolitano	
NEKRASOV	98	EPJ C5 507	or orderly, or inspectation	
CLOSE	97B	PR D55 5749	F. Close et al.	(RAL, RUTG, BEIJT)
BERTIN	96	PL B385 493	A. Bertin et al.	(Obelix Collab.)
FARRAR	96	PRL 76 4111	G.R. Farrar	(RUTG)
AMELIN	95	ZPHY C66 71	D.V. Amelin et al.	(VES Collab.)
GENOVESE	94	ZPHY C61 425	M. Genovese, D.B. Lichtenb	
BALI	93	PL B309 378	G.S. Bali et al.	(LIVP)
LONGACRE	90	PR D42 874	R.S. Longacre	(BNL)
AHMAD	89	NP B (PROC.)8 50	S. Ahmad et al.	(ASTERIX Collab.)
ARMSTRONG	89	PL B221 216	T.A. Armstrong et al.	(CERN, CDEF, BIRM+)
ARMSTRONG	87	ZPHY C34 23	T.A. Armstrong et al.	(CERN, BIRM, BARI+)
ASTON	87	NP B292 693	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ARMSTRONG	B4	PL 146B 273	T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
DIONISI	80	NP B169 1	C. Dionisi et al.	(CERN, MADR, CDEF+)
DEFOIX	72	NP B44 125	C. Defoix et al.	(CDEF, CERN)
OUBOC	72	NP B46 429	J. Duboc et al.	(PARIS, LIVP)
LORSTAD	69	NP B14 63	B. Lorstad et al.	(CDEF, CERN)

 $a_0(1450)$

$$I^{G}(J^{PC}) = 1^{-}(0++)$$

See minireview on scalar mesons under $f_0(1370)$.

a₀(1450) MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1474±19 OUR AVERAGE			
1480 ± 30	ABELE	98 CBAR	$0.0 \ \overline{\rho}p \rightarrow K_{L}^{0} K^{\pm} \pi^{\mp}$ $0.0 \ \overline{\rho}p \rightarrow \pi^{0} \pi^{0} \pi^{0},$ $\pi^{0} \eta \eta, \pi^{0} \pi^{0} \eta$
1470 ± 25	¹ AMSLER	950 CBAR	$0.0 \ \overline{p}p \rightarrow \pi^{0}\pi^{0}\pi^{0},$
			$\pi^0\eta\eta$, $\pi^0\pi^0\eta$
• • We do not use the follow	ing data for average	s, fits, limits,	etc. • • •
1565 ± 30	² ANISOVICH	988 RVUE	Compilation
1290 ± 10	BERTIN	98B OBLX	$0.0 \overline{p}p \rightarrow K^{\pm}K_{5}\pi^{\mp}$
1450 ± 40	AMSLER	94b CBAR	$0.0 \vec{p} p \rightarrow \pi^0 \pi^0 \eta$
1435 ± 40	BUGG	94 RVUE	$\overline{p}p \rightarrow \eta 2\pi^0$
1410 ± 25	ETKIN	82c MPS	$23 \pi^- p \rightarrow n2K_5^0$
~ 1300	MARTIN	78 SPEC	$10 K^{\pm} p \rightarrow K_{S}^{0} \pi p$
1255 ± 5	3 CASON	76	3
1 Coupled-channel analysis of 2 T-matrix pole. 3 Isospin 0 not excluded.	AMSLER 958, AMS	SLER 95C, an	d AMSLER 94D.

a₀(1450) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
265±13 OUR AVERAGE						
265±15	ABELE	98	CBAR	$0.0 \ \overline{p}p \rightarrow K_I^0 K^{\pm} \pi^{\mp}$		
265±30	⁴ AMSLER	95D	CBAR	$0.0 \ \overline{p}p \rightarrow \pi^{0}\pi^{0}\pi^{0}$,		
				π^0_{nn} $\pi^0_{n}^0_{n}$		

• • • We do not use	the following data for average	s, fits, limits,	etc. • • •
292 ± 40	⁵ ANISOVICH	988 RVUE	Compilation
80 ± 5	BERTIN	988 OBLX	$0.0 \ \overline{p}p \rightarrow K^{\pm} K_S \pi^{\mp}$
270 ± 40	AMSLER	94D CBAR	$0.0 \overline{\rho} \rho \rightarrow \pi^0 \pi^0 \eta$
270 ± 40	BUGG	94 RVUE	$\overline{p}p \rightarrow \eta 2\pi^0$
230 ± 30	ETKIN	B2c MPS	$23 \pi^- p \rightarrow n2K_S^0$
~ 250	MARTIN	78 SPEC	$10 K^{\pm} p \rightarrow K_{5}^{0} \pi p$
79 ± 10	⁶ CASON	76	

Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.

⁵T-matrix pole.

6 Isospin 0 not excluded.

a₀(1450) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	πη	seen
Γ2	$\pi \eta'(958)$ $K \overline{K}$	seen
Гз	KK	seen

 $\Gamma(\pi\eta'(958))/\Gamma(\pi\eta)$ Γ_2/Γ_1 VALUE DOCUMENT ID TECN COMMENT 7 ABELE 0.35 ± 0.16 98 CBAR $0.0 \ \overline{p}p \rightarrow K_I^0 K^{\pm} \pi^{\mp}$ • • • We do not use the following data for averages, fits, limits, etc. • • • 0.43 ± 0.19 ABELE 97C CBAR $0.0\ \overline{\rho}\rho \rightarrow \pi^0\pi^0\eta'$ ⁷ Using $\pi^0 \eta$ from AMSLER 94D.

 $\Gamma(K\overline{K})/\Gamma(\pi\eta)$ Γ_3/Γ_1 VALUE DOCUMENT ID TECN COMMENT 7 ABELE 0.88±0.23 98 CBAR $0.0 \, \overline{p}p \rightarrow K_i^0 K^{\pm} \pi^{\mp}$

a₀(1450) REFERENCES

ABELE ANISOVICH	98 98B	PR D57 3860 UFN 41 419	A. Abele et al. V.V. Anisovich et al.	(Crystal Barrel Collab.)
BERTIN	98B	PL B434 180	A. Bertin et al.	(OBELIX Collab.)
ABELE	97C	PL B404 179	A. Abele et al.	(Crystal Barrel Collab.)
AMSLER	95B	PL B342 433	 C. Amsler et al. 	(Crystal Barrel Collab.)
AMSLER	95C	PL B353 571	C. Amsler et al.	(Crystal Barrel Collab.)
AMSLER	95D	PL B355 425	C. Amsler et al.	(Crystal Barrel Collab.)
AM5LER	94D	PL B333 277	C. Amsler et al.	(Crystal Barrel Collab.) IGJPC
BUGG	94	PR D50 4412	D.V. Bugg et al.	(LOQM)
ETKIN	82C	PR D25 2446	A. Etkin et al.	(BNL, CUNY, TUFTS, VANO)
MARTIN	78	NP B134 392	A.D. Martin et al.	(DURH, GEVA)
CASON	76	PRL 36 1485	N.M. Cason et al.	(NDAM, ANL)

OTHER RELATED PAPERS -

EPJ C8 385 RMP 70 1293 MASONI AMSLER A. Masoni C. Amsler

 ρ (1450)

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the mini-review under the $\rho(1700)$.

ρ(1450) MASS

DOCUMENT ID

1465±25 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

1452± 8 OUR AVERAGE Includes data from the 2 datablocks that follow this one.

$\eta \rho^0$ MODE VALUE (MeV) DOCUMENT ID TECN COMMENT The data in this block is included in the average printed for a previous datablock.

1470±20 ANTONELLI 88 DM2 $e^+e^- \rightarrow \eta \pi^+\pi^ 1446 \pm 10$ 88 SPEC 8.95 $\pi^- p \to \eta \pi^+ \pi$ FUKUI WALUE (MeV) DOCUMENT ID TECN COMMENT

The data in this block is included in the average printed for a previous datablock.

¹ CLEGG

• • • We do not use the following data for averages, fits, limits, etc. • • • ² ASTON 1250 80c OMEG 20-70 $\gamma p \rightarrow \omega \pi^0 p$ ² BARBER 1290 ± 40 80c SPEC 3-5 $\gamma p \rightarrow \omega \pi^0 p$

 1 Using data from BISELLO 91B, DOLINSKY 86 and ALBRECHT 87L. 2 Not separated from $b_1(1235)$, not pure $J^P=1^-$ effect.

ρ (1450)

ππ MODE VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	,	MODE						
• • We do not use the follo					UE (MeV)		DOCUMENT ID			-	NT
~ 1368	3 ABELE		$0.0 \overline{p} d \rightarrow \pi^+ \pi^- \pi^-$, [We do not use:		-				
1348 ± 33	BERTIN		0.05-0.405 $\pi p \rightarrow \pi^+ \pi^+ \pi^-$	- 130	± 60		9 BITYUKOV	87 SPI	EC 0	32.5 π ⁰ φπ ⁰	
1411 ± 14	4 ABELE	97 CBAR		18	DONNACHIE 91 s	suggests this is	s a different par	rticle.			
1370^{+90}_{-70}	ACHASOV	97 RVUE	$e^+e^- \rightarrow \pi^+\pi^-$	1,	Not seen by ABEL	.Е 97н.					
1380 ± 24	5 BARATE	97M ALEP	$\tau^- \rightarrow \pi^- \pi^0 \nu$	κī	MODE						
1359 ± 40	6 BERTIN		$0.0 \ \overline{p}p \rightarrow \pi^{+}\pi^{-}\pi^{0}$		JE (MeV)	EVTS	DOCUMENT ID	TEC	N CHG	СОММЕ	NT
1282 ± 37	BERTIN		$0.05 \overline{p}_D \rightarrow 2\pi^+ 2\pi^-$	• •	• We do not use t	the following	data for average	es, fits, lim	its, etc.		
1424±25	BISELLO	89 DM2		146	5 ± 10.5	27k 20	O ABELE	99D CB	AR +	0.0 ₽₽	-
1292 ± 17	⁷ KURDADZE	83 OLYA	$0.64-1.4 \ e^{+} \ e^{-} \rightarrow$	1							$\kappa^-\pi^0$
3 (1700)			π ⁺ π	20	K-matrix pole. Iso:	spin not deter	mined, could be	e ω(1420).			
$^{3}\rho(1700)$ mass and width fi 4 T-matrix pole.	ixed at 1780 MeV and	275 MeV res	spectively.								
⁵ Fixing $\rho(1450)$ width to 3:	10 MeV and a(1700)	mass and wi	dth to 1700 MeV and 3	1011/ 35 VALI	KED MODES JE (MeV)		DOCUMENT ID	TEC	N COM	MAENT	
MeV respectively					We do not use it	the following					
$\frac{6}{7}\rho(1700)$ mass and width fi	ixed at 1700 MeV and	235 MeV, re	spectively.			the following t	_				
⁷ Using for $\rho(1700)$ mass an	id width 1600 \pm 20 an	d 300 \pm 10 I	MeV respectively.	391	± 70		DUBNICKA	89 RV	UE e⊤	e ⁻ → π	Τπ
$\pi^+\pi^-\pi^+\pi^-$ MODE				-	· · · · · · · · · · · · · · · · · · ·	***	>				
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT			$\rho(14$	50) DECAY	MODES			
• • • We do not use the follo	wing data for averages			_							
1350±50	ACHASOV		$e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})$		Mode			Fraction ((Γ_{j}/Γ)	Conf	fidence leve
1449 ± 4	8 ARMSTRONG	89E OMEG	300 pp →	$\overline{\Gamma_1}$	ππ			seen			
			$pp2(\pi^{+}\pi^{-})$	Γ ₂	4π			seen			
⁸ Not clear whether this obs	ervation has /=1 or 0		, ,	Г <u>2</u> Г <u>3</u>	$\omega \pi$			<2.0 %			95%
				Γ ₄	e^+e^-			seen			737
φπ MODE				_ '				seen			
VALUE (MeV)	DOCUMENT ID		CHG COMMENT	_ Γ ₅	$\eta \rho$				_		
• • We do not use the follo				— г ₆	$a_2(1320)\pi$			not see	п		
1480 ± 40	^{9,10} BITYUKOV	87 SPEC		Γ ₇	$\phi \pi$			<1 %	2		
•			$\phi \pi^0 \pi$	۲8	κĸ			<1.6 × 1	0-3		95%
⁹ DONNACHIE 91 suggests 10 Not seen by ABELE 97H.	this is a different part	icle.				ρ(1450)))/Γ(tota	ıl)		
κ κ mode				_,			, .		•		
VALUE (MeV) EVTS	DOCUMENT ID	TECN	CHG COMMENT		$(\pi) \times \Gamma(e^+e^-)$)/「total					Γ ₁ Γ ₄ /Γ
• • We do not use the follo	wing data for averages	s, fits, limits,	etc. • • •	VALI	JE (keV)		DOCUMENT ID	TEC	N COM	MENT	
1422.8 ± 6.5 27k		99D CBAR			 We do not use t 	the following o	data for average	es, fits, lim	its, etc.	• • •	
			$\kappa^+ \kappa^- \pi^0$	0.12		21	l DIEKMAN	88 RVI	UE $e^+\epsilon$	e ⁻ → π	+ _π
11 K-matrix pole. Isospin not		$\omega(1420)$.	$\kappa^+ \kappa^- \pi^0$								+π~ e- →
11 K-matrix pole. Isospin not		$\omega(1420)$.	$\kappa^+ \kappa^- \pi^0$		7 ^{+0.015} -0.010		L DIEKMAN Z KURDADZE			$e^- \rightarrow \pi^-$ -1.4 e^+ e^+	+ π e ⁻ →
¹¹ K-matrix pole. Isospin not MIXED MODES	determined, could be	, ,	<i></i>	0.02	7 + 0.015 - 0.010 Using total width :	22 = 235 MeV.	² KURDADZE	83 OLY	/A 0.64	-1.4 e+ e+ e+ =	
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV)	determined, could be	TECN	COMMENT	0.02	$7^{+0.015}_{-0.010}$	22 = 235 MeV.	² KURDADZE	83 OLY	/A 0.64	-1.4 e+ e+ e+ =	
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio	determined, could be DOCUMENT ID wing data for averages	TECN s, fits, limits,	<u>COMMENT</u> etc. • • •	0.02 21 22	$7^{+0.015}_{-0.010}$ Using total width : Using for $ ho(1700)$ (22 = 235 MeV. mass and widt	² KURDADZE	83 OLY	/A 0.64	-1.4 e+ e+ e+ =	ely.
	determined, could be	TECN s, fits, limits,	COMMENT	0.02 — 21 22 Γ(η	$7^{+0.015}_{-0.010}$ Using total width a substraint of $\rho(1700)$ or $\rho(1700)$ or $\rho(e^+e^-)$	22 = 235 MeV. mass and widt	² KURDADZE th 1600 ± 20 a	83 OLY	7A 0.64 7 10 MeV	-1.4 e ⁺ (+ x -	
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio	determined, could be DOCUMENT ID wing data for averages DUBNICKA	TECN s, fits, limits, 89 RVUE	<u>COMMENT</u> etc. • • •	0.02 21 22 Г(7	$7^{+0.015}_{-0.010}$ Using total width = Using for $\rho(1700)$ or $\rho(P) \times \Gamma(e^+e^-)$ $\frac{1}{16} (eV)$	22 = 235 MeV. mass and widt	2 KURDADZE th 1600 ± 20 a	83 OLY nd 300 ±	/A 0.64 7 10 MeV <u>N COM</u>	-1.4 e ⁺ (+ π ⁻ respective	ely. Γ ₅ Γ ₄ /Γ
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio	determined, could be DOCUMENT ID wing data for averages	TECN s, fits, limits, 89 RVUE	<u>COMMENT</u> etc. • • •	0.02 — 21 22 Γ(η	$7^{+0.015}_{-0.010}$ Using total width = Using for $\rho(1700)$ or $\rho(P) \times \Gamma(e^+e^-)$ $\frac{1}{16} (eV)$	22 = 235 MeV. mass and widt	² KURDADZE th 1600 ± 20 a	83 OLY nd 300 ±	/A 0.64 7 10 MeV <u>N COM</u>	-1.4 e ⁺ (+ x -	ely. Γ ₅ Γ ₄ /Γ
11 K-matrix pole. Isospin not MIXED MODES WALUE (MeV) VALUE (MeV)	DOCUMENT ID wing data for averages DUBNICKA p(1450) WIDT DOCUMENT ID	TECN s, fits, limits, 89 RVUE	COMMENT etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$	0.02 21 22 F(1)	$7^{+0.015}_{-0.010}$ Using total width = Using for $\rho(1700)$ (ρ) × $\Gamma(e^+e^-)$ $\frac{F(e^+)}{(1900)}$	22 = 235 MeV. mass and widt	2 KURDADZE th 1600 ± 20 a	83 OLY nd 300 ±	/A 0.64 7 10 MeV <u>N COM</u>	-1.4 e ⁺ (+ π ⁻ respective	Γ ₅ Γ ₄ /Γ _{π+π} -
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5 ± 75.3	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID This is only an educated	TECN s, fits, limits, 89 RVUE TH	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$	0.02 21 22 Г(7 <u>VAL</u> (1) 9 1±	7+0.015 7+0.010 Using total width = Using for $\rho(1700)$ (ρ) × $\Gamma(e^+e^-)$ 19:19 19: π) × $\Gamma(e^+e^-)$	22 = 235 MeV. mass and widt)/Ftotal	Eth 1600 ± 20 a DOCUMENT ID ANTONELLI	83 OLY nd 300 ± 	0.64 7 10 MeV N COM 2 e+6	$\begin{array}{ccc} -1.4 & e^{+} & e^{+} & e^{+} & e^{-} $	ely. Γ ₅ Γ ₄ /Γ
11 K-matrix pole. Isospin not MIXED MODES WALUE (MeV) VALUE (MeV)	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID This is only an educated	TECN s, fits, limits, 89 RVUE TH	COMMENT etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$	0.02 21 22 (7 71± 7(¢	7+0.015 7+0.010 Using total width = Using for $\rho(1700)$ to ρ × $\Gamma(e^+e^-)$ 1.19 ρ × $\Gamma(e^+e^-)$ ρ × $\Gamma(e^+e^-)$	22 = 235 MeV. mass and widt // total // total // ct/%	Eth 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID	83 OLY nd 300 ± TEC	(A 0.64 7 10 MeV N COM 2 e+6	$ \begin{array}{ccc} -1.4 & e^{+} & e^{+} & e^{+} & e^{-} \\ & & & & & & \\ \text{respective} & & & & \\ \underline{MENT} & & & & & \\ & & & & & & \\ \underline{MENT} & & & \\ \underline{MENT} & & & \\ \underline{MENT} & &$	ely. Γ ₅ Γ ₄ /Γ π ⁺ π ⁻ Γ ₇ Γ ₄ /Γ
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5 ± 75.3 VALUE (MeV) 310±60 OUR ESTIMATE T	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID This is only an educated	TECN s, fits, limits, 89 RVUE TH	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$	0.02 21 22 (7 71 71 71 71 71	7+0.015 7-0.010 Using total width = Using for $\rho(1700)$ to ρ × $\Gamma(e^+e^-)$ × $\Gamma(e^+e^-)$ × $\Gamma(e^+e^-)$	= 235 MeV. mass and widt)/\(\tau_{\text{total}}\) /\(\text{Total}_{\text{total}}\) \(\text{25}_{\text{total}}\) \(\text{26}_{\text{30}}\)	th 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID AULCHENKO	83 OLY nd 300 ±	7A 0.64 78 10 MeV $\frac{N}{2}$ $\frac{COM}{e^+}$	$ \begin{array}{ccc} -1.4 & e^{+} \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT \\ - & \eta \end{array} $ $ \begin{array}{ccc} MENT \\ - & K \end{array} $	F ₅ Γ_4 /I $\pi^+\pi^-$ $\Gamma_7\Gamma_4$ /I $\Gamma_5 \kappa_L^0 \pi^0$
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5±75.3 VALUE (MeV) 310±60 OUR ESTIMATE Τ 7ρ0 MODE	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID This is only an educated the error on the	TECN s, fits, limits, 89 RVUE TH d guess; the e average of	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger than the published values.	0.02 21 22 (7 71 71 71 71 71	7+0.015 7+0.010 Using total width = Using for $\rho(1700)$ to ρ × $\Gamma(e^+e^-)$ 1.19 ρ × $\Gamma(e^+e^-)$ ρ × $\Gamma(e^+e^-)$	= 235 MeV. mass and widt)/\(\tau_{\text{total}}\) /\(\text{Total}_{\text{total}}\) \(\text{25}_{\text{total}}\) \(\text{26}_{\text{30}}\)	th 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID AULCHENKO	83 OLY nd 300 ±	7A 0.64 78 10 MeV $\frac{N}{2}$ $\frac{COM}{e^+}$	$ \begin{array}{ccc} -1.4 & e^{+} \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT \\ - & \eta \end{array} $ $ \begin{array}{ccc} MENT \\ - & K \end{array} $	F ₅ Γ_4 /I $\pi^+\pi^-$ $\Gamma_7\Gamma_4$ /I $\Gamma_5 \kappa_L^0 \pi^0$
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5 ± 75.3 VALUE (MeV) 310 ± 60 OUR ESTIMATE T 7 p ⁰ MODE VALUE (MeV)	DOCUMENT ID	TECN s, fits, limits, 89 RVUE TH d guess; the e average of	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger that the published values.	0.02 21 22 (7 71 71 71 71 71	7+0.015 7-0.010 Using total width = Using for $\rho(1700)$ to ρ × $\Gamma(e^+e^-)$ × $\Gamma(e^+e^-)$ × $\Gamma(e^+e^-)$	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\))/\(\tau\) \(\tau\) \(\ta\) \(\tau\) \(\ta\) \(\tau\) \(\tau	th 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID DOCUMENT ID AULCHENKO Lotal width 13	83 OLV nd 300 ± TEC 88 DM TEC 878 ND 0 ± 60 Mc	0.64 7 10 MeV N COM 2 e+6 N COM e+6 EV of BI	$ \begin{array}{ccc} -1.4 & e^{+} \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT \\ - & \eta \end{array} $ $ \begin{array}{ccc} MENT \\ - & K \end{array} $	F ₅ Γ_4 /I $\pi^+\pi^-$ $\Gamma_7\Gamma_4$ /I $\Gamma_5 \kappa_L^0 \pi^0$
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5 ± 75.3 VALUE (MeV) 310 ± 60 OUR ESTIMATE T 7 p ⁰ MODE VALUE (MeV) • • • We do not use the folio	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID wing data for averages DUBNICKA p(1450) WIDT DOCUMENT ID wing data for averages	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits,	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger than the published values. COMMENT etc. • • •	0.02 21 22 (7 71 71 71 71 71	7+0.015 7-0.010 Using total width = Using for $\rho(1700)$ to ρ × $\Gamma(e^+e^-)$ × $\Gamma(e^+e^-)$ × $\Gamma(e^+e^-)$	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\))/\(\tau\) \(\tau\) \(\ta\) \(\tau\) \(\ta\) \(\tau\) \(\tau	th 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID AULCHENKO	83 OLV nd 300 ± TEC 88 DM TEC 878 ND 0 ± 60 Mc	0.64 7 10 MeV N COM 2 e+6 N COM e+6 EV of BI	$ \begin{array}{ccc} -1.4 & e^{+} \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT \\ - & \eta \end{array} $ $ \begin{array}{ccc} MENT \\ - & K \end{array} $	F ₅ Γ_4 /I $\pi^+\pi^-$ $\Gamma_7\Gamma_4$ /I $\Gamma_5 \kappa_L^0 \pi^0$
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5±75.3 VALUE (MeV) 310±60 OUR ESTIMATE Τ 7ρο MODE VALUE (MeV) • • • We do not use the folio 230±30	DOCUMENT ID DOCUMENT ID DOCUMENT ID This is only an educated the error on the pocument ID wing data for averages DUBNICKA	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2	etc. $\bullet \bullet \bullet$ $e^+e^- \to \pi^+\pi^-$ error given is larger that the published values. $\frac{COMMENT}{\text{etc.}} \bullet \bullet \bullet$ $e^+e^- \to \eta\pi^+\pi^-$	0.02 21 22 F(7 70 71 71 71 71 23	$7+0.015$ -0.010 Using total width = Using for $\rho(1700)$ (ρ) × $\Gamma(e^+e^-)$ $E(e^{\vee})$ $E(e^{\vee})$ Using mass 1480 \pm	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\))/\(\tau\) \(\tau\) \(\ta\) \(\tau\) \(\ta\) \(\tau\) \(\tau	th 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID DOCUMENT ID AULCHENKO Lotal width 13	83 OLV nd 300 ± TEC 88 DM TEC 878 ND 0 ± 60 Mc	0.64 7 10 MeV N COM 2 e+6 N COM e+6 EV of BI	$ \begin{array}{ccc} -1.4 & e^{+} \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT \\ - & \eta \end{array} $ $ \begin{array}{ccc} MENT \\ - & K \end{array} $	F ₅ Γ ₄ /I π+π- Γ ₇ Γ ₄ /I ο κ ⁰ ₅ κ ⁰ _L π ⁰ 87.
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5 \pm 75.3 VALUE (MeV) 310 \pm 60 OUR ESTIMATE T $\eta \rho^0$ MODE VALUE (MeV) • • • We do not use the folio 230 \pm 30 \pm 60 \pm 15	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID wing data for averages DUBNICKA p(1450) WIDT DOCUMENT ID wing data for averages	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger than the published values. COMMENT etc. • • •	0.02 21 22	$7+0.015$ -0.010 Using total width = Using for $\rho(1700)$ (ρ) × $\Gamma(e^+e^-)$ $\frac{\partial \mathcal{E}}{\partial \rho}$ × $\Gamma(e^+e^-)$ Using mass 1480 ± $\frac{\partial \mathcal{E}}{\partial \rho}$ / $\Gamma(e^+e^-)$	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\))/\(\tau\) \(\tau\) \(\ta\) \(\tau\) \(\ta\) \(\tau\) \(\tau	th 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID AULCHENKO Lotal width 13	83 OLY nd 300 ± 88 DM 7EC 878 ND 0 ± 60 Mc	7A 0.64 10 MeV N COM 2 e+ C EV of BI OS	$ \begin{array}{ccc} -1.4 & e^{+} \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT \\ - & \eta \end{array} $ $ \begin{array}{ccc} MENT \\ - & K \end{array} $	F ₅ Γ_4 /I $\pi^+\pi^-$ $\Gamma_7\Gamma_4$ /I $\Gamma_5 \kappa_L^0 \pi^0$
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) 310 \pm 60 OUR ESTIMATE T $\eta \rho^0$ MODE VALUE (MeV) 30 \pm 30 60 \pm 15 $\omega \pi$ MODE	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID This is only an educated the error on the DOCUMENT ID Wing data for averages ANTONELLI FUKUI	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger that the published values. $\frac{COMMENT}{\text{etc.} \bullet \bullet} = \frac{e^+e^- \rightarrow \eta\pi^+\pi^-}{8.95 \pi^-p \rightarrow \eta\pi^+\pi^-}$	0.02 21 22 F(7) 71± F(4) 23 n F(4) VALI	$7+0.015$ -0.010 Using total width: ρ) × Γ(e^+e^-) Using ρ) × Γ(e^+e^-) ρ) × Γ(e^+e^-) Using mass 1480 ± ρ)/Γtotal	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\))/\(\tau\) \(\tau\) \(\ta\) \(\tau\) \(\ta\) \(\tau\) \(\tau	COLUMENT ID BRANCHIN COLUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DOCUMENT ID	83 OLY nd 300 ±	7A 0.64 10 MeV N COM 2 e^+e^- N COM e^+e^- EV of BIT	$ \begin{array}{ccc} -1.4 & e^{+} \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT \\ - & \eta \end{array} $ $ \begin{array}{ccc} MENT \\ - & K \end{array} $	F ₅ Γ ₄ /I π+π- Γ ₇ Γ ₄ /I ο κ ⁰ ₅ κ ⁰ _L π ⁰ 87.
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5±75.3 VALUE (MeV) 310±60 OUR ESTIMATE T 7p ⁰ MODE VALUE (MeV) • • We do not use the folio 230±30 60±15 WM MODE VALUE (MeV)	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for averages DUBNICKA P(1450) WIDT DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger than the published values. $\frac{COMMENT}{etc. • • • e^+e^- \rightarrow \eta\pi^+\pi^-}$ 8.95 $\pi^-p \rightarrow \eta\pi^+\pi^-$	0.02 21 22	$7+0.015$ -0.010 Using total width: ρ) × Γ(e^+e^-) Using ρ) × Γ(e^+e^-) ρ) × Γ(e^+e^-) Using mass 1480 ± ρ)/Γtotal	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\))/\(\tau\) \(\tau\) \(\ta\) \(\tau\) \(\ta\) \(\tau\) \(\tau	th 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID AULCHENKO Lotal width 13	83 OLY nd 300 ±	7A 0.64 10 MeV N COM 2 e^+e^- N COM e^+e^- EV of BIT	$ \begin{array}{ccc} -1.4 & e^{+} \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT \\ - & \eta \end{array} $ $ \begin{array}{ccc} MENT \\ - & K \end{array} $	F ₅ Γ ₄ /I π+π- Γ ₇ Γ ₄ /I ο κ ⁰ ₅ κ ⁰ _L π ⁰ 87.
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) 310 \pm 60 OUR ESTIMATE T $\eta \rho^0$ MODE VALUE (MeV) 30 \pm 30 60 \pm 15 $\omega \pi$ MODE	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for averages DUBNICKA P(1450) WIDT DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger than the published values. $\frac{COMMENT}{etc. • • • e^+e^- \rightarrow \eta\pi^+\pi^-}$ 8.95 $\pi^-p \rightarrow \eta\pi^+\pi^-$	0.02 21 22	$7+0.015$ -0.010 Using total width = Using for $\rho(1700)$ (ρ) × $\Gamma(e^+e^-)$ $E(e^{\vee})$ $E(e^{\vee})$ Using mass 1480 ± ρ)/ Γ total	22 = 235 MeV. mass and widt)/Γtotal	COLUMENT ID BRANCHIN COLUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DOCUMENT ID	83 OLY nd 300 ±	7A 0.64 10 MeV N COM 2 e^+e^- N COM e^+e^- EV of BIT	$ \begin{array}{ccc} -1.4 & e^{+} \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT \\ - & \eta \end{array} $ $ \begin{array}{ccc} MENT \\ - & K \end{array} $	2ely. Γ ₅ Γ ₄ /Ι π ⁺ π ⁻ Γ ₇ Γ ₄ /Ι 87.
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5±75.3 VALUE (MeV) 310±60 OUR ESTIMATE T 7p ⁰ MODE VALUE (MeV) • • We do not use the folio 230±30 60±15 WM MODE VALUE (MeV)	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for averages DUBNICKA P(1450) WIDT DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger than the published values. $\frac{COMMENT}{etc. • • • e^+e^- \rightarrow \eta\pi^+\pi^-}$ 8.95 $\pi^-p \rightarrow \eta\pi^+\pi^-$	0.02 21 22	$7+0.015$ -0.010 Using total width = Using for $\rho(1700)$ is ρ) × $\Gamma(e^+e^-)$ $E(e^\vee)$ $E(e^\vee)$ Using mass 1480 ± $E(e^\vee)$ $E(e^\vee)$ $E(e^\vee)$ $E(e^\vee)$ $E(e^\vee)$ $E(e^\vee)$	22 = 235 MeV. mass and widt)/Γtotal	COLUMENT ID BRANCHIN COLUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DOCUMENT ID	83 OLY nd 300 ±	10 MeV N COM 2 e+ 6 N COM e+ 6 EV of BIT DS	$ \begin{array}{ccc} -1.4 & e^{+} \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT \\ - & \eta \end{array} $ $ \begin{array}{ccc} MENT \\ - & K \end{array} $	F ₅ Γ ₄ /I π+π- Γ ₇ Γ ₄ /I ο κ ⁰ ₅ κ ⁰ _L π ⁰ 87.
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) 310±60 OUR ESTIMATE Τ 7ρ ⁰ MODE VALUE (MeV) 230±30 60±15 W MODE VALUE (MeV) The data in this block is including the second of the control of the contr	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID DOCUMENT ID MID TO ANTONELLI FUKUI DOCUMENT ID DOCUMENT ID DOCUMENT ID TO ANTONELLI FUKUI DOCUMENT ID COLUMENT ID DOCUMENT ID COLUMENT I	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN 1TECN 1TE	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger than the published values. $\frac{COMMENT}{etc. • • • }$ $e^+e^- \rightarrow \eta\pi^+\pi^-$ $8.95 \pi^-p \rightarrow \eta\pi^+\pi^-$ $\frac{COMMENT}{vious datablock}$	0.02 21 22	$7+0.015$ -0.010 Using total width = Using for $\rho(1700)$ is ρ) × $\Gamma(e^+e^-)$ $E(e^\vee)$ $E(e^\vee)$ Using mass 1480 ± $E(e^\vee)$ $E(e^\vee)$ $E(e^\vee)$ $E(e^\vee)$ $E(e^\vee)$ $E(e^\vee)$	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\))/\(\tau\) \[\frac{CL\%}{90} 23 \] \(\pm\) \(\pm	COUMENT ID DOCUMENT ID ANTONELLI DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID	83 OLY nd 300 ± 88 DM 7EC 88 DM 0 ± 60 Me G RATIC 87B RVI	7A 0.64 7 10 MeV N COM 2 e+6 N COM e+6 EV of BI DS N JE	$ \begin{array}{ccc} -1.4 & e^{+} & e^{+} \\ +\pi^{-} & & & \\ \text{respective} \\ \underline{MENT} & =^{-} & & & \\ - & & & & \\ \hline PUKOV $ $ \underline{MENT} & =^{-} & & & \\ \hline PUKOV $	2ely. Γ ₅ Γ ₄ /Ι π ⁺ π ⁻ Γ ₇ Γ ₄ /Ι 87.
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) 310±60 OUR ESTIMATE T 7 p ⁰ MODE VALUE (MeV) • • We do not use the folio 230±30 60±15 WM MODE VALUE (MeV) The data in this block is included 311± 62	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID DOCUMENT ID MID TO ANTONELLI FUKUI DOCUMENT ID DOCUMENT ID DOCUMENT ID TO ANTONELLI FUKUI DOCUMENT ID DOCUMENT ID TO ANTONELLI TO ANTONELLI TO CLEGG	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN nted for a pre 94 RVUE s, fits, limits,	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger than the published values. $\frac{COMMENT}{etc. • • • }$ $e^+e^- \rightarrow \eta\pi^+\pi^-$ $8.95 \pi^-p \rightarrow \eta\pi^+\pi^-$ $\frac{COMMENT}{vious datablock}$	0.02 21 22	$7+0.015$ $7-0.010$ Using total width = Using for $\rho(1700)$ $\rho(\rho) \times \Gamma(e^+e^-)$ $\frac{1}{12}(e^+) \times \Gamma(e^+e^-)$ Using mass 1480 ± $\frac{1}{12}(e^+) \times \Gamma(e^+e^-)$ Using mass 1480 ± $\frac{1}{12}(e^+) \times \Gamma(e^+e^-)$ • We do not use to the sign of	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\))/\(\tau\) \[\frac{CL\%}{90} 23 \] \(\perp \tau\) \(\per	COUMENT ID DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID	83 OLY nd 300 ± 88 DM 7EC 88 BND 0 ± 60 Mc G RATIC 87B RVI 7EC 87B RVI 7EC 87B RVI	N COM e+ c N COM	$ \begin{array}{ccc} -1.4 & e^{+} & e^{+} \\ +\pi^{-} & & & \\ \text{respective} \\ \underline{MENT} & =^{-} & & & \\ - & & & & \\ \hline PUKOV $ $ \underline{MENT} & =^{-} & & & \\ \hline PUKOV $	F ₅ Γ ₄ /I π+π- Γ ₇ Γ ₄ /I δ κ ⁰ ₂ κ ⁰ ₂ π ⁰ 87. Γ ₅ /I
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5 ± 75.3 VALUE (MeV) 310 ± 60 OUR ESTIMATE T 7p ⁰ MODE VALUE (MeV) • • We do not use the folio 230 ± 30 60 ± 15 W# MODE WALUE (MeV) The data in this block is included and in this block is included and included an	DOCUMENT ID DOCUMENT ID DOCUMENT ID This is only an educated the error on the process of the error on t	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN ted for a pre 94 RVUE s, fits, limits, 88 BOC OMEG	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger than the published values. $\frac{COMMENT}{etc. • • • }$ 8.95 $\pi^-p \rightarrow \eta\pi^+\pi^-$ 8.90 Sample of the comment values and the comment values are the comment values and the comment values are the comment values and the comment values are the comment valu	0.02 21 22	$7+0.015$ -0.010 Using total width = Using for $\rho(1700)$ is ρ) × $\Gamma(e^+e^-)$ $E(e^\vee)$ Using mass 1480 ± $\frac{1}{2}(1320)\pi$)/ Γ total E • We do not use it seen	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\))/\(\tau\) \[\frac{CL\%}{90} 23 \] \(\perp \tau\) \(\per	COUMENT ID DOCUMENT ID ANTONELLI DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID	83 OLY nd 300 ± 88 DM 7EC 88 DM 0 ± 60 Me G RATIC 87B RVI	N COM e+ c N COM	$ \begin{array}{ccc} -1.4 & e^{+} & \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT & \\ e^{-} & \rightarrow & \pi^{2} \end{array} $ $ \begin{array}{ccc} MENT & \\ e^{-} & \rightarrow & K \end{array} $ TYUKOV	F ₅ Γ ₄ /I π+π- Γ ₇ Γ ₄ /I δ κ ⁰ ₂ κ ⁰ ₂ π ⁰ 87. Γ ₅ /I
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) 310±60 OUR ESTIMATE T 7 p ⁰ MODE VALUE (MeV) • • We do not use the folio 230±30 60±15 WMODE VALUE (MeV) The data in this block is included 311± 62 • • We do not use the folio 320 320±100 12 Using data from BISELLO	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID This is only an educated the error on the DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID DOCUMENT ID THE ANTONELLI TO CLEGG TO CLEGG TO ANTONEL TO CLEGG TO CLEGG TO ANTONEL TO CLEGG TO CL	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN TECN 18 OMEG 80 OMEG 80 OMEG 80 SPEC 21 AL RECO 22 AND AL RECO 23 AL RECO 24 AL RECO 25 AND AL RECO 26 AND AL RECO	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger that the published values. $\frac{COMMENT}{\text{etc.} \bullet \bullet \bullet}$ etc. • • • $e^+e^- \rightarrow \eta\pi^+\pi^-$ 8.95 $\pi^-p \rightarrow \eta\pi^+\pi^-$ Vious datablock. etc. • • • $20-70 \ \gamma p \rightarrow \omega\pi^0 p$ $3-5 \ \gamma p \rightarrow \omega\pi^0 p$	0.02 21 22	$7+0.015$ $7-0.010$ Using total width = Using for $\rho(1700)$ $\rho(\rho) \times \Gamma(e^+e^-)$ $\frac{1}{12}(e^+) \times \Gamma(e^+e^-)$ Using mass 1480 ± $\frac{1}{12}(e^+) \times \Gamma(e^+e^-)$ Using mass 1480 ± $\frac{1}{12}(e^+) \times \Gamma(e^+e^-)$ • We do not use to the single section of the single section o	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\))/\(\tau\) \[\frac{CL\%}{90} 23 \] \(\perp \tau\) \(\per	COUMENT ID DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID	83 OLY nd 300 ± 88 DM 7EC 88 BND 0 ± 60 Mc G RATIC 87B RVI 7EC 87B RVI 7EC 87B RVI	N COM e+ c N COM	$ \begin{array}{ccc} -1.4 & e^{+} & \\ + & \pi^{-} \end{array} $ respective $ \begin{array}{ccc} MENT & \\ e^{-} & \rightarrow & \pi^{2} \end{array} $ $ \begin{array}{ccc} MENT & \\ e^{-} & \rightarrow & K \end{array} $ TYUKOV	F ₅ Γ ₄ /I π+π- Γ ₇ Γ ₄ /I δ κ ⁰ ₂ κ ⁰ ₂ π ⁰ 87. Γ ₅ /I
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5 ± 75.3 VALUE (MeV) 310 ± 60 OUR ESTIMATE T 7p ⁰ MODE VALUE (MeV) • • We do not use the folio 230 ± 30 60 ± 15 W# MODE WALUE (MeV) The data in this block is included and in this block is included and included an	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID This is only an educated the error on the DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID DOCUMENT ID THE ANTONELLI TO CLEGG TO CLEGG TO ANTONEL TO CLEGG TO CLEGG TO ANTONEL TO CLEGG TO CL	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN TECN 18 OMEG 80 OMEG 80 OMEG 80 SPEC 21 AL RECO 22 AND AL RECO 23 AL RECO 24 AL RECO 25 AND AL RECO 26 AND AL RECO	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger that the published values. $\frac{COMMENT}{\text{etc.} \bullet \bullet \bullet}$ etc. • • • $e^+e^- \rightarrow \eta\pi^+\pi^-$ 8.95 $\pi^-p \rightarrow \eta\pi^+\pi^-$ Vious datablock. etc. • • • $20-70 \ \gamma p \rightarrow \omega\pi^0 p$ $3-5 \ \gamma p \rightarrow \omega\pi^0 p$	0.02 21 22	$7+0.015$ -0.015 Using total width = Using for $\rho(1700)$ is ρ) × $\Gamma(e^+e^-)$ $E(e^\vee)$ Using mass 1480 ± $\frac{(E(e^\vee))}{(E(e^\vee))}$ Using mass 1480 ± $\frac{(E(e^\vee))}{(E(e^\vee))}$ • We do not use to seen $\frac{(E(e^\vee))}{(E(e^\vee))}$	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\))/\(\tau\) \[\frac{CL\%}{90} 23 \] \(\perp \tau\) \(\per	COUMENT ID DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID	83 OLV nd 300 ± 88 DM 7EC 87B ND 0 ± 60 Mc G RATIC 87B RVI 7EC es, fits, lim 00 VES	N COM e+ c N COM	$ \begin{array}{ccc} -1.4 & e^{+} & e^{+} \\ + & \pi^{-} \end{array} $ $ \begin{array}{ccc} \text{respective} \\ \underline{MENT} & \rightarrow & \eta; \\ \underline{MENT} & \rightarrow & K \end{array} $ $ \begin{array}{ccc} \underline{MENT} & \rightarrow & K $ $ \begin{array}{ccc} \underline{MENT} & \rightarrow & K \end{array} $ $ \begin{array}{ccc} \underline{MENT} & \rightarrow & K \end{array} $ $ \begin{array}{cccc} \underline{MENT} & \rightarrow & K \end{array} $ $ \begin{array}{cccc} \underline{MENT} & \rightarrow & K \end{array} $	Pely. Γ ₅ Γ ₄ /[π+π- Γ ₇ Γ ₄ /[87. Γ ₆ /[Γ ₇ /Γ ₅
MIXED MODES WALUE (MeV) 310±60 OUR ESTIMATE T 7ρ° MODE WALUE (MeV) 310±60 OUR ESTIMATE T 7ρ° MODE WALUE (MeV) 310±30 60±15 Wπ MODE WALUE (MeV) The data in this block is included and the second and the se	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID This is only an educated the error on the DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID DOCUMENT ID THE ANTONELLI TO CLEGG TO CLEGG TO ANTONEL TO CLEGG TO CLEGG TO ANTONEL TO CLEGG TO CL	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN TECN 18 OMEG 80 OMEG 80 OMEG 80 SPEC 21 AL RECO 22 AND AL RECO 23 AL RECO 24 AL RECO 25 AND AL RECO 26 AND AL RECO	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger that the published values. $\frac{COMMENT}{\text{etc.} \bullet \bullet \bullet}$ etc. • • • $e^+e^- \rightarrow \eta\pi^+\pi^-$ 8.95 $\pi^-p \rightarrow \eta\pi^+\pi^-$ Vious datablock. etc. • • • $20-70 \ \gamma p \rightarrow \omega\pi^0 p$ $3-5 \ \gamma p \rightarrow \omega\pi^0 p$	0.02 21 22	$7+0.015$ $7-0.010$ Using total width = Using for $\rho(1700)$ $\rho(\rho) \times \Gamma(e^+e^-)$ $\rho(E(e^+))$ Using mass 1480 ± $\rho(E(e^+))$ Using mass 1480 ± $\rho(E(e^+))$ Using was 1480 ± $\rho(E(e^+))$ • We do not use 1 seen $\rho(E(e^+))$	= 235 MeV. mass and widt)/\(\tau\)/\(\tau\)/\(\tau\) \[\frac{ct\%}{90} 23 \\ \drac{t}{40} \text{ MeV and} \\ \rho(1450) \] the following of	COUMENT ID DOCUMENT ID ANTONELLI BOCUMENT ID ANTONELLI BOCUMENT ID DOCUMENT ID DONNACHIE DOCUMENT ID DONNACHIE DOCUMENT ID DONNACHIE AMELIN	83 OLV nd 300 ± 88 DM 7EC 87B ND 0 ± 60 Mc G RATIC 87B RVI 7EC es, fits, lim 00 VES	/A 0.64 / 10 MeV N COM 2 e+ 6 N COM e+ 6 EV of BI DS N COM its, etc. 5 37 / 10 CHG	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5±75.3 VALUE (MeV) 310±60 OUR ESTIMATE T 7ρ0 MODE VALUE (MeV) • • • We do not use the folio 230±30 60±15 ωπ MODE VALUE (MeV) The data in this block is included and the second of the folio 311± 62 • • We do not use the folio 320±100 12 Using data from BISELLO 13 Not separated from b1(123 ππ MODE	DOCUMENT ID ANTONELLI FUKUI 12 CLEGG wing data for average prin 12 CLEGG wing data for average ill 3 ASTON 13 BARBER 918, DOLINSKY 86 a 35), not pure JP = 1	TECN s, fits, limits, 89 RVUE TH d guess; the e average of s, fits, limits, 88 DM2 88 SPEC TECN nted for a pre 94 RVUE s, fits, limits, 80 OMEG 800 SPEC and ALBREC effect.	etc. • • • $e^+e^- \rightarrow \pi^+\pi^-$ error given is larger than the published values. $\frac{COMMENT}{etc. • • • } e^+e^- \rightarrow \eta\pi^+\pi^-$ 8.95 $\pi^-p \rightarrow \eta\pi^+\pi^-$ Vious datablock. etc. • • • $e^+e^- \rightarrow \pi^0p$ 3–5 $\gamma p \rightarrow \omega\pi^0p$ HT 87L.	0.02 21 22	$7+0.015$ $7-0.010$ Using total width = Using for $\rho(1700)$ $\rho(\rho) \times \Gamma(e^+e^-)$ $\rho(E(e^+))$ Using mass 1480 ± $\rho(E(e^+))$ Using mass 1480 ± $\rho(E(e^+))$ Using was 1480 ± $\rho(E(e^+))$ • We do not use 1 seen $\rho(E(e^+))$	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\) \[\frac{CL\%}{90} 23 \\ \frac{2}{40} \text{ MeV and} \[\rho(1450) \] al the following of \(\text{CL\%})	COUMENT ID DOCUMENT ID DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DOCUMENT ID DATE OF THE OPEN IN ITERATION IN ITER	83 OLY nd 300 ± 88 DM FEC 88 DM 0 ± 60 Me G RATIC 87B RVI 1EC 87B RVI 00 VES	/A 0.64 / 10 MeV N COM 2 e+ 6 N COM e+ 6 EV of BI DS N COM its, etc. 5 37 / 10 CHG	$ \begin{array}{ccc} -1.4 & e^{+} & e^{+} \\ + & \pi^{-} \end{array} $ $ \begin{array}{cccc} \text{respective} \\ MENT \\ e^{-} & \rightarrow & \eta_{2} \end{array} $ $ \begin{array}{cccc} MENT \\ e^{-} & \rightarrow & K \end{array} $ $ \begin{array}{cccc} \Gamma \text{YUKOV} \end{array} $ $ \begin{array}{ccccc} MENT \\ e^{-} & \rightarrow & K \end{array} $ $ \begin{array}{ccccc} \Gamma \text{YUKOV} \end{array} $	
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5±75.3 VALUE (MeV) 310±60 OUR ESTIMATE T 7p ⁰ MODE VALUE (MeV) • • We do not use the folio 230±30 60±15 WM MODE VALUE (MeV) The data in this block is included 311±62 • • • We do not use the folio 300 310 310 310 320±100 12 Using data from BISELLO 13 Not separated from b ₁ (123 MM MODE VALUE (MeV)	DOCUMENT ID ANTONELLI FUKUI DOCUMENT ID ANTONELLI FUKUI 12 CLEGG INVINING data for averages 13 ASTON 13 BARBER 918, DOLINSKY 86 a 35), not pure JP = 1	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN nted for a pre 94 RVUE s, fits, limits, 80c OMEG 80c SPEC and ALBREC effect. TECN	etc. • • • • • • • • • • • • • • • • • • •	0.02 21 22	$7+0.015$ $7+0.010$ Using total width = Using total width = Using for $\rho(1700)$ if ρ $\times \Gamma(e^+e^-)$ $P(e^+) \times \Gamma(e^+e^-)$ Using mass 1480 ± $P(e^+) \times \Gamma(e^+e^-)$ Using mass 1480 ± $P(e^+) \times \Gamma(e^+e^-)$ We do not use the seen $P(e^+) \times \Gamma(\omega \pi)$	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\) \[\frac{CL\%}{90} 23 \\ \frac{2}{40} \text{ MeV and} \[\rho(1450) \] al the following of \(\text{CL\%})	COUMENT ID DOCUMENT ID DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DOCUMENT ID DATE OF THE OPEN IN ITERATION IN ITER	83 OLY nd 300 ± 88 DM FEC 88 DM 0 ± 60 Me G RATIC 87B RVI 1EC 87B RVI 00 VES	/A 0.64 / 10 MeV N COM 2 e+ 6 N COM e+ 6 EV of BI DS N COM its, etc. 5 37 / 10 CHG	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pely.
MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5±75.3 VALUE (MeV) 310±60 OUR ESTIMATE T προ MODE VALUE (MeV) • • We do not use the folio 230±30 60±15 ωπ MODE VALUE (MeV) The data in this block is included 300 320±100 12 Using data from BISELLO 13 Not separated from b ₁ (123 ππ MODE VALUE (MeV) • • We do not use the folio 300 320±100 13 Not separated from b ₁ (123 ππ MODE VALUE (MeV) • • We do not use the folio	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for averages DUBNICKA P(1450) WIDT DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID ded in the average print 12 CLEGG Wing data for averages 13 ASTON 13 BARBER 91B, DOLINSKY B6 a 35), not pure JP = 1	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN ted for a pre 94 RVUE s, fits, limits, 80c OMEG 80c SPEC and ALBREC effect. TECN s, fits, limits,	etc. • • • • • • • • • • • • • • • • • • •	0.02 21 22 F(7) 91± F(4) 23 0 F(7) 40 40 40 F(4) 40 F(4) 40 F(4) 40 F(4) 70 F(4) F(4) F(4) F(4) F(4) F(4) F(4) F(4)	$7+0.015$ $7+0.010$ Using total width = Using for $\rho(1700)$ if $\rho(\rho) \times \Gamma(e^+e^-)$ Using for $\rho(1700)$ if $\rho(\rho) \times \Gamma(e^+e^-)$ $\rho(\rho) \times \Gamma(e^+e^-)$ Using mass 1480 \pm $\rho(\rho)/\Gamma$ total is $\rho(\rho)/\Gamma$ total is $\rho(\rho)/\Gamma$ total is $\rho(\rho)/\Gamma$ is $\rho(\rho)/\Gamma$ in $\rho(\rho)/\Gamma$ is $\rho(\rho)/\Gamma$ in $\rho(\rho)/\Gamma$ is $\rho(\rho)/\Gamma$ in $\rho(\rho)/\Gamma$ in $\rho(\rho)/\Gamma$ in $\rho(\rho)/\Gamma$ in $\rho(\rho)/\Gamma$ in $\rho(\rho)/\Gamma$ is $\rho(\rho)/\Gamma$ in $\rho(\rho$	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\) \[\frac{CL\%}{90} 23 \\ \frac{2}{40} \text{ MeV and} \[\rho(1450) \] al the following of \(\text{CL\%})	COUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DONNACHIE DOCUMENT ID DONNACHIE DOCUMENT ID DONNACHIE DOCUMENT ID BITYUKOV	83 OLY nd 300 ± 88 DM 7EC 88 DM 0 ± 60 M G RATIC 87 BRV 7EC 87 SPE	/A 0.64 / 10 MeV N COM e ⁺ (c) of Bl ⁻ DS N COM its, etc. 5 37 / 10 CHG N CHG	$-1.4 \ e^+ \ ($ $+ \pi^-$ respective MENT $- \to \eta$ MENT $- \to K$ FYUKOV MENT $- \to K$	
MIXED MODES WALUE (MeV) 310±60 OUR ESTIMATE T 7ρ° MODE WALUE (MeV) 310±60 OUR ESTIMATE T 7ρ° MODE WALUE (MeV) 110±05 (MeV) The data in this block is included and the second of the second o	DOCUMENT ID ANTONELLI FUKUI DOCUMENT ID ANTONELLI FUKUI 12 CLEGG INVINING data for averages 13 ASTON 13 BARBER 918, DOLINSKY 86 a 35), not pure JP = 1	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN 100 TE	etc. • • • • • • • • • • • • • • • • • • •	0.02 21 22	$7+0.015$ $7+0.015$ Using total width = 100 Using for $\rho(1700)$ is 100 Using for $\rho(1700)$ is 100 Using for $\rho(1700)$ is 100 Using mass 1480 ± 100 Using mass 148	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\) \[\frac{CL\%}{90} 23 \\ \frac{2}{40} \text{ MeV and} \[\rho(1450) \] al the following of \(\text{CL\%})	COUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID BANCHIN DOCUMENT ID	83 OLY nd 300 ± 88 DM FEC 87B ND 0 ± 60 Mi G RATIC 87B RVI 7EC 87 SPE 87 SPE	\(\text{N} \) \(\text{COM} \) \(\text{DS} \) \(\text{N} \) \(\text{COM} \) \(\text{its, etc.} \) \(\text{37} \) \(\text{n} \) \(\text{COM} \) \(\text	$-1.4 \ e^+ \ ($ $+ \pi^-$ respective MENT $- \to \eta$ MENT $- \to K$ FYUKOV MENT $- \to K$	Pely.
MIXED MODES VALUE (MeV) • • • We do not use the folion 1265.5 ± 75.3 VALUE (MeV) 310 ± 60 OUR ESTIMATE T TPP MODE VALUE (MeV) • • We do not use the folion 1200 ± 30 60 ± 15 WM MODE VALUE (MeV) The data in this block is included 130 320 ± 100 12 Using data from BISELLO 13 Not separated from b1 (123 MM MODE VALUE (MeV) • • • We do not use the folion 120 300 311 ± 62 • • • We do not use the folion 120 311 ± 62 • • • We do not use the folion 130 320 ± 100 13 Not separated from b1 (123 MM MODE VALUE (MeV) • • • We do not use the folion 150 **MODE VALUE (MeV) • • • We do not use the folion 150 **MODE VALUE (MeV) • • • We do not use the folion 150 **MODE VALUE (MeV) • • • We do not use the folion 150 **WHODE VALUE (MeV) • • • We do not use the folion 150 **WHODE VALUE (MeV) • • • We do not use the folion 150 **WHODE VALUE (MeV) • • • We do not use the folion 150 **WHODE VALUE (MeV)	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for averages DUBNICKA P(1450) WIDT DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID ded in the average print 12 CLEGG Wing data for averages 13 ASTON 13 BARBER 91B, DOLINSKY 86 a 35), not pure JP = 1 DOCUMENT ID wing data for averages 14 ABELE BERTIN	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN 100 TE	etc. • • • • • • • • • • • • • • • • • • •	0.02 21 22 F(7) 91± F(4) 23 0 F(7) 40 40 40 F(4) 40 F(4) 40 F(4) 40 F(4) 70 F(4) F(4) F(4) F(4) F(4) F(4) F(4) F(4)	$7+0.015$ $7+0.015$ Using total width = 100 Using for $\rho(1700)$ is 100 Using for $\rho(1700)$ is 100 Using for $\rho(1700)$ is 100 Using mass 1480 ± 100 Using mass 148	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\) \[\frac{CL\%}{90} 23 \\ \frac{2}{40} \text{ MeV and} \[\rho(1450) \] al the following of \(\text{CL\%})	COUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DONNACHIE DOCUMENT ID DONNACHIE DOCUMENT ID DONNACHIE DOCUMENT ID BITYUKOV	83 OLY nd 300 ± 88 DM 7EC 88 DM 0 ± 60 M G RATIC 87 BRV 7EC 87 SPE	\(\text{N} \) \(\text{COM} \) \(\text{DS} \) \(\text{N} \) \(\text{COM} \) \(\text{its, etc.} \) \(\text{37} \) \(\text{n} \) \(\text{COM} \) \(\text	$-1.4 \ e^+ \ ($ $+ \pi^-$ respective MENT $- \to \eta$ MENT $- \to K$ FYUKOV MENT $- \to K$	Pely.
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) 310±60 OUR ESTIMATE T 7ρ° MODE VALUE (MeV) 310±60 OUR ESTIMATE T 7ρ° MODE VALUE (MeV) 310±30 60±15 Wπ MODE VALUE (MeV) The data in this block is included at the follonom of the follonom	DOCUMENT ID wing data for averages DUBNICKA p(1450) WIDT DOCUMENT ID wing data for averages antonell bis is only an educated the error on the DOCUMENT ID wing data for averages ANTONELLI FUKUI DOCUMENT ID ded in the average prin 12 CLEGG wing data for averages 13 ASTON 13 BARBER 918, DOLINSKY 86 a 35), not pure JP = 1 DOCUMENT ID wing data for averages 14 ABELE BERTIN 15 ABELE	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN ted for a pre 94 RVUE s, fits, limits, 80C OMEG 80C SPEC and ALBREC effect. TECN s, fits, limits, 99C CBAR 98 OBLX 97 CBAR	etc. • • • • • • • • • • • • • • • • • • •	0.02 21 22	$7+0.015$ $7+0.010$ Using total width = Using for $\rho(1700)$ (ρ) × $\Gamma(e^+e^-)$ $P(e^+)$ × $P(e^+e^-)$ Using mass 1480 ± $P(e^+)$ Using mass 1480 ± $P(e^+)$ We do not use the seen $P(e^+)$ / $P(e^+)$	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\) \[\frac{CL\%}{90} 23 \\ \frac{2}{40} \text{ MeV and} \[\rho(1450) \] al the following of \(\text{CL\%})	COUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID BANCHIN DOCUMENT ID	83 OLY nd 300 ± 88 DM FEC 87B ND 0 ± 60 Mi G RATIC 87B RVI 7EC 87 SPE 87 SPE	\(\text{N} \) \(\text{COM} \) \(\text{DS} \) \(\text{N} \) \(\text{COM} \) \(\text{its, etc.} \) \(\text{37} \) \(\text{n} \) \(\text{COM} \) \(\text	$-1.4 \ e^+ \ ($ $+ \pi^-$ respective MENT $- \to \eta$ MENT $- \to K$ FYUKOV MENT $- \to K$	Pely. $\Gamma_{5}\Gamma_{4}/\Gamma_{7}\Gamma_{4}/\Gamma_{7}\Gamma_{5}/\Gamma_{5}/\Gamma_{6}/\Gamma_{7}\Gamma_{7}/\Gamma_{5}$ $\Gamma_{7}\Gamma_{7}/\Gamma_{5}$ Γ_{7}/Γ_{5} Γ_{7}/Γ_{5}
MIXED MODES WALUE (MeV) 1265.5±75.3 WALUE (MeV) 310±60 OUR ESTIMATE T 7ρ0 MODE WALUE (MeV) 310±60 OUR ESTIMATE T WALUE (MeV) The data in this block is included at the follon of the follon	DOCUMENT ID wing data for averages DUBNICKA p(1450) WIDT DOCUMENT ID wing data for averages the error on the DOCUMENT ID wing data for averages ANTONELLI FUKUI DOCUMENT ID ded in the average print 12 CLEGG wing data for averages 13 ASTON 13 BARBER 91B, DOLINSKY 86 a 35), not pure JP = 1 DOCUMENT ID wing data for averages 14 ABELE BERTIN 15 ABELE 16 BERTIN	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC 94 RVUE 94 RVUE 88 SPEC 94 RVUE 94 RVUE 6 80C SPEC 6 80C SPEC 6 and ALBREC 6 effect. TECN s, fits, limits, 99C CBAR 98 OBLX 97 CBAR 97C OBLX	etc. • • • • • • • • • • • • • • • • • • •	0.02 21 22	$7+0.015$ $7-0.010$ Using total width = Using for $\rho(1700)$ if $\rho(\rho) \times \Gamma(e^+e^-)$ $P(\rho) \times \Gamma(e^+e^-)$ Using mass 1480 ± $P(\rho) / \Gamma(e^+)$ We do not use the seen $P(\rho) / \Gamma(\omega \pi)$ Using mass 1480 ± $P(\rho) / \Gamma(\omega \pi)$	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\) \[\frac{CL\%}{90} 23 \\ \frac{2}{40} \text{ MeV and} \[\rho(1450) \] al the following of \(\text{CL\%})	CLEGG Eth 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID B AULCHENKO Lotal width 13 BRANCHIN DOCUMENT ID CLEGG	83 OLY nd 300 ± 88 DM FEC 88 DM FEC 87 RATIC FEC 87 RATIC 87 SPE 88 RVI 88 RVI 88 RVI 88 RVI	/A 0.64 / A 10 MeV / A	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pely.
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5±75.3 VALUE (MeV) 310±60 OUR ESTIMATE T 7ρ ⁰ MODE VALUE (MeV) • • We do not use the folio 230±30 60±15 ωπ MODE VALUE (MeV) The data in this block is included and the second of	DOCUMENT ID wing data for averages DUBNICKA p(1450) WIDT DOCUMENT ID wing data for averages and a data for averages DOCUMENT ID wing data for averages ANTONELLI FUKUI DOCUMENT ID and in the average prin 12 CLEGG wing data for averages 13 ASTON 13 BARBER 918, DOLINSKY 86 a 35), not pure JP = 1 DOCUMENT ID wing data for averages 14 ABELE BERTIN 15 ABELE 16 BERTIN BERTIN	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN 100 SPEC 100 SPEC 100 ALBREC 100 CBAR 100	etc. • • • • • • • • • • • • • • • • • • •	0.02 21 22 7(7) 241 91	$7+0.015$ $7+0.015$ Using total width = Using for $\rho(1700)$ is ρ) × $\Gamma(e^+e^-)$ Using for $\rho(1700)$ is ρ) × $\Gamma(e^+e^-)$ Using mass 1480 ± $(P_0)/\Gamma$ total	22 = 235 MeV. mass and widt)/\(\tau\)/\(\tau\) 1/\(\tau\) 23 24 24 25 25 40 MeV and \(\rho(1450)\) al the following of the followi	CLEGG Eth 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID BANCHIN DOCUMENT ID DONNACHIE DOCUMENT ID DONNACHIE DOCUMENT ID DONNACHIE DOCUMENT ID	83 OLY nd 300 ± 88 DM TEC 88 DM TEC 87B ND 0 ± 60 M G RATIC 87B RVI 00 VES 87 SPE 88 RVI TEC 88 RVI	/A 0.64 ** 10 MeV ** ** ** ** ** ** ** ** ** ** ** ** *	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pely. $\Gamma_{5}\Gamma_{4}/\Gamma_{7}\Gamma_{4}/\Gamma_{7}\Gamma_{5}/\Gamma_{5}/\Gamma_{6}/\Gamma_{7}\Gamma_{7}/\Gamma_{5}$ $\Gamma_{7}\Gamma_{7}/\Gamma_{5}$ Γ_{7}/Γ_{5} Γ_{7}/Γ_{5}
MIXED MODES VALUE (MeV) • • • We do not use the folion 1265.5 ± 75.3 VALUE (MeV) 310 ± 60 OUR ESTIMATE TO 1265.5 ± 75.3 VALUE (MeV) 310 ± 60 OUR ESTIMATE TO 1265.5 ± 75.3 WALUE (MeV) • • • We do not use the folion 1265.5 ± 75.3 WALUE (MeV) • • • We do not use the folion 1265.5 ± 75.3 WALUE (MeV) The data in this block is included 1311 ± 62 • • • We do not use the folion 120 ± 75.5 WALUE (MeV) WALUE (MeV) • • • We do not use the folion 120 ± 75.5 WALUE (MeV) • • • We do not use the folion 127.5 ± 10 343 ± 20 310 ± 40 236 ± 36 269 ± 31	DOCUMENT ID Wing data for averages DUBNICKA p(1450) WIDT DOCUMENT ID This is only an educated the error on the error o	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN ted for a pre 94 RVUE s, fits, limits, 80C OMEG 80C SPEC and ALBREC effect. TECN s, fits, limits, 90C CBAR 99C CBAR 97C OBLX 97 CBAR 97D OBLX 89 DM2	etc. • • • • • • • • • • • • • • • • • • •	0.02 21 22	$7+0.015$ $7+0.015$ Using total width = Using for $\rho(1700)$ if ρ) × $\Gamma(e^+e^-)$ $P(E)$ (eV) Using mass 1480 ± $P(E)$ (EV) Using mass 1480 ± $P(E)$ (EV)	22 = 235 MeV. mass and width series and width series and width series and width series and series are series and series and series and series and series are series and series and series and series are series and series and series are series and series and series are series and series are series and series and series are series and series are series and series and series are series and series a	CLEGG Eth 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DONNACHIE DOCUMENT ID BITYUKOV DOCUMENT ID BITYUKOV DOCUMENT ID CLEGG	83 OLY nd 300 ± 88 DM TEC 87B ND 0 ± 60 M G RATIC 87B RVI 00 VES 87 SPE 88 RVI 7EC 91 RVI	/A 0.64 ** 10 MeV ** ** ** ** ** ** ** ** ** ** ** ** *	$-1.4 \ e^+ \ (+\pi^-)^{-1} \ e^+ \ \pi^-$ respective $MENT \longrightarrow \eta$ $MENT \longrightarrow K$ FYUKOV $MENT \longrightarrow K$ $-p \longrightarrow \eta$ $-p \longrightarrow \eta$ $-p \longrightarrow \eta$ $-p \longrightarrow \eta$	Pely. $\Gamma_{5}\Gamma_{4}/\Gamma_{7}\Gamma_{4}/\Gamma_{7}\Gamma_{5}/\Gamma_{5}/\Gamma_{6}/\Gamma_{7}\Gamma_{7}/\Gamma_{5}$ $\Gamma_{7}\Gamma_{7}/\Gamma_{5}$ Γ_{7}/Γ_{5} Γ_{7}/Γ_{5}
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5±75.3 VALUE (MeV) 310±60 OUR ESTIMATE T 7ρ ⁰ MODE VALUE (MeV) • • We do not use the folio 230±30 60±15 ωπ MODE VALUE (MeV) The data in this block is included and the second of	DOCUMENT ID wing data for averages DUBNICKA p(1450) WIDT DOCUMENT ID wing data for averages and a data for averages DOCUMENT ID wing data for averages ANTONELLI FUKUI DOCUMENT ID and in the average prin 12 CLEGG wing data for averages 13 ASTON 13 BARBER 918, DOLINSKY 86 a 35), not pure JP = 1 DOCUMENT ID wing data for averages 14 ABELE BERTIN 15 ABELE 16 BERTIN BERTIN	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN ted for a pre 94 RVUE s, fits, limits, 80C OMEG 80C SPEC and ALBREC effect. TECN s, fits, limits, 90C CBAR 99C CBAR 97C OBLX 97 CBAR 97D OBLX 89 DM2	etc. • • • • • • • • • • • • • • • • • • •	0.02 21 22	$7+0.015$ $7+0.015$ Using total width = Using for $\rho(1700)$ is ρ) × $\Gamma(e^+e^-)$ Using for $\rho(1700)$ is ρ) × $\Gamma(e^+e^-)$ Using mass 1480 ± $(P_0)/\Gamma$ total	22 = 235 MeV. mass and width series and width series and width series and width series and series are series and series are series and series and series and series are series are series a	CLEGG Eth 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DONNACHIE DOCUMENT ID DOLUMENT ID BITYUKOV	83 OLY nd 300 ± 88 DM TEC 87 ND 0 ± 60 M G RATIC 87 SPE 87 SPE 88 RVI TEC 91 RVI 91 RVI 95, fits, lim 10 TEC 91 RVI 95, fits, lim 10 TEC 91 RVI 95, fits, lim	\(\text{N} \) \(\frac{COM}{e} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{DIS} \) \(\text{COM} \) \(\text{DIS}	$-1.4 \ e^+ \ (+\pi^-)^{-1.4} \ e^+ \ e^+ \ (+\pi^-)^{-1.4} \ e^+ \$	Γ ₅ Γ ₄ /Ι π+π- Γ ₇ Γ ₄ /Ι Θ' _S κ' _L π ⁰ 87. Γ ₆ /Ι Γ ₇ /Γ ₃ Γ ₇ /Γ ₃ Γ ₅ /Γ ₃
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5±75.3 VALUE (MeV) 310±60 OUR ESTIMATE T TOPO MODE VALUE (MeV) • • We do not use the folio 230±30 60±15 WM MODE VALUE (MeV) The data in this block is included 311±62 • • We do not use the folio 320 320±100 12 Using data from BISELLO 13 Not separated from b ₁ (123) MM MODE VALUE (MeV) • • We do not use the folio 340 374 275±10 343±20 310±40 236±36 269±31 218±46	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for averages DUBNICKA P(1450) WIDT DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID ANTONELLI FUKUI 12 CLEGG Wing data for average prin 13 ASTON 13 BARBER 918, DOLINSKY 86 a 35), not pure JP = 1 DOCUMENT ID Wing data for averages 14 ABELE BERTIN 15 ABELE 16 BERTIN BISELLO 17 KURDADZE	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN nted for a pre 94 RVUE s, fits, limits, 80c OMEG 80c SPEC and ALBREC effect. TECN s, fits, limits, 99c CBAR 99 OBLX 97 CBAR 97C OBLX 97 CBAR 97D OBLX 89 DM2 83 OLYA	error given is larger than the published values. $\frac{COMMENT}{\text{etc.}} \bullet \bullet \bullet$ $e^+e^- \to \pi^+\pi^-$ error given is larger than the published values. $\frac{COMMENT}{\text{etc.}} \bullet \bullet$ $e^+e^- \to \eta\pi^+\pi^-$ $8.95 \pi^-p \to \eta\pi^+\pi^-$ Vious databilock. $\text{etc.} \bullet \bullet \bullet$ $20-70 \gamma p \to \omega\pi^0 p$ $3-5 \gamma p \to \omega\pi^0 p$ HT 87L. $\frac{COMMENT}{\text{etc.}} \bullet \bullet$ $0.0 \vec{p} d \to \pi^+\pi^-\pi^-$ $0.05 \vec{p} p \to \pi^+\pi^-\pi^0$ $0.05 \vec{p} p \to 2\pi^+2\pi^-$ $e^+e^- \to \pi^+\pi^-$ $0.64-1.4 e^+e^- \to \pi^+\pi^-$ $\pi^+\pi^+\pi^-$ π^- $\pi^+\pi^+\pi^-$	0.02 21 22	$7+0.015$ $7+0.015$ Using total width = Using for $\rho(1700)$ if ρ) × $\Gamma(e^+e^-)$ $P(E)$ (eV) Using mass 1480 ± $P(E)$ (EV) Using mass 1480 ± $P(E)$ (EV)	22 = 235 MeV. mass and width series and width series and width series and width series and series are series and series are series and series and series and series are series are series a	CLEGG Eth 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DONNACHIE DOCUMENT ID BITYUKOV DOCUMENT ID BITYUKOV DOCUMENT ID CLEGG	83 OLY nd 300 ± 88 DM TEC 87 ND 0 ± 60 M G RATIC 87 SPE 87 SPE 88 RVI TEC 91 RVI 91 RVI 95, fits, lim 10 TEC 91 RVI 95, fits, lim 10 TEC 91 RVI 95, fits, lim	\(\text{N} \) \(\frac{COM}{e} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{DIS} \) \(\text{COM} \) \(\text{DIS}	$-1.4 \ e^+ \ (+\pi^-)^{-1} \ e^+ \ \pi^-$ respective $MENT \longrightarrow \eta$ $MENT \longrightarrow K$ FYUKOV $MENT \longrightarrow K$ $-p \longrightarrow \eta$ $-p \longrightarrow \eta$ $-p \longrightarrow \eta$ $-p \longrightarrow \eta$	Γ ₅ Γ ₄ /Ι π+π- Γ ₇ Γ ₄ /Ι Θ' _S κ' _L π ⁰ 87. Γ ₆ /Ι Γ ₇ /Γ ₃ Γ ₇ /Γ ₃ Γ ₅ /Γ ₃
MIXED MODES WALUE (MeV) 310±60 OUR ESTIMATE T 7ρ ⁰ MODE WALUE (MeV) 310±60 OUR ESTIMATE T 7ρ ⁰ MODE WALUE (MeV) • • We do not use the folio 1265.5±15.3 WALUE (MeV) 130±30±30 12 Using data from BISELLO 13 Not separated from b ₁ (123 ** ** ** ** ** ** ** ** **	DOCUMENT ID Wing data for averages DUBNICKA p(1450) WIDT DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID Wing data for averages ANTONELLI FUKUI 12 CLEGG Wing data for average prin 12 CLEGG Wing data for averages 13 ASTON 13 BARBER 918, DOLINSKY 86 a 35), not pure JP = 1 DOCUMENT ID Wing data for averages 14 ABELE BERTIN 15 ABELE 16 BERTIN BISELLO 17 KURDADZE xed at 1780 MeV and	TECN s, fits, limits, 89 RVUE TH d guess; the e average of s, fits, limits, 88 DM2 88 SPEC 94 RVUE 94 RVUE 680C SPEC 680C S	etc. • • • • • • • • • • • • • • • • • • •	0.02 21 22	$7+0.015$ $7+0.015$ Using total width = Using for $\rho(1700)$ is ρ) × $\Gamma(e^+e^-)$ Using for $\rho(1700)$ is ρ) × $\Gamma(e^+e^-)$ Using mass 1480 ± $(-\rho)/\Gamma$ total is ρ We do not use the seen is ρ / $\Gamma(\omega\pi)$ Using mass 1480 ± $(-\rho)/\Gamma(\omega\pi)$ Using mass 1480 ±	22 = 235 MeV. mass and width series and width series and width series and width series and series are series and series are series and series and series and series are series are series a	CLEGG Eth 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DONNACHIE DOCUMENT ID DOLUMENT ID BITYUKOV	83 OLY nd 300 ± 88 DM TEC 87 ND 0 ± 60 M G RATIC 87 SPE 87 SPE 88 RVI TEC 91 RVI 91 RVI 95, fits, lim 10 TEC 91 RVI 95, fits, lim 10 TEC 91 RVI 95, fits, lim	\(\text{N} \) \(\frac{COM}{e} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{N} \) \(\text{COM} \) \(\text{DIS} \) \(\text{DIS} \) \(\text{COM} \) \(\text{DIS}	$-1.4 \ e^+ \ (+\pi^-)^{-1.4} \ e^+ \ e^+ \ (+\pi^-)^{-1.4} \ e^+ \$	
11 K-matrix pole. Isospin not MIXED MODES VALUE (MeV) • • • We do not use the folio 1265.5±75.3 VALUE (MeV) 310±60 OUR ESTIMATE T 7p ⁰ MODE VALUE (MeV) • • We do not use the folio 230±30 60±15 WM MODE VALUE (MeV) The data in this block is included 311± 62 • • We do not use the folio 300 320±100 12 Using data from BISELLO 13 Not separated from b ₁ (123 ** MODE VALUE (MeV) • • We do not use the folio 374 275±10 343±20 310±40 236±36 269±31 218±46	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for averages DUBNICKA P(1450) WIDT DOCUMENT ID Wing data for averages ANTONELLI FUKUI DOCUMENT ID MIDT ANTONELLI FUKUI 12 CLEGG Wing data for averages 13 ASTON 13 BARBER 918, DOLINSKY 86 a 35), not pure JP = 1 DOCUMENT ID Wing data for averages 14 ABELE BERTIN 15 ABELE 16 BERTIN BISELLO 17 KURDADZE xed at 1780 MeV and	TECN s, fits, limits, 89 RVUE TH d guess; the e average of TECN s, fits, limits, 88 DM2 88 SPEC TECN nted for a pre 94 RVUE s, fits, limits, 80C OMEG 80C SPEC and ALBREC effect. TECN s, fits, limits, 99C CBAR 99C CBAR 97C OBLX 97 CBAR 97C OBLX 89 DM2 83 OLYA 275 MeV res	etc. • • • • • • • • • • • • • • • • • • •	0.02 21 22	$7+0.015$ $7+0.015$ Using total width = Using for $\rho(1700)$ for $\rho(170$	22 = 235 MeV. mass and width series and width series and width series and width series and series are series and series are series and series and series and series are series are series a	CLEGG Eth 1600 ± 20 a DOCUMENT ID ANTONELLI DOCUMENT ID BRANCHIN DOCUMENT ID DONNACHIE DOCUMENT ID DOLUMENT ID BITYUKOV	83 OLY nd 300 ± 88 DM TEC 87 ND 0 ± 60 M G RATIC 87 SPE 87 SPE 88 RVI TEC 91 RVI 91 RVI 95, fits, lim 10 TEC 91 RVI 95, fits, lim 10 TEC 91 RVI 95, fits, lim	/A 0.64 /A 0.64 /A 10 MeV // COM /	$-1.4 \ e^+ \ (+\pi^-)^{-1.4} \ e^+ \ e^+ \ (+\pi^-)^{-1.4} \ e^+ \$	Γ ₅ Γ ₄ /Ι π+π- Γ ₇ Γ ₄ /Ι Θ' _S κ' _L π ⁰ 87. Γ ₆ /Ι Γ ₇ /Γ ₃ Γ ₇ /Γ ₃ Γ ₅ /Γ ₃

I

$\Gamma(\pi\pi)/\Gamma(\omega\pi)$				Г	/Г:
VALUE	DOCUMENT ID		<u>TECN</u>		
~ 0.32	CLEGG	94	RVUE		
$\Gamma(\phi\pi)/\Gamma_{\text{total}}$				г	7/1
VALUE	DOCUMENT ID		TECN	COMMENT	
<0.01	²⁴ DONNACHIE	91	RVUE		
• • • We do not use the foll-	owing data for average	s, fit	s, limits,	etc. • • •	
not seen	ABELE	97F	CBAR	$\bar{p}_P \rightarrow K_L^0 K_S^0 \pi^0 \pi^0$)
$\Gamma(K\overline{K})/\Gamma(\omega\pi)$				Ге	/Γ :
VALUE	DOCUMENT ID		TEÇN		
<0.08	24 DONNACHIE	91	RVUE		
²⁴ Using data from BISELLO	91B, DOLINSKY 86	and .	ALBREC	HT 87L.	

$\rho(1450)$	REFERENCES

AMELIN	00	NP B668 63	D. Amelin et al.	(VES Collab.)
ABELE	99C	PL B450 275	A. Abele et al.	(Crystal Barrel Collab.)
ABELE	99D	PL B468 178	A. Abele et al.	(Crystal Barrel Collab.)
BERTIN	98	PR D57 55	A. Bertin et al.	(OBELIX Collab.)
ABELE	97	PL B391 191	A. Abele et al.	(Crystal Barrel Collab.)
ABELE	97H	PL B415 280	A. Abele et al.	(Crystal Barrel Collab.)
ACHASOV	97	PR D55 2663	N.N. Achasov et al.	(NOVM)
BARATE	97M	ZPHY C76 15	R. Barate et al.	(ALEPH Collab.)
BERTIN	97C	PL B408 476	A. Bertin et al.	(OBELIX Collab.)
BERTIN	97D	PL B414 220	A. Bertin et al.	(OBELIX Collab.)
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC, MCHS)
BISELLO	91B	NP B21 111 (suppl)	D. Bisello	(DM2 Collab.)
DONNACHIE	91	ZPHY C51 689	A. Donnachie, A.B. Clegg	(MCHS, LANC)
FUKUI	91	PL B257 241	S. Fukui et al. (SUGI,	NAGO, KEK, KYOT+)
ARMSTRONG	89E	PL B228 536	T.A. Armstrong, M. Benayoun	(ATHU, BARI, BIRM+)
BISELLO	89	PL B220 321	O. Bisello et al.	(DM2 Collab.)
DUBNICKA	89	JPG 15 1349	S. Dubnicka et al.	(JINR, SLOV)
ANTONELLI	88	PL B212 133	A. Antonelli et al.	(DM2 Collab.)
CLEGG	88	ZPHY C40 313	A.B. Clegg, A. Donnachie	(MCHS, LANC)
DIEKMAN	88	PRPL 159 101	B. Diekmann	(BONN)
FUKUI	88	PL B202 441	S. Fukui et al. (SUGI	, NAGO, KEK, KYOT+)
ALBRECHT	87L	PL B185 223	H. Albrecht et al.	(ARGUS Collab.)
AULCHENKO	87B	JETPL 45 145	V.M. Aulchenko et al.	(NOVO)
		Translated from ZETFP		
BITYUKOV	87	PL B188 383	5.1. Bityukov et al.	(SERP)
DONNACHIE	87B	ZPHY C34 257	A. Donnachie, A.B. Clegg	(MCHS, LANC)
DOLINSKY	86	PL B174 453	S.I. Dolinsky et al.	(NOVO)
KURDADZE	83	JETPL 37 733	L.M. Kurdadze et al.	(NOVO)
		Translated from ZETFP		EDGL CLAS LANCE
ASTON	BOC	PL 92B 211	D. Aston (BONN, CERN	
BARBER	80C	ZPHY C4 169	D.P. Barber et al.	(DARE, LANC, SHEF)

- OTHER RELATED PAPERS -

BELOZEROVA	0.0	PPN 29 63	T.S. Belozerova, V.K. Henner	
BELOZENOVA	70	Translated from FECAY		
ABELE	97H	PL B415 280	A. Abele et al.	(Crystal Barrel Collab.)
BARNES	97	PR 055 4157	T. Barnes et al.	(ORNL, RAL, MCHS)
CLOSE	97C	PR D56 1584	F.E. Close et al.	(RAL, MCHS)
URHEIM	97	NPBPS 55C 359	J. Urheim	(ČLEO Collab.)
ACHASOV	96B	PAN 59 1262	N.N. Achasov, G.N. Shestako	v (NOVM)
1101111001		Translated from YAF 59		
MURADOV	94	PAN 57 864	R.K. Muradov	(BAKU)
LANDSBERG	92	SJNP 55 1051		(SERP)
		Translated from YAF 55		
BRAU	88	PR D37 2379	J.E. Brau et al.	
ASTON .	87	NP B292 693		(SLAC, NAGO, CINC, INUS)
KURDAOZE	86	JETPL 43 643	L.M. Kurdadze et al.	(NOVO)
		Translated from ZETFP		
BARKOV	85	NP B256 365	L.M. Barkov et al.	(NOVO)
BISELLO	85	LAL 85-15	D. Bişello et al.	(PADO, LALO, CLER+)
ABE	B4B	PRL 53 751	K. Abe et al.	
ATKINSON	84C	NP B243 1	M. Atkinson et al.	(BONN, CERN, GLAS+)
CORDIER	82	PL 109B 129	A. Cordier et al.	(LALO)
KILLIAN	80	PR D21 3005	T.J. Killian et al.	(CORN)
COSME	76	PL 63B 352	G. Cosme et al.	(ÔRSAY)
BINGHAM	72B	PL 41B 635	H.H. Bingham et al.	(LBL, UCB, SLAC)
FRENKIEL	72	NP B47 61	P. Frenkiel et al.	(CDEF, CERN)
LAYSSAC	71	NC 6A 134	J. Layssac, F.M. Renard	(MONP)

$f_0(1500)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See also the mini-reviews on scalar mesons under $f_0(1370)$ and on non- $q\,\overline{q}$ candidates. (See the index for the page number.)

f₀(1500) MASS

ALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT
1500±10 OUR AVE	RAGE	Error	includes scale	factor	of 1.3.	See the ideogram below.
1522 ± 25			BERTIN	98	OBLX	$0.05-0.405 \overline{n}p \rightarrow$
1510 ± 20		1	BARBERIS	97в	OMEG	$ \begin{array}{c} \pi^{+}\pi^{+}\pi^{-}\\ 450 \ pp \rightarrow\\ pp2(\pi^{+}\pi^{-}) \end{array} $
1449±20		1	BERTIN	97c	OBLX	$0.0 \overline{p}_{P} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
1515 ± 20			ABELE	96B	CBAR	$0.0 \; \overline{p} p \rightarrow \; \pi^0 K_I^0 K_I^0$
1500±15		2	AMSLER			$0.0 \ \overline{p} p \rightarrow 3\pi^0$
1505 ± 15		3	AMSLER	95c	CBAR	$0.0 \ \overline{p}p \rightarrow \eta \eta \pi^0$
	1522 ± 25 1510 ± 20 1449 ± 20 1515 ± 20 1500 ± 15	1500±10 OUR AVERAGE 1522±25 1510±20 1449±20 1515±20 1500±15	1500±10 OUR AVERAGE Error 1522±25 1510±20 1 1449±20 1 1515±20 1 1500±15 2	1500±10 OUR AVERAGE Error includes scale BERTIN 1522±25 1 BARBERIS 1510±20 1 BERTIN 1449±20 1 BERTIN 1515±20 ABELE 1500±15 2 AMSLER	1500±10 OUR AVERAGE Error includes scale factor 1522±25 BERTIN 98 1510±20 1 BARBERIS 976 1449±20 1 BERTIN 97C 1515±20 ABELE 968 1500±15 2 AMSLER 958	1500±10 OUR AVERAGE Error includes scale factor of 1.3. 1522±25 BERTIN 98 OBLX 1510±20 1 BARBERIS 97B OMEG 1449±20 1 BERTIN 97C OBLX 1515±20 ABELE 96B CBAR 1500±15 2 AMSLER 95B CBAR

• • • We do not use	the following	data for averages	, fits,	, limits,	etc. • • •
1497±10		4 BARBERIS	99	OMEG	450 pp →
					$p_S p_f K^+ K^-$
1502±10		4 BARBERIS	99B	OMEG	450 $pp \to p_S p_f \pi^+ \pi^-$
$1502 \pm 12 \pm 10$		5 BARBERIS	99D	OMEG	450 pp $\to K^+K^-$,
					$\pi^+\pi^-$
1530 ± 45		4 BELLAZZINI		GAM4	$450^{\circ}\rho\rho \rightarrow \rho\rho\pi^{0}\pi^{0}$
1505 ± 18		⁴ FRENCH	99		300 pp →
		4			$p_f(K^+K^-)p_5$
1580 ± 80		4 ALDE			$100 \pi^- p \rightarrow \pi^0 \pi^0 n$
1499± 8		1 ANISOVICH			Compilation
~ 1520		REYES		SPEC	$800 pp \rightarrow p_S p_f K_S^0 K_S^0$
~ 1475		FRABETTI		E687	$D_s^{\pm} \rightarrow \pi^{\mp}\pi^{\pm}\pi^{\pm}$
~ 1505		ABELE			$0.0 \ \overline{\rho} \rho \rightarrow 5\pi^0$
1500 ± 8		1 ABELE		_	Compilation
1460 ± 20	120	4 AMELIN		VES	$37 \pi^- A \rightarrow \eta \eta \pi^- A$
1500 ± B		BUGG		RVUE	
1500±10		⁶ AMSLER	95D	CBAR	$0.0 \overline{p}p \rightarrow \pi^0 \pi^0 \pi^0,$ $\pi^0 nn, \pi^0 \pi^0 n$
1445 ± 5		⁷ ANTINORI	95	OMEG	300,450 pp →
1497±30		4 ANTINORI	95	OMEG	$p p 2(\pi^+ \pi^-)$ 300,450 $p p \rightarrow$
					$pp\pi^{+}\pi^{-}$
~ 1505		BUGG	95		$J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$
1446± 5		4 ABATZIS	94	OMEG	450 pp →
					$pp2(\pi^{+}\pi^{-})$
1545 ± 25		4 AMSLER		CBAR	
1520 ± 25		,8 ANISOVICH	94	CBAR	
1505 ± 20		^{1,9} BUGG	94	RVUE	$\overline{p}p \to 3\pi^0, \eta\eta\pi^0, \\ \eta\pi^0\pi^0$
1560±25		⁴ AMSLER	92	CBAR	
1550 ± 45 ± 30		⁴ BELADIDZE	92c	VES	$36 \pi^- Be \rightarrow \pi^- \eta' \eta Be$
1449± 4		⁴ ARMSTRONG	89E	OMEG	
		4=			$pp2(\pi^{+}\pi^{-})$
1610±20		4 ALDE	88	GAM4	
~ 1525		ASTON			$11 K^- p \rightarrow K_S^0 K_S^0 \Lambda$
1570 ± 20	600	4 ALDE	87		
1575 ± 45		10 ALDE		GAM4	
1568 ± 33		4 BINON			$38 \pi^- p \rightarrow \eta \eta' n$
1592 ± 25		⁴ BINON ⁴ GRAY		GAM2 DBC	38 π p → 2η π
1525 ± 5		GRAT	63	DBC	$0.0 \ \overline{p} N \rightarrow 3\pi$
1					

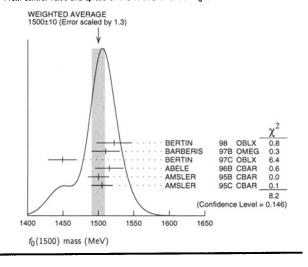
T-matrix pole, supersedes ANISOVICH 94.

T-matrix pole, supersedes ANISOVICH 94 and AMSLER 92.

Breit-Wigner mass.

⁵ Supersedes BARBERIS 99 and BARBERIS 99B.

Supersedes BARBERIS 99 and BARBERIS 998.


6 T-matrix pole. Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.

7 Supersedes ABATZIS 94, ARMSTRONG 89E. Breit-Wigner mass.

8 From a simultaneous analysis of the annihilations $\bar{p}p \to 3\pi^0, \pi^0\eta\eta$.

9 Reanalysis of ANISOVICH 94 data.

10 From central value and spread of two solutions. Breit-Wigner mass.

 $f_0(1500)$

		ჩ(1500) WID	ТН		
.UE (MeV)	EVTS FRAGE	DOCUMENT ID		TECN	COMMENT
08± 33	LIVIOL	BERTIN	98	OBLX	0.05-0.405 πp →
20± 35		11 BARBERIS	97B	OMEG	$ \begin{array}{c} \pi^{+}\pi^{+}\pi^{-} \\ 450 \ \rho\rho \rightarrow \\ \pi^{-2}(-+) \end{array} $
14± 30		¹¹ BERTIN	97c	OBLX	$\begin{array}{c} \rho \rho 2(\pi^+\pi^-) \\ 0.0 \ \overline{\rho}\rho \rightarrow \pi^+\pi^-\pi^0 \end{array}$
05± 15		ABELE	96B	CBAR	$0.0 \; \bar{p}p \rightarrow \; \pi^0 K_L^0 K_L^0$
.20± 25		12 AMSLER	95B	CBAR	$0.0 \ \overline{p}p \rightarrow 3\pi^0$
120± 30		¹³ AMSLER	95c	CBAR	$0.0 \overline{p}p \rightarrow \eta \eta \pi^0$
• We do not use	the following				
.04± 25		¹⁴ BARBERIS	99	OMEG	$\begin{array}{c} 450 \ pp \rightarrow \\ p_S p_f K^+ K^- \end{array}$
131± 15		¹⁴ BARBERIS	99B	OMEG	$450 pp \rightarrow p_S p_f \pi^+ \pi^-$
98± 18±16		¹⁵ BARBERIS			$450 pp \rightarrow K^+K^-,$ $\pi^+\pi^-$
160 ± 50		14 BELLAZZINI	99	GAM4	$450 \stackrel{\pi}{\rho} \stackrel{\pi}{\rho} \rightarrow \rho \rho \pi^0 \pi^0$
100 ± 33		¹⁴ FRENCH	99		$\begin{array}{c} 300 \ pp \rightarrow \\ p_f(K^+K^-)p_S \end{array}$
280±100		¹⁶ ALDE	98	GAM4	$100 \pi^{-} \rho \rightarrow \pi^{0} \pi^{0} n$
130± 20		11 ANISOVICH	98B	RVUE	Compilation
100		FRABETTI		E687	$D_s^{\pm} \rightarrow \pi^{\mp} \pi^{\pm} \pi^{\pm}$
169		ABELE			$0.0 \overline{\rho} \rho \rightarrow 5\pi^0$
.00± 30	120	14 AMELIN	96B	VES	$37 \pi^- A \rightarrow \eta \eta \pi^- A$
132± 15		BUGG		RVUE	• •
154± 30		¹⁷ AMSLER	95D	CBAR	$\begin{array}{c} 0.0 \ \overline{p} p \to \pi^0 \pi^0 \pi^0, \\ \pi^0 \eta \eta, \pi^0 \pi^0 \eta \end{array}$
65 ± 10		¹⁸ ANTINORI	95	OMEG	300,450 $pp \to pp2(\pi^+\pi^-)$
.99± 30		¹⁴ ANTINORI	95	OMEG	$300,450 pp \rightarrow pp\pi^{+}\pi^{-}$
56 ± 12		14 ABATZIS	94	OMEG	$450 \stackrel{\circ}{p} \stackrel{\circ}{p} \rightarrow p \stackrel{\circ}{p} \stackrel{\circ}{p} \stackrel{\circ}{p} (\pi^+ \pi^-)$
100± 40		¹⁴ AMSLER	94E	CBAR	$0.0 \ \overline{\rho} \rho \rightarrow \pi^0 \eta \eta'$
148 ⁺ 20 - 25		^{,19} ANISOVICH			$0.0 \ \overline{\rho} \rho \rightarrow \ 3\pi^0 , \pi^0 \eta \eta$
50± 20	11	^{,20} BUGG	94	RVUE	$\overline{\rho} \rho \to 3\pi^0, \eta \eta \pi^0,$ $\eta \pi^0 \pi^0$
245± 50		¹⁴ AMSLER	92	CBAR	$0.0 \ \overline{\rho} \rho \rightarrow \pi^0 \eta \eta$
153± 67±50		14 BELADIDZE		VES	$36 \pi^- \text{Be} \rightarrow \pi^- \eta^I \eta \text{Be}$
78± 18	,	14 ARMSTRONG	89E	OMEG	$300 pp \rightarrow pp2(\pi^{+}\pi^{-})$
170 ± 40		¹⁴ ALDE	88	GAM4	$300 \pi^{-} N \rightarrow \pi^{-} N 2\eta$
150 ± 20	600	¹⁴ ALDE			$100 \pi^- \rho \rightarrow 4\pi^0 n$
265 ± 65		²¹ ALDE	86D	GAM4	$100 \pi^- \rho \rightarrow 2\eta n$
260± 60		¹⁴ BINON	840	GAM2	$38 \pi^- p \rightarrow \eta \eta' \pi$
210± 40		14 BINON	83	GAM2	$38 \pi^- p \rightarrow 2\eta \pi$
01± 13		14 GRAY	83	DBC	$0.0 \ \overline{p} \ N \rightarrow 3\pi$
T-matrix pole.					
T-matrix pole, su	persedes AN	ISOVICH 94.			
T-matrix pole, su	persedes AN	ISOVICH 94 and A	MSL	ER 92.	
Breit-Wigner mas	s.				
Supersedes BARE	SERIS 99 and	BARBERIS 998.			
⁶ Breit-Wigner widt ⁷ T-matrix pole.	ιπ. Coupled-char	nnel analysis of A	MSL	ER 958,	AMSLER 95c, and AM-
SLER 940. Supersedes ABAT	715 94. ARI	MSTRONG 89F R	reit-\	Vigner r	nass.
9 From a simultane	ous analysis	of the annihilation	SDA	→ 3π ⁰	$0,\pi^0 nn$
Reanalysis of ANI	SOVICH 94	data.	- 77		··· 44
¹ From central valu	e and spread	of two solutions.	Breit	-Wigner	mass.
	f ₀ (1500) DECAY !	MOE	ES	
Mode			Fract	ion (Γ ₁ ,	/Γ)
nn//059\				. 1/	
ภากเจาหา					

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$
$\overline{\Gamma_1}$	$\eta \eta'(958)$	seen
Γ_2	$\eta \eta$	seen
Гз	4π	seen
Γ_4	$4\pi^{0}$ $2\pi^{+}2\pi^{-}$	seen
Γ ₅	$2\pi^{+}2\pi^{-}$	seen
Γ ₆	$\pi\pi$	seen
Γ_7	$\pi^{+}\pi^{-}$ $2\pi^{0}$	seen
Γ8	$2\pi^0$	seen
Г9	κ κ	seen
Γ_{10}	$\gamma\gamma$	

$f_0(1500) \ \Gamma(\mathrm{i})\Gamma(\gamma\gamma)/\Gamma(\mathrm{total})$

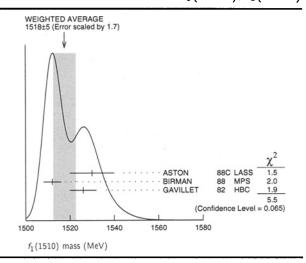
$\Gamma(\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{tt}$	rtal				$\Gamma_6\Gamma_{10}/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID	TECN	COMMENT	
<0.46	95	BARATE	00E ALEP	$\gamma \gamma \rightarrow \pi^+ \pi^-$	

ሐ(1500) BRANCHING RATIOS

$\Gamma(\eta\eta'(958))/\Gamma(\eta\eta)$				Г1/
i (1111 (936))/i (1111) VALUE	DOCUMENT ID		TECN	
0.29±0.10	22 AMSLER			$0.0 \ \overline{\rho}p \rightarrow \eta \eta \pi^{0}$
• • We do not use the	following data for averag	es, fits	, limits,	etc. • • •
0.84±0.23	ABELE			Compilation
2.7 \pm 0.8 22 Using AMSLER 94E (BINON	84C	GAM2	$38 \pi^- p \rightarrow \eta \eta' \pi$
	ηη π -).			_
Γ(ηη)/Γ _{total} VALUE	DOCUMENT ID		TECN	COMMENT
	following data for averag			
large	ALDE	88	GAM4	$300 \pi^- N \rightarrow \eta \eta \pi^- N$
large	BINON			$38 \pi^- p \rightarrow 2\eta n$
$\Gamma(4\pi^0)/\Gamma(\eta\eta)$				Γ4/
VALUE			<u>TECN</u>	
• • We do not use the	following data for averag	es, fits	, limits,	etc. • • •
0.8 ± 0.3	ALDE	87	GAM4	$100 \pi^- \rho \rightarrow 4\pi^0 n$
$\Gamma(2\pi^0)/\Gamma(\eta\eta)$				Га/
VALUE	DOCUMENT ID			COMMENT
1.45±0.61	²³ AMSLER			$0.0 \ \overline{\rho}p \rightarrow \eta \eta \pi^0$
	following data for averag			
4.29 ± 0.72 2.12 ± 0.81	²⁴ ABELE ²⁵ AMSLER			Compilation $0.0 \ \overline{p}p \rightarrow \pi^0 \pi^0 \pi^0$,
L.12 T 0.01	AMBLER	350		$\pi^0\eta\eta$, $\pi^0\pi^0\eta$
< 0.3	BINON	83	GAM2	$38 \pi^- p \rightarrow 2\eta n$
²³ Using AMSLER 95B ($(3\pi^0)$.			
24 2π width determined 25 Coupled-channel analy	to be 60 \pm 12 MeV. ysis of AMSLER 95B, AM	SLER	95c. an	d AMSLER 94D.
	,			
$\Gamma(K\overline{K})/\Gamma(\eta\eta)$				Г9/
	CIN DOCUMENT IS			
<u>VALUE</u> <0.6 • • • We do not use the	26 BINON following data for average	83 es, fits	GAM2 , limits,	38 $\pi^+ p \rightarrow 2\eta n$ etc. • •
<u>VALUE</u> < 0.6 • • • We do not use the < 0.4 26 Using ETKIN 82B and	26 BINON following data for averag 90 27 PROKOSHKI	83 es, fits N 91	GAM2 , limits, GAM4	$38 \pi^{-} p \rightarrow 2\eta n$ etc. • • • $300 \pi^{-} p \rightarrow \pi^{-} p \eta \eta$
VALUE <0.6 • • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of	26 BINON following data for averag 90 27 PROKOSHKI	83 es, fits N 91	GAM2 , limits, GAM4	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of Γ(KK)/Γtotal	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7	83 es, fits N 91 '6 on <i>F</i>	GAM2 , limits, GAM4 〈 K cent	$38 \pi^{-} p \rightarrow 2\eta n$ etc. • • • $300 \pi^{-} p \rightarrow \pi^{-} p \eta \eta$
VALUE <0.6 • • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of Γ(KK)/Γtotal VALUE	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7	83 es, fits N 91 '6 on <i>F</i>	GAM2 , limits, GAM4 (K cent	$38 \pi^- p \rightarrow 2\eta n$ etc. $\bullet \bullet \bullet$ $000 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of Γ(KK)/Γtotal VALUE	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7	83 es, fits N 91 '6 on <i>F</i>	GAM2 , limits, GAM4 (K cent TECN , limits,	$38 \pi^- p \rightarrow 2\eta n$ etc. $\bullet \bullet \bullet$ $000 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of F(KK)/Ftotal VALUE • • • We do not use the 0.044 ±0.021	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 DOCUMENT ID following data for averag	83 es, fits N 91 '6 on <i>F</i>	GAM2 , limits, GAM4 (K cent TECN , limits,	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(K\overline{K})/\Gamma_{\text{total}}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 DOCUMENT ID following data for averag BUGG	83 es, fits N 91 6 on F es, fits	GAM2, limits, GAM4 (K cent	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of F(KK)/Ftotal VALUE • • • We do not use the 0.044 ±0.021	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 DOCUMENT ID following data for averag BUGG	83 es, fits N 91 '6 on # es, fits	GAM2, limits, GAM4 (K cent TECN, limits, RVUE	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of Γ(KK)/Γtotal VALUE • • • We do not use the 0.044 ±0.021 Γ(KK)/Γ(ππ) VALUE 0.19±0.07	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 DOCUMENT ID following data for averag BUGG	83 es, fits N 91 6 on 6 es, fits 96	GAM2, limits, GAM4 ($38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of Γ(KK)/Γtotal VALUE • • • We do not use the 0.044 ±0.021 Γ(KK)/Γ(ππ) VALUE 0.19±0.07	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG 28 ABELE	83 es, fits N 91 es, fits 96 98 es, fits 990	GAM2, limits, GAM4 (K cent TECN, limits, RVUE TECN CBAR, limits, OMEG	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(K\overline{K})/\Gamma_{total}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 Following data for averag BUGG POCUMENT ID 28 ABELE following data for averag	83 es, fits N 91 es, fits 96 98 es, fits 990	GAM2, limits, GAM4 (K cent TECN, limits, RVUE TECN CBAR, limits, OMEG	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • • We do not use the <0.4 $=26$ Using ETKIN 82B and $=27$ Combining results of $\Gamma(K\overline{K})/\Gamma$ total VALUE • • • We do not use the $=0.044\pm0.021$ $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE $=0.07$ • • • We do not use the $=0.33\pm0.07$ • • • We do not use the $=0.33\pm0.07$	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG 28 ABELE following data for averag BARBERIS 29 ABELE	83 es, fits N 91 es, fits 96 98 es, fits 990	GAM2, limits, GAM4 (K cent TECN, limits, RVUE TECN CBAR, limits, OMEG	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE < 0.6 • • • We do not use the < 0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(K\overline{K})/\Gamma_{total}$ VALUE • • • We do not use the 0.044 \pm 0.021 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • • We do not use the 0.33 \pm 0.03 \pm 0.07 0.20 \pm 0.08 28 Using $\pi^0\pi^0$ from AM	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG 28 ABELE following data for averag BARBERIS 29 ABELE	83 es, fits N 91 '6 on F es, fits 96 98 es, fits 99D 96B	GAM2, limits, GAM4 (K cent TECN , limits, RVUE TECN CBAR , limits, OMEG CBAR	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(KK)/\Gamma$ total VALUE • • • We do not use the 0.044 ± 0.021 $\Gamma(KK)/\Gamma(\pi\pi)$ VALUE 0.19 ± 0.07 • • We do not use the $0.33\pm0.03\pm0.07$ 0.20 ± 0.08 28 Using $\pi^0\pi^0$ from AM 29 Using AMSLER 95B (0.06	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 Following data for averag BUGG POCUMENT ID 28 ABELE following data for averag BARBERIS 29 ABELE fSLER 95B.	83 es, fits N 91 '6 on F es, fits 96 98 es, fits 99D 96B	GAM2, limits, GAM4 (K cent TECN , limits, RVUE TECN CBAR , limits, OMEG CBAR	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production. F9, etc. • • • $\frac{\Gamma g}{COMMENT}$ $0.0 \overline{p}p \rightarrow K_L^0 K^{\pm} \pi^{\mp}$ etc. • • • $450 pp \rightarrow K^+ K^-, \pi^+ \pi^-$ $0.0 \overline{p}p \rightarrow \pi^0 K_L^0 K_L^0.$
VALUE < 0.6 • • • We do not use the < 0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(K\overline{K})/\Gamma_{total}$ VALUE • • • We do not use the 0.044 \pm 0.021 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • • We do not use the 0.33 \pm 0.03 \pm 0.07 0.20 \pm 0.08 28 Using $\pi^0\pi^0$ from AM	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 Following data for averag BUGG POCUMENT ID 28 ABELE following data for averag BARBERIS 29 ABELE fSLER 95B.	83 es, fits N 91 es, fits 96 98 es, fits 990 968	GAM2, limits, GAM4 (K cent TECN , limits, RVUE TECN CBAR , limits, OMEG CBAR	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(K\overline{K})/\Gamma_{total}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the $0.33 \pm 0.03 \pm 0.07$ 0.20 \pm 0.08 28 Using $\pi^0 \pi^0$ from AM 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{total}$ VALUE VALUE	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 pocument id following data for averag BUGG 28 ABELE following data for averag BARBERIS 29 ABELE MSLER 95B. (3π ⁰), AMSLER 94C (2π ⁰)	83 es, fits N 91 es, fits 96 98 es, fits 990 968	GAM2, limits, GAM4 **TECN** **LIMITS, RVUE **TECN** **CBAR** **LIMITS, OMEG CBAR* **d SU(3) **TECN** **TECN	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production. F9 etc. • • • $\frac{\Gamma g}{COMMENT}$ 0.0 $\overline{p}p \rightarrow K_L^0 K^{\pm} \pi^{\mp}$ etc. • • • $450 pp \rightarrow K^+ K^-, \pi^+ \pi^-$ 0.0 $\overline{p}p \rightarrow \pi^0 K_L^0 K_L^0$
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(K\overline{K})/\Gamma_{total}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the $0.33 \pm 0.03 \pm 0.07$ 0.20 \pm 0.08 28 Using $\pi^0 \pi^0$ from AM 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{total}$ VALUE VALUE	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG 28 ABELE following data for averag BARBERIS 29 ABELE MSLER 95B. (3 π^0), AMSLER 94C (2 π^0	83 es, fits N 91 es, fits 96 98 es, fits 990 968 0 η) ani	GAM2, limits, GAM4 **TECN** **LIMITS, RVUE **TECN** **CBAR** **LIMITS, OMEG CBAR* **d SU(3) **TECN** **TECN	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production. F9 etc. • • • $\frac{\Gamma g}{COMMENT}$ 0.0 $\overline{p}p \rightarrow K_L^0 K^{\pm} \pi^{\mp}$ etc. • • • $450 pp \rightarrow K^+ K^-, \pi^+ \pi^-$ 0.0 $\overline{p}p \rightarrow \pi^0 K_L^0 K_L^0$
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(KK)/\Gamma_{\text{total}}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(KK)/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the $0.33 \pm 0.03 \pm 0.07$ 0.20 \pm 0.08 28 Using $\pi^0 \pi^0$ from AM 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{\text{total}}$ VALUE • • We do not use the 0.454 \pm 0.104	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG 28 ABELE following data for averag BARBERIS 29 ABELE MSLER 95B. (3 π^0), AMSLER 94C (2 π^0	83 es, fits N 91 es, fits 96 98 es, fits 990 968 0 η) ani	GAM2, limits, GAM4 **TECN**, limits, RVUE **TECN**, limits, OMEG CBAR d SU(3) **TECN**, limits, OMEG CBAR **TECN**, limits, OMEG	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(K\overline{K})/\Gamma_{total}$ VALUE • • We do not use the 0.044 \pm 0.021 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the 0.33 \pm 0.03 \pm 0.07 0.20 \pm 0.08 28 Using $\pi^0\pi^0$ from AM 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{total}$ VALUE • • We do not use the	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 POCUMENT ID 28 ABELE following data for averag BARBERIS 29 ABELE ASLER 95B. (3π ⁰), AMSLER 94C (2π ⁰ POCUMENT ID 16 following data for averag BARBERIS 29 ABELE	83 es, fits 91 es, fits 96 98 es, fits 990 968 970 es, fits	GAM2, limits, GAM4 **TECN , limits, RVUE **TECN CBAR , limits, OMEG CBAR **TECN CBAR , limits, OMEG CBAR RVUE	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(K\overline{K})/\Gamma_{total}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the $0.33 \pm 0.03 \pm 0.07$ 0.20 \pm 0.08 28 Using $\pi^0 \pi^0$ from AM 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{total}$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG 28 ABELE following data for averag BARBERIS 29 ABELE MSLER 95B. (3 π^0), AMSLER 94C (2 π^0	83 es, fits 91 es, fits 96 98 es, fits 990 968 97) η) and	GAM2, limits, GAM4 **TECN limits, RVUE **TECN CBAR limits, OMEG CBAR limits, OMEG CBAR limits, RVUE **TECN limits, CBAR limits, CBAR limits, CBAR limits, CBAR limits, RVUE	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(K\overline{K})/\Gamma_{total}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the $0.33 \pm 0.03 \pm 0.07$ 0.20 \pm 0.08 28 Using $\pi^0 \pi^0$ from AM 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{total}$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG 28 ABELE following data for averag BARBERIS 29 ABELE MSLER 95B. (3\pi^0), AMSLER 94C (2\pi^0 Following data for averag BUGG DOCUMENT ID Following data for averag BUGG DOCUMENT ID FOLLOWENT ID FOLLO	83 es, fits N 91 6 on F 98 es, fits 990 968 970 968 969 968 969 968	GAM2, limits, GAM4 \(\overline{K}\) cent \($38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(KK)/\Gamma_{total}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(KK)/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the $0.33 \pm 0.03 \pm 0.07$ 0.20 \pm 0.08 28 Using $\pi^0 \pi^0$ from AM 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{total}$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 3.4 ± 0.8	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG pocument iD 28 ABELE following data for averag BARBERIS 29 ABELE following data for averag BASERIS 3π ⁰), AMSLER 94C (2π ⁰ following data for averag BUGG	83 es, fits N 91 6 on F 98 es, fits 990 968 970 968 969 968 969 968	GAM2, limits, GAM4 \(\overline{K}\) cent \($38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(K\overline{K})/\Gamma_{total}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the $0.33 \pm 0.03 \pm 0.07$ 0.20 \pm 0.08 28 Using $\pi^0 \pi^0$ from AM 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{total}$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG pocument iD 28 ABELE following data for averag BARBERIS 29 ABELE following data for averag BASERIS 3π ⁰), AMSLER 94C (2π ⁰ following data for averag BUGG	83 es, fits N 91 6 on F 98 es, fits 990 968 970 968 969 968 969 968	GAM2, limits, GAM4 \(\overline{K}\) cent \($38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(K\overline{K})/\Gamma_{total}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the $0.33 \pm 0.03 \pm 0.07$ 0.20 \pm 0.08 28 Using $\pi^0 \pi^0$ from AN 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{total}$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 3.4 ± 0.8 30 Excluding $\rho\rho$ contribut $\Gamma(\pi^+\pi^-)/\Gamma_{total}$	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG 28 ABELE following data for averag BARBERIS 29 ABELE MSLER 95B. (3π ⁰), AMSLER 94C (2π ⁰ following data for averag BUGG DOCUMENT ID following data for averag 30 ABELE ution to 4π.	83 es, fits N 91 es, fits 96 98 es, fits 990 968 97) η) and es, fits 96 es, fits	GAM2, limits, GAM4 **TECN , limits, RVUE **TECN , limits, OMEG CBAR d SU(3) **TECN , limits, RVUE **TECN , limits, CBAR	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(KK)/\Gamma_{total}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(KK)/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the $0.33 \pm 0.03 \pm 0.07$ 0.20 \pm 0.08 28 Using $\pi^0 \pi^0$ from AM 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{total}$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG pocument iD 28 ABELE following data for averag BARBERIS 29 ABELE following data for averag BASERIS 3π ⁰), AMSLER 94C (2π ⁰ following data for averag BUGG	83 es, fits N 91 6 on F 98 es, fits 990 968 970 968 969 969	GAM2, limits, GAM4 \(\overline{K}\) cent \($38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(KK)/\Gamma_{total}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(KK)/\Gamma(\pi\pi)$ VALUE 0.19 \pm 0.07 • • We do not use the $0.33 \pm 0.03 \pm 0.07$ 0.20 \pm 0.08 28 Using $\pi^0 \pi^0$ from AM 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{total}$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG pocument iD 28 ABELE following data for averag BARBERIS 29 ABELE following data for averag BASERIS 3π ⁰), AMSLER 94C (2π ⁰ following data for averag BUGG pocument iD following data for averag ABELE ution to 4π.	83 es, fits N 91 6 on F 98 es, fits 990 968 970 98 es, fits 990 968 96 es, fits	GAM2, limits, GAM4 \(\overline{K}\) cent \(\verline{K}\) cent \	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.
VALUE <0.6 • • We do not use the <0.4 26 Using ETKIN 82B and 27 Combining results of $\Gamma(KK)/\Gamma_{total}$ VALUE • • We do not use the 0.044 ± 0.021 $\Gamma(KK)/\Gamma(\pi\pi)$ VALUE 0.19 ± 0.07 • • We do not use the 0.33 ± 0.03 ± 0.07 0.20 ± 0.08 28 Using $\pi^0 \pi^0$ from AM 29 Using AMSLER 95B ($\Gamma(\pi\pi)/\Gamma_{total}$ VALUE • • We do not use the 0.454 ± 0.104 $\Gamma(4\pi)/\Gamma(\pi\pi)$ VALUE • • We do not use the 3.4 ± 0.8 30 Excluding $\rho\rho$ contribut $\Gamma(\pi^+\pi^-)/\Gamma_{total}$ VALUE • • We do not use the	26 BINON following data for averag 90 27 PROKOSHKI d COHEN 80. GAM4 with those of WA7 following data for averag BUGG pocument iD 28 ABELE following data for averag BARBERIS 29 ABELE following data for averag BUGG **Tollowing data for averag BARBERIS 29 ABELE following data for averag BUGG **Document iD **Iolowing data for averag 30 ABELE ution to 4π.	83 es, fits N 91 es, fits 96 98 es, fits 990 968 0 η) ani es, fits 96 es, fits 96 es, fits	GAM2, limits, GAM4 \(\overline{K}\) cent \(\verline{K}\) cent \	$38 \pi^- p \rightarrow 2\eta n$ etc. • • • $300 \pi^- p \rightarrow \pi^- p \eta \eta$ tral production.

			რ(1500) REFERENC	ES
BARATE	00E	PL B472 189	R. Barate et al.	(ALEPH Collab.)
BARBERIS	99	PL B453 305	D. Barberis et al.	(Omega expt.)
BARBERIS	99B		D. Barberis et al.	(Omega expt.)
BARBERIS		PL B462 462	D. Barberis et al.	(Omega expt.)
BELLAZZINI	99	PL B467 296	R. Bellazzini et al.	
FRENCH	99	PL B214 213	B. French et al.	(WA76 Collab.)
ABELE	9 B	PR D57 3860	A. Abele et al.	(Crystal Barrel Collab.)
ALDE	98	EPJ A3 361	D. Alde et al.	(GAM4 Collab.)
Also	99	PAN 62 405	D. Aide et al.	(GAMS Collab.)
ANI\$OVICH	98B	UFN 41 419	V.V. Anisovich et al.	
BERTIN	98	PR D57 55	A. Bertin et al.	(OBELIX Collab.)
REYES	98	PRL B1 4079	M.A. Reyes et al.	
BARBERIS		PL B413 217	D. Barberis et al.	(WA102 Collab.)
BERTIN	97C	PL B408 476	A. Bertin et al.	(OBELIX Collab.)
FRABETTI		PL B407 79	P.L. Frabetti et al.	(FNAL E687 Collab.)
ABELE	96	PL B380 453	A. Abele et al.	(Crystal Barrel Collab.)
ABELE		PL B385 425	A. Abele et al.	(Crystal Barrel Collab.)
ABELE	96C	NP A609 562	A. Abele et al.	(Crystal Barrel Collab.)
AMELIN	96B	PAN 59 976 Translated from	D.V. Amelin et al.	(SERP, TBIL)
BUGG	96	NP B471 59	D.V. Bugg, A.V. Sai	rantsev, B.S. Zou (LOQM, PNPI)
AMSLER		PL B342 433	C. Amsler et al.	(Crystal Barrel Collab.)
AMSLER	95C	PL B353 571	C. Amsler et al.	(Crystal Barrel Collab.)
AMSLER		PL B355 425	C. Amsler et al.	(Crystal Barrel Collab.)
ANTINORI	95	PL B353 589	F. Antinori et al.	(ATHU, BARI, BIRM+)
BUGG	95	PL B353 378	D.V. Bugg et al	(LOQM, PNPI, WASH)
ABAT ZIS	94	PL B324 509	D.V. Bugg et al. S. Abatzis et al.	(ATHU, BARI, BIRM+)
AMSLER	94C	PL B327 425	C. Amsier et al.	(Crystal Barrel Collab.)
AMSLER		PL B333 277	C. Amsler et al.	(Crystal Barrel Collab.)
AMSLER	94E	PL B340 259	C. Amsler et ai.	(Crystal Barrel Collab.)
ANISOVICH	94	PL B323 233	V.V. Anisovich et al	
BUGG	94	PR D50 4412	D.V. Bugg et al.	(LOQM)
AMSLER	92	PL B291 347	C. Amsler et al.	
BELADIDZE	92C	SJNP 55 1535		Bityukov, G.V. Borisov (SERP+)
		Translated from	YAF 55 2748.	(=== 1,
PROKOSHKIN	91	SPD 36 155	Y.D. Prokoshkin	(GAM2, GAM4 Collab.)
ARMSTRONG	ONE	PL B228 536	DANS 316 900.	Bearing (ATHIL BARL BIRMI)
ALDE	88 88	PL B201 160		Benayoun (ATHU, BARI, BIRM+) (SERP, BELG, LANL, LAPP+)
ASTON	88D			(0. 10. 11100 0110 11100)
	87	PL B198 286	D. Aston <i>et al.</i> D.M. Alde <i>et al.</i>	(SLAC, NAGO, CINC, INUS) (LANL, BRUX, SERP, LAPP) (BELG, LAPP, SERP, CERNA)
ALDE ALDE	86D	NP B269 485	D.M. Alde et al.	(BELG, LAPP, SERP, CERN+)
BINON	84C	NC 80A 363	D.M. Alde et al. F.G. Binon et al.	
BINON	83	NC 78A 313	F.G. Binon et al. F.G. Binon et al. F.G. Binon et al.	(BELG, LAPP, SERP+)
Also	83B		F.G. Binon et al.	(BELG, LAPP, SERP+)
Also	030	Translated from	YAF 38 934.	(BELG, LAFF, SERF+)
GRAY	83	PR D27 307	L. Gray et al.	(SYRA)
ETKIN	82B			(BNL, CUNY, TUFTS, VAND)
COHEN	80	PR D22 2595	D. Cohen et al.	(ANL)
		o	THER RELATED PAI	PERS

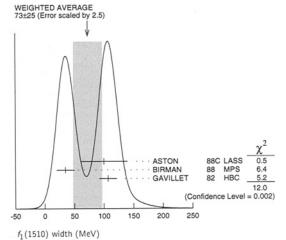
ANISOVICH 99	H PL B467 289	A.V. Anisovich, V.V. Anisovich	
AMSLER 98	RMP 70 1293	C. Amsler	
STROHMEIER 98	PL B438 21	M. Strohmeier et al.	
ANISOVICH 97	7 PL B395 123	A.V. Anisovich, A.V. Sarantsev	(PNPI)
ANISOVICH 97	7B ZPHY A357 123	A.V. Anisovich et al.	(PNPI)
ANISOVICH 97	C PL B413 137		
ANISOVICH 97		A.V. Anisovich et al.	(PNPI)
	Translated from YAF 60	2065.	
PROKOSHKIN 97	7 SPD 42 117	Y.D. Prokoshkin et al.	(SERP)
	Translated from DANS	353 323.	
AMSLER 96	5 PR D53 295	C. Amsler, F.E. Close	(ZURI, RAL)
AMSLER 95	5E PL B353 385	C. Amsler, F.E. Close	(ZURI, RAL)
GASPERO 95	5 NP A588 B61	M. Gaspero	(ROMA)
SLAUGHTER 88	3 MPL A3 1361	M.D. Slaughter	(LANL)


$f_1(1510)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

OMITTED FROM SUMMARY TABLE See the minireview under $\eta(1440)$.

f1(1510) MASS


VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
1518± 5 OUR A	VERAGE Er	ror includes scale	factor of 1.	7. See the ideogram below.
1530 ± 10		ASTON		5 11 $K^- p \rightarrow K^0 K^{\pm} \pi^{\mp} \Lambda$ 8 $\pi^- p \rightarrow K^+ \overline{K}{}^0 \pi^+ n$
1512± 4	600	¹ BIRMAN	88 MPS	$8\pi^-\rho \rightarrow K^+\overline{K}^0\pi^-n$
1526± 6	271	GAVILLET	82 HBC	$4.2 K^- p \rightarrow \Lambda K K \pi$
• • • We do not us	se the followir	ng data for averag	es, fits, limit	ts, etc. • • •
\sim 1525		² BAUER	93B	$\gamma \gamma^* \rightarrow \pi^+ \pi^- \pi^0 \pi^0$
¹ From partial wa	ve analysis of	$K^+ \overline{K}{}^0 \pi^-$ state.		
¹ From partial wa ² Not seen by All	IARA 88C in	the $K^0_S K^\pm \pi^\mp$ fir	nal state.	

f₁(1510) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
73±25 OUR AVE	RAGE Error	ncludes scale fac	tor of 2.5. S	ee the ideogram below.
$\textbf{100} \pm \textbf{40}$		ASTON	88c LASS	11 $K^-\rho \rightarrow$
				$K_{\xi}^{0}K^{\pm}\pi^{\mp}\Lambda$
$\textbf{35} \pm \textbf{15}$	600	3 BIRMAN	88 MPS	$8\pi^-\rho \rightarrow K^+\overline{K}^0\pi^-n$
107 ± 15	271	GAVILLET	82 HBC	$4.2 K^- \rho \rightarrow \Lambda K K \pi$
3		v+ 770		

³ From partial wave analysis of $K^+ \overline{K}{}^0 \pi^-$ state.

f1(1510) DECAY MODES

Mo	ode		Fractio	n (Γ _/ /Γ)
$\Gamma_1 = K$	K K̄*(892)+ c.c.		seen	
		ሳ (1510) REFERENCES	5
BAUER AJHARA	93B 88C	PR D48 3976 PR D38 1	D.A. Bauer et al. H. Aihara et al.	(SLAC) (TPC-2 γ Collab.)
ASTON	88C	PL B201 573	D. Aston et al.	(TPC-2γ Čollab.) (SLAC, NAGO, CINC, INUS) JP
BIRMAN	88	PRL 61 1557	A. Birman et al.	(BNL, FSU, IND, MASD) JP

GAVILLET	82	ZPHY C16 119	P. Gavillet et al.	(CERN, CDEF, PADO+)
		ОТНЕ	R RELATED PAPER	s ——
ABELE BARBERIS CLOSE KING AIHARA BITYUKOV	97C	PL B415 289 PL B413 225 ZPHY C76 469 NP B21 11 (suppi) PR D38 1 SJNP 39 735 Translated from YAF	A. Abele et al. D. Barberis et al. F.E. Close et al. E. King et al. H. Aihara et al. S. Bityukov et al. 39 1165.	(WA102 Collab.) (FSU, BNL+) (TPC-2γ Collab.) (SERP)

 $f_2'(1525)$

/ALUF (NAOV)	$f_2'(1525)$
/ALLIE (Mas/)	
MEDE (INCV)	ALUE (MeV)
525±5 OUR ESTIM	

 $I^{G}(J^{PC}) = 0^{+}(2^{+})$

f'2(1525) MASS

DOCUMENT ID

AATE This is only an educated guess; the error given is larger than the error on the average of the published values.

PRODUCED BY PION BEAM

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for average	s, fits	s, limits,	etc. • • •
$1547 + 10 \\ - 2$		¹ LONGACRE	86	MPS	22 $\pi^- p \rightarrow \kappa_5^0 \kappa_5^0 n$
1496 ⁺ 8		² CHABAUD	81	ASPK	6 $\pi^- p \rightarrow K^+ K^- n$
1497 + 8		CHABAUD	81	ASPK	18.4 $\pi^- p \rightarrow K^+ K^- n$
1492 ± 29		GORLICH	80	ASPK	17 π [−] ρ polarized \rightarrow
1502±25		³ CORDEN			$\begin{array}{c} K^+ K^- n \\ 12 - 15 \pi^- p \rightarrow \end{array}$
1480	14	CRENNELL	66	нвс	$6.0 \frac{\pi^{+} \pi^{-} n}{\pi^{-} p \rightarrow \kappa_{5}^{0} \kappa_{5}^{0} n}$

 $[\]frac{1}{2}$ From a partial-wave analysis of data using a K-matrix formalism with 5 poles.

PRODUCED BY K BEAM

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1524.6± 1.4 OUR	AVERAGE II	ncludes data from t Error includes s			that follows this one. f 1.1.
1526.8 ± 4.3		ASTON	880	LASS	11 $K^- p \rightarrow K_S^0 K_S^0 \Lambda$
1504 ±12		BOLONKIN	86	SPEC	11 $K^- p \to K_S^0 K_S^0 \Lambda$ 40 $K^- p \to K_S^0 K_S^0 \Upsilon$
1529 ± 3					18.5 K ⁻ p → K ⁻ K ⁺ .
l521 ± 6	650	AGUILAR	81B	HBC	$4.2 K^-p \rightarrow \Lambda K^+K^-$
1521 ± 3	572	ALHARRAN	81	HBC	8.25 $K^- \rho \rightarrow \Lambda K \overline{K}$
1522 ± 6	123	BARREIRO	77	HBC	$4.15 K^- p \rightarrow \Lambda K_5^0 K_5^0$
1528 ± 7	166	EVANGELISTA			
					$K^+K^-(\Lambda,\Sigma)$
1527 ± 3	120	BRANDENB	76 C	ASPK	13 K ⁻ p →
i					$K^+K^-(\Lambda,\Sigma)$
1519 ± 7	100	AGUILAR	72B	HBC	3.9,4.6 $K^-p \rightarrow$
					$K\overline{K}(\Lambda,\Sigma)$

1513 ±10	⁴ BARKOV	99	SPEC	40 K-p → KSKS	y
----------	---------------------	----	------	---------------	---

⁴ Systematic errors not estimated.

PRODUCED IN e^+e^- ANNIHILATION DOCUMENT ID TECN COMMENT TO THE data in this block is included in the average printed for a previous datablock.

1524 ± 4 OUR AVERAGE E	rror includes scale	factor of 1	.2.
1535 ± 5 ± 4	ABREU	96c DLPI	$z^0 \rightarrow \kappa^+ \kappa^-$
1516 $\pm 5 \begin{array}{c} + 9 \\ -15 \end{array}$	BAI	96c BES	$J/\psi \rightarrow \gamma K^+ K^-$
1529 ±10	ACCIARRI	95J L3	$\gamma \gamma \rightarrow K_5^0 K_5^0 E_{cm}^{ee} = 88-94 \text{ GeV}$ $J/\psi \rightarrow \gamma K^+ K^-$
1531.6±10.0	AUGUSTIN	88 DM2	88-94 GeV
1515 ± 5	5 FALVARD	88 DM2	$J/\psi \rightarrow \phi K^+ K^-$
1525 ±10 ±10	BALTRUSAIT.	87 MRK	$3 J/\psi \rightarrow \gamma K^+ K^-$
• • We do not use the following	data for average	s, fits, limit	s, etc. • • •
1496 ± 2	⁶ FALVARD	88 DM2	$J/\psi \to \phi K^+ K^-$

CENTRAL PRODUCTION

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1515±15	BARBERIS	99	OMEG	450 <i>pp</i> →
				$p_S p_f K^+ K^-$

 $^{^{5}}$ From an analysis ignoring interference with $f_{0}(1710)$.

f'2(1525) WIDTH

VALUE (MeV)	DOCUMENT ID	COMMENT
76±10 OUR ESTIMATE		s; the error given is larger than

73 + 6 OUR FIT

76±10

90 For fitting

PRODUCED BY PION				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the f	ollowing data for average	s, fits	s, limits,	etc. • • •
108 + 5	7 LONGACRE	86	MPS	$22~\pi^-\rho\to~K^0_5K^0_5n$
69 + 22	⁸ CHABAUD	81	ASPK	$6\pi^-p \rightarrow K^+K^-n$

69 ⁺²²	⁸ CHABAUD	81	ASPK	$6 \pi^- p \rightarrow K^+ K^- n$
137 + 23	CHABAUD	81	ASPK	18.4 $\pi^- \rho \to K^+ K^- \kappa$
150 + 83 - 50	GORLICH	80	ASPK	17 π [−] ppolarized →
165 ± 42	⁹ CORDEN	79	OMEG	
92+39	¹⁰ POLYCHRO	79	STRC	$\pi^{+}\pi^{-}n$ $7\pi^{-}p \rightarrow nK_{S}^{0}K_{S}^{0}$

⁷ From a partial-wave analysis of data using a K-matrix formalism with 5 poles.

PRODUCED BY K± BEAM

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
76± 5 OUR AVERAGE	Includes d	ata from the dat	ablo	ck that	follows this one.
90 ± 12		ASTON	880	LASS	$11 K^- p \rightarrow K_5^0 K_5^0 \Lambda$
73±18		BOLONKIN	86	SPEC	40 K-p → K ⁰ ₅ K ⁰ ₅ Y
83 ± 15		ARMSTRONG	83B	OMEG	18.5 $K^-p \rightarrow K^-K^+\Lambda$
85 ± 16	650	AGUILAR	81B	HBC	$4.2 K^- p \rightarrow \Lambda K^+ K^-$
80 + 14 - 11	572	ALHARRAN	81	нвс	8.25 $K^-p \rightarrow \Lambda K \overline{K}$
72±25	166	EVANGELISTA	77	OMEG	$ \begin{array}{c} 10 \ K^- p \to \\ K^+ K^- (\Lambda, \Sigma) \end{array} $
69±22	100				3.9,4.6 $K^-p \rightarrow K\overline{K}(\Lambda, \Sigma)$
• • We do not use the	e following o	lata for averages	, fits	, limits,	etc. • • •
75 ± 20	11	BARKOV	99	SPEC	$40 K^- p \rightarrow K_S^0 K_S^0 y$

BARREIRO 77 HBC 4.15 $K^-p \rightarrow \Lambda K_c^0 K_c^0$

BRANDENB... 76C ASPK 13 K

PRODUCED IN e+e- ANNIHILATION

123

120

VALUE (MeV)

DOCUMENT ID

TECN
COMMENT
The data in this block is included in the average printed for a previous datablock.

66± 8 OUR AVERAGE

 62^{+19}_{-14}

$60 \pm 20 \pm 19$	ABREU	96C DLPH	$Z^0 \rightarrow \kappa^+ \kappa^-$		
$60\pm23^{+13}_{-20}$	BAI	96c BES	$J/\psi \rightarrow \gamma K^+ K^-$		
103 ± 30			$J/\psi \rightarrow \gamma K^+ K^-$		
62±10	¹² FALVARD	88 DM2	$J/\psi \rightarrow \phi K^+ K^-$		
85 ± 35	BALTRUSAIT	.87 MRK3	$J/\psi \rightarrow \gamma K^+ K^-$		
76 ± 40	ACCIARRI	95J L3	$\gamma \gamma \rightarrow K_S K_S E_{cm}^{ee} =$		
100± 3	¹³ FALVARD	88 DM2	88-94 GeV J/ψ → φK ⁺ K ⁻		

CENTRAL PRODUCTION

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
70±25	BARBERIS	99	OMEG	450 pp →
				$p_s p_f K^+ K^-$

 $^{^{12}\,\}mathrm{From}$ an analysis ignoring interference with $f_0(1710)$.

f'2(1525) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	κ κ	(88.8 ±3.1)%
Γ_2	$\eta\eta$	$(10.3 \pm 3.1)\%$
Γ_3	$\pi \pi$	$(8.2 \pm 1.5) \times 10^{-3}$
Γ ₄ Γ ₅	$\gamma \gamma$	$(1.32\pm0.21)\times10^{-6}$
Γ_5	$K\overline{K}^*(892) + c.c.$	
Γ ₆ Γ ₇	$\pi\pi\eta$	
Γ_7	$\pi K \overline{K}$	
Γ8	$\pi^+\pi^+\pi^-\pi^-$	

²CHABAUD 81 is a reanalysis of PAWLICKI 77 data.

 $^{^3}$ From an amplitude analysis where the $f_2^\prime(1525)$ width and elasticity are in complete disagreement with the values obtained from $K\overline{K}$ channel, making the solution dubious.

⁶ From an analysis including interference with $f_0(1710)$.

⁸CHABAUD 81 is a reanalysis of PAWLICKI 77 data.

 $^{^9}$ From an amplitude analysis where the $t_2^\prime(1525)$ width and elasticity are in complete disagreement with the values obtained from $K\overline{K}$ channel, making the solution dubious. 10 From a fit to the D with $f_2(1270)$ - $f_2'(1525)$ interference. Mass fixed at 1516 MeV.

 $^{^{11}\, {\}rm Systematic\,\, errors\,\, not\,\, estimated}.$

 $^{^{13}}$ From an analysis including interference with $f_0(1710)$.

Meson Particle Listings $f'_2(1525)$

CONSTRAINED FIT INFORMATION

An overall fit to the total width, 2 partial widths, a combination of partial widths obtained from integrated cross sections, and 3 branching ratios uses 14 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^2=11.4$ for 10 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (MeV)
Γ_1	κ κ	65 +5
Γ ₂ Γ ₃	$\eta\eta$	7.6 ±2.6
Γ ₄	$\pi\pi$ $\gamma\gamma$	0.60 ± 0.12 (9.7 ± 1.4) $\times 10^{-5}$

$f_2'(1525)$ PARTIAL WIDTHS

VALUE (MeV)	DOCUMENT ID	TECN	Γ ₁
65 ⁺⁵ ₋₄ OUR FIT	14		.0.0
63 ⁺⁶ Γ(ππ)	14 LONGACRE 8	5 MPS	22 π ⁻ p → K ⁰ ₅ K ⁰ ₅ π
VALUE (MeV) 0.60±0.12 OUR FIT	DOCUMENT ID	TECN	COMMENT
1.4 +1.0 -0.5	¹⁴ LONGACRE 86	MPS	$22~\pi^-\rho\rightarrow~K^0_SK^0_S\pi$
Γ(ηη) <u>VALUE (MeV)</u> 7.6±2.5 OUR FIT	DOCUMENT ID	TECN	COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • • $24 \quad ^{+3}_{-1} \qquad \qquad ^{14} \text{LONGACRE} \qquad 86 \quad \text{MPS} \qquad 22 \; \pi^- p \to \; \kappa^0_5 \; \kappa^0_5 \, \pi$

$f_2'(1525) \; \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

Γ(<i>K</i> 7	<i>К</i>) × Г	$(\gamma\gamma)/\Gamma_{\text{total}}$				$\Gamma_1\Gamma_4/\Gamma$
VALUE			DOCUMENT ID		TECN	COMMENT
0.086	± 0.012	OUR FIT				
0.086	± 0.012	OUR AVERAGE				
0.093	± 0.018	± 0.022	¹⁵ ACCIARRI	95J	L3	Eee = 88-94 GeV
0.067	±0.008	±0.015	¹⁵ ALBRECHT	90G	ARG	$e^+e^- \rightarrow e^+e^- K^+K^-$
0.11	+0.03 -0.02	±0.02	BEHREND		CELL	$e^+e^-\rightarrow \kappa_S^0 \kappa_S^0$
0.10	+0.04 -0.03	+0.03 -0.02	BERGER	88	PLUT	e+e- → e+e- κ0 κ0
0.12	±0.07	±0.04	¹⁵ AIHARA	86в	TPC	$e^+e^- \rightarrow e^+e^- \kappa^+ \kappa^- e^+e^- \rightarrow e^+e^- \kappa \overline{\kappa}$
0.11	±0.02	±0.04	¹⁵ ALTHOFF	83	TASS	$e^{+}e^{-}\xrightarrow{e^{-}}e^{+}e^{-}K\overline{K}$
• • •	We do r	ot use the following	ng data for average			
0.0314	4 ± 0.0050	0±0.0077	¹⁶ ALBRECHT	90g	ARG	$e^+e^{e^+e^-K^+K^-}$

¹⁵ Using an incoherent background.

f'₂(1525) BRANCHING RATIOS

$\Gamma(\eta\eta)/\Gamma(K\overline{K})$			Γ_2/Γ_1
VALUE	DOCUMENT ID	TECN	COMMENT
0.12±0.04 OUR FIT			
0.11 ± 0.04	17 PROKOSHKIN 91	GAM4	$300 \pi^- p \rightarrow \pi^- p \eta \eta$
• • • We do not use the folio	wing data for averages, f	its, limits	, etc. • • •
< 0.50	BARNES 67	' нвс	4.6,5.0 K-p

¹⁷ Combining results of GAM4 with those of WA76 on $K\overline{K}$ central production and results of CBAL, MRK3 and DM2 on $J/\psi\to~\gamma\eta\eta$.

$\Gamma(\pi\pi)/\Gamma_{\text{total}}$					Г ₃ /I
VALUE	CL%	DOCUMENT ID	TE	CN COMMENT	
0.0082±0.0016 OU					
0.0075±0.0016 OU	JR AVERAG				
0.007 ±0.002		COSTA	80 OI	MEG 10 $\pi^- \rho$	→ K+K-n
$0.027 \begin{array}{l} +0.071 \\ -0.013 \end{array}$		¹⁸ GORLICH	80 AS	5PK 17,18 π ⁻	P
0.0075 ± 0.0025	18	^{3,19} MARTIN	79 R\	√UE	
• • We do not use			s, fits, li	mits, etc. • •	•
< 0.06	95	AGUILAR	818 HE	BC 4.2 K = D	$\rightarrow \Lambda K^{+} K^{-}$
0.19 ± 0.03		CORDEN	79 OI	MEG 12-15 π	
				$\pi^+\pi^-$	·n 00
<0.045	95	BARREIRO			$p \rightarrow \Lambda K_S^0 K_S^0$
0.012 ±0.004		18 PAWLICKI			K+ K- N
< 0.063	90	BRANDENB	76C AS		
< 0.0086		18 BEUSCH	758 OS	7 . Λ 2 . SPK 8.9 π	(Λ, Σ)
	d areas				
18 Assuming that the	: /2(1525) !	s produced by an on	e-pion ex	change product	ion mechanism
19 MARTIN 79 uses		CKI 77 data with o	lifferent	input value of t	he <i>f'</i> 2(1525) –
K K branching ra	tio.				
$\Gamma(\pi\pi)/\Gamma(K\overline{K})$					Г3/Г
VALUE		DOCUMENT ID	TE	CN COMMENT	•.
0.0092±0.0018 OUR	FIT				
0.075 ±0.035		AUGUSTIN	87 D	$M2 J/\psi \rightarrow \gamma$	$_{\gamma}\pi^{+}\pi^{-}$
r/\ (r/ \nabla Tr)					- /-
$\Gamma(\pi\pi\eta)/\Gamma(K\overline{K})$					Γ ₆ /Γ ₁
VALUE	CL%	DOCUMENT ID		CN COMMENT	
		ng data for average			•
<0.41	95	AGUILAR	72B H		- _P
<0.3	67	AMMAR	67 HE	вс	
[Γ(<i>Κ'</i> Κ*(892)+c	c) + [/~	KEN] /F/KEN			(F ₅ +F ₇)/F
VALUE	CL%	,,, , ,	-	CN COMMENT	
• • • We do not use					
		•			
<0.35 <0.4	95 67	AGUILAR AMMAR	72B HE		— _Р
₹0.4	01	AMINIAR	67 HE	ВС	
$\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{-})/$	$\Gamma(K\overline{K})$				$\Gamma_{\rm B}/\Gamma_{\rm T}$
VALUE	CL%	DOCUMENT ID	TE	CN COMMENT	•,
• • • We do not use	the following		s. fits. li		1
< 0.32	95	AGUILAR	72B HE		- n
V.52	,,	AGGIEAN	720 110	DC 3.7,4.0 N	μ
$\Gamma(\eta\eta)/\Gamma_{\text{total}}$					Γ ₂ /Ι
VALUE		DOCUMENT ID	<u>TE</u>	CN COMMENT	·
• • • We do not use	the following	ng data for average	s, fits, li	mits, etc. • •	•
0.10±0.03		20 PROKOSHKIN			→ π nnn
20		,		500 n p	

f'₂(1525) REFERENCES

²⁰ Combining results of GAM4 with those of WA76 on $K\overline{K}$ central production and results of CBAL, MRK3 and DM2 on $J/\psi \to \gamma\eta\eta$.

BARBERIS	99	PL B453 305	D. Barberis et al.	(Omega expt.)
BARKOV	99	JETPL 70 248	B.P. Barkov et al.	
		Translated from		
ABREU	96C	PL B379 309	P. Abreu et al.	(DELPHI Collab.)
BAI	96C	PRL 77 3959	J.Z. Bai <i>et al.</i>	(BES Collab.)
ACCIARRI	95 J	PL B363 118	M. Acciarri et al.	(L3 Collab.)
PROKOSHKIN	91	SPD 36 155	Y.D. Prokoshkin	(GAM2, GAM4 Collab.)
			DANS 316 900.	
ALBRECHT	90 G	ZPHY C48 183	H. Albrecht et al.	(ARGUS Collab.)
PDG	90	PL B239	J.J. Hernandez et al.	(IFIC, BOST, CIT+)
BEHREND	89C	ZPHY C43 91	H.J. Behrend et al.	(CELLO Collab.)
ASTON	88D	NP B301 525	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
AUGUSTIN	88	PRL 60 2238	J.E. Augustin <i>et al.</i>	(DM2 Collab.)
BERGER	88	ZPHY C37 329	C. Berger et al.	(PLUTO Collab.)
FALVARD	88	PR D38 2706	A. Falvard et al.	(CLER, FRAS, LALO+)
AUGUSTIN	87	ZPHY C36 369	J.E. Augustin et al.	(LALO, CLER, FRAS+)
BALTRUSAIT	. 87	PR D35 2077	R.M. Baltrusaitis et al.	(Mark III Collab.)
AIHARA	868	PRL 57 404	H. Aihara et al.	(TPC-2γ Collab.)
BOLONKIN	86	SJNP 43 776	B.V. Bolonkin et al.	(ITEP) JP
		Translated from		, ,
LONGACRE	86	PL B177 223	R.S. Longacre et al.	(BNL, BRAN, CUNY+)
ALTHOFF	83	PL 121B 216	M. Althoff et al.	(TASSO Collab.)
ARMSTRONG	83B	NP B224 193	T.A. Armstrong et al.	(BARI, BIRM, CERN+)
AGUILAR	81B	ZPHY C8 313	M. Aguilar-Benitez et al.	(CERN, CDEF+)
ALHARRAN	81	NP B191 26	S. Al-Harran et al.	(BIRM, CERN, GLAS+)
CHABAUD	81	APP B12 575	 Chabaud et al. 	(CERN, CRAC, MPIM)
COSTA	80	NP B175 402	G. Costa de Beauregard et a	(BARI, BONN+)
GORLICH	80	NP B174 16	L. Gorlich et al.	(CRAC, MPIM, CERN+)
CORDEN	79	NP B157 250	M.J., Corden et al.	(BIRM, RHEL, TELA+) JP
MARTIN	79	NP B158 520	A.D. Martin, E.N. Ozmutlu	(DURH)
POLYCHRO	79	PR D19 1317	V.A. Polychronakos et al.	(NDAM, ANL)
BARREIRO	77	NP B121 237	F. Barreiro et al.	(CERN, AMST, NIJM+)
EVANGELISTA	77	NP B127 384	C. Evangelista et al.	(BARI, BONN, CERN+)
PAWLICKI	77	PR D15 3196	A.J. Pawlicki et al.	(ANL) IJP
BRANDENB	76C	NP B104 413	G.W. Brandenburg et al.	(ŠLAC)
BEUSCH	75B	PL 60B 101	W. Beusch et al.	(CERN, ETH)
AGUILAR	72B	PR D6 29	M. Aguilar-Benitez et al.	(BNL)
AMMAR	67	PRL 19 1071	R. Ammar et al.	(NWES, ANL) JP
BARNES	67	PRL 19 964	V.E. Barnes et al.	(BNL, SYRA) IJPC
CRENNELL	66	PRL 16 1025	D.J. Crennell et al.	(BNL) I
		10 1023		(5.11)

¹⁴ From a partial-wave analysis of data using a K-matrix formalism with 5 poles.

¹⁶ Using a coherent background.

 $f_2'(1525), f_2(1565)$

- OTHER RELATED PAPERS

ALBERICO JENNI ARMSTRONG ETKIN ABRAMS BARNES	82B 67B	PL B438 430 PR D27 1031 PL 110B 77 PR D25 1786 PRL 18 620 PRL 15 322	A. Alberico et al. P. Jenni et al. T.A. Armstrong et al. A. Elkin et al. G.S. Abrams et al. V.E. Barnes et al.	(Obelix Collab.) (SLAC, LBL) (BARI, BIRM, CERN+) (BNL, CUNY, TUFTS, VAND) (BNL, SVRA)
BARNES	65	PRL 15 322	V.E. Barnes et al.	(BNL, SYRA)

$f_2(1565)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

1

 $\Gamma(\pi\pi)/\Gamma_{total}$

 $0.024 \pm 0.005 \pm 0.012$

 $^{17}\,{\it JP}$ not determined, could be partly $\it f_0(1500).$

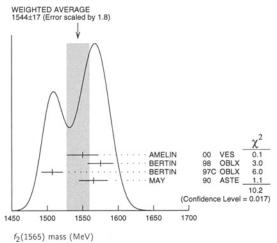
OMITTED FROM SUMMARY TABLE

Seen in antinucleon-nucleon annihilation at rest. See also minireview under non- $q\overline{q}$ candidates. (See the index for the page number.)

f₂(1565) MASS

ALUE (MeV)	DOCUMENT ID TECN COMMENT
1544±17 OUR AVERAGE	Error includes scale factor of 1.8. See the ideogram below
$1550 \pm 10 \pm 20$	AMELIN 00 VES 37 $\pi^+ p \rightarrow \eta \pi^+ \pi^- D$
1575 ± 18	BERTIN 98 OBLX 0.05-0.405 $\bar{n}p \rightarrow$
	$\pi^+\pi^+\pi^-$
1507 ± 15	¹ BERTIN 97C OBLX $0.0 \bar{p}p \rightarrow \pi^+\pi^-\pi^0$
1565 ± 20	MAY 90 ASTE $0.0 \overline{p}p \rightarrow \pi^{+}\pi^{-}\pi^{0}$
We do not use the following	owing data for averages, fits, limits, etc. • • •
1598 ± 11 ± 9	BAKER 99B SPEC $0 \overline{\rho}_{P} \rightarrow \omega \omega \pi^{0}$
1534 ± 20	² ABELE 96C RVUE Compilation
· 1552	³ AMSLER 95D CBAR $0.0 \overline{p}p \rightarrow \pi^0 \pi^0 \pi^0$,
	$\pi^0 \eta \eta, \pi^0 \pi^0 \eta$
1598 ± 72	BALOSHIN 95 SPEC 40 $\pi^- C \rightarrow K_S^0 K_S^0 X$
1566 + 80	⁴ ANISOVICH 94 CBAR $0.0 \overline{p}p \rightarrow 3\pi^0, \eta \eta \pi^0$
1502± 9	ADAMO 93 OBLX $\bar{n}p \rightarrow \pi^{+}\pi^{+}\pi^{-}$
1488±10	⁵ ARMSTRONG 93C E760 $\bar{p}p \rightarrow \pi^0 nn \rightarrow 6\gamma$
1508±10	⁵ ARMSTRONG 93D E760 $pp \rightarrow 3\pi^0 \rightarrow 6\gamma$
1525±10	⁵ ARMSTRONG 93D E760 $\bar{p}p \rightarrow \eta \pi^0 \pi^0 \rightarrow 6\gamma$
1504	⁶ WEIDENAUER 93 ASTE $0.0 \bar{p} N \rightarrow 3\pi^- 2\pi^+$
1540±15	⁵ ADAMO 92 OBLX $\overline{n}p \rightarrow \pi^+\pi^+\pi^-$
1515±10	⁷ AKER 91 CBAR $0.0 \bar{p} p \rightarrow 3\pi^0$
1477± 5	BRIDGES 86C DBC $0.0 \overline{p} N \rightarrow 3 \pi^- 2 \pi^+$
¹ T-matrix pole.	

T-indity pole, large coupling to pp and aab, could be $f_2(1800)$.


3 Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.

4 From a simultaneous analysis of the annihilations $\overline{p}p \to 3\pi^0$, $\pi^0\eta\eta$ including AKER 91 data.

5 J^P not determined, could be partly $f_0(1500)$.

6 J^P not determined.

7 Superseded by AMSLER 95B,

f₂(1565) WIDTH

VALUE (MeV) 131± 14 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT
130 ± 20 ± 40	AMELIN	00	VES	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$
119± 24	BERTIN			0.05-0.405 np →
130± 20	8 BERTIN	970	OBLX	$0.0 \overline{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
170 ± 40	MAY	90	ASTE	$0.0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0$

180± 60				Compilation
~ 142	¹⁰ AMSLER			$\begin{array}{ccc} 0.0 \; \overline{p} \rho \to & \pi^0 \pi^0 \pi^0, \\ \pi^0 \eta \eta, \; \pi^0 \pi^0 \eta \end{array}$
263 ± 101	BALOSHIN	95	SPEC	$40 \pi^- C \rightarrow \kappa_S^0 \kappa_S^0 X$
166 + 80 - 20	¹¹ ANISOVICH			$0.0 \; \overline{p} \rho \rightarrow 3 \pi^0, \eta \eta \pi^0$
130 ± 10				$\overline{n}\rho \rightarrow \pi^{+}\pi^{+}\pi^{-}$
148± 27	13 ARMSTRONG	93C	E760	$\overline{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma$
103± 15	¹³ ARMSTRONG	93D	E760	$\overline{p}p \rightarrow 3\pi^0 \rightarrow 6\gamma$
111± 10	¹³ ARMSTRONG	93D	E760	$\overline{p}p \rightarrow \eta \pi^0 \pi^0 \rightarrow 6\gamma$
\sim 206	¹⁴ WEIDENAUER	93	ASTE	$0.0 \overline{\rho} N \rightarrow 3 \pi^- 2 \pi^+$
132 ± 37	¹³ ADAMO	92	OBLX	$\bar{n}\rho \rightarrow \pi^{+}\pi^{+}\pi^{-}$
120 ± 10	¹⁵ AKER	91	CBAR	$0.0 \ \overline{p}p \rightarrow 3\pi^0$
116 ± 9	BRIDGES	86C	DBC	$0.0 \overline{p} N \rightarrow 3\pi^- 2\pi^+$
10 Coupled-channel and 11 From a simultaneous data. 12 Supersedes ADAMO	could be partly $f_0(1500)$.	LER	95c, an	d AMSLER 94D.

£(1565)	DECAY	MODES

	Mode	Fraction (Γ_j/Γ)	
Γ_1	ππ	seen	
Γ_2	$\pi^+\pi^-$	seen	
Гз	$\pi^0\pi^0$	seen	
Γ_4	$ ho^0 ho^0$	seen	
Γ ₅	$2\pi^{+}2\pi^{-}$	seen	
Γ ₆	ηη	seen	
Γ_7	$a_2(1320)\pi$	not seen	
Γ8	$\omega\omega$	seen	

€(1565) BRANCHING RATIOS

 Γ_1/Γ

VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the fo					
seen	BAKER	99B	SPEC	$0\;\overline{\rho}\rho\to\;\omega\omega\pi^0$	
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$					Γ2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the fo	ollowing data for averag	es, fits	, limits,	etc. • • •	
seen	BERTIN			0.05-0.405	
not seen	¹⁶ ANISOVICH	94B	RVUE	$\overline{p} p \to \pi^+ \pi^- \pi^0$	
seen	MAY	89	ASTE	$\bar{p}p \rightarrow \pi^+\pi^-\pi^0$	
¹⁶ ANISOVICH 94B is from	n a reanalysis of MAY 9	0.			
F(+\ /F(.0 .0\					- 1-
$\Gamma(\pi^+\pi^-)/\Gamma(\rho^0\rho^0)$					Γ_2/Γ_4
(π'π)/(ρ-ρ-) VALUE	DOCUMENT ID		TECN	COMMENT	1 2/1 4
				COMMENT	2/14
• • • We do not use the fo		es, fits	, limits,	COMMENT	1 2/1 4
<u>VALUE</u> • • • We do not use the for 0.042±0.013	ollowing data for averag	es, fits	, limits,	COMMENT etc. • •	Γ ₃ /Γ
<u>VALUE</u> • • • We do not use the for 0.042±0.013	ollowing data for averag	es, fits 868	, limits, DBC	COMMENT etc. • •	
<u>VALUE</u> • • • We do not use the fo 0.042 ± 0.013 $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$	ollowing data for averag BRIDGES	es, fits 86B	, limits, DBC <u>TECN</u>	COMMENT etc. • • • $\overline{p} N \rightarrow 3\pi^{-} 2\pi^{+}$	
VALUE • • • We do not use the form 0.042 ± 0.013 $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ VALUE	Ollowing data for averag BRIDGES DOCUMENT ID	es, fits 86B	, limits, DBC <u>TECN</u>	COMMENT etc. • • • $\overline{p} N \rightarrow 3\pi^- 2\pi^+$ COMMENT $0.0 \ \overline{p} p \rightarrow 3\pi^0$	

$\Gamma(\omega\omega)/\Gamma_{\text{total}}$				Γ_{B}/Γ
VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT	
• • • We do not use th	e following data for averages,	fits, limits,	etc. • • •	
seen	BAKER 9	98 SPEC	$0 \ \overline{p} p \rightarrow \omega \omega \pi^0$	

 17 ARMSTRONG 93C E760 $\bar{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma$

€(1565) REFERENCES

AMELIN	00	NP B668 83	D. Amelin et al.	(VE\$ Collab.)
BAKER	99B	PL B467 147	C.A. Baker et al.	(,
BERTIN	98	PR D57 55	A. Bertin et al.	(OBELIX Collab.)
BERTIN	97C	PL B408 476	A. Bertin et al.	(OBELIX Collab.)
ABELE	96C	NP A609 562	A. Abele et ai.	(Crystal Barrel Collab.)
AMSLER	95B	PL B342 433	C. Amsler et al.	(Crystal Barrel Collab.)
AM5LER	95C	PL B353 571	C. Amsier et al.	(Crystal Barrel Collab.)
AMSLER	95D	PL B355 425	C. Amsler et al.	(Crystal Barrel Collab.)
BALOSHIN	95	PAN 58 46	O.N. Baloshin et al.	(ITEP)
		Translated from YAF 58		` '
AMSLER	94D	PL B333 277	C. Amsler et al.	(Crystal Barrel Collab.)
ANISOVICH	94	PL B323 233	V.V. Anisovich et al.	
ANISOVICH	94B	PR D50 1972	V.V. Anisovich et al.	(LOQM)
ADAMO	93	NP A558 13C	A. Adamo et al.	(OBELIX Collab.)
ARMSTRONG	93C	PL B307 394	T.A. Armstrong et al.	(FNAL, FERR, GENO+)
ARM5TRONG	93D	PL B307 399	T.A. Armstrong et al.	(FNAL, FERR, GENO+)
WEIDENAUER	93	ZPHY C59 387	P. Weidenauer et al.	(ASTERIX Collab.)
ADAMO	92	PL B287 368	A. Adamo et al.	`(OBELIX Collab.)
AKER	91	PL B260 249	E. Aker et al.	(Crystal Barrel Collab.)
MAY	90	ZPHY C46 203	B. May et al.	(ASTERIX Collab.)
MAY	89	PL B225 450	B. May et al.	(ASTERIX Collab.) IJP
BRIDGES	86B	PRL 56 215	D.L. Bridges et al.	(SYRA, CASE)
BRIDGE5	86C	PRL 57 1534	D.L. Bridges et al.	(SYRA)
			•	(- · · · · · /

 $\pi_1(1600)$

$$I^{G}(J^{PC}) = 1^{-}(1^{-})$$

OMITTED FROM SUMMARY TABLE

$\pi_1(1600)$ MASS

VALUE (MeV)	DOCUMENT ID		COMMENT
1593± 8 ⁺²⁹	1 ADAMS	988	$18.3 \pi^- p \rightarrow \pi^+ \pi^- \pi^- p$
1 Natural parity exchange.			

$\pi_1(1600)$ WIDTH

VALUE (MeV)	DOCUMENT ID		COMMENT
168± 20 ⁺¹⁵⁰	² ADAMS	98B	18.3 $\pi^- p \rightarrow \pi^+ \pi^- \pi^- p$
² Natural parity exchange.			

π₁(1600) REFERENCES

ADAMS 98B' PRL 81 5760 G.S. Adams et al.

(MPS Collab.)

X(1600)

$$I^{G}(J^{PC}) = 2^{+}(2^{+})$$

OMITTED FROM SUMMARY TABLE

Observed in the reaction $\gamma\gamma\to\rho\rho$ near threshold. See also minireview under non- $q\overline{q}$ candidates. (See the index for the page number.)

X(1600) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1600±100	¹ ALBRECHT	91F	ARG	0	$ \frac{10.2 \ e^{+} e^{-} \rightarrow}{e^{+} e^{-} 2(\pi^{+} \pi^{-})} $
¹ Our estimate.					

X(1600) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
400±200	² ALBRECHT	91F	ARG	0	$ \begin{array}{c} 10.2 \ e^{+} e^{-} \rightarrow \\ e^{+} e^{-} 2(\pi^{+} \pi^{-}) \end{array} $
20					e e 2(x · x)

X(1600) REFERENCES

ALBRECHT 91F ZPHY C50 1 H. Albrecht et al. (ARGUS Collab.)

---- OTHER RELATED PAPERS

BAJC 96 ZPHY AJ56 187 B. Bajc et al.
ALBRECHT 89M PL B217 205 H. Albrecht et al. (ARGUS Collab.)
BEHREND 89D PL B218 494 H.J. Behrend et al. (CELLO Collab.)

$a_1(1640)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

OMITTED FROM SUMMARY TABLE

Seen in the amplitude analysis of the $3\pi^0$ system produced in $\overline{\rho}\, p \to 4\pi^0$. Possibly seen in the study of the hadronic structure in decay $\tau \to 3\pi \nu_{\tau}$ (ABREU 98G). Needs confirmation.

a₁(1640) MASS

VALUE (MeV)	DOCUMENT I	<u> </u>	TECN	COMMENT
1640±12±30	¹ BAKER	99	SPEC	1.94 $\tilde{p}p \rightarrow 4\pi^0$
• • We do not use the follow	ing data for avera	ges, fit	s, limits,	etc. • • •
1670 ± 90	BELLINI	85	SPEC	$\begin{array}{c} 40 \ \pi^{-} A \rightarrow \\ \pi^{-} \pi^{+} \pi^{-} A \end{array}$
¹ Using preliminary CBAR dat	ta.			

a₁(1640) WIDTH

VALUE (MeV)	DOCUMENT I	<u> </u>	TECN	COMMENT	_
300 ± 22 ± 40	² BAKER	99	SPEC	$1.94 \ \overline{p} p \rightarrow 4\pi^{0}$	
• • We do not use the follow	ving data for avera	ges, fits	s, limits,	etc. • • •	
300±100	BELLINI	85	SPEC	$\begin{array}{c} 40 & \pi^{-} A \rightarrow \\ \pi^{-} \pi^{+} \pi^{-} A \end{array}$	
2 Using preliminary CRAR da	ta				

a₁(1640) DECAY MODES

	de	 	
Γ_1 $f_2($ Γ_2 $\sigma \pi$			

a (1640) BRANCHING RATIOS

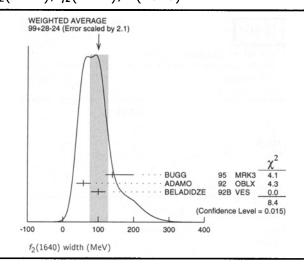
Γ(f₂(1270)π)/Γ(σπ)					Г	1/Γ2
VALUE	DOCUMENT ID		TECN	COMMENT		
0.24±0.07	3 BAKER	99	SPEC	1.94 $\overline{p}p \rightarrow$	$4\pi^0$	
³ Using preliminary CBAR data.						

a₁(1640) REFERENCES

BAKER ABREU BELLINI	PL B449 114 PL B426 411	C.A. Baker et al. P. Abreu et al. G. Bellini et al.	(DELPHI Collab.)
	Translated from Y	/AF 41 1223.	

$$I^G(J^{PC}) = 0^+(2^{++})$$

OMITTED FROM SUMMARY TABLE


f2(1640) MASS

VALUE (MeV)	DOCUMENT ID	TEC	NCOMMENT
1638± 6 OUR AVERAGE E	rror includes scale fac	tor of 1.2.	
1620 ± 16	BUGG	95 MR	K3 J/ $\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$
1647± 7	ADAMO	92 OB	$\perp X \overline{n}p \rightarrow 3\pi^{+}2\pi^{-}$
1590 ± 30	BELADIDZE	928 VES	36 π ⁻ p → ωω n
1635 ± 7	ALDE	90 GA	M2 38 π ⁻ p → ωω n
• • • We do not use the follo	wing data for average	s, fits, lim	its, etc. • • •
1643± 7	¹ ALDE	89B GA	M2 38 π ⁻ p → ωωπ
I Superseded by ALDE 90.			

£(1640) WIDTH

VALUE (MeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
99 ⁺²⁸ OUR AVER/	AGE Error	includes scale fa	ctor of	2.1. S	ee the ideogram below.
$140 + 60 \\ -20$		BUGG	95 N	MRK3	$J/\psi \to \gamma \pi^+ \pi^- \pi^+ \pi^-$
58 ± 20		ADAMO	92 C	DBLX	$\overline{n}p \rightarrow 3\pi^+2\pi^-$
100 ± 20		BELADIDZE	92B V	/ES	$36 \pi^- p \rightarrow \omega \omega n$
• • • We do not use th	e following	data for averages	s, fits,	limits,	etc. • • •
< 70	90	ALDE	90 0	GAM2	38 $\pi^- p \rightarrow \omega \omega n$

Meson Particle Listings $f_2(1640)$, $\eta_2(1645)$, $\omega(1650)$

f2(1640) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	ωω	seen
12	4π	seen

f₂(1640) REFERENCES

BUGG ADAMO BELADIDZE ALDE	92 92B 90	PL B353 378 PL B287 368 ZPHY C54 367 PL B241 600 PL B216 451	D.V. Bugg et al. A. Adamo et al. G.M. Beladidze et al. D.M. Alde et al.	(LOQM, PNPI, WASH) JP (OBELIX Collab.) (VES Collab.) (SERP, BELG, LANL, LAPP+) (SERP, BELG, LANL, LAPP+) (SERP
ALDE	89B	PL B216 451	D.M. Alde et al.	(SERP, BELG, LANL, LAPP+) IGJP(

OTHER RELATED PAPERS -

PROKOSHKIN 99 PAN 62 356 Yu.D. Prokoshkin et al. Translated from YAF 62 396.

$$I^{G}(J^{PC}) = 0^{+}(2^{-})$$

OMITTED FROM SUMMARY TABLE

ทาไ	(1645)	MA	SS

VALUE (MeV) 1632±14 OUR AVERAGE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
1620 ± 20	BARBERIS	97B	OMEG		450 pp →
$1645 \pm 14 \pm 15$	ADOMEIT	96	CBAR	0	$\begin{array}{c} \rho \rho 2(\pi^+\pi^-) \\ 1.94 \ \overline{\rho} \rho \rightarrow \ \eta 3\pi^0 \end{array}$

η₂(1645) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN CHG	COMMENT
180+22 OUR AVERAGE			
180 ± 25	BARBERIS	97B OMEG	$450 pp \rightarrow pp2(\pi^+\pi^-)$
$180^{+40}_{-21} \pm 25$	ADOMEIT	96 CBAR 0	$1.94 \; \overline{\rho} \rho \; \rightarrow \; \eta 3\pi^0$

$\eta_2(1645)$ DECAY MODES

	Mode	Fraction (Γ_I/Γ)
Γ ₁	$a_2(1320)\pi$	
Γ_2	a ₂ (1320)π ΚΚπ	
Γ_3	K* ₹	
Γ_4	$\eta \pi^+ \pi^-$	not seen

72(1645) BRANCHING RATIOS

$\Gamma(K\overline{K}\pi)/\Gamma(a_2(1320)\pi)$				Γ_2/Γ_1
VALUE	DOCUMENT ID	TECN	COMMENT	
0.07 ±0.03	1 BARBERIS	97c OMEG	450 pp →	ρρΚ Κ π

¹Using $2(\pi^+\pi^-)$ data from BARBERIS 97B.

$\lceil (\eta \pi^+ \pi^-) / \lceil_{\text{total}} \rceil$				Γ_4/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
• • We do not use the follow	wing data for averag	es, fits, limits	, etc. • • •	
not seen	AMELIN	00 VES	$37~\pi^-\rho\rightarrow$	$\eta \pi^+ \pi^- \Pi$

η₂(1645) REFERENCES

NP B668 83	D. Amelin et al.	(VES Collab.)
B PL B413 217	D. Barberis et al.	(WA102 Collab.)
C PL B413 225	D. Barberis et al.	(WA102 Collab.)
ZPHY C71 227	J. Adomeit et al.	(Crystal Barrel Collab.)

 $\omega(1650)$ was $\omega(1600)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ω(1650) MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN CHG	COMMENT
1649± 24 OU	R AVERAGE	rror includes scale	factor of 2.3.	
1609± 20	315	¹ ANTONELLI	92 DM2	$1.34-2.4e^+e^- \rightarrow$
*****		2		$\rho\pi$
1663± 12	435	² ANTONELLI	92 DM2	1.34-2.4e+e- → ωππ
• • • We do not	use the followin	g data for average	es, fits, limits, etc.	
1643± 14		³ ACHASOV	99E RVUE	0.75-1.80
10.01 11		ACTIAGOV	33E WYOE	e+e
		4		$\pi + \pi - \pi^0$
$1820 {}^{+ 190}_{- 150}$		⁴ ACHASOV	98н RVUE	$e^+e^{\pi^+\pi^-\pi^0}$
$1840 + 100 \\ - 70$		⁵ ACHASOV	98н RVUE	e+ e- →
		ACTIAGO V	JOII 11.40E	$\omega_{\pi} + \pi^{-}$
$1780 + 170 \\ -300$		⁶ ACHASOV	98H RVUE	$e^+e^- \rightarrow$
		7 ACHASOV	98H RVUE	K+K- e+e- →
~ 2100		· ACHASOV	98H RVUE	e κο → κο κ± π∓
1600± 30		¹ CLEGG	94 RVUE	$e^+ e^- \rightarrow \rho \pi$
1607 ± 10		² CLEGG	94 RVUE	$e^+e^- \rightarrow \omega \pi \pi$
1635 ± 35		⁸ CLEGG	94 RVUE	$e^+e^- \rightarrow \rho\pi$
1625 ± 21		⁸ CLEGG	94 RVUE	$e^+e^- \rightarrow \omega \pi \pi$
1670 ± 20		ATKINSON	83B OMEG	20-70 γp →
1657± 13		CORDIER	81 DM1	$e^+e^- \rightarrow \omega 2\pi$
1679± 34	21	ESPOSITO	80 FRAM	$e^+e^- \rightarrow 3\pi$
1652± 17		COSME	79 OSPK 0	$e^+e^- \rightarrow 3\pi$

¹ From a two Breit-Wigner fit.

From a two Brett-Wigner plus background fit.

3 Using the data of DOLINSKY 91, ANTONELLI 92, AKHMETSHIN 98, and ACHASOV 99E. From a fit to two Breit-Wigner functions interfering between them and with the ω, ϕ talls with fixed (+,-,+) phases.

4 Using data from BARKOV 87, DOLINSKY 91, and ANTONELLI 92.

⁵Using the data from ANTONELLI 92.

6 Using the data from IVANOV 81 and BISELLO 88B.
7 Using the data from BISELLO 91c.

⁸ From a single Breit-Wigner fit.

ω (1650) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	<u>T</u>	ECN	CHG	COMMENT
220±35 OUR AVE	RAGE Error	includes scale fact	or of 1.	6.		
159 ± 43	315	⁹ ANTONELLI	92 D	M2		$1.34-2.4e^{+}e^{-} \rightarrow$
240±25	435	¹⁰ ANTONELLI	92 D	M2		ρπ 1.34-2.4e ⁺ e → ωππ
• • • We do not u	se the followi	ng data for average	s, fits, l	limits,	etc. •	
272 ± 29		11 ACHASOV	99E R	VUE		0.75-1.80
						e+e- → -+0
140 ± 50		⁹ CLEGG	94 F	VUE		$e^{+\stackrel{*}{e}^{-}\stackrel{*}{\rightarrow}\stackrel{*}{\rho}\pi}$
86 ± 20		¹⁰ CLEGG	94 R	VUE		$e^+e^- \rightarrow \omega \pi \pi$
350 ± 80		¹² CLEGG	94 R	VUE		$e^+e^- \rightarrow \rho\pi$
401 ± 63		¹² CLEGG	94 R	VUE		$e^+e^- \rightarrow \omega \pi \pi$
160 ± 20		ATKINSON	83B C	MEG		20-70 $\gamma \rho \rightarrow$
126 46		CORDIER	81 D	M1		$e^+e^- \rightarrow \omega 2\pi$
136 ± 46						
99 ± 49	21	ESPOSITO	80 F	RAM		$e^+e^- \rightarrow 3\pi$
42 ± 17		COSME	79 C	SPK	0	$e^+e^- \rightarrow 3\pi$

⁹From a two Breit-Wigner fit.

⁹ From a two Breit-Wigner rit.

¹⁰ From a single Breit-Wigner plus background fit.

¹¹ Using the data of DOLINSKY 91, ANTONELLI 92, AKHMETSHIN 98, and ACHASOV 99c. From a fit to two Breit-Wigner functions interfering between them and with the ω, φ tails with fixed (+,-,+) phases.

12 From a single Breit-Wigner fit.

		(1650) DECAY MODES	
	Mode	Fraction (Γ_j/Γ)	
Γ_1	ρπ	seen	
Γ_2	$\omega \pi \pi$	seen	
Γ ₃	e+ e-	seen	
	ω(1	650) $\Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$	
Γ(ρ:	$r) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$		Γ ₁ Γ ₃ /Γ

EVTS	DOCUMENT ID		TECN	COMMENT
435	¹³ ANTONELLI	92	DM2	1.34-2.4e ⁺ e ⁻ → hadrons
use the followin	g data for average	s, fits	, limits,	etc. • • •
	¹⁴ ACHASOV	99E	RVUE	$0.75-1.60 e^{+}_{\pi^{+}\pi^{-}\pi^{0}} e^{-} \rightarrow$
315	ANTONELLI	92	DM2	$1.34-2.4e^{+}e^{-} \rightarrow \rho\pi$
	DONNACHIE	89	RVUE	$e^+e^- \rightarrow \rho\pi$
d fit of a ≠ and	ωππ channels			
	435 use the followin	435 13 ANTONELLI use the following data for average 14 ACHASOV 315 ANTONELLI	use the following data for averages, fits 14 ACHASOV 99E 315 ANTONELLI 92 DONNACHIE 89	use the following data for averages, fits, limits, 14 ACHASOV 99E RVUE 315 ANTONELLI 92 DM2 ANTONELLI 92 DM2 ANTONELLI 92 DM2 DONNACHIE 89 RVUE

$\Gamma(\omega \pi \pi) \times \Gamma(e^{-\frac{\pi}{4}})$	$e^+e^-)/\Gamma_{\rm tota}$					$\Gamma_2\Gamma_3/\Gamma$
VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT	
170±17	435	15 ANTONELLI	92	DM2	1.34-2.4e ⁺ e ⁻	→

 $^{15}_{-1}$ From a coupled fit of $\rho\,\pi$ and $\omega\,\pi\,\pi$ channels.

¹⁶ From a single Breit-Wigner fit.

ω (1650) BRANCHING RATIOS

$\Gamma(\rho\pi)/\Gamma(\omega\pi\pi)$	Γ_1/Γ_2
VALUE	DOCUMENT ID TECN COMMENT
• • • We do not use the	ollowing data for averages, fits, limits, etc. • • •
0.17 ± 0.05	17 ACHASOV 99E RVUE $0.75-1.80 e^{+}_{\pi}e^{-}_{\pi}$
17 Using the data of	OOLINSKY 91, ANTONELLI 92, AKHMETSHIN 98, and

L'Using the data of DOLINSKY 91, ANTONELLI 92, AKHMETSHIN 98, and ACHASOV 99E. From a fit to two Breit-Wigner functions interfering between them and with the ω,ϕ tails with fixed (+,-,+) phases.

$\omega(1650)$ REFERENCES

	99E 98H	PL B462 365 PR D57 4334	M.N. Achasov et al. N.N. Achasov, A.A. Kozhevniko	(Novosibirsk SND Collab.)
	98	PL B434 426	R.R. Akhmetshin et al.	•
	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC, MCHS)
	92	ZPHY C56 15	A. Antonelli et al.	(DM2 Collab.)
	91C	ZPHY C52 227	D. Biselio et al.	(DM2 Collab.)
DOLINSKY	91	PRPL 202 99	S.I. Dolinsky et al.	(NOVO)
DONNACHIE	89	ZPHY C42 663	A. Donnachie, A.B. Clegg	(CERN, MCHS)
BISELLO	88B	ZPHY C39 13	D. Biselio et al.	(PADO, CLER, FRAS+)
BARKOV	87	JETPL 46 164	L.M. Barkov et al.	(NOVO)
		Translated from ZETFP	46 132.	
ATKINSON	83B	PL 127B 132	M. Atkinson et al.	(BONN, CERN, GLAS+)
CORDIER	81	PL 106B 155	A. Cordier et al.	(ORSAY)
IVANOV	81	PL 107B 297	P.M. Ivanov et al.	(NOVO)
ESPOSITO	80	LNC 28 195	B. Esposito et al.	(FRAS, NAPL, PADO+)
COSME	79	NP B152 215	G. Cosme et al.	(IPN)
		OTHER	RELATED PAPERS -	
		•	· · · · · - · · · · - · · · · · · ·	

ABELE	99D	PL B468 178	A. Abele et al.	(Crystal Barrel	Collab.)
BELOZEROVA	98	PPN 29 63	T.S. Belozerova, V.K. Henner	` '	,
		Translated from	FECAY 29 148.		
ACHASOV	97F	PAN 60 2029	N.N. Achasov, A.A. Kozhevnikov	(3	NOVM)
		Translated from	YAF 60 2212.		
DOLINSKY	91	PRPL 202 99	S.I. Dolinsky et al.	(NOVO)
ATKINSON	87	ZPHY C34 157	M. Atkinson et al.	(BONN, CERN, C	GLAS+)
ATKINSON	84	NP B231 15	M. Atkinson et al.	(BONN, CERN, C	GLAS+)

 $I^G(J^{PC}) = 0^-(?^{?-})$ J, P need confirmation.

OMITTED FROM SUMMARY TABLE

Observed in a study of the $\omega\eta$ effective mass distribution. Needs confirmation.

X(1650) MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	CHG_	COMMENT
1652±7	100	¹ PROKOSHKIN 96	GAM2	0	32,38 $\pi p \rightarrow \omega \eta \pi$
1 Superrador CA	MOHENKO 01				

X(1650) WIDTH

VALUE (MeV)	CL%	DOCUMENT ID	TECN	CHG	COMMENT
<50	90	² PROKOSHKIN 96	GAM2	0	32,38 $\pi p \rightarrow \omega \eta r$
² Supersedes SAI	MOILENKO 91	l .			

X(1650) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	ωη	seen	

X(1650) REFERENCES

PROKOSHKIN 96		Prokoshkin, V.D. Samoilenko	(SERP)
SAMOILENKO 91	Translated from DANS 348 48: SPD 36 473 V.D. Translated from DANS 318 136	Samoilenko	(SERP)

I

 $I^G(J^{PC}) = 1^{-}(2^{++})$

OMITTED FROM SUMMARY TABLE

92(1000)	MASS	

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1660±40	ABELE 996	CBAR	$1.94 \ \overline{p} p \rightarrow \pi^0 \eta \eta$

a₂(1660) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
280±70	ABELE	99B CBAR	$1.94 \ \overline{p} \ p \rightarrow$	$\pi^0\eta\eta$

a2(1660) DECAY MODES

Mode		Fraction (Γ_j/Γ)			
Γ1	ηπ	seen			

a₂(1660) REFERENCES

• • • • • • • • • • • • • • • • • • • •				
ABELE	99B	EPJ C8 67	A. Abele et al.	(Crystal Barrel Collab.)

 $\omega_3(1670), \pi_2(1670)$

 $\omega_{3}(1670)$

 $I^{G}(J^{PC}) = 0^{-}(3^{-})$

ωz	(1670)	MASS
-3		

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1667 ± 4 (OUR AVERAGE				
1665.3 ± 5.2 ±	4.5 23400	AMELIN	96	VE\$	$36 \pi^- \rho \rightarrow \pi^+ \pi^- \pi^0 \eta$
1685 ± 20	60	BAUBILLIER	79	HBC	8.2 K p backward
1673 ± 12	430	1,2 BALTAY	78E	HBC	$15 \pi^+ p \rightarrow \Delta 3\pi$
1650 ± 12		CORDEN	78B	OMEG	$8-12 \pi^- p \rightarrow N3\pi$
1669 ± 11	600	² WAGNER			$7 \pi^+ p \rightarrow \Delta^{++} 3\pi$
1678 ± 14	500	DIAZ	74	DBC	$6 \pi^+ n \rightarrow p 3 \pi^0$
1660 ± 13	200	DIAZ	74	DBC	$6 \pi^+ n \rightarrow \rho \omega \pi^0 \pi^0$
1679 ±17	200	MATTHEWS			$7.0 \pi^+ n \rightarrow \rho 3\pi^0$
1670 ±20		KENYON	69	DBC	$8 \pi^+ n \rightarrow p 3 \pi^0$
 • • We do not 	use the following	ig data for average	s, fits	, limits,	etc. • • •
~ 1700	110	¹ CERRADA	77B	нвс	$4.2 K^- p \rightarrow \Lambda 3\pi$
1695 ± 20		BARNES	69B	нвс	4.6 $K^-p \rightarrow \omega 2\pi X$
1636 ± 20		ARMENISE	68B	DBC	$5.1 \pi^{+} n \rightarrow \rho 3\pi^{0}$
¹ Phase rotatio	n seen for $J^P =$	3 - οπ wave.			
2	4/ 1P) 0/0=>				

² From a fit to $I(J^P) = 0(3^+) \rho \pi$ partial wave.

ω_3 (1670) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
168±10 OUR AVERAG	E				
$149 \pm 19 \pm 7$	23400	AMELIN	96	VES	$36 \pi^- p \rightarrow \pi^+ \pi^- \pi^0 r$
160 ± 80	60	³ BAUBILLIER	79	HBC	8.2 K^-p backward
173 ± 16	430	4,5 BALTAY	78E	HBC	$15 \pi^+ \rho \rightarrow \Delta 3\pi$
253±39		CORDEN	78B	OMEG	$8-12 \pi^- p \rightarrow N3\pi$
173 ± 28	600	3,5 WAGNER	75	HBC	$7 \pi^+ p \rightarrow \Delta^{++} 3\pi$
167 ± 40	500	DIAZ	74	DBC	$6 \pi^+ n \rightarrow p 3 \pi^0$
122 ± 39	200	DIAZ	74	DBC	$6 \pi^+ n \rightarrow p \omega \pi^0 \pi^0$
$\textbf{155} \pm \textbf{40}$	200	³ MATTHEWS	71D	DBC	$7.0 \pi^+ \pi \rightarrow \rho 3\pi^0$
• • • We do not use th	ne followii	ng data for averages	s, fits	, limits,	etc. • • •
90 ± 20		BARNES	69B	нвс	$4.6 K^- p \rightarrow \omega 2\pi$
100 ± 40		KENYON	69	DBC	$8 \pi^+ n \rightarrow p 3 \pi^0$
112±60		ARMENISE	68B	DBC	$5.1 \pi^{+} n \rightarrow \rho 3\pi^{0}$

 $^{^3}$ Width errors enlarged by us to $4\Gamma/\sqrt{N};$ see the note with the $K^*(892)$ mass. 4 Phase rotation seen for $J^P=3^ \rho\pi$ wave. 5 From a fit to $I(J^P)=0(3^-)$ $\rho\pi$ partial wave.

ω_3 (1670) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ_1	ρπ	seen	
Γ_2	$\omega\pi\pi$	seen	
Γ_3	$b_1(1235)\pi$	possibly seen	

ω_3 (1670) BRANCHING RATIOS

$\Gamma(\omega\pi\pi)/\Gamma(\rho\pi)$						Γ_2/Γ_1
VALUE	EVT5	DOCUMENT ID		TECN	COMMENT	
• • • We do not use	the followin	g data for average	s, fit	s, limits,	etc. • • •	
0.71 ± 0.27	100	DIAZ	74	DBC	$6~\pi^+n\to$	$\rho 5\pi^0$
$\Gamma(b_1(1235)\pi)/\Gamma(\rho$	rπ)	OCCUMENT IO		TECN	COMMENT	Γ_3/Γ_1
VALUE		DOCUMENT ID		TECN	COMMENT	^
possibly seen		DIAZ	74	DBC	$6 \pi^+ n \rightarrow$	ρ5π ⁰
$\Gamma(b_1(1235)\pi)/\Gamma(\omega$	/ππ)					Γ_3/Γ_2
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
• • • We do not use	the followin	g data for average	es, fit	s, limits	etc. • • •	

·0.75	68	BAUBILLIER	79	HBC	8.2 K

ω₃(1670) REFERENCES

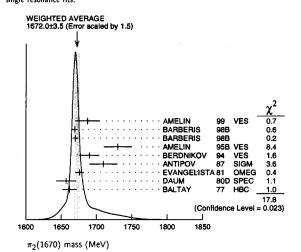
- p backward

AMELIN	96	ZPHY C70 71	D.V. Amelin et al.	(SERP, TBIL)	
BAUBILLIER	79	PL 89B 131	M. Baubillier et al. (BIRM,	CÈRN, GLAS+)	
BALTAY	78E	PRL 40 87	C. Baltay, C.V. Cautis, M. Kalelkar	(COLU) JI	ŕ
CORDEN	78B	NP B138 235	M.J. Corden et al. (BIRM,	RHEL, TELA+)	
CERRADA	77B	NP B126 241	M. Cerrada et al. (AMST,	CERN, NIJM+) JI	ŕ
WAGNER	75	PL 58B 201	F. Wagner, M. Tabak, D.M. Chew	(LBL) JI	ŕ
DIAZ	74	PRL 32 260	J. Diaz et al.	(CASE, ČMU)	
MATTHEWS	71D	PR D3 2561	J.A.J. Matthews et al.	(TNTO, WISC)	
BARNE\$	69B	PRL 23 142	V.E. Barnes et al.	` (BNL)	
KENYON	69	PRL 23 146	I.R. Kenyon et al. (BNL	, UCND, ORNL)	
ARMENISE	68B	PL 26B 336	N. Armenise et al. (BARI,	BGNA, FIRZ+)	

- OTHER RELATED PAPERS -

	OTHER RECATED TAI ERS						
MATTHEWS		LNC 1 361	J.A.J. Matthews <i>et al.</i>	(TNTO, WISC)			
ARMENISE		LNC 4 199	N. Armenise <i>et al.</i>	(BARI, BGNA, FIRZ)			

 $\pi_2(1670)$


 $I^{G}(J^{PC}) = 1^{-}(2^{-})$

π₂(1670) MASS

VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1670	±20	OUR ESTIMATE	This is only an	educa	ted gue	ss; the	error given is larger
			than the erro	or on	the ave	rage o	f the published values
1672.0	D± 3.5	OUR AVERAGE	Error includes sca	ale fa	ctor of	1.5. Se	e the ideogram below
1687	± 9	±15	AMELIN	99	VES		$37 \pi^- A \rightarrow \omega \pi^- \pi^0 A^*$
1669	± 4		BARBERIS	98B			450 $pp \rightarrow p_f \rho \pi p_S$
1670	± 4		BARBERIS	98B			450 $pp \to p_f f_2(1270) \pi p_g$
1730	±20		1 AMELIN	95B	VES		$\begin{array}{c} 36 \pi^- A \rightarrow \\ \pi^+ \pi^- \pi^- A \end{array}$
1690	±14		² BERDNIKOV	94	VES		$37 \pi^{-} A \rightarrow K^{+} K^{-} \pi^{-} A$
1710	±20	700	ANTIPOV	87	SIGM	-	50 π Cu → μ+μ π Cu
1676	± 6		² EVANGELISTA	81	OMEG	_	$12 \pi^- p \rightarrow 3\pi p$
1657	±14	2	2,3 DAUM		SPEC	_	$63-94 \pi D \rightarrow 3\pi X$
1662	± 10	2000	2 BALTAY	77	HBC	+	$15 \pi^+ p \rightarrow p 3\pi$
	We do	not use the follow					
1742	± 31	±49	ANTREASYAN	90	CBAL	·	$e^{+}e^{-}_{e^{+}e^{-}\pi^{0}\pi^{0}\pi^{0}}$
1624	± 21		⁴ BELLINI	85	SPEC		$40 \pi^- A \rightarrow$
1622	±35		⁵ BELLINI	85	SPEC		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1693	± 28		6 BELLINI	85	SPEC		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1710	± 20		7 DAUM	81B	SPEC	_	$\pi^{-}\pi^{+}\pi^{-}A$ 63,94 $\pi^{-}p$
1660	± 10		² ASCOLI	73	нвс	_	5-25 π ⁻ p → pπ ₂

¹ From a fit to $J^{PC} = 2^{-} + f_2(1270)\pi$, $f_0(1370)\pi$ waves.

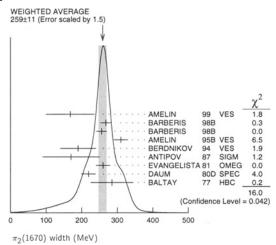
 $^{^{7}}$ From a two-resonance fit to four $2^{-0}{}^{+}$ waves. This should not be averaged with all the single resonance fits.

$\pi_2(1670)$ WIDTH

VALUE (MeV)	EVTS		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
259± 11 OUR AVE	RAGE	Error	includes scale f	actor	of 1.5.	See th	e ideogram below.
168± 43±53			AMELIN	99	VES		$37 \frac{\pi^- A}{\omega \pi^- \pi^0 A^*}$
268 ± 15			BARBERIS	98B			$450 pp \rightarrow p_f \rho \pi p_s$
256 ± 15			BARBERIS	98B			450 pp →
							$p_f f_2(1270) \pi p_S$
310± 20		8	AMELIN	95B	VES		36 $\pi^- A \rightarrow$
		۵		_			$\pi^+\pi^-\pi^-A$
190± 50		,	BERDNIKOV	94	VES		$37 \pi^- A \rightarrow K^+ K^- \pi^- A$
170± 80	700		ANTIPOV	87	SIGM		K 'K π A 50 π Cu →
1107 90	700		ANTII OV	0,	310101	_	$\mu^+\mu^-\pi^-$ Cu
260± 20		9	EVANGELISTA	81	OMEG	_	$12 \pi^- p \rightarrow 3\pi p$
219± 20			DAUM		SPEC		$63-94 \pi p \rightarrow 3\pi X$
						_	
285 ± 60	2000	9	BALTAY	77	HBC	+	$15 \pi^+ \rho \rightarrow \rho 3\pi$

² From a fit to $J^P = 2^-$ S-wave $f_2(1270)\pi$ partial wave.

 $^{^3}$ Clear phase rotation seen in 2 – 5, 2 – *P*, 2 – *D* waves. We quote central value and spread of single-resonance fits to three channels. 4 From $f_2(1270)\,\pi$ decay.


 $^{^{5}}$ From $\rho\pi$ decay. 6 From $\sigma\pi$ decay.

 $\Gamma_1/\Gamma = (\Gamma_2 + \Gamma_3 + \Gamma_5)/\Gamma$

• • • We do not use the follow	wing data for avera	ges,	fits, limits, etc	. • • •
236± 49±36	ANTREASYAN	90	CBAL	$e^{+}e^{-}_{e^{+}e^{-}\pi^{0}\pi^{0}\pi^{0}}$
304± 22	¹¹ BELLINI	85	SPEC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
404±108	12 BELLINI	85	SPEC	$ \begin{array}{c} \pi^-\pi^+\pi^-A \\ 40 \pi^-A \rightarrow \\ \pi^-\pi^+\pi^-A \end{array} $
330 ± 90	¹³ BELLINI	85	SPEC	$ \begin{array}{ccc} \pi^-\pi^+\pi^-A \\ 40 & \pi^-A \rightarrow \\ \pi^-\pi^+\pi^-A \end{array} $
312± 50	¹⁴ DAUM	81B	SPEC -	π ⁻ π ⁺ π ⁻ Α 63,94 π ⁻ ρ
270 ± 60	⁹ ASCOLI	73	HBC -	$5-25 \pi^{-} p \rightarrow p \pi_{2}$
8 From a fit to IPC - 2 - 4	f=/1270\= f=/13	701 -	- พวบคร	-

⁸ From a fit to $J^{PC} = 2^{-+} f_2(1270)\pi$, $f_0(1370)\pi$ waves.

 $^{^{14}}$ From a two-resonance fit to four 2^-0^+ waves. This should not be averaged with all the single resonance fits.

$\pi_2(1670)$ DECAY MODES

	Mode	Fraction (Γ_j/Γ)	Confidence level
$\overline{\Gamma_1}$	3π	(95.8±1.4) %	
Γ_2	$f_2(1270)\pi$	(56.2 ± 3.2) %	
Γ3	$ ho\pi$	(31 ±4)%	
Γ_4	$\sigma\pi$	(13 ±6)%	
Γ_5	$f_0(1370)\pi$	(B.7±3.4) %	
Γ ₆	K K*(892) + c.c.	(4.2±1.4) %	
Γ7	$\omega \rho$	(2.7 ± 1.1) %	
Γ8	$\gamma \gamma$		
Γ۹	$\eta \pi$		
Γ_{10}	$\pi^{\pm} 2\pi^{+} 2\pi^{-}$		
	$\rho(1450)\pi$		0 ⁻³ 97.7%
Γ ₁₂	$b_1(1235)\pi$	< 1.9 × 1	0-3 97.7%

CONSTRAINED FIT INFORMATION

An overall fit to 4 branching ratios uses 6 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=1.9$ for 3 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

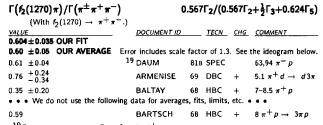
$$\begin{array}{c|ccccc}
x_3 & -53 & & \\
x_5 & -29 & -59 & & \\
x_6 & -8 & -21 & -9 & \\
& x_2 & x_3 & x_5 & & \\
\end{array}$$

#2(1670) PARTIAL WIDTHS

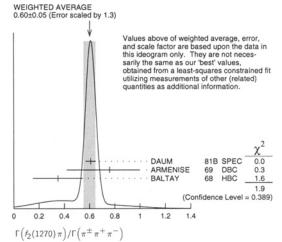
· (77)						1 8
VALUE (keV)	CL%	DOCUMENT ID		TECN	CHG	COMMENT
<0.072	90	¹⁵ ACCIARRI	97⊤	L3		$e^+e^+ \rightarrow - 0$
< 0.19	90	¹⁵ ALBRECHT	97в	ARG		$e^{+}e^{-}\pi^{+}\pi^{-}\pi^{0}$ $e^{+}e^{-}\rightarrow$ $e^{+}e^{-}\pi^{+}\pi^{-}\pi^{0}$
• • • We do not u	se the fo	llowing data for ave	rages	, fits, lir	nits, el	
1.41 ±0.23±0.2	8	ANTREASYAN	1 90	CBAL	0	$e^{+}e^{-}_{e^{+}e^{-}\pi^{0}\pi^{0}\pi^{0}}$
$0.8 \pm 0.3 \pm 0.1$	2	¹⁶ BEHREND	90c	CELL	0	$e^+e^- \rightarrow 0$
1.3 ±0.3 ±0.2	<u>:</u>	17 BEHREND	90c	CELL	0	$e^+e^- \rightarrow - 0$
15						$e^+e^-\pi^+\pi^-\pi^0$

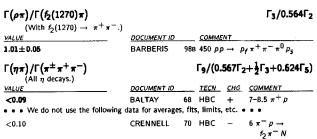
¹⁵ Decaying into $f_2(1270)\pi$ and $\rho\pi$.

 $\Gamma(3\pi)/\Gamma_{\text{total}}$


VALUE

-/ \


π2(1670) BRANCHING RATIOS


DOCUMENT ID

0.958±0.014 OUR FIT				
$\Gamma(\rho\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-})$		$\frac{1}{2}\Gamma_3/(0.$.5 67 Г;	2+ ¹ / ₂ Γ ₃ +0.624Γ ₅)
VALUE	DOCUMENT ID	TECN	CHG	COMMENT
0.29 ± 0.04 OUR FIT				
0.29 ± 0.05	18 DAUM	81B SPEC		63,94 $\pi^- p$
• • • We do not use the fol	lowing data for averag	es, fits, limits	, etc. •	
< 0.3	BARTSCH	68 HBC	+	$8 \pi^+ \rho \rightarrow 3\pi \rho$
18 From a two-resonance fit	to four 2 ⁻ 0 ⁺ waves.			

 $^{19}\mathrm{From}$ a two-resonance fit to four $^{2-0+}$ waves.

⁹ From a fit to $J^P = 2^- f_2(1270) \pi$ partial wave.

 $^{^{10}}$ Clear phase rotation seen in 2^- S, $2^-P_{\rm c}$ 2^-D waves. We quote central value and spread of single-resonance fits to three channels.

 $^{^{11}}$ From $f_2(1270)\pi$ decay.

 $^{^{12}}$ From $ho\pi$ decay.

¹³ From $\sigma\pi$ decay.

¹⁶ Constructive interference between $f_2(1270)\pi, \rho\pi$ and background.

¹⁷ Incoherent Ansatz.

 $\pi_2(1670), \phi(1680)$

	$\Gamma_{10}/(0.567\Gamma_2 + \frac{1}{2}\Gamma_3 + 0.624\Gamma_5)$ DOCUMENT ID TECN CHG COMMENT	$\phi(1680)$	1 ^G ($(J^{PC}) = 0^{-}(1^{-})$
(0.10	CRENNELL 70 HBC $-6\pi^-p \rightarrow f_2\pi^-N$			
0.1	BALTAY 68 HBC + $7.8.5 \pi^{+} p$		φ(1680) MA	NSS
$\rho(1450)\pi)/\Gamma_{\text{total}}$	Γ ₁₁ /Γ	e+e- PRODUCTION		
•	DOCUMENT ID TECN COMMENT	VALUE (MeV) EVT. 1680 ± 20 OUR ESTIMATE		TECN COMMENT
).0036 97.7	AMELIN 99 VES $37 \pi^- A \rightarrow \omega \pi^- \pi^0 A^*$	1681± 8 OUR AVERAGE		
$b_1(1235)\pi)/\Gamma_{\text{total}}$	Γ ₁₂ /Γ	1700 ± 20	¹ CLEGG	94 RVUE $e^+e^- \rightarrow K^+K^-$
	DOCUMENT ID TECN COMMENT	1657±27 36	7 BISELLO	$K_S^0 K_\pi$ 91c DM2 $e^+e^- \rightarrow K_S^0 K^\pm i$
	AMELIN 99 VES $37 \pi^- A \rightarrow \omega \pi^- \pi^0 A^*$	1680 ± 10	² BUON	82 DM1 $e^+e^- \rightarrow hadrons$
$(6(1370)\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-})$	$0.624\Gamma_5/(0.567\Gamma_2 + \frac{1}{2}\Gamma_3 + 0.624\Gamma_5)$	• • We do not use the foll		
(With $f_0(1370) \rightarrow \pi^+\pi^-$.)	DOCUMENT ID TECN COMMENT	~ 1500	³ ACHASOV	98H RVUE $e^+e^- \rightarrow \pi^+\pi^-\pi^+$ $\omega \pi^+\pi^-$, K^+K^-
±0.04 OUR FIT		~ 1900	4 ACHASOV	98H RVUE $e^{+\stackrel{\circ}{e}^{-}} \rightarrow K_5^0 K^{\stackrel{\circ}{\pm}}$
	DAUM 81B SPEC 63,94 π ⁻ ρ	1655±17 1677±12	⁵ BISELLO ⁶ MANE	88B DM2 $e^+e^- \rightarrow K^+K^-$ 82 DM1 $e^+e^- \rightarrow K^0_S K \pi$
From a two-resonance fit to four 2	2 ⁻⁰⁺ waves.		MANE	$02 DMI e^+e^- \rightarrow K_{\tilde{S}}^- K_{\tilde{X}}^-$
K K *(892) + c.c.)/Γ(f ₂ (1270)		PHOTOPRODUCTION VALUE (MeV)	DOCUMENT ID	TECN COMMENT
UE 75±0.025 OUR FIT	DOCUMENT ID TECN CHG COMMENT	• • We do not use the foll		
	ARMSTRONG 828 OMEG - 16 $\pi^- p$ \rightarrow	1726 ± 22	BUSENITZ	89 TPS $\gamma p \rightarrow K^+K^-X$
	κ+κ-π-ρ	1760 ± 20 1690 ± 10	ATKINSON ASTON	85C OMEG 20-70 $\gamma p \rightarrow K \overline{K} \times$ 81F OMEG 25-70 $\gamma p \rightarrow K^+ K$
From a partial-wave analysis of K	$^{T}K^{-}\pi^{-}$ system.	¹ Using BISELLO 88B and		51. OMEG 25-10 γ p → K · N
υρ)/Γ _{total}	Γ ₇ /Γ	² From global fit of ρ , ω .	φ and their radial exc	citations to channels $\omega\pi^+\pi^-$, K^+
	DOCUMENT ID TECN COMMENT AMELIN 99 VES $37 \pi^- A \rightarrow \omega \pi^- \pi^0 A^*$	$K_S^0 K_L^0$, $K_S^0 K^{\pm} \pi^{\mp}$. Assolions, mass 1570 and wid	sume mass 1570 MeV	and width 510 MeV for ρ radial ex
rπ)/Γ(f ₂ (1270)π)	AMELIN 99 VES 31 π $A \rightarrow \omega \pi$ π A Γ_4/Γ_2	³ Using data from IVANO\ TONELLI 92.	V 81, BARKOV 87, E	BISELLO 88B, DOLINSKY 91, and
UE	DOCUMENT ID TECN COMMENT	4 Using the data from BISE		accume mace 1570 MeV and width
4±0.10 24,25	BAKER 99 SPEC 1.94 $\overline{p}p \rightarrow 4\pi^0$	MeV for ρ radial excitation		assume mass 1570 MeV and width
		INICA IOI P INGINI CACITATIO	on.	
wave/S-wave RATIO FOR #2	$(1670) \rightarrow f_2(1270)\pi$	⁶ Fit to one channel only, n		with ω , $\rho(1700)$.
0.18±0.06 24	$(1670) \rightarrow f_2(1270)\pi$ DOCUMENT ID TEON EACH BAKER 99 SPEC 1.94 $\bar{p}p \rightarrow 4\pi^0$ ata for averages, fits, limits, etc. • •	⁶ Fit to one channel only, n		
UE 24 1.18±0.06 24 1.00 • We do not use the following do 1.22±0.10 22 2.25 From a two-resonance fit to four: 2.25 Normalized to the B(π_2 (1670) → 2.26 Using preliminary CBAR data.	DOCUMENT ID TECN COMMENT BAKER 99 SPEC $1.94 \ \overline{p} p \rightarrow 4\pi^0$ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC $63,94 \ \pi^- p$ 2^{-0} waves. • • •	e ⁺ e ⁻ PRODUCTION MALUE (MeV) EVT	φ(1680) WIE S DOCUMENT ID This is only an educat the error on t	TECN COMMENT ted guess; the error given is larger the average of the published values. tes, fits, limits, etc. • • •
24.1.8±0.06 24 • • We do not use the following do 0.22 ± 0.10 22 2 From a two-resonance fit to four 0.38 Normalized to the 0.38 Viiii preliminary CBAR data.	DOCUMENT ID TECN COMMENT BAKER 99 SPEC $1.94 \ \overline{p} p \rightarrow 4\pi^0$ ata for averages, fits, limits, etc. • • DAUM 81B SPEC $63,94 \ \pi^- p$ 2^-0^+ waves. $f_2\pi$). $270)\pi$ in $L=0$.	e+e- PRODUCTION VALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60	φ(1680) WIE S DOCUMENT ID This is only an educat the error on the ordinate of the ordinate of the profession of the profession of the ordinate of the profession of the ordinate of the ord	TECN COMMENT ted guess; the error given is larger the average of the published values. 94 RVUE $e^+e^- \rightarrow K^+K^ K_S^0 K \pi$
24.1.8±0.06 24 • • We do not use the following do 0.22 ± 0.10 22 2 From a two-resonance fit to four 0.38 Normalized to the 0.38 Viiii preliminary CBAR data.	DOCUMENT ID TECN COMMENT BAKER 99 SPEC $1.94 \ \overline{p} p \rightarrow 4\pi^0$ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC $63,94 \ \pi^- p$ 2^{-0} waves. • • •	e+e- PRODUCTION WALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll	φ(1680) WIE S DOCUMENT ID This is only an educat the error on the order of the thickness of the property of	TECN COMMENT ted guess; the error given is larger the average of the published values. ges, fits, limits, etc. • • 94 RVUE $e^+e^- \rightarrow K^+K^-$
UE 1.18±0.06 • We do not use the following do 2.22±0.10 From a two-resonance fit to four the Normalized to the B(π_2 (1670) → Using preliminary CBAR data. With the $\sigma \pi$ in L =2 and the f_2 (1 π_2 (168	DOCUMENT ID TECN COMMENT BAKER 99 SPEC $1.94 \bar{p}p \rightarrow 4\pi^0$ ata for averages, fits, limits, etc. • • • DAUM B1B SPEC $63,94 \pi^-p$ 2^-0^+ waves. $f_2\pi$). 270) π in $L=0$. 570) REFERENCES D.V. Amelin et al. (VES Collab.)	e+e- PRODUCTION WALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22	φ(1680) WIE S DOCUMENT ID This is only an educat the error on tolowing data for average 7 CLEGG BISELLO	TECN COMMENT the average of the published values. ges, fits, limits, etc. • • • 94 RVUE $e^+e^- \rightarrow K^+K^ K^0_S K \pi$ 91c DM2 $e^+e^- \rightarrow K^+K^+$ 888 DM2 $e^+e^- \rightarrow K^+K^-$ 82 DM1 $e^+e^- \rightarrow hadrons$
UE 1.18±0.06 • We do not use the following do .22±0.10 From a two-resonance fit to four: Normalized to the B(π_2 (1670) → Using preliminary CBAR data. With the $\sigma \pi$ in L=2 and the f_2 (1 Translated from YAF 6: Translated from YAF 6: GER 99 PAN 62 445 Translated from YAF 6: TRANSLATED THE 99 PAN 62 445 Translated from YAF 6: TRANSLATED THE 99 PAN 62 445	DOCUMENT ID TECN COMMENT BAKER 99 SPEC $1.94 \bar{p} p \rightarrow 4\pi^0$ ata for averages, fits, limits, etc. • • • DAUM B1B SPEC $63,94 \pi^- p$ 2^-0^+ waves. $f_2\pi$). 270) π in $L=0$. 570) REFERENCES D.V. Amelin et al. (VES Collab.) 2 487. C.A. Baker et al.	e+e- PRODUCTION WALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36	φ(1680) WIE S DOCUMENT ID This is only an educat the error on tolowing data for average 7 CLEGG BISELLO BISELLO BISELLO	TECN COMMENT ted guess; the error given is larger the average of the published values. tes, fits, limits, etc. 94 RVUE $e^+e^- \rightarrow K^0_S K^-\pi$ 91c DM2 $e^+e^- \rightarrow K^0_S K^\pm$ 888 DM2 $e^+e^- \rightarrow K^+K^-$
UE 1.18±0.06 • We do not use the following do .22±0.10 22 From a two-resonance fit to four: Normalized to the B(π_2 (1670) → Using preliminary CBAR data. With the $\sigma\pi$ in L =2 and the f_2 (1 Taglian of the second o	DOCUMENT ID TECN COMMENT BAKER 99 SPEC $1.94 \ \overline{p} p \rightarrow 4\pi^0$ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC $63,94 \pi^- p$ 270 π in $L=0$. TO) REFERENCES D.V. Amelin et al. C.A. Baker et al. D. Barberis et al. WA102 Collab.) (WA102 Collab.) M. Acciarri et al. (WA102 Collab.)	e+e- PRODUCTION WALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION	φ(1680) WIE S DOCUMENT ID This is only an educat the error on tolowing data for average 7 CLEGG BISELLO 8 BISELLO 9 BUON 10 MANE	TECN COMMENT the average of the published values. Tech RVUE $e^+e^- \rightarrow K^0_S K^\pm$ 191 DM2 $e^+e^- \rightarrow K^0_S K^\pm$ 188 DM2 $e^+e^- \rightarrow K^0_S K^\pm$ 192 DM1 $e^+e^- \rightarrow K^0_S K^\pm$
UE 1.18 ± 0.06 • We do not use the following da 22 ± 0.10 22 ± 0.10 From a two-resonance fit to four: Normalized to the B(π_2 (1670) → Using preliminary CBAR data. With the $\sigma\pi$ in L=2 and the f_2 (1 1.11 1.12 1.13 1.14 1.15	DOCUMENT ID TECN COMMENT BAKER 99 SPEC $1.94 \bar{p} p \rightarrow 4\pi^0$ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC $63,94 \pi^- p$ 270 + waves. $f_2\pi$). 270) REFERENCES D.V. Amelin et al. C.A. Baker et al. D. Barberis et al. M. Acciarri et al. H. Albrecht et al. (WA102 Collab.) (L3 Collab.) H. Albrecht et al. (ARGUS Collab.) (ARGUS Collab.) O.V. Amelin et al. (SERP, TBIL)	e+e-PRODUCTION VALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV)	φ(1680) WIE S DOCUMENT ID This is only an educat the error on tollowing data for average 7 CLEGG BISELLO 8 BISELLO 9 BUON 10 MANE DOCUMENT ID	TECN COMMENT the guess; the error given is larger the average of the published values. The saverage of the published values. The sa
18±0.06 • We do not use the following do 22±0.10 22 Erom a two-resonance fit to four: Normalized to the $B(\pi_2(1670) \rightarrow Using preliminary CBAR data.$ With the $\sigma\pi$ in $L=2$ and the $f_2(1670)$ ### This implies the series of the series	DOCUMENT ID TECN COMMENT BAKER 99 SPEC $1.94 \bar{p}p \rightarrow 4\pi^0$ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC $63,94 \pi^-p$ 270 + waves. $f_2\pi$). 270) π in $L=0$. D. V. Amelin et al. 2 487. C.A. Baker et al. D. Barberis et al. H. Albrecht et al. L.3 Collab. H. Albrecht et al. L.3 Collab. (ARGUS Collab.) (SERP, TBIL) E.B. Berdnikov et al. D. Anterasyan et al. (Crystal Ball Collab.) (GERP, TBIL) (Crystal Ball Collab.)	• • • We do not use the followed by the state of the stat	φ(1680) WIE S DOCUMENT ID This is only an educat the error on tollowing data for average 7 CLEGG BISELLO 8 BISELLO 9 BUON 10 MANE DOCUMENT ID LOWING data for average 10 MANE	TECN COMMENT ted guess; the error given is larger the average of the published values. The stage of
18±0.06 • We do not use the following do 22±0.10 22 Evaluation 22 Evaluation 22 Evaluation 22 Evaluation 24 • We do not use the following do 22±0.10 22 Evaluation 22 Evaluation 22 Using preliminary CBAR data. With the $\sigma \pi$ in $L=2$ and the f_2 (10 Evaluation 24 Franciscular from YAF 6: 10 Evaluation 24 Evaluation 24 Franciscular from YAF 6: 10 Evaluation 24 Franciscular from YAF 6: 10 Evaluation 24 Franciscular from YAF 6: 10 Evaluation 24 Evaluation 24 Franciscular from YAF 6: 10 Evaluation 24 Evaluation 25 Evaluation 25 Evaluation 25 Evaluation 25 Franciscular from YAF 6: 10 Evaluation 25 Evaluation 26 Franciscular from YAF 6: 10 Evaluation 27 Evaluation 27 Franciscular from YAF 6: 10 Evaluation 27 Evalu	DOCUMENT ID TECN COMMENT BAKER 99 SPEC 1.94 $\overline{p}p \rightarrow 4\pi^0$ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π^-p 270) π in $L=0$. 270) π in $L=0$. TON THE PROPER INC. D. V. Amelin et al. 2 487. C.A. Baker et al. D. Barberis et al. H. Albrecht et al. L. ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) LE.B. Berdnikov et al. D. Anterasyan et al. H.J. Behrend et al. (Crystal Ball Collab.) (Crystal Ball Collab.) (Crystal Ball Collab.) (CREP., TBIL.)	e+e-PRODUCTION VALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV)	φ(1680) WIE S DOCUMENT ID This is only an educat the error on tollowing data for average 7 CLEGG BISELLO 8 BISELLO 9 BUON 10 MANE DOCUMENT ID	TECN COMMENT ted guess; the error given is larger the average of the published values. 94 RVUE $e^+e^- \rightarrow K^+K^ K^0_S K \pi$ 91c DM2 $e^+e^- \rightarrow K^+K^-$ 88 DM2 $e^+e^- \rightarrow K^+K^-$ 82 DM1 $e^+e^- \rightarrow K^0_S K \pi$ DM1 $e^+e^- \rightarrow K^0_S K \pi$ TECN COMMENT Tes, fits, limits, etc. • • • 89 TPS $\gamma p \rightarrow K^+K^- X$ 85c OMEG $20-70 \gamma p \rightarrow K \overline{K} \rangle$
UE 1.18±0.06 • We do not use the following day 2.2±0.10 22 From a two-resonance fit to four: Normalized to the B(π_2 (1670) → Using preliminary CBAR data. With the σ π in L =2 and the f_2 (1 Tanslated from YAF 6: ELIN 99 PAN 62 445 Translated from YAF 6: ELIN 99 PAN 62 445 Translated from YAF 6: ELIN 99 PAN 62 445 Translated from YAF 6: ELIN 99 PAN 62 65 FRECHT 99 PL 8439 114 91 BERIS 98B PL 8336 595 DNIKOV 94 PL B337 219 FRECHT 99 PAN 62 465 Translated from YAF 6: ELIN 99 PL 8337 219 FRECHT 90 PL 94	BAKER 99 SPEC $1.94 \ \overline{p} \ p \rightarrow 4\pi^0$ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC $63,94 \ \pi^- p$ 2^-0^+ waves. $f_2\pi$). 270) π in $L=0$. 370) REFERENCES D.V. Amelin et al. 2 487. C.A. Baker et al. D. Barberis et al. H. Albrecht et al. D.V. Amelin et al. (WA102 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ARGUS Collab.) (ARGUS Collab.) (SERP, TBIL) (E.B. Berdnikov et al. D. Anterasyon et al. H.J. Behrend et al. (Crystal Ball Collab.) (L3 Collab.) (SERP, TBIL) (GERP, TBIL) (CRYSTAL BAIL COllab.) (CELLO Collab.) (CELLO Collab.) (SERP, JINR, INRM+) (Bellini et al.)	e+e-PRODUCTION WALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV) • • We do not use the foll 121±47 80±40 100±40	peglecting interference \$\phi(1680)\$ WIE This is only an educate the error on the	TECN COMMENT ted guess; the error given is larger the average of the published values. 94 RVUE $e^+e^- \rightarrow K^+K^-$ 88 DM2 $e^+e^- \rightarrow K^0_S K^\pm$ 88 DM2 $e^+e^- \rightarrow K^0_S K^\pm$ 82 DM1 $e^+e^- \rightarrow K^0_S K^\pm$ 65 TECN COMMENT Tecs, fits, limits, etc. • • • 89 TPS $\gamma p \rightarrow K^+K^- X$
UE 1.18±0.06 24 1.20±0.10 25 26 From a two-resonance fit to four: 27 28 From a two-resonance fit to four: 29 Normalized to the B(π_2 (1670) → 20 Using preliminary CBAR data. 20 With the $\sigma\pi$ in L=2 and the f_2 (10 20 From a two-resonance fit to four: 20 Normalized to the B(π_2 (1670) → 30 Using preliminary CBAR data. 20 With the $\sigma\pi$ in L=2 and the f_2 (10 20 ELIN 20 PAN 62 445 21 Translated from YAF 6: 21 PHY C74 469 22 PHY C74 469 23 PHY C74 469 24 PH 2337 249 25 PHY C74 469 26 PHY C46 563 27 PHY C46 563 28 PHY C46 563 28 PHY C46 563 28 PHY C76 563 28 PHY C76 563 27 PHY C76 563 27 PHY C46 563 28 PHY C46 563 28 PHY C46 563 28 PHY C46 563 38 PHY B18 PHY B18 22 69	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ p → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π ⁻ p 2-0+ waves. ½π). 270)π in L=0. 370) REFERENCES D.V. Amelin et al. 2 487. Baker et al. D. Barberis et al. H. Albrecht et al. L.3 (Collab.) 1 (ARGUS Collab.) 2 LEB. Berdnikov et al. L.4 (SERP, TBIL) L.5 (Crystal Bail Collab.) H.J. Behrend et al. H.J. Behrend et al. G. Bellini et al. 1 (CELLO Collab.) 2 (CELLO Collab.) 2 (CELLO Collab.) 2 (CELLO Collab.) 3 (CELLO Collab.) 4 (CELLO Collab.) 2 (CELLO Collab.) 3 (CELLO Collab.) 4 (CELLO Collab.) 2 (CELLO Collab.) 3 (CELLO Collab.) 4 (CELLO Collab.)	6 Fit to one channel only, in e+e-PRODUCTION VALUE (MeV) EVT 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 36 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV) • • We do not use the foll 121±47 80±40 100±40 7 Using BISELLO 888 and	φ(1680) WIE S DOCUMENT ID This is only an educat the error on tolowing data for average 7 CLEGG BISELLO 8 BISELLO 9 BUON 10 MANE DOCUMENT ID LOWING data for average BUSENITZ ATKINSON ASTON MANE 82 data.	TECN COMMENT ted guess; the error given is larger the average of the published values. 94 RVUE $e^+e^- \rightarrow K^+K^ K^0_S K \pi$ 91c DM2 $e^+e^- \rightarrow K^+K^-$ 88 DM2 $e^+e^- \rightarrow K^+K^-$ 82 DM1 $e^+e^- \rightarrow K^0_S K \pi$ DM1 $e^+e^- \rightarrow K^0_S K \pi$ TECN COMMENT Tes, fits, limits, etc. • • • 89 TPS $\gamma p \rightarrow K^+K^- X$ 85c OMEG $20-70 \gamma p \rightarrow K \overline{K} \rangle$
UE 1.18±0.06 24 1.18±0.06 • We do not use the following dia .22±0.10 22 25 From a two-resonance fit to four: Normalized to the $B(\pi_2(1670) \rightarrow 0)$ Using preliminary CBAR data. 26 With the $\sigma\pi$ in L=2 and the $f_2(1670)$ Translated from YAF 6: ELIN 99 PAN 62 445 Translated from YAF 6: ER 99 PL 849 114 RECHT 97B PL 849 114 RECHT 97B PL 8436 5915 Translated from YAF 4 85TRONG 812B NF 8186 197 Also 81B NF 8186 197 NF 8176 197 Also 81B NF 8186 594	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ρ → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π ⁻ ρ 270 + waves. ½π). 270)π in L=0. 370) REFERENCES D.V. Amelin et al. 2 kall. 2 call. 3 call. 4 Albrecht et al. 4 (WA102 Collab.) 4 Ascolarri et al. 4 (ARGUS Collab.) 5 Call. 4 Albrecht et al. 5 Call. 5 Call. 6 Belini et al. 6 Belini et al. 1 (CELLO Collab.) 6 Belini et al. 1 (SERP, TBIL) 6 Gellini et al. 1 (CELLO Collab.) 7 CA. Armstrong et al. 6 Belini et al. 1 (CELLO Collab.) 7 Call. 7 Call. 8 (CERP, TBIL) 9 CERP, TBIL 9 CERP, TBIL 1 (CELLO Collab.) 2 (CELLO Collab.) 2 (CELLO Collab.) 2 (CELLO Collab.) 2 (CELLO Collab.) 3 (CELLO Collab.) 3 (CELLO Collab.) 4 (CELLO Collab.)	e+e-PRODUCTION WALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION WALUE (MeV) • • We do not use the foll 121±47 80±40 100±40 7 Using BISELLO 888 and 8 From global fit including 9 From global fit of ρ , ω ,	## (1680) WIE ## (1	TECN COMMENT ted guess; the error given is larger the average of the published values. 94 RVUE $e^+e^- \rightarrow K^+K^-$ 88 DM2 $e^+e^- \rightarrow K^0_SK^\pm$ 88 DM2 $e^+e^- \rightarrow K^0_SK^\pm$ 82 DM1 $e^+e^- \rightarrow K^0_SK^\pm$ 62 DM1 $e^+e^- \rightarrow K^0_SK^\pm$ 65, fits, limits, etc. • • • 89 TPS $\gamma p \rightarrow K^+K^-$ 85 OMEG 20-70 $\gamma p \rightarrow K^-K^-$ 81 OMEG 25-70 $\gamma p \rightarrow K^+K^-$ citations to channels $\omega \pi^+ \pi^-$, K^+
UE 1.18±0.06 • We do not use the following di .22±0.10 .22±0.10 From a two-resonance fit to four: Normalized to the $B(\pi_2(1670)$ Using preliminary CBAR data. With the $\sigma\pi$ in L=2 and the $f_2(1670)$ Translated from YAF 6: ELIN 99 PAN 62 445 Franslated from YAF 6: FRER 99 PL 849 114 BERIS 98 PL 842 399 LIARRI 977 PL 8413 147 RECHT 978 ZPHY C74 469 ELIN 95B PL 8337 219 FRERASYAN 90 PL 8337 219 FRERASYAN 90 ZPHY C46 563 ELIN 95 FRERASYAN 90 ZPHY C46 563 ELIN 95 FRERASYAN 90 ZPHY C46 563 ELIN 95 Translated from YAF 4 MSTRONG 82B NP B182 269 NGELISTA 81 NP B182 269 NGELISTA 81 NP B186 594 MM 80D PL 898 285 TAY 77 PRL 39 591	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ρ → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π ⁻ ρ 270 + waves. ½π). 270)π in L=0. 370) REFERENCES D.V. Amelin et al. 2 487. 2 C.A. Baker et al. D. Barberis et al. M. Acciarri et al. 1 (ARGUS Collab.) M. Acciarri et al. 1 (SERP, TBIL.) SERP, TBIL. SERP,	e+e-PRODUCTION WALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV) • • We do not use the foll 121±47 80±40 7 Using BISELLO 88B and 8 From global fit including 9 From global fit of p, ω, K ⁰ ₀ K ⁰ ₁ , K ⁰ ₂ K [±] π ⁺ . Ass	## OF COMMENT ID THIS IS ONLY AND THE PROPERTY ID THIS INTERPRETATION AS TON MANE 82 data. ### OF COMMENT ID THIS IS ONLY AND THE PROPERTY ID THIS IS ONLY AND THE PROPERTY ID THIS INTERPRETATION AS TON MANE 82 data. ### OF COMMENT ID THIS IS ONLY AND THE PROPERTY IN THE PRO	TECN COMMENT the average of the published values. ges, fits, limits, etc. • • • 94 RVUE $e^+e^- \rightarrow K^+K^-$ 888 DM2 $e^+e^- \rightarrow K^0_SK^\pm$ 812 DM1 $e^+e^- \rightarrow K^0_SK^\pm$ 20 DM1 $e^+e^- \rightarrow K^0_SK^\pm$ 82 DM1 $e^+e^- \rightarrow K^0_SK^\pm$ 83 DM1 $e^+e^- \rightarrow K^0_SK^\pm$ 84 DM2 $e^+e^- \rightarrow K^0_SK^\pm$ 85 DM1 $e^+e^- \rightarrow K^0_SK^\pm$ 86 DM2 $e^+e^- \rightarrow K^0_SK^\pm$ 87 DM1 $e^+e^- \rightarrow K^0_SK^\pm$ 88 DM2 $e^+e^- \rightarrow K^0_SK^\pm$ 89 DM3 $e^+e^- \rightarrow K^0_SK^\pm$ 80 TECN COMMENT ges, filts, limits, etc. • • • 89 TPS $\gamma p \rightarrow K^+K^- \times K^0_SK^\pm$ 81 OMEG 20-70 $\gamma p \rightarrow K^0_SK^+$ 81 OMEG 25-70 $\gamma p \rightarrow K^0_SK^+$ citations to channels $\omega \pi^+ \pi^-, K^+$ and width 510 MeV for ρ radial e
## 24 * We do not use the following did 22±±0.10 * We do not use the following did 22±±0.10 * Yes do not use the following did 22±±0.10 * Yes do not use the following did 22±±0.10 * Yes do not use the following did 22±±0.10 * Yes do not use the following did 22±±0.10 ## 22 ## 25	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ρ → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π ⁻ ρ 2-0+ waves. ½π). 270)π in L=0. 370) REFERENCES D.V. Amelin et al. 2 kar. 2 cA. Baker et al. 1	e+e-PRODUCTION VALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV) • • We do not use the foll 121±47 80±40 7 Using BISELLO 88B and 8 From global fit including 9 From global fit of ρ, ω, κ'S κ'O, ι', κ'S κ'±π. Ass tions, mass 1570 and wide	## Occument ID This is only an education on the error o	TECN COMMENT ted guess; the error given is larger the average of the published values. 94 RVUE $e^+e^- \rightarrow K^0_S K \pi$ 91c DM2 $e^+e^- \rightarrow K^0_S K \pi$ 88 DM2 $e^+e^- \rightarrow K^0_S K \pi$ 82 DM1 $e^+e^- \rightarrow K^0_S K \pi$ 10 TECN COMMENT Tes, fits, limits, etc. • • • • • • • • • • • • • • • • • • •
## 18±0.06 • We do not use the following did 22±0.10 • We do not use the following did 22±0.10 / 22 ## 22±0.10 Variable Va	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ρ → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π − ρ 2-0+ waves. ½π). 270)π in L=0. 370) REFERENCES D.V. Amelin et al. 2 487. C.A. Baker et al. D. Barberis et al. M. Acciarri et al. 1 (3 Collab.) M. Acciarri et al. 1 (3 Collab.) D. Anterisse et al. (4 MA102 Collab.) M. Acciarri et al. (5ERP, TBIL) (5ERP, TBIL) (5ERP, TBIL) (5ERP, TBIL) (6ERP, TBIL) (6ERP, TBIL) (7 (SERP, TBIL) (6ERP, TBIL) (6ERP, TBIL) (7 (SERP, TBIL) (8ERP, TBIL) (9ERP, TBIL) (1 (SERP, TBIL) (1 (SERP, TBIL) (6ERP, TBIL) (6ERP, TBIL) (7 (SERP, TBIL) (6ERP, TBIL	e+e-PRODUCTION WALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV) • • We do not use the foll 121±47 80±40 7 Using BISELLO 88B and 8 From global fit including 9 From global fit of p, ω, K ⁰ ₀ K ⁰ ₁ , K ⁰ ₂ K [±] π ⁺ . Ass	## Occument ID This is only an education on the error o	TECN COMMENT ted guess; the error given is larger the average of the published values. 94 RVUE $e^+e^- \rightarrow K^0_S K \pi$ 91c DM2 $e^+e^- \rightarrow K^0_S K \pi$ 88 DM2 $e^+e^- \rightarrow K^0_S K \pi$ 82 DM1 $e^+e^- \rightarrow K^0_S K \pi$ 10 TECN COMMENT Tes, fits, limits, etc. • • • • • • • • • • • • • • • • • • •
## 24 ## 38 ± 0.06 ## 38 ± 0.06 ## 38 ± 0.06 ## 38 ± 0.06 ## 39	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ρ → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π ⁻ ρ 2 ⁻⁰⁺ waves. 1/2π). 270) π in L=0. 570) REFERENCES D.V. Amelin et al. 1.2 487. C.A. Baker et al. 1. B. Barchine et al. 1. (13 Collab.) 1. Albrecht et al. 1. (43 Collab.) 1. Albrecht et al. 2. 487. C.A. Jamelin et al. 3. (487 Collab.) 1. (43 Collab.) 4. Albrecht et al. 5. (43 Collab.) 1. (43 Collab.) 1. Anteasyan et al. 1. (43 Collab.) 1. J. Anteasyan et al. 3. (5ERP, TBIL) 4. (5ERP, TBIL) 5. Bellini et al. 6. Bellini et al. 7. A. Armstrong, B. Baccari 6. Bellini et al. 7. Evangelista et al. 7. C. Daum et al. 8. (AMST, CERN, CRAC, MPIM+) 9. C. Daum et al. 9. (AMST, CERN, CRAC, MPIM+) 9. C. Daum et al. 1. (AMST, CERN, CRAC, MPIM+) 1. C. Daum et al. 2. (AMST, CERN, CRAC, MPIM+) 3. C. Daum et al. 3. (AMST, CERN, CRAC, MPIM+) 4. C. Daum et al. 4. (AMST, CERN, CRAC, MPIM+) 5. D. C. Daum et al. 6. (AMST, CERN, CRAC, MPIM+) 7. C. Daum et al. 8. (AMST, CERN, CRAC, MPIM+) 9. C. Daum et al. 9. (AMST, CERN, CRAC, MPIM+) 9. C. Daum et al. 9. (AMST, CERN, CRAC, MPIM+) 9. C. Daum et al. 9. (AMST, CERN, CRAC, MPIM+) 9. C. Daum et al. 10. (AMST, CERN, CRAC, MPIM+) 11. C. Daum et al. 12. (AMST, CERN, CRAC, MPIM+) 13. (COLU), PC. COLU), PC. COLU), PC. COLU), PC. COLU), PC. COLU, PC. COLU, PC. CRAC, MCR. 13. (COLU, ROCH, BERL, CERN), PC. COLU, PC. CH., RUTG, YALLE) II. 14. (COLU, ROCH, BERL, CERN), PC. COLU, ROCH, BERL, CERN), PC. COLU, ROCH, BERL, CERN), PC. CERN, PC.	e+e-PRODUCTION VALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV) • • We do not use the foll 121±47 80±40 7 Using BISELLO 88B and 8 From global fit including 9 From global fit of ρ, ω, κ'S κ'O, ι', κ'S κ'±π. Ass tions, mass 1570 and wide	## Occument ID This is only an education on the error o	TECN COMMENT ted guess; the error given is larger the average of the published values. 94 RVUE $e^+e^- \rightarrow K^0_S K^\pm$. 91c DM2 $e^+e^- \rightarrow K^0_S K^\pm$. 88B DM2 $e^+e^- \rightarrow K^0_S K^\pm$. 82 DM1 $e^+e^- \rightarrow K^0_S K^\pm$. 92 TECN COMMENT Tess, fits, limits, etc. • • • 89 TPS $\gamma p \rightarrow K^+ K^- X$. 85 OMEG 20-70 $\gamma p \rightarrow K^- X$. 86 OMEG 25-70 $\gamma p \rightarrow K^+ X$. Citations to channels $\omega \pi^+ \pi^-$, K^+ and width 510 MeV for ρ radial edial excitation. 12 with ω , ρ (1700).
UE 1.18 ± 0.06 • We do not use the following divided by the decrease of the second of the secon	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ρ → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π − ρ 2 − 0 + waves. f₂π). 270) π in L=0. 570) REFERENCES D.V. Amelin et al. 2 487. C.A. Baker et al. D. Barberis et al. M. Acciarri et al. ACCIARTION (SERP, TBIL) E.B. Berdinkov et al. G. Bellini et al. 1 (13 Collab.) C. Fayana (CELLO Collab.) V.M. Antipov et al. G. Bellini et al. 1 (Crystai Bail Collab.) V.M. Antipov et al. G. Bellini et al. 1 1223. T.A. Armstrong, B. Baccari C. Evangelista C. Evangelista C. Daum et al. C. Daum et al. C. Evangelista C. Daum et al. C. Evangelista C. Daum et al. C. Daum et al. C. Evangelista C. Daum et al. C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar C. Daum et al. C. Baltay. C.V. Caults, M. Kaleklar (COLU) JP D.J. Crennell et al. (BARI, BGNA, FIRZ) C. Baltay et al. (COLU, ROCH, RUTG, YALE) I AACH, BERL, CERN) JP R RELATED PAPERS	e+e-PRODUCTION VALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV) • • We do not use the foll 121±47 80±40 7 Using BISELLO 88B and 8 From global fit including 9 From global fit of ρ, ω, κ'S κ'O, ι', κ'S κ'±π. Ass tions, mass 1570 and wide	## OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON	TECN COMMENT ted guess; the error given is larger the average of the published values. 94 RVUE $e^+e^- \rightarrow K^0_S K^\pm$. 91c DM2 $e^+e^- \rightarrow K^0_S K^\pm$. 88B DM2 $e^+e^- \rightarrow K^0_S K^\pm$. 82 DM1 $e^+e^- \rightarrow K^0_S K^\pm$. 92 TECN COMMENT Tess, fits, limits, etc. • • • 89 TPS $\gamma p \rightarrow K^+ K^- X$. 85 OMEG 20-70 $\gamma p \rightarrow K^- X$. 86 OMEG 25-70 $\gamma p \rightarrow K^+ X$. Citations to channels $\omega \pi^+ \pi^-$, K^+ and width 510 MeV for ρ radial edial excitation. 12 with ω , ρ (1700).
UE 1.18 ± 0.06 • We do not use the following di 22 ± 0.10 • We do not use the following di 22 ± 0.10 From a two-resonance fit to four: Normalized to the $B(\pi_2(1670) \rightarrow 0.00)$ Using preliminary CBAR data. With the $\sigma \pi$ in $L=2$ and the $f_2(1670)$ Using preliminary CBAR data. With the $\sigma \pi$ in $L=2$ and the $f_2(1670)$ ### Translated from YAF 6 ### 18	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ρ → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π − ρ 2 ⁻⁰⁺ waves. 1/2π). 270) π in L=0. 570) REFERENCES D.V. Amelin et al. 2 487. C.A. Baker et ai. D. Barberis et ai. M. Acciarri et al. D.V. Amelin et al. (13 Collab.) H. Albrecht et al. (13 Collab.) D.V. Amelin et al. (5ERP, TBIL) E.B. Berdinkov et al. (6ERP, TBIL) D. Antreasyan et ai. H. J. Berhend et al. (7981al Il Collab.) H. J. Berhend et al. (10 Cestage TBIL) C. Bellini et al. (11 1223. T.A. Armstrong, B. Baccari C. Evangelista C. Daum et al. (AMST, CERN, CRAC, MPIM+) C. Daum et al. (C. Ballay et al. (C. Daum et al. (C.	e+e-PRODUCTION WALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION WALUE (MeV) • • We do not use the foll 121±47 80±40 7 Using BISELLO 88B and 8 From global fit including 9 From global fit of p, ω, K ⁰ ₀ K ⁰ ₀ K ⁰ ₀ K ⁰ K [±] π ⁺ . Ass tions, mass 1570 and wid 10 Fit to one channel only, r	## OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON	TECN COMMENT ted guess; the error given is larger the average of the published values. 94 RVUE $e^+e^- \rightarrow K^+K^-$ 88 BM2 $e^+e^- \rightarrow K^0_SK^\pm$ 81 DM1 $e^+e^- \rightarrow hadrons$ 82 DM1 $e^+e^- \rightarrow hadrons$ 83 DM1 $e^+e^- \rightarrow hadrons$ 84 DM2 COMMENT Tecs, fits, limits, etc. • • • 89 TPS $\gamma p \rightarrow K^+K^- \times K^0_SK^+$ 81 GMEG 20-70 $\gamma p \rightarrow K^-K^- \times K^0_SK^-$ 82 OMEG 20-70 $\gamma p \rightarrow K^-K^- \times K^- \times K^-$ 83 TOMEG 25-70 $\gamma p \rightarrow K^- \times K^-$
## 24 ## 32 ## 32 ## 32 ## 32 ## 33 ## 33 ## 33 ## 33 ## 34	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ρ → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π − ρ 2 ⁻⁰⁺ waves. f ₂ π). 270) π in L=0. 570) REFERENCES D.V. Amelin et al. 2487. C.A. Baker et ai. D. Barberis et ai. M. Acciarri et al. L(13 Collab.) M. Acciarri et al. L(13 Collab.) D.V. Amelin et ai. (KRGUS Collab.) D.V. Amelin et ai. (SERP, TBIL) E.B. Berdinkov et al. (SERP, TBIL) D. Antreasyan et ai. H. J. Berhend et ai. V.M. Antipov et ai. C. Bellini et ai. 1 1223. 1 1223. 1 1224. C. Evangelista C. Daum et ai. C. Evangelista C. Daum et ai. C. Evangelista C. Daum et ai. C. Daum et ai. C. Evangelista C. Daum et ai. C. Daum et ai. C. Daum et ai. C. Evangelista C. Daum et ai. C. Daum et ai. C. Daum et ai. C. Bellini et ai. BARI, BONN, CERN+ CENN, CRAC, MPIM+) D.J. Crennell et ai. C. Baltay, C.V. Cautis, M. Kalekar C. Daum et ai. C. Baltay et ai. C. Baltay et ai. D. A. Armensie et ai. C. Baltay et ai. C. Colly, ROCH, RUTG, YALE) D.J. Crennell et ai. C. Baltay et ai. C. Colly, ROCH, RUTG, YALE) C. RELATED PAPERS O.A. Zaimidoroga O.A. Zaimidoroga O.A. Zaimidoroga T.Y. Chen et ai. CARIZ, FNAL, FLOR, NDAM+)	e+e- PRODUCTION VALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV) • • We do not use the foll 121±47 80±40 7 Using BISELLO 88B and 8 From global fit including 9 From global fit including 9 From global fit of ρ, ω, κδ κδ κ κδ κ + π - Ass tions, mass 1570 and wid 10 Fit to one channel only, r Mode Mode	## OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON	TECN COMMENT the average of the published values. Tech
## 24 ## 32 ## 32 ## 32 ## 32 ## 32 ## 32 ## 33 ## 34 #	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ρ → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π − ρ 2-0+ waves. ½π). 270)π in L=0. 370) REFERENCES D.V. Amelin et al. 2 487. C.A. Baker et al. D. Barberis et al. M. Acciarri et al. L.B. Berdnikov et al. D.V. Amelin et al. (SERP, TBIL) E.B. Berdnikov et al. D. Antreasyan et al. (Crystal Bail Collab.) H.J. Behrend et al. (Crystal Bail Collab.) H.J. Behrend et al. (Crystal Bail Collab.) 1 1223. T.A. Armstrong, B. Baccari (AACH3, BARI, BONN+) C. Evangelista et al. C. Daum et al. C. Evangelista et al. C. Evangelista et al. C. Evangelista et al. C. Baltay et C.V. Cautis, M. Kalelkar C. Daum et al. C. Baltay et al. D.J. Crennell et al. N. Armenise et al. (BARI, BGNA, FIRZ) C. Baltay et al. J. Bartsch et al. (COLU, POCH, RUTG, YALE) I (Crystal Barrel Collab.) (AACH, BERL, CERN) JP RELATED PAPERS O.A. Zaimidoroga 30 S. A. Abele et al. T.Y. Chen et al. LD. Leecom et al. (ARIZ, FNAL, FLOR, NDAM+) LD. Leecom et al. (CRYSTAL Barrel Collab.) (ARIZ, FNAL, FLOR, NDAM+) LD. Leecom et al. (CRYSTAL Barrel Collab.)	e+e-PRODUCTION VALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV) • • We do not use the foll 121±47 80±40 7 Using BISELLO 88B and 8 From global fit including 9 From global fit including 9 From global fit of ρ, ω, κ' β', κ' β', κ' β', κ' π'. Assitions, mass 1570 and wid 10 Fit to one channel only, r Mode Γ ₁ K K'*(892)+ c.c. Γ ₂ K β' κ π	## OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON	TECN COMMENT ted guess; the error given is larger to the average of the published values. ges, fits, limits, etc. • • • • 94 RVUE $e^+e^- \rightarrow K^0_S K^\pm$ 91c DM2 $e^+e^- \rightarrow K^0_S K^\pm$ 88B DM2 $e^+e^- \rightarrow K^0_S K^\pm$ 82 DM1 $e^+e^- \rightarrow K^0_S K^\pm$ 82 DM1 $e^+e^- \rightarrow K^0_S K^\pm$ 95 TECN COMMENT ges, fits, limits, etc. • • • 89 TPS $\gamma p \rightarrow K^+K^- \times K^0_S K^+$ 81F OMEG 25-70 $\gamma p \rightarrow K^+K^- \times K^0_S K^+$ citations to channels $\omega \pi^+ \pi^-$, K^+ and width 510 MeV for ρ radial edial excitation. with ω , ρ (1700). MODES Fraction (Γ_i/Γ)
1.18 ± 0.06	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ρ → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π p 2-0+ waves. ½π). 270) π in L=0. 370) REFERENCES D.V. Amelin et al. 2 487. C.A. Baker et al. D. Barberis et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. D.V. Amelin et al. ((ARGUS Collab.) M. Acciarri et al. M. Abrecht et al. ((ARGUS Collab.) D.V. Amelin et al. ((SERP. TBIL) D. Antreasyan et al. ((SERP. TBIL) C. E.B. Berdnikov et al. ((SERP. TBIL) C. E.B. Berdnikov et al. ((Crystal Ball Collab.) M. Antraoyan et al. ((Crystal Ball Collab.) M. Armstrong, B. Baccari (AACH3, BARI, BONN+) C. Evangelista et al. ((ARGT, CERN, CRAC, MPIM+) G. Ascoli C. Daum et al. ((AMST, CERN, CRAC, MPIM+) G. Ascoli D.J. Crennell et al. N. Armenise et al. ((BARI, BONN, CERN+) G. Baltay et al. J. Bartsch et al. ((COLU, ROCH, RUTG, YALE)) (AACH, BERL, CERN) JP RELATED PAPERS O.A. Zaimidoroga 30 5. A. Abele et al. T.Y. Chen et al. (L. Levon et al. ((CIPNE, MINA, JINR+) (AMST, CERN, CRAC, MPIM+) ((CERN, MILA, JINR+) (CERN, MILA, JINR+) (CERN, MILA, JINR+) (AMST, CERN, CRAC, MPIM+)	e+e- PRODUCTION VALUE (MeV) 150±50 OUR ESTIMATE • • • We do not use the foll 300±60 146±55 207±45 185±22 102±36 PHOTOPRODUCTION VALUE (MeV) • • We do not use the foll 121±47 80±40 7 Using BISELLO 88B and 8 From global fit including 9 From global fit including 9 From global fit of ρ, ω, κδ κδ κ κδ κ + π - Ass tions, mass 1570 and wid 10 Fit to one channel only, r Mode Mode	## OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON	TECN COMMENT the average of the published values. Tech
1.18±0.06 1.18±0.06 1.22±0.10 2.22±0.10 2.22±0.10 2.22±0.10 3. Normalized to the B(π ₂ (1670) → 22 2.2 From a two-resonance fit to four: 3. Normalized to the B(π ₂ (1670) → 22 3. Using preliminary CBAR data. 2. With the σπ in L=2 and the f ₂ (1670) 3. Using preliminary CBAR data. 2. With the σπ in L=2 and the f ₂ (1670) 3. Using preliminary CBAR data. 2. With the σπ in L=2 and the f ₂ (1670) 3. Using preliminary CBAR data. 3. With the σπ in L=2 and the f ₂ (1670) 3. PB 1. B43 114 3. PB 1. B43 114 3. PB 1. B43 147 3. PB 1. B43 114 3. PB 1. B43 147 3. PB 1. B43 114 3. PB 1. B43 147 3. PB 1. B43 147 3. PB 1. B43 14 3. PB 1. B43 147 3. PB 1. B43 14 3. PB 1. B43 14 3. PB 1. B43 14	DOCUMENT ID BAKER 99 SPEC 1.94 p̄ρ → 4π ⁰ ata for averages, fits, limits, etc. • • • DAUM 81B SPEC 63,94 π − ρ 2 ⁻⁰⁺ waves. f ₂ π). 270) π in L=0. 570) REFERENCES D.V. Amelin et al. 2487. C.A. Baker et al. D. Barberis et al. M. Acciarri et al. D.V. Amelin et al. (13 Collab.) H. Albrecht et al. (13 Collab.) D. Anteasyan et al. (14 Crystal Ball Collab.) H. Anteport et al. (15 SERP, TBIL) D. Anteasyan et al. (17 SERP, TBIL) D. Anteasyan et al. (18 SERP, JINR, INRM+) G. Bellini et al. (18 SERP, JINR, INRM+) C. Daum et al. (19 Cettlo Collab.) C. Evangelista C. Daum et al. (10 Cettlo Collab.) C. Daum et al. (10 Cettlo Collab.) C. Daum et al. (11 Cettlo Collab.) C. Daum et al. (11 Cettlo Collab.) C. Daum et al. (11 Cettlo Collab.) C. Daum et al. (12 Cettlo Collab.) C. Baltay, C.V. Cautis, M. Kalekar (13 Collab.) C. Baltay et al. (14 MAST, CERN, CRAC, MPIM+) JP D.J. Crennell et al. (15 Cettlo Collupi P D.J. Crennell et al. (16 Cettlo Collupi P D.J. Crennell et al. (17 Cettlo Collupi P D.J. Crennell et al. (18 Cettlo Collupi P D.J. Crennell et al. (19 Cettlo Collupi P D.J. Crennell et al. (19 Collupi P D.J. Crennell et al. (10 Cettlo Collupi P D.J. Crennell et al. (11 Crystal Barrel Collab.) (11 Cettlo Collupi P D.J. Crennell et al. (11 Cettlo Collab.) (12 Cettlo Collupi P D.J. Crennell et al. (13 Cettlo Collupi P D.J. Crennell et al. (14 Cettlo Collupi P D.J. Crennell et al. (15 Cettlo Collupi P D.J. Crennell et al. (16 Cettlo Collupi P D.J. Crennell et al. (17 Cettlo Collupi P D.J. Crennell et al. (18 Cettlo Collab.) (18 Cettlo Coll	**e** PRODUCTION **MALUE (MeV) EVT **150±50 OUR ESTIMATE **• ** We do not use the foll 300±60 146±55 36 207±45 185±22 102±36 **PHOTOPRODUCTION **VALUE (MeV) **• ** We do not use the foll 121±47 80±40 7 Using BISELLO 88B and 8 From global fit including 9 From global fit of ρ, ω, **K*_S*_C^1, K*_S*_K±*_T. Assintions, mass 1570 and widd 10 Fit to one channel only, r **Mode **Talk **K*** **Mode	## OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON	TECN COMMENT the average of the published values. THE COMMENT the average of the published values. THE COMMENT THE COMMENT See, fits, limits, etc. • • • 94 RVUE $e^+e^- oup K_0^0 K^\pm$. 88B DM2 $e^+e^- oup K_0^0 K^\pm$. 82 DM1 $e^+e^- oup K_0^0 K^\pm$. 82 DM1 $e^+e^- oup K_0^0 K^\pm$. 83 DM1 $e^+e^- oup K_0^0 K^\pm$. TECN COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMENT THE COMMENT THE COMMENT THE COMENT THE COMMEN

 $\Gamma(K\overline{K}^*(892) + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

DOCUMENT IO TECN CHG COMMENT

$\phi(1680) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

This combination of a partial width with the partial width into $e^+\,e^$ and with the total width is obtained from the integrated cross section into channel (I) in e^+e^- annihilation. We list only data that have not been used to determine the partial width $\Gamma(I)$ or the branching ratio $\Gamma(I)/total$.

VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT	<u> </u>
• • • We do not	use the following	data for average	s, fit	s, limits	, etc. • • •	
0.48 ± 0.14	367	BISELLO	910	DM2	e^+e^-	$\kappa_5^0 \kappa^{\pm} \pi^{\mp}$
_	φ(1680) BRANCHIN	G R	ATIOS		
Γ(<i>K</i> % *(892)+	c.c.)/Г(K _S ⁰ K ₁	r)				Γ_1/Γ_2
VALUE		DOCUMENT ID			COMMENT	
dominant		MANE	82	DM1	e ⁺ e ⁻ →	$\kappa_5^0 \kappa^{\pm} \pi^{\mp}$
$\Gamma(K\overline{K})/\Gamma(K\overline{K})$	*(892) + c.c.)					Γ_3/Γ_1
VALUE		DOCUMENT ID		TECN	COMMENT	
0.07 ±0.01		BUON	82	DM1	e+ e-	
$\Gamma(\omega\pi\pi)/\Gamma(K\overline{k})$	(*(892) + c.c.					Γ_5/Γ_1
VALUE		DOCUMENT ID		TECM	COMMENT	

φ(1680) REFERENCES

BUON

ACHASOV	98H	PR D57 4334	N.N. Achasov, A.A. Kozhevnikov	
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC, MCHS)
ANTONELLI	92	ZPHY C56 15	A. Antonelli et al.	(DM2 Collab.)
BISELLO	91C	ZPHY C52 227	D. Bisello et al.	(DM2 Collab.)
DOLINSKY	91	PRPL 202 99	S.I. Dolinsky et al.	(NOVO)
BUSENITZ	89	PR D40 1	J.K. Busenitz et al.	(ILL, FNAL)
BISELLO	88B	ZPHY C39 13	D. Bisello et al.	(PADO, CLER, FRAS+)
BARKOV	87	JETPL 46 164 Translated from ZETFP	L.M. Barkov et al. 46 132.	(NOVO)
ATKINSON	85C	ZPHY C27 233	M. Atkinson et al.	(BONN, CERN, GLAS+)
BUON	82	PL 118B 221	J. Buon et al.	(LALO, MONP)
MANE	82	PL 112B 178	F. Mane et al.	(LALO)
ASTON	B1F	PL 104B 231	D. Aston (BONN, CERN	I, EPOL. GLAS, LÀNC+)
IVANOV	81	PL 107B 297	P.M. Ivanov et al.	(NOVO)

OTHER RELATED PAPERS -

ABELE	99D	PL B468 178	A. Abele et al.	(Crystal Barrel Collab.)
ACHASOV	97F	PAN 60 2029 Translated from Y		
ATKINSON	86C	ZPHY C30 541	M. Atkinson et ai.	(BONN, CERN, GLAS+)
ATKIN5ON	84	NP B231 15	M. Atkinson et al.	(BONN, CERN, GLAS+)
ATKINSON	84B	NP B231 1	M. Atkinson et al.	(BONN, CERN, GLAS+)
ATKINSON	83C	NP B229 269	M. Atkinson et al.	(BONN, CERN, GLAS+)
CORDIER	81	PL 106B 155	A. Cordier et al.	(ORSAY)
MANE	81	PL 99B 261	F. Mane et al.	(ORSAY)
ASTON	80F	NP B174 269	D. Aston (BONN, CER	N, EPOL, GLAS, LANC+)

 $\rho_3(1690)$

< 0.10

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

82 DM1 e+e-

ho_3 (1690) MASS

VALUE (MeV)

1691 ±5 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

1688.8±2.1 OUR AVERAGE Includes data from the 5 datablocks that follow this one.

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT The data in this block is included in the average printed for a previous datablock.

1686 ± 4 OUR AVERAG	E					
1677 ± 14		EVANGELISTA	81	OMEG	-	$12 \pi^- p \rightarrow 2\pi p$
1679±11	476	BALTAY	78 B	нвс	0	$ \begin{array}{c} 15 \pi^+ p \rightarrow \\ \pi^+ \pi^- p \end{array} $
1678 ± 12	175	1 ANTIPOV	77	CIBS	0	$25 \pi^- \rho \rightarrow \rho 3\pi$
1690 ± 7	600	1 ENGLER	74	DBC	0	$6 \frac{\pi^+ n}{\pi^+ \pi^- p}$
1693± 8		² GRAYER	74	ASPK	0	$17 \pi^{-} \rho \rightarrow \pi^{+} \pi^{-} n$
1678±12		MATTHEWS		DBC	0	$7 \pi^{+} N$
• • We do not use the	following	data for averages	i, fits	, limits,	etc. •	• •
		3				
1734 ± 10		3 CORDEN	79	OMEG		12-15 π ⁻ ρ →
1734 ± 10 1692 ± 12	2	^{,4} ESTABROOKS				$\begin{array}{c} n2\pi \\ 17 \pi^{-} \rho \rightarrow \end{array}$
	2				0	$n2\pi$
1692±12	122	^{,4} ESTABROOKS	75 70	RVUE	0 +	$ \begin{array}{c} n2\pi \\ 17 \pi \rho \rightarrow \\ \pi + \pi n \end{array} $
1692±12 1737±23		^{,4} ESTABROOKS	75 70 70B	RVUE DBC	•	$ \begin{array}{c} n2\pi \\ 17 \pi^{-} p \rightarrow \\ \pi^{+} \pi^{-} n \\ 9 \pi^{+} N \end{array} $
1692±12 1737±23 1650±35		^{,4} ESTABROOKS ARMENISE BARTSCH	75 70 70B	RVUE DBC HBC	+	$ \begin{array}{c} n2\pi \\ 17 \pi^{-} \rho \rightarrow \\ \pi^{+} \pi^{-} n \\ 9 \pi^{+} N \\ 8 \pi^{+} \rho \rightarrow N2\pi \end{array} $

 $[\]frac{1}{2}$ Mass errors enlarged by us to Γ/\sqrt{N} ; see the note with the $K^*(892)$ mass.

KK AND	KΚπ	MODES
VALUE (MeV)		EVTS

The data in this bl	ock is included	in the average pri	inted	for a pre	vious	s datablock.
1696± 4 OUR AV	ERAGE					
1699± 5		ALPER	80	CNTR	0	62 $\pi^- \rho \rightarrow$
1698±12	6k [!]	^{5,6} MARTIN	78 D	SPEC		$K^{+}K^{-}n$ $10 \pi p \rightarrow K^{0}_{5}K^{-}p$
1692± 6		BLUM	75	ASPK	0	$18.4 \pi^{-} p \rightarrow$
1690±16		ADERHOLZ	69	нвс	+	лК ⁺ К [−] 8π ⁺ р → K Kπ
• • • We do not u	use the following	g data for average	es, fits	s, limits,	etc.	
1694± 8		7 COSTA	80	OMEG		$10 \pi^- p \rightarrow \kappa^+ \kappa^- p$

⁵ From a fit to $J^P = 3^-$ partial wave.

1686 + 5 OLIP AVERAGE Error includes scale factor of 1.1

$(4\pi)^{\pm}$ MQDE

 $\Gamma_1\Gamma_4/\Gamma$

VALUE (Mey) EVTS DOCUMENT ID TECN CHG COMMENS.

The data in this block is included in the average printed for a previous datablock. TECN CHG COMMENT

TODGE 3 ONK WAEKWOR	ETTO	includes scale racti		1.1.		
1694 ± 6		⁸ EVANGELISTA	81	OMEG	_	$12 \pi^- p \rightarrow p4\pi$
1665 ± 15	177	BALTAY	78 8	HBC	+	$15 \pi^+ p \rightarrow p4\pi$
1670 ± 10		THOMPSON	74	HBC	+	13 $\pi^{+}p$
1687 ± 20		CASON	73	HBC	_	8,18.5 $\pi^- p$
1685 ± 14		⁹ CASON	73	HBC	_	8,18.5 π p
1680 ± 40	144	BARTSCH	70B	HBC	+	$8 \pi^+ \rho \rightarrow N4\pi$
1689 ± 20	102	⁹ BARTSCH	708	HBC	+	$8 \pi^+ \rho \rightarrow N2\rho$
1705 ± 21		CASO	70	HBC	_	11.2 $\pi^- \rho \rightarrow$
						π <i>p</i> 2π
• • • We do not use the	following	g data for averages	, fits	i, limits,	etc. •	• •
1718 ± 10		10 EVANGELISTA	81	OMEG	_	$12 \pi^- \rho \rightarrow \rho 4\pi$
1673 ± 9		11 EVANGELISTA	81	OMEG	_	$12 \pi^- p \rightarrow p4\pi$
1733 ± 9	66	⁹ KLIGER	74	HBC	_	$4.5 \pi^- \rho \rightarrow \rho 4\pi$
1630 ± 15		HOLMES	72	HBC	+	10-12 K ⁺ ρ
1720 ± 15		BALTAY	68	HBC	+	7, 8.5 $\pi^+ p$

⁸ From $\rho^-\rho^0$ mode, not independent of the other two EVANGELISTA 81 entries.

<u>VALUE (MeV)</u> <u>DOCUMENT ID</u> <u>TECN CHG COMMENT</u>
The data in this block is included in the average printed for a previous datablock.

1681 ± 7 OUR AVERAGE

1670 ± 25	12 ALDE	95	GAM2		38 $\pi^- \rho \rightarrow$
					$\omega \pi^0 n$
1690 ± 15	EVANGELISTA	81	OMEG	_	$12 \pi^- \rho \rightarrow \omega \pi \rho$
1666 ± 14	GESSAROLI				$11 \pi^- \rho \rightarrow \omega \pi \rho$
1686± 9	THOMPSON	74	HBC	+	$13 \pi^+ \rho$
• • • We do not us	e the following data for averages	, fit	s, limits,	etc.	• • •
1654 + 24	BARNHAM	70	HBC	+	$10 K^+ \rho \rightarrow \omega \pi X$

¹² Supersedes ALDE 92C.

$\eta \pi^+ \pi^- MODE$

1685 + 10 + 20

(For difficulties with MMS experiments, see the $a_2(1320)$ mini-review in the 1973 edition.)

00 VES

37 π − μ →

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT The data in this block is included in the average printed for a previous datablock.

AMELIN

1682±12 OUR AVERAGE

					$n\pi^{+}\pi^{-}\rho$
1680 ± 15	FUKUI	88	SPEC	0	8.95 $\pi^- p \rightarrow$
• • We do not use the following	data for average	s, fit	s, limits,	etc. •	ηπ ⁺ π ⁻ Π

A A A AAC OO HOL DO	the following data for average	.5, 111	3, IIII115	, cic.	• • •
1700 ± 47	¹³ ANDERSON	69	MMS	-	16 $\pi^- p$ backward
1632 ± 15	13,14 FOCACCI	66	MMS	-	7–12 π [—] ρ → ρΜΜ
1700 ± 15	13,14 FOCACCI	66	MM5	-	7–12 π p → pMM
1748 ± 15	13,14 FOCACCI	66	MMS	-	7-12 π p → pMM

 $^{^{13}}$ Seen in 2.5–3 GeV/c $\bar{\rho}\rho$. $2\pi^+2\pi^-$, with 0, 1, 2 $\pi^+\pi^-$ pairs in ρ band not seen by OREN 74 (2.3 GeV/c $\bar{\rho}\rho$) with more statistics. (Jan. 1976) 14 Not seen by BOWEN 72.

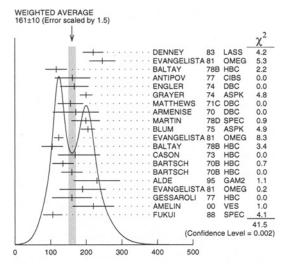
² Uses same data as HYAMS 75. ³ From a phase shift solution containing a $f_2'(1525)$ width two times larger than the $K\overline{K}$

result.

From phase-shift analysis. Error takes account of spread of different phase-shift solutions.

⁶ Systematic error on mass scale subtracted. ⁷ They cannot distinguish between $\rho_3(1690)$ and $\omega_3(1670)$.

⁹ From $p \neq \rho 0$ mode, not independent of the other two EVANGELISTA of articles.


10 From $a_2(1320)^-\pi^0$ mode, not independent of the other two EVANGELISTA 81 entries. 11 From $_{22}(1320)^{0}\,\pi^{-}$ mode, not independent of the other two EVANGELISTA 81 entries.

 $\rho_3(1690)$

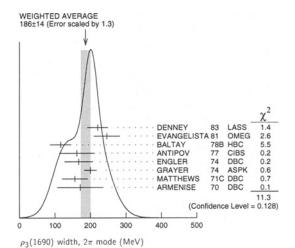
ρ_3 (1690) WIDTH

2π, KK, AND KKπ MODES

161±10 OUR AVERAGE Includes data from the 5 datablocks that follow this one. Error includes scale factor of 1.5. See the ideogram below.

 $\rho_3(1690)$ width, 2π , $K\overline{K}$, and $K\overline{K}\pi$ modes (MeV)

2π MODE


The data in this block is included in the average printed for a previous datablock.

		•				
186 \pm 14 OUR AVERAGE	Error inc	ludes scale facto	r of	1.3. See	the ic	leogram below.
220 ± 29		DENNEY	83	LASS		10 π^{+} N
246 ± 37		EVANGELISTA	81	OMEG	_	$12 \pi^- p \rightarrow 2\pi p$
116 ± 30	476	BALTAY	78B	HBC	0	15 $\pi^+ p \rightarrow$
162±50	175 19	ANTIPOV	77	CIBS	0	$\begin{array}{c} \pi^+\pi^-n \\ 25 \pi^-\rho \to \rho 3\pi \end{array}$
167 ± 40	600	ENGLER	74	DBC	0	$6 \pi^+ \pi \rightarrow$
200±18	10	GRAYER	74	ASPK	0	$ \begin{array}{c} \pi^{+}\pi^{-}\rho \\ 17 \pi^{-}\rho \rightarrow \\ \pi^{+}\pi^{-}\rho \end{array} $
156 ± 36		MATTHEWS	71c	DBC	0	π ⁺ π ⁻ η 7π ⁺ Ν
171 ± 65		ARMENISE	70	DBC	0	$9 \pi^+ d$
 ● ● We do not use the 	following	data for averages	i, fits	, limits,	etc. •	• •
322 ± 35	1	CORDEN	79	OMEG		12-15 π p →
240 ± 30	16,1	B ESTABROOKS	75	RVUE		$ \begin{array}{c} n2\pi \\ 17 \pi^{-} \rho \rightarrow \end{array} $
180 ± 30	122	BARTSCH	70B	нвс	+	$8 \pi^{+} \pi^{-} n$ $8 \pi^{+} p \rightarrow N2\pi$
267 + 7 2 - 46		STUNTEBECK	70	HDBC	0	8 $\pi^- p$, 5.4 $\pi^+ d$
188 ± 49		ARMENISE	68	DBC	0	$5.1 \pi^+ d$
180 ± 40		GOLDBERG	65	HBC	0	$6 \pi^+ d$, $8 \pi^- p$
15,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		F 1 /27				

¹⁵Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

result.

18 From phase-shift analysis. Error takes account of spread of different phase-shift solutions.

KK AND KK VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
The data in this b	block is included	in the average pr	inted f	for a pre	vious	datablock.
204±18 OUR AV	ERAGE					
199 ± 40	6000	¹⁹ MARTIN	78D	SPEC		$ \begin{array}{c} 10 \pi p \rightarrow \\ K_S^0 K^- p \end{array} $
205 ± 20		BLUM	75	ASPK	0	$18.4 \pi^{-} \rho \rightarrow \rho K^{+} K^{-}$
• • • We do not	use the following	ng data for averag	es, fits	, limits,	etc.	• • •
219± 4		ALPER	80	CNTR	0	62 π ⁻ p →
186 ± 11		²⁰ COSTA	80	OMEG		$ \begin{array}{c} K^+ K^- n \\ 10 \pi^- p \rightarrow \end{array} $
112+60		ADERHOLZ	69	нвс	+	K^+K^-n $8\pi^+p \rightarrow K\overline{K}$
¹⁹ From a fit to	$J^P = 3^-$ partia				T	CK P→ KK
(4π) [±] MODE						
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
The data in this b	olock is included	in the average pr	inted 1	for a pre	vious	datablock.
129±10 OUR AV	'ERAGE					
123±13		²¹ EVANGELIST			-	$12 \pi^- p \rightarrow p4$
105±30	177	BALTAY	78B	нвс	+	$15 \pi^+ p \rightarrow p4$
169 + 70 - 48		CASON	73	нвс	-	8,18.5 $\pi^- p$
135±30	144	BARTSCH	70B	нвс	+	$8 \pi^+ p \rightarrow N47$
160±30	102	BARTSCH	70B	нвс	+	$8\pi^+p \rightarrow N2p$
• • • We do not	use the following	ng data for averag			etc.	• • •
230 ± 28		22 EVANGELIST				$12 \pi^- \rho \rightarrow \rho 4$
184 ± 33		23 EVANGELIST		OMEG	-	$12 \pi^- p \rightarrow p4$
150	66	24 KLIGER	74	HBC		4.5 π ⁻ p → p
106 ± 25		THOMPSON		нвс	+	$13 \pi^+ \rho$
125 + 83 - 35		²⁴ CASON		нвс	-	8,18.5 $\pi^- p$
- 35						
130 ± 30		HOLMES		нвс	+	10-12 K+p
130 ± 30 180 ± 30 100 ± 35 $21 \text{ From } \rho^- \rho^0 \text{ m}$ $22 \text{ From } a_2(1320)$ $23 \text{ From } a_2(1320)$	$(0)^{-}\pi^{0}$ mode, note, $(0)^{0}\pi^{-}$ mode, note, note	HOLMES 24 BARTSCH BALTAY endent of the othot independent of the othot independent of	70B 68 er two the otl	HBC HBC EVANG her two	+ + SELIST EVAN	$8 \pi^+ p \rightarrow N a_2$ 7, 8.5 $\pi^+ p$ A 81 entries. GELISTA 81 entr
130 ± 30 180 ± 30 100 ± 35 $21 \text{ From } \rho^- \rho^0 \text{ m}$ $22 \text{ From } a_2 (1320)$ $23 \text{ From } \rho^{\pm} \rho^0 \text{ m}$	mode, not indep $(0)^{-}\pi^{0}$ mode, not indep $(0)^{0}\pi^{-}$ mode, not indep	²⁴ BARTSCH BALTAY endent of the oth- ot independent of	70B 68 er two the otl	HBC HBC EVANG her two	+ + SELIST EVAN	$8 \pi^+ p \rightarrow Na_7$ 7, 8.5 $\pi^+ p$ A 81 entries. GELISTA 81 entr
130 ± 30 180 ± 30 100 ± 35 $21 \text{ From } \rho^- \rho^0 \text{ m}$ $22 \text{ From } a_2(1320)$ $23 \text{ From } a_2(1320)$ $24 \text{ From } \rho^{\pm} \rho^0 \text{ m}$ $\omega \pi \text{ MODE}$ WALUE (MeV)	mode, not indep $0)^{-\pi^0}$ mode, no $0)^{0}\pi^{-}$ mode, no mode.	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of	70B 68 er two the oti the oti	HBC HBC EVANG her two her two	+ + SELIST EVAN EVAN	$8 \pi^+ p \rightarrow Na$ 7, 8.5 $\pi^+ p$ A 81 entries. GELISTA 81 entr GELISTA 81 entr
130 ± 30 180 ± 30 100 ± 35 $21 \text{ From } \rho^- \rho^0 \text{ m}$ $22 \text{ From } a_2(1320)$ $23 \text{ From } a_2(1320)$ $24 \text{ From } \rho^{\pm} \rho^0 \text{ m}$ $\omega \pi \text{ MODE}$ WALUE (MeV)	mode, not indep $0)^{-\pi^0}$ mode, no $0)^{0}\pi^{-}$ mode, no mode.	²⁴ BARTSCH BALTAY endent of the oth- ot independent of ot independent of	70B 68 er two the oti the oti	HBC HBC EVANG her two her two	+ + SELIST EVAN EVAN	$8 \pi^+ p \rightarrow N a_2$ 7, $8.5 \pi^+ p$ A 81 entries. GELISTA 81 entr GELISTA 81 entr
130 ± 30 180 ± 30 180 ± 35 $21 \text{ From } \rho^- \rho^0$ n $22 \text{ From } a_2(1320$ $23 \text{ From } a_2(1320$ $24 \text{ From } \rho^{\pm} \rho^0$ n $\omega \pi$ MODE $\omega LUE (\text{MeV})$ The data in this t	mode, not indep $0)^-\pi^0$ mode, not indep $0)^0\pi^-$ mode, not independent 0	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of DOCUMENT ID	70B 68 er two the oth the oth	HBC HBC EVANG her two her two	+ + SELIST EVAN EVAN	$8 \pi^+ p \rightarrow N a$ 7, $8.5 \pi^+ p$ TA 81 entries. GELISTA 81 entr GELISTA 81 entr COMMENT datablock.
130 ± 30 180 ± 30 100 ± 35 $21 \text{ From } \rho^- \rho^0 \text{ m}$ $22 \text{ From } a_2(1320)$ $23 \text{ From } a_2(1320)$ $24 \text{ From } \rho^{\pm} \rho^0 \text{ m}$ $\omega \pi \text{ MODE}$ WALUE (MeV)	mode, not indep $0)^-\pi^0$ mode, not indep $0)^0\pi^-$ mode, not independent 0	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of	70B 68 er two the oti the oti	HBC HBC EVANG her two her two	+ + SELIST EVAN EVAN	$8 \pi^+ p \rightarrow Na_2$ 7, $8.5 \pi^+ p$ A 81 entries. GELISTA 81 entr GELISTA 81 entr details at a factor of the second of the se
130 ± 30 180 ± 30 180 ± 35 $21 \text{ From } \rho^- \rho^0$ n $22 \text{ From } a_2(1320$ $23 \text{ From } a_2(1320$ $24 \text{ From } \rho^{\pm} \rho^0$ n $\omega \pi$ MODE $\omega LUE (\text{MeV})$ The data in this t	mode, not indep $0)^-\pi^0$ mode, not indep $0)^0\pi^-$ mode, not independent 0	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of DOCUMENT ID	70B 68 er two the oth the oth	HBC HBC EVANG her two her two	+ + SELIST EVAN EVAN	$8 \pi^+ p \rightarrow Na_7$, $8.5 \pi^+ p$ A 81 entries. GELISTA 81 entr GELISTA 81 entr COMMENT datablock. $38 \pi^- p \rightarrow \omega \pi^0 n$
130 ± 30 180 ± 30 100 ± 35 $21 \text{ From } \rho^- \rho^0 \text{ n}$ $22 \text{ From } a_2(1320$ $24 \text{ From } \rho^{\pm} \rho^0 \text{ n}$ $\omega \pi \text{ MODE}$ VALUE (MeV) The data in this to the data in the data in this to the data in this to the data in	mode, not indep $0)^-\pi^0$ mode, π^0 mode, π^0 mode, π^0 mode.	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of DOCUMENT ID in the average pi 25 ALDE EVANGELIST GESSAROLI	70B 68 er two the oth the oth inted 1	HBC HBC EVANG her two her two TECN for a pre GAM2 OMEG HBC	+ + SELIST EVAN EVAN	$8 \pi^+ p \rightarrow N a$ 7, 8.5 $\pi^+ p$ 7, 8.5 $\pi^+ p$ 7 a 81 entries. GELISTA 81 entr GELISTA 81 entr COMMENT datablock. $38 \pi^- p \rightarrow \omega \pi$ $11 \pi^- p \rightarrow \omega \pi$ 11 $\pi^- p \rightarrow \omega \pi$
130 ± 30 180 ± 30 100 ± 35 $21 \text{ From } \rho^- \rho^0 \text{ n}$ $22 \text{ From } a_2(1320$ $24 \text{ From } \rho^{\pm} \rho^0 \text{ n}$ $\omega \pi \text{ MODE}$ VALUE (MeV) The data in this to the data in the data in this to the data in this to the data in	mode, not indep $0)^-\pi^0$ mode, π^0 mode, π^0 mode, π^0 mode.	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of DOCUMENT ID 1 in the average pi 25 ALDE EVANGELIST	70B 68 er two the oth the oth inted 1	HBC HBC EVANG her two her two TECN for a pre GAM2 OMEG HBC	+ + SELIST EVAN EVAN	$8 \pi^+ p \rightarrow N a$ 7, 8.5 $\pi^+ p$ 7, 8.5 $\pi^+ p$ 7 a 81 entries. GELISTA 81 entr GELISTA 81 entr COMMENT datablock. $38 \pi^- p \rightarrow \omega \pi$ $11 \pi^- p \rightarrow \omega \pi$ 11 $\pi^- p \rightarrow \omega \pi$
130 ± 30 180 ± 30 100 ± 35 $21 \text{ From } \rho - \rho^0 \text{ n}$ $22 \text{ From } a_2(1320$ $24 \text{ From } \rho \pm \rho^0 \text{ n}$ WAMODE WALUE (MeV) The data in this to the data in the data in this to the data in the	mode, not indep $0)^-\pi^0$ mode, π^0 mode, π^0 mode, π^0 mode.	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of DOCUMENT ID in the average pi 25 ALDE EVANGELIST GESSAROLI	70B 68 er two the oth the oth inted to 95 FA 81 77 es, fits	HBC HBC EVANG her two her two TECN GAM2 OMEG HBC s, limits,	+ + SELIST EVAN EVAN	$8 \pi^+ p \rightarrow N a$ 7, 8.5 $\pi^+ p$ 7, 8.5 $\pi^+ p$ 7 a 81 entries. GELISTA 81 entr GELISTA 81 entr COMMENT datablock. $38 \pi^- p \rightarrow \omega \pi$ $11 \pi^- p \rightarrow \omega \pi$ 11 $\pi^- p \rightarrow \omega \pi$
130 ± 30 180 ± 30 100 ± 35 $21 \text{ From } \rho - \rho^0 \text{ n}$ $22 \text{ From } a_2(1320$ $24 \text{ From } \rho \pm \rho^0 \text{ n}$ WAMODE WALUE (MeV) The data in this to the data in the data in this to the data in the	mode, not indep $0)^-\pi^0$ mode, π^0 mode, π^0 mode, π^0 mode.	24 BARTSCH BALTAY endent of the othot independent of ot independent of DOCUMENT ID in the average pi 25 ALDE EVANGELIST GESSAROLI ng data for average	70B 68 er two the oth the oth inted to 95 FA 81 77 es, fits	HBC HBC EVANG her two her two TECN GAM2 OMEG HBC s, limits,	+ + EELIST EVAN EVAN 2HG evious	$8 \pi^+ p \rightarrow Na$ 7, 8.5 $\pi^+ p$ 7, 8.5 $\pi^+ p$ 7 a 81 entries. GELISTA 81 entr GELISTA 81 entr $\frac{COMMENT}{datablock}$ $38 \pi^- p \rightarrow \omega \pi$ $11 \pi^- p \rightarrow \omega \pi$ 11 $\pi^- p \rightarrow \omega \pi$
130 ± 30 180 ± 30 180 ± 35 21 From $\rho^- \rho^0$ in 22 From $a_2(1320)$ 24 From $\rho^{\pm} \rho^0$ in ρ^0 in $\rho^$	mode, not indep $0) = \pi^0 \mod e$, not indep $0) = \pi^0 \mod e$, node, no mode. Diock is included FERAGE	24 BARTSCH BALTAY endent of the othot independent of ot independent of DOCUMENT ID in the average pi 25 ALDE EVANGELIST GESSAROLI ng data for averag THOMPSON	70B 68 er two the oth the oth 95 TA 81 77 es, fits	HBC HBC EVANG her two her two TECN GAM2 OMEG HBC s, limits,	+ + EVAN EVAN CHG evious	$8 \pi^+ p \rightarrow Na$ 7, 8.5 $\pi^+ p$ 7 A 81 entries. GELISTA 81 entr GELISTA 81 entr COMMENT datablock. $38 \pi^- p \rightarrow \omega$ $12 \pi^- p \rightarrow \omega$ $11 \pi^- p \rightarrow \omega$
130 ± 30 180 ± 30 180 ± 30 100 ± 35 $21 \text{ From } \rho - \rho^0 \text{ n}$ $22 \text{ From } a_2(1320)$ $24 \text{ From } \rho^{\pm} \rho^0 \text{ n}$ $\omega \pi \text{ MODE}$ $\omega LUE (MeV)$ The data in this b $190 \pm 40 \text{ OUR AV}$ 230 ± 65 190 ± 65	mode, not indep 0) π^0 mode, not indep 0) π^- mode, no mode. Dlock is included FERAGE use the following	24 BARTSCH BALTAY endent of the othot independent of ot independent of DOCUMENT ID in the average pi 25 ALDE EVANGELIST GESSAROLI ng data for averag THOMPSON	70B 68 eer two the other	HBC HBC EVANG her two her two TECN GAM2 OMEG HBC s, limits, HBC HBC	+ + + GELIST EVAN EVAN CHG EVIOUS	$8 \pi^{+} p \rightarrow N a$ $7, 8.5 \pi^{+} p$ $TA 81 \text{ entries.}$ $GELISTA 81 \text{ entr}$ $GELISTA 81 \text{ entr}$ $\frac{COMMENT}{\text{datablock.}}$ $38 \pi^{-} p \rightarrow \omega \pi$ $12 \pi^{-} p \rightarrow \omega \pi$ $11 \pi^{-} p \rightarrow \omega \pi$ $13 \pi^{+} p$ $10 K^{+} p \rightarrow \omega$
130 ± 30 180 ± 30 180 ± 30 100 ± 35 $21 \text{ From } \rho - \rho^0 \text{ n}$ $22 \text{ From } a_2(1320$ $24 \text{ From } \rho^{\pm} \rho^0 \text{ n}$ WT MODE WALUE (MeV) The data in this to the data in this to the data in this to the data in the data i	mode, not indep 0) π^0 mode, not indep 0) π^- mode, no mode. Dlock is included FERAGE use the following	24 BARTSCH BALTAY endent of the othot independent of ot independent of ot independent of ot independent in the average processing data for average THOMPSON BARNHAM 6 experiments, see	70B 68 eer two the other	HBC HBC EVANG EVANG For a pre GAM2 OMEG HBC HBC HBC	+ + + + + H + H + H + H + H + H + H + H	$8 \pi^+ p \rightarrow Na$ 7, $8.5 \pi^+ p$ A 81 entries. GELISTA 81 entr GELISTA 81 entr $\frac{COMMENT}{datablock}$ $38 \pi^- p \rightarrow \frac{1}{11 \pi^- p \rightarrow \omega \tau}$ 11 $\pi^- p \rightarrow \omega \tau$ 13 $\pi^+ p$ 10 $K^+ p \rightarrow \omega \tau$
130 ± 30 180 ± 30 180 ± 30 180 ± 30 180 ± 35 $21 \text{ From } \rho^- \rho^0 \text{ m}$ $22 \text{ From } a_2(1320)$ $24 \text{ From } \rho^\pm \rho^0 \text{ m}$ $\omega \pi \text{ MODE}$ $VALUE \text{ (MeV)}$ The data in this be $190 \pm 40 \text{ OUR AV}$ 230 ± 65 190 ± 65 160 ± 56 • • • • We do not 89 ± 25 $130 + 73$ 25 Supersedes AI $177 + \pi^- \text{ MODI}$	mode, not indep $0) = \pi^0 \mod e$, not indep $0) = \pi^0 \mod e$, not included TERAGE Use the following LDE 92C. E Ities with MMS	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of DOCUMENT ID DOCUMENT ID SESSAROLI GESSAROLI ng data for averag THOMPSON BARNHAM	70B 68 er two the oti the oti the oti 77 inted 17 77 es, fits 74 70	HBC HBC EVANG her two her two TECN for a pre GAM2 OMEG HBC HBC HBC HBC TECN TECN TECN TECN TECN TECN TECN	+ + + + GELIST EVAN CHG EVAN CHG etc. + + + + + + + + + + + + + + + + + + +	$8 \pi^+ p \rightarrow Na$ 7, $8.5 \pi^+ p$ TA 81 entries. GELISTA 81 entr GELISTA 81 entr $\frac{COMMENT}{datablock}$ $38 \pi^- p \rightarrow \omega \pi^0$ $12 \pi^- p \rightarrow \omega \pi^0$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega$ i-review in the 1-
130 ± 30 180 ± 30 180 ± 30 180 ± 30 180 ± 35 $21 \text{ From } \rho^- \rho^0 \text{ m}$ $22 \text{ From } a_2(1320)$ $24 \text{ From } \rho^\pm \rho^0 \text{ m}$ $\omega \pi \text{ MODE}$ $VALUE \text{ (MeV)}$ The data in this be $190 \pm 40 \text{ OUR AV}$ 230 ± 65 190 ± 65 160 ± 56 • • • • We do not 89 ± 25 $130 + 73$ 25 Supersedes AI $177 + \pi^- \text{ MODI}$	mode, not indep p) = \(\pi \) 0 \(\pi \) mode, not indep pi) 0 \(\pi \) mode, not mode, not mode. block is included fERAGE use the following the follow	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of DOCUMENT ID 25 ALDE EVANGELIST GESSAROLI ng data for averag THOMPSON BARNHAM 6 experiments, see	70B 68 er two the other	HBC HBC EVANG EVANG For a pre For a pre GAM2 OMEG HBC HBC HBC HBC TECN TECN TECN TECN TECN TECN TECN TE	+ + + + GELIST EVAN CHG EVAN CHG etc. + + + + + + + + + + + + + + + + + + +	$8 \pi^+ p \rightarrow Na$ $7, 8.5 \pi^+ p$ $7a 81 \text{ entries.}$ $GELISTA 81 \text{ entr}$ $GELISTA 81 \text{ entr}$ $\frac{COMMENT}{\text{datablock.}}$ $38 \pi^- p \rightarrow \omega \pi^0$ $12 \pi^- p \rightarrow \omega \pi^0$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega$ i-review in the 1-
130 ± 30 180 ± 30 180 ± 30 180 ± 30 180 ± 30 100 ± 35 21 From $\rho^- \rho^0$ in 22 From $a_2(1320)$ 24 From $\rho^\pm \rho^0$ in 24 From $\rho^\pm \rho^0$ in 25 From 26 From 27 F	mode, not indep p) = \(\pi \) 0 \(\pi \) mode, not indep pi) 0 \(\pi \) mode, not mode, not mode. block is included fERAGE use the following the follow	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of DOCUMENT ID 25 ALDE EVANGELIST GESSAROLI Ing data for averag THOMPSON BARNHAM 6 experiments, see DOCUMENT ID d in the average pi of includes scale if	70B 68 er two the other	HBC HBC EVANG her two her two TECN for a pre GAM2 OMEG HBC s, limits, HBC HBC TECN for a pre of 1.8.	+ + + FELIST EVAN EVAN CHG evious	$8 \pi^+ p \rightarrow Na$ $7, 8.5 \pi^+ p$ A 81 entries. GELISTA 81 entr GELISTA 81 entr $\frac{COMMENT}{datablock}$ $38 \pi^- p \rightarrow \qquad
130 ± 30 180 ± 30 180 ± 30 180 ± 30 180 ± 30 100 ± 35 21 From $\rho^- \rho^0$ m 221 From $a_2(1320)$ 23 From $a_2(1320)$ 24 From $\rho^\pm \rho^0$ m WM MODE WALUE (MeV) The data in this the second of th	mode, not indep $0) = \pi^0 \mod e$, not indep $0) = \pi^0 \mod e$, not indep mode. plock is included ##################################	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of ot independent of DOCUMENT ID In the average pi 25 ALDE EVANGELIST GESSAROLI ng data for averag THOMPSON BARNHAM 6 experiments, see DOCUMENT ID In the average pi or includes scale t AMELIN FUKUI ng data for average	708 68 68 eer two the other ot	HBC HBC EVANG her two her two TECN for a pre GAM2 OMEG HBC , limits, HBC HBC TECN for a pre OT 1.8. VES SPEC	+ + + + GELIST EVAN CHG EVAN CHG etc. (+ + + + + + + + + + + + + + + + + + +	$8 \pi^+ p \rightarrow Na$ $7, 8.5 \pi^+ p$ $7 8.10 \pi^+ p$ $7 8.11 \text{ entries.}$ 6ELISTA 81 entr 6ELISTA 81 entr 6datablock. $38 \pi^- p \rightarrow \omega \pi^0$ $12 \pi^- p \rightarrow \omega \pi^0$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega$
130 ± 30 180 ± 30 180 ± 30 180 ± 30 180 ± 30 100 ± 35 21 From $\rho^- \rho^0$ m 22 From $a_2(1320)$ 23 From $a_2(1320)$ 24 From $\rho^\pm \rho^0$ m WM MODE WALUE (MeV) The data in this b 190 ± 40 OUR AV 230 ± 65 190 ± 65 160 ± 56 • • • We do not 89 ± 25 130 ± 73 25 Supersedes AI $77777777777777777777777777777777777$	mode, not indep of mode, not indep of mode, not indep not indep not independent of mode. Diock is included tended	24 BARTSCH BALTAY endent of the othot independent of ot independent of ot independent of ot independent of ot independent in the average pi 25 ALDE EVANGELIST GESSAROLI ng data for average THOMPSON BARNHAM 65 experiments, see OCCUMENT ID I in the average pi or includes scale in AMELIN FUKUI ng data for average pi 26 ANDERSON	708 68 68 eer two the other ot	HBC HBC EVANG her two her two TECN for a pre GAM2 OMEG HBC , limits, HBC HBC TECN for a pre OT 1.8. VES SPEC	+ + + + GELIST EVAN CHG EVAN CHG etc. (+ + + + + + + + + + + + + + + + + + +	$8 \pi^+ p \rightarrow N a$ $7, 8.5 \pi^+ p$ $7, 8.5 \pi^+ p$ $7 a 81 \text{ entries.}$ $6 ELISTA 81 \text{ entr}$ $12 \pi^- p \rightarrow \omega \tau$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega \tau$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega \tau$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega \tau$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega \tau$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega \tau$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega \tau$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega \tau$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega \tau$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega \tau$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega \tau$ $13 \pi^+ p \rightarrow \omega \tau$
130 ± 30 180 ± 30 180 ± 30 180 ± 30 180 ± 30 100 ± 35 21 From $\rho^- \rho^0$ m $= 22$ From $a_2(1320)$ $= 24$ From $\rho^\pm \rho^0$ m WM MODE WALUE (MeV) The data in this the second of the sec	mode, not indep of mode, not indep of mode, not indep not indep not independent of mode. Diock is included tended	24 BARTSCH BALTAY endent of the oth- ot independent of ot independent of ot independent of DOCUMENT ID In the average pi 25 ALDE EVANGELIST GESSAROLI ng data for averag THOMPSON BARNHAM 6 experiments, see DOCUMENT ID In the average pi or includes scale t AMELIN FUKUI ng data for average	708 68 68 eer two the other ot	HBC HBC EVANG her two FECN for a pre GAM2 OMEG HBC HBC HBC HBC TECN for a pre OF 1.8. VES SPEC S, limits,	+ + + + GELIST EVAN CHG EVAN CHG etc. (+ + + + + + + + + + + + + + + + + + +	$8 \pi^+ p \rightarrow N a$ $7, 8.5 \pi^+ p$ $7, 8.5 \pi^+ p$ $A 81 entries.$ GELISTA 81 entr GELISTA 81 entr $\frac{COMMENT}{datablock}$ $38 \pi^- p \rightarrow \omega \tau$ $12 \pi^- p \rightarrow \omega \tau$ $11 \pi^- p \rightarrow \omega \tau$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega$ i-review in the 1' $\frac{COMMENT}{datablock}$ $37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$ $8.95 \pi^- p \rightarrow \eta \pi^+ \pi^- n$ $16 \pi^- p \text{ backw}$ $7-12 \pi^- p \rightarrow$
130 ± 30 180 ± 30 180 ± 30 180 ± 30 180 ± 30 100 ± 35 21 From $\rho^- \rho^0$ m 22 From $a_2(1320)$ 23 From $a_2(1320)$ 24 From $\rho^\pm \rho^0$ m WM MODE WALUE (MeV) The data in this b 190 ± 40 OUR AV 230 ± 65 190 ± 65 160 ± 56 • • • We do not 89 ± 25 130 ± 73 25 Supersedes AI $77777777777777777777777777777777777$	mode, not indep p) = \(\pi \) mode, not indep p) = \(\pi \) mode, not mode, not mode, not mode. block is included ferage use the following the policy with the mode included includ	24 BARTSCH BALTAY endent of the othot independent of ot independent of ot independent of ot independent of ot independent in the average pi 25 ALDE EVANGELIST GESSAROLI ng data for average THOMPSON BARNHAM 65 experiments, see OCCUMENT ID I in the average pi or includes scale in AMELIN FUKUI ng data for average pi 26 ANDERSON	70B 68 68 er two the other oth	HBC HBC EVANG her two FECN for a pre GAM2 OMEG HBC s, limits, HBC HBC OT 1.8. VES SPEC MMS MMS	+ + + + GELIST EVAN CHG EVAN CHG etc. (+ + + + + + + + + + + + + + + + + + +	$8 \pi^+ p \rightarrow Na$ $7, 8.5 \pi^+ p$ $7, 8.5 \pi^+ p$ 7 A 81 entries. GELISTA 81 entr GELISTA 81 entr datablock. $38 \pi^- p \rightarrow \omega \pi$ $12 \pi^- p \rightarrow \omega \pi$ $11 \pi^- p \rightarrow \omega \pi$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega$ $13 \pi^+ p$ $10 K^+ p \rightarrow \omega$ $16 \pi^- p \text{ backw}$ $16 \pi^- p \text{ backw}$

27 Not seen by BOWEN 72.

¹⁶ Uses same data as HYAMS 75 and BECKER 79. 17 From a phase shift solution containing a $f_2'(1525)$ width two times larger than the $K\overline{K}$

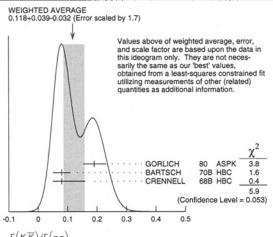
$ho_3(1690)$ DECAY MODES

	Mode	Fraction (Γ_I/Γ)	Scale factor
$\overline{\Gamma_1}$	4π	(71.1 ± 1.9)%	
Γ_2	$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	(67 ±22)%	
Γ_3	$\omega\pi$	$(16 \pm 6)\%$	
Га	$\pi\pi$	$(23.6 \pm 1.3)\%$	
Γ_5	$K\overline{K}\pi$	$(3.8 \pm 1.2)\%$	
Γ ₆	$K\overline{K}\pi$ $K\overline{K}$ $\eta\pi^+\pi^ \rho(770)\eta$	(1.58± 0.26) %	1.2
Γ ₇	$\eta \pi^+ \pi^-$	seen	
Γ8	$\rho(770) \eta$	seen	
Г9	ππρ		
	Excluding 2ρ and $a_2(1320)\pi$.		
Γ_{10}	$a_2(1320)\pi$		
Γ_{11}	ρρ		
Γ_{12}	$\phi\pi$		
Γ_{13}	$\eta \pi$		
Γ ₁₄	$\pi^{\pm} 2\pi^{+} 2\pi^{-} \pi^{0}$		

CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 10 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2 =$ 14.7 for 7 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to


$$\begin{array}{c|ccccc} x_4 & -77 & & & \\ x_5 & -74 & 17 & & \\ x_6 & -15 & 2 & 0 & \\ \hline & x_1 & x_4 & x_5 & & \end{array}$$

ρ₃(1690) BRANCHING RATIOS

Γ(ππ)/Γ _{total}	DOCUMENT ID		TECN	СНС	Γ ₄ /Γ
0.236±0.013 OUR FIT 0.243±0.013 OUR AVER			TECN	CHO	COMMENT
$0.259 {}^{+ 0.018}_{- 0.019}$	BECKER	79	ASPK	0	17 π p polarized
0.23 ±0.02	CORDEN	79	OMEG		12-15 π ⁻ ρ →
0.22 ±0.04 • • • We do not use the	²⁸ MATTHEWS e following data for average			•	$ \begin{array}{c} $
0.245 ± 0.006	²⁹ ESTABROOK	5 75	RVUE		17 π ⁻ p → σ+σ-σ

²⁸ One-pion-exchange model used in this estimation.

²⁹ From phase-shift analysis of H	IYAMS 75 data.			
$\Gamma(\pi\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})$				Γ_4/Γ_2
VALUE	DOCUMENT ID	TECN	CHG	COMMENT
0.35 ± 0.11	CASON	73 HBC	_	8,18.5 $\pi^- \rho$
• • • We do not use the followin	g data for average	es, fits, limits	, etc.	• •
<0.2	HOLMES	72 HBC	+	10-12 K ⁺ p
<0.12	BALLAM	71B HBC	-	16 π ⁻ ρ
$\Gamma(\pi\pi)/\Gamma(4\pi)$				Γ_4/Γ_1
VALUE	DOCUMENT ID	TECN	CHG	COMMENT
0.332 ± 0.026 OUR FIT Error in	cludes scale factor	of 1.1.		
0.30 ±0.10	BALTAY	78B HBC	0	$15 \pi^+ \rho \rightarrow \rho 4\pi$
$\Gamma(K\overline{K})/\Gamma(\pi\pi)$				Γ ₆ /Γ ₄
VALUE	DOCUMENT ID		CHG	COMMENT
0.067 ± 0.011 OUR FIT Error in	cludes scale factor	of 1.2.		
0.118 + 0.039 OUR AVERAGE	Error includes scale below.	e factor of 1.	7. See	the ideogram
$0.191 ^{+0.040}_{-0.037}$	GORLICH	80 ASPK	0	17,18 $\pi^- \rho$ polarized
0.08 ±0.03	BARTSCH	70B HBC	+	8 π ⁺ ρ
$0.08 \begin{array}{l} +0.08 \\ -0.03 \end{array}$	CRENNELL	68B HBC		6.0 x - p

		(Conf	idence	Level = 0.053)
-0.1 0 0.1	1 0.2 0.3	0.4 0.5		
$\Gamma(\overline{K})/\Gamma(\pi\pi)$				
$\Gamma(K\overline{K}\pi)/\Gamma(\pi\pi)$	DOCUMENT ID	TECN	cuc	Γ ₅ /Γ ₄
VALUE 0.16±0.05 OUR FIT	DOCUMENT ID	IECN	CHG	COMMENT
0.16 ± 0.05	30 BARTSCH	70B HBC	+	8 π ⁺ ρ
30 Increased by us to corre	spond to B($ ho_3$ (1690) $-$	$\pi\pi)=0.24.$		
$[\Gamma(\pi\pi\rho) + \Gamma(a_2(1320)$	π) + $\Gamma(\rho\rho)$]/ $\Gamma(\pi^{\pm}\tau$	r ⁺ π ⁻ π ⁰)	(1	9+F ₁₀ +F ₁₁)/F ₂
VALUE	DOCUMENT ID			COMMENT
0.94±0.09 OUR AVERAGE				
0.96 ± 0.21 0.88 ± 0.15	BALTAY BALLAM	78B HBC 71B HBC	+ -	15 $\pi^+ p \to p4\pi$ 16 $\pi^- p$
1 ±0.15	BARTSCH	70B HBC	+	8 π ⁺ ρ
consistent with 1	CASO	68 HBC	'	11 π - ρ
$\Gamma(\rho\rho)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})$				Γ_{11}/Γ_{2}
VALUE EV		TECN	CHG	COMMENT
• • We do not use the for				
0.12 ± 0.11	BALTAY	788 HBC	+	$15 \pi^+ \rho \rightarrow \rho 4\pi$
0.56	66 KLIGER	74 HBC	_	$4.5 \pi^- \rho \rightarrow \rho 4\pi$
0.13 ± 0.09	31 THOMPSON	74 HBC	+	13 π ⁺ ρ
0.7 ±0.15	BARTSCH	70B HBC	+	8 π ⁺ ρ
$^{31} \rho \rho$ and $a_2(1320) \pi$ mod	les are indistinguishable.			
$\Gamma(\rho\rho)/[\Gamma(\pi\pi\rho)+\Gamma(a)]$	$_{2}(1320)\pi)+\Gamma(\rho\rho)$			1/(F9+F10+F11)
VALUE	DOCUMENT ID	TECN	<u>CHG</u>	COMMENT
• • • We do not use the fo	ollowing data for average	es, fits, limits	, etc. ı	• •
0.48 ± 0.16	CASO	68 HBC	-	11 π ⁻ ρ
$\Gamma(a_2(1320)\pi)/\Gamma(\pi^{\pm}\pi^{+})$	+π-π ⁰)			Γ ₁₀ /Γ ₂
VALUE	DOCUMENT ID	TECN	CHG	
• • • We do not use the fo	ollowing data for averag	es, fits, limits	, etc. •	• • •
0.66 ± 0.08	BALTAY	78B HBC	+	$15 \pi^+ \rho \rightarrow \rho 4\pi$
0.36 ± 0.14	32 THOMPSON	74 HBC	+	13 π ⁺ p
not seen 0.6 ±0.15	CASON BARTSCH	73 HBC 708 HBC	+	8,18.5 π ρ 8 π ⁺ ρ
0.6	BALTAY	68 HBC	+	7,8.5 $\pi^{+}p$
$^{32} ho ho$ and $a_2(1320)\pi$ mod	des are indistinguishable.			
$\Gamma(\omega\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})$				Г ₃ /Г ₂
) L <u>% DOCUMENT ID</u>	TECN	сна	COMMENT
0.23±0.05 OUR AVERA	GE Error includes scale			30.7.03
0.33 ± 0.07	THOMPSON	74 HBC	+	13 π ⁺ ρ
0.12±0.07	BALLAM	71B HBC 68 HBC	-+	16 π ρ 7,8.5 π ⁺ ρ
0.25 ± 0.10 0.25 ± 0.10	BALTAY JOHNSTON	68 HBC	+	7.0 x p
• • We do not use the fe			etc.	• •
<0.11 9		78B HBC	+	$15 \pi^+ p \rightarrow p4\pi$
< 0.09	KLIGER	74 HBC	-	$4.5~\pi^-\rho\rightarrow\rho4\pi$
$\Gamma(\phi\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})$	1			Γ_{12}/Γ_2
VALUE	DOCUMENT ID	TECN	CHG	COMMENT
• • • We do not use the fe				
<0.11	BALTAY	68 HBC	+	7,8.5 $\pi^+ p$
$\Gamma(\pi^{\pm}2\pi^{+}2\pi^{-}\pi^{0})/\Gamma(\pi^{-})$	±_+0\			Г., /Г.
I (π → 2π → 2π → π →)/I (π VALUE	DOCUMENT ID	TECN	сне	Γ ₁₄ /Γ ₂
• • We do not use the form				
<0.15	BALTAY	68 HBC	+	7.8.5 π ⁺ ρ

 $\rho_3(1690)$, $\rho(1700)$

$\Gamma(\eta\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})$					Γ ₁₃ /Γ ₂
VALUE	DOCUMENT ID				
 We do not use the following 	ing data for average	s, fits	i, limits,	etc. •	• •
< 0.02	THOMPSON	74	нвс	+	13 $\pi^{+}p$
$\Gamma(K\overline{K})/\Gamma_{\text{total}}$					Г ₆ /Г
VALUE	DOCUMENT ID			CHG	COMMENT
0.0158±0.0026 OUR FIT Erro 0.0130±0.0024 OUR AVERAGE		or of	1.2.		
0.013 ±0.003	COSTA	80	OMEG	0	
0.013 ±0.004	³³ MARTIN	78B	SPEC	_	
					$\kappa_{\kappa}^{0} \kappa_{\rho}^{-}$
33 From $(\Gamma_4\Gamma_6)^{1/2} = 0.056 \pm$	0.034 assuming B($\rho_3(16)$	90) →	ππ) =	9
$\Gamma(\omega\pi)/[\Gamma(\omega\pi)+\Gamma(\rho\rho)]$				·	= 0.24. \(\Gamma_3/(\Gamma_3+\Gamma_{11})\)
	DOCUMENT ID		TECN	<u>снд</u>	= 0.24. Γ ₃ /(Γ ₃ +Γ ₁₁) <u>COMMENT</u>
$\Gamma(\omega\pi)/[\Gamma(\omega\pi)+\Gamma(\rho\rho)]$ VALUE	DOCUMENT ID	es, fits	<u>TECN</u> i, limits,	CHG etc.	= 0.24. Γ ₃ /(Γ ₃ +Γ ₁₁) <u>COMMENT</u>
$\frac{\Gamma(\omega \pi)}{[\Gamma(\omega \pi) + \Gamma(\rho \rho)]}$ • • • We do not use the following conductions: $\frac{\Gamma(\eta \pi^+ \pi^-)}{\Gamma(\text{total})}$	DOCUMENT ID ing data for average CASON	73	TECN i, limits, HBC	<u>CHG</u> etc. •	= 0.24. $\Gamma_3/(\Gamma_3+\Gamma_{11})$ COMMENT • • • 8,18.5 $\pi^- p$
$\Gamma(\omega\pi)/[\Gamma(\omega\pi) + \Gamma(\rho\rho)]$ VALUE • • We do not use the following conduction 0.22 ± 0.08 $\Gamma(\eta\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE	DOCUMENT ID ing data for average CASON	es, fits 73	TECN i, limits, HBC TECN	CHG etc. •	= 0.24. $\Gamma_3/(\Gamma_3+\Gamma_{11})$ COMMENT 8,18.5 $\pi^- p$ Γ_7/Γ MENT
$\frac{\Gamma(\omega \pi)}{[\Gamma(\omega \pi) + \Gamma(\rho \rho)]}$ • • • We do not use the following conductions: $\frac{\Gamma(\eta \pi^+ \pi^-)}{\Gamma(\text{total})}$	DOCUMENT ID ing data for average CASON	es, fits 73	TECN i, limits, HBC TECN	CHG etc. •	= 0.24. $\Gamma_3/(\Gamma_3+\Gamma_{11})$ COMMENT • • • 8,18.5 $\pi^- p$
$\Gamma(\omega\pi)/[\Gamma(\omega\pi) + \Gamma(\rho\rho)]$ • • • We do not use the following 0.22±0.08 $\Gamma(\eta\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ $\frac{VALUE}{SEEP}$ $\Gamma(2(1320)\pi)/\Gamma(\rho(770)\eta)$	DOCUMENT ID DOCUMENT ID FUKUI	73 88	TECN i, limits, HBC TECN SPEC	<u>CHG</u> etc. • - <u>COMI</u> 8.95	= 0.24. $\Gamma_3/(\Gamma_3+\Gamma_{11})$ COMMENT 8.18.5 π^-p Γ_7/Γ $\pi^-p \to \eta \pi^+ \pi^- \pi$ Γ_{10}/Γ_8
$\Gamma(\omega\pi)/[\Gamma(\omega\pi)+\Gamma(\rho\rho)]$ • • • We do not use the following 0.22±0.08 $\Gamma(\eta\pi^+\pi^-)/\Gamma_{\text{total}}$ VALUE	DOCUMENT ID ing data for average CASON	73 88	TECN i, limits, HBC TECN SPEC	COMIN COMIN	= 0.24. $\Gamma_3/(\Gamma_3+\Gamma_{11})$ COMMENT 8.18.5 π^-p Γ_7/Γ $\pi^-p \to \eta \pi^+ \pi^- \pi$ Γ_{10}/Γ_8

ρ₃(1690) REFERENCES

		P3(, , , , , , , , , , , , , , , , , , ,			
AMELIN	00	NP B668 83	D. Amelin et al.	(VES Collab.)		
ALDE	95	ZPHY C66 379	D.M. Alde et al.	(GAMS Collab.) JP		
ALDE	92C	ZPHY C54 553	D.M. Alde et al.	(BELG, SERP, KEK, LANL+)		
FUKUI	88	PL B202 441	S. Fukui et al.	(SUGI, NAGO, KEK, KYOT+)		
DENNEY	B3	PR D28 2726	D.L. Denney et al.	(IOWA, MICH)		
EVANGELISTA		NP 8178 197	C. Evangelista et al.	(BARI, BONN, CERN+)		
ALPER	80	PL 94B 422		AMST, CERN, CRAC, MPIM+)		
COSTA	80	NP B175 402	G. Costa de Beauregard e			
GORLICH	80	NP 8174 16	L. Gorlich et al.	(CRAC, MPIM, CERN+)		
BECKER	79	NP B151 46	H. Becker et al.	(MPIM, CERN, ZEEM, CRAC)		
CORDEN	79	NP B157 250	M.J. Corden et al.	(BIRM, RHEL, TELA+) JP		
BALTAY	78B	PR D17 62	C. Baltay et al.	(COLU, BING)		
MARTIN	78B	NP B140 158	A.D. Martin et al.	(DURH, GEVA)		
MARTIN	78D	PL 74B 417	A.D. Martin et al.	(DURH, GEVA)		
ANTIPOV	77	NP B119 45	Y.M. Antipov et al.	(SERP, GEVA)		
GESSAROLI	77	NP B126 382	R. Gessaroli et al.	(BGNA, FIRZ, GENO+)		
BLUM	75	PL 57B 403	W. Blum et al.			
ESTABROOKS		NP B95 322		(CERN, MPIM) JP		
HYAMS	75	NP B100 205	P.G. Estabrooks, A.D. Ma			
ENGLER	74	PR D100 2070	B.D. Hyams et al.	(CERN, MPIM)		
			A. Engler et al.	(CMU, CASE)		
GRAYER	74 74	NP B75 189	G. Grayer et al.	(CERN, MPIM)		
KLIGER	14	SJNP 19 428 Translated from YAF 19	G.K. Kliger et al.	(ITEP)		
OREN	74	NP B71 189	Y. Oren et al.	(ANL, OXF)		
THOMPSON	74	NP B69 220	G. Thompson et al.	(PURD)		
CASON	73	PR D7 1971	N.M. Cason et al.	(NOAM)		
BOWEN	72	PRL 29 890	D.R. Bowen et al.	(NEAS, STON)		
HOLMES	72	PR D6 3336	R. Holmes et al.	(ROCH)		
BALLAM	71B	PR D3 2606	J. Ballam et al.	(SLAC)		
MATTHEWS	71C	NP B33 1	J.A.J. Matthews et al.	(TNTO, WISC) JP		
ARMENISE	70	LNC 4 199	N. Armenise et al.	(BARI, BGNA, FIRZ)		
BARNHAM	70		K.W.J. Barnham et al.	(BIRM)		
BARTSCH	70B	PRL 24 1083 NP B22 109	J. Bartsch et al.	(AACH, BERL, CERN)		
CASO	70	LNC 3 707	C. Caso et al.			
				(GENO, HAMB, MILA, SACL)		
STUNTEBECK		PL 32B 391	P.H. Stuntebeck et al.	(NDAM)		
ADERHOLZ	69	NP B11 259	M. Aderholz et al.	(AACH3, BERL, CERN+)		
ANDERSON	69	PRL 22 1390	E.W. Anderson et al.	(BNL, CMU)		
ARMENISE	68	NC 54A 999	N. Armenise et al.	(BARI, BGNA, FIRZ+) I		
BALTAY	68	PRL 20 887	C. Baltay et al.	(COLU, ROCH, RUTG, YALE)		
CASO	68	NC 54A 9B3	C. Caso et al.	(GENO, HAMB, MILA, SACL)		
CRENNELL	68B	PL 28B 136	D.J. Crennell et al.	(BNL)		
JOHNSTON	68	PRL 20 1414	T.F. Johnston et al.	(TNTO, WISC) IJP		
FOCACCI	66	PRL 17 890	M.N. Focacci et al.	(CERN)		
GOLDBERG	65	PL 17 354	M. Goldberg et al.	(CERN, EPOL, ORSAY+)		
ATHER DELITED DIRECT						
OTHER RELATED PAPERS						
BARNETT	83B	PL 120B 455	B. Barnett et al.	(UHL)		
EHRLICH	66	PR 152 1194	R. Ehrlich, W. Selove, H.			
LEMBLICH	66	PR 152 1194	B. Leurat et al	1908 (FEMM)		

BARNETT EHRLICH	83B 66	PL 120B 455 PR 152 1194	B. Barnett et al. R. Ehrlich, W. Selove, H. Yuta	(JHU) (PENN)
LEVRAT	66	PL 22 714	B. Levrat et al.	` '
SEGUINOT	66	PL 19 712	J. Seguinot et al.	
BELLINI	65	NC 40A 948	G. Bellini et al.	(MILA)
DEUTSCH	65	PL 18 351	M. Deutschmann et al.	(AACH3, BERL, CERN)
FORINO	65	PL 19 65	A. Forino et al.	(BGNA, ORSAY, SACL)

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

THE $\rho(1450)$ AND THE $\rho(1700)$

Updated March 2000 by S. Eidelman (Novosibirsk) and J. Hernandez (Valencia).

In our 1988 edition, we replaced the $\rho(1600)$ entry with two new ones, the $\rho(1450)$ and the $\rho(1700)$, because there was emerging evidence that the 1600-MeV region actually contains two ρ -like resonances. ERKAL 86 had pointed out this possibility with a theoretical analysis on the consistency of 2π and 4π electromagnetic form factors and the $\pi\pi$ scattering length. DONNACHIE 87, with a full analysis of data on the 2π and 4π final states in e^+e^- annihilation and photoproduction reactions, had also argued that in order to obtain a consistent picture, two resonances were necessary. The existence of $\rho(1450)$ was supported by the analysis of $\eta\rho^0$ mass spectra obtained in photoproduction and e^+e^- annihilation (DONNACHIE 87B), as well as that of $e^+e^- \to \omega\pi$ (DONNACHIE 91).

The analysis of DONNACHIE 87 was further extended by CLEGG 88, 94 to include new data on 4π systems produced in e^+e^- annihilation, and in τ decays (τ decays to 4π and e^+e^- annihilation to 4π can be related by the Conserved Vector Current assumption). These systems were successfully analyzed using interfering contributions from two ρ -like states, and from the tail of the $\rho(770)$ decaying into two-body states. While specific conclusions on $\rho(1450) \to 4\pi$ were obtained, little could be said about the $\rho(1700)$.

An analysis by CLEGG 90 of 6π mass spectra from e^+e^- annihilation and from diffractive photoproduction provides evidence for two ρ mesons at about 2.1 and 1.8 GeV that decay strongly into 6π states. While the former is a candidate for a new resonance ($\rho(2150)$), the latter could be a manifestation of the $\rho(1700)$ distorted by threshold effects.

Independent evidence for two 1⁻ states is provided by KILLIAN 80 in 4π electroproduction at $\langle Q^2 \rangle = 1$ (GeV/c)², and by FUKUI 88 in a high-statistics sample of the $\eta\pi\pi$ system in π^-p charge exchange.

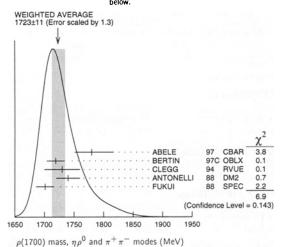
This scenario with two overlapping resonances is supported by other data. BISELLO 89 measured the pion form factor in the interval 1.35–2.4 GeV and observed a deep minimum around 1.6 GeV. The best fit was obtained with the hypothesis of ρ -like resonances at 1420 and 1770 MeV, with widths of about 250 MeV. ANTONELLI 88 found that the $e^+e^- \to \eta \, \pi^+ \, \pi^-$ cross section is better fitted with two fully interfering Breit-Wigners, with parameters in fair agreement with those of DONNACHIE 87 and BISELLO 89. These results can be considered as a confirmation of the $\rho(1450)$.

Decisive evidence for the $\pi\pi$ decay mode of both $\rho(1450)$ and $\rho(1700)$ came from recent results in $\overline{p}p$ annihilation at rest (ABELE 97). It was shown that these resonances also possess a $K\overline{K}$ decay mode (ABELE 98, BERTIN 98B, ABELE 99D). High statistics studies of the decays $\tau \to \pi\pi\nu_{\tau}$ (BARATE 97M, URHEIM 97), and $\tau \to 4\pi\nu_{\tau}$ (EDWARDS 00), also require the

 $\rho(1450)$, but are not sensitive to the $\rho(1700)$, because it is too close to the τ mass.

The structure of these ρ states is not yet completely clear. BARNES 97 and CLOSE 97C claim that $\rho(1450)$ has a mass consistent with radial 2S, but its decays show characteristics of hybrids, and suggest that this state may be a 2S-hybrid mixture. DONNACHIE 99 argues that hybrid states could have a 4π decay mode dominated by the $a_1\pi$. Such behavior has recently been observed by AKHMETSHIN 99E in $e^+e^- \rightarrow 4\pi$ in the energy range 1.05-1.38 GeV, and by EDWARDS 00 in $\tau \to 4\pi$ decays. More data should be collected to clarify the nature of the ρ states, particularly in the energy range above 1.6 GeV.

We also list under the $\rho(1450)$ the $\phi\pi$ state with $J^{PC}=1^{-+}$ or C(1480) observed by BITYUKOV 87. While ACHASOV 96B shows that it may be a threshold effect, CLEGG 88 and LANDSBERG 92 suggest two independent vector states with this decay mode. Note, however, that C(1480)in its $\phi \pi$ decay mode was not confirmed by e^+e^- (DOLINSKY) 91, BISELLO 91C) and $\bar{p}p$ (ABELE 97H) experiments.


Several observations on the $\omega\pi$ system in the 1200-MeV region (FRENKIEL 72, COSME 76, BARBER 80C, ASTON 80C, ATKINSON 84C, BRAU 88, AMSLER 93B) may be interpreted in terms of either $J^P = 1^- \rho(770) \rightarrow \omega \pi$ production (LAYSSAC 71), or $J^P = 1^+ b_1(1235)$ production (BRAU 88, AMSLER 93B). We argue that no special entry for a $\rho(1250)$ is needed. The LASS amplitude analysis (ASTON 91B) showing evidence for $\rho(1270)$ is preliminary and needs confirmation. For completeness, the relevant observations are listed under the $\rho(1450)$.

ρ(1700) MASS

 $\eta \rho^0$ AND $\pi^+\pi^-$ MODES

DOCUMENT ID

1700 ± 20 OUR ESTIMATE 1723±11 OUR AVERAGE Includes data from the 2 datablocks that follow this one. Error includes scale factor of 1.3. See the ideogram

$\eta \rho^0$ MODE

COMMENT VALUE (MeV) DOCUMENT ID TECN COMMENT

The data in this block is included in the average printed for a previous datablock.

 1740 ± 20 1701 ± 15

88 DM2 $e^+e^- \to n\pi^+\pi^-$ ANTONELLI ² FUKUI 88 SPEC 8.95 $\pi^- p \to \eta \pi^+ \pi^- n$

	IODE					
VALUE			DOCUMENT ID			COMMENT
The da	ita in this block is	included	in the average prin	ted 1	for a pre	vious datablock.
1780	+ 37 29		3 ABELE	97	CBAR	$\bar{p}n \rightarrow \pi^-\pi^0\pi^0$
	±15		3 BERTIN	076	OBLV	$0.0 \overline{p}p \rightarrow \pi^{+}\pi^{-}\pi^{0}$
1730			CLEGG			$e^+e^- \rightarrow \pi^+\pi^-$
		a followin	g data for averages			
		ic ionownij	-			
1768			BISELLO		DM2	$e^+e^- \rightarrow \pi^+\pi^-$
	± 91.9		DUBNICKA			$e^+e^- \rightarrow \pi^+\pi^-$
	±26		GESHKEN		RVUE	
1650			4 ERKAL			$20-70 \gamma p \rightarrow \gamma \pi$
1550			ABE			$20 \ \gamma \rho \rightarrow \ \pi^+ \pi^- \rho$
	±20		⁵ ASTON ⁶ ATIYA			$20-70 \gamma p \rightarrow p2\pi$
	±10		ATTYA			$50 \gamma C \rightarrow C2\pi$
1598	+24 -22		BECKER	79	ASPK	17 $\pi^- p$ polarized
1659	±25		⁴ LANG	79	RVUE	
1575			4 MARTIN	78C	RVUE	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
1610	±30		FROGGATT	77	RVUE	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
1590	±20		⁷ HYAMS	73	ASPK	$17 \pi^- \rho \rightarrow \pi^+ \pi^- n$
	IODE					
VALUE			DOCUMENT ID			COMMENT
• • •	We do not use th	e followin	g data for averages	s, fits	i, limits,	etc. • • •
1710±	90		ACHASOV	97	RVUE	$e^+e^- \rightarrow \omega \pi^0$
κKι	MODE					
VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	CHG COMMENT
• • •	We do not use th	e followin	g data for averages	s, fits	i, limits,	etc. • • •
1740.8	±22.2	27k	¹ ABELE	99D	CBAR	$\pm 0.0 \overline{p} p \rightarrow K^+ K^- \pi^0$
1582	+36	1600	CLELAND	82a	SPEC	\pm 50 $\pi p \rightarrow$

$2(\pi^{+}\pi^{-})$	MODE
VALUE (MeV)	

VALUE (MeV)	EVIS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the followin	g data for averages	s, fits	, limits,	etc. • • •
1851 ⁺ 27 24		ACHASOV	97	RVUE	$e^+e^-\to 2(\pi^+\pi^-)$
1570 ± 20		8 CORDIER	82	DM1	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
1520 ± 30		⁵ ASTON	81E	OMEG	$20-70 \gamma p \rightarrow p4\pi$
1654± 25		⁹ DIBIANCA	81	DBC	$\pi^+ d \rightarrow \rho \rho 2(\pi^+ \pi^-)$
1666 ± 39		⁸ BACCI	80	FRAG	$e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})$
1780	34	KILLIAN	80	SPEC	11 $e^- p \rightarrow 2(\pi^+ \pi^-)$
1500		10 ATIYA	79B	SPEC	$50 \gamma C \rightarrow C 4\pi^{\pm}$
1570 ± 60	65	11 ALEXANDER	75	HBC	$7.5 \gamma p \rightarrow p4\pi$
1550 ± 60		[§] CONVERSI	74	OSPK	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
1550± 50	160	SCHACHT	74	STRC	$5.5-9 \gamma p \rightarrow p4\pi$
1450 ± 100	340	SCHACHT	74	STRC	$9-18 \gamma p \rightarrow p4\pi$
1430 ± 50	400	BINGHAM	72B	HBC	$9.3 \gamma p \rightarrow p4\pi$

DOCUMENT ID

COMMENT

 1 K-matrix pole. Isospin not determined, could be $\omega(1650)$ or $\phi(1680)$.

 $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ MODE VALUE (MeV) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

ATKINSON 858 OMEG 20-70 ~₽

 $3(\pi^{+}\pi^{-})$ AND $2(\pi^{+}\pi^{-}\pi^{0})$ MODES

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • CLEGG 90 RVUE e+ $3(\pi^{+}\pi^{-})2(\pi^{+}\pi^{-}\pi^{0})$

 2 Assuming $\rho^+f_0(1370)$ decay mode interferes with $a_1(1260)^+\pi$ background. From a two Breit-Wigner fit.

³ T-matrix pole. ⁴ From phase shift analysis of HYAMS 73 data.

⁵ Simple relativistic Breit-Wigner fit with constant width.

⁶An additional 40 MeV uncertainty in both the mass and width is present due to the choice of the background shape.

7 Included in BECKER 79 analysis

⁸ Simple relativistic Breit-Wigner fit with model dependent width.

9 One peak fit result.

10 Parameters roughly estimated, not from a fit.

 $^{11}\,\mathrm{Skew}$ mass distribution compensated by Ross-Stodolsky factor.

$\rho(1700)$

ρ (1700) WIDTH

 $\eta \rho^0$ AND $\pi^+\pi^-$ MODES

VALUE (MeV)
240±60 OUR ESTIMATE

DOCUMENT ID

240±40 OUR AVERAGE Includes data from the 2 datablocks that follow this one. Error includes scale factor of 2.0. See the ideogram below.

m _0	MOD	١F

VALUE (MeV)	DOCUMENT ID	
The data in this block is included	I in the average pri	rinted for a previous datablock.
150±30	ANTONELLI	88 DM2 $e^+e^- \to \eta \pi^+\pi^-$
282 ± 44	¹³ FUKUI	88 SPEC 8.95 $\pi^{-}p \to \eta \pi^{+}\pi^{-}p$
ππ MODE		
VALUE (MeV)	DOCUMENT ID	
The data in this block is included	in the average pri	rinted for a previous datablock.
275 ± 45	14 ABELE	97 CBAR $\overline{p}n \rightarrow \pi^-\pi^0\pi^0$
310 ± 40	¹⁴ BERTIN	97C OBLX $0.0 \bar{p}p \rightarrow \pi^+\pi^-\pi^0$
400 ±100	CLEGG	94 RVUE $e^+e^- \rightarrow \pi^+\pi^-$
• • We do not use the following	ng data for average	ges, fits, limits, etc. • • •
224 ± 22	BISELLO	89 DM2 $e^+e^- \rightarrow \pi^+\pi^-$
242.5 ± 163.0	DUBNICKA	89 RVUE $e^+e^- \rightarrow \pi^+\pi^-$
620 ± 60	GESHKEN	B9 RVUE
<315	¹⁵ ERKAL	85 RVUE 20-70 $\gamma p ightarrow \gamma \pi$
280 + 30	ABE	84B HYBR 20 $\gamma p \rightarrow \pi^+ \pi^- p$
230 ± 80	¹⁶ ASTON	80 OMEG 20-70 $\gamma p \rightarrow p2\pi$
283 ± 14	17 ATIYA	79B SPEC 50 γ C \rightarrow C2 π
175 + 98	BECKER	79 ASPK 17 $\pi^- p$ polarized
232 ± 34	¹⁵ LANG	79 RVUE
340	¹⁵ MARTIN	78C RVUE 17 $\pi^{-}p \to \pi^{+}\pi^{-}n$
300 ±100	¹⁵ FROGGATT	77 RVUE 17 $\pi^{-}p \rightarrow \pi^{+}\pi^{-}n$
180 ± 50	¹⁸ HYAMS	73 ASPK 17 $\pi^- p \to \pi^+ \pi^- n$
KK MODE		
VALUE (MeV) EVTS	DOCUMENT ID	TECN CHG COMMENT
• • • We do not use the following	ng data for average	ges, fits, limits, etc. • • •
187.2± 26.7 27k	12 ABELE	99D CBAR \pm 0.0 $\vec{p}p \rightarrow K^+K^-\pi^0$
265 ±120 1600	CLELAND	

$2(\pi^+\pi^-)$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e followi	ng data for average	s, fits	, limits,	etc. • • •
510± 40		¹⁹ CORDIER	82	DM1	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
400 ± 50		¹⁶ ASTON	81E	OMEG	$20-70 \gamma p \rightarrow p4\pi$
400 ± 146		²⁰ DIBIANCA	81	DBC	$\pi^+ d \rightarrow pp2(\pi^+\pi^-)$
700 ± 160		¹⁹ BACCI	80	FRAG	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
100	34	KILLIAN	80	SPEC	$11 e^- p \rightarrow 2(\pi^+ \pi^-)$
600		²¹ ATIYA	79B	SPEC	$50 \gamma C \rightarrow C4\pi^{\pm}$
340 ± 160	65	²² ALEXANDER	75	HBC	$7.5 \gamma p \rightarrow p4\pi$
360 ± 100		¹⁶ CONVERSI	74	O5PK	$e^+e^- \to 2(\pi^+\pi^-)$
400 ± 120	160	²³ SCHACHT	74	STRC	$5.5-9 \gamma p \rightarrow p 4\pi$
850 ± 200	340	²³ SCHACHT	74	STRC	$9-18 \gamma p \rightarrow p4\pi$
650 ± 100	400	BINGHAM	72B	HBC	$9.3 \gamma p \rightarrow p4\pi$

 $^{12}\,\mathrm{K\text{-}matrix}$ pole. Isospin not determined, could be $\omega(1650)$ or $\phi(1680).$

π ⁺ 1	T-	π0	π0	M	0	D	E
------------------	----	----	----	---	---	---	---

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	data for average	es, fits, limits,	etc. • • •
300 ± 50	ATKINSON	85B OMEG	20-70 γp

$3(\pi^{+}\pi^{-})$ AND $2(\pi^{+}\pi^{-}\pi^{0})$ MODES

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use	the following data for averag	es, fits, lin	nits, etc. • • •
285 ± 20	CLEGG	90 RVUE	$e^{+}e^{-} \rightarrow 3(\pi^{+}\pi^{-})2(\pi^{+}\pi^{-}\pi^{0})$
13 +	270) described by		- 3(π · π ·)∠(π · π · π ·)

- 13 Assuming $\rho^+ f_0(1370)$ decay mode interferes with $a_1(1260)^+ \pi$ background. From a two Breit-Wigner fit. 14 T-matrix pole. 15 From phase shift analysis of HYAMS 73 data.

- ¹⁶ Simple relativistic Breit-Wigner fit with constant width.
- 17 An additional 40 MeV uncertainty in both the mass and width is present due to the choice of the background shape.
- 19 Simple relativistic Breit-Wigner fit with model-dependent width.
- ²⁰ One peak fit result.
- 21 Parameters roughly estimated, not from a fit.
- ²² Skew mass distribution compensated by Ross-Stodolsky factor. ²³ Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

ρ(1700) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
$\overline{\Gamma_1}$	ρππ	dominant
Γ_2	$\rho^0 \pi^+ \pi^-$	large
Γ ₃ Γ ₄	$ ho^0\pi^0\pi^0$	
Γ4	$ ho^{\pm}\pi^{\mp}\pi^0$	large
Γ ₅ Γ ₆ Γ ₇ Γ ₈ Γ ₉	$2(\pi^{+}\pi^{-})$	large
Γ ₆	$\pi^+\pi^-$	seen
F ₇	$\pi^-\pi^0$	seen
F ₈	$K\overline{K}^*$ (892)+ c.c.	seen
و]	$\eta \rho$	seen
Γ10	$a_2(1320)\pi$	not seen
Γ11	$\kappa \overline{\kappa}$	seen
Γ ₁₂	e ⁺ e ⁻	seen
Γ ₁₃	$\pi^0\omega$	seen

$\rho(1700) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

This combination of a partial width with the partial width into $e^+\,e^-$ and with the total width is obtained from the cross-section into channel, in $\mathrm{e^{+}\,e^{-}}$ annihilation.

$\Gamma(2(\pi^+\pi^-)) \times \Gamma($	$(e^+e^-)/\Gamma_{\text{total}}$	Γ ₁₂ /Γ
VALUE (keV)	DOCUMENT ID TECN COMMENT	
2.83±0.42	BACCI 80 FRAG $e^+e^- \rightarrow 2(\pi^+\pi^-)$	-)
• • We do not use	ne following data for averages, fits, limits, etc. • • •	
2.6 ±0.2	DELCOURT 81B DM1 $e^+e^- ightarrow 2(\pi^+\pi^-)$	-)
$\Gamma(\pi^+\pi^-) \times \Gamma(e^+$:-)/\(\Gamma_{\text{total}}\)	Г12/Г
VALUE (keV)	DOCUMENT ID TECN COMMENT	
• • We do not use	ne following data for averages, fits, limits, etc. • • •	
0.13	²⁴ DIEKMAN 88 RVUE $e^+e^- \rightarrow \pi^+\pi^-$	
$0.029^{+0.016}_{-0.012}$	KURDADZE 83 OLYA $0.64^{-1}.4 e^{+}e^{-} - \pi^{+}\pi^{-}$	•

1

 24 Using total width = 220 MeV.

$\Gamma(K\overline{K}^*(892) + c.c.)$	$\times \Gamma(e^+e^-)/\Gamma_{\text{total}}$			$\Gamma_8\Gamma_{12}/\Gamma$
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use t	ne following data for averages	, fits, limits	, etc. • • •	
0.305 ± 0.071	²⁵ BIZOT	80 DM1	e+ e-	

$\Gamma(\eta\rho) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$					Г9Г12	/Γ
VALUE (eV)	DOCUMENT ID		TECN	COMMENT		
7 ±3	ANTONELLI	88	DM2	$e^+e^- \rightarrow$	$\eta \pi^+ \pi^-$	
$\Gamma(K\overline{K}) \times \Gamma(e^+e^-)/\Gamma_{mod}$					F11 F12	/Г

$\Gamma(KK) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$				$\Gamma_{11}\Gamma_{12}/\Gamma$
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the following	g data for averages, fi	its, limits	etc. • • •	
0.035 ± 0.029	²⁵ BIZOT 80	DM1	e^+e^-	

$\Gamma(\rho\pi\pi) \times \Gamma(e^+e^-$)/F _{total}				$\Gamma_1\Gamma_{12}/\Gamma_1$
VALUE (keV)	DOCUMENT	ID	TECN	COMMENT	
• • • We do not use the	ne following data for avera	ges, fits	, limits,	, etc. • • •	
3.510 ± 0.090	²⁵ BIZOT	80	DM1	e+ e-	
²⁵ Model dependent.					

Γ₃/Γ₄

- •	1700) BRANCHIN	0 101103		
Γ(π ⁺ π)/Γ _{total}	DOCUMENT ID	TECN	COMMENT	Γ ₆ /Γ
• • We do not use the follow	<u>DOCUMENT ID</u> wing data for average			
$0.287 + 0.043 \\ -0.042$	BECKER		17 $\pi^- \rho$ polarized	
0.15 to 0.30 <0.20	²⁶ MARTIN ²⁷ COSTA		$17 \pi^- \rho \rightarrow \pi^+ \tau$ $e^+ e^- \rightarrow 2\pi, 4$	
0.30 ±0.05	26 FROGGATT		$17 \pi^- \rho \rightarrow \pi^+ \tau$	
<0.15	²⁸ EISENBERG	73 HBC		
0.25 ± 0.05	²⁹ HYAMS	73 ASPK	$17 \pi^- \rho \rightarrow \pi^+ \tau$	т п
26 From phase shift analysis o 27 Estimate using unitarity, tii 28 Estimated using one-pion-e 29 Included in BECKER 79 an	me reversal invarianc exchange model.	e, Breit-Wign	er.	
$(\pi^+\pi^-)/\Gamma(2(\pi^+\pi^-))$	DOCUMENT ID	TECN	COMMENT	Γ ₆ /Γ ₅
• We do not use the follow				
0.13 ± 0.05	ASTON		20-70 γρ → ρ2	π
<0.14	³⁰ DAVIER	73 STRC	$6-18 \gamma p \rightarrow p4\pi$	
<0.2	³¹ BINGHAM	72B HBC	$9.3 \gamma p \rightarrow p2\pi$	
³⁰ Upper limit is estimate. ³¹ 2σ upper limit.				
(K K*(892) + c.c.)/Γ(2(CO. 11.51:-	Г8/Г5
We do not use the follow	DOCUMENT ID			
	wing data for average 32 DELCOURT			
$.15\pm0.03$ 32 Assuming $ ho(1700)$ and ω r.				
				E. /5
(ηρ)/Γ _{total}	DOCUMENT ID	TECN	COMMENT	Г9/Г
<0.04	DONNACHIE		COMMENT	
• We do not use the follow			etc. • • •	
< 0.02 58	ATKINSON	86B OMEG	20-70 γp	
	ATKINSON	86B OMEG	20-70 γp	F /F
$(a_2(1320)\pi)/\Gamma_{\text{total}}$				Γ ₁₀ /Γ
(a ₂ (1320)π)/Γ _{total}	DOCUMENT ID		COMMENT	Γ ₁₀ /Γ
(a ₂ (1320)π)/Γ _{total} ALUE • • We do not use the follow	DOCUMENT ID		COMMENT	
$(a_2(1320)\pi)/\Gamma_{\text{total}}$ $ALUE$ \bullet • We do not use the following seen	DOCUMENT ID	TECN es, fits, limits,	COMMENT etc. • • •	π- η
$\Gamma(a_2(1320)\pi)/\Gamma_{\text{total}}$ $ALUE$ $\bullet \bullet \text{We do not use the followoot seen}$ $\Gamma(\eta \rho)/\Gamma(2(\pi^+\pi^-))$	<u>DOCUMENT ID</u> wing data for averag	TECN es, fits, limits, 00 VES	COMMENT etc. • • • $37 \pi^{-} p \rightarrow \eta \pi^{+}$	π- η
$\Gamma(a_2(1320)\pi)/\Gamma_{\text{total}}$ ALUE • • We do not use the following to seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ ALUE	DOCUMENT ID wing data for average AMELIN	TECN es, fits, limits, 00 VES	COMMENT etc. • • • $37 \pi^{-} p \rightarrow \eta \pi^{+}$ COMMENT	π ⁻ n
$\Gamma(a_2(1320)\pi)/\Gamma_{\text{total}}$ ALUE • • We do not use the follow to seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ ALUE • • We do not use the follow	DOCUMENT ID wing data for average AMELIN DOCUMENT ID wing data for averag	es, fits, limits, 00 VES TECN es, fits, limits	COMMENT etc. • • • $37 \pi^- p \rightarrow \eta \pi^+$ COMMENT etc. • • •	π ⁻ n
$\Gamma(a_2(1320)\pi)/\Gamma_{\text{total}}$ ALUE • • We do not use the follow to seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ ALUE • • We do not use the follow th	DOCUMENT ID wing data for average AMELIN	TECN es, fits, limits, 00 VES	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \to \ \eta \pi^+ \\ \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \to \ \pi^+ \pi \end{array}$	π ⁻ n
$\Gamma(a_2(1320)\pi)/\Gamma_{total}$ *• • We do not use the followat seen $\Gamma(\eta \rho)/\Gamma(2(\pi^+\pi^-))$ **MLUE* •• • We do not use the followat seen the	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1	COMMENT etc. • • • $37 \pi^{-} p \rightarrow \eta \pi^{+}$ $COMMENT$ etc. • • • $e^{+} e^{-} \rightarrow \pi^{+} \pi$ $20-70 \gamma p$	-π ⁻ n Γ9/Γ 5
$\Gamma(a_2(1320)\pi)/\Gamma_{\text{total}}$ $ALUE$ • • We do not use the followoot seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • • We do not use the followood on the seen of the se	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG	COMMENT etc. • • • $37 \pi^{-} p \rightarrow \eta \pi^{+}$ $COMMENT$ etc. • • • $e^{+} e^{-} \rightarrow \pi^{+} \pi$ $20-70 \gamma p$ $(\Gamma_{3}+\Gamma_{4}+0.714$	-π ⁻ n Γ9/Γ 5
$\Gamma(a_2(1320)\pi)/\Gamma_{total}$ *• • We do not use the followord seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ **MLUE* •• • We do not use the followord on the set of the followord of the set of t	DOCUMENT ID Ming data for average AMELIN DOCUMENT ID Wing data for average DELCOURT ASTON DOCUMENT ID	TECN es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG	COMMENT etc. • • • $37 \pi^- p \rightarrow \eta \pi^+$ COMMENT etc. • • • $e^+ e^- \rightarrow \pi^+ \pi$ $20-70 \gamma p$ ($\Gamma_3 + \Gamma_4 + 0.714$ COMMENT	-π-n Γ9/Γ 5
$\Gamma(a_2(1320)\pi)/\Gamma_{total}$ ALUE • • We do not use the followat seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ ALUE • • • We do not use the followat seen $\Gamma(\pi\rho)/\Gamma(2(\pi^+\pi^-))$ $\Gamma(\pi^+\pi^-)$ $\Gamma(\pi^+\pi^-)$ $\Gamma(\pi^+\pi^-)$ • • • We do not use the followate seen the followate see • • • We do not use the followate see • • • • • • • • • • • • • • • • •	DOCUMENT ID Ming data for average AMELIN DOCUMENT ID Wing data for average DELCOURT ASTON DOCUMENT ID	TECN es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG	COMMENT etc. • • • $37 \pi^- p \rightarrow \eta \pi^+$ COMMENT etc. • • • $e^+ e^- \rightarrow \pi^+ \pi$ $20-70 \gamma p$ ($\Gamma_3 + \Gamma_4 + 0.714$ COMMENT	-π ⁻ n Γ9/Γ 5
$\Gamma(a_2(1320)\pi)/\Gamma_{total}$ ALUE • • We do not use the followat seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ ALUE • • • We do not use the followat seen $\Gamma(\pi\rho)/\Gamma(2(\pi^+\pi^-))$ $\Gamma(\pi^+\pi^-)$ $\Gamma(\pi^+\pi^-)$ $\Gamma(\pi^+\pi^-)$ • • • We do not use the followate seen the followate see • • • We do not use the followate see • • • • • • • • • • • • • • • • •	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON DOCUMENT ID. wing data for average and a for average 33 BALLAM	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG	COMMENT etc. • • • $37 \pi^- p \rightarrow \eta \pi^+$ COMMENT etc. • • • $e^+e^- \rightarrow \pi^+ \pi$ $20-70 \gamma p$ ($\Gamma_3 + \Gamma_4 + 0.714$ COMMENT etc. • • •	-π-n Γ9/Γ 5
$(a_2(1320)\pi)/\Gamma_{\text{total}}$ $(ALUE)$ \bullet • We do not use the following seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ (π^LUE) \bullet • We do not use the following seen $(\pi^+\pi^-)$ = (π^+)	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON DOCUMENT ID. wing data for average and a for average 33 BALLAM	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG	COMMENT etc. • • • $37 \pi^- p \rightarrow \eta \pi^+$ COMMENT etc. • • • $e^+e^- \rightarrow \pi^+ \pi$ $20-70 \gamma p$ ($\Gamma_3 + \Gamma_4 + 0.714$ COMMENT etc. • • •	π ⁻ n Γ9/Γ ₅ ΜΜ Γ9)/Γ ₅
$(a_2(1320)\pi)/\Gamma_{\text{total}}$ $(ALUE)$ \bullet • We do not use the following seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ (π^LUE) \bullet • We do not use the following seen $(\pi^+\pi^-)$ = (π^+)	DOCUMENT ID wing data for average AMELIN DOCUMENT ID wing data for average DELCOURT ASTON DOCUMENT ID wing data for average 33 BALLAM not subtracted.	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 4 HBC	COMMENT etc. • • • $37 \pi^{-} p \rightarrow \eta \pi^{+}$ $\frac{COMMENT}{\text{etc.} • • •}$ $e^{+} e^{-} \rightarrow \pi^{+} \pi$ $20-70 \gamma p$ $(\Gamma_{3} + \Gamma_{4} + 0.714$ $\frac{COMMENT}{\text{etc.} • • •}$ $9.3 \gamma p$	π ⁻ n Γ9/Γ ₅ ΜΜ Γ9)/Γ ₅
$\Gamma(\mathbf{a}_2(1320)\pi)/\Gamma_{\text{total}}$ $ALUE$ • • We do not use the followat seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followat seen $\Gamma(\pi^+\pi^-)$ $\Gamma(\pi^+\pi^-)$ • • • We do not use the followat seen $\Gamma(\pi^+\pi^-)$ • • • We do not use the followat seen f	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON DOCUMENT ID. wing data for average 33 BALLAM not subtracted.	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC	COMMENT etc. • • • $37 \pi^- p \rightarrow \eta \pi^+$ COMMENT etc. • • • $e^+ e^- \rightarrow \pi^+ \pi$ $20-70 \gamma p$ ($\Gamma_3 + \Gamma_4 + 0.714$ COMMENT etc. • • • $9.3 \gamma p$	π ⁻ n Γ9/Γ ₅ ΜΜ Γ9)/Γ ₅
$(a_2(1320)\pi)/\Gamma_{\text{total}}$ $(ALUE)$ \bullet • We do not use the following seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $(\pi^+\pi^-)$ $(\pi^+\pi^-)$ $(\pi^+\pi^-)$ $(\pi^+\pi^-)$ $(\pi^+\pi^-)$ $(\pi^+\pi^-)$ $(\pi^+\pi^-)$ $(\pi^+\pi^-)$ $(\pi^+\pi^-)$ (π^+)	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON DOCUMENT ID. wing data for average 33 BALLAM not subtracted.	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC	COMMENT etc. • • • $37 \pi^- p \rightarrow \eta \pi^+$ COMMENT etc. • • • $e^+ e^- \rightarrow \pi^+ \pi$ $20-70 \gamma p$ ($\Gamma_3 + \Gamma_4 + 0.714$ COMMENT etc. • • • $9.3 \gamma p$	π ⁻ n Γ9/Γ ₅ ΜΜ Γ9)/Γ ₅
$\Gamma(\mathbf{a}_2(1320)\pi)/\Gamma_{\text{total}}$ $\frac{NLUE}{\mathbf{c}}$ • • We do not use the follow to seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $\frac{NLUE}{\mathbf{c}}$ • • We do not use the follow 0.123 ± 0.027 • 0.1 $\Gamma(\pi^+\pi^-\text{neutrals})/\Gamma(2(\pi^-\text{NLUE}))$ • • We do not use the follow 0.6 ± 0.4 0.33 Upper limit. Background in $\Gamma(\pi^0\omega)/\Gamma_{\text{total}}$ $\Gamma(\pi^0\omega)/\Gamma_{\text{total}}$ $\Gamma(\pi^0\omega)/\Gamma_{\text{total}}$ • • We do not use the following the following seen.	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON TOURN TO DOCUMENT ID. wing data for average 33 BALLAM not subtracted. DOCUMENT ID. wing data for average	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \ \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \ \pi^+ \pi \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 9.3 \ \gamma p \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \ \omega \pi^0 \\ \end{array}$	- π ⁻ n - γ/Γ ₅ ΜΜ Γ ₉ /Γ ₅ Γ ₁₃ /Γ
$\Gamma(a_2(1320)\pi)/\Gamma_{total}$ $\rho = \bullet$ We do not use the followate seen $\Gamma(\eta \rho)/\Gamma(2(\pi^+\pi^-))$ $\rho = \bullet$ We do not use the followate seen $\Gamma(\pi^+\pi^-)$ $\rho = \bullet$ We do not use the followate seen $\Gamma(\pi^0\omega)/\Gamma(2(\pi^-))$ $\rho = \bullet$ We do not use the followate seen $\Gamma(\pi^0\omega)/\Gamma_{total}$ $\rho = \bullet$ We do not use the followate seen $\Gamma(\kappa K)/\Gamma(2(\pi^+\pi^-))$	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON The DOCUMENT ID. wing data for average 33 BALLAM not subtracted. DOCUMENT ID. wing data for average ACHASOV	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 74 RVUE	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \ \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \ \pi^+ \pi^- \\ 20-70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 9.3 \ \gamma p \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \ \omega \pi^0 \\ \end{array}$	- π ⁻ n - γ/Γ ₅ ΜΜ Γ ₉ /Γ ₅ Γ ₁₃ /Γ
$(a_2(1320)\pi)/\Gamma_{total}$ $ALUE$ • • We do not use the followate seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followate seen $\Gamma(\pi^0)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followate seen $\Gamma(\pi^0)/\Gamma_{total}$ $ALUE$ • • We do not use the followate seen $\Gamma(KK)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followate seen $\Gamma(KK)/\Gamma(2(\pi^+\pi^-))$	DOCUMENT ID wing data for average AMELIN DOCUMENT ID wing data for average DELCOURT ASTON DOCUMENT ID wing data for average 33 BALLAM not subtracted. DOCUMENT ID wing data for average ACHASOV	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 97 RVUE	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \ \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \ \pi^+ \pi \\ 20-70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 9.3 \ \gamma p \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \ \omega \pi^0 \\ \hline \\ \underline{CHG} \ \ \underline{COMMENT} \\ \hline \end{array}$	- π ⁻ n - γ/Γ ₅ ΜΜ Γ ₉ /Γ ₅ Γ ₁₃ /Γ
$(a_2(1320)\pi)/\Gamma_{\text{total}}$ ALUE • • We do not use the follow to seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ ALUE • • We do not use the follow	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON DOCUMENT ID. wing data for average 33 BALLAM not subtracted. DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average ACHASOV	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 97 RVUE TECN es, fits, limits	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \pi^+ \pi \\ 20-70 \ \gamma p \\ \hline (\Gamma_3 + \Gamma_4 + 0.714 \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 9.3 \ \gamma p \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \omega \pi^0 \\ \hline \\ \underline{CHG} \ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \end{array}$	- π- n - γ- η -
$(a_2(1320)\pi)/\Gamma_{\text{total}}$ $(ALUE)$ • • We do not use the followate seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $(ALUE)$ • • We do not use the followate seen $\Gamma(\pi^0\omega)/\Gamma(2(\pi^-\pi^-))$ $(ALUE)$ • • We do not use the followate seen $\Gamma(\pi^0\omega)/\Gamma_{\text{total}}$ $(ALUE)$ • • We do not use the followate seen $\Gamma(KK)/\Gamma(2(\pi^+\pi^-))$ $(ALUE)$ • • We do not use the followate seen $\Gamma(KK)/\Gamma(2(\pi^+\pi^-))$ $(ALUE)$ • • We do not use the followate seen $\Gamma(KK)/\Gamma(2(\pi^+\pi^-))$ $(ALUE)$ • • We do not use the followate seen $\Gamma(KK)/\Gamma(2(\pi^+\pi^-))$ $(ALUE)$ • • We do not use the followate seen the followa	DOCUMENT ID wing data for average AMELIN DOCUMENT ID wing data for average DELCOURT ASTON DOCUMENT ID wing data for average 33 BALLAM not subtracted. DOCUMENT ID wing data for average ACHASOV	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 97 RVUE	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \ \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \ \pi^+ \pi \\ 20-70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 9.3 \ \gamma p \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \ \omega \pi^0 \\ \hline \\ \underline{CHG} \ \ \underline{COMMENT} \\ \hline \end{array}$	- π- n - γ- η -
$(a_2(1320)\pi)/\Gamma_{\text{total}}$ ALUE • • We do not use the follow to seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ ALUE • • We do not use the follow to seen $\Gamma(\pi^0)/\Gamma(2(\pi^+\pi^-))$ • • We do not use the follow to see the follow	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON TATION DOCUMENT ID. wing data for average 33 BALLAM not subtracted. DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average 34 DELCOURT BINGHAM	es, fits, limits, 00 VES TECN es, fits, limits, limits, limits, limits, limits, limits, limits, record limits, limits	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \pi^+ \pi \\ 20^- 70 \ \gamma p \\ \hline \\ \left(\Gamma_3 + \Gamma_4 + 0.714 \right. \\ \hline \underbrace{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \bullet \\ e^+ e^- \rightarrow \omega \pi^0 \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \omega \pi^0 \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow 0 \\ 9.3 \ \gamma p \\ \end{array}$	- π- n - γ- η -
$(a_2(1320)\pi)/\Gamma_{total}$ $(ALUE)$ \bullet • We do not use the followate seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $(ALUE)$ \bullet • We do not use the followate seen $\Gamma(\pi^0\omega)/\Gamma(2(\pi^+\pi^-))$ $(ALUE)$ \bullet • We do not use the followate seen $\Gamma(\pi^0\omega)/\Gamma_{total}$ $(ALUE)$ \bullet • We do not use the followate seen $\Gamma(KK)/\Gamma(2(\pi^+\pi^-))$ $(KK)/\Gamma(2(\pi^+\pi^-))$ $(KK)/\Gamma(2(\pi^+\pi^-))$ $(KK)/\Gamma(2(\pi^+\pi^-))$ $(KK)/\Gamma(2(\pi^+\pi^-))$ $(KK)/\Gamma(2(\pi^+\pi^-))$ $(KK)/\Gamma(2(\pi^+\pi^-))$ $(KK)/\Gamma(2(\pi^+\pi^-))$ $(K)/\Gamma(2(\pi^+\pi^-))$ $($	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON DOCUMENT ID. wing data for average 33 BALLAM not subtracted. DOCUMENT ID. wing data for average ACHASOV	es, fits, limits, 00 VES TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 74 RVUE TECN es, fits, limits 97 RVUE TECN es, fits, limits 97 RVUE	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \pi^+ \pi \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 9.3 \ \gamma p \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \omega \pi^0 \\ \hline \\ \underline{CHG} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow 0 9.3 \ \gamma p \\ \text{in mass.} \end{array}$	Γ ₉ /Γ ₅
$(a_2(1320)\pi)/\Gamma_{total}$ $(ALUE)$ $(A$	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON The main of average 33 BALLAM not subtracted. DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. DOCUMENT ID. DOCUMENT ID.	es, fits, limits, 00 VES TECN es, fits, limits, 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 97 RVUE TECN es, fits, limits 97 RVUE be, fits, limits 81B DM1 72B HBC De degenerate	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \pi^+ \pi \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ 20^- 70 \ \gamma p \\ \hline \\ e^+ e^- \rightarrow \omega \pi^0 \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \omega \pi^0 \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow 0 \\ 9.3 \ \gamma p \\ \hline \\ \text{in mass.} \\ \hline \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \underline$	Γ ₉ /Γ ₅
$(\mathbf{a}_2(1320)\pi)/\Gamma_{\text{total}}$ $(\mathbf{a}_2(1320)\pi)/\Gamma_{\text{total}$	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON The main of average 33 BALLAM not subtracted. DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average 34 DELCOURT BINGHAM radial excitations to be acc.) DOCUMENT ID. wing data for average	es, fits, limits, 00 VES TECN es, fits, limits, 182 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 97 RVUE TECN es, fits, limits 81B DM1 72B HBC De degenerate TECN es, fits, limits	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- \ p \rightarrow \ \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \ \pi^+ \pi \\ 20^- 70 \ \gamma p \\ \hline \\ \left(\begin{array}{c} \Gamma_3 + \Gamma_4 + 0.714 \\ \hline \times 0.714 \\ \hline \times 0.714 \\ \hline \times 0.714 \\ \hline \end{array} \right) \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \ \omega \pi^0 \\ \hline \\ \underline{CHG} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \ 0 \\ 9.3 \ \gamma p \\ \hline \\ \text{in mass.} \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \end{array}$	π ⁻ n Γ9/Γ5 MM Γ9)/Γ5 Γ13/Γ K
$(a_2(1320)\pi)/\Gamma_{total}$ $ALUE$ • • We do not use the follow to seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the follow to 1.23 ± 0.027 • 0.1 $\Gamma(\pi^+\pi^-)$ neutrals $\Gamma(2(\pi^-))$ $\Gamma(\pi^+\pi^-)$ neutrals $\Gamma(2(\pi^-))$ $\Gamma(\pi^+)$ • • We do not use the follow	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON DOCUMENT ID. wing data for average 33 BALLAM not subtracted. DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average BINGHAM radial excitations to be C.) DOCUMENT ID. wing data for average BUON	es, fits, limits, 00 VES TECN es, fits, limits, 182 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 97 RVUE TECN es, fits, limits 81B DM1 72B HBC De degenerate TECN es, fits, limits	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \pi^+ \pi \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ 20^- 70 \ \gamma p \\ \hline \\ e^+ e^- \rightarrow \omega \pi^0 \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \omega \pi^0 \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow 0 \\ 9.3 \ \gamma p \\ \hline \\ \text{in mass.} \\ \hline \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \underline{COMMENT} \\ \hline \\ \underline{COMMENT} \\ \underline$	π ⁻ n Γ9/Γ5 MM Γ9)/Γ5 Γ13/Γ K
$(a_2(1320)\pi)/\Gamma_{total}$ $ALUE$ • • We do not use the followate seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followate seen $\Gamma(\pi^0)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followate seen $\Gamma(\pi^0)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followate seen $\Gamma(KK)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followate seen $\Gamma(KK)/\Gamma(2(\pi^+\pi^-))$ $\Gamma(KK)/\Gamma(KK^0(892) + C$ $\Gamma(KK)/\Gamma(KK^0(KK^0(KK^0(KK^0(KK^0(KK^0(KK^0(KK^$	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON DOCUMENT ID. wing data for average 33 BALLAM not subtracted. DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average BINGHAM radial excitations to be C.) DOCUMENT ID. wing data for average BUON	es, fits, limits, 00 VES TECN es, fits, limits, 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 97 RVUE TECN es, fits, limits 81B DM1 72B HBC the degenerate es, fits, limits 82 DM1 TECN es, fits, limits 81B DM1 72B HBC the degenerate 82 DM1	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \pi^+ \pi \\ 20-70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 9.3 \ \gamma p \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \omega \pi^0 \\ \hline \\ \underline{CHG} \ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow 0 \ 9.3 \ \gamma p \\ \text{in mass.} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \bullet \\ e^+ e^- \rightarrow \text{hadro} \\ \hline \\ e^- e^- e^- \rightarrow \text{hadro} \\ \hline \\ e^- e^- \rightarrow \text$	Γ9/Γ5 Γ13/Γ Γ11/Γ5 Γκ
$(a_2(1320)\pi)/\Gamma_{\text{total}}$ ALLUE • • We do not use the follow to seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ ALLUE • • We do not use the follow the follo	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON DOCUMENT ID. wing data for average 33 BALLAM not subtracted. DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average 34 DELCOURT BINGHAM radial excitations to be acc.) DOCUMENT ID. wing data for average BUON DOCUMENT ID.	es, fits, limits, 00 VES TECN es, fits, limits, 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 97 RVUE TECN es, fits, limits 81B DM1 72B HBC be degenerate es, fits, limits 82 DM1	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \pi^+ \pi \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 9.3 \ \gamma p \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \omega \pi^0 \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow 0 9.3 \ \gamma p \\ \text{in mass.} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \text{hadro} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \text{hadro} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \text{hadro} \\ \hline \\ \underline{COMMENT} \\ \end{array}$	
$(a_2(1320)\pi)/\Gamma_{\text{total}}$ ALLUE • • We do not use the follow to seen $(\pi\rho)/\Gamma(2(\pi^+\pi^-))$ ALLUE • • We do not use the follow	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON The main of the subtracted. DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average 34 DELCOURT BINGHAM radial excitations to be acc.) DOCUMENT ID. wing data for average BUON es, fits, limits, 00 VES TECN es, fits, limits, 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 97 RVUE TECN es, fits, limits 81B DM1 72B HBC be degenerate es, fits, limits 82 DM1 TECN es, fits, limits 83 DM1 74 HBC	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \pi^+ \pi \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ 20^- 70 \ \gamma p \\ \hline \\ \text{etc.} \bullet \bullet \bullet \\ 9.3 \ \gamma p \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ 0 \ 9.3 \ \gamma p \\ \hline \\ \text{in mass.} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ \text{odd} \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ \text{odd} \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \Phi \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ COMMENT \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ COMMENT \\ \text{etc.} \bullet \\ \hline \\$	π-n Γ9/Γ5 Γ13/Γ Γ11/Γ5	
$(a_2(1320)\pi)/\Gamma_{total}$ $ALUE$ • • We do not use the followate seen $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followate seen $\Gamma(\pi^0)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followate seen $\Gamma(\pi^0)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followate seen $\Gamma(KK)/\Gamma(2(\pi^+\pi^-))$ $ALUE$ • • We do not use the followate seen $\Gamma(KK)/\Gamma(2(\pi^+\pi^-))$ $\Gamma(KK)/\Gamma(KK^0(892) + C$ $\Gamma(KK)/\Gamma(KK^0(KK^0(KK^0(KK^0(KK^0(KK^0(KK^0(KK^$	DOCUMENT ID. wing data for average AMELIN DOCUMENT ID. wing data for average DELCOURT ASTON DOCUMENT ID. wing data for average 33 BALLAM not subtracted. DOCUMENT ID. wing data for average ACHASOV DOCUMENT ID. wing data for average 34 DELCOURT BINGHAM radial excitations to be acc.) DOCUMENT ID. wing data for average BUON DOCUMENT ID.	es, fits, limits, on VES TECN es, fits, limits, limit	$\begin{array}{c} \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 37 \ \pi^- p \rightarrow \eta \pi^+ \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \pi^+ \pi \\ 20^- 70 \ \gamma p \\ \hline \\ (\Gamma_3 + \Gamma_4 + 0.714 \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ 9.3 \ \gamma p \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \omega \pi^0 \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow 0 9.3 \ \gamma p \\ \text{in mass.} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \text{hadro} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \text{hadro} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \text{hadro} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \text{hadro} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \text{hadro} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- \rightarrow \text{hadro} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \\ \hline \\ \underline{COMMENT} \\ \text{etc.} \\ \hline \\ \underline{COMMENT} \\ $	π-n Γ9/Γ5 Γ13/Γ Γ11/Γ5

< 0.10			TKINSON			20-70 γp	
<0.15		A	TKIN\$ON	82 O	MEG 0	20-70 γρ	· t
		ρ(170	o) REFERE	NCES			
AMELIN	00 99D	NP B668 83 PL B468 178	D. Amelin et a	ıl.		(VES (ollab.)
ABELE ABELE	99D 97	PL B468 178 PL B391 191	A. Abele et al. A. Abele et al.			(Crystal Barrel ((Crystal Barrel (oliab.) Tollab.)
ACHASOV	97	PR D55 2663	N.N. Achasov	et al.		1)	IOVM)
	97C	PL B408 476	A. Bertin et al			(OBELIX	ollab.)
	94 90	ZPHY C62 455 ZPHY C45 677	A.B. Clegg, A. A.B. Clegg, A.	Donnach	ie	(LANC,	MCH5)
	89	PL B220 321	D. Bisello et a	i.	ie	(LANC,	ollab.)
DUBNICKA	89					(DM2 ((JINR,	SLOV)
	89	ZPHY 45 351	B.V. Geshkenbe	ein _.			(ITEP)
ANTONELLI DIEKMAN	88 88	PL B212 133 PRPL 159 101	B.V. Geshkenbe A. Antonelli et B. Diekmann	aı.		(DM2 (
FUKUI	88	PL B202 441	S. Fukui et al.		(SUGI	. NAGO. KEK. K'	BONN) YOT+)
DONNACHIE	87B	ZPHY C34 257	A. Donnachie,	A.B. Cleg	g	(MCHS, (BONN, CERN, G	LANC)
ATKINSON	86B	ZPHY C30 531	M. Atkinson et	al.		(BONN, ČERN, G	LAS+)
ATKINSON ERKAL	85B 85	ZPHY C26 499 ZPHY C29 485	C Erkal M.G.	Olsson		(BUNN, CERN, G	(WISC)
ABE	B4B	PRL 53 751	K. Abe et al.	0.22011			(11.50)
KURDADZE	83	PL B202 441 ZPHY C30 531 ZPHY C30 531 ZPHY C30 495 ZPHY C29 485 PRL 53 751 JETPL 37 733 Translated from ZETFP PL 108B 55 PL 108B 221 NP B208 228 PL 109B 129 PL 113B 93 NP B189 15 Bonn Conf. 205 PL 109B 129 PR D23 595 PL 92B 215 PL 92B 215 PL 95B 139 Madison Conf. 546 PR O21 3005 PRL 43 1691 NP B151 46 PR D19 956 ANP 114 1 PL 71B 345 ANP 114 1 PL 71B 345 NP B129 89 PL 57B 487 NP B76 375 PL 52B 487 NP B76 375 PL 52B 487 NP B58 31 PL 43B 149 NP B61 134	L.M. Kurdadze	et al.		(NOVO)
ATKINSON	82	PL 108B 55	or 613. M. Atkinson ≈	al.		(BONN, CERN, G	LAS+
BUON	82	PL 118B 221	J. Buon et al.			(LALO, I	MONP
CLELAND	82B	NP B208 228	W.E. Cleland 6	t al.		(DURH, GEVA, L	AUS+)
CORDIER DELCOURT	82 82	PL 109B 129	A. Cordier et a	11. 21			LALO)
ASTON	81E	NP B189 15	D. Aston	(BON	N, CERN	, EPOL, GLAS, L	(LALO) ANC+)
DELCOURT	81B	Bonn Conf. 205	B. Delcourt	,	.,	(0	RSAY
Also	82	PL 109B 129	A. Cordier et a	ri.		(6.65	LALO
DIBIANCA ASTON	81 80	PK D23 595 PL 92B 215	O Aston	et al.	N CERN	(CASE, EPOL, GLAS, L	CMU)
BACCI	80	PL 95B 139	C. Bacci et al.	(50.0	.,	(ROMA,	FRAS
	80	Madison Conf. 546	J.C. Bizot et a	ıl.		(ROMA, (LALO, J	MONP)
KILLIAN ATIYA	80 79B	PR 021 3005 PRL 43 1691	T.J. Killian et	al. al		(COLU, ILL, (COLU, ILL, (CERN, ZEEM,	CORN)
BECKER	79	NP B151 46	H. Becker et a	il.	(MPIN	, CERN, ZEEM,	CRAC
LANG	79	PR D19 956	C.B. Lang, A.	Mas-Para	eda		GRAZ
MARTIN COSTA	78C 77B	ANP 114 1	A.O. Martin, N	1.R. Penn	ington B Bire	T.N. Truong	CERN
FROGGATT	77	NP B129 89	C.D. Froggatt.	J.L. Pete	rsen	(GLAS,	(EPOL) NORD1
ALEXANDER	75	PL 57B 487	G. Alexander e	t al.		((TELA)
BALLAM	74	NP B76 375	J. Ballam et a	<i>l.</i>		(SLAC, LBL,	MPIM)
CONVERSI SCHACHT	74 74	PL 528 493 NP RAI 205	P Schacht et	ai. ai		(ROMA,	MPIM)
DAVIER	73	NP B58 31 PL 43B 149	M. Davier et a	il.		,	(SLAC
EISENBERG	73	PL 43B 149	Y. Eisenberg e B.D. Hyams et	t ai.		(REHO)
HYAMS BINGHAM	73 72B	NP B64 134 PL 41B 635	B.D. Hyams et H.H. Bingham	et al.		(CERN,` (LBL, UCB,	SLAC
		OTHER	RELATED				
EDWARDS	00	PR D61 072003	K.W. Edwards	et al.		(CLEO	Collab.)
ABELE	99C	PL B450 275	A. Abele et ai.			(Crystal Barrel	Collab.)
DONNACHIE KULZINGER	99 99	PR D60 114011	A. Donnachie, G. Kulzinger e		ashnikova	1	٠
BELOZEROVA		EPJ C7 73 PPN 29 63	T.S. Belozerov	a, V.K. H	enner		
		Translated from EECAV	29 148.			(ODNI DAI	
BARNES CLOSE	97 97 C	PR D56 1584	T. Barnes et a F.E. Close et a	u. ad		(ORNL, RAL, (RAL,	MCHS
URHEIM	97	NPBPS 55C 359 PAN 59 1262	J. Urheim			(CLEO	Collab.
ACHA5OV	96B	PAN 59 1262 Translated from YAF 59	N.N. Achasov,	G.N. She	stakov	(1	NOVM)
AMSLER	93B	PL B311 362	C. Amsler et a	ıl.		(Crystal Barrel	Collab.)
LANOSBERG	92	SJNP 55 1051	1006				(SERP)
ASTON	91B	Translated from YAF 55 NPBPS 21 105 ZPHY C51 689				(LASS	Collab.)
DONNACHIE	91			A.B. Cles	SE .	(LASS ((MCHS,	LANC)
ACHASOV	88C	PL B209 373	IN.IN. ACITASOV,	M.M. NUZ	HEATHINGA	(1	(MVOV
BRAU CLEGG	88 88	PR D37 2379 ZPHY C40 313	J.E. Brau et a A.B. Clegg, A.	i. Doggada	ie	(MCHC	LANC
ASTON	87	NP B292 693	D. Aston et al		.~ (SL	(MCHS, AC, NAGO, CINC,	INUS
ERKAL	86	ZPHY C31 615	D. Aston et al C. Erkal, M.G.	Olsson	• -		WISC)
BARKOV ATKINSON	85 84C	NP B256 365 NP B243 1	L.M. Barkov e M. Atkinson e			(BONN, CERN, G	NOVO)
ATKINSON	83B	PL 127B 132	M. Atkinson e			(BONN, CERN, G	LAS+)
ATKINSON	83C	NP B229 269	M. Atkinson e	t al.		(BONN, CERN, G	LAS+)
AUGUSTIN	83	LAL 83-21 PR D26 1	J.E. Augustin W.D. Shambro	et al.		(LALO, PADO, (HARV, EFI,	FRAS)
SHAMBROOM ASTON	80C	PR D26 1 PL 92B 211	D. Aston			HARV, EFI, EPOL, GLAS, L	NC+1
BARBER	80C	ZPHY C4 169	D.P. Barber et	al.		(DARE, LANC,	SHEF)
KILLIAN	80	PR D21 3005 PL 63B 352	T.J. Killian et				CORN)
COSME FRENKIEL	76 72	PL 63B 352 NP B47 61	G. Cosme et a P. Frenkiel et			(CD E F,	R\$AY) CERN)
ALVEN\$LEB	71	PRL 26 273	H. Alvensleben	et al.		(DESY	, MIT)
BRAUN	71	NP B30 213	H.M. Braun et	al.			STRB)
BULOS LAYSSAC	71 71	PRL 26 149 NC 6A 134	F. Bulos et al.	A. Renard	(SLAC, UMD, IBM	, LBL) MONP)

 $\Gamma(\rho^0\pi^0\pi^0)/\Gamma(\rho^\pm\pi^\mp\pi^0)$

 $f_0(1710)$

 $f_0(1710)$

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$

THE $f_0(1710)$

Updated April 2000 by M. Doser (CERN).

The $f_0(1710)$ is seen in the radiative decay $J/\psi(1S) \rightarrow \gamma f_0(1710)$; therefore C = +1. It decays into $\eta \eta$ and $K_S^0 K_S^0$, which implies $I^G J^{PC} = 0^+ (even)^{++}$. The spin of the $f_0(1710)$ has been controversial, but evidence for spin 0 has accumulated recently in all production modes.

An analysis of radiative J/ψ decays at BES into $\pi^+\pi^-\pi^+\pi^-$ (BAI 00) clearly favors spin 0. Combined amplitude analyses of the K^+K^- , $K_S^0K_S^0$ and $\pi^+\pi^-$ systems produced in $J/\psi(1S)$ radiative decay by MARK III (CHEN 91 and more recently DUNWOODIE 97) find a large spin-0 component, and at the same time reproduce known parameters of the $f_2(1270)$ and $f_2'(1525)$. In addition, a recent reanalysis (BUGG 95) of the 4π channel from MARK III, allowing both $\rho\rho$ and two $\pi\pi$ S-waves, also finds a 0^{++} assignment for the $f_0(1710)$. Earlier analyses of this final state (BISELLO 89B, BALTRUSAITIS 86B) found only pseudoscalar activity in the $f_0(1710)$ region, but considered only the process $J/\psi \to \gamma\rho\rho$. Similarly, earlier analyses of the K^+K^- system based on less statistics (BALTRUSAITIS 87, BAI 96) found a spin of 2 for the $f_0(1710)$.

A similar situation is present in central production, with earlier analyses favoring spin 2 over spin 0 (ARMSTRONG 89D). More recent analyses with greater statistics by BARBERIS 99 $(K^+K^-, K_S^0K_S^0)$, BARBERIS 99B $(\pi^+\pi^-)$, and FRENCH 99 (K^+K^-) however clearly indicate spin 0, and exclude spin 2. Generally, analyses preferring spin 2 concentrate on angular distributions in the $f_0(1710)$ region, and do not include possible interferences or distortion due to the nearby $f_2'(1525)$.

The $f_0(1710)$ is also observed in $K\overline{K}$ (FALVARD 88) in $J/\psi(1S) \to \omega K\overline{K}$ and $J/\psi(1S) \to \phi K\overline{K}$, but with no spin-parity analysis, as well as in $\eta\eta$ in radiative J/ψ decays (EDWARDS 82). It is also clearly seen in 300-GeV/c pp central production in both K^+K^- and $K_S^0K_S^0$ (ARMSTRONG 89D). Mass and width are determined via a fit to non-interfering Breit-Wigners over a polynomial background, which leads to large systematic errors for the width. ARMSTRONG 93C also sees a broad peak in $\eta\eta$ at 1747 MeV, which may be the $f_0(1710)$.

This resonance is not observed in the hypercharge-exchange reactions $K^-p \to K_S^0K_S^0\Lambda$ (ASTON 88D) and $K^-p \to K_S^0K_S^0Y^*$ (BOLONKIN 86); these non-observations are explained by a spin of 0 (LINDENBAUM 92). A possible observation in $\gamma\gamma$ collisions leading to $K_S^0K_S^0$ (BRACCINI 99, but no spin determination), and a non-observation in $\gamma\gamma \to \pi^+\pi^-$ (BARATE 00E) is consistent with a large $\overline{s}s$ component.

f₀(1710) MASS

		•••				
VALUE (MeV)	EVTS	DOCUMENT I			COMMENT	
1715± 7	OUR AVERAGE	Error includes so	ale facto	or of 1.1	•	
$1740 + 30 \\ -25$		¹ BAI	00	BES	$J/\psi \rightarrow$	ı
-23		_			$\gamma(\pi^+\pi^-\pi^+\pi^-)$	
1710 ± 25		² FRENCH	99		300 <i>pp</i> →	ı
		_			$p_f(K^+K^-)p_S$	
1707 ± 10		³ AUGUSTIN	88	DM2	$J/\psi \rightarrow \gamma K^+ K^-$	
					κ ⁰ ₅ κ ⁰ ₅	
1698 ± 15		3 AUGUSTIN	87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$	
1720 ± 10	± 10	⁴ BALTRUSA	IT87	MRK3	$J/\psi \rightarrow \gamma K^+ K^-$	
1742±15		3 WILLIAMS	84	MPSF	$200 \pi^- N \rightarrow 2K_5^0 X$	
1670±50		BLOOM	83	CBAL	$J/\psi \rightarrow \gamma 2\eta$	
• • • We do	not use the following	g data for avera	ges, fits	, limits,	etc. • • •	
1770±12		5 ANISOVICE	1 99в	SPEC	$0.6-1.2 p\overline{p} \rightarrow \eta \eta \pi^0$	ı
1730±15		1 BARBERIS		OMEG	450 pp →	I
					pspfK+K-	
1750 ± 20		1 BARBERIS	99в	OMEG	450 pp $\rightarrow p_S p_f \pi^+ \pi^-$	L
1710 ± 12	±11	⁶ BARBERIS	99D	OMEG	450 $pp \to K^+K^-$,	ı
1750 / 20		7 420500461		DVIIE	π ⁺ π ⁻	
1750±30 1720±39		⁷ ANISOVICH BAI		RVUE BES	Compilation $J/\psi \rightarrow \gamma \pi^0 \pi^0$	ı
1720±39 1775± 1.5	5 57	8 BARKOV	98H	DE3	$\pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$	ı
	, 31	9 ABREU		חים וח	$z^0 \rightarrow \kappa_s \kappa_s \kappa_s \kappa_s$	•
1690±11	 0			DLPH		
1696± 5	+ 9 - 34	⁴ BAI	96 C	BES	$J/\psi \rightarrow \gamma K^+ K^-$	
1781± 8	+10 -31	¹ BAI	960	BES	$J/\psi \rightarrow \gamma K^+ K^-$	
	- 31					
1768±14		BALOSHIN		SPEC	$40 \pi^{-}C \rightarrow K_{S}^{0} K_{S}^{0} X$	
1750 ± 15		10 BUGG	95	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$	
1620±16		⁴ BUGG	95	MRK3	$J/\psi \to \gamma \pi^+ \pi^- \pi^+ \pi^-$	
1748±10		3 ARMSTRO BREAKSTO		SFM	$ \overline{p} p \to \pi^0 \eta \eta \to 6\gamma \rho p \to $	
~ 1750		BREAKSIC	JINE 93	21-IVI	$\rho\rho \rightarrow \rho\rho\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	
1744±15		¹¹ ALDE	920	GAM2		
1713±10		12 ARMSTRO			300 pp → ppK+K-	
1706±10		12 ARMSTRO				
1700±15		4 BOLONKIN		SPEC	$40 \pi^- p \rightarrow K_0^0 K_0^0 n$	
1720±60		1 BOLONKIN		SPEC	$40 \pi^- p \rightarrow K_0^0 K_0^0 n$	
1638±10		13 FALVARD	88	DM2	$J/\psi \rightarrow \phi K^+ K^-,$	
1630±10		FALVARD	00	DIVIZ	$\kappa_{S}^{0}\kappa_{S}^{0}$	
1600 4		¹⁴ FALVARD	88	D143		
1690± 4		FALVARD	00	DM2	$J/\psi \rightarrow \phi K^+ K^-$,	
		15	05-	C 4 4 4 5	κ _S κ _S	ı
1755 ± 8		15 ALDE		GAM2	$38 \pi^- p \rightarrow n2\eta$	1
$1730 + 2 \\ -10$		16 LONGACRI	E 86	RVUE	$22 \pi^- p \rightarrow n2K_S^0$	
1650±50		BURKE	82	MRK2	$J/\psi \rightarrow \gamma 2\rho$	
1640 ± 50	1	7,18 EDWARDS	82D	CBAL	$J/\psi \rightarrow \gamma 2\eta$	
1730 ± 10	±20	¹⁹ ETKIN	82C	MPS	$23 \pi^- p \rightarrow \pi^2 K_5^0$	
$^{1}J^{p}=0^{-}$	+.				-	
$2J^p=0$	+. +, supersedes by AR	MSTRONG 89D				ı
AND JPC	determination.					Ī
Jr = 27 5 Prelimin	r. ary data from CBAR	$I^{p} = 0+$				ı
	es BARBERIS 99 ar		9B.			ı
7 T-matrix	note assuming P	- n+				ı
8 No JPC	determination.					ı
9 No JPC	determination.	h not determine	d.			_
- From a r	it to the U' partial	wave.				
12 JP = 92	2D combines all the	5AM5-2000 dat ENCH 99	a.			
11 ALDE 92D combines all the GAMS-2000 data. 12 J $^P=2^+$, superseded by FRENCH 99. 13 From an analysis ignoring interference with $f_2^I(1525)$.						
¹⁴ From an analysis including interference with $f_2'(1525)$.						
		terretence with	2(1323	,.		
16 Lines NAC	led by ALDE 920.	rtial-wave analy	sis of dat	a lieina	a K-matrix formalism with	I
5 poles,	but assuming spin 2	. Fit with consti	rained in	elasticity	/.	
17 p = 2	+ preferred.					

%(1710) WIDTH

¹⁸ From fit neglecting nearby $f_2'(1525)$. Replaced by BLOOM 83.

19 Superseded by LONGACRE 86.

<u>VALUE</u> (MeV		DOCUMENT ID	<u>TECN</u>	COMMENT
120 +	50 40	²⁰ BAI	00 BES	$J/\psi \to \gamma(\pi^+\pi^-\pi^+\pi^-)$
105 ±	34	²¹ FRENCH	99	300 pp →
166.4 \pm	33.2	²² AUGUSTIN	88 DM2	$p_f(K^+K^-)p_S$ $J/\psi \to \gamma K^+K^-,$ $K_c^0 K_c^0$
136 ±	28	22 AUGUSTIN	87 DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
130 ±	20	23 BALTRUSAIT	.87 MRK3	$J/\psi \rightarrow \gamma K^+ K^-$
57 ±	38	3 WILLIAMS	84 MPSF	$200 \pi^- N \rightarrow 2K_5^0 X$
160 ±	80	BLOOM		$J/\psi \rightarrow \gamma 2\eta$

							10(1110)
• • We do not use the following	ng data for averages, fit	ts, limits, et			f ₀ (1710) BR	ANCHING RATIOS	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		99B SPEC 99 OMEG	$\begin{array}{ccc} 0.61.2 \ \rho \overline{\rho} \rightarrow & \eta \eta \pi^{0} \\ 450 \ \rho \rho \rightarrow & \end{array}$		$\Gamma(K\overline{K})/\Gamma_{\text{total}}$		Γ ₁ /Γ
160 ± 30	²⁰ BARBERIS	99B OMEG	$p_S p_f K^+ K^-$ $450 pp \rightarrow$	ı	• • • We do not use the following data to	for averages, fits, limits,	COMMENT etc. • • •
126 ± 16 ±18	²⁵ BARBERIS	990 OMEG	$p_S p_f \pi^+ \pi^-$ 450 $pp \to K^+ K^-$,	ı	$0.38^{+0.09}_{-0.19}$ 39,40 LON	NGACRE 86 MPS	$22 \pi^- p \rightarrow n2K_5^0$
250 ±140 30 ± 7 57			$\pi^+\pi^-$ Compilation	1	Γ(ηη)/Γ _{total}	UMENT ID TECN	Γ ₂ /Γ
$103 \pm 18 \begin{array}{l} +30 \\ -11 \end{array}$	22	98 96c BES	$\pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$ $J/\psi \rightarrow \gamma K^{+} K^{-}$	•	• • We do not use the following data f		etc. • • •
$85 \pm 24 \begin{array}{c} +22 \\ -19 \end{array}$		96c BES	$J/\psi \rightarrow \gamma K^+ K^-$		$0.18^{+0.03}_{-0.13}$ 39,40 LON	NGACRE 86 RVUE	
56 ± 19			40 π C →		Γ(ππ)/Γ _{total}		Г ₃ /г
160 ± 40	²⁸ BUGG	95 MRK3	$K_S^0 K_S^0 X$ $J/\psi \rightarrow$			TUMENT ID TECN	
160 + 60 - 20	²³ BUGG	95 MRK3	$\gamma \pi^+ \pi^- \pi^+ \pi^ J/\psi \rightarrow$		•	NGACRE 86 RVUE	
- 20 264 ± 25	²² ARMSTRONG		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\Gamma(\pi\pi)/\Gamma(K\overline{K})$		F. /F
200 to 300	BREAKSTONE		$pp \rightarrow$		VALUE DOC		Γ ₃ /Γ ₁
< 80 90			$\begin{array}{c} \rho \rho \pi^+ \pi^- \pi^+ \pi^- \\ 38 \pi^- \rho \rightarrow \eta \eta N^* \end{array}$			MSTRONG 91 OMEG	ppK K
181 ± 30	30 ARMSTRONG		nn K+ K-		• • • We do not use the following data to 0.2 ±0.024±0.036 BAF	-	etc. • • • 450 pp → K ⁺ K ,
104 ± 30	³⁰ ARMSTRONG	B9D OMEG	300 pp → ppK ₀ K ₀		0.2 ±0.024±0.030 BAF	APP OMEG	$\begin{array}{c} 450 \ pp \rightarrow \ K^+K^-, \\ \pi^+\pi^- \end{array}$
30 ± 20			$40 \pi^- p \rightarrow K_S^0 K_S^0 n$		$\Gamma(\eta\eta)/\Gamma(K\overline{K})$		Γ ₂ /Γ ₁
350 ±150 148 ± 17			$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$ $J/\psi \rightarrow \phi K^{+} K^{-}.$		• • • We do not use the following data 1		COMMENT etc. • • •
104	³² FALVARD		κ ⁰ ₅ κ ⁰ ₅		<0.02 90 ⁴¹ PRO	OKOSHKIN 91 GA24	$300 \pi^- \rho \rightarrow \pi^- \rho \eta \eta$
184 ± 6	9- FALVARD	88 UM2	$J/\psi \to \phi K^+ K^-,$ $K_S^0 K_S^0$		³⁹ From a partial-wave analysis of data suming spin 2.	using a K-matrix formal	ism with 5 poles, but as-
122 + 74 - 15			$22 \pi^- p \rightarrow \pi^2 K_S^0$		⁴⁰ Fit with constrained inelasticity. ⁴¹ Combining results of GAM4 with those	se of ARMSTRONG 89D.	
200 ±100 220 +100			$J/\psi \rightarrow \gamma 2\rho$				
200.0 + 156.0 200.0 + 9.0			$J/\psi \to \gamma 2\eta$ $23 \pi^- p \to n2K_c^0$		-, ,	REFERENCES Z. Bai et al.	
20 $JP = 0^+$. 21 $JP = 0^+$, supersedes by AR 22 No J^{PC} determination. 23 $J^P = 2^+$. 24 Preliminary data from CBAR 25 Supersedes BARBERIS 99 an 26 T-matrix pole, assuming J^P 27 No J^{PC} determination. 28 From a fit to the 0^+ partial 29 ALDE 92D combines all the 30 $J^P = 2^+$, (0^+ excluded). 31 From an analysis ignoring int	, $JP = 0+$. IN BARBERIS 99B. = 0+ Wave. GAMS-2000 data. erference with $t_2'(1525)$				ANISOVICH 998 PL 8449 154 BARBERIS 99 PL 8453 305 D. BARBERIS 998 PL 8653 316 D. BARBERIS 99D PL 8462 462 D. BARBERIS 99D PL 8214 213 B. ANISOVICH 98B UFN 11 1179 J. BARKOV 98 JEPTL 68 764 BAI 96C PL 817 3959 J. BALOSHIN 95 PAN 58 46 O. Translated from YAF 58 50. BUGG 95 PL 8353 378 D. BREAKSTONE 93 CPHY C58 251 ALDE 92D PL 8284 457 D.	V. Bugg et al. A. Armstrong et al. M. Breakstone et al. M. Alde et al.	(BES Collab.) (ALEPH Collab.) (Omega expt.) (Omega expt.) (Omega expt.) (Omega expt.) (WA76 Collab.) (BES Collab.) (BES Collab.) (GELPHI Collab.) (GES Collab.) (ITEP) (LOQM, PNPI, WASH) (FNAL, FERR, GENO+) (SOMZ Collab.)
³² From an analysis including in ³³ Uses MRK3 data. From a pa	terference with $f_2'(152)$	5). Ita using a K	-matrix formalism with		Translated from YAF 54 745 ARMSTRONG 91 ZPHY C51 351 T.	A. Armstrong et al.	(GAM2 Collab.) (ATHU, BARI, BIRM+)
5 poles, but assuming spin 2 34 $J^P = 2^+$ preferred. 35 From fit neglecting nearby f^0_{3} 36 From an amplitude analysis	Fit with constrained in (1525). Replaced by B	nelasticity.			PROKOSHKIN 91 5PD 36 155 Translated from DANS 316 ALBRECHT 96 ZPHY C48 183 ALRMSTRON 980 PL B227 186 T. BEHREND 89C ZPHY C43 91 H. AUGUSTIN 89 PRI 60 2238 JI. BOLONKIN 88 NP B309 426 B.	D. Prokoshkin	(GAM2, GAM4 Collab.) (ARGUS Collab.) (ATHU, BARI, BIRM+) (CELO Collab.) (DM2 Collab.) (ITEP, SERP) (CLER, FRAS, LALO+)
fo	(1710) DECAY MO	DES			AUGUSTIN 87 ZPHY C36 369 J.E BALTRUSAIT 87 PR D35 2077 R.I	E. Augustin <i>et al.</i> M. Baltrusaitis <i>et al.</i>	(LALO, CLER, FRAS+) (Mark III Collab.) RP, BELG, LANL, LAPP)
Mode	Frac	tion (Γ_i/Γ)			LONGACRE 86 PL B177 223 R.: ALTHOFF 85B ZPHY C29 189 M.	S. Longacre et al Althoff et al.	(BNL, BRAN, CUNY+) (TASSO Collab.)
$\overline{\Gamma_1 K\overline{K}}$	seen	-			WILLIAMS B4 PR D30 877 E.I BLOOM B3 ARNS 33 143 E.I	G.H. Williams et al. (*) D. Bloom, C. Peck L. Burke et al.	VAND, NĎAM, TUFTS+) (SLAC, CIT) (LBL, SLAC)
$\Gamma_2 = \eta \eta$	seen				EDWARDS 82D PRL 48 458 C. ETKIN 82B PR D25 1786 A.	Edwards et al. Etkin et al. (BNL	(CIT, HARV, PRIN+) ,, CUNY, TUFTS, VAND)
$\Gamma_3 = \pi \pi$ $\Gamma_4 = \gamma \gamma$	seen				ETKIN 82C PR D25 2446 A.	. Etkin et al. (BNL	, CUNY, TUFTS, VAND)
5./	 1 710) Γ(i)Γ(γγ)/Γ(i	ental)	·			ELATED PAPERS — V. Anisovich, V.V. Anisovich	
$\Gamma(KK) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $VALUE (\text{keV})$ $CL\%$ < 0.11 $> \bullet \bullet We do not use the following constant of the follo$	DOCUMENT ID 37 BEHREND 894 ng data for averages, fil ALBRECHT 901 37 ALTHOFF 851	TECN CC C CELL γ' cs, limits, etc G ARG γ' B TASS γ'	$\gamma \rightarrow \kappa_S^0 \kappa_S^0$ $\kappa \rightarrow \kappa_S^0 \kappa_S^0$ $\gamma \rightarrow \kappa_K^+ \kappa_T^-$ $\gamma \rightarrow \kappa_K^- \kappa_\pi$	I I	BRACCIN 9	Braccini dings Workshop on Hadron Spi Godfrey, J. Napolitano K. Grygorev et al. 3. D. Prokoshkin et al. 5. V. Anisovich, A.V. Sarantsev, Dunwoodie J. Lindenbaum, R.S. Longacre Busetto et al. Aston et al. (SL.	(PNPI) (SIAC) (SIAC) (BNL) (DM2 Collab.) AC, NAGO, CINC, INUS) Axial Field Spec. Collab.) (ATHU, BARI, BIRM+) (Mark, III Collab.) (TASSO Collab.) (TASSO Collab.) (RHEL)

 $a_2(1750)$, $\eta(1760)$, X(1775), $\pi(1800)$

 $a_2(1750)$

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

OMITTED FROM SUMMARY TABLE

احد	(1750)	MASS
e21	11/30	MMJJ

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1752±21±4	ACCIARRI 97T	L3	$\gamma \gamma \rightarrow \pi^{+}\pi^{-}\pi^{0}$
• • • We do not use the following	data for averages, fits	, limits,	etc. • • •
\sim 1775	GRYGOREV 99	SPEC	40 $\pi^- p \to K_S^0 K_S^0 n$
¹ Possibly two $J^P = 2^+$ resonance	es with isospins 0 and	d 1.	

a2(1750) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
150±110±34	ACCIARRI	97T L3	$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$

a2(1750) DECAY MODES

	Mode	
Г	1 77	
	$f_2(1270)\pi$	

$a_2(1750) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\left[\Gamma(\rho\pi)+\Gamma(f_2(1270)\pi)\right]$	$\times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$		$(\Gamma_2+\Gamma_3)\Gamma_1/\Gamma$
VALUE (keV)	DOCUMENT ID	TECH	COMMENT
$0.29 \pm 0.04 \pm 0.02$	ACCIARRI	97T L3	$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$

a2(1750) REFERENCES

GRYGOREV	99	PAN 62 470	V.K. Grygorev et al.
		Translated from YAF 62	513.
ACCIARRI	97T	PL B413 147	M. Acciarri et al.

 $\eta(1760)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

OMITTED FROM SUMMARY TABLE

Seen by DM2 in the $\rho\rho$ system (BISELLO 89B). Structure in this region has been reported before in the same system (BAL-TRUSAITIS 86B) and in the $\omega\omega$ system (BALTRUSAITIS 85C, BISELLO 87). Needs confirmation.

η(1760) MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
1760±11	320	¹ BISELLO	89B DM2	$J/\psi \rightarrow 4\pi\gamma$	
1 Estimated by a	s from various	fits.			

η(1760) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
60±16	320	² BISELLO	89B	DM2	$J/\psi \rightarrow 4\pi\gamma$
² Estimated by us from	m various	fits.			

η(1760) REFERENCES

BISELLO 89B	PR D39 701	G. Busetto et al.	(DM2 Collab
BISELLO 87	PL B192 239	D. Bisello et al.	(PADO, CLER, FRAS+
BALTRUSAIT 86B	PR D33 1222	R.M. Baltrusaitis et al.	(Mark III Collab
BALTRUSAIT 85C	PRL 55 1723	R.M. Baltrusaitis et al.	(CIT, UCSC+
			· ·

OTHER	RELATED PAPERS	
PL B446 356 PL B458 511	J.Z. Bai et al. D.V. Bugg et al.	(BES Collab.)

X(1775)

$$I^{G}(J^{PC}) = 1^{-}(?^{-+})$$

 $(p\pi^{+})(\pi^{+}\pi$

OMITTED FROM SUMMARY TABLE Needs confirmation.

X(1775) MASS					
VALUE (MeV) 1776±13 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT	
1763±20	CONDO	91	SHF	$\gamma p \rightarrow (p_{\sigma}^{+})(\sigma^{+}\sigma^{-}\sigma^{-})$	
1787±18	CONDO	91	SHF	$\gamma p \rightarrow n\pi^{+}\pi^{-}\pi^{-}$	
	X(1775) WID	тн			
VALUE (MeV) 155±40 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT	
192±60	CONDO	91	SHF	$\gamma p \rightarrow$	

X(1775) DECAY MODES

CONDO

Mode		

' 1	pπ
Γ_2	$f_2(1270)\pi$

 118 ± 60

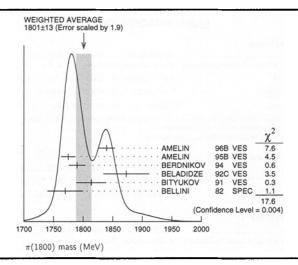
X(1775) BRANCHING RATIOS

$\Gamma(\rho\pi)/\Gamma(f_2(1270)\pi)$				Γ_1/Γ_2
VALUE	DOCUMENT ID		TECN	COMMENT
1.43±0.26 OUR AVERAGE				
1.3 ± 0.3	CONDO	91	SHF	$\gamma P \rightarrow$
				$(p\pi^+)(\pi^+\pi^-\pi^-)$
1.8 ±0.5	CONDO	91	SHF	$\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

X(1775) REFERENCES

7.(2775) N.E. E.N.E.1625				
CONDO	91	PR D43 2787	G.T. Condo et al.	(SLAC Hybrid Collab.)

 $\pi(1800)$


$$I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

See also minireview under non- $q\overline{q}$ candidates. (See the index for the page number.)

π(1800) MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN		COMMENT
1801 ± 13 OUR AVER	AGE Error	includes scale fac	tor of 1.9.	See the	ideogram below.
$1840 \pm 10 \pm 10$	1200	AMELIN	96B VES	-	$\begin{array}{c} 37 \ \pi^- A \rightarrow \\ \eta \eta \pi^- A \end{array}$
$1775 \pm 7 \pm 10$		1 AMELIN	95B VES	-	$ \begin{array}{c} 36 \pi^{-} A \rightarrow \\ \pi^{+} \pi^{-} \pi^{-} A \end{array} $
1790 ± 14		² BERDNIKOV	94 VES	_	$37 \pi^{-} A \rightarrow K^{+} K^{-} \pi^{-} A$
$1873 \pm 33 \pm 20$		BELADIDZE	92c VES	_	$36 \pi^- Be \rightarrow \pi^- \eta^\prime \eta Be$
$1814 \pm 10 \pm 23$	426± 57	BITYUKOV	91 VES	-	$ \begin{array}{c} \pi & \eta & \eta & \text{Be} \\ 36 & \pi^- & \text{C} \rightarrow \\ \pi^- & \eta & \text{T} \end{array} $
1770 ± 30	1100	BELLINI	82 SPEC	-	$40 \pi^- A \rightarrow 3\pi A$
• • • We do not use	the following	g data for average	s, fits, limit	s, etc. o	• • •
1737 ± 5 ± 15		AMELIN	99 VES		$37 \pi^- A \overrightarrow{0}_{A^*}$

 $^{^{1}}$ From a fit to $J^{PC}=0^{-}+~f_{0}(980)\,\pi,~f_{0}(1370)\,\pi$ waves. 2 From a fit to $J^{PC}=0^{-}+~K_{0}^{*}(1430)\,K^{-}$ and $f_{0}(980)\,\pi^{-}$ waves.

		π(1800) WID	ТН			
VALUE (MeV)	EVT\$	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
210±15 OUR AVER	RAGE					
$210 \pm 30 \pm 30$	1200	AMELIN	96B	VES	-	$37 \pi^- A \rightarrow \eta \eta \pi^- A$
$190 \pm 15 \pm 15$		3 AMELIN	95B	VE\$	-	$36 \begin{array}{c} \pi^{-} A \rightarrow \\ \pi^{+} \pi^{-} \pi^{-} A \end{array}$
210±70		⁴ BERDNIKOV	94	VES	-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$225\pm35\pm20$		BELADIDZE	92 C	VES	-	36 π Be →
$205\pm18\pm32$	426±	BITYUKOV	91	VES	-	$\pi^- \eta' \eta \text{ Be}$ 36 $\pi^- C \rightarrow \pi^- \eta \eta C$
310 ± 50	1100	BELLINI	82	SPEC	-	40 π A → 3π A
• • • We do not us	e the followin	ig data for average	s, fits	, limits,	etc.	
259±19± 6		AMELIN	99	VES		$\begin{array}{ccc} 37 & \pi^- A _{\omega \pi^-} \pi^0 A^* \end{array}$
		f ₀ (980)π, f ₀ (1370) K _c *(1430) K and			vaves.	

π (1800) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	$\pi^+\pi^-\pi^-$	seen	
Γ2	$f_0(980)\pi^-$	seen	
Γ3	$f_0(1370)\pi^-$	seen	
Γ4	$ ho\pi^-$	not seen	
Γ_5	$\eta\eta\pi^-$	seen	
Γ_6	$a_0(980)\eta$	seen	
Γ_7	$f_0(1500)\pi^-$	seen	
Γ8	$\eta \eta'(958) \pi^-$	seen	
و٦	$K_0^*(1430)K^-$	seen	
Γ_{10}	K*(892) K ⁻	not seen	

π (1800) BRANCHING RATIOS

$\Gamma(f_0(980)\pi^-)/$	Γ (f₀(1370)π ⁻)				Γ_2/Γ_3
VALUE		DOCUMENT ID		TECN	CHG	COMMENT
1.7±1.3		AMELIN	95B	VES	-	$\begin{array}{c} 36 \ \pi^- A \rightarrow \\ \pi^+ \pi^- \pi^- A \end{array}$
$\Gamma(f_0(1370)\pi^-)$	/Γ _{total}					Г ₃ /Г
VALUE		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
seen		BELLINI	82	SPEC	-	$40~\pi^-A\to~3\piA$
$\Gamma(\eta\eta\pi^-)/\Gamma(\pi^+)$	⁺ π ⁻ π ⁻)					Γ_5/Γ_1
VALUE	EVTS	DOCUMENT ID		TECN_	<u>CHG</u>	COMMENT
0.5 ±0.1	1200	AMELIN	968	VES	-	$\begin{array}{c} 37 \ \pi^- A \rightarrow \\ \eta \eta \pi^- A \end{array}$
$\Gamma(f_0(1500)\pi^-)$	/Γ(a ₀ (980)η)					Γ ₇ /Γ ₆
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.08 ±0.03	1200	⁵ AMELIN	96B	VES	-	$\begin{array}{c} 37 \ \pi^- A \rightarrow \\ \eta \eta \pi^- A \end{array}$

 $^{^5}$ Assuming that $f_0(1500)$ decays only to $\eta\eta$ and $a_0(980)$ decays only to $\eta\pi.$

•)π ⁻)/Γ(ηηπ ⁻)	DOCUMENT ID			cuc	Γ ₈ /Γ ₅
VALUE 0.29 ± 0.06 (OUR.	AVERAGE	DOCUMENT ID		TELN	CMO.	COMMENT
0.29 ± 0.07			BELADIDZE	92 C	VES	-	$36 \pi^- \text{Be} \rightarrow \pi^- \eta' \eta \text{Be}$
0.3 ± 0.1		426± 57	BITYUKOV	91	VES	-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Γ (Κ 0(143	D) <i>K</i> -	-)/F _{total}					٦/و۲
VALUE			DOCUMENT ID		TECN	CHG	COMMENT
seen			BERDNIKOV	94	VES	-	$\begin{array}{c} 37 \ \pi^- A \rightarrow \\ K^+ K^- \pi^- A \end{array}$
Γ (Κ*(892)) <i>K</i> -)/F _{total}					Γ ₁₀ /Γ
VALUE			DOCUMENT ID				COMMENT
• • • We d	o not	use the following	data for averages	, tits	i, limits,	etc. •	• •
not seen			BERDNIKOV	94	VES	-	$\begin{array}{c} 37 \ \pi^- A \rightarrow \\ K^+ K^- \pi^- A \end{array}$
Γ(ρπ)/Γ	(f ₀ (Γ4/Γ2
VALUE			DOCUMENT ID				COMMENT
	o not	use the following	_			etc.	
<0.14		90	AMELIN	95B	VES	-	$\begin{array}{c} 36 \ \pi^- A \rightarrow \\ \pi^+ \pi^- \pi^- A \end{array}$
Γ(ρπ ⁻)/Γ	total						Γ4/Γ
VALUE			DOCUMENT ID		TECN	CHG	COMMENT
not seen			BELLINI	82	SPEC		40 π ⁻ A → 3π A
		π(1	.800) REFERE	NCI	ES		
AMELIN	99	PAN 62 445	D.V. Amelin et	ai.			(VES Collab.)
AMELIN	96B	Translated from YAF PAN 59 976	D.V. Amelin et	ai.			(SERP, TBIL) IGJP
AMELIN	95B	Translated from YAF PL B356 595	59 1021. D.V. Amelin et	al.			(SERP, TBIL)
BERDNIKOV	94	PL B337 219	E.B. Berdnikov	et al.		CV D	(SERP, TBIL)
BELADIDZE	92C	SJNP 55 1535 Translated from YAF			BILYUKOV,	u.v. B	
BITYUKOV BELLINI	91 82	PL B268 137 PRL 48 1597	S.I. Bityukov et G. Bellini et al.			0	(SERP, TBIL) MILA, BGNA, JINR)
			5. Damin Ct 6.			ζ,	

$f_2(1810)$

LANDSBERG 99 ZAIMIDOROGA 99

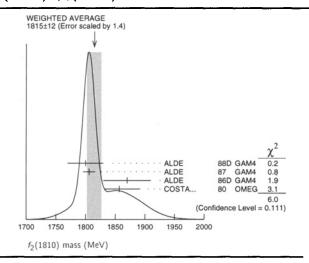
 $I^{G}(J^{PC}) = 0^{+}(2^{+})$

OMITTED FROM SUMMARY TABLE Needs confirmation.

f₂(1810) MASS

- OTHER RELATED PAPERS -

SPU 42 871 L.G. Landsberg
Translated from UFN 42 961.
PAN 30 1 O.A. Zaimidoroga
Translated from SJPN 30 5.
SJNP 55 147 G.V. Borisov, S.S. Gershtein, A.M. Zaitsev
Translated from YAF 55 2583.

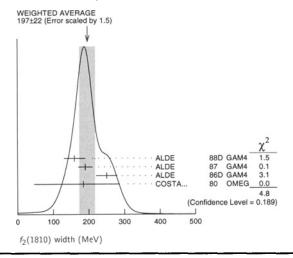

VALUE (MeV)	EVIS	DOCUMENT ID		TECH	COMMENT
1815±12 OUR A	/ERAGE Erro	r includes scale fac	ctor of	1.4. Se	e the ideogram below.
1800 ± 30	40	ALDE			$300 \pi^- \rho \rightarrow \pi^- \rho 4\pi^0$
1806 ± 10	1600	ALDE	87	GAM4	$100 \pi^- p \rightarrow 4\pi^0 n$
1870 ± 40		¹ ALDE	86D	GAM4	$100 \pi^- p \rightarrow \eta \eta \pi$
1857 + 35 - 24		² COSTA	80	OMEG	$10~\pi^-\rho\to~K^+K^-\pi$
• • • We do not	use the following	ng data for averag	es, fits,	limits,	etc. • • •
$1858 + 18 \\ -71$		3 LONGACRE	86	RVUE	Compilation
1799±15		4 CASON	82	STRC	$8 \pi^{+} \rho \rightarrow \Delta^{++} \pi^{0} \pi^{0}$

¹ Seen in only one solution.

Error increased by spread of two solutions. Included in LONGACRE 86 global analysis.
 From a partial-wave analysis of data using a K-matrix formalism with 5 poles. Includes compilation of several other experiments.

From an amplitude analysis of the reaction $\pi^+\pi^-\to 2\pi^0$. The resonance in the $2\pi^0$ final state is not confirmed by PROKOSHKIN 97.

 $f_2(1810), \phi_3(1850)$



£(1810) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECI	N COMMENT
197± 22 OUR AV	ERAGE Error	includes scale fac	tor of 1.5.	See the ideogram below.
160 ± 30	40	ALDE		$44 \ 300 \ \pi^{-} \rho \to \pi^{-} \rho 4\pi^{0}$
190 ± 20	1600	ALDE	87 GAN	$44\ 100\ \pi^-\rho\to\ 4\pi^0n$
250 ± 30		⁵ ALDE	86D GAN	Λ4 100 π ⁻ p → ηη n
$185 + 102 \\ -139$		6 COSTA	80 OMI	EG 10 $\pi^- \rho \rightarrow K^+ K^- n$
• • • We do not u	se the followin	g data for averag	es, fits, limi	its, etc. • • •
388 ⁺ 15 21		7 LONGACRE	86 RVU	E Compilation
280 ⁺ 42 - 35		⁸ CASON	82 STR	$C 8 \pi^+ p \rightarrow \Delta^{++} \pi^0 \pi^0$

⁵ Seen in only one solution.

Seen in only one solution.
 Ferror increased by spread of two solutions. Included in LONGACRE 86 global analysis.
 From a partial-wave analysis of data using a K-matrix formalism with 5 poles. Includes compilation of several other experiments.
 From an amplitude analysis of the reaction π⁺π⁻ → 2π⁰. The resonance in the 2π⁰ final state is not confirmed by PROKOSHKIN 97.

€(1810) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	
Γ ₁ Γ ₂ Γ ₃ Γ ₄	ππ ηη 4π ⁰ Κ+ Κ-	seen	

$\Gamma(\pi\pi)/\Gamma_{\text{total}}$					F. //
VALUE		DOCUMENT ID		TECN	Γ ₁ /Ι
• • • We do not use	the following				
not seen		PROKOSHKIN	97	GAM2	38 $\pi^- p \rightarrow \pi^0 \pi^0 n$
$0.21 + 0.02 \\ -0.03$		9 LONGACRE	86	RVUE	Compilation
0.44±0.03	1	⁰ CASON	82	STRC	$8 \pi^{+} p \rightarrow \Delta^{++} \pi^{0} \pi^{0}$
⁹ From a partial-wa compilation of se ¹⁰ Included in LONG	veral other exp	eriments.	matri	x formali	ism with 5 poles. Include
Γ(ηη)/Γ _{total}		DOCUMENT ID		TECN	Γ ₂ /
• • We do not use	the following				
$0.008 {}^{+ 0.028}_{- 0.003}$		9 LONGACRE	86	RVUE	Compilation
Γ(ππ)/Γ(4π ⁰)		00011145117 10		T-C.	Γ ₁ /Γ
• • • We do not use	the following	data for average			
< 0.75	. the following	ALDE			$100 \pi^- p \rightarrow 4\pi^0 n$
Γ (4π⁰)/Γ(ηη) VALUE		DOCUMENT ID		TECN	Γ ₃ /Γ
• • • We do not use	the following				
0.8 ± 0.3		ALDE	87	GAM4	$100~\pi^-p\rightarrow~4\pi^0n$
Γ (K⁺K⁻)/Γ_{total}		DOCUMENT ID		TEÇN	COMMENT
• • • We do not use	the following	data for average	-		
$0.003 + 0.019 \\ -0.002$		9 LONGACRE	86	RVUE	Compilation
0.003 — 0.002 Seen		COSTA	80		$10 \pi^- p \rightarrow K^+ K^- n$
ALDE 88D 5JM Tra ALDE 87 PL ALDE 86D NP LONGACRE 86 PL CASON 82 PR	D 42 117 instated from DAN NP 47 810 instated from YAF B198 286 B269 485 B177 223 L 48 1316 B175 402	D.M. Alde et a	al. al. al. et al. al.	(SE (L. (BE	(SERP) RP, BELG, LANL, LAPP+) ANL, BRUX, SERP, LAPP) LG, LAPP, SERP, CERN+) (BNL, BRAN, CUNY+) (NDAM, ANL) (BARI, BONN+)
		ER RELATED			(BARI, BUNNY)
	B260 249	E. Aker et al.			(Crystal Barrel Collab.)
CASON 83 PR	D28 1586 D25 1786	N.M. Cason et A. Etkin et al.		(BN	(NDAM, ANL) NL, CUNY, TUFTS, VAND)
CASON 83 PR	D28 1586	A. Etkin <i>et al.</i>			
CASON 83 PR ETKIN 82B PR	D28 1586	A. Etkin <i>et al.</i>	J₽C		NL, CUNY, TÜFTS, VAND)
$\phi_3(1850)$ $\phi_3(1850)$ VALUE (MeV)	D28 1596 D25 1786	A. Etkin <i>et al.</i>	_J PC .SS) = 0	-(3)
$\phi_3(1850)$	D28 1596 D25 1786	A. Etkin et al. /G (. φ ₃ (1850) MA	JPC SS) = 0	il, cuny, tüfts, vand) $-(3)$ $\frac{COMMENT}{11 \ K^- p \to K^- K^+ A}$
φ ₃ (1850) φ ₃ (1850) ναιυε (MeV) 1854 ± 7 OUR AVE	D28 1596 D25 1786	A. Etkin et al. 1G (φ ₃ (1850) MA <u>DOCUMENT ID</u> ASTON	JPC .SS) = 0 <u>TECN</u> : LASS	COMMENT $ \begin{array}{c} (3) \\ \hline COMMENT \\ 11 K^- \rho \rightarrow K^- K^+ \Lambda \\ K_S^0 K^{\pm} \pi^{\mp} \Lambda \end{array} $
φ ₃ (1850) φ ₃ (1850) ΔΑΔΕΕ (MeV) 1854± 7 OUR AVE	D28 1596 D25 1786	A. Etkin et al. 1G (φ ₃ (1850) MA <u>DOCUMENT ID</u> ASTON	SS 888) = 0 <u>TECN</u> : LASS	COMMENT $ \begin{array}{c} (3) \\ \hline COMMENT \\ 11 K^- \rho \rightarrow K^- K^+ \Lambda \\ K_S^0 K^{\pm} \pi^{\mp} \Lambda \end{array} $
$\phi_3(1850)$ $\phi_3(1850)$ VALUE (MeV) 1854 \pm 7 OUR AVE 1870 $^{+30}_{-20}$	EVIS RAGE 430 123	A. Etkin et al. /G(\$\phi_3(1850) MA\$ DOCUMENT ID ASTON ARMSTRONG	888 888 818	TECN LASS	COMMENT $ \begin{array}{c} (3) \\ 11 K^{-} p \rightarrow K^{-} K^{+} \Lambda \\ K_{S}^{0} K^{\pm} \pi^{\mp} \Lambda \end{array} $ 18.5 $K^{-} p \rightarrow K^{-} K^{+}$

ϕ_3 (1850) DECAY MODES

ASTON

430

123

 64 ± 31

 $160 + 90 \\ -50$

 $80 + 40 \\ -30$

 $K^- p \rightarrow K^- K^+ \Lambda$, $K_5^0 K^{\pm} \pi^{\mp} \Lambda$

88E LASS 11 K

ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K\overline{K}\Lambda$

ARMSTRONG 82 OMEG 18.5 $K^-p \rightarrow K^-K^+\Lambda$

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$
Γ ₁	<u>Κ</u> <u>κ</u>	seen
Γ ₂	<u>κ</u> κ*(892)+ c.c.	seen

DOCUMENT ID DOS ± 0.85 ASTON BRE LASS IN $K = p \rightarrow K = K = k + k = k = k = k = k = k = k = k = k$	φ ₃ ((1850) BRANCHING RATIOS
DOCUMENT ID TECN COMMENT 0.55 $\stackrel{+}{=}0.85$ 0.55 $\stackrel{+}{=}0.85$ 0.56 $\stackrel{+}{=}0.85$ 0.56 $\stackrel{+}{=}0.85$ 0.57 ON BRE LASS 11 $K^-p \rightarrow K^-K^+$ $K_S^+K^+\pi^+\Lambda^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^+$ $K_S^-K^+\pi^+\Lambda^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^+$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^+$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ± 0.4 0.8 ALHARRAN 818 HBC 8.25 $K^-p \rightarrow K^-\pi^-$ 0.8 ALHARRAN 818 HBC 8.25 K^-	Г(<i>K <mark>K</mark></i> *(892) + с.с.)/Г(<i>K</i>	· K)
** • * We do not use the following data for averages, fits, limits, ecc. • • • • • • • • • • • • • • • • • •	VALUE	•
ALHARRAN 81B HBC 8.25 $K^-p \to K\overline{K}\pi$ $\phi_3(1850)$ REFERENCES ASTON 88E PL 8208 324 T.A. Armstong et al. (SLAC, NAGO, CINC, INUS (BAR), GENA, CENA, CENA+ (BIMA, CENA+ (BIM	0.55 + 0.85 - 0.45	
ASTON ARMSTRONG SEE PL B208 327 ARMSTRONG SEE PL 1018 77 ALHARRAN SEE PL 1018 377 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ (BIRM, CERN+, GLAS+ GEN+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GEN+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, ERN, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, GLAS, LANC+ GER) SEE PL 1018 335 A. Cordier et al. (BONN, CERN, GLAS, LANC+ GL	• • • We do not use the folio	
ASTON ARMSTROM 82 PL B208 324 T.A. Armstrong et al. (SLAC, NAGO, CINC, INUS ARMSTROM 81B PL 101B 357 S. A.Harran et al. (BIRM, CERN, GLAS+ CERN+ CERN) PL 101B 357 S. A. Harran et al. (BIRM, CERN, GLAS+ CERN+ CERN) PL 101B 357 S. A. Cordier et al. (BIRM, CERN, GLAS+ CERN+ CERN) PL 101B 357 S. A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ PL 102B 101B 351 S. A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ PL 102B 101B 101B 351 S. A. Cordier et al. (BONN, CERN, EPOL, GLAS, LANC+ PL 102B 101B 101B 101B 101B 101B 101B 101B	0.8 ±0.4	ALHARRAN 81B HBC 8.25 $K^-p \rightarrow K\overline{K}\pi\Lambda$
ARMSTRONG 82 Pt. 1108 377 S. Al-Harran et al. (BARI, BIRM, CERN, GLAS+ALHARRAN 818 Pt. 1108 377 S. Al-Harran et al. (BIRM, CERN, GLAS+ALHARRAN 818 Pt. 1108 377 S. Al-Harran et al. (BIRM, CERN, GLAS+ALHARRAN 818 Pt. 1108 377 S. Al-Harran et al. (BONN, CERN, EPOL, GLAS, LANC+BIRM, CERN, GLAS+ASTON 808 Pt. 928 219 A. Cardier et al. (BONN, CERN, EPOL, GLAS, LANC+BIRM, CERN, EPOL, GLAS, LANC+BIRM, CERN, GLAS+ASTON BOOK Pt. 20 Pt.		ϕ_3 (1850) REFERENCES
CORDIER 82B PL 110B 335 A. Cardier et 37. (BONN, CERN, EPOL, GLAS, LANC+ $\eta_2(1870)$ $I^G(J^{PC}) = 0 + (2 - +)$ OMITTED FROM SUMMARY TABLE Needs confirmation. 132 (1870) MASS 1854 ± 20 OUR AVERAGE 1840 ± 25 BARBERIS 978 OMEG 450 $p_P \rightarrow p_P 2(\pi^+\pi^-1884) \pm 20 = 10 = 10 = 10 = 10 = 10 = 10 = 10 =$	ARMSTRONG 82 PL 110B 77	T.A. Armstrong et al. (BARI, BIRM, CERN+) JP
ASTON 808 PL 928 219 D. ASION (BONN, CERN, EPOL, GLAS, LÀNC+ $\eta_2(1870)$) $I^G(J^{PC}) = 0 + (2 - +)$ OMITTED FROM SUMMARY TABLE Needs confirmation. $\eta_2(1870)$ MASS ADMENT ID TECN CHG COMMENT ID TECN CHG COMMENT 1854 ± 20 OUR AVERAGE 1840 ± 25 BARBERIS 978 OMEG 450 $pp \rightarrow pp2(\pi^+\pi^-1)$ 1851 $\pm 32 \pm 40$ 26 KARCH 92 CBAL $e^+e^ = \eta_\pi 0^-$ 1840 ± 15 BAI 99 BES $J/\psi \rightarrow \eta_\pi \pi^+\pi^ \eta_2(1870)$ WIDTH AVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT 1840 ± 15 BAI 99 BES $J/\psi \rightarrow \eta_\pi \pi^+\pi^ \eta_{10} = 10$ CMARCH 92 CBAL $e^+e^ = \eta_\pi 0^ \eta_{11} = 10$ CMARCH 92 CBAL $e^+e^ = \eta_\pi 0^ \eta_{12} = 10$ CBAL $e^+e^ = \eta_\pi 0^ \eta_{13} = 10$ CBAL $e^+e^ = \eta_\pi 0^ \eta_{14} = 10$ CBAL $e^+e^ = \eta_\pi 0^ \eta_{15} = 10$ CBAL $e^+ = 10$ CBAL $e^$	o	OTHER RELATED PAPERS
OMITTED FROM SUMMARY TABLE Needs confirmation.		
The state of the	OMITTED FROM SUM	MARY TABLE
LABLUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT 1854±20 OUR AVERAGE 1840±25 BARBERIS 978 OMEG 1875±20±35 ADOMEIT 96 CBAR 0 1.94 $\bar{p}p \rightarrow \eta$ 1876±20±35 ADOMEIT 96 CBAR 0 1.94 $\bar{p}p \rightarrow \eta$ 1881±32±40 26 KARCH 92 CBAL $e^+e^-\eta_\pi 0$ 1840±15 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^+\pi^-$ 1840±15 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^+\pi^-$ 1821±30 OUR AVERAGE 200±40 BARBERIS 978 OMEG 450 $pp \rightarrow pp2(\pi^+\pi^-)$ 200±40 BARBERIS 978 OMEG 450 $pp \rightarrow pp2(\pi^+\pi^-)$ 200±25±45 ADOMEIT 96 CBAR 0 1.94 $\bar{p}p \rightarrow \eta$ 200±25±44 26 KARCH 92 CBAL $e^+e^-\rightarrow e^+e^-\eta_\pi 0$ 170±40 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^+\pi^-$ 170±40 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^+\pi^-$ 172(1870) DECAY MODES Mode 170±40 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^+\pi^-$ 172(1870) DECAY MODES Mode 170±40 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^+\pi^-$ 172(1870) DECAY MODES Mode 170±40 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^+\pi^-$ 172(1870) DECAY MODES Mode 170±40 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^+\pi^-$	iveeds confirmation	
1854 ± 20 OUR AVERAGE 1840 ± 25 BARBERIS 978 OMEG 450 $pp \rightarrow pp2(\pi^+\pi^-)$ 1875 ± 20 ± 35 1881 ± 32 ± 40 26 KARCH 92 CBAL $e^+e^- \rightarrow e^+e^- \rightarrow e^- e^- e^- e^- e^- e^- e^- e^- e^- e^-$	VALUE (MeV) EVTS	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1854 ± 20 OUR AVERAGE 1840 ± 25	
** • • • We do not use the following data for averages, fits, limits, etc. • • • • • $\pi \pi^{V}$ 1840±15 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$ 72(1870) WIDTH 73(1870) DECAY MODES Mode 74(1870) DECAY MODES Mode 75 76(1270) π 77 77 78 79 79 79 70 70 70 70 71 71 72(1870) BRANCHING RATIOS 71 72(1870) BRANCHING RATIOS 72(1870) BRANCHING RATIOS 71 72(1870) DECAY MODES 72(1870) BRANCHING RATIOS 73 74 75 76 77 77 77 77 77 77 77 77	1875 ± 20 ± 35	$pp2(\pi^{+}\pi^{-})$ ADOMEIT 96 CBAR 0 1.94 $\bar{p}p \to \eta 3\pi^{0}$
1840 ± 15 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$ 172(1870) WIDTH 172(1870) WIDTH 172(1870) WIDTH 172(1870) WIDTH 172(1870) WIDTH 172(1870) WIDTH 172(1870) BARBERIS 178 1800 ± 200 ± 25 ± 45 1800 ± 25 ± 45 1800 ± 25 ± 45 1800 ± 26 ± 27 ± 200 ± 27 ± 200 ± 25 ± 44 1800 ± 26 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 27 ± 200 ± 200 ± 20 ± 2		$e^+e^-\eta\pi^0\pi^0$
VALUE (MeV) POS		BAI 99 BES $J/\psi ightarrow$
202±30 OUR AVERAGE 200±40 BARBERIS 978 OMEG 450 $pp \rightarrow pp2(\pi^{+}\pi^{-})$ 200±25±45 ADOMEIT 96 CBAR 1.94 $\overline{p}p \rightarrow \eta$ $e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow \pi^{0}$ 0••• We do not use the following data for averages, fits, limits, etc. 170±40 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^{+}\pi^{-}$ $7_{2}(1870)$ DECAY MODES Mode $T_{1} \eta \pi \pi$ $T_{2} \partial_{2}(1320) \pi$ $T_{3} f_{2}(1270) \eta$ 72(1870) BRANCHING RATIOS $T(\partial_{2}(1320)\pi)/\Gamma(f_{2}(1270)\eta)$ VALUE DOCUMENT ID ADOMEIT 96 CBAR 1.94 $\overline{p}p \rightarrow \eta$ π 1.94 $\overline{p}p \rightarrow \eta$ 1.95 $\overline{p}p \rightarrow \eta$ 1.94 $\overline{p}p \rightarrow \eta$ 1.95 $\overline{p}p \rightarrow \eta$ 1.94 $\overline{p}p \rightarrow \eta$ 1.95 $\overline{p}p \rightarrow \eta$ 1.95 $\overline{p}p \rightarrow \eta$ 1.95 $\overline{p}p \rightarrow \eta$ 1.96 $\overline{p}p \rightarrow \eta$ 1.97 $\overline{p}p \rightarrow \eta$ 1.97 $\overline{p}p \rightarrow \eta$ 1.97 $\overline{p}p \rightarrow \eta$ 1.98 $\overline{p}p \rightarrow \eta$ 1.98 $\overline{p}p \rightarrow \eta$ 1.99 $\overline{p}p \rightarrow \eta$ 1.99 $\overline{p}p \rightarrow \eta$ 1.99 $\overline{p}p \rightarrow \eta$ 1.90 $\overline{p}p \rightarrow \eta$ 1.90 $\overline{p}p \rightarrow \eta$ 1.90 $\overline{p}p \rightarrow \eta$ 1.90 $\overline{p}p \rightarrow \eta$ 1.91 $\overline{p}p \rightarrow \eta$ 1.91 $\overline{p}p \rightarrow \eta$ 1.91 $\overline{p}p \rightarrow \eta$ 1.91 $\overline{p}p \rightarrow \eta$ 1.92 \overline{p}		η ₂ (1870) WIDTH
BARBERIS 978 OMEG 450 $pp \rightarrow pp/(\pi^+\pi^-)$ $200\pm25\pm45$ ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ $221\pm92\pm44$ 26 KARCH 92 CBAL $e^+e^-\eta\pi^0$ ••• We do not use the following data for averages, fits, limits, etc. ••• 170 ±40 BAI 99 BES $J/\psi \rightarrow \gamma\eta\pi^+\pi^-$ 172(1870) DECAY MODES Mode 1 $\eta\pi\pi$ Γ_2 $a_2(1320)\pi$ Γ_3 $f_2(1270)\eta$ 172(1870) BRANCHING RATIOS 17($a_2(1320)\pi$)/ $\Gamma(f_2(1270)\eta$) 174 μ 175 ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ 17($\eta\pi\pi$)/ Γ_{total} 170 μ 171 ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ 171 ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ 172 ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ 173 ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ 174 ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ 175 ADOMEIT 97 CBAR 1.94 $\overline{p}p \rightarrow \eta$ 175 AMELIN 00 VES 37 $\pi^-p \rightarrow \eta\pi^+\pi^-$		DOCUMENT ID TECN CHG COMMENT
200 \pm 25 \pm 45 ADOMEIT 96 CBAR 0 1.94 $\bar{p}p \rightarrow \eta$ 221 \pm 92 \pm 44 26 KARCH 92 CBAL $e^+e^- \rightarrow e^- e^- \eta \pi^0$ ••• We do not use the following data for averages, fits, limits, etc. ••• 170 \pm 40 BAI 99 BES $J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$ 72(1870) DECAY MODES Mode $\Gamma_1 \eta \pi \pi$ $\Gamma_2 \partial_2(1320) \pi$ $\Gamma_3 f_2(1270) \eta$ 72(1870) BRANCHING RATIOS $\Gamma(\partial_2(1320)\pi)/\Gamma(f_2(1270)\eta)$ VALUE 4.1 \pm 2.3 ADOMEIT 96 CBAR 0 1.94 $\bar{p}p \rightarrow \eta$ $\Gamma(\eta \pi \pi)/\Gamma_{total}$ VALUE DOCUMENT ID ADOMEIT 96 CBAR 0 1.94 $\bar{p}p \rightarrow \eta$ Function of the following data for averages, fits, limits, etc. •• AMELIN 00 VES 37 $\pi^- p \rightarrow \eta \pi^+ \pi^-$		BARBERIS 97B OMEG 450 pp →
221 \pm 92 \pm 44 26 KARCH 92 CBAL $e^+e^- \rightarrow_{\pi^+}e^- \rightarrow_{\pi^0}e^- e^- e^- \rightarrow_{\pi^0}e^- e^- e^- e^- e^- e^- e^- e^- e^- e^- $	200 ± 25 ± 45	$pp2(\pi^+\pi^-)$ ADOMEIT 96 CBAR 0 1.94 $\overline{p}p o \eta 3\pi^0$
• • • We do not use the following data for averages, fits, limits, etc. • • • • 170 ± 40 BAI 99 BES $J/\psi \rightarrow \gamma\eta\pi^+\pi^ \eta_2(1870)$ DECAY MODES Mode $\Gamma_1 \eta\pi\pi$ $\Gamma_2 a_2(1320)\pi$ $\Gamma_3 f_2(1270)\eta$ $\eta_2(1870)$ BRANCHING RATIOS $\Gamma(a_2(1320)\pi)/\Gamma(f_2(1270)\eta)$ VALUE DOCUMENT ID ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ $\Gamma(\eta\pi\pi)/\Gamma_{total}$ VALUE DOCUMENT ID TECN COMMENT $\Gamma(\eta\pi\pi)/\Gamma_{total}$ VALUE DOCUMENT ID TECN COMMENT ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ $\Gamma(\eta\pi\pi)/\Gamma_{total}$ VALUE ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ $\Gamma(\eta\pi\pi)/\Gamma_{total}$ VALUE ADOMENT ID TECN COMMENT AMELIN OU VES 37 $\pi^-p \rightarrow \eta\pi^+\pi^-$	221 ± 92 ± 44 26	KARCH 92 CBAL $e^+e^{} \rightarrow e^+e^{} \eta \pi^0 \pi^0$
		owing data for averages, fits, limits, etc. $ullet$ $ullet$ $ullet$ $ullet$ BAI 99 BES J/ψ $ ightarrow$
Γ_1 $\eta \pi \pi$ Γ_2 $\theta_2(1320) \pi$ Γ_3 $f_2(1270) \eta$ 72(1870) BRANCHING RATIOS $\Gamma(\theta_2(1320)\pi)/\Gamma(f_2(1270)\eta)$ VALUE DOCUMENT ID TECN COMMENT 4.1±2.3 ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \to \eta$ $\Gamma(\eta \pi \pi)/\Gamma_{total}$ VALUE DOCUMENT ID TECN COMMENT VALUE DOCUMENT ID TECN COMMENT VALUE DOCUMENT ID TECN COMMENT AMELIN 00 VES 37 $\pi^-p \to \eta \pi^+\pi^-$		
Γ_2 $\sigma_2(1320) \pi$ Γ_3 $\sigma_2(1270) \eta$ $\sigma_2(1870)$ BRANCHING RATIOS $\Gamma(\sigma_2(1320) \pi)/\Gamma(\sigma_2(1270) \eta)$ VALUE DOCUMENT ID TECN CHG COMMENT 4.1 ± 2.3 ADOMEIT 96 CBAR 0 1.94 $\overline{p} p \to \eta$ $\Gamma(\eta \pi \pi)/\Gamma_{total}$ VALUE DOCUMENT ID TECN COMMENT VALUE DOCUMENT ID TECN COMMENT VALUE DOCUMENT ID TECN COMMENT AMELIN 00 VES 37 $\pi^- p \to \eta \pi^+ \pi^-$	Mode	
$\Gamma(a_2(1320)\pi)/\Gamma(f_2(1270)\eta)$ VALUE 4.1±2.3 ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ $\Gamma(\eta\pi\pi)/\Gamma_{total}$ VALUE DOCUMENT ID 1ECN COMMENT 1 VALUE DOCUMENT ID 1ECN COMMENT 1 VALUE DOCUMENT ID 1ECN COMMENT AMELIN 00 VES 37 $\pi^-p \rightarrow \eta\pi^+\pi^-$	$\Gamma_2 = \partial_2(1320)\pi$	
$\Gamma(a_2(1320)\pi)/\Gamma(f_2(1270)\eta)$ VALUE 4.1±2.3 ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ $\Gamma(\eta\pi\pi)/\Gamma_{total}$ VALUE DOCUMENT ID 1ECN COMMENT 1 VALUE DOCUMENT ID 1ECN COMMENT 1 VALUE DOCUMENT ID 1ECN COMMENT AMELIN 00 VES 37 $\pi^-p \rightarrow \eta\pi^+\pi^-$	1 20	(1870) BRANCHING RATIOS
4.1±2.3 ADOMEIT 96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta$ $\Gamma(\eta\pi\pi)/\Gamma_{total}$ Γ VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • not seen AMELIN 00 VES $37 \pi^- p \rightarrow \eta \pi^+ \pi^-$	Γ(a ₂ (1320)π)/Γ(f ₂ (1270	·)η) Γ ₂ /Γ ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
• • • We do not use the following data for averages, fits, limits, etc. • • • not seen AMELIN 00 VES 37 $\pi^- \rho \to \eta \pi^+ \pi^-$	Γ(ηππ)/Γ _{total}	Γ ₁ /Γ
70(1870) REFERENCES	not seen	AMELIN 00 VES 37 $\pi^- \rho \rightarrow \eta \pi^+ \pi^- \eta$
.,2(-5/5)		72(1870) REFERENCES
BAI 99 PL B446 356 J.Z. Bai et al. (BES Collab. BARBERIS 97B PL B413 217 D. Barberis et al. (WA102 Collab. ADDMEIT 96 ZPHY C71 227 J. Adomeit et al. (Crystal Barrel Collab.	BAI 99 PL B446 356 BARBERIS 97B PL B413 217 ADOMEIT 96 ZPHY C71 22	J.Z. Bai et al. (BES Collab.) D. Barberis et al. (WA102 Collab.) J. Adomeit et al. (Crystal Barrel Collab.)

(Crystal Ball Collab.)

possibly seen

90 PL B249 353

X(1910)

$$I^{G}(J^{PC}) = 0^{+}(?^{?+})$$

OMITTED FROM SUMMARY TABLE

argues that they are					
	X(1910) MA	NSS			
VALUE (MeV)	DOCUMENT ID				
1810 to 1920 OUR ESTIMATE	•				
MODE سن (1910)					
VALUE (MeV) 1921 ± 8 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT	
1920±10	¹ BELADIDZE	92B \	VES	36 π ⁻ p →	ωωπ
1924±14	¹ ALDE			38 $\pi^-p \rightarrow$	
$^{1}J^{PC}=2^{++}.$					
X(1910) ηη' MODE					
VALUE (MeV)	DOCUMENT ID				
ullet ullet ullet We do not use the follows:	wing data for averag			etc. • • • • 38 π ⁻ p →	/ n
1911 ± 10	ALUL	716	GAIVI2	36 π p →	717 11
	X(1910) WIE	тн			
VALUE (MeV)	DOCUMENT ID				
00 to 250 OUR ESTIMATE					
X(1910) ωω MODE					
VALUE (MeV) 90±19 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT	
90±20	² BELADIDZE	928 ¹	VES	36 π ⁻ ρ →	ωωπ
91 ± 50	² ALDE	90 (GAM2	38 $\pi^- p \rightarrow$	ωωπ
$^{2}J^{PC}=2++.$					
X(1910) ηη' MODE					
	DOCUMENT ID		TECN	COMMENT	
	DOCUMENT ID				
••• We do not use the follo 90 ± 35		es, fits, 91B	limits, GAM2		קקי ח
Mode $\pi^0\pi^0$ π^0 $\pi^$	wing data for averag	es, fits, 91B	limits, GAM2	etc. • • •	חח' ח
Mode $ \begin{array}{c} \text{Mode} \\ \Gamma_1 \\ \Gamma_2 \\ K_5^0 K_5^0 \\ \Gamma_3 \\ \Gamma_4 \\ \omega \\ \Gamma_5 \\ \Gamma_6 \\ \eta' \eta' \end{array} $ $\times (1)$	wing data for averag	es, fits, 91B (limits, GAM2 ES	etc. • • •	ηη' Π
Mode $ \frac{\pi^0 \pi^0}{2} \times K_S^0 K_S^0 $ $ \frac{\pi^0 \pi^0}{3} \times K_S^0 K_S^0 $ $ \frac{\pi^0 \pi^0}{3} \times K_S^0 $ $ \frac{\pi^0 \pi^0}{4} \times K_S^0 $ $ \frac{\pi^0 \pi^0}{3} \times K_S^0 $	wing data for averag ALDE X(1910) DECAY	MODI	ES	etc. • • • 38 π ⁻ ρ →	
Mode $ \begin{array}{c} Mode \\ 1 & \pi^0 \pi^0 \\ 2 & K_S^0 K_S^0 \\ 3 & \eta \eta \\ 4 & \omega \omega \\ 5 & \eta \eta' \\ 6 & \eta' \eta' \end{array} $ $ X(3) $	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID	MODI	Imits, GAM2 ES TIOS	etc. • • • 38 π − p →	
Mode $ \begin{array}{c} Mode \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID	es, fits, 91B (MODI	Imits, GAM2 ES TIOS TECN limits,	etc. • • • 38 π − p →	Γ4/
Mode $ \begin{array}{c} Mode \\ 1 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag	es, fits, 91B (MODI	Imits, GAM2 ES TIOS TECN limits,	etc. • • • • 38 π − p → • • • • • • • • • • • • • • • • • •	Γ4/ ωωπ
Mode $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag	es, fits, 91B (MODI	ES TIOS TECN Limits, GAM2	etc. • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{\text{etc.} • • •}$ $38 \pi^- p \rightarrow$	Γ4/ ωωn
Mode $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag ALDE	es, fits, 91B (MODI	TIOS TECN limits, GAM2	etc. • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{\text{etc.} • • •}$ $38 \pi^- p \rightarrow$ $\frac{COMMENT}{\text{COMMENT}}$	Γ4/ ωωn
Mode Mode	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag ALDE	es, fits, 91B o MODI	TIOS TECN limits, GAM2	etc. • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{\text{etc.} • • •}$ $38 \pi^- p \rightarrow$ $\frac{COMMENT}{\text{COMMENT}}$	Γ ₄ / ωωπ Γ ₁ /Γ
Mode $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE	es, fits, 91B o MODI	TIOS TECN limits, GAM2	etc. • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{\text{etc.} • • •}$ $38 \pi^- p \rightarrow$ $\frac{COMMENT}{\text{etc.} • • •}$	Γ4/ ωωπ Γ1/Γ ηη'π
Mode $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE wing data for averag ALDE	words (Fits, 898) (89) (89) (89) (89) (89) (89) (89)	TIOS TECN limits, GAM2 limits, GAM2 limits, GAM2	etc. • • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{\text{etc.} \bullet \bullet}$ $38 \pi^- p \rightarrow$ $\frac{COMMENT}{\text{etc.} \bullet \bullet}$	Γ4/ ωωπ Γ1/Γ ηη'π
Mode Mode $T_1 \pi^0 \pi^0$ $T_2 K_5^0 K_5^0$ $T_3 \eta \eta$ $T_4 \omega \omega$ $T_5 \eta \eta'$ $T_6 \eta' \eta'$ X(1) $T(\omega \omega)/\Gamma total$ VALUE • • • We do not use the followen $T(\pi^0 \pi^0)/\Gamma(\eta \eta')$ VALUE $T(\eta \eta)/\Gamma(\eta \eta')$	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE DOCUMENT ID DOCUMENT ID	words and the set of t	TIOS TECN Imits, GAM2 TECN Imits, GAM2	etc. • • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$ etc. • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$ etc. • • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$	Γ4/ ωωπ Γ1/Γ ηη'π
Mode Mode $T_1 \pi^0 \pi^0$ $T_2 K_S^0 K_S^0$ $T_3 \eta \eta$ $T_4 \omega \omega$ $T_5 \eta \eta'$ $T_6 \eta' \eta'$ X(1) $T_6 \eta' \eta'$ X(2) $T_6 We ext{ do not use the followen}$	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE DOCUMENT ID DOCUMENT ID	es, fits, 89 (es, fits, 89 (es, fits,	TIOS TECN limits, GAM2 TECN limits, GAM2 TECN limits, Ilmits, Ilmits, Ilmits, Ilmits, Ilmits, Ilmits, Ilmits,	etc. • • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$ etc. • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$ etc. • • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$	Γ4/ ωωπ Γ1/Γ ηη'π Γ3/Γ
Mode Mode $\pi^0\pi^0$ $\pi^0\pi^0$ $K_S^0K_S^0$ $\pi^0\pi^0$ $K_S^0K_S^0$	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE	wG RA NG RA NG RA 898 (es, fits, 89 (es, fits, 91B (TIOS TECN limits, GAM2 TECN limits, GAM2 TECN limits, GAM2 TECN limits, GAM2	etc. • • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$ etc. • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$ etc. • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$ etc. • • • $38 \pi^- p \rightarrow$	Γ4/ ωωπ Γ1/Γ ηη' π Γ3/Γ
Mode Mode $T_1 \pi^0 \pi^0$ $T_2 K_5^0 K_5^0$ $T_3 \eta \eta$ $T_4 \omega \omega$ $T_5 \eta \eta'$ $T_6 \eta' \eta'$ X(1) $T_6 \eta' \eta'$ X(2) $T_6 \eta' \eta'$ X(3) $T_6 \eta' \eta'$ X(4) $T_6 \eta' \eta'$ X(5) $T_6 \eta' \eta'$ X(6) $T_6 \eta' \eta'$ X(7) $T_6 \eta' \eta'$ X(7) $T_6 \eta' \eta'$ X(8) $T_6 \eta' \eta'$ X(9) $T_6 \eta' \eta'$ X(1) $T_6 \eta' \eta'$ X(1) $T_6 \eta' \eta'$ X(1) $T_6 \eta' \eta'$ X(2) $T_6 \eta' \eta'$ X(3) $T_6 \eta' \eta'$ X(4) X(5) $T_6 \eta' \eta'$ X(7) X(7) X(8) X(8) X(8) X(9) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(2) X(1) X(1) X(2) X(1) X(2) X(3) X(4) X(5) X(7) X(7) X(7) X(8) X(8) X(1) X(9) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(2) X(1) X(1) X(1) X(2) X(1) X(1) X(2) X(1) X(1) X(1) X(2) X(1) X(1) X(1) X(2) X(1) X(1) X(1) X(2) X(1) X(2) X(1) X(2) X(3) X(1) X(1) X(1) X(2) X(1) X(1) X(1) X(2) X(1) X(2) X(1) X(2) X(1) X(2) X(2) X(3) X(3) X(4) X(4) X(5) X(5) X(6) X(7) X(7) X(7) X(7) X(7) X(8) X(8) X(8) X(8) X(8) X(8) X(9) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(2) X(1) X(1) X(2) X(1) X(2) X(1) X(2) X(3) X(4) X(4) X(5) X(6) X(7) X(7) X(8) X(8) X(8) X(8) X(8) X(8) X(9) X(1) X(2) X(2) X(2) X(3) X	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE	es, fits, 89 6 es, fits, 91B 6 1 1	TIOS TECN Ilmits, GAM2 Ilmits, GAM2 Ilmits, GAM2 Ilmits, GAM2 Ilmits, GAM2 Ilmits, GAM2	etc. • • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$ etc. • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$ etc. • • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$ etc. • • • • $38 \pi^- p \rightarrow$ $\frac{COMMENT}{2}$	Γ4/ ωωπ Γ1/Γ ηη' π Γ3/Γ
Mode $\Gamma_1 \pi^0 \pi^0$ $\Gamma_2 K_S^0 K_S^0$ $\Gamma_3 \eta \eta$ $\Gamma_4 \omega \omega$ $\Gamma_5 \eta \eta'$ $\Gamma_6 \eta' \eta'$ X(: $\Gamma(\omega \omega)/\Gamma_{total}$ VALUE •• We do not use the follows even $\Gamma(\pi^0 \pi^0)/\Gamma(\eta \eta')$ VALUE •• We do not use the follows even $\Gamma(\eta \eta)/\Gamma(\eta \eta')$ VALUE •• We do not use the follows even $\Gamma(\kappa^0 \pi^0)/\Gamma(\eta \eta')$ $\Gamma(\kappa^0 \pi^0)/\Gamma(\eta \eta')$ $\Gamma(\kappa^0 \pi^0)/\Gamma(\eta \eta')$ $\Gamma(\kappa^0 \pi^0)/\Gamma(\eta \eta')$	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE	es, fits, 91B (MODI NG RA es, fits, 89B (es, fits, 91B (1 es, fits,	TIOS TECN limits, GAM2	etc. • • • • 38 $\pi^- p \rightarrow$ COMMENT etc. • • • 38 $\pi^- p \rightarrow$ COMMENT etc. • • • 38 $\pi^- p \rightarrow$ COMMENT etc. • • • • • • • • • • • • • • • • • • •	Γ4/ ωωπ Γ1/Γ ηη'π Γ3/Γ ηη'π Γ2/Γ
Mode Mode $T_1 \pi^0 \pi^0$ $T_2 K_5^0 K_5^0$ $T_3 \eta \eta$ $T_4 \omega \omega$ $T_5 \eta \eta'$ $T_6 \eta' \eta'$ X(1) $T_6 \eta' \eta'$ X(2) $T_6 \eta' \eta'$ X(3) $T_6 \eta' \eta'$ X(4) $T_6 \eta' \eta'$ X(5) $T_6 \eta' \eta'$ X(6) $T_6 \eta' \eta'$ X(7) $T_6 \eta' \eta'$ X(7) $T_6 \eta' \eta'$ X(8) $T_6 \eta' \eta'$ X(9) $T_6 \eta' \eta'$ X(1) $T_6 \eta' \eta'$ X(1) $T_6 \eta' \eta'$ X(1) $T_6 \eta' \eta'$ X(2) $T_6 \eta' \eta'$ X(3) $T_6 \eta' \eta'$ X(4) X(7) X(7) X(8) X(8) X(8) X(9) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(2) X(1) X(1) X(2) X(1) X(2) X(3) X(4) X(4) X(5) X(5) X(7) X(7) X(7) X(8) X(7) X(8) X(8) X(9) X(1) X(1) X(1) X(1) X(1) X(1) X(2) X(1) X(1) X(2) X(1) X(2) X(3) X(4) X(4) X(5) X(5) X(7) X(7) X(7) X(8) X(8) X(8) X(9) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(2) X(1) X(1) X(1) X(2) X(1) X(1) X(2) X(1) X(1) X(2) X(1) X(1) X(2) X(2) X(3) X(4) X(4) X(5) X(5) X(6) X(6) X(7) X(7) X(7) X(8) X(8) X(8) X(9) X(1) X(2) X(1) X(2) X(3) X(4) X(4) X(5) X(5) X(6) X(6) X(7) X(7) X(7) X(8) X(8) X(8) X(8) X(9) X(1) X(2) X(1) X(1) X(1) X(2) X(1) X(1) X(2) X(1) X(2) X(2) X(3) X(3) X(4) X(4) X(5) X(5) X(6) X(6) X(7) X(8) X(9) X(9) X(1) X(1) X(1) X(1) X(1) X(1) X(2) X(1) X(2) X(3) X(3) X(4) X(4) X(5) X(5) X(6) X(7) X(7) X(7) X(7) X(7) X(7) X(7) X(7) X(8) X(9) X(9) X(1) X(1) X(1) X(1) X(1) X(1) X(1) X(2) X(1) X(2) X(2) X(3) X(3) X(4) X(4) X(5) X(5) X(6) X(6) X(7) X(7) X(7) X(7) X(8)	wing data for averag ALDE X(1910) DECAY 1910) BRANCHIN DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE DOCUMENT ID wing data for averag ALDE	NG RA NG RA NG RA Ses, fits, 89 C Ses, fits, 91B C Ses, fits, 89 C Ses, fits, 89 C Ses, fits, 89 C Ses, fits, 88 C Ses, fits, 88 C	TIOS TECN limits, GAM2 TECN limits, GAM2 Ilmits, GAM2 Ilmits, GAM2 Ilmits, GAM2 Ilmits, GAM2	etc. • • • • 38 $\pi^- p \rightarrow$ COMMENT etc. • • • 38 $\pi^- p \rightarrow$ COMMENT etc. • • • 38 $\pi^- p \rightarrow$ COMMENT etc. • • • • • • • • • • • • • • • • • • •	Γ4/ ωωπ Γ1/Γ ηη'π Γ3/Γ ηη'π Γ2/Γ

BELADIDZE 92D VES 37 $\pi^- p \rightarrow \eta' \eta' n$

Meson Particle Listings X(1910), $f_2(1950)$, X(2000)

		,	X(1910) REFERE	NCE	S	
ELADIDZE ELADIDZE "DE Also "DE LDE Also LDE ALOSHIN	92B 92D 91B 92 90 89 88E 89B	ZPHY C54 367 ZPHY C57 13 SJNP 54 455 Translated from PL B276 375 PL B216 600 PL B216 447 SJNP 48 1035 Translated from PL B216 451 SJNP 43 959 Translated from	D.M. Alde et a D.M. Alde et a D.M. Alde et a D.M. Alde et a YAF 48 1724. D.M. Alde et a O.N. Baloshin	et al. al. al. al. al. al.	(BELG, S (SERP, BE (SERP, G (BELG, S	(VES CONIAD.) (VES CONIAD.) ELG, LANL, LAPP+) EER, KEK, LANL+) ELG, LANL, LAPP+) BELG, LANL, LAPP) ELG, LANL, LAPP) ELG, LANL, LAPP) ELG, LANL, LAPP)
		—— от	HER RELATED	PAP	ERS	
E	94	PL B323 227	J.H. Lee et al.		(BNL, IN	ID, KYUN, MASD+)
		ROM SUMM	≀ ^G (_ IARY TABLE	J ^{PC})	0+(2	++)
			f ₂ (1950) MA	SS		
/ALUE (MeV 1960±3			DOCUMENT ID BARBERIS	97B	TECN CHG OMEG	$ \begin{array}{c} COMMENT \\ 450 \ pp \rightarrow \\ pp2(\pi^{+}\pi^{-}) \end{array} $
		t use the follow	ing data for average			• • •
1940±5			BAI	00	BES	$J/\psi \to \gamma(\pi^+\pi^-\pi^+\pi^-)$
1980 ± 5			² ANISOVICH		SPEC	$ \begin{array}{c} 1.35-1.94 \ p\overline{p} \rightarrow \\ \eta\eta\pi^{0} \end{array} $
1918±1	2		ANTINORI	95	OMEG	300,450 $\rho p \to \rho p 2(\pi^+ \pi^-)$
~ 1996 ~ 1990			HASAN ³ OAKDEN	94 94	RVUE RVUE	$\overline{p}p \rightarrow \pi\pi$ 0.36-1.55 $\overline{p}p \rightarrow$
			OAKDEN	,,		''
3 From s	y two prelim	inary CBAR da n B of amplitu	⁴ ASTON ta. de analysis of data o	91 on $\overline{p}p$		11 $K - p \rightarrow \Lambda K K \pi \pi$ e however KLOET 96
¹ Possibl ² Using ₁ ³ From s who fit resonal	ly two prelim solutio : π ⁺ π nt.	inary CBAR da n B of amplitu	4 ASTON ta. de analysis of data of waves only up to J	91 on <u>p</u> p = 3 to	- → ππ. Se	$ \begin{array}{c} \pi\pi\\ 11 \ K^{-} p \to \\ $
1 Possibl 2 Using I 3 From s who fit resonal 4 Cannot	y two prelim solutio : $\pi^+\pi$ nt. t dete	inary CBAR da n B of amplitu — only and find	4 ASTON ta. de analysis of data of waves only up to J e 2.	91 on <u>p</u> p = 3 to	→ ππ. Sei b be importar	11 $K - p \rightarrow \Lambda K K \pi \pi$ e however KLOET 96
1 Possibl 2 Using I 3 From s who fit resonal 4 Cannot	y two prelim solutio : π + π nt. t dete	inary CBAR da n B of amplitu — only and find	4 ASTON ta. de analysis of data of lawayes only up to J e 2. f2(1950) WID	91 on \(\overline{p}p\) = 3 to	→ ππ. Sei b be importar	$11 \frac{\pi \pi}{P} \rightarrow \Lambda K \overline{K} \pi \pi$ A K K $\pi \pi$ e however KLOET 96 at but not significantly
1 Possibl 2 Using I 3 From s who fit resonal 4 Cannol	y two prelim solutio : π + π nt. t deter	inary CBAR da n B of amplitu — only and finc rmine spin to b	⁴ ASTON ta. de analysis of data of waves only up to J e 2. f ₂ (1950) WID	91 on pp = 3 to OTH 978	→ ππ. See be importan TECN CHC OMEG	11 $\frac{\pi\pi}{K-p} \rightarrow KK\pi\pi$ e however KLOET 96 at but not significantly 5 COMMENT 450 $pp \rightarrow pp2(\pi^+\pi^-)$
1 Possibl 2 Using p 3 From s who fit resonal 4 Cannot	y two prelim solutio : π + π nt. t deter	inary CBAR da n B of amplitu — only and finc rmine spin to b	4 ASTON ta. de analysis of data de lavaves only up to J e 2. f2(1950) WID DOCUMENT ID 5 BARBERIS	91 on \$\overline{p}p = 3 to OTH 978 es, fits	→ ππ. See be importan TECN CHC OMEG	11 $\frac{\pi\pi}{K-p} \rightarrow KK\pi\pi$ e however KLOET 96 at but not significantly 5 COMMENT 450 $pp \rightarrow pp2(\pi^+\pi^-)$
1 Possibl 2 Using I 3 From s who fit resonal 4 Cannol	y two prelim solutio : $\pi^+\pi$ nt. t deter	inary CBAR da n B of amplitu — only and finc rmine spin to b	4 ASTON ta. de analysis of data of waves only up to J e 2. f2(1950) WID 5 BARBERIS	91 91 97 97 97 97 00	$r o \pi \pi$. See to be important $r o r o r o r o r o r o r o r $	11 $K^- p \rightarrow \Lambda K K \pi \pi$ The however KLOET 96 at but not significantly 5 COMMENT 450 $pp \rightarrow pp2(\pi^+\pi^-)$ • • • • $J/\psi \rightarrow \gamma(\pi^+\pi^-\pi^+\pi^-)$ 1.35-1.94 $p\bar{p} \rightarrow p\bar{p}$
1 Possibl 2 Using I 3 From s who filt resonal 4 Cannol 4 Cannol 4 Cannol 4 September 1 September 2 Sep	y two prelim solutio $\pi^+\pi$ nt. t deter	inary CBAR da n B of amplitu — only and finc rmine spin to b	4 ASTON ta. de analysis of data of l waves only up to J e 2. f2(1950) WID DOCUMENT ID 5 BARBERIS ving data for average BAI	91 91 97 97 97 97 00	TECN CHC OMEG 5, limits, etc.	11 $\frac{\pi\pi}{P} \rightarrow \Lambda K \overline{K} \pi \pi$ e however KLOET 96 at but not significantly $\frac{5}{450} \frac{COMMENT}{PP2(\pi^+\pi^-)}$ • • • $\frac{J/\psi \rightarrow}{\gamma(\pi^+\pi^-\pi^+\pi^-)}$
1 Possible 2 Using 3 From s who fit resonal 4 Cannot 4 Cannot 4 Cannot 5 We 380 + 19 500 ± 10 390 ± 6	y two prelim solutio $\pi^+\pi$ nt. t deter	inary CBAR da n B of amplitu — only and finc rmine spin to b	4 ASTON ta. de analysis of data of waves only up to J e 2. f2(1950) WID 5 BARBERIS ving data for average BAI 6 ANISOVICH	91 on \(\overline{p}p\) = 3 to OTH 97B es, fits 00 99B	TECN CHG OMEG S, limits, etc. BES SPEC	11 $\frac{\pi\pi}{K^-p} \rightarrow \Lambda K \overline{K} \pi \pi$ The however KLOET 96 at but not significantly 5
1 Possible 2 Using 3 From s who fit resonal 4 Cannot 4 Cannot 4 Cannot 5 We 380 + 12 5 5 00 ± 10 390 ± 6 134	by two prelim solution $\pi^+\pi^ \pi^+$ $\pi^ \pi^	inary CBAR da n B of amplitu — only and finc rmine spin to b	4 ASTON ta. de analysis of data of waves only up to J e 2. f2(1950) WID 5 BARBERIS ving data for average BAI 6 ANISOVICH ANTINORI HASAN	91 On pp = 3 to 0 OTH 97B 98 99B 95 94	TECN CHC OMEG S, limits, etc. BES SPEC OMEG RVUE	11 $\frac{\pi\pi}{K^-p} \rightarrow \Lambda K \overline{K} \pi \pi$ e however KLOET 96 th but not significantly 5
1 Possible 2 Using 3 From s who fit resonal 4 Cannot 4 Cannot 4 Cannot 5 Walue (MeV 450 ± 4	y two prelim to the determinant τ by two prelim solution τ by two prelim τ by	inary CBAR da n B of amplitu only and fine rmine spin to b tuse the follow states. hinary CBAR da on B of amplitu	4 ASTON ta. de analysis of data of waves only up to J e 2. f2(1950) WID 5 BARBERIS ving data for average BAI 6 ANISOVICH ANTINORI HASAN 7 OAKDEN 8 ASTON sta. de analysis of data of waves only up to J	91 97B 97B 97B 99B 95 94 91 90 97B	TECN CHG OMEG S, limits, etc. BES SPEC OMEG RVUE RVUE LASS 0 → ππ. Se	11 K^{π} $p \rightarrow \Lambda K K \pi \pi$ The however KLOET 96 in but not significantly 25 COMMENT 450 $pp \rightarrow pp2(\pi^{+}\pi^{-})$ 1.35-1.94 $p\bar{p} \rightarrow \eta \eta \pi^{0}$ 300,450 $pp \rightarrow pp2(\pi^{+}\pi^{-})$ $pp \rightarrow \pi \pi$ 0.36-1.55 $\bar{p}p \rightarrow \pi \pi$
1 Possible 2 Using 3 From s who fit resonal 4 Cannot 4 Cannot 4 Cannot 5 Walue (MeV 450 ± 4	y two prelim to the determinant τ by two prelim solution τ by two prelim τ by	inary CBAR da n B of amplitu only and fine rmine spin to b states. ninary CBAR da on B of amplitu only and fine rmine spin to b	4 ASTON ta. de analysis of data of lwaves only up to J e 2. f2(1950) WID 5 BARBERIS ving data for average BAI 6 ANISOVICH ANTINORI HASAN 7 OAKDEN 8 ASTON atta. de analysis of data d waves only up to J pe 2.	91 97B 97B 97B 97B 99B 95 94 91 91 91 95 94 91 91	TECN CHG OMEG S, limits, etc. BES SPEC OMEG RVUE RVUE LASS 0 D → ππ. Se o be importan	11 $\frac{\pi\pi}{K^-p} \rightarrow KK \pi\pi$ The however KLOET 96 to but not significantly 5 COMMENT 450 $pp \rightarrow pp2(\pi^+\pi^-)$ • • • $J/\psi \rightarrow \gamma(\pi^+\pi^-\pi^+\pi^-)$ 1.35-1.94 $p\bar{p} \rightarrow \eta\eta\pi^0$ 300,450 $pp \rightarrow pp2(\pi^+\pi^-)$ $\bar{p}p \rightarrow \pi\pi$ 0.36-1.55 $\bar{p}p \rightarrow \pi\pi$ 11 $K^-p \rightarrow KK \pi\pi$ The however KLOET 96
1 Possible 2 Using 3 From s who fit resonal 4 Cannol 4 Cannol 4 Cannol 5 WALUE (MeV 460 ± 4	by two preliminary two preliminary two preliminary to the two preliminary two	inary CBAR da n B of amplitu only and fine rmine spin to b states. ninary CBAR da on B of amplitu only and fine rmine spin to b	4 ASTON ta. de analysis of data of waves only up to J e 2. f2(1950) WID 5 BARBERIS ving data for average BAI 6 ANISOVICH ANTINORI HASAN 7 OAKDEN 8 ASTON sta. de analysis of data of waves only up to J	91 97B 97B 97B 97B 97B 99B 95 94 91 on $\overline{p}p$ = 3 t	TECN OHE OME OME OME OME OME OME OME OME OME OM	11 $\frac{\pi\pi}{K^-p} \rightarrow KK \pi\pi$ The however KLOET 96 to but not significantly 5 COMMENT 450 $pp \rightarrow pp2(\pi^+\pi^-)$ • • • $J/\psi \rightarrow \gamma(\pi^+\pi^-\pi^+\pi^-)$ 1.35-1.94 $p\bar{p} \rightarrow \eta\eta\pi^0$ 300,450 $pp \rightarrow pp2(\pi^+\pi^-)$ $\bar{p}p \rightarrow \pi\pi$ 0.36-1.55 $\bar{p}p \rightarrow \pi\pi$ 11 $K^-p \rightarrow KK \pi\pi$ The however KLOET 96
1 Possible 2 Using 3 From s who fit resonal 4 Cannol 4 Cannol 4 Cannol 5 WALUE (MeV 460 ± 4	by two preliminary to the preliminary two preliminary to the preliminary two preliminary to the preliminary transfer transfer to the preliminary transfer trans	inary CBAR da n B of amplitu only and fine rmine spin to b ot use the follow is states. inary CBAR da on B of amplitu only and fine rmine spin to b	4 ASTON ta. de analysis of data of lwaves only up to J e 2. f2(1950) WID 5 BARBERIS ving data for average BAI 6 ANISOVICH ANTINORI HASAN 7 OAKDEN 8 ASTON atta. de analysis of data d waves only up to J pe 2.	91 97B 97B 97B 97B 99B 95 94 91 on \$\overline{p}p\$ = 3 t	$\pi\pi$. See to be important to	11 $\frac{\pi\pi}{K^-p} \rightarrow KK \pi\pi$ The however KLOET 96 to but not significantly 5 COMMENT 450 $pp \rightarrow pp2(\pi^+\pi^-)$ • • • $J/\psi \rightarrow \gamma(\pi^+\pi^-\pi^+\pi^-)$ 1.35-1.94 $p\bar{p} \rightarrow \eta\eta\pi^0$ 300,450 $pp \rightarrow pp2(\pi^+\pi^-)$ $\bar{p}p \rightarrow \pi\pi$ 0.36-1.55 $\bar{p}p \rightarrow \pi\pi$ 11 $K^-p \rightarrow KK \pi\pi$ The however KLOET 96
1 Possible 2 Using 3 From s who fit resonal 4 Cannol 4 Cannol 4 Cannol 5 WALUE (MeV 460 ± 4	by two preliminary to the preliminary two preliminary to the preliminary two preliminary to the preliminary transfer transfer to the preliminary transfer trans	inary CBAR da n B of amplitu only and fine rmine spin to b states. ninary CBAR da on B of amplitu only and fine rmine spin to b	4 ASTON ta. de analysis of data of lwaves only up to J e 2. f2(1950) WID 5 BARBERIS ving data for average BAI 6 ANISOVICH ANTINORI HASAN 7 OAKDEN 8 ASTON atta. de analysis of data d waves only up to J pe 2.	91 97B 97B 97B 97B 97B 99B 95 94 91 on $\overline{p}p$ = 3 t	TECN CHC OMEG S, limits, etc. BES SPEC OMEG RVUE RVUE LASS 0 $TECN$ CHC OMEG $TECN$	11 $\frac{\pi\pi}{K^-p} \rightarrow KK \pi\pi$ The however KLOET 96 to but not significantly 5 COMMENT 450 $pp \rightarrow pp2(\pi^+\pi^-)$ • • • $J/\psi \rightarrow \gamma(\pi^+\pi^-\pi^+\pi^-)$ 1.35-1.94 $p\bar{p} \rightarrow \eta\eta\pi^0$ 300,450 $pp \rightarrow pp2(\pi^+\pi^-)$ $\bar{p}p \rightarrow \pi\pi$ 0.36-1.55 $\bar{p}p \rightarrow \pi\pi$ 11 $K^-p \rightarrow KK \pi\pi$ The however KLOET 96
1 Possible 2 Using 1 3 From 5 who fit resonal 4 Cannol 4 Cannol 5 Possible 6 Using 7 From 9 who fit resonal 8 Cannol 6 Cannol 7 K T 2 T 3	by two preliminary two preliminary two preliminary to the two preliminary two preliminary two preliminary transfer to the two preliminary transfer to the two preliminary transfer tra	inary CBAR dan B of amplitum only and find find find find find find find fi	4 ASTON ta. de analysis of data of lwaves only up to J e 2. f2(1950) WID 5 BARBERIS ving data for average BAI 6 ANISOVICH ANTINORI HASAN 7 OAKDEN 8 ASTON atta. de analysis of data d waves only up to J pe 2.	91 97B 97B 97B 99B 95 94 94 91 On \$\overline{p}{p}{p}{s}{t} 97B 95 94 96 97B 97B 97B 97B 97B 97B 97B	TECN CHC OMEG S, limits, etc. BES SPEC OMEG RVUE RVUE LASS 0 $TECN$ CHC OMEG $TECN$	11 $\frac{\pi\pi}{K^-p} \rightarrow KK \pi\pi$ e however KLOET 96 at but not significantly 5

€(1950) BRANCHING RATIOS

 DOCUMENT ID
 TECN
 CHG
 COMMENT

 ASTON
 91
 LASS
 0
 11 $K^-p \rightarrow \Lambda K K \pi \pi$

 Γ_1/Γ

Γ(K*(892)K*(892))/Γ_{total}

** • We do not use the following data for averages, fits, limits, etc. • • • * ossibly seen **BARBERIS** **PROMEG** 450 $pp \rightarrow p \rightarrow pP2(\pi^+\pi^-)$ **Fig. 1950** **Fig. 19	Γ (a ₂ (1320)	π)/	Γ _{total}						Γ4/
BARBERIS 97B OMEG 450 $pp \rightarrow p2(\pi^+\pi^-)$ Fe (1950) REFERENCES BAIL SANDOWCH 98B PL BA17 207 ANISONCH 98B PL BA19 134 AAV. Anisonowch et al. ANISONCH 98B PL BA19 134 AAV. Anisonowch et al. ANISONCH 98B PL BA19 134 AAV. Anisonowch et al. ANISONCH 98B PL BA19 137 PL BA12 217 AAV. Anisonowch et al. (WA192 Colubb.) AAV. Anisonow et al. (WA192 Colubb.) (ARGUS Colubb.) ANISONCH 98B PL BA19 1345 AAV. Anisonow et al. (WA192 Colubb.) (ARGUS Colubb.) ANISONCH 98B PL BA19 1375 OTHER RELATED PAPERS OTHER RELATED PAPERS ALBRECHT S8N PL B212 528 H. Albienth et al. (ARGUS Colubb.) ALBRECHT 970 PL B196 255 H. Albienth et al. (ARGUS Colubb.) ALBRECHT 970 PL B196 255 H. Albienth et al. (ARGUS Colubb.) (CERN, BIRM, BARH-) (CERN, BIRM, BARH-) ANISON MASS WALUE (MeV) EVTS DOCUMENT ID 1 ARMSTRONG 930 E760 1 ANTIPOV 77 CIBS - 25 $\pi^- p \rightarrow p^+ p^- p^- p^- p^- p^- p^- p^- p^- p^- p^-$	VALUE	not	use the foll						
BAINSOVICH 998 Pt. B472 207 ANNISOVICH 998 Pt. B491 3154 ANNISOVICH 998 Pt. B413 217 D. Baberés et al. (WALUE Colleab.) WALKOEL, F. Mphrer (RUTG. NORD) (ATHU, BARKE, BIRM-1) (ATHU, BARKE, BIRM-1) (COOM) (CONNISON 94 Pt. B334 215 A. Massa, D.V. Bugg DAKOEN 94 PK. PS 74 731 DAKOEN 94 PK. PS 74 731 OAKOEN 94 PK. PS 74 731 OAKOEN 94 PK. PS 74 731 ALBECUT 88N PL. B212 528 H. Alberch et al. (ARGUS Collab.) ARMSTRONG 97C ZPHY C3-3 33 H. Alberch et al. (ARGUS Collab.) ARMSTRONG 97C ZPHY C3-3 33 H. Alberch et al. (ARGUS Collab.) (CERN, BIRM, BARI+) X(2000) MASS **ALUE (MeV)	possibly seen	1100	asc the foil	•	-		G 450	$pp \rightarrow$	
ANDSOUCH 98B PL B449 134 AAV. Anisovich et al. BABRERIS 97 PL B13 217 D. Baberis et al. WM. Kloot, F. Myhrer W.M. Kloot, F. Myhrer				දි(1950) REFE	REN	CES			
BABBERS 97B PL B112 17 (Wald) Collab.) KICHT 9P RD 93 6120 W.M. Kicst, F. Myhrer (KICH, NORD) ANTINON 95 PL B33 589 F. Antinoni et al. (Wald) (ATHU, BARL BIRNEH) JOACKEN 91 NP B21 5 (Suppl) D. Aston et al. (ATHU, BARL BIRNEH) JOACKEN 91 NP B21 5 (Suppl) D. Aston et al. (ATHU, BARL BIRNEH) JOACKEN 91 NP B21 5 (Suppl) D. Aston et al. (ARGUS Collab.) ALBRECHT 88N PL B212 255 H. Albrecht et al. (ARGUS Collab.) ALBRECHT 870 PL B319 255 H. Albrecht et al. (ARGUS Collab.) ARMSTRONG 97C ZPHY C34 33 H. Albrecht et al. (ARGUS Collab.) ARMSTRONG 97C ZPHY C34 33 H. Albrecht et al. (CERN, BIRM, BARH) X(2000) MASS (2000) MASS X(2000) M						al		(BES C	ollab.)
ANTINOR! \$5 \ PL B335 589 \ PL B335 589 \ PL B337 215 \ A MARSAN 94 \ PL B334 215 \ A MARSAN D.V. Baya. D.V.	BARBERIS	97B	PL B413 217	D. Barberis	et al.			(WA102 C	ollab.)
DAKOEN 94 NPA 574 731 M.M. Oakden, MR. Pennington (LASS Collab.) OTHER RELATED PAPERS OTHER RELATED PAPERS ALBRECHT 870 Pt. Bips 255 H. Albrecht et al. (ARGUS Collab.) ALBRECHT 870 Pt. Bips 255 H. Albrecht et al. (ARGUS Collab.) $I^G(J^{PC}) = 1^{-(?^2+)}$ OMITTED FROM SUMMARY TABLE BALTAY 77 favors $J^P = 3^+$. Needs confirmation. $X(2000) \text{ MASS}$ VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 1964 ± 35 - 2100 1 ANTIPOV 77 CIBS - $25 \pi^- p \rightarrow p $	ANTINORI	95	PL B353 589	F. Antinori	et al.		(<i>P</i>	ATHU, BARI, BI	RM+) JI
ALBRECHT 80N PL B312 528 H. Albrecht et al. (ARGUS Collab.) ALBRECHT 870 PL B198 255 T.A. Armstrong et al. (CERN, BIRM, BARH+) $ X(2000) IGG(J^{PC}) = 1^{-(?^{7+})} $ OMITTED FROM SUMMARY TABLE BALTAY 77 favors $J^{P} = 3^{+}$. Needs confirmation. $ X(2000) MASS $ OW do not use the following data for averages, fits, limits, etc. • • • 1964 ± 35	OAKDEN	94	NPA 574 731	M.N. Oako	en, M.F	t. Penningt	on	ÌΩ	URH)
ARMSTRONG 870 PL B198 255 ARMSTRONG 870 ZPHY C34 33 T.A. Armstrong et al. $I^G(J^{PC}) = 1^{-(?^2+)}$ OMITTED FROM SUMMARY TABLE BALTAY 77 favors $J^P = 3^+$. Needs confirmation. $X(2000) \text{ MASS}$ VALUE (MeV) EVTS DOCUMENT ID 1 ARMSTRONG 93D E760 2214 ±15 BALTAY 1 ARMSTRONG 93D E760 1 ANTIPOV 1 C1BS 2 25 π p \rightarrow p^{π} p_3 1 Cannot determine spin to be 3. $X(2000) \text{ WIDTH}$ VALUE (MeV) EVTS DOCUMENT ID TECN EVTS DOCUMENT ID TECN CHG COMMENT 1 Cannot determine spin to be 3. $X(2000) \text{ WIDTH}$ VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT 1 Cannot determine spin to be 3. $X(2000) \text{ WIDTH}$ VALUE (MeV) EVTS DOCUMENT ID TECN TECN CHG COMMENT 1 CHG COMMENT CHG CHG COMMENT CHG CHG COMMENT CHG CHG COMMENT CHG COMMENT CHG COMMENT CHG CHG COMMENT CHC CHG CHG CHG CHG CHG CHG CH				OTHER RELATI	D PA	APERS			
ARMSTRONG 87C ZPHY C34 33 T.A. Armstrong et al. (CERN, BIRM, BARH+) $I^G(J^{PC}) = 1^{-(?^2+)}$ OMITTED FROM SUMMARY TABLE BALTAY 77 favors $J^P = 3^+$. Needs confirmation. $X(2000) \text{ MASS}$ VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT ••• We do not use the following data for averages, fits, limits, etc. ••• 1964±35 1 ARMSTRONG 93D E760 $\bar{p}p \to 3\pi^0 \to 6$ ~ 2100 1 ANTIPOV 77 CIBS $-25\pi^-p \to p\pi^-p_3$ 2214±15 BALTAY 77 HBC 0 $15\pi^-p \to 2\pi^+p_3$ 2080±40 208 KALELKAR 75 HBC + $15\pi^+p \to p\pi^+p_3$ 1 Cannot determine spin to be 3. $X(2000) \text{ WIDTH}$ VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT ••• We do not use the following data for averages, fits, limits, etc. •• 225±50 2 ARMSTRONG 93D E760 $\bar{p}p \to 3\pi^0 \to 6$ ~ 500 2 ANTIPOV 77 CIBS $-25\pi^-p \to p\pi^-p_3$ 355±21 BALTAY 77 HBC 0 $15\pi^-p \to p\pi^-p_3$ 340±80 208 KALELKAR 75 HBC + $15\pi^+p \to p\pi^+p_3$ 2 Cannot determine spin to be 3. $X(2000) \text{ DECAY MODES}$ Mode Fraction (Γ_J/Γ) $\Gamma_1 3\pi \Gamma_2 \rho_3(1690)\pi$ $\Gamma_2 \rho_3(1690)\pi$ $\Gamma_2 \rho_3(1690)\pi$ ACCUMENT ID TECN CHG COMMENT $\Gamma_3 \pi \Gamma_2 \rho_3(1690)\pi$ $\Gamma_4 \rho_3(1690)\pi$ $\Gamma_5 \rho_3(1690)\pi$ ARMSTRONG 93D PL B307 399 T.A. Armstrong et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Anipov et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Anipov et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Anipov et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Anipov et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Anipov et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Anipov et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Anipov et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Anipov et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Anipov et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Anipov et al. (FNAL, FERR, GENO+) SERR, GEVA) COLUIT STATES Nevis 207 M. S. Kalelkar OTHER RELATED PAPERS OTHER SEL ZPHY C9 275 R.M. Harris et al. (SEAT, UCB)								(ARGUS C	ollab.) ollab.)
OMITTED FROM SUMMARY TABLE BALTAY 77 favors $J^P = 3^+$. Needs confirmation. X(2000) MASS VALUE (MeV)EVTS			ZPHY C34 3	3 T.A. Arms		al.	(0	CERN, BIRM, B	ARI+)
	X(20	00)	1	G (JP	C) =	1-(?	?+)	
VALUE (MeV) EVTS DOCUMENT ID TECN HG COMMENT 1 ARMSTRONG 930 E760 1 ANTIPOV 77 CIBS 2214±15 BALTAY 1 ABCLEKAR 75 HBC 1 COMMENT 1 Cannot determine spin to be 3. X(2000) WIDTH VALUE (MeV) EVTS DOCUMENT ID 2ARMSTRONG 930 E760 ATT PPL 9A PA	OMITTED BA	FF LTA	OM SUN Y 77 favors	MMARY TABLE $J^P = 3^+$. Need	s conf	irmation	١.		
• • • We do not use the following data for averages, fits, limits, etc. • • • • • 1964 ± 35				X(2000)	ASS				
1964±35 1 ARMSTRONG 930 E760 $\overline{p}p \rightarrow 3\pi^0 \rightarrow 6$ ~ 2100 1 ANTIPOV 77 CIBS $\sim 25 \pi^- p \rightarrow \rho\pi^- \rho_3$ 2214±15 BALTAY 77 HBC 0 15 $\pi^- p \rightarrow \Delta^{++} 3\pi$ $\Delta^{++} 3\pi$ 2080±40 208 KALELKAR 75 HBC $+ 15 \pi^+ p \rightarrow \rho\pi^+ \rho_3$ 1 Cannot determine spin to be 3. X(2000) WIDTH *•• We do not use the following data for averages, fits, limits, etc. ••• 225±50 2 ARMSTRONG 930 E760 $\overline{p}p \rightarrow 3\pi^0 \rightarrow 6$ ~ 500 2 ANTIPOV 77 CIBS $\sim 25 \pi^- p \rightarrow \rho\pi^- \rho_3$ 355±21 BALTAY 77 HBC 0 15 $\pi^- p \rightarrow \Delta^{++} 3\pi$ 340±80 208 KALELKAR 75 HBC $+ 15 \pi^+ p \rightarrow \rho\pi^+ \rho_3$ 2 Cannot determine spin to be 3. X(2000) DECAY MODES Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ $\sqrt{(2000)} BRANCHING RATIOS$ $\Gamma(\rho_3(1690)\pi)/\Gamma(3\pi)$ $\frac{DOCUMENT ID}{DOCUMENT ID} \frac{TECN}{TECN} CHG COMMENT}$ WALUE Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ $\sqrt{(2000)} BRANCHING RATIOS$ $\Gamma(\rho_3(1690)\pi)/\Gamma(3\pi)$ $\frac{DOCUMENT ID}{TECN} \frac{TECN}{TECN} CHG COMMENT}$ WALUE Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ $\frac{T}{TECN} CHG COMMENT}$ WALUE Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi \\ \Gamma_2 \rho_3(1690)\pi$ Mode Fraction (Γ_j/Γ) Fraction (Γ_j/Γ) The stantong et al. (FNAL, FERR, GENO+) (SERP, GENA) (SERP, G	VALUE (MeV)								
$\begin{array}{c} \sim 2100 & 1 \text{ ANTIPOV} & 77 \text{ CIBS} & -25 \ \pi^- \rho \rightarrow \rho \pi^- \rho_3 \\ 2214\pm15 & \text{BALTAY} & 77 \text{ HBC} & 0 & 15 \ \pi^- \rho \rightarrow \Delta^{++} 3\pi \\ 2080\pm40 & 208 & \text{KALELKAR} & 75 \text{ HBC} & + 15 \ \pi^+ \rho \rightarrow \rho \pi^+ \rho_3 \\ 1 \text{ Cannot determine spin to be 3.} \\ \hline \\ & \times (2000) \text{ WIDTH} \\ \hline \\ & \times (2000) W$		o not	use the fol	•	-		s, etc.		
2214±15 BALTAY 77 HBC 0 $15 \pi^- p \rightarrow \Delta^{++} 3\pi$ $\Delta^{++} 3\pi$ 1 Cannot determine spin to be 3. X(2000) WIDTH X(2000) WIDTH X(2000) WIDTH X(2000) WIDTH EVTS DOCUMENT ID 2ARMSTRONG 93D E760 2ARMSTRONG 93D E760 2ANTIPOV 77 CIBS 25 $\pi^- p \rightarrow p\pi^- \rho_3$ 340±80 208 KALELKAR 75 HBC 15 $\pi^- p \rightarrow p\pi^+ \rho_3$ 2 Cannot determine spin to be 3. X(2000) DECAY MODES Mode Fraction (Γ_I/Γ) X(2000) BRANCHING RATIOS T(ρ_3 (1690) π)/ Γ (3 π) MALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT $\rho_7 \rightarrow \rho_3$ $\rho_7 \rightarrow \rho_3$ $\rho_7 \rightarrow \rho_3$ 2 Cannot determine spin to be 3. X(2000) BRANCHING RATIOS T(ρ_3 (1690) π)/ Γ (3 π) MALUE (MeV) DOCUMENT ID TECN CHG COMMENT A + 3 π $\rho_7 \rightarrow \rho_3$ 4 + 3 π $\rho_7 \rightarrow \rho_3$ 4 + 3 π $\rho_7 \rightarrow \rho_3$ Comment The spin to be 3. X(2000) BRANCHING RATIOS T(ρ_3 (1690) π)/ Γ (3 π) MALUE (MeV) DOCUMENT ID TECN CHG COMMENT KALELKAR T5 HBC + 15 $\pi^+ p \rightarrow \rho_3 \pi$ X(2000) REFERENCES ARMSTRONG ANTIPOV 71 NP B119 45 Y.M. Antipov et al. C. Baltay, C.V. Cautis, M. Kalelkar (COLU) KALELKAR 75 Thesis Nevis 207 N.S. Kalelkar OTHER RELATED PAPERS HARRIS 81 ZPHY C9 275 R.M. Harris et al. (SEAT, UCB)	1964±35 ~ 2100						-	25 π ⁻ p →	→ 6
2080 \pm 40 208 KALELKAR 75 HBC $+$ 15 $\pi^+\rho \rightarrow \rho \pi^+\rho_3$ 1 Cannot determine spin to be 3. **X(2000)** WIDTH** **X(2000)** WIDTH** **X(2000)** We do not use the following data for averages, fits, limits, etc. • • • • • 225 \pm 50 2 ARMSTRONG 93D E760 $\bar{\rho}\rho \rightarrow 3\pi^0 \rightarrow 6\pi^0 - 6\pi^0$	2214±15			BALTAY	77	нвс	0	15 $\pi^- p \rightarrow$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2080 ± 40		208	KALELKAR	75	нвс	+	15 $\pi^+ \rho \rightarrow$	
VALUE (MeV)	¹ Cannot o	deter	mine spin to	o be 3.				ρπ. ρ3	
• • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •				X(2000) V	VIDT	Н			
225 \pm 50 2 ARMSTRONG 93D E760 $7p \rightarrow 3\pi^0 \rightarrow 6$ 2 ANTIPOV 77 CIBS $-25 \pi^- p \rightarrow p\pi^- \rho_3$ 355 \pm 21 BALTAY 77 HBC 0 15 $\pi^- p \rightarrow \Delta^{++} 3\pi$ 340 \pm 80 208 KALELKAR 75 HBC $+15 \pi^+ p \rightarrow p\pi^+ \rho_3$ 2 Cannot determine spin to be 3. X(2000) DECAY MODES Mode Fraction (Γ_I/Γ)									
$\sim 500 \qquad \qquad ^{2} \text{ANTIPOV} \qquad 77 \text{CIBS} \qquad -25 \pi^{-} p \rightarrow \\ p\pi^{-} \rho_{3}$ $355 \pm 21 \qquad \qquad \text{BALTAY} \qquad 77 \text{HBC} \qquad 0 \qquad 15 \pi^{-} p \rightarrow \\ \Delta^{++} 3\pi \\ 340 \pm 80 \qquad 208 \qquad \text{KALELKAR} \qquad 75 \text{HBC} \qquad + \qquad 15 \pi^{+} p \rightarrow \\ p\pi^{+} \rho_{3} \qquad \qquad \qquad p\pi^{+} \rho_{3}$ $^{2} \text{Cannot determine spin to be 3.}$ $X(2000) \text{ DECAY MODES}$ $\frac{\text{Mode}}{\Gamma_{1}} \qquad \frac{\text{MODES}}{\pi_{2}} \qquad \frac{\text{MODES}}{\pi_{3}} \qquad $. 101	101				.,	_) → 6
355 ± 21 BALTAY 77 HBC 0 $15 \pi^- p \rightarrow \Delta^{++} 3\pi$ $\Delta^{++} 3\pi$ 340 ± 80 208 KALELKAR 75 HBC $+$ 15 $\pi^+ p \rightarrow \rho \pi^+ \rho_3$ Cannot determine spin to be 3. X(2000) DECAY MODES Mode Fraction (Γ_J/Γ) $\Gamma_1 3\pi$ $\Gamma_2 \rho_3(1690)\pi$ dominant X(2000) BRANCHING RATIOS $\Gamma(\rho_3(1690)\pi)/\Gamma(3\pi)$ MALUE DOCUMENT ID TECN CHG COMMENT MALUE DOCUMENT ID TECN CHG COMMENT KALELKAR 75 HBC $+$ 15 $\pi^+ p \rightarrow \rho 3\pi$ X(2000) REFERENCES ARMSTRONG 93D PL B307 399 ANTIPOV 77 NP B119 45 ANTIPOV 77 NP B119 45 ANTIPOV 77 PR 139 591 KALELKAR 75 Thesis Nevis 207 KALELKAR 75 Thesis Nevis 207 C Baltay C.V. Cautis, M. Kaleikar (COLU) OTHER RELATED PAPERS HARRIS 81 ZPHY C9 275 R.M. Harris et al. (SEAT, UCB)							_		
340 ± 80 208 KALELKAR 75 HBC + $15 \frac{\Delta^{++} 3\pi}{\pi^{+} p \rightarrow \rho \pi^{+} \rho_{3}}$ 2 Cannot determine spin to be 3. X(2000) DECAY MODES Mode Fraction (Γ_{j}/Γ) $\Gamma_{1} = 3\pi$ $\Gamma_{2} = \rho_{3}(1690)\pi$ Mominant X(2000) BRANCHING RATIOS $\Gamma(\rho_{3}(1690)\pi)/\Gamma(3\pi)$ MALUE DOCUMENT ID TECN CHG COMMENT KALELKAR 75 HBC + $15 \pi^{+} p \rightarrow \rho 3\pi$ X(2000) REFERENCES ARMSTRONG 93D PL B307 399 ANTIPOV 77 NP B119 45 ANTIPOV 77 NP B119 45 Y.M. Antipov et al. (SERP, GEVO+) ANTIPOV 77 PR 139 591 KALELKAR 75 Thesis Nevis 207 KALELKAR 75 Thesis Nevis 207 OTHER RELATED PAPERS HARRIS 81 ZPHY C9 275 R.M. Harris et al. (SEAT, UCB)				_,	_				
340 ± 80 208 KALELKAR 75 HBC + $15 \pi^+ p \rightarrow p \pi^+ \rho_3$ 2 Cannot determine spin to be 3. X(2000) DECAY MODES Mode Fraction (Γ_j/Γ) $\Gamma_1 3\pi$ $\Gamma_2 \rho_3(1690)\pi$ Adominant X(2000) BRANCHING RATIOS $\Gamma(\rho_3(1690)\pi)/\Gamma(3\pi)$ MALUE DOCUMENT ID DOCUMENT ID TECN CHG TOMMENT MALUE DOCUMENT ID TECN CHG TOMMENT	355 ± 21			BALTAY	77	нвс	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	340 ± 80		208	KALELKAR	75	нвс	+	15 $\pi^+ p \rightarrow$	
	² Cannot	deter	mine spin to	o be 3.				ρπ [™] ρ3	
Γ_1 3π Γ_2 $\rho_3(1690)\pi$ dominant X(2000) BRANCHING RATIOS $\Gamma(\rho_3(1690)\pi)/\Gamma(3\pi)$ MULUE dominant MALUE DOCUMENT ID DOCUMENT ID TECN CHG TOMMENT 15 π ⁺ p \rightarrow p 3π X(2000) REFERENCES ARMSTRONG ANTIPOV 77 NP B119 45 Y.M. Antipov et al. (SERP, GENO+) RAITY 77 PRL 39 591 C. Baltay, C.V. Cautis, M. Kalelkar (COLU) KALELKAR 75 Thesis Nevis 207 M.S. Kalelkar (COLU) OTHER RELATED PAPERS HARRIS 81 ZPHY C9 275 R.M. Harris et al. (SEAT, UCB)				X(2000) DEC	Y M	ODES			
	Mod	e			Fr	action ([_j /[]		
$\Gamma(\rho_3(1690)\pi)/\Gamma(3\pi)$ VALUE DOCUMENT ID TECN KALELKAR T5 HBC + 15 π ⁺ p → p3π X(2000) REFERENCES ARMSTRONG 93D PL B307 399 T.A. Armstrong et ai. ANTIPOV 77 NP B119 45 Y.M. Antipov et ai. KALELKAR 75 Thesis Nevis 207 Thesis Nevis 207 COLU) COLU OTHER RELATED PAPERS HARRIS 81 ZPHY C9 275 R.M. Harris et ai. (SERP, GEVA)		1690)π		do	ominant			
			,	((2000) BRANC	HING	RATIO	S		
	$\Gamma(\rho_3(1690))$)) # Ì	/ Γ(3 π)						Γ2/
X(2000) REFERENCES ARMSTRONG 93D PL B307 399 T.A. Armstrong et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Antipov et al. (SERP, GEVA) BALTAY 77 PRL 39 591 C. Baltay, C.V. Cautis, M. Kalelkar (COLU) KALELKAR 75 Thesis Nevis 207 M.S. Kalelkar (COLU) OTHER RELATED PAPERS HARRIS 81 ZPHY C9 275 R.M. Harris et al. (SEAT, UCB)	VALUE	- ,							
ARMSTRONG 93D PL B307 399 T.A. Armstrong et al. (FNAL, FERR, GENO+) ANTIPOV 77 NP B119 45 Y.M. Antipov et al. (SERP, GEVA) BALTAY 77 PRL 39 591 C. Baltay, C.V. Cautis, M. Kalelkar (COLU) **COLU OTHER RELATED PAPERS** **OTHER RELATED PAPERS** **HARRIS** 81 ZPHY C9 275 R.M. Harris et al. (SEAT, UCB)	gominant						15 π	$\rho \rightarrow \rho 3\pi$	-
ANTIPOV 77 NP B119 45 Y.M. Antipov et al. (SERP, GEVA) BALTAY 77 PRL 39 591 C. Baltay, C.V. Cautis, M. Kalelkar (COLU)	ARMSTRONG	930	PL B307 3	, ,			ſ	FNAL, FERR, G	ENO+1
OTHER RELATED PAPERS ————————————————————————————————————	ANTIPOV BALTAY	77 77	NP B119 49 PRL 39 591	5 Y.M. Ani C. Baltay	ipov et C.V. C	ai.		(SERP, r	(COLU)
					ED F	APERS	· —		
	HARRIS HUSON	81 68	ZPHY C9 2 PL 28B 208			l.		(SEAT	, UCB) UCLAY

1

 $f_2(2010)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index

f ₂ (2010) MA	SS			
DOCUMENT ID		TECN	COMMENT	
1 ETKIN	88	MPS	22 $\pi^- p \rightarrow \phi \phi n$	
ng data for averag	es, fit	s, limits,	etc. • • •	
ALDE ² BOLONKIN	98 88	GAM4 SPEC	$\begin{array}{ccc} 100 \ \pi^{-} p \rightarrow \ \pi^{0} \pi^{0} n \\ 40 \ \pi^{-} p \rightarrow \ K_{5}^{0} K_{5}^{0} n \end{array}$	1
ETKIN				
LINDENBAU	M 84	RVUE		
ETKIN	82	MPS	$22 \pi^- p \rightarrow 2\phi n$	
and 2^{+2}_{-1} , respecti		esonance	e going into $\phi \phi 2^{++} S_2$,	
	DOCUMENT ID 1 ETKIN 1 data for averag ALDE 2 BOLONKIN ETKIN LINDENBAU ETKIN The percentage of	1 ETKIN 88 ng data for averages, fit ALDE 98 2 BOLONKIN 88 ETKIN 85 LINDENBAUM 84 ETKIN 82 The percentage of the rand $2\frac{+2}{-1}$, respectively.	DOCUMENT ID 1 ETKIN 88 MPS 1 adata for averages, fits, limits, ALDE 98 GAM4 2 BOLONKIN 88 SPEC ETKIN 85 MPS LINDENBAUM 84 RVUE ETKIN 82 MPS The percentage of the resonance and 2 + 1/2, respectively.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

f₂(2010) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
202 <u>+</u> 67	3 ETKIN	88	MPS	22 $\pi^- p \rightarrow \phi \phi \pi$
• • We do not use the following		-		
240±100	ALDE	98	GAM4	$\begin{array}{c} 100 \ \pi^{-} p \rightarrow \ \pi^{0} \pi^{0} n \\ 40 \ \pi^{-} p \rightarrow \ K_{S}^{0} K_{S}^{0} n \end{array}$
145 ± 50	⁴ BOLONKIN	88	SPEC	$40 \pi^- p \rightarrow K_S^0 K_S^0 n$
200 ^{+ 160} _{- 50}	ETKIN	85	MPS	$22 \pi^- \rho \rightarrow 2\phi n$
300 ^{+ 150} - 50	LINDENBAUM	84	RVUE	
310± 70	ETKIN	82	MPS	$22 \pi^- p \rightarrow 2\phi n$

⁴ Statistically very weak, only 1.4 s.d.

	Mode	Fraction (Γ_j/Γ)	
Γ ₁	$\phi\phi$	seen	

f2(2010) DECAY MODES

f₂(2010) REFERENCES

ALDE	98	EPJ A3 361	D. Alde et al.	(GAM4 Collab.)
Also	99	PAN 62 405	D. Alde et al.	(GAMS Collab.)
BOLONKIN	88	NP B309 426	B.V. Bolonkin et al.	`(ITEP, SERP)
ETKIN	88	PL B201 568	A. Etkin et al.	(BNL, CUNY)
ETKIN	85	PL 165B 217	A. Etkin et al.	(BNL, CUNY)
LINDENBAUM	84	CNPP 13 285	S.J. Lindenbaum	(CUNY)
ETKIN	82	PRL 49 1620	A. Etkin et al.	(BNL, CUNY)
Also	83	Brighton Conf. 351	S.J. Lindenbaum	(BNL, CUNY)
		-		

OTHER RELATED PAPERS -

NISOVICH	99D	PL B452 180	A.V. Anisovich et al.	
Also	99F	NP A651 253	A.V. Anisovich et al.	
NISOVICH	99F	NP A651 253	A.V. Anisovich et al.	
ANDBERG	96	PR D53 2839	C. Landberg et al.	(BNL, CUNY, R
RMSTRONG	89B	PL B221 221	T.A. Armstrong et al.	(CERN, CDEF, BIRM
REEN	86	PRL 56 1639	D.R. Green et al.	(FNAL, ARIZ, FSU
оотн	84	NP B242 51	P.S.L. Booth et al.	(LIVP, GLAS, CEF
SENHAND	75	NP B96 109	E. Eisenhandler et al.	(LÖQM, LIVP, DARI

 $f_0(2020)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

OMITTED FROM SUMMARY TABLE Needs confirmation.

	f ₀ (2020) MASS				
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT		
2020±35	BARBERIS 97	в ОМЕС	$ \begin{array}{c} 450 \ pp \rightarrow \\ pp2(\pi^+\pi^-) \end{array} $		
• • • We do not use th	ne following data for averages, f	its, limits	, etc. • • •		
2010 ± 60	ALDE 98	GAM4	$100 \pi^- \rho \rightarrow \pi^0 \pi^0 n$		
•	f₀(2020) WIDTH	ı	•		
VALUE (MeV)	f ₀ (2020) WIDTH		COMMENT		
VALUE (MeV) 410± 50	,	TECN	450 pp →		
410± 50	DOCUMENT ID	<u>теси</u> 7в ОМЕС	$ \begin{array}{c} 450 \ pp \rightarrow \\ pp2(\pi^{+}\pi^{-}) \end{array} $		

f₀(2020) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
Γ ₁	$\rho \pi \pi \pi \pi^0 \pi^0$	seen
Γ_2	$\pi^0 \pi^0$	seen

f₀(2020) REFERENCES

ALDE	98	EPJ A3 361	D. Alde et al.	(GAM4 Collab.)
Also	99	PAN 62 405	D. Aide et al.	(GAMS Collab.)
BARBERIS	97B	PL B413 217	D. Barberis et al.	(WA102 Collab.)

 $a_4(2040)$

$$I^{G}(J^{PC}) = 1^{-}(4^{++})$$

a4(2040) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
2014±15 OUR AVERAGE					
1944± 8±50	¹ AMELIN	99	VES		$\begin{array}{c} 37 \pi^- A \rightarrow \\ \omega \pi^- \pi^0 A^* \\ 38 \pi^- \rho \rightarrow \eta \pi^0 \pi \end{array}$
2010 1 20	² DONSKOV		C 4 4 4 0	•	$\omega \pi^- \pi^{\vee} A^{\vee} 0$
2010 ± 20		96	GAM2		$38 \pi p \rightarrow \eta \pi^* n$
2040 ± 30	³ CLELAND	82B	SPEC	±	$50 \pi \rho \rightarrow K_S^0 K^{\pm} \rho$
2030 ± 50	⁴ CORDEN	78c	OMEG		$15 \pi^- \rho \rightarrow 3\pi n$
• • • We do not use the follow	ving data for avera	ges,	fits, lim	its, etc	. • • •
1903 ± 10	⁵ BALDI	78	SPEC	_	10 $\pi^- \rho \rightarrow$
					ρK ⁰ SK ⁻

 $^1\,\mathrm{May}$ be a different state. $^2\,\mathrm{From}$ a simultaneous fit to the G_+ and G_0 wave intensities.

 3 From an amplitude analysis. 4 $_JP=4^+$ is favored, though $_JP=2^+$ cannot be excluded. 5 From a fit to the $_V8$ moment. Limited by phase space.

a4(2040) WIDTH

VALUE (MeV) 361 ± 50 OUR AVERAGE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
324± 26±75	6 AMELIN	99	VES		$37 \pi^- A \rightarrow$
370 ± 80	7 DONSKOV	96	GAM2	0	$ \begin{array}{ccc} 37 & \pi^- A \rightarrow \\ \omega & \pi^- & \pi^0 A^* \\ 38 & \pi^- p \rightarrow & \eta & \pi^0 n \end{array} $
380 ± 150	⁸ CLELAND	8 28	SPEC	±	$50 \pi \rho \rightarrow K_5^0 K^{\pm} \rho$
510 ± 200	⁹ CORDEN	780	OMEG	0	$15 \pi^- p \rightarrow 3\pi n$
• • • We do not use the follo	wing data for aver	ages,	fits, lim	its, etc	. • • •
166 ± 43	10 BALDI	78	SPEC	_	$10 \pi^- \rho \rightarrow$
					pK0K-

 6 May be a different state. 7 From a simultaneous fit to the ${\it G}_+$ and ${\it G}_0$ wave intensities.

⁸ From an amplitude analysis.

9 $J^P=4^+$ is favored, though $J^P=2^+$ cannot be excluded. 10 From a fit to the Y_0^8 moment. Limited by phase space.

Meson Particle Listings $a_4(2040)$, $f_4(2050)$

a₄(2040) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
$\overline{\Gamma_1}$	$K\overline{K} \atop \pi^+\pi^-\pi^0 \atop \eta\pi^0$	seen
Γ_2	$\pi^{+}\pi^{-}\pi^{0}$	seen
Γ3	$\eta\pi^0$	seen

a₄(2040) BRANCHING RATIOS

$\Gamma(K\overline{K})/\Gamma_{\text{total}}$		Г1/Г
VALUE	DOCUMENT ID TECN CHG COMMENT	
seen	BALDI 78 SPEC \pm 10 $\pi^- p \rightarrow \kappa_S^0 \kappa^- p$	
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$	ı	Г2/Г
VALUE	DOCUMENT ID TECN CHG COMMENT	
seen	CORDEN 78C OMEG 0 15 $\pi^- p \rightarrow 3\pi R$,
$\Gamma(\eta\pi^0)/\Gamma_{\text{total}}$	ı	Г3/Г
VALUE	DOCUMENT ID TECN CHG COMMENT	
seen	DONSKOV 96 GAM2 0 38 $\pi^- p \rightarrow \eta \pi^0 n$	

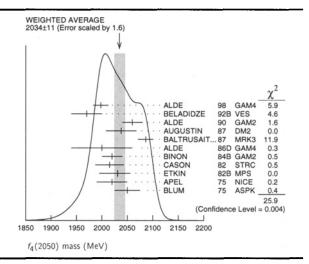
a₄(2040) REFERENCES

AMELIN	99	PAN 62 445	D.V. Amelin et al.	(VES Collab.)	
DONSKOV	96	Translated from PAN 59 982	5.V. Donskov et al.	(GAMS Collab.) IGJPC	
CLELAND	82B	Translated from NP B208 228	YAF 59 1027. W.E. Cleland et al.	(DURH, GEVA, LAUS+)	
BALDI	78	PL 74B 413	R. Baldi et al.	(GEVA) JP	
CORDEN	78C	NP B136 77	M.J. Corden et al.	(BIRM, RHEL, TELA+) JP	
OTHER RELATED PAPERS —					

A. Delfosse et al.

 $f_4(2050)$

81 NP B183 349


$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

(GEVA, LAUS)

f4(2050) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
2034±11	OUR AVERAGE	Error includes scale			See the ideogram below.
1998 ± 15		ALDE	98	GAM4	$100 \pi^- p \rightarrow \pi^0 \pi^0 n$
1970 ± 30		BELADIDZE	92B	VES	36 π ⁻ p → ωωπ
2060 ± 20		ALDE	90	GAM2	38 $\pi^- p \rightarrow \omega \omega n$
2038 ± 30		AUGUSTIN	87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
2086 ± 15		BALTRUSAIT	87	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
2000 ± 60		ALDE			$100 \pi^- \rho \rightarrow n2\eta$
2020 ± 20	40k	¹ BINON			$38 \pi^- p \rightarrow n2\pi^0$
2015 ± 28		² CASON	82	STRC	$8 \pi^+ \rho \rightarrow \Delta^{++} \pi^0 \pi^0$
$2031 + 25 \\ -36$		ETKIN	82B	MPS	$23 \pi^- p \rightarrow n2K_S^0$
2020 ± 30	700	APEL	75	NICE	$40 \pi^{-} p \rightarrow n2\pi^{0}$
2050 ± 25		BLUM	75	ASPK	18.4 $\pi^- p \to nK^+ K^-$
• • • We d	o not use the follo	wing data for average	es, fits	, limits,	etc. • • •
~ 2000		3 MARTIN	98	RVUE	$N \overline{N} \rightarrow \pi \pi$
~ 2010		4 MARTIN	97	RVUE	$\overline{N} N \rightarrow \pi \pi$
~ 2040		⁵ OAKDEN	94	RVUE	$0.36-1.55 \overline{p}p \rightarrow \pi\pi$
~ 1990		⁶ OAKDEN	94	RVUE	$0.36-1.55 \ \overline{p}p \rightarrow \pi\pi$
1978± 5		⁷ ALPER	80	CNTR	$62 \pi^{-} p \rightarrow K^{+} K^{-} n$
2040 ± 10		⁷ ROZANSKA	80	SPRK	$18 \pi^- p \rightarrow p \overline{p} n$
1935 ± 13		7 CORDEN	79	OMEG	$12-15 \pi^- p \rightarrow \pi 2\pi$
1988± 7		EVANGELIST	A 79B	OMEG	$10 \pi^- \rho \rightarrow K^+ K^- n$
1922±14		8 ANTIPOV	77	CIBS	$25 \pi^- p \rightarrow p3\pi$

 $^{^{\}mbox{\scriptsize 1}}$ From a partial-wave analysis of the data.

f4(2050) WIDTH

VALUE (MeV)	EVT5	DOCUMENT ID		TECN	COMMENT
222± 19 OUR	AVERAGE Erro	or includes scale	factor	of 1.B.	See the ideogram below.
395 ± 40		ALDE	98	GAM4	$100 \pi^- p \rightarrow \pi^0 \pi^0 n$
300 ± 50		BELADIDZE	92B	VES	36 π ⁻ ρ → ωωπ
170 ± 60		ALDE			$38 \pi^- p \rightarrow \omega \omega \pi$
304 ± 60		AUGUSTIN	87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
210± 63		BALTRUSAIT	87	MRK3	$J/\psi ightarrow \gamma \pi^+ \pi^-$
400 ± 100		ALDE	86D	GAM4	$100 \pi^- p \rightarrow n2\eta$
240 ± 40	40k	9 BINON			$38 \pi^- p \rightarrow n2\pi^0$
190± 14		DENNEY	83	LASS	$10 \pi^{+} n/\pi^{+} p$
186 + 103 - 58		¹⁰ CASON	82	STRC	$8 \pi^+ \rho \rightarrow \Delta^{++} \pi^0 \pi^0$
$305 + 36 \\ -119$		ETKIN	82B	MPS	$23~\pi^- \rho \to ~n2K_S^0$
180 ± 60	700	APEL	75	NICE	$40 \pi^- p \rightarrow n2\pi^0$
225 + 120		BLUM	75	ASPK	$18.4 \pi^- p \rightarrow nK^+K^-$

• • • We do not use the following data for averages, fits, limits, etc. • • • ~ 170 11 MARTIN 98 RVUE $N\overline{N} \rightarrow \pi\pi$

~ 200		MARTIN	91	RVUE	$NN \rightarrow \pi\pi$
~ 60			94	RVUE	$0.36-1.55 \overline{p}p \rightarrow \pi\pi$
~ 80			94	RVUE	$0.36-1.55 \overline{p}p \rightarrow \pi\pi$
243±	16				$62 \pi^- p \rightarrow K^+ K^- n$
140±	15	¹⁵ ROZANSKA	80	SPRK	$18 \pi^- p \rightarrow p \overline{p} n$
263±	57	¹⁵ CORDEN	79	OMEG	$12-15 \pi^- p \rightarrow \pi 2\pi$
100±	28				$10 \pi^- \rho \rightarrow K^+ K^- n$
107 ±	56	16 ANTIPOV	77	CIBS	$25 \pi^- p \rightarrow p 3\pi$

⁹ From a partial-wave analysis of the data.

² From an amplitude analysis of the reaction $\pi^+\pi^- \to 2\pi^0$.

³ Energy-dependent analysis. ⁴ Single energy analysis.

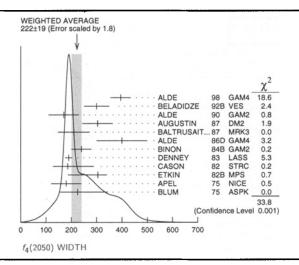
⁵ From solution A of amplitude analysis of data on $\overline{p}p \to \pi\pi$. See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant.

resonant. 6 From solution B of amplitude analysis of data on $\overline{\rho}p \to \pi\pi$. See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly

resonant. $^{7}I(J^{P})=0(4^{+})$ from amplitude analysis assuming one-pion exchange.

⁸ Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

¹⁰ From an amplitude analysis of the reaction $\pi^+\pi^- \rightarrow 2\pi^0$.


Energy-dependent analysis.
 Single energy analysis.

¹³ From solution A of amplitude analysis of data on $\overline{p}p \to \pi\pi$. See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant

resonant. 14 From solution B of amplitude analysis of data on $\bar{p}p \to \pi\pi$. See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant

resonant. $15 J(J^P) = 0(4^+)$ from amplitude analysis assuming one-pion exchange.

 $^{^{16}}$ Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

f4(2050) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
$\overline{\Gamma_1}$	ωω	(26 ±6)%
Γ_2^-	$\pi \pi$	$(17.0 \pm 1.5) \%$
Γ_3	κ Κ	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$
Γ_4	ηη	$(2.1\pm0.8)\times10^{-3}$
Γ5	$\eta \eta_{4\pi^0}$	< 1.2 %
Γ6	$\gamma \gamma$ $a_2(1320)\pi$	seen

$f_4(2050) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}) \times \Gamma$	$(\gamma \gamma)/\Gamma_{\text{total}}$				$\Gamma_3\Gamma_6/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID	TECN	COMMENT	
• • • We do i	not use the followin	g data for averages	s, fits, limits,	etc. • • •	
< 0.29	95	ALTHOFF	85B TASS	$\gamma\gamma \to K\overline{K}\pi$	
$\Gamma(\pi\pi)\times\Gamma(\pi\pi)$	$(\gamma \gamma)/\Gamma_{total}$				$\Gamma_2\Gamma_6/\Gamma$
VALUE (keV)	CL% EVTS	DOCUMENT ID	TECN	COMMENT	
<1.1	95 13 ±	OEST	90 JADE	$e^+e^- \rightarrow e^+$	$e^-\pi^0\pi^0$

f4(2050) BRANCHING RATIOS

-41-	,			
$\Gamma(\omega\omega)/\Gamma(\pi\pi)$				Γ_1/Γ_2
VALUE	DOCUMENT ID		TECN	COMMENT
1.5 ±0.3	ALDE	90	GAM2	38 $\pi^- p \rightarrow \omega \omega n$
Γ(ππ)/Γ _{total}				Γ ₂ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.170±0.015 OUR AVERAGE				
0.18 ±0.03	17 BINON			$38 \pi^- p \rightarrow \pi 4 \gamma$
0.16 ±0.03	17 CASON	82	STRC	$8 \pi^+ \rho \rightarrow \Delta^{++} \pi^0 \pi^0$
0.17 ±0.02	¹⁷ CORDEN	79	OMEG	$12-15 \pi^- \rho \rightarrow \pi 2\pi$
17 Assuming one pion exchang	e.			
$\Gamma(K\overline{K})/\Gamma(\pi\pi)$				Γ ₃ /Γ ₂
VALUE	DOCUMENT JD		TECN	COMMENT
0.04 +0.02 -0.01	ETKIN	82B	MPS	$23 \pi^- \rho \rightarrow n2K_S^0$
$\Gamma(\eta\eta)/\Gamma_{\text{total}}$				Г4/Г
VALUE (units 10 ⁻³)	DOCUMENT ID		TECN	COMMENT
2.1±0.8	ALDE			$\frac{100 \pi^- p \rightarrow \pi 4 \gamma}{}$
$\Gamma(4\pi^0)/\Gamma_{\text{total}}$				Г ₅ /Г
VALUE	DOCUMENT ID		TECN	COMMENT
<0.012	ALDE		GAM4	$100 \pi^- p \rightarrow 4\pi^0 n$
$\Gamma(a_2(1320)\pi)/\Gamma_{\text{total}}$				Γ ₇ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
• • We do not use the follow	ving data for average	s, fit	s, limits,	etc. • • •
seen	AMELIN	00	VES	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$

f₄(2050) REFERENCES

AMELIN	00	NP B668 83	D. Amelin et al.	(VES Collab.)
ALDE	98	EPJ A3 361	D. Alde et al.	(GAM4 Collab.)
Also	99	PAN 62 405	D. Alde et al.	(GAMS Collab.)
MARTIN	98	PR C57 3492	B.R. Martin et al.	,
MARTIN	97	PR C56 1114	B.R. Martin, G.C. Oade	s (LOUC, AARH)
KLOET	96	PR D53 6120	W.M. Kloet, F. Myhrer	(RUTG, NORD)
OAKDEN	94	NPA 574 731	M.N. Oakden, M.R. Per	nnington (DURH)
BELADIDZE	92B	ZPHY C54 367	G.M. Beladidze et al.	(VES Collab.)
ALDE	90	PL B241 600	D.M. Alde et al.	(SERP, BELG, LANL, LAPP+)
OEST	90	ZPHY C47 343	T. Oest et al.	(JADE Collab.)
ALDE	87	PL B198 286	D.M. Alde et al.	(LANL, BRUX, SERP, LAPP)
AUGUSTIN	87	ZPHY C36 369	J.E. Augustin et al.	(LALO, CLER, FRAS+)
BALTRUSAIT	. 87	PR D35 2077	R.M. Baltrusaitis et al.	(Mark III Collab.)
ALDE	86 D	NP B269 485	D.M. Alde et al.	(BELG, LAPP, SERP, CERN+)
ALTHOFF	85B	ZPHY C29 189	M. Althoff et al.	(TASSO Collab.)
BINON	84B	LNC 39 41	F.G. Binon et al.	(SERP, BELG, LAPP)
BINON	83C	SJNP 38 723	F.G. Binon et al.	(SERP, BRUX+)
		Translated from YAF 38		
DENNEY	83	PR D28 2726	D.L. Denney et al.	(IOWA, MICH)
CASON	82	PRL 48 1316	N.M. Cason et al.	(NDAM, ANL)
ETKIN	82B	PR D25 1786	A. Etkin et al.	(BNL, CUNY, TUFTS, VAND)
ALPER	80	PL 94B 422	B. Alper et al.	(AMST, CERN, CRAC, MPIM+)
ROZANSKA	80	NP B162 505	M. Rozanska et al.	(MPIM, CERN)
CORDEN	79	NP B157 250	M.J. Corden et al.	(BIRM, RHEL, TELA+) JP
EVANGELISTA	79B	NP B154 381	C. Evangelista et al.	(BARI, BONN, CERN+)
ANTIPOV	77	NP B119 45	Y.M. Antipov et al.	(SERP, GEVA)
APEL	75	PL 57B 398	W.D. Apel et al.	(KARLK, KARLE, PISA, SERP+) JP
BLUM	75	PL 57B 403	W. Blum et al.	(CERN, MPIM) JP

OTHER RELATED PAPERS -

ANISOVICH		PL B452 180	A.V. Anisovich et al.	
Also	99F	NP A651 253	A.V. Anisovich et al.	
ANISOVICH	99F	NP A651 253	A.V. Anisovich et al.	
PROKOSHKIN	97	5PD 42 117	Y.D. Prokoshkin et al.	(SERP)
		Translated from DANS	353 323.	, ,
CASON	B3	PR D28 1586	N.M. Cason et al.	(NDAM, ANL)
GOTTESMAN	BO	PR D22 1503	S.R. Gottesman et al.	(SYRA, BRAN, BNL+)
EISENHAND	75	NP B96 109	E. Eisenhandler et al.	(LOQM, LIVP, DARE+)
WAGNER	74	London Conf. 2 27	F. Wagner	(MPIM)

 $f_0(2060)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

OMITTED FROM SUMMARY TABLE Needs confirmation.

$f_0(2060)$ MASS

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not us	se the following data for average	es, fit	s, limits,	etc. • • •
~ 2050	¹ OAKDEN	94	RVUE	$0.36-1.55 \ \overline{p}p \rightarrow \pi\pi$
~ 2060	² OAKDEN	94	RVUE	$0.36-1.55 \ \overline{p}p \rightarrow \pi\pi$
	of amplitude analysis of data on and find waves only up to $J=$			

 2 From solution B of amplitude analysis of data on $\overline{\rho}p\to\pi\pi$ See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant.

f₀(2060) WIDTH

VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
• • • We do not use the fol	llowing data for averag	es, fit	s, limits,	etc. • • •
~ 120	3 OAKDEN			$0.36-1.55 \ \overline{p}p \rightarrow \pi \pi$
~ 50	⁴ OAKDEN	94	RVUE	$0.36-1.55 \ \overline{p}p \rightarrow \pi\pi$
fit $\pi^+\pi^-$ only and find resonant. 4 From solution B of ampli	waves only up to $J =$ tude analysis of data or	3 to 1 $\overline{p}p$ -	be impo	ee however KLOET 96 who ortant but not significantly ee however KLOET 96 who ortant but not significantly

fo(2060) DECAY MODES

Mode			Fraction (Γ _i /Γ)	
$\Gamma_1 = \pi^+$	π		seen	
		f ₀ (2	2060) REFERENCES	
KLOET OAKDEN	96 94	PR D53 6120 NPA 574 731	W.M. Kloet, F. Myhrer M.N. Oakden, M.R. Pennington	(RUTG, NORD) (DURH)
		ОТНЕ	R RELATED PAPERS	
SEMENOV	99	SPU 42 847 Translated from UFN	S.V. Semenov 42 937.	

 $\pi_2(2100), f_2(2150)$

 $\pi_2(2100)$

 $I^{G}(J^{PC}) = 1^{-}(2^{-})$

OMITTED FROM SUMMARY TABLE Needs confirmation.

OCUMENT ID	<u>TECN</u>	COMMENT
AMELIN .	958 VES	$\begin{array}{c} 36 \ \pi^- A \rightarrow \\ \pi^+ \pi^- \pi^- A \end{array}$
DAUM		$63,94 \pi^- p \rightarrow 3\pi X$
	DAUM	AMELIN 958 VES

 1 From a fit to $J^{PC}=2^{\,-\,+\,}$ $f_{2}(1270)\,\pi$, $(\pi\,\pi)_{5}\pi$ waves. ² From a two-resonance fit to four 2⁻⁰⁺ waves.

$\pi_2(2100)$ WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
625± 50 OUR AVERAGE	Error includes scale facto	or of 1	1.2.	
520±100	³ AMELIN	95B \	VES	$\begin{array}{c} 36 \ \pi^- A \rightarrow \\ \pi^+ \pi^- \pi^- A \end{array}$
651 ± 50	⁴ DAUM	81B (CNTR	$63,94 \pi^{-} p \rightarrow 3\pi X$
3 From a fit to $J^{PC} = 2$	$-+ f_2(1270)\pi$, $(\pi\pi)_S\pi$	waves	i.	
⁴ From a two-resonance f				

$\pi_2(2100)$ DECAY MODES

_	Mode	Fraction (Γ_I/Γ)	
$\overline{\Gamma_1}$	3π	seen	
Γ_2	$ ho\pi$	seen	
Γ3	$f_2(1270)\pi$	seen	
Γ_4	$(\pi\pi)_S\pi$	seen	

π₂(2100) BRANCHING RATIOS

$\Gamma(\rho\pi)/\Gamma(3\pi)$				Γ_2/Γ_1
VALUE	DOÇUMENT ID	TECN	COMMENT	
0.19±0.05	⁵ DAUM	81B CNTR	63,94 $\pi^- p$	
$\Gamma(f_2(1270)\pi)/\Gamma(3\pi)$				Γ_3/Γ_1
VALUE	DOCUMENT ID	TECN	COMMENT	
0.36±0.09	⁵ DAUM	81B CNTR	63,94 $\pi^- p$	
$\Gamma((\pi\pi)_s\pi)/\Gamma(3\pi)$				Γ_4/Γ_1
VALUE	DOCUMENT ID	TECN	COMMENT	
0.45±0.07	5 DAUM	81B CNTR	63,94 π p	
D-wave/S-wave RATIO F	OR π ₂ (2100) → 1	$f_2(1270)\pi$		

TECN COMMENT VALUE 81B CNTR 63,94 π⁻ p 0.39 ± 0.23

 5 From a two-resonance fit to four $2^{-}0^{+}$ waves.

$\pi_2(2100)$ REFERENCES

	D.V. Amelin <i>et al.</i> C. Daum <i>et al.</i>	(AMST, CERN,	(SERP, TI CRAC, MPIN

 $f_2(2150)$

 $I^{G}(J^{PC}) = 0^{+}(2^{+})$

OMITTED FROM SUMMARY TABLE This entry was previously called T_0 .

f2(2150) MASS

f2(2150) MASS, COMBINED MODES (MeV)

DOCUMENT ID

2161±16 OUR AVERAGE Includes data from the 2 datablocks that follow this one.

ηη MODE

DOCUMENT ID TECN COMMENT The data in this block is included in the average printed for a previous datablock.

2164±19 OUR AVERAGE Error includes scale factor of 1.1.

• • • We do not use the following data for averages, fits, limits, etc. • • • 2140 ± 30 1 ABELE 99B CBAR

 2 ANISOVICH 99B SPEC 1.35–1.94 $\overline{p}p \to \eta \eta \pi^0$ 3 ANISOVICH 99k RVUE 0.6–1.94 $\overline{\rho} \, \rho \to \eta \, \eta, \, \eta \, \eta'$ 4 ARMSTRONG 93C E760 $\overline{\rho} \, \rho \to \pi^0 \, \eta \, \eta \to 6 \gamma$ 2105 ± 10 2104 ± 20

¹ Spin not determined. ² $J^{PC} = 0 + +$

3 Using preliminary CBAR data. PWA gives $J^{PC}=0++$. 4 No J^{PC} determination.

ηππ MODE

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
The data in this block is included in	the average printed	for a pre	vious (datablock.

 $1.94 \ \overline{p} p \rightarrow \eta 3\pi^{0}$ 2135±20±45 ADOMEIT 96 CBAR 0

$\overline{D}D \rightarrow \pi\pi$

VALUE (MeV)	DOCUMENT I	TEC	N COMMENT
• • We do not use the follow	ing data for avera	ges, fits, lim	its, etc. • • •
∼ 2226	HASAN	94 RVI	JE $\overline{p}p \rightarrow \pi\pi$
~ 2090	⁵ OAKDEN	94 RVI	JE $0.36-1.55 \overline{p}p \rightarrow \pi\pi$
~ 2120	⁶ OAKDEN	94 RVI	JE $0.36-1.55 \overline{p}p \rightarrow \pi\pi$
~ 2170	7 MARTIN	80B RVI	JE
~ 2150	⁷ MARTIN	80c RVI	JE
~ 2150	8 DULUDE	788 OSF	$PK 1-2 \overline{p}p \rightarrow \pi^0 \pi^0$

 5 OAKDEN 94 makes an amplitude analysis of LEAR data on $\overline{\rho}\rho \to \pi\pi$ using a method based on Barrelet zeros. This is solution A. The amplitude analysis of HASAN 94 includes earlier data as well, and assume that the data can be parametrized in terms of towers of nearly degenerate resonances on the leading Regge trajectory. See also KLOET 96 and MARTIN 97 who make related analyses.

⁶ From solution B of amplitude analysis of data on $\bar{p}p \to \pi\pi$. $7 I(J^P) = 0(2^+)$ from simultaneous analysis of $p\bar{p} \to \pi^-\pi^+$ and $\pi^0\pi^0$.

 $8I^G(J^P) = 0^+(2^+)$ from partial-wave amplitude analysis.

S-CHANNEL Pp, NN or KK

DALOE (MeV)	BOCOMIENT ID			COMMENT
• • We do not use	the following data for average:	, fits	, limits, etc	. • • •
2139 + 8	⁹ EVANGELISTA	97	SPEC	$0.6-2.4 \ \overline{p}p \rightarrow \\ K_{c}^{0} \ K_{c}^{0}$
~ 2190	¹⁰ CUTTS	78в	CNTR	0.97-3 ₱p →
2155 ± 15	10,11 COUPLAND	77	CNTR 0	0.7-2.4 pp → pp
2193± 2	10,12 ALSPECTOR	73	CNTR	pp S channel
⁹ Isospin 0 and 1 no	et separated.			
10 leagning 0 and 1 m	ot congrated			

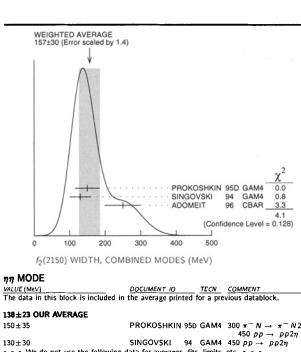
Isospins 0 and 1 not separated.

11 From a fit to the total elastic cross section

 12 Referred to as T or T region by ALSPECTOR 73.

KK MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2130±35	BARBERIS	99	OMEG	450 pp →
				PSPfK+K-


€(2150) WIDTH

f₂(2150) WIDTH, COMBINED MODES (MeV)

VALUE (MeV)

DOCUMENT ID

157±30 OUR AVERAGE Includes data from the 2 datablocks that follow this one. Error includes scale factor of 1.4. See the ideogram below.

138±23 OUR AVERAGE PROKOSHKIN 95D GAM4 300 $\pi^-N \to \pi^-N 2\eta$, 450 $pp \to pp2\eta$ SINGOVSKI 94 GAM4 450 $pp \to pp2\eta$ 150 ± 35 • • • We do not use the following data for averages, fits, limits, etc. • • • If a data to averages, ris., mind, and 13 ABELE 998 CBAR 14 ANISOVICH 998 SPEC 1.35–1.94 $\bar{p}p \rightarrow \eta\eta\pi^0$ 15 ANISOVICH 99K RVUE 0.6–1.94 $\bar{p}p \rightarrow \eta\eta, \eta\eta'$ 16 ARMSTRONG 93C E760 $\bar{p}p \rightarrow \pi^0\eta\eta \rightarrow 6\gamma$ 200 ± 25 $\textbf{203} \pm \textbf{10}$ $^{13}\,\mathrm{Spin}$ not determined. 15 pWA gives $J^{PC}=0++$ 16 No J^{PC} determination. ηππ MODE

The data in this block is included in the average printed for a previous datablock.

ADOMEIT 96 CBAR 0 1.94 $\bar{p}p \rightarrow \eta 3\pi^0$ $250 \pm 25 \pm 45$

DOCUMENT ID TECN COMMENT

$\overline{p}p \rightarrow \pi\pi$ VALUE (MeV)

250 OUR ESTIMATE			
• • We do not use the following	g data for averages	, fits, limits,	etc. • • •
~ 226	HASAN	94 RVUE	$\overline{p}p \rightarrow \pi\pi$
~ 70		94 RVUE	$0.36-1.55 \overline{\rho} \rho \rightarrow \pi \pi$
~ 250		80B RVUE	
~ 250		80c RVUE	
~ 250	¹⁹ DULUDE	78B OSPK	$1-2 \overline{p}p \rightarrow \pi^0 \pi^0$
17 See however KLOET 96 who important but not significantly $^{18}I(J^P)=0(2^+)$ from simultar 19 $I^G(J^P)=0^+(2^+)$ from part	r resonant. Beous analysis of $\rho \bar{z}$	$\bar{b} \rightarrow \pi^- \pi^+$	

S-CHANNEL DD. NN or KK

VALUE (MeV)	DOCUMENT ID		TECN CH	G COMMENT
• • • We do not use	the following data for averages	, fit	s, limits, etc	. • • •
56 ⁺³¹ ₋₁₆	²⁰ EVANGELISTA	97	SPEC	$0.6-2.4 \ \overline{p}p \rightarrow K_0^0 K_0^0$
135±75	21,22 COUPLAND	77	CNTR 0	0.7-2.4 pp → pp
98± 8	²² ALSPECTOR	73	CNTR	pp 5 channel
20 Isospin 0 and 2 no 21 From a fit to the 22 Isospins 0 and 1 r	total elastic cross section			

KK MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
270±50	BARBERIS	99	OMEG	450 pp →
				PSPfK+K-

f2(2150) DECAY MODES

	Mode		
Γ ₁	ππ		
Γ_2	$\eta\eta$		
Γ3	η <u>η</u> Κ Κ		
Γ_4	$f_2(1270)\eta$		
Γ ₅	$a_2(1320)\pi$		

€(2150) BRANCHING RATIOS

$\Gamma(K\overline{K})/\Gamma$	(77)	ı				Γ_3/Γ_2
VALUE			DOCUMENT ID	TECN	COMMENT	
• • • We d	lo not	use the follow	ing data for averages,	fits, limit	s, etc. • • •	
< 0.1		95	²³ PROKOSHKIN	95D GAM	4 300 π ⁻ N - 450 <i>pp</i> -	
²³ Using da	ata fr	om ARMSTRO	NG 89D.			
Γ(ππ)/Γ((ŋŋ)					Γ_1/Γ_2
VALUE		CL%	DOCUMENT ID	TECN	COMMENT	
• • • We d	lo not	use the follow	ing data for averages,	fits, limits	s, etc. • • •	
<0.33		95	²⁴ PROKOSHKIN	95D GAM	4 300 π ⁻ N - 450 pp -	
²⁴ Derived	from	a $\pi^0\pi^0/\eta\eta$ lin	nit.			
Γ(f ₂ (1270)n)/	Γ(a ₂ (1320)π	r)			Γ4/Γ5
VALUE			DOCUMENT ID			
0.79 ± 0.11			²⁵ ADOMEIT	96 CBAF	1.94 p p →	$\eta 3\pi^0$
²⁵ Using B	(a ₂ (1	$320) \rightarrow \eta \pi)$	= 0.145			
			(2150) REFERE	NCES		
ABELE ANISOVICH		EPJ C8 67 PL B449 154	A. Abele <i>et al.</i> A.V. Anisovich e	t al.	(Crystal Bar	rel Collab.)
ANISOVICH	99K	PL 8468 309 PL 8453 305	A.V. Anisovich e		(0-	nega evot \

ABELE	99B	EPJ C8 67	A. Abele et al.	(Crystal Barrel Collab.)
ANISOVICH	99B	PL B449 154	A.V. Anisovich et al.	
ANISOVICH	99K	PL 8468 309	A.V. Anisovich et al.	
BARBERIS	99	PL B453 305	D. Barberis et al.	(Omega expt.)
EVANGELISTA	97	PR D56 3803	C. Evangelista et al.	(LEAR Collab.)
MARTIN	97	PR C56 1114	B.R. Martin, G.C. Oades	(LOUC, AARH)
ADOMEIT	96	ZPHY C71 227	J. Adomeit et al.	(Crystal Barrel Collab.)
KLOET	96	PR D53 6120	W.M. Kloet, F. Myhrer	(RUTG, NORD)
PROKOSHKIN	95D	SPD 40 495	Y.D. Prokoshkin	(SERP) IGJPC
		Translated from DA		, ,
HASAN	94	PL B334 215	A. Hasan, D.V. Bugg	(LOQM)
OAKDEN	94	NPA 574 731	M.N. Oakden, M.R. Pennington	(DURH)
SINGOVSKI	94	NC 107 1911	A.V. Singovsky	(SERP)
ARM5TRONG	93C	PL B307 394	T.A. Armstrong et al.	(FNAL, FERR, GÉNO+)
ARMSTRONG	89D	PL B227 186	T.A. Armstrong, M. Benayoun	(ATHU, BARI, BIRM+)
MARTIN	80B	NP B176 355	B.R. Martin, D. Morgan	(LOUC, RHEL) JP
MARTIN	80C	NP B169 216	A.D. Martin, M.R. Pennington	(DURH) JP
CUTTS	78B	PR D17 16	D. Cutts et al.	(STON, WISC)
DULUDE	78B	PL 79B 335	R.S. Dulude et al.	(BROW, MIT, BARI) JP
COUPLAND	77	PL 71B 460	M. Coupland et al.	(LOOM, RHEL)
ALSPECTOR	73	PRL 30 511	J. Alspector et al.	(RUTG, UPNJ)
			·	• • •

OTHER RELATED PAPERS -

		_	•	
EISENHAND	. 75	NP B96 109	E. Eisenhandler et al.	(LOQM, LIVP, DARE+)
FIELD5	71	PRL 27 1749	T. Fields et al.	(ANL, OXF)
YOH	71	PRL 26 922	J.K. Yoh et al.	(CIT, BNL, ROCH)

$\rho(2150)$

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

OMITTED FROM SUMMARY TABLE This entry was previously called $T_1(2190)$.

ρ(2150) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
2149±17 OUR AVERAGE	Includes data from the	data	block th	at folk	ows this one.
2153±37	BIAGINI	91	RVUE		$e^+e^{\pi^+\pi^-}$, $\kappa^+\kappa^-$
2110±50	² CLEGG	90	RVUE	0	$e^{+}e^{-} \rightarrow 3(\pi^{+}\pi^{-}),$ $2(\pi^{+}\pi^{-}\pi^{0})$

$\overline{p}p \rightarrow \pi\pi$

VALUE (MeV)	DOCUMENT IE)	TECN	COMMENT
• • • We do not use the	ne following data for averag	ges, fits	, limits,	etc. • • •
~ 2191	HASAN	94	RVUE	$\overline{p}p \rightarrow \pi\pi$
~ 1988	HASAN	94	RVUE	$\overline{\rho}p \rightarrow \pi\pi$
~ 2070	¹ OAKDEN	94	RVUE	$0.36-1.55 \overline{p}p \rightarrow \pi\pi$
\sim 2170	³ MARTIN	80B	RVUE	
~ 2100	³ MARTIN	80c	RVUE	

 1 See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant.

S-CHANNEL NN

VALUE (MeV)	DOCOMENTIO		1ECN	CHG	COMMENT
• • • We do not use to	he following data for average	s, fit	s, limits,	etc.	• •
~ 2190	4 CUTTS	788	CNTR		0.97-3 7pp →
2155 ± 15	4,5 COUPLAND				$0.7 \sim 2.4 \ \overline{p}p \rightarrow \ \overline{p}p$
2193± 2	4,6 ALSPECTOR	73	CNTR		pp S channel
2190 ± 10	⁷ ABRAMS	70	CNTR		S channel \overline{p} N

 $\rho(2150)$, $f_0(2200)$, $f_J(2220)$

π [—] ρ → ωπ ⁰ η VALUE (MeV)	DOCUMENT ID		TECN	сомм	ENT
	included in the average pr	inted	for a pre	vious d	atablock.
2155 ± 21 OUR AVERAG	E				
2140±30	ALDE	95	GAM2	38 -	$p \rightarrow \omega \pi^0 \pi$
2170±30	ALDE				$-p \rightarrow \omega \pi^0 n$
2Includes ATKINSON		720	CAIVIA	100 %	<i>p</i> → ψ κ π
$\frac{3}{4}(IP) = 1(1-1)$ from	simultaneous analysis of <i>j</i>	77 →	$\pi^-\pi^+$	and #	00
4 Isospins 0 and 1 not				u //	
5 From a fit to the tota					
	Tregion by ALSPECTOR	73.			
	: 1 state. See also COOPI	ER 68	. PEASL	EE 75	confirm pp result
of ABRAMS 70, no r	narrow structure.				
	ρ(2150) WID	тн			
$e^+e^- \rightarrow \pi^+\pi^-, K^-$	⁺ K ⁻ ,6π				
VALUE (MeV)	DOCUMENT ID				
	E Includes data from the			at follo	
389± 79	BIAGINI	91	RVUE		$e^+e^{\pi^+\pi^-}$
					κ+ κ-
410±100	⁹ CLEGG	90	RVUE	0	e+e- →
					$3(\pi^{+}\pi^{-}),$
					$2(\pi^{+}\pi^{-}\pi^{0})$
p ρ → ππ					
VALUE (MeV)	DOCUMENT ID		TECN	COMM	ENT
• • • We do not use the	e following data for averag	es, fit	s, limits,	etc. •	• •
~ 296	HASAN	94	RVUE	$\overline{p}p \rightarrow$	ππ
~ 244	HASAN	94	RVUE	$\overline{p}p \rightarrow$	ππ
~ 40	8 OAKDEN	94		0.36-	l.55 ρ̄ρ → ππ
~ 250	10 MARTIN		RVUE		
~ 200	¹⁰ MARTIN		RVUE		
⁸ See however KLOET important but not sig	96 who fit $\pi^+\pi^-$ only gnificantly resonant.	and fi	nd wave	s only	up to $J=3$ to b
S-CHANNEL NN					
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use the	e following data for averag	es, fit	s, limits,	etc. •	• •
135 ± 75	11,12 COUPLAND	77	CNTR	0	$0.7-2.4 \ \overline{p} p \rightarrow \overline{p}$
98± 8	12 ALSPECTOR		CNTR		pp S channel
~ 85	¹³ ABRAMS	70	CNTR		S channel ₽N
$\pi^- \rho \rightarrow \omega \pi^0 n$					
VALUE (MeV)	DOCUMENT ID		TECN	сомм	ENT
The data in this block is	included in the average pr				
320 ± 70	ALDE	95	GAM2	38 π	$\rho \rightarrow \omega \pi^0 \pi$
• • • We do not use the	e following data for averag				
~ 300	ALDE	920	GAM4	100 π	$-\rho \rightarrow \omega \pi^0 n$
9 Includes ATKINSON	85.				
	simultaneous analysis of	$D\overline{D} \rightarrow$	$\pi^-\pi^+$	and π	$0\pi^{0}$.
$^{10}I(J^{p}) = 1(1^{-})$ from	i siriluitaneous anaiysis or				
${}^{10}I(J^P) = 1(1^m)$ from 11 From a fit to the tot	al elastic cross section.				
${}^{10}I(J^P) = 1(1^m)$ from 11 From a fit to the tot 12 Isospins 0 and 1 not	al elastic cross section.				

ρ(2150) REFERENCES

KLOET	96	PR D53 6120	W.M. Kloet, F. Myhrer	(RUTG, NORD)
ALDE	95	ZPHY C66 379	D.M. Alde et al.	(GAMS Collab.) JP
HASAN	94	PL B334 215	A. Hasan, D.V. Bugg	(LOQM)
OAKDEN	94	NPA 574 731	M.N. Oakden, M.R. Pennington	i (DURH)
ALDE	92C	ZPHY C54 553	D.M. Alde et al. (BI	ELG, SERP, KEK, LANL+)
BIAGINI	91	NC 104A 363	M.E. Biagini et al.	(FRAS, PRAG)
CLEGG	90	ZPHY C45 677	A.B. Clegg, A. Donnachie	(LANC, MCHS)
ATKINSON	85	ZPHY C29 333	M. Atkinson et al.	(BONN, CERN, GLAS+)
MARTIN	80B	NP B176 355	B.R. Martin, D. Morgan	(LOUC, RHEL) JP
MARTIN	80C	NP B169 216	A.D. Martin, M.R. Pennington	(DURH) JP
CUTTS	78B	PR D17 16	D. Cutts et al.	(STON, WISC)
COUPLAND	77	PL 71B 460	M. Coupland et al.	(LOQM, RHEL)
PEASLEE	75	PL 57B 189	D.C. Peaslee et al.	(CANB, BARI, BROW+)
ALSPECTOR	73	PRL 30 511	J. Alspector et al.	(RUTG, UPNJ)
ABRAMS	70	PR D1 1917	R.J. Abrams et al.	(BNL)
COOPER	68	PRL 20 1059	W.A. Cooper et al.	(ANL)
		OTHER	RELATED PAPERS -	
AMELIN	00	NP B668 83	D. Amelin et al.	(VES Collab.)
EISENHAND	75	NP B96 109	E. Eisenhandler et al.	(LOQM, LIVP, DARE+)
BRICMAN	69	PL 29B 451	C. Bricman et al.	(CERN, CAEN, SACL)
ARRAMS	67C	PRI 18 1209	R I Abrams et al	(BNL)

 $f_0(2200)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

OMITTED FROM SUMMARY TABLE

Seen at DCI in the $K_S^0 K_S^0$ system. Not seen in Υ radiative decays

(PART 90) Node on Figure 1997. (BARU 89). Needs confirmation.

fn(2200) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
2197±17	¹ AUGUSTIN	88	DM2	0	$J/\psi \rightarrow \gamma K_S^0 K_S^0$
• • • We do not use the fo	llowing data for average	es, fit	s, limits,	etc. •	•••
~ 2122	HASAN	94	RVUE		$\overline{p}p \rightarrow \pi\pi$
~ 2321	HASAN	94	RVUE		$\overline{p}p \rightarrow \pi\pi$
¹ Cannot determine spin t	o be 0.				

€(2200) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
201 ± 51	² AUGUSTIN	88	DM2	0	$J/\psi \rightarrow \gamma K_S^0 K_S^0$
• • • We do not use th	e following data for averag	es, fit	s, limits, e	etc. •	• • •
~ 273	HASAN	94	RVUE		$\overline{p}p \rightarrow \pi\pi$
~ 223	HASAN	94	RVUE		$\overline{p}p \rightarrow \pi\pi$
2 Cannot determine se	oin to be 0				

fo(2200) REFERENCES

		• •	•	
HASAN BARU AUGUSTIN	94 89 88	PL B334 215 ZPHY C42 505 PRL 60 2238	A. Hasan, D.V. Bugg S.E. Baru et al. J.E. Augustin et al.	(LOQM) (NOVO) (DM2 Collab.)
		—— отн	ER RELATED PAPERS	;
EISENHAND.	75	NP B96 109	E. Eisenhandler et al.	(LOQM, LIVP, DARE+)

$$I^{G}(J^{PC}) = 0^{+}(2^{++} \text{ or } 4^{++})$$

OMITTED FROM SUMMARY TABLE THE $f_J(2220)$

Updated April 2000 by M. Doser (CERN).

This state has been observed in $J/\psi(1S)$ radiative decay into $K\overline{K}$ (K^+K^- and $K^0_SK^0_S$ modes seen (BALTRUSAITIS 86D, BAI 96B)). An upper limit from DM2 for these modes (AUGUSTIN 88) is at the level at which observation is claimed. There are also indications for further decay modes ($\pi^+\pi^-$ and $\overline{p}p$ (BAI 96B) and $\pi^0\pi^0$ (BAI 98H)) in the same production process, although again at the level at which previous upper limits had been obtained (BALTRUSAITIS 86D). This was also seen in $\eta\eta$ (ALDE 86B), $K_S^0K_S^0$ (ASTON 88D), and K^+K^- (ALDE 88 F), albeit with very low statistics. Its J^{PC} is determined from the angular distributions of these observations.

It is not seen in Υ radiative decays (BARU 89), B inclusive decays (BEHRENDS 84), nor in $\gamma\gamma$ (GODANG 97, ALAM 98C), which is not surprising, since if it were a glueball, its two-photon width would be expected to be small. It is also not seen in formation in $\overline{p}p \to K^+K^-$ (BARDIN 87, SCULLI 87), in $\bar{p}p \to K_S K_S$ (BARNES 93, EVANGELISTA 97), $\bar{p}p \to \phi\phi$ (EVANGELISTA 98), nor in $\bar{p}p \to \pi^+\pi^-$ (HASAN 96). The upper limit in $\bar{p}p$ formation can be related to the claimed decay into $\bar{p}p$ to give a lower limit for the process $J/\psi \to \gamma f_J(2220)$ of $\sim 2.3 \times 10^{-3}$ (GODFREY 99). Such a signal should be visible in the inclusive photon spectrum (BLOOM 85). The limit also leads to the surprising conclusion that the reported twobody final states constitute only a small fraction of all decay modes of the $f_J(2220)$. Observation of further decay modes and confirmation of the $\bar{p}p$ decay would be very desirable.

99 4 Assuming $\Gamma=15$ MeV and $J^P=2^+$

Meson Particle Listings

		f _J (2220) MASS	S		$\Gamma(\rho\overline{\rho})\times\Gamma(\phi\phi)$	$\phi)/\Gamma_{\rm total}$				$\Gamma_4\Gamma_7$
ALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	VALUE (keV)	<u>CL%</u> 95	DOCUMENT ID 5 EVANGELISTA		COMMENT	
31.1± 3.5 OUR AVE	RAGE 74	DAL		-+			MeV and F total			φφ
35 ± 4 ± 6	74	BAI 9	96B BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma_{\pi}^+\pi^-$			20) BRANCHING			
$30 + \frac{6}{7} \pm 16$	46	BAI 9	968 BES	$e^+e^- \rightarrow J/\psi \rightarrow$	r/-≠\/r	1)(22	ZU) BRANCHING	I KATIOS		_
32 + 8 ±15	23	BAI 9	96в BES	$\gamma K^+ K^ e^+ e^- \rightarrow J/\psi \rightarrow$	Γ(ρ̄p)/Γ _{total} VALUE (units 10 ⁻⁴)	C1.04	DOCUMENT (D	TECH		Г
- 7 - 13	23	DAI :	705 DE3	γK ⁰ ₅ K ⁰ ₅			DOCUMENT ID g data for averages		. etc. • • •	
35 ± 4 ± 5	32	BAI 9	968 BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \rho \overline{\rho}$	<3.0	95	6 EVANGELISTA			→ κ ⁰
9 +17 -15 ±10		ASTON E	88F LASS	$11~K^-p\to~K^+K^-\Lambda$	<1.1	99.7	7 BARNES	93 SPEC	1.3-1.57pp →	K 2 1
30 ± 20		BOLONKIN 8	88 SPEC	$40 \pi^- p \rightarrow K_S^0 K_S^0 n$	<2.6	99.7			$1.3-1.5\overline{p} p \rightarrow$	
0 ±10				$38\text{-}100~\pi\rho\rightarrown\eta\eta'$	< 3.6	99.7			1.29-1.55pp -	→ K+
0 ± 6 ±14	93			$e^+e^- \rightarrow \gamma K^+K^-$	7 Assuming F	~ 20 MeV, J' = — 30-35 MeV J	= 2 ⁺ and B(f_j (222) = 2 ⁺ and B(f_j (2	D) → KK 220) → K) = 100%. (K) = 100%	
2 ± 7 ± 7 • We do not use the	23 e following c			$e^+e^- \rightarrow \gamma K_S^0 K_S^0$		_	= 2 and B(7)(2	220) - 1	K) = 100%.	_
6 ±36	t lollowing (= :		$J/\psi \rightarrow \gamma \pi^0 \pi^0$	$\Gamma(\pi\pi)/\Gamma(K\overline{K})$)				Г
ALDE 86B uses data	from both				<u>VALUE</u> 1.0±0.5		<u>DOCUMENT ID</u> BAI	7ECN 96B BES	$e^+e^- \rightarrow J/c$	-1.
ALDE GOB GSES GATA	HOIT DOLL	the dalwa-2000 a	IIIU GANO-	+000 detectors.	1.010.3		DAI	708 DE3	$\gamma 2\pi, K\overline{K}$	Ψ →
	f	P)(2220) WIDT)ر	Ή		$\Gamma(p\overline{p})/\Gamma(K\overline{K})$)				Г
.UE (MeV) CL%	FVTS	DOCUMENT ID	TECN	COMMENT	VALUE	, 	DOCUMENT ID	TECN	COMMENT	
		DOCOMENT ID		COMMENT	0.17 ± 0.09		BAI	96B BES	$e^+e^- \rightarrow \underline{J}/2$	$\psi \rightarrow$
3 + BOUR AVERA	Æ								γρЂ,ΚΚ	
9^{+}_{-} $^{13}_{11}$ \pm 12	74	BAI 9	96B BES	$e^+e^{} \rightarrow J/\psi \rightarrow$		fj	(2220) REFERE	NCES		
$0^{+}_{-15}^{20}_{\pm 17}$	46	BAI 9	96в BES	$\gamma \pi' \pi^ e^+e^- \rightarrow J/\psi \rightarrow$	ALAM 98C	PRL 81 3328	M.S. Alam et a		(CLEO	Collab.
°- 15 - 17	70	DAI :	706 DE3	γK+K-		PRL 81 1179 PR D57 5370	J.Z. Bai <i>et al.</i> C. Evangelista <i>e</i>			Collab
$10^{+}_{-16}^{25} \pm 14$	23	BAI 9	96B BES	$e^+e^- \rightarrow J/\psi \rightarrow$	EVANGELISTA 97	PR D56 3803	C. Evangelista e	t al.	(LEAR	Collab.
~ 10				7 K & K &	GODANG 97 BAI 96B	PRL 79 3829 PRL 76 3502	R. Godang et al. J.Z. Bai et al.		(BES	Collab Collab
5 ⁺ 12 ₊ 9	32	BAI 9	96B BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \rho \overline{\rho}$	HASAN 96 BARNES 93	PL B388 376 PL B309 469	A. Hasan, D.V. P.D. Barnes, P.	Bugg Birien, W.H.	(BRUN, Breunlich	, LOQN
•				.,	ALBRECHT 90G ASTON 88F	ZPHY C48 183	H. Albrecht et a D. Aston et al.	t.	(ARGUS	Collab
0 + 107 - 57				$11 K^- p \rightarrow K^+ K^- \Lambda$	BOLONKIN 68 ALDE 87C	NP B309 426	B.V. Bolonkin e			P, SERF
10± 30				$40 \pi^- p \rightarrow K_S^0 K_S^0 n$	BARDIN 87	SJNP 45 255 Translated from Y/ PL B195 292	D. Alde et al. AF 45 405. G. Bardin et al.	(SA	CL, FERR, CERN,	PADO-
$16 + 20 \pm 17$	93	BALTRUSAIT	860 MRK3	$e^+e^- \rightarrow \gamma K^+K^-$	SCULLI 87	PRL 58 1715	J. Sculli et al.	•		U. BNL
18 ⁺ 23 15±10	23	BALTRUSAIT	86D MRK3	$e^+e^- \rightarrow \gamma K_5^0 K_5^0$	ALDE 86B BALTRUSAIT 86D	PRL 56 107	D.M. Alde <i>et al</i> R.M. Baltrusaitis		(CIT, UCSC, ILL,	SLAC+
• We do not use the	e following	data for averages,	fits, limits,	etc. • • •	ALTHOFF 85B		M. Althoff et al		(TASSO	Collap
90		ALDE 8	87c GAM2	38 $\pi^- p \rightarrow \eta' \eta \eta$	1	011	HER RELATED I	APERS		
	f _J (22	220) DECAY M	ODES		ANISOVICH 99D Also 99F ANISOVICH 99F GODFREY 99		A.V. Anisovich (A.V. Anisovich (A.V. Anisovich (tal. tal.		
		F	raction (F;/	/Γ) ·	PROKOSHKIN 99	PAN 62 356 Translated from Y	S. Godfrey, J. N Yu.D. Prokoshkii AF 62 396.	apolitano 1 et al.		
Mode				· /	HUANG 96 BARDIN 87	PL B380 189 PL B195 292	T. Huang et al. G. Bardin et al.	(5.4	(BHE CL, FERR, CERN,	PADO+
Mode			een		YAOUANC 85 GODFREY 84	ZPHY C28 309 PL 141B 439	A. Le Yaouanc S. Godfrey, R. I	et al.	(ORSAY	TOKY
ππ			an .		SHATZ 84		M.P. Shatz	10403KI, 14. 13		` (CIT
$\frac{\pi\pi}{\pi^+\pi^-}$		se	een een			PL 138B 209				
ππ		se se	een een een		WILLEY 84 EISENHAND 75		R.S. Willey E. Eisenhandler	et al.	(LOQM, LIVP,	DARE+
ππ π ⁺ π ⁻ Κ Κ ρ p γγ		se se	een		WILLEY 84	PL 138B 209 PRL 52 585	R.S. Willey E. Eisenhandler			DARE-
ππ π+π- ΚΚ ρ̄ρ γγ ηη'(958)		se se se no	een een		WILLEY 84	PL 138B 209 PRL 52 585	R.S. Willey E. Eisenhandler		(LOQM, LIVP,	DARE+
ππ π+π- Κ Κ ρ p γγ		se se no se	een een ot seen		WILLEY 84	PL 138B 209 PRL 52 585	R.S. Willey E. Eisenhandler			DARE+
ππ π+π- ΚΚ ρ̄ρ γγ ηη'(958)	f.(222	se se se no se	een een ot seen een ot seen		willey 84 eisenhand 75 $\eta(2225)$	PL 136B 209 PRL 52 585 NP B96 109	R.S. Willey E. Eisenhandler	PC) = (DARE+
ππ π+π- ΚΚ ρ̄ρ γγ ηη'(958) φφ		se se no se	een een ot seen een ot seen	Γ ₂ Γ ₂ /Γ	willey 84 eisenhand 75 $\eta(2225)$	PL 136B 209 PRL 52 585 NP B96 109	R.S. Willey E. Eisenhandler	PC) = (DARE+
ππ π ⁺ π ⁻ Κ Κ ρ ̄ρ γ γ η η' (958) φ φ	total	se se se no se	een een ot seen een ot seen r(total)	Γ ₃ Γ ₅ /Γ	willey 84 eisenhand 75 $\eta(2225)$	PL 136B 209 PRL 52 585 NP B96 109	R.S. Willey E. Eisenhandler	PC) = (DARE+
ππ π ⁺ π ⁻ ΚΚ ρρ γγ ηη'(958)	total CL%	se se no se	een een ot seen een ot seen r(total)	COMMENT	η (2225) OMITTED FF Seen in	PL 136B 209 PRL 52 585 NP B96 109	R.S. Willey E. Eisenhandler IG (J ARY TABLE Needs confirmati n(2225) MAS	PC) = (o+(o - +)	(PITT DARE+
ππ π+π- KK ρ̄ρ γγ ηη'(958) φφ KK) × Γ(γγ)/Γ	total <u>CL%</u> 95	se se no se	een een ot seen een ot seen (total) TECN 97 CLE2	$\begin{array}{ccc} \underline{COMMENT} \\ \gamma \gamma \to & K_S^0 K_S^0 \end{array}$	willey 84 EISENHAND 75 $\eta(2225)$ OMITTED FF Seen in	PL 138B 209 PRL 52 585 NP B96 109 ROM SUMMA 1 $J/\psi \rightarrow \gamma \phi \phi$.	R.S. Willey E. Eisenhandler	P^{C}) = (on.	O+(0 - +)	DARE
$\pi \pi$ $\pi^{+} \pi^{-}$ $K\overline{K}$ $P\overline{P}$ $\gamma \gamma$ $\eta \eta' (958)$ $\phi \phi$ $K\overline{K}) \times \Gamma(\gamma \gamma) / \Gamma_{UE(eV)}$ 5.6 • We do not use the	total CL% 95 ac following 6	See	een een ot seen een ot seen F(total) FECN 97 CLE2 , fits, limits, 90G ARG	$ \begin{array}{ccc} COMMENT \\ \gamma \gamma \to & K_5^0 K_5^0 \\ \text{etc.} & \bullet & \bullet \\ \gamma \gamma \to & K^+ K^- \end{array} $	willey 84 EISENHAND 75 $\eta(2225)$ OMITTED FF Seen in	PL 138B 209 PRL 52 585 NP B96 109 ROM SUMMA $1 J/\psi \rightarrow \gamma \phi \phi$.	R.S. Willey E. Eisenhandler JG (J ARY TABLE Needs confirmati $\eta(2225)$ MAS DOCUMENT ID	P^{C}) = (on.	$\frac{COMMENT}{5}, \text{ etc. } \bullet \bullet$ $3 J/\psi \rightarrow$	DÀRE+
$ \pi \pi $ $ \pi^{+} \pi^{-} $ $ K\overline{K} $ $ P\overline{P} $ $ \gamma \gamma $ $ \eta \eta'(958) $ $ \phi \phi $	total	See	een een ot seen een ot seen (total) TECN 77 CLE2 , fits, limits,	$ \begin{array}{ccc} COMMENT \\ \gamma \gamma \to & K_5^0 K_5^0 \\ \text{etc.} & \bullet & \bullet \\ \gamma \gamma \to & K^+ K^- \end{array} $	MILLEY 84 EISENHAND 75 η(2225) OMITTED FF Seen in WALUE (MeV) • • • We do not 2230±25±15	PL 1388 209 PRL 52 585 NP B96 109 ROM SUMMA of $J/\psi \rightarrow \gamma \phi \phi$.	R.S. Willey E. Eisenhandler IG (J ARY TABLE Needs confirmati n(2225) MAS <u>DOCUMENT ID</u> ng data for averages BAI	PC) = (on. S TECN , fits, limits 908 MRK	$\begin{array}{c} COMMENT \\ 5, \text{ etc. } \bullet \bullet \bullet \\ 3 \ J/\psi \rightarrow \\ \gamma K^+ K^- K \end{array}$	DÀRE+
$\pi \pi$ $\pi^{+} \pi^{-}$ $K \overline{K}$ $\rho \overline{\rho}$ $\gamma \gamma$ $\eta \eta' (958)$ $\phi \phi$ $K \overline{K}) \times \Gamma(\gamma \gamma) / \Gamma_{0}$ $UE (eV)$ 5.6 • We do not use the 86 000 • Assuming $J^{P} = 2^{+}$	total <u>CL%</u> 95 e following 6 95 95	See	een een ot seen een ot seen F(total) FECN 97 CLE2 , fits, limits, 90G ARG	$ \begin{array}{ccc} COMMENT \\ \gamma \gamma \to & K_5^0 K_5^0 \\ \text{etc.} & \bullet & \bullet \\ \gamma \gamma \to & K^+ K^- \end{array} $	MILLEY 84 EISENHAND 75 η(2225) OMITTED FF Seen in VALUE (MeV) • • • We do not	PL 1388 209 PRL 52 585 NP B96 109 ROM SUMMA of $J/\psi \rightarrow \gamma \phi \phi$.	R.S. Willey E. Eisenhandler JG (J ARY TABLE Needs confirmati $\eta(2225)$ MAS DOCUMENT ID In data for averages	PC) = 0 on. S <u>TECN</u> , fits, limits	$\begin{array}{c} \frac{COMMENT}{5}, \text{ etc. } \bullet \bullet \bullet \\ 3 \ J/\psi \rightarrow \gamma K^{+}K^{-}K \\ 3 \ J/\psi \rightarrow \end{array}$	(+ K-
$\pi \pi$ $\pi^{+} \pi^{-}$ $K \overline{K}$ $\rho \overline{\rho}$ $\gamma \gamma$ $\eta \eta' (958)$ $\phi \phi$ $K \overline{K}) \times \Gamma(\gamma \gamma) / \Gamma_{0}$ $UE (eV)$ 5.6 • We do not use the 86 800 Assuming $J^{P} = 2^{+}$	total <u>CL%</u> 95 e following 6 95 95	See	een een ot seen een ot seen F(total) FECN 97 CLE2 , fits, limits, 90G ARG	$ \begin{array}{ccc} COMMENT \\ \gamma \gamma \to & K_5^0 K_5^0 \\ \text{etc.} & \bullet & \bullet \\ \gamma \gamma \to & K^+ K^- \end{array} $	MILLEY 84 EISENHAND 75 η(2225) OMITTED FF Seen in WALUE (MeV) • • • We do not 2230±25±15	PL 1388 209 PRL 52 585 NP B96 109 ROM SUMMA of $J/\psi \rightarrow \gamma \phi \phi$.	R.S. Willey E. Eisenhandler IG (J ARY TABLE Needs confirmati n(2225) MAS <u>DOCUMENT ID</u> ng data for averages BAI	PC) = (on. S TECN , fits, limits 908 MRK	$\frac{COMMENT}{5, \text{ etc. } \bullet \bullet \bullet}$ $3 \ J/\psi \rightarrow \gamma K^+ K^- K$ $7 \ K^+ K^- K$	(+ K-
$\pi \pi$ $\pi^{+} \pi^{-}$ $K \overline{K}$ $P \overline{P}$ $\gamma \gamma$ $\eta \eta' (958)$ $\phi \phi$ $K \overline{K}) \times \Gamma (\gamma \gamma) / \Gamma_{0}$ $UE (eV)$ 5.6 • We do not use the 86 000 Assuming $J^{P} = 2^{+}$ True for $J^{P} = 0^{+}$ a	total $ \frac{CL\%}{95} $ 95 96 97 98 99 99 and $J^P = 2^n$	See	een een ot seen een ot seen F(total) FECN 97 CLE2 , fits, limits, 90G ARG	$ \begin{array}{ccc} COMMENT \\ \gamma \gamma \to & K_5^0 K_5^0 \\ \text{etc.} & \bullet & \bullet \\ \gamma \gamma \to & K^+ K^- \end{array} $	MILLEY 84 EISENHAND 75 η(2225) OMITTED FF Seen in VALUE (MeV) • • • We do not 2230±25±15 2214±20±13	PL 1388 209 PRL 52 585 NP B96 109 ROM SUMMA of $J/\psi \rightarrow \gamma \phi \phi$.	R.S. Willey E. Eisenhandler JG (J ARY TABLE Needs confirmati $\eta(2225)$ MAS DOCUMENT ID ng data for averages BAI BAI	PC) = (on. S TECN , fits, limits 908 MRK3	$\frac{COMMENT}{5, \text{ etc. } \bullet \bullet \bullet}$ $3 \ J/\psi \rightarrow \gamma K^+ K^- K$ $7 \ K^+ K^- K$	(+ K-
$\pi \pi \frac{\pi^{+} \pi^{-}}{KK}$ $p\overline{p}$ $\gamma \gamma \eta \eta'(958)$ $\phi \phi$ $KK) \times \Gamma(\gamma \gamma)/\Gamma_{0}$ $\Sigma E(eV)$ 5.6 • We do not use the 86 86 86 87 Assuming $J^{P} = 2^{+}$ True for $J^{P} = 0^{+}$ a $\Sigma \pi \times \Gamma(\gamma \gamma)/\Gamma_{tt}$ $\Sigma E(eV)$	total $ \begin{array}{c} \underline{CL\%} \\ 95 \\ 95 \\ 95 \\ 95 \\ 95 \\ \text{and } J^P = 2^n \end{array} $	See	een een ot seen ot seen ot seen ot seen of see	COMMENT	MILLEY 84 EISENHAND 75 η(2225) OMITTED FF Seen in VALUE (MeV) • • • We do not 2230±25±15 2214±20±13	PL 1388 209 PRL 52 585 NP B96 109 ROM SUMMA of $J/\psi \rightarrow \gamma \phi \phi$.	R.S. Willey E. Eisenhandler JG (J ARY TABLE Needs confirmati n(2225) MAS DOCUMENT ID ng data for averages BAI BAI BISELLO	PC) = (on. S	$\frac{COMMENT}{5, \text{ etc. } \bullet \bullet \bullet}$ $\frac{3}{3} \frac{J/\psi \rightarrow \gamma K^{+} K^{-} K}{\gamma K^{+} K^{-} K}$ $\frac{J/\psi \rightarrow \gamma K^{+} K^{-} K}{J/\psi \rightarrow}$	(+ K-
$\pi \pi$ $\pi^{+} \pi^{-}$ $K \overline{K}$ $P \overline{P}$ $\gamma \gamma$ $\eta \eta' (958)$ $\phi \phi$ KK) × $\Gamma(\gamma \gamma)/\Gamma_{0}$ 5.6 • We do not use th 86 000 Assuming $J^{P} = 2^{+}$ True for $J^{P} = 0^{+}$ a $\pi \pi$ × $\Gamma(\gamma \gamma)/\Gamma_{0}$ UE (eV)	total $\frac{CL\%}{95}$ se following $\frac{95}{95}$ and $J^P=2^n$	See	een een ot seen ot seen ot seen ot seen of see	$\begin{array}{c} \underline{\text{COMMENT}} \\ \gamma \gamma \to & K_S^0 K_S^0 \\ \text{etc.} \bullet \bullet \bullet \\ \gamma \gamma \to & K^+ K^- \\ \gamma \gamma, & K \overline{K}_\pi \end{array}$ $\Gamma_1 \Gamma_5 / \Gamma$	WILLEY 84 EISENHAND 75 η(2225) OMITTED FF Seen in VALUE (MeV) • • • We do not 2230±25±15 2214±20±13 ~ 2220	PL 1388 209 PRL 52 585 NP B96 109 ROM SUMMA of $J/\psi \rightarrow \gamma \phi \phi$.	R.S. Willey E. Eisenhandler JG (J ARY TABLE Needs confirmati $\eta(2225)$ MAS DOCUMENT ID Ing data for averages BAI BAI BISELLO $\eta(2225)$ WIDT	PC) = (on. S	$\frac{COMMENT}{5, \text{ etc. } \bullet \bullet \bullet}$ $\frac{3}{3} \frac{J/\psi \rightarrow \gamma K^{+} K^{-} K}{\gamma K^{+} K^{-} K}$ $\frac{J/\psi \rightarrow \gamma K^{+} K^{-} K}{J/\psi \rightarrow}$	(+ K-
$\pi \pi$ $\pi^{+} \pi^{-}$ $K \overline{K}$ $P \overline{P}$ $\gamma \gamma$ $\eta \eta' (958)$ $\phi \phi$ 5.6 • We do not use the 86 86 800 Assuming $J^{P} = 2^{+}$ True for $J^{P} = 0^{+}$ at $\pi \pi$) $\times \Gamma(\gamma \gamma)/\Gamma_{tx}$ UE (eV)	total $\frac{CL\%}{95}$ are following $\frac{95}{95}$ and $\frac{CL\%}{95}$ otal $\frac{CL\%}{95}$	See	een een ot seen ot seen ot seen ot seen of see	COMMENT	MILLEY 84 EISENHAND 75 η(2225) OMITTED FF Seen in MALUE (MeV) • • • We do not 2230±25±15 2214±20±13 ~ 2220	PL 1388 209 PRL 52 585 NP B96 109 ROM SUMMA	R.S. Willey E. Eisenhandler IG (J ARY TABLE Needs confirmati n(2225) MAS DOCUMENT ID BAI BISELLO n(2225) WIDT DOCUMENT ID PC) = (on. 5 TECN TECN TECN TECN TECN TECN TECN	$\begin{array}{c} COMMENT \\ 6, \text{ etc. } \bullet \bullet \bullet \\ 3 & J/\psi \rightarrow \\ \gamma & K^+ K^- K \\ 3 & J/\psi \rightarrow \\ \gamma & K^+ K^- K \\ 4, J/\psi \rightarrow \\ \gamma & K^+ K^- K \\ 6, COMMENT \end{array}$	(+ K-	
$\pi \pi$ $\pi^{+} \pi^{-}$ $K \overline{K}$ $P \overline{P}$ $\gamma \gamma$ $\eta \eta' (958)$ $\phi \phi$ K \overline{K}) × $\Gamma (\gamma \gamma) / \Gamma_{0}$ 5.6 • We do not use th 86 000 Assuming $J^{P} = 2^{+}$ True for $J^{P} = 0^{+}$ a $\pi \pi$) × $\Gamma (\gamma \gamma) / \Gamma_{0}$ $UE (eV)$ 8	total $\frac{CL\%}{95}$ as following $\frac{95}{95}$ and $\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{CL\%}{95}$	See	een een ot seen ot seen ot seen ot seen of see	COMMENT	WILLEY 84 EISENHAND 75 η(2225) OMITTED FF Seen in VALUE (MeV) • • • We do not 2230±25±15 2214±20±13 ~ 2220	PL 1388 209 PRL 52 585 NP B96 109 ROM SUMMA	R.S. Willey E. Eisenhandler IG (J ARY TABLE Needs confirmati n(2225) MAS DOCUMENT ID BAI BISELLO n(2225) WIDT DOCUMENT ID PC) = (on. S TECN , fits, limits 90B MRK3 86B DM2	$\begin{array}{c} comment \\	C K K C K K C K K K K K K K K K K K K K	
$\pi \pi \\ \pi^{+} \pi^{-} \\ K \overline{K} \\ \rho \overline{\rho} \\ \gamma \gamma \\ \eta \eta' (958) \\ \phi \phi$ $K \overline{K} \times \Gamma (\gamma \gamma) / \Gamma_{UE(eV)}$ 5.6 • We do not use th	total $\frac{CL\%}{95}$ as following $\frac{95}{95}$ and $\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{CL\%}{95}$	See	een een ot seen ot seen ot seen ot seen ot seen of see	$\begin{array}{c} \underline{\text{COMMENT}} \\ \gamma \gamma \to K_S^0 K_S^0 \\ \text{etc.} \bullet \bullet \bullet \\ \gamma \gamma \to K^+ K^- \\ \gamma \gamma, K K_\pi \end{array}$ $\Gamma_1 \Gamma_5 / \Gamma$	WILLEY 84 EISENHAND 75 η(2225) OMITTED FF Seen in VALUE (MeV) • • • We do not 2230±25±15 2214±20±13 ~ 2220	PL 1388 209 PRL 52 585 NP B96 109 ROM SUMMA of $J/\psi \rightarrow \gamma \phi \phi$.	R.S. Willey E. Eisenhandler IG (J ARY TABLE Needs confirmati n(2225) MAS DOCUMENT ID BAI BISELLO n(2225) WIDT DOCUMENT ID PC) = (on. S TECN , fits, limits, 90B MRK3 86B DM2 H TECN TECN TECN MRK3	$\begin{array}{c} \frac{COMMENT}{5, \text{ etc. } \bullet \bullet \bullet} \\ 3 \ J/\psi \rightarrow \\ \gamma K^+ K^- K \\ 3 \ J/\psi \rightarrow \\ \gamma K^+ K^- K \\ \end{array}$ $\begin{array}{c} \frac{COMMENT}{5} \\ \gamma K^+ K^- K \\ \gamma K^+ K^- K \\ \end{array}$	C K L C C C C C C C C C C C C C C C C C	

η(2225) REFERENCES

90B PRL 65 1309 86B PL B179 294 Z. Bai et al. D. Bisello et al. BAI BISELLO

(Mark III Collab.) (DM2 Collab.)

 $\rho_3(2250)$, $f_2(2300)$

 $\rho_3(2250)$

 $I^{G}(J^{PC}) = 1^{+}(3^{-})$

OMITTED FROM SUMMARY TABLE

....

Contains results mostly from formation experiments. For further production experiments see the $\overline{N}N(1100-3600)$ entry. See also $\rho(2150), f_2(2150), f_4(2300), \rho_5(2350).$

$\rho_{3}(2250)$ MASS

DOCUMENT IL	_	TECN	CHG_	COMMENT
ollowing data for averag	ges, fits	i, limits,	etc.	• •
HASAN	94	RVUE		$\bar{p}p \rightarrow \pi\pi$
HASAN	94	RVUE		$\overline{p}p \rightarrow \pi\pi$
¹ OAKDEN	94	RVUE		0.36~1.55 ₱p →
² MARTIN ² MARTIN ³ CARTER	80c	RVUE	0	$\pi \pi$ $0.7-2.4 \overline{p}p \rightarrow$
	ollowing data for average HASAN HASAN OAKDEN MARTIN MARTIN MARTIN	HASAN 94 HASAN 94 ¹ OAKDEN 94 ² MARTIN 80B ² MARTIN 80C	ollowing data for averages, fits, limits, HASAN 94 RVUE HASAN 94 RVUE 1 OAKDEN 94 RVUE 2 MARTIN 80B RVUE 2 MARTIN 80C RVUE	ollowing data for averages, fits, limits, etc. • HASAN 94 RVUE HASAN 94 RVUE OAKDEN 94 RVUE MARTIN 80B RVUE MARTIN 80C RVUE

 1 See however KLOET 96 who fit $\pi^{+}\pi^{-}$ only and find waves only up to J=3 to be important but not significantly resonant.

This potential of the significantly resonant. $I(JP)=1(3^-)$ from Simultaneous analysis of $\rho\bar{\rho}\to\pi^-\pi^+$ and $\pi^0\pi^0$. I(JP)=1 from Barrelet-zero analysis.

 $4I(J^P) = 1(3^-)$ from amplitude analysis.

S-CHANNEL NN

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
• • • We do not use the	following data for average	s, fits	s, limits,	etc. •	• •	
~ 2190	⁵ CUTTS	78B	CNTR		0.97-3 pp →	
2155 ± 15	^{5,6} COUPLAND			0	0.7-2.4 p̄p →	$\overline{p}p$
2193± 2	5,7 ALSPECTOR				$\overline{p}p$ S channel	
2190 ± 10	⁸ ABRAMS	70	CNTR		S channel $\bar{p}N$	
-						

5 Isospins 0 and 1 not separated.

From a fit to the total elastic cross section.
Referred to as T or T region by ALSPECTOR 73.

Seen as bump in / = 1 state. See also COOPER 68. PEASLEE 75 confirm p̄p results of ABRAMS 70, no narrow structure.

$\pi^- p \rightarrow \eta \pi \pi$					
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT		
• • • We do not use the following data for averages, fits, limits, etc. • •					
$2290 \pm 20 \pm 30$	AMELIN	00 VES	$37~\pi^- p \rightarrow ~\eta \pi^+ \pi^- n$		

ho_3 (2250) WIDTH

				_
កក	_	TT	٥r	KΚ

VALUE (MeV)	DOCUMENT ID	_	TECN	CHG	COMMENT
• • • We do not use t	the following data for averag	es, fits	, limits, e	etc. •	• •
~ 220	HASAN	94	RVUE		$\overline{p}p \rightarrow \pi\pi$
~ 287	HASAN	94	RVUE		$\overline{p}p \rightarrow \pi\pi$
~ 60	⁹ OAKDEN	94	RVUE		$0.361.55~\overline{p}p \rightarrow$
~ 250	10 MARTIN	80B	RVUE		ππ
~ 200	¹⁰ MARTIN	80c	RVUE		
~ 150	¹¹ CARTER	78B	CNTR	0	$0.7-2.4 \ \overline{p}p \rightarrow$
~ 200	12 CARTER	77	CNTR	0	K^-K^+ 0.7-2.4 $\overline{p}p \rightarrow$

9 See however KLOET 96 who fit π⁺π⁻ only and find waves only up to J = 3 to be important but not significantly resonant.
 10 J(J^P) = 1(3⁻) from simultaneous analysis of ρ̄ρ → π⁻π⁺ and π⁰π⁰.
 11 J = 0, 1. J^P = 3⁻ from Barrelet-zero analysis.

 $^{12}I(J^P)=1(3^-)$ from amplitude analysis.

S-CHANNEL NN

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
• • • We do not use	the following data for averages	, fit:	s, limits,	etc. •	• •	
135 ± 75	13,14 COUPLAND	77	CNTR	0	$0.7-2.4 \ \overline{p}p \rightarrow$	$\overline{p}p$
98 ± 8	14 ALSPECTOR	73	CNTR		$\overline{p}p$ S channel	
~ 85	¹⁵ ABRAMS	70	CNTR		S channel ₱N	

13 From a fit to the total elastic cross section.
14 Isospins 0 and 1 not separated.

- Isospins a and a fine separate.
15 Seen as bump in l = 1 state. See also COOPER 68. PEASLEE 75 confirm p̄ρ results of ABRAMS 70, no narrow structure.

VALUE (MeV)	OOCUMENT ID	TECN	COMMENT
• • • We do not use the following	data for averages, 1	fits, limits,	etc. • • •
$230 \pm 50 \pm 80$	AMELIN 0	0 VES	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$

ρ₃(2250) REFERENCES

AMELIN KLOET	00 96	NP 8668 83 PR D53 6120	D. Amelin et al. W.M. Kloet, F. Myhrer	(VES Collab.) (RUTG, NORD)
HASAN	94	PL B334 215	A. Hasan, D.V. Bugg	(LOQM)
OAKDEN	94	NPA 574 731	M.N. Oakden, M.R. Pennington	(DURH)
MARTIN	80B	NP B176 355	B.R. Martin, D. Morgan	(LOUC, RHEL) JP
MARTIN	80C	NP B169 216	A.D. Martin, M.R. Pennington	(DURH) JP
CARTER	78B	NP B141 467	A.A. Carter	(LOQM)
CUTTS	78B	PR D17 16	D. Cutts et al.	(STON, WISC)
CARTER	77	PL 67B 117	A.A. Carter et al.	(LOQM, RHEL) JP
COUPLAND	77	PL 71B 460	M. Coupland et al.	(LOQM, RHEL)
PEASLEE	75	PL 57B 189	D.C. Peasiee et al.	(CANB, BARI, BROW+)
ALSPECTOR	73	PRL 30 511	J. Alspector et al.	(RUTG, UPNJ)
ABRAMS	70	PR D1 1917	R.J. Abrams et al.	(BNL)
COOPER	68	PRL 20 1059	W.A. Cooper et al.	(ANL)

OTHER RELATED PAPERS -

MARTIN	79B	PL 86B 93	A.D. Martin, M.R. Pennington	(DURH)
CARTER	78	NP B132 176	A.A Carter	(LOQM) JP
CARTER	77B	PL 67B 122	A.A. Carter	(LOQM) JP
CARTER	77C	NP B127 202	A.A. Carter et al.	(LOOM, DARE, RHEL)
ZEMANY	76	NP B103 537	P.D. Zemany et al.	(MSU)
EISENHAND	75	NP B96 109	E. Eisenhandler et al.	(LOQM, LIVP, DARE+)
BERTANZA	74	NC 23A 209	L. Bertanza et al.	(PISA, PADO, TORI)
BETTINI	73	NC 15A 563	A. Bettini et al.	(PADO, LBL, PISA+)
DONNACHIE	73	LNC 7 285	A. Donnachie, P.R. Thomas	(MCHS)
NICHOLSON	73	PR D7 2572	H. Nicholson et al.	(CIT, ROCH, BNL)
FIELDS	71	PRL 27 1749	T. Fields et al.	(ANL, OXF)
YOH	71	PRL 26 922	J.K. Yoh et al.	(CIT, BNL, ROCH)
ABRAMS	67C	PRL 18 1209	R.J. Abrams et al.	(BNL)

 $f_2(2300)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

f2(2300) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2297±28	1 ETKIN	88	MP\$	$22 \pi^- p \rightarrow \phi \phi \pi$
• • We do not use ti	he following data for averages	, fit	s, limits,	etc. • • •
2231 ± 10	воотн	86	OMEG	85 π^- Be $\rightarrow 2\phi$ Be
2220 ^{+ 90} - 20	LINDENBAUM	84	RVUE	
2320 ± 40	ETKIN	82	MPS	$22 \pi^- p \rightarrow 2\phi n$

¹ Includes data of ETKIN 85. The percentage of the resonance going into $\phi \phi$ 2 + + S_2 , D_2 , and D_0 is 6^{+15}_{-5} , 25^{+18}_{-14} , and 69^{+16}_{-27} , respectively.

6 (2300) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
149±41	² ETKIN	88	MPS	$22 \pi^- p \rightarrow \phi \phi n$
• • We do not use the following	data for averages	, fit:	s, limits,	etc. • • •
133±50	воотн	86	OMEG	85 π [−] Be \rightarrow 2 ϕ Be
200 ± 50	LINDENBAUM	84	RVUE	
220 ± 70	ETKIN	82	MPS	$22 \pi^- p \rightarrow 2\phi n$
² Includes data of ETKIN 85.				

6(2300) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	$\phi \phi$	seen	

∱(2300) REFERENCES

ETKIN	88	PL B201 568	A. Etkin et al.	(BNL, CUNY)
BOOTH	86	NP B273 677	P.S.L. Booth et al.	(LIVP, GLAS, CERN)
ETKIN	85	PL 165B 217	A. Etkin <i>et al.</i>	(BNL, CUNY)
LINDENBAUM	84	CNPP 13 285	S.J. Lindenbaum	(CUNY)
ETKIN	82	PRL 49 1620	A. Etkin <i>et al.</i>	(BNL, CUNY)

OTHER RELATED PAPERS

AMELIN	00	NP B668 83	D. Amelin et al.	(VES Collab.)
BARBERIS	98	PL B432 436	D. Barberis et al.	(Òmega expt.)
LANDBERG	96	PR D53 2839	C. Landberg et al.	(BNL, CUNY, RPI)
ARMSTRONG	89B	PL B221 221	T.A. Armstrong et al.	(CERN, CDEF, BIRM+)
GREEN	86	PRL 56 1639	D.R. Green et al.	(FNAL, ARIZ, FSU+)
BOOTH	84	NP B242 51	P.S.L. Booth et al.	(LIVP, GLAS, CERN)
EISENHAND	75	NP B96 109	E. Eisenhandler et al.	(LOQM, LIVP, DARE+)

 $f_4(2300)$

$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

OMITTED FROM SUMMARY TABLE

This entry was previously called $U_0(2350)$. Contains results mostly from formation experiments. For further production experiments see the $\overline{N}N(1100-3600)$ entry. See also $\rho(2150)$, $f_2(2150)$, $\rho_3(2250)$,

f4(2300) MASS

ሽስ	_	ππ	or	ĸ	ĸ

VALUE (MeV)	DOCUMENT IE	<u> </u>	TECN	COMMENT
	ne following data for averag	ges, fits,	limits,	etc. • • •
~ 2314	HASAN	94 F	RVUE	$\overline{p}p \rightarrow \pi\pi$
~ 2300	¹ MARTIN	80B F	RVUE	
~ 2300	¹ MARTIN	80C F	RVUE	
~ 2340	² CARTER			$0.7-2.4 \ \overline{p}p \rightarrow K^-K^+$
~ 2330	DULUDE	78B (OSPK	$1-2 \overline{p}p \rightarrow \pi^0 \pi^0$
~ 2310	³ CARTER	77 (CNTR	$0.7-2.4 \ \overline{p}p \rightarrow \pi\pi$
$^{1}I(J^{P})=0(4^{+})$ from	m simultaneous analysis of	$D\overline{D} \rightarrow :$	π- _π +	and $\pi^0 \pi^0$.
	m Barrelet-zero analysis.			
$3I(J^{P}) = 0(4^{+})$ from	m amplitude analysis.			

S-CHANNEL Pp or NN

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following data for averages	s, fits	, limits,	etc. • • •
~ 2380				$0.97-3 \ \overline{p}p \rightarrow \overline{N}N$
2345±15	^{4,5} COUPLAND	77	CNTR	$0.7-2.4 \overline{p} \rho \rightarrow \overline{p} \rho$
2359± 2	^{4,6} ALSPECTOR	73	CNTR	pp S channel
2375 ± 10	ABRAMS	70	CNTR	S channel NN

4 Isospins 0 and 1 not separated.

$\pi^- \rho \rightarrow \eta \pi \pi$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	g data for averages	, fits, limits,	etc. • • •
$2330 \pm 20 \pm 40$	AMELIN	00 VE5	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$

f4(2300) WIDTH

$\overline{p}p \rightarrow \pi\pi \text{ or } \overline{K}K$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use t	he following data for average	s, fits	, limits,	etc. • • •	
~ 278	HASAN	94	RVUÉ	$\bar{p} p \rightarrow \pi \pi$	
~ 200	⁷ MARTIN	80C	RVUE		
~ 150	⁸ CARTER	78B	CNTR	$0.7-2.4 \ \overline{p}p \rightarrow$	$\kappa^-\kappa^+$
~ 210	⁹ CARTER	77	CNTR	$0.7-2.4 \ \bar{p}p \rightarrow$	ππ
	m simultaneous analysis of p	<u> </u>	$\pi^-\pi^+$	and $\pi^0\pi^0$.	
$8I(J^P) = 0(4^+)$ fro	m Barrelet-zero analysis.				
$9I(J^P) = 0(4^+)$ fro	m amplitude analysis.				

S-CHANNEL PP or NN

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use to	he following data for average:	s, fit	s, limits,	etc. • • •
$135 + 150 \\ - 65$	10,11 COUPLAND	77	CNTR	$0.72.4~\overline{p}p \rightarrow ~\overline{p}p$
165 ⁺ 18	11 ALSPECTOR	73	CNTR	pp S channel
~ 190	ABRAMS	70	CNTR	S channel $\overline{N}N$

 $^{10}\,\mbox{From a fit to the total elastic cross section.}$ Isospins 0 and 1 not separated.

$\pi^- p \rightarrow \eta \pi \pi$			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	g data for averages	, fits, limits,	etc. • • •
235 + 50 + 40	AMELIN	00 VES	$37.\pi^- D \rightarrow D\pi^+\pi^- D$

f₄(2300) REFERENCES

			••	•	
AMELIN	00	NP B668 83		D. Amelin et al.	(VES Collab.)
HASAN	94	PL B334 215		A. Hasan, D.V. Bugg	(LOQM)
MARTIN	80B	NP B176 355		B.R. Martin, D. Morgan	(LOUC, RHEL) JI
MARTIN	80C	NP B169 216		A.D. Martin, M.R. Pennington	(DURH) JI
CARTER	78B	NP B141 467		A.A. Carter	(LOQM)
CUTTS	78B	PR D17 16		D. Cutts et al.	(STON, WISC)
DULUDE	78B	PL 79B 335		R.S. Dulude et al.	(BROW, MIT, BARI) JI
CARTER	77	PL 67B 117		A.A. Carter et al.	(LOOM, RHEL) JI
COUPLAND	77	PL 71B 460		M. Coupland et al.	(LOQM, RHEL)
ALSPECTOR	73	PRL 30 511		J. Alspector et al.	(RUTG, UPNJ)
ABRAM5	70	PR D1 1917		R.J. Abrams et al.	(BNL)

OTHER RELATED PAPERS -

ANISOVICH	99D	PL B452 180	A.V. Anisovich et al.	
Also	99F	NP A651 253	A.V. Anisovich et al.	
ANISOVICH	99F	NP A651 253	A.V. Anisovich et al.	
EI\$ENHAND,,,	75	NP B96 109	E. Eisenhandler et al.	(LOQM, LIVP, DARE+)
FIELDS	71	PRL 27 1749	T. Fields et al.	(ANL, OXF)
YOH	71	PRL 26 922	J.K. Yoh et al.	(CIT, BNL, ROCH)
BRICMAN	69	PL 29B 451	C. Bricman et al.	(CERN, CAEN, SACL)

 $f_2(2340)$

$$I^{G}(J^{PC}) = 0^{+}(2^{++})$$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

£(2340) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2339±55	1 ETKIN	88	MPS	$22 \pi^- p \rightarrow \phi \phi n$
• • • We do not use t	he following data for average	s, fit	s, limits,	etc. • • •
2392±10	воотн	86	OMEG	85 π Be → 2φBe
2360 ± 20	LINDENBAUN	1 84	RVUE	·
_				

 1 Includes data of ETKIN 85. The percentage of the resonance going into $\phi\phi$ 2 $^+$ + S_2 , D_2 , and D_0 is 37 \pm 19, 4^{+12}_{-4} , and 59 $^{+21}_{-19}$, respectively.

f₂(2340) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
319 ⁺ 69	² ETKIN	88	MPS	$22 \pi^- p \rightarrow \phi \phi n$
• • • We do not use the following	g data for average	es, fit	s, limits,	etc. • • •
198± 50	воотн	86	OMEG	$85 \pi^- \text{Be} \rightarrow 2\phi \text{Be}$
150^{+150}_{-50}	LINDENBAUN	VI 84	RVUE	

² Includes data of ETKIN 85.

f2(2340) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	
Γ ₁	φφ	seen	

∱(2340) REFERENCES

ETKIN	88	PL B201 568	A. Etkin et al.	(BNL, CUNY)
BOOTH	B6	NP B273 677	P.S.L. Booth et al.	(LIVP, GLAS, CERN)
ETKIN	85	PL 165B 217	A. Etkin et al.	(BNL, CUNY)
LINDENBAUM	84	CNPP 13 285	S.J. Lindenbaum	(CUNY)
			D DELATED DADEDS	

OTHER RELATED PAPERS -

GREEN BOOTH	99F 99F 96 89B 86	PL B452 180 NP A651 253 NP A651 253 PR D53 2839 PL B221 221 PRL 56 1639 NP B242 51	A.V. Anisovich et al. A.V. Anisovich et al. A.V. Anisovich et al. C. Landberg et al. T.A. Armstrong et al. D.R. Green et al. P.S.L. Booth et al.	(BNL, CUNY, RPI) (CERN, CDEF, BIRM+) (FNAL, ARIZ, FSU+) (LIVP, GLAS, CERN)
EISENHAND		NP B96 109	E. Eisenhandler et al.	(LOQM, LIVP, DARE+)

$$I^{G}(J^{PC}) = 1^{+}(5^{-})$$

OMITTED FROM SUMMARY TABLE

This entry was previously called $U_1(2400)$. See also the $\overline{N}N(1100-3600)$ and X(1900-3600) entries. See also $\rho(2150)$, $f_2(2150), \rho_3(2250), f_4(2300).$

ρ₅(2350) MASS

$\pi p \rightarrow \omega \pi^{\circ} n$					
VALUE (MeV)	DOCUMENT ID		TECN	COM	AENT
2330±35	ALDE	95	GAM2	38 π	$-\rho \rightarrow \omega \pi^0 n$
$\overline{\rho} \rho \to \pi \pi \text{ or } \overline{K} K$					
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use the fo	llowing data for average	s, fits	s, limits,	etc.	• •
~ 2303	HASAN	94	RVUE		$\overline{p}p \rightarrow \pi\pi$
~ 2300	¹ MARTIN	80в	RVUE		
~ 2250	¹ MARTIN	80c	RVUE		
~ 2500	² CARTER	78B	CNTR	0	$0.7-2.4 \overline{p}p \rightarrow$
					$\kappa^-\kappa^+$
~ 2480	3 CARTER	77	CNTR	Đ	$0.7-2.4 \ \overline{p}p \rightarrow$

From a fit to the total elastic cross section.
Referred to as U or U region by ALSPECTOR 73.

 $\rho_5(2350)$, $a_6(2450)$, $f_6(2510)$

S-CHANNEL NN VALUE (MeV)	DOCUMENT ID T	ECN CHG_COMMENT	$a_6(2450)$	$I^{G}(J^{PC}) = 1^{-}(6^{+})$
	llowing data for averages, fits, I		26(2430)	, - (- ,
~ 2380	⁴ CUTT\$ 788 C	NTR 0.97−3 $\bar{p}p$ →	OMITTED FROM SUMI	MARY TABLE
2345±15	4,5 COUPLAND 77 C	N/N NTR 0 0.7−2.4 pp → pp	Needs confirmation.	
2359± 2	4,6 ALSPECTOR 73 C	NTR $\overline{\rho}\rho$ S channel		a ₆ (2450) MASS
2350±10 2360±25	⁷ ABRAMS 70 C ⁸ OH 70B H			ablated) initias
	nultaneous analysis of $p\overline{p} \to \pi$		VALUE (MeV)	DOCUMENT ID TECN CHG COMMENT
$2I = 0(1); J^P = 5^- \text{ from } SI$	in Barrelet-zero analysis.	π' dilu π = π = .	2450±130	¹ CLELAND 82B SPEC \pm 50 $\pi p \rightarrow K_S^0 K^{\pm}$
$^{3}I(J^{P})=1(5^{-})$ from an	iplitude analysis.		¹ From an amplitude analysi	is.
⁴ Isospins 0 and 1 not sep. ⁵ From a fit to the total e				a ₆ (2450) WIDTH
Referred to as U or U re	gion by ALSPECTOR 73.			- '
7 For $I = 1 \overline{N} N$. 8 No evidence for this but	np seen in the $\overline{D}p$ data of CH	APMAN 71B. Narrow state not	VALUE (MeV) 400 ± 250	DOCUMENT ID TECN CHG COMMENT 2 CLELAND 82B SPEC \pm 50 $\pi p \rightarrow K_c^0 K^{\pm}$
confirmed by OH 73 wit				. 3
	ρ ₅ (2350) WIDTH		² From an amplitude analysi	s.
$\pi^- p \rightarrow \omega \pi^0 n$	P3(2000)			a ₆ (2450) DECAY MODES
π p → ωπ n VALUE (MeV)	DOCUMENT ID T	ECN COMMENT	Mode	
400±100	ALDE 95 G	$6AM2$ $38 \pi^- \rho \rightarrow \omega \pi^0 \pi$	Γ ₁	
DD → ππ or KK				
VALUE (MeV)	DOCUMENT ID T	ECN CHG COMMENT		a ₆ (2450) REFERENCES
• • We do not use the fo	llowing data for averages, fits, I		CLELAND B2B NP B208 228	W.E. Cleland et al. (DURH, GEVA, LAUS+)
∼ 169 ∼ 250	HASAN 94 R ⁹ MARTIN 808 R	• •		(,
~ 300	9 MARTIN 80C R		6(0510)	$I^{G}(J^{PC}) = 0^{+}(6^{+})$
~ 150	¹⁰ CARTER 78B C	NTR 0 0.7–2.4 $\overline{p}p \rightarrow$	$t_6(2510)$	$I^{\sigma}(J^{r,\sigma}) = 0 \cdot (6 \cdot 1 \cdot 1)$
~ 210	¹¹ CARTER 77 C	κ [−] κ ⁺ :NTR 0 0.7-2.4 p̄ρ →	OMITTED FROM SUM	MADY TARIE
_		ππ	Needs confirmation	
S-CHANNEL N N VALUE (MeV)	DOCUMENT ID T	ECN CHG COMMENT		4 (2-42) 242 64
	llowing data for averages, fits, I			f ₆ (2510) MASS
125 + 150	12,13 COUPLAND 77 C		VALUE (MeV)	DOCUMENT ID TECN COMMENT
		.,		Fror includes scale factor of 2.1. ALDE 98 GAM4 100 $\pi^- p \rightarrow \pi^0 \pi^0 n$
165 ⁺ 18 8	13 ALSPECTOR 73 C		2420±30 2510±30	ALDE 98 GAM4 $100 \pi^{-} p \rightarrow \pi^{0} \pi^{0} n$ BINON 84B GAM2 $38 \pi^{-} p \rightarrow n2\pi^{0}$
< 60 ∼ 140	¹⁴ OH 708 H ABRAMS 67c C	IDBC −0 p̄(pn), K*K2π :NTR Schannel p̄N		
	nultaneous analysis of $p\overline{p} \rightarrow \pi$	•		f ₆ (2510) WIDTH
$101 = 0(1); J^P = 5^-$ from	n Barrelet-zero analysis.		VALUE (MeV)	DOCUMENT ID TECN COMMENT
$\frac{11}{12}I(J^P) = 1(5^-)$ from an $\frac{12}{12}$ From a fit to the total e	nplitude analysis.		255±40 OUR AVERAGE	
¹³ Isospins 0 and 1 not sep	arated.		270 ± 60	ALDE 98 GAM4 $100 \pi^- p \rightarrow \pi^0 \pi^0 \pi^0$ BINON 848 GAM2 $38 \pi^- p \rightarrow \pi^0 \pi^0$
No evidence for this but confirmed by OH 73 wit		IAPMAN 71B. Narrow state not	240±60	BINON 84B GAM2 38 π ⁻ ρ → π2π ⁰
committee by any 75 mile				f ₆ (2510) DECAY MODES
	ρ_5 (2350) REFERENCES	j .	Mode	Fraction (Γ_i/Γ)
ALDE 95 ZPHY C66 HASAN 94 PL B334 21	.5 A. Hasan, D.V. Bugg	(GAMS Collab.) JP (LOQM)	$\Gamma_1 = \pi \pi$	(6.0±1.0) %
MARTIN 80B NP B176 35 MARTIN 80C NP B169 25				,
CARTER 78B NP B141 40 CUTTS 78B PR D17 16	D. Cutts et al.	(LOQM) (\$TON, WISC)	f ₆ (2510) BRANCHING RATIOS
CARTER 77 PL 67B 117 COUPLAND 77 PL 71B 460	M. Coupland et al.	(LOQM, RHEL) JP (LOQM, RHEL)	$\Gamma(\pi\pi)/\Gamma_{\text{total}}$	Г1
ALSPECTOR 73 PRL 30 511 OH 73 NP B51 57	B.Y. Oh et al.	(RUTG, UPNJ) (MSU)	VALUE	DOCUMENT ID TECN COMMENT
CHAPMAN 71B PR D4 1279 ABRAMS 70 PR D1 191		(MICH) (BNL)	0.06 ±0.01	¹ BINON 83c GAM2 38 $\pi^- p \rightarrow \pi 4 \gamma$
OH 70B PRL 24 125 ABRAMS 67C PRL 18 120	67 B.Y. Oh et al.	(MSU) (BNL)	Assuming one pion exchan	nge and using data of BOLOTOV 74.
	OTHER RELATED PAPE	RS ——		f ₆ (2510) REFERENCES
EISENHAND 75 NP B96 10		(LOQM, LIVP, DARE+)	ALDE 98 EPJ A3 361	D. Alde et al. (GAM4 Collab.)
CASO 70 LNC 3 707	C. Caso et al.	(GENO, HAMB, MILA, SACL) (CERN, CAEN, SACL)	Also 99 PAN 62 405 BINON 84B LNC 39 41	D. Alde et al. (GAMS Collab.) F.G. Binon et al. (SERP, BELG, LAPP).
BRICMAN 69 PL 29P 451	G. Strenium et un	(State)	BINON 83C SJNP 38 723 Translated from	F.G. Binon et al. (SERP, BRUX+) m YAF 38 1199.
BRICMAN 69 PL 29B 451				
BRICMAN 69 PL 29B 45			BOLOTOV 74 PL 52B 489	V.N. Bolotov et al. (SERP)
BRICMAN 69 PL 29B 45				V.N. Bolotov et al. (SERP) OTHER RELATED PAPERS ———
BRICMAN 69 PL 29B 45			PROKOSHKIN 99 PAN 62 356	V.N. Bolotov et al. (SERP)

(BIS-2 Collab.)

Meson Particle Listings X(3250)

X(3250)

 $I^{G}(J^{PC}) = ??(???)$

OMITTED FROM SUMMARY TABLE

Narrow peak observed in several final states with hidden strangeness $(\Lambda \bar{\rho} K^+, \Lambda \bar{\rho} K^+ \pi^\pm, K^0 \rho \bar{\rho} K^\pm)$. Needs confirmation.

X(3250) MASS

3-BODY	DECAYS
VALUE (MeV	ነ

VALUE (MeV)	DOCUMENT	ID	TECN	COMMENT
• • • We do not use the following	lowing data for avera	ges, fit	s, limits	etc. • • •
3250 ± 8 ± 20	ALEEV	93	BIS2	$X(3250) \rightarrow \Lambda \bar{p} K^{+}$
$3265 \pm 7 \pm 20$	ALEEV	93	BIS2	$X(3250) \rightarrow \overline{\Lambda} \rho K^-$
4-BODY DECAYS VALUE (MeV)	DOCUMENT I	ID	TECN	COMMENT
• • We do not use the fol	lowing data for avera	ges, fit	s, limits	etc. • • •
3245 ± 8 ± 20	ALEEV	93	B152	$X(3250) \rightarrow \Lambda \bar{p} K^{+} \pi^{\pm}$
$3250 \pm 9 \pm 20$	ALEEV	93	BIS2	$X(3250) \rightarrow \overline{\Lambda} p K^- \pi^{\mp}$
3270 ± 8 ± 20	ALEEV	93	B152	$X(3250) \rightarrow K_{CPP}^{0}K^{\pm}$

X(3250) WIDTH

		X(3250) REFER	RENC	ES	
Γ3	K ⁰ p p K ±				
Γ_2	$\Lambda \overline{p} K^+ \pi^{\pm}$				
Γ_1	Λ <u></u> κ ⁺				
	Mode				
		X(3250) DECAY	MOI	DES	
25±	11	ALEEV	93	BIS2	$X(3250) \rightarrow K_{SPP}^{0}K$
50±2	20	ALEEV		BIS2	
25 ± 3	11	ALEEV	93	BIS2	$X(3250) \rightarrow \Lambda \bar{p} K^{+} \pi$
• • •	 We do not use the fo 	llowing data for averag	es, fit	s, limits	, etc. • • •
	DDY DECAYS E (MeV)	DOCUMENT ID	,	TECN	COMMENT
40±	18	ALEEV	93	BIS2	$X(3250) \rightarrow \overline{\Lambda}pK^-$
45±1	18	ALEEV			$X(3250) \rightarrow \Lambda \bar{p} K^{+}$
• • •	 We do not use the following 	llowing data for averag	es, fit	s, limits	, etc. • • •
	E (MeV)	DOCUMENT ID		TEÇN	COMMENT

93 PAN 56 1358 A.N. Aleev *et al.* Translated from YAF 56 100.

ALEEV

 $e^+e^-(1100-2200)$, $\overline{N}N(1100-3600)$

OTHER LIGHT UNFLAVORED MESONS (S = C = B = 0)

 $e^+e^-(1100-2200)$

 $I^{G}(J^{PC}) = ?^{?}(1^{-})$

OMITTED FROM SUMMARY TABLE

This entry contains unflavored vector mesons coupled to e^+e^- (photon) between the ϕ and $J/\psi(1S)$ mass regions. See also $\omega(1420)$, p(1450), $\omega(1650)$, $\phi(1680)$, and $\rho(1700)$.

e^+e^- (1100-2200) MASSES AND WIDTHS

We do not use the following data for averages, fits, limits, etc.

VALUE (MeV)	DOCUMENT ID			
1100 to 2200 OUR LIMIT				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1097.0 + 16.0	BARTALUCCI	79	OSPK	$7 \gamma \rho \rightarrow e^+ e^- \rho$
$31.0 + 24.0 \\ -20.0$	BARTALUCCI	79	OSPK	$7 \gamma p \rightarrow e^+ e^- p$
VALUE (MeV)	DOCUMENT ID		TECN	CHG COMMENT
1266.0 ± 5.0	BARTALUCCI	79	DASP	$0 \qquad 7 \ \gamma p \rightarrow e^+ e^- p$
110.0 ± 35.0	BARTALUCCI	79	DASP	$0 7 \gamma p \rightarrow e^+ e^- p$
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
~ 1830.0	PETERSON	78	SPEC	$\gamma p \rightarrow K^+ K^- p$
~ 120.0	PETERSON	78	SPEC	$\gamma p \rightarrow K^+ K^- p$
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
1870±10	ANTONELLI	96	SPEC	$e^+e^- ightarrow hadrons$
10± 5	ANTONELLI	96	SPEC	$e^+e^- ightarrow hadrons$
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
~ 2130	¹ ESPOSITO	78	FRAM	$e^+e^- \to K^*(892)^+$
~ 30	¹ ESPOSITO	78	FRAM	$e^+e^- \to K^*(892)^+$
¹ Not seen by DELCOURT 79.				

$e^{+}e^{-}(1100-2200)$ REFERENCES

ANTONELLI BARTALUCCI DELCOURT ESPOSITO PETERSON	79 79 78		A. Antonelli et al. S. Bartalucci et al. B. Delcourt et al. B. Esposito, F. Felicetti D. Peterson et al.	(FENICE Collab.) (DESY, FRAS) (LALO) (FRAS, NAPL, PADO+) (CORN, HARV)
		OTU	ED DEL ATEN DADEGE	

OTHER RELATED PAPERS -

C. Bacci <i>et al</i> .	(ROMA, FI
C. Bacci <i>et al</i> .	(ROMA, FI
	C. Bacci <i>et al.</i> C. Bacci <i>et al.</i>

$\overline{N}N(1100-3600)$

OMITTED FROM SUMMARY TABLE

This entry contains various high mass, unflavored structures coupled to the baryon-antibaryon system, as well as quasi-nuclear bound states below threshold.

NN(1100-3600) MASSES AND WIDTHS

We do not use the following data for averages, fits, limits etc.

VALUE (MeV)	DOCUMENT ID				
1100 to 3600 OUR LI	MIT				
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1107 ± 4	DAFTARI	87	DBC	0	0. <u>¬</u> n →
111 ± 8 ± 15	DAFTARI	87	DBC	0	$ \begin{array}{ccc} \rho^- \pi^+ \pi^- \\ 0. \ \overline{\rho} n \to \\ \rho^- \pi^+ \pi^- \end{array} $
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1167 ±7	⁹ CHIBA	91	CNTR		$\bar{p}d \rightarrow \gamma X$
1191.0 ± 9.9	9 CHIBA	87	CNTR	0	$0. \ \overline{p}p \rightarrow \gamma X$
1210 ±5.0	9,10,11,12 RICHTER	83	CNTR	0	Stopped \overline{p}
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1325 ±5	9 CHIBA	91	CNTR		p̄d → γX
1329.2 ± 7.6	⁹ CHIBA	87	CNTR	0	$0. \ \overline{p}p \rightarrow \ \gamma X$

VALUE (MeV)			DOCUMENT ID		TECN	CHG	COMMENT
1390.9±6.3		9	CHIBA	87	CNTR	0	$0. \overline{p}p \rightarrow \gamma X$
1395	9,11	,12,13	PAVLOPO	78	CNTR		Stopped \overline{p}
VALUE (MeV)			DOCUMENT ID		TECN	CHG	COMMENT
~ 1410			BETTINI	66	DBC	0	0. <u>p</u> N → 5π
~ 100			BETTINI	66	DBC	0	$0. \ \overline{\rho} N \rightarrow 5\pi$
VALUE (MeV)			DOCUMENT ID		TECN	CHG	COMMENT
1468± 6		14	BRIDGES		DBC	0	0. ₱N →
							$2\pi^{-}\pi^{+}\pi^{0}$
88±18		17	BRIDGES	86B	DBC	0	$0. \ \overline{p} N \rightarrow 2\pi - \pi + \pi 0$
							24 4 4
VALUE (MeV)			DOCUMENT ID		TEÇN	CHG	COMMENT
1512 ± 7		9	CHIBA	91	CNTR	<u>c</u>	$\overline{p}d \rightarrow \gamma X$
1523.8± 3.6		9	CHIBA	87	CNTR	0	0. p̄ρ → γX
1522 ± 7		14	BRIDGES	86в	DBC	0	0. p N →
59 ±12		14	BRIDGES	86в	DBC	0	$\begin{array}{c} 2\pi^-\pi^+ \\ 0. \ \overline{\rho} N \rightarrow \end{array}$
							$2\pi^{-}\pi^{+}$
VALUE (MeV)			DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
1577.8± 3.4			CHIBA	87	CNTR	0	$0. \ \overline{p}p \rightarrow \gamma X$
1594 ± 9		14	BRIDGES	86B	DBC	-	0. p N →
81 ±12		14	BRIDGES	86B	DBC	_	$0. \ \overline{p} {N} \rightarrow 0$
							$^{-2}\pi^{-}\pi^{+}\pi^{0}$
VALUE (MeV)			DOCUMENT ID		TECN	CHG	COMMENT
1633.6 ± 4.1		9	CHIBA	67	CNTR	0	$0. \ \overline{p} p \rightarrow \gamma X$
$1637.1 + 5.6 \\ -7.3$			ADIELS	84	CNTR		p He
VALUE (MeV)			DOCUMENT ID		TECN	сна	COMMENT
1638 ± 3.0	9,10	,11,12	RICHTER	83		0	Stopped p
VALUE (MeV)			DOCUMENT ID		TECN	COMN	IENT
$1644.0 + 5.6 \\ -7.3$			ADIELS	84	CNTR	īРНе	
VALUE (MeV)			DOCUMENT ID		TECN	сомы	4FNT
1646	9,11	,12,13	PAVLOPO	78			
							•
VALUE (MeV)							
•			DOCUMENT ID		TECN	COMM	1ENT
1687.1 + 5.0 - 4.3			ADIELS	84		<u>сом</u> м <u>Б</u> Не	MENT
•	9,11	,12,13		84 78			
1687.1 + 5.0 1684	9,11	,12,13	ADIELS PAVLOPO		CNTR CNTR	₱He Stopp	ped \overline{p}
1687.1 + 5.0 1684 VALUE (MeV)		9	ADIELS PAVLOPO DOCUMENT ID CHIRA		CNTR	₱He Stopp	oed $ar{p}$
1687.1 + 5.0 1684		9	ADIELS PAVLOPO	78	CNTR CNTR TECN CNTR	₱He Stopp	ped \overline{p}
1687.1 + 5.0 1684 <u>VALUE (MeV)</u> 1693 ± 2 1694 ± 2.0		9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER	78 91	CNTR CNTR TECN CNTR CNTR	pHe Stopp <u>CHG</u> 0	oed \bar{p} <u>COMMENT</u> $\bar{p}d \rightarrow \gamma X$ Stopped \bar{p}
1687.1 + 5.0 1684 VALUE (MeV) 1693±2		,11,12	ADIELS PAVLOPO DOCUMENT ID CHIRA	78 91	CNTR CNTR TECN CNTR CNTR	pHe Stopp <u>CHG</u>	$\overline{p}d \rightarrow \gamma X$ Stopped \overline{p}
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV)		,11,12	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA	78 91 83	CNTR CNTR TECN CNTR CNTR CNTR TECN CNTR	pHe Stopp CHG 0 CHG 0	bed \bar{p} $\frac{COMMENT}{\bar{p}d \rightarrow \gamma X}$ $Stopped \bar{p}$ $\frac{COMMENT}{0. \ \bar{p}p \rightarrow \gamma X}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV)		9,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID	78 91 83 87	CNTR CNTR TECN CNTR CNTR TECN CNTR	pHe Stopp CHG 0 CHG CHG CHG	oed \bar{p} $\frac{COMMENT}{\bar{p}d \to \gamma X}$ Stopped \bar{p} $\frac{COMMENT}{0, \bar{p}p \to \gamma X}$ $\frac{COMMENT}{0, \bar{p}m \to \gamma X}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6		9,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA	78 91 83	CNTR CNTR TECN CNTR CNTR TECN CNTR	pHe Stopp CHG 0 CHG 0	bed \bar{p} $\frac{COMMENT}{\bar{p}d \rightarrow \gamma X}$ $Stopped \bar{p}$ $\frac{COMMENT}{0. \ \bar{p}p \rightarrow \gamma X}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV)	9,10	9 ,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA	78 91 83 87	CNTR CNTR TECN CNTR CNTR CNTR TECN CNTR	pHe Stopp CHG 0 CHG 0 CHG 0	oed \bar{p} $\frac{COMMENT}{\bar{p}d \to \gamma X}$ Stopped \bar{p} $\frac{COMMENT}{0, \bar{p}p \to \gamma X}$ $\frac{COMMENT}{0, \bar{p}m \to \gamma X}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5	9,10	9 ,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA	91 83 87	CNTR CNTR TECN CNTR CNTR CNTR TECN CNTR	pHe Stopp CHG 0 CHG 0 CHG CHG CHG	$\begin{array}{c} \text{Ded } \overline{p} \\ \hline COMMENT \\ \hline \overline{p}d \rightarrow \gamma X \\ \text{Stopped } \overline{p} \\ \hline COMMENT \\ 0. \ \overline{p}p \rightarrow \gamma X \\ \hline COMMENT \\ 0. \ \overline{p}p \rightarrow \gamma X \\ \hline \end{array}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771±1.0	9,10	9 ,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID RICHTER	91 83 87 87	CNTR CNTR TECN CNTR CNTR TECN CNTR TECN CNTR TECN CNTR	pHe Stopp CHG 0 CHG 0 CHG 0 CHG 0	$\begin{array}{c} \text{Dod } \overline{p} \\ \hline COMMENT \\ \overline{p}d \rightarrow \gamma X \\ \text{Stopped } \overline{p} \\ \hline COMMENT \\ 0, \ \overline{p}p \rightarrow \gamma X \\ \hline COMMENT \\ 0, \ \overline{p}p \rightarrow \gamma X \\ \hline COMMENT \\ \text{Stopped } \overline{p} \\ \hline \end{array}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV)	9,10	9 ,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID	78 91 83 87 87	CNTR CNTR TECN CNTR CNTR CNTR TECN CNTR TECN CNTR TECN CNTR	PHe Stopp CHG 0 CHG 0 CHG 0	$\begin{array}{c} \text{Ded } \overline{p} \\ \hline COMMENT \\ \overline{p}d \to \gamma X \\ \text{Stopped } \overline{p} \\ \hline COMMENT \\ 0, \ \overline{p}p \to \gamma X \\ \hline COMMENT \\ 0, \ \overline{p}p \to \gamma X \\ \hline COMMENT \\ \text{Stopped } \overline{p} \\ \hline MENT \\ \end{array}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771±1.0	9,10	9,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID RICHTER	91 83 87 87	CNTR CNTR TECN CNTR CNTR TECN CNTR TECN CNTR TECN CNTR	pHe Stopp CHG 0 CHG 0 CHG 0 CHG 0 COMM pd →	$\begin{array}{c} \text{Ded } \overline{p} \\ \hline COMMENT \\ \hline \overline{p}d \rightarrow \gamma X \\ \text{Stopped } \overline{p} \\ \hline COMMENT \\ 0. \ \overline{p}p \rightarrow \gamma X \\ \hline COMMENT \\ 0. \ \overline{p}p \rightarrow \gamma X \\ \hline COMMENT \\ \text{Stopped } \overline{p} \\ \hline MENT \\ \rightarrow nX \\ \end{array}$
1687.1 ± 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3	9,10	9,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID RICHTER DOCUMENT ID CHIBA CHIBA CHIBA CHIBA	91 83 87 87 83	CNTR CNTR TECN CNTR TECN CNTR TECN CNTR TECN CNTR TECN CNTR TECN CNTR	© CHG 0 COMM □ D d − D	$\begin{array}{c} \text{Ded } \overline{p} \\ \hline COMMENT \\ \overline{p}d \rightarrow \gamma X \\ \text{Stopped } \overline{p} \\ \hline COMMENT \\ 0, \ \overline{p}p \rightarrow \gamma X \\ \hline COMMENT \\ 0, \ \overline{p}p \rightarrow \gamma X \\ \hline COMMENT \\ \text{Stopped } \overline{p} \\ \hline MENT \\ \rightarrow nX \\ \rightarrow nX \\ \end{array}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV)	9,10	9,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA CHIBA DOCUMENT ID CHIBA CHIBA	91 83 87 87 83	CNTR CNTR TECN CNTR CNTR TECN CNTR TECN CNTR TECN CNTR TECN CNTR TECN CNTR TECN TECN TECN TECN TECN TECN TECN TECN	© CHG 0 CHG D D D D D D D D D D D D D D D D D D D	$\begin{array}{c} \text{Ded } \overline{p} \\ \hline COMMENT \\ \overline{p}d \to \gamma X \\ \text{Stopped } \overline{p} \\ \hline COMMENT \\ 0, \overline{p}p \to \gamma X \\ \hline COMMENT \\ 0, \overline{p}p \to \gamma X \\ \hline COMMENT \\ \text{Stopped } \overline{p} \\ \hline MENT \\ + nX \\ + nX \\ \hline COMMENT \\ \hline \end{array}$
1687.1 ± 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3	9,10	9,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID RICHTER DOCUMENT ID CHIBA CHIBA CHIBA CHIBA	91 83 87 87 83 897 97	CNTR CNTR TECN CNTR TECN CNTR TECN CNTR TECN CNTR TECN CNTR TECN CNTR	© CHG 0 COMM □ D d − D	$\begin{array}{c} \text{Ded } \overline{p} \\ \hline COMMENT \\ \overline{p}d \rightarrow \gamma X \\ \text{Stopped } \overline{p} \\ \hline COMMENT \\ 0, \ \overline{p}p \rightarrow \gamma X \\ \hline COMMENT \\ 0, \ \overline{p}p \rightarrow \gamma X \\ \hline COMMENT \\ \text{Stopped } \overline{p} \\ \hline MENT \\ \rightarrow nX \\ \rightarrow nX \\ \end{array}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5	9,10	9,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID BRIDGES BRIDGES	91 83 87 87 83 897 97	CNTR CNTR CNTR CNTR TECN SPEC SPEC	pHe Stopp CHG 0 CHG 0 CHG 0 CHG 0 COMM Pd − Pd − CHG 0	$\begin{array}{c} \text{Ded } \bar{p} \\ \hline COMMENT \\ \hline pd \rightarrow \gamma X \\ \text{Stopped } \bar{p} \\ \hline COMMENT \\ 0, \ \overline{p}p \rightarrow \gamma X \\ \hline COMMENT \\ 0, \ \overline{p}p \rightarrow \gamma X \\ \hline COMMENT \\ \hline Stopped \bar{p} \\ \hline MENT \\ \rightarrow nX \\ \rightarrow nX \\ \hline COMMENT \\ 0, \ \overline{p}d \rightarrow \pi\pi N \\ \hline 0, \ \overline{p}d \rightarrow \pi\pi N \\ \hline \end{array}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5 VALUE (MeV)	9,10	9,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID BRIDGES BRIDGES BRIDGES	91 83 87 87 83 97 97	CNTR CNTR CNTR CNTR CNTR CNTR TECN TECN TECN TECN TECN TECN TECN TECN	pHe Stopp CHG O CHG O CHG O CHG O COMM Pd − Pd − CHG O	Ded \bar{p} COMMENT $\bar{p}d \to \gamma X$ Stopped \bar{p} COMMENT $0, \bar{p}p \to \gamma X$ COMMENT $0, \bar{p}p \to \gamma X$ COMMENT Stopped \bar{p} MENT $+ nX$ $+ nX$ COMMENT $0, \bar{p}d \to \pi\pi N$ $0, \bar{p}d \to \pi\pi N$ $0, \bar{p}d \to \pi\pi N$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5 VALUE (MeV) 1870 ± 10	9,10	9,11,12 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID CHIBA CHIBA DOCUMENT ID CHIBA CHIBA DOCUMENT ID BRIDGES BRIDGES BRIDGES DOCUMENT ID ANTONELLI	91 83 87 87 83 97 97 860 860	CNTR CNTR CNTR CNTR CNTR TECN SPEC SPEC	pHe Stopp CHG 0 CHG 0 CHG 0 CHG 0 COMM Pd − Pd − CHG 0	Ded \bar{p} COMMENT $\bar{p}d \rightarrow \gamma X$ Stopped \bar{p} COMMENT $0, \bar{p}p \rightarrow \gamma X$ COMMENT $0, \bar{p}p \rightarrow \gamma X$ COMMENT Stopped \bar{p} MENT $+ nX$ $+ nX$ COMMENT $0, \bar{p}d \rightarrow \pi\pi N$ $0, \bar{p}d \rightarrow \pi\pi N$ $0, \bar{p}d \rightarrow \pi\pi N$ COMMENT $e^+e^- \rightarrow n\bar{n}, p\bar{p}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5 VALUE (MeV)	9,10	9 ,11,12 9 9	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID BRIDGES BRIDGES BRIDGES	91 83 87 87 83 97 97	CNTR CNTR CNTR CNTR CNTR CNTR TECN TECN TECN TECN TECN TECN TECN TECN	pHe Stopp CHG 0 CHG 0 CHG 0 CHG 0 COMM Pd − Pd − CHG 0	Ded \bar{p} COMMENT $\bar{p}d \rightarrow \gamma X$ Stopped \bar{p} COMMENT $0, \bar{p}p \rightarrow \gamma X$ COMMENT $0, \bar{p}p \rightarrow \gamma X$ COMMENT Stopped \bar{p} MENT $+ nX$ $+ nX$ COMMENT $0, \bar{p}d \rightarrow \pi\pi N$ $0, \bar{p}d \rightarrow \pi\pi N$ $0, \bar{p}d \rightarrow \pi\pi N$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5 VALUE (MeV) 1870 ± 10 10 ± 5 ~ 1870	9,10	9 9 9 9 1,12,15	ADIELS PAVLOPO DOCUMENT ID CHIBA DOCUMENT ID ANTONELLI ANTONELLI DALKAROV	91 83 87 87 88 89 97 98 98 98 97	CNTR CNTR TECN C	pHe Stopp CHG 0 CHG 0 CHG 0 CHG 0 COMM Pd − Pd − CHG 0	Ded \bar{p} $\frac{COMMENT}{\bar{p}d \rightarrow \gamma X}$ $\text{Stopped } \bar{p}$ $\frac{COMMENT}{0.\ \bar{p}p \rightarrow \gamma X}$ $\frac{COMMENT}{0.\ \bar{p}p \rightarrow \gamma X}$ $\frac{COMMENT}{0.\ \bar{p}d \rightarrow \pi N}$ $\frac{COMMENT}{0.\ \bar{p}d \rightarrow \pi \pi N}$
1687.1 ± 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5 VALUE (MeV) 1870 ± 10 10 ± 5	9,10	9 9 9 9 1,12,15	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID AUTONELLI ANTONELLI ANTONELLI	91 83 87 87 83 97 97 860 860	CNTR CNTR CNTR CNTR TECN C	pHe Stopp CHG 0 CHG 0 CHG 0 CHG 0 COMM Pd − Pd − CHG 0	Ded \bar{p} COMMENT $\bar{p}d \to \gamma X$ Stopped \bar{p} COMMENT $0, \bar{p}p \to \gamma X$ COMMENT $0, \bar{p}p \to \gamma X$ COMMENT Stopped \bar{p} MENT $+ nX$ $+ nX$ $0, \bar{p}d \to \pi\pi N$ $0, \bar{p}d \to \pi\pi N$ $0, \bar{p}d \to \pi\pi N$ COMMENT $e^+e^- \to n\bar{n}, p\bar{p}$ $e^+e^- \to n\bar{n}, p\bar{p}$ $e^+e^- \to n\bar{n}, p\bar{p}$ $p3\pi^-2\pi^+$ $0, \bar{p}d \to \pi^-$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5 VALUE (MeV) 1870 ± 10 10 ± 5 ~ 1870	9,10	9 9 9 9 1,12,15	ADIELS PAVLOPO DOCUMENT ID CHIBA DOCUMENT ID ANTONELLI ANTONELLI DALKAROV	78 91 83 87 87 83 97 97 98 98 98 97	CNTR CNTR TECN C	pHe Stopp CHG 0 CHG 0 CHG 0 CHG 0 COMM Pd − Pd − CHG 0	Ded \bar{p} $\frac{COMMENT}{\bar{p}d \rightarrow \gamma X}$ $\text{Stopped } \bar{p}$ $\frac{COMMENT}{0.\ \bar{p}p \rightarrow \gamma X}$ $\frac{COMMENT}{0.\ \bar{p}p \rightarrow \gamma X}$ $\frac{COMMENT}{0.\ \bar{p}d \rightarrow \pi N}$ $\frac{COMMENT}{0.\ \bar{p}d \rightarrow \pi \pi N}$
1687.1 + 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5 VALUE (MeV) 1870 ± 10 10 ± 5 ~ 1870 ~ 10	9,10	9 9 9 9 1,12,15	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID RICHTER DOCUMENT ID RICHTER DOCUMENT ID RICHTER DOCUMENT ID CHIBA CHIBA DOCUMENT ID CHIBA CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID AUTONELLI ANTONELLI DALKAROV DALKAROV	91 83 87 87 83 89 97 98 98 97 97 860	CNTR CNTR CNTR TECN CNTR T	рНе Stopp <u>CHG</u> 0 <u>CHG</u> —	$\begin{array}{c} \text{Ded } \overline{p} \\ \hline \\ $
1687.1 ± 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5 VALUE (MeV) 1870 ± 10 10 ± 5 ~ 1870 ~ 10 1873 ± 2.5 < 5	9,10	9 9 9 9 1,12,15	ADIELS PAVLOPO DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID RICHTER DOCUMENT ID ACHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID ANTONELLI ANTONELLI ANTONELLI ANTONELLI DALKAROV DALKAROV DALKAROV BRIDGES BRIDGES BRIDGES BRIDGES	91 83 87 87 83 97 97 98 98 97 97 860 860	CNTR CNTR CNTR CNTR TECN CNTR CNTR TECN CNTR TECN CNTR CNTR TECN CNTR CNTR CNTR TECN CNTR CNTR CNTR CNTR CNTR CNTR CNTR CN	□ He Stopp CHG 0	$\begin{array}{c} \text{Ded } \overline{p} \\ \hline \\ $
1687.1 ± 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5 VALUE (MeV) 1870 ± 10 10 ± 5 ~ 1870 ~ 10 1873 ± 2.5 < 5 VALUE (MeV)	9,10	9 ,11,12 9 ,12,15	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID RICHTER DOCUMENT ID RICHTER DOCUMENT ID ANTONELLI DALKAROV BRIDGES	91 83 87 88 88 97 98 98 98 97 97 860 860	CNTR CNTR CNTR TECN TECN TECN TECN TECN TECN TECN TECN	рНе Stopp <u>CHG</u> 0 0 0 <u>CHG</u> 0 0 0 <u>CHG</u> 0 0 0 0 0 <u>CHG</u> 0 0 0 0 <u>CHG</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \text{Ded } \bar{p} \\ \hline \\ $
1687.1 ± 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5 VALUE (MeV) 1870 ± 10 10 ± 5 ~ 1870 ~ 10 1873 ± 2.5 < 5	9,10	9 ,11,12 9 9 ,,12,15	ADIELS PAVLOPO DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID RICHTER DOCUMENT ID ACHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID ANTONELLI ANTONELLI ANTONELLI ANTONELLI DALKAROV DALKAROV DALKAROV BRIDGES BRIDGES BRIDGES BRIDGES	91 83 87 87 83 97 97 98 98 97 97 860 860	CNTR CNTR CNTR CNTR TECN CNTR CNTR TECN CNTR TECN CNTR CNTR TECN CNTR CNTR CNTR TECN CNTR CNTR CNTR CNTR CNTR CNTR CNTR CN	рНе Stopp	$\begin{array}{c} \text{Ded } \overline{p} \\ \hline \\ $
1687.1 ± 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771 ± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1870 ± 10 10 ± 5 ~ 1870 ~ 10 1873 ± 2.5 < 5 VALUE (MeV) 1897 ± 17	9,10	9 ,11,12 9 9 ,,12,15	ADIELS PAVLOPO DOCUMENT ID CHIBA RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID RICHTER DOCUMENT ID ANTONELLI ANTONELLI ANTONELLI DALKAROV BRIDGES	91 83 87 87 83 97 97 860 860 98 97 97 860 860	CNTR CNTR CNTR TECN CNTR CNTR TECN SPEC RVUE SPEC SPEC TECN STRC	рНе Stopp	Ded \bar{p} COMMENT $\bar{p}d \to \gamma X$ Stopped \bar{p} COMMENT $0, \bar{p}p \to \gamma X$ COMMENT $0, \bar{p}p \to \gamma X$ COMMENT Stopped \bar{p} MENT $0, \bar{p}d \to \pi\pi N$ $0, \bar{p}d \to \pi\pi N$ $0, \bar{p}d \to \pi\pi N$ COMMENT $0, \bar{p}d \to \pi\pi N$ MENT $p \to p3\pi$ nnihilation near
1687.1 ± 5.0 1684 VALUE (MeV) 1693 ± 2 1694 ± 2.0 VALUE (MeV) 1713.0 ± 2.6 VALUE (MeV) 1731.0 ± 1.5 VALUE (MeV) 1771± 1.0 VALUE (MeV) 1812.3 ± 1.2 3.7 ± 1.3 VALUE (MeV) 1856.6 ± 5 20 ± 5 VALUE (MeV) 1870 ± 10 10 ± 5 ~ 1870 ~ 10 1873 ± 2.5 < 5 VALUE (MeV) 1897 ± 17 110 ± 82	9,10	9 ,11,12 9 9 ,,12,15	ADIELS PAVLOPO DOCUMENT ID CHIBA DOCUMENT ID RICHTER DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID CHIBA DOCUMENT ID ANTONELLI ANTONELLI DALKAROV DALKAROV BRIDGES BRIDGES BRIDGES BRIDGES BRIDGES BRIDGES DOCUMENT ID ANTONELLI DALKAROV DALKAROV DALKAROV BRIDGES	91 83 87 87 88 97 97 98 98 98 97 860 860 76 76 76	CNTR CNTR CNTR CNTR TECN SPEC SPEC SPEC RVUE RVUE SPEC SPEC SPEC STRC STRC	π He Stopp CHG 0 CHG	$\begin{array}{c} \text{Ded } \overline{p} \\ \hline \\ $

Meson Particle Listings $\overline{N}N(1100-3600)$

.UE (MeV) .0±30	1,18 ANISOVICH	90.	SPEC	CHG	$0.6-1.94 \ p\overline{p} \rightarrow$		VALUE (MeV)	DOCUMENT ID 18,34 ANISOVICH		TECN	COMMENT 0
					$0.6-1.94 pp \rightarrow \pi\pi, \eta\eta, \eta\eta'$!	2020 ± 50 200 ± 70	18,34 ANISOVICH			$0.6-1.94 \ p\overline{p} \rightarrow \pi^0 \pi$ $0.6-1.94 \ p\overline{p} \rightarrow \pi^0 \pi$
60 ± 40	^{1,18} ANISOVICH	991	SPEC	0	$0.6-1.94 \ p\bar{p} \rightarrow$	1	200 1 10	ANISOVICI	,,,,	31 20	0.0 1.54 pp → x x
From a fit to the JG(J	$PC_{1} = 0 + (2 + +)$				$\pi\pi$, $\eta\eta$, $\eta\eta'$		VALUE (MeV)	DOCUMENT ID		TECN	
•	, , ,					•	2020 ± 30	^{1,18} ANISOVICH	99J	SPEC	
UE (MeV)	DOCUMENT ID		TECN	COMM			275 ± 35	1,18 ANISOVICH	99.	SPEC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
920	19 EVANGELIST	79	OMEG	10,16	$\pi^- p \rightarrow \overline{p} p$			F 10			$\pi\pi$, $\eta\eta$, $\eta\eta$
190	EVANGELISTA	1 79	OMEG	10,16	$\pi^- p \rightarrow \overline{p} p$		2020 ± 12	^{5,18} ANISOVICH	991	SPEC	• •
UE (MeV) E	VTS DOCUMENT ID		TECN	CHG	COMMENT		170±15	5,18 ANISOVICH	991	SPEC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
937.3 + 1.3	²⁰ FRANKLIN	87	SPEC		0.586 pp		110110	Altisovici	,,,	J. LC	$\pi\pi, \eta\eta, \eta\eta$
3.0	20 FRANKLIN	87	SPEC		0.586 pp		5 From a fit to the 1G(JP)	$C_{)} = 0^{+}(4^{+}).$			
930 ± 2	²¹ ASTON		OMEG		$\gamma p \rightarrow p \overline{p} X$		•	, ,			
12 ± 7	²¹ ASTON		OMEG		$\gamma p \rightarrow p \overline{p} X$		VALUE (MeV)			TECN	
140 ± 1 6.0	36 DAUM		CNTR	0	93 pp → p̄pX		2022± 6 14±13	³⁵ AZOOZ ³⁵ AZOOZ		HYBR HYBR	
49 ±10	DAUM ²² DEFOIX		CNTR HBC	0	93 pp → p̄pX p̄p → 5π		14±13	** AZOOZ	63	птык	+ 6 p̄p → p n̄ 31
80 ±20	22 DEFOIX		HBC	ō	$\bar{p}p \rightarrow 5\pi$		VALUE (MeV)	DOCUMENT ID		TECN	CHG COMMENT
39 ± 2	23 HAMILTON			0	S channel $\overline{p}p$		2023± 5	BODENKAMP	83	SPEC	$0 \qquad \gamma p \rightarrow \overline{p} p p$
22 ± 6	23 HAMILTON		CNTR		S channel $\overline{p}p$		27±12	BODENKAMP	83	SPEC	$0 \qquad \gamma p \rightarrow \overline{p} p p$
35.5± 1.0 2.8± 1.4	SAKAMOTO SAKAMOTO		HBC HBC	0	0.37-0.73 pp						
2.6± 1.4 39 ± 3	BRUCKNER		SPEC	0	0.37~0.73 pp 0.4~0.85 pp		VALUE (MeV)	35 AZOOZ		TECN	
4.0	BRUCKNER	77	SPEC		0.4-0.85 p p		2026± 5 20±11	35 AZOOZ 35 AZOOZ		HYBR HYBR	
35.9 ± 1.0	²⁴ CHALOUPKA			0	$\overline{p}p$ total, elastic			ALOUL	55	.,, טוג	. pp → pns
$8.8^{+}_{-} \begin{array}{c} 4.3 \\ 3.2 \end{array}$	²⁵ CHALOUPKA	76	нвс	0	$\overline{p}p$ total,elastic		VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
42 ± 5	²⁶ D'ANDLAU	75	нвс	0	0.175-0.750 pp		2040 ± 40	18,36 ANISOVICH			$0.6-1.94 \ p\overline{p} \rightarrow \pi^0 \pi$
57.5± 5	27 D'ANDLAU		HBC	Ō	0.175-0.750 pp		190 ± 40	^{18,36} ANISOVICH	99D	SPEC	$0.6-1.94 \ p\overline{p} \rightarrow \pi^0 \pi$
$34.4 + 2.6 \\ -1.4$	²⁸ KALOGERO	75	DBC	_	₽N annihilation		VALUE (MeV)	DOCUMENT :-		TECH	cue convent
1.11	²⁸ KALOGERO				•			DOCUMENT ID 18 ANISOVICH		TECN SPEC	CHG COMMENT
4				-	₽N annihilation		2060 ± 20 195 ± 30	18 ANISOVICH		SPEC	$ \overline{p}p \to \pi^0 \eta, \pi \\ \overline{p}p \to \pi^0 \eta, \pi $
32 ± 2	²⁴ CARROLL	74	CNTR		5 channel pp → d		2080±10	37 KREYMER		STRC	
9 + 4	²⁵ CARROLL	74	CNTR		S channel $\overline{p}p \rightarrow$						p∏n(n)
	29 BENVENUTI				d		110 ± 20	37 KREYMER	80	STRC	
68 35	29 BENVENUTI 29 BENVENUTI		HBC	0	0.1-0.8 p p						p∏n(n)
55	BENVENOTI	11	пвс	U	0.1−0.8 p p		VALUE (MeV)			TECN	
E (MeV)	DOCUMENT ID		TECN	CHG	COMMENT		2070±20	18,38 ANISOVICH			$0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0$
+15 -30	18 ANISOVICH	99c	SPEC		0.6-1.94 p p →	ı	170 ± 40	^{18,38} ANISOVICH	99E	SPEC	$0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0$
	10				$\pi^0\eta$, $\pi^0\eta'$		VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
±50	¹⁸ ANISOVICH	99C	SPEC		0.6-1.94 p p →	ı	2090±20	39 KREYMER	80		$13 \pi^- d \rightarrow np\bar{p}\pi^-$
±10	30 DEFOIX	RΩ	НВС	0	$ \begin{array}{ccc} \pi^0 \eta, \pi^0 \eta' \\ 0.0-1.2 \overline{\rho} p \rightarrow 5\pi \end{array} $		170±50	39 KREYMER			$13 \pi^- d \rightarrow np\overline{p}\pi^-$ $13 \pi^- d \rightarrow np\overline{p}\pi^-$
±20	30 DEFOIX		HBC	0	$0.0-1.2 \ \overline{p}p \rightarrow 5\pi$ $0.0-1.2 \ \overline{p}p \rightarrow 5\pi$						·· - ·· / /
							VALUE (MeV)	DOCUMENT ID			COMMENT
E (MeV)	DOCUMENT ID			<u>CHG</u>	COMMENT		~ 2110				$10,16 \pi^- \rho \rightarrow \overline{\rho} \rho$
±15	^{2,18} ANISOVICH	991	SPEC	D	0.6-1.94 p p →	1	~ 330	40 EVANGELISTA	A 79	OMEG	10,16 $\pi^- p \rightarrow \overline{p}p$
±25	^{2,18} ANISOVICH	99)	SPEC	0	$\pi \pi$, $\eta \eta$, $\eta \eta'$ $0.6-1.94 p \overline{p} \rightarrow$	1	VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
	3 10				$\pi\pi$, $\eta\eta$, $\eta\eta'$						
±30	^{3,18} ANISOVICH	991	SPEC	0	0.6-1.94 p p →	ı	$2100 + 10 \\ -30$	^{18,41} ANISOVICH	99E	5PEC	$0.6-1.94 \ \rho \overline{\rho} \rightarrow 3\pi^0$
±50	3,18 ANISOVICH	991	SPEC	0	$\pi \pi$, $\eta \eta$, $\eta \eta'$ 0.6-1.94 $p \overline{p} \rightarrow$	1	$360 + 40 \\ -100$	^{18,41} ANISOVICH	99E	SPEC	$0.6-1.94 \ \rho \overline{p} \rightarrow 3\pi^{0}$
	4.10				$\pi\pi$, $\eta\eta$, $\eta\eta'$:					
±40	^{4,18} ANISOVICH	991	SPEC	0	$0.6-1.94 \ p \overline{p} \rightarrow$	I	VALUE (MeV)	DOCUMENT ID		$\overline{}$	COMMENT
±75	4,18 ANISOVICH	99J	SPEC	0	$\begin{array}{c} \pi \pi, \eta \eta, \eta \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \end{array}$	1	2100±20	18,42 ANISOVICH			$0.6-1.94 \ p\overline{p} \rightarrow 3\pi^0$
					$\pi\pi$, $\eta\eta$, $\eta\eta'$	•	$300 + 30 \\ -60$	^{18,42} ANISOVICH	99E	SPEC	$0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0$
from a fit to the $I^G(J)$ from a fit to the $I^G(J)$	PC = 1 + (3).							DOCUMENT :		TECH	CUC COMMENT
From a fit to the $I^G(J)$ From a fit to the $I^G(J)$	$(C) = 0^+(0^{++}).$						VALUE (MeV)	3,18 ANISOVICH	90.	SPEC	CHG COMMENT
Tom a lit to the 19(3	··· -) = 1 · (1).					ı	2105 ± 15	- / ANISOVICH	291	JEEC.	0 0.6-1.94 $p\bar{p}$ - $\pi\pi$, $\eta\eta$, $\eta\eta$
E (MeV)	DOCUMENT ID		TECN	COM	1ENT		200 ± 25	3,18 ANISOVICH	99)	SPEC	
±25	18,31 ANISOVICH				$.94 \ p\overline{p} \rightarrow 3\pi_0^0$	Į					ππ, ηη, ηη
±80	18,31 ANISOVICH	99E	SPEC	0.6-1	$.94 \ \rho \overline{\rho} \rightarrow 3\pi^0$		VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
E (MeV)	DOCUMENT ID		TECN	сом	1ENT		2110±10	43 ROZANSKA	80		18 π ⁻ ρ → ρ̄̄̄̄⊓
25±30	18 ANISOVICH	990			$.94 p \overline{p} \rightarrow \pi^{0} \eta,$	· 1	190±10	43 ROZANSKA			$18 \pi^- p \rightarrow p\bar{p}n$
				π(η'	:					
25 ± 40	¹⁸ ANISOVICH	99c	SPEC	0.6-1	$.94 p\overline{p} \rightarrow \pi^0 \eta$,		VALUE (MeV)	DOCUMENT ID			COMMENT
30 ± 75	18 ANISOVICH	900	CDEC		η'	1	2140 ± 30	18,44 ANISOVICH			$0.6-1.94 p\overline{p} \rightarrow \pi^0 \pi$
JO I 13	ANISOVICH	390	3FEC	π($.94 p \overline{p} \rightarrow \pi^{0} \eta,$ n'	•	150 ± 30	^{18,44} ANISOVICH	99D	5PEC	$0.6-1.94 \ p\overline{p} \rightarrow \pi^0 \pi$
50+80 -50	18 ANISOVICH	990	SPEC		.94 $p\overline{p} \rightarrow \pi^0 \eta$,		VALUE (MeV)	DOCUMENT ID		TECN	CHG COMMENT
- 50				π(nt		2141	45 DONALD	73		0 Pp S channel
00 ± 40	18,32 ANISOVICH	99D	SPEC	0.6-1	$.94 p \overline{p} \rightarrow \pi^0 \pi^0 \eta$		14	45 DONALD			0 pp S channel
50 ± 40	^{18,32} ANISOVICH FERRER	99D	SPEC	0.6-1	$.94 p \overline{p} \rightarrow \pi^0 \pi^0 \eta$			20	. •		_ pp comme
15± 3 11± 7	33 FERRER				$\begin{array}{c} \bullet \rho \rho \overline{\rho} \pi(\pi) \\ \rightarrow \rho \rho \overline{\rho} \pi^- \pi^0 \end{array}$	ı	VALUE (MeV)	DOCUMENT ID		TECN	CHG COMMENT
	33 FERRER						2165± 45	4,18 ANISOVICH	991	SPEC	0 0.6-1.94 pp —
25 + 10	FERRER	93	OMEG		$\rightarrow pp\overline{p}\pi^{-}\pi^{0}$. = 46				$\pi\pi$, $\eta\eta$, $\eta\eta$
	_							4 4 4			
25 + 10 25 - 25	GIBBARD	79			→ e p p p		$160 + 140 \\ -70$	^{4,18} ANISOVICH	99J	SPEC	
	GIBBARD GIBBARD BENKHEIRI	79	OMEG	e-p	→ e ρρ̄̄̄̄̄̄ → e ρρ̄̄̄̄̄̄̄ → ρρ̄̄̄̄̄π		160 ^{+ 140} / ₇₀	4,18 ANISOVICH	991	SPEC	0 0.6-1.94 pp — ππ, ηη, ηη

$\overline{N}N(1100-3600)$

							COLUMNIA
VALUE (MeV)	DOCUMENT ID 46 ROZANSKA	80 SPRK	$\frac{COMMENT}{18 \pi^- p \rightarrow p \overline{p} \pi}$	VALUE (MeV) 2320 ± 30	18,50 ANISOVICH	99D SPEC	$\frac{COMMENT}{0.6-1.94 \ p\overline{p} \rightarrow \pi^0 \pi^0 \eta}$
2180±10 270±10	46 ROZANSKA		$18 \pi^- p \to ppn$ $18 \pi^- p \to p\overline{p}n$	2320 ± 30 220 ± 30	^{18,50} ANISOVICH	99D SPEC	$0.6-1.94 \ p\bar{p} \rightarrow \pi^0 \pi^0 \eta$
				2310 ± 40	^{18,38} ANISOVICH	99E SPEC	$0.6-1.94 \ p\overline{p} \rightarrow 3\pi^{0}$
VALUE (MeV) 2207 ± 13	DOCUMENT ID 47 ALLES	67B HBC	CHG COMMENT 0 5.7 p̄ p	$180 + 12 \\ -60$	^{18,38} ANISOVICH	99E SPEC	$0.6-1.94 \ p\overline{p} \rightarrow 3\pi^0$
62±52	47 ALLES	67B HBC	0 5.7 $\overline{p}p$	VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	2231.9 ±0.1			$0-46 \ \overline{p}p \rightarrow \ \overline{\Lambda}\Lambda$
2210+79 -21			$10 \pi^- p \rightarrow K^+ K^- n$	0.59 ± 0.25	⁵¹ BARNES	94 SPEC	$0-46 \ \overline{p}p \rightarrow \ \overline{\Lambda}\Lambda$
~ 203			$10 \pi^- p \rightarrow K^+ K^- n$	VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
			•	2340±40			$0.6-1.94 \ p\widetilde{p} \rightarrow 3\pi^{0}$
VALUE (MeV) 2210 ± 40	2,18 ANISOVICH	99J SPEC		230±70	18,42 ANISOVICH	99E SPEC	$0.6-1.94 \ p\overline{p} \rightarrow 3\pi^0$
			$\pi\pi$, $\eta\eta$, $\eta\eta'$	VALUE (MeV)	DOCUMENT ID	TECN	
360±55	^{2,18} ANISOVICH	99」SPEC	$\pi\pi$, $\eta\eta$, $\eta\eta'$	2340 ± 40 340 ± 40			$\begin{array}{ccc} 0.6-1.94 & p\overline{p} \rightarrow & \pi^0 \pi^0 \eta \\ 0.6-1.94 & p\overline{p} \rightarrow & \pi^0 \pi^0 \eta \end{array}$
VALUE (MeV)	DOCUMENT ID		$\frac{COMMENT}{\overline{p}p \rightarrow \Lambda \overline{\Lambda}}$	VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
~ 2229.2 ~ 1.8	CARBONELL CARBONELL		$\bar{p}p \rightarrow \Lambda \Lambda$ $\bar{p}p \rightarrow \Lambda \bar{\Lambda}$	2370±50	18,34 ANISOVICH	99D SPEC	$0.6-1.94 \ p\overline{p} \rightarrow \pi^0 \pi^0 \eta$
VALUE (MeV)	DOCUMENT ID	TECN		320 ± 50	^{18,34} ANISOVICH	990 SPEC	
2230 ± 30	1,18 ANISOVICH	99」SPEC		VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
	1,18 ANISOVICH		$\pi\pi$, $\eta\eta$, $\eta\eta'$	2380±10	52 ROZANSKA	80 SPRK	$18 \pi^- \rho \to \rho \overline{\rho} n$
245 ± 45		99」SPEC	$\pi\pi$, $\eta\eta$, $\eta\eta'$	380 ± 20	⁵² ROZANSKA		$18 \pi^- p \rightarrow p \overline{p} n$
VALUE (MeV)	18,34 ANISOVICH	TECN	COMMENT 0 0	VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2240±40 170±50	18,34 ANISOVICH		$\begin{array}{ccc} 0.6-1.94 \ p\overline{p} \to & \pi^0 \pi^0 \eta \\ 0.6-1.94 \ p\overline{p} \to & \pi^0 \pi^0 \eta \end{array}$	$2450 \pm 10 \\ 280 \pm 20$	⁵³ ROZANSKA ⁵³ ROZANSKA		$18 \pi^{-} p \rightarrow p \overline{p} n$ $18 \pi^{-} p \rightarrow p \overline{p} n$
VALUE (MeV)	DOCUMENT ID		COMMENT	VALUE (MeV)	DOCUMENT ID	TECN	CHG COMMENT
2260±15	18,31 ANISOVICH 18,31 ANISOVICH		$0.6-1.94 \ p\bar{p} \rightarrow 3\pi^{0}$ $0.6-1.94 \ p\bar{p} \rightarrow 3\pi^{0}$	2485±40	7,8 ANISOVICH	99J SPEC	
180±20	, ANISOVICH	AAF 3LEC		410±90	7,8 ANISOVICH	99」SPEC	$0 \qquad 0.79 - 2.43 \ p \overline{p} \rightarrow$
VALUE (MeV)	DOCUMENT ID	TECN		~ 2500	6,7 ANISOVICH	99J SPEC	$0 \qquad 0.79-2.43 \ p\overline{p} \rightarrow$
2265±20	¹⁸ ANISOVICH		$\pi^0 \eta^t$	~ 470	6,7 ANISOVICH	99」SPEC	
$235 + 60 \\ -35$	¹⁸ ANISOVICH	99c SPEC	$\begin{array}{ccc} 0.6 - 1.94 \ \rho \overline{\rho} \rightarrow & \pi^0 \eta, \\ \pi^0 \eta' & \end{array}$	7 Using data of EISENH	ANDLER 75 and CARTER	₹ 77.	ππ
~ 2260	48 EVANGELISTA	A 70 OMEC	1016 =-	Ø From a fit to the JU/J	$I^{PC}) = 0^+(6^{++}).$		
				rioni a ne to the r (2	, - (- ,		
~ 440			$10,16 \pi^{-} p \rightarrow \overline{p} p$ $10,16 \pi^{-} p \rightarrow \overline{p} p$	VALUE (MeV)	DOCUMENT ID	TECN	
~ 440 <i>VALUE</i> (MeV)	48 EVANGELISTA	4 79 OMEG <u>TECN</u>	$10,16 \pi^- p \to \overline{p}p$ COMMENT	VALUE (MeV) 2480 ± 30		77 CNTR	$0 \qquad \overline{0.7-2.4 \ \overline{p} p} \rightarrow$
	⁴⁸ EVANGELISTA	4 79 OMEG	$10,16 \pi^- p \rightarrow \overline{p} p$	VALUE (MeV) 2480 ± 30	54 CARTER	77 CNTR 77 CNTR	$ \begin{array}{ccc} 0 & \overline{0.7-2.4} \ \overline{p} p \rightarrow \\ 0 & \overline{0.7-2.4} \ \overline{p} p \rightarrow \\ \pi \pi \end{array} $
VALUE (MeV) 2280 ± 30	48 EVANGELISTA DOCUMENT ID 18,49 ANISOVICH 18,49 ANISOVICH DOCUMENT ID	990 SPEC 990 SPEC 970 SPEC	$\begin{array}{c} 10,16 \ \pi^- \ p \rightarrow \ \overline{p} \ p \\ \\ \underline{COMMENT} \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0 \ \pi^0 \ \eta \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0 \ \pi^0 \ \eta \\ \\ \underline{COMMENT} \end{array}$	VALUE (MeV) 2480 ± 30 210 ± 25 VALUE (MeV)	54 CARTER 54 CARTER 50 CARTER	77 CNTR 77 CNTR <u>TECN</u>	0 0.7-2.4 $\bar{p}\rho \rightarrow \pi \pi$ 0 0.7-2.4 $\bar{p}\rho \rightarrow \pi \pi$ CHG COMMENT
VALUE (MeV) 2280 ± 30 210 ± 30	48 EVANGELISTA DOCUMENT ID 18,49 ANISOVICH 18,49 ANISOVICH	990 SPEC 990 SPEC 990 SPEC 7ECN 996 SPEC	$\begin{array}{c} 10.16 \ \pi^- \ p \rightarrow \ \overline{p} \ p \\ \\ \underline{comment} \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0 \pi^0 \ \eta \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0 \pi^0 \ \eta \end{array}$	VALUE (MeV) 2480±30 210±25 VALUE (MeV) ~ 2500	54 CARTER 54 CARTER DOCUMENT ID 55 CARTER	77 CNTR 77 CNTR 788 CNTR	0 0.7-2.4 $\bar{p}p \rightarrow \pi \pi$ 0 0.7-2.4 $\bar{p}p \rightarrow \pi \pi$ $\pi \pi$ CHG COMMENT 0 0.7-2.4 $\bar{p}p \rightarrow \kappa^- K^+$
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 30 280 ± 50	18,49 ANISOVICH 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH	990 SPEC 990 SPEC 990 SPEC 990 SPEC 996 SPEC 996 SPEC	$\begin{array}{c} 10.16 \ \pi^{-} \ p \rightarrow \ \overline{p} \ p \\ \hline \frac{COMMENT}{0.6-1.94 \ p\overline{p} \rightarrow \ \pi^{0} \ \pi^{0} \ \eta} \\ 0.6-1.94 \ p\overline{p} \rightarrow \ \pi^{0} \ \pi^{0} \ \eta \\ \hline \frac{COMMENT}{0.6-1.94 \ p\overline{p} \rightarrow \ 3\pi^{0}} \\ 0.6-1.94 \ p\overline{p} \rightarrow \ 3\pi^{0} \\ 0.6-1.94 \ p\overline{p} \rightarrow \ 3\pi^{0} \\ \hline \end{array}$	VALUE (MeV) 2480 ± 30 210 ± 25 VALUE (MeV)	54 CARTER 54 CARTER 50 CARTER	77 CNTR 77 CNTR <u>TECN</u>	0 0.7-2.4 $\bar{p}p \rightarrow \pi \pi$ 0 0.7-2.4 $\bar{p}p \rightarrow \pi \pi$ $\pi \pi$ CHG COMMENT 0 0.7-2.4 $\bar{p}p \rightarrow \kappa - \kappa + \kappa$
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 30	18,49 ANISOVICH 18,49 ANISOVICH 18,49 ANISOVICH DOCUMENT ID 18,41 ANISOVICH	990 SPEC 990 SPEC 990 SPEC 7ECN 996 SPEC	$\begin{array}{c} 10.16 \ \pi^- \ p \rightarrow \ \overline{p} \ p \\ \hline \hline comment \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0 \ \pi^0 \ \eta \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0 \ \pi^0 \ \eta \\ \hline \hline comment \\ 0.6-1.94 \ p \overline{p} \rightarrow \ 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \rightarrow \ 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \rightarrow \ 3\pi^0 \\ \hline chg \ comment \\ \hline \end{array}$	VALUE (MeV) 2480±30 210±25 VALUE (MeV) ~ 2500	54 CARTER 54 CARTER DOCUMENT ID 55 CARTER 55 CARTER DOCUMENT ID 50 CARTER	77 CNTR 77 CNTR 78 CNTR 78B CNTR 78B CNTR	$\begin{array}{lll} 0 & 0.7-2.4 \; \overline{p} p \to \\ \pi \pi & \\ 0 & 0.7-2.4 \; \overline{p} p \to \\ \pi \pi & \\ \hline CHG & COMMENT & \\ 0 & 0.7-2.4 \; \overline{p} p \to \\ K^- K^+ & \\ 0 & 0.7-2.4 \; \overline{p} p \to \\ K^- K^+ & \\ \hline CHG & COMMENT & \\ \end{array}$
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 30 280 ± 50 VALUE (MeV) 2295 ± 30	18,49 ANISOVICH 18,49 ANISOVICH 18,49 ANISOVICH DOCUMENT ID 18,41 ANISOVICH 18,41 ANISOVICH DOCUMENT ID 6,18 ANISOVICH	990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 991 SPEC	$\begin{array}{l} 10,16 \ \pi^- \ p \to \ \overline{p} \ \rho \\ \hline \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \ \pi^0 \ \pi^0 \ \eta} \\ 0.6-1.94 \ p \overline{p} \to \ \pi^0 \ \pi^0 \ \eta \\ \hline \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \ 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \to \ 3\pi^0 \\ \hline 0 & \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \ \pi \pi, \ \eta \eta, \ \eta \eta'} \end{array}$	<u>VALUE (MeV)</u> 2480 ± 30 210 ± 25 <u>VALUE (MeV)</u> ~ 2500 ~ 150	54 CARTER 54 CARTER 55 CARTER 55 CARTER 56 CARTER 57 CARTER 58 CARTER 59 CARTER 17 ANISOVICH	77 CNTR 77 CNTR 78B CNTR 78B CNTR	$ \begin{array}{cccc} 0 & 0.7-2.4 \; \overline{p} p \to \\ 0 & 0.7-2.4 \; \overline{p} p \to \\ \pi \pi \\ \hline CHG & COMMENT \\ 0 & 0.7-2.4 \; \overline{p} p \to \\ K^- K^+ \\ 0 & 0.7-2.4 \; \overline{p} p \to \\ K^- K^+ \\ \hline CHG & COMMENT \\ \hline 0 & 0.79-2.43 \; p \overline{p} \to \\ \hline \end{array} $
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 30 280 ± 50 VALUE (MeV) 2295 ± 30 235 + 65 - 40	18,41 ANISOVICH 18,49 ANISOVICH 18,49 ANISOVICH DOCUMENT ID 18,41 ANISOVICH 18,41 ANISOVICH DOCUMENT ID 6,18 ANISOVICH 6,18 ANISOVICH	990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC	$\begin{array}{c} 10.16 \ \pi^- \ p \rightarrow \ \overline{p} \ p \\ \hline \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0 \ \pi^0 \ \eta} \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0 \ \pi^0 \ \eta \\ \hline \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow \ 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \rightarrow \ 3\pi^0 \\ \hline CHG & \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow \ \pi \ \pi, \ \eta \ \eta, \ \eta \ \eta'} \end{array}$	<u>VALUE (MeV)</u> 2480 ± 30 210 ± 25 <u>VALUE (MeV)</u> ~ 2500 ~ 150 <u>VALUE (MeV)</u>	54 CARTER 54 CARTER DOCUMENT ID 55 CARTER 55 CARTER DOCUMENT ID 50 CARTER	77 CNTR 77 CNTR 78 CNTR 78B CNTR 78B CNTR	$ \begin{array}{cccc} 0 & 0.7-2.4 \; \overline{p} p \to \\ \pi \pi & \pi & \pi & \pi \\ 0 & 0.7-2.4 \; \overline{p} p \to \\ \pi \pi & \pi & \pi & \pi \\ \hline 0 & 0.7-2.4 \; \overline{p} p \to \\ K^- K^+ & \pi^- K^+ & \pi^- K^+ \\ 0 & 0.7-2.4 \; \overline{p} p \to \\ K^- K^+ & \pi^- K^+ & \pi^- K^- & \pi^- \\ \hline 0 & 0.79-2.43 \; p \overline{p} \to \\ \pi \pi & \pi & \pi & \pi \\ \hline \end{array} $
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 30 280 ± 50 VALUE (MeV) 2295 ± 30 235 + 65 - 40	18,49 ANISOVICH 18,49 ANISOVICH 18,49 ANISOVICH DOCUMENT ID 18,41 ANISOVICH 18,41 ANISOVICH DOCUMENT ID 6,18 ANISOVICH	990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 991 SPEC	$\begin{array}{c} 10.16 \ \pi^{-} \ p \rightarrow \ \overline{p} \ p \\ \hline COMMENT \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^{0} \ \pi^{0} \ \eta \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^{0} \ \pi^{0} \ \eta \\ \hline COMMENT \\ 0.6-1.94 \ p \overline{p} \rightarrow \ 3\pi^{0} \\ \hline CHG \\ 0 \hline COMMENT \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi\pi, \ \eta\eta, \ \eta\eta' \\ 0 \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi\pi \\ \hline \end{array}$	<u>VALUE (MeV)</u> 2480 ± 30 210 ± 25 <u>VALUE (MeV)</u> ~ 2500 ~ 150 <u>VALUE (MeV)</u> ~ 2620 ~ 430 <u>VALUE (MeV)</u>	DOCUMENT ID 54 CARTER 54 CARTER DOCUMENT ID 55 CARTER 55 CARTER DOCUMENT ID 1,7 ANISOVICH 1,7 ANISOVICH DOCUMENT ID	77 CNTR 77 CNTR 78B CNTR 78B CNTR 78B CNTR 99J SPEC 99J SPEC 7ECN	$ \begin{array}{cccc} 0 & 0.7-2.4 \; \overline{p} p \; \to \\ & \pi \pi \\ 0 & 0.7-2.4 \; \overline{p} p \; \to \\ \pi \pi \\ \hline 0 & 0.7-2.4 \; \overline{p} p \; \to \\ & K^- K^+ \\ 0 & 0.7-2.4 \; \overline{p} p \; \to \\ & K^- K^+ \\ \hline 0 & 0.7-2.4 \; \overline{p} p \; \to \\ & K^- K^+ \\ \hline CHG & COMMENT \\ 0 & 0.79-2.43 \; p \overline{p} \; \to \\ \pi \pi \\ \hline COMMENT \\ \end{array} $
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 30 280 ± 50 VALUE (MeV) 2295 ± 30 235 + 65 - 40	18,49 ANISOVICH 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH	990 SPEC 990 SPEC 990 SPEC 991 SPEC 992 SPEC 993 SPEC 994 SPEC 995 SPEC 997 SPEC	$\begin{array}{c} 10.16 \ \pi^{-} \ p \rightarrow \ \overline{p} \ p \\ \hline COMMENT \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^{0} \ \pi^{0} \ \eta \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^{0} \ \pi^{0} \ \eta \\ \hline COMMENT \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow \ 3\pi^{0} \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow \ 3\pi^{0} \\ \hline CHG \ COMMENT \\ \hline 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^{\pi}, \ \eta^{\eta}, \ \eta^{\eta'} \\ \hline 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^{\pi}, \ \eta^{\eta}, \ \eta^{\eta'} \\ \hline CHG \ COMMENT \\ \hline \end{array}$	<u>VALUE (MeV)</u> 2480 ± 30 210 ± 25 <u>VALUE (MeV)</u> ~ 2500 ~ 150 <u>VALUE (MeV)</u> ~ 2620 ~ 430 <u>VALUE (MeV)</u> 2710 ± 20	54 CARTER 54 CARTER 55 CARTER 55 CARTER 56 CARTER 57 CARTER 58 CARTER 59 CARTER 17 ANISOVICH 17 ANISOVICH 17 ANISOVICH 18 COLUMENT ID 18 COLU	77 CNTR 77 CNTR 788 CNTR 788 CNTR 991 SPEC 991 SPEC 60 FECN 80 SPRK	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 30 280 ± 50 VALUE (MeV) 2295 ± 30 235 +65 -40 6 From a fit to the in		990 SPEC 990 SPEC 990 SPEC 991 SPEC 992 SPEC 993 SPEC 994 SPEC 995 SPEC	$\begin{array}{c} 10,16 \ \pi^{-} \ p \rightarrow \overline{p} \ p \\ \hline \hline comment \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \pi^{0} \eta \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \pi^{0} \eta \\ \hline comment \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^{0} \\ 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^{0} \\ \hline comment \\ \hline 0 \hline commen$	<u>VALUE (MeV)</u> 2480 ± 30 210 ± 25 <u>VALUE (MeV)</u> ~ 2500 ~ 150 <u>VALUE (MeV)</u> ~ 2620 ~ 430 <u>VALUE (MeV)</u>	54 CARTER 54 CARTER 55 CARTER 55 CARTER 56 CARTER 57 CARTER 57 CARTER 58 CARTER 59 CARTER 59 COUMENT ID 1,7 ANISOVICH 1,7 ANISOVICH 1,7 ANISOVICH ROZANSKA ROZANSKA	77 CNTR 77 CNTR 788 CNTR 788 CNTR 991 SPEC 991 SPEC 60 FECN 80 SPRK	$\begin{array}{lll} 0 & 0.7-2.4 \; \overline{p} p \; \rightarrow \\ & \pi \pi \\ 0 & 0.7-2.4 \; \overline{p} p \; \rightarrow \\ \pi \pi \\ \hline CHG & COMMENT \\ 0 & 0.7-2.4 \; \overline{p} p \; \rightarrow \\ & K^- K^+ \\ 0 & 0.7-2.4 \; \overline{p} p \; \rightarrow \\ & K^- K^+ \\ \hline CHG & COMMENT \\ 0 & 0.79-2.43 \; p \overline{p} \; \rightarrow \\ 0 & 0.79-2.43 \; p \overline{p} \; \rightarrow \\ \pi \pi \\ \hline COMMENT \\ 18 \; \pi^- p \; \rightarrow \; p \overline{p} n \\ 18 \; \pi^- p \; \rightarrow \; p \overline{p} n \\ \hline \end{array}$
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 30 280 ± 50 VALUE (MeV) 2295 ± 30 235 +65 6 From a fit to the AVALUE (MeV)	18,49 ANISOVICH 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH	990 SPEC 990 SPEC 990 SPEC 991 SPEC 992 SPEC 993 SPEC 994 SPEC 995 SPEC 997 SPEC	$\begin{array}{c} 10.16 \ \pi^- \ p \to \ \overline{p} \ p \\ \hline \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta'} \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta' \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta'} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta' \\ 0.6-1.94 \ p \overline{p} \to \eta' \\ 0.6-$	VALUE (MeV) 2480 ± 30 210 ± 25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710 ± 20 170 ± 40 VALUE (MeV)	54 CARTER 54 CARTER 55 CARTER 55 CARTER 56 CARTER 57 CARTER 57 CARTER 58 CARTER 59 CARTER 59 CARTER 50 CAR	77 CNTR 77 CNTR 788 CNTR 788 CNTR 789 CNTR 99J SPEC 99J SPEC 99J SPEC 80 SPRK 80 SPRK	$ \begin{array}{cccc} 0 & 0.7-2.4 \; \overline{\rho} \rho \to \\ & \pi \pi \\ 0 & 0.7-2.4 \; \overline{\rho} \rho \to \\ & \pi \pi \\ \hline 0 & 0.7-2.4 \; \overline{\rho} \rho \to \\ & K^- K^+ \\ 0 & 0.7-2.4 \; \overline{\rho} \rho \to \\ & K^- K^+ \\ \hline 0 & 0.7-2.4 \; \overline{\rho} \rho \to \\ & K^- K^+ \\ \hline 0 & 0.79-2.43 \; \rho \overline{\rho} \to \\ & 0 & 0.79-2.43 \; \rho \overline{\rho} \to \\ & \pi \pi \\ \hline 0 & 0.79-2.43 \; \rho \overline{\rho} \to \\ & \pi \pi \\ \hline COMMENT \\ 18 \; \pi^- \rho \to \; \rho \overline{\rho} n \\ 18 \; \pi^- \rho \to \; \rho \overline{\rho} n \\ \hline CHG & COMMENT \\ \hline \end{array} $
VALUE (MeV) 2280±30 210±30 VALUE (MeV) 2280±30 280±50 VALUE (MeV) 2295±30 235+65 -40 6 From a fit to the invalue (MeV) 2300±20 230±40		990 SPEC 991 SPEC 992 SPEC 994 SPEC 995 SPEC 996 SPEC 997 SPEC 997 SPEC 997 SPEC 998 SPEC 999 SPEC	$\begin{array}{c} 10,16 \ \pi^- \ p \to \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^{\eta'} \\ \hline \\ \frac{CMG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \eta \eta'} \\ \hline \\ 0 \ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \eta \eta'} \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \eta \eta'} \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \pi^0 \eta'} \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \pi^0 \eta'} \\ \hline \\ \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \pi^0 \eta'} \\ \hline \end{array}$	VALUE (MeV) 2480 ± 30 210 ± 25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710 ± 20 170 ± 40 VALUE (MeV) 2850 ± 5	54 CARTER 54 CARTER 55 CARTER 55 CARTER 56 CARTER 57 CARTER 57 CARTER 58 CARTER 59 CARTER 59 COUMENT ID 1,7 ANISOVICH 1,7 ANISOVICH 1,7 ANISOVICH ROZANSKA ROZANSKA	77 CNTR 78 CNTR 788 CNTR 788 CNTR 788 CNTR 99J SPEC 99J SPEC 99J SPEC 80 SPRK 80 SPRK	$\begin{array}{lll} 0 & 0.7-2.4 \; \overline{p} p \; \rightarrow \\ & \pi \pi \\ 0 & 0.7-2.4 \; \overline{p} p \; \rightarrow \\ \pi \pi \\ \hline CHG & COMMENT \\ 0 & 0.7-2.4 \; \overline{p} p \; \rightarrow \\ & K^- K^+ \\ 0 & 0.7-2.4 \; \overline{p} p \; \rightarrow \\ & K^- K^+ \\ \hline CHG & COMMENT \\ 0 & 0.79-2.43 \; p \overline{p} \; \rightarrow \\ 0 & 0.79-2.43 \; p \overline{p} \; \rightarrow \\ \pi \pi \\ \hline COMMENT \\ 18 \; \pi^- p \; \rightarrow \; p \overline{p} n \\ 18 \; \pi^- p \; \rightarrow \; p \overline{p} n \\ \hline \end{array}$
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 50 VALUE (MeV) 2295 ± 30 235 + 65 - 40 6 From a fit to the A VALUE (MeV) 2300 ± 20	18,49 ANISOVICH 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 16,18 ANISOVICH 17 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH	990 SPEC 991 SPEC 992 SPEC 994 SPEC 995 SPEC 997 SPEC 997 SPEC 997 SPEC 997 SPEC	$\begin{array}{c} 10,16 \ \pi^- \ p \to \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^{\eta'} \\ \hline \\ \frac{CMG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \eta \eta'} \\ \hline \\ 0 \ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \eta \eta'} \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \eta \eta'} \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \pi^0 \eta'} \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \pi^0 \eta'} \\ \hline \\ \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \pi^0 \eta'} \\ \hline \end{array}$	VALUE (MeV) 2480 ± 30 210 ± 25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710 ± 20 170 ± 40 VALUE (MeV) 2850 ± 5 < 39	DOCUMENT ID 54 CARTER 54 CARTER DOCUMENT ID 55 CARTER DOCUMENT ID 1,7 ANISOVICH 1,7 ANISOVICH DOCUMENT ID ROZANSKA ROZANSKA DOCUMENT ID 56 BRAUN 56 BRAUN	77 CNTR 77 CNTR 78 CNTR 788 CNTR 789 CNTR 99J SPEC 99J SPEC 99J SPEC 80 SPRK 80 SPRK 76 DBC 76 DBC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280±30 210±30 VALUE (MeV) 2280±30 280±50 VALUE (MeV) 2295±30 235+65 -40 6 From a fit to the invalue (MeV) 2300±20 230±40		990 SPEC 991 SPEC 992 SPEC 994 SPEC 995 SPEC 996 SPEC 997 SPEC 997 SPEC 997 SPEC 998 SPEC 999 SPEC	$\begin{array}{c} 10,16 \ \pi^{-} \ p \rightarrow \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \pi^{0} \eta} \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \pi^{0} \eta \\ 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^{0} \\ 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^{0} \\ 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^{0} \\ \hline \\ \frac{CM}{0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \eta \eta'} \\ 0 & 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \eta \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \eta \eta' \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta'} \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta, \pi^{0} \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta \eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^{0} \eta' \\ 0.6-$	VALUE (MeV) 2480 ± 30 210 ± 25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710 ± 20 170 ± 40 VALUE (MeV) 2850 ± 5 < 39 VALUE (MeV)	54 CARTER 54 CARTER 55 CARTER 55 CARTER 56 CARTER 57 ANISOVICH 1,7 ANISO	77 CNTR 77 CNTR 78 CNTR 78B CNTR 78B CNTR 99J SPEC 99J SPEC 99J SPEC 76 SPRK 80 SPRK 80 SPRK 76 DBC 76 DBC 76 DBC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280±30 210±30 VALUE (MeV) 2280±30 280±50 VALUE (MeV) 2295±30 235+65 -40 6 From a fit to the inverse of t		990 SPEC 991 SPEC 992 SPEC 994 SPEC 995 SPEC 996 SPEC 997 SPEC 997 SPEC 997 SPEC 998 SPEC 999 SPEC 990 SPEC 990 SPEC 80 CNTR	$\begin{array}{c} 10,16 \ \pi^- \ p \rightarrow \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta} \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ \frac{CMG}{0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \eta^1} \\ 0 & 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \eta \eta^1 \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \eta^0 \eta^1} \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1} \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta, \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ 0.6-1.94 \ p \overline$	VALUE (MeV) 2480 ± 30 210 ± 25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710 ± 20 170 ± 40 VALUE (MeV) 2850 ± 5 < 39	DOCUMENT ID 54 CARTER 54 CARTER DOCUMENT ID 55 CARTER DOCUMENT ID 1,7 ANISOVICH 1,7 ANISOVICH DOCUMENT ID ROZANSKA ROZANSKA DOCUMENT ID 56 BRAUN 56 BRAUN	77 CNTR 77 CNTR 78 CNTR 788 CNTR 788 CNTR 99J SPEC 99J SPEC 80 SPRK 80 SPRK 60 DBC 76 DBC 72 HBC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 30 280 ± 50 VALUE (MeV) 2295 ± 30 235 +65 -40 6 From a fit to the A VALUE (MeV) 2300 ± 20 230 ± 40 2307 ± 6	18,49 ANISOVICH 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 18 ANISOVICH	990 SPEC 991 SPEC 992 SPEC 993 SPEC 994 SPEC 995 SPEC 997 SPEC 997 SPEC 997 SPEC 998 SPEC 999 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 80 CNTR 80 CNTR 990 SPEC	$\begin{array}{c} 10,16 \ \pi^- \ p \rightarrow \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta} \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0 \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta} \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \end{array}$	$\begin{array}{c} value(\text{MeV}) \\ 2480 \pm 30 \\ 210 \pm 25 \\ \hline value(\text{MeV}) \\ \sim 2500 \\ \sim 150 \\ \hline value(\text{MeV}) \\ \sim 2620 \\ \sim 430 \\ \hline value(\text{MeV}) \\ 2710 \pm 20 \\ 170 \pm 40 \\ \hline value(\text{MeV}) \\ 2850 \pm 5 \\ < 39 \\ \hline value(\text{MeV}) \\ 3370 \pm 10 \\ 150 \pm 40 \\ \hline \end{array}$	DOCUMENT ID 54 CARTER 54 CARTER DOCUMENT ID 55 CARTER DOCUMENT ID 1,7 ANISOVICH 1,7 ANISOVICH DOCUMENT ID ROZANSKA ROZANSKA DOCUMENT ID 56 BRAUN 56 BRAUN 57 ALEXANDER 57 ALEXANDER	77 CNTR 77 CNTR 78 CNTR 78 CNTR 78 CNTR 99 SPEC 99 SPEC 99 SPEC 99 SPEC 0 DBC 76 DBC 72 HBC 72 HBC 72 HBC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280±30 210±30 VALUE (MeV) 2280±30 280±50 VALUE (MeV) 2295±30 235±65 6 From a fit to the invalue (MeV) 2300±20 230±40 2307±6 245±20 VALUE (MeV)	18,49 ANISOVICH 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 18 ANISOVICH 19 ANISOVICH 10 ANISOVICH ALPER ALPER DOCUMENT ID	990 SPEC 991 SPEC 992 SPEC 993 SPEC 994 SPEC 995 SPEC 997 SPEC 997 SPEC 997 SPEC 998 SPEC 999 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 80 CNTR 80 CNTR 990 SPEC	$\begin{array}{c} 10,16 \ \pi^- \ p \rightarrow \ \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0 \ \pi^0 \ \eta} \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0 \ \pi^0 \ \eta \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow \ 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \rightarrow \ 3\pi^0 \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \rightarrow \ \pi\pi, \ \eta\eta, \ \eta\eta'} \\ 0 0.6-1.94 \ p \overline{p} \rightarrow \ \pi\pi, \ \eta\eta, \ \eta\eta' \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta, \ \eta\eta'} \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta, \ \eta^0\eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta, \ \pi^0\eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta, \ \pi^0\eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta, \ \pi^0\eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta, \ \pi^0\eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta, \ \pi^0\eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta, \ \pi^0\eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta, \ \pi^0\eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta, \ \pi^0\eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta, \ \pi^0\eta' \\ 0.6-1.94 \ p \overline{p} \rightarrow \ \pi^0\eta' $	VALUE (MeV) 2480 ± 30 210 ± 25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710 ± 20 170 ± 40 VALUE (MeV) 2850 ± 5 < 39 VALUE (MeV) 3370 ± 10 150 ± 40 VALUE (MeV)	DOCUMENT ID 54 CARTER 54 CARTER DOCUMENT ID 55 CARTER DOCUMENT ID 1,7 ANISOVICH 1,7 ANISOVICH DOCUMENT ID ROZANSKA ROZANSKA ROZANSKA DOCUMENT ID 56 BRAUN 56 BRAUN 57 ALEXANDER 57 ALEXANDER DOCUMENT ID	77 CNTR 77 CNTR 78 CNTR 78B CNTR 78B CNTR 99J SPEC 99J SPEC 99J SPEC 72 CNTR 72 CNTR 72 CNTR 72 CNTR 72 CNTR 72 CNTR 73 CNTR 74 CNTR 75 CNTR 76 CNTR 77 CNTR 78 CNTR 78 CNTR 79 CNTR 79 CNTR 70 CNTR 71 CNTR 72 CNTR 72 CNTR 73 CNTR 74 CNTR 75 CNTR 76 CNTR 77 CNTR 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 50 VALUE (MeV) 2295 ± 30 235 + 65 - 40 6 From a fit to the A VALUE (MeV) 2300 ± 20 230 ± 40 2307 ± 6 245 ± 20 VALUE (MeV) 2300 ± 40	18,49 ANISOVICH 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 18 ANISOVICH	990 SPEC 991 SPEC 992 SPEC 994 SPEC 995 SPEC 996 SPEC 997 SPEC 997 SPEC 997 SPEC 998 SPEC 999 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC	$\begin{array}{c} 10,16 \ \pi^- \ p \rightarrow \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta} \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0 \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta} \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^1 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^0 \\ \hline \end{array}$	$\begin{array}{c} value(\text{MeV}) \\ 2480 \pm 30 \\ 210 \pm 25 \\ \hline value(\text{MeV}) \\ \sim 2500 \\ \sim 150 \\ \hline value(\text{MeV}) \\ \sim 2620 \\ \sim 430 \\ \hline value(\text{MeV}) \\ 2710 \pm 20 \\ 170 \pm 40 \\ \hline value(\text{MeV}) \\ 2850 \pm 5 \\ < 39 \\ \hline value(\text{MeV}) \\ 3370 \pm 10 \\ 150 \pm 40 \\ \hline \end{array}$	DOCUMENT ID 54 CARTER 54 CARTER DOCUMENT ID 55 CARTER DOCUMENT ID 1,7 ANISOVICH 1,7 ANISOVICH DOCUMENT ID ROZANSKA ROZANSKA DOCUMENT ID 56 BRAUN 56 BRAUN 57 ALEXANDER 57 ALEXANDER	77 CNTR 77 CNTR 78 CNTR 788 CNTR 788 CNTR 99J SPEC 99J SPEC 60 SPRK 80 SPRK 76 DBC 72 HBC 72 HBC 72 HBC 72 HBC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280±30 210±30 VALUE (MeV) 2280±30 280±50 VALUE (MeV) 2295±30 235±65 6 From a fit to the A VALUE (MeV) 2300±20 230±40 2307±6 245±20 VALUE (MeV) 2300±40 270±40	18,49 ANISOVICH 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 18 ANISOVICH ALPER ALPER DOCUMENT ID 18,36 ANISOVICH 18,36 ANISOVICH 18,36 ANISOVICH	990 SPEC 991 SPEC 992 SPEC 994 SPEC 995 SPEC 996 SPEC 997 SPEC 997 SPEC 997 SPEC 998 SPEC 999 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC	$\begin{array}{c} 10,16 \ \pi^- \ p \to \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^{\eta} \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^{\eta} \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^{\eta} \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^{\eta} \\ \hline \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^{\eta} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^{\eta} \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^{\eta} \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^{\eta} \\ \hline \\ 0 \ 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ $	VALUE (MeV) 2480 ± 30 210 ± 25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710 ± 20 170 ± 40 VALUE (MeV) 2850 ± 5 < 39 VALUE (MeV) 3370 ± 10 150 ± 40 VALUE (MeV) 3600 ± 20 140 ± 20 9 Not seen by GRAF 91	DOCUMENT ID 54 CARTER 54 CARTER DOCUMENT ID 55 CARTER DOCUMENT ID 1,7 ANISOVICH 1,7 ANISOVICH DOCUMENT ID ROZANSKA ROZANSKA ROZANSKA DOCUMENT ID 56 BRAUN 56 BRAUN 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER	77 CNTR 77 CNTR 78 CNTR 78 CNTR 78 PSEC 99 SPEC 99 SPEC 80 SPRK 80 SPRK 76 DBC 76 DBC 77 HBC 72 HBC 73 HBC	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280±30 210±30 VALUE (MeV) 2280±30 280±50 VALUE (MeV) 2295±30 235+65 -40 6 From a fit to the A VALUE (MeV) 2300±20 230±40 2307±6 245±20 VALUE (MeV) 2300±40 270±40 VALUE (MeV)	## EVANGELIST/ DOCUMENT ID	990 SPEC 991 SPEC 992 SPEC 993 SPEC 994 SPEC 995 SPEC 997 SPEC 997 SPEC 997 SPEC 998 SPEC 999 SPEC 990 SPEC 80 CNTR 80 CNTR 990 SPEC 990 SPEC 990 SPEC 990 SPEC	$\begin{array}{c} 10,16 \ \pi^- \ p \to \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \eta \eta'} \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \eta \eta' \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \eta \eta'} \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \eta^0 \eta'} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta, \pi^0 \eta' \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta \eta' \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta' \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta' \\ \hline$	\textstyle	DOCUMENT ID 54 CARTER 54 CARTER DOCUMENT ID 55 CARTER 55 CARTER DOCUMENT ID 1,7 ANISOVICH 1,7 ANISOVICH DOCUMENT ID ROZANSKA ROZANSKA DOCUMENT ID 56 BRAUN 56 BRAUN 56 BRAUN 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER 58, ANGELOPOULOS 86, ive transitions to bound pi	77 CNTR 77 CNTR 78 CNTR 788 CNTR 788 CNTR 99J SPEC 99J SPEC 6 DBC 72 HBC 72 HBC 72 HBC 72 HBC 74 HBC 75 HBC 76 ADIELS 86.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280 ± 30 210 ± 30 VALUE (MeV) 2280 ± 30 280 ± 50 VALUE (MeV) 2295 ± 30 6 From a fit to the interpretation of th	48 EVANGELIST/ DOCUMENT ID 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 16,18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH ALPER ALPER DOCUMENT ID 18,36 ANISOVICH 18,36 ANISOVICH 1,18 ANISOVICH 1,18 ANISOVICH	990 SPEC 991 SPEC 992 SPEC 993 SPEC 994 SPEC 995 SPEC 996 SPEC 997 SPEC 997 SPEC 998 SPEC 999 SPEC 990 SPEC	$\begin{array}{c} 10,16 \ \pi^- \ p \to \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to 3\pi^0} \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta'} \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta' \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta' \\ \hline \\ \frac{CHG}{0.6-1.94 \ p \overline{p} \to \pi^0 \eta'} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta' \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta' \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \eta' \\ \hline \\ 0 & 62 \ \pi^- \ p \to K^+ K^- \ n \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \end{array}$	VALUE (MeV) 2480 ± 30 210 ± 25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710 ± 20 170 ± 40 VALUE (MeV) 2850 ± 5 < 39 VALUE (MeV) 3370 ± 10 150 ± 40 VALUE (MeV) 3600 ± 20 140 ± 20 9 Not seen by GRAF 91 10 Not seen by CHIBA 81 11 They looked for radiati 12 Observed widths consi	54 CARTER 54 CARTER 54 CARTER 55 CARTER 55 CARTER 55 CARTER 56 CARTER 57 ANISOVICH 1,7 ANISOVICH 1,7 ANISOVICH 20 CUMENT ID 56 BRAUN 56 BRAUN 56 BRAUN 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER 68, ANGELOPOULOS 86, Avive transitions to bound pp	77 CNTR 77 CNTR 77 CNTR 78 CNTR 78 CNTR 78 CNTR 99 SPEC 99 SPEC 79 FECN 80 SPRK 76 DBC 76 DBC 77 HBC 72 HBC 72 HBC 72 HBC 72 HBC 72 HBC 74 HBC 75 HBC 75 HBC 76 HBC 77 HBC 78 HBC 79 HBC 71 HBC 71 HBC 72 HBC 73 HBC 74 HBC 75 HBC 75 HBC 76 HBC 77 HBC 78 HBC 79 HBC 70 HBC 71 HBC 71 HBC 72 HBC 73 HBC 74 HBC 75 HBC 75 HBC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280±30 210±30 VALUE (MeV) 2280±30 280±50 VALUE (MeV) 2295±30 235±65 6 From a fit to the invalue (MeV) 2300±20 230±40 2307±6 245±20 VALUE (MeV) 2300±40 270±40 VALUE (MeV) 2300±30 240 270±40 VALUE (MeV) 2300±35	48 EVANGELIST/ DOCUMENT ID 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH DOCUMENT ID 6,18 ANISOVICH 6,18 ANISOVICH 18 ANISOVICH 19 DOCUMENT ID 10 ANISOVICH 11 ANISOVICH 11 ANISOVICH 11 ANISOVICH 12 ANISOVICH 13 ANISOVICH 14 ANISOVICH 15 ANISOVICH 16 ANISOVICH 17 ANISOVICH 18 ANISOVICH 18 ANISOVICH	Page	$\begin{array}{c} 10,16 \ \pi^- \ p \rightarrow \overline{p} \ p \\ \hline COMMENT \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta \\ \hline COMMENT \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0 \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0 \\ \hline CHG \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow \eta \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow \eta \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow \eta \\ \hline 0.6-1.9$	VALUE (MeV) 2480±30 210±25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710±20 170±40 VALUE (MeV) 2850±5 < 39 VALUE (MeV) 3370±10 150±40 VALUE (MeV) 3600±20 140±20 9 Not seen by GRAF 91 10 Not seen by CHIBA 81 11 They looked for radiati 12 Observed widths consi 13 Not seen by ADIELS i 14 From analysis of differ	54 CARTER 54 CARTER 55 CARTER 55 CARTER 56 CARTER 57 ANISOVICH 1,7 ANISO	77 CNTR 77 CNTR 77 CNTR 78 CNTR 78 CNTR 78 CNTR 99 SPEC 99 SPEC 79 FECN 80 SPRK 76 DBC 76 DBC 77 HBC 72 HBC 72 HBC 72 HBC 72 HBC 72 HBC 74 HBC 75 HBC 75 HBC 76 HBC 77 HBC 78 HBC 79 HBC 71 HBC 71 HBC 72 HBC 73 HBC 74 HBC 75 HBC 75 HBC 76 HBC 77 HBC 78 HBC 79 HBC 70 HBC 71 HBC 71 HBC 72 HBC 73 HBC 74 HBC 75 HBC 75 HBC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280±30 210±30 VALUE (MeV) 2280±30 280±50 VALUE (MeV) 2295±30 235±65 6 From a fit to the A VALUE (MeV) 2300±20 230±40 2307±6 245±20 VALUE (MeV) 2300±40 270±40 VALUE (MeV) 2300±35 290±50 2300±50 2300±50	48 EVANGELIST/ DOCUMENT ID 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 18 ANISOVICH 19 DOCUMENT ID 18 ANISOVICH 18,36 ANISOVICH 18,36 ANISOVICH 18,36 ANISOVICH 1,18 ANISOVICH 1,18 ANISOVICH 2,18 ANISOVICH 2,18 ANISOVICH	990 SPEC 991 SPEC 992 SPEC 993 SPEC 994 SPEC 995 SPEC 996 SPEC 997 SPEC 997 SPEC 998 SPEC 999 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 990 SPEC 991 SPEC 991 SPEC	$\begin{array}{c} 10,16 \ \pi^- \ p \to \overline{p} \ p \\ \hline COMMENT \\ \hline 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ \hline 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ \hline 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ \hline 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \\ \hline 0.6-1.94 \ p \overline{p} \to \eta^0 \\ \hline 0.6-1.94$	VALUE (MeV) 2480±30 210±25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710±20 170±40 VALUE (MeV) 2850±5 < 39 VALUE (MeV) 3370±10 150±40 VALUE (MeV) 3600±20 140±20 9 Not seen by GRAF 91 10 Not seen by CHIBA 81 11 They looked for radiati 12 Observed widths consi 13 Not seen by CHIBA 81 16 From an phenomenolog 17 Produced backwards.	54 CARTER 54 CARTER 54 CARTER 55 CARTER 55 CARTER 56 CARTER 57 ANISOVICH 1,7 ANISOVICH 1,7 ANISOVICH 2004MENT ID 1,8 ANGELOPOULOS 86, ive transitions to bound pp 1,8 ANGELOPOULOS 86, rence of π^- and π^+ spect 8, ANGELOPOULOS 86, ivence of π^- and π^+ spect 8, ANGELOPOULOS 86, ivence of π^- and π^+ spect 8, ANGELOPOULOS 86, ivence of π^- and π^+ spect 8, ANGELOPOULOS 86, ivence of π^- and π^+ spect 8, ANGELOPOULOS 86, ivence of π^- and π^+ spect 8, ANGELOPOULOS 86, ivence of π^- and π^+ spect 8, ANGELOPOULOS 86, ivence of π^- and π^+ spect 8, ANGELOPOULOS 86, ivence of π^- and π^+ spect 8, ANGELOPOULOS 86, ivence of π^- and π^+ spect 8, ANGELOPOULOS 86, ivence of π^- and π^+ spect 8, ANGELOPOULOS 86, ivence of π^- and π^+ spect 8, ANGELOPOULOS 86.	77 CNTR 77 CNTR 77 CNTR 78 CNTR 788 CNTR 788 CNTR 99J SPEC 99J SPEC 79J SPEC 76 DBC 76 DBC 72 HBC 72 HBC 72 HBC 72 HBC 72 HBC 74 HBC 75 HBC 76 ADIELS 86. states, mor solution.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VALUE (MeV) 2280±30 210±30 VALUE (MeV) 2280±30 280±50 VALUE (MeV) 2295±30 6 From a fit to the interpretation of the interpre	48 EVANGELIST/ DOCUMENT ID 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18,36 ANISOVICH 1,18 ANISOVICH 1,18 ANISOVICH 2,18 ANISOVICH 2,18 ANISOVICH	Marcon	$\begin{array}{c} 10,16 \ \pi^- \ p \to \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ \hline \\ COMMENT \\ \hline \\ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	VALUE (MeV) 2480±30 210±25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710±20 170±40 VALUE (MeV) 2850±5 < 39 VALUE (MeV) 3370±10 150±40 VALUE (MeV) 3600±20 140±20 9 Not seen by CHIBA 8i 11 They looked for radiati 12 Observed widths consi 13 Not seen by CHIBA 8i 16 From analysis of differ 15 Not seen by CHIBA 8i 16 From a phenomenolog 17 Produced backwards. 18 Using preliminary Crys	DOCUMENT ID 54 CARTER 54 CARTER 54 CARTER DOCUMENT ID 55 CARTER 55 CARTER 1,7 ANISOVICH 1,7 ANISOVICH DOCUMENT ID ROZANSKA ROZANSKA DOCUMENT ID 56 BRAUN 56 BRAUN 56 BRAUN 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER 57 ALEXANDER 58, ANGELOPOULOS 86, ive transitions to bound ppictory in the properties of	77 CNTR 77 CNTR 77 CNTR 78 CNTR 78B CNTR 78B CNTR 99J SPEC 99J SPEC 6 DBC 72 HBC 72 HBC 72 HBC 72 HBC 72 HBC 74 HBC 75 HBC 76 ADIELS 86. states, mor solution.	0 0.7–2.4 $\overline{p}p \rightarrow \pi^{\pi}$ 0 0.7–2.4 $\overline{p}p \rightarrow \pi^{\pi}$ π^{π} 0 0.7–2.4 $\overline{p}p \rightarrow K^{-}K^{+}$ 0 0.7–2.4 $\overline{p}p \rightarrow K^{-}K^{+}$ 0 0.7–2.4 $\overline{p}p \rightarrow K^{-}K^{-}K^{+}$ COMMENT 0 0.79–2.43 $p\overline{p} \rightarrow \pi^{\pi}$ COMMENT 18 $\pi^{-}p \rightarrow p\overline{p}n$ 18 $\pi^{-}p \rightarrow p\overline{p}n$ CHG COMMENT - 5.5 $\overline{p}d \rightarrow N\overline{N}\pi$ - 5.5 $\overline{p}d \rightarrow N\overline{N}\pi$ CHG COMMENT 0 6.94 $\overline{p}p$ 0 6.94 $\overline{p}p$ 0 6.94 $\overline{p}p$
2280±30 2280±30 2280±30 2280±30 2280±30 2280±50 VALUE (MeV) 2295±30 235±65 6 From a fit to the A VALUE (MeV) 2300±20 230±40 2307±6 245±20 VALUE (MeV) 2300±40 270±40 VALUE (MeV) 2300±35 290±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50	48 EVANGELIST/ DOCUMENT ID 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 19 DOCUMENT ID 10 ANISOVICH 11 ANISOVICH 11 ANISOVICH 12 ANISOVICH 13 ANISOVICH 14 ANISOVICH 15 ANISOVICH 1,18 ANISOVICH 1,18 ANISOVICH 2,18 ANISOVICH 2,18 ANISOVICH 5,18 ANISOVICH	A 79 OMEG	$\begin{array}{c} 10,16 \ \pi^- \ p \to \overline{p} \ p \\ \hline \\ \frac{COMMENT}{0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta} \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \to 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ COMMENT \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \pi^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta \\ \hline \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \pi^0 \eta^0 \eta^1 \\ 0 & 0.6-1.94 \ p \overline{p} \to \eta^0 \eta^0 \\ 0 & 0.6-1.94 \ p \overline{p} \to \eta^0 \eta^0 \\ 0 & 0.6-1.94 \ p \overline{p} \to \eta^0 \\ 0 & 0.6-1.94 \ p \overline{p}$	VALUE (MeV) 2480 ± 30 210 ± 25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710 ± 20 170 ± 40 VALUE (MeV) 2850 ± 5 < 39 VALUE (MeV) 3370 ± 10 150 ± 40 VALUE (MeV) 3600 ± 20 140 ± 20 9 Not seen by GRAF 91 10 Not seen by CHIBA 8 11 They looked for radiati 12 Observed widths consi 13 Not seen by ADIELS i 14 From analysis of differ 15 Not seen by CHIBA 8 16 From a phenomenolog 17 Produced backwards. 18 Using preliminary Crys 19 I(JP) = 1(1⁻) from 20 From reanalysis of date	54 CARTER 54 CARTER 54 CARTER 55 CARTER 55 CARTER 55 CARTER 56 CARTER 57 ANISOVICH 1,7 ANISOVICH 1,	77 CNTR 77 CNTR 77 CNTR 78 CNTR 78 CNTR 78 CNTR 99 SPEC 99 SPEC 99 SPEC 76 DBC 76 DBC 72 HBC 72 HBC 72 HBC 72 HBC 72 HBC 73 HBC 74 HBC 75 HBC 76 ADIELS 86. states, mor solution.	0 0.7–2.4 $\overline{p}p \rightarrow \pi^{\pi}$ 0 0.7–2.4 $\overline{p}p \rightarrow \pi^{\pi}$ π^{π} 0 0.7–2.4 $\overline{p}p \rightarrow K^{-}K^{+}$ 0 0.7–2.4 $\overline{p}p \rightarrow K^{-}K^{+}$ 0 0.7–2.4 $\overline{p}p \rightarrow K^{-}K^{-}K^{+}$ COMMENT 0 0.79–2.43 $p\overline{p} \rightarrow \pi^{\pi}$ COMMENT 18 $\pi^{-}p \rightarrow p\overline{p}n$ 18 $\pi^{-}p \rightarrow p\overline{p}n$ CHG COMMENT - 5.5 $\overline{p}d \rightarrow N\overline{N}\pi$ - 5.5 $\overline{p}d \rightarrow N\overline{N}\pi$ CHG COMMENT 0 6.94 $\overline{p}p$ 0 6.94 $\overline{p}p$ 0 6.94 $\overline{p}p$
VALUE (MeV) 2280±30 210±30 VALUE (MeV) 2280±30 280±50 VALUE (MeV) 2295±30 235+65 6 From a fit to the A VALUE (MeV) 2300±20 230±40 2307±6 245±20 VALUE (MeV) 2300±40 270±40 VALUE (MeV) 2300±35 290±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50 2300±50	48 EVANGELIST/ DOCUMENT ID 18,49 ANISOVICH 18,41 ANISOVICH 18,41 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 6,18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18 ANISOVICH 18,36 ANISOVICH 18,36 ANISOVICH 18,36 ANISOVICH 1,18 ANISOVICH 2,18 ANISOVICH 2,18 ANISOVICH 5,18 ANISOVICH 5,18 ANISOVICH	990 SPEC 991 SPEC 992 SPEC 993 SPEC 994 SPEC 995 SPEC 996 SPEC 997 SPEC 997 SPEC 998 SPEC 999 SPEC 999 SPEC 990 SPEC 990 SPEC 991 SPEC	$\begin{array}{c} 10,16 \ \pi^- \ p \rightarrow \overline{p} \ p \\ \hline COMMENT \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta \\ 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \pi^0 \eta \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0 \\ 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0 \\ \hline 0.6-1.94 \ p \overline{p} \rightarrow 3\pi^0 \\ \hline COMMENT \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 0.6-1.94 \ p \overline{p} \rightarrow \pi^0 \eta^{\eta} \\ \hline 0 $	VALUE (MeV) 2480±30 210±25 VALUE (MeV) ~ 2500 ~ 150 VALUE (MeV) ~ 2620 ~ 430 VALUE (MeV) 2710±20 170±40 VALUE (MeV) 2850±5 < 39 VALUE (MeV) 3370±10 150±40 VALUE (MeV) 3600±20 140±20 9 Not seen by GRAF 91 10 Not seen by CHIBA 81 11 They looked for radiati 12 Observed widths consi 13 Not seen by CHIBA 81 16 From analysis of diat 18 Using preliminary Cry 19 f(JP) = 1(1⁻) from 20 From reanalysis of diat 21 Not seen by NUSENIT	54 CARTER 54 CARTER 54 CARTER 55 CARTER 55 CARTER 55 CARTER 56 CARTER 57 ANISOVICH 58 BRAUN 58 BRAUN 58 BRAUN 59 BRAUN 50 BRAUN 50 BRAUN 50 BRAUN 51 ALEXANDER 51 ALEXANDER 52 ALEXANDER 53 ALEXANDER 54 ALEXANDER 55 ALEXANDER 56 BRAUN 56 BRAUN 56 BRAUN 57 ALEXANDER 58 ANGELOPOULOS 86, ive transitions to bound ppistent with experimental research in the second price of pric	77 CNTR 77 CNTR 77 CNTR 78 CNTR 78B CNTR 78B CNTR 99J SPEC 99J SPEC 79J SPEC 76 DBC 76 DBC 72 HBC 72 HBC 72 HBC 72 HBC 73 HBC 74 HBC 75 HBC 76 ADIELS 86. States, mor solution. 76 data.	0 0.7–2.4 $\overline{p}p \rightarrow \pi^{\pi}$ 0 0.7–2.4 $\overline{p}p \rightarrow \pi^{\pi}$ π^{π} 0 0.7–2.4 $\overline{p}p \rightarrow K^{-}K^{+}$ 0 0.7–2.4 $\overline{p}p \rightarrow K^{-}K^{+}$ 0 0.7–2.4 $\overline{p}p \rightarrow K^{-}K^{-}K^{+}$ COMMENT 0 0.79–2.43 $p\overline{p} \rightarrow \pi^{\pi}$ COMMENT 18 $\pi^{-}p \rightarrow p\overline{p}n$ 18 $\pi^{-}p \rightarrow p\overline{p}n$ CHG COMMENT - 5.5 $\overline{p}d \rightarrow N\overline{N}\pi$ - 5.5 $\overline{p}d \rightarrow N\overline{N}\pi$ CHG COMMENT 0 6.94 $\overline{p}p$ 0 6.94 $\overline{p}p$ 0 6.94 $\overline{p}p$

$^{23}I = 0$ favored, $J = 0$ or 1, seen in total $\overline{p}p$ total cross section. Primarily from annihilation reactions. Not seen in $\overline{p}d$ total and annihilation cross sections.
²⁴ Narrow bump seen in total $\bar{p}p$, $\bar{p}d$ cross sections. Isospin uncertain. Not seen in $\bar{p}p$ charge exchange by ALSTON-GARNJOST 75, CHALOUPKA 76. Integrated cross section three times larger than BRUCKNER 77.
25 Narrow bump seen in total pp, pd cross sections. Isospin uncertain. Not seen in pp charge exchange by ALSTON-GARNJOST 75, CHALOUPKA 76. Integrated cross section three times larger than BRUCKNER 77. Not seen by CLOUGH 84.
26 From energy dependence of far backward elastic scattering. Some indication of additional structure.
27 From energy dependence of far backward elastic scattering. Some indication of additional structure.
²⁸ Not seen by ALBERI 79 with comparable statistics.
²⁹ Seen as a bump in the $\bar{p}p \to K_S^0 K_L^0$ cross section with $J^{PC} = 1^{-1}$.
30 Isospin 1 favored.
³¹ From a fit to the $I^G(J^{PC}) = 1^+(4^{++}) f_2(1270) \pi$ wave.
32 From a fit to the $\int_{0}^{G} (J^{PC}) = 0^{+}(3^{+}+) \pi^{0} \pi^{0} \eta$ wave.
33 Not seen by AJALTOUNI 82, ARMSTRONG 79, BUZZO 97.
34 From a fit to the $I^G(J^{PC}) = 0^+(2^{++}) \pi^0 \pi^0 \eta$ wave.
35 Not seen by BIONTA 80, CARROLL 80, HAMILTON 80, BANKS 81, CHUNG 81, BARNETT 83.
36 From a fit to the $I^{G}(J^{PC}) = 0^{+}(2^{-+}) \pi^{0} \pi^{0} \eta$ wave.
³⁷ Neutron spectator. See also $np\bar{p}\pi^-(p)$ channel following.
³⁸ From a fit to the $I^G(J^{PC}) = 1^+(3^{++}) f_2(1270) \pi$ wave.
³⁹ Proton spectator. See also $p\bar{p}n(n)$ channel above.
$^{40}I(J^P)=1(3^-)$ from a mass dependent partial-wave analysis taking solution A.
⁴¹ From a fit to the $I^G(I^{PC}) = 1^+(2^{++}) f_2(1270) \pi$ wave.
⁴² From a fit to the $I^G(J^{PC}) = 1 + (1 + +) f_2(1270) \pi$ wave.
$^{43}I(J^P)=1(3^-)$ from amplitude analysis assuming one-pion exchange.
44 From a fit to the $I^G(J^{PC}) = 0^+(1^{++}) \pi^0 \pi^0 \eta$ wave. 45 Seen in final state $\omega \pi^+ \pi^-$.
46 $I(J^P) = 0(2^+)$ from amplitude analysis assuming one-pion exchange.
47 ALLES-BORELLI 67B see neutral mode only $\pi^+\pi^-\pi^0$.
$^{48}I(J^P)=0(4^+)$ from a mass dependent partial-wave analysis taking solution A.
⁴⁹ From a fit to the $I^G(J^{PC}) = 0^+(3^{++}) \pi^0 \pi^0 \eta$ wave.
50 From a fit to the $I^{G}(J^{PC}) = 0^{+}(4^{+}) \pi^{0} \pi^{0} \eta$ wave.
51 Supersedes CARBONELL 93.
$\frac{52}{1}(J^P) = 0(4^+)$ from amplitude analysis assuming one-pion exchange.
$^{53}I(J^P) = 1(5^-)$ from amplitude analysis assuming one-pion exchange.
$^{54}I(J^P)=1(5^-)$ from amplitude analysis of $\bar{p}p\to\pi\pi$. $^{55}l=0,1$ $J^P=5^-$ from Barrelet-zero analysis.
56 Decays to $\overline{N}N$ and $\overline{N}N\pi$. Not seen by BARNETT 83.
57 Decays to $4\pi^{+}4\pi^{-}$.
/

NN(1100-3600) REFERENCES

ANISOVICH	99	PL B449 145	A.V. Anisovich et al.
ANISOVICH	99C	PL B452 173	A.V. Anisovich et al.
ANISOVICH	99D	PL B452 180	A.V. Anisovich et al.
Also	99F	NP A651 253	A.V. Anisovich et al.
ANISOVICH	99E	PL B452 187	A.V. Anisovich et al.
ANISOVICH	991	PL B471 271	A.V. Anisovich et al.
FERRER	99	EPJ C10 249	A. Ferrer et al.
ANTONELLI	98	NP B517 3	A. Antonelli et al. (FENICE Collab.)
BUZZO	97	ZPHY C76 475	A. Buzzo et al. (JETSET Collab.)
CHIBA	97	PR D55 40	M. Chiba et al. (FUKI, INUS, KEK, SANG+)
DALKAROV	97	PL B392 229	O.D. Dalkarov et al. (LEBD)
BARNES	94	PL B331 203	P.D. Barnes et al. (PS185 Collab.)
CARBONELL	93	PL B306 407	J. Carbonell, K.V. Protasov, O.D. Dalkarov (ISNG+)
FERRER	93	NP A558 191c	A. Ferrer, A.A. Grigorian (WA56 Collab.)
CHIBA	91	PR D44 1933	M. Chiba et al. (FUKI, KEK, SANG, OSAK+)
GRAF	91	PR D44 1945	N.A. Graf et al. (UCI, PENN, NMSU, KARLK+)
BUSENITZ	89	PR D40 1	J.K. Busenitz et al. (ILL, FNAL)
CHIBA	88	PL B202 447	M. Chiba, K. Doi (FUKI, INUS, KEK, SANG, OSAK+)
CHIBA	87	PR D36 3321	M. Chiba et al. (FUKI, INUS, KEK, SANG+)
DAFTARI	87	PRL 58 859	I.K. Daftari et al. (SYRA)
FRANKLIN	87	PL B184 81	J. Franklin
ADIELS	86	PL B182 405	L. Adiels et ai. (STOH, BASL, LASL, THES+)
ANGELOPO	86	PL B178 441	A. Angelopoulos et al. (ATHU, UCI, KARLK+)
BRIDGE5	86B	PRL 56 215	D.L. Bridges et al. (SYRA, CASE)
BRIDGES	86D	PL B180 313	D.L. Bridges et al. (5YRA, BNL, CASE+)
ADIELS	84	PL 138B 235	L. Adiels et al. (BASL, KARLK, KARLE, STOH+)
CLOUGH	84	PL 146B 299	A.S. Clough et al. (SURR, LOQM, ANIK+)
AZOOZ	83	PL 122B 471	F. Azooz, I. Butterworth (LOIC, RHEL, SACL+)
BARNETT	83	PR D27 493	B. Barnett et al. (JHU)
BODENKAMP		PL 133B 275	J. Bodenkamp et al. (KARLK, KARLE, DESY)
RICHTER	83	PL 126B 284	B. Richter, L. Adiels (BASL, KARLK, KARLE, STOH+)
AJALTOUNI	82	NP B209 301	Z. Ajaltouni et al. (CERN, NEUC+)
BANKS	81	PL 100B 191	A.D. Banks et al. (LIVP, CERN)
CHUNG	81	PRL 46 395	S.U. Chung et al. (BNL, BRAN, CINC+)
JASTRZEM	81	PR D23 2784	E. Jastrzembski et al. (TEMP, UCI, UNM)
ALPER	80	PL 94B 422	B. Alper et al. (AMST, CERN, CRAC, MPIM+)
ASTON	BOD	PL 93B 517	D. Aston (BONN, CERN, EPOL, GLAS, LANC+)
BIONTA	80	PRL 44 909	R.M. Bionta et al. (BNL, CMU, FNAL+)
CARROLL	80	PRL 44 1572	A.S. Carroll et al. (BNL, PRIN)
DAUM	80E	PL 90B 475	C. Daum et al. (AMST, CERN, CRAC, MPIM+)
DEFOIX	80	NP B162 12	C. Defoix et al. (CDEF, PISA)
HAMILTON	80	PRL 44 1179	R.P. Hamilton et al. (LBL, BNL, MTHO)
HAMILTON	80B	PRL 44 1182	R.P. Hamilton et al. (LBL, BNL, MTHO)
KREYMER	80	PR D22 36	A.E. Kreymer et al. (IND, PURD, SLAC+)
ROZANSKA	80	NP B162 505	M. Rozanska et al. (MPIM, CERN)

		A	A	(many density tensity
ALBERI	79	PL 83B 247	G. Alberi et al.	(TRST, CERN, IFRJ)
ARMSTRONG	79	PL B85 304	T.A. Armstrong et al.	(DESY, GLAS)
EVANGELISTA	79	NP B153 253	C. Evangelista et al.	(BARI, BONN, CERN+)
		NP B154 381	C. Evangelista et al.	(BARI, BONN, CERN+)
GIBBARD	79	PRL 42 1593	B.G. Gibbard et al.	(CORN)
SAKAMOTO	79	NP B158 410	S. Sakamoto et al.	(INUS)
CARTER	78B	NP B141 467	A.A. Carter	(LOQM)
PAVLOPO	78	PL 72B 415	P. Paviopoulos et al.	(KARLK, KARLE, BASL+)
BENKHEIRI	77	PL 68B 483	P. Benkheiri et al.	(CERN, CDEF, EPOL+)
BRUCKNER	77	PL 67B 222	W. Bruckner et al.	(MPIH, HEIDP, CERN)
CARTER	77	PL 67B 117	A.A. Carter et al.	(LOQM, RHEL) JP
ABASHIAN	76	PR D13 5	A. Abashian et al.	(ILL, ANL, CHIC+)
BRAUN	76	PL 60B 481	H.M. Braun et al.	(STRB)
CHALOUPKA	76	PL 61B 487	V. Chaloupka et al.	(CERN, LIVP, MÒNS+)
ALSTON	75	PRL 35 1685	M. Alston-Garniost et al.	(LBL, MTHO)
D'ANDLAU	75	PL 58B 223	C. d'Andlau et al.	(CDEF, PISA)
EISENHAND	75	NP B96 109	E. Eisenhandler et al.	(LOQM, LIVP, DARE+)
KALOGERO	75	PRL 34 1047	T. Kalogeropoulos, G.S. Tzan	
CARROLL	74	PRL 32 247	A.S. Carroll et al.	(BNL)
DONALD	73	NP B61 333	R.A. Donald et al.	(LIVP. PARIS)
ALEXANDER	72	NP B45 29	G. Alexander et al.	(TELA)
BENVENUTI	71	PRL 27 283	A.C. Benvenuti et al.	(WISC)
ALLES	67B	NC 50A 776	V. Altes-Borelli et al.	(CERN, BONN) G
BETTINI	66	NC 42A 695	A. Bettini et al.	(PADO, PISA)
DETTING	00	14C 42A 093	A. Dettilli et al.	(LADO, LIDA)
		OTUED	DELATED DADEDE	
		UINEK	RELATED PAPERS	
ANISOVICH	99F	NP A651 253	A.V. Anisovich et al.	
CHIBA	99	PR C60 035204	M. Chiba et al.	
BUZZO	97	ZPHY C76 475	A. Buzzo et al.	(JETSET Collab.)
TANIMORI	90	PR D41 744	T. Tanimori et al.	(KEK, INUS, KYOT+)
LIU	87	PRL 58 2288	K.F. Liu, Kiu, B.A. Li	(STON)
ARMSTRONG	B6C	PL B175 383	T.A. Armstrong et al.	(BNL, HOUS, PENN+)
BRIDGES	86	PRL 56 211		
		PRL 50 211 PRL 57 1534	D.L. Bridges et al.	(BLSU, BNL, CASE+)
BRIDGES	86C	PRL 57 1534 PRL 57 1207	D.L. Bridges et al. C.B. Dover et al.	(SYRA) JP (BNL) JP
DOVER	86			
ANGELOPO	85	PL 159B 210	A. Angelopoulos et al.	(ATHU, UCI, UNM+)
BODENKAMP	85	NP B255 717	J. Bodenkamp et al.	(KARLK, KARLE, DESY)
AZOOZ	84	NP B244 277	F. Azooz, I. Butterworth	(LOIC, RHEL, SACL+)

X(1900-3600)

OMITTED FROM SUMMARY TABLE THE X(1900-3600) REGION

This high-mass region is covered nearly continuously with evidence for peaks of various widths and decay modes. As no satisfactory grouping into particles is yet possible, we list together in order of increasing mass all the Y=0 bumps above 1900 MeV that are coupled neither to $\overline{N}N$ nor to e^+e^- .

X(1900-3600) MASSES AND WIDTHS

We do not use the following data for averages, fits, limits, etc.

VALUE (MeV)		DOCUMENT ID				
1900 to 3600 OUR	LIMIT					
VALUE (MeV)		DOCUMENT ID		TEÇN	<u>CHG</u>	COMMENT
1870 ± 40		¹ ALDE	86D	GAM4	0	$100 \pi^- p \rightarrow 2\eta X$
250 ± 30		¹ ALDE	86D	GAM4	0	$100 \ \pi^- \rho \rightarrow 2 \eta X$
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1898 ± 18	100	THOMPSON	74	HBC	+	$13 \pi^+ p \rightarrow 2\rho X$
108^{+41}_{-27}	100	THOMPSON	74	нвс	+	$13 \pi^+ \rho \rightarrow 2\rho X$
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1900± 40	100	BOESEBECK	68	HBC	+	$8 \pi^+ p \rightarrow \pi^+ \pi^0 X$
216±105	100	BOESEBECK	68	нвс	+	$ \begin{array}{c} \pi + \pi^{0}X \\ 8\pi^{+}\rho \rightarrow \\ \pi^{+}\pi^{0}X \end{array} $
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
1929±14		² FOCACCI	66	MMS	_	3-12 π ⁻ p
22± 2		² FOCACCI	66	MMS	-	3-12 m - p
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
1970 ± 10		CHLIAPNIK	80	HBC	0	$32 K^{+} p \rightarrow 2K_{0}^{0} 2\pi X$
40 ± 20		CHLIAPNIK	80	нвс	0	$32 \begin{array}{c} K^+ p \rightarrow \\ 2K_5^0 2\pi X \end{array}$
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1973±15	30	CASO	70	нвс	-	$11.2 \pi^- p \rightarrow \rho 2\pi$
80	30	CASO	70	нвс	-	$11.2 \frac{\pi}{\pi} p \rightarrow \rho 2\pi$
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	сомь	MENT
2070	50	TAKAHASHI	72	HBC		$\rho \rightarrow N2\pi$
160	50	TAKAHASHI	72	HBC	8 π ⁻	$\rho \rightarrow N2\pi$

					•	
VALUE (MeV)	EVTS	DOCUMENT ID			CHG	COMMENT
~ 2104		BUGG	95	MRK3		$J/\psi \rightarrow + - + -$
2103±50	586	3 BISELLO	89B	DM2		$\gamma \pi^+ \pi^- \pi^+ \pi^ J/\psi \to 4\pi \gamma$
187 ± 75	586	3 BISELLO		DM2		$J/\psi \rightarrow 4\pi\gamma$
2100 ± 40		⁴ ALDE	86D	GAM4	0	$100 \pi^- p \rightarrow 2\eta X$
250 ± 40		⁴ ALDE	86 D	GAM4	0	$100 \pi^- p \rightarrow 2\eta X$
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	сомм	ENT
2141 ± 12	389	GREEN	86	MPSF	400 p	A → 4KX
49 ± 28	389	GREEN	86	MPSF	400 p	A → 4KX
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
2190±10		CLAYTON	67	HBC	±	2.5 $\overline{p}p \rightarrow a_2$, ω
VALUE (MeV)		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
2195±15		² FOCACCI	66	MMS	-	3-12 π ⁻ ρ
39 ± 14		² FOCACCI	66	MMS	-	3-12 π ⁻ ρ
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
2207 ± 22		5 CASO	70	HBC	-	11.2 $\pi^{-}p$
130		⁵ CASO	70	HBC	-	11.2 $\pi^- p$
VALUE (MeV)		DOCUMENT ID		TECN		
2280± 50		ATKINSON	85	OMEG		$0 \gamma \rho \rightarrow 0 \pi^{+} \pi^{-} \pi^{0}$
440±110		ATKINSON	85	OMEG	20-70	$\begin{array}{c} 0 & \gamma p \rightarrow \\ 0 & \pi + \pi - \pi 0 \end{array}$
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
2300 ± 100		ATKINSON	84F	OMEG	±0	$20-70 \gamma \rho \rightarrow \rho f$
~ 250		ATKINSON	84F	OMEG	±0	$20-70 \ \gamma \rho \rightarrow \rho f$
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
2330±30		ATKINSON	88	OMEG	0	$\begin{array}{c} 25-50 \ \gamma p \rightarrow \\ \rho^{\pm} \ \rho^{0} \ \pi^{\mp} \end{array}$
435 ± 75		ATKINSON	88	OMEG	0	$25-50 \gamma \rho \rightarrow \rho \pm \rho^0 \pi^{\mp}$
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2340 ± 20	126	6 BALTAY	75	HBC	+	$15 \pi^+ p \rightarrow p5\pi$
180±60	126	6 BALTAY	75	нвс	+	$15~\pi^+\rho\to~\rho 5\pi$
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
2382 ± 24		² FOCACCI	66	MMS	-	$3-12 \pi^- \rho$
62± 6		² FOCACCI	66	MMS	-	3-12 π ⁻ p
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
2500 ± 32		ANDERSON	69	MMS	-	16 $\pi^- p$ backward
87		ANDERSON	69	MMS	-	16 $\pi^- p$ backward
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
2620 ± 20	550	BAUD	69	MMS	-	8-10 $\pi^- \rho$
85 ± 30	550	BAUD	69	MMS	-	8-10 π ⁻ ρ
VALUE (MeV)		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
2676 ± 27		⁵ CASO	70	HBC	-	11.2 $\pi^{-}p$
150		⁵ CASO	70	нвс	-	11.2 $\pi^- \rho$
VALUE (MeV)		DOCUMENT ID		TECN		
		DENNEY		LAS\$	10 π	
2747 ± 32					10 π	T A/
2747 ± 32 195 ± 75		DENNEY	83	LASS	10 %	
	EVTS	DENNEY DOCUMENT ID	83	TECN TECN		COMMENT
195 ± 75	<i>EVTS</i> 640		69	TECN		

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2820±10	15	⁷ SABAU	71	HBC	+	8 π ⁺ p
50 ± 10	15	⁷ SABAU	71	нвс	+	8 π ⁺ p
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2880 ± 20	230	BAUD	69	MMS	-	8-10 π p
< 15	230	BAUD	69	MMS	-	8-10 π ⁻ p
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
3025 ± 20		BAUD	70	MMS	-	$10.5-13 \pi^{-} \rho$
~ 25		BAUD	70	MMS	-	10.5~13 π - ρ
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
3075 ± 20		BAUD	70	MMS	_	$10.5-13 \pi^{-} p$
~ 25		BAUD	70	MMS	-	10.5-13 $\pi^- p$
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
3145 ± 20		BAUD	70	MMS	_	$10.5-15 \pi^{} \rho$
< 10		BAUD	70	MMS	-	10.5-15 $\pi^- \rho$
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
3475 ± 20		BAUD	70	MMS	_	$14-15.5 \pi^{-} p$
~ 30		BAUD	70	MMS	-	$14-15.5 \pi^{-} p$
VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
3535 ± 20		BAUD	70	MMS	-	$14-15.5 \pi^- \rho$
~ 30		BAUD	70	MMS	-	$14-15.5 \pi^{-} p$

X(1900-3600) REFERENCES

BUGG	95	PL B353 378	D.V. Bugg et al.	(LOQM, PNPI, WASH)
BISELLO	89B	PR D39 701	G. Busetto et al.	(DM2 Collab.)
ATKINSON	88	ZPHY C38 535	M. Atkinson et al.	(BONN, CÈRN, GLAS+)
ALDE	86D	NP B269 485	D.M. Alde et al.	(BELG, LAPP, SERP, CERN+)
GREEN	86	PRL 56 1639	D.R. Green et al.	(FNAL, ARIZ, FSU+)
ATKINSON	85	ZPHY C29 333	M. Atkinson et al.	(BONN, CERN, GLAS+)
ATKINSON	84F	NP B239 1	M. Atkinson et al.	(BONN, CERN, GLAS+)
DENNEY	83	PR D28 2726	D.L. Denney et al.	(IOWA, MICH) J
ASTON	BIB	NP B189 205	D. Aston et al.	(BONN, CERN, EPOL, GLAS+)
ARESTOV	80	IHEP 80-165	Y.I. Arestov et al.	(SERP)
CHLIAPNIK	80	ZPHY C3 285	P.V. Chliapnikov et al.	(SERP, BRUX, MONS)
BALTAY	78	PR D17 52	C. Baltay et al.	(COLU, BING)
BALTAY	75	PRL 35 891	C. Baltay et al.	(COLU, BING)
THOMPSON	74	NP B69 220	G. Thompson et al.	` (PURD)
ANTIPOV	72	PL 40 147	Y.M. Antipov et al.	(SERP)
TAKAHASHI	72	PR D6 1266	K. Takahashi et al.	(TOHOK, PENN, NĎAM+)
SABAU	71	LNC 1 514	M. Sabeu, J.L. Uretsky	` (BUCH, ANL)
BAUD	70	PL 31B 549	R. Baud et al.	
CASO	70	LNC 3 707	C. Caso et al.	(GENO, HAMB, MILA, SACL)
ANDERSON	69	PRL 22 1390	E.W. Anderson et al.	(BNL, CMU)
BAUD	69	PL 30B 129	R. Baud et al.	, ,
BOESEBECK	68	NP B4 501	K. Boesebeck et al.	(AACH, BERL, CERN)
CLAYTON	67	Heidelberg Conf. 57	J.C. Clayton et al.	` (LIVP, ATHU)
FOCACCI	66	PRL 17 890	M.N. Focacci et al.	` (CERN)
				` '
		OTHE	R RELATED PAPE	DC
		OIRE	IN INCLUSION FAFE	NJ

		·		. ,
HIKOVANI	66	PL 22 233	G.E. Chikovani et al.	(SERP)
NTIPOV	72	PL 40 147	Y.M. Antipov et al.	(SERP)

¹ Seen in J=2 wave in one of the two ambiguous solutions.
2 Not seen by ANTIPOV 72, who performed a similar experiment at 25 and 40 GeV/c.
3 ASTON 81B sees no peak, has 850 events in Ajinenko+Barth bins. ARESTOV 80 sees no peak.
4 Seen in J=0 wave in one of the two ambiguous solutions.
5 Seen in $\rho^-\pi^+\pi^-$ (ω and η antiselected in 4π system).
6 Dominant decay into $\rho^0\rho^0\pi^+$. BALTAY 78 finds confirmation in $2\pi^+\pi^-2\pi^0$ events which contain $\rho^+\rho^0\pi^0$ and $2\rho^+\pi^-$.
7 Seen in $(K\overline{K}\pi\pi)$ mass distribution.

STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+ = u\overline{s}$, $K^0 = d\overline{s}$, $\overline{K}^0 = \overline{d}s$, $K^- = \overline{u}s$, similarly for K^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

THE CHARGED KAON MASS

Revised 1994 by T.G. Trippe, (LBNL).

The average of the six charged kaon mass measurements which we use in the Particle Listings is

$$m_{K^{\pm}} = 493.677 \pm 0.013 \text{ MeV (S} = 2.4),$$
 (1)

where the error has been increased by the scale factor S. The large scale factor indicates a serious disagreement between different input data. The average before scaling the error is

$$m_{K^\pm} = 493.677 \pm 0.005 \; {
m MeV} \; ,$$

$$\chi^2 = 22.9 \; {
m for} \; 5 \; {
m D.F.}, \, {
m Prob.} \; = 0.04\% \; , \eqno(2)$$

where the high χ^2 and correspondingly low χ^2 probability further quantify the disagreement.

The main disagreement is between the two most recent and precise results,

$$m_{K^\pm} = 493.696 \pm 0.007 \; {
m MeV} \; {
m DENISOV} \; 91$$
 $m_{K^\pm} = 493.636 \pm 0.011 \; {
m MeV} \; ({
m S} = 1.5) \; {
m GALL} \; 88$

Average = 493.679 ± 0.006 MeV

$$\chi^2 = 21.2$$
 for 1 D.F., Prob. = 0.0004\%, (3)

both of which are measurements of x-ray energies from kaonic atoms. Comparing the average in Eq. (3) with the overall average in Eq. (2), it is clear that DENISOV 91 and GALL 88 dominate the overall average, and that their disagreement is responsible for most of the high χ^2 .

The GALL 88 measurement was made using four different kaonic atom transitions, K^- Pb (9 \to 8), K^- Pb (11 \to 10), K^- W (9 \to 8), and K^- W (11 \to 10). The m_{K^\pm} values they obtain from each of these transitions is shown in the Particle Listings and in Fig. 1. Their K^- Pb (9 \to 8) m_{K^\pm} is below and somewhat inconsistent with their other three transitions. The average of their four measurements is

$$m_{K^\pm} = 493.636 \pm 0.007$$
 ,
$$\chi^2 = 7.0 \ \ {\rm for} \ \ 3 \ {\rm D.F., \ Prob.} \ \ = 7.2\% \ . \eqno(4)$$

This is a low but acceptable χ^2 probability so, to be conservative, GALL 88 scaled up the error on their average by S=1.5 to obtain their published error ± 0.011 shown in Eq. (3) above and used in the Particle Listings average.

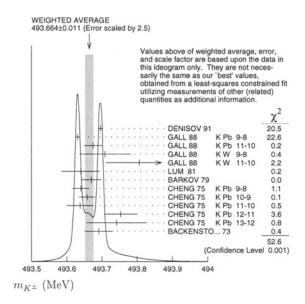


Figure 1: Ideogram of m_{K^\pm} mass measurements. GALL 88 and CHENG 75 measurements are shown separately for each transition they measured.

The ideogram in Fig. 1 shows that the DENISOV 91 measurement and the GALL 88 K^- Pb (9 \rightarrow 8) measurement yield two well-separated peaks. One might suspect the GALL 88 K^- Pb (9 \rightarrow 8) measurement since it is responsible both for the internal inconsistency in the GALL 88 measurements and the disagreement with DENISOV 91.

To see if the disagreement could result from a systematic problem with the K^- Pb (9 \rightarrow 8) transition, we have separated the CHENG 75 data, which also used K^- Pb, into its separate transitions. Figure 1 shows that the CHENG 75 and GALL 88 K^- Pb (9 \rightarrow 8) values are consistent, suggesting the possibility of a common effect such as contaminant nuclear γ rays near the K^- Pb (9 \rightarrow 8) transition energy, although the CHENG 75 errors are too large to make a strong conclusion. The average of all 13 measurements has a χ^2 of 52.6 as shown in Fig. 1 and the first line of Table 1, yielding an unacceptable χ^2 probability of 0.00005%. The second line of Table 1 excludes both the GALL 88 and CHENG 75 measurements of the K^- Pb (9 \rightarrow 8) transition and yields a χ^2 probability of 43%. The third [fourth] line of Table 1 excludes only the GALL 88 K^- Pb (9 \rightarrow 8) [DENISOV 91] measurement and yields a χ^2 probability of 20% [8.6%]. Table 1 shows that removing both measurements of the K^- Pb (9 \rightarrow 8) transition produces the most consistent set of data, but that excluding only the GALL 88 K^- Pb (9 \rightarrow 8) transition or DENISOV 91 also produces acceptable probabilities.

Yu.M. Ivanov, representing DENISOV 91, has estimated corrections needed for the older experiments because of improved 192 Ir and 198 Au calibration γ -ray energies. He estimates that CHENG 75 and BACKENSTOSS 73 m_{K^\pm} values could be

K±

Table 1: $m_{K^{\pm}}$ averages for some combinations of Fig. 1 data.

$m_{K^{\pm}} \; ({ m MeV})$	χ^2	D.F.	Prob. (%	%)	Measurements used
$\overline{493.664 \pm 0.004}$	52.6	12	0.00005	all	13 measurements
493.690 ± 0.006	10.1	10		no	$K^- \operatorname{Pb}(9 \rightarrow 8)$
493.687 ± 0.006	14.6	11	20	no	GALL 88 K^- Pb(9 \rightarrow 8)
493.642 ± 0.006	17.8	11			DENISOV 91

raised by about 15 keV and 22 keV, respectively. With these estimated corrections, Table 1 becomes Table 2. The last line of Table 2 shows that if such corrections are assumed, then GALL 88 K^- Pb (9 \rightarrow 8) is inconsistent with the rest of the data even when DENISOV 91 is excluded. Yu.M. Ivanov warns that these are rough estimates. Accordingly, we do not use Table 2 to reject the GALL 88 K^- Pb (9 \rightarrow 8) transition, but we note that a future reanalysis of the CHENG 75 data could be useful because it might provide supporting evidence for such a rejection.

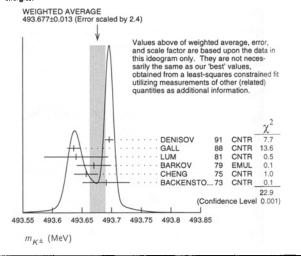
Table 2: $m_{K^{\pm}}$ averages for some combinations of Fig. 1 data after raising CHENG 75 and BACKENSTOSS 73 values by 0.015 and 0.022 MeV respectively.

$m_{K^{\pm}}~({ m MeV})$	χ^2	D.F.	Prob. (%) Measurements used
$\overline{493.666 \pm 0.004}$	53.9	12	0.00003 a	all 13 measurements
493.693 ± 0.006	9.0	10	53 I	no K ⁻ Pb(9→8)
493.690 ± 0.006	$^{.}11.5$	11	4 0 I	no GALL 88 K^- Pb(9 \rightarrow 8)
493.645 ± 0.006	23.0	11	1.8	10 DENISOV 91

The GALL 88 measurement uses a Ge semiconductor spectrometer which has a resolution of about 1 keV, so they run the risk of some contaminant nuclear γ rays. Studies of γ rays following stopped π^- and \varSigma^- absorption in nucleii (unpublished) do not show any evidence for contaminants according to GALL 88 spokesperson, B.L. Roberts. The DENISOV 91 measurement uses a crystal diffraction spectrometer with a resolution of 6.3 eV for radiation at 22.1 keV to measure the 4f-3d transition in $K^{--12}C$. The high resolution and the light nucleus reduce the probability for overlap by contaminant γ rays, compared with the measurement of GALL 88. The DENISOV 91 measurement is supported by their high-precision measurement of the 4d-2p transition energy in $\pi^{--12}C$, which is good agreement with the calculated energy.

While we suspect that the GALL 88 K^- Pb (9 \rightarrow 8) measurements could be the problem, we are unable to find clear grounds for rejecting it. Therefore, we retain their measurement in the average and accept the large scale factor until further information can be obtained from new measurements and/or from reanalysis of GALL 88 and CHENG 75 data.

We thank B.L. Roberts (Boston Univ.) and Yu.M. Ivanov (Petersburg Nuclear Physics Inst.) for their extensive help in understanding this problem.


K± MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
493.677±0.016 OUR FIT Error	includes scale fact	or of	2.8.		
493.677±0.013 OUR AVERAGE	Error includes sca below.	le fa	ctor of 2	.4. Se	e the ideogram
493.696 ± 0.007	1 DENISOV	91	CNTR	-	Kaonic atoms
493.636±0.011	² GALL	88	CNTR	_	Kaonic atoms
493.640 ± 0.054	LUM	81	CNTR	-	Kaonic atoms
493.670 ± 0.029	BARKOV	79	EMUL	±	e+e- → K+K-
493.657 ± 0.020	² CHENG	75	CNTR	-	Kaonic atoms
493.691 ± 0.040	BACKENSTO.	73	CNTR		Kaonic atoms
• • We do not use the following	g data for average	5, fit	s, limits,	etc.	• •
493.631 ± 0.007	GALL	88	CNTR	-	K ⁻ Pb (9→ 8)
493.675 ± 0.026	GALL	88	CNTR	-	K ⁻ Pb (11→ 10)
493.709 ± 0.073	GALL	88	CNTR	_	K^-W (9 \rightarrow 8)
493.806±0.095	GALL	88	CNTR	_	K ⁻ W (11→ 10)
$493.640 \pm 0.022 \pm 0.008$	³ CHENG	75	CNTR	_	K^- Pb (9 \rightarrow 8)
$493.658 \pm 0.019 \pm 0.012$	³ CHENG	75	CNTR	_	K ⁻ Pb (10→ 9)
$493.638 \pm 0.035 \pm 0.016$	³ CHENG	75	CNTR	_	K ⁻ Pb (11→ 10)
$493.753 \pm 0.042 \pm 0.021$	³ CHENG	75	CNTR	_	K ⁻ Pb (12→ 11)
$493.742 \pm 0.081 \pm 0.027$	3 CHENG	75	CNTR	_	K Pb (13→ 12)
493.662 ± 0.19	KUNSELMAN	74	CNTR	_	Kaonic atoms
493.78 ±0.17	GREINER	65	EMUL	+	
493.7 ±0.3	BARKAS	63	EMUL	_	
493.9 ±0.2	COHEN	57	RVUE	+	

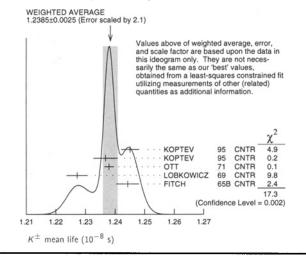
¹ Error increased from 0.0059 based on the error analysis in IVANOV 92.

 $^{2}\,\text{This}$ value is the authors' combination of all of the separate transitions listed for this paper.

 3 The CHENG 75 values for separate transitions were calculated from their Table 7 transition energies. The first error includes a 20% systematic error in the noncircular contaminant shift. The second error is due to a ± 5 eV uncertainty in the theoretical transition energies.

m_{K+} - m_{K-}

Test of CPT.


K± MEAN LIFE

VALUE (10 ⁻⁸ s)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1.2386 ± 0.0024 OUF	FIT Error in	ncludes scale fact	or of	2.0.		
1.2385±0.0025 OUF	AVERAGE	Error includes sca below.	le fa	ctor of 2	2.1. Se	ee the ideogram
1.2451 ± 0.0030	250k	KOPTEV	95	CNTR		K at rest, U tar- get
1.2368 ± 0.0041	150k	KOPTEV	95	CNTR		K at rest, Cu tar- get
1.2380 ± 0.0016	3M	OTT	71	CNTR	+	K at rest
1.2272 ± 0.0036		LOBKOWICZ	69	CNTR	+	K in flight
1.2443 ± 0.0038		FITCH	65B	CNTR	+	K at rest

1.2415 ± 0.0024	400k	⁵ KOPTEV	95	CNTR		K at res
1.221 ± 0.011		FORD	67	CNTR	±	
1.231 ±0.011		BOYARSKI	62	CNTR	+	
$1.25 \begin{array}{c} +0.22 \\ -0.17 \end{array}$		BARKAS	61	EMUL		
$1.27 \begin{array}{c} +0.36 \\ -0.23 \end{array}$	51	BHOWMIK	61	EMUL		
1.31 ±0.08	293	NORDIN	61	HBC	_	
1.24 ± 0.07		NORDIN	61	RVUE	_	
1.38 ± 0.24	33	FREDEN	60B	EMUL		
1.21 ± 0.06		BURROWES	59	CNTR		
1.60 ± 0.3	52	EISENBERG	58	EMUL		
$0.95 \begin{array}{c} +0.36 \\ -0.25 \end{array}$		ILOFF	56	EMUL		
_						

See key on page 239

⁵ KOPTEV 95 report this weighted average of their U-target and Cu-target results, where they have weighted by $1/\sigma$ rather than $1/\sigma^2$.

 $(\tau_{K^+} - \tau_{K^-}) / \tau_{average}$

This quantity is a measure of $\ensuremath{\textit{CPT}}$ invariance in weak interactions

VALUE (%)	DOCUMENT ID	TECN
0.11 ±0.09 OUR AVERAGE	Error includes scale fac	tor of 1.2.
0.090 ± 0.078	LOBKOWICZ 69	CNTR
0.47 ±0.30	FORD 67	CNTR

RARE KAON DECAYS

(Revised April 2000 by L. Littenberg, BNL and G. Valencia, Iowa State University)

- A. Introduction: There are several useful reviews on rare kaon decays and related topics [1-11]. The current activity in rare kaon decays can be divided roughly into four categories:
- 1. Searches for explicit violations of the Standard Model
- 2. Measurements of Standard Model parameters
- 3. Searches for CP violation
- 4. Studies of strong interactions at low energy.

The paradigm of Category 1 is the lepton flavor violating decay $K_L \to \mu e$. Category 2 includes processes such as $K^+ \to \pi^+ \nu \overline{\nu}$, which is sensitive to $|V_{td}|$. Much of the interest in Category 3 is focussed on the decays $K_L \to \pi^0 \ell \overline{\ell}$, where $\ell \equiv e, \mu, \nu$. Category 4 includes reactions like $K^+ \to \pi^+ \ell^+ \ell^-$ which constitute a testing ground for the ideas of chiral perturbation theory. Other reactions of this type are $K_L \to \pi^0 \gamma \gamma$, which also scales a CP-conserving background to CP violation in $K_L \to \pi^0 \ell^+ \ell^-$ and $K_L \to \gamma \ell^+ \ell^-$, which could possibly shed light on long distance contributions to $K_L \to \mu^+ \mu^-$.

B. Explicit violations of the Standard Model: Most of the activity here is in searches for lepton flavor violation (LFV). This is motivated by the fact that many extensions of the minimal Standard Model violate lepton flavor and by the potential to access very high energy scales. For example, the tree-level exchange of a LFV vector boson of mass M_X that couples to lefthanded fermions with electroweak strength and without mixing angles yields $B(K_L \to \mu e) = 4.7 \times 10^{-12} (148 \text{ TeV}/M_X)^4$ [5]. This simple dimensional analysis may be used to read from Table 1 that the reaction $K_L o \mu e$ is already probing scales of over 100 TeV. Table 1 summarizes the present experimental situation vis a vis LFV, along with the expected near-future progress. The decays $K_L \to \mu^{\pm} e^{\mp}$ and $K^+ \to \pi^+ e^{\mp} \mu^{\pm}$ (or $K_L \to \pi^0 e^{\mp} \mu^{\pm}$) provide complementary information on potential family number violating interactions since the former is sensitive to parity-odd couplings and the latter is sensitive to parity-even couplings. Related searches in μ and τ process are discussed in our section "Tests of Conservation Laws".

Table 1: Searches for lepton flavor violation in K decay

14.1	90% CL	T)),	V /D ((Near-)
Mode	upper limit	Exp't	Yr./Rei	. future aim
$K^+ \to \pi^+ e \mu$	4.8×10 ⁻¹¹ *	BNL-865	99/12	9×10 ⁻¹² (BNL-865)
$K_L\! o\!\mu e$	4.7×10^{-12}	BNL-871	98/13	,
$K_L \rightarrow \pi^0 e \mu$	3.2×10^{-9}	FNAL-799	94/14	5×10 ⁻¹¹ (KTeV)

^{*}preliminary

Another forbidden decay currently being pursued is $K^+ \to \pi^+ X^0$, where X^0 is a very light, noninteracting particle (e.g. hyperphoton, axion, familon, etc.). The 90% CL upper limit on this process was recently improved to 1.1×10^{-10} [15]. Data already collected by BNL-787 are expected to yield a further factor ~ 2 in sensitivity to this process.

C. Measurements of Standard Model parameters: Until 1997, searches for $K^+ \to \pi^+ \nu \overline{\nu}$ were motivated by the possibility of observing non-SM physics because the sensitivity attained was far short of the SM prediction for this decay [16] and longdistance contributions were known to be negligible [2]. However, BNL-787 has attained the sensitivity at which the observation of an event can no longer be unambiguously attributed to non-SM physics. In 1997 BNL-787 observed a single candidate event and has recently released the results of further running in which no further events were seen, yielding a branching ratio of $(1.5^{+3.4}_{-1.2}) \times 10^{-10}$ [15]. Further data already collected are expected to increase the sensitivity by approximately a factor 2, and there are plans for an upgrade to the experiment to collect roughly an order of magnitude more sensitivity [17]. This reaction is now interesting from the point of view of constraining SM parameters. The branching ratio can be written in terms of the very well-measured rate of K_{e3} as [2]:

$$B(K^{+} \to \pi^{+} \nu \overline{\nu}) = \frac{\alpha^{2} B(K^{+} \to \pi^{0} e^{+} \nu)}{V_{us}^{2} 2\pi^{2} \sin^{4} \theta_{W}} \times \sum_{l=e,\mu,\tau} |V_{cs}^{*} V_{cd} X_{NL}^{\ell} + V_{ts}^{*} V_{td} X(m_{t})|^{2}$$
(1)

 K^{\pm}

to eliminate the *a priori* unknown hadronic matrix element. Isospin breaking corrections to the ratio of matrix elements reduce this rate by 10% [18]. In Eq. (1) the Inami-Lim function $X(m_t)$ is of order 1 [19], and X_{NL}^{ℓ} is several hundred times smaller. This form exhibits the strong dependence of this branching ratio on $|V_{td}|$. QCD corrections, which are contained in X_{NL}^{ℓ} , are relatively small and now known [10] to \leq 10%. Evaluating the constants in Eq. (1) with $m_t = 175$ GeV, one can cast this result in terms of the CKM parameters A, ρ and η (see our Section on "The Cabibbo-Kobayashi-Maskawa mixing matrix") [10]

$$B(K^+ \to \pi^+ \nu \overline{\nu}) \approx 1.0 \times 10^{-10} A^4 [\eta^2 + (\rho_o - \rho)^2]$$
 (2)

where $ho_o \equiv 1 + (\frac{2}{3} X_{NL}^e + \frac{1}{3} X_{NL}^{\tau})/(A^2 V_{us}^4 X(m_t)) \approx 1.4$. Thus, $\mathrm{B}(K^+ \to \pi^+ \nu \overline{\nu})$ determines a circle in the ρ , η plane with center $(\rho_o,0)$ and radius $\approx \frac{1}{A^2} \sqrt{\frac{\mathrm{B}(K^+ \to \pi^+ \nu \overline{\nu})}{1.0 \times 10^{-10}}}$. The decay $K_L \to \mu^+ \mu^-$ also has a short distance contribu-

The decay $K_L \to \mu^+ \mu^-$ also has a short distance contribution sensitive to the CKM parameter ρ . For $m_t = 175$ GeV it is given by [10]:

$$B_{SD}(K_L \to \mu^+ \mu^-) \approx 1.7 \times 10^{-9} A^4 (\rho_o' - \rho)^2$$
 (3)

where ρ'_{o} depends on the charm quark mass and is around 1.2. This decay, however, is dominated by a long-distance contribution from a two-photon intermediate state. The absorptive (imaginary) part of the long-distance component is calculated in terms of the measured rate for $K_L \rightarrow \gamma \gamma$ to be $B_{abs}(K_L \to \mu^+\mu^-) = (7.07 \pm 0.18) \times 10^{-9}$; and it almost completely saturates the observed rate $B(K_L \rightarrow \mu^+\mu^-) =$ $(7.18 \pm 0.17) \times 10^{-9}$ [20]. The difference between the observed rate and the absorptive component can be attributed to the (coherent) sum of the short-distance amplitude and the real part of the long-distance amplitude. In order to use this mode to constrain ρ it is, therefore, necessary to know the real part of the long-distance contribution. Unlike the absorptive part, the real part of the long-distance contribution cannot be derived from the measured rate for $K_L \to \gamma \gamma$. At present, it is not possible to compute this long-distance component reliably and, therefore, it is not possible to constrain ρ from this mode in a model independent way [21]. Several models exist to estimate this long-distance component [22,23] that are sufficient to place rough bounds on new physics from the measured rate for $K_L \to \mu^+ \mu^-$ [24]. The decay $K_L \to e^+ e^-$ is completely dominated by long distance physics and is easier to estimate. The result, $B(K_L \rightarrow e^+e^-) \sim 9 \times 10^{-12}$ [21,23], is in good agreement with the recent measurement [25]. It is expected that studies of the reactions $K_L \to \ell^+\ell^-\gamma$, and $K_L \to \ell^+\ell^-\ell'^+\ell'^$ for $\ell, \ell' = e$ or μ , currently under active study by the KTeV and NA48 experiments, will improve our understanding of the long distance effects in $K_L \to \mu^+ \mu^-$ (the current data is parameterized in terms of α_K^* , discussed on page 25 of the K_L^0 Particle Properties Listing in our 1999 WWW update).

D. Searches for direct CP violation: The mode $K_L \to \pi^0 \nu \overline{\nu}$ is dominantly CP-violating and free of hadronic uncertainties [2,26]. The Standard Model predicts a branching ratio $(3.0 \pm 1.3) \times 10^{-11}$; for $m_t = 175$ GeV it is given approximately by [10]:

$$B(K_L \to \pi^0 \nu \overline{\nu}) \approx 4.1 \times 10^{-10} A^4 \eta^2$$
 (4)

The current upper bound is $B(K_L \to \pi^0 \nu \bar{\nu}) \leq 5.9 \times 10^{-7}$ [27] and KTeV (FNAL799II) is expected to place a bound of order 10^{-8} [28]. The 90% CL bound on $K^+ \to \pi^+ \nu \bar{\nu}$ provides a nearly model independent bound $B(K_L \to \pi^0 \nu \bar{\nu}) < 3 \times 10^{-9}$ [29]. A KEK experiment to reach the 10^{-10} /event level is in preparation [30]. The BNL-926 [31] proposal aims to make a $\sim 15\%$ measurement of $B(K_L \to \pi^0 \nu \bar{\nu})$. There is also a Fermilab EOI [32] with comparable goals.

There has been much recent theoretical work on possible contributions to ϵ'/ϵ and rare K decays within a generic supersymmetric extension of the Standard Model with R parity conservation and minimal particle content [24,33]. These conclude that contributions to rare decays much larger than those of the Standard Model are possible without violating current phenomenological constraints.

The decay $K_L \to \pi^0 e^+ e^-$ also has sensitivity to the product $A^4 \eta^2$. It has a direct CP-violating component that for $m_t = 175$ GeV is given by [10]:

$$B_{\rm dir}(K_L \to \pi^0 e^+ e^-) \approx 6.7 \times 10^{-11} A^4 \eta^2$$
 (5)

However, like $K_L \to \mu^+ \mu^-$ this mode suffers from large theoretical uncertainties due to long distance strong interaction effects. It has an indirect CP-violating component given by:

$$B_{\rm ind}(K_L \to \pi^0 e^+ e^-) = |\epsilon|^2 \frac{\tau_{K_L}}{\tau_{K_S}} B(K_S \to \pi^0 e^+ e^-) ,$$
 (6)

that has been estimated to be less than 10^{-12} [34], but that will not be known precisely until a measurement of $K_S \to \pi^0 e^+ e^-$ is available [4,35]. There is also a CP-conserving component dominated by a two-photon intermediate state that cannot be computed reliably at present. This component has an absorptive part that can be, in principle, determined from a detailed analysis of $K_L \to \pi^0 \gamma \gamma$.

To understand the rate and the shape of the distribution $d\Gamma/dm_{\gamma\gamma}$ in $K_L \to \pi^0\gamma\gamma$ within chiral perturbation theory it is necessary to go beyond leading order. The measured rate and spectrum can be accommodated naturally, for example, by allowing only one of the free parameters that occur, a_V , to vary [36]. There is new data on this decay from KTeV [37] and a fit to the distribution has given $a_V = -0.72 \pm 0.05 \pm 0.06$. This value suggests that the absorptive part of the CP-conserving contribution to $K_L \to \pi^0 e^+ e^-$ could be comparable to the direct CP-violating component [37,35]. The related process, $K_L \to \pi^0 \gamma e^+ e^-$, is potentially an additional background in some region of phase space [38]. This process has recently been

observed with a branching ratio of $(2.42\pm0.38_{stat}\pm0.11_{sys})\times 10^{-8}$ [39]. Finally, BNL-845 observed a potential background to $K_L\to\pi^0e^+e^-$ from the decay $K_L\to\gamma\gamma e^+e^-$ [40]. This has recently been confirmed with a 500-fold larger sample by FNAL-799 [41], which measured additional kinematic quantities. It has been estimated that this background will enter at the level of 10^{-11} [42], comparable to the signal level. Because of this, the observation of $K_L\to\pi^0e^+e^-$ will depend on background subtraction with good statistics.

The current 90% CL preliminary upper bound for the process $K_L \to \pi^0 e^+ e^-$ is 5.64×10^{-10} [41]. For the closely related muonic process, the corresponding upper bound is ${\rm B}(K_L \to \pi^0 \mu^+ \mu^-) \leq 3.8 \times 10^{-10}$ [43]. KTeV expects to reach a sensitivity of roughly 10^{-11} for both reactions [28].

E. Other long distance dominated modes:

The decays $K^+ \to \pi^+ \ell^+ \ell^-$ ($\ell = e$ or μ) are described by leading order chiral perturbation theory in terms of one parameter, ω^+ [44]. It now appears that this parameterization is not sufficient to account for both the rate and the detailed shape of the spectrum in $K^+ \to \pi^+ e^+ e^-$ [45] An analysis beyond leading order in chiral perturbation theory can accommodate both the rate and the spectrum [46], at the cost of introducing at least one new parameter.

References

- 1. D. Bryman, Int. J. Mod. Phys. A4, 79 (1989).
- J. Hagelin and L. Littenberg, Prog. in Part. Nucl. Phys. 23, 1 (1989).
- 3. R. Battiston et al., Phys. Reports 214, 293 (1992).
- L.Littenberg and G. Valencia, Ann. Rev. Nucl. and Part. Sci. 43, 729 (1993).
- J. Ritchie and S. Wojcicki, Rev. Mod. Phys. 65, 1149 (1993).
- B. Winstein and L. Wolfenstein, Rev. Mod. Phys. 65, 1113 (1993).
- 7. N. Bilic and B. Guberina, Fortsch. Phys. 42, 209 (1994).
- G. D'Ambrosio, G. Ecker, G. Isidori and H. Neufeld, Radiative Non-Leptonic Kaon Decays, in The DAΦNE Physics Handbook (second edition), eds. L. Maiani, G. Pancheri and N. Paver (Frascati), Vol. I, 265 (1995).
- 9. A. Pich, Rept. on Prog. in Phys. 58, 563 (1995).
- A.J. Buras and R. Fleischer, TUM-HEP-275-97, hep-ph/9704376, Heavy Flavours II, World Scientific, eds. A.J. Buras and M. Lindner (1997), 65-238.
- A.J. Buras, TUM-HEP-349-99, Lectures given at Lake Louise Winter Institute: Electroweak Physics, Lake Louise, Alberta, Canada, 14-20 Feb. 1999.
- 12. M. Zeller, KAON-99, June 1999.
- 13. D. Ambrose et al., Phys. Rev. Lett. 81, 5734 (1998).
- 14. K. Arisaka et al., Phys. Lett. **B432**, 230 (1998).
- 15. S. Adler et al., Phys. Rev. Lett. 84, 3768 (2000).
- 16. I. Bigi and F. Gabbiani, Nucl. Phys. B367, 3 (1991).
- 17. M. Aoki et al., AGS Proposal 949, October 1998.
- 18. W. Marciano and Z. Parsa, Phys. Rev. **D53**, 1 (1996).
- T. Inami and C.S. Lim, Prog. Theor. Phys. 65, 297 (1981); erratum Prog. Theor. Phys. 65, 172 (1981).

- 20. D. Ambrose et al., Phys. Rev. Lett. 84, 1389 (2000).
- 21. G. Valencia, Nucl. Phys. B517, 339 (1998).
- G. D'Ambrosio, G. Isidori, and J. Portoles, Phys. Lett. B423, 385 (1998).
- D. Gomez-Dumm and A. Pich, Phys. Rev. Lett. 80, 4633 (1998).
- A.J. Buras and L. Silvestrini Nucl. Phys. **B546**, 299 (1999).
- 25. D. Ambrose et al., Phys. Rev. Lett. 81, 4309 (1998).
- L. Littenberg, Phys. Rev. **D39**, 3322 (1989).
- 27. A. Alavi-Harati et al., Phys. Rev. D61, 072006 (2000).
- S. Schnetzer, Proceedings of the Workshop on K Physics,ed.
 L. Iconomidou-Fayard, 285 (1997).
- 29. Y. Grossman and Y. Nir, Phys. Lett. **B398**, 163 (1997).
- 30. T.Inagaki et al., KEK Internal 96-13, November 1996.
- 31. I-H. Chiang et al., "Measurement of $K_L \to \pi^0 \nu \bar{\nu}$ ", AGS Proposal 926 (1996).
- 32. E. Cheu et al., "An Expression of Interest to Detect and Measure the Direct CP Violating Decay $K_L \to \pi^0 \nu \bar{\nu}$ and other Rare Decays at Fermilab Using the Main Injector", FERMILAB-PUB-97-321-E, hep-ex/9709026(1997).
- F. Gabbiani et al., Nucl. Phys. B477, 321 (1996);
 Y. Nir and M.P. Worah, Phys. Lett. B423, 319 (1998);
 A.J. Buras, A. Romanino, and L. Silvestrini, Nucl. Phys. B520, 3 (1998);
 G. Colangelo and G. Isidori, JHEP 09, 009 (1998);
 - A.J. Buras *et al.*, Nucl. Phys. **B566**, 3 (2000).
- G. Ecker, A. Pich, and E. de Rafael, Nucl. Phys. B303, 665 (1988).
- J.F. Donoghue and F. Gabbiani, Phys. Rev. **D51**, 2187 (1995).
- G. Ecker, A. Pich, and E. de Rafael, Phys. Lett. 237B, 481 (1990);
 J. Cappielle, C. D'Ambresia and M. Miraglinele, Phys.
 - L. Cappiello, G. D'Ambrosio, and M. Miragliuolo, Phys. Lett. B298, 423 (1993);
 - A. Cohen, G. Ecker, and A. Pich, Phys. Lett. **B304**, 347 (1993).
- 37. A. Alavi-Harati et al., Phys. Rev. Lett. 83, 917 (1999).
- J. Donoghue and F. Gabbiani, Phys. Rev. **D56**, 1605 (1997).
- 39. G.E. Graham, "First observation of the rare decay $K_L \rightarrow \pi^0 e^+ e^- \gamma$ ", University of Chicago Ph.D. thesis, (August, 1999).
- 40. W.M. Morse et al., Phys. Rev. D45, 36 (1992).
- 41. J. Whitmore, KAON-99 Conference, June 1999.
- 42. H.B. Greenlee, Phys. Rev. **D42**, 3724 (1990).
- 43. A. Alavi-Harati et al., hep-ex/0001006(2000).
- G. Ecker, A. Pich, and E. de Rafael, Nucl. Phys. B291, 692 (1987).
- 45. R. Appel et al., Phys. Rev. Lett. 83, 4482 (1999).
- 46. G. D'Ambrosio et al., JHEP 9808:004, 1998.

K+ DECAY MODES

 ${\it K}^-$ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_j/Γ)	Scale factor/ Confidence level
$\overline{\Gamma_1}$	$\mu^+ \nu_{\mu}$	(63.51 ± 0.18) %	S=1.3
Γ_2	$e^+ \nu_e$	$(1.55\pm0.07)\times1$	0-5
Γ_3^-	$\pi^+ \pi^0$	(21.16±0.14) %	S=1.1
Γ_4	$\pi^+\pi^+\pi^-$	(5.59±0.05) %	S=1.8
Γ_5	$\pi^{+}\pi^{0}\pi^{0}$	(1.73±0.04) %	S=1.2
Γ_6	$\pi^0\mu^+ u_\mu$	(3.18±0.08) %	S=1.5
	Called $K_{\mu 3}^+$.		
Γ ₇	$\pi^0e^+ u_e$	(4.82±0.06) %	S=1.3
	Called K_{e3}^+ .		
Гв	$\pi^0 \pi^0 e^+ \nu_e$	$(2.1 \pm 0.4) \times 1$	0-5
Г9	$\pi^+\pi^-e^+ u_e$	$(3.91 \pm 0.17) \times 1$	0-5
Γ_{10}	$\pi^+\pi^-\mu^+ u_{\mu}$	(1.4 ±0.9)×1	
Γ_{11}	$\pi^0 \pi^0 \pi^0 e^+ \nu_e$	< 3.5 × 1	0 ⁻⁶ CL=90%
Γ_{12}	$\mu^+ u_{\mu} u \overline{ u}$	< 6.0 × 1	0 ⁻⁶ CL=90%
Γ_{13}	$e^+ u_e u\overline{ u}$		0 ⁻⁵ CL=90%
Γ ₁₄	$\mu^+ \nu_\mu e^+ e^-$	$(1.3 \pm 0.4) \times 1$	0-7
Γ ₁₅	$e^+ u_e e^+ e^-$	$(3.0 \begin{array}{c} +3.0 \\ -1.5 \end{array}) \times 1$	8-0
Γ ₁₆	$e^+ u_e\mu^+\mu^-$	< 5 ×1	0 ⁻⁷ CL=90%
Γ ₁₇	$\mu^+ u_\mu\mu^+\mu^-$	< 4.1 ×1	0 ⁻⁷ CL=90%
Γ ₁₈	$\mu^+ u_\mu \gamma$	[a,b] (5.50 ± 0.28) × 1	0-3
Γ19	$\pi^+\pi^0\gamma$	$[a,b] (2.75\pm0.15) \times 1$	
Γ ₂₀	$\pi^+\pi^0\gamma$ (DE)	[b,c] (1.8 ±0.4)×1	
Γ21	$\pi^+\pi^+\pi^-\gamma$	$[a,b] (1.04 \pm 0.31) \times 1$	
Γ ₂₂	$\pi^+ \pi^0 \pi^0 \gamma$	[a,b] $(7.5 \begin{array}{c} +5.5 \\ -3.0 \end{array}) \times 1$	
Γ ₂₃	$\pi^0\mu^+ u_\mu\gamma$		0 ⁻⁵ CL=90%
		[a,b] (2.62±0.20) × 1	0-4
	$\pi^0 e^+ \nu_e \gamma (SD)$	[d] < 5.3 imes 1	0 ⁻⁵ CL=90%
Γ ₂₆			0 ⁻⁶ CL=90%
Γ ₂₇	$\pi^+ \gamma \gamma$.	[b] $(1.10\pm0.32)\times1$	
Γ ₂₈	π^+ 3 γ	$[b] < 1.0 \times 1$	0 ⁻⁴ CL=90%

Lepton Family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

	Atolering Hodes, or 12	72 - T MC91	CIICULI BI CUITO	int (31) 111001	-3
Γ_{29}	$\pi^+\pi^+e^-\overline{ u}_e$	5Q	< 1.2	× 10 ⁻⁸	CL=90%
Γ_{30}		5Q	< 3.0	$\times 10^{-6}$	CL=95%
Γ_{31}	$\pi^{+} e^{+} e^{-}$	<i>5</i> 1	(2.88±0	$(.13) \times 10^{-7}$	
Γ_{32}	$\pi^+\mu^+\mu^-$	51	(7.6 ± 2)	.1)×10 ⁻⁸	S=3.4
Γ ₃₃	$\pi^+ \nu \overline{\nu}$	<i>5</i> 1	$(1.5 \begin{array}{c} +3 \\ -1 \end{array})$	$\binom{4}{2}$) × 10 ⁻¹⁰	
Γ_{34}	$\mu^- u e^+ e^+$	LF	< 2.0	× 10 ⁻⁸	CL=90%
Γ ₃₅	$\mu^+ u_e$	LF	[e] < 4	$\times 10^{-3}$	CL=90%
Γ ₃₆	$\pi^+\mu^+e^-$	LF	< 2.1	$\times 10^{-10}$	CL=90%
Γ37	$\pi^+\mu^-e^+$	LF	< 7	× 10 ⁻⁹	CL=90%
Γ_{3B}	$\pi^-\mu^+e^+$	L	< 7	× 10 ⁻⁹	CL=90%
Γ_{39}	$\pi^{-} e^{+} e^{+}$	L	< 1.0	× 10 ⁻⁸	CL=90%
Γ ₄₀	$\pi^-\mu^+\mu^+$	L	[e] < 1.5	× 10 ⁻⁴	CL=90%
Γ41	$\mu^+ \bar{\nu}_e$	L	[e] < 3.3	$\times 10^{-3}$	CL=90%
Γ ₄₂	$\pi^0 e^+ \overline{\nu}_e$	L	< 3	$\times 10^{-3}$	CL=90%
Γ43	$\pi^+\gamma$		[f]		

- [a] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [b] See the Particle Listings below for the energy limits used in this measurement.
- [c] Direct-emission branching fraction.
- [d] Structure-dependent part.
- [e] Derived from an analysis of neutrino-oscillation experiments.
- [f] Violates angular-momentum conservation.

CONSTRAINED FIT INFORMATION

An overall fit to the mean life, 2 decay rate, and 20 branching ratios uses 60 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2=78.1$ for 53 degrees of

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (10 ⁸ s ⁻¹)	Scale factor
$\overline{\Gamma_1}$	$\mu^+ \nu_{\mu}$	0.5128 ±0.0018	1.5
Γ3	$\pi^{+} \pi^{0}$	0.1708 ± 0.0012	1.1
Γ ₄ Γ ₅ Γ ₆	$\pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{+} \pi^{0} \pi^{0}$	0.0452 ± 0.0004	1.8
Γ_5	$\pi^{+} \pi^{0} \pi^{0}$	0.01399 ± 0.00032	1.2
Γ_6	$\pi^0 \mu^+ \nu_{\mu}$	0.0257 ± 0.0006	1.5
	Called $K_{\mu 3}^+$.		
Γ_7	$\pi^0 e^+ \nu_e$	0.0389 ±0.0005	1.3
	Called K_{e3}^+ .		
Γ8	$\pi^{0} \pi^{0} e^{+} \nu_{e}$	$(1.69 \begin{array}{c} +0.34 \\ -0.29 \end{array}) \times 10^{-}$	5

K± DECAY RATES

$\Gamma(\mu^+ u_\mu)$					Γ ₁
VALUE (106 s-1)	DOCUMENT ID		TECN	CHG	
51.28 ± 0.18 OUR FIT	Error includes scale factor of	1.5			
51.2 ±0.8	FORD 6	7	CNTR	±	

$\Gamma(\pi^{+}\pi^{+}\pi^{-})$							E.
VALUE (106 s-1)	EVTS	DOCUMENT ID		TECN	CHG		
4.52 ±0.04 OUR	FIT Error in	cludes scale factor	of 1.8				
4.511 ± 0.024		⁶ FORD	70	ASPK			
• • • We do not us	e the followin	ig data for average	es, fits,	limits,	etc. •	• •	
4.529 ± 0.032	3.2M	⁶ FORD	70	ASPK			
4.496 ± 0.030		⁶ FORD	67 (CNTR	±		
⁶ First FORD 70 v	ratue is secon	d FORD 70 combi	ned wit	th FOR	D 67.		

$(\Gamma(K^+) - \Gamma(K^-)) / \Gamma(K)$

$K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$ RATE DIFFERENCE/AVERAGE

F(-+-+--\

Test of CPT conservation.			
VALUE (%)	DOCUMENT ID		TECN
-0.54 ± 0.41	FORD	67	CNTR

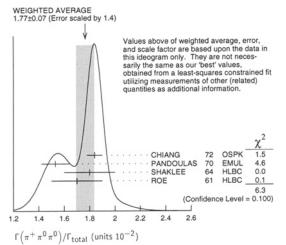
$K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ RATE DIFFERENCE/AVERAGE

Test of CP of	onservation.	•			
VALUE (%)	EVTS	DOCUMENT ID		TECN	CHG
0.07±0.12 OUR	AVERAGE				
0.08 ± 0.12		⁷ FORD	70	ASPK	
-0.50 ± 0.90		FLETCHER	67	OSPK	
• • • We do not	use the followi	ng data for averag	es, fit	s, limits,	etc. • • •
-0.02 ± 0.16		^B SMITH	73	ASPK	±
0.10 ± 0.14	3.2M	⁷ FORD	70	ASPK	
-0.04 ± 0.21		⁷ FORD	67	CNTR	
7					

 7 First FORD 70 value is second FORD 70 combined with FORD 67. 8 SMITH 73 value of $K^\pm \to ~\pi^\pm \pi^+ \pi^-$ rate difference is derived from SMITH 73 value of $K^\pm \to ~\pi^\pm 2\pi^0$ rate difference.

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ RATE DIFFERENCE/AVERAGE

Test of CP of	onservation.	•			
VALUE (%)	EVTS	DOCUMENT II	<u> </u>	TECN	CHG
0.0 ±0.6 OUR	AVERAGE				
0.08 ± 0.58		SMITH	73	ASPK	±
-1.1 + 1.8	1802	HERZO	69	OSPK	


$K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ RATE DIFFERENCE/AVERAGE

Test of CPT conservation.	•			
VALUE (%)	DOCUMENT ID		TECN	
0.8±1,2	HERZO	69	OSPK	

ALUE (%)	nservation. EVTS	DOCUMENT ID		TECN	CHG	COMMENT
.9± 3.3 OUR AVE						
.8± 5.8	2461	SMITH	76		±	E _# 55-90 MeV
.0 ± 4.0 .0 ± 24.0	4000 24	ABRAMS EDWARDS	73B 72	ASPK OSPK	±	E _# 51-100 MeV E _# 58-90 MeV
.U±24.U		EDWANDS		OJEK		Επ 38-30 ΜΕΥ
	κ	+ BRANCHING	RAT	IOS		
$(\mu^+ \nu_\mu)/\Gamma_{\text{total}}$						Γ ₁ /Γ
LUE (units 10 ⁻²)	<u>EVTS</u>	DOCUMENT ID			<u>CHG</u>	COMMENT
3.24±0.44	62k	cludes scale factor CHIANG		OSPK	_	1.84 GeV/c K+
	-	ing data for averag				
.9 ±2.6		9 ALEXANDER	57	EMUL	+	
.5 ± 3.0		9 BIRGE	56	EMUL	+	
⁹ Old experiments		d in averaging.				
$(\mu^+ u_\mu)/\Gamma(\pi^+\tau$						Γ ₁ /Γ ₄
10E 35+0.12 OUR F	<u>EVTS</u>	<u>DOCUMENT ID</u> Icludes scale factor			CHG	
		ing data for averag			etc.	
.38±0.82	427	10 YOUNG		EMUL		
			nstraiı	ns his re	sults t	o add up to 1. Only
YOUNG 65 mea	Sured (μu)	directly.				
$(e^+ u_e) / \Gamma_{ m total}$						Γ ₂ /Γ
LUE (units 10 ⁻⁵)		DOCUMENT IE				
	e the follow	ing data for averag	es, fits	, limits,	etc.	••
$2.1^{+1.8}_{-1.3}$	4	BOWEN	67B	OSPK	+	
	5	BORREANI	64	нвс	+	
$(e^+ u_e) / \Gamma(\mu^+ u$	1					Γ_2/Γ_1
LUE (units 10 ⁻⁵)	μ) EVTS	DOCUMENT IE		TECN	CHG	• 2/ • 1
45±0.11 OUR AV		<u>BOCOMENT IL</u>		7200	<u>C//U</u>	
51±0.15	404	HEINTZE		SPEC	+	
37±0.17 42±0.42	534 112	HEARD CLARK		SPEC OSPK	+	
		ing data for averag				
R +0.8	8	MACEK	69	ASPK	_	
0.0						
9 +0.7 -0.5	10	BOTTERILL	67	ASPK	+	
$(\pi^+\pi^0)/\Gamma_{\text{total}}$						Г ₃ /Г
4 <i>LUE</i> (units 10 ⁻²)	EVTS	DOCUMENT IL			<u>CHG</u>	COMMENT
		ocludes scale factor CHIANG				1 94 CoV/c K+
1.18±0.28 • • We do not us	16k e the follow	ing data for avera	72 es. fit			1.84 GeV/c K+
1.0 ±0.6		CALLAHAN		HLBC		See $\Gamma(\pi^+\pi^0)$
				•		$\Gamma(\pi^+\pi^+\pi^-)$
1.6 ±0.6		TRILLING		RVUE		,
3.2 ±2.2 7.7 +2.7		11 ALEXANDEI 11 BIRGE		EMUL EMUL		
r.r ±2.r ^{L1} Earlier experime	nts not ave		30	FINIOL		
		· • · · ·				F /F
'(π ⁺ π ⁰)/Γ(μ ⁺ ι	νμ) EVTS	DOCUMENT ID		TECN	CHG	Γ ₃ /Γ ₁
.3331 ± 0.0028 OU	R FIT Err	or includes scale fa			<u></u>	- Comment
.3316±0.0032 OU			-	EDEC		
$3329 \pm 0.0047 \pm 0.$ 3355 ± 0.0057	UU1U 45k	USHER 12 WEISSENBE.	92 76	SPEC	++	p₱ at rest
.305 ± 0.018	1600	ZELLER		ASPK	+	
3277 ± 0.0065	4517	¹³ AUERBACH	67	OSPK	+	
		ing data for avera				• • •
328 ± 0.005	25k	12 WEISSENBE.		STRC	+	
¹³ AUERBACH 67		WEISSENBERG 74 om 0.3253 ± 0.006		comme	nt with	ratio $\Gamma(\pi^0\mu^+ u_\mu)$,
$\Gamma(\mu^+ \nu_{\mu})$.						
$(\pi^+\pi^0)/\Gamma(\pi^+\pi^0)$	π ⁺ π ⁻)					Γ3/Γ4
ALUE	EVTS	DOCUMENT IL		TECN	CHG	
78±0.04 OUR FI 84+0.27 OUR A\		cludes scale factor rror includes scale		of 1.9.		
		includes scale				
96±0.15	1045	CALLAHAN	66	FBC	+	5

```
\Gamma(\pi^+\pi^+\pi^-)/\Gamma_{total}
                                                                                                        \Gamma_4/\Gamma
VALUE (units 10-2)
                              EVTS
                                             DOCUMENT ID
                                                                    TECN CHG COMMENT
5.59±0.05 OUR FIT Error includes scale factor of 1.8.

5.52±0.10 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.
                                         14 PANDOULAS 70 EMUL +
5.34 \pm 0.21
                                693
                                             DEMARCO
5.71\pm0.15
                                                                65 HBC
                                 44
                                              YOUNG
                                                                65 EMUL
5.54 \pm 0.12
                              2332
                                              CALLAHAN
                                                                64 HLBC
                                             SHAKLEE
                                                                64 HLBC
5.1 \pm 0.2
                               540
5.7 \pm 0.3
                                             ROE
                                                                61 HLBC
• • • We do not use the following data for averages, fits, limits, etc. • •
                                         15 CHIANG
                                                                72 OSPK +
5.56\pm0.20
                              2330
                                                                                       1.84 GeV/c K+
                                          16 TAYLOR
                                                                59 EMUL +
5.2 \pm 0.3
                                          16 ALEXANDER 57 EMUL +
6.8 \pm 0.4
                                          <sup>16</sup> BIRGE
5.6\ \pm0.4
                                                                 56 EMUL +
 ^{14} includes events of TAYLOR 59. ^{15} Value is not independent of CHIANG 72 \Gamma(\mu^+\nu_\mu)/\Gamma_{\rm total}, \Gamma(\pi^+\pi^0)/\Gamma_{\rm total}
    \Gamma(\pi^+\pi^0\pi^0)/\Gamma_{\text{total}}, \Gamma(\pi^0\mu^+\nu_\mu)/\Gamma_{\text{total}}, and \Gamma(\pi^0e^+\nu_e)/\Gamma_{\text{total}}.
 16 Earlier experiments not averaged.
            WEIGHTED AVERAGE
5.52±0.10 (Error scaled by 1.3)
                                                   Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information.
                                                                                70
65
                                                                                      HBC
                                                             DEMARCO
                                                             YOUNG
CALLAHAN
                                                                                65
64
64
                                                                                      EMUL
                                                                                      HLBC
                                                                                                  0.0
                                                             SHAKLEE
                                                                                      HLBC
                                                                                       HLBC
                                                                        (Confidence Level = 0.127)
                                                                         7.5
             \Gamma(\pi^+\pi^+\pi^-)/\Gamma_{total} (units 10^{-2})
\Gamma(\pi^+\pi^0\pi^0)/\Gamma_{\text{total}}
                                                                                                        \Gamma_5/\Gamma
 VALUE (units 10-2)
                               EVTS
                                              DOCUMENT ID
                                                                     TECN CHG COMMENT
 1.73±0.04 OUR FIT Error includes scale factor of 1.2.
1.77\pm0.07 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.
 1.84 \pm 0.06
                               1307
                                              CHIANG
                                                               72 OSPK +
                                          17 PANDOULAS 70 EMUL +
1.53 \pm 0.11
                                19B
                                              SHAKLEE
                                                                64 HLBC +
1.8 ±0.2
                                108
1.7 ±0.2
                                              ROE
                                                                 61 HLBC
 • • • We do not use the following data for averages, fits, limits, etc. • •
                                          18 TAYLOR
1.5 ±0.2
                                                               59 EMUL +
                                          18 ALEXANDER 57 EMUL +
2.2 \pm 0.4
 2.1 ±0.5
  17 Includes events of TAYLOR 59.
18 Earlier experiments not averaged.
            WEIGHTED AVERAGE
1.77±0.07 (Error scaled by 1.4)
```


 K^{\pm}

$(\pi^+\pi^0\pi^0)/\Gamma(\pi^+\pi^0)$ Γ_5/Γ_3	• • • We do not use the following data for averages, fits, limits, etc. • •
ALUE EVTS DOCUMENT ID TECN CHG COMMENT	0.670±0.014
0819±0.0020 OUR FIT Error includes scale factor of 1.2.	0.67 ± 0.12 WEISSENBE 76 SPEC +
081 ± 0.005 574 ¹⁹ LUCAS 73B HBC — Dalitz pairs only	0.608 ± 0.014 1585 29 BRAUN 75 HLBC +
⁹ LUCAS 73B gives $N(\pi 2\pi^0) = 574 \pm 5.9\%$, $N(2\pi) = 3564 \pm 3.1\%$. We quote	0.596 ± 0.025 30 HAIDT 71 HLBC +
$0.5 N(\pi 2\pi^0)/N(2\pi)$ where 0.5 is because only Dalitz pair π^0 's were used.	0.604±0.022 1398 ³⁰ EICHTEN 68 HLBC
$(\pi^+\pi^0\pi^0)/\Gamma(\pi^+\pi^+\pi^-)$ Γ_5/Γ_4	25 LUCAS 73B gives N($K_{\mu 3}$) = 554 \pm 7.6%, N(K_{e3}) = 786 \pm 3.1%. We divide.
, ,, ,	²⁶ CHIANG 72 $\Gamma(\pi^0\mu^+\nu_\mu)/\Gamma(\pi^0e^+\nu_e)$ is statistically independent of CHIANG 73
LUE EVTS DOCUMENT ID TECN CHG COMMENT 110±0.007 OUR FIT Error includes scale factor of 1.2.	$\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma_{\text{total}}$ and $\Gamma(\pi^0 e^+ \nu_e)/\Gamma_{\text{total}}$.
04±0.009 OUR AVERAGE	27 From CALLAHAN 66B we use only the $K_{\mu3}/K_{e3}$ ratio and do not include in the fit th
103±0.009 2027 BISI 65 BC + HBC+HLBC	
93±0.099 17 YOUNG 65 EMUL +	ratios $K_{\mu3}/(\pi\pi^+\pi^0)$ and $K_{e3}/(\pi\pi^+\pi^0)$, since they show large disagreements with the rest of the data.
0.1.3.5	²⁸ HEINTZE 77 value from fit to λ_0 . Assumes μ - e universality.
$\pi^0 \mu^+ u_\mu) / \Gamma_{ ext{total}}$ Γ_6 / Γ	²⁹ BRAUN 75 value is from form factor fit. Assumes μ-e universality.
UE (units 10 ⁻²) EVTS DOCUMENT ID TECN CHG COMMENT	30 HAIDT 71 is a reanalysis of EICHTEN 68. Only individual ratios included in fit (se
3±0.08 OUR FIT Error includes scale factor of 1.5.	$\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^+ \pi^+ \pi^-)$ and $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^+ \pi^-)$.
3±0.16 2345 CHIANG 72 OSPK + 1.84 GeV/c K+	
■ We do not use the following data for averages, fits, limits, etc. ■ ■ ■	$\left[\Gamma(\pi^{+}\pi^{0}) + \Gamma(\pi^{0}\mu^{+}\nu_{\mu})\right]/\Gamma_{\text{total}} \tag{\Gamma_{3}+\Gamma_{6}}/\Gamma_{6}$
±0.4 20 TAYLOR 59 EMUL +	We combine these two modes for experiments measuring them in xenon bubble cham
±1.3 20 ALEXANDER 57 EMUL +	ber because of difficulties of separating them there.
±1.0 20 BIRGE 56 EMUL +	VALUE (units 10 ⁻²) EVTS DOCUMENT ID TECN CHG
Earlier experiments not averaged.	24.34 ± 0.15 OUR FIT Error includes scale factor of 1.2.
-0+\/\(\Gamma\)/\(\Gamma\)	24.6 ±1.0 OUR AVERAGE Error includes scale factor of 1.4. 25.4 ±0.9 886 SHAKLEE 64 HLBC +
$\Gamma^0 \mu^+ u_\mu) / \Gamma (\mu^+ u_\mu)$	23.4 ±1.1 ROE 61 HLBC +
<u>UE EVTS DOCUMENT ID TECN CHG</u> 501 ± 0.0013 OUR FIT Error includes scale factor of 1.5.	
188 ± 0.0026 OUR AVERAGE	$\Gamma(\pi^0 e^+ \nu_e) / \Gamma_{\text{total}}$ $\Gamma_7 / \Gamma_7 = \Gamma_7 = \Gamma_7 / \Gamma_7 = \Gamma_7 = \Gamma_7 / \Gamma_7 = \Gamma_$
64 ±0.009 240 ZELLER 69 ASPK +	VALUE (units 10 ⁻²) EVTS DOCUMENT ID TECN CHG COMMENT
480±0.0037 424 ²¹ GARLAND 68 OSPK +	4.82±0.06 OUR FIT Error includes scale factor of 1.3.
486±0.0040 307 ²² AUERBACH 67 OSPK +	4.85±0.09 OUR AVERAGE
GARLAND 68 changed from 0.055 \pm 0.004 in agreement with μ -spectrum calculation	4.86±0.10 3516 CHIANG 72 OSPK + 1.84 GeV/c K+
of GAILLARD 70 appendix B. L.G.Pondrom, (private communication 73).	4.7 ±0.3 429 SHAKLEE 64 HLBC +
AUERBACH 67 changed from 0.0602 ± 0.0046 by erratum which brings the μ -spectrum	5.0 \pm 0.5 ROE 61 HLBC +
calculation into agreement with GAILLARD 70 appendix B.	 • • We do not use the following data for averages, fits, limits, etc.
$(\tau^0 \mu^+ \nu_\mu) / \Gamma (\pi^+ \pi^+ \pi^-)$ Γ_6 / Γ_4	5.1 ±1.3 31 ALEXANDER 57 EMUL +
UEEVTS DOCUMENT ID TECN CHG COMMENT	3.2 ± 1.3 31 BIRGE 56 EMUL +
69±0.014 OUR FIT Error includes scale factor of 1.5.	³¹ Earlier experiments not averaged.
17±0.032 OUR AVERAGE Error includes scale factor of 1.8. See the ideogram below.	
03±0.019 1505 ²³ HAIDT 71 HLBC +	$\Gamma(\pi^0 e^+ \nu_e) / \Gamma(\mu^+ \nu_\mu)$ Γ_7 / Γ_1
3 ±0.07 2845 ²⁴ BISI 65B BC + HBC+HLBC	VALUE EVTS DOCUMENT ID TECN CHG
0 ±0.16 38 YOUNG 65 EMUL +	0.0759±0.0011 OUR FIT
◆ We do not use the following data for averages, fits, limits, etc. ◆ ◆	0.0752±0.0024 OUR AVERAGE 0.069 ±0.006 350 ZELLER 69 ASPK +
10±0.017 1505 ²³ EICHTEN 68 HLBC +	0.009 ±0.000 350 ZELLER 69 ASPK + 0.0775±0.0033 960 BOTTERILL 68c ASPK +
HAIDT 71 is a reanalysis of EICHTEN 68.	0.069 ±0.006 561 GARLAND 68 OSPK +
Error enlarged for background problems. See GAILLARD 70.	0.0791±0.0054 295 ³² AUERBACH 67 OSPK +
	32 AUERBACH 67 changed from 0.0797 \pm 0.0054. See comment with ratio $\Gamma(\pi^0 \mu^+ \nu_\mu)$
WEIGHTED AVERAGE	
0.517±0.032 (Error scaled by 1.8)	$\Gamma(u + u)$ The value 0.0785 \pm 0.0005 given in ALIEDBACH 67 in an everyone of
3	· F
	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu)-\Gamma(\mu^+\nu_\mu)\right]$
Values above of weighted average, error,	· F
Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not neces-	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu)-\Gamma(\pi^+\pi^0)\right]$.
and scale factor are based upon the data in this ideogram only. They are not neces- sarily the same as our 'best' values,	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu)-\Gamma(\pi^+\pi^0)\right]$.
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) - \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0)$ FALUE EVTS DOCUMENT ID TECN CHG COMMENT
and scale factor are based upon the data in this ideogram only. They are not neces- sarily the same as our 'best' values,	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) - \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0) \qquad \Gamma_7/\Gamma_0$ VALUE EVTS DOCUMENT ID TECN CHARGE COMMENT OD 1.3.
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related)	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) - \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0) \qquad \qquad \Gamma_{7}/\Gamma_{3}$
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related)	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) - \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0) \qquad \Gamma_7/\Gamma_0$ VALUE EVTS DOCUMENT ID TECN CHARGE COMMENT OD 1.3.
and scale factor are based upon the data in this ideogram only. They are not neces- sarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related)	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) - \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0) \qquad \qquad \Gamma_7/\Gamma_5$ VALUE EVTS DOCUMENT ID TECN CHG COMMENT 0.2280 \pm 0.0035 OUR FIT Error includes scale factor of 1.3. 0.221 \pm 0.012 786 33 LUCAS 73B HBC — Dalitz pairs only 33 LUCAS 73B gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide.
and scale factor are based upon the data in this ideogram only. They are not neces- sarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related)	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) - \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0)$ 77/ $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0)$ 77/ $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0)$ 786 33 LUCAS 73B HBC — Dalitz pairs only 33 LUCAS 73B gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^+ \pi^-)$
and scale factor are based upon the data in this ideogram only. They are not neces- sarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related)	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) + \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0) \qquad \qquad \Gamma_{7}/\Gamma$ NALUE 2280 ± 0.0035 OUR FIT Error includes scale factor of 1.3. 0.221 ± 0.012 786 33 LUCAS 73B HBC Dalitz pairs only 33 LUCAS 73B gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^+ \pi^-) \qquad \qquad \Gamma_{7}/\Gamma$ NALUE EVTS DOCUMENT ID TECN CHG
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information.	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu) + \Gamma(\pi^+\pi^0)\right]$. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0) \qquad \Gamma_{7}/\Gamma_{0LUE} \qquad \Gamma_{10} \qquad \Gamma_{10}/\Gamma_{10}$
and scale factor are based upon the data in this ideogram only. They are not necesssarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC 20.5	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) + \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0)$ VALUE 0.2280±0.0035 OUR FIT Error includes scale factor of 1.3. 0.221 ±0.012 786 33 LUCAS 73B HBC Dalitz pairs only 33 LUCAS 73B Gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^+ \pi^-)$ VALUE 0.862±0.011 OUR FIT Error includes scale factor of 1.3. 0.860±0.014 OUR AVERAGE
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC 22 0.5 SBBC 2.6	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) + \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0)$ O.2280 \pm 0.0035 OUR FIT Error includes scale factor of 1.3. O.221 \pm 0.012 786 33 LUCAS 73B HBC — Dalitz pairs only 33 LUCAS 73B gives $N(K_{e3}) = 786 \pm 3.1\%, N(2\pi) = 3564 \pm 3.1\%.$ We divide. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^+ \pi^-)$ VALUE EVTS DOCUMENT ID TECN CHG O.862 \pm 0.011 OUR FIT Error includes scale factor of 1.3. O.862 \pm 0.014 OUR AVERAGE O.867 \pm 0.027 276B BARMIN 87 XEBC +
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) + \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0)$ VALUE 0.2280 \pm 0.0035 OUR FIT Error includes scale factor of 1.3. 0.221 \pm 0.012 786 33 LUCAS 73B HBC Dalitz pairs only 33 LUCAS 73B gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^+ \pi^-)$ VALUE EVTS DOCUMENT ID 0.862 \pm 0.011 OUR FIT Error includes scale factor of 1.3. 0.860 \pm 0.014 OUR AVERAGE 0.867 \pm 0.027 276B BARMIN 87 XEBC \pm 0.0856 \pm 0.040 2827 BRAUN 75 HLBC \pm
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our best values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC 2.5 BISI 65B BC 2.6	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) + \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0)$ O.2280 \pm 0.0035 OUR FIT Error includes scale factor of 1.3. O.221 \pm 0.012 786 33 LUCAS 73B HBC — Dalitz pairs only 33 LUCAS 73B gives $N(K_{e3}) = 786 \pm 3.1\%, N(2\pi) = 3564 \pm 3.1\%.$ We divide. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^+ \pi^-)$ VALUE EVTS DOCUMENT ID TECN CHG O.862 \pm 0.011 OUR FIT Error includes scale factor of 1.3. O.862 \pm 0.014 OUR AVERAGE O.867 \pm 0.027 276B BARMIN 87 XEBC +
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu) - \Gamma(\pi^+\pi^0)\right]$. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0) \qquad \qquad \Gamma_{7}/\Gamma_{1}/\Gamma_{2}/$
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC 0.5 BISI 65B BC 2.6 YOUNG 65 EMUL 5.7 8.9	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) - \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0) \qquad \qquad \Gamma7/\Gamma$ VALUE
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC 0.5 BISI 65B BC 2.6 YOUNG 65 EMUL 5.7 8.9 (Confidence Level = 0.012)	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu) - \Gamma(\pi^+\pi^0)\right]$. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0)$ VALUE 0.2280 ± 0.0035 OUR FIT Error includes scale factor of 1.3. 0.221 ± 0.012 786 33 LUCAS 738 HBC Dalitz pairs only 33 LUCAS 738 gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)$ VALUE 0.862 ± 0.011 OUR FIT Error includes scale factor of 1.3. 0.860 ± 0.014 OUR AVERAGE 0.867 ± 0.027 2768 BARMIN 87 XEBC + 0.856 ± 0.040 2827 BRAUN 75 HLBC + 0.850 ± 0.019 4385 34 HAIDT 71 HLBC 1.94 ± 0.09 854 BELLOTTI 678 HLBC 0.94 ± 0.09 854 BELLOTTI 678 HLBC 0.90 ± 0.06 230 BORREANI 64 HBC • • • We do not use the following data for averages, fits, limits, etc. • •
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC 0.5 BISI 65B BC 2.6 YOUNG 65 EMUL 5.7 8.9 (Confidence Level = 0.012)	
and scale factor are based upon the data in this ideogram only. They are not necess-sarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC 0.5 BISI 658 BC 2.6 YOUNG 65 EMUL 5.7 8.9 (Confidence Level = 0.012) 0.4 0.6 0.8 1 1.2 1.4 $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^+ \pi^+ \pi^-)$	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu) - \Gamma(\pi^+\pi^0)\right]$. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0)$ VALUE $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)$ VALUE $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)$ VALUE $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^-\pi^+\pi^-)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^-\pi^+\pi^-)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^-\pi^-\pi^-)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^-\pi^-\pi^-)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^-\pi^-\pi^-)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^-\pi^-\pi^-\pi^-)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^-\pi^-\pi^-\pi^-)$ $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC 0.5 BISI 658 BC 2.6 Confidence Level = 0.012) 0.4 0.6 0.8 1 1.2 1.4 $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^+ \pi^+ \pi^-)$ $\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu) - \Gamma(\pi^+\pi^0)\right]$. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0)$ VALUE 20280 \pm 0.0035 OUR FIT Error includes scale factor of 1.3. 0.221 \pm 0.012 786 33 LUCAS 738 HBC — Dalitz pairs only 33 LUCAS 738 gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)$ VALUE EVTS DOCUMENT ID TECN CHG COMMENT FOR TOP TOP TOP TOP TOP TOP TOP T
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC 0.5 BISI 65B BC 2.6 5.7 YOUNG 65 EMUL 5.7 8.9 (Confidence Level = 0.012) 0.4 0.6 0.8 1 1.2 1.4 $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^+ \pi^+ \pi^-)$ $\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ UE EVIS DOCUMENT ID TECN CHG COMMENT	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu) - \Gamma(\pi^+\pi^0)\right]$. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0)$ VALUE 20280 \pm 0.0035 OUR FIT Error includes scale factor of 1.3. 0.221 \pm 0.012 786 33 LUCAS 73B HBC Dalitz pairs only 33 LUCAS 73B HBC Dalitz pairs only 33 LUCAS 73B HBC Dalitz pairs only 34 LUCAS TECN CHG COMMENT FORM TECN CHG COMMENT TECN CHG COMMENT TOTAL TECN CHG COMMENT TOTAL TECN CHG COMMENT TOTAL TECN CHG TOTAL TOTA
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. $\frac{\chi^2}{\text{quantities as additional information.}}$ HAIDT 71 HLBC 0.5 BISI 65B BC 2.6 SOUNG 65 EMUL 5.7 B.9 (Confidence Level = 0.012) 0.4 0.6 0.8 1 1.2 1.4 $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^+ \pi^+ \pi^-)$ $\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ $EVIS DOCUMENT ID TECN CHG COMMENT$ 66/F7 EVIS DOCUMENT ID TECN CHG COMMENT	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu) - \Gamma(\pi^+\pi^0)\right]$. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0)$ VALUE 0.2280 \pm 0.0035 OUR FIT Error includes scale factor of 1.3. 0.221 \pm 0.012 786 33 LUCAS 738 HBC — Dalitz pairs only 33 LUCAS 738 gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)$ VALUE 0.862 \pm 0.011 OUR FIT Error includes scale factor of 1.3. 0.860 \pm 0.014 OUR AVERAGE 0.867 \pm 0.027 2768 BARMIN 87 XEBC \pm 0.856 \pm 0.040 2827 BRAUN 75 HLBC \pm 0.856 \pm 0.040 2827 BRAUN 75 HLBC \pm 0.94 \pm 0.09 40.09 40.09 854 BELLOTTI 678 HLBC 0.90 \pm 0.06 230 BORREANI 64 HBC \pm 0.94 ••• We do not use the following data for averages, fits, limits, etc. 0.846 \pm 0.021 4385 34 EICHTEN 68 HLBC \pm 0.90 \pm 0.16 37 YOUNG 65 EMUL \pm 134 HAIDT 71 is a reanalysis of EICHTEN 68. $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu) + \Gamma(\pi^+\pi^0)\right]$
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT 71 HLBC $\frac{\chi^2}{0.5}$ Quantities as additional information. HAIDT 71 HLBC $\frac{\chi^2}{0.5}$ Set $\frac{1}{1.5}$ Set $\frac{1}{1.5}$ Set $\frac{1}{1.5}$ Confidence Level = 0.012) O.4 0.6 0.8 1 1.2 1.4 $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ (Confidence Level = 0.012) $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ Tech CHG COMMENT 1D TECN CHG COMM	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu) - \Gamma(\pi^+\pi^0)\right]$. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0)$ VALUE 20280 \pm 0.0035 OUR FIT Error includes scale factor of 1.3. 0.221 \pm 0.012 786 33 LUCAS 73B HBC Document ib TECN THBC Dollity pairs only 33 LUCAS 73B gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)$ VALUE EVTS DOCUMENT ib TECN CHG TOTAL
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. $\frac{\chi^2}{\text{quantities as additional information.}}$ HAIDT 71 HLBC 0.5 BISI 65B BC 2.6 YOUNG 65 EMUL 5.7 8.9 (Confidence Level = 0.012) $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^+ \pi^+ \pi^-)$ $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ EVIS DOCUMENT ID TECN CHG COMMENT $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ EVIS DOCUMENT ID TECN CHG COMMENT $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ Seb ±0.013 OUR FIT Error includes scale factor of 1.5. $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ BOCUMENT ID TECN CHG COMMENT $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ Seb ±0.013 OUR AVERAGE $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ To a possible of the control of 1.5. $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ DOCUMENT ID TECN CHG COMMENT	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) - \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0)$ VALUE 0.2280 ± 0.0035 OUR FIT Error includes scale factor of 1.3. 0.221 ± 0.012 786 33 LUCAS 73B HBC Dalitz pairs only 33 LUCAS 73B gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^+ \pi^-)$ VALUE 0.862 ± 0.011 OUR FIT Error includes scale factor of 1.3. 0.860 ± 0.04 OUR AVERAGE 0.867 ± 0.027 2768 BARMIN 87 XEBC 0.856 ± 0.040 2827 BRAUN 75 HLBC 0.94 ± 0.09 4385 34 HAIDT 71 HLBC 0.94 ± 0.09 854 BELLOTTI 678 HLBC 0.90 ± 0.06 230 BORREANI 64 HBC • • • We do not use the following data for averages, fits, limits, etc. 0.846 ± 0.021 4385 34 EICHTEN 68 HLBC • • • We do not use the following data for averages, fits, limits, etc. 0.846 ± 0.021 4385 34 EICHTEN 68 HLBC • • • We do not use the following data for averages, fits, limits, etc. 0.846 ± 0.021 4385 34 EICHTEN 68 HLBC • • • We do not use the following data for averages, fits, limits, etc. 0.846 ± 0.021 4385 34 EICHTEN 68 HLBC • • • We do not use the following data for averages, fits, limits, etc. 0.846 ± 0.021 4385 34 EICHTEN 68 HLBC • • • • • • • • • • • • • • • • • • •
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. $\frac{\chi^2}{\text{quantities as additional information}}$ HAIDT 71 HLBC 0.5 BISI 65B BC 2.6 YOUNG 65 EMUL 5.7 8.9 (Confidence Level = 0.012) $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^+ \pi^+ \pi^-)$ $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ $\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)$ TO EVIS DOCUMENT ID TECN CHG COMMENT 60 ± 0.015 OUR FIT Error includes scale factor of 1.5. 880 ± 0.013 OUR AVERAGE 105 ± 0.063 554 25 LUCAS 73B HBC — Dalitz pairs only	AUERBACH 67 $\Gamma(\pi^0e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0e^+\nu_e)/\left[\Gamma(\mu^+\nu_\mu) - \Gamma(\pi^+\pi^0)\right]$. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^0)$ VALUE URIS Scale factor of 1.3. 0.221 \pm 0.012 786 33 LUCAS 73B HBC — Dalitz pairs only 33 LUCAS 73B gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide. $\Gamma(\pi^0e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)$ VALUE EVTS DOCUMENT ID TECN CHG
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. $\frac{\chi^2}{\text{quantities as additional information.}}$ HAIDT 71 HLBC 0.5 BISI 65B BC 2.6 65 EMUL 5.7 8.9 (Confidence Level = 0.012) $\frac{8.9}{65} = \frac{1.2}{65} = \frac{1.4}{65} = \frac{1.4}{$	AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e)/\left[\Gamma(\mu^+ \nu_\mu) - \Gamma(\pi^+ \pi^0)\right]$. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0)$ VALUE 0.2280 ± 0.0035 OUR FIT Error includes scale factor of 1.3. 0.221 ± 0.012 786 33 LUCAS 73B HBC Dalitz pairs only 33 LUCAS 73B gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We divide. $\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^+ \pi^-)$ VALUE 0.862 ± 0.011 OUR FIT Error includes scale factor of 1.3. 0.860 ± 0.04 OUR AVERAGE 0.867 ± 0.027 2768 BARMIN 87 XEBC 0.856 ± 0.040 2827 BRAUN 75 HLBC 0.94 ± 0.09 4385 34 HAIDT 71 HLBC 0.94 ± 0.09 854 BELLOTTI 678 HLBC 0.90 ± 0.06 230 BORREANI 64 HBC • • • We do not use the following data for averages, fits, limits, etc. 0.846 ± 0.021 4385 34 EICHTEN 68 HLBC • • • We do not use the following data for averages, fits, limits, etc. 0.846 ± 0.021 4385 34 EICHTEN 68 HLBC • • • We do not use the following data for averages, fits, limits, etc. 0.846 ± 0.021 4385 34 EICHTEN 68 HLBC • • • We do not use the following data for averages, fits, limits, etc. 0.846 ± 0.021 4385 34 EICHTEN 68 HLBC • • • We do not use the following data for averages, fits, limits, etc. 0.846 ± 0.021 4385 34 EICHTEN 68 HLBC • • • • • • • • • • • • • • • • • • •

35 Value calculated from WEISSENBERG 76 $(\pi^0 e \nu)$, $(\mu \nu)$, and $(\pi \pi^0)$ values to eliminate dependence on our 1974 $(\pi 2\pi^0)$ and $(\pi \pi^+ \pi^-)$ fractions.

·	Γ ₈ /Γ ₇	$\Gamma(\mu^+\nu_\mu\mu^+\mu^-)/\Gamma_0$					511.5	Γ ₁₇ /
<u>VALUE (units 10⁻⁴) CL% EVTS DOCUMENT ID TECN CHG</u> 4.3 ± 0.9 OUR FIT		VALUE (units 10 ⁻⁷) <4.1	<u>CL%</u> 90	<u>DOCUMENT ID</u> ATIYA	89	<i>TECN</i> B787	<u>снс</u> +	
4.1+1.0 OUR AVERAGE		$\Gamma(\mu^+ u_\mu\gamma)/\Gamma_{ m total}$						Γ ₁₈ /
_ •		VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	COMMENT
4.2 ^{+1.0} _{-0.9} 25 BOLOTOV 86B CALO -		5.50±0.28 OUR AVER	RAGE 39	,40 DEMIDOV	90	XEBC		P(μ) <231.5
$3.8^{+5.0}_{-1.2}$ 2 LJUNG 73 HLBC +				BARMIN	00	HLBC	1	MeV/c $P(\mu) < 231.5$
• • We do not use the following data for averages, fits, limits, etc. • •		6.0 ± 0.9					+	MeV/c
<37.0 90 0 ROMANO 71 HLBC +		5.4 ±0.3		⁴¹ AKIBA	85	SPEC		$P(\mu) < 231.5$ MeV/c
$(\pi^0 \pi^0 e^+ \nu_e) / \Gamma_{\text{total}}$	Г ₈ /Г	• • • We do not use	the followir	ig data for average	s, fits	, limits,	etc. •	
ALUE (units 10 ⁻⁵) EVTS DOCUMENT ID TECN CHG		3.5 ±0.8		1,42 DEMIDOV		XEBC		$E(\gamma) > 20 \text{ MeV}$
.1 ±0.4 OUR FIT .54±0.89 10 BARMIN 88B HLBC +		3.2 ±0.5 5.8 ±3.5	57 12	43 BARMIN WEISSENBE		HLBC STRC		$E(\gamma) > 20 \text{ MeV}$ $E(\gamma) > 9 \text{ MeV}$
		$^{39}P(\mu)$ cut given in						*
* ***	Г9/Г4	(private communic	ation).					-
ALUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN CHG 1.99±0.30 OUR AVERAGE Error includes scale factor of 1.2.		⁴⁰ DEMIDOV 90 quo ⁴¹ Assumes μ-e unive					ν.	
7.21±0.32 30k ROSSELET 77 SPEC +		42 Not independent of	of above DE	MIDOV 90 value.	Cuts	differ.		
.36±0.68 500 BOURQUIN 71 ASPK		⁴³ Not independent o	of above BA	RMIN 88 value. C	uts d	iffer.		
.0 ±0.9 106 SCHWEINB 71 HLBC + .83±0.63 269 ELY 69 HLBC +		$\Gamma(\pi^+\pi^0\gamma)/\Gamma_{\text{total}}$						Г19
• • We do not use the following data for averages, fits, limits, etc. • •		VALUE (units 10-4) CLS		DOCUMENT ID		TECN	CHG	COMMENT
.7 ±1.5 69 BIRGE 65 FBC +		2.75±0.15 OUR AV 2.71±0.45	/ERAGE 140	BOLOTOV	87	WIRE	_	Tπ ⁻ 55-90 Me
$\Gamma(\pi^+\pi^-\mu^+ u_\mu)/\Gamma_{\text{total}}$	Γ ₁₀ /Γ	2.87±0.32	2461	SMITH		WIRE		Tπ± 55-90 Me
ALUE (units 10 ⁻⁵) EVTS DOCUMENT ID TECN CHG	,	2.71 ± 0.19	2100	ABRAMS		ASPK		Tπ ⁺ 55-90 Me
• • We do not use the following data for averages, fits, limits, etc. • •		• • • We do not use	the following					
.77 ^{+0.54} 1 CLINE 65 FBC +		$1.5 \begin{array}{c} +1.1 \\ -0.6 \end{array}$		⁴⁴ LJUNG	73	HLBC	+	Tπ ⁺ 55~80 Me
		$2.6 \begin{array}{c} +1.5 \\ -1.1 \end{array}$		⁴⁴ LJUNG	73	HLBC	+	Tπ ⁺ 55-90 Me
· • • • • • • • • • • • • • • • • • • •	Γ ₁₀ /Γ ₄	$6.8 \begin{array}{c} +3.7 \\ -2.1 \end{array}$	17	⁴⁴ LJUNG	73	HLBC	+	Tπ ⁺ 55-102 M
ALUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN CHG		2.4 ±0.8	24	EDWARDS	72	OSPK		Tπ ⁺ 58-90 Me
2.57±1.55 7 BISI 67 DBC + • • We do not use the following data for averages, fits, limits, etc. • •		<1.0	0	45 MALTSEV		HLBC	+	T_{π}^{+} <55 MeV
2.5 1 GREINER 64 EMUL +		<1.9 90 2.2 ±0.7	0 18	EMMERSON CLINE		OSPK FBC	+	Tπ ⁺ 55-80 Me Tπ ⁺ 55-80 Me
$\Gamma(\pi^0\pi^0\pi^0e^+ u_e)/\Gamma_{ m total}$	F /F	44 The LJUNG 73 va						
•	Γ ₁₁ /Γ	45 MALTSEV 70 sele			e dire	ct emiss	sion co	ntribution.
<u>VALUE (units 10⁻⁶) CL% EVT5 DOCUMENT ID TECN CHG</u> <3.5 90 0 BOLOTOV 88 SPEC −		$\Gamma(\pi^+\pi^0\gamma(DE))/\Gamma$	- total					Γ ₂₀
• • We do not use the following data for averages, fits, limits, etc. • • •		Direct emission	part of F(:	$(\tau^+ \pi^0 \gamma) / \Gamma_{\text{total}}$				
<9 90 0 BARMIN 92 XEBC +		VALUE (units 10 ⁻⁵)		DOCUMENT ID		TECN	CHG	COMMENT
$\Gamma(\mu^+ u_\mu u\overline{ u})/\Gamma_{ m total}$	Γ ₁₂ /Γ	1.8 ±0.4 OUR AVE	RAGE					
VALUE (units 10 ⁻⁶) CL% EVTS <u>DOCUMENT ID</u> <u>TECN CHG</u>	- 127	$2.05 \pm 0.46 ^{+ 0.39}_{- 0.23}$		BOLOTOV		WIRE		$T\pi^{}$ 55-90 Me
<6.0 90 0 ³⁶ PANG 73 CNTR +		2.3 ± 3.2 $1.56 \pm 0.35 \pm 0.5$		SMITH ABRAMS		WIRE ASPK		$T\pi^{\pm}$ 55-90 Me
36 PANG 73 assumes μ spectrum from $\nu\text{-}\nu$ interaction of BARDIN 70.							_	
$\Gamma(e^+ u_e u\overline{ u})/\Gamma(e^+ u_e)$	Γ_{13}/Γ_{2}	$\Gamma(\pi^+\pi^+\pi^-\gamma)/\Gamma_b$						Г ₂₁
VALUE CL% EVTS DOCUMENT ID TECN CHG	, -	VALUE (units 10 ⁻⁴) 1.04±0.31 OUR AVE	EVTS RAGE	DOCUMENT ID		TECN	CHĢ	COMMENT
<3.8 90 0 HEINTZE 79 SPEC +		1.10±0.48	7	BARMIN	89	XEBC		$E(\gamma) > 5 \text{ MeV}$
$\Gamma(\mu^+ u_\mue^+e^-)/\Gamma(\pi^+\pi^-e^+ u_e)$	Γ ₁₄ /Γ ₉	1.0 ± 0.4		STAMER	65	EMUL	. +	$E(\gamma) > 11$ MeV
VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN CHG COMMENT		$\Gamma(\pi^+\pi^0\pi^0\gamma)/\Gamma(\tau)$	r+π ⁰ π ⁰)					Γ ₂₂ /
3.3±0.9 14 37 DIAMANT 76 SPEC + m _{e+e-}	>140	VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	CHG	COMMENT
MeV • • We do not use the following data for averages, fits, limits, etc. • •		4.3 ^{+3.2}		BOLOTOV	85	SPEC	_	$E(\gamma) > 10$ MeV
27. ±8. 14 37 DIAMANT 76 SPEC + Extrapolat	ed BR							_
37 DIAMANT-BERGER 76 gives this result times our 1975 $\pi^+\pi^-e u$ BR ratio. Th	e second	$\Gamma(\pi^0 \mu^+ \nu_\mu \gamma)/\Gamma_{to}$						Γ ₂₃
DIAMANT-BERGER 76 value is the first value extrapolated to 0 to include le		VALUE (units 10 ⁻⁵) CL		DOCUMENT ID		TECN	CHG	
e^+e^- pairs. More recent calculations (BIJNENS 93) of this extrapolation disagethose of DIAMANT-BERGER 76.	giee with	<6.1 90		LJUNG	/3	HLBC	+	$E(\gamma) > 30 \text{ MeV}$
$\Gamma(e^+\nu_ee^+e^-)/\Gamma(\pi^+\pi^-e^+\nu_e)$	Γ ₁₅ /Γ ₉	$\Gamma(\pi^0 e^+ \nu_e \gamma) / \Gamma(\pi^0 e^+ \nu_e \gamma)$	$r^0 e^+ \nu_e$					Γ ₂₄ /
VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN CHG COMMENT	. 13/ . 3	VALUE (units 10 ⁻²)	EVT5	DOCUMENT ID		TECN	CHG	COMMENT
	>140	0.54±0.04 OUR AVE 0.46±0.08	RAGE Er 82	ror includes scale f ⁴⁶ BARMIN		OF 1.1.		$E(\gamma) > 10$
38 DIAMANT 76 CDEC ±	, A 10	551.0.00	-					MeV, 0.6 <
MeV						CALO		$\cos\theta_e \gamma < 0.9$ $E(\gamma) > 10 \text{ MeV}$
MeV • • We do not use the following data for averages, fits, limits, etc. • •		0.56 : 0.01	100	4/ polotou				CCAL STO MIGA
● ● We do not use the following data for averages, fits, limits, etc. ● ●	ted BR	0.56 ± 0.04 0.76 ± 0.28	192 13	⁴⁷ BOLOTOV ⁴⁸ ROMANO		HLBC		
MeV • • • We do not use the following data for averages, fits, limits, etc. • • • 5.4 $^{+5.4}_{-2.7}$ 4 38 DIAMANT 76 SPEC + Extrapolat 38 DIAMANT-BERGER 76 gives this result times our 1975 $\pi^+\pi^-e\nu$ BR ratio. Th	ne second	0.56 ± 0.04 0.76 ± 0.28 • • • We do not use	13	48 ROMANO	71	HLBC		$E(\gamma) > 10 \text{ MeV}$
MeV • • • We do not use the following data for averages, fits, limits, etc. • • • 5.4 +5.4 -2.7 4 38 DIAMANT 76 SPEC + Extrapolat 38 DIAMANT-BERGER 76 gives this result times our 1975 π ⁺ π ⁻ e ν BR ratio. Th DIAMANT-BERGER 76 value is the first value extrapolated to 0 to include I	ne second low mass	0.76 ± 0.28	13	48 ROMANO	71 es, fit	HLBC		$E(\gamma) > 10 \text{ MeV}$ • • • • $E(\gamma) > 10 \text{ MeV}$
MeV • • We do not use the following data for averages, fits, limits, etc. • • • 6.4 $^{+5.4}_{-2.7}$ 4 38 DIAMANT 76 SPEC + Extrapolat 38 DIAMANT-BERGER 76 gives this result times our 1975 $\pi^+\pi^-e\nu$ BR ratio. Th	ne second low mass	0.76 ± 0.28 • • • We do not use 1.51 ± 0.25	13 the following the second se	⁴⁸ ROMANO ng data for averag ⁴⁶ BARMIN	71 es, fit: 91	HLBC s, limits, XEBC	, etc. •	$E(\gamma) > 10 \text{ MeV}$ • • • $E(\gamma) > 10 \text{ MeV}$ $\cos \theta_e \gamma < 0.98$
MeV •• • We do not use the following data for averages, fits, limits, etc. •• • • 5.4 $^{+5.4}_{-2.7}$ 4 38 DIAMANT 76 SPEC + Extrapolat 38 DIAMANT-BERGER 76 gives this result times our 1975 $\pi^+\pi^-e^{\nu}$ BR ratio. The DIAMANT-BERGER 76 value is the first value extrapolated to 0 to include e^+e^- pairs. More recent calculations (BIJNENS 93) of this extrapolation disagnities of DIAMANT-BERGER 76.	ne second low mass gree with	0.76 ± 0.28 • • • We do not use 1.51 ± 0.25 0.48 ± 0.20	13 the follow	⁴⁸ ROMANO ng data for averag ⁴⁶ BARMIN ⁴⁹ LJUNG	71 es, fit: 91 73	HLBC s, limits, XEBC HLBC	, etc. •	$E(\gamma) > 10 \text{ MeV}$ • • • $E(\gamma) > 10 \text{ MeV}$ $\cos\theta_e \gamma < 0.98$ $E(\gamma) > 30 \text{ MeV}$
• • • We do not use the following data for averages, fits, limits, etc. • • • • $6.4 + 5.4 - 2.7$ 4 38 DIAMANT 76 SPEC + Extrapolat BIAMANT-BERGER 76 gives this result times our 1975 $\pi^+\pi^-e\nu$ BR ratio. The DIAMANT-BERGER 76 value is the first value extrapolated to 0 to include e^+e^- pairs. More recent calculations (BIJNENS 93) of this extrapolation disages	ne second low mass	0.76 ± 0.28 • • • We do not use 1.51 ± 0.25	13 the following the second se	⁴⁸ ROMANO ng data for averag ⁴⁶ BARMIN	71 es, fit: 91 73 73	HLBC s, limits, XEBC	, etc. • + +	$E(\gamma) > 10 \text{ MeV}$ • • • • $E(\gamma) > 10 \text{ MeV}$ $\cos \theta_e \gamma < 0.98$

 K^{\pm}

⁴⁶ BARMIN 91 q is [Γ($K \rightarrow eπ$	$(^{0}\nu) + \Gamma(K \rightarrow$	$\pi^{+}\pi^{+}\pi^{-})$]. For	or compariso	on with ot	her experiments we	т (ж	Test for a	Γ_{total} $\Delta S = 1 \text{ weak } r$	neutral current. A	llowed by highe	r-order e	Γ ₃₂ /Γ electroweak interac-
$47 \cos\theta(e\gamma)$ betw	$e\pi^{\circ}\nu$ J/I all = 0	.0482 to calculat	te the value	s quotea r	iere.	VALE	/E (units 10 ⁻⁶) <u>cu</u>	EVTS DO	CUMENT ID	TECN	CHG
			etween 0.6	and 0.9.	Second value is for			OUR AVERAG		scale factor of		
			use lowest	$E(\gamma)$ cut	for Summary Table		9.22 ± 0.60 5.0 ± 0.4		402 MA 207 ⁵⁵ AD		B865 CB787	+
⁴⁹ First LJUNG 7	MANO 71 for E 73 value is for c mparison with R	$os\theta(e\gamma)$ <0.9, so	econd value	is for cos	$\delta heta(e_{\gamma})$ between 0.6	• • < 2	• We do n		wing data for aver	ages, fits, limits		
	•				- <i>-</i>	<24	10	90	BIS	SI 67	DBC	+
$\Gamma(\pi^0 e^+ \nu_e \gamma)$ (St	D))/F _{total} ependent part.				Г ₂₅ /Г	<30		90		_	FBC	+
VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID	TECI	N CHG					tic error $0.7 imes 10^-$ rature to obtain o			tainty 0.6×10^{-8} ,
<5.3	90	BOLOTOV	86B CAL						Tature to obtain of	ar second error.		_
-(0 0 .± ·	\				- 1-	Г(я	' ⁺ νν)/Γ _t					Г33/Г
$\Gamma(\pi^0\pi^0e^+\nu_e\gamma)$					Γ ₂₆ /Γ		Test for . tions.	$\Delta S = 1$ weak i	neutral current. A	llowed by highe	r-order e	electroweak interac-
VALUE (units 10 ⁻⁶)		DOCUMENT ID			COMMENT	VALO		CL% EVTS	DOCUMENT	ID TECN	CHG	COMMENT
<5	90 0	BARMIN	92 XEB	BC +	$E_{oldsymbol{\gamma}} >$ 10 MeV	-	0.15 + 0	34 1	ADLER	00 B787		
$\Gamma(\pi^+\gamma\gamma)/\Gamma_{\text{total}}$					Γ ₂₇ /Γ						r otc •	
		e a phase space p	pion energy	spectrum.		• •			wing data for aver	ages, mis, minus	s, e.c. •	••
VALUE (units 10 ⁻⁷)		DOCUMENT I					0.42 + 0.00	.97	ADLER	97 B787		
11 ± 3	±1 31	⁵⁰ KITCHING	97 B7	87		<	2.4	90	ADLER	96 B787		
• • • We do not	use the followin	g data for averag	ges, fits, lim	its, etc. •	• •	<	7.5	90	ATIYA	93 B787	+	T(π) 115~127 MeV
< 10	90 0	ATIYA	90в В7		Tπ 117-127 MeV	<	5.2	90	⁵⁶ ATIYA	93 B787	+	
< 84	90 0	ASANO	82 CN		Tπ 117-127 MeV	<	17	90 0	ATIYA	93B B787	+	T(π) 60-100 MeV
-420 ±520 < 350	90 0	ABRAMS LJUNG	77 SPI 73 HL	BC +	Tπ <92 MeV 6-102, 114-127	< <	34 140	90 90	ATIYA ASANO	90 B787 81B CNTF	+ २ +	Τ(π) 116-127
					MeV							MeV
< 500 -100 ±600	90 0	KLEMS CHEN		iPK + iPK +	Tπ <117 MeV Tπ 60-90 MeV	<	940	90	⁵⁷ CABLE ⁵⁷ CABLE	73 CNTF 73 CNTF		T(π) 60–105 MeV
	7 :				ning fraction (6.0 ±		560 7000	90 90 0	58 LJUNG	73 HLBC		T(π) 60–127 MeV
					Perturbation Theory.		1400	90	57 KLEMS	71 OSPK		T(π) 117-127
1.5 ± 0.7) × 10) 101 100 WE	π^+	ivic v / c usii	ilg Cilivai i	erturbation (neory.							MeV
$\Gamma(\pi^+3\gamma)/\Gamma_{\text{tota}}$ Values given VALUE (units 10^{-4})	n here assume a CL%	phase space pior	• • •	ectrum.	Γ ₂₈ /Γ	57	KLEMS 71 limit combi	and CABLE 73	and KLEMS 71 d	um same as K_{ρ}	decay.	Second CABLE 73
<1.0	90	ASANO	82 CN		T(π) 117-127		FIONG 13	assumes vector	interaction.			
					MeV	Γ(,		·)/Γ(π+π ⁻ (Г34/Г9
• • • We do not		g data for averag			• •	•			mber conservation			
<3.0	90	KLEMS	71 OSF	PK +	$T(\pi) > 117 \text{ MeV}$			3) CL% EVTS			_ <u>CHG</u>	
$\Gamma(\pi^+\pi^+e^-\nu_e)$)/Farent				Γ ₂₉ /Γ	. <0		90 0		76 SPEC		
Test of ΔS	$= \Delta Q \text{ rule.}$. 25/	59	DIAMANT	-BERGER 76 q	uotes this result ti	rnes our 1975 π	r+π-eι	BR ratio.
VALUE (units 10^{-7})	CL% EVTS	DOCUMENT ID	TEC	N CHG		FΩ	4 ⁺ να)/Γο	ntal				Fas/F
VALUE (units 10 ⁻⁷)		DOCUMENT ID g data for averag			••	Γ()	ν _e)/Γ _b Forbidde		nily number conser			Γ ₃₅ /Γ
VALUE (units 10 ⁻⁷)			ges, fits, lim	its, etc. •	••	Γ() <u>val</u>	Forbidde	n by lepton fan <u>CL% EVTS</u>	DOCUMENT	ID TECN		COMMENT
<i>VALUE</i> (units 10 ⁻⁷) • • • We do not	use the followin	g data for averag	ges, fits, lim	nits, etc. • BC + BC +	••	<u>val</u> <0	Forbidde <u>UE</u> . 004	n by lepton fan <u>CL%</u> <u>EVTS</u> 90 0	DOCUMENT 60 LYONS	81 HLBC	C 0	COMMENT 200 GeV K ⁺ narrow band ν bearn
<i>VALUE</i> (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20.	use the followin 95 0 95 0 95	g data for average SCHWEINB. ELY BIRGE	ges, fits, lim 71 HLE 69 HLE	nits, etc. • BC + BC +		<u>vat</u> <0	Forbidde <u>UE</u> . 004	n by lepton fan CL% EVTS 90 0 not use the follo	60 LYONS	81 HLBC	C 0	COMMENT 200 GeV K ⁺ narrow band ν bearn
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ(π ⁺ π ⁺ e ⁻ ν _e .	use the followin 95 0 95 0 95	g data for average SCHWEINB. ELY BIRGE	ges, fits, lim 71 HLE 69 HLE	nits, etc. • BC + BC +	 Г ₂₉ /Г ₉	<u>∨∧≀</u> <0	Forbidde <u>UE</u> . 004	n by lepton fan <u>CL%</u> <u>EVTS</u> 90 0	DOCUMENT 60 LYONS	81 HLBC	C 0	COMMENT 200 GeV K ⁺ narrow band ν bearn
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ(π ⁺ π ⁺ e ⁻ ν _e .	use the followin 95 0 95 0 95)/ $\Gamma(\pi^+\pi^-e^+$ = ΔQ rule.	g data for average SCHWEINB. ELY BIRGE Pe)	ges, fits, lim 71 HLE 69 HLE 65 FBC	nits, etc. • BC + BC + C +		<i>VAL</i> <0 • • • <0 60	Forbidde UE .004 • We do r .012 COOPER I	90 0 n by lepton fan <u>CL% EVTS</u> 90 0 not use the follo 90 32 and LYONS	bwing data for ave 60 COOPER 81 limits on ν_e 0	81 HLBC rages, fits, limit 82 HLBC bservation are I	C 0 cs, etc. • C	COMMENT 200 GeV K ⁺ narrow band ν bearn
VALUE (units 10 ⁻⁷) • • • • We do not < 9.0 < 6.9 <20. Γ (π+π+e-ν _e Test of Δ5 VALUE (units 10 ⁻⁴) < 3	use the followin 95 0 95 0 95 0)/ $\Gamma(\pi^+\pi^-e^+$ = ΔQ rule. CL% EVTS 90 3	g data for average SCHWEINB. ELY BIRGE **Pe DOCUMENT ID 51 BLOCH	ges, fits, lim 71 HLE 69 HLE 65 FBC	nits, etc. • BC + BC + C +	Γ ₂₉ /Γ ₉	<i>VAL</i> <0 • • • <0 60	Forbidde UE .004 • We do r .012 COOPER I	90 0 n by lepton fan <u>CL% EVTS</u> 90 0 not use the follo 90 32 and LYONS	60 LYONS wing data for ave 60 COOPER	81 HLBC rages, fits, limit 82 HLBC bservation are I	C 0 cs, etc. • C	COMMENT 200 GeV K ⁺ narrow band ν bearn • • Wideband ν beam
VALUE (units 10 ⁻⁷) • • • • We do not < 9.0 < 6.9 <20. Γ (π+π+e-ν _e Test of Δ5 VALUE (units 10 ⁻⁴) < 3	use the followin 95 0 95 0 95 0 97 0 97 0 97 $\pi^+\pi^-e^+$ $= \Delta Q \text{ rule.}$ $\frac{CL\%}{90} = \frac{EVTS}{3}$ use the followin	g data for average SCHWEINB. ELY BIRGE Pe)	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim	aits, etc. • BC + BC + C + C +	Γ ₂₉ /Γ ₉	<i>VAL</i> < 0 • • • <0 60	• We do r .002 COOPER 1 lepton fam	n by lepton fan <u>CL% EVTS</u> 90 0 not use the folk 90 32 and LYONS ily number viola)// Lotal	DOCUMENT 60 LYONS owing data for ave 60 COOPER 81 limits on ν _e o ation in the absence	81 HLBC rages, fits, limit 82 HLBC bservation are I se of mixing.	C 0 cs, etc. • C	COMMENT 200 GeV K ⁺ narrow band ν bearn • • Wideband ν beam
VALUE (units 10 ⁻⁷) • • • • We do not < 9.0 < 6.9 < 20. Γ (π+π+e-ν _e Test of Δ5 $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not < 130.	use the followin 95 0 95 0 95 0 95 0 95 0 96 $= \Delta Q$ rule. CAQ rule. CAQ $= VTS90 3use the followin95 0$	g data for average SCHWEINB. ELY BIRGE **Pe **DOCUMENT IC 51 BLOCH g data for average BOURQUIN	ges, fits, lim 71 HLE 69 HLE 65 FBC 76 SPE ges, fits, lim 71 ASF	aits, etc. • BC + BC + C + C + C + C + C + C + C + C + C +	Γ ₂₉ /Γ ₉	∨∧∟ <0 <0 60	• We do r .012 COOPER I lepton fam Test of i	n by lepton fan CL% EVTS 90 0 not use the folk 90 32 and LYONS illy number viols // Ttotal epton family nu	bowing data for ave 60 COOPER 81 limits on ν_e oation in the absence	81 HLBG rages, fits, limit 82 HLBG bservation are I te of mixing.	cs, etc. • C here inte	COMMENT 200 GeV K ⁺ narrow band ν bearn • • • Wideband ν beam rpreted as limits on
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 <20. Γ (π+π+e-ν _e Test of Δ5 $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qu	use the followin 95 0 95 0 95 0)/ $\Gamma(\pi^+\pi^-e^+$ = ΔQ rule. 	g data for average SCHWEINB. ELY BIRGE **Pe **DOCUMENT IC 51 BLOCH g data for average BOURQUIN	ges, fits, lim 71 HLE 69 HLE 65 FBC 76 SPE ges, fits, lim 71 ASF	aits, etc. • BC + BC + C + C + C + C + C + C + C + C + C +	Γ ₂₉ /Γ ₉	<u>∨∧≀</u> <0 <0 60 Γ(1	• We do r .002 COOPER I lepton fam Test of i	n by lepton fan CL% EVTS 90 0 not use the folk 90 32 and LYONS illy number viols // Ttotal epton family nu	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on ν_e o ation in the absence mber conservation DOCUMENT	81 HLBG rages, fits, limit 82 HLBG bservation are I te of mixing.	cs, etc. • C here inte	200 GeV K ⁺ narrow band ν beam • • Wideband ν beam rpreted as limits on
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 <20. Γ (π+π+e-ν _e Test of Δ5 $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qL Γ (π+π+μ-ν _e	use the followin 95 0 95 0 95 0)/ $\Gamma(\pi^+\pi^-e^+$ = ΔQ rule. 	g data for average SCHWEINB. ELY BIRGE **Pe **DOCUMENT IC 51 BLOCH g data for average BOURQUIN	ges, fits, lim 71 HLE 69 HLE 65 FBC 76 SPE ges, fits, lim 71 ASF	aits, etc. • BC + BC + C + C + C + C + C + C + C + C + C +	Γ ₂₉ /Γ ₉	<u>ναι</u> <0	• We do r .012 COOPER (lepton fam r+ \(\mu + e^{-1} \) Test of i UE (units 10-2.1	n by lepton fan CL% EVT'S 90 C not use the follo 90 32 and LYONS ily number violo)/\(\text{Ftotal}\) epton family nu 10) CL% EVT'S 90 COMPANDED 10 10 10 10 10 10 10 10 10 1	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on ν_e oation in the absence The conservation of the conservatio	81 HLBC rages, fits, limit 82 HLBC bservation are I te of mixing.	cs, etc. •	200 GeV K ⁺ narrow band ν bearn • • Wideband ν beam rpreted as limits on
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ (π+π+e ⁻ ν _e Test of Δ5 VALUE (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qu Test of Δ5	use the followin 95 0 95 0 95 0 97 0 97 0 $\int \Gamma(\pi^+\pi^-e^+)$ $= \Delta Q \text{ rule.}$	g data for average SCHWEINB. ELY BIRGE **Pe DOCUMENT IC 51 BLOCH g data for average BOURQUIN 4 at CL = 95%,	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert.	nits, etc. • BC + BC + C + C + EC nits, etc. •	Γ ₂₉ /Γ ₉	<u>ναι</u> <0	Forbidde UE • We do r .012 COOPER is lepton fam $\mathbf{r}^+ \boldsymbol{\mu}^+ \mathbf{e}^-$ Test of i • We do r	n by lepton fan CL% EVT'S 90 C not use the follo 90 32 and LYONS ily number violo)/\(\text{Ftotal}\) epton family nu 10) CL% EVT'S 90 COMPANDED 10 10 10 10 10 10 10 10 10 1	owing data for ave 60 COOPER 81 limits on ν_e o attoin in the absence imber conservation $\frac{DOCUMENT}{LEE}$ owing data for ave	81 HLBC rages, fits, limit 82 HLBC bservation are I te of mixing.	cs, etc. • chere inte	200 GeV K ⁺ narrow band ν bearn • • Wideband ν beam rpreted as limits on
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ (π+π+e-ν _e Test of Δ5 VALUE (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qu Test of Δ5 VALUE (units 10 ⁻⁶)	use the followin 95 0 95 0 95 0 97 0 98 0 99 0 $\frac{EVTS}{2}$ 90 3 use the followin 95 0 potes 3.6×10^{-4} $\frac{EVTS}{2}$ $\frac{EVTS}{2}$	g data for average SCHWEINB. ELY BIRGE DOCUMENT ID BLOCH g data for average BOURQUIN at CL = 95%,	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert.	nits, etc. • BC + BC + C + N EC Citis, etc. •	Γ ₂₉ /Γ ₉	ν <u>νι</u> «0 <0 60 Γ(1 ννι ννι ννι ννι ννι ννι ννι ν	Forbidde UE	n by lepton fam CL% EVTS 90 C not use the follo 90 32 and LYONS illy number viola pepton family nu 10) CL% EVTS 90 C not use the follo 10 cts the	DOCUMENT 60 LYONS owing data for ave 60 COOPER 81 limits on ν _e o ation in the absence or DOCUMENT DEE owing data for ave CAMPAGE	81 HLBC rages, fits, limit 82 HLBC bservation are 1 12 of mixing. 1. TECN 90 SPEC rages, fits, limit	cs, etc. • chere inte	200 GeV K ⁺ narrow band ν bearn • • Wideband ν beam rpreted as limits on
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 <20. Γ (π+π+e-ν _e Test of Δ5 VALUE (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qu Γ (π+π+μ-ν _e Test of Δ5 VALUE (units 10 ⁻⁶) <3.0	use the following use the following ps 0 95 0 95 0 95 0 0 95 0 0 0 0 0 0 0 0 0	g data for average SCHWEINB. ELY BIRGE **Pe DOCUMENT IC 51 BLOCH g data for average BOURQUIN 4 at CL = 95%,	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert.	nits, etc. • BC + BC + C + N EC Citis, etc. •	Γ ₂₉ /Γ ₉	VAL <0 60 Γ(1 <	Forbidde UE .004 • We do n .012 COOPER is lepton fam r+ \mu + e^- Test of i UE (units 10^- 2.1 • We do n 1 8	n by lepton fan CL% EVTS 90 C not use the folic 90 32 and LYONS ily number viols // Ttotal epton family nu 10) CL% EVTS 90 C not use the folic 90 C 90 C	DOCUMENT 60 LYONS owing data for ave 60 COOPER 81 limits on ν _e o ation in the absence or DOCUMENT DEE owing data for ave CAMPAGE	81 HLBC 82 HLBC bservation are I te of mixing. 10. TECN 90 SPEC rages, fits, limit NARI 88 SPEC	cs, etc. • chere inte	COMMENT 200 GeV K ⁺ narrow band ν bearn • • Wideband ν beam rpreted as limits on \[\begin{align*} \Gamma_{36}/\Gamma_{60} \end{align*} \] COMMENT • • • In LEE 90
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ (π+π+e-ν _e Test of Δ5 VALUE (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qu Γ (π+π+μ-ν _e Test of Δ5 VALUE (units 10 ⁻⁶) <3.0 Γ (π+e+e-)/Γ	use the followin 95 0 95 0 95 0 95 0)/ $\Gamma(\pi^+\pi^-e^+$ = ΔQ rule. $\frac{CL\%}{90}$ $\frac{EVTS}{3}$ use the followin 95 0 potes 3.6×10^{-4})/ Γ total = ΔQ rule. $\frac{CL\%}{95}$ $\frac{EVTS}{95}$ 0	g data for average SCHWEINB. ELY BIRGE DOCUMENT ID 51 BLOCH g data for average BOURQUIN 4 at CL = 95%, DOCUMENT ID BIRGE	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert.	NOTE CHG	Γ ₂₉ /Γ ₉ ••• Γ ₃₀ /Γ	VAL <0 <0 <0 60 Γ(1 VAL <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Forbidde U.E. • We do r .012 COOPER r lepton fam Test of i UE (units 10 ⁻ 2.1 • We do r 1 8 T+ \(\mu^{+} = + + + + + - = + + + + + + + + + + + +	n by lepton fan CL% EVTS 90 C not use the folk 90 32 and LYONS Illy number viol // Ftotal epton family nu 10) CL% EVTS 90 not use the folk 90 (0) // Ftotal	DOCUMENT 60 LYONS owing data for ave 60 COOPER 81 limits on ν _e o attion in the absence imber conservation DOCUMENT LEE owing data for ave 1 CAMPAGI DIAMANT	81 HLBC rages, fits, limit 82 HLBC bservation are 1 10 TECN 90 SPEC rages, fits, limit AARI 88 SPEC	cs, etc. • chere inte	200 GeV K ⁺ narrow band ν bearn • • Wideband ν beam rpreted as limits on
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ (π+π+e-ν _e Test of ΔS VALUE (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qu Γ (π+π+μ-ν _μ Test of ΔS VALUE (units 10 ⁻⁶) <3.0 Γ (π+e+e-)/Γ Test for Δ	use the followin 95 0 95 0 95 0 95 0 97 0 $V = \Delta Q \text{ rule}$. $V = \Delta Q \text{ rule}$. $V = \Delta Q \text{ rule}$. $V = \Delta Q \text{ rule}$. 95 0 $V = \Delta Q \text{ rule}$. $V = \Delta Q \text{ rule}$.	g data for average SCHWEINB. ELY BIRGE DOCUMENT ID BIOCH g data for average BOURQUIN at CL = 95%, DOCUMENT ID BIRGE	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert.	NOTE CHG	Γ ₂₉ /Γ ₉ ••	VAL <0 60 60 Γ(1 44 64 Γ(1)	Forbidde UE	n by lepton fan CL% EVTS 90 C not use the folk 90 32 and LYONS Illy number viol // Ftotal epton family nu 10) CL% EVTS 90 not use the folk 90 (0) // Ftotal	oving data for ave 60 COOPER 81 limits on ν_{e} o ation in the absence 10 DOCUMENT 10 DOCUMENT 11 LEE 12 DOCUMENT 13 DOCUMENT 14 DIAMANT 15 DIAMANT	81 HLBC 82 HLBC bservation are I te of mixing. 10 TECN 90 SPEC rages, fits, limit NARI 88 SPEC 1 76 SPEC	cs, etc. • chere inte	COMMENT 200 GeV K ⁺ narrow band ν bearn • • Wideband ν beam rpreted as limits on \[\begin{align*} \Gamma_{36}/\Gamma_{60} \end{align*} \] COMMENT • • • In LEE 90
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ(π+π+e-ν _e Test of Δ5 VALUE (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qu Γ(π+π+μ-ν _e Test of Δ5 VALUE (units 10 ⁻⁶) <3.0 Γ(π+e+e-)/Γ Test for Δ electromage	use the following use the fol	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN 4 at CL = 95%, DOCUMENT IC BIRGE DIRGE LITTLE BIRGE LUTTAL CUFFERL. A.S.	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 65 FBG	inits, etc. • BC + BC + BC + CC + ECC inits, etc. • PK CN CHG CC + combined (Γ ₂₉ /Γ ₉ •• Γ ₃₀ /Γ Γ ₃₁ /Γ	VAL <0 60 60 Γ(1 44 64 Γ(1)	Forbidde UE	n by lepton fan CL% EVTS 90 C not use the folic 90 32 and LYONS lity number viol: //Ftotal 90 10 CL% EVTS 90 10 O Use the folic 90 90 (7) (7) (7) (7) (8) (9) (9) (1) (7) (1) (1) (1) (2) (2) (3) (4) (5) (6) (7) (7) (6) (7) (7) (7) (7	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on ν_{e} o ation in the absence Imber conservation 5. DOCUMENT CAMPAGE DIAMANT DIAMANT DIAMANT DIAMANT	81 HLBC 82 HLBC bservation are I te of mixing. 10 TECN 90 SPEC rages, fits, limit NARI 88 SPEC 1 76 SPEC	c 0 cs, etc. • c chere inte	COMMENT 200 GeV K ⁺ narrow band ν bearn • • Wideband ν beam rpreted as limits on \[\begin{align*} \Gamma_{36}/\Gamma_{60} \end{align*} \] COMMENT • • • In LEE 90
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 <20. Γ(π+π+e-ν _e Test of ΔS $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qL Γ(π+π+μ-ν _e Test of ΔS $VALUE$ (units 10 ⁻⁶) <3.0 Γ(π+e+e-)/Γ Test for Δ electromago $VALUE$ (units 10 ⁻⁷)	use the following use the following ps 0 95 0 95 0 95 0 95 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN 4 at CL = 95%, DOCUMENT IC BIRGE DIRGE LITTLE BIRGE LUTTAL CUFFERL. A.S.	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 65 FBG	inits, etc. • BC + BC + BC + CC + ECC inits, etc. • PK CN CHG CC + combined (Γ ₂₉ /Γ ₉ ••• Γ ₃₀ /Γ	ναι	Forbidde VE .004 • We do r .012 COOPER is lepton fam r+ \mu + e^- Test of i VE (units 10^- 2.1 • We do r 1 8 r+ \mu - e^+ Test of i UE (units 10^- 7	n by lepton fan CL% EVTS 90 C not use the folic 90 32 and LYONS ily number viola // Total epton family nu 90 CL% EVTS 90 Cot use the folic 90 ()/ Total epton family nu 90 () // Total	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on ν_{e} o ation in the absence Imber conservation 5. DOCUMENT CAMPAGE DIAMANT DIAMANT DIAMANT DIAMANT	81 HLBC 1ages, fits, limit 82 HLBC bservation are I 1. TECN 90 SPEC 1. TECN NARI 88 SPEC 1. TECN 1. TE	c 0 cs, etc. • c here inte c	COMMENT 200 GeV K ⁺ narrow band ν bearn • Wideband ν beam rpreted as limits on \[\begin{align*} \Gamma_{36}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{50}
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 <20. Γ(π+π+e-ν _e Test of ΔS $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qL Γ(π+π+μ-ν _e Test of ΔS $VALUE$ (units 10 ⁻⁶) <3.0 Γ(π+e+e-)/Γ Test for Δ electromago $VALUE$ (units 10 ⁻⁷)	use the following use the following ps 0 95 0 95 0 95 0 95 0 95 0 0 95 0 0 0 0	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN 4 at CL = 95%, DOCUMENT ID BIRGE DOCUMENT ID BIRGE utral current. A 5. DOCUME 52 APPEL	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 0 7EC 65 FBG	inits, etc. • BC + BC + BC + CC + ECC inits, etc. • PK CN CHG CC + combined (Γ ₂₉ /Γ ₉ •• Γ ₃₀ /Γ Γ ₃₁ /Γ	ναι	Forbidde VE .004 • We do r .012 COOPER is lepton fam r+ \(\mu + e^- \) Test of i VE (units 10^- 2.1 • We do r 1 8 r+ \(\mu - e^+ \) Test of i VUE (units 10^- 7 • We do r We do r Test of i VUE (units 10^- 7	n by lepton fan CL% EVTS 90 C not use the folic 90 32 and LYONS ily number viola // Total epton family nu 90 CL% EVTS 90 Cot use the folic 90 ()/ Total epton family nu 90 () // Total	DOCUMENT 60 LYONS Owing data for ave 60 COOPER 81 limits on ν _e o ation in the absence Imber conservation COUMENT DOCUMENT DIAMANT UNITED COMMENT DIAMANT OF DOCUMENT DIAMANT OF DIAMANT	81 HLBC 1ages, fits, limit 82 HLBC bservation are I 1. TECN 90 SPEC 1. TECN NARI 88 SPEC 1. TECN 1. TE	C 0 cs, etc. • chere inte	COMMENT 200 GeV K ⁺ narrow band ν bearn • Wideband ν beam rpreted as limits on \[\begin{align*} \Gamma_{36}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{37}/\Gamma_{50} \\ \Gamma_{50}
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ (π+π+e ⁻ ν _e Test of Δ5 $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qu Γ (π+π+μ-ν _e Test of Δ5 $VALUE$ (units 10 ⁻⁶) <3.0 Γ (π+e+e ⁻)/Γ Test for Δ electromage $VALUE$ (units 10 ⁻⁷) 2.88±0.13 C 2.94±0.05± 2.75±0.23±	use the followin 95 0 95 0 95 0 95 0 95 0 95 0 95 0 0 95 0 0 95 0 0 0 0	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN 4 at CL = 95%, DOCUMENT IC BIRGE	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 65 FBG	its, etc. • BC + BC + BC + CC + EC	Γ ₂₉ /Γ ₉ Γ ₃₀ /Γ Γ ₃₁ /Γ First-order weak and	ναι <0 60 Γ(1 ναι <1 <4 Γ(2 ναι <4	Forbidde	n by lepton fan CL% EVTS 90 O O O O O O O O O O O O O	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on ν _e o ation in the absence Imber conservation COUMENT DEE DOCUMENT DIAMANT DIAMANT DIAMANT DIAMANT DIAMANT DIAMANT DIAMANT DIAMANT DIAMANT DIAMANT DIAMANT	ages, fits, limit 82 HLBC bservation are I 90 SPEC rages, fits, limit NARI 88 SPEC 76 SPEC rages, fits, limit 72 OSPI	C 0 cs, etc. • C here inte c + cs, etc. • c + c + c + c + c + c + c + c	COMMENT 200 GeV K ⁺ narrow band ν bearn Wideband ν beam rpreted as limits on \[\begin{align*} \Gamma_{36}/\Gamma_{60} \\ \Gamma_{37}/\Gamma_{60} \\ \end{align*} \]
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 <20. Γ(π+π+e-ν _e Test of ΔS $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qL Γ(π+π+μ-ν _e Test of ΔS $VALUE$ (units 10 ⁻⁶) <3.0 Γ(π+e+e-)/Γ Test for Δ electromago $VALUE$ (units 10 ⁻⁷) 2.88±0.13 C 2.94±0.05± 2.75±0.23± 2.75±0.23±	use the followin 95 0 95 0 95 0 95 0 95 0 95 0 $)/\Gamma(\pi^+\pi^-e^+=\Delta Q \text{ rule.}$ $\frac{CL\%}{90}$ $\frac{EVTS}{3}$ use the followin 95 0 votes 3.6×10^{-4} $\frac{CL\%}{95}$ $\frac{EVTS}{9}$ 0 0 0 0 0 0 0 0 0 0	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN at CL = 95%, DOCUMENT IC BIRGE ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 65 FBG CIVITIO 99 RO 92 75	Inits, etc. • BC + BC + BC + CC + EC nits, etc. • PK COMBINED C SPEC SPEC SPEC SPEC SPEC	F ₂₉ /F ₉ F ₃₀ /F First-order weak and CHG COMMENT + +	\(\frac{\fint}{\fint}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}{\frac{\fin}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac	Forbidde VE .004 • We do r .012 COOPER lepton fam r+ \mu^+ e^- Test of i VE (units 10^- 2.1 • We do r 1 8 r+ \mu^- e^+ Test of i VE (units 10^- 7 • We do r 8 Measurement	n by lepton fan CL% EVTS 90 C not use the folk 90 32 and LYONS lity number viola // Ftotal epton family nu 90 C not use the folk 90 C 90 C // Ftotal epton family nu 90 C not use the folk 90 C not use the folk 90 C 10 C 1	DOCUMENT 60 LYONS Owing data for ave 60 COOPER 81 limits on ν _e o ation in the absence Imber conservation COMPAG DIAMANT OWING 61 DIAMANT OWING 61 DIAMANT OWING data for ave 61 DIAMANT OWING data for ave 61 BEIER	ages, fits, limit 82 HLBC bservation are I 90 SPEC rages, fits, limit NARI 88 SPEC 76 SPEC rages, fits, limit 72 OSPI	C 0 cs, etc. • C here inte c + cs, etc. • c + c + c + c + c + c + c + c	COMMENT 200 GeV K ⁺ narrow band ν bearn Wideband ν beam rpreted as limits on \[\Gamma_{36}/\Gamma_{60} \] COMMENT In LEE 90 \[\Gamma_{37}/\Gamma_{60} \] \[\mu^+ e^+ \text{ modes.} \]	
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 <20. Γ (π+π+e ⁻ ν _e Test of Δ5 $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qu Γ (π+π+μ ⁻ ν _μ Test of Δ5 $VALUE$ (units 10 ⁻⁶) <3.0 Γ (π+e ⁺ e ⁻)/Γ Test for Δ electromagi $VALUE$ (units 10 ⁻⁷) 2.88±0.13 C 2.94±0.05± 2.75±0.23± 2.7±0.5 • • We do not	use the followin use t	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN at CL = 95%, DOCUMENT IC BIRGE	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 65 FBG 90 TEC 91 RO 92 75 ges, fits, lim	Inits, etc. • BC + BC + BC + BC + CC + BC + BC + BC +	F ₂₉ /F ₉ F ₃₀ /F First-order weak and CHG COMMENT + + +	\(\frac{\fint}{\fint}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}{\frac{\fin}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac	Forbidde UE	n by lepton fan CL% EVTS 90 C not use the folk 90 32 and LYONS lity number viola // Ftotal epton family nu 90 C not use the folk 90 C 90 C not use the folk 90 C	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on ν_{e} o ation in the absence Imber conservation DOCUMENT LEE DIAMANT DIAMANT DIAMANT DIAMANT DOCUMENT O DIAMANT DIAMANT DIAMANT DIAMANT DIAMANT DOCUMENT O DIAMANT DIAMANT DOCUMENT O DIAMANT DIAMANT DIAMANT DOCUMENT O DIAMANT DIAMAN	ages, fits, limit 82 HLBC bservation are I 90 SPEC rages, fits, limit NARI 88 SPEC 76 SPEC rages, fits, limit 72 OSPI	C 0 cs, etc. • C here inte c + cs, etc. • c + c + c + c + c + c + c + c	COMMENT 200 GeV K ⁺ narrow band ν bearn Wideband ν beam rpreted as limits on \[\begin{align*} \Gamma_{36}/\Gamma_{60} \\ \Gamma_{37}/\Gamma_{60} \\ \end{align*} \]
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 <20. Γ(π+π+e-ν _e Test of ΔS $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qL Γ(π+π+μ-ν _e Test of ΔS $VALUE$ (units 10 ⁻⁶) <3.0 Γ(π+e+e-)/Γ Test for Δ electromago $VALUE$ (units 10 ⁻⁷) 2.88±0.13 C 2.94±0.05± 2.75±0.23± 2.75±0.23±	use the followin 95 0 95 0 95 0 95 0 95 0 95 0 $)/\Gamma(\pi^+\pi^-e^+=\Delta Q \text{ rule.}$ $\frac{CL\%}{90}$ $\frac{EVTS}{3}$ use the followin 95 0 votes 3.6×10^{-4} $\frac{CL\%}{95}$ $\frac{EVTS}{9}$ 0 0 0 0 0 0 0 0 0 0	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN at CL = 95%, DOCUMENT IC BIRGE ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 65 FBG 90 TEC 91 RO 92 75 ges, fits, lim	Inits, etc. • BC + BC + BC + CC + EC nits, etc. • PK COMBINED C SPEC SPEC SPEC SPEC SPEC	F29/F9 F30/F F31/F First-order weak and CHG COMMENT + + + + + + + + + + + + + + + + + + +	\(\frac{\fint}{\frac{\fir}{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir\fir\f{\frac{\frac{\frac{\frac{\fir}}}{\firin}}}}}{\firat{\frac{\firint{\frac{\fir}{\fir	Forbidde	n by lepton fan CL% EVTS 90 C not use the folk 90 32 and LYONS Ily number viola 90 C 90 C not use the folk 90 C 90 C Ily number viola 90 C not use the folk 90 C 90 C not use the folk 90 C Total 10 C 10	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on ν_{e} o ation in the absence 1 DOCUMENT 1 LEE 1 DOCUMENT 1 DIAMANT 1 DIAMANT 2 DIAMANT 2 DIAMANT 3 DIAMANT 3 DIAMANT 3 DIAMANT 4 DIAMANT 6 DIA	ages, fits, limit 82 HLBC 90 SPEC 10. TECN 90 SPEC 10. TECN 10. T	s, etc. • Chere interest interest. • Chere inte	COMMENT 200 GeV K ⁺ narrow band ν bearn Wideband ν beam rpreted as limits on \[\Gamma_{36}/\Gamma_{60} \] COMMENT In LEE 90 \[\Gamma_{37}/\Gamma_{60} \] \[\mu^+ e^+ \text{ modes.} \]	
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 <20. Γ (π+π+e ⁻ ν _e Test of Δ5 $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qu Γ (π+π+μ ⁻ ν _μ Test of Δ5 $VALUE$ (units 10 ⁻⁶) <3.0 Γ (π+e ⁺ e ⁻)/Γ Test for Δ electromagi $VALUE$ (units 10 ⁻⁷) 2.88±0.13 C 2.94±0.05± 2.75±0.23± 2.7±0.5 • • We do not	use the followin use t	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN at CL = 95%, DOCUMENT IC BIRGE	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 65 FBG	Inits, etc. • BC + BC + BC + BC + CC + BC + BC + BC +	F29/F9 F30/F F31/F First-order weak and CHG COMMENT + + + Three track evts evts Two track	\(\frac{\fint}{\frac{\fir}}}}}{\frac{\fra	Forbidde ##################################	n by lepton fan CL% EVTS 90 C not use the folk 90 32 and LYONS Illy number viola 90 C not use the folk 90 C 90 C not use the folk 90 C 10	DOCUMENT 60 LYONS Owing data for ave 60 COOPER 81 limits on ν_{e} o ation in the absence Imber conservation CAMPAGE DIAMANT Owing data for ave DOCUMENT DIAMANT Owing data for ave DOCUMENT DIAMANT Owing data for ave DOCUMENT Owing data for ave DOCUMENT Owing data for ave 10 DIAMANT Owing data for ave 61 DIAMANT	at the second s	c 0 cs, etc. • chere inte $\frac{CHG}{C} + \frac{CHG}{C} + \frac{CHG}{C}$ c + ts, etc. • $\frac{C}{C} + \frac{CHG}{C} + \frac{CHG}{C}$ c + ts, etc. • $\frac{C}{C} + \frac{CHG}{C} + \frac{CHG}{C}$	COMMENT 200 GeV K ⁺ narrow band ν bearn Wideband ν beam rpreted as limits on \[\Gamma_{36}/\Gamma_{60} \] COMMENT In LEE 90 \[\Gamma_{37}/\Gamma_{60} \] \[\mu^+ e^+ \text{ modes.} \]
$VALUE$ (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ($\pi^+\pi^+e^-D_e^-$ Test of ΔS $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not < 130. 51 BLOCH 76 qu Γ($\pi^+\pi^+\mu^-D_\mu$ Test of ΔS $VALUE$ (units 10 ⁻⁶) < 3.0 Γ($\pi^+e^+e^-$)/Γ Test for ΔS $VALUE$ (units 10 ⁻⁷) 2.88±0.13 C 2.94±0.05± 2.75±0.23± 2.7±0.5 • • We do not < 17 < 2.7	use the followin 95 0 95 0 95 0 95 0 95 0 95 0 95 0 95	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN 4 at CL = 95%, DOCUMENT IC BIRGE DOCUMENT IC BIRGE DOCUMENT IC BIRGE DOCUMENT IC STANDARD SALLIEG SALLIEG SALLIEG SALLIEG CENCE CENCE	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 65 FBG	Inits, etc. • BC + BC + BC + BC + CC + BC + BC + BC +	F ₂₉ /F ₉ F ₃₀ /F F ₃₁ /F First-order weak and CHG COMMENT + + + Three track evts Two track events	\(\frac{\fint}{\fint}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\fin}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac	Forbidde UE	n by lepton fan CL% EVTS 90 C not use the follo 90 32 and LYONS lity number violi)// Ftotal epton family nu 90 CL% EVTS 90 C not use the follo 90 C not use the follo 90 C // Ftotal epton family nu 9) CL% EVTS 90 C not use the follo 90 C po C	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on $\nu_{\mathcal{C}}$ of ation in the absence Imber conservation in the absence DOCUMENT CAMPAGE DIAMANT DIAMANT DIAMANT MILE DOCUMENT 61 DIAMANT MILE DOCUMENT 61 DIAMANT MILE DOCUMENT 61 DIAMANT MILE DOCUMENT 61 DIAMANT MILE MILE MILE DOCUMENT 61 DIAMANT MILE MILE MILE MILE MILE DOCUMENT MILE MILE MILE DOCUMENT DOCUMENT MILE DOCUMENT	81 HLBC 82 HLBC bservation are 1 90 SPEC 10. TECN 90 SPEC 10. TECN 91 SPEC 10. TECN 11. TECN 12. OSPI 14. The $\pi^+\mu^-e^+$	c 0 cs, etc. • chere inte $\frac{CHG}{C} + \frac{CHG}{C} + \frac{CHG}{C}$ cs, etc. • $\frac{C}{C} + \frac{C}{C} + \frac{C}{C} + \frac{C}{C}$ cs, etc. • $\frac{C}{C} + \frac{C}{C} + C$	COMMENT 200 GeV K ⁺ narrow band ν bearn Wideband ν beam rpreted as limits on \[\begin{align*} \Gamma_{36}/\Gamma \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ (π+π+e-ν _e Test of Δ5 $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qL Γ (π+π+μ-ν _e Test of Δ5 $VALUE$ (units 10 ⁻⁶) <3.0 Γ (π+e+e-)/Γ Test for Δ electromagy $VALUE$ (units 10 ⁻⁷) 2.88±0.13 C 2.94±0.05± 2.75±0.23± 2.7±0.5 • • We do not < 17	use the followin 95 0 95 0 95 0 95 0 95 0 95 0 95 0 95	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN 4 at CL = 95%, DOCUMENT IC BIRGE 10 52 APPEL 53 ALLIEG 54 BLOCH g data for average BOCH ST	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 72 FBG 74	Inits, etc. • BC + BC + BC + BC + CC + BC + BC + BC +	F ₂₉ /F ₉ F ₃₀ /F F ₃₁ /F First-order weak and CHG COMMENT + + + Three track evts Two track events	VAL <0 60 60 Γ(1 44 Γ(1 44 Γ(1 44 Γ(1 44 ΚΑΤ	Forbidde WE .004 • We do r .012 COOPER lepton fam r+ \(\mu^+ e^-\) Test of i WE (units 10^- 2.1 • We do r 1 8 Test of i WE (units 10^- 7 • We do r Measurement	n by lepton fan CL% EVTS 90 C not use the follo 90 32 and LYONS lity number violi)// Ftotal epton family nu 90 CL% EVTS 90 C not use the follo 90 C not use the follo 90 C // Ftotal epton family nu 9) CL% EVTS 90 C not use the follo 90 C po C	DOCUMENT 60 LYONS Owing data for ave 60 COOPER 81 limits on ν_{e} o ation in the absence Imber conservation CAMPAGE DIAMANT Owing data for ave DOCUMENT DIAMANT Owing data for ave DOCUMENT DIAMANT Owing data for ave DOCUMENT Owing data for ave DOCUMENT Owing data for ave 10 DIAMANT Owing data for ave 61 DIAMANT	81 HLBC 82 HLBC bservation are 1 ce of mixing. 10. 90 SPEC 11. 12. 13. 14. 15. 16. 17. 18. 18. 18. 18. 18. 19. 19. 19	c 0 cs, etc. • chere inte $\frac{CHG}{C} + \frac{CHG}{C} + \frac{CHG}{C}$ cs, etc. • $\frac{C}{C} + \frac{C}{C} + \frac{C}{C}$ cs, etc. • $\frac{C}{C} + \frac{C}{C} + \frac{C}{C}$ and π^{-} $\frac{C}{C} + \frac{C}{C} + \frac{C}{C}$ ts, etc. •	COMMENT 200 GeV K ⁺ narrow band ν bearn Wideband ν beam rpreted as limits on \[\begin{align*} \Gamma_{36}/\Gamma \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
$VALUE$ (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. $\Gamma(\pi^+\pi^+e^-\nu_e)$ Test of Δ5 $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qu $\Gamma(\pi^+\pi^+\mu^-\nu_\mu)$ Test of Δ5 $VALUE$ (units 10 ⁻⁶) <3.0 $\Gamma(\pi^+e^+e^-)/\Gamma$ Quints 10 ⁻⁶) 2.88 ± 0.13 C 2.94 ± 0.05 ± 2.75 ± 0.23 ± 2.7 ± 0.5 • • We do not < 17 < 2.7 <320 < 44 < 8.8	use the followin 95 0 95 0 95 0 95 0 95 0 95 0 95 0 95	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN 4 at CL = 95%, DOCUMENT IC BIRGE 1 DOCUMENT IC BIRGE 1 52 APPEL 53 ALLIEG 54 BLOCH big data for average CENCE CENCE BEIER BISI CLINE	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 65 FBG Illowed by c NT ID 99 RO 92 75 ges, fits, lim 74 74 74 76 676	Inits, etc. • BC + BC + BC + CC + COMBINE COMB	F29/F9 F30/F F31/F First-order weak and CHG COMMENT + + + + + + + + + + + + + + + + + + +	\(\frac{\fint}{\fint}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\fin}}}}}{\firt{\fir}}}}}}}{\frac{\firac{\firce{\frac{\fra	Forbidde UE	n by lepton fan CL% EVTS 90 C not use the folk 90 32 and LYONS lity number violi)/Ftotal epton family nu 90 not use the folk 90 (ct% EVTS 90 (not use the folk 90 po ct% EVTS 90 (not use the folk 90 po po po po po po po po po p	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on $\nu_{\mathcal{C}}$ of ation in the absence Imber conservation in the absence DOCUMENT DIAMANT LEE DOCUMENT OTHER OTHER OTHER DIAMANT DOWING data for ave 61 DIAMANT DOWING data for ave 61 BEIER DOCUMENT OTHER OTHER OTHER DOCUMENT OTHER OTHER DOCUMENT OTHER OT	all HLBC all HLBC all HLBC all HLBC bservation are I ce of mixing. all HLBC bservation are I ce of mixing. all HLBC all HLBC bservation are I ce of mixing. all HLBC all HL	c 0 cs, etc. • chere inte $\frac{C}{C} + \frac{CHG}{C} + \frac$	COMMENT 200 GeV K ⁺ narrow band ν bearn •• Wideband ν beam rpreted as limits on Γ_{36}/Γ COMMENT In LEE 90 Γ_{37}/Γ •• μ^+ e ⁺ modes. Γ_{38}/Γ
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ (π+π+e ⁻ ν _e Test of ΔS VALUE (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qL Γ (π+π+μ ⁻ ν _e Test of ΔS VALUE (units 10 ⁻⁶) <3.0 Γ (π+e+e ⁻)/Γ Test for Δ electromage VALUE (units 10 ⁻⁵) 2.88±0.13 C 2.94±0.05± 2.75±0.23± 2.75±0.23± 2.75±0.23± 2.7 ±0.5 • • We do not < 17 < 2.7 <320 < 44	use the followin 95 0 95 0 95 0 95 0 95 0 95 0 95 0 95	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN at CL = 95%, DOCUMENT IC BIRGE 1 52 APPEL 53 ALIEG 53 ALIEG 54 BLOCH g data for average CENCE BEIER BISI	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 65 FBG Illowed by c NT ID 99 RO 92 75 ges, fits, lim 74 74 74 76 676	Inits, etc. • BC + BC + BC + CC + COMBINE COMB	F29/F9 F30/F F31/F First-order weak and CHG COMMENT + + + Three track evts Two track events +	\(\frac{\fint}{\fint}}}}}{\frac{\fin}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir\fin}}{\fint}}}}}{\fina}}}}}}}{\frac{\frac{\firint{\frac{\fir\f{\frac{\fra	Forbidde UE . We do r .012 COOPER lepton fam	n by lepton fan CL% EVTS 90 C not use the folk 90 32 and LYONS Illy number viola 90 00 00 00 00 00 00 00 00 00 00 00 00	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on $\nu_{\mathcal{C}}$ of ation in the absence Imber conservation in the absence EDOCUMENT CAMPAGE DIAMANT DIAMANT DIAMANT DIAMANT DIAMANT SINGLE 10 DIAMANT all HLBC all HLBC all HLBC all HLBC bservation are I ce of mixing. all HLBC bservation are I ce of mixing. all HLBC all HLBC bservation are I ce of mixing. all HLBC all HL	c 0 cs, etc. • chere inte $\frac{C}{C} + \frac{CHG}{C} + \frac$	COMMENT 200 GeV K ⁺ narrow band ν bearn •• Wideband ν beam rpreted as limits on Γ_{36}/Γ COMMENT In LEE 90 Γ_{37}/Γ •• μ^+ e ⁺ modes. Γ_{38}/Γ	
VALUE (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 <20. Γ (π+π+e ⁻ ν _e Test of Δ5 $VALUE$ (units 10 ⁻⁴) < 3 • • • We do not <130. 51 BLOCH 76 qL Γ (π+π+μ ⁻ ν _e Test of Δ5 $VALUE$ (units 10 ⁻⁶) <3.0 Γ (π+e ⁺ e ⁻)/Γ Test for Δ electromagy $VALUE$ (units 10 ⁻⁷) 2.88±0.13 (2.94±0.05± 2.75±0.23± 2.7±0.5 • • We do not <17 < 2.7 <320 <44 <8.8 <24.5 52 APPEL 99 es	use the followin 95 0 95 0 95 0 95 0 95 0 95 0 95 0 95	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN at CL = 95%, DOCUMENT IC BIRGE 1 52 APPEL 53 ALLIEG 54 BLOCH g data for average CENCE BEIER BISI CLINE CAMER nature of this archive.	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 72 FBG 74	Inits, etc. • BC +	F29/F9 F30/F F31/F First-order weak and CHG COMMENT + + + + + + + + + + + + + + + + + + +	\(\frac{\fint}{\fint}}}}}{\frac{\fin}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir\fin}}{\fint}}}}}{\fina}}}}}}}{\frac{\frac{\firint{\frac{\fir\f{\frac{\fra	Forbidde UE	n by lepton fan CL% EVTS 90 C not use the folk 90 32 and LYONS Illy number viola 90 00 00 00 00 00 00 00 00 00 00 00 00	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on $\nu_{\mathcal{C}}$ of ation in the absence Imber conservation in the absence DOCUMENT DIAMANT LEE DOCUMENT OTHER OTHER OTHER DIAMANT DOWING data for ave 61 DIAMANT DOWING data for ave 61 BEIER DIAMANT DOWING data for ave 62 DIAMANT DOWING data for ave 64 BEIER	all HLBC all HLBC all HLBC all HLBC bservation are I ce of mixing. all HLBC bservation are I ce of mixing. all HLBC all HLBC bservation are I ce of mixing. all HLBC all HL	c 0 cs, etc. • chere inte $\frac{C}{C} + \frac{CHG}{C} + \frac$	COMMENT 200 GeV K ⁺ narrow band ν bearn •• Wideband ν beam rpreted as limits on Γ_{36}/Γ COMMENT In LEE 90 Γ_{37}/Γ •• μ^+ e ⁺ modes. Γ_{38}/Γ
VALUE (units 10 ⁻⁷) • • • • We do not < 9.0 < 6.9 < 20. Γ (π+π+e ⁻ ν _e Test of ΔS $VALUE$ (units 10 ⁻⁴) < 3 • • • • We do not <130. 51 BLOCH 76 qL Γ (π+π+μ ⁻ ν _e Test of ΔS $VALUE$ (units 10 ⁻⁶) <3.0 Γ (π+e ⁺ e ⁻)/Γ Test for Δ electromagy $VALUE$ (units 10 ⁻⁷) 2.88±0.13 (2.94±0.05± 2.75±0.23± 2.7	use the followin 95 0 95 0 95 0 95 0 95 0 95 0 95 0 95	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN at CL = 95%, DOCUMENT IC BIRGE 1 54 APPEL 154 BLOCH 154 BLOCH 154 BLOCH 155 BLIEG 155 B	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 72 FEG 65 FBG 76 SPE ges, fits, lim 77 ASF we convert. 72 FBG 77 FBG 78 FBG 78 FBG 79 PS 75 FBG 74 FBG 74 FBG 74 FBG 75 FBG 76 FBG 76 FBG 77 F	Inits, etc. • BC + BC + BC + BC + CC + BC + BC + BC +	F29/F9 F30/F F31/F First-order weak and CHG COMMENT + + + + Three track evts + Two track events + + + +	\(\frac{\fint{\frac{\fir}{\fint}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}{\fint}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac	Forbidde UE . We do r .012 COOPER lepton fam	n by lepton fan CL% EVTS 90 C and use the folk 90 32 and LYONS Illy number viola 90 (a) Illy number viola 90 (b) Intotal epton family number viola 90 (c) Intotal epton family number viola 90 (c) Illy EVTS 90 (c) ont use the folk 90 ent actually app Illy EVTS 90 (c) ont use the folk 90 ent actually app Illy EVTS 90 (c) ont use the folk 90 ent actually app Illy EVTS 90 (c) ont use the folk 90 ent actually app Illy EVTS 90 (c) Illy EV	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on ν_{e} o ation in the absence Imber conservation CAMPAGE DIAMANT DI	all HLBC 81 HLBC 82 HLBC 82 HLBC 83 HLBC 84 HLBC 85 HLBC 86 HLBC 87 HLBC 88 HLBC 89 HLBC 89 SPEC 80 SPEC 8	c 0 cs, etc. • chere inte $\frac{C}{C} + \frac{CHG}{C} + \frac$	COMMENT 200 GeV K ⁺ narrow band ν bearn • Wideband ν beam rpreted as limits on Γ_{36}/Γ COMMENT • In LEE 90 Γ_{37}/Γ • $\mu^+ e^+$ modes. Γ_{38}/Γ
$VALUE$ (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ($\pi^+\pi^+e^-\nu_e$	use the followin 95 0 95 0 95 0 95 0 95 0 95 0 95 0 95	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN 4 at CL = 95%, DOCUMENT IC BIRGE 1 54 BLOCH BOULDER SALLIEG SALLIEG CENCE BEIER BISI CLINE CAMER nature of this cut or interaction we can be set of the	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 0 7EC 65 FBG NT ID 99 RO 92 75 ges, fits, lim 74 74 72 67 678 6181 8181 64 decay and decay and decay and decay and decay and decay with a form	Inits, etc. • BC +	F ₂₉ /F ₉ F ₃₀ /F F ₃₁ /F First-order weak and CHG COMMENT + + + + Three track evts + Two track events + + + + + + + + + + + + + + + + + + +	\(\frac{\fint{\frac{\fint{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}{\fint}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}{\fint}}}}}}{\frac{\frac{\frac{\fin}{\fint}}}}}}{\frac{\frac{\fint}{\fint}}}}}{\frac{\frac{\fin}{\fint}}}}}{\frac{\frac{\frac{\fin}}{\fint}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\fra	Forbidde UE 0.004 • We do r 0.012 COOPER lepton fam $r^+ \mu^+ e^-$ Test of i UE (units 10- 2.1 • We do r 1 8 $r^+ \mu^- e^+$ Test of i UE (units 10- 7 • We do r 8 Measuremum $r^- \mu^+ e^+$ Test of i UE (units 10- 7 • We do r 8 Measuremum $r^- \mu^- e^+$ UE (units 10- 7 • We do r 8 Measuremum $r^- \mu^- e^+$ UE (units 10- 7	n by lepton fan CL% EVTS 90 C not use the folk 90 32 and LYONS Illy number viola PO CL% EVTS 90 C not use the folk 90 C ent actually app Illy Total cotal lepton num 9) CL% EVTS 90 ent actually app Illy Total ont use the folk 90 ent actually app Illy EVTS 90 I	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on ν_{e} o ation in the absence Imber conservation CAMPAGE DIAMANT DI	81 HLBC 82 HLBC bservation are 1 82 FLCN 83 HLBC bservation are 1 84 FLCN 85 FLCN 90 SPEC 10 TECN 11 TECN 12 OSPIC 13 TECN 14 TECN 15 TECN 16 TECN 17 TECN 18 TECN 19 TECN 10 TECN 10 TECN 10 TECN 10 TECN 11 TECN 12 OSPIC 13 TECN 14 TECN 15 TECN 16 SPEC 17 OSPIC 18 TECN 19 OSPIC 10 TECN 10 TECN 10 TECN 11 TECN 12 OSPIC 14 TECN 15 TECN 16 SPEC 17 OSPIC 17 OSPIC 18 TECN 18 TECN 19 OSPIC 10 TECN 10 TECN 10 TECN 10 TECN 10 TECN 10 TECN 11 TECN 12 OSPIC 14 TECN 15 TECN 16 TECN 17 OSPIC 17 OSPIC 18 TECN 18	c 0 cs, etc. • chere inte $\frac{CHG}{C} + \frac{CHG}{C} +$	COMMENT 200 GeV K ⁺ narrow band ν beam Wideband ν beam rpreted as limits on Γ_{36}/Γ COMMENT In LEE 90 Γ_{37}/Γ $\mu^+ e^+ \text{ modes.}$ $\mu^+ e^+ \text{ modes.}$ Γ_{37}/Γ
$VALUE$ (units 10 ⁻⁷) • • • We do not < 9.0 < 6.9 < 20. Γ($\pi^+\pi^+e^-\nu_e$	use the followin 95 0 95 0 95 0 95 0 95 0 95 0 95 0 95	g data for average SCHWEINB. ELY BIRGE 51 BLOCH g data for average BOURQUIN 4 at CL = 95%, DOCUMENT IC BIRGE 100 52 APPEL 53 ALLIEG 54 BLOCH g data for average CENCE BEIER BISI CLINE 1 CAMER nature of this ctor interaction von coefficient of	ges, fits, lim 71 HLE 69 HLE 65 FBG 76 SPE ges, fits, lim 71 ASF we convert. 0 7EC 65 FBG NT ID 99 RO 92 75 ges, fits, lim 74 74 72 67 678 6181 8181 64 decay and decay and decay and decay and decay and decay with a form	Inits, etc. • BC +	F29/F9 F30/F F31/F First-order weak and CHG COMMENT + + + + Three track evts + Two track events + + + +	\(\frac{\fint{\frac{\fint{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}{\fint}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}{\fint}}}}}}{\frac{\frac{\frac{\fin}{\fint}}}}}}{\frac{\frac{\fint}{\fint}}}}}{\frac{\frac{\fin}{\fint}}}}}{\frac{\frac{\frac{\fin}}{\fint}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\fra	Forbidde UE 0.004 • We do r 0.012 COOPER lepton fam $r^+ \mu^+ e^-$ Test of i UE (units 10 ⁻ 2.1 • We do r 1 8 $r^+ \mu^- e^+$ Test of i UE (units 10 ⁻ 7 • We do r 8 Measuremum $r^- \mu^+ e^+$ Test of i UE (units 10 ⁻ 7 • We do r 8 Measuremum $r^- \mu^- e^+$ UE (units 10 ⁻ • We do r 8	n by lepton fan CL% EVTS 90 C not use the folk 90 32 and LYONS Illy number viola PO CL% EVTS 90 C not use the folk 90 C ent actually app Illy Total cotal lepton num 9) CL% EVTS 90 ent actually app Illy Total ont use the folk 90 ent actually app Illy EVTS 90 I	DOCUMENT 60 LYONS Dowing data for ave 60 COOPER 81 limits on ν_{ℓ} o ation in the absence Imber conservation E. DOCUMENT OTHER DIAMANT DIAMANT DIAMANT DIAMANT DIAMANT DIAMANT DOWING data for ave 61 DIAMANT DOWING data for ave 62 DIAMANT DOWING data for ave 63 DOCUMENT	81 HLBC 82 HLBC bservation are 1 82 FLCN 83 HLBC bservation are 1 84 FLCN 85 FLCN 90 SPEC 10 TECN 11 TECN 12 OSPIC 13 TECN 14 TECN 15 TECN 16 TECN 17 TECN 18 TECN 19 TECN 10 TECN 10 TECN 10 TECN 10 TECN 11 TECN 12 OSPIC 13 TECN 14 TECN 15 TECN 16 SPEC 17 OSPIC 18 TECN 19 OSPIC 10 TECN 10 TECN 10 TECN 11 TECN 12 OSPIC 14 TECN 15 TECN 16 SPEC 17 OSPIC 17 OSPIC 18 TECN 18 TECN 19 OSPIC 10 TECN 10 TECN 10 TECN 10 TECN 10 TECN 10 TECN 11 TECN 12 OSPIC 14 TECN 15 TECN 16 TECN 17 OSPIC 17 OSPIC 18 TECN 18	c 0 cs, etc. • chere inte $\frac{CHG}{C}$ $\frac{CHG}{C}$ $\frac{C}{C}$	COMMENT 200 GeV K ⁺ narrow band ν beam Wideband ν beam rpreted as limits on Γ_{36}/Γ COMMENT In LEE 90 Γ_{37}/Γ $\mu^+ e^+ \text{ modes.}$ $\mu^+ e^+ \text{ modes.}$ Γ_{37}/Γ

$\Gamma(\pi^-e^+e^+)/\Gamma_{\text{total}}$ Γ_{39}/Γ Test of total lepton number conservation. VALUE (units 10⁻⁵) DOCUMENT ID TECN CHG

• • • We do not use the following data for averages, fits, limits, etc. • • CHANG

 $\Gamma(\pi^-\,e^+\,e^+)/\Gamma(\pi^+\,\pi^-\,e^+\,\nu_e)$ Γ₃₉/Γ₉ Test of total lepton number conservation.

VALUE (units 10-4) CL% EVTS DOCUMENT ID TECN CHG 63 DIAMANT-... 76 SPEC + <2.5 90 0

63 DIAMANT-BERGER 76 quotes this result times our 1975 BR ratio.

 $\Gamma(\pi^-\mu^+\mu^+)/\Gamma_{\text{total}}$ Γ_{40}/Γ Forbidden by total lepton number conservation.

VALUE (units 10-4) DOCUMENT ID CL% TECN 64 LITTENBERG 92 HBC <1.5 90

 64 LITTENBERG 92 is from retroactive data analysis of CHANG 68 bubble chamber data.

 $\Gamma(\mu^+ \overline{\nu}_e) / \Gamma_{\text{total}}$ Γ_{41}/Γ Forbidden by total lepton number conservation. VALUE (units 10⁻³) CL% DOCUMENT ID TECN COMMENT

65 COOPER <3.3 90 B2 HLBC Wideband ν beam 65 COOPER 82 limit on $\overline{\nu}_e$ observation is here interpreted as a limit on lepton number violation in the absence of mixing.

 $\Gamma(\pi^0 e^+ \nu_e) / \Gamma_{\text{total}}$ Γ_{42}/Γ Forbidden by total lepton number conservation.

DOCUMENT ID VALUE CL% TECN COMMENT 66 COOPER < 0.003 90 82 HLBC Wideband v beam

 66 COOPER 82 limit on $\overline{v}_{\it e}$ observation is here interpreted as a limit on lepton number violation in the absence of mixing.

 $\Gamma(\pi^+\gamma)/\Gamma_{total}$ Violates angular momentum conservation. Not listed in Summary Table. Γ₄₃/Γ

• • • We do not use the following data for averages, fits, limits, etc. • • <1.4 90 **ASANO** 82 CNTR + 67 KLEMS <4.0 71 OSPK

67 Test of model of Selleri, Nuovo Cimento 60A 291 (1969).

K+ LONGITUDINAL POLARIZATION OF EMITTED μ+

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
<-0. 99 0	90	⁶⁸ AOKI	94	SPEC	+	
• • • We do not use	the follow	ring data for average	s, fit	s, limits,	etc.	
<-0.990	90	IMAZATO	92	SPEC	+	Repl. by AOKI 94
-0.970 ± 0.047		⁶⁹ YAMANAKA	86	SPEC	+	. ,
-1.0 ± 0.1		⁶⁹ CUTTS	69	SPRK	+	
-0.96 ± 0.12		69 COOMBES	57	CNTR	+	

 68 AOKI 94 measures $\xi P_{\mu} =$ - 0.9996 \pm 0.0030 \pm 0.0048. The above limit is obtained by summing the statistical and systematic errors in quadrature, normalizing to the physically significant region $(|\xi P_{\mu}|<1)$ and assuming that $\xi=1$, its maximum value.

⁶⁹ Assumes $\xi=1$.

DALITZ PLOT PARAMETERS FOR $K \rightarrow 3\pi$ DECAYS

Revised 1999 by T.G. Trippe (LBNL).

The Dalitz plot distribution for $K^{\pm} \to \pi^{\pm}\pi^{\pm}\pi^{\mp}$, $K^{\pm} \to$ $\pi^0\pi^0\pi^{\pm}$, and $K_L^0\to\pi^+\pi^-\pi^0$ can be parameterized by a series expansion such as that introduced by Weinberg [1]. We use the form

$$\begin{split} \left| M \right|^2 &\propto 1 + g \frac{(s_3 - s_0)}{a m_{\pi^+}^2} + h \left[\frac{s_3 - s_0}{m_{\pi^+}^2} \right]^2 \\ &+ j \frac{(s_2 - s_1)}{m_{\pi^+}^2} + k \left[\frac{s_2 - s_1}{m_{\pi^+}^2} \right]^2 \\ &+ f \frac{(s_2 - s_1)}{m_{\pi^+}^2} \frac{(s_3 - s_0)}{m_{\pi^+}^2} + \cdots , \end{split}$$
 (1)

where $m_{\pi^+}^2$ has been introduced to make the coefficients g, h, j, and k dimensionless, and

$$\begin{split} s_i &= (P_K - P_i)^2 = (m_K - m_i)^2 - 2m_K T_i \ , \ i = 1, 2, 3, \\ s_0 &= \frac{1}{3} \sum_i s_i = \frac{1}{3} (m_K^2 + m_1^2 + m_2^2 + m_3^2) \end{split}$$

Here the P_i are four-vectors, m_i and T_i are the mass and kinetic energy of the i^{th} pion, and the index 3 is used for the odd pion.

The coefficient q is a measure of the slope in the variable s_3 (or T_3) of the Dalitz plot, while h and k measure the quadratic dependence on s_3 and $(s_2 - s_1)$, respectively. The coefficient jis related to the asymmetry of the plot and must be zero if CPinvariance holds. Note also that if CP is good, g, h, and k must be the same for $K^+ \to \pi^+ \pi^+ \pi^-$ as for $K^- \to \pi^- \pi^- \pi^+$.

Since different experiments use different forms for $|M|^2$, in order to compare the experiments we have converted to g, h, j, and k whatever coefficients have been measured. Where such conversions have been done, the measured coefficient a_u , a_t , a_u , or a_v is given in the comment at the right. For definitions of these coefficients, details of this conversion, and discussion of the data, see the April 1982 version of this note [2].

References

- S. Weinberg, Phys. Rev. Lett. 4, 87 (1960).
- Particle Data Group, Phys. Lett. 111B, 69 (1982).

ENERGY DEPENDENCE OF K± DALITZ PLOT

|matrix element|^2 = 1 + gu + hu^2 + kv^2
where
$$u=(s_3-s_0)$$
 / m_π^2 and $v=(s_1-s_2)$ / m_π^2

LINEAR COEFFICIENT \mathbf{g}_{+} FOR $\mathbf{K}^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}$ Some experiments use Dalitz variables x and y. In the comments we give ay coefficient of y term. See note above on "Dalitz Plot Parameters for $K \rightarrow 3$ " Decays." For discussion of the conversion of a_v to g, see the earlier version of the same note in the Review published in Physics Letters 111B 70 (1982).

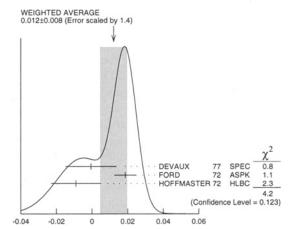
VALUE EVTS DOCUMENT ID TECN CHG COMMENT

- 0.2154±0.0035 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below -0.2221 ± 0.0065 225k DEVAUX 77 SPEC $a_v = .2814 \pm .0082$ -0.2157 ± 0.0028 750k FORD 72 ASPK + $a_y = .2734 \pm .0035$ 70 HOFFMASTER72 HLBC 39819 -0.200 ± 0.009 • • • We do not use the following data for averages, fits, limits, etc. 71 GRAUMAN $a_y = 0.228 \pm 0.030$ -0.196 ± 0.012 17898 70 HLBC + 72 BUTLER $a_y = 0.277 \pm 0.020$ -0.218 ± 0.016 68 HBC 9994 5428 ^{72,73} ZINCHENKO 67 HBC $a_{V} = 0.28 \pm 0.03$ -0.22 ± 0.024

70 HOFFMASTER 72 includes GRAUMAN 70 data.
71 Emulsion data added — all events included by HOFFMASTER 72.

72 Experiments with large errors not included in average.

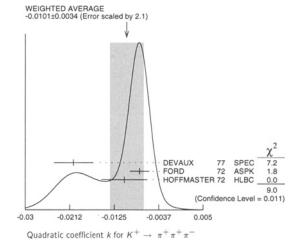
73 Also includes DBC events.


WEIGHTED AVERAGE -0.2154±0.0035 (Error scaled by 1.4) HOFFMASTER 72 (Confidence Level = 0.135) -0.23-0.22-0.21 -0.2-0.19-0.18

Linear energy dependence for $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

K^{\pm}

QUADRATIC COEFFICIENT h FOR $K^+ \rightarrow \pi^+\pi^+\pi^-$ DOCUMENT ID TECN CHG Error includes scale factor of 1.4. See the ideogram VALUE EVTS 0.012 ±0.008 OUR AVERAGE


-0.0006±0.0143 DEVAUX 77 SPEC + 225k 0.0187 ± 0.0062 72 ASPK + -0.009 ± 0.014 39819 HOFFMASTER72 HLBC +

QUADRATIC COEFFICIENT & FOR $K^+ \rightarrow \pi^+\pi^+\pi^-$

Quadratic coefficient h for $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

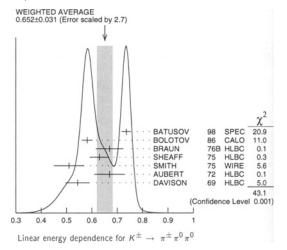
<u>VALUE</u> <u>EVTS</u> -0.0101±0.0034 OUR AVERAGE DOCUMENT ID TECN CHG Error includes scale factor of 2.1. See the ideogram DEVAUX -0.0205 ± 0.0039 225k 77 SPEC + -0.0075 ± 0.0019 750k 72 ASPK HOFFMASTER72 HLBC + $-\,0.0105\pm0.0045$

LINEAR COEFFICIENT g_{τ^-} **FOR** $K^- \to \pi^-\pi^-\pi^+$ Some experiments use Dalitz variables x and y. In the comments we give $a_y =$ coefficient of y term. See note above on "Dalitz Plot Parameters for $K \to 3\pi$ " Decays." For discussion of the conversion of a_y to g, see the earlier version of the same note in the *Review* published in Physics Letters **111B** 70 (1982).

Spille Hote II	ii the never publ	isiica iii i iiysics i	Lette		10 (1	JUZJ.
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT
-0.217 ± 0.007	OUR AVERAGE	Error includes s	caie	factor of	2.5.	
-0.2186 ± 0.0028	750k	FORD	72	ASPK	-	$a_{\gamma} = .2770 \pm .0035$
-0.193 ± 0.010	50919	MAST	69	HBC	-	$a_y = 0.244 \pm 0.013$
\bullet \bullet We do not	use the following	data for averages	, fits	s, limits,	etc. •	••
-0.199 ± 0.008		⁴ LUCAS				$a_V = 0.252 \pm 0.011$
-0.190 ± 0.023	5778 75,70	MOSCOSO	68	HBC	_	$a_{V} = 0.242 \pm 0.029$
-0.220 ± 0.035		⁷ FERRO-LUZZI				$a_{\nu} = 0.28 \pm 0.045$

 $^{^{74}}$ Quadratic dependence is required by K^0_L experiments. For comparison we average only those K^{\pm} experiments which quote quadratic fit values.

QUADRATIC COEL		h FOR K- →			CHG				
0.010 ±0.006 OUF									
0.0125 ± 0.0062	750k	FORD	72	ASPK	_				
-0.001 ± 0.012	50919	MAST	69	HBC	_				
QUADRATIC COE									
VALUE - 0.0084 ± 0.0019 OUF		DOCUMENT ID		TECN	<u>CHG</u>				
-0.0083 ± 0.0019	750k	FORD	72	ASPK	_				
-0.014 ± 0.012	50919	MAST	69	HBC	_				
$(g_{\tau^+} - g_{\tau^-}) / (g_{\tau^+} + g_{\tau^-})$ FOR $K^{\pm} \rightarrow \pi^{\pm} \pi^+ \pi^-$ A nonzero value for this quantity indicates <i>CP</i> violation.									
VALUE (%)	EVTS	DOCUMENT ID		TECN					
-0.70 ± 0.53	3.2M	FORD	70	ASPK					

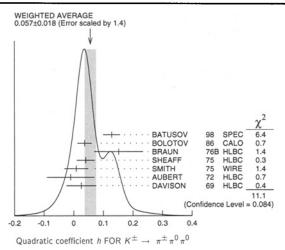

LINEAR COEFFICIENT g FOR $K^\pm\to\pi^\pm\pi^0\pi^0$ Unless otherwise_stated, all experiments include terms quadratic in (s_3-s_0) / $m_{\pi^+}^2$. See note above on "Dalitz Plot Parameters for $K\to 3\pi$ Decays."

See BATUSOV 98 for a discussion of the discrepancy between their result and others, especially BOLOTOV 86. At this time we have no way to resolve the discrepancy so we depend on the large scale factor as a warning.

we depend on th	e iai Be s	corc ractor as a warm	٠.6٠			
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.652 ± 0.031 OUR AV	ERAGE	Error includes scale	facto	or of 2.7.	See	the ideogram below.
$0.736 \pm 0.014 \pm 0.012$	33k	BATUSOV	98	SPEC	+	
0.582 ± 0.021	43k	BOLOTOV	86	CALO	-	
0.670 ± 0.054	3263	BRAUN	76в	HLBC	+	
0.630 ± 0.038	5635	SHEAFF	75	HLBC	+	
0.510 ± 0.060	27k	SMITH	75	WIRE	+	
0.67 ±0.06	1365	AUBERT	72	HLBC	+	
0.544 ± 0.048	4048	DAVISON	69	HLBC	+	Also emulsion
• • • We do not use t	he follow	ving data for averages	, fits	, limits,	etc.	• • •
0.806 ± 0.220	4639	78 BERTRAND	76	EMUL	+	
0.484 ± 0.084	574	⁷⁹ LUCAS	73B	HBC	_	Dalitz pairs only
0.527 ± 0.102	198	⁷⁸ PANDOULAS	70	EMUL	+	
0.586 ± 0.098	1874	⁷⁹ BISI	65	HLBC	+	Also HBC
0.48 ±0.04	1792	⁷⁹ KALMUS	64	HLBC	+	

⁷⁸ Experiments with large errors not included in average.

⁷⁹ Authors give linear fit only.


QUADRATIC COEFFICIENT h FOR $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$

EVTS	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	COMMENT
ERAGE	Error includes sca	le fac	tor of 1	.4. Se	e the ideogram
	below.				
33k	BATUSOV	98	SPEC	+	
43k	BOLOTOV	86	CALO	-	
3263	BRAUN	76B	HLBC	+	
5635	SHEAFF	75	HLBC	+	
27k	SMITH	75	WIRE	+	
1365	AUBERT	72	HLBC	+	
4048	DAVISON	69	HLBC	+	Also emulsion
e followin	ng data for average	, fits	, limits,	etc.	• •
4639	80 BERTRAND	76	EMUL	+	
198	⁸⁰ PANDOULAS	70	EMUL	+	
	7ERAGE 33k 43k 3263 5635 27k 1365 4048 e followir 4639	### From Includes Sca below. 33k BATUSOV 43k BOLOTOV 3263 BRAUN 5635 SHEAFF 27k SMITH 1365 AUBERT 4048 DAVISON e following data for averages 4639 **BERTRAND**	FRAGE Error includes scale factorion. 33k BATUSOV 98 43k BOLOTOV 86 3263 BRAUN 76B 5635 SHEAFF 75 27k SMITH 75 1365 AUBERT 72 4048 DAVISON 69 e following data for averages, fits 4639 80 BERTRAND 76	EFRAGE	ERAGE

⁸⁰ Experiments with large errors not included in average.

⁷⁵ Experiments with large errors not included in average.

⁷⁶ Also includes DBC events. 77 No radiative corrections included.

$K_{\ell 3}^{\pm}$ AND $K_{\ell 3}^{0}$ FORM FACTORS

Written by T.G. Trippe (LBNL).

See key on page 239

Assuming that only the vector current contributes to $K \to \pi \ell \nu$ decays, we write the matrix element as

$$M \propto f_{+}(t) \left[(P_K + P_{\pi})_{\mu} \bar{\ell} \gamma_{\mu} (1 + \gamma_5) \nu \right]$$

+ $f_{-}(t) \left[m_{\ell} \bar{\ell} (1 + \gamma_5) \nu \right] ,$ (1)

where P_K and P_{π} are the four-momenta of the K and π mesons, m_{ℓ} is the lepton mass, and f_+ and f_- are dimensionless form factors which can depend only on $t = (P_K - P_{\pi})^2$, the square of the four-momentum transfer to the leptons. If time-reversal invariance holds, f_+ and f_- are relatively real. $K_{\mu 3}$ experiments measure f_+ and f_- , while K_{e3} experiments are sensitive only to f_+ because the small electron mass makes the f_- term negligible

(a) $K_{\mu 3}$ experiments. Analyses of $K_{\mu 3}$ data frequently assume a linear dependence of f_+ and f_- on t, *i.e.*,

$$f_{\pm}(t) = f_{\pm}(0) \left[1 + \lambda_{\pm}(t/m_{\pi}^2) \right]$$
 (2)

Most $K_{\mu 3}$ data are adequately described by Eq. (2) for f_+ and a constant f_- (i.e., $\lambda_-=0$). There are two equivalent parametrizations commonly used in these analyses:

(1) $\lambda_+, \xi(0)$ parametrization. Analyses of $K_{\mu 3}$ data often introduce the ratio of the two form factors

$$\xi(t) = f_{-}(t)/f_{+}(t)$$
 (3)

The $K_{\mu3}$ decay distribution is then described by the two parameters λ_{+} and $\xi(0)$ (assuming time reversal invariance and $\lambda_{-}=0$). These parameters can be determined by three different methods:

Method A. By studying the Dalitz plot or the pion spectrum of $K_{\mu 3}$ decay. The Dalitz plot density is (see, e.g., Chounet et al. [1]):

$$\rho(E_{\pi}, E_{\mu}) \propto f_{+}^{2}(t) \left[A + B\xi(t) + C\xi(t)^{2} \right],$$

$$egin{align} A &= m_K \left(2 E_\mu E_
u - m_K E_\pi'
ight) + m_\mu^2 \left(rac{1}{4} E_\pi' - E_
u
ight) \;\;, \ \ B &= m_\mu^2 \left(E_
u - rac{1}{2} E_\pi'
ight) \;\;, \ \ C &= rac{1}{4} m_\mu^2 E_\pi' \;\;, \ \ E_\pi' &= E_\pi^{
m max} - E_\pi = \left(m_K^2 + m_\pi^2 - m_\mu^2
ight) / 2 m_K - E_\pi \;\;. \end{align}$$

Here E_{π} , E_{μ} , and E_{ν} are, respectively, the pion, muon, and neutrino energies in the kaon center of mass. The density ρ is fit to the data to determine the values of λ_{+} , $\xi(0)$, and their correlation.

Method B. By measuring the $K_{\mu3}/K_{e3}$ branching ratio and comparing it with the theoretical ratio (see, e.g., Fearing et al. [2]) as given in terms of λ_+ and $\xi(0)$, assuming μ -e universality:

$$\begin{split} \Gamma(K_{\mu3}^{\pm})/\Gamma(K_{e3}^{\pm}) &= 0.6457 + 1.4115\lambda_{+} + 0.1264\xi(0) \\ &\quad + 0.0192\xi(0)^{2} + 0.0080\lambda_{+}\xi(0) \ , \\ \Gamma(K_{\mu3}^{0})/\Gamma(K_{e3}^{0}) &= 0.6452 + 1.3162\lambda_{+} + 0.1264\xi(0) \\ &\quad + 0.0186\xi(0)^{2} + 0.0064\lambda_{+}\xi(0) \ . \end{split}$$

This cannot determine λ_+ and $\xi(0)$ simultaneously but simply fixes a relationship between them.

Method C. By measuring the muon polarization in $K_{\mu 3}$ decay. In the rest frame of the K, the μ is expected to be polarized in the direction A with $\mathbf{P} = \mathbf{A}/\left|\mathbf{A}\right|$, where A is given (Cabibbo and Maksymowicz [3]) by

$$\mathbf{A} = a_1(\xi)\mathbf{p}_{\mu}$$

$$-a_2(\xi) \left[\frac{\mathbf{p}_{\mu}}{m_{\mu}} \left(m_K - E_{\pi} + \frac{\mathbf{p}_{\pi} \cdot \mathbf{p}_{\mu}}{\left| \mathbf{p}_{\mu} \right|^2} (E_{\mu} - m_{\mu}) \right) + \mathbf{p}_{\pi} \right]$$

$$+ m_K \operatorname{Im} \xi(t) (\mathbf{p}_{\pi} \times \mathbf{p}_{\mu}) . \tag{6}$$

If time-reversal invariance holds, ξ is real, and thus there is no polarization perpendicular to the K-decay plane. Polarization experiments measure the weighted average of $\xi(t)$ over the t range of the experiment, where the weighting accounts for the variation with t of the sensitivity to $\xi(t)$.

(2) λ_+ , λ_0 parametrization. Most of the more recent $K_{\mu 3}$ analyses have parameterized in terms of the form factors f_+ and f_0 which are associated with vector and scalar exchange, respectively, to the lepton pair. f_0 is related to f_+ and f_- by

$$f_0(t) = f_+(t) + \left[t/(m_K^2 - m_\pi^2)\right] f_-(t)$$
 (7)

Here $f_0(0)$ must equal $f_+(0)$ unless $f_-(t)$ diverges at t=0. The earlier assumption that f_+ is linear in t and f_- is constant leads to f_0 linear in t:

$$f_0(t) = f_0(0) \left[1 + \lambda_0 (t/m_\pi^2) \right]$$
 (8)

 K^{\pm}

With the assumption that $f_0(0) = f_+(0)$, the two parametrizations, $(\lambda_+, \xi(0))$ and (λ_+, λ_0) are equivalent as long as correlation information is retained. (λ_+, λ_0) correlations tend to be less strong than $(\lambda_+, \xi(0))$ correlations.

The experimental results for $\xi(0)$ and its correlation with λ_+ are listed in the K^{\pm} and K_L^0 sections of the Particle Listings in section ξ_A , ξ_B , or ξ_C depending on whether method A, B, or C discussed above was used. The corresponding values of λ_{+} are also listed.

Because recent experiments tend to use the (λ_+, λ_0) parametrization, we include a subsection for λ_0 results. Wherever possible we have converted $\xi(0)$ results into λ_0 results and

See the 1982 version of this note [4] for additional discussion of the $K_{\mu 3}^0$ parameters, correlations, and conversion between parametrizations, and also for a comparison of the experimental results.

(b) K_{e3} experiments. Analysis of K_{e3} data is simpler than that of $K_{\mu 3}$ because the second term of the matrix element assuming a pure vector current [Eq. (1) above] can be neglected. Here f_+ is usually assumed to be linear in t, and the linear coefficient λ_+ of Eq. (2) is determined.

If we remove the assumption of a pure vector current, then the matrix element for the decay, in addition to the terms in Eq. (1), would contain

$$+2m_K f_{S.} \overline{\ell} (1+\gamma_5) \nu$$

$$+(2f_T/m_K)(P_K)_{\lambda} (P_{\pi})_{\mu} \overline{\ell} \sigma_{\lambda\mu} (1+\gamma_5) \nu , \qquad (9)$$

where f_S is the scalar form factor, and f_T is the tensor form factor. In the case of the K_{e3} decays where the f_- term can be neglected, experiments have yielded limits on $|f_S/f_+|$ and $|f_T/f_+|$.

References

- 1. L.M. Chounet, J.M. Gaillard, and M.K. Gaillard, Phys. Reports 4C, 199 (1972).
- H.W. Fearing, E. Fischbach, and J. Smith, Phys. Rev. D2, 542 (1970).
- N. Cabibbo and A. Maksymowicz, Phys. Lett. 9, 352 (1964).
- 4. Particle Data Group, Phys. Lett. 111B, 73 (1982).

K' FORM FACTORS

In the form factor comments, the following symbols are used.

 f_{+} and f_{-} are form factors for the vector matrix element.

 f_S and f_T refer to the scalar and tensor term.

 $f_0 = f_+ + f_- t/(m_K^2 - m_\pi^2).$

 λ_+ , λ_- , and λ_0 are the linear expansion coefficients of f_+ , f_- , and f_0 . λ_+ refers to the $K_{\mu3}^\pm$ value except in the K_{e3}^\pm sections.

 $d\xi(0)/d\lambda_+$ is the correlation between $\xi(0)$ and λ_+ in $K_{\mu3}^\pm$

 $d\lambda_0/d\lambda_+$ is the correlation between λ_0 and λ_+ in $K_{\mu3}^\pm$.

 $t = \text{momentum transfer to the } \pi \text{ in units of } m_{\pi}^2$.

DP = Dalitz plot analysis.

 $PI = \pi$ spectrum analysis.

 $MU = \mu$ spectrum analysis.

POL= μ polarization analysis.

BR = $K_{\mu 3}^{\pm}/K_{e3}^{\pm}$ branching ratio analysis.

E = positron or electron spectrum analysis.

RC = radiative corrections.

λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN K_{e3}^{\pm} DECAY)

For radiative correction of K_{e3}^{\pm} Dalitz plot, see GINSBERG 67 and BECHERRAWY 70.

VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.0276±0.0021 OUR A	/ERAGE					
0.018 ± 0.007	3k	ARTEMOV	97B	SPEC	_	DP
$0.0284 \pm 0.0027 \pm 0.0020$	32k	81 AKIMENKO	91	SPEC		PI, no RC
0.029 ± 0.004	62k	82 BOLOTOV	88	SPEC		PI, no RC
0.027 ±0.008		83 BRAUN	73B	HLBC	+	DP, no RC
0.029 ±0.011	4017	CHIANG	72	OSPK	+	DP, RC neglig- ble
0.027 ± 0.010	2707	STEINER	71	HLBC	+	DP, uses RC
0.045 ± 0.015	1458	BOTTERILL	70	OSPK		PI, uses RC
0.08 ± 0.04	960	BOTTERILL	68c	ASPK	+	e ⁺ , uses RC
$-0.02 \begin{array}{c} +0.08 \\ -0.12 \end{array}$	90	EISLER	68	HLBC	+	PI, uses RC
$0.045 \begin{array}{l} +0.017 \\ -0.018 \end{array}$	854	BELLOTTI	67B	FBC	+	DP, uses RC
$+0.016 \pm 0.016$	1393	IMLAY	67	OSPK	+	DP, no RC
$^{+0.028}_{-0.014}^{+0.013}_{$	515	KALMUS	67	FBC	+	e^+ , PI, no RC
-0.04 ± 0.05	230	BORREANI	64	HBC	+	e^+ , no RC
-0.010 ± 0.029	407	JENSEN	64	XEBC	+	PI, no RC
$+0.036 \pm 0.045$	217	BROWN	62B	XEBC	+	Pi, no RC
• • We do not use the	following	data for averages,	fits,	limits, el	:c. • •	•
0.025 ± 0.007		⁸⁴ BRAUN	74	HLBC	+	$K_{\mu3}/K_{e3}$ vs. t

 81 AKIMENKO 91 state that radiative corrections would raise λ_+ by 0.0013.

 82 BOLOTOV 88 state radiative corrections of GINSBERG 67 would raise λ_+ by 0.002.

 83 BRAUN 73B states that radiative corrections of GINSBERG 67 would lower λ_+^e by 0.002 but that radiative corrections of BECHERRAWY 70 disagrees and would raise λ_{\perp}^{e} by

 $_{84}^{0.005}$. BRAUN 74 is a combined $\kappa_{\mu3}$ - κ_{e3} result. It is not independent of BRAUN 73c ($\kappa_{\mu3}$) and BRAUN 73B (κ_{e3}) form factor results.

 $\xi_{\rm A}=f_-/f_+$ (determined from $K_{\rm p3}^\pm$ spectra)

The parameter ξ is redundant with λ_0 below and is not put into the Meson Summary

i abie.							
VALUE	$d\xi(0)/d\lambda_{+}$		DOCUMENT ID		TECN	CHG	COMMENT
-0.31 ± 0.15 (OUR EVAL	UATION	Error includes scale				relation is cussed in note on
			1982).	rs in	1902 60	ntion,	PL 111B (April
-0.27 ± 0.25	-17	3973	WHITMAN	80	SPEC	+	DP
-0.8 ± 0.8	- 20	490	85 ARNOLD	74	HLBC	+	DP
-0.57 ± 0.24	-9	6527	86 MERLAN	74	ASPK	+	DP
-0.36 ± 0.40	-19	1897	⁸⁷ BRAUN		HLBC	+	DP
-0.62 ± 0.28	12	4025	88 ANKENBRA	72	ASPK	+	PI
$+0.45\pm0.28$	- 15	3480	89 CHIANG	72	OSPK	+	DP
~1.1 ±0.56	- 29	3240	⁹⁰ HAIDT	71	HLBC	+	DP
-0.5 ± 0.8	-26	2041	⁹¹ KIJEWSKI	69	OSPK	+	PI
$+0.72\pm0.93$	-17	444	CALLAHAN	66в	FBC	+	PI
• • • We do	not use the	following	data for averages, f	its, li	mits, et	c. • •	•
-0.5 ± 0.9	none	78	EISLER	68	HLBC	+	PI, $\lambda_{+}=0$
$0.0 \begin{array}{c} +1.1 \\ -0.9 \end{array}$		2648	⁹² CALLAHAN	66в	FBC	+	μ , $\lambda_{+}=0$
$+0.7 \pm 0.5$		87	GIACOMELLI	64	EMUL	+	$MU+BR, \lambda_{+}=0$
-0.08 ± 0.7			93 JENSEN	64	XEBC	+	DP+BR
$+1.8 \pm 0.6$		76	BROWN	62B	XEBC	+	$DP+BR$, $\lambda_{\perp}=0$

⁸⁵ ARNOLD 74 figure 4 was used to obtain ξ_A and $d\xi(0)/d\lambda_+$.

⁸⁶ MERLAN 74 figure 5 was used to obtain $d\xi(0)/d\lambda_+$.

87 BRAUN 73c gives $\xi(t)=-0.34\pm0.20$, $d\xi(t)/d\lambda_+=-14$ for $\lambda_+=0.027$, t=6.6. We calculate above $\xi(0)$ and $d\xi(0)/d\lambda_+$ for their $\lambda_+=0.025\pm0.017$.

 88 ANKENBRANDT 72 figure 3 was used to obtain $d\xi(0)/d\lambda_{+}$.

⁸⁹ CHIANG 72 figure 10 was used to obtain $d\xi(0)/d\lambda_+$. Fit had $\lambda_- = \lambda_+$ but would not change for $\lambda_- = 0$. L.Pondrom, (private communication 74).

90 HAIDT 71 table 8 (Dalitz plot analysis) gives $d\xi(0)/d\lambda_{+} = (-1.1 + 0.5)/(0.050 - 0.029)$ = -29, error raised from 0.50 to agree with $d\xi(0) = 0.20$ for fixed λ_{+} .

 91 KIJEWSKI 69 figure 17 was used to obtain $d\xi(0)/d\lambda_{+}$ and errors.

92 CALLAHAN 66 table 1 (π analysis) gives $d\xi(0)/d\lambda_{+} = (0.72-0.05)/(0-0.04) = -17$, error raised from 0.80 to agree with $d\xi(0)=0.37$ for fixed λ_{\perp} . t unknown.

93 JENSEN 64 gives $\lambda_{+}^{\mu}=\lambda_{+}^{e}=-0.020\pm0.027$. $d\xi(0)/d\lambda_{+}$ unknown. Includes SHAK-LEE 64 $\xi_B(K_{\mu 3}/K_{e3})$.

$\xi_B = f_-/f_+$ (determined from $K_{\mu 3}^{\pm}/K_{e3}^{\pm}$)

The $K_{\mu3}^{\pm}/K_{e3}^{\pm}$ branching ratio fixes a relationship between $\xi(0)$ and λ_{+} . We quote the author's $\xi(0)$ and associated λ_+ but do not average because the λ_+ values differ. The fit result and scale factor given below are not obtained from these $\xi_{\mathcal{B}}$ values. Instead they are obtained directly from the fitted $K^\pm_{\mu3}/K^\pm_{e3}$ ratio $\Gamma(\pi^0\,\mu^+\nu_\mu)/\Gamma(\pi^0\,e^+\nu_e)$, with the exception of HEINTZE 77. The parameter ξ is redundant with λ_0 below and is not put into the Meson Summary Table.

<u>POCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u> Error includes scale factor of 1.6. Correlation is $d\xi(0)/d\lambda_+ = -14$. From a fit discussed in note on $K_{\ell 3}$ form factors in 1982 edition, PL 111B (April 1982). 94 HEINTZE -0.12 ± 0.12 77 CNTR + $\lambda_{+} = 0.029$

ı

• • • We do not u	use the following	g data for average:	s, fits, lim	its, etc.	• • •
0.0 ± 0.15	5825	CHIANG	72 OSF	PK +	λ_{\perp} =0.03, fig.10
-0.81 ± 0.27	1505	⁹⁵ HAIDT	71 HLE	3C +	$\lambda_{+} = 0.028$, fig.8
-0.35 ± 0.22		⁹⁶ BOTTERILL	70 OSF	PK +	$\lambda_{+} = 0.045 \pm 0.015$
$+0.91 \pm 0.82$		ZELLER	69 ASF	γK +	$\lambda_{+} = 0.023$
-0.08 ± 0.15	5601	⁹⁶ BOTTERILL	68B ASF	γK +	$\lambda_{+} = 0.023 \pm 0.008$
-0.60 ± 0.20	1398	95 EICHTEN	68 HLE	3C +	See note
$+1.0 \pm 0.6$	986	GARLAND	68 OSF	γK +	$\lambda_{+}=0$
$+0.75 \pm 0.50$	306	AUERBACH	67 OSF	PK +	$\lambda_{+}^{'}=0$
$+0.4 \pm 0.4$	636	CALLAHAN	66B FB0	+	$\lambda_{+}=0$
$+0.6 \pm 0.5$		BISI	65B HB	C +	$\lambda_{+}=0$
$+0.8 \pm 0.6$	500	CUTTS	65 OSF	PK +	$\lambda_{+}=0$
$-0.17^{+0.75}_{-0.99}$		SHAKLEE	64 XE	3C +	$\lambda_{+}=0$
0.4					

 $\xi_C = f_-/f_+$ (determined from μ polarization in $K_{\mu 3}^\pm$)

The μ polarization is a measure of $\xi(t)$. No assumptions on λ_{+-} necessary, t (weighted by sensitivity to $\xi(t)$) should be specified. In λ_+ , $\xi(0)$ parametrization this is $\xi(0)$ for $\lambda_+=0$. $d\xi/d\lambda=\xi t$. For radiative correction to muon polarization in $K_{\mu3}^\pm$, see GINSBERG 71. The parameter ξ is redundant with λ_0 below and is not put into the

Meson Summa	ry Table.					
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
-0.31 ±0.15 OUR E	VALUATIO					
		$d\xi(0)/d\lambda_{+} = 0$	- 14.	From a	fit dis	cussed in note on
		Ke3 form facto	ors in	1982 ed	ition,	PL 111B (April
		1982).				
-0.25 ± 1.20	1585	⁹⁷ BRAUN	75	HLBC	+	POL, $t=4.2$
-0.95 ± 0.3	3133	⁹⁸ CUTTS	69	OSPK	+	Total pol. $t=4.0$
-1.0 ± 0.3	6000	99 BETTELS	68	HLBC	+	Total pol. $t=4.9$
• • • We do not us			s. fits	, limits,	etc.	
-0.64±0.27	40k	100 MERLAN			+	
-0.04 ± 0.21	40K	WENLAN	14	AJEK	т	POL, $d\xi(0)/d\lambda_{+}$ = +1.7
-1.4 ± 1.8	397	¹⁰¹ CALLAHAN	66в	FBC	+	Total pol.
0.7 +0.9	2950	101 CALLAHAN	66 D	FBC	+	Long. pol.
$-0.7 \begin{array}{l} +0.9 \\ -3.3 \end{array}$	2950	CALLAHAN	008	FBC	+	Long. pol.
$+1.2 \begin{array}{c} +2.4 \\ -1.8 \end{array}$	2100	¹⁰¹ BORREANI	65	HLBC	+	Polarization
-4.0 to +1.7	500	101 CUTTS	65	OSPK	+	Long. pol.
97 BRAUN 75 del0	$1/d\lambda = F$	$t = -0.25 \times 4.2 = -$	- 1.0.			
98 CHTTS 40 t - 4	Mar este	ulated from figure 9	HE I D	1/41	_ ++	$= -0.95 \times 4 = -3.8.$
					_ ζι	0.55×45.0.
		$\xi t = -1.0 \times 4.9 =$				
100 MERLAN 74 po	larization re	esult (figure 5) not	possit	ole. See	discu	ission of polarization
experiments in n	ote on "Ke	3 Form Factors" in	the 19	82 editi	on of	this Review [Physics
Letters 111B (19	982)].	-				
101 t value not giver						
	••					

$im(\xi)$ in $K_{\mu 3}^{\pm}$ DECAY (from transverse μ pol.)

	Test of T reversal	invariance.					
VALUE		EVTS	DOCUMENT ID		TECN	CHG	COMMENT
-0.01	4±0.014 OUR A	/ERAGE					
-0.013	$3 \pm 0.016 \pm 0.003$	3.9M	ABE	995	CNTR	+	$p_T K^+$ at rest
-0.01	6 ± 0.025	20M	CAMPBELL	81	CNTR	+	Pol.
-0.3	+0.3 0.4	3133	CUTTS	69	OSPK	+	Total pol. fig.7
-0.1	± 0.3	6000	BETTELS	68	HLBC	+	Total pol.
0.0	± 1.0	2648	CALLAHAN	66B	FBC	+	MU
+1.6	± 1.3	397	CALLAHAN	66B	FBC	+	Total pol.
0.5	+1.4 -0.5	2950	CALLAHAN		FBC	+	Long. pol.
	We do not use th	e following o	lata for averages	, fits	, limits,	etc. •	• •

³²M 102 BLATT 83 CNTR 102 Combined result of MORSE 80 ($K_{\mu 3}^{0}$) and CAMPBELL 81 ($K_{\mu 3}^{+}$).

 λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN K_{13}^\pm DECAY) See also the corresponding entries and footnotes in sections ξ_A , ξ_C , and λ_0 . For radiative correction of K^{\pm}_{-2} Dalitz plot, see GINSBERG 70 and BECHERRAWY 70.

0.031 ±0.008	OUR EVALUATION		on K	t3 form		From a fit dis- in 1982 edition,
0.014 ± 0.024	3k	ARTEMOV	97B	SPEC	-	DP
$+0.050 \pm 0.013$	3973	WHITMAN	80	SPEC	+	DP
0.025 ± 0.030	490	ARNOLD	74	HLBC	+	DP
0.027 ± 0.019	6527	MERLAN	74	ASPK	+	DP
0.025 ± 0.017	1897	BRAUN	73C	HLBC	+	DP
0.024 ± 0.019	4025 103	ANKENBRA	72	ASPK	+	PI
-0.006 ± 0.015	3480	CHIANG	72	OSPK	+	DP
0.050 ± 0.018	3240	HAIDT	71	HLBC	+	DP
0.009 ± 0.026	2041	KIJEWSKI	69	OSPK	+	PI
0.0 ± 0.05	444	CALLAHAN	66B	FBC	+	PI
• • • We do no	ot use the following d	lata for averages	, fits	, limits,	etc. •	• •
0.029 ± 0.024	3000 104	ARTEMOV	97	SPEC	_	DP
	ANDT 72 λ_+ from fig. by ARTEMOV 97B.	gure 3 to match	<i>d</i> ξ(0)/dλ ₊ .	Text g	gives 0.024 ± 0.022 .

λ_0 (LINEAR ENERGY DEPENDENCE OF f_0 IN $K_{\mu3}^\pm$ DECAY)

Wherever possible, we have converted the above values of $\xi(0)$ into values of λ_0 using the associated λ_{+}^{μ} and $d\xi/d\lambda$.

VALUE	$d\lambda_0/d\lambda_+$	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
0.006±0.007 C	UR EVAL	UATION	Error includes scal			
			$d\lambda_0/d\lambda_+ = -0$			
			on K _{£3} form fa	ictors in 1982	edition !	on, PL 111B
			(April 1982).			
$+0.058\pm0.020$	0.0	3k	¹⁰⁵ ARTEMOV	978 SPEC	-	DP
$+0.029 \pm 0.011$	-0.37	3973	WHITMAN	80 SPEC	+	DP .
$+0.019\pm0.010$	+0.03	55k	¹⁰⁶ HEINTZE	77 SPEC	+	BR
$+0.008\pm0.097$	+0.92	1585	¹⁰⁷ BRAUN	75 HLBC	+	POL
-0.040 ± 0.040	-0.62	490	ARNOLD	74 HLBC	+	DP
-0.019 ± 0.015	+0.27	6527	108 MERLAN	74 ASPK	+	DP
-0.008 ± 0.020	0.53	1897	¹⁰⁹ BRAUN	73c HLBC	+	DP
-0.026 ± 0.013	+0.03	4025	110 ANKENBRA	72 ASPK	+	PI
$+0.030\pm0.014$	-0.21	3480	¹¹⁰ CHIANG	72 OSPK	+	DP
-0.039 ± 0.029	-1.34	3240	110 HAIDT	71 HLBC	+	DP
-0.056 ± 0.024	+0.69	3133	¹⁰⁷ CUTTS	69 OSPK	+	POL
-0.031 ± 0.045	-1.10	2041	110 KIJEWSKI	69 OSPK	+	PI
-0.063 ± 0.024	+0.60	6000	107 BETTELS	68 HLBC	+	POL
$+0.058 \pm 0.036$	-0.37	444	¹¹⁰ CALLAHAN	66B FBC	+	PI
• • • We do not	use the fo	llowing d	lata for averages, fit	s, limits, ėtc.	• • •	•
$+0.062 \pm 0.024$	0.0	3000	111 ARTEMOV	97 SPEC	_	DP
-0.017 ± 0.011			¹¹² BRAUN	74 HLBC	+	$K_{\mu3}/K_{e3}$ vs.

 105 ARTEMOV 97B does not give $d\lambda_0/d\lambda_+$ so we take it to be zero.

 $106\,\mathrm{HEINTZE}$ 77 uses λ_+ = 0.029 \pm 0.003. $d\lambda_0/d\lambda_+$ estimated by us.

 $^{107}\lambda_0$ value is for $\lambda_+=0.03$ calculated by us from $\xi(0)$ and $d\xi(0)/d\lambda_+$.

 108 MERLAN 74 λ_0 and $d\lambda_0/d\lambda_+$ were calculated by us from ξ_A , λ_+^μ , and $d\xi(0)/d\lambda_+$. Their figure 6 gives $\lambda_0 = -0.025 \pm 0.012$ and no $d\lambda_0/d\lambda_+$.

 109 This value and error are taken from BRAUN 75 but correspond to the BRAUN 73c λ_{\pm}^{μ} result. $d\lambda_0/d\lambda_+$ is from BRAUN 73C $d\xi(0)/d\lambda_+$ in ξ_A above.

 $^{110}\,\lambda_0$ calculated by us from $\xi(0),\,\lambda_+^\mu,$ and $d\xi(0)/d\lambda_+$.

 111 ARTEMOV 97 does not give $d\lambda_0/d\lambda_+$ so we take it to be zero. Superseded by ARTE-

MOV 97B. $^{112} \text{BRAUN 74 is a combined } \kappa_{\mu 3}\text{-}\kappa_{e3} \text{ result. It is not independent of BRAUN 73c } (\kappa_{\mu 3})$ and BRAUN 73b (κ_{e3}) form factor results.

 $|f_S/f_+|$ FOR K_{e3}^{\pm} DECAY Ratio of scalar to f_+ couplings.

VALUE	<u>CL%</u>	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.084 ± 0.023 C	UR AVERA	GE E	rror includes scale fac	tor o	f 1.2.		
$0.070 \pm 0.016 \pm$	0.016	32k	AKIMENKO	91	SPEC		$\lambda_+, f_S, f_T, \phi$ fit
0.00 ± 0.10		2827	BRAUN	75	HLBC	+	·
$0.14 \begin{array}{l} +0.03 \\ -0.04 \end{array}$		2707	STEINER	71	HLBC	+	$\lambda_+, f_S, f_T, \phi$ fit
• • • We do not	use the follo	wing o	ata for averages, fits,	limi	ts, etc.	• • •	-
< 0.13	90	4017	CHIANG	72	OSPK	+	
< 0.23	90		BOTTERILL	68C	ASPK		
< 0.18	90		BELLOTTI	67B	HLBC		
< 0.30	95		KALMUS	67	HLBC	+	

$|f_T/f_+|$ FOR K_{e3}^{\pm} DECAY

Ratio of tensor t	o r ₊ couplings	•				
VALUE	CL% EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.38 ± 0.11 OUR AV	ERAGE Error	includes scale factor	of 1	.1.		
$0.53 {}^{+ 0.09}_{- 0.10} \pm 0.10$	32k	AKIMENKO	91	SPEC		$\lambda_+, f_S, f_T, \phi$ fit
$\boldsymbol{0.07 \pm 0.37}$	2827	BRAUN	75	HLBC	+	·
$0.24 + 0.16 \\ -0.14$	2707	STEINER	71	HLBC	+	$\lambda_+, f_S, f_T, \phi$ fit
• • • We do not use	the following d	ata for averages, fits,	limi	ts, etc.	• • •	•
< 0.75	90 4017	CHIANG	72	OSPK	+	
< 0.58	90	BOTTERILL	68 C	ASPK		
< 0.58	90	BELLOTTI	67B	HLBC		
<1.1	95	KALMUS	67	HLBC	+	

<1.1

 f_T/f_+ FOR $K_{\mu 3}^\pm$ DECAY Ratio of tensor to f_+ couplings.

VALUE	EVT5	DOCUMENT ID		TECN
0.02 ± 0.12	1585	BRAUN	75	HLBC

DECAY FORM FACTORS FOR $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e}$ Given in ROSSELET 77, BEIER 73, and BASILE 71c.

DECAY FORM FACTOR FOR $K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} \nu$

Given in BOLOTOV 86B and BARMIN 88B.

 $^{^{94}}$ Calculated by us from λ_0 and λ_+ given below. 95 EICHTEN 68 has $\lambda_+=0.023\pm0.008,\ t=4,$ independent of $\lambda_-.$ Replaced by HAIDT 71. 96 BOTTERILL 70 is re-evaluation of BOTTERILL 68B with different λ_+ .

 \mathcal{K}^{\pm}

$K^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ FORM FACTORS

For definitions of the axial-vector F_A and vector F_V form factor, see the "Note on $\pi^\pm\to \ell^\pm\nu\gamma$ and $K^\pm\to \ell^\pm\nu\gamma$ Form Factors" in the π^\pm section. In the kaon literature, often different definitions $a_K=F_A/m_K$ and $v_K=F_V/m_K$ are used.

$F_A + F_V$, SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $K \to e \nu_a \gamma$

$\Lambda \rightarrow c \nu_e \gamma$						
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.148±0.010 OUR	AVERAGE					
0.147 ± 0.011	51	113 HEINTZE	79	SPEC	$K \rightarrow e \nu \gamma$	
$0.150 ^{+ 0.018}_{- 0.023}$	56	114 HEARD	75	SPEC	$K \rightarrow e \nu \gamma$	

 113 HEINTZE 79 quotes absolute value of $|F_A+F_V|\sin\theta_C$. We use $\sin\theta_C=V_{US}=0.2205$. 114 HEARD 75 quotes absolute value of $|F_A+F_V|\sin\theta_C$. We use $\sin\theta_C=V_{US}=0.2205$.

$F_A + F_V$, SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $K \to \; \mu \nu_\mu \gamma$

VALUE	CL%	DOCUMENT ID)	TECN	СОММ	ENT	
< 0.23	90	¹¹⁵ AKIBA	85	SPEC	$K \rightarrow$	μνγ	
• • • We do not use	the following	ng data for averag	es, fit	s, limits,	etc. •	• •	
-1.2 to 1.1	90	DEMIDOV	90	XEBC	K →	μυγ	
115 AKIBA 85 quotes	absolute va	ılue.					

$\mathit{F_A} - \mathit{F_V}$, difference of axial-vector and vector form factor for $\mathit{K} \rightarrow \mathit{ev_e} \gamma$

VALUE	EVTS	DOCUMENT IO		TEÇN	COMMENT
<0.49	90	116 HEINTZE	79	SPEC	$K \rightarrow e \nu \gamma$
116 HEINTZE 79 quote	s F _A - F	$ F_V < \sqrt{11} F_A +$	F_V		

$F_A = F_V$, DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $K \to ~\mu \nu_\mu \gamma$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
-2.2 to 0.3 OUR EVAL	UATION				
-2.2 to 0.6	90	DEMIDOV	90	XEBC	$K \rightarrow \mu \nu \gamma$
-2.5 to 0.3	90	AKIBA	85	SPEC	$K \rightarrow \mu \nu \gamma$

K[±] REFERENCES

ADLER	00	PRL 84 3768	S. Adler et al.	(BNL 787 Collab.)
MA	00		H. Ma et al.	(BNL 865 Collab.)
ABE	995	PRL 83 4253	M. Abe et al.	(KEK-E246 Collab.)
APPEL	99		R. Appel et al.	(BNL 865 Collab.)
ADLER	98	PR D58 012003	S. Adler et al.	(BNL 787 Collab.)
BATUSOV	98	NP B516 3	V.Y. Batusov et al.	,
ADLER	97	PRL 79 2204	S. Adler et al.	(BNL 787 Collab.)
ADLER	97C	PRL 79 4756	S. Adler et al.	(BNL 787 Collab.)
ARTEMOV	97	PAN 60 218	V.M. Artemov et al.	(JINR)
ARTEMOV	<i>,</i> ,	Translated from YAF 60		(3,1417)
ARTEMOV	97B	PAN 60 2023	V.M. Artemov et al.	
		Translated from YAF 60	2205.	
KITCHING	97	PRL 79 4079	P. Kitching et al.	(BNL 787 Collab.)
ADLER	96	PRL 76 1421	S. Adler et al.	(BNL 787 Collab.)
KOPTEV	95	JETPL 61 877	V.P. Koptev et al.	(PNPI)
		Translated from ZETFP	61 865.	, ,
AOKI	94	PR D50 69	M. Aoki et al.	(INUS, KEK, TOKMS)
ATIYA	93	PRL 70 2521	M.S. Atiya et al.	(BNL 787 Collab.)
Also	93C	PRL 71 305 (erratum)	M.S. Ativa et al.	(BNL 787 Collab.)
ATIYA	93B	PR D48 R1	M.S. Atiya et al.	(BNL 787 Collab.)
BIJNENS	93	NP B396 81	J. Bijnens, G. Ecker, J. Gast	
ALLIEGRO	92	PRL 68 278	C. Alliegro et al.	(BNL, FNAL, PSI+)
BARMIN	92	SJNP 55 547	V.V. Barmin et al.	(ITEP)
O rational 4		Translated from YAF 55		(1.2.)
IMAZATO	92	PRL 69 877	J. Imazato et al.	(KEK, INUS, TOKY+)
IVANOV	92	THESIS	Ivanov	(PNPI)
LITTENBERG		PRL 68 443	L.S. Littenberg, R.E. Shrock	(BNL, ŠTON)
USHER	92	PR D45 3961	T. Usher et al.	(uci)
AKIMENKO	91	PL B259 225	S.A. Akimenko et al.	(SERP, JINR, TBIL+)
BARMIN	91	SJNP 53 606	V.V. Barmin et al.	(ITEP)
D/ III III		Translated from YAF 53		()
DENISOV	91	JETPL 54 558	A.S. Denisov et al.	(PNPI)
		Translated from ZETFP	54 557.	` ′
Also	92	THESIS	Ivanov	(PNPI)
ATIYA	90	PRL 64 21	M.S. Atiya et al.	(BNL 787 Collab.)
ATIYA	90B		M.S. Atiya et al.	(BNL 787 Collab.)
DEMIDOV	90	5JNP 52 1006	V.S. Demidov et al.	` (ITEP)
		Translated from YAF 52	1595.	` ,
LEE	90	PRL 64 165	A.M. Lee et al.	(BNL, FNAL, VILL, WASH+)
ATIYA	89	PRL 63 2177	M.S. Atiya et al.	(BNL 787 Collab.)
BARMIN	89	SJNP 50 421	V.V. Barmin et al.	(ITEP)
		Translated from YAF 50	679.	` '
BARMIN	88	SJNP 47 643	V.V. Barmin et al.	(ITEP)
		Translated from YAF 47		·
BARMIN	88B	SJNP 48 1032	V.V. Barmin et al.	(ITEP)
		Translated from YAF 48		
BOLOTOV	88	JETPL 47 7	V.N. Bolotov et al.	(ASCI)
CALADACHADI		Translated from ZETFP		(DNI ENAL DELL)
CAMPAGNARI		PRL 61 2062	C. Campagnari et al.	(BNL, FNAL, PSI+)
GALL	88	PRL 60 186	K.P. Gall et al.	(BOST, MIT, WILL, CIT+)
BARMIN	87	SJNP 45 62 Translated from YAF 45	V.V. Barmin et al.	(ITEP)
DOLOTOV				(INRM)
BOLOTOV	87	SJNP 45 1023 Translated from YAF 45	V.N. Bolotov et al.	(IIVM)
BOLOTOV	86	SJNP 44 73	V.N. Bolotov et al.	(INRM)
BOLOTOV	00	Translated from YAF 44		(meran)
BOLOTOV	86B	SJNP 44 68	V.N. Bolotov et al.	(INRM)
BOLOTOV	OOD	Translated from YAF 44		()
YAMANAKA	•	PR D34 85	T. Yamanaka et al.	(KEK, TOKY)
	86			
Also	84			
		PRL 52 329	R.S. Hayano et al. Y. Akiba et al.	(TOKY, KEK)
Also AKIBA	84 85	PRL 52 329 PR D32 2911	R.S. Hayano <i>et al.</i> Y. Akiba <i>et al.</i>	(TOKY, KEK) (TOKY, TINT, TSUK, KEK)
Also	84	PRL 52 329	R.S. Hayano <i>et al.</i> Y. Akiba <i>et al.</i> V.N. Bolotov <i>et al.</i>	(TOKY, KEK)

	83	PR D27 1056	S.R. Blatt et al. (YALE, BNL)
BLATT ASANO	82	PL 113B 195	Y. Asano et al. (KEK, TOKY, INUS, OSAK)
COOPER	82	PL 112B 97	A.M. Cooper et al. (RL)
PDG PDG	82 82B	PL 111B PL 111B 70	M. Roos et al. (HELS, CIT, CERN) M. Roos et al. (HELS, CIT, CERN)
ASANO	81B	PL 107B 159	Y. Asano et al. (KEK, TOKY, INUS, OSAK)
CAMPBELL Also	81 83		M.K. Campbell et al. (YALE, BNL) S.R. Blatt et al. (YALE, BNL)
LUM	81	PR D23 2522	G.K. Lum et al. (LBL, NBS+)
LYONS	81	ZPHY C10 215	L. Lyons, C. Albajar, G. Myatt (OXF)
MORSE WHITMAN	80 80	PR D21 1750 PR D21 652	W.M. Morse et al. (BNL, YALE) R. Whitman et al. (ILLC, BNL, ILL)
BARKOV	79	NP B148 53	L.M. Barkov et al. (NOVO, KIAE)
HEINTZE	79	NP B149 365	J. Heintze et al. (HEIDP, CERN)
ABRAMS DEVAUX	77 77	PR D15 22 NP B126 11	R.J. Abrams et al. (BNL) B. Devaux et al. (SACL, GEVA)
HEINTZE	77	PL 70B 482	J. Heintze et al. (HEIDP, CERN)
ROSSELET	77	PR D15 574	L. Rosselet et al. (GEVA, SACL)
BERTRAND BLOCH	76 76	NP B114 387 PL 60B 393	D. Bertrand et al. (BRUX, KIDR, DUUC+) P. Bloch et al. (GEVA, SACL)
BRAUN	76B	LNC 17 521	H.M. Braun et al. (AACH3, BARI, BELG+)
DIAMANT	76	PL 62B 485	A.M. Diamant-Berger et al. (SACL, GEVA)
HEINTZE SMITH	76 76	PL 60B 302 NP B109 173	J. Heintze et al. (HEIDP) K.M. Smith et al. (GLAS, LIVP, OXF+)
WEISSENBE		NP B115 55	A.O. Weissenberg et al. (ITEP, LEBD)
BLOCH	75 75	PL 56B 201	P. Bloch et al. (SACL, GEVA)
BRAUN CHENG	75	NP B89 210 NP A254 381	H.M. Braun et al. (AACH3, BARI, BRUX+) S.C. Cheng et al. (COLU, YALE)
HEARD	75	PL 55B 324	K.S. Heard et al. (CERN, HEIDH)
HEARD	75B	PL 55B 327	K.S. Heard et al. (CERN, HEIDH) M. Sheaff (WISC)
SHEAFF SMITH	75 75	PR D12 2570 NP B91 45	M. Sheaff (WISC) K.M. Smith et al. (GLAS, LIVP, OXF+)
ARNOLD	74	PR D9 1221	C.L. Arnold, B.P. Roe, D. Sinclair (MICH)
BRAUN	74	PL 51B 393	H.M. Braun et al. (AACH3, BARI, BRUX+)
CENCE Also	74 73	PR D10 776 Thesis unpub.	R.J. Cence et al. (HAWA, LBL, WISC) D.B. Clarke (WISC)
KUNSELMAN	74	PR C9 2469	R. Kunselman (WYOM)
MERLAN	74 74	PR D9 107	S. Merlan et al. (YALE, BNL, LASL) A.O. Weissenberg et al. (ITEP, LEBD)
WEISSENBE ABRAMS	73B	PL 48B 474 PRL 30 500	A.O. Weissenberg et al. (ITEP, LEBD) R.J. Abrams et al. (BNL)
BACKENSTO	. 73	PL 43B 431	G. Backenstoss et al. (CERN, KARLK, KARLE+)
BEIER	73	PRL 30 399	E.W. Beier et al. (PENN)
BRAUN Also	73B 75	PL 47B 185 NP B89 210	H.M. Braun, M. Cornelssen (AACH3, BARI, BRUX+) H.M. Braun et al. (AACH3, BARI, BRUX+)
BRAUN	73C	PL 47B 182	H.M. Braun, M. Cornelssen (AACH3, BARI, BRUX+)
Also	75	NP B89 210	H.M. Braun et al. (AACH3, BARI, BRUX+)
CABLE LJUNG	73 73	PR D8 3807 PR D8 1307	G.D. Cable et al. (EFI, LBL) D. Ljung, D. Cline (WISC)
Also	72		D. Ljung (WISC)
Also	72	PRI 28 1287	D. Cline, D. Liung (WISC)
Also LUCAS	69 73	PRL 23 326 PR D8 719	U. Camerini et al. (WISC) P.W. Lucas, H.D. Taft, W.J. Willis (YALE)
LUCAS	73B	PR D8 727	P.W. Lucas, H.D. Taft, W.J. Willis (YALE)
PANG	73	PR DB 1989	C.Y. Pang et al. (EFI, ARIZ, LBL)
Aiso SMITH	72 73	PL 40B 699 NP B60 411	G.D. Cable et al. (EFI, LBL) K.M. Smith et al. (GLAS, LIVP, OXF+)
ABRAMS	72	PRL 29 1118	R.J. Abrams et al. (BNL)
ANKENBRA		PRL 28 1472	C.M. Ankenbrandt et al. (BNL, LASL, FNAL+)
AUBERT BEIER	72 72	NC 12A 509 PRL 29 678	B. Aubert et al. (ORSAY, BRUX, EPOL) E.W. Beier et al. (PENN)
CHIANG	72	PR D6 1254	E.W. Beier et al. (PENN) I.H. Chiang et al. (ROCH, WISC)
CLARK	72	PRL 29 1274	A.R. Clark et al. (LBL)
EDWARDS FORD	72 72	PR D5 2720 PL 38B 335	R.T. Edwards et al. (ILL) W.T. Ford et al. (PRIN)
HOFFMASTER	72	NP B36 1	S. Hoffmaster et al. (STEV, SETO, LEHI)
BASILE	71C	PL 36B 619	P. Basile et al. (\$ACL, GEVA)
BOURQUIN GINSBERG	71 71	PL 36B 615 PR D4 2893	M.H. Bourquin et al. (GEVA, SACL) E.S. Ginsberg (MIT)
HAIDT	71	PR D3 10	D. Haidt (AACH, BARI, CERN, EPOL, NIJM+)
Also	69	PL 29B 691	D. Haidt et al. (AACH, BARI, CERN, EPOL+)
KLEMS Also	71 70	PR D4 66 PRL 24 1086	J.H. Klems, R.H. Hildebrand, R. Stiening (CHIC+) J.H. Klems, R.H. Hildebrand, R. Stiening (LRL+)
Also	70B	PRL 25 473	J.H. Klems, R.H. Hildebrand, R. Stiening (LRL+)
OTT	71	PR D3 52	R.J. Ott, T.W. Pritchard (LOQM)
ROMANO SCHWEINB	71 71	PL 36B 525 PL 36B 246	F. Romano et al. (BARI, CERN, ORSAY) W. Schweinberger (AACH, BELG, CERN, NIJM+)
STEINER	71	PL 36B 521	H.J. Steiner (AACH, BARI, CERN, EPOL, ORSAY+)
BARDIN	70	PL 32B 121	D.Y. Bardin, S.N. Bilenky, B.M. Pontecorvo (JINR)
BECHERRAWY BOTTERILL	70	PR D1 1452 PL 31B 325	T. Becherrawy (ROCH) D.R. Botterill et al. (OXF)
FORD	70	PRL 25 1370	W.T. Ford et al. (PRIN)
GAILLARD GINSBERG	70 70	CERN 70-14 PR D1 229	J.M. Gaillard, L.M. Chounet (CERN, ORSAY) E.S. Ginsberg (HAIF)
GRAUMAN	70	PR D1 1277	E.S. Gillsberg
			J. Grauman et al. (STEV, SETO, LEHI)
Also	69	PRL 23 737	J. Grauman et al. (STEV, SETO, LEHI) J.U. Grauman et al. (STEV, SETO, LEHI)
Also MALTSEV	70	PRL 23 737 SJNP 10 678	E.I. Maltsev et al. (JINR)
		PRL 23 737	E.I. Maltsev <i>et ai.</i> (JINR) 1195. D. Pandoulas <i>et ai.</i> (STEV, SETO)
MALTSEV PANDOULAS CUTTS	70 70 69	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380	E.I. Maltsev et ai. (JINR) 1195. D. Pandoulas et ai. (STEV, SETO) D. Cutts et ai. (LRL, MIT)
MALTSEV PANDOULAS CUTTS Also	70 70 69 68	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 20 955	E.I. Maltsev et al. (JINR) 1195. D. Pandoulas et al. (STEV, SETO) D. Cutts et al. (LRL, MIT) D. Cutts et al. (LRL, MIT)
MALTSEV PANDOULAS CUTTS	70 70 69	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380	E.I. Maltsev et al. (JINR) 1195. D. Pandoulas et al. (STEV, SETO) D. Cutts et al. (LRL, MIT) D.C. Davison et al. (LRL, MIT) D.C. Davison et al. (UCR) R.P.J. Ely et al. (LOUC, WISC, LBT)
MALTSEV PANDOULAS CUTTS Also DAVISON ELY EMMERSON	70 69 68 69 69	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 20 955 PR 180 1333 PR 180 1319 PRL 23 393	E.I. Maltsev et ai. (JINR) 1195. D. Pandoulas et ai. (STEV. SETO) D. Cutts et ai. (LRL, MIT) D. Cutts et ai. (LRL, MIT) D.C. Davison et ai. (UCR, P.J.). Ely et ai. (LOUC, WISC, LRL) J.M.L. Emmerson, T.W. Quirk
PANDOULAS CUTTS Also DAVISON ELY EMMERSON HERZO	70 69 68 69 69 69 69	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 20 955 PR 180 1333 PR 180 1319 PRL 23 393 PR 186 1403	E.I. Maltsev et ai. (JINR) 1195. D. Pandoulas et ai. (STEV, SETO) D. Cutts et ai. (LRL, MIT) D.C. Davison et ai. (LRL, MIT) D.C. Davison et ai. (LCR, MIT) J.M.L. Emmerson, T.W. Quirk D. Herzo et ai. (LUCK)
MALTSEV PANDOULAS CUTTS Also DAVISON ELY EMMERSON	70 69 68 69 69 69 69 69	PRL 23 737 SJMP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PR 180 1333 PR 180 1319 PRL 23 393 PR 185 1403 Thesis UCRL 18433 PR 185 1676	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. D.C. Davisson et al. CLRL, MIT) D.C. Davisson et al. QLRL, MIT) D.C. Davisson et al. QLRL, MIT) D.C. Davisson et al. (LOUC, WISC, LRL) J.M.L. Emmerson, T.W. Quirk D. Herzo et al. (ILL) P.K. Kijewski (IBL) F. Lobkowicz et al. (ROCH, BBL)
MALTSEV PANDOULAS CUTTS Also DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ Also	70 69 68 69 69 69 69 69 69	PRL 23 737 SJMP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PR 180 1333 PR 180 1319 PRL 23 393 PR 185 1403 Thesis UCRL 18433 PR 185 1676	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. D.C. Davison et al. R.P.J. Ely et al. J.M.L. Emmerson, T.W. Quirk D. Herzo et al. E. Lobkowicz et al. (LOUC, WISC, IRL) (ROCH, BNL) (ROCH, BNL)
MALTSEV PANDOULAS CUTTS Also DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ	70 69 68 69 69 69 69 69 69 69	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 20 955 PR 180 1313 PR 180 1319 PRL 23 393 PR 185 1403 Thesis UCRL 18433 PR 185 1676 PRL 17 548 PRL 22 32	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. CLULS et al. CLULS et al. CLULS et al. CLULS et al. CLUC, WISC, LRL J.M.L. Emmerson, T.W. Quirk D. Herzo et al. LLUC, WISC, LRL J.M.L. Emmerson, T.W. Quirk D. Herzo et al. LLUC, WISC, LRL J.M.L. Emmerson, T.W. Quirk D. Herzo et al. ROCH, BNL F. Lobkowicz et al. ROCH, BNL F. LOBKOWicz et al. ROCH, BNL P. LOBKOWICZ et al. ROCH, BNL
MALTSEV PANDOULAS CUTTS Also DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ Also MACEK	70 70 69 68 69 69 69 69 69 69 69	PRL 23 737 SJMP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 20 955 PR 180 1333 PR 180 1319 PRL 23 393 PR 185 1403 PR 185 1676 PRL 17 548 PRL 22 32 PR 183 1200 NC 60A 291	E.I. Maltsev et al. 1195. D. Pandoulas et al. CSTEV. SETO) D. Cutts et al. CLIR, MIT) D. Cutts et al. CLIR, MIT) D. Cutts et al. CLIR, MIT) D. Cutts et al. CUCR, R.P.J. Ely et al. CUCR, R.P.J. Ely et al. CLIR,
MALTSEV PANDOULAS CUTTS Also DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ Also MACEK MAST SELLERI ZELLERI ZELLER	70 69 68 69 69 69 69 69 69 69 69	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 20 955 PR 180 1333 PR 180 1333 PR 180 1333 PR 185 1403 Thesis UCRL 18433 PR 185 1676 PRL 17 548 PRL 22 32 PR 183 1200 NC 60A 291 PR 182 1420	E.I. Maltsev et ai. 195. D. Pandoulas et ai. D. Cutts et ai. Cutts et
MALTSEV PANDOULAS CUTTS Also DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ Also MACEK MAST SELLERI	70 70 69 68 69 69 69 69 69 69 69	PRL 23 737 SJMP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 20 955 PR 180 1333 PR 180 1319 PRL 23 393 PR 185 1403 PR 185 1676 PRL 17 548 PRL 22 32 PR 183 1200 NC 60A 291 PR 182 1420 NC 56A 1106	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. CLRL, MIT) D. Cutts et al. CUCR, R.P.J. Ely et al. J.M.L. Emmerson, T.W. Quirk D. Herzo et al. CLUC, WISC, LRL J.M.L. Emmerson, T.W. Quirk D. Herzo et al. (LLL) P.K. Kijewski CLBL T. Lobkowicz et al. (ROCH, BNL) F. Lobkowicz et al. (ROCH, BNL) T. S. Mass et al. F. Seller M.E. Zeller et al. J. Bettles (AACH, BARI, BERG, CERN, EPOL+)
MALTSEV PANDOULAS CUTS AISO DAVISON ELY EMMERSON HERZO MACEK MAST SELLERI ZELLERI ZELLER AISO BOTTERILL	70 69 68 69 69 69 69 69 69 69 69 69 69 68 71 68B	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 20 955 PR 180 1313 PR 180 1319 PRL 23 393 PR 186 1403 PR 185 1676 PRL 17 576 PRL 17 576 PRL 17 576 PRL 17 576 PR 183 1200 NC 60A 291 PR 182 1420 NC 56A 1106 PR D3 10 PRL 21 766	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. L(RL, MIT) D. Cutts et al. L(RL, MIT) D. Cutts et al. L(RL, MIT) D. Cutts et al. L(UCR) R.P.J. Ely et al. J.M.I. Emmerson, T.W. Quirk D. Herzo et al. F. Lobkowicz et al. F. Lobkowicz et al. ROCH, BNL R.J. Macek et al. R.J. Macek et al. LEIP Seller M.E. Zeller et al. J. Bettels L(AACH, BARI, BERG, CERN, EPOL, HJM+ D. Haidt LOR COMP. D. R. Botteriil et al. LOR CRN, EPOL, NIJM+ D. R. Botteriil et al. LOR CRN, EPOL, NIJM+ D. R. Botteriil et al. LOR CRN, EPOL, NIJM+ D. R. Botteriil et al. LOR CRN, EPOL, NIJM+ D. R. Botteriil et al. LOR CRN, EPOL, NIJM+ D. R. Botteriil et al. LOR CRN, EPOL, NIJM+ LOR CRN, EPOL, NIJM+ D. R. Botteriil et al. LOR CRN, EPOL, NIJM+ LOR CRN, EPOL, NIJ
MALTSEV PANDOULAS CUTTS Also DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ Also MACEK MAST SELLERI ZELLER BETTELS Also BOTTERILL BOTTERILL	70 69 68 69 69 69 69 69 69 69 69 69 68 71 68B 68C	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1250 PR 184 1380 PRL 20 955 PR 180 1333 PR 180 1333 PR 185 1403 Thesis UCRL 18433 PR 185 1676 PRL 17 548 PRL 22 32 PR 181 1200 NC 60A 291 PR 182 1420 NC 56A 1106 PR D3 10 PRL 21 766 PR D3 10 PRL 21 766	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. CLUL, MIT) D. Cavison et al. CLUC, WISC, LRL J.M.L. Emmerson, T.W. Quirk D. Herzo et al. (LUC, WISC, LRL) J.M.L. Emmerson, T.W. Quirk D. Herzo et al. (ROCH, BNL) F. Lobkowicz et al. (ROCH, BNL) F. Lobkowicz et al. (ROCH, BNL) F. J. Macsek et al. (PENN, TEMP) T.S. Mast et al. F. Selleri M.E. Zeller et al. J. Bettels (AACH, BARI, BERG, CERN, EPOL, NIJM+) D.R. Botteriil et al. (OXF) R. Botteriil et al. (OXF)
MALTSEV PANDOULAS CUTS AISO DAVISON ELY EMMERSON HERZO MACEK MAST SELLERI ZELLERI ZELLER AISO BOTTERILL	70 69 68 69 69 69 69 69 69 69 69 69 69 68 71 68B	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 29 955 PR 180 1333 PR 180 1319 PRL 23 393 PR 186 1403 Thesis UCRL 18433 PR 185 1676 PRL 17 548 PRL 22 32 PR 183 1200 NC 60A 291 PR 182 1420 NC 56A 1106 PR D3 10 PRL 21 766 PR 174 1661 UCRL 18420	E.I. Maltsev et al. 195. D. Pandoulas et al. D. Cutts et al. C.Cutts et al. CUCR, R.P.J. Ely et al. J.M.L. Emmerson, T.W. Quirk D. Herzo et al. F. Lobkowicz et al. F. Lobkowicz et al. ROCH, BNL; F. Lobkowicz et al. ROCH, BNL; F. J. Macek et al. CROCH, BNL; F. Selleri M.E. Zeller et al. J. Bettels CACH, BARI, BERG, CERN, EPOL, NIJM- D. Haidt CACH, BARI, CERN, EPOL, NIJM- D. R. Botterill et al. COXF D. Buller et al. C.Y. Chang et al. CULD, CICR, COXF C
MALTSEV PANDOULAS CUTTS CUTTS DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ AISO MACEK MAST SELLER BETTELS AISO BOTTERILL BOTTERILL BOTTERILL BUTLER CHANG CHEN	70 70 69 69 69 69 69 69 69 69 69 69 69 68 71 68B 68 68	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 198 1380 PRL 29 955 PR 180 1333 PR 186 1403 Thesis UCRL 18433 PR 185 1676 PRL 17 548 PRL 23 32 PR 183 1200 NC 60A 291 PR 182 1420 NC 56A 1106 PR D3 10 PRL 27 566	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. CLIR, MIT) D. Cutts et al. CUCR R.P.J. Ely et al. J.M.I. Emmerson, T.W. Quirk D. Herzo et al. F. Lobkowicz et al. F. Lobkowicz et al. ROCH, BNL R.J. Macek et al. T.S. Mast et al. J. Bettels ACACH, BARI, BERG, CERN, EPOL, NIJM+ D. Haidt D. R. Botterill et al. D.R. Botterill et al. C.Y. Chang et al.
MALTSEV PANDOULAS CUTTS Also DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ Also MACEK MAST SELLERI ZELLER BETTELS AJSO BOTTERILL BUTLER CHANG CHEN EICHTEN	70 69 68 69 69 69 69 69 69 69 69 69 68 68 68 68 68 68	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1250 PR 184 1380 PRL 20 955 PR 180 1333 PR 180 1333 PR 180 1333 PR 185 1403 Thesis UCRL 18433 PR 185 1676 PRL 17 548 PRL 22 32 PR 183 1200 NC 56A 1106 PR D3 106 PRL 21 766 PR 174 1661 UCRL 18420 PRL 18420 PRL 18420 PR 174 1661 UCRL 18420 PRL 20 73 PRL 20 73 PL 278 586	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. (LRL, MIT) D. C. Davison et al. (LOUC, WISC, LRL) J.M.L. Emmerson, T.W. Quirk J.M.L. Emmerson, T.W. Quirk J. M.L. Emmerson, T.W. Quirk J. M.L. Emmerson, T.W. Quirk J. H. Lobkowicz et al. F. Lobkowicz et al. F. Lobkowicz et al. F. Lobkowicz et al. ROCH, BNL) F. J. Macck et al. (ROCH, BNL) F. Selleri M.E. Zeller et al. J. Bettels (AACH, BARI, BERG, CERN, EPOL, H) D.R. Botterill et al. (OXF) W.D. Buller et al. (UMD, RUTG) M. Chen et al. (URL, MIT) L. GXFY L
MALTSEV PANDOULAS CUTTS CUTTS DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ AISO MACEK MAST SELLER BETTELS AISO BOTTERILL BOTTERILL BOTTERILL BUTLER CHANG CHEN	70 69 68 69 69 69 69 69 69 69 69 69 68 71 68C 68 68 68	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 198 1380 PRL 29 955 PR 198 1333 PR 198 1333 PR 198 1403 PRL 23 393 PR 186 1403 PRL 157 548 PRL 17 548 PRL 17 548 PRL 12 32 PR 183 1200 NC 60A 291 PR 184 1420 NC 56A 1106 PR D3 10 PRL 21 766 PR D3 10 PRL 21 766 PRL 17 1661 UCRL 18420 PRL 20 510 PRL 20 73 PL 278 596 PR 196 1090	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. (LRL, MIT) D. C. Davison et al. (LOUC, WISC, LRL) J.M.L. Emmerson, T.W. Quirk J.M.L. Emmerson, T.W. Quirk J. M.L. Emmerson, T.W. Quirk J. M.L. Emmerson, T.W. Quirk J. H. Lobkowicz et al. F. Lobkowicz et al. F. Lobkowicz et al. F. Lobkowicz et al. ROCH, BNL) F. J. Macck et al. (ROCH, BNL) F. Selleri M.E. Zeller et al. J. Bettels (AACH, BARI, BERG, CERN, EPOL, H) D.R. Botterill et al. (OXF) W.D. Buller et al. (UMD, RUTG) M. Chen et al. (URL, MIT) L. GXFY L
MALTSEV PANDOULAS CUTTS AISO DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ AISO MACEK MAST SELLERI ZELLERI ZELLER BETTELLS BOTTERILL BOTTERILL BOTTERILL BUTLER ELY CHEN EICHTEN EICHTEN EISLERI ESCHSTRUTH GARLAND	70 69 68 69 69 69 69 69 69 69 69 69 68 68 68 68 68 68 68 68 68 68	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 29 955 PR 180 1333 PR 186 1403 Thesis UCRL 18433 PR 185 1676 PRL 17 548 PRL 22 32 PRL 17 548 PRL 22 32 PR 183 1200 NC 60A 291 PR 182 1420 NC 56A 1106 PR D3 10 PRL 21 766 PR D3 10 PRL 17 466 PR 174 1661 UCRL 18420 PRL 20 510 PRL 586 PR 159 1090 PR 155 1487	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. L(LR, MIT)
MALTSEV PANDOULAS CUTTS AISO DAVISON ELYMERSON HERZO KIJEWSKI LOBKOWICZ AISO MACEK MAST SELLERI ZELLER BOTTERILL BOTTERILL BOTTERILL BOTTERILL BUTLER CHANG CHEN EISLER EISCHSTRUTH GARLAND MOSCOSO	70 69 68 69 69 69 69 69 69 69 68 71 88 68 68 68 68 68 68	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1250 PR 184 1380 PRL 20 955 PR 180 1333 PR 180 1333 PR 180 1333 PR 186 1403 Thesis UCRL 18433 PRL 23 393 PR 185 1403 Thesis UCRL 18433 PRL 23 32 PR 183 1200 NC 56A 291 PR 182 1420 NC 56A 1106 PR D3 10 PRL 20 73 PL 278 586 PR 169 1090 PRL 159 510 PRL 20 73 PL 278 586 PR 169 1090 PR 165 1487 PR 167 1225 Thesis	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. (LRL, MIT) D. C. Davison et al. (UCR, P.J. Ely et al. J.M.L. Emmerson, T.W. Quirk D. Herzo et al. (ROCH, BNL) F. Lobkowicz et al. F. Lobkowicz et al. (ROCH, BNL) F. Lobkowicz et al. (ROCH, BNL) F. Selleri M.E. Zeller et al. J. Bettels (AACH, BARI, BERG, CERN, EPOL, NIJM+) D. Haidt CAACH, BARI, CERN, EPOL, NIJM+) D.R. Botterill et al. CY. Chang et al. M. Chen et al. (LRL, MIT) (LRL, MIT) (RACH, BRI) (ROCH, BNL) (ROCH, BNL) (LRL, MIT) (LRL,
MALTSEV PANDOULAS CUTTS A 150 DAVISON ELYMERSON HERZO KIJEWSKI LOBKOWICZ A 150 MACEK MAST SELLERI ZELLER BOTTERILL BOTTERI	70 69 68 69 69 69 69 69 69 69 69 69 68 68 68 68 68 68 68 68 68 68	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 29 955 PR 180 1333 PR 186 1403 Thesis UCRL 18433 PR 185 1676 PRL 17 548 PRL 22 32 PRL 17 548 PRL 22 32 PR 183 1200 NC 60A 291 PR 182 1420 NC 56A 1106 PR D3 10 PRL 21 766 PR D3 10 PRL 17 466 PR 174 1661 UCRL 18420 PRL 20 510 PRL 586 PR 159 1090 PR 155 1487	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. L(LR, MIT)
MALTSEV PANDOULAS CUTTS Also DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ Also MACEK MAST SELLERI BOTTERILL BOTTE	70 69 68 69 69 69 69 69 69 69 69 68 71 68BC 68 68 68 68 68 68 68 67 74	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 29 955 PR 180 1333 PR 186 1403 Thesis UCRL 18433 PR 185 1676 PRL 17 548 PRL 27 322 PRL 17 548 PRL 27 32 PR 183 1200 NC 60A 291 PR 182 1420 NC 56A 1106 PR D3 10 PRL 21 766 PR D3 10 PRL 17 548 PR 183 157 PR 182 1420 PR 184 1420 PR 185 1676 PR 195 165 PR 196 197 PR 197 PR 198 1440 PR 198 198 199 PR 198 199 PR 198 199 PR 199 199 PR 199 199 PR 199 199 PR 199 199 PR 195 1487 PR 195 199 PR 195 199 PR 195 190	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. C.Cutts et a
PANDOULAS CUTTS DAVISON ELYMERSON HERZO KIJEWSKI LOBKOWICZ AISO MACEK MAST SELLERI ZELLER BOTTERILL BOTTER	70 70 69 68 69 69 69 69 69 69 69 69 69 68 68 68 68 68 68 68 68 68 67 74	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 20 955 PR 180 1333 PR 180 1333 PR 180 1319 PRL 23 393 PR 186 1403 Thesis UCRL 18433 PR 185 1403 Thesis UCRL 18433 PRL 23 32 PR 183 1200 NC 60A 291 PR 182 1420 NC 60A 291 PR 182 1420 PR 183 1200 PR 174 1661 UCRL 18420 PRL 21 766 PRL 17 66 PRL 17 66 PRL 17 67 PRL 17 67 PRL 17 67 PRL 17 758 PR 174 1661 UCRL 18420 PRL 20 73 PRL 27 586 PR 165 1487 PR 167 1225 Thesis PR 155 1505 PR D9 3216 Heidelberg Conf.	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. (LRL, MIT) D. Cutts et al. (UCR, R.P.J. Ely et al. J.M.L. Emmerson, T.W. Quirk D. Herzo et al. F. Lobkowicz et al. (ROCH, BNL) F. Selleri M.E. Zeller et al. J. Bettels (AACH, BARI, BERG, CERN, EPOL, NIJM+) D. R. Botterili et al. D.R. Botterili et al. C.Y. Chang et al. M. Chen et al. C.R. Macrosomic et al. C.R. M. Chen et al. C.R. M. M. Che
PANDOULAS CUTTS DAVISON ELYMERSON HERZO KIJEWSKI LOBKOWICZ AISO MACEK MAST SELLERI ZELLER BOTTERILL BOTTI BELLOTTI BELLOTTI BELLOTTI BELLOTTI BELLOTTI	70 70 69 68 69 69 69 69 69 69 69 69 69 68 68 68 68 68 68 68 68 68 68	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 20 955 PR 180 1333 PR 180 1333 PR 180 1333 PR 186 1403 Thesis UCRL 18433 PR 185 1403 Thesis UCRL 18433 PR 181 1200 NC 60A 291 PR 182 1420 NC 60A 291 PR 182 1420 PR 183 1200 NC 56A 1106 PR D3 10 PR 174 1661 UCRL 18420 PRL 12 1766 PRL 17 66 PR 174 1661 UCRL 18420 PRL 120 73 PRL 27 586 PR 165 1467 PR 167 1225 Thesis PR 155 1505 PR 19 3216 Heidelberg Conf. NC 52A 1287 PC 290	E.I. Maltsev et al. 1195. D. Pandoulas et al. D. Cutts et al. CLIR, MIT) C. Cutts et al. CLIR, MIT) C.C. Davison et al. CLIR, MIT) C.C. Davison et al. (UCR) R.P.J. Ely et al. J.M.I. Emmerson, T.W. Quirk D. Herzo et al. F. Lobkowicz et al. F. Selleri M.E. Zeller et al. J. Bettels AACH, BARI, BERG, CERN, EPOL, NIJM+D. D.R. Botteriil et al. CXF. Chang et al. CY. Chang et al. M. Chen et al. CRUTG P.T. Eschstruth et al. (CRUL, RUTG) R. Garland et al. L. Moscoso (ORSAY) L.B. Auerbach et al. E. Beliotti, A. Pullia E. Beliotti, A. Pullia E. Beliotti, E. Fiorini, A. Pullia E. Beliotti, E. Fiorini, A. Pullia E. Beliotti, E. Fiorini, A. Pullia E. Beliotti, E. Milla)
MALTSEV PANDOULAS CUTTS AISO DAVISON ELY DAVISON ELY EMMERSON HERZO KIJEWSKI LOBKOWICZ AISO MACEK MAST SELLERI ZELLERI ZELLERI BOTTERILL BOTTE	70 69 689 69 69 69 69 69 69 69 69 69 69 68 68 68 68 68 68 68 68 67 67 67	PRL 23 737 SJNP 10 678 Translated from YAF 10 PR D2 1205 PR 184 1380 PRL 20 955 PR 180 1333 PR 180 1333 PR 185 1403 Thesis UCRL 18433 PR 185 1676 PRL 17 548 PRL 22 32 PR 181 1200 NC 60A 291 PR 182 1420 NC 56A 1106 PR D3 10 PRL 21 766 PR D3 10 PRL 21 766 PR 174 1661 UCRL 18420 PRL 20 73 PL 278 596 PR 199 1090 PR 155 1497 PR 155 1497 PR 155 1505 PR D9 3216 Heidelberg Conf. NC 52A 1287	E.I. Maltsev et al. 195. D. Pandoulas et al. D. Cutts et al. C.Cutts et al

BOTTERILL	67	PRL 19 982	D.R. Botterill et al.	(OXF)
Also	68	PR 171 1402	D.R. Botterill et al.	(OXF)
	67B			(PPA)
	67B	Herceg Novi Tbl. 4	D. Cline	
	rnation	al School on Elementary	D.K. Bowen et al. D. Cline Particle Physics. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg R.L. Imlay et al. G.E. Kalmus, A. Kernan A.J. Zinchenko A.C. Callahan A.C. Callahan A.C. Callahan E. Cester et al.	
	67	PRL 19 98	C.R. Fletcher et al.	(ILL)
FORD	67	PRL 18 1214	W.T. Ford et al.	(PRIN)
	67	PR 162 1570	E.S. Ginsberg	(MASB)
IMLAY	67	PR 160 1203	R.L. Imlay et al.	`(PRIN)
	67	PR 159 1187	G.E. Kalmus, A. Kernan	(LRL)
	67	Thesis Rutgers	A.I. Zinchenko	(RUTG)
	66	NC 44A 90	A.C. Callahan	(WISC)
CALLAHAN	66B	PR 150 1153	A.C. Callahan et al. (WISC	C, LRL, UCR+)
	66		R. Cester et al.	(PPA)
		AUERBACH 67.		(051111 00111)
	67	PR 155 1505	L.B. Auerbach et al.	(PENN, PRIN)
	65	PR 139B 1600 NC 35 768	R.W. Birge et al.	(LRL, WISC)
	65	NC 35 /68	V. Bisi et al.	(TORI)
BISI BORREANI	65B	PR 139B 1068 PR 140B 1686	V. Bisi et al.	(TORI) (BARI, TORI)
	65 65	PRL 15 129	A College D. Clier	(BAKI, TOKI)
	65	PRL 13 129	A. Callallan, D. Cline	(WISC) (WISC, LRL)
CLINE	65	NC 37 1795	D. Cline M. F. Free	(WISC, ERE)
	65	PL 15 293 PR 138B 969	D. Cutte T. Flight P. Stinning	(WISC) (LRL)
	65	PR 140B 1430	A de Marco C George G Bisando	(TORI, CERN)
FITCH		PR 140B 1088	V.I. Eitch C.A. Quarles H.C. Wilkins	(PRIN+)
	65	ARNS 15 67	D. Greiner	(LRL)
	65	PR 138B 440	P Stamer et al	(STEV)
TRILLING		UCRL 16473	L.B. Auerbach et al. R.W. Bige et al. V. Bisi et al. V. Bisi et al. G. Borreani et al. C. Caliaban, D. Cline U. Camerini et al. D. Cline, W.F. Fry D. Cutts, T. Elioff, R. Stiening A. de Marco, C. Grosso, G. Rinaudo V.L. Fitch, C.A. Quarles, H.C. Wilkins D. Greiner P. Stamer et al. G.N. Trilling	(LRL)
Lindated fr	om 19	65 Argonne Conference, p	are 5	(ERE)
YOUNG	65	Thesis UCRL 16362	P.S. Young	(LRL)
Also	67			(LRL)
	64	PL 12 123	G. Borreani, G. Rinaudo, A.E. Werbrouck	(TORI)
CALLAHAN	64	PR 136B 1463	A. Callahan, R. March, R. Stark	
CAMERINI	64	PRL 13 318	U. Camerini et al.	(WISC) (WISC, LRL)
CLINE	64	PRL 13 101	D. Cline, W.F. Fry	(WISC)
	64	NC 34 1134	G. Giacomelli et al.	(BGNA, MUNI)
	64	PRL 13 284	P.S. Young, W.H. Barkas, G. Borreani, G. Rinaudo, A.E. Werbrouck A. Callahan, R. March, R. Stark U. Camerini et al. D. Cline, W.F. Fry G. Giacomelli et al. D.E. Greiner, W.Z. Osborne, W.H. Barkas G.L. Jensen et al. G.E. Kalmus et al. F.S. Shaklee et al. W.H. Barkas, J.N. Dyer, H.H. Heckman A.M. Boyarski et al. W.H. Barkas, J.N. Dyer, H.H. Heckman A.M. Barkas et al. W.H. Barkas et al. W.H. Barkas et al. W.H. Barkas, J.N. Dyer, H.H. Heckman A.M. Barkas, J.N. Dyer, H.H. Heckman B. R. Barkani, P.C. Lin, R.C. Mathur, R. Barkani, P.C. Lin, R. Barkani, P. Lin, R. Barkani,	(LRL)
	64	PR 136B 1431	G.L. Jensen et al.	(MICH)
	64	PRL 13 99	G.E. Kalmus et al.	(LRL, WISC)
	64	PR 136B 1423	F.S. Shaklee et al.	(MICH)
	63	PRL 11 26	W.H. Barkas, J.N. Dyer, H.H. Heckman	(LRL)
	62	PR 128 2398	A.M. Boyarski et al.	(MIT)
BROWN		PRL 8 450	J.L. Brown et al.	(LRL, MICH)
	61	PR 124 1209	W.H. Barkas et al.	(LRL)
	61	NC 20 037	D. Diomink, 1.c. Jan, 1.c. Mather	(DELH)
FERRO-LUZZI		NC 22 1087	M. Ferro-Luzzi et al.	(LRL)
	61	PR 123 2166	P. Nordin	(LRL)
	61	PRL 7 346 PR 118 564	B.P. Roe et al.	(MICH, LRL)
	59		S.C. Freden, F.C. Gilbert, R.S. White	(LRL)
BURROWES	59	PR 114 359	H.C. Burrowes et al.	(MIT)
TAYLOR	58		S. Taylor et al.	(COLU)
EISENBERG	57	NC 8 663 NC 6 478	Y. Eisenberg et al. G. Alexander, R.H.W. Johnston, C. O'Ceal	(BERN)
ALEXANDER COHEN	57	Fund. Cons. Phys.	E.R. Cohen, K.M. Crowe, J.W.M. du Mon	
COOMBES	57	PR 108 1348	C.A. Coombes et al.	(LBL)
BIRGE	56	NC 4 834	R.W. Birge et al.	(LRL)
ILOFF	56	PR 102 927	E.L. lloff et al.	(LRL)
ILOFF	30	FR 102 327	E.L. Holl et al.	(ENC)
	1	OTHER	DELATED DADEDS	
		OTHER	RELATED PAPERS	
LITTENBERG		ARNPS 43 729	L.S. Littenberg, G. Valencia	(BNL, FNAL)
		ve Kaon Decays		
RITCHIE	93	RMP 65 1149	J.L. Ritchie, S.G. Wojcicki	
"Rare K D	ecays'		6.6.00	CEDM TREET
BATTISTON	92	PRPL 214 293	R. Battiston et al. (PGIA,	CERN, TRSTT)
		ectives of K Decay Physi IJMP A4 79	D.A. Bryman	(TRIU)
BRYMAN "Rare Kao			um, prystali	(TRIO)
	72	PRPL 4C 199	L.M. Chounet, J.M. Gaillard, M.K. Gaillard	(ORSAY+)
FEARING	70	PR D2 542	H.W. Fearing, E. Fischbach, J. Smith	(STON, BOHR)
HAIDT	69B	PL 29B 696	D. Haidt et al. (AACH, BARI,	CERN. EPOL+1
CRONIN	68B	Vienna Conf. 241	J.W. Cronin	(PRIN)

K^0

$$I(J^P) = \frac{1}{2}(0^-)$$

N. Cabibbo R.K. Adair, L.B. Leipuner N. Cabibbo, Maksymowicz N. Cabibbo, Maksymowicz N. Cabibbo, Maksymowicz R.W. Birge et al. M.M. Block, L. Lendinara, L. Monari N. Brene, L. Egardt, B. Qvist (YALE)

(CERN)

(CERN) (YALE, BNL)

(LRL, WISC, BARI

K⁰ MASS

W.J. Willis

Berkeley Conf. 33 PL 12 67

PL 12 67 PL 9 352 PL 11 360 PL 14 72 PRL 11 35 CERN Conf. 371 NP 22 553

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
497.672±0.031 OUI	R FIT				
497.672±0.031 OUI	R AVERAGE				
497.661 ± 0.033	3713	BARKOV	8 7B	CMD	$e^+e^- \rightarrow \kappa_I^0 \kappa_S^0$
497.742 ± 0.085	780	BARKOV	85B	CMD	$e^+e^- \rightarrow K_I^0 K_S^0$ $e^+e^- \rightarrow K_I^0 K_S^0$
• • • We do not us	e the following	data for averages	s, fits	, limits,	etc. • • •
497.44 ± 0.50		FITCH	67	OSPK	
498.9 ±0.5	4500	BALTAY			K^0 from $\overline{p}p$
497.44 ±0.33	2223	KIM	65B	HBC	K^0 from $\overline{p}p$
498.1 ±0.4		CHRISTENS	64	OSPK	

$m_{K^0} - m_{K^{\pm}}$

VALUE (MeV)	EVT5	DOCUMENT ID		<u>CHG</u>	COMMENT
3.995±0.034 OUR FIT					
• • We do not use to	he followin	g data for average	s, fits, limits	, etc. 🤇	• • •
3.95 ±0.21	417	HILL	68B DBC	+	$K^+d \rightarrow K^0pp$
3.90 ± 0.25	9	BURNSTEIN	65 HBC	_	
3.71 ± 0.35	7	KIM	65B HBC	_	$K^- p \rightarrow n \overline{K}^0$
5.4 ± 1.1		CRAWFORD	59 HBC	+	
3.9 ± 0.6		ROSENFELD	59 HBC	_	

$|m_{K^0} - m_{\overline{K^0}}| / m_{average}$

A test of CPT invariance.

<u>VALUE</u> <u>DOCUMENT ID</u>

<10^{−18} OUR EVALUATION

T-VIOLATION PARAMETER IN KO-KO MIXING

The asymmetry $A_T = \frac{\Gamma(\overline{K^0} \to K^0) - \Gamma(K^0 \to \overline{K^0})}{\Gamma(\overline{K^0} \to K^0) + \Gamma(K^0 \to \overline{K^0})}$ must vanish if

ASYMMETRY AT IN KO-KO MIXING

 $\begin{array}{c|cccc} \underline{\textit{VALUE}} \; (\text{units } 10^{-3}) & \underline{\textit{EVTS}} & \underline{\textit{DOCUMENT 1D}} & \underline{\textit{TECN}} \\ \textbf{6.6\pm 1.3\pm 1.0} & \textbf{640k} & {}^{1} \; \text{ANGELOPO...} \;\; 98E \;\; \text{CPLR} \\ \end{array}$

 1 ANGELOPOULOS 98E measures the asymmetry $A_{\mathcal{T}} = \lceil \lceil \overline{K} \rceil_{t=0} \rightarrow e^+ \pi^- \nu_{t=\tau} \rangle - \lceil (K \rceil_{t=0} \rightarrow e^- \pi^+ \overline{\nu}_{t=\tau}) \rceil / [\lceil (\overline{K} \rceil_{t=0} \rightarrow e^+ \pi^- \nu_{t=\tau}) + \lceil (K \rceil_{t=0} \rightarrow e^- \pi^+ \overline{\nu}_{t=\tau}) \rceil / [\lceil (\overline{K} \rceil_{t=0} \rightarrow e^+ \pi^- \nu_{t=\tau}) + \lceil (K \rceil_{t=0} \rightarrow e^- \pi^+ \overline{\nu}_{t=\tau}) \rceil / [\Gamma (\overline{K} \rceil_{t=0} \rightarrow e^+ \pi^- \overline{\nu}_{t=\tau}) \rceil / [\Gamma (\overline{K} \rceil_{t=0} \rightarrow e^+ \pi^- \overline{\nu}_{t=\tau}) \rceil / [\Gamma (\overline{K} \rceil_{t=0} \rightarrow e^+ \pi^- \overline{\nu}_{t=\tau}) \rceil / [\Gamma (\overline{K} \rceil_{t=0} \rightarrow e^+ \pi^- \overline{\nu}_{t=\tau}) \rceil / [\Gamma (\overline{K} \rceil_{t=0} \rightarrow e^+ \pi^- \overline{\nu}_{t=\tau}) \rceil / [\Gamma (\overline{K} \rceil_{t=0} \rightarrow e^+ \pi^- \overline{\nu}_{t=\tau}) \rceil / [\Gamma (\overline{K} \rceil_{t=0} \rightarrow e^+ \pi^- \overline{\nu}_{t=\tau}) / [\Gamma (\overline{K} \rceil_{t=0} \rightarrow e^+$

CPT INVARIANCE TESTS IN NEUTRAL KAON DECAY

Written September 1999 by P. Bloch, CERN.

The time evolution of a neutral kaon state state is described by

$$\frac{d}{dt}\Psi = -i\Lambda\Psi , \qquad \Lambda \equiv M - \frac{i}{2}\Gamma \tag{1}$$

where M and Γ are Hermitian 2×2 matrices known as the mass and decay matrices. The corresponding eigenvalues are $\lambda_{L,S}=m_{L,S}-\frac{i}{2}\gamma_{L,S}$. CPT invariance requires the diagonal elements of Λ to be equal. The CPT-violation complex parameter Δ is defined as

$$\Delta = \frac{\Lambda_{\overline{K}^0 \overline{K}^0} - \Lambda_{K^0 K^0}}{2(\lambda_L - \lambda_S)}$$

$$= \Delta_{\parallel} \exp\left(i\phi_{SW}\right) + \Delta_{\perp} \exp\left(i(\phi_{SW} + \frac{\pi}{2})\right) \tag{2}$$

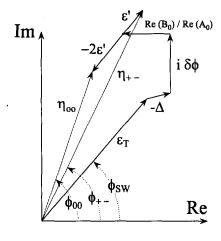
where we have introduced the projections Δ_{\parallel} and Δ_{\perp} respectively parallel and perpendicular to the superweak direction $\phi_{SW} = \tan^{-1}(2\Delta m/\Delta\gamma)$. These projections are linked to the mass and width difference between K^0 and \overline{K}^0 :

$$\Delta_{\parallel} = \frac{1}{4} \frac{\gamma_{K^0} - \gamma_{\overline{K}^0}}{\sqrt{\Delta m^2 + \left(\frac{\Delta \gamma}{2}\right)^2}} , \ \Delta_{\perp} = \frac{1}{2} \frac{m_{K^0} - m_{\overline{K}^0}}{\sqrt{\Delta m^2 + \left(\frac{\Delta \gamma}{2}\right)^2}} .$$
(3)

 $\mathrm{Re}(\Delta)$ can be directly measured by studying the time evolution of the strangeness content of initially pure K^0 and \overline{K}^0 states, for example through the asymmetry

$$A_{CPT} = \frac{P[\overline{K}^0 \to \overline{K}^0(t)] - P[K^0 \to K^0(t)]}{P[\overline{K}^0 \to \overline{K}^0(t)] + P[K^0 \to K^0(t)]} = 4\text{Re}(\Delta)$$
(4)

 K^0


where $P[a \to b(t)]$ is the probability that the pure initial state a is seen as state b at proper time t. This method has been used by tagging the initial strangeness with strong interactions and the final strangeness with the semileptonic decay (a more appropriate combination of semileptonic rates allows to be independent of any direct CPT violation in the decay itself) and yields today's best value of $Re(\Delta)$, compatible with zero with an error of $\sim 3 \times 10^{-4}$.

As an alternative it has been proposed to compare the semileptonic charge asymmetries for K_L and K_S

$$\delta_{L,S} = \frac{R(K_{L,S} \to \pi^- \ell^+ \nu) - R(K_{L,S} \to \pi^+ \ell^- \overline{\nu})}{R(K_{L,S} \to \pi^- \ell^+ \nu) + R(K_{L,S} \to \pi^+ \ell^- \overline{\nu})} ,$$

$$\delta_S - \delta_L = 4 \operatorname{Re}(\Delta) . \tag{5}$$

 δ_L has been accurately measured and δ_S should be measured in the near future with tagged K_S at ϕ factories. Note however that Eq. (5) assumes CPT invariance in the $\Delta S = -\Delta Q$ semileptonic decay amplitude.

Figure 1: CP- and CPT-violation parameters in 2π decay.

 Δ_{\perp} can be obtained from the measurement of the $\pi\pi$ decays CP-violation parameters η_{+-} and η_{00} . Figure 1 shows the various contributions to $\eta_{\pi\pi}$ [1]. The T-violation parameter ϵ_T

$$\epsilon_T = i \frac{|\Lambda_{K^0 \overline{K}^0}|^2 - |\Lambda_{\overline{K}^0 K^0}|^2}{\Delta \gamma (\lambda_L - \lambda_S)}$$
 (6)

has been defined in such a way that it is exactly aligned along the superweak direction $^{[\ddagger]}$. A_I (resp. B_I) is the CPT-conserving (resp. violating) decay amplitude for the $\pi\pi$ Isospin I state, ε' is the direct CP/CPT-violation parameter $[\varepsilon'=1/3(\eta_{+-}-\eta_{00})]$ and $\delta\phi=\frac{1}{2}\left[\varphi_{\Gamma}-\arg(A_0^*\overline{A}_0)\right]$ is the phase difference between the I=0 component of the decay amplitude and the matrix element $\Gamma_{K^0\overline{K}^0}$. From Fig. 1 one obtains

$$\Delta_{\perp} = |\eta_{+-}| (\phi_{SW} - \frac{2}{3}\phi_{+-} - \frac{1}{3}\phi_{00}) - \frac{\text{Re}(B_0)}{\text{Re}(A_0)} \sin(\phi_{SW}) + \delta\phi \cos(\phi_{SW}) . \tag{7}$$

The present accuracy on the term $|\eta_{+-}|$ ($\phi_{SW} - \frac{2}{3}\phi_{+-} - \frac{1}{3}\phi_{00}$) is 2.6×10^{-5} . $\delta\phi$ gets contributions from CP violation in semileptonic and 3π decays [2,3] and can only be neglected at the present time if one assumes that η_{000} is not significantly larger than η_{+-0} . Furthermore, B_0 is not directly measured, so additional assumptions (for example, CPT conservation in the decay which implies $B_0 = 0$) or a combination with other measurements are necessary to obtain Δ_1 .

If one assumes unitarity, one can measure $\operatorname{Im}(\Delta)$ using the Bell-Steinberger relation which relates K_S and K_L decay amplitudes into all final states f:

$$\operatorname{Re}(\epsilon_T) - i\operatorname{Im}(\Delta) = \frac{1}{2(i\Delta m + \frac{1}{2}(\gamma_L + \gamma_S))} \times \sum A_{f_L} A_{f_S}^*$$
. (8)

Since the $\pi\pi$ amplitudes dominate, the result relies also strongly on the $\phi_{\pi\pi}$ phase measurements. The advantage is that B_0 does not enter. Using all available data, one obtains a value of $\operatorname{Im}(\Delta)$ compatible with zero with a precision of 5×10^{-5} . The precision here is also limited by the poor measurement of η_{000} .

The results on $\operatorname{Re}(\Delta)$ and $\operatorname{Im}(\Delta)$ can be combined to obtain $\Delta_{||}$ and Δ_{\perp} and therefore the $K^0-\overline{K}^0$ mass and width difference shown in Fig. 2. The current accuracy is a few 10^{-18} GeV for both.

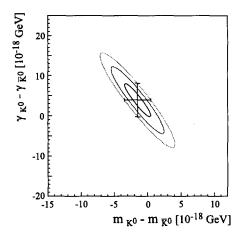


Figure 2: $K^{0} - \overline{K}^{0}$ mass vs width difference.

If one assumes that CPT is conserved in the decays $(\gamma_{K^0} = \gamma_{\overline{K}^0}, \ \Delta_{\parallel} = 0, \ B_I = 0)$, the phase of Δ is known, and the Δ_{\perp} and Bell-Steinberger methods are identical. Assuming in addition $\eta_{+-0} = \eta_{000}$, one in this case obtains a limit for $|m_{K^0} - m_{\overline{K}^0}|$ of 4.4×10^{-19} GeV (90%CL).

Footnotes and References

- [t] Many authors have a different definition of the T-violation parameter, $\epsilon = (\Lambda_{\overline{K}^0K^0} \Lambda_{K^0\overline{K}^0})/(2(\lambda_L \lambda_S))$. ϵ is not exactly aligned with the superweak direction. The two definitions can be related through $\epsilon = \epsilon_T + i\delta\phi$.
- See for instance, C.D. Buchanan et al., Phys. Rev. D45, 4088 (1992). See also the Second Daphne Handbook, Ed. L.Maiani et al., INFN Frascati (1995).
- 2. V.V. Barmin et al., Nucl. Phys. B247, 293 (1984).
- 3. L. Lavoura, Mod. Phys. Lett. A7, 1367 (1992).

CPT-VIOLATION PARAMETERS IN KO-KO MIXING

If $\mathit{CP}\text{-violating interactions include a } \mathit{T}$ conserving part then

$$\begin{split} |\mathcal{K}_{\mathcal{S}}\rangle &= [|\mathcal{K}_{1}\rangle + (\epsilon + \Delta)|\mathcal{K}_{2}\rangle]/\sqrt{1 + |\epsilon + \Delta|^{2}} \\ |\mathcal{K}_{L}\rangle &= [|\mathcal{K}_{2}\rangle + (\epsilon - \Delta)|\mathcal{K}_{1}\rangle]/\sqrt{1 + |\epsilon - \Delta|^{2}} \\ \text{where} \\ |\mathcal{K}_{1}\rangle &= [|\mathcal{K}^{0}\rangle + |\overline{\mathcal{K}^{0}}\rangle]/\sqrt{2} \\ |\mathcal{K}_{2}\rangle &= [|\mathcal{K}^{0}\rangle - |\overline{\mathcal{K}^{0}}\rangle]/\sqrt{2} \\ \text{and} \\ |\overline{\mathcal{K}^{0}}\rangle &= \mathcal{CP}|\mathcal{K}^{0}\rangle. \end{split}$$

The parameter Δ specifies the *CPT*-violating part.

Estimates of Δ are given below assuming the validity of the $\Delta S{=}\Delta Q$ rule. See also THOMSON 95 for a test of CPT-symmetry conservation in κ^0 decays using the Bell-Steinberger relation.

REAL PART OF Δ

A nonzero value violates CPT invariance.

	HOHZELO VA	IUC VIDIALES CA	r / ilivariance.			
VALUE (un	its 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
2.9±	2.7 OUR	AVERAGE				
2.9±	2.6 ± 0.6	1.3M	² ANGELOPO	98F	CPLR	
180 ±2	00	6481	³ DEMIDOV	95		K ₁₃ reanalysis
² If △S	$=\Delta Q$ is no	ot assumed, Al	NGELOPOULOS 98	F fin	ds Re∆	$=(3.0\pm3.3\pm0.6)\times10^{-4}$

³ DEMIDOV 95 reanalyzes data from HART 73 and NIEBERGALL 74.

IMAGINARY PART OF A

A nonzero value violates CPT invariance.

A Horizero Valu	e violates C	P / invariance.		
VALUE (units 10 ⁻³)	EVT5	DOCUMENT ID	TECN	COMMENT
- 0.8 ± 3.1 OUR A	VERAGE			
$-0.9\pm2.9\pm1.0$	1.3M	4 ANGELOPO 98	F CPLR	
21 ± 37	6481	⁵ DEMIDOV 95	i	K _{p3} reanalysis
				$= (-15 \pm 23 \pm 3) \times 10^{-3}.$
DEMIDOV 95 re	analyzes data	a from HART 73 and	NIEBERG	ALL 74.

KO REFERENCES

ANGELOPO	98E 98F 95	PL B444 43 PL B444 52 PAN 58 968	A. Angelopoulos et al. A. Angelopoulos et al. V. Demidov, K. Gusev, E. Shabali	(CPLEAR Collab.) (CPLEAR Collab.) n (ITEP)
	95	PR D51 1412	G.B. Thomson, Y. Zou	(RUTG)
BARKOV	87B	SJNP 46 630	L.M. Barkov et al.	(NOVO)
BARKOV	85B	Translated from JETPL 42 138 Translated from	L.M. Barkov et al.	(NOVO)
NIEBERGALL	74	PL 49B 103	F. Niebergall et al.	(CERN, ORSAY, VIEN)
HART	73	NP B66 317	J.C. Hart et al.	(CAVE, RHEL)
HILL	68B	PR 168 1534	D.G. Hill et al.	(BNL, CMU)
FITCH	67	PR 164 1711	V.L. Fitch et al.	(PRIN)
BALTAY	66	PR 142 932	C. Baltay et al.	(YALE, BNL)
BURNSTEIN	65	PR 138B 895	R.A. Burnstein, H.A. Rubin	(UMD)
KIM	65B	PR 140B 1334	J.K. Kim, L. Kirsch, D. Miller	(COLU)
CHRISTENS	64	PRL 13 138	J.H. Christenson et al.	(PRIN)
CRAWFORD	59	PRL 2 112	F.S. Crawford et al.	`(LRL)
ROSENFELD	59	PRL 2 110	A.H. Rosenfeld, F.T. Solmitz, R.D.	

$$I(J^P) = \frac{1}{2}(0^-)$$

KS MEAN LIFE

For earlier measurements, beginning with BOLDT 58B, see our our 1986 edition, Physics Letters 170B 130 (1986).

OUR FIT is described in the note on "Fits for K_L^0 CP-Violation Parameters" in the K_L^0 Particle Listings.

VALUE (10-10 s)	EVTS	DOCUMENT ID		TECN	COMMENT
0.8935±0.0008 OU	IR FIT				
0.8940±0.0009 OU	R AVERAG	Ε			
0.8971 ± 0.0021		BERTANZA	97	NA31	
$0.8941 \pm 0.0014 \pm 0.0014$.0009	SCHWINGEN	95	E773	Δm free, $\phi_{+-} = \phi_{SW}$
0.8929 ± 0.0016		GIBBONS	93	E731	,
0.8920 ± 0.0044	214k	GROSSMAN	87	SPEC	
0.881 ± 0.009	26k	ARONSON	76	SPEC	
0.8924 ± 0.0032		¹ CARITHERS	75	SPEC	
0.8937 ± 0.0048	6M	GEWENIGER	74B	ASPK	
0.8958 ± 0.0045	50k	2 SKJEGGEST	72	HBC	
• • • We do not u	se the follo	wing data for average	es, fi	ts, limit	s, etc. • • •
0.905 ±0.007		3 ARONSON	82в	SPEC	
0.867 ± 0.024	2173	4 FACKLER	73	OSPK	
0.856 ± 0.008	19994		68B	HBC	
0.872 ± 0.009	20000	^{5,6} HI L L	68	DBC	
0.866 ± 0.016		⁵ ALFF	66B	OSPK	
0.843 ± 0.013	5000	⁵ KIRSCH	66	HBC	

- ¹ CARITHERS 75 value is for $m_{K_L^0} m_{K_S^0} \Delta m = 0.5301 \pm 0.0013$. The Δm dependence of the total decay rate (inverse mean life) is $\Gamma(K_S^0) = [(1.122 \pm 0.004) + 0.16(\Delta m 0.5348)/\Delta m]10^{10}/s$, or, in terms of meanlife $\tau_S = 0.8913 \pm 0.0032 0.238(\Delta m 0.5348)$ where Δm and τ_S are in units of $10^{10}/hs^{-1}$ and $10^{-10}/s$ respectively.
- ²HILL 68 has been changed by the authors from the published value (0.865 \pm 0.009) because of a correction in the shift due to η_{+-} . SKJEGGESTAD 72 and HILL 68 give detailed discussions of systematics encountered in this type of experiment.
- 3 ARONSON 82 find that K_S^0 mean life may depend on the kaon energy.
- ⁴ FACKLER 73 does not include systematic errors.
- 5 Pre-1971 experiments are excluded from the average because of disagreement with later more precise experiments.
- 6 HILL 68 has been changed by the authors from the published value (0.865 \pm 0.009) because of a correction in the shift due to η_{+-} . SKJEGGESTAD 72 and HILL 68 give detailed discussions of systematics encountered in this type of experiment.

KS DECAY MODES

	Mode	Fraction (Γ_j/Γ)	/Scale factor Confidence level
Γ ₁ Γ ₂ Γ ₃	$\pi^+\pi^-$	(68.61±0.28) %	S=1.2
Γ_2	$\pi^{0}\pi^{0}$	(31.39±0.28) %	S=1.2
Гз	$\pi^+\pi^-\gamma$	[a,b] $(1.78\pm0.05)\times10^{-1}$	3
Γ_4	$\gamma\gamma$	$(2.4 \pm 0.9) \times 10^{-}$	6
Γ_5	$\pi^+\pi^-\pi^0$	$(3.2 \begin{array}{c} +1.2 \\ -1.0 \end{array}) \times 10^{-1}$	7
Γ ₆	$3\pi^0 \ \pi^{\pm} e^{\mp} u_e \ \pi^{\pm} \mu^{\mp} u_{\mu}$	< 1.4 × 10	
Γ7	$\pi^{\pm}e^{\mp} u_{e}$	[c] $(7.2 \pm 1.4) \times 10^{-1}$	4
Гв	$\pi^{\pm}\mu^{\mp} u_{\mu}$	[c]	
		$\Delta S = 1$ weak neutral current (S1) modes	
Γ۹	$\mu^+\mu^-$	51 < 3.2 × 10 ⁻	7 CL=90%
Γ ₁₀	$\mu^{+}\mu^{-}\ e^{+}e^{-}\ \pi^{0}e^{+}e^{-}$	SI < 1.4 × 10 ⁻¹	7 CL=90%
Γ11	$\pi^{0}e^{+}e^{-}$	SI < 1.1 × 10 ⁻	6 CL=90%

- [a] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [b] See the Particle Listings below for the energy limits used in this measurement
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 17 measurements and one constraint to determine 2 parameters. The overall fit has a $\chi^2=$ 16.5 for 16 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

$$x_2 \quad \boxed{-100}{x_1}$$

KO DECAY RATES

		K'S DECAY F	ATES	5		
$\Gamma(\pi^{\pm}e^{\mp}\nu_{e})$						Г ₇
VALUE (10 ⁶ s ⁻¹)	EVTS	DOCUMENT I		TECN	COMMENT	
B.1 ±1.6	75	7 AKHMETSH	IIN 99	CMD2	Tagged K	
• • • We do not use	the following	ng data for avera	ges, fit	s, limits,	etc. • • •	
7.50 ± 0.08		^B PDG	98			
seen		BURGUN	72	HBC	$K^+ \rho \rightarrow$	$\kappa^0 \rho \pi^+$
9.3 ±2.5		AUBERT	65	HLBC	ΔS=ΔQ, assume	CP cons. not
7 AKHMETSHIN 99 $^{10^{-4}}$ and $\tau_{K_{0}^{0}}$ =				B(KS	→ πeν _e):	= (7.2 ± 1.4) ×
⁸ PDG 98 from K_L^0 $\pi^{\pm} e^{\mp} \nu_e$)= $\Gamma(K_L^0)$			t Δ <i>\$</i> =	∆Q in F	(⁰ decay so	that $\Gamma(K_5^0 \rightarrow$
$\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})$						Г8
VALUE (106 s-1)		DOCUMENT ID				
• • • We do not use	the followin	g data for averag	es, fits	, limits,	etc. • • •	
5.25 ± 0.07		9 PDG	98			

⁹ PDG 98 from K_I^0 measurements, assuming that $\Delta S = \Delta Q \ln K^0$ decay so that $\Gamma(K_S^0)$

 $\pi^{\pm}\mu^{\mp}\nu_{\mu})=\Gamma(\tilde{K}^{0}_{L}\to~\pi^{\pm}\mu^{\mp}\nu_{\mu}).$

 7.10 ± 0.22

 3.0 ± 0.6

3723

Γ(π+π-) / Γtotal		K _S	BRANCHING	RATIOS		
0.6361 ± 0.000 OUR AVERAGE 0.670 ± 0.010 OUR AVERAGE 0.670 ± 0.010 3447 10 DOYLE 69 HBC π²ρ→ ΛΚ0 0.68 ± 0.04 COLUMBIA 69 HBC 0.70 ± 0.08 ± 0.04 COLUMBIA 69 HBC 0.70 ± 0.024 10 ANDERSON 628 HBC 1.04 anderson result not published, events added to Doyle sample. Γ(π²+π²)/Γ(π²π²) 1.04 ANDERSON 628 HBC 1.05 ANDERSON 628 HBC 1.05 ANDERSON 628 HBC 1.06 ± 0.04			DOGULAÇAT ID			Γ ₁ /Γ
0.70 ± 0.08 0.70 ± 0.08 0.68 ± 0.04 • • • We do not use the following data for averages, fits, limits, etc. • • • 0.740 ± 0.024 10 ANDERSON 628 HBC 110 Anderson result not published, events added to Doyle sample. Γ(π+π-)/Γ(π0π0) EVTS 2.106± 0.029 OUR PTT 2.116± 0.029 OUR MYERAGE 2.11 ± 0.09 1315 EVERHART 76 WIRE π-ρ → ΛΚ0 2.169± 0.094 16k COWELL 74 OSPR π-ρ → ΛΚ0 2.169± 0.094 16k COWELL 74 OSPR π-ρ → ΛΚ0 2.169± 0.094 16k COWELL 74 OSPR π-ρ → ΛΚ0 2.169± 0.094 16k COWELL 74 OSPR π-ρ → ΛΚ0 2.169± 0.095 11 ± 0.09 11 1 701 12 NAGY 2.12 ± 0.08 6.380 MORSE 720 DBC K+η → K0 2.12 ± 0.095 6.150 13 BALTAY 71 HBC CKρ → K0 79 metrals 2.282± 0.043 7944 14 MOFFETT 70 OSPK K+η → K0 2.12 ± 0.17 2.7 12 BOZOK 17 BOBLO K+η → K0 2.12 ± 0.17 2.7 12 BOZOK 18 HBC 2.89± 0.055 3106 14 GOBBl 69 0 SPR K+η → K0 2.11 The directly measured quantity is K ⁰ / ₂ → π ⁺ π- / all K ⁰ 0 OSPK CHARLES OBBIGS 1.12 NAGY 72 is a final result which includes BOZOK is 9. 1.13 NAGY 72 is a final result which includes BOZOK is 9. 1.14 MOFFETT 70 is a final result which includes COBBl 69. 1.15 NAGY 72 is a final result which includes Scale factor of 1.2. 2.12 ± 0.01 2.13 ± 0.002 0 OUR FIT Error includes Scale factor of 1.3. See the ideogram between the same as or best values, sarily the same as or or best values, or o	0.6861 ± 0.0028 OUR F	IT Error	includes scale fact	or of 1.2.	COMMENT	
0.68 ± 0.04		3447	¹⁰ DOYLE	69 HBC	$\pi^- \rho \rightarrow \Lambda K^0$	
• • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •						
10 Anderson result not published, events added to Doyle sample. Γ(π/π - γ)/Γ(π 0 π 0) VALUE 2.109±0.026 OUR RTT Error includes scale factor of 1.2. 2.199±0.026 OUR AVERAGE 2.11 ± 0.09 1315 EVERHART 76 WIRE π − ρ → Λ Κ 0 1.16 ± 0.08 4799 HILL 73 DBC Κ + σ → κ + ρ ο 2.22 ± 0.08 6.380 MORSE 720 DBC Κ + σ → κ ο ρ 2.22 ± 0.08 6.380 MORSE 720 DBC Κ + π → κ ο ρ 2.22 ± 0.095 6.150 13 BALTAY 71 HBC Κ ρ → κ κ ρ ο 12.22 ± 0.043 7944 14 MOFFETT 70 OSPK Κ + π → κ ο ρ 2.22 ± 0.055 310 BBC 14 GOBBI 69 12 NAGY 72 BBC (κ + π → κ ο ρ 2.22 ± 0.055 310 14 GOBBI 69 12 NAGY 72 BBC (κ + π → κ ο ρ 2.28 ± 0.055 310 14 GOBBI 69 12 NAGY 72 B a final result which includes BOZOKI 69 13 The directly measured quantity is κ β → π + π / 3ll κ 0 = 0.345 ± 0.005. 13 MORFETT 70 is a final result which includes BOZOKI 69. 13 The directly measured quantity is κ β → π + π / 3ll κ 0 = 0.345 ± 0.005. 14 MOFFETT 70 is a final result which includes Sole factor of 1.2. 0.319 ± 0.0229 OUR FIT Error includes scale factor of 1.2. 0.319 ± 0.02029 OUR FIT Error includes scale factor of 1.3. See the ideogram below. VALUE (COMMENT ID DECOMENT ID DECO		he followir			etc	
10 Anderson result not published, events added to Doyle sample.		101101111			,	
		nublished			e.	
2.186±0.028 OUR FIT Error includes scale factor of 1.2. 2.197±0.026 OUR AVERAGE 2.11±0.09 1315 EVERHART 76 WIRE π = ρ → ΛΚ ⁰ 2.16±0.08 4799 HILL 73 DBC κ + δ → κ 0 ρρ HILL 74 DBC κ + δ → κ 0 ρρ HILL 74 DBC κ		pablished	, evenes added to	Doyle Sampl		Γ_1/Γ_2
2.19 ± 0.026 OUR AVERAGE 2.11 ± 0.09	VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
2.16 ± 0.094 16k COWELL 74 OSPK π − ρ → ΛΚ ⁰ 2.16 ± 0.006 4799 HILL 73 DBC K + d → K ⁰ ρρ 2.12 ± 0.10 3066 11 ALITIT 72 HBC K + ρ → π + ρκ ⁰ 2.22 ± 0.010 3066 11 ALITIT 72 HBC K + ρ → π + ρκ ⁰ 2.22 ± 0.08 6380 MORSE 728 DBC K + n → K ⁰ ρ 2.22 ± 0.095 6150 13 BALTAY 71 HBC K ρ → K ⁰ neutrals 2.28 ± 0.095 6150 13 BALTAY 71 HBC K ρ → K ⁰ neutrals 2.28 ± 0.003 7944 14 MOFFETT 70 OSPK K + n → K ⁰ ρ 2.10 ± 0.06 MORFIN 69 HLBC K + n → K ⁰ ρ 2.10 ± 0.06 MORFIN 69 HLBC K + n → K ⁰ ρ 2.12 ± 0.17 267 12 BOZOM 69 HLBC 2.28 ± 0.055 3016 14 GOBBI 69 OSPK K + n → K ⁰ ρ 11 The directly measured quantity is K ⁰ ₂ → π + π − /all K ⁰ = 0.345 ± 0.005. 12 NAGY 72 is a final result which includes GOBBI 69. 13 The directly measured quantity is K ⁰ ₂ → π + π − /all K ⁰ = 0.345 ± 0.005. 14 MOFFETT 70 is a final result which includes GOBBI 69. 17 (π 0 π 0) / Total 2.28 ± 0.014 1066 BROWN 63 HLBC 2.28 ± 0.014 1066 BROWN 63 HLBC 2.28 ± 0.015 BAGLIN 60 HLBC 2.29 ± 0.016 BAGLIN 60 HLBC 2.20 ± 0.016 BAGLIN 60 HLB			cludes scale factor	of 1.2.		
2.16 ±0.08	2.11 ± 0.09	1315	EVERHART			
2.22 \pm 0.10 3068 11 ALITTI 72 HBC $K^+p \to \pi^+\rho^-\kappa^0$ 2.22 \pm 0.08 6380 MORSE 728 DBC $K^+n \to K^0\rho$ 72 HLBC $K^+n \to K^0\rho$ 73 AGY 72 HLBC $K^+n \to K^0\rho$ 74 13 ALITAY 71 HBC $K^-\rho \to K^0\rho$ 75 ALITAY 71 HBC $K^-\rho \to K^0\rho$ 75 ALITAY 71 HBC $K^-\rho \to K^0\rho$ 76 ALITAY 72 HLBC $K^-\rho \to K^0\rho$ 76 ALITAY 73 ALITAY 74 HBC $K^-\rho \to K^0\rho$ 76 ALITAY 75 ALITAY 75 ALITAY 75 ALITAY 76 AL						
2.22 ± 0.08 6380 MORSE 728 DBC $K^+ n \rightarrow K^0 \rho$ 2.10 ± 0.11 701 12 NAGY 72 HLBC $K^+ n \rightarrow K^0 \rho$ 2.22 ± 0.095 6150 13 BALTAY 71 HBC $K \rho \rightarrow K^0 n$ enutrals 7.282 ± 0.095 6150 13 BALTAY 71 HBC $K \rho \rightarrow K^0 n$ enutrals 7.292 ± 0.06 3700 MORFIN 69 HLBC $K^+ n \rightarrow K^0 \rho$ 7.200 MORFIN 69 HLBC $K^+ n \rightarrow K^0 \rho$ 8. • • We do not use the following data for averages, fits, limits, etc. • • • • 2.12 ± 0.17 267 12 BOZOKI 69 HLBC $K^+ n \rightarrow K^0 \rho$ 8. 11 The directly measured quantity is $K_0^0 \rightarrow \pi^+ \pi^- / \text{all } K^0 = 0.345 \pm 0.005$. 12 NAGY 72 is a final result which includes BOZOKI 69. 13 The directly measured quantity is $K_0^0 \rightarrow \pi^+ \pi^- / \text{all } K^0 = 0.345 \pm 0.005$. 14 MOFFETT 70 is a final result which includes GOBBI 69. 17 Total $K_0^0 \rightarrow K_0^0 \rightarrow K_0$						
2.10 ±0.11 701 12 NAGY 72 HLBC $K^+ n \rightarrow K^0 \rho$ 2.22 ±0.095 6150 13 BALTAY 71 HBC $K \rho \rightarrow K^0$ neutrals 2.12 ±0.095 7944 14 MOFFETT 70 059FK $K^+ n \rightarrow K^0 \rho$ 2.10 ±0.06 3700 MORFIN 69 HLBC $K^+ n \rightarrow K^0 \rho$ 2.10 ±0.06 3700 MORFIN 69 HLBC $K^+ n \rightarrow K^0 \rho$ 2.12 ±0.17 267 12 BOZOKI 69 HLBC 2.285±0.055 3016 14 GOBBI 69 05PK $K^+ n \rightarrow K^0 \rho$ 11 The directly measured quantity is $K^0_S \rightarrow \pi^+ \pi^-/all \ K^0 = 0.345 \pm 0.005$. 12 NAGY 72 is a final result which includes BOZOKI 69. 13 The directly measured quantity is $K^0_S \rightarrow \pi^+ \pi^-/all \ K^0 = 0.345 \pm 0.005$. 14 MOFFETT 70 is a final result which includes GOBBI 69. 15 The directly measured quantity is $K^0_S \rightarrow \pi^+ \pi^-/all \ K^0 = 0.345 \pm 0.005$. 14 MOFFETT 70 is a final result which includes GOBBI 69. 16 NOWN 61 HLBC 0.315 ±0.014 1066 BROWN 63 HLBC 0.315 ±0.014 1066 BROWN 61 HLBC 0.288 ±0.021 198 CHRETIEN 63 HLBC HLBC 0.26 ±0.06 BAGLIN 60 HLBC 0.26 ±0.06 BAGLIN 60 HLBC 0.27 ±0.11 CRAWFORD 598 HBC 0.316±0.014 (Error scaled by 1.3) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as or best values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. F($\pi^0 \pi^0$)/ Γ (total PROWN 61 HLBC 0.2 4.9 Confidence Level = 0.300) O.1 0.2 0.3 0.4 0.5 0.6 CRAWFORD 598 HBC 0.2 4.9 CONFIDENCE 0.2 4.9 CONFIDENCE 0.2 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						K ^o
2.22 ± 0.095 6150 13 BALTAY 71 HBC $K \rho \to K^0$ neutrals 14 MOFFETT 70 OSPK $K^+ n \to K^0 \rho$ 2.282±0.043 7944 14 MOFFETT 70 OSPK $K^+ n \to K^0 \rho$ 9 HLBC $K^+ n \to K^0 \rho$ 9 MORFIN 69 HLBC $K^+ n \to K^0 \rho$ 9 HLBC 12.2 ± 0.17 267 12 BOZOKI 69 HLBC $K^+ n \to K^0 \rho$ 11 The directly measured quantity is $K_0^0 \to \pi^+ \pi^- / \pi ll \ K^0 = 0.345 \pm 0.005$. 112 NAGY 72 is a final result which includes BOZOKI 69. 113 The directly measured quantity is $K_0^0 \to \pi^+ \pi^- / \pi ll \ K^0 = 0.345 \pm 0.005$. 113 The directly measured quantity is $K_0^0 \to \pi^+ \pi^- / \pi ll \ K^0 = 0.345 \pm 0.005$. 114 MOFFETT 70 is a final result which includes GOBBI 69.						
2.282 ± 0.043 7944 14 MOFFETT 70 OSPK K+ n → K ⁰ p v • We do not use the following data for averages, fits, limits, etc. • • • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •						rals
• • • We do not use the following data for averages, fits, limits, etc. • • • • 2.12 ±0.17 267 12 BOZOKI 69 HLBC 2.285 ±0.055 3016 14 GOBBI 69 OSPK $K^+ n \to K^0 p$ 11 The directly measured quantity is $K_0^0 \to \pi^+ \pi^- / \text{all } K^0 = 0.345 \pm 0.005$. 12 NAGY 72 is a final result which includes BOZOKI 69. 13 The directly measured quantity is $K_0^0 \to \pi^+ \pi^- / \text{all } K^0 = 0.345 \pm 0.005$. 14 MOFFETT 70 is a final result which includes GOBBI 69.	2.282 ± 0.043	7944				
2.12 ± 0.17						
2.285 ± 0.055 3016 14 GOBBI 69 OSPK $K^+ n \rightarrow K^0 p$ 11 The directly measured quantity is $K_S^0 \rightarrow \pi^+\pi^-/\text{all } K^0 = 0.345 \pm 0.005$. 12 NAGY 72 is a final result which includes BOZOKI 69. 13 The directly measured quantity is $K_S^0 \rightarrow \pi^+\pi^-/\text{all } K^0 = 0.345 \pm 0.005$. 14 MOFFETT 70 is a final result which includes GOBBI 69. $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}} \qquad $	• • We do not use to	he followir				
11 The directly measured quantity is $K_0^S \to \pi^+\pi^-/\text{all } K^0 = 0.345 \pm 0.005$. 12 NAGY 72 is a final result which includes BOZOKI 69. 13 The directly measured quantity is $K_0^S \to \pi^+\pi^-/\text{all } K^0 = 0.345 \pm 0.005$. 14 MOFFETT 70 is a final result which includes GOBBI 69. $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ F2/F 2.319 ± 0.0028 OUR FIT Error includes scale factor of 1.2. 0.319 ± 0.0028 OUR FIT Error includes scale factor of 1.3. See the ideogram below. 0.335 ± 0.014 1066 BROWN 63 HLBC 0.288 ± 0.021 198 CHRETIEN 63 HLBC 0.30 ± 0.035 BROWN 61 HLBC 0.26 ± 0.06 BAGLIN 60 HLBC 0.27 ± 0.11 CRAWFORD 598 HBC WEIGHTED AVERAGE 0.316 ± 0.014 (Error scaled by 1.3) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our best values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 CHRETIEN 63 HLBC 0.9 BROWN 61 HLBC 0.9 CRAWFORD 598 HBC 0.2 4.9 (Confidence Level = 0.300) 0.1 0.2 0.3 0.4 0.5 0.6 $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ $\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-)$ MALUE (withs 10^{-3}) EVTS 2.60 ± 0.08 OUR AVERAGE RAMBERG 93 E731 P _{\gamma} >50 MeV/c 15 TAUREG 76 SPEC P _{\gamma} >50 MeV/c 16 BURGIN 73 HBC P _{\gamma} >50 MeV/c						
12 NAGY 72 is a final result which includes BOZOKI 69. 13 The directly measured quantity is $K_S^0 \to \pi^+\pi^-/\text{all } K^0 = 0.345 \pm 0.005$. 14 MOFFETT 70 is a final result which includes GOBBI 69. $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-2}) VALU						
Γ($\pi^0\pi^0$)/Γtotal	11 The directly measur	ed quanti	ty is $K_S^0 \to \pi^+\pi^-$	_/all K ⁰ =	0.345 ± 0.005 .	
Γ($\pi^0\pi^0$)/Γtotal	12 NAGY 72 is a final	result which	ch includes BOZOI	KI 69.	0.345 / 0.005	
$\Gamma_{\chi} \pi^{0} \pi^{0}$)/Γtotal EYTS DOCUMENT ID TECN 0.3199 ±0.0028 OUR FIT Error includes scale factor of 1.2. 0.316 ±0.014 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. 0.335 ±0.014 1066 BROWN 63 HLBC 0.288 ±0.021 198 CHRETIEN 63 HLBC 0.30 ±0.035 BROWN 61 HLBC 0.27 ±0.11 CRAWFORD 598 HBC Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our best values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our best values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 BROWN 61 HLBC 0.9 CRAWFORD 598 HBC 0.2 4.9 (Confidence Level = 0.300) 0.1 0.2 0.3 0.4 0.5 0.6 CRAWFORD 599 HBC 0.2 4.9 (Confidence Level = 0.300) CRAWFORD 590 HBC 0.2 1.5 TAUREG 76 SPEC P _{γγ} >50 MeV/c 2.68 ±0.15 15 TAUREG 76 SPEC P _{γγ} >50 MeV/c 16 BURGUN 73 HBC P _{γγ} >50 MeV/c	14 MOEEETT 70 is a	final recult	ty is ∧ g → n · n	/ all N = =	0.345 ± 0.005.	
SALUE EVTS DOCUMENT ID TECN		iniai resuri	winen includes of	JDD1 07.		
0.319 ± 0.0028 OUR FIT Error includes scale factor of 1.2. 0.316 ± 0.014 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. 0.335 ± 0.014 1066 BROWN 63 HLBC 0.30 ± 0.035 BROWN 61 HLBC 0.26 ± 0.06 BAGLIN 60 HLBC 0.27 ± 0.11 CRAWFORD 59B HBC Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 CHRETIEN 63 HLBC 1.8 CHRETIEN 63 HLBC 0.2 1.8 BROWN 63 HLBC 0.9 Obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 61 HLBC 0.9 4.9 (Confidence Level = 0.300) CRAWFORD 59B HBC CRAWFORD 59B HBC CRAWFORD 59B HBC F(π² π² γ)/Γ(π² π²) VALUE (units 10⁻³) EVTS 2.60 ± 0.09 OUR AVERAGE RAMBERG 93 E731 P₁ > 50 MeV/c 15 TAUREG 76 SPEC P₂ > 50 MeV/c 16 BURGUN 73 HBC P₂ > 50 MeV/c	Γ(π ⁰ π ⁰)/Γ _{total}					Γ_2/Γ
0.316 ±0.014 OUR AVERAGE below. 0.335 ±0.014 1066 BROWN 63 HLBC 0.288 ±0.021 198 CHRETIEN 63 HLBC 0.30 ±0.035 BROWN 61 HLBC 0.26 ±0.06 BAGLIN 60 HLBC 0.27 ±0.11 Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 61 HLBC 1.8 BROWN 63 HLBC 1.8 BROWN 61 HLBC 0.2 Quantities as additional information. BROWN 61 HLBC 0.2 Quantities as additional information. CRAWFORD 59B HBC 0.2 Quantities as additional information. F(π+π-γ)/Γ(π+π-) VALUE (units 10 ⁻³) EVTS QLOG-0.09 OUR AVERAGE 2.56 ± 0.09 1286 RAMBERG 93 E731 P _γ > 50 MeV/c 15 TAUREG 76 SPEC P _γ > 50 MeV/c 16 BURGUN 73 HBC P _γ > 50 MeV/c			DOCUMENT ID	TECN	-	
Delow.						
0.288 \pm 0.021 198 CHRETIEN 63 HLBC 0.30 \pm 0.035 BROWN 61 HLBC 0.26 \pm 0.06 BAGLIN 60 HLBC CRAWFORD 598 HBC WEIGHTED AVERAGE 0.316 \pm 0.014 (Error scaled by 1.3) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 BROWN 61 HLBC 0.2 HLBC 0.2 BROWN 61 HLBC 0.2 HLBC 0.2 HUBC 0.3 HUBC 0.2 HUBC 0.2 HUBC 0.3 HUBC 0.2 HUBC 0.3 HUBC 0.3 HUBC 0.2 HUBC 0.3 HUBC 0.3 HUBC 0.2 HUBC 0.3 HUBC 0.3 HUBC 0.3 HUBC 0.2 HUBC 0.3 HUB			Error includes sca	ale factor of	13 See the ideor	
0.30 ± 0.035 BROWN 61 HLBC 0.26 ± 0.06 BAGLIN 60 HLBC CRAWFORD 59B HBC WEIGHTED AVERAGE 0.316 ± 0.014 (Error scaled by 1.3) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 BROWN 61 HLBC 0.2 BROWN 61 HLBC 0.2 BROWN 61 HLBC 0.2 CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ $\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-)$ VALUE (units 10^{-3}) EVT5 2.50 ± 0.09 OUR AVERAGE 2.56 ± 0.09 1286 RAMBERG 93 E731 P ₇ >50 MeV/c 15 TAUREG 76 SPEC P ₇ >50 MeV/c 16 BURGUN 73 HBC P ₇ >50 MeV/c		V ENAME		ale factor of	1.3. See the ideog	ram
0.26 ± 0.06 BAGLIN 60 HLBC CRAWFORD 598 HBC WEIGHTED AVERAGE 0.316±0.014 (Error scaled by 1.3) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 BROWN 61 HLBC 0.2 1.8 BROWN 61 HLBC 0.2 4.9 (Confidence Level = 0.300) CRAWFORD 598 HBC 0.2 4.9 (Confidence Level = 0.300) CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) T($\pi^{+}\pi^{-}$)/ $\Gamma(\pi^{+}\pi^{-})$ WAUVE (units 10 $^{-3}$) EVTS 2.60±0.08 OUR AVERAGE 2.56±0.09 1286 RAMBERG 93 E731 P ₇ >50 MeV/c 15 TAUREG 76 SPEC P ₇ >50 MeV/c 16 BURGUN 73 HBC P ₇ >50 MeV/c	0.335 ±0.014	1066	below. BROWN	63 HLBC		ram
0.27 \pm 0.11 CRAWFORD 59B HBC WEIGHTED AVERAGE 0.316±0.014 (Error scaled by 1.3) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 CHRETIEN 63 HLBC 1.8 BROWN 61 HLBC 0.2 BROWN 61 HLBC 0.2 4.9 (Confidence Level = 0.300) CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) (Confidence Level = 0.300) T($\pi^{+}\pi^{-}\gamma$)/ $\Gamma(\pi^{+}\pi^{-})$ VALUE (units 10^{-2}) EVTS 2.60±0.08 OUR AVERAGE 2.56±0.09 1286 RAMBERG 93 E731 P ₇ >50 MeV/c 15 TAUREG 76 SPEC P ₇ >50 MeV/c 16 BURGUN 73 HBC P ₇ >50 MeV/c	0.335 ±0.014 0.288 ±0.021	1066	below. BROWN CHRETIEN	63 HLBC		ram
Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 BROWN 61 HLBC 0.2 BROWN 61 HLBC 0.2 BROWN 61 HLBC 0.9 CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ $\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-)$ VALUE (units 10^{-2}) EVTS 2.60±0.08 OUR AVERAGE 2.56±0.09 1286 RAMBERG 93 E731 P ₇ >50 MeV/c 15 TAUREG 76 SPEC P ₇ >50 MeV/c 16 BURGUN 73 HBC P ₇ >50 MeV/c	$\begin{array}{ccc} 0.335 & \pm 0.014 \\ 0.288 & \pm 0.021 \\ 0.30 & \pm 0.035 \end{array}$	1066	below. BROWN CHRETIEN BROWN	63 HLBC 63 HLBC 61 HLBC		ram
Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 BROWN 61 HLBC 0.2 BROWN 61 HLBC 0.2 BROWN 61 HLBC 0.9 CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ $\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-)$ VALUE (units 10^{-2}) EVTS 2.60±0.08 OUR AVERAGE 2.56±0.09 1286 RAMBERG 93 E731 P ₇ >50 MeV/c 15 TAUREG 76 SPEC P ₇ >50 MeV/c 16 BURGUN 73 HBC P ₇ >50 MeV/c	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06	1066	below. BROWN CHRETIEN BROWN BAGLIN	63 HLBC 63 HLBC 61 HLBC 60 HLBC		ram
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 BROWN 61 HLBC 0.2 4.9 (Confidence Level = 0.300) 1. (Confidence Level = 0.300	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11	1066 198	below. BROWN CHRETIEN BROWN BAGLIN	63 HLBC 63 HLBC 61 HLBC 60 HLBC		_r am
and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 BROWN 61 HLBC 0.2 4.9 (Confidence Level = 0.300) 1. (Confidence Level = 0.300	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD	63 HLBC 63 HLBC 61 HLBC 60 HLBC		ram
this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 CHRETIEN 63 HLBC 1.8 BROWN 61 HLBC 0.2 BAGLIN 60 HLBC 0.9 CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) (Confidence Level = 0.300) $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ $\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-)$ VALUE (units 10^{-2}) EVT5 2.50±0.08 OUR AVERAGE 2.56±0.09 1286 RAMBERG 93 E731 P ₇ >50 MeV/c 15 TAUREG 76 SPEC P ₇ >50 MeV/c 16 BURGUN 73 HBC P ₇ >50 MeV/c	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC		ram
obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. BROWN 63 HLBC 1.8 CHRETIEN 63 HLBC 1.8 BROWN 61 HLBC 0.2 BRGUN 61 HLBC 0.9 CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) T($\pi^0 \pi^0$)/ Γ ($\pi^+ \pi^-$) VALUE (units 10^{-2}) EVTS 2.60±0.08 OUR AVERAGE 2.56±0.09 1286 RAMBERG 93 E731 P ₇ >50 MeV/c 15 TAUREG 76 SPEC P ₇ >50 MeV/c 16 BURGUN 73 HBC P ₇ >50 MeV/c	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abo	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC	ed average, error,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD Values abound scale fits ideogra	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC	ed average, error, sed upon the data i by are not neces-	
BROWN 63 HLBC 1.8 CHRETIEN 63 HLBC 1.8 BROWN 61 HLBC 0.2 BAGLIN 60 HLBC 0.9 CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ $\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-)$ VALUE (units 10^{-3}) EVT5 2.60±0.08 OUR AVERAGE 2.56±0.09 1286 RAMBERG 93 E731 P _{\gamma\$} >50 MeV/c 15 TAUREG 76 SPEC P _{\gamma\$} >50 MeV/c 16 BURGUN 73 HBC P _{\gamma\$} >50 MeV/c	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abo and scale f this ideogra sarily the s	63 HLBC 63 HLBC 61 HLBC 59B HBC ove of weight actor are bar arm only. The	ed average, error, sed upon the data i sy are not neces- best' values,	n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sanly the s obtained fr	63 HLBC 63 HLBC 61 HLBC 59B HBC 59B HBC	ed average, error, sed upon the data i ay are not neces- best values, quares constrained	n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abo and scale f this ideogra sarily the s obtained fin utilizing me	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight factor are bas am only. The ame as our om a least-se seasurements	ed average, error, sed upon the data i sy are not neces- best' values, urers constrained of other (related)	n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abo and scale f this ideogra sarily the s obtained fin utilizing me	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight factor are bas am only. The ame as our om a least-se seasurements	ed average, error, sed upon the data i sy are not neces- best' values, urers constrained of other (related)	n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abo and scale f this ideogra sarily the s obtained fin utilizing me	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight factor are bas am only. The ame as our om a least-se seasurements	ed average, error, sed upon the data i sy are not neces- best' values, urers constrained of other (related)	n
CHRETIEN 63 HLBC 1.8 BROWN 61 HLBC 0.2 BAGLIN 60 HLBC 0.9 CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) $\Gamma(\pi^{+}\pi^{-}\gamma)/\Gamma(\pi^{+}\pi^{-})$ CALUE (units 10^{-3}) EVTS 2.60±0.08 OUR AVERAGE 2.56±0.09 1286 RAMBERG 93 E731 P ₇ >50 MeV/c 2.68±0.15 15 TAUREG 76 SPEC P ₇ >50 MeV/c 16 BURGUN 73 HBC P ₇ >50 MeV/c	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abo and scale f this ideogra sarily the s obtained fin utilizing me	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight factor are bas am only. The ame as our om a least-se seasurements	ed average, error, sed upon the data i sy are not neces- best' values, quares constrained of other (related) information.	n fit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sanily the so obtained frutilizing me quantities a	63 HLBC 63 HLBC 60 HLBC 59B HBC ove of weight actor are bar am only. The ame as our or a least-seasurements as additional	ed average, error, sed upon the data i by are not necesbest' values, quares constrained of other (related) information.	n fit
CRAWFORD 59B HBC 0.2 4.9 (Confidence Level = 0.300) $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ $\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-)$ VALUE (units 10^{-3}) EVTS 2.60±0.08 OUR AVERAGE 2.56±0.09 1286 RAMBERG 93 E731 P _{\gamma\$} >50 MeV/c 2.68±0.15 15 TAUREG 76 SPEC P _{\gamma\$} >50 MeV/c 16 BURGUN 73 HBC P _{\gamma\$} >50 MeV/c	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD Values about and scale if this ideogram sarily the sobtained fruitilizing me quantities a	63 HLBC 63 HLBC 60 HLBC 59B HBC ove of weight actor are bar am only. The ame as our or on a least-seasurements as additional	ed average, error, sed upon the data i ya ren ont necesbest' values, quares constrained of other (related) information.	n fit 2 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD Values abc and scale f this ideogra sarily the s obtained fr utilizing me quantities a	63 HLBC 63 HLBC 60 HLBC 59B HBC ove of weight actor are bar am only. The ame as our orm a least-seasurements as additional	ed average, error, sed upon the data is ye are not necesbest' values, quares constrained of other (related) information. 63 HLBC 1.4 63 HLBC 1.4 61 HLBC 1.4	n fit 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sarily the s obtained fn utilizing me quantities a	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight actor are bar am only. The amme as our 'or a or a least-seasurements as additional	ed average, error, sed upon the data i sy are not necesbest' values, quares constrained of other (related) information. 63 HLBC 1.4 63 HLBC 1.4 61 HLBC 0.5	n fit
$ \Gamma\left(\pi^{0}\pi^{0}\right)/\Gamma_{\text{total}} $ $ \Gamma\left(\pi^{+}\pi^{-}\gamma\right)/\Gamma\left(\pi^{+}\pi^{-}\right) $ $ \Gamma_{3}/\Gamma_{1} $ $ \frac{VALUE (\text{units }10^{-3})}{2.60\pm0.08 \text{OUR} \text{AVERAGE}} $ $ 2.56\pm0.09 \qquad 1286 \qquad \text{RAMBERG} \qquad 93 \qquad \text{E731} \qquad P_{\gamma} \ >50 \text{MeV}/c $ $ 2.68\pm0.15 \qquad \qquad 15 \text{TAUREG} \qquad 76 \text{SPEC} \qquad P_{\gamma} \ >50 \text{MeV}/c $ $ 2.8 \pm0.6 \qquad \qquad 16 \text{BURGUN} \qquad 73 \text{HBC} \qquad P_{\gamma} \ >50 \text{MeV}/c $	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sarily the s obtained fn utilizing me quantities a	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight actor are bar am only. The amme as our 'or a or a least-seasurements as additional	ed average, error, sed upon the data i ey are not necesbest' values, quares constrained of other (related) information. 63 HLBC 1.8 63 HLBC 0.3 61 HLBC 0.3 59B HBC 0.3	n fit 2 3 3 2 2 9 2
$ \Gamma\left(\pi^{0}\pi^{0}\right)/\Gamma_{\text{total}} $ $ \Gamma\left(\pi^{+}\pi^{-}\gamma\right)/\Gamma\left(\pi^{+}\pi^{-}\right) $ $ \Gamma_{3}/\Gamma_{1} $ $ \frac{VALUE (\text{units }10^{-3})}{2.60\pm0.08 \text{OUR} \text{AVERAGE}} $ $ 2.56\pm0.09 \qquad 1286 \qquad \text{RAMBERG} \qquad 93 \qquad \text{E731} \qquad P_{\gamma} \ >50 \text{MeV}/c $ $ 2.68\pm0.15 \qquad \qquad 15 \text{TAUREG} \qquad 76 \text{SPEC} \qquad P_{\gamma} \ >50 \text{MeV}/c $ $ 2.8 \pm0.6 \qquad \qquad 16 \text{BURGUN} \qquad 73 \text{HBC} \qquad P_{\gamma} \ >50 \text{MeV}/c $	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A	1066 198 VERAGE	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sarily the s obtained fn utilizing me quantities a	63 HLBC 63 HLBC 60 HLBC 59B HBC ove of weight actor are bar am only. The actor are bar am only. The actor are bar am only. The actor are bar and the actor are bar and the actor and the actor are bar and the actor are	ed average, error, sed upon the data is y are not necesbest' values, quares constrained of other (related) information. 63 HLBC 1.4 63 HLBC 1.5 63 HLBC 0.3 60 HLBC 0.4 59B HBC 4.4	n fit 2 3 3 3 2 9 9 9 9 9
$\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-)$ VALUE (units 10^{-3}) EVT5 2.60 ± 0.08 OUR AVERAGE 2.56 ± 0.09 1286 RAMBERG 93 E731 ρ_γ >50 MeV/c 2.68 ± 0.15 15 TAUREG 76 SPEC ρ_γ >50 MeV/c 2.8 ± 0.6 16 BURGUN 73 HBC ρ_γ >50 MeV/c	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A 0.316±0.014 (8	VERAGE Error scale	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sanity the s obtained fr utilizing me quantities a	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight actor are bar am only. The ame as our orn a least-seasurements as additional ROWN HRETIEN ROWN HRETIEN ROWN RAWFORD (Con	ed average, error, sed upon the data is y are not necesbest' values, quares constrained of other (related) information. 63 HLBC 1.4 63 HLBC 1.5 63 HLBC 0.3 60 HLBC 0.4 59B HBC 4.4	n fit 2 3 3 3 2 9 9 9 9 9
VALUE (units 10^{-3}) EVT5 DOCUMENT ID TECN COMMENT 2.60 \pm 0.09 1286 RAMBERG 93 E731 p_{γ} >50 MeV/c 2.68 \pm 0.15 15 TAUREG 76 SPEC p_{γ} >50 MeV/c 2.8 \pm 0.6 16 BURGUN 73 HBC p_{γ} >50 MeV/c	0.335 ±0.014 0.288 ±0.021 0.30 ±0.035 0.26 ±0.06 0.27 ±0.11 WEIGHTED A 0.316±0.014 (i	VERAGE Error scale	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sanity the s obtained fr utilizing me quantities a	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight actor are bar am only. The ame as our orn a least-seasurements as additional ROWN HRETIEN ROWN HRETIEN ROWN RAWFORD (Con	ed average, error, sed upon the data is y are not necesbest' values, quares constrained of other (related) information. 63 HLBC 1.4 63 HLBC 1.5 63 HLBC 0.3 60 HLBC 0.4 59B HBC 4.4	n fit 2 3 3 3 2 9 9 9 9 9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0.335 & \pm 0.014 \\ 0.288 & \pm 0.021 \\ 0.30 & \pm 0.035 \\ 0.26 & \pm 0.06 \\ 0.27 & \pm 0.11 \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & &$	VERAGE Error scale	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sanity the s obtained fr utilizing me quantities a	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight actor are bar am only. The ame as our orn a least-seasurements as additional ROWN HRETIEN ROWN HRETIEN ROWN RAWFORD (Con	ed average, error, sed upon the data is y are not necesbest' values, quares constrained of other (related) information. 63 HLBC 1.4 63 HLBC 1.5 63 HLBC 0.3 60 HLBC 0.4 59B HBC 4.4	n fit 2 3 3 3 2 9 9 9 9 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0.335 & \pm 0.014 \\ 0.288 & \pm 0.021 \\ 0.30 & \pm 0.035 \\ 0.26 & \pm 0.06 \\ 0.27 & \pm 0.11 \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & &$	VERAGE Error scale	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sanity the s obtained fr utilizing me quantities a	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight actor are bar am only. The ame as our orn a least-seasurements as additional ROWN HRETIEN ROWN HRETIEN ROWN RAWFORD (Con	ed average, error, sed upon the data is y are not necesbest' values, quares constrained of other (related) information. 63 HLBC 1.4 63 HLBC 1.5 63 HLBC 0.3 60 HLBC 0.4 59B HBC 4.4	n fit 2 3 3 3 2 2 9 2 9
2.68 \pm 0.15	0.335 \pm 0.014 0.288 \pm 0.021 0.30 \pm 0.035 0.26 \pm 0.06 0.27 \pm 0.11 WEIGHTED A 0.316 \pm 0.014 (is	VERAGE Fror scale	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sanity the s obtained fr utilizing me quantities a CF BB 0.4 0.4 0.5	63 HLBC 63 HLBC 61 HLBC 60 HLBC 598 HBC ove of weight actor are bar am only. The ame as our or a least-seasurements as additional ROWN HRETIEN ROWN HRETIEN ROWN RAWFORD (Cont.) 5 0.6	ed average, error, sed upon the data i ey are not necesbest values, unares constrained of other (related) information. 63 HLBC 1.8 63 HLBC 0.4 66 HLBC 0.5 59B HBC 0.4 4.9 60 HLBC 0.5 59B HBC 0.5 60 HLBC 0.5 60	n fit 2 3 3 3 2 2 9 2 9
2.8 ± 0.6 16 BURGUN 73 HBC p_{γ} >50 MeV/c	0.335 \pm 0.014 0.288 \pm 0.021 0.30 \pm 0.035 0.26 \pm 0.06 0.27 \pm 0.11 WEIGHTED A 0.316 \pm 0.014 (is	1066 198	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sarily the s obtained fn utilizing me quantities a CH	63 HLBC 63 HLBC 61 HLBC 59B HBC ove of weight arm only. The man as our orn a least-seasurements as additional GROWN HRETIEN AGUIN RAWFORD (Cont	ed average, error, sed upon the data i sy are not necesbest' values, quares constrained of other (related) information. 63 HLBC 1.4 63 HLBC 1.4 61 HLBC 0.5 59B HBC 0.5 59B HBC 0.1 61 HLBC 0.5 62 HLBC 0.5 63 HLBC 0.5 63 HLBC 0.5 63 HLBC 0.5 64 HLBC 0.5 65 HLBC 0.5 66 HLBC 0.5 67 HLBC 0.5	n fit 2 3 3 3 2 2 9 2 9 9 9 9 9 9 9 9 9 9 9 9
. 1	0.335 \pm 0.014 0.288 \pm 0.021 0.30 \pm 0.035 0.26 \pm 0.06 0.27 \pm 0.11 WEIGHTED A 0.316 \pm 0.014 (i	1066 198	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sarily the s obtained fr utilizing me quantities a DOCUMENT ID RAMBERG	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight actor are bar and a sour or an aleast-sasurements as additional GOWN HRETIEN TOWN HRETIEN TO	ed average, error, sed upon the data is a vare not necesbest' values, quares constrained of other (related) information. 63 HLBC 1.4 63 HLBC 0.3 63 HLBC 0.3 61 HLBC 0.3 62 HLBC 0.3 63 HLBC 0.3 63 HLBC 0.3 63 HLBC 0.3 64 HLBC 0.3 65 HLBC 0.3 66 HLBC 0.3 67 HLBC 0.3 68 HLBC 0.3 69 HLBC 0.3 60 H	n fit 2 3 3 3 2 2 9 9 000)
TO TELEBOLIS (O FIDE PL 200 INIEV/C	0.335 \pm 0.014 0.288 \pm 0.021 0.30 \pm 0.035 0.26 \pm 0.06 0.27 \pm 0.11 WEIGHTED A 0.316 \pm 0.014 (8 0.7 \pm 0.11 VALUE (units 10 ⁻³) 2.56 \pm 0.09 2.68 \pm 0.15	1066 198	below. BROWN CHRETIEN BROWN BAGLIN CRAWFORD d by 1.3) Values abc and scale f this ideogra sanity the s obtained fr utilizing me quantities a DOCUMENT ID RAMBERG 15 TAUREG	63 HLBC 63 HLBC 61 HLBC 60 HLBC 59B HBC ove of weight actor are bar am only. The amount actor are bar amount actor are bar amount actor and actor a	ed average, error, sed upon the data i ey are not necesbest values, constrained of other (related) information. 63 HLBC 1.863 HLBC 0.363 HLBC 0.359B HBC 0.359B HBC 0.359B HBC 0.3660 HLBC 0.3660 HLB	n fit 2 3 3 2 9 9 00)

3.3 ± 1.2 10 WEBBER 70 HBC $p_{\gamma} > 50 \text{ MeV}/c$ no ratio given 27 BELLOTTI 66 HBC $p_{\gamma} > 50 \text{ MeV}/c$ • • • We do not use the following data for averages, fits, limits, etc. • • •

15 TAUREG 76 find direct emission contribution <0.06, CL = 90%. 16 BURGUN 73 estimates that direct emission contribution is 0.3 ± 0.6 . 17 BOBISUT 74 not included in average because p_{γ} cut differs. Estimates direct emission contribution to be 0.5 or less, CL = 95%.

29 17 BOBISUT

RAMBERG 93 E731 p_{γ} >20 MeV/c 7 BOBISUT 74 HLBC p_{γ} >40 MeV/c

$\Gamma(\gamma\gamma)/\Gamma_{ m total}$								Γ4/Ι
ALUE (units 10 ⁻⁶)	<u>CL%</u>		DOCUMEN		TECN		MMENT	
2.4±0.9	use the fell	35	18 BARR		B NA3			
	use the foil	_	data for averag				• •	
2.2±1.1 < 13	90	16	BALATS	95i 89	B NA3			
2.4±1.2		19	BURKHA					
< 133	90		BARMIN		в ХЕВ			0
< 200	90		VASSER				→ K _S	κľ
< 400 < 710	90 90	0	BARMIN ²⁰ BANNER		BHLB BOSP			
< 2000	90	0	MORSE		B DBC			
< 2200	90	0	20 REPELLI	N 71				
<21000	90	0	²⁰ BANNER					
18 BARR 95B que rescaling BUR 19 BARR 95B res 20 These limits a	RKHARDT 8 sult is calcul	87 to u lated u	ise same branch $sing B(K_L \rightarrow$	$\gamma \gamma) = (1$	s and 6	ifetime	s as B	ARR 95B.
$(\pi^{+}\pi^{-}\pi^{0})/\Gamma$	total							Γ ₅ /Ι
ALUE (units 10 ⁻⁷)	<u>CI</u>	% EV	TS DOCL	IMENT ID		TECN	COMM	IENT
3.2 ^{+1.2} OU	R AVERAG	E						
2.5 + 1.3 + 0. $-1.0 - 0.$	5 6	50	0k ²¹ ADL	ER	97B	CPLR		
$4.8^{+2.2}_{-1.6}\pm 1.$			²² zou		96	E621		
		owing	data for averag	es, fits, li				
4.1 + 2.5 + 0.1 - 1.9 - 0.1		ŭ	²³ ADL			CPLR	Sup.	
3.9 + 5.4 + 0.	9 7		²⁴ THO	MSON	94	E621		DLER 978 by ZOU 9
<490	90		²⁵ BAR		85	HLBC		
<850	90		MET	CALF		ASPK		
$= (-10 \pm 8)$ K_L^0 decay par 22 ZOU 96 is fro $= (-9 \pm 18)$	\pm 2) \times 10 ⁻¹ ameters. Se om the the $^{\circ}$.	· 3. Th e also measur		$ K_S^0 \rightarrow 0$ LOS 98c. $ \rho_{+-0} = 0$	π ⁺ π ⁻ : : 0.039	π ⁰) fr +0.00 -0.00	om Re 9 ± 0.	(λ) and th 005 and $\phi_{_{_{I}}}$
$= (-10 \pm 8)$ κ_L^0 decay par 22 ZOU 96 is from $= (-9 \pm 18)$ 23 ADLER 96E is consistent with	\pm 2) \times 10 ⁻¹ ameters. Se om the the $^{\circ}$. s from the meth zero. No	e also measur neasur ote tha	ey estimate B(ANGELOPOUI ed quantities ed quantities R at the quantity	$ \mathcal{K}_{S}^{0} \rightarrow 0 $ $ \mathcal{K}_{S}^{0} \rightarrow 0 $	π ⁺ π ⁻ = 0.039036 ± = same	π^{0}) fr +0.00 -0.00 0.010 as ρ_{+}	om Re 9 ± 0. + 0.002 - 0.003 - 0 us	(λ) and th 005 and ϕ and Im (λ)
$= (-10 \pm 8)$ κ_L^0 decay par 22 ZOU 96 is from $= (-9 \pm 18)$ 23 ADLER 96E is consistent with footnotes. 24 THOMSON 90.035 $^{+}$ 0.011 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 2 1 1 2 2 1 2 $^$	\pm 2) \times 10 ⁻¹ ameters. Se point the the results of the second the number of the tension of the second the	The also measure that the content of the content o	ey estimate B(ANGELOPOUI ed quantities ed quantities R at the quantity branching rati (-59±48)° wi	$ \mathcal{K}_{S}^{V} \rightarrow 0 = 0$ $ \rho_{+-0} = 0$ $ \lambda \text{ is the there } \rho_{+-} $	$\pi^{+}\pi^{-}$ = 0.039 0.036 ± same their m $-0 e^{i\phi_{i}}$	π^{0}) fr +0.00 -0.00 0.010 as ρ_{+} neasure $\rho_{-} = A($	om Re $9 \pm 0.$ $+ 0.002$ $- 0.003$ $- 0$ $- 0$ $- 0$ $+ 0.003$ $- 0$ $- 0$ $- 0$ $- 0$ $- 0$	(λ) and th 005 and ϕ and Im (λ) and Im (λ) ed in other $ \rho_{+}-0 = \pi + \pi - \pi^0$
$= (-10 \pm 8)$ K_L^0 decay par 22 ZOU 96 is fro $= (-9 \pm 18)$ 23 ADLER 96E is consistent with footnotes. 24 THOMSON 9. $^{0.035}$ $^{+0.019}$ $^{0.035}$ $^{+0.019}$ 1 1 1 2 2 / 1 / 1 / 1 / 2 BARMIN 85 pressed.	\pm 2) \times 10 ⁻¹ ameters. Se point the the results of the second the number of the tension of the second the	The also measure that the content of the content o	ey estimate B(ANGELOPOUI ed quantities ed quantities R at the quantity branching rati (-59±48)° wi	$ \mathcal{K}_{S}^{V} \rightarrow 0 = 0$ $ \rho_{+-0} = 0$ $ \lambda \text{ is the there } \rho_{+-} $	$\pi^{+}\pi^{-}$ = 0.039 0.036 ± same their m $-0 e^{i\phi_{i}}$	π^{0}) fr +0.00 -0.00 0.010 as ρ_{+} neasure $\rho_{-} = A($	om Re $9 \pm 0.$ $+ 0.002$ $- 0.003$ $- 0$ $- 0$ $- 0$ $+ 0.003$ $- 0$ $- 0$ $- 0$ $- 0$ $- 0$	(λ) and th 005 and ϕ and Im(λ ed in other $ \rho_{+-0} =\pi^{+}\pi^{-}\pi^{0}$ qually sup
$= (-10 \pm 8) \times (0.000) \times $	\pm 2) \times 10 ⁻¹ armeters. Separate the results of the results o	The also measure that the strike $\phi_{\rho}=\pi^{0}$).	ey estimate B(ANGELOPOUI ed quantities ed quantities R at the quantity branching rati (-59±48)° wi	$ \mathcal{K}_{S}^{V} \rightarrow 0 = 0$ $ \rho_{+-0} = 0$ $ \lambda \text{ is the there } \rho_{+-} $	$\pi^{+}\pi^{-}$ = 0.039 0.036 ± same their m $-0 e^{i\phi_{i}}$	π^{0}) fr +0.00 -0.00 0.010 as ρ_{+} neasure $\rho_{-} = A($	om Re $9 \pm 0.$ $+ 0.002$ $- 0.003$ $- 0$ $- 0$ $- 0$ $+ 0.003$ $- 0$ $- 0$ $- 0$ $- 0$ $- 0$	(λ) and th 005 and ϕ and Im (λ) and Im (λ) ed in other $ \rho_{+}-0 = \pi + \pi - \pi^0$
= (-10 ± 8) K $_{L}^{0}$ decay par 22 ZOU 96 is from $= (-9 \pm 18)$ 23 ADLER 96E is consistent with footnotes. 24 THOMSON 9.0.035 $^{+}$ 0.019 $^{-}$ 1 $^{-}$ 2 $^{-}$ 2 BARMIN 85 pressed. $^{-}$ (3 π^{0})/ $^{-}$ Total Violates CF	\pm 2) \times 10 ⁻² ameters. See om the the ϵ 0. So from the n th zero. No 94 calculate \pm 0.004 and $\rightarrow \pi^+\pi^-$ assumes th	The also measure that the second $\phi_{ ho}=\pi^0$), at CP^0	ey estimate B(ANGELOPOUI ed quantities ed quantities R at the quantity branching rati (-59±48)° wi	$K_{S}^{0} \rightarrow :$ LOS 98c. $ \rho_{+-0} = e(\lambda) = 0$ $ \lambda $ is the dofrom there $ \rho_{+-} $	$\pi^{+}\pi^{-}$ = 0.039 0.036 ± same their m $-0 e^{i\phi_{i}}$	π^{0}) fr +0.00 -0.00 0.010 as ρ_{+} neasure $\rho_{-} = A($	om Re $9 \pm 0.$ $+ 0.002$ $- 0.003$ $- 0$ $- 0$ $- 0$ $+ 0.003$ $- 0$ $- 0$ $- 0$ $- 0$ $- 0$	(λ) and th 005 and ϕ and Im(λ ed in other $ \rho_{+-0} =\pi^{+}\pi^{-}\pi^{0}$ qually sup
= (-10 ± 8 K _L ⁰ decay par 22 ZOU 96 is fro = (-9 ± 18) 23 ADLER 96E is consistent with footnotes. 24 THOMSON 9 0.035 + 0.019 -0.011 I = 2)/A(K _L ⁰ 25 BARMIN 85 pressed. (3π ⁰)/\(\Gamma\) total Violates CF (ALUE (units 10^5)	\pm 2) × 10 ⁻² ameters. See the first section of the theorem of the entire of the en	The also measure that the also measure that the state $\phi_{\rho} = \pi^{0}$). at CP on $\frac{s}{4}$	ey estimate B(ANGELOPOUI ed quantities ed quantities R it the quantity branching rati (-59±48)° wi -allowed and (DOCUMENT ID ACHASOV	$K_{S}^{0} \rightarrow \infty$ $ -0.05 = 0.05$ $ -0.0$	$\pi^+\pi^-$ = 0.039 = 0.036 ± = same their m = $0 e^{i\phi_i}$ ng amp	π^{0}) fr +0.00 -0.00 0.010] as ρ_{+} neasure $\rho_{-} = A($	om Re $9 \pm 0.$ $+ 0.002$ $- 0.003$ $- 0$ $- 0$ $- 0$ $+ 0.003$ $- 0$ $- 0$ $- 0$ $- 0$ $- 0$	(λ) and th 005 and ϕ and Im(λ ed in other $ \rho_{+-0} =\pi^{+}\pi^{-}\pi^{0}$ qually sup
$= (-10 \pm 8)$ K_L^0 decay par 22 ZOU 96 is from 222 ZOU 96 is from 224 CDLER 966 is consistent with footnotes. 24 THOMSON 9.0.35 \pm 0.019 \pm 1.25 \pm 2.7 ALVE (\pm 1.25 \pm 2.7 ALVE (\pm 1.25 \pm 2.7 ALVE (\pm 1.26 \pm 2.7 ALVE (\pm 1.26 \pm 2.7 ALVE (\pm 1.27 \pm 1.27 \pm 2.7 ALVE (\pm 1.27 \pm 1.27 \pm 1.27 ALVE (\pm 1.	\pm 2) × 10 ⁻² ameters. See the first section of the theorem of the entire of the en	The also measure that the content of the content o	ey estimate B(ANGELOPOUI ed quantities ed quantities R at the quantity branching rati (-59±48)° wi -allowed and C	$K_{0}^{S} \rightarrow K_{0}^{S}$ $ \rho_{+} - 0 = \rho_{+} - 0 $ $ \lambda = \rho_{+}$	$\pi^+\pi^-$ = 0.039 = 0.036 ± = same their m $=0 e^{i\phi_j}$ ng amp $=0$ $=0$ $=0$ $=0$ $=0$	π^{0}) fr +0.00 -0.00 0.010] as ρ_{+} neasure $\rho_{-} = A($	om Re $9 \pm 0.$ $+ 0.002$ $- 0.003$ $- 0$ $- 0$ $- 0$ $+ 0.003$ $- 0$ $- 0$ $- 0$ $- 0$ $- 0$	(λ) and th 005 and ϕ and Im(λ ed in other $ \rho_{+-0} =\pi^{+}\pi^{-}\pi^{0}$ qually sup
$= (-10 \pm 8) \times (0.000) \times $	\pm 2) × 10 ⁻² armeters. Segmenters. Segmenters. Segmenters. Segmenters. Segmenters are the end of the end o	The also measure that the content of the content o	ey estimate B(ANGELOPOUI ed quantities ed quantities R it the quantity branching rati (-59±48)° wi -allowed and C	$\begin{array}{c c} \mathcal{K}_{S}^{0} \rightarrow & \\ \mathcal{K}$	$\pi^+\pi^-$ = 0.039 = 0.036 ± = same their m $=0 e^{i\phi_j}$ ng amp ECN ND imits, 6	π^{0}) fr +0.00 -0.00 0.010] as ρ_{+} neasure $\rho_{-} = A($	om Re $9 \pm 0.$ $+ 0.002$ $- 0.003$ $- 0$ $- 0$ $- 0$ $+ 0.003$ $- 0$ $- 0$ $- 0$ $- 0$ $- 0$	(λ) and th 005 and ϕ and Im(λ ed in other $ \rho_{+-0} =\pi^{+}\pi^{-}\pi^{0}$ qually sup
$= (-10 \pm 8) \times (0.000) \times $	\pm 2) \times 10 ⁻² ameters. See the front the results of the front the results of the front front the front front the front front front the front fr	The also measure that the content of the content o	ey estimate B(ANGELOPOUI ed quantities ed quantities R at the quantity branching rati (-59±48)° wi -allowed and C	$K_{5}^{0} \rightarrow K_{5}^{0} \rightarrow K_{5$	$\pi^+\pi^-$ = 0.039 = 0.036 ± = same their m = $0 e^{i\phi_j}$ ng amp ECN ND imits, e PLR LBC	π^{0}) fr +0.00 -0.00 0.010] as ρ_{+} neasure $\rho_{-} = A($	om Re $9 \pm 0.$ $+ 0.002$ $- 0.003$ $- 0$ $- 0$ $- 0$ $+ 0.003$ $- 0$ $- 0$ $- 0$ $- 0$ $- 0$	(λ) and th 005 and ϕ and Im(λ ed in other $ \rho_{+-0} = \pi^{+}\pi^{-}\pi^{0}$ qually sup
$= (-10 \pm 8) \times (0.000) \times $	\pm 2) \times 10 ⁻² ameters. See the the results of the theorem of	neasure that the property of	ey estimate B(ANGELOPOUI ed quantities ed quantities R it the quantity branching rati (-59±48)° wi -allowed and C DOCUMENT ID ACHASOV data for average 6 ANGELOPO. BARMIN BARMIN	$\langle \kappa_0^0 \rangle \rightarrow \langle \kappa_0^0 \rangle = 0$ $\langle \rho_{++0} \rangle = 0$ $\langle \lambda \rangle =$	$\pi^+\pi^ = 0.039$ $= 0.036 \pm 2$ $= same$ their m $= 0 e^{i\phi}$ $= 0 = 0$ imits, $= 0$ $= 0$ LBC LBC	π^0) fr +0.000 -0.000 0.010[in as ρ_+ heeasure ρ = A(om Re $\begin{array}{l} 9 \\ 6 \\ \pm 0. \\ +0.002 \\ -0.003 \\ -0 \\ \end{array}$ where $\begin{array}{l} 6 \\ +0.002 \\ -0.003 \\ -0.00$	(λ) and th 0005 and ϕ_0 and Im(λ) and Im(λ) ded in other $ \rho_+ - 0 = \frac{1}{\pi^+ \pi^- \pi^0}$ equally sup Γ_6/Γ
$= (-10 \pm 8)$ κ_L^0 decay par 2^2 ZOU 96 is fro $= (-9 \pm 18)$ 2^3 ADLER 96E is consistent with footnotes. 2^4 THOMSON 9 0.035 ± 0.019 $I = 2)/A(\kappa_L^0$ 2^5 BARMIN 85 pressed. $-(3\pi^0)/\Gamma$ total Violates CF $-(3\pi^0)/\Gamma$ total Vi	\pm 2) \times 10 ⁻² armeters. See the the results of the there is a formation of the the there is a formation of th	and the second of the second	ey estimate B(ANGELOPOUI ed quantities R to the quantities R to t	$K_{0}^{0} \rightarrow K_{0}^{0}$ $ A = 0.05$ $ A =$	$\pi^+\pi^ = 0.039$ $= 0.036 \pm	π^0) fr +0.000 0.010[0] as ρ_+ neasure ρ^0 = A(political	om Re $^96\pm0.$ $^+0.002$ $^-0.003$ $^-0.003$ ments 865 85	(λ) and th 0005 and ϕ_0 and Im(λ) and Im(λ) ded in other $ \rho_+ - 0 = \frac{1}{\pi^+ \pi^- \pi^0}$ equally sup Γ_6/Γ
$= (-10 \pm 8) \times (0) \text{ decay par } $ $22 \text{ ZOU 96 is for } $ $= (-9 \pm 18)$ $23 \text{ ADLER 96e is } $ $\text{consistent with footnotes.} $ $24 \text{ THOMSON 9} $ $0.035 \pm 0.019 $ $1 = 2)/A(K_L^0) $ $25 \text{ BARMIN 85 } $ $\text{pressed.} $ $-(3\pi^0)/\Gamma \text{ total } $ $\text{Violates } CF $ $Violates$	\pm 2) \times 10 ⁻² armeters. See the fraction of the transfer of the transfer of the transfer of trans	as The e also measure the e also measure the easure that the	ey estimate B(ANGELOPOUI ed quantities ed quantities R at the quantity branching rati (-59±48)° wi allowed and C DOCUMENT ID ACHASOV data for average 6 ANGELOPO BARMIN BARMIN Im(n000) = - sing the value i	$K_{0}^{0} \rightarrow K_{0}^{0} \rightarrow K_{0$	$\pi^+\pi^-$ = 0.039 .036 \pm \pm same their m one of	π^0) fr +0.000 0.010 0.010 0 = A(plitude:	om Re $ \theta = 0.0026 $ $ \theta = 0.0036 $	(λ) and th 0005 and ϕ_0 and Im(λ) and Im(λ) ded in other $ \rho_+ - 0 = \pi + \pi - \pi^0$ qually sup Γ_6/Γ g Re(η_{000}) 2 \pm 0.0027 Γ_7/Γ
$= (-10 \pm 8) \times (0) \text{ decay par } $ $22 \text{ ZOU 96 is for } $ $= (-9 \pm 18)$ $23 \text{ ADLER 96e is } $ $\text{consistent with footnotes.} $ $24 \text{ THOMSON 9} $ $0.035 \pm 0.019 $ $1 = 2)/A(K_L^0) $ $25 \text{ BARMIN 85 } $ $\text{pressed.} $ $-(3\pi^0)/\Gamma \text{ total } $ $\text{Violates } CF $ $Violates$	\pm 2) \times 10 ⁻² armeters. See the fraction of the transfer of the transfer of the transfer of trans	as The e also measure the e also measure the easure that the	ey estimate B(ANGELOPOUI ed quantities R to the quantities R to t	$K_{0}^{0} \rightarrow K_{0}^{0} \rightarrow K_{0$	$\pi^+\pi^-$ = 0.039 .036 \pm \pm same their m one of	π^0) fr +0.000 0.010 0.010 0 = A(plitude:	om Re $\begin{array}{c} 9 \\ 6 \\ \pm 0. \\ + 0.002 \\ - 0.003 \\ - 0 \\ \end{array}$ ments $\begin{array}{c} K_0 \\ S \\ \end{array}$ $\begin{array}{c} \\ \\ \\ \end{array}$ $\begin{array}{c} \\ \\ \\ \end{array}$ sssumin 0.211:	(λ) and th 0005 and ϕ_0 and Im(λ) and Im(λ) ded in other $ \rho_+ - 0 = \pi + \pi - \pi^0$ qually sup Γ_6/Γ g Re(η_{000}) 2 \pm 0.0027 Γ_7/Γ
$= (-10 \pm 8) \times 0 \text{ decay par}$ $= (-10 \pm 8) \times 0 \text{ decay par}$ $= (-9 \pm 18)$ $= 23 \text{ ADLER 96e is consistent with footnotes.}$ $= (-10 \pm 18) \times 0.019 \times 0.013 \times 0.019 \times 0.013 \times 0.019 \times 0.019 \times 0.013 \times 0.019 \times 0.01$	\pm 2) \times 10 ⁻² ameters. Second the the t^0 of the following second t^0 assumes the t^0 conservation of t^0 conservation	e also measure measure that the set this set th	ey estimate B(ANGELOPOUI ed quantities ed quantities R at the quantity branching rati (-59±48)° wi allowed and C DOCUMENT ID ACHASOV BARMIN BARMIN Im(n000) = - sing the value i DOCUMENT IE AKHMETSH	$K_{0}^{0} \rightarrow K_{0}^{0} \rightarrow K_{0}^{0}$ $ A = 0$	$\pi^+\pi^-$ = 0.039 .036 ± ϵ same their manner of their manner	π^0) fr + 0.000 0.010 as ρ_+ neasure ρ = A(Dilitude: π^0) = π^0 0.	om Re $\begin{array}{c} 9 & \pm & 0. \\ 9 & \pm & 0. \\ +0.002 \\ -0.003 \\ -0.003 \\ -0.003 \\ \end{array}$ ssumin 0.211:	(λ) and th 0005 and ϕ , and Im(λ) an
$= (-10 \pm 8)$ K_{0}^{0} decay par 22 ZOU 96 is fro $= (-9 \pm 18)$ 23 ADLER 96e is consistent with footnotes. 24 THOMSON 9 $^{0.035} \pm ^{0.019}$ $^{0.019}$ 0	\pm 2) \times 10 ⁻² ameters. Second the the recommend of the term o	so this end of the second of	ey estimate B(ANGELOPOUI ed quantities ed quantities R at the quantity branching rati (-59±48)° wi allowed and (DOCUMENT ID ACHASOV data for average 6 ANGELOPO BARMIN BARMIN Im(n000) = - sing the value i DOCUMENT IC AKHMETSH	$K_{0}^{0} \rightarrow K_{0}^{0} \rightarrow K_{0$	$\pi^+\pi^ = 0.039$ $0.036 \pm \frac{1}{2}$ $= 0.039$ $= 0.036 \pm \frac{1}{2}$ $= 0.039$	π^0) fr + 0.000 0.010 as ρ_+ neasure ρ = A(Dilitude: π^0) = π^0 0.	om Re $\begin{array}{c} 9 & \pm & 0. \\ 9 & \pm & 0. \\ +0.002 \\ -0.003 \\ -0.003 \\ -0.003 \\ \end{array}$ ssumin 0.211:	(λ) and th 0005 and ϕ , and Im(λ) an
$= (-10 \pm 8) \times (0) = (-10 \pm 18) \times (0) = (-10 \pm 18) \times (0) = (-9 \pm 18) \times (0) \times $	\pm 2) \times 10 ⁻² ameters. Second the the t^0 of the following second t^0 assumes the t^0 conservation of t^0 conservation	so this end of the second of	ey estimate B(ANGELOPOUI ed quantities ed quantities R at the quantity branching rati (-59±48)° wi -allowed and (DOCUMENT ID ACHASOV data for average 6 ANGELOPO. BARMIN BARMIN Im(n000) = - sing the value I DOCUMENT ID ACHASOH ACHASO	$K_{0}^{0} \rightarrow K_{0}^{0} \rightarrow K_{0$	$\pi^+\pi^-$ = 0.039 .036 \pm \pm same their many many many many many many many many	π^0) fr + 0.000 0.010 as ρ_+ neasure ρ = A(Dilitude: π^0) = π^0 0.	om Re $\begin{array}{c} 9 & \pm & 0. \\ 9 & \pm & 0. \\ +0.002 \\ -0.003 \\ -0.003 \\ -0.003 \\ \end{array}$ ssumin 0.211:	(λ) and th 0005 and ϕ , and Im(λ) an
$= (-10 \pm 8) \times (0) = (-10 \pm 8) \times (0) \times (0$	\pm 2) \times 10 ⁻² armeters. Separate from the the results of the front from the front front from the front from the front from the front front from the front front from the front front front from the front front front from the front fro	1.3. The also measure one assume that the content of the content	ey estimate B(ANGELOPOUI ed quantities ed quantities R to the q	$K_{0}^{0} \rightarrow K_{0}^{0} \rightarrow K_{0$	$\pi^+\pi^-$ = 0.039 .036 ± = same their many same ECN ND imits, ϵ LBC LBC LBC LBC LBC SPK	π^0) fr +0.000 -0.00 0.010 as ρ_+ heasure $\rho = A($ π^0) = π^0) = π^0) = π^0) = π^0) =	om Re $g \pm 0.000$	(λ) and th 0005 and ϕ , and Im(λ) an
$= (-10 \pm 8) \times (0) = (-10 \pm 10) \times (0) \times (0) = (-10 \pm 10) \times (0) \times $	\pm 2) \times 10 ⁻² armeters. Separate from the the results of the front from the front front from the front from the front from the front front from the front front from the front front front from the front front front from the front fro	1.3. The also measure one assume that the content of the content	ey estimate B(ANGELOPOUI ed quantities ed quantities R to the q	$K_{0}^{0} \rightarrow K_{0}^{0} \rightarrow K_{0$	$\pi^+\pi^-$ = 0.039 .036 ± = same their mr $-0 e^{i\phi}$ ND imits, ϵ LBC LBC -12 ± 1 $-10 = 0$ MD2 .07 SPK imits, ϵ	π^0) fr +0.000 -0.00 0.010 as ρ_+ heasure $\rho = A($ π^0) = π^0) = π^0) = π^0) = π^0) =	om Re $g \pm 0.000$	(λ) and th 0005 and ϕ , and Im(λ) an
(-10 ± 8) K_L^0 decay par (-9 ± 18)	\pm 2) \times 10 ⁻² armeters. See the the results of the therm of the t	3. The also measure the also measure the that so this state $\phi_{\rho} = 0$ at CP owing $0 = 0$ if from and $0 = 0$ and $0 = 0$ if from and $0 = 0$ is from and $0 = 0$ the state $0 = 0$ is from and $0 = 0$ in the state $0 = 0$ in the state $0 = 0$ in the state $0 = 0$ is from and $0 = 0$ in the state 0	ey estimate B(ANGELOPOUI ed quantities R et the quantities R it t	$K_{0}^{0} \rightarrow K_{0}^{0} \rightarrow K_{0$	$\pi^+\pi^ = 0.039$ $0.036 \pm \frac{1}{2}$ $= 0.039$ $0.036 \pm \frac{1}{2}$ $= 0.039$	π^0) fr +0.000 -0.00 0.010 as ρ_+ heasure $\rho = A($ π^0) = π^0) = π^0) = π^0) = π^0) =	om Re $g \pm 0.000$	(λ) and th 0005 and ϕ , and Im(λ) an

 $^{\rm 27}\,\mbox{Value}$ calculated by us, using 2.3 instead of 1 event, 90% CL.

 $\Gamma(e^+e^-)/\Gamma_{total}$ Γ_{10}/Γ Test for $\Delta S=1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.

VALUE (units 10	-7) CL%	EVTS	DOCUMENT ID		TECN	COMMENT
< 1.4	90		ANGELOPO.	97	CPLR	
• • • We do	not use the	followin	g data for averag	es, fit	s, limits,	etc. • • •
< 28	90	0	BLICK	94	CNTR	Hyperon facility
< 100	90		BARMIN	86	XEBC	**
<1100	90		BITSADZE	86	CALO	
<3400	90		вонм	69	OSPK	

 $\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{total}}$ Test for $\Delta S = 1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.

VALUE (units 10 ⁻⁶)	CL%	EVTS	DOCUMENT ID		TECN
< 1.1	90	0	BARR	93B	NA31
• • • We do not	use the	e following	data for averages	, fits	, limits, etc. • • •
<45	90		GIBBONS	88	E731

CP VIOLATION IN $K_S \rightarrow 3\pi$

Written 1996 by T. Nakada (Paul Scherrer Institute) and L. Wolfenstein (Carnegie-Mellon University).

The possible final states for the decay $K^0 \to \pi^+\pi^-\pi^0$ have isospin I = 0, 1, 2, and 3. The I = 0 and I = 2 states have CP = +1 and K_S can decay into them without violating CPsymmetry, but they are expected to be strongly suppressed by centrifugal barrier effects. The I = 1 and I = 3 states, which have no centrifugal barrier, have CP = -1 so that the K_S decay to these requires CP violation.

In order to see CP violation in $K_S \to \pi^+\pi^-\pi^0$, it is necessary to observe the interference between K_S and K_L decay, which determines the amplitude ratio

$$\eta_{+-0} = \frac{A(K_S \to \pi^+ \pi^- \pi^0)}{A(K_L \to \pi^+ \pi^- \pi^0)} \ . \tag{1}$$

If η_{+-0} is obtained from an integration over the whole Dalitz plot, there is no contribution from the I=0 and I=2 final states and a nonzero value of η_{+-0} is entirely due to CPviolation.

Only I = 1 and I = 3 states, which are CP = -1, are allowed for $K^0 \to \pi^0 \pi^0 \pi^0$ decays and the decay of K_S into $3\pi^0$ is an unambiguous sign of CP violation. Similarly to η_{+-0} , η_{000} is defined as

$$\eta_{000} = \frac{A(K_S \to \pi^0 \pi^0 \pi^0)}{A(K_L \to \pi^0 \pi^0 \pi^0)} \ . \tag{2}$$

If one assumes that CPT invariance holds and that there are no transitions to I = 3 (or to nonsymmetric I = 1 states), it can be shown that

$$\eta_{+-0} = \eta_{000}$$

$$= \epsilon + i \frac{\text{Im } a_1}{\text{Re } a_1} .$$
(3)

With the Wu-Yang phase convention, a_1 is the weak decay amplitude for K^0 into I=1 final states; ϵ is determined from CP violation in $K_L o 2\pi$ decays. The real parts of η_{+-0} and η_{000} are equal to Re(ϵ). Since currently-known upper limits on $|\eta_{+-0}|$ and $|\eta_{000}|$ are much larger than $|\epsilon|$, they can be interpreted as upper limits on $\text{Im}(\eta_{+-0})$ and $\text{Im}(\eta_{000})$ and so as limits on the CP-violating phase of the decay amplitude a_1 .

CP-VIOLATION PARAMETERS IN KO DECAY

$\begin{array}{l} \text{Im}(\eta_{+-0})^2 = \Gamma(K_0^0 \to \pi^+\pi^-\pi^0, \textit{CP-violating}) \; / \; \Gamma(K_L^0 \to \pi^+\pi^-\pi^0) \\ \textit{CPT assumed valid (i.e. } \; \text{Re}(\eta_{+-0}) \simeq \; 0). \end{array}$

VALUE	CL%	_EVTS	DOCUMENT ID		TECN_	COMMENT
• • • We do	not use th	e follow	ing data for average	es, fit	s, limits,	etc. • • •
<0.23	90	601	28 BARMIN	85	HLBC	
<1.2	90	192	BALDO	75	HLBC	
< 0.71	90	148	MALLARY	73	OSPK	$Re(A) = -0.05 \pm 0.17$
< 0.66	90	180	JAMES	72	HBÇ	
<1.2	90	99	JONES	72	OSPK	
< 0.12	90	384	METCALF	72	ASPK	
<1.2	90	99	CHO	71	DBC	
<1.0	90	98	JAMES	71	HBC	Incl. in JAMES 72
<1.2	95	50	²⁹ MEISNER	71	HBC	CL≈90% not avail.
<0.8	90	71	WEBBER	70	HBC	
< 0.45	90		BEHR	66	HLBC	
< 3.8	90	18	ANDERSON	65	HBC	Incl. in WEBBER 70

 28 BARMIN 85 find Re($\eta_{+-0})=(0.05\pm0.17)$ and Im($\eta_{+-0})=(0.15\pm0.33).$ Includes events of BALDO-CEOLIN 75.

$Im(\eta_{+-0}) = Im(A(K_S^0 \rightarrow \pi^+\pi^-\pi^0, CP\text{-violating}) / A(K_I^0 \rightarrow \pi^+\pi^-\pi^0))$ EVTS DOCUMENT ID TECN COMMENT

 $-0.002\pm0.009^{+0.002}_{-0.001}$ 500k 30 ADLER 97B CPLR

• • • We do not use the following data for averages, fits, limits, etc. • • • 31 ADLER 96D CPLR Sup. by ADLER 97B

 $-0.002 \pm 0.018 \pm 0.003$ 137k $-0.015 \pm 0.017 \pm 0.025$ 272k $^{32}\,\mathrm{zou}$ 94 SPEC

 30 ADLER 97B also find Re(η_{+-0}) = $-0.002 \pm 0.007^{+0.004}_{-0.001}$. See also ANGELOPOU-

31 LOS 98c. The ADLER 96D fit also yields Re(η_{+-0}) = 0.006 \pm 0.013 \pm 0.001 with a correlation + 0.66 between real and imaginary parts. Their results correspond to $|\eta_{+-0}| <$ 0.037

with 90% CL. 32 ZOU 94 use theoretical constraint Re(η_{+-0}) = Re(ϵ) = 0.0016. Without this constraint they find Im(η_{+-0}) = 0.019 \pm 0.061 and Re(η_{+-0}) = 0.019 \pm 0.027.

 ${\rm Im}(\eta_{000})^2 = \Gamma(K_5^0 \to 3\pi^0) / \Gamma(K_1^0 \to 3\pi^0)$ CPT assumed valid (i.e. ${\rm Re}(\eta_{000}) \simeq 0$). This limit determines branching ratio $\Gamma(3\pi^0)/\Gamma_{ ext{total}}$ above.

VALUE CL% EVTS DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • 33 BARMIN <0.1 90 632 83 HLBC 34 GJESDAL <0.28 74B SPEC 73 HLBC BARMIN

 33 BARMIN 83 find Re($\eta_{000})=(-0.08\pm0.18)$ and Im($\eta_{000})=(-0.05\pm0.27)$. Assuming CPT invariance they obtain the limit quoted above.

 34 GJESDAL 74B uses K $^2\pi$, K $^2\mu$ 3, and K 2 8 decay results, unitarity, and CPT. Calculates $|(\eta_{000})|=0.26\pm0.20$. We convert to upper limit

$Im(\eta_{000}) = Im(A(K_S^0 \to \pi^0 \pi^0 \pi^0)/A(K_L^0 \to \pi^0 \pi^0 \pi^0))$

 $\kappa_5^0 \to \pi^0 \pi^0 \pi^0$ violates *CP* conservation, in contrast to $\kappa_5^0 \to \pi^+ \pi^- \pi^0$ which has a CP-conserving part.

DOCUMENT ID VALUE 35 ANGELOPO... 98B CPLR $-0.05\pm0.12\pm0.05$ 17300

 35 ANGELOPOULOS 988 assumes Re(η_{000}) = Re(ϵ) = 1.635 $\times 10^{-3}$. Without assuming CPT invariance, they obtain Re(η_{000}) = 0.18 \pm 0.14 \pm 0.06 and Im(η_{000}) = 0.15 \pm 0.20 ± 0.03 .

KS REFERENCES

		•		
ACHASOV 9	9D	PL B459 674	M.N. Achasov et al.	
AKHMETSHIN 9	9	PL B456 90	R.R. Akhmetshin et ai.	(CMD-2 Collab.)
ANGELOPO 9	8B	PL B425 391	A. Angelopoulos et al.	(CPLEAR Collab.)
ANGELOPO 9	8C	EPJ C5 389	A. Angelopoulos et al.	(CPLEAR Collab.)
PDG 9	8	EPJ C3 1	C. Caso et al.	(0
ADLER 9	7B	PL B407 193	R. Adler et al.	(CPLEAR Collab.)
ANGELOPO 9	7	PL B413 232	A. Angelopoulos et al.	(CPLEAR Collab.)
	7	ZPHY C73 629		ERN, EDIN, MANZ, ORSAY+)
	6D	PL B370 167	R. Adler et al.	(CPLEAR Collab.)
ADLER 9	6E	PL B374 313	R. Adler et al.	(CPLEAR Collab.)
ZOU 9	96	PL B369 362	Y. Zou et al.	(RUTG, MINN, MICH)
BARR 9	5B	PL B351 579	G.D. Barr et al.	CERN, EDIN, MANZ, LALO+)
SCHWINGEN 9	95	PRL 74 4376	B. Schwingenheuer et al.	(EFI, CHIC+)
BLICK 9	4	PL B334 234	A.M. Blick et al.	(SERP, JINR)
THOMSON 9	94	PL B337 411	G.B. Thomson et al.	(RUTG, MINN, MICH)
ZOU 9	14	PL B329 519	Y. Zou et al.	(RUTG, MINN, MICH)
BARR 9	3B	PL B304 381	G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)
GIBBONS 9	3	PRL 70 1199	L.K. Gibbons et al.	(FNAL E731 Collab.)
Aiso 9	17	PR D55 6625	L.K. Gibbons et al.	(FNAL E731 Collab.)
RAMBERG 9	13	PRL 70 2525	E. Ramberg et al.	(FNAL E731 Collab.)
BALATS 8	9	SJNP 49 828	M.Y. Balats et al.	(ITEP)
		Translated from YAF 49		` ,
	88	PRL 61 2661	L.K. Gibbons et al.	(FNAL E731 Collab.)
BURKHARDT 8			H. Burkhardt et al.	(CERN, EDIN, MANZ+)
GROSSMAN 8	17	PRL 59 18	N. Grossman et al.	(MINN, MICH, RUTG)
BARMIN 8	6	SJNP 44 622	V.V. Barmin et al.	(ITEP)
		Translated from YAF 44		
			V.V. Barmin et al.	(ITEP, PADO)
			G.S. Bitsadze, Y.A. Budago	
			M. Aguilar-Benitez et al.	(CERN, CIT+)
VASSERMAN 8	6		I.B. Vasserman et al.	(NOVO)
BARMIN 8		Translated from ZETFP 4 NC 85A 67	V.V. Barmin <i>et al.</i>	(ITEP, PADO)
			V.V. Barmin et al.	
A150 8:	20	Translated from YAF 41		(ITEP)
		Honsett Holl 1741 41	1101.	

K_s^0 , K_L^0

BARMIN	83	PL 128B 129	V.V. Barmin et al.	(ITEP, PADO)
Also	84	SJNP 39 269	V.V. Barmin et al.	(ITEP, PADO)
71130	•	Translated from YAF 31		(1.21, 1.400)
ARONSON	82	PRL 48 1078	S.H. Aronson et al.	(BNL, CHIC, STAN+)
ARONSON	82B	PRL 48 1306	S.H. Aronson et al.	(BNL, CHIC, PURD)
Also	82B	PL 116B 73	E. Fischbach et al.	(PURD, BNL, CHIC)
Also	83	PR D28 476	S.H. Aronson et al.	(BNL, CHIC, PURD)
Also	83B	PR O28 495	S.H. Aronson et al.	(BNL, CHIC, PURD)
ARONSON				
	76	NC 32A 236	S.H. Aronson et al.	(WISC, EFI, UCSD+)
EVERHART	76	PR O14 661	G.C. Everhart et al.	(PENN)
TAUREG	76	PL 65B 92	H. Taureg et al.	(HEIOH, CERN, DORT)
BALDO	75	NC 25A 68B	M. Baldo-Ceolin et al.	(PADO, WISC)
CARITHERS	75	PRL 34 1244	W.C.J. Carithers et al.	(COLLI NYLL)
		FRE 34 1244		(COLU, NYU)
BOBISUT	74	LNC 11 646	F. Bobisut et al.	(PADO)
COWELL	74	PR D10 2083	P.L. Cowell et al.	(STON, COLU)
GEWENIGER	74B	PL 48B 487	C. Geweniger et al.	(CERN, HEIOH)
GJESDAL	74B	PL 52B 119	S. Gjesdal et al.	(CERN, HEIOH)
BARMIN	73	PL 46B 465	V.V. Barmin et al.	
				(ITEP)
BARMIN	73B	PL 47B 463	V.V. Barmin et al.	(ITEP)
BURGUN	73	PL 46B 481	G. Burgun et al.	(SACL, CERN)
FACKLER	73	PRL 31 847	O. Fackler et al.	(MIT)
GJESDAL	73	PL 44B 217	S. Gjesdal et al.	(CERN, HÈIDH)
HILL	73	PR D8 1290	D.G. Hill et al.	(BNL, CMU)
MALLARY	73	PR D7 1953	M.L. Malfary et al.	(CIT)
ALITTI	72	PL 39B 568	J. Alitti, E. Lesquoy, A. Mu	iller (SACL)
BANNER	72B	PRL 29 237	M. Banner et al.	(PRIN)
BURGUN	72	NP B50 194	G. Burgun et al.	(SACL, CERN, OSLO)
JAMES	72	NP B49 1	F. James et al.	(CERN, SACL, OSLO)
JONES	72	NC 9A 151	L.H. Jones et al.	(ILL)
METCALF	72	PL 40B 703	M. Metcalf et al.	(CERN, IPN, WIEN)
MORSE	72B	PRL 28 388	R. Morse et al.	(COLO, PRIN, UMD)
NAGY	72	NP B47 94	E. Nagy, F. Telbisz, G. Vesi	
Also	69	PL 30B 498		
			G. Bozoki et al.	(BUDA)
SKJEGGEST		NP B48 343	 Skjeggestad et al. 	(OSLO, CERN, SACL)
BALTAY	71	PRL 27 1678	C. Baltay et al.	(COLU)
Also	71	Thesis Nevis 187	W.A. Cooper	(colu)
СНО	71	PR D3 1557	Y. Cho et al.	(CMU, BNL, CASE)
	71			(CEDN SACL OCLO)
JAME\$		PL 35B 265	F. James et al.	(CERN, SACL, OSLO)
MEISNER	71	PR D3 59	G.W. Meisner et al.	(MASA, BNL, YALE) (DRSAY, CERN)
REPELLIN	71	PL 36B 603	J.P. Repellin et al.	(DRSAY, CERN)
MOFFETT	70	BAPS 15 512	R. Moffett et ai.	(ROCH)
WEBBER	70	PR D1 1967	B.R. Webber et al.	(LRL)
	69		B.R. Webber	
Also		Thesis UCRL 19226		(LRL)
BANNER	69	PR 188 2033	M. Banner et al.	(PRIN)
BOHM	69	Thesis	Bohm	(AACH)
BOZOKI	69	PL 30B 498	G. Bozoki et al.	(BUOA)
DOYLE	69	Thesis UCRL 18139	J.C. Doyle	(LRL)
GOBBI	69	PRL 22 682	B. Gobbi et al.	
				(ROCH)
HYAMS	69B	PL 29B 521	B.D. Hyams et al.	(CERN, MPIM)
MORFIN	69	PRL 23 660	J.G. Morfin, D. Sinclair	(MICH)
STUTZKE	69	PR 177 2009	R.D. Stutzke et al.	` (ILL)
DONALD	68B	PL 27B 58	R.A. Donald et al.	(LIVP, CERN, IPNP+)
HILL	68	PR 171 1418	D.G. Hill et al.	
				(BNL, CMU)
BOTT	67	PL 24B 194	M. Bott-Bodenhausen et al.	. (CERN)
ALFF				
	66B	PL 21 595	C. Alff-Steinberger et al.	(CERN)
	66B			
BEHR	66B	PL 22 540	L. Behr et al. (EPOL, MILA, PADO, ÒRSAY)
BEHR BELLOTTI	66B 66	PL 22 540 NC 45A 737	L. Behr et al. (E. Bellotti et al.	EPOL, MILA, PADO, ÒRSAY) (MILA, PAOO)
BEHR BELLOTTI KIRSCH	66B 66 66	PL 22 540 NC 45A 737 PR 147 939	L. Behr et al. (E. Bellotti et al. L. Kirsch, P. Schmidt	EPOL, MILA, PADO, ÒRSAY) (MILA, PAOO) (COLU)
BEHR BELLOTTI KIRSCH ANDERSON	66B 66 66 66	PL 22 540 NC 45A 737 PR 147 939 PRL 14 475	L. Behr et al. (E. Bellotti et al. L. Kirsch, P. Schmidt J.A. Anderson et al.	EPOL, MILA, PADO, ÒRSAY) (MILA, PAOO) (COLU) (LRL, WISC)
BEHR BELLOTTI KIRSCH	66B 66 66	PL 22 540 NC 45A 737 PR 147 939	L. Behr et al. (E. Bellotti et al. L. Kirsch, P. Schmidt	EPOL, MILA, PADO, ÒRSAY) (MILA, PAOO) (COLU) (LRL, WISC)
BEHR BELLOTTI KIRSCH ANDERSON	66B 66 66 66	PL 22 540 NC 45A 737 PR 147 939 PRL 14 475	L. Behr et al. (E. Bellotti et al. L. Kirsch, P. Schmidt J.A. Anderson et al. B. Aubert et al.	EPOL, MILA, PADO, ÒRSAY) (MILA, PAOO) (COLU) (LRL, WISC) (EPOL, ORSAY)
BEHR BELLOTTI KIRSCH ANDERSON AUBERT BROWN	66B 66 66 65 65 63	PL 22 540 NC 45A 737 PR 147 939 PRL 14 475 PL 17 59' PR 130 769	L. Behr et al. (E. Bellotti et al. L. Kirsch, P. Schmidt J.A. Anderson et al. B. Aubert et al. J.L. Brown et al.	EPOL, MILA, PADO, ÒRSAY) (MILA, PAOO) (COLU) (LRL, WISC) (EPOL, ORSAY) (LRL, MICH)
BEHR BELLOTTI KIRSCH ANDERSON AUBERT BROWN CHRETIEN	66B 66 66 65 65 63	PL 22 540 NC 45A 737 PR 147 939 PRL 14 475 PL 17 59' PR 130 769 PR 131 2208	L. Behr et al. (E. Bellotti et al. L. Kirsch, P. Schmidt J.A. Anderson et al. B. Aubert et al. J.L. Brown et al. M. Chretien et al.	EPOL, MILA, PADO, ÒRSAY) (MILA, PADO) (COLU) (LRL, WISC) (EPOL, ORSAY) (LRL, MICH) (BRAN, BROW, HARV+)
BEHR BELLOTTI KIRSCH ANDERSON AUBERT BROWN CHRETIEN ANDERSON	66B 66 66 65 65 63 63 62B	PL 22 540 NC 45A 737 PR 147 939 PRL 14 475 PL 17 59' PR 130 769 PR 131 2208 CERN Conf. 836	L. Behr et al. (E. Bellotti et al. L. Kirsch, P. Schmidt J.A. Anderson et al. B. Aubert et al. J.L. Brown et al. M. Chretien et al. G. Anderson et al.	EPOL, MILA, PADO, ÓRSAY) (MILA, PADO) (COLU) (LRL, WISC) (EPOL, ORSAY) (LRL, MICH) (BRAN, BROW, HARV+) (LRL)
BEHR BELLOTTI KIRSCH ANDERSON AUBERT BENOWN CHRETIEN ANDERSON BROWN	66B 66 66 65 65 63 63 62B 61	PL 22 540 NC 45A 737 PR 147 939 PRL 14 475 PL 17 59' PR 130 769 PR 131 2208 CERN Conf. 836 NC 19 1155	L. Behr et al. (E. Bellotti et al. L. Kirsch, P. Schmidt J.A. Anderson et al. B. Aubert et al. J.L. Brown et al. M. Chretien et al. G. Anderson et al. J.L. Brown et al.	EPOL, MILA, PADO, ÖRSAY) (MILA, PADO) (COLU) (LRL, WISC) (EPOL, ORSAY) (LRL, MICH) (BRAN, BROW, HARV+) (LRL) (MICH)
BEHR BELLOTTI KIRSCH ANDERSON AUBERT BROWN CHRETIEN ANDERSON BROWN BAGLIN	66B 66 66 65 65 63 63 62B 61	PL 22 540 NC 45A 737 PR 147 939 PRL 14 475 PL 17 59 ' PR 130 769 PR 131 2208 CERN Conf. 836 NC 19 1155 NC 18 1043	L. Behr et al. E. Bellotti et al. L. Kirsch, P. Schmidt J.A. Anderson et al. B. Aubert et al. J.L. Brown et al. M. Chretien et al. G. Anderson et al. J.L. Brown et al. C. C. Boglin et al.	EPOL, MILA, PADO, ÓRSAY) (MILA, PAOO) (COLU) (LRL, WISC) (EPOL, ORSAY) (LRL, MICH) (BRAN, BROW, HARV+) (LRL) (MICH) (EPOL)
BEHR BELLOTTI KIRSCH ANDERSON AUBERT BENOWN CHRETIEN ANDERSON BROWN	66B 66 66 65 65 63 63 62B 61	PL 22 540 NC 45A 737 PR 147 939 PRL 14 475 PL 17 59' PR 130 769 PR 131 2208 CERN Conf. 836 NC 19 1155	L. Behr et al. (E. Bellotti et al. L. Kirsch, P. Schmidt J.A. Anderson et al. B. Aubert et al. J.L. Brown et al. M. Chretien et al. G. Anderson et al. J.L. Brown et al.	EPOL, MILA, PADO, ÓRSAY) (MILA, PAOO) (COLU) (LRL, WISC) (EPOL, ORSAY) (LRL, MICH) (BRAN, BROW, HARV+) (LRL) (MICH) (EPOL)
BEHR BELLOTTI KIRSCH ANDERSON AUBERT BROWN CHRETIEN ANDERSON BROWN BAGLIN COLUMBIA	66B 66 66 65 65 63 63 62B 61 60 60B	PL 22 540 NC 45A 737 PR 147 939 PRL 14 475 PL 17 59 ' PR 130 769 PR 131 2208 CERN Conf. 836 NC 19 1155 NC 18 1043 Rochester Conf. 727	L. Behr et al. E. Bellott iet al. L. Kirsch, P. Schmidt J.A. Anderson et al. B. Aubert et al. J.L. Brown et al. M. Chretien et al. G. Anderson et al. J.L. Brown et al. C. Baglin et al. M. Schwartz et al.	EPOL, MILA, PADO, ÓRSAY) (MILA, PADO) (COLU) (LRL, WISC) (EPOL, ORSAY) (LRL, MICH) (BRAN, BROW, HARV+) (LRL) (MICH) (EPOL) (COLU)
BEHR BELLOTTI KIRSCH ANDERSON AUBERT BROWN CHRETIEN ANDERSON BROWN BAGLIN COLUMBIA CRAWFORD	66B 66 66 65 65 63 63 62B 61 60 60B 59B	PL 22 540 NC 45A 737 PR 147 939 PRL 14 475 PL 17 59' PR 130 769 PR 131 2208 CERN Conf. 836 NC 19 1155 NC 18 1043 Rochester Conf. 727 PRL 2 266	L. Behr et al. E. Bellotti et al. L. Kirsch, P. Schmidt J.A. Anderson et al. B. Aubert et al. J.L. Brown et al. G. Anderson et al. G. Anderson et al. C. Baglin et al. M. Schwartz et al. F.S. Crawford et al.	EPOL, MILA, PADO, ÓRSAY) (MILA, PADO) (COLU) (LRL, WISC) (EPOL, ORSAY) (LRL, MICH) (BRAN, BROW, HARV+) (LRL) (MICH) (EPOL) (COLU) (LRL)
BEHR BELLOTTI KIRSCH ANDERSON AUBERT BROWN CHRETIEN ANDERSON BROWN BAGLIN COLUMBIA	66B 66 66 65 65 63 63 62B 61 60 60B	PL 22 540 NC 45A 737 PR 147 939 PRL 14 475 PL 17 59 ' PR 130 769 PR 131 2208 CERN Conf. 836 NC 19 1155 NC 18 1043 Rochester Conf. 727	L. Behr et al. E. Bellott iet al. L. Kirsch, P. Schmidt J.A. Anderson et al. B. Aubert et al. J.L. Brown et al. M. Chretien et al. G. Anderson et al. J.L. Brown et al. C. Baglin et al. M. Schwartz et al.	EPOL, MILA, PADO, ÓRSAY) (MILA, PADO) (COLU) (LRL, WISC) (EPOL, ORSAY) (LRL, MICH) (BRAN, BROW, HARV+) (LRL) (MICH) (EPOL) (COLU) (LRL)

OTHER RELATED PAPERS ----

LITTENBERG		ARNPS 43 729 ive Kaon Decays	L.S. Littenberg, G. Valencia	(BNL, FNAL)
BATTISTON	92	PRPL 214 293	R. Battiston et al.	(PGIA, CERN, TRSTT)
TRILLING	65B	Dectives of K Decay Phys UCRL 16473	G.N. Trilling	(LRL)
CRAWFORD	62	965 Argonne Conference, CERN Conf. 827	F.S. Crawford	(LRL)
FITCH GOOD	61 61	NC 22 1160 PR 124 1223	V.L. Fitch, P.A. Piroue, R.B. Pe R.H. Good et al.	rkins (PRIN+) (LRL)
BIRGE MULLER	60 60	Rochester Conf. 601 PRL 4 418	R.W. Birge et al. F. Muller et al.	(LRL, ŴISC) (LRL, BNL)

$$I(J^P) = \frac{1}{2}(0^-)$$

$m_{K_L^0} - m_{K_S^0}$

For earlier measurements, beginning with GOOD 61 and FITCH 61, see our 1986 edition, Physics Letters 170B 132 (1986).

OUR FIT is described in the note on "Fits for κ^0_L CP-Violation Parameters" in the K⁰_L Particle Listings.

VALUE (1010 h s 1)	<u> </u>	DOCUMENT ID		TECN	COMMENT	
0.5300±0.0012 OUR F	Γ -					
0.5307±0.0015 OUR A	ERA	GE Error inc	ludes	scale fa	ctor of 1.1.	
0.5240±0.0044 ±0.0033	-	APOSTOLA	99c	CPLR	K^{0} - \overline{K}^{0} to $\pi^{+}\pi^{-}$	
$0.5295 \pm 0.0020 \pm 0.0003$						
$0.5297 \pm 0.0030 \pm 0.0022$						
$0.5257 \pm 0.0049 \pm 0.0021$						
$0.5340 \pm 0.00255 \pm 0.0015$			74C	SPEC	Gap method	
$0.5334 \pm 0.0040 \pm 0.0015$	3 (GJESDAL	74	SPEC	Charge asymmetry in K_{13}^0	
0.542 ± 0.006	(CULLEN	70	CNTR		

• • We do not use the form	ollowing data for a	averages, fits	, limits, etc. • • •
	⁴ ADLER	96c RVUE	
	1 ADLER	95 CPLR	Sup. by ANGELOPOULOS 98D
	⁵ GIBBONS	93 E731	20-160 GeV K beams
	6 ARONSON	82B SPEC	E=30-110 GeV
	7 CARNEGIE	71 ASPK	Gap method
0.542 ±0.006	⁷ ARONSON	70 ASPK	Gap method

KI MEAN LIFE

	cludes scale factor	AT 1	1
VERAGE			•
0.4M	VOSBURGH	72	CNTR
	DEVLIN	67	CNTR
the followin	g data for average	s, fits	, limits, etc. • • •
	⁸ LOWYS	67	HLBC
1700	ASTBURY	65 C	CNTR
	FŲJII	64	OSPK
15	DARMON	62	FBC
34	BARDON	58	CNTR
	0.4M the followin 1700	0.4M VOSBURGH DEVLIN the following data for average 8 LOWYS 1700 ASTBURY FUJII 15 DARMON	0.4M VOSBURGH 72 DEVLIN 67 the following data for averages, fits 8 LOWYS 67 1700 ASTBURY 650 FUJII 64 15 DARMON 62

KL DECAY MODES

	Mode	Fi	action (Γ_i/Γ)	Scale factor/ Confidence level
$\overline{\Gamma_1}$			(21.13 ±0.27) %	6 S=1.1
Γ_2	$\pi^{+}\pi^{-}\pi^{0}$		(12.55 ±0.20) %	6 S=1.7
Γ3	$\pi^\pm\mu^\mp u_\mu$ Called $K^0_{\mu3}$.	[ə]	(27.18 ±0.25) %	6 S=1.1
Γ4	$\pi^-\mu^+ u_\mu$			
Γ_5	$\pi^+\mu^-\overline{ u}_{\mu}$			
Γ ₆	$\pi^{\pm} e^{\mp} \nu_e$ Called K_{e3}^0 .	[a]	(38.78 ±0.28) %	6 S=1.1
Γ ₇	$\pi^-e^+\nu_e$			
Γ8	$\pi^+ e^- \overline{\nu}_e$			
Гэ	2γ		(5.86 ± 0.15) \times	10-4
Γ10	$\frac{3\gamma}{\pi^0}$ 2γ	<	2.4 ×	10 ⁻⁷ CL=90%
Γ11	$\pi^0 2\gamma$	[b]	(1.68 ± 0.10) \times	10-6
Γ ₁₂	$\pi^0\pi^\pme^\mp u$	[a]	(5.18 ± 0.29) \times	: 10 ⁻⁵
	$(\pi \mu atom) \nu$	• •	(1.06 ±0.11)×	
Γ ₁₄	$\pi^{\pm}e^{\mp} u_{e}\gamma$	[a,b,c]	($3.62 \begin{array}{c} +0.26 \\ -0.21 \end{array}$) >	_{< 10} -3
Γ ₁₅	$\pi^\pm\mu^\mp u_\mu\gamma$		$(5.7 \begin{array}{c} +0.6 \\ -0.7 \end{array})$	10-4
Γ ₁₆	$\pi^+\pi^-\gamma$	[b,c]	$(4.61 \pm 0.14) \times$	10-5
Γ17	$\pi^0\pi^0\gamma$	<	5.6 ×	10 ⁻⁶
	$\mu^+\mu^-\gamma$		$(3.25 \pm 0.28) \times$	10-7
Γ ₁₉	$e^+e^-\gamma$		(10.0 ± 0.5) ×	
	$e^+e^-\gamma\gamma$	[b]	(6.9 ±1.0)×	
L21			. 7.1 ×	

Charge conjugation \times Parity (*CP*, *CPV*) or Lepton Family number (*LF*) violating modes. or $\Delta S = 1$ weak neutral current (*S1*) modes

	Tiolaulia lilouca, or 22 -	T MCD	, iie	111 B1 C0	ment (22) 111006
	$\pi^+\pi^-$	CPV		(2.05	5±0.03	$3) \times 10^{-3}$
Γ23	$\pi^0 \pi^0$	CPV		(9.27	± 0.19	$) \times 10^{-4}$
Γ ₂₄	$\mu^+\mu^-$	\$1		(7.15	±0.16) × 10 ⁻⁹
	e^+e^-	51		(9	+6 -4	$) \times 10^{-12}$
Γ ₂₆	$\pi^+\pi^-e^+e^-$	\$1	[b]	(3.5	± 0.6	$) \times 10^{-7}$
Γ ₂₇	$\mu^+\mu^-e^+e^-$	\$1		(2.9	+6.7	$) \times 10^{-9}$

¹ Uses \mathcal{R}_{e3}^0 and \mathcal{K}_{e3}^0 strangeness tagging at production and decay.

2 Fits Δm and ϕ_{+-} simultaneously. GIBBONS 93C systematic error is from B. Winstein via private communitication.

3 These two experiments have a common systematic error due to the uncertainty in the momentum scale, as pointed out in WAHL 89.

4 ADLER 96C is the result of a fit which includes nearly the same data as entered into the "OUR FIT" value above.

5 GIBBONS 93 value assume $\phi_{+-} = \phi_{00} = \phi_{\text{SW}} = (43.7 \pm 0.2)^{\circ}$.

 $^{^6}$ ARONSON 82 find that Δm may depend on the kaon energy. 7 ARONSON 70 and CARNEGIE 71 use K_0^0 mean life = (0.862 \pm 0.006) \times 10 $^{-10}$ s. We have not attempted to adjust these values for the subsequent change in the $\mathcal{K}^0_{\boldsymbol{S}}$ mean life or in η_{+-} .

Γ ₂₉ Γ ₃₀ Γ ₃₁ Γ ₃₂ Γ ₃₃	$\begin{array}{l} e^{+}e^{-}e^{+}e^{-} \\ \pi^{0}\mu^{+}\mu^{-} \\ \pi^{0}e^{+}e^{-} \\ \pi^{0}\nu^{\overline{\nu}} \\ e^{\pm}\mu^{\mp} \\ e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp} \end{array}$	CP,51 CP,51 CP,51 LF	[d] < [e] < [ə] < [ə] <	5.1 4.3 5.9 4.7		CL=90% CL=90% CL=90% CL=90%
	$e^{+}e^{+}\mu^{+}\mu^{+}$ $\pi^{0}\mu^{\pm}e^{\mp}$		[a] <		$\times 10^{-9}$ $\times 10^{-9}$	

- [a] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [b] See the Particle Listings below for the energy limits used in this measurement.
- [c] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without $\gamma \mbox{'s.}$
- [d] Allowed by higher-order electroweak interactions.
- [e] Violates CP in leading order. Test of direct CP violation since the indirect CP-violating and CP-conserving contributions are expected to be suppressed.

CONSTRAINED FIT INFORMATION

An overall fit to the mean life, 4 decay rate, and 12 branching ratios uses 46 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2=$ 40.5 for 39 degrees of

The following off-diagonal array elements are the correlation coefficients $\langle \delta \rho_i \delta \rho_j \rangle / (\delta \rho_i \cdot \delta \rho_j)$, in percent, from the fit to parameters ρ_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (10 ⁸ s ⁻¹)	Scale factor
	$3\pi^0$	0.0408 ± 0.0006	
Γ ₂	$\pi^{+} \pi^{-} \pi^{0}$	0.0243 ± 0.0004	1.5
Γ ₃ ;	$\pi^{\pm}\mu^{\mp} u_{\mu}$ alled $K^0_{\mu 3}$.	[a] 0.0525 ± 0.0007	1.1
Γ ₆ ($π^{\pm} e^{\mp} ν_e$ Falled K_{e3}^0 .	[a] 0.0750 ± 0.0008	1.1
	2γ	$(1.133 \pm 0.030) \times 10^{-1}$	4
	$\pi^{+}\pi^{-}$	$(3.97 \pm 0.07) \times 10^{-1}$	
Γ ₂₃	π ⁰ π ⁰	(1.79 ±0.04) × 10	-4

KI DECAY RATES

 Γ_1

 $\Gamma(3\pi^0)$

 1.4 ± 0.4

. ,						-
VALUE (106 s-1)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
4.08±0.06 OUR FIT						
5.22 ^{+1.03} -0.84	54	BEHR	66	HLBC	Assumes CP	
$\Gamma(\pi^+\pi^-\pi^0)$						Γ2
VALUE (10 ⁶ s ⁻¹)	EVTS	DOCUMENT ID		TECN	COMMENT	
2.43±0.04 OUR FIT		des scale factor o	f 1 5		<u></u>	
		ides scale factor o	1.5.			
2.38±0.09 OUR AVE	KAGE					
$2.32^{+0.13}_{-0.15}$	192	BALDO	75	HLBC	Assumes CP	
2.35 ± 0.20	180	⁹ JAMES	72	HBC	Assumes CP	
2.71 ± 0.28	99	сно	71	DBC	Assumes CP	
2.12 ± 0.33	50	MEISNER	71	HBC	Assumes CP	
2.20 ± 0.35	53	WEBBER	70	HBC	Assumes CP	
$2.62 + 0.28 \\ -0.27$	136	BEHR	66	HLBC	Assumes CP	
• • • We do not use	the followin	g data for average	es, fit	s, fimits,	etc. • • •	
2.5 ± 0.3	98	⁹ JAMES	71	HBC	Assumes CP	
3.26 ± 0.77	18	ANDERSON	65	HBC		

14 FRANZINI 65 HBC In the fit this rate is well determined by the mean life and the branching ratio $\Gamma(\pi^+\pi^-\pi^0)/\big[\Gamma(\pi^+\pi^-\pi^0) + \Gamma(\pi^\pm\mu^\mp\nu_\mu) + \Gamma(\pi^\pm e^\mp\nu_e)\big].$ For this reason the discrepancy between the $\Gamma(\pi^+\pi^-\pi^0)$ measurements does not affect the scale factor of the overall fit.

or includes following d	DOCUMENT ID scale factor of ata for averages	1.1. , fits	TECN , limits, HLBC	etc. • • •
following d	ata for averages	, fits		etc. • • •
19	•			etc. • • •
	LOWYS	67	HLBC	
				Г ₆
VTS	DOCUMENT ID		TECN	COMMENT
or includes E	scale factor of	1.1.		
620	CHAN	71	нвс	
	AUBERT	65	HLBC	$\Delta S = \Delta Q, CP$ assumed
ı [∓] ν _μ) +∣	$\Gamma(\pi^{\pm}e^{\mp}\nu_e)$			(Γ ₂ +Γ ₃ +Γ ₆)
VTS	DOCUMENT ID		TECN	
rror include	s scale factor of	f 1.1.		
following d	ata for averages	, fits	, limits,	etc. • • •
98	AUERBACH	66B	OSPK	
.∓ ν _e)				(Γ ₃ +Γ ₆)
VTS	DOCUMENT ID		TECN	COMMENT
				0 ±
				$K^+ p \rightarrow nK^0$
				K · n → K · p
109	FRANZINI	65	нвс	
following d	ata for averages	, fits	, limits,	etc. • • •
126 10	MANN	72	нвс	$K^- p \rightarrow n \overline{K}^0$
335 11				$\kappa^+ n \rightarrow \kappa^0 p$
	67.			
	V _μ +	AUBERT $\mathbf{z}^{\mp} \mathbf{v}_{\mu}$) + $\Gamma(\mathbf{\pi}^{\pm} \mathbf{e}^{\mp} \mathbf{v}_{e})$ EVTS DOCUMENT ID FOR TOTAL INCLUDES SCAIE factor of following data for averages 98 AUERBACH EF \mathbf{v}_{e}) FOR TOTAL ID TOTAL INCLUDES SCAIE factor of GE Error includes Scale factor of GE Error includes Scale factor of 10 BURGUN 252 10 WEBBER 393 10,11 CHO 109 10 FRANZINI following data for averages 126 10 MANN 335 11 HILL	AUBERT 65 $\mathbf{z}^{\mp} \nu_{\mu}$) + $\Gamma(\mathbf{x}^{\pm} e^{\mp} \nu_{e})$ EVTS DOCUMENT ID Fror includes scale factor of 1.1. following data for averages, fits 98 AUERBACH 66B EVTS DOCUMENT ID Tror includes scale factor of 1.1 GE Error includes scale factor of 1.1 GE Error includes scale factor 10 BURGUN 72 252 10 WEBBER 71 393 10.11 CHO 70 109 10 FRANZINI 65 following data for averages, fits 10 MANN 72 335 11 HILL 67	AUBERT 65 HLBC $\mathbf{z}^{\mp} \boldsymbol{\nu}_{\mu}$) + $\Gamma(\boldsymbol{\pi}^{\pm} \mathbf{e}^{\mp} \boldsymbol{\nu}_{e})$ EVTS DOCUMENT ID TECN rror includes scale factor of 1.1. following data for averages, fits, limits, 98 AUERBACH 66B OSPK $\mathbf{z}^{\mp} \boldsymbol{\nu}_{e}$) EVTS DOCUMENT ID TECN rror includes scale factor of 1.1. GE Error includes scale factor of 1.2. 410 10 BURGUN 72 HBC 252 10 WEBBER 71 HBC 393 10.11 CHO 70 DBC 109 10 FRANZINI 65 HBC following data for averages, fits, limits, 10 MANN 72 HBC 335 11 HILL 67 DBC die.

K? BRANCHING RATIOS

$\Gamma(3\pi^0)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	EVTS	DOCUMENT IL		TECN_	
0.2113±0.0027 OUR F	IT Error	includes scale fa	ctor of	1.1.	
0.2105 ± 0.0028	38k	¹² KREUTZ	95	NA31	
12 KREUTZ 95 measu			v _e mo	des. They assume PD)G 1992 values

$\Gamma(3\pi^{0})/\Gamma(\pi^{+}\pi^{-}\pi^{0})$)					Γ_1/Γ_2
VALUE	EVT5	DOCUMENT ID		EÇN_	COMMENT	
1.68 ±0.04 OUR FIT	Error i	ncludes scale factor	of 1.3.			
1.63 ±0.05 OUR AVE	RAGE	Error includes scale	factor of	of 1.4.		
$1.611 \pm 0.014 \pm 0.034$	38k	¹³ KREUTZ	95 N	A31		
1.80 ±0.13	1010	BUDAGOV	68 H	LBC		
2.0 ±0.6	188	ALEKSANYAN	64B F	BC		
• • • We do not use th	e followi	ing data for averages	s, fits, I	imits,	etc. • • •	
1.65 ± 0.07	883	BARMIN	72B H	LBC	Error statistical o	nly

 13 KREUTZ 95 excluded from fit because it is not independent of their $\Gamma(3\pi^0)/\Gamma_{total}$ measurement, which is in the fit.

$\Gamma(3\pi^0)/\Gamma(\pi^{\pm}e^{\mp}\nu_e)$					Γ_1/Γ_6
VALUE	EVTS	DOCUMENT ID		TECN_	
0.545 ± 0.009 OUR FIT	Error i	ncludes scale facto	r of 1	.1.	
$0.545 \pm 0.004 \pm 0.009$	38k	¹⁴ KREUTZ	95	NA31	

¹⁴KREUTZ 95 measurement excluded from fit because it is not independent of their $\Gamma(3\pi^0)/\Gamma_{total}$ measurement, which is in the fit.

$\Gamma(3\pi^0)/[\Gamma(\pi^+\pi^-$	π^0) + $\Gamma(\pi$	$r^{\pm} \mu^{\mp} \nu_{\mu} + \Gamma(r)$	r± e	$^{\mp}\nu_{e})]$	$\Gamma_1/(\Gamma_2+\Gamma_3+\Gamma_6)$
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.269±0.004 OUR F	T Error in	cludes scale factor	of 1	.1.	
0.260 ± 0.011 OUR A	VERAGE				
0.251 ± 0.014	549	BUDAGOV	68	HLBC	ORSAY measur.
0.277 ± 0.021	444	BUDAGOV	68	HLBC	Ecole polytec.meas
$0.31 \begin{array}{c} +0.07 \\ -0.06 \end{array}$	29	KULYUKINA	68	cc	
0.24 ± 0.08	24	ANIKINA	64	CC	

 Γ_2/Γ $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ VALUE DOCUMENT ID.

0.1255±0.0020 OUR FIT Error includes scale factor of 1.7.

 $^{^{9}}$ JAMES 72 is a final measurement and includes JAMES 71.

K_{i}^{0}

```
 \Gamma(\pi^{+}\pi^{-}\pi^{0})/\big[\Gamma(\pi^{+}\pi^{-}\pi^{0}) + \Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu}) + \Gamma(\pi^{\pm}e^{\mp}\nu_{e})\big] \Gamma_{2}/(\Gamma_{2}+\Gamma_{3}+\Gamma_{6}) 
                                                                                                                                          <sup>17</sup>This mode not measured independently from \Gamma(\pi^+\pi^-\pi^0)/[\Gamma(\pi^+\pi^-\pi^0)] +
<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

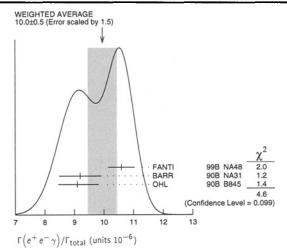
0.1599±0.0025 OUR FIT Error includes scale factor of 1.7.

0.1588±0.0024 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram
                                                                                                                                              \Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu}) \ + \ \Gamma(\pi^{\pm}e^{\mp}\nu_{e}) \Big] \ \ \text{and} \ \ \Gamma(\pi^{\pm}e^{\mp}\nu_{e})/\Big[\Gamma(\pi^{+}\pi^{-}\pi^{0}) \ + \ \Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu}) \ + \ \Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu}) \ + \ \Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu}) \Big] \Big] 
                                                                                                                                             \Gamma(\pi^{\pm}e^{\mp}\nu_{e}).
                                 6499
                                                  сно
                                                                                                                                        \Gamma(\pi^{\pm}e^{\mp}\nu_{e})/[\Gamma(\pi^{+}\pi^{-}\pi^{0})+\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})+\Gamma(\pi^{\pm}e^{\mp}\nu_{e})] \Gamma_{6}/(\Gamma_{2}+\Gamma_{3}+\Gamma_{6})
                                                  ALEXANDER 73B HBC
0.1605 \pm 0.0038
                                 1590
                                                                                                                                        VALUE EVTS DOCUMENT ID TECN

0.4940±0.0030 OUR FIT Error includes scale factor of 1.1.

■ ■ We do not use the following data for averages, fits, limits, etc. ■ ■
                                                 BRANDENB... 73 HBC
0.146 \pm 0.004
                                 3200
0.159 ±0.010
                                   558
                                                  EVANS
                                                                      73 HLBC
                                                  KULYUKINA
0.167 \pm 0.016
                                                                                                                                        0.498 ± 0.052
                                                                                                                                                                                          KULYUKINA 68 CC
                                                                                                                                                                           500
0.161\ \pm0.005
                                                 HOPKINS
                                                                      67 HBC
                                                                                                                                        0.46 \begin{array}{c} +0.08 \\ -0.10 \end{array}
                                                                                                                                                                           202
                                                                                                                                                                                          ASTBURY
                                                                                                                                                                                                              65 CC
                                   126
                                                 HAWKINS
                                                                      66 HBC
0.162 \pm 0.015
0.159 \pm 0.015
                                                  ASTBURY
                                                                      65B CC
                                   326
                                                                                                                                        0.487 ±0.05
                                                                                                                                                                           153
                                                                                                                                                                                          LUERS
                                                                                                                                                                                                               64 HBC
0.178 \pm 0.017
                                                  GUIDONI
                                                                      65 HBC
                                                                                                                                                                                          NYAGU
                                                                                                                                                                                                               61 CC
• • • We do not use the following
                                               data for averages, fits, limits, etc. . .
                                                                                                                                         \Gamma(\pi^{\pm}e^{\mp}\nu_{e})/[\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})+\Gamma(\pi^{\pm}e^{\mp}\nu_{e})]
                                                                                                                                                                                                                                              \Gamma_6/(\Gamma_3+\Gamma_6)
0.15 \begin{array}{c} +0.03 \\ -0.04 \end{array}
                                                                      65 CC
                                                 ASTBURY
                                    66
                                                                                                                                        <u>VALUE</u> <u>EVTS</u>
0.5880 ±0.0033 OUR FIT
                                                                                                                                                                                          DOCUMENT ID
                                                                                                                                                                                                                  TECN
                                                  HOPKINS
0.144 \pm 0.004
                                 1729
                                                                      65 HBC
                                                                                       See HOPKINS 67
0.151 \pm 0.020
                                    79
                                                 ADAIR
                                                                      64 HBC

    • • We do not use the following data for averages, fits, limits, etc. • •


0.157 \begin{array}{l} +0.03 \\ -0.04 \end{array}
                                    75
                                                 LUERS
                                                                      64 HBC
                                                                                                                                        0.415 + 0.120
                                                                                                                                                                                          ASTIER
                                                                                                                                                                                                               61 CC
                                                  ASTIFR
                                                                      61 CC
0.185 \pm 0.038
                                    59
                                                                                                                                         \left[\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu}) + \Gamma(\pi^{\pm}e^{\mp}\nu_{e})\right]/\Gamma_{\text{total}}
                                                                                                                                                                                                                                                (\Gamma_3+\Gamma_6)/\Gamma
            WEIGHTED AVERAGE
0.1588±0.0024 (Error scaled by 1.4)
                                                                                                                                        VALUE DOCUMENT ID

0.6596±0.0030 OUR FIT Error includes scale factor of 1.2.
                                                       Values above of weighted average, error, and scale factor are based upon the data in
                                                                                                                                                                                                                                                          \Gamma_9/\Gamma
                                                                                                                                         \Gamma(2\gamma)/\Gamma_{\text{total}}
                                                                                                                                         VALUE (units 10<sup>-4</sup>)
5.86±0.15 OUR FIT
                                                       and scale factor are based upon the deal
this ideogram only. They are not neces-
sarily the same as our 'best' values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.
                                                                                                                                                                                          DOCUMENT ID TECN COMMENT
                                                                                                                                         • • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                                                                                       18 BANNER
                                                                                                                                         \textbf{4.54} \pm \textbf{0.84}
                                                                                                                                                                                                               72B OSPK
                                                                                                                                                                                                               71 OSPK K1 1.5-9 GeV/c
                                                                                                                                         4.5 ±1.0
                                                                                                                                                                                          ENSTROM
                                                                                                                                                                                      19 REPELLIN
                                                                                                                                         5.0 \pm 1.0
                                                                                                                                                                                                               71 OSPK
                                                                                                                                                                                                                    OSPK Norm.to 3 \pi(C+N)
                                                                                                                                                                                          KUNZ
                                                                  СНО
                                                                                                                                         5.5 \pm 1.1
                                                                                                                                                                                                               68
                                                                                                                                                                                      <sup>20</sup> CRONIN
                                                                  ALEXANDER
                                                                                      73B HBC
73 HBC
                                                                                                                                                                                                               67
                                                                                                                                                                                                                     OSPK
                                                                                                                                         7.4 \pm 1.6
                                                                                                                                                                             33
                                                                  BRANDENB...
                                                                                                                                                                                          TODOROFF
                                                                                                                                                                                                                     OSPK Repl. CRIEGEE 66
                                                                                                                                         6.7 ±2.2
                                                                                                                                                                                                               67
                                                                  EVANS
KULYUKINA
                                                                                             HLBC
CC
                                                                                                           0.0
                                                                                                                                                                                      <sup>21</sup> CRIEGEE
                                                                                                                                         1.3 \pm 0.6
                                                                                                                                                                                                               66 OSPK
                                                                                                           0.3
                                                                                                                                          ^{18} This value uses (\eta_{00}/\eta_{+-})^2=1.05\pm0.14. In general, \Gamma(2\gamma)/\Gamma_{\mbox{total}}=[(4.32\pm0.55)\times10^{-2}]
                                                                                             HBC
                                                                  HOPKINS
                                                                                                           0.1
                                                                                                                                              10^{-4}][(\eta_{00}/\eta_{+-})^2].
                                                                  ASTBURY
                                                                                       65B CC
                                                                                                                                           ^{19} Assumes regeneration amplitude in copper at 2 GeV is 22 mb. To evaluate for a given
                                                                  GUIDONI
                                                                                       65
                                                                                             HBC
                                                                                                           1.3
                                                                                                         14.2
                                                                                                                                              regeneration amplitude and error, multiply by (regeneration amplitude/22mb)2.
                                                                                                                                           <sup>20</sup> CRONIN 67 replaced by KUNZ 68.
                                                                                                                                          <sup>21</sup> CRIEGEE 66 replaced by TODOROFF 67.
         0.12
                       0.14
                                     0.16
                                                   0.18
                                                                               0.22
                                                                                                                                         \Gamma(2\gamma)/\Gamma(3\pi^0)
                                                                                                                                                                                                                                                        \Gamma_9/\Gamma_1
             \Gamma \left(\pi^+\pi^-\pi^0\right)/\left[\Gamma \left(\pi^+\pi^-\pi^0\right)+\Gamma \left(\pi^\pm\mu^\mp\nu_\mu\right)+\Gamma \left(\pi^\pm e^\mp\nu_e\right)\right]
                                                                                                                                         VALUE (units 10-3)
                                                                                                                                                                                          DOCUMENT ID
                                                                                                                                                                          EVT5
                                                                                                                                                                                                                    TECN COMMENT
                                                                                                                                         2.77±0.08 OUR FIT Error includes scale factor of 1.1.
\Gamma(\pi^{+}\pi^{-}\pi^{0})/\Gamma(\pi^{\pm}e^{\mp}\nu_{e})
                                                                                                                \Gamma_2/\Gamma_6
                                                                                                                                         • • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                                         2.13 ± 0.43
                                                                                                                                                                                          BARMIN
VALUE EVTS DOCUMENT ID 1
0.324±0.006 OUR FIT Error includes scale factor of 1.6.
                                                                                                                                                                                                                69 OSPK
                                                                                                                                                                            115
                                                                                                                                                                                          BANNER
                                                                                                                                         2.24 \pm 0.28
0.336 \pm 0.003 \pm 0.007
                                   28k
                                                  KREUTZ
                                                                      95 NA31
                                                                                                                                         2.5 ±0.7
                                                                                                                                                                             16
                                                                                                                                                                                          ARNOLD
                                                                                                                                                                                                                68B HLBC Vacuum decay
                                                                                                                                         \Gamma(2\gamma)/\Gamma(\pi^0\pi^0)
\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})/\Gamma(\pi^{\pm}e^{\mp}\nu_{e})
                                                                                                                \Gamma_3/\Gamma_6
                                                                                                                                                                                                                                                       \Gamma_9/\Gamma_{23}
0.701±0.009 OUR FIT
                                                  DOCUMENT ID
                                                                         TECN COMMENT
                                                                                                                                                                         EVTS
                                                                                                                                                                                          DOCUMENT ID
                                                                                                                                         0.632±0.009 OUR FIT
                                                                                                                                         0.632 \pm 0.004 \pm 0.008
                                                                                                                                                                          110k
                                                                                                                                                                                          BURKHARDT 87 NA31
0.697 + 0.010 OUR AVERAGE
                                                                                                                                         \Gamma(3\gamma)/\Gamma_{total}
                                                                                                                                                                                                                                                         \Gamma_{10}/\Gamma
0.702 \pm 0.011
                                    33k
                                                  сно
                                                                       80 HBC
0.662 \pm 0.037
                                                   WILLIAMS
                                                                             ASPK
                                                                                                                                                                                          DOCUMENT ID
                                                                                                                                                                                                                   TECN
                                                                                                                                          <2.4 × 10<sup>-7</sup>
                                                                                                                                                                                      <sup>22</sup> BARR
0.741 \pm 0.044
                                  6700
                                                  BRANDENB... 73
                                                                             HBC
                                                                                                                                                                           90
                                                                                                                                                                                                                95c NA31
0.662 \pm 0.030
                                  1309
                                                  EVANS
                                                                       73
                                                                             HLBC
                                                                                                                                           <sup>22</sup> Assumes a phase-space decay distribution.
                                                  BUDAGOV
                                                                       68 HLBC
0.71 \pm 0.05
                                    770

    ◆ We do not use the following data for averages, fits, limits, etc.

                                                                                                                                         \Gamma(\pi^0 2\gamma)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                                        \Gamma_{11}/\Gamma
0.68 \pm 0.08
                                  3548
                                                  BASILE
                                                                       70 OSPK
                                                                                                                                                                                                                           TECN COMMENT
                                                                                                                                         VALUE (units 10-6)
                                                                                                                                                                                                   DOCUMENT ID
                                                                                                                                                                                  EVT5
                                              15 BEILLIERE
                                                                                                                                                1.68±0.10 OUR AVERAGE
                                                                             HLBC
 0.71 \pm 0.04
                                    569
                                                                       69
                                                  EVANS
                                                                             HLBC Repl. by EVANS 73
 0.648 \pm 0.030
                                  1309
                                                                       69
                                                                                                                                                1.68 \pm 0.07 \pm 0.08
                                                                                                                                                                                     884
                                                                                                                                                                                                    ALAVI-HARATI99B KTEV
                                                                                                                                                                                               <sup>23</sup> BARR
                                                  KULYUKINA
                                                                             CC
 0.67\ \pm0.13
                                                                                                                                               1.7 \pm 0.2 \pm 0.2
                                                                                                                                                                                      63
                                                                                                                                                                                                                        92 SPEC
 0.82 ±0.10
                                                   DEBOUARD
                                                                      67
                                                                             OSPK
                                                                                                                                            • • We do not use the following data for averages, fits, limits, etc. • •
0.7 \pm 0.2
                                    273
                                                  HAWKINS
                                                                       67
                                                                             HBC
                                                                                                                                                                                                   PAPADIMITR...91 E731 m_{\gamma\gamma} > 280 MeV
                                                                                                                                               1.86 \pm 0.60 \pm 0.60
                                                                                                                                                                                      60
                                                  HOPKINS
 0.81 \pm 0.08
                                                                       67
                                                                             HBC
                                                                                                                                                                                                   PAPADIMITR...91 E731
                                                                                                                                               5.1
                                                                                                                                                                                                                                         m_{\gamma\gamma} < 264 MeV
                                                  ADAIR
                                                                       64 HBC
                                                                                                                                                                                                                        90c NA31 m<sub>γγ</sub>
                                                                                                                                                                                                                                                 > 280 MeV
                                                                                                                                               2.1 \pm 0.6
  ^{15} BEILLIERE 69 is a scanning experiment using same exposure as BUDAGOV 68. ^{16} KULYUKINA 68 \Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})/\Gamma(\pi^{\pm}\,e^{\mp}\nu_{e}) is not measured independently from
                                                                                                                                                                                                   PAPADIMITR...89 E731
                                                                                                                                                                                                                                         In PAPADI...91
                                                                                                                                           < 2.7
                                                                                                                                                                           90
                                                                                                                                                                                                   BANNER
                                                                                                                                                                           90
       \Gamma(\pi^+\pi^-\pi^0)/ \left[ \Gamma(\pi^+\pi^-\pi^0)^{'} + \Gamma(\pi^\pm\mu^\mp\nu_\mu) \right. \\ \left. + \Gamma(\pi^\pm e^\mp\nu_e) \right] \text{ and } \Gamma(\pi^\pm e^\mp\nu_e)/ 
                                                                                                                                           ^{23} BARR 92 find that \Gamma(\pi^0\,2\gamma,\,m_{\gamma\gamma}\, <240 MeV)/\Gamma(\pi^0\,2\gamma)< 0.09 (90% CL).
      \left[\Gamma(\pi^{+}\pi^{-}\pi^{0}) + \Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu}) + \Gamma(\pi^{\pm}e^{\mp}\nu_{e})\right].
                                                                                                                                           24 BARR 90c superseded by BARR 92.
                                                                                                                                          \Gamma(\pi^0\pi^{\pm}e^{\mp}\nu)/\Gamma_{\text{total}}
  \Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})/ \left[\Gamma(\pi^{+}\pi^{-}\pi^{0}) + \Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu}) + \Gamma(\pi^{\pm}e^{\mp}\nu_{e})\right] \Gamma_{3}/(\Gamma_{2}+\Gamma_{3}+\Gamma_{6}) 
                                                                                                                                                                                                                                                         \Gamma_{12}/\Gamma
 VALUE EVTS DOCUMENT ID TECN
0.3461±0.0030 OUR FIT Error includes scale factor of 1.1.
                                                                                                                                                                                                 DOCUMENT ID TECN
                                                                                                                                          VALUE (units 10-5)
                                                                                                                                                5.18±0.29 OUR AVERAGE
 • • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                                                                                                 MAKOFF
                                                                                                                                                                                                                      93 E731
                                                                                                                                                5.16 \pm 0.20 \pm 0.22
                                                                                                                                                                                  729
                                                                                                                                                                                                                      80c SPEC
                                                                                                                                                                                                 CARROLL
 0.335 \pm 0.055
                                             <sup>17</sup> KULYUKINA 68 CC
                                                                                                                                                6.2 \pm 2.0
                                                                                                                                                                                    16
                                                                                                                                          • • • We do not use the following data for averages, fits, limits, etc.
 0.39 \begin{array}{c} +0.08 \\ -0.10 \end{array}
                                              <sup>17</sup> ASTBURY 65 CC
                                    172
                                                                                                                                                                                             25 DONALDSON 74 SPEC
                                                                                                                                                                         90
                                              <sup>17</sup> LUERS
                                                                       64 HBC
 0.356 \pm 0.07
                                    251
                                                                                                                                           <sup>25</sup> DONALDSON 74 uses K_I^0 \rightarrow \pi^+\pi^-\pi^0/(\text{all } K_I^0) decays = 0.126.
```

Γ6
- -
_ Г
_
_
' is
/F
/Г
/Γ
-
/Γ
w.
٧.
ıla-
ıla- ios,
ıla- ios,
ıla- ios,
,

$\Gamma(e^+e^-\gamma\gamma)/\Gamma$	total						Γ_{20}/Γ
VALUE (units 10 ⁻⁷)		EVTS	DOCUMENT ID		TECN	COMMENT	
6.9±1.0 OUR AV	ERAGI	E	_				
$8.0 \pm 1.5 ^{+1.4}_{-1.2}$		40	SETZU	98	NA31	$E_{m{\gamma}} >$ 5 MeV	
$6.5 \pm 1.2 \pm 0.6$		58	NAKAYA	94	E799	$E_{\gamma} > 5 \text{ MeV}$	
6.6 ± 3.2			MORSE	92	B845	$E_{\gamma} > 5 \; \text{MeV}$	
Γ(π ⁰ γ e ⁺ e ⁻)/							Γ ₂₁ /Γ
VALUE (units 10 ⁻⁷)	<u>CL%</u>	EVTS	DOCUMENT ID		TECN		
<7.1	90	0	MURAKAMI	99	SPEC		
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{tot}}$ Violates CF	al ' conse	rvation.					Γ ₂₂ /Γ
VALUE (units 10 ⁻³)			DOCUMENT ID				
2.056 ±0.033 OU	R FIT						
2.071 ± 0.049			37 ETAFIT	00			

³⁷ This ETAFIT value is computed from fitted values of $|\eta_{+-}|$, the κ_J^0 and κ_S^0 lifetimes, and the $K_S^0 \to \pi^+\pi^-$ branching fraction. See the discussion in the note "Fits for K_L^0 CP-Violation Parameters."

$\Gamma(\pi^+\pi^-)/\Gamma(\pi^+\pi^-)$ Violates CP conse	π ⁰) rvation.					Γ_{22}/Γ_2
VALUE (units 10 ⁻²)		DOCUMENT ID		TECN	COMMENT	
1.637±0.030 OUR FIT	Error in	ncludes scale factor	of 1.	.1.		
1.64 ±0.04	4200	MESSNER	73	ASPK	$\eta_{+-} = 2.23$	

 $\begin{array}{lll} \Gamma(\pi^+\pi^-)/[\Gamma(\pi^\pm\mu^\mp\nu_\mu)+\Gamma(\pi^\pm\,\mathrm{e}^\mp\nu_\mathrm{e})] & & \Gamma(\pi^\pm\mu^\mp\nu_\mathrm{e})\\ \text{Violates CP conservation.} & & \underline{\text{VALUE (units 10^{-3})}} & \underline{\text{EVTS}} & \underline{\text{DOCUMENT ID}} & \underline{\text{TECN}} & \underline{\text{COMMENT}}\\ \mathbf{3.12\pm0.05~OUR~FIT} & \text{Error includes scale factor of } 1.1. \end{array}$ $\Gamma_{22}/(\Gamma_3+\Gamma_6)$ 3.08±0.10 OUR AVERAGE COUPAL 85 SPEC $\eta_{+-}=2.28\pm0.06$ $\boldsymbol{3.04 \pm 0.14}$ 2703 DEVOE 77 SPEC $\eta_{+-}=2.25\pm0.05$ • • • We do not use the following data for averages, fits, limits, etc. • • • 309 38 DEBOUARD 67 OSPK $\eta_{+-}=2.00\pm0.09$ 2.51 ± 0.23 38 FITCH

 38 Old experiments excluded from fit. See subsection on η_{+-} in section on "PARAMETERS FOR $\kappa_I^0 \to 2\pi$ DECAY" below for average η_{+-} of these experiments and for note on

67 OSPK $\eta_{+-}=1.94 \pm 0.08$

525

 $^{^{39}}$ From same data as $\Gamma(\pi^+\pi^-)/\Gamma(\pi^+\pi^-\pi^0)$ MESSNER 73, but with different normal-

⁴⁰ Old experiments excluded from fit. See subsection on η_{+-} in section on "PARAMETERS FOR $K_L^0 \rightarrow 2\pi$ DECAY" below for average η_{+-} .

 K_{l}^{0}

$\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ Γ_{23}/Γ Violates <i>CP</i> conservation.	$\Gamma(e^+e^-)/\Gamma_{total}$ Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction.
VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT	VALUE (units 10 ⁻¹⁰) CL% EVTS DOCUMENT ID TECN COMMENT
0.927±0.019 OUR FIT • • • We do not use the following data for averages, fits, limits, etc. • • •	0.087 + 0.057 4 AMBROSE 98 B871
2.5 \pm 0.8 189 ⁴¹ GAILLARD 69 OSPK η_{00} =3.6 \pm 0.6	• • • We do not use the following data for averages, fits, limits, etc. • • •
1.2 $^{+1.5}_{-1.2}$ 7 42 CRIEGEE 66 OSPK	< 1.6 90 1 AKAĞI 95 SPEC
	< 0.41 90 0 ⁵³ ARISAKA 93B B791
⁴¹ Latest result of this experiment given by FAISSNER 70 $\Gamma(\pi^0\pi^0)/\Gamma(3\pi^0)$. ⁴² CRIEGEE 66 experiment not designed to measure $2\pi^0$ decay mode.	< 1.6 90 1 AKAGI 91 SPEC Sup. by AKAGI 95 < 5.6 90 INAGAKI 89 SPEC IN AKAGI 91
-	< 3.2 90 MATHIAZHA89 SPEC IN ARISAKA 93B
$\Gamma(\pi^0\pi^0)/\Gamma(3\pi^0)$ Γ_{23}/Γ_1	< 110 90 COUSINS 88 SPEC
Violates CP conservation. VALUE (units 10 ⁻²) EVTS DOCUMENT ID TECN COMMENT	< 45 90 GREENLEE 88 SPEC Repl. by JAS- TRZEMBSKI 88
0.439±0.011 OUR FIT Error includes scale factor of 1.1.	< 12 90 JASTRZEM 88 SPEC
0.39 ±0.06 OUR AVERAGE	< 15.7 90 ⁵⁴ CLARK 71 ASPK <1500 90 0 FOETH 69 ASPK
0.37 ± 0.08 29 BARMIN 70 HLBC $\eta_{00} = 2.02 \pm 0.23$ 0.32 ± 0.15 30 BUDAGOV 70 HLBC $\eta_{00} = 1.9 \pm 0.5$	53 ARISAKA 93B includes all events with <6 MeV radiated energy.
0.32 \pm 0.15 30 BUDAGOV 70 HLBC η_{00} =1.9 \pm 0.5 0.46 \pm 0.11 57 BANNER 69 OSPK η_{00} =2.2 \pm 0.3	54 Possible (but unknown) systematic errors. See note on CLARK 71 $\Gamma(\mu^+\mu^-)/\Gamma(\pi^+\pi^-)$
not seen BARTLETT 68 OSPK See η_{00} below	entry.
 ● We do not use the following data for averages, fits, limits, etc. 	$\Gamma(e^+e^-)/\big[\Gamma(\pi^+\pi^-\pi^0)+\Gamma(\pi^\pm\mu^\mp\nu_\mu)+\Gamma(\pi^\pm e^\mp\nu_e)\big] \qquad \Gamma_{25}/(\Gamma_2+\Gamma_3+\Gamma_6)$
1.21 ± 0.30 150 43 REY 76 OSPK $\eta_{00} = 3.8 \pm 0.5$	Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction.
0.90 \pm 0.30 172 ⁴⁴ FAISSNER 70 OSPK η_{00} =3.2 \pm 0.5 1.31 \pm 0.31 133 ⁴³ CENCE 69 OSPK η_{00} =3.7 \pm 0.5	VALUE (units 10 ⁻⁶) CL% DOCUMENT ID TECN
1.31 ± 0.31 133 43 CENCE 69 OSPK $\eta_{00} = 3.7 \pm 0.5$ 1.89 ± 0.31 109 45 CRONIN 67 OSPK $\eta_{00} = 4.9 \pm 0.5$	 • • We do not use the following data for averages, fits, limits, etc. • •
1.36 ± 0.18 45 CRONIN 67B OSPK $\eta_{00} = 3.92 \pm 0.3$	< 23.0 90 BOTT 67 OSPK
43 CENCE 69 events are included in REY 76	< 200.0 90 ALFF 66B OSPK <1000.0 ANIKINA 65 CC
⁴⁴ FAISSNER 70 contains same $2\pi^0$ events as GAILLARD 69 $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$.	
45 CRONIN 67B is further analysis of CRONIN 67, now both withdrawn.	$\Gamma(\pi^+\pi^-e^+e^-)/\Gamma_{\text{total}}$ Γ_{26}/Γ
$\Gamma(\pi^0\pi^0)/\Gamma(\pi^+\pi^-)$ Γ_{23}/Γ_{22}	Test for $\Delta S = 1$ weak neutral current. Allowed by higher-order electroweak interaction.
Violates CP conservation.	VALUE (units 10 ⁻⁷) CL% EVTS DOCUMENT ID TECN COMMENT 3.5±0.6 OUR AVERAGE
<u>VALUE</u> <u>DOCUMENT ID</u> 0.451 ±0.006 OUR FIT	3.2±0.6±0.4 37 ADAMS 98 KTEV
0.4517±0.0060 46 ETAFIT 00	4.4±1.3±0.5 13 TAKEUCHI 98 SPEC
⁴⁶ This ETAFIT value is computed from fitted values of $ \eta_{00} / \eta_{+-} $ and the $\Gamma(\kappa_S^0 o$	 • • We do not use the following data for averages, fits, limits, etc.
$\pi^+\pi^-$) / $\Gamma(\kappa_S^0 \to \pi^0\pi^0)$ branching fraction. See the discussion in the note "Fits for	$<$ 4.6 90 NOMURA 97 SPEC $m_{ee} >$ 4 MeV
K ₁ CP-Violation Parameters."	< 25 90 0 BALATS 83 SPEC < 88.1 90 ⁵⁵ DONALDSON 76 SPEC
	<300 ANIKINA 73 STRC
$ \Gamma(\mu^{+}\mu^{-})/\left[\Gamma(\pi^{+}\pi^{-}\pi^{0})+\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})+\Gamma(\pi^{\pm}e^{\mp}\nu_{e})\right] \Gamma_{24}/(\Gamma_{2}+\Gamma_{3}+\Gamma_{6}) $	55 Uses $K_I^0 \to \pi^+\pi^-\pi^0/(\text{all } K_I^0)$ decays = 0.126.
Test for $\Delta S = 1$ weak neutral current. Allowed by higher-order electroweak interaction.	······································
<u>VALUE (units 10⁻⁶)</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> ■ • • We do not use the following data for averages, fits, limits, etc. • • •	$\Gamma(\mu^+\mu^-e^+e^-)/\Gamma_{\text{total}}$ Γ_{27}/Γ
< 2.0 90 BOTT 67 OSPK	Test for $\Delta S = 1$ weak neutral current. Allowed by higher-order electroweak interaction.
< 35.0 90 FITCH 67 OSPK	VALUE (units 10 ⁻⁹) CL% EVTS DOCUMENT ID TECN
<250.0 90 ALFF 66B OSPK	2.9 +6.7 1 GU 96 E799
<100.0 ANIKINA 65 CC	 ● We do not use the following data for averages, fits, limits, etc.
$\Gamma(\mu^+\mu^-)/\Gamma(\pi^+\pi^-)$ Γ_{24}/Γ_{22}	<4900 90 BALATS 83 SPEC
Test for $\Delta S = 1$ weak neutral current. Allowed by higher-order electroweak interaction.	$\Gamma(e^+e^-e^+e^-)/\Gamma_{\text{total}}$ Γ_{28}/Γ
VALUE (units 10 ⁻⁶) CL% EVTS DOCUMENT ID TECN COMMENT	Test for $\Delta S = 1$ weak neutral current. Allowed by higher-order electroweak interaction.
3.48 ±0.05 OUR AVERAGE	VALUE (units 10 ⁻⁸) CL% EVTS DOCUMENT ID TECN COMMENT
3.474±0.057 6210 AMBROSE 00 B871 3.87 ±0.30 179 ⁴⁷ AKAGI 95 SPEC	4.1 ±0.8 OUR AVERAGE Error includes scale factor of 1.2.
3.38 ±0.17 707 HEINSON 95 B791	6 ±2 ±1 18 ⁵⁶ AKAGI 95 SPEC m _{ee} >470 MeV 10.4 ±3.7 ±1.1 8 ⁵⁷ BARR 95 NA31
 • • We do not use the following data for averages, fits, limits, etc. 	$3.96 \pm 0.78 \pm 0.32$ 27 GU 94 E799
3.9 ± 0.3 ± 0.1 178 48 AKAGI 91B SPEC In AKAGI 95	3.07 ± 1.25 ± 0.26 6 VAGINS 93 B845
3.45 ±0.18 ±0.13 368 ⁴⁹ HEINSON 91 SPEC In HEINSON 95	• • We do not use the following data for averages, fits, limits, etc. • • •
4.1 ±0.5 54 INAGAKI 89 SPEC In AKAGI 918 2.8 ±0.3 ±0.2 87 MATHIAZHA898 SPEC In HEINSON 91	7 ±3 ±2 6 56 AKAGI 95 SPEC $m_{ee} > 470$ MeV
4.0 +1.4 15 SHOCHET 70 SPEC	6 ±2 ±1 18 AKAGI 93 CNTR Sup. by AKAGI 95 4 ±3 2 BARR 91 NA31 Sup. by BARR 95
-0.9 13 SHOCKET 13 STEE	4 ±3 2 BARR 31 NA31 Sup. by BARR 33 <260 90 BALATS 83 SPEC
4.2 +5.1 3 ⁵⁰ FUKUSHIMA 76 SPEC	56 Values are for the total branching fraction, acceptance-corrected for the $m_{\rm ee}$ cuts shown.
5.8 $^{+2.3}_{-1.5}$ 9 51 CARITHERS 73 SPEC	To Distribution of angles between two e^+e^- pair planes favors $CP=-1$ for K_I^0 .
< 1.53 90 0 ⁵² CLARK 71 SPEC	
< 18. 90 0 DARRIULAT 70 SPEC	$\Gamma(\pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$ Γ_{29}/Γ
<140. 90 0 FOETH 69 SPEC	Violates CP in leading order. Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction.
47 AKAGI 95 gives this number multiplied by the PDG 1992 average for $\Gamma(K_L^0 ightarrow$	value (units 10 ⁻⁹) CL% EVTS DOCUMENT ID TECN
$\pi^+\pi^-)/\Gamma(\text{total}).$	< 5.1 90 0 HARRIS 93 E799
⁴⁸ AKAGI 91B give this number multiplied by the 1990 PDG average for $\Gamma(K_L^0 ightarrow$	• • • We do not use the following data for averages, fits, limits, etc. • • •
$\pi^+\pi^-$)/ Γ (total).	< 1200 90 0 ⁵⁸ CARROLL 80D SPEC
⁴⁹ HEINSON 91 give $\Gamma(K_L^0 \to \mu\mu)/\Gamma_{\text{total}}$. We divide out the $\Gamma(K_L^0 \to \pi^+\pi^-)/\Gamma_{\text{total}}$	<56600 90 ⁵⁹ DONALDSON 74 SPEC
PDG average which they used. 50 FUKUSHIMA 76 errors are at CL = 90%.	⁵⁸ Uses $K_L^0 \to \pi^+ \pi^- \pi^0 / (\text{all } K_L^0)$ decays = 0.1239.
51 CARITHERS 73 errors are at CL = 68%, W.Carithers, (private communication 79).	59 Uses $\kappa_{I}^{0} \to \pi^{+}\pi^{-}\pi^{0}/(\text{all }\kappa_{I}^{0}) \text{ decays} = 0.126.$
52 CLARK 71 limit raised from 1.2×10^{-6} by FIELD 74 reanalysis. Not in agreement with	L L' '
subsequent experiments. So not averaged.	

$\Gamma(\pi^0e^+e^-)/\Gamma_{total}$ Violates CP in leading order. Direct and indirect CP-violating contributions are ex-Γ₃₀/Γ pected to be comparable and to dominate the CP-conserving part. Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction. VALUE (units 10-9) CL% EVTS DDCUMENT ID TECN 93B E799 4.3 90 n HARRIS 90 E731 BARKER < 7.5 90 0 OHL 90 B845 < 5.5 90 0 • • • We do not use the following data for averages, fits, limits, etc. • • • BARR < 40 90 88 NA31 JASTRZEM... 88 SPEC < 320 90 0 60 CARROLL 80D SPEC <2300 90 ⁶⁰ Uses $\kappa_I^0 \rightarrow \pi^+\pi^-\pi^0/(\text{all }\kappa_I^0)$ decays = 0.1239. $\Gamma(\pi^0 \nu \overline{\nu})/\Gamma_{total}$ 1 s1/Violates CP in leading order. Test of direct CP violation since the indirect CP-violating violating order. Test of $\Delta S = 1$ weak and CP-conserving contributions are expected to be suppressed. Test of $\Delta S \approx 1$ weak neutral current.

٤	OF Courts I	1 0120 1	V 1 3	DOCUMENTIO		7207
(0.059	90	0	ALAVI-HARAT	100	KTEV
•	• We do	not use the	followi	ng data for averages	i, fits	s, limits, etc. • • •
<	0.16	90	0	ADAMS	99	KTEV
<	5.8	90	0	WEAVER	94	E799
<	22	90	0	GRAHAM		CNTR
<7	60	90		61 LITTENBERG	89	RVUE
61		3556 60 '- 6			,	CDONUM 67

1

61 LITTENBERG 89 is from retroactive data analysis of CRONIN 67.

 $\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$ Γ_{32}/Γ Test of lepton family number conservation.

VAL	UE (units	10 ⁻¹¹) CL% E	VTS	DOCUMENT ID		TECN	COMMENT	
<	0.47	90		AMBROSE	98B	B871		1
• •	• We	do not use the t	ollowi	ng data for averages	, fits	s, limits,	etc. • • •	
<	9.4	90	0	AKAGI	95	SPEC		
<	3.9	90	0	ARISAKA	93	B791		
<	3.3	90	0	⁶² ARISAKA	93	B791		
<	9.4	90	0	AKAGI	91	SPEC	Sup. by AKAGI 95	
<	43	90		INAGAKI	89	SPEC	In AKAGI 91	
<	22	90		MATHIAZHA	.89	SPEC		
<	190	90		SCHAFFNER	89	SPEC		
<1	100	90		COUSINS	88	SPEC		
<	670	90		GREENLEE	88	SPEC	Repl. by	
<	157	90		63 CLARK	71	ASPK	SCHAFFNER 89	

² This is the combined result of ARISAKA 93 and MATHIAZHAGAN 89. ⁶³ Possible (but unknown) systematic errors. See note on CLARK 71 $\Gamma(\mu^+\mu^-)/\Gamma(\pi^+\pi^-)$

 $\Gamma(e^{\pm}\,e^{\pm}\,\mu^{\mp}\,\mu^{\mp})/\Gamma_{\rm total}$ Test of lepton family number conservation. Γ_{33}/Γ

VALUE (units 10⁻⁹) CL% EVTS DOCUMENT ID TECN 64 GU 96 E799 < 6.1 90

 $\Gamma(e^{\pm}\mu^{\mp})/\big[\Gamma(\pi^{+}\pi^{-}\pi^{0}) + \Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu}) + \Gamma(\pi^{\pm}e^{\mp}\nu_{e})\big] \qquad \Gamma_{32}/(\Gamma_{2}+\Gamma_{3}+\Gamma_{6})$ Test of lepton family number conservation.

⁶⁴ Assuming uniform phase space distribution.

VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN
• • • We do not use th	e following	data for average	s, fit	s, limits, etc. • • •
< 0.1	90	BOTT	67	OSPK
< 0.08	90	FITCH	67	OSPK
< 1.0	90	CARPENTER	66	OSPK
<10.0		ABUICINA	65	cc

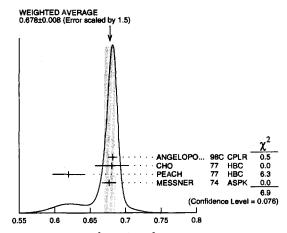
<10.0 ANIKINA 65 CC
$$\Gamma(\pi^0 \mu^{\pm} e^{\mp})/\Gamma_{total} \qquad \qquad \Gamma_{34}/\Gamma$$
Test of lepton family number conservation.
$$\frac{VALUE}{\sqrt{6.2} \times 10^{-9}} \qquad 90 \qquad \text{ARISAKA} \qquad 98 \qquad E799}$$

ENERGY DEPENDENCE OF KI DALITZ PLOT

For discussion, see note on Dalitz plot parameters in the \mathcal{K}^\pm section of the Particle Listings above. For definitions of a_v , a_t , a_y , and a_y , see the earlier version of the same note in the 1982 edition of this *Review* published in Physics Letters **111B** 70 (1982).

 $|\text{matrix element}|^2 = 1 + gu + hu^2 + jv + kv^2 + fuv$ where $u=(s_3-s_0)\ /\ m_\pi^2$ and $v=(s_1-s_2)\ /\ m_\pi^2$

LINEAR COEFFICIENT & FOR $K^0 \rightarrow \pi^+\pi^-\pi^0$


VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.678 ±0.008 OUR AV	ERAGE	Error includes scale below.	e fac	tor of 1	.5. See the ideogram
$0.6823 \pm 0.0044 \pm 0.0044$	EOOL	ANGELOPO	000	CDLD	
0.0023 ± 0.0044 ± 0.0044	SOUR	ANGELOFO	300	CPLK	
0.681 ±0.024	6499	CHO	77	HBC	
0.620 ± 0.023	4709	PEACH	77	HBC	
0.677 +0.010	509k	MESSNER	74	ASPK	$a_{\cdot \cdot \cdot} = -0.917 + 0.013$

• • • We do not use th	e followin	ig data for averages,	fits, limits,	etc. • • •
0.69 ±0.07	192	65 BALDO	75 HLBC	
0.590 ± 0.022	56k	⁶⁵ BUCHANAN	75 SPEC	$a_{ij} = -0.277 \pm 0.010$
0.619 ± 0.027	20k ⁶	^{5,66} BISI	74 ASPK	
0.612 ± 0.032		65 ALEXANDER	73B HBC	•
0.73 ± 0.04	3200	65 BRANDENB	73 HBC	
0.50 ± 0.11	180	65 JAMES	72 HBC	
0.608 ± 0.043	1486	65 KRENZ	72 HLBC	$a_t = -0.277 \pm 0.018$
0.688 ±0.074	384	65 METCALF	72 ASPK	$a_t = -0.31 \pm 0.03$
0.650 ±0.012	29k	65 ALBROW	70 ASPK	$a_V = -0.858 \pm 0.015$
0.593 ±0.022	36k ⁶	^{5,67} BUCHANAN	70 SPEC	$a_{II} = -0.278 \pm 0.010$
0.664 ±0.056	4400	⁶⁵ sмітн	70 OSPK	$a_t = -0.306 \pm 0.024$
0.400 ± 0.045	2446	65 BASILE	68B OSPK	$a_t = -0.188 \pm 0.020$
0.649 ± 0.044	1350	⁶⁵ HOPKINS	67 HBC	$a_t = -0.294 \pm 0.018$
0.428 ± 0.055	1198	⁶⁵ NEFKENS	67 OSPK	$a_H = -0.204 \pm 0.025$
0.64 ±0.17	280	⁶⁵ ANIKINA	66 CC	$a_{\nu} = -8.2^{+0.9}_{-1.3}$
0.70 ±0.12	126	65 HAWKINS	66 HBC	$a_v = -8.6 \pm 0.7$
0.32 ± 0.13	66	⁶⁵ ASTBURY	65 CC	$a_{V} = -5.5 \pm 1.5$
0.51 ± 0.09	310	65 ASTBURY	65B CC	$a_{\nu} = -7.3^{+0.6}_{-0.8}$
0.55 ± 0.23	79	⁶⁵ ADAIR	64 HBC	$a_{\nu} = -7.6 \pm 1.7$
0.51 ± 0.20	77	⁶⁵ LUERS	64 HBC	$a_{v} = -7.3 \pm 1.6$

65 Quadratic dependence required by some experiments. (See sections on "QUADRATIC COEFFICIENT N" and "QUADRATIC COEFFICIENT N" below.) Correlations prevent us from averaging results of fits not including g, h, and k terms.

66 BISI 74 value comes from quadratic fit with quad. term consistent with zero. g error is thus larger than if linear fit were used.

67 BUCHANAN 70 result revised by BUCHANAN 75 to include radiative correlations and to use more reliable κ_1^0 momentum spectrum of second experiment (had same beam).

Linear coeff. g for $\kappa_L^0 \to \pi^+\pi^-\pi^0$ matrix element squared

QUADRATIC COEFFICIENT h FOR $K_L^0 \to \pi^+\pi^-\pi^0$

VALUE	EVT5	DOCUMENT ID		TECN
0.076±0.006 OUR A				
$0.061 \pm 0.004 \pm 0.015$	500k	ANGELOPO	98C	CPLR
0.095 ± 0.032	6499	СНО	77	нвс
0.048 ± 0.036	4709	PEACH	77	нвс
0.079 ± 0.007	509k	MESSNER	74	ASPK
• • • We do not use th	e following	data for averages	, fits	s, limits, etc. • • •
-0.011±0.018	29k ⁶	8 ALBROW	70	ASPK
0.043 ± 0.052	4400	⁵⁸ SMITH	70	OSPK
See notes in secti	ion "LINEA	R COEFFICIENT	gF	$\text{FOR } K_I^0 \rightarrow \pi^+\pi^-\pi^0 \mid \text{MATRIX}$
ELEMENT 2" ab				•
				experiments. (See section on

QUADRATIC COEFFICIENT k FOR $K_L^0 \rightarrow \pi^+\pi^-\pi^0$

sults of fits not including g, h, and k terms.

VALUE	EVT5	DOCUMENT ID		TECN
0.0099 ± 0.0015 OUR AVE	RAGE			
$0.0104 \pm 0.0017 \pm 0.0024$	500k	ANGELOPO	98c	CPLR
0.024 ±0.010	6499	CHO	77	HBC
-0.008 ± 0.012	4709	PEACH	77	HBC
0.0007 ± 0.0019	Engk	MESSNER	74	ASPK

LINEAR COEFFICIENT j FOR $K_L^0 \rightarrow \pi^+\pi^-\pi^0$ (CP-VIOLATING TERM)

QUADRATIC COEFFICIENT f FOR $K_I^0 \rightarrow \pi^+\pi^-\pi^0$ (CP-VIOLATING TERM)

Listed in CP-violation section below.

QUADRATIC COEFFICIENT h FOR $K_L^0 \to \pi^0\pi^0\pi^0$

VALUE (units 10 ⁻³)	EVTS	DDCUMENT ID		TECN
$-3.3\pm1.1\pm0.7$	5M	⁶⁹ SOMALWAR	92	E731

 69 SOMALWAR 92 chose m_{π^+} as normalization to make it compatible with the Particle Data Group $K_I^0 \to \pi^+\pi^-\pi^0$ definitions.

K? FORM FACTORS

For discussion, see note on form factors in the \mathcal{K}^\pm section of the Particle Listings above.

In the form factor comments, the following symbols are used.

 f_{+} and f_{-} are form factors for the vector matrix element.

 f_S and f_T refer to the scalar and tensor term.

 $f_0 = f_+ + f_- t/(m_K^2 - m_\pi^2).$

 $\lambda_+,\,\lambda_-,\,{\rm and}\,\,\lambda_0$ are the linear expansion coefficients of $f_+,\,f_-,\,{\rm and}\,\,f_0.$

 λ_+ refers to the $K^0_{\mu3}$ value except in the K^0_{e3} sections.

 $d\xi(0)/d\lambda_+$ is the correlation between $\xi(0)$ and λ_+ in $K^0_{\mu3}$

 $d\lambda_0/d\lambda_+$ is the correlation between λ_0 and λ_+ in $K_{\mu3}^0$

t= momentum transfer to the π in units of m_π^2 .

DP = Dalitz plot analysis.

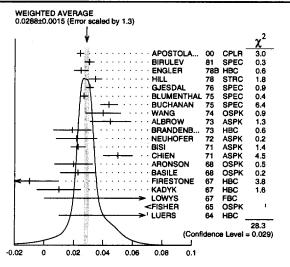
 $PI = \pi$ spectrum analysis.

 $MU = \mu$ spectrum analysis.

POL= μ polarization analysis.

BR = $K_{\mu 3}^0/K_{e3}^0$ branching ratio analysis.

 ${\sf E}={\sf positron}$ or electron spectrum analysis.


RC = radiative corrections.

λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN K_{e3}^0 DECAY)

For radiative correction of κ^0_{e3} DP, see GINSBERG 67 and BECHERRAWY 70.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.0288±0.0015 OUR AV	ERAGE		e fact	tor of 1.	3. See the ideogram
		below.			
$0.0245\pm0.0012\pm0.0022$		APOSTOLA		CPLR	DP
0.0306 ± 0.0034	74k	BIRULEV		SPEC	DP
0.025 ± 0.005	12k	⁷⁰ ENGLER		HBC	DP
0.0348 ± 0.0044	18k	HILL		STRC	DP
0.0312 ± 0.0025	500k	GJESDAL		SPEC	DP
0.0270 ± 0.0028	25k	BLUMENTHAL		SPEC	DP
0.044 ± 0.006	24k	BUCHANAN	75	SPEC	DP
0.040 ± 0.012	2171	WANG	74	OSPK	DP
0.045 ± 0.014	5600	ALBROW	73	ASPK	DP
0.019 ± 0.013	1871	BRANDENB	73	HBC	PI transv.
0.022 ± 0.014	1910	NEUHOFER	72	ASPK	PI
0.023 ± 0.005	42k	BISI	71	ASPK	DP
0.05 ± 0.01	16k	CHIEN	71	ASPK	DP, no RC
0.02 ± 0.013	1000	ARONSON	68	OSPK	PI
$+0.023 \pm 0.012$	4800	BASILE	68	OSPK	DP, no RC
-0.01 ± 0.02	762	FIRESTONE	67	HBC	DP, no RC
$+0.01$ ± 0.015	531	KADYK	67	HBC	e,PI, no RC
$+0.08 {}^{+0.10}_{-0.08}$	240	LOWYS	67	FBC	PI
+0.15 ±0.08	577	FISHER	65	OSPK	DP, no RC
$+0.07$ ± 0.06	153	LUERS	64	HBC	DP, no RC
• • • We do not use the f	ollowing	data for averages, fi	its, liı	mits, etc	C. • • •
0.029 ±0.005	19k	⁷⁰ сно	80	нвс	DP
0.0286 ± 0.0049	26k	BIRULEV	79	SPEC	Repl. by BIRULEV 81
0.032 ± 0.0042	48k	BIRULEV	76	SPEC	Repl. by BIRULEV 81

 $^{^{70}}$ ENGLER 78 B uses an unique K_{e3} subset of CHO 80 events and is less subject to systematic effects.

 λ_+ (Linear energy dependence of f_+ , K_{e3} decay)

 $dE(n)/d\lambda$. EVTS

 $\xi_{a}=f_{-}/f_{+}$ (determined from $K^{0}_{\mu3}$ spectra)

The parameter ξ is redundant with λ_{0} below and is not put into the Meson Summary Table. DOCUMENT ID

VALUE	υς(υ)/υλ+	_,,,	DOCUMENTIA		LECIV	COMMENT
-0.11±0.09 O	UR EVALUAT	ON E	rror includes scale fa			Correlation is fit discussed in
					actors ii	1 1982 edition, PL
			111B (April 19	82).		
-0.10 ± 0.09	-12	150k	71 BIRULEV	81	SPEC	DP
$+0.26 \pm 0.16$	-13	14k	⁷² сно	80	HBC	DP
$+0.13 \pm 0.23$	-20	16k	⁷² HILL	79	STRC	DP
-0.25 ± 0.22	-5.9	32k	⁷³ BUCHANAN	75	SPEC	DP
-0.11 ± 0.07	-17	1.6M	74 DONALDSON	74B	SPEC	DP
-1.00 ± 0.45	-20	1385	⁷⁵ PEACH	73	HLBC	DP
-1.5 ± 0.7	-28	9086			ASPK	
$+1.2 \pm 0.8$	-18	1341	77 CARPENTER	66	OSPK	DP
• • • We do no	ot use the follo	wing d	ata for averages, fits,	limit	s, etc.	• • •
$+0.50\pm0.61$	unknown	16k	78 DALLY	72	ASPK	DP
-3.9 ± 0.4		3140	79 BASILE	70		DP, indep of λ_{+}
$-0.68^{+0.12}_{-0.20}$	26	16k	⁷⁸ CHIEN	70	ASPK	DP

⁷¹ BIRULEV 81 error, $d\xi(0)/d\lambda_+$ calculated by us from λ_0 , λ_+ . $d\lambda_0/d\lambda_+=0$ used.

$\xi_b = f_-/f_+$ (determined from $K_{\mu3}^0/K_{e3}^0$)

The $K_{\mu 3}^0/K_{e3}^0$ branching ratio fixes a relationship between $\xi(0)$ and λ_+ . We quote the author's $\xi(0)$ and associated λ_+ but do not average because the λ_+ values differ. The fit result and scale factor given below are not obtained from these ξ_b values. Instead they are obtained directly from the authors $K^0_{\mu3}/K^0_{e3}$ branching ratio via the fitted $K^0_{\mu3}/K^0_{e3}$ ratio $(\Gamma(\pi^\pm\mu^\mp\nu_\mu)/\Gamma(\pi^\pm e^\mp\nu_e))$. The parameter ξ is redundant with λ_0 below and is not put into the Meson Summary Table.

 $^{^{72}}$ HILL 79 and CHO 80 calculated by us from λ_0 , λ_+ , and $d\lambda_0/d\lambda_+$.

⁷³ BUCHANAN 75 is calculated by us from λ_0 , λ_+ and $d\lambda_0/d\lambda_+$ because their appendix A value -0.20 ± 22 assumes $\xi(t)$ constant, i.e. $\lambda_-=\lambda_+$.

 $^{^{74}}$ DONALDSON 74B gives $\xi=-0.11\pm0.02$ not including systematics. Above error and $d\xi(0)/d\lambda_+$ were calculated by us from λ_0 and λ_+ errors (which include systematics) and $d\lambda_0/d\lambda_+$.

 $^{^{75}}$ PEACH 73 gives $\xi(0)=-0.95\pm0.45$ for $\lambda_+=\lambda_-=0.025$. The above value is for $\lambda_-=0.$ K.Peach, private communication (1974).

 $^{^{76}}$ ALBROW 72 fit has λ_- free, gets $\lambda_-=-0.030\pm0.060$ or $\Lambda=+0.15 ^{+0.17}_{-0.11}$

⁷⁷ CARPENTER 66 $\xi(0)$ is for $\lambda_+=0$. $d\xi(0)/d\lambda_+$ is from figure 9.

 $^{^{78}}$ CHIEN 70 errors are statistical only. $d\xi(0)/d\lambda_{+}$ from figure 4. DALLY 72 is a reanalysis of CHIEN 70. The DALLY 72 result is not compatible with assumption $\lambda_-=0$ so not included in our fit. The nonzero λ_- value and the relatively large λ_+ value found by DALLY 72 come mainly from a single low t bin (figures 1,2). The (f_+,ξ) correlation was ignored. We estimate from figure 2 that fixing $\lambda_{\perp}=0$ would give $\xi(0)=-1.4\pm0.3$ and would add 10 to χ^2 . $d\xi(0)/d\lambda_+$ is not given.

⁷⁹ BASILE 70 is incompatible with all other results. Authors suggest that efficiency estimates might be responsible.

• • We do not use the following data for averages, fits, limits, etc. • • •												
0.5 ± 0.4	6700	BRANDENB 73 HBC BR, λ_{\perp} = 0.019 \pm 0.013										
-0.08 ± 0.25	1309	80 EVANS 73 HLBC BR, $\lambda_{\perp}=0.02$										
-0.5 ± 0.5	3548	BASILE 70 OSPK BR, $\lambda_{+} = 0.02$										
$+0.45 \pm 0.28$	569	BEILLIERE 69 HLBC BR, A+=0										
-0.22 ± 0.30	1309	⁸⁰ EVANS 69 HLBC										
$+0.2 \begin{array}{c} +0.8 \\ -1.2 \end{array}$		KULYUKINA 68 CC BR, λ_{+} =0										
$+1.1 \pm 1.1$	389	ADAIR 64 HBC BR, $\lambda_{+}=0$										
$+0.66^{+0.9}_{-1.3}$		LUERS 64 HBC BR, $\lambda_{+}=0$										
80 EVANS 73 replaces EVANS 69.												
$\xi_c = f/f_+$ (determined from μ polarization in $K_{\mu 3}^0$)												

The μ polarization is a measure of $\xi(t)$. No assumptions on λ_{+-} necessary, t (weighted by sensitivity to $\xi(t)$) should be specified. In λ_+ , $\xi(0)$ parametrization this is $\xi(0)$ for $\lambda_+=0$. $d\xi/d\lambda=\xi t$. For radiative correction to μ polarization in $K_{\mu 3}^0$, see GINSBERG 73. The parameter ξ is redundant with λ_0 below and is not put into the Meson Summary Table. VALUE EVTS DOCUMENT ID TECN COMMENT

-0.11 ±0.09 OUR	EVALUATI				of 2.3. Correlation is fit discussed in note on
		K _{£3} form fact 1982).	ors in :	1982 ed	lition, PL 111B (April
$+0.178\pm0.105$	207k	81 CLARK	77	SPEC	POL, $d\xi(0)/d\lambda_{+} = +0.68$
-0.385 ± 0.105	2.2M	82 SANDWEISS	73	CNTR	POL, $d\xi(0)/d\lambda_{+} = -6$
$-1.81 \begin{array}{c} +0.50 \\ -0.26 \end{array}$		⁸³ LONGO	69	CNTR	POL, t=3.3
• • • We do not us	e the followi	ng data for average	es, fits,	limits,	etc. • • •
-1.6 ± 0.5	638	84 ABRAMS			
-1.2 ± 0.5	2608	84 AUERBACH	66B	OSPK	Polarization
81 CLARK 77 t = -	+3.80, dE(0)	$)/d\lambda_{\perp} = \xi(t)t = 0$).178×	3.80 =	+0.68.
82 SANDWEISS 73					
83LONGO 69 $t = 3$	3.3 calculate	d from $d\xi(0)/d\lambda_{+}$	= -6.	.0 (table	e 1) divided by $\xi=-1.81$

$\operatorname{Im}(\xi)$ in $K^0_{\mu3}$ DECAY (from transverse μ pol.)

 $^{84}\,t$ value not given.

Test of T reve	rsal invarian	ce.				
VALUE	<u>EVTS</u>		DOCUMENT ID		TECN	COMMENT
-0.007±0.026 OUI	RAVERAGE					
0.009 ± 0.030	12M		MORSE			Polarization
0.35 ± 0.30	207k		CLARK			
-0.085 ± 0.064	2.2M	86	SANDWEISS	73	CNTR	POL, $t=0$
-0.02 ± 0.08			LONGO	69	CNTR	POL, $t=3.3$
-0.2 ± 0.6			ABRAMS	68B	OSPK	Polarization
• • • We do not us	se the followi	ing d	lata for average	s, fits	i, limits,	etc. • • •
0.012 ± 0.026			SCHMIDT	79	CNTR	Repl. by MORSE 80

⁸⁵CLARK 77 value has additional $\xi(0)$ dependence +0.21Re $[\xi(0)]$.

 λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN $K_{\mu3}^0$ DECAY)

See also the corresponding entries and notes in section " $\xi_A=f_-/f_+$ " above and section " λ_0 (LINEAR ENERGY DEPENDENCE OF f_0 IN $K_{\mu3}^0$ DECAY)" below. For radiative correction of $K_{u,s}^0$ Dalitz plot see GINSBERG 70 and BECHERRAWY 70.

VALUE		EVTS	DOCUMENT ID			COMMENT
				CUSS	d in not	te on Ke3 form factors in
0.0427	± 0.0044	150k	BIRULEV	81	SPEC	DP
0.028	± 0.010	14k	СНО	80	HBC	DP
0.028	± 0.011	16k	HILL	79	STRC	DP
0.046	± 0.030	32k	BUCHANAN	75	SPEC	DP
0.030	± 0.003	1.6M	DONALDSON	748	SPEC	DP
0.085	± 0.015	9086	ALBROW	72	A5PK	DP
• • •	We do n	ot use the following o	lata for average	s, fits	, limits,	etc. • • •
0.0337	± 0.0033	129k	DZHORD	77	SPEC	Repl. by BIRULEV 81
0.046	± 0.008	82k	ALBRECHT	74	WIRE	Repl. by BIRULEV 81
0.11	± 0.04	16k	DALLY	72	ASPK	DP
0.07	± 0.02	16k	CHIEN	70	ASPK	Repl. by DALLY 72

 λ_0 (LINEAR ENERGY DEPENDENCE OF f_0 IN $K^0_{\mu3}$ DECAY) Wherever possible, we have converted the above values of $\xi(0)$ into values of λ_0 using the associated λ_{+}^{μ} and $d\xi(0)/d\lambda_{+}$.

VALUE		$d\lambda_0/d\lambda_+$	EVTS	DOCUMENT ID	TECN	COMMENT
0.025	±0.006	OUR EVALU	ATION	Error includes scale fa	ctor of 2.3	3. Correlation is
				$d\lambda_0/d\lambda_{\perp} = -0.1$	From a	fit discussed in
				note on K≠3 form	factors in	1982 edition, PL
				111B (Apřil 1982	1.	

0.0341	±0.0067	unknown	150k	87 BIRULEV	81	SPEC	DP
+0.050	± 0.008	-0.11	14k	CHO	80	HBC	DP
+0.039	± 0.010	-0.67	16k	HILL	79	STRC	DP
+0.047	± 0.009	1.06	207k	⁸⁸ CLARK	77	SPEC	POL
+0.025	± 0.019	+0.5	32k	⁸⁹ BUCHANAN	75	SPEC	DP
+0.019	± 0.004	-0.47	1.6M	90 DONALDSON	74B	SPEC	DP
-0.060	± 0.038	-0.71	1385	⁹¹ PEACH	73	HLBC	DP
-0.018	± 0.009	+0.49	2.2M	88 SANDWEISS	73	CNTR	POL
-0.043	± 0.052	-1.39	9086	⁹² ALBROW	72	ASPK	DP
-0.140	+0.043 -0.022	+0.49		88 LONGO	69	CNTR	POL
+0.08	± 0.07	-0.54	1371	88 CARPENTER	66	OSPK	DP
V	Ve do not use	the followi	ng data f	or averages, fits, lir	nits,	etc. • •	•
0.041	±0.008		14k	⁹³ CHO	80	HBC	BR, $\lambda_{+} = 0.028$
+0.0485	±0.0076		47k	DZHORD	77	SPEC	In BIRULEV 81
+0.024	± 0.011		82k	ALBRECHT	74	WIRE	In BIRULEV 81
+0.06	£0.03		6700	94 BRANDENB	73	HBC	BR,
							$\lambda_{\pm} = 0.019 \pm 0.019$
-0.067	±0.227	unknown	16k	95 DALLY	72	ASPK	0.013 DP
	±0.034	+1.	3140	96 BASILE	70	OSPK	DP
0.555	,				. •		

⁸⁷ BIRULEV 81 gives $d\lambda_0/d\lambda_+=-1.5$, giving an unreasonably narrow error ellipse which dominates all other results. We use $d\lambda_0/d\lambda_+=0$.

 $|f_5/f_+|$ FOR K_{e3}^0 DECAY Ratio of scalar to f_+ couplings.

VALUE	CL%_	EVTS	DOCUMENT ID		TECN	COMMENT
<0.04	68	25k	BLUMENTHA	L75	SPEC	
• • • We do	not use tl	ne followi	ng data for average	s, fit	s, limits,	etc. • • •
< 0.095	95	18k	HILL	78	STRC	
< 0.07	68	48k	BIRULEV	76	SPEC	See also BIRULEV 81
< 0.19	95	5600	ALBROW	73	ASPK	
< 0.15	68		KULYUKINA	67	CC	

 $|f_T/f_+|$ FOR K_{e3}^0 DECAY Ratio of tensor to f_+ couplings.

VALUE	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<0.23	68	25k	BLUMENTHA	L75	SPEC	
• • • We do	not use th	ie followii	ng data for average	s, fit	s, limits,	etc. • • •
< 0.40	95	18k	HILL	78	STRC	
< 0.34	68	48k	BIRULEV	76	SPEC	See also BIRULEV 81
<1.0	95	5600	ALBROW	73	ASPK	
<1.0	68		KULYUKINA	67	CC	

 $|f_T/f_+|$ FOR $K_{\mu 3}^0$ DECAY Ratio of tensor to f_+ couplings.

VALUE	 DOCUMENT ID		TECN
0.12±0.12	 BIRULEV	81	SPEC

 $lpha_{K^{\bullet}}$ DECAY FORM FACTOR FOR $K_L
ightarrow e^+e^-\gamma$ $lpha_{K^{\bullet}}$ is the constant in the model of BERGSTROM 83 which measures the relative strength of the vector-vector transition $K_L \to K^* \gamma$ with $K^* \to \rho$, ω , $\phi \to \gamma^*$ and the pseudoscalar-pseudoscalar transition $K_L \to \pi$, η , $\eta' \to \gamma \gamma^*$.

VALUE EVTS	DOCUMENT ID	TECN
-0.33 ±0.05 OUR AVERAGE		
$-0.36 \pm 0.06 \pm 0.02$ 6864	FANTI	998 NA48
-0.28 ± 0.13	BARR	90B NA31
-0.280 + 0.099	OHL	90B B845

DECAY FORM FACTORS FOR $K_L^0 \rightarrow \pi^{\pm}\pi^0 e^{\mp}\nu_e$

Given in MAKOFF 93.

⁸⁶ SANDWEISS 73 value corrected from value quoted in their paper due to new value of Re(ξ). See footnote 4 of SCHMIDT 79.

 $^{^{88}\,\}lambda_0$ value is for $\lambda_+=$ 0.03 calculated by us from $\xi(0)$ and $d\xi(0)/d\lambda_+$.

 $^{^{89}}$ BUCHANAN 75 value is from their appendix A and uses only $K_{\mu3}$ data. $d\lambda_0/d\lambda_+$ was obtained by private communication, C.Buchanan, 1976.

⁹⁰ DONALDSON 74B $d\lambda_0/d\lambda_+$ obtained from figure 18.

⁹¹ PEACH 73 assumes $\lambda_{+}=0.025$. Calculated by us from $\xi(0)$ and $d\xi(0)/d\lambda_{+}$.

 $^{^{92}}$ ALBROW 72 λ_0 is calculated by us from $\xi_A,~\lambda_+$ and $d\xi(0)/d\lambda_+$. They give $\lambda_0=-0.043\pm0.039$ for $\lambda_-=0$. We use our larger calculated error.

⁹³ CHO 80 BR result not independent of their Dalitz plot result.

 $^{^{94}}$ Fit for λ_0 does not include this value but instead includes the $K_{\mu3}/K_{e3}$ result from this

⁹⁵ DALLY 72 gives $f_0=1.20\pm0.35$, $\lambda_0=-0.080\pm0.272$, $\lambda_0{}'=-0.006\pm0.045$, but with a different definition of λ_0 . Our quoted λ_0 is his λ_0/f_0 . We cannot calculate true λ_0 error without his (λ_0,f_0) correlations. See also note on DALLY 72 in section ξ_A .

⁹⁶ BASILE 70 λ_0 is for $\lambda_+=0$. Calculated by us from ξ_A with $d\xi(0)/d\lambda_+=0$. BASILE 70 is incompatible with all other results. Authors suggest that efficiency estimates might be

FITS FOR K_L^0 CP-VIOLATION PARAMETERS

Revised April 2000 by T.G. Trippe (LBNL).

In recent years, K_L^0 CP-violation experiments have improved our knowledge of CP-violation parameters and their consistency with the expectations of CPT invariance and unitarity. For definitions of K_L^0 CP-violation parameters and a brief discussion of the theory, see the article "CP Violation" by L. Wolfenstein in Section 12 of this Review.

This note describes our two fits for the CP-violation parameters in $K_L^0 \to \pi^+\pi^-$ and $\pi^0\pi^0$ decay, one for the phases ϕ_{+-} and ϕ_{00} , and another for the amplitudes $|\eta_{+-}|$ and $|\eta_{00}|$.

Fit to ϕ_{+-} , ϕ_{00} , $\Delta\phi$, Δm , and τ_s data: We perform a joint fit to the data on $\phi_{+-},\ \phi_{00},$ the phase difference $\Delta \phi = \phi_{00} - \phi_{+-}$, the $K_L^0 - K_S^0$ mass difference Δm , and the K_S^0 mean life τ_s , including the effects of correlations. Measurements of ϕ_{+-} and ϕ_{00} are highly correlated with Δm and τ_s . Some measurements of τ_s are correlated with Δm . The correlations are given in the footnotes of the ϕ_{+-} and ϕ_{00} sections of the K_L^0 Particle Listings and the τ_S section of the K_S^0 Particle listings. In editions of the Review prior to 1996, we adjusted the experimental values of ϕ_{+-} and ϕ_{00} to account for correlations with Δm and τ_s but did not include the effects of these correlations when evaluating Δm and τ_s . In 1996, we introduced a joint fit including these correlations. In this fit, the ϕ_{+-} measurements have a strong influence on the fitted value of Δm . This is because the CERN NA31 vacuum regeneration experiments (CAROSI 90 [1] and GEWENIGER 74B [2]), the Fermilab E773/E731 regenerator experiments (SCHWIN-GENHEUER 95 [3] and GIBBONS 93 [4]), and the CPLEAR $K^0 - \overline{K}^0$ asymmetry experiment (APOSTOLAKIS 99C [5]) have very different dependences of ϕ_{+-} on Δm , as can be seen from their diagonal bands in Fig. 1.

The region where the ϕ_{+-} bands from these experiments cross gives a powerful measurement of Δm which decreases the fitted Δm value relative to our pre-1996 average Δm and earlier measurements such as CULLEN 70 [6], GEWENIGER 74C [7], and GJESDAL 74 [8]. This decrease brings the Δm -dependent ϕ_{+-} measurements into good agreement with each other and with ϕ (superweak), where

$$\phi({\rm superweak}) = \tan^{-1}\left(\frac{2\Delta m}{\Delta\Gamma}\right) = \tan^{-1}\left(\frac{2\Delta m \tau_S \tau_L}{\hbar(\tau_L - \tau_S)}\right) \ . \ \ (1)$$

The (ϕ_{+-}, τ_S) correlations influence the τ_S fit result in a similar manner, as can be seen in Fig. 2. The influence of the ϕ_{+-} experiments is not as great on τ_S as it is on Δm because the indirect measurements of τ_S derived from the diagonal crossing bands in Fig. 2 are not as precise as the direct measurements of τ_S from E773 (SCHWINGENHEUER 95 [3]), E731 (GIBBONS 93 [4]), and NA31 (BERTANZA 97 [9]).

In Fig. 1 [Fig. 2] the slope of the diagonal ϕ_{+-} bands shows the Δm $[\tau_S]$ dependence; the unseen τ_S $[\Delta m]$ dependent term is evaluated using the fitted τ_S $[\Delta m]$. The vertical half-width

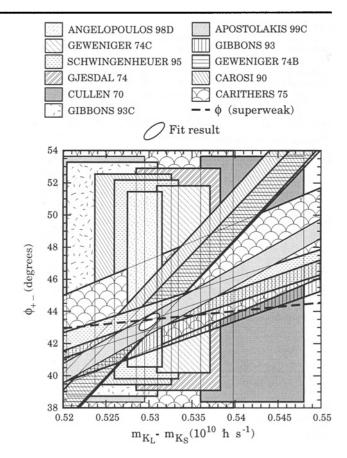


Figure 1: ϕ_{+-} vs Δm . Δm measurements appear as vertical bands spanning $\Delta m \pm 1\sigma$, some of which are cut near the top to aid the eye. The ϕ_{+-} measurements appear as diagonal bands spanning $\phi_{+-} \pm \sigma_{\phi}$. The dashed line shows ϕ (superweak). The ellipse shows the 1σ contour of the fit result. See Table 1 for data references.

 σ_{ϕ} of each band is the ϕ_{+-} error for fixed Δm $[\tau_S]$ and includes the systematic error due to the error in the fitted τ_S $[\Delta m]$.

Table 2 gives the resulting fit values for the parameters and Table 3 gives the correlation matrix. The resulting ϕ_{+-} is in good agreement with $\phi(\text{superweak}) = 43.49 \pm 0.07^{\circ}$ obtained from Eq. (1) using Δm and τ_s from Table 2.

The χ^2 is 16.0 for 20 degrees of freedom, indicating good agreement of the input data. Nevertheless, there has been criticism that Fermilab E773 (SCHWINGENHEUER 95 [3]) and E731 (GIBBONS 93 [4]) measure $\phi_{+-} - \phi_f$ and calculate the regeneration phase ϕ_f from the power law momentum dependence of the regeneration amplitude using analyticity and dispersion relations. In the E731 result, a systematic error of ± 0.5 degrees for departures from a pure power-law is included. For the E773 result, they modeled a variety of effects that do distort the amplitude from a pure power law and ascribed a $\pm 0.35^\circ$ systematic error from uncertainties in these effects. Even so, the E731 result remains valid within its quoted errors. KLEINKNECHT 94 [16] and KLEINKNECHT 95 [17] argue that these systematic errors should be around 3°, primarily

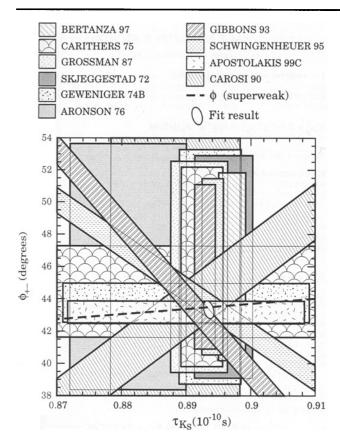


Figure 2: ϕ_{+-} vs τ_S . τ_S measurements appear as vertical bands spanning $\tau_S \pm 1\sigma$, some of which are cut near the top to aid the eye. The ϕ_{+-} measurements appear as diagonal bands spanning $\phi_{+-}\pm\sigma_\phi$. The dashed line shows $\phi(\text{superweak})$. The ellipse shows the fit result's 1σ contour. See Table 1 for data references.

because of the absence of data on the momentum dependence of the regeneration amplitude above 160 GeV/c. BRIERE 95 [18] and BRIERE 95C [19] reply that the current understanding of regeneration is sufficient to allow a precise and reliable correction for the region above 160 GeV/c. The question is one of judgement about the reliability of the assumptions used. In the absence of any contradictory evidence, we choose to accept the judgement of the E731/E773 experimenters in setting their systematic errors.

Fit for $\epsilon'/\epsilon, |\eta_{+-}|, |\eta_{00}|,$ and $\mathrm{B}(K_L \to \pi\pi)$

We list measurements of $|\eta_{+-}|$, $|\eta_{00}|$, $|\eta_{00}/\eta_{+-}|$ and ϵ'/ϵ . Independent information on $|\eta_{+-}|$ and $|\eta_{00}|$ can be obtained from measurements of the K_L^0 and K_S^0 lifetimes (τ_L, τ_S) and branching ratios (B) to $\pi\pi$, using the relations

$$|\eta_{+-}| = \left[\frac{\mathrm{B}(K_L^0 \to \pi^+ \pi^-)}{\tau_L} \, \frac{\tau_S}{\mathrm{B}(K_S^0 \to \pi^+ \pi^-)} \right]^{1/2} \, , \quad (2a)$$

$$|\eta_{00}| = \left[\frac{{
m B}(K_L^0 o \pi^0 \pi^0)}{ au_L} \; \frac{ au_S}{{
m B}(K_S^0 o \pi^0 \pi^0)}
ight]^{1/2} \; . \eqno(2b)$$

Table 1: References and location of input data for Fig. 1 and Fig. 2. Unless otherwise indicated by a footnote, a check (\checkmark) indicates that the data can be found in the ϕ_{+-} or Δm sections of the K_L Particle Listings, or the τ_S section of the K_S Particle Listings, according to the column headers.

Location of input data			data		
Fig. 1 Fig. 2		. 2			
$\overline{\phi_{+-}}$	Δm	$\overline{\phi_{+-}}$	$ au_{\scriptscriptstyle S}$	PDG Document ID	Ref.
√	√	√		APOSTOLAKIS 99C	[5]
✓		✓	✓	GIBBONS 93	[4]
✓	✓	✓	✓	SCHWINGENHEUER 95	[3]
✓		✓	✓	GEWENIGER 74B	[2]
✓	√*	✓	√ *	CAROSI 90	[1]
✓	√ †	✓	✓	CARITHERS 75	[10]
	✓			ANGELOPOULOS 98D	[11]
	✓			GEWENIGER 74C	[7]
	✓			GJESDAL 74	[8]
	✓			CULLEN 70	[6]
	✓			GIBBONS 93C	[12]
			✓ -	BERTANZA 97	[9]
			✓	GROSSMAN 87	[13]
			✓	SKJEGGESTAD 72	[14]
			✓	ARONSON 76	[15]

^{*} from $\phi_{00}(\Delta m, \tau_S)$ in ϕ_{00} Particle Listings.

Table 2: Results of the fit for ϕ_{+-} , ϕ_{00} , $\phi_{00} - \phi_{+-}$, Δm , and τ_s . The fit has $\chi^2 = 16.0$ for 20 degrees of freedom (24 measurements -5 parameters +1 constraint).

Quantity	Fit Result
ϕ_{+-}	$43.3\pm0.5^{\circ}$
Δm	$(0.5300 \pm 0.0012) \times 10^{10} \hbar \text{ s}^{-1}$
$ au_{_S}$	$(0.8935 \pm 0.0008) \times 10^{-10}$ s
ϕ_{00}	$43.2\pm1.0^{\circ}$
$\Delta\phi$	$-0.1\pm0.8^{\circ}$

Table 3: Correlation matrix for the fitted parameters.

	ϕ_{+-}	Δm	$ au_{\scriptscriptstyle S}$	ϕ_{00}	$\Delta\phi$
$\overline{\phi_{+-}}$	1.00	0.71	-0.30	0.54	-0.02
Δm	0.71	1.00	-0.19	0.43	0.04
$ au_{\scriptscriptstyle S}$	-0.30	-0.19	1.00	-0.14	0.04
ϕ_{00}	0.54	0.43	-0.14	1.00	0.83
$\Delta\phi$	-0.02	0.04	0.04	0.83	1.00

[†] from $\tau_S(\Delta m)$ in τ_S Particle Listings.

 K_L^0

For historical reasons the branching ratio fits and the CPviolation fits are done separately, but we want to include the influence of $|\eta_{+-}|$, $|\eta_{00}|$, $|\eta_{00}/\eta_{+-}|$, and ϵ'/ϵ measurements on $\mathrm{B}(K_L^0 \to \pi^+\pi^-)$ and $\mathrm{B}(K_L^0 \to \pi^0\pi^0)$ and vice versa. We approximate a global fit to all of these measurements by first performing two independent fits: 1) BRFIT, a fit to the K_L^0 branching ratios, rates, and mean life, and 2) ETAFIT, a fit to the $|\eta_{+-}|,\,|\eta_{00}|,\,|\eta_{+-}/\eta_{00}|,$ and ϵ'/ϵ measurements. The results from fit 1, along with the K_S^0 values from this edition are used to compute values of $|\eta_{+-}|$ and $|\eta_{00}|$ which are included as measurements in the $|\eta_{00}|$ and $|\eta_{+-}|$ sections with a document ID of BRFIT 00. Thus the fit values of $|\eta_{+-}|$ and $|\eta_{00}|$ given in this edition include both the direct measurements and the results from the branching ratio fit.

The process is reversed in order to include the direct $|\eta|$ measurements in the branching ratio fit. The results from fit 2 above (before including BRFIT 00 values) are used along with the K_L^0 and K_S^0 mean lives and the $K_S^0 o \pi\pi$ branching fractions to compute the K_L^0 branching ratios $\Gamma(K_L^0\to\pi^+\pi^-)/\Gamma({\rm total}) \text{ and } \Gamma(K_L^0\to\pi^0\pi^0)/\Gamma(K_L^0\to\pi^+\pi^-).$ These branching ratio values are included as measurements in the branching ratio section with a document ID of ETAFIT 00. Thus the K_L^0 branching ratio fit values in this edition include the results of direct measurements of $|\eta_{+-}|$, $|\eta_{00}|$, $|\eta_{00}/\eta_{+-}|$, and ϵ'/ϵ . A more detailed discussion of these fits is given in the 1990 edition of this Review [20].

References

- 1. R. Carosi et al., Phys. Lett. B237, 303 (1990).
- C. Geweniger et al., Phys. Lett. 48B, 487 (1974).
- 3. B. Schwingenheuer et al., Phys. Rev. Lett. 74, 4376 (1995).
- L.K. Gibbons et al., Phys. Rev. Lett. 70, 1199 (1993) and footnote in Ref. [3].
- 5. A. Apostolakis et al., Phys. Lett. B458, 545 (1999).
- M. Cullen et al., Phys. Lett. 32B, 523 (1970).
- C. Geweniger et al., Phys. Lett. **52B**, 108 (1974).
- S. Gjesdal et al., Phys. Lett. **52B**, 113 (1974).
- L. Bertanza et al., Z. Phys. C73, 629 (1997).
- W. Carithers et al., Phys. Rev. Lett. 34, 1244 (1975).
- 11. A. Angelopoulos et al., Phys. Lett. **B444**, 38 (1998).
- L.K. Gibbons, Thesis, RX-1487, Univ. of Chicago, 1993.
- N. Grossman et al., Phys. Rev. Lett. 59, 18 (1987).
- 14. O. Skjeggestad et al., Nucl. Phys. B48, 343 (1972).
- S.H. Aronson et al., Nuovo Cimento 32A, 236 (1976).
- 16. K. Kleinknecht and S. Luitz, Phys. Lett. B336, 581 (1994).
- K. Kleinknecht, Phys. Rev. Lett. 75, 4784 (1995).
- R. Briere and B. Winstein, Phys. Rev. Lett. 75, 402 (1995).
- 19. R. Briere and B. Winstein, Phys. Rev. Lett. 75, 4785 (1995).
- 20. J.J. Hernandez et al., Phys. Lett. **B239**, 1 (1990).

CP-VIOLATION PARAMETERS IN KD DECAYS

- CHARGE ASYMMETRY IN K DECAYS

Such asymmetry violates CP. It is related to $Re(\epsilon)$.

$\delta =$ weighted average of $\delta(\mu)$ and $\delta(e)$

VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT
0.327 ± 0.012 OUR AVE	RAGE	Includes data from the 2	datablo	cks that follow this one.
0.333 ± 0.050	33 M	WILLIAMS 73	ASPK	$K_{\mu 3} + K_{e3}$

 $\begin{array}{c|c} \delta(\mu) = \left\lceil (\pi^-\mu^+\nu_\mu) - \Gamma(\pi^+\mu^-\nu_\mu) \right\rceil / \text{SUM} \\ \text{Only the combined value below is put into the Meson Summary Table.} \\ \underline{\text{VALUE (\%)}} \qquad \underline{\text{EVTS}} \qquad \underline{\text{DOCUMENT ID}} \qquad \underline{\text{TECN}} \end{array}$

The data in this block is included in the average printed for a previous datablock.

0.304 ± 0.025 OUR AVERAGE

0.313 ± 0.029	15 M	GEWENIGER	74	ASPK	
0.278 ± 0.051	7.7M	PICCIONI	72	ASPK	
• • • We do not us	e the followin	ig data for average	s, fit	s, limits, etc	. • • •
0.60 ±0.14	4.1M	MCCARTHY	73	CNTR	
0.57 ±0.17	1M	97 PACIOTTI	69	OSPK	
0.403 ± 0.134	1M	⁹⁷ DORFAN	67	OSPK	

 97 PACIOTTI 69 is a reanalysis of DORFAN 67 and is corrected for $\mu^+\mu^-$ range difference in MCCARTHY 72.

$\delta(e) = [\Gamma(\pi^- e^+ \nu_e) - \Gamma(\pi^+ e^- \overline{\nu}_e)]/\text{SUM}$

0 333 + 0.014 OUR AVERAGE

0.341 ± 0.018	34M	GEWENIGER	74	ASPK	
0.318 ± 0.038	40M	FITCH	73	ASPK	
0.346 ± 0.033	10M	MARX	70	CNTR	
0.246 ± 0.059	10 M	⁹⁸ SAAL	69	CNTR	
• • • We do not use	the followi	ng data for average	es, fit	s, limits, etc. • • •	
0.36 ±0.18	600k	ASHFORD	72	ASPK	
0.224 ± 0.036	10M	98 BENNETT	67	CNTR	

98 SAAL 69 is a reanalysis of BENNETT 67.

PARAMETERS FOR $K_I^0 \rightarrow 2\pi$ DECAY —

$$\begin{array}{l} \eta_{+-} = \mathsf{A}(\mathsf{K}_L^0 \to \pi^+\pi^-) \: / \: \mathsf{A}(\mathsf{K}_S^0 \to \pi^+\pi^-) \\ \eta_{00} = \mathsf{A}(\mathsf{K}_L^0 \to \pi^0\pi^0) \: / \: \mathsf{A}(\mathsf{K}_S^0 \to \pi^0\pi^0) \end{array}$$

The fitted values of $|\eta_{+-}|$ and $|\eta_{00}|$ given below are the results of a fit to $|\eta_{+-}|,\,|\eta_{00}|,\,|\eta_{00}/\eta_{+-}|,$ and ${\rm Re}(\epsilon'/\epsilon).$ Independent information on $|\eta_{+-}|$ and $|\eta_{00}|$ can be obtained from the fitted values of the \mathcal{K}^0_I ightarrow $\pi\pi$ and $K_S^0 \to \pi\pi$ branching ratios and the K_L^0 and K_S^0 lifetimes. This information is included as data in the $|\eta_{+-}|$ and $|\eta_{00}|$ sections with a Document ID "BRFIT." See the note "Fits for KL CP-Violation Parameters" above for details.

$|\eta_{00}| = |A(K_L^0 \to 2\pi^0) / A(K_S^0 \to 2\pi^0)|$

2.262 ± 0.017 OUR FIT			
2.23 ±0.11 OUR AVERAGE			
2.12 ±0.16	99 BRFIT	00	
$2.47 \pm 0.31 \pm 0.24$	ANGELOPO	. 98 CPLR	
2.33 ±0.18	CHRISTENS.	79 ASPK	
• • • We do not use the follow	wing data for average	es, fits, limits	, etc. • • •
2.49 ±0.40	100 ADLER	96B CPLR	Sup. by ANGELOPOU- LOS 98
2.71 ±0.37	¹⁰¹ WOLFF		Cu reg., 4γ's
2.95 ±0.63	¹⁰¹ CHOLLET	70 OSPK	Cu reg., 4γ's

TECN COMMENT

 99 This BRFIT value is computed from fitted values of the κ^0_L and κ^0_S lifetimes and branching fractions to $\pi\pi$. See the discussion in the note "Fits for K_I^0 CP-Violation

100 Error is statistical only.

101 CHOLLET 70 gives $|\eta_{00}|=(1.23\pm0.24)\times$ (regeneration amplitude, 2 GeV/c Cu)/10000mb. WOLFF 71 gives $|\eta_{00}|=(1.13\pm0.12)\times$ (regeneration amplitude, 2 GeV/c Cu)/10000mb. We compute both $|\eta_{00}|$ values for (regeneration amplitude, 2 GeV/c Cu) = 24 \pm 2mb. This regeneration amplitude results from averaging over FAISSNER 69, extrapolated using optical-model calculations of Bohm et al., Physics Letters **27B** 594 (1968) and the data of BALATS 71. (From H. Faissner, private com-

ı

I

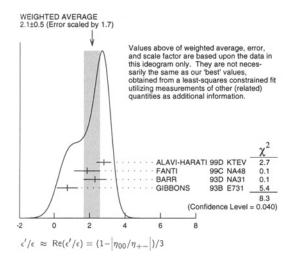
```
\left|\eta_{+-}\right| = \left|\mathsf{A}(K_L^0 \to \ \pi^+\pi^-) \ / \ \mathsf{A}(K_S^0 \to \ \pi^+\pi^-)\right|
                              EVTS
                                             DOCUMENT ID
                                                                  TECN__COMMENT
2.276±0.017 OUR FIT
2.277±0.017 OUR AVERAGE
                                        102 BRFIT
2.272 \pm 0.024
                                                                 00
                                       103 APOSTOLA... 99C CPLR \kappa^0 - \overline{\kappa}^0 asymmetry
2.264 \pm 0.023 \pm 0.027
                              70M
                                             GEWENIGER 74B ASPK
2.30 \pm 0.035
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                        104 ADLER
                                                                 95B CPLR \kappa^0-\overline{\kappa}^0 asymmetry
2.310 \pm 0.043 \pm 0.031
                                                                 928 CPLR K<sup>0</sup>-K<sup>0</sup> asymmetry
2.32 \pm 0.14 \pm 0.03
                                             ADLER
^{102} This BRFIT value is computed from fitted values of the K_{1}^{0} and K_{5}^{0} lifetimes and
     branching fractions to \pi\pi. See the discussion in the note "Fits for K_I^0 CP-Violation
     Parameters."
103 APOSTOLAKIS 99c report (2.264 \pm 0.023 \pm 0.026 + 9.1[\tau_5 - 0.8934]) \times 10^{-3}. We evaluate for our 1998 best value \tau_5 = (0.8934 \pm 0.0008) \times 10^{-10} s.
^{104} ADLER 958 report (2.312 \pm 0.043 \pm 0.030 - 1[\Delta m - 0.5274] + 9.1[\tau_{S} - 0.8926]) \times 10^{-3}.
    We evaluate for our 1996 best values \Delta m = (0.5304 \pm 0.0014) \times 10^{-10} \; hs^{-1} and 	au_s
     = (0.8927 \pm 0.0009) \times 10^{-10} s. Superseded by APOSTOLAKIS 99c.
\eta_{00}/\eta_{+-}
VALUE EVTS DOCUMENT ID

0.9936±0.0014 OUR FIT Error includes scale factor of 1.6.
```

0.9930±0.0020 OUR AVERAGE 105,106 BARR 0.9931 ± 0.0020 107 WOODS $0.9904 \pm 0.0084 \pm 0.0036$ 88 E731 • • • We do not use the following data for averages, fits, limits, etc. • • • 1M 105 BARR 93D NA31 105 BURKHARDT 88 NA31 $0.9939 \pm 0.0013 \pm 0.0015$ $0.9899 \pm 0.0020 \pm 0.0025$

 105 This is the square root of the ratio R given by BURKHARDT 88 and BARR 93D. 106 This is the combined results from BARR 93D and BURKHARDT 88, taking into account common systematic uncertainty of 0.0014.

 107 We calculate $|\eta_{00}/\eta_{+-}|=1-3(\epsilon'/\epsilon)$ from WOODS 88 (ϵ'/ϵ) value.


$\epsilon'/\epsilon \approx \operatorname{Re}(\epsilon'/\epsilon) = (1-|\eta_{00}/\eta_{+-}|)/3$

VALUE (units 10 ⁻³)	DOCUMENT ID	TECN	COMMENT
2.1 ±0.5 OUR FIT Error	includes scale factor of	f 1.6.	
2.1 ±0.5 OUR AVERAGE	Error includes scale f	actor of 1.7.	See the ideogram below.
$2.80 \pm 0.30 \pm 0.28$	ALAVI-HARAT	1990 KTEV	
$1.85 \pm 0.45 \pm 0.58$	FANTI	99C NA48	
2.3 ±0.65	08,109 BARR	930 NA31	
$0.74 \pm 0.52 \pm 0.29$	GIBBONS	93B E731	
• • We do not use the follow	ving data for averages	, fits, limits,	etc. • • •
2.0 ± 0.7	110 BARR	93D NA31	
$-0.4 \pm 1.4 \pm 0.6$			in GIBBONS 93B
3.3 ± 1.1	110 BURKHARDT	88 NA31	
$3.2 \pm 2.8 \pm 1.2$	108 WOODS	88 E731	

 108 These values are derived from $|\eta_{00}/\eta_{+-}|$ measurements. They enter the average in this section but enter the fit via the $\left|\eta_{00}/\eta_{+-}\right|$ section only.

109 This is the combined results from BARR 93D and BURKHARDT 88, taking into account their common systematic uncertainty.

 $^{110}\,\mathrm{These}$ values are derived from $|\eta_{00}/\eta_{+-}|$ measurements.

 ϕ_{+-} , PHASE of η_{+-} The dependence of the phase on Δ_m and τ_S is given for each experiment in the comments below, where Δm is the $K_0^1-K_0^2$ mass difference in units 10^{10} hs⁻¹ and τ_5 is the K_5 mean life in units 10^{-10} s. For the "used" data, we have evaluated these mass dependences using our 2000 values, $\Delta m=0.5300\pm0.0012$, $\tau_5=0.8935\pm0.0008$ to obtain the values quoted below. We also give the regeneration phase ϕ_f in the

OUR FIT is described in the note on "Fits for K_J^0 CP-Violation Parameters" in the K1 Particle Listings.

VALUE (°)	EVTS	DOCUMENT ID		TECN	COMMENT
43.3 ±0.5 OUR FIT					
43.2 ±0.7	70M ¹	11 APOSTOLA	99c	CPLR	κ^0 - $\overline{\kappa}^0$ asymmetry
43.6 ±0.8	112,1	13 SCHWINGEN.	95	E773	CH _{1.1} regenerator
42.4 ±1.0	113,1	14 GIBBONS		E731	B ₄ C regenerator
44.4 ±1.7	1	¹⁵ CAROSI		NA31	Vacuum regen.
44.4 ±2.8	1	16 CARITHERS	75	SPEC	C regenerator
43.8 ±1.2	1	17 GEWENIGER	74B	ASPK	Vacuum regen.
• • • We do not use t	he following	g data for average	s, fits	, limits,	etc. • • •
43.82 ± 0.63	118,1	¹⁹ ADLER	96C	RVUE	
43.6 ±1.2	1	²⁰ ADLER	95B	CPLR	K^0 - \overline{K}^0 asymmetry
42.3 ±4.4 ±1.4	10 ⁵ 1	²¹ ADLER	92B	CPLR	$K^0 - \overline{K}^0$ asymmetry
$47.7 \pm 2.0 \pm 0.9$	113,1	²² KARLSSON	90	E731	
111 APOSTOLAKIS 99	c report (4	$3.19 \pm 0.53 \pm 0.3$	28)° -	+ 300 fz	∆ <i>m</i> −0.53011°.
112 SCHWINGENHEU 0.8926].	ER 95 repor	ts $\phi_{+-} = 43.53$	± 0.7	6 + 173	$[\Delta m - 0.5282] - 275[\tau_s -$
				AL	

 13 These experiments measure ϕ_{+-} - ϕ_f and calculate the regeneration phase from the power law momentum dependence of the regeneration amplitude using analyticity and dispersion relations. SCHWINGENHEUER 95 [GIBBONS 93] includes a systematic error of 0.35° [0.5°] for uncertainties in their modeling of the regeneration amplitude. See the discussion of these systematic errors, including criticism that they could be underestimated, in the note on "C violation in K_L^0 decay."

 L GIBBONS 93 measures $\phi_+ - \phi_f$ and calculates the regeneration phase ϕ_f from the power law momentum dependence of the regeneration amplitude using analyticity. An error of 0.6° is included for possible uncertainties in the regeneration phase. They find $\phi_{+-}=$ 42.21 \pm 0.9 \pm 189 [Δm - 0.5257] \pm 460 [$r_{\rm S}$ - 0.8922]°, as given in SCHWINGENHEUER 95, footnote 8. GIBBONS 93 reports ϕ_{+-} (42.2 \pm 1.4)°

```
<sup>115</sup>CAROSI 90 \phi_{+-} = 46.9 \pm 1.4 \pm 0.7 + 579 \left[\Delta m - 0.5351\right] + 303 \left[\tau_{S} - 0.8922\right]^{\circ}
```

¹¹⁶CARITHERS 75 $\phi_{+-} = (45.5 \pm 2.8) + 224 [\Delta m - 0.5348]^{\circ}$. $\phi_{f} = -40.9 \pm 2.6^{\circ}$. ¹¹⁷GEWENIGER 74B $\phi_{+-} = (49.4 \pm 1.0) + 565 [\Delta m - 0.540]^{\circ}$

¹¹⁸ ADLER 96C fit gives $(43.82 \pm 0.41)^{\circ} + 339(\Delta m - 0.5307)^{\circ} - 252(\tau_{s} - 0.8922)^{\circ}$.

ADLER 96C in gives (43.62 ± 0.41) + 339(Δm - 0.5307) - 252(r₅ - 0.6922) .
 119 ADLER 96C is the result of a fit which includes nearly the same data as entered into the "OUR FIT" value in the 1996 edition of this Review (Physical Review **D54** 1 (1996)).
 120 ADLER 95B report 42.7° ± 0.9° ± 0.6° + 316[Δm - 0.5274]° +30[r₅ - 0.8926]°.
 121 ADLER 92B quote separately two systematic errors: ±0.4 from their experiment and

 ± 1.0 degrees due to the uncertainty in the value of Δm .

122 KARLSSON 90 systematic error does not include regeneration phase uncertainty.

 ϕ_{00} , PHASE OF η_{00} See comment in ϕ_{+-} header above for treatment of Δm and $\tau_{\rm S}$ dependence.

OUR FIT is described in the note on "Fits for K10 CP-Violation Parameters" in the

VALUE (°)	DOCUMENT ID		TECN	COMMENT	
43.2±1.0 OUR FIT					
41.9±5.6±1.9	123 ANGELOPO	98	CPLR		1
44.5±2.5	¹²⁴ CAROSI	90	NA31		
• • • We do not use the follow	ving data for average	s, fits	s, limits,	, etc. • • •	
$50.8 \pm 7.1 \pm 1.7$	¹²⁵ ADLER	96B	CPLR	Sup. by ANGELOPOU- LOS 98	
47.4±1.4±0.9	¹²⁶ KARLSSON	90	E731	200 70	
123 ANGELOPOULOS 98 ϕ_{00} dependence.	$= 42.0 \pm 5.6 \pm 1.9$	+ 24	0[∆ <i>m</i>	0.5307] with negligible $ au_{ m S}$	ı
124 CAROSI 90 $\phi_{00} = 47.1 \pm$	$2.1 \pm 1.0 + 579 [\Delta \pi]$, <u> </u>	0.5351]	$+252 [\tau_S - 0.8922]^{\circ}$.	
125 ADLER 96B identified initi systematic uncertainty is ± 126 KARL5SON 90 systematic	al neutral kaon indiv 1.5° combined in qu	ridua adrat	lly as be ture with	eing a K^{0} or a \overline{K}^{0} . The $\pm 0.8^{\circ}$ due to Δm .	
PHASE DIFFERENCE A.	_ _				

ERENCE $\phi_{00} - \phi_{+-}$

Test of CPT.

OUR FIT is described in the note on "Fits for K_J^0 CP-Violation Parameters" in the KO Particle Listings.

L' L' di cicle Liotingoi	
VALUE (°)	DOCUMENT ID TECN COMMENT
-0.1 ±0.8 OUR FIT	
-0.3 ±0.8 OUR AVERAGE	
-0.30 ± 0.88	127 SCHWINGEN95 Combined E731, E773
0.2 ±2.6 ±1.2	128 CAROSI 90 NA31
• • • We do not use the follow	ing data for averages, fits, limits, etc. • • •
$0.62 \pm 0.71 \pm 0.75$	SCHWINGEN95 E773
-1.6 ± 1.2	129 GIBBONS 93 E731
$-0.3 \pm 2.4 \pm 1.2$	KARL55ON 90 E731
127 This SCHWINGENHEUED	S values is the combined result of SCHWINGENHELIER O

and GIBBONS 93, accounting for correlated systematic errors. 128 CAROSI 90 is excluded from the fit because it it is not independent of ϕ_{+-} and ϕ_{00}

129 GIBBONS 93 give detailed dependence of systematic error on lifetime (see the section on the K_S^0 mean life) and mass difference (see the section on $m_{K_1^0} - m_{K_2^0}$.

- DECAY-PLANE ASYMMETRY IN π+π-e+e- DECAYS -This is the CP-violating asymmetry $A = \frac{N_{\sin\phi\cos\phi > 0.0} - N_{\sin\phi\cos\phi < 0.0}}{N_{\sin\phi\cos\phi > 0.0} + N_{\sin\phi\cos\phi < 0.0}}$ where ϕ is the angle between the e^+e^- and $\pi^+\pi^-$ planes in the \mathcal{K}^0_I CP ASYMMETRY A in $K_L^0 \rightarrow \pi^+\pi^-e^+e^-$ VALUE (%) DOCUMENT ID ı 13.6±2.5±1.2 ALAVI-HARATIOOB KTEV - CHARGE ASYMMETRY IN $\pi^+\pi^-\pi^0$ DECAYS -

These are CP-violating charge-asymmetry parameters, defined at beginning of section "LINEAR COEFFICIENT g FOR $K_L^0 \to \pi^+\pi^-\pi^0$ above. See also note on Dalitz plot parameters in K^\pm section and note on CP violation in K_L^0 decay above.

LINEAR COEFFICIENT J FOR $K_1^0 \rightarrow \pi^+\pi^-\pi^0$

VALUE	EVTS	DOCUMENT ID TECN
0.0011±0.0008 OUR AVE	RAGE	
$0.0010 \pm 0.0024 \pm 0.0030$	500k	ANGELOPO 98c CPLR
0.001 ±0.011	6499	CHO 77
-0.001 ± 0.003	4709	PEACH 77
0.0013 ± 0.0009	3M	SCRIBANO 70
0.0 ± 0.017	4400	SMITH 70 OSPK
0.001 ±0.004	238k	BLANPIED 68

QUADRATIC COEFFICIENT f FOR $K_L^0 o \pi^+\pi^-\pi^0$ <u>VALUE</u> <u>EVTS</u> **0.0045±0.0024±0.0059** 500k DOCUMENT ID TECN ANGELOPO... 98c CPLR

- PARAMETERS for $K_L^0 ightarrow \pi^+\pi^-\gamma$ DECAY $^-$

$ \eta_{+-\gamma} = A(K_L^0 -$	π+π-γ	CP violating)/A($K_5^0 \rightarrow$	$\pi^+\pi^-\gamma)$
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	
2.35 ±0.07 OUR AVE	RAGE		_		
$2.359 \pm 0.062 \pm 0.040$	9045	MATTHEWS	95	E773	
$2.15 \pm 0.26 \pm 0.20$	3671	RAMBERG	93B	E731	
$\phi_{+-\gamma} = \text{phase of } \eta$	+-7		•		
VALUE (°)	EVTS	DOCUMENT ID		TECN	
44 ± 4 OUR AVER	AGE				
43.8± 3.5± 1.9	9045	MATTHEWS	95	E773	
$72 \pm 23 \pm 17$	3671	RAMBERG	93B	E731	

$ \epsilon'_{+-\gamma} /\epsilon$ for K	⁶ →	π ⁺ π ⁻	7	
VALUE	CL%	EVT5	DOCUMENT ID	TECN
<0.3	90	3671	130 RAMBERG	93B E731

 130 RAMBERG 93B limit on $|\epsilon_{+-\gamma}'|/\epsilon$ assumes than any difference between η_{+-} and $\eta_{+-\gamma}$ is due to direct CP violation.

$\Delta S = \Delta Q \text{ IN } K^0 \text{ DECAYS}$

The relative amount of $\Delta S \neq \Delta Q$ component present is measured by the parameter x, defined as

$$x = A(\overline{K}^0 \to \pi^- \ell^+ \nu) / A(K^0 \to \pi^- \ell^+ \nu) \ .$$

We list $Re\{x\}$ and $Im\{x\}$ for K_{e3} and $K_{\mu3}$ combined.

$x = A(\overline{K}^0 \rightarrow \pi^- \ell^+ \nu)/A(K^0 \rightarrow$	$\pi^-\ell^+\nu$) = A($\Delta S = -\Delta Q$)/A($\Delta S = \Delta Q$)
REAL PART OF x	

REAL VALUE	PART OF x	EVTS	DOCUMENT ID		TECN	COMMENT	
•	8±0.0041±0.0045 Ve do not use the fo	llowing da	ANGELOPO ta for averages, fits,				1
0.10	+0.18 -0.19	79	SMITH	75E	WIRE	$\pi^+ \rho \rightarrow \kappa^0 \Lambda$	
0.04	±0.03	4724	NIEBERGALL	74	ASPK	$K^+ p \rightarrow K^0 p \pi^+$	
-0.008	±0.044	1757	FACKLER	73	OSPK	K _{e3} from K ⁰	
0.03	±0.07	1367	HART	73		Ke3 from KOA	
-0.070	± 0.036	1079	MALLARY	73	OSPK	Ke3 from KOAX	
0.03	±0.06	410	¹³¹ BURGUN	72	HBC	$K^+ \rho \rightarrow K^0 \rho \pi^+$	
0.04	+0.10 -0.13	100	132 GRAHAM	72	OSPK	$K_{\mu 3}$ from $K^0 \Lambda$	
-0.05	±0.09	442	¹³² GRAHAM	72	OSPK	$\pi^- \rho \rightarrow K^0 \Lambda$	
0.26	+0.10 -0.14	126	MANN	72	HBC	$K^- p \rightarrow n \overline{K}^0$	
-0.13	±0.11	342	132 MANTSCH	72	OSPK	K_{e3} from $K^0 \Lambda$	
0.04	+0.07 -0.08	222	¹³¹ BURGUN	71	нвс	$\kappa^+ p \rightarrow \kappa^0 p \pi^+$	

0.25	+ 0.07 - 0.09	252	WEBBER	71	нвс	$K^- p \rightarrow n \overline{K}^0$
0.12	±0.09	215	¹³³ CHO	70	DBC	$K^+ d \rightarrow K^0 pp$
-0.020	± 0.025		134 BENNETT	69	CNTR	Charge asym+ Cu regen.
0.09	+0.14 -0.16	686	LITTENBERG	69	OSPK	$K^+\pi \to K^0p$
0.03	±0.03		134 BENNETT	68	CNTR	
0.09	+0.07 -0.09	121	JAMES	68	нвс	Īρ
0.17	+ 0.16 - 0.35	116	FELDMAN	67в	OSPK	$\pi^- \rho \rightarrow \kappa^0 \Lambda$
0.17	± 0.10	335	133 HILL	67	DBC	$K^+ d \rightarrow K^0 pp$
0.035	$^{+0.11}_{-0.13}$	196	AUBERT	65	HLBC	K ⁺ charge ex- change
0.06	+0.18 -0.44	152	135 BALDO	65	HLBC	K+ charge ex- change
-0.08	+0.16 -0.28	109	136 FRANZINI	65	нвс	Īρ

131 BURGUN 72 is a final result which includes BURGUN 71.
132 First GRAHAM 72 value is second GRAHAM 72 value combined with MANTSCH 72.
133 CHO 70 is analysis of unambiguous events in new data and HILL 67.
134 BENNETT 69 is a reanalysis of BENNETT 68.

1

¹³⁵BALDO-CEOLIN 65 gives x and θ converted by us to Re(x) and Im(x).

136 FRANZINI 65 gives x and θ for Re(x) and Im(x). See SCHMIDT 67.

IMAGINARY PART OF x

Assumes $m_{K_i^0} - m_{K_c^0}$ positive. See Listings above.

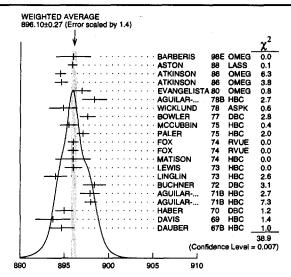
		^L ^S				
VALUE		<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.0012	±0.0019	640k	ANGELOPO	98E	CPLR	K _{e3} from K ⁰
• • • V	Ve do not	use the following	data for averages	, fits	, limits,	etc. • • •
-0.10	+0.16 -0.19	79	SMITH	75B	WIRE	$\pi^- \rho \to \kappa^0 \Lambda$
- 0.06	± 0.05	4724	NIEBERGALL	74	ASPK	$K^+ p \rightarrow K^0 p \pi^+$
-0.017	± 0.060	1757	FACKLER	73	OSPK	
0.09	± 0.07	1367	HART	73	OSPK	K _{e3} from K ⁰ Λ
0.107	$^{+0.092}_{-0.074}$	1079	MALLARY	73	OSPK	K_{e3} from $K^0\Lambda X$
0.07	$^{+0.06}_{-0.07}$	410 1	³⁷ BURGUN	72	нвс	$\kappa^+ p \rightarrow \kappa^0 p \pi^+$
0.12	$+0.17 \\ -0.16$		³⁸ GRAHAM	72	OSPK	μ.,
0.05	± 0.13	442 1	³⁸ GRAHAM	72	OSPK	$\pi^- \rho \rightarrow \kappa^0 \Lambda$
0.21	$+0.15 \\ -0.12$	126	MANN	72	нвс	$K^- p \rightarrow n \overline{K}^0$
- 0.04	± 0.16	342 ¹	³⁸ MANTSCH	72	OSPK	K _{e3} from K ⁰ ∕I
0.12	+0.08	222 1	37 BURGUN	71	нвс	$K^+ p \rightarrow K^0 p \pi^+$
0.0	± 0.08	252	WEBBER	71	HBC	$K^- p \rightarrow n \overline{K}^0$
- 0.08	± 0.07	215 1	³⁹ CHO	70	DBC	$K^+d \rightarrow K^0pp$
-0.11	$^{+0.10}_{-0.11}$	686	LITTENBERG	69	OSPK	$K^+ n \rightarrow K^0 p$
+0.22	+0.37 -0.29	121	JAMES	68	нвс	₽p
0.0	± 0.25	116	FELDMAN	67B	OSPK	$\pi^- p \rightarrow K^0 \Lambda$
-0.20	±0.10	335 ¹	39 HILL	67	DBC	$K^+ d \rightarrow K^0 pp$
- 0.21	+0.11 0.15	196	AUBERT	65	HLBC	K^+ charge exchange
- 0.44	+0.32 -0.19	152 ¹	⁴⁰ BALDO	65	HLBC	K^+ charge exchange
+0.24	$+0.40 \\ -0.30$	109 1	⁴¹ FRANZINI	65	нвс	P P

137 BURGUN 72 is a final result which includes BURGUN 71.
138 First GRAHAM 72 value is second GRAHAM 72 value combined with MANTSCH 72.
139 Footnote 10 of HILL 67 should read + 0.58, not - 0.58 (private communication) CHO 70 is analysis of unambiguous events in new data and HILL 67.
140 BALDO-CEOLIN 65 gives x and θ converted by us to Re(x) and Im(x).
141 FRANZINI 65 gives x and θ for Re(x) and Im(x). See SCHMIDT 67.

K? REFERENCES

ALAVI-HARATI	00	PR D61 072006	A. Alavi-Harati et al.		Collab.)
ALAVI-HARATI	00B	PRL 84 408	A. Alavi-Harati et al.		Collab.)
AMBROSE	00	PRL 84 1389	D. Ambrose et al.	(BNL E871	Collab.)
APOSTOLA	00	PL B473 186	A. Apostolakis et al.	(CPLEAR	Collab.)
BRFIT	00	RPP		•	-
ETAFIT	00	RPP			
ADAMS	99	PL B447 240	J. Adams et al.	(KTeV	Collab.)
ALAVI-HARATI	99B	PRL B3 917	A. Alavi-Harati et al.	(KTeV	Collab.)
ALAVI-HARATI	99D	PRL 83 22	A. Alavi-Harati et al.	(KTeV	Collab.)
APOSTOLA	99C	PL B458 545	A. Apostolakis et al.	(CPLEAR	Collab.)
FANTI	99B	PL B458 553	V. Fanti et al.	(CERN NA48	Collab.)
FANTI	99C	PL B465 335	V. Fanti et al.	CERN NA48	Collab.)
MURAKAMI	99	PL B463 333	K. Murakami et al.	`(KEK E162	Collab.)
ADAMS	98	PRL 80 4123	J. Adams et al.	` (KTeV	Collab.)
AMBROSE	98	PRL 81 4309	D. Ambrose et al.	(BNL E871	Collab.)
AMBROSE	98B	PRL 81 5734	D. Ambrose et al.	(BNL E871	Collab.)
ANGELOPO	98	PL B420 191	A. Angelopoulos et al.	(CPLEAR	Collab.)
ANGELOPO	98C	EPJ C5 389	A. Angelopoulos et al.	(CPLEAR	Collab.)
ANGELOPO	98D	PL 8444 38	A. Angelopoulos et al.	(CPLEAR	Collab.)
ANGELOPO	98E	PL B444 43	A. Angelopoulos et al.	(CPLEAR	
ARISAKA	98	PL B432 230	K. Arisaka et al.	(FNAL E799	Collab.)
BENDER	98	PL B418 411	M. Bender et al.	(CERN NA48	Collab.)
SETZU	98	PL B420 205	M.G. Setzu et al.	•	
TAKEUCHI	98	PL B443 409	Y. Takeuchi et al.	(KYOT, KEK,	HIRO)
FANTI	97	ZPHY C76 653	V. Fanti et al.	(CERN NA48	Collab.)
NOMURA	97	PL B408 445	T. Nomura et al.	(KYDT, KEK,	
ADLER	96B	ZPHY C70 211	R. Adler et al.	(CPLEAR	
ADLER	96C	PL B369 367	R. Adler et al.	(CPLEAR	Collab.)

GU 96	PRL 76 4312	P. Gu et al.	(RUTG, UCLA, EFI, COLO+)	DONALDSON	74	Thesis SLAC-0184	G. Donaldson	(SLAC)
LEBER 96 PDG 96	PL B369 69 PR D54 1		(MANZ, CERN, EDIN, ORSAY+)	Also	76	PR D14 2839	G. Donaldson et al.	(SLAC)
ADLER 95	PL B363 237	R. Adler et al.	(CPLEAR Collab.)	DONALDSON Also	74B	PR D9 2960 PRL 31 337	G. Donaldson <i>et al.</i> G. Donaldson <i>et al.</i>	(SLAC, UCSC) (SLAC, UCSC)
ADLER 95B AKAGI 95	PL B363 243 PR D51 2061	R. Adler et al. T. Akagi et al.	(CPLEAR Collab.) (TOHOK, TOKY, KYOT, KEK)	DONALDSON Also	74C 74	PRL 33 554 Thesis SLAC-0184	G. Donaldson et al. G. Donaldson	(SLAC)
BARR 95	ZPHY C65 361	G.D. Barr et al.	(CERN, EDIN, MANZ, LALO+)	Also	76	PR D14 2839	G. Donaldson et al.	(SLAC) (SLAC)
BARR 95C HEINSON 95	PL B358 399 PR D51 985	G.D. Barr et al. A.P. Heinson et al.	(CERN, EDIN, MANZ, LALO+) (BNL E791 Collab.)	FIELD GEWENIGER	74 74	SLAC-PUB-1498 unpub. PL 48B 483	R.C. Field C. Geweniger et al.	(SLAC) (CERN, HEIDH)
KREUTZ 95	ZPHY C65 67	A. Kreutz et al.	(SIEG, EDIN, MANZ, ORSAY+)	Also	74	Thesis CERN Int. 74-4	V. Luth	(CERN)
MATTHEWS 95 SCHWINGEN 95	PRL 75 2803 PRL 74 4376	J.N. Matthews et al. B. Schwingenheuer et al.	(RUTG, EFI, ELMT+) (EFI, CHIC+)	GEWENIGER Also	74B 74B		C. Geweniger et al. S. Gjesdal et al.	(CERN, ĤEIDH) (CERN, HEIDH)
SPENCER 95	PRL 74 3323	M.B. Spencer et al.	(UCLA, ÈFI, COLO+)	GEWENIGER	74C	PL 52B 108	C. Geweniger et al.	(CERN, HEIDH)
BARR 94 GU 94	PL B328 528 PRL 72 3000	G.D. Barr et al. P. Gu et al.	(CERN, EÒIN, MANZ, LALO+) (RUTG, UCLA, EFI, COLO+)	GJESDAL MESSNER	74 74	PL 52B 113	S. Gjesdal et al.	(CERN, HEIDH)
NAKAYA 94	PRL 73 2169	T. Nakaya et al.	(OSAK, UCLA, EFI, COLU+)	NIEBERGALL		PRL 33 1458 PL 49B 103	R. Messner et al. F. Niebergall et al.	(COLO, SLAC, UCSC) (CERN, ORSAY, VIEN)
ROBERTS 94 WEAVER 94	PR D50 1874 PRL 72 3758	D. Roberts et al. M. Weaver et al.	(UCLA, EFI, COLU+) (UCLA, EFI, COLU, ELMT+)	WANG WILLIAMS	74 74	PR D9 540 PRL 33 240	L. Wang et al.	(UMD, BNL)
AKAGI 93	PR D47 R2644	T. Akagi <i>et al</i> .	(TOHOK, TOKY, KYOT, KEK)	ALBROW	73	NP B58 22	H.H. Williams et al. M.G. Albrow et al.	(BNL, YALE) (MCHS, DARE)
ARISAKA 93 ARISAKA 93B	PRL 70 1049 PRL 71 3910	K. Arisaka et al. K. Arisaka et al.	(BNL E791 Collab.) (BNL E791 Collab.)	ALEXANDER ANIKINA	73B 73	NP B65 301 JINR P1 7539	G. Alexander et al. M.K. Anikina et al.	(TELA, HEID)
BARR 93D	PL B317 233	G.D. Barr et al.	(CERN, EDIÑ, MANZ, LALO+)	BRANDENB	73	PR D8 1978	G.W. Brandenburg et al.	(JINR) (SLAC)
GIBBONS 93 Also 97	PRL 70 1199 PR D55 6625	L.K. Gibbons et al. L.K. Gibbons et al.	(FNAL E731 Collab.) (FNAL E731 Collab.)	CARITHERS Also	73 73B	PRL 31 1025 PRL 30 1336	W.C.J. Carithers et al. W.C.J. Carithers et al.	(COLU, BNL, CERN) (COLU, CERN, NYU)
GIBBONS 93B	PRL 70 1203	L.K. Gibbons et al.	(FNAL E731 Collab.)	EVANS	73	PR D7 36	G.R. Evans et al.	(EDIN, CERN)
GIBBON\$ 93C Also 97	Thesis RX-1487 PR D55 6625	L.K. Gibbons L.K. Gibbons et al.	(CHIC) (FNAL E731 Collab.)	Also FACKLER	69 73	PRL 23 427 PRL 31 847	G.R. Evans et al. O. Fackler et al.	(EDIN, CERN) (MIT)
HARRIS 93 HARRIS 93B	PRL 71 3914 PRL 71 3918	D.A. Harris et al.	(ÈFI, UCLA, COLO+)	FITCH	73	PRL 31 1524	V.L. Fitch et al.	(PRIN)
MAKOFF 93	PRL 70 1591	D.A. Harris et al. G. Makoff et al.	(EFI, UCLA, COLO+) (FNAL E731 Collab.)	Also GINSBERG	72 73	Thesis COO-3072-13 PR D8 3887	R.C. Webb E.S. Ginsberg, J. Smith	(PRIN) (MIT, STON)
Also 95 RAMBERG 93	PRL 75 2069 (erratum) PRL 70 2525	E Pambara at at		HART	73	NP B66 317	J.C. Hart et al.	(ČAVE, RHEL)
RAMBERG 93B	PRL 70 2529	E. Ramberg et al. E.J. Ramberg et al.	(FNAL E731 Collab.) (FNAL E731 Collab.)	MALLARY Also	73 70	PR D7 1953 PRL 25 1214	M.L. Mallary et al. F.J. Sciulli et al.	(CIT) (CIT)
VAGINS 93 ADLER 92B	PRL 71 35 PL B286 180	M.R. Vagins et al. R. Adler et al.	(BNL E845 Collab.)	MCCARTHY	73	PR D7 687	R.L. McCarthy et al.	(LBL)
Also 92	SJNP 55 840	R. Adler et al.	(CPLEAR Collab.) (CPLEAR Collab.)	Also Also	72 71	PL 42B 291 Thesis LBL-550	R.L. McCarthy et al. R.L. McCarthy	(LBL) (LBL)
BARR 92 GRAHAM 92	PL B284 440 PL B295 169	G.D. Barr et al. G.E. Graham et al.	(CERN, EDIN, MANZ, LALO+)	MESSNER	73	PRL 30 876	R. Messner et al.	(COLO, SLAC, ÚCSC)
MORSE 92	PR D45 36	W.M. Morse et al.	(FNAL E731 Collab.) (BNL, YALE, VASS)	PEACH SANDWEISS	73 73	PL 43B 441 PRL 30 1002	K.J. Peach et al. J. Sandweiss et al.	(EDIN, CERN, AACH) (YALE, ANL)
PDG 92 SOMALWAR 92	PR D45, 1 June, Part II PRL 68 2580	I K. Hikasa et al. S.V. Somalwar et al.	(KEK, LBL, BOST+)	WILLIAMS	73	PRL 31 1521	H.H. Williams et al.	(BNL, YALE)
AKAGI 91	PRL 67 2614	T. Akagi <i>et al.</i>	(FNAL E731 Collab.) (TOHOK, TOKY, KYOT, KEK)	ALBROW ASHFORD	72 72	NP B44 1 PL 38B 47	M.G. Albrow et al. V.A. Ashford et al.	(MCHS, DARE) (UCSD)
AKAGI 91B BARR 91	PRL 67 2618 PL B259 389	T. Akagi <i>et al.</i> G.D. Barr <i>et al.</i>	(TOHOK, TOKY, KYOT, KEK) (CERN, EDIN, MANZ, LALO+)	BANNER BARMIN	72B 72	PRL 29 237 SJNP 15 636	M. Banner et al. V.V. Barmin et al.	(PRIN)
HEINSON 91	PR D44 R1	A.P. Heinson et al.	(UCI, UCLA, LANL+)			Translated from YAF 15	1149.	(ITEP)
PAPADIMITR 91 BARKER 90	PR D44 R573 PR D41 3546	V. Papadimitriou et al. A.R. Barker et al.	(FNAL E731 Collab.) (FNAL E731 Collab.)	BARMIN	72B	SJNP 15 638 Translated from YAF 15	V.V. Barmin <i>et al.</i> 1152.	(ITEP)
Also 88	PRL 61 2661	L.K. Gibbons et al.	(FNAL E731 Collab.)	BURGUN DALLY	72 72	NP B50 194 PL 41B 647	G. Burgun et al.	(SACL, CERN, OSLO)
BARR 90B BARR 90C	PL B240 283 PL B242 523	G.D. Barr et al. G.D. Barr et al.	(CERN, EDÌN, MANZ, LALO+) (CERN, EDÌN, MANZ, LALO+)	Also	70	PL 33B 627	E.B. Dally et al. C.Y. Chien et al.	(SLAC, JHU, UCLA) (JHU, SLAC, UCLA)
CAROSI 90	PL B237 303	R. Carosi et al.	(CERN, EDIN, MANZ, LALO+)	Also GRAHAM	71 72	PL 35B 261 NC 9A 166	C.Y. Chien et al.	(JHU, SLAC, UCLA)
KARLSSON 90 OHL 90	PRL 64 2976 PRL 64 2755	M. Karlsson <i>et al.</i> K.E. Ohl <i>et al.</i>	(FNAL E731 Collab.) (BNL E845 Collab.)	JAMES	72	NP B49 1	M.F. Graham et al. F. James et al.	(ILL, NEAS) (CERN, SACL, OSLO)
OHL 90B	PRL 65 1407	K.E. Ohl et al.	(BNL E845 Collab.)	KRENZ MANN	72 72	LNC 4 213 PR D6 137	W. Krenz et al. W.A. Mann et al.	(AACH, CERN, EDIN) (MASA, BNL, YALE)
PATTERSON 90 INAGAKI 89	PRL 64 1491 PR D40 1712	J.R. Patterson <i>et al.</i> T. Inagaki <i>et al.</i>	(FNAL E731 Collab.) (KEK, TOKY, KYDT)	MANTSCH	72	NC 9A 160	P.M. Mantsch et al.	(MASA, BNL, TALE) (ILL, NEAS)
LITTENBERG 89	PR D39 3322	L.S. Littenberg	(BNL)	MCCARTHY METCALF	72 72	PL 42B 291 PL 40B 703	R.L. McCarthy et al. M. Metcalf et al.	(LBL) (CERN, IPN, WIEN)
MATHIAZHA 89 MATHIAZHA 89B	PRL 63 2181 PRL 63 2185	C. Mathiazhagan <i>et al.</i> C. Mathiazhagan <i>et al.</i>	(UCI, UCLA, LANL+) (UCI, UCLA, LANL+)	NEUHOFER	72	PL 41B 642	G. Neuhofer et al.	(CERN, ORSAY, VIEN)
PAPADIMITR 89	PRL 63 28	 Papadimitriou et al. 	(FNAL E731 Collab.)	PICCIONI Also	72 74	PRL 29 1412 PR D9 2939	R. Piccioni et al. R. Piccioni et al.	(SLAC) (SLAC, UCSC, COLO)
SCHAFFNER B9 WAHL B9	PR D39 990 CERN-EP/89-86	S.F. Schaffner <i>et al.</i> H. Wahl	(YALE, BNL) (CERN)	VOSBURGH	72	PR D6 1834	K.G. Vosburgh et al.	(RUTG, MASA)
BARR 88	PL B214 303	G.D. Barr et al.	(CERN, EDIN, MANZ, LALO+)	Also BALATS	71 71	PRL 26 866 SJNP 13 53	K.G. Vosburgh et al. M.Y. Balats et al.	(RUTG, MASA) (ITEP)
BURKHARDT 88 COUSINS 88	PL B206 169 PR D38 2914	H. Burkhardt et al. R.D. Cousins et al.	(CERN, EDIN, MANZ+) (UCLA, LASL, PENN+)			Translated from YAF 13	93.	` '
GREENLEE 88	PRL 60 893	H.B. Greenlee et al.	(YALE, BNL)	BARMIN BISI	71 71	PL 35B 604 PL 36B 533	V.V. Barmin et al. V. Bisi et al.	(ITEP) (AACH, CERN, TORI)
JASTRZEM 88 WOODS 88	PRL 61 2300 PRL 60 1695	E. Jastrzembski et al. M. Woods et al.	(BNL, YALE) (FNAL E731 Collab.)	BURGUN	71	LNC 2 1169	G. Burgun et al.	(SACL, CERN, OSLO)
BURKHARDT 87	PL B199 139	H. Burkhardt et al.	(CERN, EDIN, MANZ+)	CARNEGIE CHAN	71 71	PR D4 1 Thesis LBL-350	R.K. Carnegie <i>et al.</i> J.H.S. Chan	(PRIN) (LBL)
ARONSON 86 Also 82	PR D33 3180 PRL 48 1078	S.H. Aronson et al. S.H. Aronson et al.	(BNL, CHIC, STAN+) (BNL, CHIC, STAN+)	CHIEN	71 72	PL 35B 261 PL 41B 647	C.Y. Chien et al.	(JHU, SLAC, UCLA)
PDG 86C COUPAL 85	PL 170B 132 PRL 55 566	M. Aguilar-Benitez et al.	(CERN, CIT+)	Also CHO	71	PR D3 1557	E.B. Dally et al. Y. Cho et al.	(SLAC, JHU, UCLA) (CMU, BNL, CASE)
BALATS 83	SJNP 38 556	D.P. Coupal et al. M.Y. Balats et al.	(CHIC, SACL) (ITEP)	CLARK Also	71 70	PRL 26 1667 Thesis UCRL 19709	A.R. Clark et al.	(LRL)
BERGSTROM 83	Translated from YAF 38 PL 131B 229	927. L. Bergstrom, E. Masso,	P. Singer (CERN)	Also	71	Thesis UCRL 20264	R.P. Johnson H.J. Frisch	(LRL) (LRL)
ARONSON 82	PRL 48 1078	S.H. Aronson et al.	(BNL, CHIC, STAN+)	Also ENSTROM	74 71	SLAC-PUB-1498 unpub. PR D4 2629	R.C. Field J. Enstrom <i>et al.</i>	(SLAC) (SLAC, STAN)
ARONSON 82B Also 82B	PRL 48 1306 PL 116B 73	S.H. Aronson et al. E. Fischbach et al.	(BNL, CHIC, PURD) (PURD, BNL, CHIC)	Aiso	70	Thesis SLAC-0125	J.E. Enstrom	(STAN)
Also 83	PR D28 476	S.H. Aronson et al.	(BNL, CHIC, PURD)	JAMES MEISNER	71 71	PL 35B 265 PR D3 59	F. James et al. G.W. Meisner et al.	(CERN, SACL, OSLO) (MASA, BNL, YALE)
Also 83B PDG 82B		S.H. Aronson et al. M. Roos et al.	(BNL, CHIC, PURD) (HELS, CIT, CERN)	PEACH	71	PL 35B 351	K.J. Peach et al.	(EDIN, CERN)
BIRULEV 81	NP B182 1	V.K. Birulev et al.	(JINR)	REPELLIN WEBBER	71 71	PL 36B 603 PR D3 64	J.P. Repellin et al. B.R. Webber et al.	(ORSAY, CERN) (LRL)
Also 80	SJNP 31 622 Translated from YAF 31	V.K. Birulev <i>et al.</i> 1204.	(JINR)	Also	68	PRL 21 498	B.R. Webber et al.	(LRL)
CARROLL BOB CARROLL BOC		A.S. Carroll et al. A.S. Carroll et al.	(BNL, ROCH) (BNL, ROCH)	Also WOLFF	69 71	Thesis UCRL 19226 PL 36B 517	B.R. Webber B. Wolff et al.	(LRL) (ORSAY, CERN)
CARROLL 80D	PRL 44 525	A.S. Carroll et al.	(BNL, ROCH)	ALBROW	70	PL 33B 516	M.G. Albrow et al.	(MCHS, DARE)
CHO 80 MORSE 80	PR D22 2688 PR D21 1750	Y. Cho et al. W.M. Morse et al.	(ANL, CMU) (BNL, YALE)	ARONSON BARMIN	70 70	PRL 25 1057 PL 33B 377	S.H. Aronson et al. V.V. Barmin et al.	(EFI, ILLC, SLAC) (ITEP, JINR)
BIRULEV 79	5JNP 29 778	V.K. Birulev et al.	(JINR)	BASILE BECHERRAW	70	PR D2 78 PR D1 1452	P. Basile et al. T. Becherrawy	(SACL) (ROCH)
CHRISTENS 79	Translated from YAF 29 PRL 43 1209	J.H. Christenson et al.	(NYU)	BUCHANAN	70	PL 33B 623	C.D. Buchanan et al.	(SLAC, JHU, UCLA)
HILL 79 SCHMIDT 79	NP B153 39 PRL 43 556	D.G. Hill et al. M.P. Schmidt et al.	(BNL, SLAC, ŠBER) (YALE, BNL)	Also	71	Private Comm.	Cox	(CERN OREAN EROLL)
SHOCHET 79	PR D19 1965	M.J. Shochet et al.	(EFI, ANL)	BUDAGOV Also	70 68B	PR D2 815 PL 28B 215	I.A. Budagov et al. I.A. Budagov et al.	(CERN, ORSAY, EPOL) (CERN, ORSAY, EPOL)
Also 77 ENGLER 78B	PRL 39 59 PR D18 623	M.J. Shochet et al. A. Engler et al.	(EFI, ANL) (CMU, ANL)	CHIEN	70 71	PL 33B 627 Private Comm.	C.Y. Chien et al.	(JHU, SLAC, UCLA)
HILL 78	PL 73B 483	D.G. Hill et al.	(BNL, SLAC, SBER)	Also CHO	70	PR D1 3031	Cox Y. Cho <i>et al</i> .	(CMU, BNL, CASE)
CHO 77 CLARK 77	PR D15 587 PR D15 553	Y. Cho et al. A.R. Clark et al.	(ANL, CMU) (LBL)	Also CHOLLET	67 70	PRL 19 668 PL 31B 658	D.G. Hill et al. J.C. Chollet et al.	(BNL, CMU) (CERN)
Also 75	Thesis LBL-4275	G. Shen	(LBL)	CULLEN	70	PL 32B 523	M. Cullen et al.	(AACH, CERN, TORI)
DEVOE 77 DZHORD 77	PR D16 565 SJNP 26 478	R. Devoe et al. V.P. Dzhordzhadze et al.	(EFI, ANL)	DARRIULAT FAISSNER	70 70	PL 33B 249 NC 70A 57	P. Darriulat et al. H. Faissner et al.	(AACH, CERN, TORI) (AACH3, CERN, RHEL)
	Translated from YAF 26	910.	` ′	GINSBERG	70	PR D1 229	E.S. Ginsberg	(HAIF)
PEACH 77 BIRULEV 76	NP B127 399 SJNP 24 178	K.J. Peach et al. V.K. Birulev et al.	(BGNA, EDIN, GLAS+) (JINR)	MARX Also	70 70B	PL 32B 219 Thesis Nevis 179	J. Marx <i>et al.</i> J. Marx	(COLU, HARV, ČERN) (COLU)
COOMBES 76	Translated from YAF 24 PRL 37 249	340. R.W. Coombes et al.	(STAN, NYU)	5CRIBANO	70	PL 32B 224	A. Scribano et al.	(PISA, COLU, HARV)
DONALDSON 76	PR D14 2839	G. Donaldson et ai.	(SLAC)	SMITH WEBBER	70 70	PL 32B 133 PR D1 1967	R.C. Smith et al. B.R. Webber et al.	(UMD, BNL) (LRL)
Also 74 FUKUSHIMA 76	Thesis SLAC-0184 PRL 36 348	G. Donaldson Y. Fukushima <i>et al.</i>	(SLAC) (PRIN, MASA)	Also	69	Thesis UCRL 19226	B.R. Webber	(LRL)
GJESDAL 76	NP B109 118	G. Gjesdal et al.	(ČERN, HEIDH)	BANNER Also	69 68	PR 188 2033 PRL 21 1103	M. Banner et al. M. Banner et al.	(PRIN) (PRIN)
REY 76 Also 69	PR D13 1161 PRL 22 1210	C.A. Rey et al. R.J. Cence et al.	(NDAM, HAWA, LBL) (HAWA, LRL)	Also	68	PRL 21 1107	J.W. Cronin, J.K. Liu, J.E. Pik	cher (PRIN)
BALDO 75	NC 25A 688	M. Baldo-Ceolin et al.	(PADO, WISC)	BEILLIERE BENNETT	69 69	PL 30B 202 PL 29B 317	P. Beilliere, G. Boutang, J. Lin S. Bennett et al.	(COLU, BNL)
BLUMENTHAL 75 BUCHANAN 75	PRL 34 164 PR D11 457	R.B. Blumenthal et al. C.D. Buchanan et al.	(PENN, CHIC, TEMP) (UCLA, SLAC, JHU)	CENCE EVANS	69 69	PRL 22 1210 PRL 23 427	R.J. Cence et al. G.R. Evans et al.	(HAWA, LRL)
CARITHERS 75	PRL 34 1244	W.C.J. Carithers et al. J.G. Smith	(COLU, NYU)	FAISSNER	69	PL 30B 204	H. Faissner et al.	(ÉDIN, CERN) (AACH3, CERN, TORI)
ALBRECHT 74	PL 48B 393	K.F. Albrecht (JINF	(UCSD) R, BERL, BUDA, PRAG, SERP+)	FOETH GAILLARD	69 69	PL 30B 282 NC 59A 453	H. Foeth et al. J.M. Gaillard et al.	(AACH, CERN, TORI) (CERN, RHEL, AACH)
BISI 74	PL 50B 504	V. Bisi, M.I. Ferrero	(TORI)	Also	67	PRL 18 20	J.M. Gaillard et al.	(CERN, RHEL, AACH)


 K_L^0 , $K^*(892)$

LITTENBERG				
	69	PRL 22 654	L.S. Littenberg et al. M.J. Longo, K.K. Young, J.A. Helland	(UCSD)
LONGO PACIOTTI	69 69	PR 181 1808 Thesis UCRL 19446	M.A. Paciotti	(MICH, `UCLA) (LRL)
SAAL	69	Thesis	H.J. Saal	(COLU)
ABRAMS ARNOLD	68B 68B	PR 176 1603 PL 28B 56	R.J. Abrams et al. R.G. Arnold et al. (0	(ILL) ERN, ORSAY)
ARONSON	68	PRL 20 287	S.H. Aronson, K.W. Chen	(PRIN)
Also BARTLETT	69 68	PR 175 1708 PRL 21 558	S.H. Aronson, K.W. Chen D.F. Bartlett et al.	(PRIN) (PRIN)
BASILE	68	PL 26B 542	P. Basile et al.	(SACL)
BASILE BENNETT	68B 68	PL 28B 58 PL 27B 244	P. Basile et al. S. Bennett et al.	(SACL) (COLU, CERN)
BLANPIED	68	PRL 21 1650	W.A. Blanpied et al. (CASE,	HARV, MCGI)
BOHM	68B 68	PL 27B 594	A. Bohm et al.	OPCAV IDND\
BUDAGOV Also	68B	NC 57A 182 PL 28B 215	I.A. Budagov et al. (CERN, I.A. Budagov et al. (CERN, I	ORSAY, IPNP) ORSAY, EPOL)
JAMES	68	NP B8 365	F. James, H. Briand	ORSAY, EPOL) (IPNP, CERN) (UCLA, MICH)
Also KULYUKINA	68 68	PRL 21 257 JETP 26 20 Translated from ZETF 53	J.A. Helland, M.J. Longo, K.K. Young L.A. Kulyukina et al.	(JINR)
KUNZ	68	Translated from ZETF 53 Thesis PU-68-46	3 29. P.F. Kunz	(PRIN)
BENNETT	67	PRL 19 993	S. Bennett et al.	(corn)
BOTT CRONIN	67 67	PL 24B 194 PRL 18 25	M. Bott-Bodenhausen et al. J.W. Cronin et al.	(CERN) (PRIN)
Also	68	Thesis unpub.	Wheeler	(PRIN)
CRONIN	67B	Princeton 11/67	J.W. Cronin et al.	(PRIN)
DEBOUARD Also	67 65	NC 52A 662 PL 15 58	X. de Bouard et al. X. de Bouard et al. (CERN, C	(CERN) ORSAY, MPIM)
DEVLIN	67	PRL 18 54	T.J. Devlin et al.	(PRIN, UMD)
Also DORFAN	68 67	PR 169 1045 PRL 19 987	G.A. Sayer et al. (UM) D.E. Dorfan et al.	D, PPA, PRIN) (SLAC, LRL)
FELDMAN	67B	PR 155 1611	L. Feldman et al.	(PENN)
FIRESTONE FITCH	67 67	PRL 18 176 PR 164 1711	A. Firestone et al. V.L. Fitch et al.	(YALÈ, BNL) (PRIN)
GINSBERG	67	PR 162 1570	E.S. Ginsberg	(MASB)
HAWKINS	67	PR 156 1444	C.J.B. Hawkins	(YALE)
HILL HOPKINS	67 67	PRL 19 668 PRL 19 185	D.G. Hill et al. H.W.K. Hopkins, T.C. Bacon, F.R. Eisler	(BNL, CMU) (BNL)
KADYK	67	PRL 19 185 PRL 19 597	J.A. Kadyk et al.	(LRL)
KULYUKINA LOWYS	67 67	Preprint PL 24B 75	L.A. Kulyukina et al. J.P. Lowys et al. (I	(JINR) EPOL, ORSAY)
NEFKENS	67	PR 157 1233	B.M.K. Nefkens et al.	(ILL)
SCHMIDT	67	Thesis Nevis 160	Schmidt	(COLU)
TOOOROFF ALFF	67 66B	Thesis PL 21 595	Todoroff C. Alff-Steinberger et al.	(ILL) (CERN)
ANIKINA	66	SJNP 2 339 Translated from YAF 2 4	M.K. Anikina et al.	(JINR)
AUERBACH	66B	PRL 17 980	L.B. Auerbach <i>et al.</i>	(PENN)
BASILE	66	Balaton Conf.	P. Basile et al.	(SACL)
BEHR BOTT	66 66	PL 22 540 PL 23 277	L. Behr et al. (EPOL, MILA, I M. Bott-Bodenhausen et al.	(CERN)
CARPENTER	66	PR 142 871	D.W. Carpenter et al.	(ILL)
CRIEGEE HAWKINS	66 66	PRL 17 150	L. Criegee et al.	(ILL) (YALE)
Also	67	PL 21 238 PR 156 1444	C.J.B. Hawkins C.J.B. Hawkins	(YALE)
ANDERSON	65	PRL 14 475	J.A. Anderson et al.	(LRL, WISC)
ANIKINA ASTBURY	65 65	JINR P 2488 PL 16 80	M.K. Anikina et al. P. Astbury et al.	(JINR) (CERN, ZURI)
Also	65	HPA 39 523	M. Pepin	
ASTBURY ASTBURY	65B 65C	PL 18 175 PL 18 178	P. Astbury et al. P. Astbury et al.	(CERN, ZURI) (CERN, ZURI)
AUBERT	65	PL 17 59		EPOL, ORSAY)
Also	67	PL 24B 75 NC 38 684	J.P. Lowys et al. (EPOL, ORSAY)
BALDO FISHER	65 65	ANL 7130 83	M. Baldo-Ceolin et al. G.P. Fisher et al.	(PADO) (ILL)
FRANZINI	65	PR 140B 127	P. Franzini et al.	(COLU, RÙTG)
GALBRAITH GUIDONI	65 65	PRL 14 383 Argonne Conf. 49	W. Galbraith et al. (AERE P. Guidoni et al.	, BRIS, RHEL) (BNL, YALE)
HOPKINS	65	Argonne Conf. 67	H.W.K. Hopkins, T.C. Bacon, F. Eisler	(VAND+)
ADAIR	64	PL 12 67	R.K. Adair, L.B. Leipuner	(YALE, BNL)
ALEKSANYAN Also	64 64	Dubna Conf. 2 102 JETP 19 1019 Translated from ZETF 4	A.S. Aleksanyan et al. A.S. Aleksanyan et al. (LEBD	(YERE) , MPEI, YERE)
ANIKINA	64	Translated from ZETF 4	6 1504.	(GEOR, JINR)
		JETP 19 42 Translated from ZETF 4	6 59.	
CHRISTENS FUJII	64 64	PRL 13 138 Dubna Conf. 2 146	J.H. Christenson et al. T. Fujii et al. (BN	(PRIN) IL, UMD, MIT)
LUERS	64	PR 133B 1276	D. Luers et al.	(BNL)
DARMON ASTIER	62 61	PL 3 57 Aix Conf. 1 227	Darmon, Rousset, Six A. Astier et al.	(EPOL) (EPOL)
FITCH	61	NC 22 1160	V.L. Fitch, P.A. Piroue, R.B. Perkins	(PRIN+)
GOOD	61	PR 124 1223	R.H. Good et al.	
NYAGU Also	61			(LRL)
	61B	PRL 6 552 JETP 13 1138	D.V. Nyagu <i>et al.</i> D.V. Nyagu <i>et al.</i>	(LRL) (JINR)
DADDON		JETP 13 1138 Translated from ZETF 4	D.V. Nyagu <i>et al.</i> 0 1618.	(LRL) (JINR) (JINR)
BARDON	61B 58	JETP 13 1138 Translated from ZETF 4 ANP 5 156	D.V. Nyagu <i>et al.</i> D.V. Nyagu <i>et al.</i> O 1618. M. Bardon, K. Lande, L.M. Lederman	(LRL) (JINR)
BARDON		JETP 13 1138 Translated from ZETF 4 ANP 5 156	D.V. Nyagu <i>et al.</i> 0 1618.	(LRL) (JINR) (JINR)
	58	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER	D.V. Nyagu et al. 0 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS	(LRL) (JINR) (JINR) (COLU, BNL)
	58	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER	D.V. Nyagu et al. 0 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS	(LRL) (JINR) (JINR) (COLU, BNL)
	58	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER	D.V. Nyagu et al. 0 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS	(LRL) (JINR) (JINR) (COLU, BNL)
HAYAKAWA "Searching LITTENBERG Rare and	93 for 1 93 Radiat	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 C. CP. CPT, AS = AQ F ARRPS 43 729 ive Kaon Decays	D.V. Nyagu <i>et al.</i> 0 1618. M. Bardon, K. Lande, L.M. Lederman	(LRL) (JINR) (JINR) (COLU, BNL)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE "Rare K	93 5 for 1 93 Radial 93 Decays	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 CP. CPT, \(\Delta \) S = \(\Delta \) Q F ARNPS 43 729 We Kaon Decays RMP 65 1149	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, Al. Sanda Altuku Viofations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki	(LRL) (JINR) (JINR) (COLU, BNL)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE "Rare K WINSTEIN "The Sear	93 (for 1 93 Radiat 93 Decays	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 T, CP, CP7, TS = AQ F ARNP 5 3 729 JEWA Son Decays RMP 65 11149 RMP 65 11149 RMP 65 11149	D.V. Nyagu et al. 0 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda sule Violations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein	(LRL) (JIINR) (JIINR) (COLU, BNL) (NAGO) (MAGO) (BNL, FNAL)
HAYAKAWA "Searching LITTENBERG Rare Rof RITCHIE "Rare K I WINSTEIN "The Sear BATTISTON Status and	93 5 for 1 93 Radial 93 Decays 93 ch for 92	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 T, CP, CP7, QS = AQ F dve Kaon Decays RMP 65 11149 RMP 65 11149 PRIP 214 293	D.V. Nyagu et al. 0 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda Rule Violations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (PGIA,	(LRL) (JINR) (JINR) (COLU, BNL)
HAYAKAWA "Searching LITTENBERG Rare Rof RITCHIE "Rare K I WINSTEIN "The Sear BATTISTON Status and	93 5 for 1 93 Radial 93 Decays 93 ch for 92	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 T, CP, CP7, QS = AQ F dve Kaon Decays RMP 65 11149 RMP 65 11149 PRIP 214 293	D.V. Nyagu et al. 0 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda Rule Violations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (PGIA,	(LRL) (JIINR) (JIINR) (COLU, BNL) (NAGO) (MAGO) (BNL, FNAL)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE "Rare K I WINSTEIN BATTISTON Status and DIB Tests of 6	93 ; for 1 93 Radial 93 Decays 93 rch for 92 d Pers	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 , CP, CPT, \(\Delta \), ANP 5 3 729 Ive Kaon Decays JEMP 65 11149 JEMP 65 11149 JEMP 65 1149 JEMP 65 1149 JEMP 65 1149 JEMP 65 1149 JEMP 65 1169 JEMP 106 106 JEMP 106 JEM	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda tule Violations in the Neutral X Meson Syst L.S. Littenberg, G. Valencia J.I. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. C.O. Dib, R.D. Peccei kaon system.	(LRL) (JIINR) (JIINR) (COLU, BNL) (NAGO) (EML, FNAL) CERN, TRSTT)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE "Rare Kr! WINSTEIN "The Searchit Status and DIB Tests of (KLEINKNECH New Resu	93 for 3 93 Radial 93 Decays 93 rch for 92 d Pers 77 c T 92 Its on	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 T, CP, CPT, \(\Delta \), CP 20 ARNPS 43 729 Ver Kaon Decays RMP 65 11143 RMP 65 11149 RMP 65 11149 PRPL 214 293 Petties CP Violation* PRPL 214 293 Petties CP Violation in the neutral CMPP 20 281 CP Violation in Decays 281	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hyayakawa, A.I. Sanda kul. Yoldations in the Neutral K Meson Syst L. S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (PGIA, C.O. Dib, R.D. Peccei kon system. K. Kleinkecht K Meutral K Mesons.	(LRL) (JINR) (JINR) (COLU, BNL) (NAGO) em: A Guide' (BNL, FNAL) CERN, TRSTT) (UCLA) (MANZ)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE "Rare KI WINSTEIN "The Sear BATTISTON Status and DIB Tests of (KLEINKNECH PEACH	93 For 1 93 Radial 93 Decays 93 rch for 92 d Pers 92 d Pers 7 92 lts on T 90	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 T, P.C. CPT, DS = DQ F ARNPS 43 729 VIVE Naon Decays "RMP 65 11149 "RMP 65 11149 "RMP 65 11149 "RMP 65 11140 "RMP 65 1140	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Haypikawa, Al. Sanda kule Violadions in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht K. Kleinknecht K.J. Peach	(LRL) (JIINR) (JIINR) (COLU, BNL) (COLU, BNL) (MAGO) (ENL, FNAL) (ENL, FNAL) (CERN, TRSTT) (UCLA) (MANZ) (MANZ) (EDIN)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE "Rare KI WINSTEIN "The Sear BATTISTON Status and DIB Tests of (KLEINKNECH PEACH	93 For 1 93 Radial 93 Decays 93 rch for 92 d Pers 92 d Pers 7 92 lts on T 90	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 T, P.C. CPT, DS = DQ F ARNPS 43 729 VIVE Naon Decays "RMP 65 11149 "RMP 65 11149 "RMP 65 11149 "RMP 65 11140 "RMP 65 1140	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda tuke Violations in the Neutral K Meson Syst L.S. Littenberg, G. Vaiencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht f Neutral K Mesons. K. Kleinknecht	(LRL) (JINR) (JINR) (COLU, BNL) em: A Guide' (BNL, FNAL) CERN, TRSTT) (UCLA) (MANZ) (MANZ) (EDIN) (TRIU)
HAYAKAWA "Searching LITTENBERG RITCHER K WINSTEIN "The SEATISTON BATTISTON BATTISTON KLEINKNECH NEW RESU KLEINKNECH PEACH PEACH Rare KA "Rare KA KLEINKNECH	93 3 for 3 93 and 93 93 och for 92 94 Pers 92 FPT c FPT c	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR 048 1150 T, CP, CPT, Δ5 = ΔQ F ARNP5 43 729 ive Kaon Decays RMP 65 1149 RMP 65 1149 RMP 65 1149 PRPL 214, 29 prict (CP Violation" PRPL 214, 29 press 125 225 29 PRP 214, 29 press 225 27 press 25 25	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda tuke Violations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht K.J. Peach D.A. Bryman K. Kleinknecht K.J. Peach D.A. Bryman K. Kleinknecht	(LRL) (JINR) (JINR) (COLU, BNL) (COLU, BNL) (MAGO) (EML, FNAL) (ENL, FNAL) (CERN, TRSTT) (UCLA) (MANZ) (EDIN) (TRIU) (DORT)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE "Rare K I WINSTEIN "The Sear BATTISTON Status and DIB Tests of (KLEINKNECH PEACH BRYMAN "Rare Kar KLEINKNECH GINSBERG	93 30 Fr 193 93 Radial 93 93 Decays 93 Person 192 27 T 92 1 Person 17 90 89 90 89 17 76 77 73	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 T, CP, CP7, DS = DQ F ARNPS 63 729 We Kaon Decays RMP 65 11149 RMP 65 11149 PRPL 214 293 Pectives of K Decay Phys PR D46 2265 onservation in the neutral CNPP 20 281 CP Violation in Decays o ZPHY C46 S57 JPG 16 131 JJMP A4 79 235° ARNS 26 1 PR D8 3887	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda kule Voldations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht K.J. Peach D.A. Bryman K. Kleinknecht E.S. Ginsberg, J. Smith	(LRL) (JIINR) (JIINR) (COLU, BNL) (COLU, BNL) (MAGO) (EML, FNAL) (EML, FNAL) (CERN, TRSTT) (UCLA) (MANZ) (MANZ) (EDIN) (TRIU) (DORT) (MIT, STON)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE "Rare K I "The Sear BATISTON DIB TESIS Of 6 KLEINKNECH BRYMAN KLEINKNECH BRYMAN KLEINKNECH GINSBERG GINSBERG GINSBERG GINSBERG HEUSSE	93 ; for ; 93 ; for ; 93 ; 93 ; 93 ; 92 ; 92 ; 92 ; 97 ; 97 ; 97 ; 97 ; 97	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 PR D5 1113 PR D6 1113 PR D6 2265 PR D46 2265 PR D47 246 PR D48 256 PR	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda kuleu Violacions in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht K.J. Peach D.A. Bryman K. Kleinknecht E.S. Ginsberg, J. Smith E.S. Ginsberg J. Heusse et al.	(LRL) (JINR) (JINR) (COLU, BNL) (COLU, BNL) (MAGO) (EML, FNAL) (EML, FNAL) (CERN, TRSTT) (UCLA) (MANZ) (MANZ) (EDIN) (TRIU) (DORT) (MIT, STON) (HAIF) (ORSAY)
HAYAKAWA "Searching LITTENBERG RITCHEARER K. WINSTEIN The Sear BATTISTON Status and DIB HESS of C. KLEINKNECH PEACH PEACH PEACH ROW RESU KLEINKNECH PEACH GINSBERG GINSBERG HEUSSE CRONIN	93 ; for 1 93 Radial 93 Pegas 92 PT c T 15 90 P 90 P 90 P 90 P 76 T 76 T 70 F 68C	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR 048 1150 T, CP, CPT, Δ5 = ΔQ F ARNP 5 37 729 We Kaon Decays RMP 65 1149 THE 114 PET 11	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda tuke Violations in the Neutral K Meson Syst L.S. Littenberg, G. Vaiencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht K.J. Peach D.A. Bryman K. Kleinknecht E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Heusse et al. J.W. Cronin	(LRL) (JINR) (JINR) (COLU, BNL) (COLU, BNL) (MAGO) (BNL, FNAL) (ENL, FNAL) (CERN, TRSTT) (UCLA) (MANZ) (EDIN) (TRIU) (DORT) (MIT, STON) (HAIF) (ORSAY) (PRIN)
HAYAKAWA "Searching LITTENBERG Rare and RTCHIE "Rare K I WINSTEIN "The Sear BATTISTON DIB TESIS Of (KLEINKNES) KLEINKNES HEACH BRYMAN "Rare Kac KLEINKNES GINSBERG GINSBERG GINSBERG GRUSSE CRONIN RUBBIA	93 ; for ; 93 ; for ; 93 ; 93 ; 93 ; 92 ; 92 ; 92 ; 97 ; 97 ; 97 ; 97 ; 97	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR 048 1150 T, CP, CPT, Δ5 = ΔQ F ARNP5 43 729 ive Kaon Decays RMP 65 1113 Direct CP Violation" PRPL 214 29 perture of X Decay Phys Onservation in the neutral CMP 20 281 CP Violation in Decays o ZPHY C46 72 ZPHY C46 72 ARNS 26 1 PR 08 3687 PR 01 229 LNC 3 449 viena Conf. 281 PL 248 531 PL 23 167	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Haypkawa, Al. Sanda kule Violations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht K.J. Peach D.A. Bryman K. Kleinknecht E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Heusse et al. J.W. Cronin C. Rubbia, J. Steinberger	(LRL) (JIINR) (JIINR) (COLU, BNL) (COLU, BNL) (MAGO) (EMIL, FNAL) (EMIL, FNAL) (CERN, TRSTT) (UCLA) (MANZ) (MANZ) (EDIN) (TRIU) (DORT) (MIT, STON) (HAIF) (ORSAY) (PRIN) (CERN, COLU)
HAYAKAWA "Searching LITTENBERG Rare and RTCHIE "Rive K I WINSTEIN "The Sear BATTISTON DIB TESIS Of C KLEINKNESH KAENKNECH PEACH BRYMAN "Rare Kae KLEINKNESH GINSBERG GINSBERG GINSBERG GENSBERG ALSO ALSO ALSO ALSO RAREACH ALSO ALSO ALSO ALSO RAREACH SEARCH ALSO RAREACH ALSO ALSO ALSO ALSO RAREACH SEARCH ALSO RAREACH ALSO ALSO ALSO ALSO RAREACH ALSO RAREACH ALSO ALSO ALSO ALSO RAREACH ALSO RAREACH ALSO ALSO ALSO RAREACH ALSO ALSO ALSO RAREACH ALSO ALSO ALSO RAREACH ALSO ALSO ALSO RAREACH ALSO RAREACH ALSO ALSO ALSO ALSO RAREACH ALSO RAREACH ALSO ALSO ALSO ALSO RAREACH ALSO	93 Radial 93 Person 93 Person 94 Person 7 90 Person 7	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 T, CP, CPT, AS = AQ F ARNP 5 37 729 vice Kaon Decays RMP 65 1113 Direct CP Violation" PRPL 214 293 PRUP 65 1113 CNPP 20 281 LONG VIOLATION IN THE PROPER OF SET 131 LIMP A4 79 235" ARNS 26 1 PR D6 3887 PR D1 229 LNC 3 449 Vienna Conf. 281 PL 248 531 PL 23 167 PL 20 207	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda tuke Voldations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht f Neutral K Mesons. K. Kleinknecht K.J. Peach D.A. Bryman K. Kleinknecht E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Steinberger C. Rubbia, J. Steinberger C. Rubbia, J. Steinberger	(LRL) (JIINR) (JIINR) (COLU, BNL) (COLU, BNL) (MAGO) (EMIL, FNAL) (EMIL, FNAL) (CERN, TRSTT) (UCLA) (MANZ) (MANZ) (EDIN) (TRIU) (DORT) (MIT, STON) (HAIF) (ORSAY) (PRIN) (CERN, COLU) (CERN, COLU) (CERN, COLU)
HAYAKAWA "Searching LITTENBERG RITCHE "Rare K. I "Rare	58 93 56 point 93 93 poecays 92 point 92 192 point 90 90 point 90 70 point 90 70 point 90 66 point 9	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 T, CP, CPT, \(\Delta \), \(\Delt	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda ulae Violations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.I. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht K.J. Peach D.A. Bryman K. Kleinknecht E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Smith E.S. Ginsberg C. Rubbia, J. Steinberger C. Alff-Steinberger et al. Alf-Steinberger et al.	(LRL) (JINR) (JINR) (COLU, BNL) (COLU, BNL) (MAGO) (EMIL, FNAL) (EMIL, FNAL) (CERN, TRSTT) (UCLA) (MANZ) (MANZ) (EDIN) (TRIU) (DORT) (HAIF) (ORSAY) (PRIN) (CERN, COLU) (CERN, COLU) (CERN) (CERN)
HAYAKAWA "Searching LITTENBERG RITCHE Rare K. I WINSTEIN The Sear BATTISTON Status and DIB TESTS of C KLEINKNECH NEW RESU KLEINKNECH PEACH PEACH BY RARE KAG KLEINKNECH GINSBERG HEUSSE CRONIN RUBBIA Also Also Also OAUERBACH Also	93 (for) 3 (for) 2 (for) 4 (for) 4 (for) 4 (for) 4 (for) 5 (for) 5 (for) 5 (for) 6 (f	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 T, CP, CPT, AS = AQ F ARNPS 43 729 Ive Kaon Decays "RMP 65 11149 "RMP 65 11149 "RMP 65 11149 "PPL 214 293 Pet 14 293 Pet 14 293 Pet 14 293 Pet 26 2255 onservation in the neutral CMPP 20 281 CP Violation in Decays o ZPHY C46 S57 JPG 16 131 JJMP A4 79 "234SNS 26 1 PR D8 3887 PR D1 229 JNC 3 449 Vienna Conf. 281 PL 248 531 PL 248 531 PL 23 167 PL 20 207 PL 21 595 PR 149 1052 PRL 14 1952	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda tuke Voldations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht f Neutral K Mesons K. Kleinknecht K.J. Peach D.A. Bryman K. Kleinknecht E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Smith C. Rubbia, J. Steinberger C. Alff-Steinberger et al. C. Alff-Steinberger et al. L.B. Auerbach et al. L.B. Auerbach et al. L.B. Auerbach et al.	(LRL) (JIINR) (JIINR) (COLU, BNL) (COLU, BNL) (MAGO) (EMIL FNAL) (ENL, FNAL) (ERN, TRSTT) (UCLA) (MANZ) (EDIN) (TRIU) (MIT, STON) (HAIF) (ORSAY) (CERN, COLU) (CERN, COLU) (CERN) (CERN) (CERN) (CERN) (CERN) (PENN)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE M WINSTEIN STEIN STEIN STEIN STEIN STEIN STEIN HE STEIN HE STEIN HE STEIN HE STEIN RARE HE STEIN RARE HE STEIN HE STE	58 93 93 93 93 93 93 93 95 97 97 97 98 99 97 99 99 97 99 99 99 99 99	JETP 13 1138 Translated from ZETF 4 ANP 5 156 ———————————————————————————————————	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, A.I. Sanda tuke Voldations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. (C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht f Neutral K Mesons K. Kleinknecht K.J. Peach D.A. Bryman K. Kleinknecht E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Smith E.S. Ginsberg, J. Smith C. Rubbia, J. Steinberger C. Alff-Steinberger et al. C. Alff-Steinberger et al. L.B. Auerbach et al. L.B. Auerbach et al. L.B. Auerbach et al.	(LRL) (JIINR) (JIINR) (COLU, BNL) (COLU, BNL) (MAGO) (EMIL FNAL) (ENL, FNAL) (ERN, TRSTT) (UCLA) (MANZ) (EDIN) (TRIU) (MIT, STON) (HAIF) (ORSAY) (CERN, COLU) (CERN, COLU) (CERN) (CERN) (CERN) (CERN) (CERN) (PENN)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE "Rive K I WINSTEIN BATTISTON DIB TESS of C KLEINKNECH PEACH BRYMAN KEINKNECH PEACH GINSBERG GINSBERG GINSBERG HEUSSE CROMIN RUBBIA Also Also AUERBACH Also FIRESTONE BEHR MESTYRISH	58 93 93 93 93 93 93 93 93 93 95 97 97 99 90 90 90 90 90 90 90 90 90	JETP 13 1138 Translated from ZETF 4 ANP 5 156 ———————————————————————————————————	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, Al. Sanda tule Violations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht K. Kleinknecht E.S. Ginsberg D.A. Bryman K. Kleinknecht E.S. Ginsberg, J. Smith E.S. Ginsberg J.W. Cronin C. Rubbia, J. Steinberger C. Rubbia, J. Steinberger C. Rubbia, J. Steinberger C. Alff-Steinberger et al. L.B. Auerbach et al. L.B. Auerbach et al. L.B. Auerbach et al. L. Behr et al. L. M. Mestvirishvili et al. (EPOL	(LRL) (JINR) (JINR) (COLU, BNL) (COLU, BNL) EMIL A GUIDE (MACO) (EMIL, FNAL) (CERN, TRSTT) (UCLA) (MANZ) (EDIN) (TRIU) (DORT) (MIT, STON) (HAIE) (ORSAY) (PRIN) (CERN, COLU) (CERN, COLU) (CERN, COLU) (CERN) (PENN) (YENN) (YALE, BNL) MILA, PADO)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE "Rive K I WINSTEIN BATTISTON DIB TESS of C KLEINKNECH PEACH BRYMAN KEINKNECH PEACH GINSBERG GINSBERG GINSBERG HEUSSE CROMIN RUBBIA Also Also AUERBACH Also FIRESTONE BEHR MESTYRISH	58 93 93 93 93 93 93 93 93 93 95 97 97 99 90 90 90 90 90 90 90 90 90	JETP 13 1138 Translated from ZETF 4 ANP 5 156 ———————————————————————————————————	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, Al. Sanda tule Violations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht K. Kleinknecht E.S. Ginsberg D.A. Bryman K. Kleinknecht E.S. Ginsberg, J. Smith E.S. Ginsberg J.W. Cronin C. Rubbia, J. Steinberger C. Rubbia, J. Steinberger C. Rubbia, J. Steinberger C. Alff-Steinberger et al. L.B. Auerbach et al. L.B. Auerbach et al. L.B. Auerbach et al. L. Behr et al. L. M. Mestvirishvili et al. (EPOL	(LRL) (JIINR) (JIINR) (COLU, BNL) (COLU, BNL) (MAGO) (EMIL FNAL) (ENL, FNAL) (ERN, TRSTT) (UCLA) (MANZ) (EDIN) (TRIU) (MIT, STON) (HAIF) (ORSAY) (CERN, COLU) (CERN, COLU) (CERN) (CERN) (CERN) (CERN) (CERN) (PENN)
HAYAKAWA "Searching LITTENBERG Rare and RITCHIE "Rive K I WINSTEIN BATTISTON DIB TESS of C KLEINKNECH PEACH BRYMAN KEINKNECH PEACH GINSBERG GINSBERG GINSBERG HEUSSE CROMIN RUBBIA Also Also AUERBACH Also FIRESTONE BEHR MESTYRISH	58 93 93 93 93 93 93 93 93 93 95 97 97 99 90 90 90 90 90 90 90 90 90	JETP 13 1138 Translated from ZETF 4 ANP 5 156 OTHER PR D48 1150 T, CP, CPT, AS = AQ F ARNPS 43 729 Vie Kaon Decays TRMP 65 11143 RMP 65 11143 RMP 65 11149 PPPL 214 293 Pectives of K Decay Phys PR D46 2265 onservation in the neutral CMPP 20 281 CP Violation in Decays o ZPHY C46 S57 JPG 16 131 JJMP A4 79 Zyst ARNS 26 1 PR D8 3887 PR D1 229 JNC 3 449 Vienna Conf. 281 PL 248 531 PL 124 531 PL 124 531 PL 125 167 PL 20 207 PL 21 595 PR 149 1052 PRL 14 192 PRL 17 116 Argonne Conf. 59	D.V. Nyagu et al. O 1618. M. Bardon, K. Lande, L.M. Lederman RELATED PAPERS M. Hayakawa, Al. Sanda tule Violations in the Neutral K Meson Syst L.S. Littenberg, G. Valencia J.L. Ritchie, S.G. Wojcicki B. Winstein, L. Wolfenstein R. Battiston et al. C.O. Dib, R.D. Peccei kaon system. K. Kleinknecht K. Kleinknecht E.S. Ginsberg D.A. Bryman K. Kleinknecht E.S. Ginsberg, J. Smith E.S. Ginsberg J.W. Cronin C. Rubbia, J. Steinberger C. Rubbia, J. Steinberger C. Rubbia, J. Steinberger C. Alff-Steinberger et al. L.B. Auerbach et al. L.B. Auerbach et al. L.B. Auerbach et al. L. Behr et al. L. M. Mestvirishvili et al. (EPOL	(LRL) (JIINR) (JIINR) (COLU, BNL) (COLU, BNL) (MAGO) (EMIL A Guider (BNL, FNAL) (ENL, FNAL) (CERN, TRSTT) (UCLA) (MANZ) (MANZ) (EDIN) (TRIU) (DORT) (MIT, STON) (HAIF) (ORSAY) (CERN, COLU) (CERN, COLU) (CERN, COLU) (CERN) (PENN) (PENN) (PENN) (YALE, BNL) MILA, PADO) (JIINR)

K*(892)

 $I(J^P) = \frac{1}{2}(1^-)$

			K*(892) N	/AS	s		
		ONLY	DOCUMENT ID		TECN	cuc	COMMENT
<i>VALUE</i> 891.66		OUR AVERAGE	DOCUMENT ID		TECN	CHG	COMMENT
892.6		5840			HBC	-	$\begin{array}{c} 8.25 \ K^- p \rightarrow \\ \overline{K}^0 \pi^- p \end{array}$
	±3				SPEC	+	$200 \pi^- p \rightarrow 2K_5^0$
	±1				SPEC	-	$200 \pi^{-} p \rightarrow 2K_{5}^{0}$
891.7		3700			HBC HBC	+	70 $K^+ p \to K^0 \pi^+$ 6.5 $K^- p \to \overline{K}^0 \pi^-$
891 892.8	±1	4100			HBC	- +	$32 K^+ p \rightarrow K^0 \pi^+$
890.7		1800	AGUILAR		нвс	±	$0.76 \overline{p}p \rightarrow K^{\mp} K_{S}^{0} \pi^{\pm}$
886.6	±2.4	1225	BALAND	78	нвс	±	12 $\bar{p}p \rightarrow (K\pi)^{\pm}$
891.7		6706			HBC	±	$0.76 \ \overline{p}p \rightarrow (K\pi)^{\pm}$
891.9	±0.7	9000	PALER	75	HBC	-	$\begin{array}{c} 14.3 \ K^{-} p \rightarrow \ (K \pi \\ X \end{array}$
892.2	±1.5	4404	AGUILAR	71B	нвс	-	3.9,4.6 $K^- p \rightarrow (K\pi)^- p$
891	± 2	1000	CRENNELL	69 D	DBC	-	$^{3.9}$ $^{K^-}_{K^0}$ N \rightarrow
890	±3.0	720	BARLOW	67	нвс	±	$ \begin{array}{c} 1.2 \overline{p} p \rightarrow \\ (K^0 \pi)^{\pm} K^{\mp} \end{array} $
889	±3.0	600	BARLOW	67	нвс	±	$ \begin{array}{c} 1.2 \overline{p}p \to \\ (K^0 \pi)^{\pm} K \pi \end{array} $
891	±2.3		DEBAERE		HBC	+	$3.5 K^+ \rho \rightarrow K^0 \pi^-$ $1.7 K^- \rho \rightarrow \overline{K}^0 \pi^-$
891.0		1700 4 not use the follow	⁴ WOJCICKI Jing data for aver		HBC fits lin	– nits e	
893.5			ABELE	-	CBAR	±	0.0 pp → K+K-
		±0.5 79709±	5 BIRD	89	LASS	-	$11 \ K^- \rho \rightarrow \ \overline{K}{}^0 \pi^-$
890.0	± 2.3		4 CLELAND	82	SPEC	+	$30 K^+ p \rightarrow K_S^0 \pi^-$
896.0	±1.1		4 CLELAND	82	SPEC	+	$50 K^+ \rho \rightarrow K_5^0 \pi^-$
893	±1	3600 3,4	4 CLELAND	82	SPEC	-	$50 K^+ p \rightarrow K_S^0 \pi^-$
896.0		380	DELFOSSE	81	SPEC	+	$50 K^{\pm} p \rightarrow K^{\pm} \pi$
886.0 894.2		187 765	DELFOSSE 3 CLARK	81 73	SPEC HBC	-	$50 K^{\pm} p \rightarrow K^{\pm} \pi^{\parallel}$ $3.13 K^{-} p \rightarrow K^{0} \pi^{-} p$
894.3	±1.5	1150 3,	4 CLARK	73	нвс	_	$3.3 \ K^{-} \rho \rightarrow \overline{K}^{0} \pi$
892.0			3 SCHWEING		HBC	_	$5.5 K^- p \rightarrow \overline{K}^0 \pi$
VALUE 896.10	(MeV) 1±0.27	ONLY OUR AVERAGE					COMMENT See the ideogram be
896	±2		BARBERIS	98E	OMEG		$\begin{array}{c} 450 \ pp \rightarrow \\ p_f \ p_S \ K^* \ \overline{K}^* \end{array}$
895.9	+05	100	ACTON		LASS	0	$11 K^- p \to K^- \pi$
894.52				88		•	
			ASTON ² ATKINSON	88 86	OMEG		20-70 γp
	± 0.76	25k	² ATKINSON ² ATKINSON	88 86 86	OMEG OMEG		20-70 γp 20-70 γp
894.63 897	± 0.76 ±1	25k 20k 28k	² ATKINSON ² ATKINSON EVANGELISTA	86 86 80	OMEG OMEG		20-70 γp 10 $\pi^- p \rightarrow$ $K^+ \pi^- (\Lambda, \Sigma)$
894.63 897 898.4	± 0.76 ±1 ±1.4	25k 20k	² ATKINSON ² ATKINSON EVANGELISTA AGUILAR	86 86 80 78B	OMEG OMEG HBC	0	20-70 γp 10 $\pi^- p \rightarrow$ $K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $\bar{p}p \rightarrow$ $K^{\mp} K_5^0 \pi^{\pm}$
894.63 897	± 0.76 ±1 ±1.4 ±1.6	25k 20k 28k	² ATKINSON ² ATKINSON EVANGELISTA	86 86 80	OMEG OMEG HBC		20-70 γP 10 $\pi^- P \rightarrow$ $K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $PP \rightarrow$ $K^+ K_S^0 \pi^{\pm}$ 3,4,6 $K^{\pm} N \rightarrow$ $(K\pi)^0 N$
894.63 897 898.4 894.9 897.6	±1.4 ±1.6 ±0.9	25k 6 20k 28k 1180	² ATKINSON ² ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER	86 86 80 78B 78	OMEG OMEG HBC ASPK DBC	0 0 0	20-70 γp 10 $\pi^- p \rightarrow$ $K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $\bar{p}p \rightarrow$ $K^{\mp} K_0^0 \pi^{\pm}$ 3.4.6 $K^{\pm} N \rightarrow$ $(K_{\pi})^0 N$ 5.4 $K^+ d \rightarrow$ $K^+ \pi^- pp$
894.63 897 898.4 894.9 897.6 895.5 897.1	\$\pmu 0.76 \pmu 1 \pmu 1.4 \pmu 1.6 \pmu 0.9 \pmu 1.0 \pmu 0.7	25k 20k 28k 1180 3600 22k	2 ATKINSON 2 ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER MCCUBBIN 2 PALER	86 86 80 78B 78 77 75 75	OMEG OMEG HBC ASPK DBC HBC HBC	0 0 0 0 0	20-70 γp 10 $\pi^- p \rightarrow$ $K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $\bar{p}p \rightarrow$ $K^{\mp} K_0^0 \pi^{\pm}$ 3.4,6 $K^{\pm} N \rightarrow$ $(K_{\pi})^0 N$ 5.4 $K^+ d \rightarrow$ $K^+ \pi^- pp$ 3.6 $K^- p \rightarrow K^- \pi$ 14.3 $K^- p \rightarrow (K_{\pi})^0 N$
894.63 897 898.4 894.9 897.6 895.5 897.1	\$\pmu 0.76\$ \pmu 1 \$\pmu 1.4\$ \pmu 1.6\$ \pmu 0.9\$ \pmu 1.0\$ \pmu 0.7\$ \pmu 0.6	25k 20k 28k 1180	2 ATKINSON 2 ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER MCCUBBIN 2 PALER FOX	86 86 80 78B 78 77 75 75 74	OMEG OMEG HBC ASPK DBC HBC HBC RVUE	0 0 0 0 0	20-70 γp 10 $\pi^- p \rightarrow$ $K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $\bar{p}p \rightarrow$ $K^+ K_0^0 \pi^{\pm}$ 3.4.6 $K^{\pm} N \rightarrow$ $(K_{\pi})^0 N$ 5.4 $K^+ d \rightarrow$ $K^+ \pi^- pp$ 3.6 $K^- p \rightarrow K^- \pi$ 14.3 $K^- p \rightarrow (K_{\pi})^0 N$
894.63 897 898.4 894.9 897.6 895.5 897.1 896.0 896.0	\$\pmu 0.76\$\pmu 1.4\$ \$\pmu 1.6\$ \$\pmu 0.7\$ \$\pmu 1.0\$ \$\pmu 0.7\$ \$\pmu 0.6\$ \$\pmu 0.6\$	25k 20k 28k 1180 3600 22k	2 ATKINSON 2 ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER MCCUBBIN 2 PALER FOX FOX	86 86 80 78B 78 77 75 75 74 74	OMEG OMEG HBC ASPK DBC HBC HBC RVUE RVUE	0 0 0 0 0 0 0 0	20-70 γp 10 $\pi^- p \rightarrow K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $pp \rightarrow K^- K^0 \pi^{\pm}$ 3.4,6 $K^{\pm} N \rightarrow (K\pi)^0 N$ 5.4 $K^+ d \rightarrow K^+ \pi^- pp$ 16.3 $K^- p \rightarrow K^- \pi^+$ 2 $K^- p \rightarrow K^- \pi^+$ 2 $K^- p \rightarrow K^- \pi^+$
894.63 897 898.4 894.9 897.6 895.5 897.1 896.0 896.0	\$\pmu 0.76 \pmu 1 \pmu 1.4 \pmu 1.6 \pmu 0.9 \pmu 1.0 \pmu 0.7 \pmu 0.6 \pmu 0.6 \pmu 2.6	25k 20k 28k 1180 3600 22k 10k	2 ATKINSON 2 ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER MCCUBBIN 2 PALER FOX FOX 6 MATISON	86 86 80 78B 77 75 75 74 74 74	OMEG OMEG HBC ASPK DBC HBC HBC RVUE RVUE HBC	0 0 0 0 0 0 0 0 0 0	20-70 γp 10 $\pi^- p \rightarrow K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $pp \rightarrow K^+ K_0^S \pi^{\pm}$ 3.4.6 $K^{\pm} N \rightarrow (K\pi)^0 N$ 5.4 $K^+ d \rightarrow K^- \pi^- p$ 3.6 $K^- p \rightarrow K^- \pi$ 14.3 $K^- p \rightarrow (K\pi)^0 N$ 2 $K^- p \rightarrow K^- \pi^+$ 12 $K^+ p \rightarrow K^+ \pi$
894.63 897 898.4 894.9 897.6 895.5 897.1 896.0 896.0	±1.4 ±1.4 ±1.6 ±0.9 ±1.0,7 ±0.6 ±0.6 ±2 ±1	25k 20k 28k 1180 3600 22k 10k	2 ATKINSON 2 ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER MCCUBBIN 2 PALER FOX FOX	86 86 80 78B 78 77 75 75 74 74	OMEG OMEG HBC ASPK DBC HBC HBC RVUE RVUE	0 0 0 0 0 0 0 0	20-70 γp 10 $\pi^- p \rightarrow K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $pp \rightarrow K^+ K_0^S \pi^{\pm}$ 3.4,6 $K^{\pm} N \rightarrow (K\pi)^0 N$ 5.4 $K^+ d \rightarrow K^- \pi^+$ 14.3 $K^- p \rightarrow K^- \pi^+$ 14.3 $K^- p \rightarrow K^- \pi^+$ 2 $K^+ p \rightarrow K^+ \pi^-$ 12 $K^+ p \rightarrow K^+ \pi^-$ 12 $K^+ p \rightarrow K^+ \pi^-$ 2-1-2.7 $K^+ p \rightarrow K^- \pi^+$ 2-1-3 $K^+ p \rightarrow K^- \pi^-$
894.63 897 898.4 894.9 897.6 895.5 897.1 896.0 896.0 896.8	\$\pmu 0.76\$\pmu 1.4\$ \$\pmu 1.4\$ \$\pmu 1.6\$ \$\pmu 0.9\$ \$\pmu 1.0\$ \$\pmu 0.7\$ \$\pmu 0.6\$ \$\pmu 2.6\$ \$\pmu 1.3\$	25k 20k 28k 1180 3600 22k 10k	2 ATKINSON 2 ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER MCCUBBIN 2 PALER FOX FOX 6 MATISON LEWIS 6 LINGLIN	86 86 80 78B 78 77 75 75 74 74 74 73	OMEG OMEG HBC ASPK DBC HBC HBC RVUE RVUE HBC HBC	0 0 0 0 0 0 0 0 0 0 0 0 0 0	20-70 γp 10 $\pi^- p \rightarrow$ $K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $\bar{p}p \rightarrow$ $K^{\mp} K_0^S \pi^{\pm}$ 3.4,6 $K^{\pm} N \rightarrow$ $(K\pi)^0 N$ 5.4 $K^+ d \rightarrow$ $K^+ \pi^- p p$ 3.6 $K^- p \rightarrow K^- \pi$ 14.3 $K^- p \rightarrow (K\pi)^0 N$ 2 $K^- p \rightarrow K^- \pi^+$ 2 $K^+ p \rightarrow K^+ \pi^-$ 12 $K^+ p \rightarrow K^+ \pi$ 2.1-2.7 $K^+ p \rightarrow$ $K^+ \pi^- p$ 2-13 $K^+ p \rightarrow$ $K^+ \pi^- \pi^+ p$
894.63 897 898.4 894.9 897.6 895.5 897.1 896.0 896.0 896	±0.76 ±1 ±1.4 ±1.6 ±0.9 ±1.0 ±0.7 ±0.6 ±2 ±1 ±1.3 ±1.3	25k 20k 28k 1180 3600 22k 10k 3186	2 ATKINSON 2 ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER MCCUBBIN 2 PALER FOX FOX 6 MATISON LEWIS	86 86 80 78B 77 75 75 74 74 74 73 73	OMEG OMEG HBC ASPK DBC HBC HBC RVUE RVUE HBC HBC	0 0 0 0 0 0 0 0 0 0 0 0	20-70 γp 10 $\pi^- p \rightarrow K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $pp \rightarrow K^- K^0 \pi^{\pm}$ 3.4,6 $K^{\pm} N \rightarrow (K\pi)^0 N$ 5.4 $K^+ d \rightarrow K^+ \pi^- pp$ 16.3 $K^- p \rightarrow K^- \pi$ 2 $K^- p \rightarrow K^- \pi^+$ 2 $K^- p \rightarrow K^+ \pi^-$ 12 $K^+ p \rightarrow K^+ \pi^-$ 12 $K^+ p \rightarrow K^+ \pi^-$ 2-1.3 $K^+ p \rightarrow K^+ \pi^-$ 4.6 $K^+ n \rightarrow K^+ \pi^-$ 3.9,4.6 $K^- p \rightarrow K^- \pi^-$
894.63 897 898.4 894.9 897.6 895.5 897.1 896.0 896.0 896.0 898.4 897.9	# ± 1.4 # ± 1.4 # ± 1.6 # ± 1.0 # ±	3600 22k 1180 3600 22k 10k 3186	2 ATKINSON 2 ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER MCCUBBIN 2 PALER FOX FOX 6 MATISON LEWIS 6 LINGLIN 3 BUCHNER 3 AGUILAR 3 AGUILAR	86 86 80 78B 78 77 75 75 74 74 74 73 73 72 71B	OMEG OMEG HBC ASPK DBC HBC HBC HBC HBC HBC HBC	0 0 0 0 0 0 0 0 0	20-70 γp 10 $\pi^- p \rightarrow K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $\overline{p} p \rightarrow K^+ K^0 \pi^{\pm}$ 3.4,6 $K^{\pm} N \rightarrow (K\pi)^0 N$ 5.4 $K^+ d \rightarrow K^+ \pi^- pp$ 14.3 $K^- p \rightarrow K^- \pi^+$ 2 $K^- p \rightarrow K^- \pi^+$ 2 $K^- p \rightarrow K^+ \pi^-$ 12 $K^+ p \rightarrow K^+ \pi^-$ 12 $K^+ p \rightarrow K^+ \pi^-$ 13.9,4.6 $K^- p \rightarrow K^- \pi^+ p$ 3.9,4.6 $K^- p \rightarrow K^- \pi^+ p$
894.63 897 898.4 894.9 897.6 895.5 897.1 896.0 896.0 894.0 898.4 897.9 898.0	# ± 1.4 # ± 1.4 # ± 1.6 # ± 0.9 # ± 1.0 # ± 1.0 # ± 1.0 # ± 1.3 # ± 1.4	25k 20k 28k 1180 3600 22k 10k 3186 1700 2934 5362 4300	2 ATKINSON 2 ATKINSON 2 ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER MCCUBBIN 2 PALER FOX 6 MATISON LEWIS 6 LINGLIN 3 BUCHNER 3 AGUILAR 4 HABER	86 86 80 78B 78 77 75 75 74 74 73 73 72 71B 70	OMEGOMEGOMEGOMEGOMEGOMEGOMEGOMEGOMEGOMEG	0 0 0 0 0 0 0 0 0 0	20-70 γp 10 $\pi^- p \rightarrow K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $pp \rightarrow K^+ K_0^S \pi^\pm$ 3.4.6 $K^\pm N \rightarrow (K\pi)^0 N$ 5.4 $K^+ \pi^- pp$ 3.6 $K^- p \rightarrow K^- \pi^+$ 14.3 $K^- p \rightarrow K^- \pi^+$ 12 $K^+ p \rightarrow K^+ \pi^-$ 13.9.4.6 $K^- p \rightarrow K^- \pi^+$ 3.9.4.6 $K^- p \rightarrow K^- \pi^+ \pi^- p$ 3.9.4.7 $K^- \pi^+ \pi^- p$
894.63 897 898.4 898.4 897.6 895.5 897.1 896.0 896.0 896.0 898.4 897.9 898.0 895.5	# ± 1.4 # ± 1.4 # ± 1.6 # ± 0.9 # ± 1.0 # ± 0.6 # ± 0.6 # ± 1.3 # ± 1.3 # ± 1.3 # ± 1.3 # ± 1.3 # ± 1.3	3600 22k 1180 3600 22k 10k 3186 1700 2934 5362 4300 10k	2 ATKINSON 2 ATKINSON 2 ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER MCCUBBIN 2 PALER FOX FOX 6 MATISON LEWIS 6 LINGLIN 3 BUCHNER 3 AGUILAR 4 HABER DAVIS	86 86 80 78B 77 75 75 74 74 73 73 73 71B 70 69	OMEGOMEGOMEGOMEGOMEGOMEGOMEGOMEGOMEGOMEG	0 0 0 0 0 0 0 0 0 0 0	20-70 γp 10 $\pi^- p \rightarrow K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $\overline{p}p \rightarrow K^+ K^0 \pi^{\pm}$ 3.4.6 $K^{\pm}N \rightarrow (K\pi)^0 N$ 5.4 $K^+ d \rightarrow K^+ \pi^- pp$ 14.3 $K^- p \rightarrow K^- \pi^+$ 2 $K^- p \rightarrow K^- \pi^+$ 2 $K^+ p \rightarrow K^+ \pi^-$ 12 $K^+ p \rightarrow K^+ \pi^-$ 12 $K^+ p \rightarrow K^+ \pi^-$ 3.9,4.6 $K^- p \rightarrow K^- \pi^+ n$
894.63 897 898.4 898.4 897.6 895.5 897.1 896.0 896.0 896.0 898.4 897.9 898.0 898.3 895.8	# ± 1.4 # ± 1.4 # ± 1.6 # ± 0.9 # ± 1.0 # ± 1.0 # ± 1.0 # ± 1.0 # ± 1.0 # ± 1.0 # ± 1.3 # ± 1.3 # ± 1.3 # ± 1.3 # ± 1.3 # ± 1.4	3600 22k 1180 3600 22k 10k 3186 1700 2934 5362 4300 10k	2 ATKINSON 2 ATKINSON 2 ATKINSON EVANGELISTA AGUILAR WICKLUND BOWLER MCCUBBIN 2 PALER FOX 6 MATISON LEWIS 6 LINGLIN 3 BUCHNER 3 AGUILAR 4 HABER DAVIS 3 DAUBER	86 86 80 78B 77 75 75 74 74 73 73 73 71B 70 69	OMEGOMEGOMEGOMEGOMEGOMEGOMEGOMEGOMEGOMEG	0 0 0 0 0 0 0 0 0 0 0	20-70 γp 10 $\pi^- p \rightarrow$ $K^+ \pi^- (\Lambda, \Sigma)$ 0.76 $pp \rightarrow$ $K^+ K_0^S \pi^\pm$ 3.4.6 $K^\pm N \rightarrow$ $(K\pi)^0 N$ 5.4 $K^+ d \rightarrow$ $K^+ \pi^- pp$ 3.6 $K^- p \rightarrow K^- \pi^+$ 14.3 $K^- p \rightarrow K^- \pi^-$ 12 $K^+ p \rightarrow K^+ \pi^-$ 2.1-2.7 $K^+ p \rightarrow$ $K^- \pi^+ p \rightarrow$ 4.6 $K^- p \rightarrow$ $K^- \pi^+ p \rightarrow$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p$ 3.7.1 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p \rightarrow$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p \rightarrow$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p \rightarrow$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p \rightarrow$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p \rightarrow$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p \rightarrow$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p \rightarrow$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p \rightarrow$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p \rightarrow$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p \rightarrow$ 3.9.4.6 $K^- p \rightarrow$ $K^- \pi^+ \pi^- p \rightarrow$

K*(892)0 mass (MeV)

- ²Inclusive reaction. Complicated background and phase-space effects.
- ³ Mass errors enlarged by us to Γ/\sqrt{N} . See note.
- ⁴ Number of events in peak reevaluated by us.
- From a partial wave amplitude analysis.
- ⁶ From pole extrapolation.

K*(892) MASSES AND MASS DIFFERENCES

Unrealistically small errors have been reported by some experiments. We use simple "realistic" tests for the minimum errors on the determination of a mass and width from a sample of N events:

$$\delta_{\min}(m) = \frac{\Gamma}{\sqrt{N}}, \quad \delta_{\min}(\Gamma) = 4\frac{\Gamma}{\sqrt{N}}.$$
 (1)

We consistently increase unrealistic errors before averaging. For a detailed discussion, see the 1971 edition of this Note.

		m _{K*(892)0} -	[™] K*(892)±		
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
6.7±1.2 OUR	AVERAGE				
7.7 ± 1.7	2980	AGUILAR	78B HBC	± 0	0.76 p̄p →
					κ∓ κ ⁰ ς π±
5.7±1.7	7338	AGUILAR	71B HBC	-0	3.9,4.6 K - p
6.3 ± 4.1	283	⁷ BARASH	678 HBC		0.0 p p
⁷ Number of	events in pea	k reevaluated by u	s.		

K*(892) RANGE PARAMETER

All from partial wave amplitude analyses.

VALUE (GeV ⁻¹)	DOCUMENT ID		TECN	CHG	COMMENT
3.4 ± 0.7	ASTON	88	LASS	0	11 $K^-p \rightarrow K^-\pi^+\pi$
• • We do not use the	ne following data	for a	iverages,	fits, li	mits, etc. • • •
$12.1 \pm 3.2 \pm 3.0$	BIRD	89	LA5S	-	11 $K^-\rho \rightarrow \overline{K}^0\pi^-\rho$

K*(892) WIDTH

VALO 50.8	ARGED ONL DE (MeV) E±0.9 OUR FIT B±0.9 OUR AV	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
49		5840	BAUBILLIER	84B	нвс	_	8.25 K ⁻ p →
							$\overline{K}^0\pi^-p$
56	±4		NAPIER	84	SPEC	-	$200 \pi^- \rho \rightarrow 2K_5^0 X$
51	±2	4100	TOAFF	81	HBC	_	$6.5 \ K^- \rho \rightarrow \overline{K}^0 \pi^- \rho$
50.5	5±5.6		AJINENKO	80	HBC	+	$32 K^+ p \rightarrow K^0 \pi^+ X$
45.8	3±3.6	1800	AGUILAR	78B	HBC	±	0.76 p p →
							'κ [∓] κ ⁰ π [±]
52.0)±2.5	6706	9 COOPER	78	HBC	±	$0.76 \overline{\rho} p \rightarrow (K \pi)^{\pm} X$

$\textbf{52.1} \pm \textbf{2.2}$	9000	10 PALER	75 HBC	-	$14.3 K^- \rho \rightarrow (K\pi)^-$
46.3 ± 6.7	765	9 CLARK	73 HBC	-	3.13 K ⁻ p →
					$\overline{K}^0\pi^-\rho$
48.2 ± 5.7	1150	9,11 CLARK	73 HBC	-	3.3 $K^- \rho \rightarrow \overline{K}^0 \pi^- \rho$
54.3 ± 3.3	4404	⁹ AGUILAR	71B HBC	-	3.9,4.6 $K^- \rho \rightarrow$
					$(K\pi)^-\rho$
46 ±5	1700	9,11 WOJCICKI	64 HBC		1.7 $K^- \rho \rightarrow \overline{K}^0 \pi^- \rho$
• • • We do not	use the f	ollowing data for av	erages, fits,	limits,	etc. • • •
54.8 ± 1.7	27k	8 ABELE	990 CBA	R ±	$0.0 \ \tilde{p} \rho \rightarrow K^+ K^- \pi^0$
45.2±1 ±2	79709 =	t ¹² BIRD	89 LASS	i –	11 $K^-\rho \rightarrow \overline{K}^0\pi^-\rho$
	801				
42.8 ± 7.1	3700	BARTH	83 HBC	+	70 $K^+ \rho \rightarrow K^0 \pi^+ X$
64.0 ± 9.2	800	^{9,11} CLELAND	82 SPE	+	$30 K^+ p \rightarrow K_5^0 \pi^+ p$
62.0 ± 4.4	3200	^{9,11} CLELAND	82 SPE	: +	$50 K^+ p \rightarrow K_S^{0} \pi^+ p$
55 ±4	3600	9,11 CLELAND	82 SPE		$50 K^{+} p \rightarrow K_{S}^{0} \pi^{+} p$ $50 K^{+} p \rightarrow K_{S}^{0} \pi^{-} p$
62.6 ± 3.8	380	DELFOSSE	81 SPE	2 +	$50 K^{\pm} \rho \rightarrow K^{\pm} \pi^{0} \rho$
50.5 ± 3.9	187	DELFOSSE	81 SPE	≎ –	$50 K^{\pm} p \rightarrow K^{\pm} \pi^{0} p$
⁸ K-matrix pole					

NE	EUTRAL O	NLY					
	UE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
			includes scale factor				
	7±0.6 OUR	AVERAGE	Error includes scale			ι.	
54	±3		BARBERIS	98E	OMEG		450 pp →
							p _f p _S K* K*
	$8 \pm 0.8 \pm 0.9$		ASTON	88	LASS	0	$11 \ K^- \rho \rightarrow K^- \pi^+ \pi$
	5±4.3	5 9 00	BARTH	83	HBC	0	$70 K^+ \rho \rightarrow K^+ \pi^- X$
54	±2	28k	EVANGELISTA	80	OMEG	0	$10 \pi^- \rho \rightarrow$
							$K^+\pi^-(\Lambda,\Sigma)$
45.	9±4.8	1180	AGUILAR	78B	HBC	0	0.76 $\overline{p}p$ →
							κ [∓] κ ⁰ ₅ π [±]
51.	2±1.7		WICKLUND	78	ASPK	0	3,4,6 $K^{\pm}N \rightarrow$
							(<i>K</i> π) ⁰ <i>N</i>
4 8.	9 ± 2.5		BOWLER	77	DBC	0	$5.4 K^+ d \rightarrow$
							K+π-ρρ
48	+3 -2	3600	MCCUBBIN	75	нвс	0	3.6 $K^- p \to K^- \pi^+ \pi$
50.	6±2.5	22k	10 PALER	75	нвс	0	14.3 $K^- \rho \to (K \pi)^0$
							X
	±2	10k	FOX	74	RVUE	0	$2K^-p \rightarrow K^-\pi^+n$
	±2		FOX	74	RVUE	0	$2 K^+ n \rightarrow K^+ \pi^- p$
46.	0 ± 3.3	3186	⁹ LEWIS	73	нвс	0	$2.1-2.7 K^+ \rho \rightarrow K\pi\pi\rho$
51	4±5.0	1700	9 BUCHNER	72	DBC	0	$4.6 K^{+} \pi \rightarrow K^{+} \pi^{-} \rho$
						_	•
55.	8 + 4.2 - 3.4	2934	⁹ AGUILAR	71B	HBC	0	3.9,4.6 K p →
40	5 ± 2.7	5362	AGUILAR	710	нвс	0	$K^-\pi^+\pi$ 3.9,4.6 $K^-\mu \rightarrow$
40.	3 ± 2.1	3302	Addicar	,10	IIDC	v	κ-π+π-p
54	0±3.3	4300	9,11 HABER	70	DBC	0	$3K^-N \rightarrow K^-\pi^+X$
	2±2.1	10k	9 DAVIS	69	HBC	o	12 K ⁺ p →
J.J.		100	2,	-	0	•	$K^{+}\pi^{-}\pi^{+}D$
44	± 5.5	1040	9 DAUBER	67B	нвс	0	2.0 K ⁻ p →
	_ 0.5	2040	2502.1	-10		-	$K^-\pi^+\pi^-\rho$

 $\frac{9}{10}$ Width errors enlarged by us to $4 \times \Gamma/\sqrt{N}$; see note.

 10 Inclusive reaction. Complicated background and phase-space effects.

11 Number of events in peak reevaluated by us.

¹² From a partial wave amplitude analysis.

K*(892) DECAY MODES

	Mode	Fraction (Γ_j/Γ) Confidence level
$\overline{\Gamma_1}$	Κπ	~ 100 %
Γ_2	$(K\pi)^{\pm}$	(99.901 ± 0.009) %
Γ ₃ Γ ₄ Γ ₅	$(K\pi)^0$	(99.770±0.020) %
Γ_4	$K^{\circ}\gamma$	$(2.30 \pm 0.20) \times 10^{-3}$
Γ_5	$K^{\pm}\gamma$	$(9.9 \pm 0.9) \times 10^{-4}$
Γ ₆	Κππ	< 7 × 10 ⁻⁴ 95%

 $K^*(892), K_1(1270)$

CONSTRAINED FIT INFORMATION

An overall fit to the total width and a partial width uses 13 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=$ 7.8 for 11 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (MeV)	
Γ ₂	$(K\pi)^{\pm}$ $K^{\pm}\gamma$	50.7 ±0.9 0.050±0.005	
15	N ' J	0.030±0.003	

CONSTRAINED FIT INFORMATION

An overall fit to the total width and a partial width uses 19 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=$ 19.7 for 17 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (MeV)	Scale factor
Г3	$(K\pi)^{0}$	50.6 ±0.6	1.1
Γ4	$K^0\gamma$	0.117 ± 0.010	

' K*(892) PARTIAL WIDTHS

Γ(Κ⁰γ)								Г
VALUE (keV)	EVT5	DOCUM	ENT ID		TECN	CHG	COMMENT	
116 ±10 OUR F	T							
116.5± 9.9	584	CARLS	MITH	86	SPEC	0	$K_L^0 A \rightarrow K_S^0 \pi^0 A$	k .
$\Gamma(K^{\pm}\gamma)$								Γį
VALUE (keV)	DOC	UMENT ID		TECN	CHG	сомм	IENT	
50± 5 OUR FIT								
50± 5 OUR AVER	AGE							
48±11	BEF	₹G	83	SPEC	_		(¯A → KπA	
51± 5	CHA	NDLEE	83	SPEC	+	200 F	$(^{+}A \rightarrow K\pi A)$	

		K*(892) BRAN	CHIN	IG RAT	rios		
$\Gamma(K^0\gamma)/\Gamma_{\text{total}}$							Γ4/Γ
VALUE (units 10-3)		DOCUMENT ID	TECH	CHG	сом	MENT	
2.30±0.20 OUR F	IT.						
 ● ● We do not 	use the	following data for a	verag	es, fits, l	limits,	etc. • • •	
1.5 ± 0.7		CARITHERS 75B	CNT	R 0	8-16	5 K ⁰ A	
$\Gamma(K^{\pm}\gamma)/\Gamma_{\text{total}}$							Γ ₅ /Γ
VALUE (units 10 ⁻³)		DOCUMENT ID		TECN	CHG	COMMENT	
0.99 ± 0.09 OUF	FIT						
• • • We do not	use the	following data for a	verag	es, fits,	limits,	etc. • • •	
<1.6	95	BEMPORAD	73	CNTR	+	10-16 K+A	
$\Gamma(K\pi\pi)/\Gamma((K\pi\pi))$	*)±)						Γ6/Γ2
VALUE	CL%	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	COMMENT	
< 0.0007	95	JONGEJAN5	78	HBC		$4 K^- p \rightarrow p \overline{k}$	(0.2π)
• • • We do not	use the	following data for a	verag	es, fits,	limits,	etc. • • •	
< 0.002		MOJCICKI	64	HBC	-	$1.7~K^-p \rightarrow \tilde{I}$	$\overline{\zeta}^0\pi^-p$

K*(892) REFERENCES

ABELE	99D	PL B468 178	A. Abele et al.	(Crystal Barrel Collab.)
BARBERIS	98E	PL B436 204	D. Barberis et al.	(Omega expt.)
BIRD	89	SLAC-332	P.F. Bird	(SLAC)
ASTON	88	NP B296 493	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ATKINSON	86	ZPHY C30 521	M. Atkinson et al.	(BONN, CERN, GLAS+)
CARLSMITH	86	PRL 56 18	D. Carlsmith et al.	(EFI, SACL)
BAUBILLIER	84B	ZPHY C26 37	M. Baubillier et al.	(BIRM, CERN, GLAS+)
NAPIER	84	PL 149B 514	A. Napier et al.	(TUFTS, ARIZ, FNAL, FLOR+)
BARTH	83	NP B223 296		(BRUX, CERN, GENO, MONS+)
BERG	83	Thesis UMI 83-21652	D.M. Berg	(ROCH)
CHANDLEE	83	PRL 51 168	C. Chandlee et al.	(ROCH, FNAL, MINN)
CLELAND	82	NP B208 189	W.E. Cleiand et al.	(DURH, GEVA, LAUS+)
DELFOSSE	81	NP B183 349	A. Delfosse et al.	(GEVA, LAUS)
TOAFF	81	PR D23 1500	S. Toaff et al.	(ANL, KANS)
AJINENKO	80	ZPHY C5 177	I.V. Ajinenko et al.	(SERP, BRÙX, MONS+)
EVANGELISTA	80	NP B165 383	C. Evangelista et al.	(BARI, BONN, CERN+)
AGUILAR	78B	NP B141 101	M. Aguilar-Benitez et al.	(MADR, TATA+)
BALAND	78	NP B140 220	J.F. Baland et al.	(MONS, BELG, CERN+)
COOPER	78	NP B136 365	A.M. Cooper et al.	(TATA, CERN, CDEF+)
JONGEJANS	78	NP B139 383	B. Jongejans et al.	(ZEEM, CERN, NIJM+)
WICKLUND	78	PR D17 1197	A.B. Wicklund et al.	(ANL)
BOWLER	77	NP B126 31	M.G. Bowler et al.	(OXF)
CARITHERS	75B	PRL 35 349	W.C.J. Carithers et al.	(ROCH, MCGI)
MCCUBBIN	75	NP B86 13	N.A. McCubbin, L. Lyon	s (OXF)
PALER	75	NP B96 1	K. Paler et al.	(RHEL, SACL, ÈPOL)
FOX	74	NP B80 403	G.C. Fox. M.L. Griss	(CIT)
MATISON	74	PR D9 1872	M.J. Matison et al.	(LBL)
BEMPORAD	73	NP B51 1	C. Bemporad et al.	(CERN, ETH, LOIC)
CLARK	73	NP B54 432	A.G. Clark, L. Lyons, D.	
LEWIS	73	NP B60 283	P.H. Lewis et al.	(LOWC, LOIC, CDEF)
LINGLIN	73	NP B55 408	D. Linglin	(CERN)
BUCHNER	72	NP B45 333	K. Buchner et al.	(MPIM, CERN, BRUX)
AGUILAR	71B	PR D4 2583	M. Aguilar-Benitez, R.L.	Eisner, J.B. Kinson (BNL)
HABER	70	NP B17 289	B. Haber et al.	(REHO, SACL, BGNA, EPOL)
CRENNELL	69D	PRL 22 487	D.J. Crennell et al.	(BNL)
DAVI\$	69	PRL 23 1071	P.J. Davis et al.	(LRL)
SCHWEING	68	PR 166 1317	F. Schweingruber et al.	(ANL, NWES)
BARASH	67B	PR 156 1399	N. Barash et al.	(COLU)
BARLOW	67	NC 50A 701	J. Barlow et al.	(CERN, CDEF, IRAD, LIVP)
DAUBER	67B	PR 153 1403	P.M. Dauber et al.	(UCLA)
DEBAERE	67B	NC 51A 401	W. de Baere et al.	(BRUX, CERN)
WOJCICKI	64	PR 135B 484	S.G. Wojcicki	` (LRL)

OTHER RELATED PAPERS -

ENAYOUN AMAL IAPIER LELAND LEXANDER LSTON	99B 92 84 82 62 61	PR D59 114027 PL B284 421 PL 149B 514 NP B208 189 PRŁ 8 447 PRL 6 300	M. Benayoun <i>et al.</i> A.N. Kamal, Q.P. Xu A. Napier <i>et al.</i> W.E. Cleland <i>et al.</i> G. Alexander <i>et al.</i> M.H. Alston <i>et al.</i>	(ALBE) (TUFTS, ARIZ, FNAL, FLOR+) (DURH, GEVA, LAUS+) (LRL) (LRL)
--	-----------------------------------	--	---	---

$$I(J^P) = \frac{1}{2}(1^+)$$

K1 (1270) MASS

VALUE (MeV) DOCUMENT ID Includes data from the 2 datablocks that follow this one.

PRODUCED BY K-, BACKWARD SCATTERING, HYPERON EXCHANGE

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>

The data in this block is included in the average printed for a previous datablock.

GAVILLET 78 HBC + 1275±10 700 $\Xi^-(K\pi\pi)^+$

PRODUCED BY K BEAMS

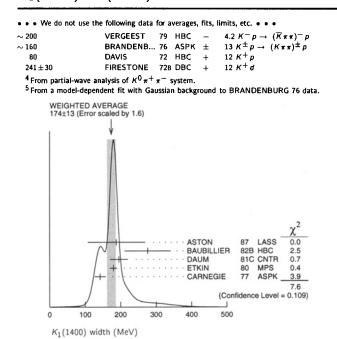
<u>VALUE (MeV)</u> <u>DOCUMENT ID</u> <u>TECN CHG COMMENT</u>
The data in this block is included in the average printed for a previous datablock.

1270±10 • • • We do not u	DAUM se the following data				63 $K^- p \rightarrow K^- 2\pi p$ limits, etc. • •
\sim 1276	¹ TORNQVIST	82B	RVUE		
~ 1300	VERGEEST	79	HBC	_	$4.2 K^- p \rightarrow (\overline{K} \pi \pi)^- p$
1289 ± 25	² CARNEGIE	77	ASPK	±	
~ 1300	BRANDENB	. 76	ASPK	±	$13 K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$
~ 1270	OTTER	76	HBC	_	10,14,16 $K^-p \rightarrow$
					$(\overline{K}_{\pi\pi})^{-}p$
1260	DAVIS	72	HBC	+	12 K ⁺ p
1234±12	FIRESTONE	72B	DBC	+	12 K ⁺ d

 $^{\mathrm{1}}$ From a unitarized quark-model calculation.

² From a model-dependent fit with Gaussian background to BRANDENBURG 76 data.

PRODUCED BY BEAMS OTHER THAN K MESONS


VALUE (MeV)	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
• • • We do n	ot use the fol	llowing data for av-	erage	s, fits, l	imits, e	etc. • • •
1294±10	310	RODEBACK	81	HBC		$4 \pi^+ p \rightarrow \Lambda K 2\pi$
1300	40	CRENNELL	72	HBC	0	$4.5 \pi^- p \rightarrow \Lambda K 2\pi$
1242 + 9		3 ASTIER	69	HBC	0	Īρ
1300	45	CRENNELL	67	HBC	0	$6 \pi^- p \rightarrow \Lambda K 2\pi$
³ This was ca	illed the C me	eson.				

Meson Particle Listings $K_1(1270)$, $K_1(1400)$

K ₁ (1270) WIDTH	$\Gamma(K_0^*(1430)\pi)/\Gamma_{ ext{total}}$ $\Gamma_{2/1}$
VALUE (MeV) DOCUMENT ID	0.28±0.04 5 DAUM 81C CNTR 63 $K^-p \rightarrow K^-2\pi p$
## 20 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values. ### 7 OUR AVERAGE Includes data from the 2 datablocks that follow this one.	$\Gamma(K^{\bullet}(892)\pi)/\Gamma_{\text{total}}$
	<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> 0.16±0.05 DAUM 81C CNTR 63 $K^-p \rightarrow K^-2πp$
PRODUCED BY K-, BACKWARD SCATTERING, HYPERON EXCHANGE VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT	
The data in this block is included in the average printed for a previous datablock.	Γ(Κω)/Γ _{total} Γ _{4/} VALUE DOCUMENT ID TECN COMMENT
75±15 700 GAVILLET 78 HBC + 4.2 K ⁻ p →	0.11 \pm 0.02 5 DAUM 81C CNTR 63 $K^-p \rightarrow K^-2\pi p$
Ξ-Κππ	$\Gamma(K\omega)/\Gamma(K\rho)$ Γ_4/Γ
PRODUCED BY K BEAMS VALUE (MeV) DOCUMENT ID TECN CHG COMMENT	VALUE CL% DOCUMENT ID TECH COMMENT
he data in this block is included in the average printed for a previous datablock.	• • • We do not use the following data for averages, fits, limits, etc. • • POPERAGE. 93, LING. 4 = 77 = 44/2 =
90± 8 DAUM 81C CNTR - 63 $K^-p \rightarrow K^-2\pi p$	<0.30 95 RODEBACK B1 HBC $4\pi^-p \rightarrow AK2\pi$
• • We do not use the following data for averages, fits, limits, etc. • • • 150 VERGEEST 79 HBC - $4.2 K^- p \rightarrow (\overline{K} \pi \pi)^- p$	r(K f ₀ (1370))/r _{total} r ₅
150±71 4 CARNEGIE 77 ASPK ± 13 $K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$	0.03 ±0.02 5 DAUM 81C CNTR 63 $K^-p \to K^-2\pi p$
200 BRANDENB 76 ASPK \pm 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$ 120 DAVIS 72 HBC $+$ 12 $K^{+}p$	D-wave/S-wave RATIO FOR $K_1(1270) \rightarrow K^*(892)\pi$
188±21 FIRESTONE 72B DBC + 12 K+d	VALUE DOCUMENT ID TECN COMMENT
⁴ From a model-dependent fit with Gaussian background to BRANDENBURG 76 data.	1.0 \pm 0.7 ⁵ DAUM 81C CNTR 63 $K^-p \rightarrow K^-2\pi p$ ⁵ Average from low and high t data.
PRODUCED BY BEAMS OTHER THAN K MESONS ALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT	Average from low and night (data.
ALLUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •	K ₁ (1270) REFERENCES
66±15 310 RODEBACK 81 HBC $4\pi^-p \rightarrow \Lambda K2\pi$	TORNQVIST 82B NP B203 268 N.A. Tornqvist (HELS) DAUM 81C NP B187 1 C. Daum et ai. (AMST, CERN, CRAC, MPIM+)
60 40 CRENNELL 72 HBC 0 $4.5 \pi^{-} p \rightarrow \Lambda K 2 \pi$ $1.27 + \frac{7}{-25}$ ASTIER 69 HBC 0 $\bar{p}p$	RODEBACK 81 ZPHY C9 9 S. Rodeback et al. (CERN, CDEF, MADR+) MAZZUCATO 79 NP B156 532 M. Mazzucato et al. (CERN, ZEEM, NIJM+)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VERGEEST 79 NP B158 265 J.S.M. Vergeest et al. (NIJM, AMST, CERN+) GAVILLET 78 PL 76B 517 P. Gavillet et al. (AMST, CERN, NIJM+)
The state of the s	CARNEGIE 77 NP B127 509 R.K. Carnegie et al. (SLAC) CARNEGIE 77B PL 68B 287 R.K. Carnegie et al. (SLAC)
K ₁ (1270) DECAY MODES	BRANDENB 76 PRL 26 703 G.W. Brandenburg et al. (SLAC) OTTER 76 NP B106 77 G. Otter et al. (AACH3, BERL, CERN, LOIC+)
Mode Fraction (Γ_i/Γ)	CRENNELL 72 PR D6 1220 D.J. Crennell et al. (BNL) DAVIS 72 PR D5 2688 P.J. Davis et al. (LBL)
	FIRESTONE 72B PR D5 505 A. Firestone et al. (LBL) ASTIER 69 NP B10 65 A. Astier et al. (CDEF, CERN, IPNP, LIVP)
$egin{array}{lll} \Gamma_1 & K ho & (42 \pm 6 \) \% \ \Gamma_2 & K_0^* (1430) \pi & (28 \pm 4 \) \% \end{array}$	CRENNELL 67 PRL 19 44 D.J. Crennell et al. (BNL)
$\Gamma_3 = K^*(892)\pi$ (16 ±5)%	OTHER RELATED PAPERS
Γ ₄ Κω (11.0±2.0) %	SUZUKI 93 PR D47 1252 M. Suzuki (LBL) BAUBILLIER 82B NP B202 21 M. Baubillier et al. (BIRM, CERN, GLAS+)
$\Gamma_5 K f_0(1370) \qquad (3.0 \pm 2.0) \%$	FERNANDEZ 82 ZPHY C16 95 C. Fernandez et al. (MADR, CERN, CDEF+) GAVILLET 82 ZPHY C16 119 P. Gavillet et al. (CERN, CDEF, PADO+)
K1(1270) PARTIAL WIDTHS	SHEN 66 PRL 17 726 B.C. Shen et al. (LR1) Also 66 Private Comm. G. Goldhaber (LR1) ALMEIDA 65 PL 16 184 S.P. Almeida et al. (CAVE)
$\Gamma(K ho)$	ALMEIDA 65 PL 16 184 S.P. Almeida <i>et al.</i> (CAVE) ARMENTEROS 64 PL 9 207 R. Armenteros <i>et al.</i> (CERN, CDEF) Also 66 PR 145 1095 N. Barash <i>et al.</i> (COLV)
VALUE (MeV) DOCUMENT ID TECN CHG COMMENT	•
• • • We do not use the following data for averages, fits, limits, etc. • • • $\mathbf{57\pm5}$ MAZZUCATO 79 HBC + $\mathbf{4.2 \ K^- p \rightarrow \Xi^- (K\pi\pi)^+}$	$K_1(1400)$ $I(J^P) = \frac{1}{2}(1^+)$
	/\(\frac{1}{1}\)
75±6 CARNEGIE 778 ASPK ± 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$	
	K (1400) MASS
$\Gamma(K_0^*(1430)\pi)$ Γ_2 VALUE (MeV) DOCUMENT ID TECN CHG COMMENT	K ₁ (1400) MASS
$\Gamma(K_0^*(1430)\pi)$ VALUE (MeV) DOCUMENT ID TECN CHG COMMENT ••• We do not use the following data for averages, fits, limits, etc. •••	VALUE (MeV) DOCUMENT ID TECN CHG COMMENT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VALUE (MeV) DOCUMENT ID TECN CHG COMMENT 1402 \pm 7 OUR AVERAGE 1373 \pm 14 \pm 18 1 ASTON 87 LASS 0 11 $K^-p \rightarrow \overline{K}{}^0\pi^+\pi^-p$
$\Gamma(K_0^\bullet(1430)\pi) \qquad \qquad \Gamma_2$ $\frac{\Gamma(K_0^\bullet(1430)\pi)}{\text{o. o. We do not use the following data for averages, fits, limits, etc. o. o.}}{\text{CARNEGIE}} \qquad \frac{\Gamma_2}{778 \text{ ASPK}} \qquad \frac{CHG}{\pm} \qquad \frac{COMMENT}{13 \text{ K}^{\pm} p \rightarrow (K\pi\pi)^{\pm} p}$ $\Gamma(K^\bullet(892)\pi) \qquad \qquad \Gamma_3$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\Gamma(K_0^\bullet(1430)\pi) \qquad \qquad \Gamma_2$ $\frac{\Gamma(K_0^\bullet(1430)\pi)}{\text{o. o. We do not use the following data for averages, fits, limits, etc. } \bullet \bullet$ $\frac{1}{26\pm6} \qquad \qquad \Gamma_2$ $\frac{1}{26\pm6} \qquad \qquad \Gamma_3$ $\frac{\Gamma(K^\bullet(892)\pi)}{\Gamma(K^\bullet(892)\pi)} \qquad \qquad \Gamma_3$ $\frac{1}{26\pm6} \qquad \qquad \Gamma_3$ $\frac{1}{26\pm6} \qquad \qquad \Gamma_3$ $\frac{1}{26\pm6} \qquad \qquad \Gamma_4$ $\frac{1}{26\pm6} \qquad \qquad \Gamma_5$ $\frac{1}{26\pm6} \qquad \qquad \Gamma_6$	VALUE (MeV) DOCUMENT ID TECN CHG COMMENT 1402 \pm 7 OUR AVERAGE 1373 \pm 14 \pm 18 1 ASTON 87 LASS 0 11 $K^-p \to \overline{K}^0\pi^+\pi^-$ n 1392 \pm 18 BAUBILLIER 82B HBC 0 8.25 $K^-p \to K_0^0\pi^+\pi^-$ 1410 \pm 25 DAUM 81C CNTR - 63 $K^-p \to K^-2\pi^-p$
$\Gamma(K_0^*(1430)\pi)$ $VALUE\ (MeV)$ $OCCUMENT\ ID$ $OCCUMENT$	VALUE (MeV) DOCUMENT ID TECN CHG COMMENT 1402± 7 OUR AVERAGE 1 ASTON 87 LASS 0 11 $K^-p \to \overline{K}^0\pi^+\pi^-$ 1392±18 BAUBILLIER 82B HBC 0 8.25 $K^-p \to K^0\pi^+\pi^-$ 1410±25 DAUM 81C CNTR 63 $K^-p \to K^0\pi^+\pi^-$ 1415±15 ETKIN 80 MPS 0 6 $K^-p \to \overline{K}^0\pi^+\pi^-$ 1404±10 2 CARNEGIE 77 ASPK ± 13 $K^\pm p \to (K\pi\pi)^\pm p$
$\Gamma(K_0^*(1430)\pi)$ VALUE (MeV) • • • We do not use the following data for averages, fits, limits, etc. • • • • 26±6 $\Gamma(K_0^*(892)\pi)$ VALUE (MeV) DOCUMENT ID TECN CHG COMMENT $\Gamma(K_0^*(892)\pi)$ VALUE (MeV) DOCUMENT ID TECN CHG COMMENT Γ_3 VALUE (MeV) • • • We do not use the following data for averages, fits, limits, etc. • • •	VALUE (MeV)DOCUMENT IDTECNCHGCOMMENT $1402\pm$ 7 OUR AVERAGE $1373\pm14\pm18$ 1 ASTON 87 LASS 0 11 $K^-p \rightarrow \overline{K}^0\pi^+\pi^ 1392\pm18$ BAUBILLIER 828 HBC 0 8.25 $K^-p \rightarrow K_0^0\pi^+\pi^ 1410\pm25$ DAUM 81 CNTR $ 63$ $K^-p \rightarrow K^-2\pi p$ 1415 ± 15 ETKIN 80 MPS 0 6 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1404 ± 10 2 CARNEGIE 77 ASPK \pm 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$ • • • We do not use the following data for averages, fits, limits, etc. • • •
Γ(K_0^* (1430)π) DOCUMENT ID TECN EN We do not use the following data for averages, fits, limits, etc. • • CARNEGIE 778 ASPK ± 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$ Γ(K^* (892)π) NALUE (MeV) DOCUMENT ID TECN CHG COMMENT F3 VALUE (MeV) • • • We do not use the following data for averages, fits, limits, etc. • • 14±11 MAZZUCATO 79 HBC + 4.2 $K^-p \rightarrow \Xi^-(K\pi\pi)^+$ CARNEGIE 778 ASPK ± 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$	VALUE (MeV)DOCUMENT IDTECNCHGCOMMENT $1402\pm$ 7 OUR AVERAGE $1373\pm14\pm18$ 1 ASTON87 LASS0 11 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1392 ± 18 BAUBILLIER82B HBC0 8.25 $K^-p \rightarrow K_0^0\pi^+\pi^-n$ 1410 ± 25 DAUM81c CNTR- 63 $K^-p \rightarrow K^-2\pi p$ 1415 ± 15 ETKIN80 MPS0 6 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1404 ± 10 2 CARNEGIE77 ASPK \pm
$\Gamma(K_0^*(1430)\pi)$ $OCCUMENT ID$ $OCCUMENT$ $OCCUMENT ID$ $OCCUMENT$ OC	VALUE (MeV) DOCUMENT ID TECN CHG COMMENT $1402\pm$ 7 OUR AVERAGE 1373±14±18 1 ASTON 87 LASS 0 11 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1392±18 BAUBILLIER 82B HBC 0 8.25 $K^-p \rightarrow K^0 \pi^+\pi^-n$ 1410±25 DAUM 81c CNTR 63 $K^-p \rightarrow K^-2\pi p$ 1415±15 ETKIN 80 MPS 0 6 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1404±10 2 CARNEGIE 77 ASPK ± 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$ • • We do not use the following data for averages, fits, limits, etc. • • ~ 1350 3 TORNQVIST 82B RVUE ~ 1400 VERGEEST 79 HBC - 4.2 $K^-p \rightarrow (\overline{K}\pi\pi)^-p$ ~ 1400 BRANDENB 76 ASPK ± 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$
$\Gamma(K_0^*(1430)\pi)$ να LUE (MeV) ••• We do not use the following data for averages, fits, limits, etc. 26±6 CARNEGIE 77B ASPK ± 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$ $\Gamma(K^*(892)\pi)$ να LUE (MeV) DOCUMENT ID TECN CHG COMMENT F3 VALUE (MeV) ΦΟ ON TECN CHG COMMENT F3 VALUE (MeV) ••• We do not use the following data for averages, fits, limits, etc. 14±11 MAZZUCATO 79 HBC + 4.2 $K^-p \rightarrow \Xi^-(K\pi\pi)^+$ 2±2 CARNEGIE 77B ASPK ± 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$ $\Gamma(K\omega)$ $\Gamma(K\omega)$ VALUE (MeV) DOCUMENT ID TECN CHG COMMENT F4 VALUE (MeV) DOCUMENT ID TECN CHG COMMENT F4 VALUE (MeV) DOCUMENT ID TECN CHG COMMENT	VALUE (MeV) DOCUMENT ID TECN CHG COMMENT 1402 \pm 7 OUR AVERAGE 1373 \pm 14 \pm 18 1 ASTON 87 LASS 0 11 $K^-p \to \overline{K}^0\pi^+\pi^-n$ 1392 \pm 18 BAUBILLIER 82B HBC 0 8.25 $K^-p \to K_0^0\pi^+\pi^-n$ 1410 \pm 25 DAUM 81c CNTR - 63 $K^-p \to K^-2\pi p$ 1415 \pm 15 ETKIN 80 MPS 0 6 $K^-p \to \overline{K}^0\pi^+\pi^-n$ 1404 \pm 10 2 CARNEGIE 77 ASPK \pm 13 $K^\pm p \to (K\pi\pi)^\pm p$ • • • We do not use the following data for averages, fits, limits, etc. • • • ~ 1350 3 TORNQVIST 82B RVUE ~ 1400 VERGEEST 79 HBC - 4.2 $K^-p \to (K\pi\pi)^-p$
$\Gamma(K_0^*(1430)\pi)$ $VALUE\ (MeV)$ $OCCUMENT\ ID$ $TECN$ CHG $COMMENT$ $CB\pm 6$ $CARNEGIE$ TB $ABPK$ ABP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Γ(K_0^* (1430)π) DOCUMENT ID TECN CHG COMMENT C26±6 CARNEGIE 778 ASPK ± 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ Γ(K^* (892)π) NALUE (MeV) DOCUMENT ID TECN CHG COMMENT F3 NALUE (MeV) DOCUMENT ID TECN CHG COMMENT F3 CARNEGIE 778 ASPK ± 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ F3 NALUE (MeV) CARNEGIE TECN CHG COMMENT TECN CHG COMMENT TECN CHG COMMENT TECN CHG COMMENT TECN TECN CHG COMMENT TECN TECN CHG COMMENT TECN TECN CARNEGIE TRA ASPK ± 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ T($K\omega$) VALUE (MeV) DOCUMENT ID TECN CHG COMMENT TECN TECN TECN CHG COMMENT TECN TECN CHG COMMENT TECN TECN TECN TECN CHG COMMENT TECN TECN TECN TECN CHG COMMENT TECN TECN TECN TECN TECN CHG COMMENT TECN	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\Gamma(K_0^*(1430)\pi)$ $VALUE\ (MeV)$ Φ • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	VALUE (MeV)DOCUMENT IDTECNCHGCOMMENT $1402\pm$ 7 OUR AVERAGE $1373\pm14\pm18$ 1 ASTON87 LASS0 11 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1392 ± 18 BAUBILLIER82B HBC0 8.25 $K^-p \rightarrow K_0^0\pi^+\pi^-n$ 1410 ± 25 DAUM81C CNTR $-$ 63 $K^-p \rightarrow K^-2\pi p$ 1415 ± 15 ETKIN80 MPS0 6 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1404 ± 10 2 CARNEGIE77 ASPK \pm 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ •• • We do not use the following data for averages, fits, limits, etc.• •~ 13503 TORNQVIST82B RVUE~ 1400VERGEEST79 HBC $-$ 4.2 $K^-p \rightarrow (\overline{K}\pi\pi)^-p$ ~ 1400BRANDENB76 ASPK \pm 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ 1420DAVIS72 HBC \pm 12 K^+p 1368±18FIRESTONE72B DBC \pm 12 K^+p 1 From partial-wave analysis of K^0 $\pi^+\pi^-$ system.2 From a model-dependent fit with Gaussian background to BRANDENBURG76 data3 From a unitarized quark-model calculation.
$\Gamma(K_0^{\bullet}(1430)\pi)$ $VALUE\ (MeV)$ $OCCUMENT\ ID$ $OCCUMENT$ $OCCUMENT\ ID$ $OCCUMENT\ $	VALUE (MeV) DOCUMENT ID TECN CHG COMMENT 1402± 7 OUR AVERAGE 1373±14±18 1 ASTON 87 LASS 0 11 $K^-p \to \overline{K}^0\pi^+\pi^-n$ 1392±18 BAUBILLIER 82B HBC 0 8.25 $K^-p \to K_0^0\pi^+\pi^-n$ 1410±25 DAUM 81c CNTR - 63 $K^-p \to K^-2\pi p$ 1415±15 ETKIN 80 MPS 0 6 $K^-p \to \overline{K}^0\pi^+\pi^-n$ 1404±10 2 CARNEGIE 77 ASPK ± 13 $K^\pm p \to (K\pi\pi)^\pm p$ • • • We do not use the following data for averages, fits, limits, etc. • • • • 1350 3 TORNQVIST 82B RVUE ~ 1400 VERGEEST 79 HBC - 4.2 $K^-p \to (\overline{K}\pi\pi)^-p$ ~ 1400 BRANDENB 76 ASPK ± 13 $K^\pm p \to (K\pi\pi)^\pm p$ 1420 DAVIS 72 HBC + 12 K^+p 1368±18 FIRESTONE 72B DBC + 12 K^+p 1 From partial-wave analysis of $K^0\pi^+\pi^-$ system. 2 From a model-dependent fit with Gaussian background to BRANDENBURG 76 data
$\Gamma(K_0^*(1430)\pi)$ $\Gamma(K_0^*(14$	VALUE (MeV)DOCUMENT IDTECNCHGCOMMENT 1402 ± 7 OUR AVERAGE $1373\pm 14\pm 18$ 1 ASTON 87 LASS 0 11 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1392 ± 18 BAUBILLIER 828 HBC 0 8.25 $K^-p \rightarrow K^0_5\pi^+\pi^ 1410\pm 25$ DAUM $81c$ CNTR $ 63$ $K^-p \rightarrow K^-2\pi p$ 1415 ± 15 ETKIN 80 MPS 0 6 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1404 ± 10 2 CARNEGIE 77 ASPK \pm 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ \bullet • • • We do not use the following data for averages, fits, limits, etc. • • • \sim 1350 3 TORNQVIST 828 RVUE \sim 1400VERGEEST 79 HBC $ 4.2$ $K^-p \rightarrow (\overline{K}\pi\pi)^-p$ \sim 1400BRANDENB 76 ASPK \pm 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ 1420DAVIS 72 HBC \pm 12 K^+p 1368 ± 18 FIRESTONE 728 DBC \pm 12 K^+p 1 From partial-wave analysis of $K^0\pi^+\pi^-$ system.2 From a model-dependent fit with Gaussian background to BRANDENBURG 76 data3 From a unitarized quark-model calculation.K1 (1400) WIDTH
$\Gamma(K_0^\bullet(1430)\pi)$ $VALUE (MeV)$ • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	VALUE (MeV)DOCUMENT IDTECNCHGCOMMENT 1402 ± 7 OUR AVERAGE $1373\pm 14\pm 18$ 1 ASTON 87 LASS 0 11 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1392 ± 18 BAUBILLIER 828 HBC 0 8.25 $K^-p \rightarrow K_0^0\pi^+\pi^-n$ 1410 ± 25 DAUM 810 CNTR $ 63$ $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1404 ± 10 2 CARNEGIE 77 ASPK \pm 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ • • • We do not use the following data for averages, fits, limits, etc.• • • \times ~ 1350 3 TORNQVIST 828 RVUE~ 1400VERGEEST 79 HBC $ 4.2$ $K^-p \rightarrow (\overline{K}\pi\pi)^-p$ ~ 1400BRANDENB 76 ASPK \pm 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ 1420DAVIS 72 HBC $+$ 12 K^+p 1368 ± 18 FIRESTONE 728 DBC $+$ 12 K^+p 1 From partial-wave analysis of $K^0\pi^+\pi^-$ system.2 From a model-dependent fit with Gaussian background to BRANDENBURG 76 data3 From a unitarized quark-model calculation.K1(1400) WIDTHVALUE (MeV)DOCUMENT IDTECNCHGCOMMENT174±13 OUR AVERAGEError includes scale factor of 1.6. See the Ideogram below
$\Gamma(K_0^\bullet(1430)\pi)$ $VALUE\ (MeV)$ • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	VALUE (MeV)DOCUMENT IDTECNCHGCOMMENT 1402 ± 7 OUR AVERAGE $1373\pm 14\pm 18$ 1 ASTON 87 LASS 0 11 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1392 ± 18 BAUBILLIER 828 HBC 0 8.25 $K^-p \rightarrow K_0^0\pi^+\pi^-n$ 1410 ± 25 DAUM $81c$ CNTR $ 63$ $K^-p \rightarrow K^-2\pi p$ 1415 ± 15 ETKIN 80 MPS 0 6 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1404 ± 10 2 CARNEGIE 77 ASPK \pm 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ \bullet • • • We do not use the following data for averages, fits, limits, etc. • • • \sim 1350 3 TORNQVIST 828 RVUE \sim 1400VERGEEST 79 HBC $ 4.2$ $K^-p \rightarrow (\overline{K}\pi\pi)^-p$ \sim 1400BRANDENB 76 ASPK \pm 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ 1420DAVIS 72 HBC \pm 12 K^+p 1368 ± 18 FIRESTONE 728 DBC \pm 12 K^+p 1 From partial-wave analysis of $K^0\pi^+\pi^-$ system.2 From a model-dependent fit with Gaussian background to BRANDENBURG 76 data3 From a unitarized quark-model calculation.K1 (1400) WIDTH
$\Gamma(K_0^*(1430)\pi)$ $VALUE (MeV)$ DOCUMENT ID TECN CHG COMMENT TECN CHG COMMENT TECN TECN TECN CHG COMMENT TECN	VALUE (MeV)DOCUMENT IDTECNCHGCOMMENT $1402\pm$ 7 OUR AVERAGE $1373\pm14\pm18$ 1 ASTON 87 LASS 0 11 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1392 ± 18 BAUBILLIER 828 HBC 0 8.25 $K^-p \rightarrow K_0^0\pi^+\pi^-n$ 1410 ± 25 DAUM 810 CNTR $ 63$ $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$ 1404 ± 10 2 CARNEGIE 77 ASPK \pm 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ • • • We do not use the following data for averages, fits, limits, etc.• • • 1350 3 TORNQVIST 828 RVUE \sim 1350 3 TORNQVIST 828 RVUE \sim 1400VERGEEST 79 HBC $ 4.2$ $K^-p \rightarrow (\overline{K}\pi\pi)^-p$ \sim 1400BRANDENB 76 ASPK \pm 13 $K^\pm p \rightarrow (K\pi\pi)^\pm p$ \sim 1420DAVIS 72 HBC \pm 12 K^+p \sim 1368 \pm 18FIRESTONE 728 DBC \pm 12 K^+p \sim 15 From a model-dependent fit with Gaussian background to BRANDENBURG 76 data \sim 3 From a unitarized quark-model calculation. \sim 174 \pm 13 OUR AVERAGEError includes scale factor of 1.6. See the ideogram below \sim 188 \pm 54 \pm 604 ASTON87 LASS0 \sim <

RODEBACK 81 HBC $4 \pi^- p \rightarrow \Lambda K 2\pi$

K₁(1400), K*(1410)

K1(1400) DECAY MODES

	Mode	Fraction (Γ_{j}/Γ)	
$\overline{\Gamma_1}$	K*(892)π	(94 ±6)%	
Γ_2	Κρ	(3.0 ± 3.0) %	
Гз	K f ₀ (1370)	(2.0 ± 2.0) %	
Γ4	$K\omega$	(1.0±1.0) %	
Γ ₄ Γ ₅	$K_0^*(1430)\pi$	not seen	

K1(1400) PARTIAL WIDTHS

23±12	CARNEGIE	77	ASPK	±	$13 K^{\pm} p \rightarrow (K\pi\pi)^{\pm} p$	
Γ(Κω) VALUE (MeV)	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	Γ4
	C	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	20 11 p 1 (11 mm) p	
2 ±1	CARNEGIE	77	ASPK	+	$13 K^{\pm} p \rightarrow (K\pi\pi)^{\pm} p$	
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
$\Gamma(K\rho)$						Γ2
117±10	CARNEGIE	77	ASPK	±	$13 K^{\pm} p \rightarrow (K\pi\pi)^{\pm} p$	
VALUE (MeV)	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	
Γ(<i>K</i> *(892)π)						Г1

K₁(1400) BRANCHING RATIOS

	M1(1400) D		1041105	
$\Gamma(K^{\bullet}(892)\pi)/\Gamma_{tc}$	otal DOCUMENT ID	TECN	COMMENT	Γ1/Γ
0.94±0.06			63 K ⁻ p → K ⁻ 2πp	
Γ (Κρ)/Γ_{total}	DOCUMENT ID	TECN	COMMENT	Γ2/Γ
0.03 ±0.03			63 K ⁻ p → K ⁻ 2πp	
$\Gamma(K f_0(1370))/\Gamma_t$ $VALUE$ 0.02 ±0.02	DOCUMENT ID		$\frac{COMMENT}{63 \ K^- p \rightarrow K^- 2\pi p}$	Г3/Г
Γ(Κω)/Γ _{total} <u>VALUE</u> 0.01 ± 0.01	DOCUMENT ID	TECN		Γ4/Γ
$\Gamma(K_0^*(1430)\pi)/\Gamma$ VALUE	total DOCUMENT ID	<u>TECN</u>	COMMENT	Γ ₅ /Γ
not seen	⁶ DAUM	81c CNTR	$63~K^-p \rightarrow ~K^-2\pi p$	

D-wave/S-wave RATIO FOR $K_1(1400) \rightarrow K^*(892)\pi$ VALUE DOCUMENT ID TECH COMMENT

VALUE	DOCUMENT	7101	COMMITTEE	
0.04 ±0.01	6 DAUM	BIC CNTR	63 $K^-p \rightarrow$	$K^-2\pi p$
,				

⁶ Average from low and high t data.

K1(1400) REFERENCES

ASTON		ND Book (83	D 4-14 -4	(CLAC NACO CING (NUC)
	87	NP B292 693	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
BAUBILLIER	82B	NP B202 21	M. Baubillier et al.	(BIRM, CERN, GLAS+)
TORNQVIST	82B	NP B203 268	N.A. Torngvist	(HELS)
DAUM	81C	NP B187 1	C. Daum et al.	(AMST, CERN, CRAC, MPIM+)
ETKIN	80	PR D22 42	A. Etkin <i>et al</i> .	(BNL, CUNY) JP
VERGEEST	79	NP B158 265	J.S.M. Vergeest et al.	(NIJM, AMST, CERN+)
CARNEGIE	77	NP B127 509	R.K. Carnegie et al.	(SLAC)
BRANDENB	76	PRL 26 703	G.W. Brandenburg et al	
DAVIS	72	PR D5 2688	P.J. Davis et al.	(LBL)
FIRESTONE	72 B	PR D5 505	A. Firestone et al.	(LBL)

- OTHER RELATED PAPERS -

SUZUKI	93	PR D47 1252	M. Suzuki	(LBL)
FERNANDEZ	82	ZPHY C16 95	C. Fernandez et al.	(MADR, CERN, CDEF+)
SHEN	66	PRL 17 726	B.C. Shen et al.	(LRL)
Also	66	Private Comm.	G. Goldhaber	(LRL)
ALMEIDA	65	PL 16 184	S.P. Almeida et al.	(ČAVE)
ARMENTEROS	64	PL 9 207	R. Armenteros et al.	(CERN, CDEF)
Also	66	PR 145 1095	N. Barash et al.	(COLU)

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

K*(1410) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT			
1414±15 OUR AVERAGE Error includes scale factor of 1.3.								
					11 $K^-p \rightarrow K^-\pi^+\pi$			
1420 ± 7 ± 10	ASTON	87	LASS	0	11 $K^- \rho \rightarrow \overline{K}^0 \pi^+ \pi^- \eta$			
• • • We do not use the	following data f	or a	verages,	fits, li	mits, etc. • • •			
1367±54					11 $K^-p \rightarrow \overline{K}^0\pi^-p$			
1474±25					8.25 $K^- p \rightarrow \overline{K}^0 2\pi n$			
1500±30	ETKIN	80	MPS	0	$6 K^- \rho \rightarrow \overline{K}^0 \pi^+ \pi^- n$			

K*(1410) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
232± 21 OUR AVER				
176± 52±22				$11 K^- p \rightarrow K^- \pi^+ n$
240 ± 18 ± 12	ASTON	87 LASS	0	11 $K^- p \rightarrow \overline{K}^0 \pi^+ \pi^- n$
• • • We do not use	the following data	for averages	, fits,	limits, etc. • • •
114±101				11 $K^-p \rightarrow \overline{K}{}^0\pi^-p$
275 ± 65				8.25 $K^- p \rightarrow \overline{K}^0 2\pi n$
500 ± 100	ETKIN	80 MPS	0	$6 K^- p \rightarrow \overline{K}^0 \pi^+ \pi^- n$

K*(1410) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ1	K*(892)π	> 40 %	95%
Γ_2	$K\pi$	(6.6±1.3) %	
Гз	Κρ	< 7 %	95%

K*(1410) BRANCHING RATIOS

$\Gamma(K\rho)/\Gamma(K^*(8))$	92)π)						Γ_3/Γ_1
VALUE	CL%	DOCUMEN	T ID	TECN	<u>CHG</u>	COMMENT	
< 0.17	95	ASTON	84	LASS	0	11 $K^-p \rightarrow$	K ⁰ 2π π
$\Gamma(K\pi)/\Gamma(K^*(0))$	392)π))					Γ_2/Γ_1
VALUE	CL%	DOCUMEN	T ID	<u>TECN</u>	<u>CHG</u>	COMMENT	
< 0.16	95	ASTON	84	LASS	0	11 $K^-\rho \rightarrow$	K ⁰ 2π n
$\Gamma(K\pi)/\Gamma_{\text{total}}$							Γ ₂ /Γ
VALUE	_	DOCUMENT ID	TECI	<u>CHG</u>	COM	MENT	
$0.066 \pm 0.010 \pm 0.0$	800	ASTON	88 LAS	S 0	11 F	$C^- \rho \rightarrow K^-$	r ⁺ ο

K*(1410) REFERENCES

BIRD	89	SLAC-332	P.F. Bird	(SLAC)
ASTON	88	NP B296 493	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	87	NP B292 693	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	84	PL 149B 258	D. Aston et al.	(SLAC, CARL, OTTA) JP
BAUBILLIER	82B	NP B202 21	M. Baubillier et al.	(BIRM, CERN, GLAS+)
ETKIN	80	PR D22 42	A. Etkin et al.	` (BNL, CUNY) JP

 $K_0^*(1430)$

$$I(J^P) = \frac{1}{2}(0^+)$$

See our minireview in the 1994 edition and in this edition under the

K*(1430) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
1412 ± 6	1 ASTON	88	LASS	0	11 $K^- \rho \rightarrow K^- \pi^+ \eta$	
• • • We do not use	the following data t	for a	verages,	fits, li	mits, etc. • • •	
1436 ± 8	² BARBERIS	98E	OMEG		$450 pp \rightarrow p_f p_S K^+ K^- \pi^+ \pi^-$	ı
1415 ±25	3 ANISOVICH				$11 K^- \rho \rightarrow K^- \pi^+ n$	
~ 1450 ~ 1430	⁴ TORNQVIST BAUBILLIER	84B	нвс	_	$\pi\pi \to \pi\pi, K\overline{K}, K\pi$ 8.25 $K^-\rho \to \overline{K}^0\pi^-\rho$	
~ 1425 ~ 1450.0	5,6 ESTABROOKS MARTIN		ASPK SPEC		13 $K^{\pm} p \rightarrow K^{\pm} \pi^{\pm} (n, \Delta)$ 10 $K^{\pm} p \rightarrow K^{0} \pi p$	
¹ Uses a model for where the phase so 2 JP not determine	the background, with shift passes 90° . Red, could be $K_{2}^{*}(143)$	hout 0).	this ba	ckgrou	and they get a mass 1340 MeV,	1
3 T matrix pole D	canalysis of ASTON	00 -	inta			•

³T-matrix pole. Reanalysis of ASTON 88 data. ⁴T-matrix pole.

K₀*(1430) WIDTH

VALUE (MeV)	DOCUMENT ID	TECI	<u>C</u> HG	COMMENT	
294±23	ASTON 8	8 LAS	5 0	$11 K^- \rho \rightarrow K^- \pi^+ \pi$	
• • • We do not us	e the following data for	r averag	es, fits, I	limits, etc. • • •	
196±45	⁷ BARBERIS 9	8E OM	ĒG	$450 pp \rightarrow p_f p_s K^+ K^- \pi^+ \pi^-$	I
330±50 ∼ 320	⁸ ANISOVICH 9 ⁹ TORNQVIST 9			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
~ 200 200 to 300	BAUBILLIER 8	4B HB0	: –	8.25 $K^-p \rightarrow \overline{K}^0\pi^-p$ 13 $K^{\pm}p \rightarrow K^{\pm}\pi^{\pm}(n,\Delta)$	
⁷ J ^P not determin ⁸ T-matrix pole. I ⁹ T-matrix pole.	ned, could be $K_2^*(1430)$ Reanalysis of ASTON 8			, (4,-1	Į
10 From elastic K x	nartial-wave analysis.				

K₀*(1430) DECAY MODES

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$
Γ_1	Κπ	(93±10) %

K*(1430) BRANCHING RATIOS

$\Gamma(K\pi)/\Gamma_{\text{total}}$						Γ1/Γ
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	
0.93±0.04±0.09	ASTON	88	LASS	0	11 $K^-p \rightarrow K^-\pi^+\pi$	

K₀*(1430) REFERENCES

BARBERIS	98E	PL B436 204	D. Barberis et al.	(Omega expt.)
ANISOVICH	97C	PL B413 137		
TORNOVIST	96	PRL 76 1575	N.A. Tornqvist, M. Roos	(HELS)
ASTON	88	NP B296 493	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
BAUBILLIER	84B	ZPHY C26 37	M. Baubillier et al.	(BIRM, CERN, GLAS+)
ESTABROOKS	78	NP B133 490	P.G. Estabrooks et al.	(MCGI, CARL, DURH+)
MARTIN	78	NP B134 392	A.D. Martin et al.	(DURH, GEVA)

	OTHER RELATED PAPERS							
BEVEREN	99	EPJ C10 469	E. Van Beveren, G. Rupp					
OLLER	99	PR D60 099906	J.A. Oller et al.					
OLLER	99C	PR D60 074023	J.A. Oller, E. Oset					
TORNQVIST	82	PRL 49 624	N.A. Tornqvist	(HEL				
GOLDBERG	69	PL 30B 434	J. Goldberg et al.	(SABRE Čollat				
TRIPPE	68	PL 28B 203	T.G. Trippe et al.	(UCL				
	_							

 $K_2^*(1430)$

$$I(J^P) = \frac{1}{2}(2^+)$$

We consider that phase-shift analyses provide more reliable determinations of the mass and width.

K*(1430) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
425.6± 1.5 OUF	R AVERAC	GE Error includes s	cale :	factor o	f 1.1.	
1420 ± 4	1587	BAUBILLIER	84B	нвс	-	$8.25 K^{-} \rho \rightarrow \overline{K}^{0} \pi^{-} \rho$
1436 ± 5.5	400	1,2 CLELAND	82	SPEC	+	$30 K^{+} p \rightarrow K_{5}^{0} \pi^{+} p$
1430 ± 3.2	1500	^{1,2} CLELAND	82	SPEC	+	$50 K^+ \rho \rightarrow K_5^0 \pi^+ \rho$
1430 ± 3.2	1200	^{1,2} CLELAND	82	\$PEC	_	$50 K^+ p \rightarrow K_S^0 \pi^- p$
1423 ± 5	935	TOAFF	81	HBC	-	$6.5 K^- p \rightarrow \overline{K}^0 \pi^- p$
1428.0± 4.6		³ MARTIN	78	SPEC	+	$10 K^{\pm} p \rightarrow K_{5}^{0} \pi p$
1423.8± 4.6		³ MARTIN	78	SPEC	-	10 $K^{\pm}p \rightarrow K_{5}^{0}\pi p$
1420.0± 3.1	1400	AGUILAR	71B	HBC	_	3.9,4.6 K p
l425 ± 8.0	225	^{1,2} BARNHAM	71C	HBC	+	$K^+ p \rightarrow K^0 \pi^+ p$
1416 ±10	220	CRENNELL	69 D	DBC	-	$3.9 \frac{K^-N}{K^0\pi^-N} \rightarrow$
1414 ±13.0	60	¹ LIND	69	HBC	+	$9 K^+ p \rightarrow K^0 \pi^+ p$
1427 ±12	63	¹ SCHWEING	68	HBC	_	$5.5 K^- \rho \rightarrow \overline{K} \pi N$
1423 ±11.0	39	¹ BASSANO	67	HBC	_	$4.6-5.0 K^- p \rightarrow \overline{K}^0 \pi^- p$

• • • We do not use the following data for averages, fits, limits, etc. • • •

4 BIRD 89 LASS - 11 $K^- p \rightarrow \overline{K}^0 \pi^- p$ 1423.4± 2 ±3 24809±

NEUTRAL ONLY

VALUE (MeV)	EVT5	DOCUMENT ID		TECN	CHG	COMMENT
1432.4± 1.3 OUR	AVERAGE					
1431.2± 1.8± 0.7			88	LASS	0	$11 K^- \rho \rightarrow K^- \pi^+ \eta$
1434 ± 4 ± 6		⁵ ASTON	87	LA\$\$	0	$\begin{array}{c} 11 \ K^- \rho \rightarrow \\ \overline{K}{}^0 \pi^+ \pi^- \eta \end{array}$
1433 ± 6 ±10			848	LASS	0	$11 \stackrel{K^-}{K^-} p \rightarrow \stackrel{H}{K}{}^0 2\pi n$
1471 ±12		⁵ BAUBILLIER	82B	HBC	0	8.25 $K^- p \rightarrow$
						$NK_{5}^{0}\pi\pi$
1428 ± 3				LASS		$11 \ K^-p \rightarrow K^-\pi^+ n$
1434 ± 2		⁵ ESTABROOKS	78	ASPK	0	13 $K^{\pm}p \rightarrow pK\pi$
1440 ±10		⁵ BOWLER	77	DBC	0	$5.5 K^+ d \rightarrow K \pi pp$
• • • We do not u	se the follo	wing data for aver	ages	, fits, lir	nits, e	tc. • • •
1420 ± 7	300	HENDRICK	76	DBC		8.25 $K^+ N \rightarrow K^+ \pi N$
1421.6± 4.2	800	MCCUBBIN	75	HBC	0	3.6 $K^-p \to K^-\pi^+ n$
1420.1 ± 4.3		⁶ LINGLIN	73	HBC	0	$2-13 K^+ \rho \rightarrow$
				_		$K^+\pi^-X$
1419.1 ± 3.7	1800	AGUILAR	71B	HBÇ	0	3.9,4.6 K ⁻ p
1416 ± 6	600	CORDS	71	DBC	0	$9 K^+ n \rightarrow K^+ \pi^- \rho$
1421.1 ± 2.6	2200	DAVIS	69	HBC	0	$12 K^+ \rho \rightarrow K^+ \pi^- X$

 $^{^1}$ Errors enlarged by us to $\Gamma/\sqrt{N};$ see the note with the $K^*(892)$ mass. 2 Number of events in peak re-evaluated by us.

K2(1430) WIDTH

CHARGED ONLY, WITH FINAL STATE $K\pi$

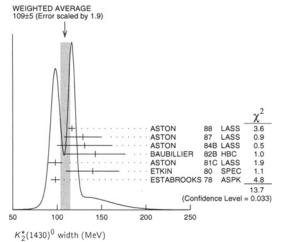
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT			
98.5 ± 2.7 OUR FIT Error includes scale factor of 1.1.									
98.5 ± 2.9 OUI	98.5 ± 2.9 OUR AVERAGE Error includes scale factor of 1.1.								
109 ±22	400	7,8 CLELAND	82	SPEC	+	$30 K^+ p \rightarrow K_S^0 \pi^+ p$			
124 ±12.8	1500	7,8 CLELAND	82	SPEC	+	$50 K^+ p \rightarrow K_5^0 \pi^+ p$			
113 ±12.8	1200	^{7,8} CLELAND	82	SPEC	-	$50 K^+ \rho \rightarrow K_S^{0} \pi^- \rho$			
85 ±16	935	TOAFF	81	HBC	-	$6.5 K^- p \rightarrow \overline{K}^0 \pi^- p$			
96.5 ± 3.8		MARTIN	78	SPEC	+	$10 K^{\pm} p \rightarrow K_{5}^{0} \pi p$			
97.7± 4.0		MARTIN	78	SPEC	-	$10 K^{\pm} p \rightarrow K_{5}^{0} \pi p$			
$94.7^{+15.1}_{-12.5}$	1400	AGUILAR	7 1B	нвс	-	3.9,4.6 K ⁻ p			

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

24809± 9 BIRD 89 LASS - 11 $K^- p \to \overline{K}^0 \pi^- p$

⁵ Mass defined by pole position. ⁶ From elastic $K\pi$ partial-wave analysis.

³ Systematic error added by us.


From a partial wave amplitude analysis.

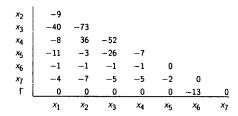
From phase shift or partial-wave analysis.

From pole extrapolation, using world K^+p data summary tape.

$K_2^*(1430)$

NEUTRAL ON	ILY					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
109 ± 5 OUR	RAVERAG	E Error includes so	ale f	actor of	1.9. 9	See the ideogram below.
116.5 ± 3.6 ± 1.	7	¹⁰ ASTON	88	LASS	0	$11 K^- p \rightarrow K^- \pi^+ n$
129 ±15 ±15		¹⁰ ASTON	87	LASS	0	11 K ⁻ p →
131 ±24 ±20		¹⁰ ASTON	84B	LASS	0	$\frac{\overline{K}^0 \pi^+ \pi^- n}{11 \ K^- p \rightarrow \overline{K}^0 2\pi n}$
143 ± 34		¹⁰ BAUBILLIER	82B	нвс	0	8.25 K ⁻ p →
						$NK_S^0\pi\pi$
98 ± 8		10 ASTON	81c	LASS	0	$11 K^- p \rightarrow K^- \pi^+ \pi$
140 ±30		¹⁰ ETKIN	80	SPEC	0	$\begin{array}{c} 6 \ K^- p \rightarrow \\ \overline{K}^0 \pi^+ \pi^- n \end{array}$
98 ± 5		10 ESTABROOKS				$13 K^{\pm} p \rightarrow p K \pi$
 • • We do not 	use the fo	llowing data for ave	rages	i, fits, li	mits, e	etc. • • •
125 ±29	300	7 HENDRICK	76	DBC		$\begin{array}{c} 8.25 \ K^{+} \ N \rightarrow \\ K^{+} \pi \ N \end{array}$
116 ±18	800	MCCUBBIN	75	HBC	0	$3.6 \ K^-p \rightarrow K^-\pi^+n$
61 ±14		¹¹ LINGLIN	73	HBC	0	$2-13 \text{ K}^+ p \rightarrow$
						$K^+\pi^-X$
116.6 + 10.3 - 15.5	1800	AGUILAR	71B	HBC	0	3.9,4.6 K ⁻ p
144 ± 24.0	600	⁷ CORDS	71	DBC	0	$9 K^+ n \rightarrow K^+ \pi^- p$
101 ±10	2200	DAVIS	69	HBC	0	12 $K^+ \rho \rightarrow$
						v++-

 $^{^{7}}$ Errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^{*}(892)$ mass.


K*(1430) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Г	Κπ	(49.9±1.2) %	
Γ_2	$K^*(892)\pi$	$(24.7 \pm 1.5) \%$	
Γ_3	$K^*(892)\pi\pi$	$(13.4 \pm 2.2) \%$	
Γ_4	Kρ	(8.7±0.8) %	S=1.2
Γ ₅	Κω	(2.9±0.8) %	
۲ ₆	$K^+\gamma$	$(2.4\pm0.5)\times10^{-3}$	S=1.1
Γ7	$K\eta$	$(1.5^{+3.4}_{-1.0}) \times 10^{-3}$	S=1.3
Гв	Κωπ	$< 7.2 \times 10^{-4}$	CL=95%
Γ9	$K^0\gamma$	< 9 × 10 ⁻⁴	CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, and 10 branching ratios uses 31 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2=20.2$ for 24 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (MeV)			
$\overline{\Gamma_1}$	Κπ	49.1 ±1.8			
Γ_2	$K^*(892)\pi$	24.3 ±1.6			
Γ3	$K^*(892)\pi\pi$	13.2 ±2.2			
Γ4	Κρ	8.5 ±0.8	1.2		
Γ_5	$K\omega$	2.9 ±0.8			
Γ ₅ Γ ₆	$K^+\gamma$	0.24 ± 0.05	1.1		
Γ7	$K\eta$	$0.15 {}^{+ 0.33}_{- 0.10}$	1.3		

K2(1430) PARTIAL WIDTHS

						Γ ₆
D	CUMENT ID	TECH	CHG	СОМ	MENT	
Error in	cludes scale fa	actor of 1	.1.			
C	HANGIR	82 SPE	C +			
				Z	K'S π+	
						Гэ
CL%	DOCUMENT	· ID	TECN	CHG	COMMENT	
90	CARLSMI	TH 87	SPEC	0	60-200 K ₁ A →	
					κ ⁰ π ⁰ Ā	
	Error ir CI	CIHANGIR CL% DOCUMENT	Error includes scale factor of 1 CIHANGIR 82 SPE	Error includes scale factor of 1.1. CIHANGIR 82 SPEC + CL% DOCUMENT ID TECN	Error includes scale factor of 1.1. CIHANGIR 82 SPEC + 200 Z CL% DOCUMENT ID TECN CHG	Error includes scale factor of 1.1. CIHANGIR 82 SPEC + $200 \text{ K}^+\text{Z} \rightarrow \text{Z} \text{ K}^+\pi^0$, $Z \text{ K}^0_S \pi^+$ CL% DOCUMENT ID TECN CHG COMMENT OCARLSMITH 87 SPEC 0 60–200 $\text{K}^0_I \text{ A} \rightarrow$

K*(1430) BRANCHING RATIOS

	•					
$\Gamma(K\pi)/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE 0.499 ± 0.012 OUR FIT	DOCUMENT ID		TECN	CHG	COMMENT	
0.488 ± 0.014 OUR AV	-					
$0.485 \pm 0.006 \pm 0.020$		88	LASS	n	11 $K^- p \rightarrow K^- \pi^+$	n
0.49 ±0.02	12 ESTABROOK				$13 K^{\pm} \rho \rightarrow \rho K \pi$	•
Γ(K*(892)π)/Γ(K	·π)					Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	CHG	COMMENT	
0.496±0.034 OUR FI	r					
0.47 ±0.04 OUR AV	'ERAGE					
0.44 ±0.09	ASTON	84B	LASS	0	11 $K^- p \rightarrow \overline{K}^0 2\pi \pi$	
0.62 ±0.19	LAUSCHER	75	нвс	0	10,16 $K^-p \to K^-\pi$	+ n
0.54 ±0.16	DEHM	74	DBC	0	4.6 K ⁺ N	
0.47 ±0.08	AGUILAR	71B	нвс		3.9,4.6 K ⁻ p	
0.47 ±0.10	BASSANO	67	HBC	-0	4.6,5.0 K ⁻ p	
0.45 ±0.13	BADIER	65 0	НВС	_	3 K - p	
$\Gamma(K\omega)/\Gamma(K\pi)$						Γ_5/Γ_1
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	
0.059 ± 0.017 OUR FI	-					
0.070±0.035 OUR AV						
0.05 ±0.04	AGUILAR				3.9,4.6 K ⁻ p	
0.13 ±0.07	BASSOMPIE	. 69	нвс	0	5 K ⁺ ρ	
$\Gamma(K\rho)/\Gamma(K\pi)$						Γ_4/Γ_1
VALUE	DOCUMENT ID				COMMENT	
0.174±0.017 OUR FIT	Error includes	scale	factor o	of 1.2.		
0.150+0.029 OUR AV	ERAGE					
0.18 ±0.05	ASTON	84B	LASS	0	$11~K^-p\to~\overline{K}^02\pin$	
$0.02 \begin{array}{c} +0.10 \\ -0.02 \end{array}$	DEHM	74	DBC	0	4.6 K+ N	
0.16 ±0.05	AGUILAR	71B	нвс		3.9,4.6 K ⁻ p	
0.14 0.10	DACCANO		LIDG		465045	

67 HBC

65c HBC

-0

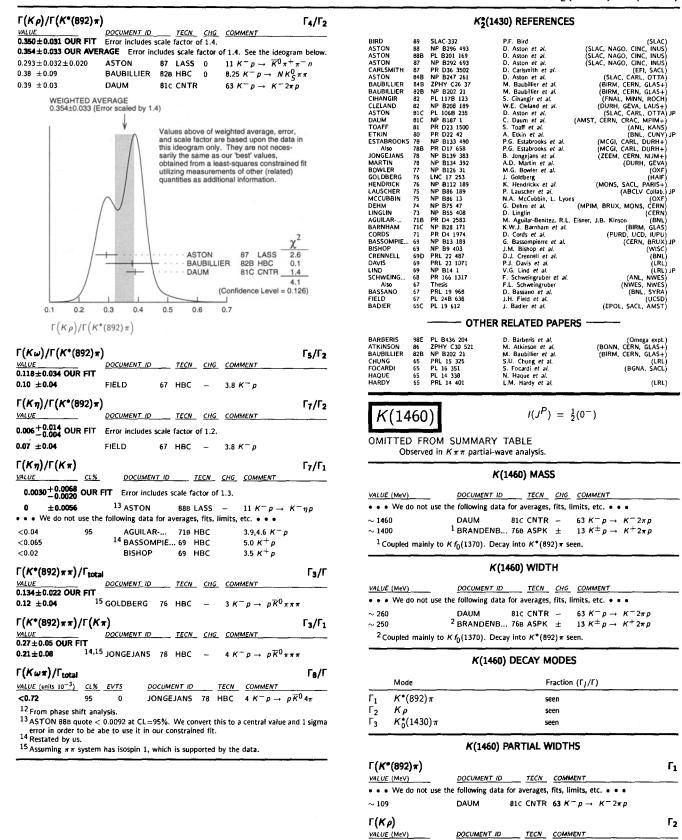
4.6,5.0 K-p

3 K-p

BASSANO

BADIER

 $0.14\ \pm0.10$


0.14 ±0.07

⁸ Number of events in peak re-evaluated by us.

⁹ From a partial wave amplitude analysis.

¹⁰ From phase shift or partial-wave analysis

¹¹ From pole extrapolation, using world $K^+ \rho$ data summary tape.

• • • We do not use the following data for averages, fits, limits, etc. • • •

81C CNTR 63 $K^-p \rightarrow K^-2\pi p$

 $K(1460), K_2(1580), K(1630), K_1(1650)$

$\Gamma(K_0^*(1430)\pi)$	DOCUMENT ID. TECH COMMENT	Γ:
VALUE (MeV)	DOCUMENT ID TECN COMMENT e following data for averages, fits, limits, etc. • • •	
~ 117	DAUM 81C CNTR 63 $K^-p \rightarrow K^-2\pi p$	
· 11,	$\frac{1}{2\pi p}$	
	K(1460) REFERENCES	
DAUM 81C NP B1 BRANDENB 76B PRL 3		AC, MPIM+) (S LAC) JP
•	- OTHER RELATED PAPERS -	
ARNES 82 PL B1 ANIMOTO 82 PL 116 ERGEEST 79 NP B1	B 198 M. Tanimoto	(RHEL) (BIEL) ST, CERN+)
$K_2(1580)$	$I(J^P) = \frac{1}{2}(2^-)$	
	SUMMARY TABLE I-wave analysis of the $K^-\pi^+\pi^-$ system. Needs	con-
	K₂(1580) MASS	
ALUE (MeV)	DOCUMENT ID CHG COMMENT	
• We do not use the	e following data for averages, fits, limits, etc. • • •	
1580	OTTER 79 - 10,14,16 K ⁻ p	
	K₂(1580) WIDTH	
ALUE (MeV)	DOCUMENT ID CHG COMMENT	
	e following data for averages, fits, limits, etc. • • •	
- 110	OTTER 79 - 10,14,16 K ⁻ p	
	K ₂ (1580) DECAY MODES	
Mode	Fraction (Γ_i/Γ)	
-1 K*(892)π	seen	
K_2^{-1} $K_2^*(1430)\pi$	possibly seen	
	K2(1580) BRANCHING RATIOS	
$\Gamma(K^*(892)\pi)/\Gamma_{\text{total}}$		Γ1/
VALUE	DOCUMENT ID TECN CHG COMMENT	
SEEN	OTTER 79 HBC - 10,14,16 K ⁻ p	
Γ <mark>(Κ*</mark> (1430)π)/Γ _{tota}	II DOCUMENT ID TECN CHG COMMENT	Γ2/
possibly seen	OTTER 79 HBC - 10,14,16 K ⁻ p	
-		
	K ₂ (1580) REFERENCES	
OTTER 79 NP BI		

K(1630)

 $I(J^P) = \frac{1}{2}(??)$

OMITTED FROM SUMMARY TABLE

Seen as a narrow peak, compatible with the experimental resolution, in the invariant mass of the $K_5^0\pi^+\pi^-$ system produced in π^-p interactions at high momentum transfers.

K(1630) MASS

VALUE (MeV)EVTSDOCUMENT IDTECNCOMMENT1629±7 \sim 75KARNAUKHOV98BC $16.0 \pi^- p \rightarrow (K_S^0 \pi^+ \pi^-) \chi^+ \pi^- \chi^0$

K(1630) WIDTH

 $^1\,\text{Compatible}$ with an experimental resolution of 14 \pm 1 MeV.

K(1630) DECAY MODES

 $\frac{\text{Mode}}{\Gamma_1 \qquad \mathcal{K}_S^0 \, \pi^+ \, \pi^-}$

K(1630) REFERENCES

KARNAUKHOV 98 PAN 61 203 V.M. Karnaukhov, C. Coca, V.I. Moroz Translated from YAF 61 252.

 $K_1(1650)$

 $I(J^P) = \frac{1}{2}(1^+)$

OMITTED FROM SUMMARY TABLE

This entry contains various peaks in strange meson systems ($K^+\phi$, $K\pi\pi$) reported in partial-wave analysis in the 1600–1900 mass region.

K1(1650) MASS

 VALUE (MeV)
 DOCUMENT ID
 TECN
 CHG
 COMMENT

 1650 ±50
 FRAME
 86
 OMEG +
 13 $K^+p \rightarrow \phi K^+p$

 • • • We do not use the following data for averages, fits, limits, etc. • • •
 ~ 1840
 ARMSTRONG
 83
 OMEG 18.5 $K^-p \rightarrow 3Kp$

 ~ 1800
 DAUM
 81c
 CNTR 63 $K^-p \rightarrow K^-2\pi p$

K1(1650) WIDTH

 VALUE (MeV)
 DOCUMENT ID
 TECN
 CHG
 COMMENT

 150±50
 FRAME
 86
 OMEG
 +
 13 $K^+p \rightarrow \phi K^+p$

 • • • We do not use the following data for averages, fits, limits, etc. • • •

 ~ 250
 DAUM
 81
 CNTR
 63 $K^-p \rightarrow K^-2\pi p$

K₁(1650) DECAY MODES

 $\begin{array}{c|c} & \text{Mode} \\ \hline \Gamma_1 & K\pi\pi \\ \hline \Gamma_2 & K\phi \end{array}$

K1(1650) REFERENCES

 FRAME
 86
 NP B276 667
 D. Frame et al.
 (GLAS)

 ARMSTRONG
 83
 NP B221 1
 T.A. Armstrong et al.
 (BARI, BIRM, CERN+)

 DAUM
 B1C
 NP B187 1
 C. Daum et al.
 (AMST, CERN, CRAC, MPIM+)

K*(1680)

$$I(J^P) = \frac{1}{2}(1^-)$$

K*(1680) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1717±27 OUR AVERA	GE Error inclu	ides	scale fac	tor of	1.4.
					$11 K^- \rho \rightarrow K^- \pi^+ \pi$
$1735 \pm 10 \pm 20$	ASTON	87	LASS	0	11 $K^- \rho \rightarrow \overline{K}^0 \pi^+ \pi^- \pi$
• • • We do not use the	following data	for a	verages,	fits, li	mits, etc. • • •
1678±64	BIRD		LASS		11 $K^- p \rightarrow \overline{K}^0 \pi^- p$
1800 ± 70	ETKIN	80	MPS	0	$6 K^{-} \rho \rightarrow \overline{K}^{0} \pi^{+} \pi^{-} n$
~ 1650	ESTABROOKS	78	ASPK	0	$13 \ K^{\pm} \rho \rightarrow \ K^{\pm} \pi^{\pm} \pi$

K*(1680) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
322±110 OUR AVERAG	E Error include	S SC	ale facto	r of 4.2	2.
205 ± 16 ± 34					$11 K^- p \rightarrow K^- \pi^+ n$
423 ± 18 ± 30	ASTON	87	LASS	0	11 $K^-p \rightarrow \overline{K}^0\pi^+\pi^-n$
• • • We do not use the	following data t	or a	verages,	fits, lir	mits, etc. • • •
454 ± 270					11 $K^-p \rightarrow \overline{K}^0\pi^-p$
170± 30	ETKIN	80	MPS	0	$6 K^- p \rightarrow \overline{K}^0 \pi^+ \pi^- n$
250 to 300	ESTABROOKS	78	ASPK	0	$13 K^{\pm} \rho \rightarrow K^{\pm} \pi^{\pm} \eta$

K*(1680) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{r_{1}}$	Κπ	(38.7±2.5) %
Γ_2	Κρ	$(31.4^{+4.7}_{-2.1})\%$
Γ_3	$K^*(892)\pi$	$(29.9^{+2.2}_{-4.7})\%$

CONSTRAINED FIT INFORMATION

An overall fit to 4 branching ratios uses 4 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=$ 2,9 for 2 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one

K*(1680) BRANCHING RATIOS

$$\begin{array}{c|cccc} x_2 & -36 & \\ x_3 & -39 & -72 \\ \hline & x_1 & x_2 \end{array}$$

 $0.97 \pm 0.09 ^{+0.30}_{-0.10}$

$\Gamma(K\pi)/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	
0.387±0.026 OUR FIT 0.388±0.014±0.022	ASTON	88	LAS5	0	11 K ⁻ p → K ⁻ π ⁺	n
$\Gamma(K\pi)/\Gamma(K^*(892)\pi)$			TECN	cuc	COMMENT	Γ_1/Γ_3
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	
1.30 ^{+0.23} _{-0.14} OUR FIT 2.8 ±1.1	ASTON	84	LASS	0	11 $K^- \rho \rightarrow \overline{K}^0 2\pi n$	
$\Gamma(K\rho)/\Gamma(K\pi)$	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	COMMENT	Γ ₂ /Γ ₁
0.81 +0.14 OUR FIT						
1.2 ±0.4	ASTON	84	LASS	0	11 $K^- p \rightarrow \overline{K}^0 2\pi n$	
Γ(Κρ)/Γ(Κ*(892)π) DOCUMENT ID		TECN	СНБ	COMMENT	Γ_2/Γ_3
1.05 +0.27 OUR FIT						

K*(1680) REFERENCES

87 LASS 0

ASTON

11 $K^- \rho \rightarrow \overline{K}^0 \pi^+ \pi^- \eta$

BIRD	89	SLAC-332	P.F. Bird	(SLAC)
A5TON	88	NP B296 493	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	87	NP B292 693	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	84	PL 149B 258	D. Aston et al.	(SLAC, CARL, OTTA) JP
ETKIN	80	PR D22 42	A. Etkin <i>et al</i> .	(BNL, CUNY) JP
ESTABROOKS	78	NP B133 490	P.G. Estabrooks et al.	(MCGI, CARL, DURH+) JP

$$I(J^P) = \frac{1}{2}(2^-)$$

THE $K_2(1770)$ AND THE $K_2(1820)$

A partial-wave analysis of the $K^-\omega$ system based on about $100,000~K^-p\to K^-\omega p$ events (ASTON 93) gives evidence for two $q\bar{q}$ D-wave states near 1.8 GeV. A previous analysis based on about 200,000 diffractively produced $K^-p\to K^-\pi^+\pi^-p$ events (DAUM 81) gave evidence for two $J^P=2^-$ states in this region, with masses $\sim 1780~{\rm MeV}$ and $\sim 1840~{\rm MeV}$ and widths $\sim 200~{\rm MeV}$, in good agreement with the results of ASTON 93. In contrast, the masses obtained using a single resonance do not agree well: ASTON 93 obtains 1728 \pm 7 MeV, while DAUM 81 estimates $\sim 1820~{\rm MeV}$. We conclude that there are indeed two K_2 resonances here.

We list under the $K_2(1770)$ other measurements that do not resolve the two-resonance structure of the enhancement.

K2(1770) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1773± 8		¹ ASTON	93	LASS		$11K^-\rho \rightarrow K^-\omega\rho$
	use the follo	owing data for aver	rages	, fits, lir	nits, e	tc. • • •
1810 ± 20		FRAME	86	OMEG	+	13 $K^+p \rightarrow \phi K^+p$
~ 1730		ARMSTRONG	83	OMEG	_	$18.5 K^- p \rightarrow 3Kp$
~ 1780		² DAUM	81 C	CNTR	_	$63~K^-\rho \rightarrow ~K^-2\pi\rho$
1710 ± 15	60	CHUNG	74	HBC	_	7.3 $K^-p \rightarrow K^-\omega p$
1767± 6		BLIEDEN	72	MMS	-	11-16 K ⁻ p
1730 ± 20	306	³ FIRESTONE	72B	DBC	+	$12 K^+ d$
1765 ± 40		4 COLLEY	71	HBC	+	$10 K^+ p \rightarrow K 2\pi N$
1740		DENEGRI	71	DBC	_	12.6 $K^-d \rightarrow \overline{K} 2\pi d$
1745 ± 20		AGUILAR	70C	HBC	-	4.6 K - p
1780 ± 15		BARTSCH	70C	HBC	_	10.1 K ⁻ p
1760 ± 15		LUDLAM	70	HBC	-	12.6 K ⁻ p

 1 From a partial wave analysis of the $\mathcal{K}^-\omega$ system.

K2(1770) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	_	TECN	CHG	COMMENT
186±14		⁵ ASTON	93	LASS		$11K^-p \rightarrow K^-\omega p$
• • • We do not	use the follow	owing data for ave	rages	i, fits, lin	nits, e	tc. • • •
140 ± 40		FRAME	86	OMEG	+	13 $K^+\rho \rightarrow \phi K^+\rho$
~ 220		ARMSTRONG	83	OMEG	_	$18.5~K^-\rho \rightarrow ~3K\rho$
~ 210		⁶ DAUM	B 1C	CNTR	-	$63~K^-p\to~K^-2\pi p$
110 ± 50	60	CHUNG	74	HBC	-	7.3 $K^-p \rightarrow K^-\omega p$
100 ± 26		BLIEDEN	72	MMS	-	11-16 K ⁻ p
210 ± 30	306	⁷ FIRESTONE	72B	DBC	+	12 K ⁺ d
90 ± 70		8 COLLEY	71	HBC	+	$10 K^+p \rightarrow K2\pi N$
130		DENEGRI	71	DBC	-	$12.6 \ K^- d \rightarrow \overline{K} 2\pi d$
100 ± 50		AGUILAR	70C	HBC	-	4.6 K ⁻ p
138 ± 40		BART\$CH	70c	HBC	_	10.1 K ⁻ p
$50 + 40 \\ -20$		LUDLAM	70	нвс	-	12.6 K-p

 $^{^{5}}$ From a partial wave analysis of the $K^{+}\omega$ system.

K2(1770) DECAY MODES

	7.2(2.	10, 220 11 1110230	
_	Mode	Fraction (Γ _I /Γ)	
$\overline{\Gamma_1}$	Κππ		
Γ_2	$K_2^*(1430)\pi$	dominant	
Γ3	$K^*(892)\pi$	seen	
Γ4	K f ₂ (1270)	seen	
Γ ₅	$K\phi$	seen	
Γ ₆	$K\omega$	se en	

² From a partial wave analysis of the $K^-2\pi$ system.

³ Produced in conjunction with excited deuteron.

⁴ Systematic errors added correspond to spread of different fits.

⁶ From a partial wave analysis of the $K^-2\pi$ system.

⁷ Produced in conjunction with excited deuteron.

⁸ Systematic errors added correspond to spread of different fits.

$K_2(1770), K_3^*(1780)$

K ₂ (1770)	BRANCHING	RATIOS
-----------------------	-----------	--------

	K ₂ (1770) RE	FERE	NCES		
seen	CHUNG	74	нвс	-	7.3 K ⁻ p → K ⁻ ωp	
seen	OTTER		нвс		8.25,10,16 K [±] p	
VALUE			****		COMMENT	
$\Gamma(K\omega)/\Gamma_{\text{total}}$						Γ ₆ /Γ
seen	ARMSTRONG	83	OMEG	-	$18.5~K^-p \rightarrow ~K^-\phi I$	٧
Γ(Κφ)/Γ _{total}	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	Γ ₅ /Γ
~ 0.74	DAUM	8 10	CNTR	63 K	- p → K - 2πp	
 • • We do not use 	the following data	for a	verages,	fits, li	mits, etc. • • •	
VALUE	DOCUMENT ID					
$\Gamma(K f_2(1270))/\Gamma(K f_2(1270)) \to \pi$	(मृत)					Γ_4/Γ_1
~ 0.23	DAUM	81 C	CNTR	63 K	$p \rightarrow K^- 2\pi p$	
• • • We do not use	the following data	for a	verages,	fits, li	mits, etc. • • •	
VALUE	DOCUMENT ID		TECN	COMM	IENT	13/11
Γ(K*(892)π)/Γ(K	·1					Γ3/Γ1
⁹ Produced in conju	nction with excited	deut	teron.		,	
1.0	BARBARO	69	нвс	+	12.0 K+p	
<1.0			HBC			
0.2 ±0.2	AGUILAR			_	4.6 K - p	
~ 1.0 <1.0	COLLEY		HBC	+	10 K+p	
~ 0.03 ~ 1.0	9 FIRESTONE		CNTR		63 $K^- p \to K^- 2\pi p$ 12 $K^+ d$	
	=		_	1112, 11		
• • • We do not use						
(N ₂ (1430) →	DOCUMENT ID		TECH	cuc	COMMENT	
$\Gamma(K_2^*(1430)\pi)/\Gamma(K_2^*(1430) \rightarrow$	•					Γ_2/Γ_1
E(M8(1430)_)/E(V\					г. /г.

ASTON	93	PL B308 186	D. Aston et al. (SLAC, NAC	O, CINC, INUS)			
FRAME	86	NP B276 667	D. Frame et al.	(GLAS)			
ARMSTRONG	83	NP B221 1	T.A. Armstrong et al. (BARI,	BIRM, CERN+)			
DAUM	81C	NP B167 1	C. Daum et al. (AMST, CERN,	CRAC, MPIM+)			
OTTER	81	NP B181 1	G. Otter (AACH3, BERL, LOIC	, VIEN, BIRM+)			
CHUNG	74	PL 51B 413	5.U. Chung et al.	(BNL)			
BLIEDEN	72	PL 39B 668	H.R. Blieden et al.	(STON, NEAS)			
FIRESTONE	72B	PR D5 505	A. Firestone et al.	(LBL)			
COLLEY	71	NP B26 71	D.C. Colley et al.	(BIRM, GLAS)			
DENEGRI	71	NP B28 13	D. Denegri et al.	(JHU) JP			
AGUILAR	70C	PRL 25 54	M. Aguilar-Benitez et al.	(BNL)			
BARTSCH	70C	PL 33B 186	J. Bartsch et al. (AACH,	BERL, CERN+)			
LUDLAM	70	PR D2 1234	T. Ludlam, J. Sandweiss, A.J. Slaughter	(YALE)			
BARBARO	69	PRL 22 1207	A. Barbaro-Galtieri et al.	(LRL)			
OTHER RELATER DARFING							

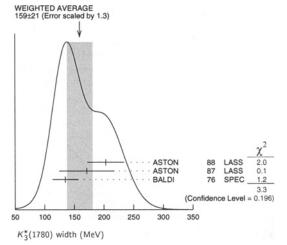
OTHER RELATED PAPERS -

BERLINGHIERI	67	PRL 18 1087	J.C. Berlinghieri et al.	1	(ROCH)
CARMONY	67	PRL 18 615	D.D. Carmony, T. Hendricks, R	.L. Lander	(UCSD)
JOBE S	67	PL 26B 49	M. Jobes et al.	(BIRM, CERN,	BRUX)
BARTSCH	66	PL 22 357	J. Bartsch et al.	(AACH, BERL, C	ERN+)

$K_3^*(1780)$

$$I(J^P) = \frac{1}{2}(3^-)$$

K3(1780) MASS


VALUE (MeV)	EVTS	DOCUMENT ID			<u>CHG</u>	COMMENT
1776± 7 OUR AV	ERAGE	Error includes scale			١.	
1781 ± 8 ± 4		1 ASTON	88	LASS	0	11 $K^-p \rightarrow K^-\pi^+\pi$
$1740 \pm 14 \pm 15$		¹ ASTON	87	LASS	0	11 K ⁻ p →
						$K^0\pi^+\pi^-n$
1779 ± 11		² BALDI	76	SPEC	+	$10 K^+ \rho \rightarrow K^0 \pi^+ \rho$
1776 ± 26		3 BRANDENB	76D	ASPK	0	13 $K^{\pm} \rho \rightarrow K^{\pm} \pi^{\mp} N$
• • • We do not	use the fo	llowing data for ave	rages	, fits, lir	nits, e	tc. • • •
1720±10±15	6111	⁴ BIRD	90	LASS		11 $K^- p \rightarrow \overline{K}^0 \pi^- p$
	0111					
1749 ± 10		ASTON		LASS	_	11 $K^-\rho \rightarrow K^-\eta\rho$
1780 ± 9	300	BAUBILLIER	84B	HBC	-	8.25 K ⁻ p →
						$\overline{K}^0\pi^-p$
1790 ± 15		BAUBILLIER	82B	HBC	0	8.25 K ⁻ p →
						$K_c^0 2\pi N$
1784 ± 9	2060	CLELAND	82	SPEC	±	$50 \ \text{K}^{+} p \rightarrow \ \text{K}^{0}_{5} \pi^{\pm} p$
1786±15		⁵ ASTON	81 D	LASS	0	11 $K^- \rho \rightarrow K^- \pi^+ \eta$
	100		-	HBC	_	$6.5 \ K^- \rho \rightarrow \overline{K}{}^0 \pi^- \rho$
1762± 9	190	TOAFF	81			
1850 ± 50		ETKIN	80	MPS	0	$6 K^- p \rightarrow \overline{K}^0 \pi^+ \pi^-$
1812±28		BEUSCH	78	OMEG		10 K p →
						$\overline{K}^0\pi^+\pi^-n$
1786± 8		CHUNG	78	MPS	0	$6 K^- p \rightarrow K^- \pi^+ n$
_						

K₃(1780) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	
159±21 OUR	AVERAGE	Error includes scal	e fac	tor of 1	.3. Se	e the ideogram below.
$203 \pm 30 \pm 8$		6 ASTON	88	LASS	0	11 $K^-\rho \rightarrow K^-\pi^+\pi$
$171 \pm 42 \pm 20$		6 ASTON	87	LASS	0	11 K ⁻ p →
		_				$\overline{K}^0\pi^+\pi^-\pi$
135 ± 22		⁷ BALDI	76	SPEC	+	$10 K^+ p \rightarrow K^0 \pi^+ p$
• • • We do not	use the foll	lowing data for ave	rages	i, fits, lir	nits, e	tc. • • •
$187 \pm 31 \pm 20$	6111	8 BIRD	89	LASS	-	11 $K^-p \rightarrow \overline{K}^0\pi^-p$
$193 + \frac{51}{-37}$		ASTON	88B	LASS		$11~K^-p \to ~K^-\eta\rho$
99 ± 30	300	BAUBILLIER	84B	HBC	-	8.25 K ⁻ p →
~ 130		BAUBILLIER	020	нвс	0	$\overline{K}^0 \pi^- p$ 8.25 $K^- p \rightarrow$
~ 130		DAUBILLIER	02B	пвс	U	$K_c^0 2\pi N$
191 ± 24	2060	CLELAND	82	SPEC	±	$50 K^{+} p \rightarrow K^{0}_{S} \pi^{\pm} p$
225 ± 60		9 ASTON	81D	LASS	0	$11 K^- \rho \rightarrow K^- \pi^+ \pi$
~ 80	190	TOAFF	81	HBC	_	$6.5 K^- p \rightarrow \overline{K}^0 \pi^- p$
240 ± 50		ETKIN	80	MPS	0	$6 K^- \rho \rightarrow \overline{K}^0 \pi^+ \pi^-$
$\textbf{181} \pm \textbf{44}$		¹⁰ BEUSCH	78	OMEG		10 K ⁻ p →
						$\overline{K}^0\pi^+\pi^-n$
96 ± 31		CHUNG	78	MPS	0	$6 K^- p \rightarrow K^- \pi^+ n$
270 ± 70		11 BRANDENB	76D	ASPK	0	13 $K^{\pm} D \rightarrow K^{\pm} \pi^{\mp} N$

 $^{^6}$ From energy-independent partial-wave analysis. 7 From a fit to Y_6^2 moment. $J^P=3^-$ found.

TESTABROOKS 78 find that BRANDENBURG 76D data are consistent with 175 MeV width. Not averaged.

K*(1780) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	Confidence level
Γ ₁	Κρ	(31 ± 9) %	
Γ_2	$K^*(892)\pi$	(20 ± 5) %	
Γ3	$K\pi$	(18.8 ± 1.0) %	
Γ4	Κη	(30 ±13)%	
Γ ₅	$K_2^*(1430)\pi$	< 16 %	95%

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 4 measurements and one constraint to determine 4 parameters. The overall fit has a χ^2 = 0.0 for 1 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $T_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

 $^{^1}$ From energy-independent partial-wave analysis. 2 From a fit to Y_6^2 moment. $J^P=3^-$ found. 3 Confirmed by phase shift analysis of ESTABROOKS 78, yields $J^P=3^-$. 4 From a partial wave amplitude analysis. 5 From a fit to the Y_6^0 moment.

 $^{^8}$ From a partial wave amplitude analysis. 9 From a fit to Y_6^0 moment.

 $^{^{10}}$ Errors enlarged by us to $^{4}\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

² DAUM

• • • We do not use the following data for averages, fits, limits, etc. • • • ⁴ DAUM

K₂(1820) WIDTH

 $^1\mathrm{Fron}$ a partial wave analysis of the $K^+\omega$ system. ² From a partial wave analysis of the $K = 2\pi$ system.

 3 Fron a partial wave analysis of the $K^-\omega$ system. 4 From a partial wave analysis of the $K^-2\pi$ system.

~ 1840

VALUE (MeV) 276±35

81c CNTR 63 $K^-p \rightarrow K^-2\pi p$

81c CNTR 63 $K^-p \rightarrow K^-2\pi p$

K ₃ (1780) BRANCHING RATIOS		K2(1820) DECAY MODES				
$\Gamma(K\rho)/\Gamma(K^*(892)\pi)$	Γ ₁ /Γ ₂	Mode	Fraction (Γ_i/Γ)			
VALUE DOCUMENT ID TECN CHG COMMENT 1.52 ± 0.23 OUR FIT		$\Gamma_1 = K\pi\pi$				
1.52±0.21±0.10 ASTON 87 LASS 0 11 $K^- p \to \overline{K}{}^0 \pi^+ \pi^-$	n		seen seen			
$\Gamma(K^*(892)\pi)/\Gamma(K\pi)$	Γ2/Γ3	$\Gamma_4 = K f_2(1270)$	seen			
VALUE DOCUMENT ID TECN CHG COMMENT 1.09±0.26 OUR FIT		Γ ₅ Κω ΄	seen			
1.09±0.26 ASTON 84B LASS 0 11 $K^-p \rightarrow \overline{K}^0 2\pi n$		K-(19	20) BRANCHING RATIOS			
$\Gamma(K\pi)/\Gamma_{\text{total}}$	Г3/Г	-,	•			
VALUE DOCUMENT ID TECN CHG COMMENT		$\Gamma(K_2^*(1430)\pi)/\Gamma(K\pi\pi)$	F ₂ /F ₁			
0.188±0.010 OUR FIT 0.188±0.010 OUR AVERAGE			ig data for averages, fits, limits, etc. • • •			
$0.187 \pm 0.008 \pm 0.008$ ASTON 88 LASS 0 11 $K^- p \rightarrow K^- \pi^+ n$		~ 0.77	DAUM B1c CNTR $63K^-p \rightarrow \overline{K}2\pi p$			
0.19 ± 0.02 ESTABROOKS 78 ASPK 0 13 $K^{\pm} p \rightarrow K \pi N$		$\Gamma(K^*(892)\pi)/\Gamma(K\pi\pi)$	Г3/Г			
· · · · · · ·	Γ ₄ /Γ ₃	VALUE	DOCUMENT ID TECN COMMENT			
VALUE DOCUMENT ID TECN CHG COMMENT 1.6 ±0.7 OUR FIT		• • We do not use the following	g data for averages, fits, limits, etc. • • •			
• • • We do not use the following data for averages, fits, limits, etc. • • •		~ 0.05	DAUM 81c CNTR $63K^-p \rightarrow \overline{K}2\pi p$			
0.41 \pm 0.050		$\Gamma(Kf_2(1270))/\Gamma(K\pi\pi)$	Γ ₄ /Γ ₂			
0.50 \pm 0.18 ASTON 88B LASS $-$ 11 $K^-p \to K^-\eta p$ 12 This result supersedes ASTON 88B.		VALUE	DOCUMENT ID TECN COMMENT			
			ig data for averages, fits, limits, etc. • • • DAUM 81C CNTR $63K^-p \rightarrow \overline{K}2\pi p$			
	Γ ₅ /Γ ₂	~ 0.18	DAOM SIC CNIR 63A p - K2#p			
VALUE CL% DOCUMENT ID TECN CHG COMMENT < 0.78 95 ASTON 87 LASS 0 11 $K^-p \rightarrow$		K	(1820) REFERENCES			
$\overline{K}^0 \pi^+ \pi^- n$		ASTON 93 PL B308 186	D. Aston et al. (SLAC, NAGO, CINC, INUS)			
K³(1780) REFERENCES		DAUM 81C NP B187 I	C. Daum et al. (AMST, CERN, CRAC, MPIM+)			
BIRD 89 SLAC-332 P.F. Bird (SLAC, NAGO, CINC, IN ASTON 88 PL B201 169 D. Aston et al. (SLAC, NAGO, CINC, IN ASTON 87 NP B292 693 D. Aston et al. (SLAC, NAGO, CINC, IN ASTON 87 NP B292 693 D. Aston et al. (SLAC, NAGO, CINC, IN ASTON 84 NP B247 261 D. Aston et al. (SLAC, CARL, OT BAUBILLIER 848 ZPHY C26 37 M. Baubillier et al. (BIRM, CERN, GLA: GIRM, CERN, GLA: (BIRM, CER	US) JP US) TA) S+)	K(1830) OMITTED FROM SUMM/ Seen in partial-wave a	$I(J^P) = rac{1}{2}(0^-)$ ARY TABLE nalysis of $K^-\phi$ system. Needs confirmation.			
CLELAND 82 NP B208 189 W.E. Cleland et al. (DURH, GEVA, LAU: ASTON 81D PL 998 502 D. Aston et al. (SLAC, CARL, OT TOAFF et al. TOAFF 81 PR D23 1500 S. Toaff et al. (SLAC, CARL, OT TOAFF et al.	S+) TA) JP NS)		K(1830) MASS			
ETKIN 80 PR D22 42 A. Elkin <i>et al.</i> (BNL, CUI BEUSCH 78 PL 74B 282 W. Beusch <i>et al.</i> (CERN, AACH3, E	TH) JP	VALUE (MeV) DOCUM	ENT ID TECN CHG COMMENT			
CHUNG 78 PRL 40 355 S.U. Chung <i>et al.</i> (BNL, BRAN, CUN' ESTABROOKS 78 NP B133 490 P.G. Estabrooks <i>et al.</i> (MCGI, CARL, DURI	H+) JP		ng data for averages, fits, limits, etc. • • •			
	H+) VA) JP AC) JP	~ 1830 ARMS	FRONG 83 OMEG – 18.5 $K^-p \rightarrow 3Kp$			
OTHER RELATED PAPERS	AC, 31		K(1830) WIDTH			
	NL)	VALUE (MeV) DOCUM	ENT ID TECN CHG COMMENT			
CARMONY 71 PRL 27 1160 D.D. Carmony et al. (PURD, UCD, IÚ			ng data for averages, fits, limits, etc. • • •			
FIRESTONE 71 PL 36B 513 A. Firestone et al. (L	.BL)	~ 250 ARMS	TRONG 83 OMEG - 18.5 $K^+p \rightarrow 3Kp$			
$K_2(1820)$ $I(J^P) = \frac{1}{2}(2^-)$		K	(1830) DECAY MODES			
Observed by ASTON 93 from a partial wave analysis of the $K^-\omega$		Mode				
System. See mini-review under $K_2(1770)$.		$\Gamma_1 = K \phi$				
K ₂ (1820) MASS			((1830) REFERENCES			
VALUE (MeV) DOCUMENT ID TECN COMMENT		ARMSTRONG 83 NP B221 1	T.A. Armstrong et al. (BARI, BIRM, CERN+) JP			
1816±13	, p					
• • • We do not use the following data for averages, fits, limits, etc. • • •						

 $K_0^*(1950), K_2^*(1980), K_4^*(2045)$

 $K_0^*(1950)$

 $I(J^{P}) = \frac{1}{2}(0^{+})$

OMITTED FROM SUMMARY TABLE Seen in partial-wave analysis of the $K^-\pi^+$ system. Needs confir-

K:	1950)	MASS
700	エンジロリ	マスト

VALUE (MeV)	DOCUMENT ID	TECN	<u>CHG</u>	COMMENT
1945±10±20	1 ASTON	88 LASS	0	11 $K^- p \rightarrow K^- \pi^+ n$
• • • We do not u	se the following data	for averages,	fits, li	mits, etc. • • •
1820 ± 40	² ANISOVICH	97c RVUE		11 $K^- p \rightarrow K^- \pi^+ n$
1 We take the cer	ntral value of the two	solutions and	the l	arger error given.

²T-matrix pole. Reanalysis of ASTON 88 data.

K₀*(1950) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN CHG	COMMENT
201± 34±79	3 ASTON	88 LASS 0	11 $K^-p \rightarrow K^-\pi^+n$
• • We do not use	the following data 1	or averages, fits,	limits, etc. • • •
250 ± 100	⁴ ANISOVICH	97c RVUE	11 $K^- p \rightarrow K^- \pi^+ n$

 3 We take the central value of the two solutions and the larger error given. 4 T-matrix pole. Reanalysis of ASTON 88 data.

K*(1950) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	Κπ	(52±14) %

K*(1950) BRANCHING RATIOS

Γ(Kπ)/Γ _{total}						Γ1,
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	
$0.52 \pm 0.08 \pm 0.12$	5 ASTON	88	LASS	0	11 $K^-p \rightarrow K^-\pi^+n$	
⁵ We take the centr	al value of the tw	o solu	tions and	d the l	arger error given.	

K*(1950) REFERENCES

ANISOVICH ASTON 97C PL B413 137 BB NP B296 493

D. Aston et al.

(SLAC, NAGO, CINC, INUS)

 $I(J^P) = \frac{1}{2}(2^+)$

OMITTED FROM SUMMARY TABLE

Needs confirmation.

K2(1980) MASS

VALUE (MeV)	EVTS	DOCUMENT IL	<u>'</u>	TECN	CHG	COMMENT
1973± 8±25		ASTON	87	LASS	0	11 K ⁻ p →
• • • We do π	ot use the foll	owing data for a	verage	s, fits, li	mits, e	$\overline{K}^0\pi^+\pi^-n$
$\textbf{1978} \pm \textbf{40}$	241 ± 47	BIRD	89	LASS	-	11 $K^- \rho \rightarrow \overline{K}^0 \pi^- \rho$

K2(1980) WIDTH

VALUE (MeV) EVTS	DOCUMENT ID	TECN	CHG	COMMENT
373±33±60	ASTON 8	7 LASS	0	11 K ⁻ p →
• • • We do not use the 398 ± 47 241 ± 47	BIRD 8	,		$\frac{\overline{K}^0 \pi^+ \pi^- n}{\text{stc.} \bullet \bullet \bullet}$ 11 $K^- p \to \overline{K}^0 \pi^- p$

K*(1980) DECAY MODES

 Mode	 	 	
K*(892)π Κρ			

K*(1980) BRANCHING RATIOS

$\Gamma(K\rho)/\Gamma(K^*(892)\pi)$						Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	
1.49±0.24±0.09	ASTON	87	LASS	0	11 $K^-p \rightarrow \overline{K}^0\pi^+\tau$	т п

K*(1980) REFERENCES

RD	5LAC-332	P.F. Bird	(SLAC)
STON	NP B292 693	D. Aston <i>et al.</i>	(SLAC, NAGO, CINC, INUS)
	 272 070	D. Floridii CC U	(serie, inies, circ, ince)

 $K_4^*(2045)$

 $I(J^P) = \frac{1}{2}(4^+)$

K*(2045) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2045 ± 9 OUR /	WERAGE	Error includes sca	ıle fa	ctor of 1	.1.	
2062 ± 14 ± 13		¹ ASTON	86	LASS	0	$11 K^- p \rightarrow K^- \pi^+ n$
2039± 10	400	^{2,3} CLELAND	82	SPEC	±	50 K+p \rightarrow K $_{S}^{0}\pi^{\pm}p$
$2070 + 100 \\ -40$		4 ASTON	810	LASS	0	11 $K^- p \rightarrow K^- \pi^+ \pi$
• • • We do not	use the fo	llowing data for ave	erage	s, fits, li	mits, e	tc. • • •
2079 ± 7	431	TORRES	86	MPSF		400 pA → 4KX
2088± 20	650	BAUBILLIER	82	нвс	_	8.25 K p →
						$\kappa_S^0 \pi^- \rho$
2115 ± 46	488	CARMONY	77	нвс	0	$9 K^+ d \rightarrow K^+ \pi' S X$
1						

K₄*(2045) WIDTH

VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
198± 30 OUR /	WERAGE					
221 ± 48 ± 27		⁵ ASTON	86	LASS	0	11 $K^-\rho \rightarrow K^-\pi^+\eta$
189± 35	400	6,7 CLELAND	82	SPEC	±	$50 K^+ p \rightarrow K_5^0 \pi^{\pm} p$
• • • We do no	t use the fo	llowing data for ave				
61 ± 58	431	TORRES	86	MPSF		400 pA → 4KX
170 ^{+ 100} - 50	650	BAUBILLIER	82	нвс	-	8.25 $K^- p \rightarrow K_5^0 \pi^- p$
240 ⁺⁵⁰⁰ -100		8 ASTON	81c	LASS	0	11 $K^- \rho \rightarrow K^- \pi^+ \eta$
300 ± 200		CARMONY	77	нвс	0	$9 K^+ d \rightarrow K^+ \pi' s X$
5	-10					

K*(2045) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
$\overline{\Gamma_1}$	Κπ	(9.9±1.2) %	_
Γ_2	$K^*(892)\pi\pi$	(9 ±5)%	
Гз	$K^*(892)\pi\pi\pi$	(7 ±5)%	
Γ4	ρΚπ	(5.7±3.2) %	
Γ ₅	$\omega K \pi$	(5.0 ± 3.0) %	
Γ ₆	$\phi K \pi$	(2.8 ± 1.4) %	
Γ7	φK*(892)	(1.4 ± 0.7) %	

K^{*}(2045) BRANCHING RATIOS

	• •				
$\Gamma(K\pi)/\Gamma_{\text{total}}$					Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.099 ±0.012	ASTON	88	LASS	0	11 $K^- p \rightarrow K^- \pi^+ \pi$
$\Gamma(K^*(892)\pi\pi)/\Gamma($	Κ π)				Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	<u>ÇHG</u>	COMMENT
0.89±0.53	BAUBILLIER	82	HBC		$8.25 K^- \rho \rightarrow \rho K_S^0 3\pi$
Γ(Κ*(892)πππ)/Ι	-(Kπ)				Γ ₃ /Γ ₁
VALUE	DOCUMENT ID		<u>TECN</u>	CHG	COMMENT
0.75±0.49	BAUBILLIER	82	нвс	-	$8.25 K^- p \rightarrow p K_5^0 3\pi$
$\Gamma(\rho K\pi)/\Gamma(K\pi)$					Γ_4/Γ_1
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	
0.58±0.32	BAUBILLIER	8 2	HBC	-	$8.25 K^- p \rightarrow p K_S^0 3\pi$
$\Gamma(\omega K\pi)/\Gamma(K\pi)$					Γ ₅ /Γ ₁
VALUE	DOCUMENT ID				COMMENT
0.50±0.30	BAUBILLIER	82	нвс	_	$8.25 \ K^- p \rightarrow p K_5^0 3\pi$
$\Gamma(\phi K \pi)/\Gamma_{\text{total}}$					Γ ₆ /Γ
VALUE	DOCUMENT ID				
0.028±0.014	9 TORRES	86	MPSF	400 /	A → 4KX
Γ(φK*(892))/Γ _{tot}					Γ ₇ /Γ
VALUE	DOCUMENT ID				
0.014 ± 0.007	9 TORRES		MPSF	400 /	DA → 4KX
⁹ Error determinatio	n is model depende	ent.			

¹ From a fit to all moments.
2 From a fit to 8 moments.
3 Number of events evaluated by us.

⁴ From energy-independent partial-wave analysis.

⁵ From a fit to all moments.
6 From a fit to 8 moments.
7 Number of events evaluated by us.
8 From energy-independent partial-wave analysis.

$K_4^*(2045)$, $K_2(2250)$, $K_3(2320)$, $K_5^*(2380)$

K*(2045) F	REFERENCE
------------	-----------

ASTON	88	NP B296 493	D. Aston et al.	(SLAC, NAGO, CINC, INUS)		
ASTON	86	PL B180 308	D. Aston et al.	(SLAC, NAGO, CINC, INUS)		
TORRES	86	PR 34 707	S. Torres et al.	(VPI, ARIZ, FNAL, FSU+)		
BAUBILLIER	82	PL 118B 447	M. Baubillier et al.	(BIRM, CERN, GLAS+)		
CLELAND	82	NP B208 189	W.E. Cleland et al.	(DURH, GEVA, LAUS+)		
ASTON	81C	PL 106B 235	D. Aston et al.	(SLAC, CARL, OTTA) JP		
CARMONY	77	PR D16 1251	D.D. Carmony et al.	`(PURD, UCD, IUPU)		
OTHER RELATED DARERS						

ASTON	87	NP B292 693	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
BROMBERG	80	PR D22 1513	C.M. Bromberg et al.	(CIT, FNAL, ILLC+)
CARMONY	71	PRL 27 1160	D.D. Carmony et al.	(PURD. UCD. IUPU)

$K_2(2250)$

$$I(J^P) = \frac{1}{2}(2^+$$

OMITTED FROM SUMMARY TABLE

This entry contains various peaks in strange meson systems reported in the 2150-2260 MeV region, as well as enhancements seen in the antihyperon-nucleon system, either in the mass spectra or in the ${\it J}^{\it P}$

K2(2250) MASS

VALUE (MeV)	EVT\$	DOCUMENT ID		TECN	CHG	COMMENT
2247±17 OUR A	VERAGE					
2200 ± 40						18 $K^- p \rightarrow \Lambda \overline{p} X$
2235 ± 50						$8 K^- \rho \rightarrow \Lambda \overline{\rho} X$
2260 ± 20		¹ CLELAND	81	SPEC	±	$50 K^+ p \rightarrow \Lambda \overline{p} X$
• • • We do not	use the follo	wing data for ave	rages	s, fits, lir	nits, e	tc. • • •
2147 ± 4	37	CHLIAPNIK	79	нвс	+	32 $K^+p \rightarrow \overline{\Lambda}pX$
2240 ± 20	20	LISSAUER	70	HBC		9 K ⁺ ρ
$^{1}J^{P}=2^{-}$ fro	m moments	analysis.				

K₂(2250) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
180±30 OUR	VERAGE	Error includes scal				
150 ± 30						18 $K^-p \rightarrow \Lambda \overline{p} X$
210±30 ,		² CLELAND	81	SPEC	±	$50 K^+ p \rightarrow \Lambda \overline{p} X$
• • • We do not	use the foll	owing data for ave	rages	s, fits, lir	nits, e	tc. • • •
~ 200						8 K ⁻ p → Λ _P X
~ 40	37	CHLIAPNIK	79	HBC	+	$32 K^+ p \rightarrow \bar{\Lambda} p X$
80 ± 20	20	LISSAUER	70	HBC		9 K ⁺ ρ
$^{2}J^{P}=2^{-}$ from moments analysis.						

K2(2250) DECAY MODES

	72(2200) DEGIT MODES				
	Mode				
Γ ₁ Γ ₂	$K\pi\pi$ $D\overline{\Lambda}$				
2	PΛ				
			K	(2250) REFERENCES	
			NP B227 365	T.A. Armstrong et al.	(BARI, BIRM, CERN+)
CLELA			NP B183 1 NP B184 1	M. Baubillier et al. W.E. Cleland et al.	(BIRM, CERN, GLAS+) JI (PITT, GEVA, LAUS+) JI
			NP B158 253	P.V. Chliapnikov et al.	(CERN, BELG, MONS)
LISSA			NP B18 491	D. Lissauer et al.	(LBL)

-- OTHER RELATED PAPERS -

				(101)
ALEXANDER	688	PRL 20 755	G. Alexander et al.	(LRL)

$K_3(2320)$

$$I(J^P) = \frac{1}{2}(3^+)$$

OMITTED FROM SUMMARY TABLE

Seen in the $J^P=3^+$ wave of the antihyperon-nucleon system. Needs confirmation.

K₃(2320) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
2324±24 OUR AV						
2330 ± 40	¹ ARMSTRONG	83C	OMEG	_	18 $K^-p \rightarrow \Lambda \overline{p} X$	
2320 ± 30	¹ CLELAND	81	SPEC	±	$50 K^+ p \rightarrow \Lambda \overline{p} X$	
$^{1}J^{P}=3^{+}$ from	n moments analysis.					

K₃(2320) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
150±30	² ARMSTRONG	830	ОМЕС	_	18 K ⁻ p → Λ p X	
• • • We do not	use the following data	for a	verages,	fits, li	imits, etc. • • •	
~ 250	² CLELAND	81	SPEC	±	$50 K^+ p \rightarrow \Lambda \overline{p} X$	
2 IP - 3+ fro	m moments analysis					

K₃(2320) DECAY MODES

	Mode		
$\overline{\Gamma_1}$	pΛ		
		V (case) DEFERRIGES	

K₃(2320) REFERENCES

ARMSTRONG	NP B227 365	T.A. Armstrong et al.	(BARI, BIRM, CERN+)
CLELAND	NP B184 1	W.E. Cleland et al.	(PITT, GEVA, LAUS+)

$$I(J^P) = \frac{1}{2}(5^-)$$

OMITTED FROM SUMMARY TABLE Needs confirmation.

K*(2380) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
2382±14±19	¹ ASTON	86	LASS	0	11 $K^- \rho \to K^- \pi^+ n$
¹ From a fit to all the moments.					

K₅(2380) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
178±37±32	² ASTON	86	LASS	0	$11 K^- p \rightarrow K^- \pi^+ n$
² From a fit to all the moments.					

K*(2380) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
Γ1	Κπ	(6.1±1.2) %

K*(2380) BRANCHING RATIOS

$\Gamma(K\pi)/\Gamma_{\text{total}}$			Г1/Г
VALUE	DOCUMENT ID	TECN CHG	COMMENT
0.061 ± 0.012	ASTON 88	LASS 0	$11 K^- p \rightarrow K^- \pi^+ n$

K₅(2380) REFERENCES

ASTON	88	NP B296 493	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	86	PL B180 308	D. Aston et al.	(SLAC, NAGO, CINC, INUS)

K₄(2500), K(3100)

K ₄ (2500)

 $I(J^P) = \frac{1}{2}(4^-)$

OMITTED FROM SUMMARY TABLE Needs confirmation.

$K_4(2500)$) Mass
-------------	--------

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
2490 ± 20	1 CLELAND	81	SPEC	±	50 K+p → AP
$^{1}J^{P}=4^{-}$ from m	oments analysis.				

K4(2500) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
• • • We do not u	ise the following data	for a	verages,	fits, I	imits, etc. • • •	
~ 250	² CLELAND	81	SPEC	±	$50 K^+ p \rightarrow \Lambda \overline{p}$	
$^{2}J^{P}=4^{-}$ from	moments analysis.					

K4(2500) DECAY MODES

	Mode	 		
Γ_1	pΛ	 	 	

K4(2500) REFERENCES

CLELAND 81 NP B184 1

W.E. Cleland et al.

(PITT, GEVA, LAUS+)

K(3100)

 3095 ± 30

¹ Supersedes ALEEV 90.

$$I^{G}(J^{PC}) = ?^{?}(?^{??})$$

OMITTED FROM SUMMARY TABLE

Narrow peak observed in several ($\Lambda \overline{p}$ + pions) and ($\overline{\Lambda}p$ + pions) states in Σ^- Be reactions Needs confirmation. by BOURQUIN 86 and in np and nA reactions by ALEEV 93. Not seen by BOEHNLEIN 91. If due to strong decays, this state has exotic quantum numbers (B=0,Q=+1,S=-1 for $\Lambda \overline{p}\pi^+\pi^+$ and $I \geq 3/2$ for $\Lambda \overline{p}\pi^-$). Needs confirmation.

K(3100) MASS

VALUE (MeV) ≈ 3100 OUR ESTIMATE	DOCUMENT ID			
3-BODY DECAYS	DOCUMENT ID		TECN	COMMENT
3054±11 OUR AVERAGE				
3060 ± 7 ± 20	1 ALEEV	93	BIS2	$K(3100) \rightarrow \Lambda \bar{p} \pi^+$
3056± 7±20	1 ALEEV	93	BIS2	$K(3100) \rightarrow \overline{\Lambda} p \pi^-$
3055± 8±20	1 ALEEV	93	B152	$K(3100) \rightarrow \Lambda \overline{p} \pi^-$
3045 ± 8 ± 20	1 ALEEV	93	BIS2	$K(3100) \rightarrow \overline{\Lambda} \rho \pi^+$
4-BODY DECAYS				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
3059±11 OUR AVERAGE				
3067 ± 6 ± 20	¹ ALEEV	93	BIS2	$K(3100) \rightarrow \Lambda \bar{p} \pi^+ \pi^+$
3060 ± 8 ± 20	1 ALEEV	93	BIS2	$K(3100) \rightarrow \Lambda \overline{p} \pi^+ \pi^-$
3055 ± 7 ± 20	1 ALEEV	93	BIS2	$K(3100) \rightarrow \overline{\Lambda} p \pi^- \pi^-$
3052± 8±20	1 ALEEV	93	BIS2	$K(3100) \rightarrow \overline{\Lambda} p \pi^- \pi^+$
• • • We do not use the following	ng data for average	s, fit	s, limits,	etc. • • •
3105 ± 30	BOURQUIN	86	SPEC	$K(3100) \rightarrow \Lambda \bar{p} \pi^+ \pi^+$
3115 ± 30	BOURQUIN	86	SPEC	$K(3100) \rightarrow \Lambda \overline{p} \pi^+ \pi^-$
5-BODY DECAYS				
V44.05 (4-14)	DOCUMENT ID		TECN	COMMENT

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc.
 • • •

BOURQUIN 86 SPEC $K(3100) \rightarrow \Lambda \bar{p} \pi^+ \pi^+ \pi^-$

K(3100) WIDTH

2 BODY DECAY

3-BODY DECAYS VALUE (MeV)		DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following		s, fit	s, limits,	etc. • • •
42±16 36±15 50±18 30±15		² ALEEV ² ALEEV ² ALEEV ² ALEEV	93 93 93 93	BIS2 BIS2 BIS2 BIS2	$K(3100) \rightarrow \Lambda \bar{p} \pi^{+}$ $K(3100) \rightarrow \bar{\Lambda} p \pi^{-}$ $K(3100) \rightarrow \Lambda \bar{p} \pi^{-}$ $K(3100) \rightarrow \bar{\Lambda} p \pi^{+}$
4-BODY DECAYS VALUE (MeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following	g data for average	s, fit	s, limits,	etc. • • •
22± 8		² ALEEV	93	BIS2	$K(3100) \rightarrow \Lambda \overline{p} \pi^+ \pi^+$
28 ± 12		² ALEEV	93	BIS2	$K(3100) \rightarrow \Lambda \bar{p} \pi^+ \pi^-$
32 ± 15		² ALEEV	93	B152	$K(3100) \rightarrow \overline{\Lambda} p \pi^- \pi^-$
30 ± 15		² ALEEV	93	BI52	$K(3100) \rightarrow \overline{\Lambda} p \pi^- \pi^+$
<30	90	BOURQUIN	86	SPEC	$K(3100) \rightarrow \Lambda \bar{p} \pi^+ \pi^+$
<80	90	BOURQUIN	86	SPEC	$K(3100) \rightarrow \Lambda \bar{\rho} \pi^+ \pi^-$
5-BODY DECAYS VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following	g data for average	s, fit	s, limits,	etc. • • •
<30	90	BOURQUIN	86	SPEC	$\begin{array}{c} K(3100) \rightarrow \\ \Lambda \overline{p} \pi^+ \pi^+ \pi^- \end{array}$
² Supersedes ALEEV 9	90.				

K(3100) DECAY MODES

	Mode	
$\overline{\Gamma_1}$	$K(3100)^0 \rightarrow \Lambda \overline{p} \pi^+$	
Γ_2^-	$K(3100)^{} \rightarrow \Lambda \overline{p} \pi^{-}$	
Γ_3	$K(3100)^- \rightarrow \Lambda \overline{p} \pi^+ \pi^-$	
Γ4	$K(3100)^+ \rightarrow \Lambda \bar{p} \pi^+ \pi^+$	
Γs	$K(3100)^0 \rightarrow \Lambda \overline{p} \pi^+ \pi^+ \pi^-$	
٦	$K(3100)^0 \rightarrow \Sigma(1385)^+\overline{\rho}$	

$\Gamma(\Sigma(1385)^+\bar{p})/\Gamma(\Lambda\bar{p}\pi^+)$						
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
< 0.04	90	ALEEV	93	B152	$K(3100)^0 \rightarrow$	
					Σ (1385) $^+\bar{p}$	

K(3100) REFERENCES

ALEEV	93	PAN 56 1358 Translated from YAF 56	A.N. Aleev et al. 5 100.	(BIS-2 Collab.)
BOEHNLEIN	91	NP B21 174 (suppl)	A. Boehnlein et al.	(FLOR, BNL, IND+)
ALEEV	90	ZPHY C47 533	A.N. Aleev et al.	(BIS-2 Collab.)
BOURQUIN	86	PL B172 113	M.H. Bourquin et al.	(GEVA, RAL, HEIDP+)

ı

Scale factor.

Confidence level

CHARMED MESONS $(C = \pm 1)$

 $D^+ = c\overline{d}$, $D^0 = c\overline{u}$, $\overline{D}{}^0 = \overline{c}u$, $D^- = \overline{c}d$, similarly for D^{\bullet} 's

D MESONS

Revised January 2000 by P.R. Burchat (Stanford University).

The new experimental results on D mesons reported in this edition are mostly from the CLEO-II experiment at the CESR e^+e^- storage ring and from the fixed-target experiment E791 at Fermilab. The CLEO experiment has measured the D^+ , D^0 , and D_s^+ lifetimes, and E791 has measured the D^0 and D_s^+ lifetimes. The measured ratio of D_s^+ to D^0 lifetimes is now significantly greater than unity: $\tau(D_s^+)/\tau(D^0) = 1.20 \pm 0.02$.

The E791 experiment has obtained the first directly measured limit on the decay-width difference $\Delta\Gamma$ for the mass eigenstates of the neutral D system, looking for a difference in decay rates between the CP-even decay $D^0 \to K^+K^-$ and the CP-mixed decay $D^0 \to K^-\pi^+$. The CERN experiment ALEPH and CLEO have made new searches for neutral D mixing in the "wrong-sign" decay $D^0 \to K^+\pi^-$; no evidence for mixing has been found. CLEO has reduced the uncertainty on the measurement of the doubly Cabibbo-suppressed decay rate $\Gamma(D^0 \to K^+\pi^-)$ by about a factor of three.

The CERN experiment BEATRICE has measured form factors for the semileptonic decay $D^+ \to \overline{K}^*(892)^0 \ell^+ \nu_\ell$, and E791 has measured form factors both for this decay and for $D_s^+ \to \phi \ell^+ \nu_\ell$. The CERN experiment OPAL has measured the semileptonic branching fraction for charm hadrons produced in $Z \to c\bar{c}$. The Fermilab experiment CDF has set limits on semileptonic decay rates involving K resonances above the $K^*(892)$. The BEPC experiment BES has observed one $D^+ \to \mu^+ \nu_\mu$ event, and CLEO has improved a measurement of the D_s^+ leptonic decay constant.

CLEO has now measured the important $D^0 \to K^-\pi^+$ branching fraction using three different methods, and has also measured D^+ and D_s^+ branching fractions involving η and η' mesons. An E791 search for 24 rare or forbidden decays to dilepton final states yielded no evidence for new physics.

$$I(J^P) = \frac{1}{2}(0^-)$$

D± MASS

The fit includes D^\pm , D^0 , D_s^\pm , $D^{*\pm}$, D^{*0} , and $D_s^{*\pm}$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
1869.3± 0.5 OUR FIT	Error	includes scale factor of 1.	1.	
1869.4± 0.5 OUR AVE	RAGE			
1870.0 ± 0.5 ±1.0	317	BARLAG 900	ACCM	π^- Cu 230 GeV
1863 ± 4		DERRICK 84	HRS	e+e- 29 GeV
1869.4 + 0.6		¹ TRILLING 81	RVUE	e+e- 3.77 GeV

• • • We do not use	the followin	g data for average:	s, fit	s, limits,	etc. • • •
1875 ±10	9	ADAMOVICH	87	EMUL	Photoproduction
1860 ±16	6	ADAMOVICH	84	EMUL	Photoproduction
1868.4± 0.5					e^+e^- 3.77 GeV
1874 ± 5		GOLDHABER	77	MRK1	D^0 , D^+ recoil spectra
1868.3 ± 0.9					$e^{+}e^{-}$ 3.77 GeV
1874 ±11		PICCOLO			e^+e^- 4.03, 4.41 GeV
1876 ±15	50	PERUZZI	76	MRK1	$\kappa^{\mp}\pi^{\pm}\pi^{\pm}$

1 PERUZZI 77 and SCHINDLER 81 errors do not include the 0.13% uncertainty in the absolute SPEAR energy calibration. TRILLING 81 uses the high precision $J/\psi(1S)$ and $\psi(2S)$ measurements of ZHOLENTZ 80 to determine this uncertainty and combines the PERUZZI 77 and SCHINDLER 81 results to obtain the value quoted.

D± MEAN LIFE

Measurements with an error $>0.1\times10^{-12}$ s are omitted from the average, and those with an error $>0.2\times10^{-12}\,\text{s}$ have been omitted from the Listings.

VALUE (10 ⁻¹² s)	EVTS	DOCUMENT ID	TECN	COMMENT
1.051 ±0.013 OUR AV	ERAGE			
$1.0336 \pm 0.0221 {}^{+ 0.0099}_{- 0.0127}$	3777	BONVICINI	99 CLE2	$e^+e^- \approx \Upsilon(45)$
$1.048 \pm 0.015 \pm 0.011$	9k	FRABETTI	94D E687	$D^+ \rightarrow K^-\pi^+\pi^+$
1.075 ±0.040 ±0.018	2455	FRABETTI	91 E687	γ Be, $D^+ \rightarrow$
				$\kappa^-\pi^+\pi^+$
$1.03 \pm 0.08 \pm 0.06$	200	ALVAREZ	90 NA14	γ , $D^+ \rightarrow K^- \pi^+ \pi^+$
$1.05 \begin{array}{c} +0.077 \\ -0.072 \end{array}$	317	² BARLAG	90c ACCM	π Cu 230 GeV
$1.05 \pm 0.08 \pm 0.07$	363	ALBRECHT	88I ARG	e ⁺ e ⁻ 10 GeV
1.090 ±0.030 ±0.025	2992	RAAB	88 E691	Photoproduction
• • • We do not use the	following	data for averages,	fits, limits,	etc. • • •
$1.12 \begin{array}{c} +0.14 \\ -0.11 \end{array}$	149	AGUILAR	87D HYBR	π^-p and pp
$1.09 \begin{array}{c} +0.19 \\ -0.15 \end{array}$	59	BARLAG	87B ACCM	K^- and π^- 200 GeV
1.14 ±0.16 ±0.07	247	CSORNA	87 CLEO	e^+e^- 10 GeV
1.09 ± 0.14	74	³ PALKA	87B SILI	π Be 200 GeV
$0.86 \pm 0.13 \begin{array}{c} +0.07 \\ -0.03 \end{array}$	48	ABE	86 HYBR	γp 20 GeV

²BARLAG 90c estimates the systematic error to be negligible.

³ PALKA 87B observes this in $D^+ \rightarrow \overline{K}^*(892) e\nu$.

Mode

D+ DECAY MODES

Fraction (Γ_i/Γ)

D[—] modes are charge conjugates of the modes below.

	Inclusiv	e modes	
Γ_1	e^+ anything	$(17.2 \pm 1.9)\%$	
Γ_2	K^- anything	$(24.2 \pm 2.8)\%$	S=1.4
Γ_3	\overline{K}^0 anything $+K^0$ anything	(59 ± 7)%	
	K ⁺ anything	$(5.8 \pm 1.4)\%$	
Γ5	η anything	[a] < 13 %	CL=90%
	μ^+ anything		
	Leptonic and se	mileptonic modes	
Γ7	$\mu^+ u_{\mu}$	$\begin{pmatrix} 8 & +17 \\ -5 & \end{pmatrix} \times 10^{-4}$	
Γ_{R}	$\overline{K}^0\ell^+\nu_{\ell}$	[b] $(6.8 \pm 0.8)\%$	
Γg	$\overline{K}^0 e^+ \nu_e$	$(6.7 \pm 0.9)\%$	
	$\overline{K}{}^0\mu^+ u_\mu$	$(7.0 + 3.0 \\ -2.0)\%$	
Γ ₁₁	$K^-\pi^+e^+ u_e$	$(4.1 \pm 0.9)\%$	
Γ ₁₂	$\overline{K}^*(892)^0 e^+ \nu_e \times B(\overline{K}^{*0} \rightarrow K^- \pi^+)$	$(3.2 \pm 0.33)\%$	
	\times B($\overline{K}^{*0} \rightarrow K^-\pi^+$)		
Г12	$K^-\pi^+e^+\nu_o$ nonresonant	$< 7 \times 10^{-3}$	CL=90%
Γ14	$K^-\pi^+\mu^+\nu_{\mu}$ In the fit as $\frac{2}{3}\Gamma_{26} + \Gamma_{16}$, where	$(3.2 \pm 0.4)\%$	S=1.1
-	In the fit as $\frac{5}{2}\Gamma_{26} + \Gamma_{16}$, where	$\frac{2}{3}\Gamma_{26} = \Gamma_{15}$.	
Γ ₁₅	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$	(2.9 ± 0.4) %	
. 13	$\times B(\overline{K}^{*0} \to K^-\pi^+)$	` ,	
Γ ₁₆		$(2.7 \pm 1.1) \times 10^{-3}$	
Γ	$K^0\pi^+\pi^-e^+\nu_e$, ,	
Γ	$K^-\pi^+\pi^0e^+\nu_e$		
L. 2	$(\overline{K}^*(892)\pi)^0 e^+ \nu_e$	< 1.2 %	CL=90%
Γ	$(\overline{K}\pi\pi)^0 e^+ \nu_e \text{ non-} \overline{K}^* (892)$	< 9 × 10 ⁻³	
Γο.	$K^-\pi^+\pi^0\mu^+\nu_{\mu}$	< 1.4 × 10 ⁻³	CL=90%
, 51 L	$\pi^0 \ell^+ \nu_\ell$	[c] (3.1 \pm 1.5) \times 10 ⁻³	
22 F	$\pi^+\pi^-e^+\nu_e$	[6] (3.1 ± 1.5 / × 10	
' 23	и и с ие		

```
Fractions of some of the following modes with resonances have already
                                                                                                                                                                 Fractions of some of the following modes with resonances have already
              appeared above as submodes of particular charged-particle modes.
                                                                                                                                                                 appeared above as submodes of particular charged-particle modes.
                                                                                                                                                              \overline{K}^0 \rho^+
          \overline{K}^*(892)^0 \ell^+ \nu_{\ell}
                                                                     [b] (4.7 \pm 0.4)\%
                                                                                                                                                                                                                                 (6.6 \pm 2.5)\%
               K^*(892)^0 e^+ \nu_e
                                                                                                                                                              \overline{K}^0 a_1(1260)^+
                                                                             (4.8 \pm 0.5)\%
                                                                                                                                                    \Gamma_{74}
                                                                                                                                                                                                                                 (8.0 \pm 1.7)\%
\Gamma_{25}
              \overline{K}^*(892)^0 \mu^+ \nu_{\mu}
                                                                                                                                                              \overline{K}^0 \, a_2(1320)^+
                                                                             (4.4 ± 0.6)%
                                                                                                                                                                                                                                                        \times 10^{-3}
\Gamma_{26}
                                                                                                                         S=1.1
                                                                                                                                                    Γ75
                                                                                                                                                                                                                                < 3
                                                                                                                                                                                                                                                                          CL=90%
                                                                                                                                                               \overline{K}^*(892)^0 \pi^+
         \overline{K}_1(1270)^0 \mu^+ \nu_{\mu}
                                                                           < 3.5
                                                                                                                                                    Γ<sub>76</sub>
                                                                                                                                                                                                                                 ( 1.90 ± 0.19) %
 Γ<sub>27</sub>
                                                                                                    %
                                                                                                                     CL=95%
                                                                                                                                                               \overline{K}^*(892)^0 \rho^+ total
                                                                                                                                                                                                                          [e] (2.1 \pm 1.3)\%
           \overline{K}^*(1410)^0 \mu^+ \nu_{\mu}
                                                                           < 2.7
                                                                                                                                                    Γ77
 \Gamma_{28}
                                                                                                     %
                                                                                                                     CL=95%
                                                                                                                                                                  \overline{K}^*(892)^0 \rho^+ S-wave \overline{K}^*(892)^0 \rho^+ P-wave
                                                                                                                                                    Γ<sub>78</sub>
                                                                                                                                                                                                                          [e] ( 1.6 \pm 1.6 ) %
          \overline{K}_{2}^{*}(1430)^{0}\mu^{+}\nu_{\mu}
                                                                                                    \times 10^{-3}
\Gamma_{29}
                                                                           < 8
                                                                                                                     CL=95%
                                                                                                                                                                                                                                                        \times 10^{-3}
                                                                                                                                                                                                                                                                          CL=90%
                                                                                                                                                    \Gamma_{79}
                                                                                                                                                                                                                               < 1
 \Gamma_{30} \rho^0 e^+ \nu_e
                                                                             (2.2 \pm 0.8) \times 10^{-3}
                                                                                                                                                                   \overline{K}^*(892)^0 \rho^+ D-wave
                                                                                                                                                                                                                                 (10 \pm 7) \times 10^{-3}
                                                                                                                                                    \Gamma_{\rm BO}

ho^0 \, \mu^+ \, \nu_\mu
                                                                             (2.7 \pm 0.7) \times 10^{-3}
 Γ31
                                                                                                                                                                   \overline{K}^*(892)^0 \rho^+ D-wave longitudi-
                                                                                                                                                                                                                                                        × 10<sup>-3</sup>
                                                                                                                                                                                                                                                                          CL=90%
                                                                                                                                                                                                                                < 7
          \phi e^+ \nu_e
 \Gamma_{32}
                                                                           < 2.09
                                                                                                     %
                                                                                                                      CL=90%
                                                                                                                                                                        nal
 \Gamma_{33} \quad \phi \mu^+ \nu_{\mu}
                                                                           < 3.72
                                                                                                                     CL=90%
                                                                                                                                                              \overline{K}_1(1270)^0\pi^+
                                                                                                                                                    \Gamma_{82}
                                                                                                                                                                                                                                                        \times 10^{-3}
                                                                                                                                                                                                                                                                           CL=90%
          \eta \ell^+ \nu_\ell
                                                                                                    \times 10^{-3}
                                                                                                                                                              \frac{K_1(1270)^n}{K_1(1400)^0\pi^+}
\frac{K^*(1410)^0\pi^+}{K^*(1430)^0\pi^+}
\frac{K^*(1680)^0\pi^+}{K^*(1680)^0\pi^+}
                                                                                                                     CI =90%
Γ<sub>34</sub>
                                                                           < 5
                                                                                                                                                    Γ83
                                                                                                                                                                                                                                 (4.9 \pm 1.2)\%
                                                                                                    \times 10<sup>-3</sup>
          \eta'(958)\mu^+\nu_{\mu}
                                                                           < 9
Γ<sub>35</sub>
                                                                                                                     CL=90%
                                                                                                                                                                                                                                                       \times 10^{-3}
                                                                                                                                                                                                                                                                          CI = 90\%
                                                                                                                                                                                                                               < 7
                                                                                                                                                    \Gamma_{85}
                                                                                                                                                                                                                                 (3.7 \pm 0.4)\%
                                   Hadronic modes with a \overline{K} or \overline{K}K\overline{K}
          \overline{K}{}^0\pi^+
                                                                                                                                                    Г86
                                                                                                                                                                                                                                 ( 1.43 ± 0.30) %
\Gamma_{36}
                                                                             (2.89 \pm 0.26)\%
                                                                                                                          S=1.1
                                                                                                                                                              \overline{K}^*(892)^0\pi^+\pi^0 total
                                                                                                                                                                                                                                  (6.7 + 1.4)\%
          K^-\pi^+\pi^+
                                                                                                                                                    Γ<sub>87</sub>
                                                                     [d] (9.0 \pm 0.6)\%
Γ<sub>37</sub>
                                                                                                                                                               K^*(892)^0 \pi^+ \pi^0 3-body

K^*(892)^- \pi^+ \pi^+ total
              \overline{K}^*(892)^0\pi^+
                                                                                                                                                    Γ88
                                                                                                                                                                                                                          [e] (4.2 \pm 1.4)\%
Γ38
                                                                             (1.27 \pm 0.13)\%
                  \times B(\overline{K}^{*0} \rightarrow K^-\pi^+)
                                                                                                                                                    Γ89
              \overline{K}_{0}^{*}(1430)^{0}\pi^{+}
                                                                                                                                                    Γ90
                                                                                                                                                                  K^*(892)^-\pi^+\pi^+3-body
                                                                                                                                                                                                                                  (2.0 \pm 0.9)\%
 Γ39
                                                                              (2.3 \pm 0.3)\%
                                                                                                                                                               K^- \rho^+ \pi^+ total
              \times B(\overline{K}_0^*(1430)^0 \to K^-\pi^+)
\overline{K}^*(1680)^0\pi^+
                                                                                                                                                    Γ91
                                                                                                                                                                                                                                  (3.1 \pm 1.1)\%
                                                                                                                                                              K^- \rho^+ \pi^+ 3-body

K^0 \rho^0 \pi^+ \text{total}
                                                                                                                                                                                                                                  (1.1 \pm 0.4)\%
Γ<sub>40</sub>
                                                                             (3.7 \pm 0.8) \times 10^{-3}
                                                                                                                                                    \Gamma_{93}
                                                                                                                                                                                                                                  (4.2 \pm 0.9)\%
                                                                                                                                                                                                                                                                           CL=90%
                  \times B(\overline{K}^*(1680)<sup>0</sup> \rightarrow K^-\pi^+)
                                                                                                                                                                  \overline{K}^0 \rho^0 \pi^+ 3-body
                                                                                                                                                                                                                                 (5 \pm 5) \times 10^{-3}
                                                                                                                                                    \Gamma_{94}
               K^-\pi^+\pi^+ nonresonant
\Gamma_{41}
                                                                              (8.5 \pm 0.8)\%
                                                                                                                                                                                                                                                       \times 10^{-3}
                                                                                                                                                               \overline{K}^0 f_0(980) \pi^+
                                                                                                                                                    \Gamma_{95}
                                                                                                                                                                                                                                < 5
                                                                                                                                                                                                                                                                           CL=90%
         \overline{K}^0 \pi^+ \pi^0
\Gamma_{42}
                                                                     [d] (9.7 \pm 3.0)\%
                                                                                                                          S=1.1
                                                                                                                                                               \overline{K}^*(892)^0\pi^+\pi^+\pi^-
                                                                                                                                                                                                                                 ( 8.1~\pm~3.4 ) \times\,10^{-3}
              \overline{K}{}^0\rho^+
                                                                                                                                                                                                                                                                              S=1.7
                                                                                                                                                    Γ<sub>96</sub>
\Gamma_{43}
                                                                              (6.6 \pm 2.5)\%
                                                                                                                                                                  \overline{K}^*(892)^0 \rho^0 \pi^+
                                                                                                                                                                                                                                  (2.9 + 1.7 \times 10^{-3}) \times 10^{-3}
                                                                                                                                                    \Gamma_{97}
               \overline{K}^*(892)^0\pi^+
                                                                                                                                                                                                                                                                              5 = 1.8
\Gamma_{44}
                                                                              (6.3 \pm 0.4) \times 10^{-3}
                  \times \mathsf{B}(\overleftarrow{K}^{*0} \to \overline{K}^0\pi^0)
                                                                                                                                                                   \overline{K}^*(892)^0 \pi^+ \pi^+ \pi^- \text{ no- } \rho
                                                                                                                                                    \Gamma_{98}
                                                                                                                                                                                                                                  (4.3 \pm 1.7) \times 10^{-3}
          \overline{K}^0 \pi^+ \pi^0 nonresonant K^- \pi^+ \pi^+ \pi^0
\Gamma_{45}
                                                                              ( 1.3 \pm 1.1 ) %
                                                                                                                                                               K^{-}\rho^{0}\pi^{+}\pi^{+}
                                                                                                                                                                                                                                  (3.1 \pm 0.9) \times 10^{-3}
                                                                                                                                                    \Gamma_{99}
\Gamma_{46}
                                                                      [d] (6.4 \pm 1.1)\%
              \overline{K}^*(892)^0 \rho^+ \text{total}
 \times B(\overline{K}^{*0} \to K^- \pi^+)
                                                                                                                                                                                                           Pionic modes
Γ47
                                                                              (1.4 \pm 0.9)\%
                                                                                                                                                    \Gamma_{100} \ \pi^+ \, \pi^0
                                                                                                                                                                                                                                  (2.5 \pm 0.7) \times 10^{-3}
                                                                                                                                                    \Gamma_{101} \pi^+\pi^+\pi^-
                                                                                                                                                                                                                                  (3.6 \pm 0.4) \times 10^{-3}
              \overline{K}_1(1400)^0\pi^+
Γ48
                                                                              \{2.2 \pm 0.6\}\%
                                                                                                                                                                                                                                  (1.05\pm 0.31) \times 10^{-3}
                                                                                                                                                                \rho^0 \pi^+
                  \times B(\overline{K}_1(1400)^0 \rightarrow K^-\pi^+\pi^0)
                                                                                                                                                    \Gamma_{102}
                                                                                                                                                                  \pi^+\pi^+\pi^- nonresonant
                                                                                                                                                                                                                                   (2.2 \pm 0.4) \times 10^{-3}
                                                                                                                                                    Γ<sub>103</sub>
\Gamma_{49}
               K^- \rho^+ \pi^+ total
                                                                              (3.1 \pm 1.1)\%
                                                                                                                                                    \Gamma_{104} \quad \pi^+ \, \pi^+ \, \pi^- \, \pi^0
                                                                                                                                                                                                                                  (1.9 + 1.5 )\%
                   K^-\rho^+\pi^+ 3-body
\Gamma_{50}
                                                                              (1.1 \pm 0.4)\%
               \overline{K}^*(892)^0 \pi^+ \pi^0 \text{ total}
                                                                                                                                                                  \eta \pi^+ \times B(\eta \rightarrow \pi^+ \pi^- \pi^0)
                                                                              (4.5 \pm 0.9)\%
Γ<sub>51</sub>
                                                                                                                                                    Γ<sub>105</sub>
                                                                                                                                                                                                                                  (6.9 \pm 1.4) \times 10^{-4}
                   \times B(\overline{K}^{*0} \rightarrow K^-\pi^+)
                                                                                                                                                                  \omega \pi^+ \times B(\omega \to \pi^+ \pi^- \pi^0)
                                                                                                                                                    \Gamma_{106}
                                                                                                                                                                                                                                < 6
                                                                                                                                                                                                                                                       \times 10^{-3}
                                                                                                                                                                                                                                                                           CL=90%
                  \overline{K}^*(892)^0 \pi^+ \pi^0 3-body
 \times B(\overline{K}^{*0} \to K^- \pi^+)
                                                                                                                                                    \Gamma_{107} \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}
Γ<sub>52</sub>
                                                                              (2.8 \pm 0.9)\%
                                                                                                                                                                                                                                  ( 2.1~\pm~0.4 ) \times\,10^{-3}
                                                                                                                                                    \Gamma_{108} \ \pi^+ \, \pi^+ \, \pi^+ \, \pi^- \, \pi^- \, \pi^0
                                                                                                                                                                                                                                  (2.9 + 2.9 \times 10^{-3}) \times 10^{-3}
               K^*(892)^-\pi^+\pi^+3-body
\Gamma_{53}
                                                                             (7 \pm 3) \times 10^{-3}
                   \times B(K^{*-} \rightarrow K^{-} \pi^{0})
               K^-\pi^+\pi^+\pi^0 nonresonant
                                                                                                                                                                 Fractions of some of the following modes with resonances have already
\Gamma_{54}
                                                                       [e] ( 1.2 ± 0.6 ) %
                                                                                                                                                                 appeared above as submodes of particular charged-particle modes.
          \overline{K}^0\pi^+\pi^+\pi^-
Γ<sub>55</sub>
                                                                             (7.0 \pm 0.9)\%
                                                                                                                                                    \Gamma_{109} \eta\pi^+
                                                                                                                                                                                                                                  (3.0 \pm 0.6) \times 10^{-3}
Γ<sub>56</sub>
               \overline{K}^0 a_1(1260)^+
                                                                              (4.0 \pm 0.9)\%
              \times B(a_1(1260)^+ \to \pi^+\pi^+\pi^-) \over \overline{K}_1(1400)^0\pi^+
                                                                                                                                                     \Gamma_{110} \rho^0 \pi^+
                                                                                                                                                                                                                                  (1.05 \pm 0.31) \times 10^{-3}
                                                                                                                                                     \Gamma_{111} \omega \pi^+
                                                                                                                                                                                                                                                   \times 10^{-3}
                                                                                                                                                                                                                                < 7
                                                                                                                                                                                                                                                                           CL=90%
Γ<sub>57</sub>
                                                                              (2.2 \pm 0.6)\%
                                                                                                                                                                                                                                                        \times 10^{-3}
                   \times B(\vec{K}_1(1400)^0 \rightarrow \vec{K}^0 \pi^+ \pi^-)
                                                                                                                                                    \lceil_{112} \quad \eta \, \rho^+
                                                                                                                                                                                                                                < 7
                                                                                                                                                                                                                                                                          CL=90%
                                                                                                                                                    \Gamma_{113} \ \eta'(958)\pi^+
                                                                                                                                                                                                                                  ( 5.0~\pm~1.0 ) \times\,10^{-3}
              K^*(892)^-\pi^+\pi^+3-body
× B(K^{*-} \rightarrow \overline{K}^0\pi^-)
\overline{K}^0\underline{\rho}^0\pi^+total
\Gamma_{58}
                                                                              (1.4 \pm 0.6)\%
                                                                                                                                                                                                                                                         \times 10^{-3}
                                                                                                                                                    \Gamma_{114} \eta'(958) \rho^{+}
                                                                                                                                                                                                                                < 5
                                                                                                                                                                                                                                                                           CL=90%
Γ<sub>59</sub>
                                                                                                                                                                                          Hadronic modes with a K\overline{K} pair
                                                                              (4.2 \pm 0.9)\%
                  \dot{K}^0 \rho^0 \pi^+ 3-body
                                                                              (5 \pm 5 ) \times 10<sup>-3</sup>
                                                                                                                                                     \Gamma_{115} K^+\overline{K}{}^0
                                                                                                                                                                                                                                  (7.4 \pm 1.0) \times 10^{-3}
 \Gamma_{60}
               \overline{K}{}^0\pi^+\pi^+\pi^- nonresonant
                                                                              (8 \pm 4 ) \times 10<sup>-3</sup>
                                                                                                                                                    \Gamma_{116} K^+K^-\pi^+
\Gamma_{61}
                                                                                                                                                                                                                          [d] ( 8.7 \pm 0.7 ) \times 10^{-3}
          K^-\pi^+\pi^+\pi^+\pi^-

\overline{K}^*(892)^0\pi^+\pi^+\pi^-
                                                                            (7.2 \pm 1.0) \times 10^{-3}
 \Gamma_{62}
                                                                                                                                                                   \phi \pi^+ \times B(\phi \rightarrow K^+ K^-)
                                                                                                                                                                                                                                   ( 3.0 \pm 0.3 ) \times\,10^{-3}
                                                                                                                                                     Γ<sub>117</sub>
\Gamma_{63}
                                                                              ( 5.4 \pm 2.3 ) \times 10<sup>-3</sup>
                                                                                                                                                                   K^+ \overline{K}^* (892)^0 \times B(\overline{K}^{*0} \to K^- \pi^+)
                                                                                                                                                                                                                                   ( 2.8~\pm~0.4 ) \times\,10^{-3}
                                                                                                                                                    Γ<sub>118</sub>
                   \times B(\overline{K}^{*0} \rightarrow K^-\pi^+)
                   \overline{K}^*(892)^0 \rho^0 \pi^+ \times B(\overline{K}^{*0} \to K^- \pi^+)
                                                                                                                                                                    K^+K^-\pi^+ nonresonant
                                                                              (1.9 + 1.1 \atop -1.0) \times 10^{-3}
                                                                                                                                                    Γ<sub>119</sub>
                                                                                                                                                                                                                                   (4.5 \pm 0.9) \times 10^{-3}
 Γ<sub>64</sub>
                                                                                                                                                               K^0 \overline{K}{}^0 \pi^+
                                                                                                                                                     \Gamma_{120}
                                                                                                                                                                   K^*(892)^+ \overline{K}{}^0
                   \overline{K}^*(892)^0 \pi^+ \pi^+ \pi^- \text{no-} \rho
                                                                              (2.9 \pm 1.1) \times 10^{-3}
                                                                                                                                                                                                                                   (2.1 \pm 1.0)\%
 Γ<sub>65</sub>
                                                                                                                                                     \Gamma_{121}
                                                                                                                                                                       \times B(K^{*+} \rightarrow K^0 \pi^+)
                       \times B(\overline{K}^{*0} \rightarrow K^-\pi^+)
                                                                                                                                                     \Gamma_{122} \quad K^+ K^- \pi^+ \pi^0
               K^{-} \rho^{0} \pi^{+} \pi^{+}
                                                                              (3.1 \pm 0.9) \times 10^{-3}
Γ<sub>66</sub>
                                                                                                                                                                   \phi \pi^+ \pi^0 \times B(\phi \rightarrow K^+ K^-)
                                                                            < 2.3 × 10<sup>-3</sup>
                                                                                                                                                                                                                                  (1.1 \pm 0.5)\%
               K^-\pi^+\pi^+\pi^+\pi^- nonresonant
                                                                                                                     CL=90%
                                                                                                                                                     Γ<sub>123</sub>
 \Gamma_{67}
                                                                                                                                                                                                                                                        \times 10<sup>-3</sup>
                                                                                                                                                                       \phi \rho^+ \times B(\phi \to K^+ K^-)
                                                                                                                                                                                                                                                                           CL=90%
           \mathcal{K}^-\,\pi^+\,\pi^+\,\pi^0\,\pi^0
                                                                                                                                                     Γ<sub>124</sub>
                                                                                                                                                                                                                                < 7
                                                                              (2.2 + \frac{5.0}{-0.9})\%
 Γ68
                                                                                                                                                                   K^{+}K^{-}\pi^{+}\pi^{0} non-\phi
                                                                                                                                                                                                                                  (1.5 + 0.7)\%
                                                                                                                                                     \Gamma_{125}
                                                                              (5.4 + 3.0)\%
          \overline{K}^0\pi^+\pi^+\pi^-\pi^0
 Γ<sub>69</sub>
                                                                                                                                                     \Gamma_{126} K^+\overline{K}^0\pi^+\pi^-
                                                                                                                                                                                                                                 < 2
                                                                                                                                                                                                                                                         %
                                                                                                                                                                                                                                                                           CL=90%
 \Gamma_{70} \overline{K}{}^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}
                                                                              (8 \pm 7 ) \times 10<sup>-4</sup>
                                                                                                                                                     \Gamma_{127}^{--} K^0 K^- \pi^+ \pi^+
                                                                                                                                                                                                                                  ( 1.0 \pm 0.6 ) %
           K^-\pi^+\pi^+\pi^+\pi^-\pi^0
                                                                              ( 2.0 \pm 1.8 ) \times\,10^{-3}
                                                                                                                                                                   K^*(892)^+ \overline{K}^*(892)^0
 Γ<sub>71</sub>
                                                                                                                                                                                                                                   (1.2 \pm 0.5)\%
                                                                                                                                                     Γ<sub>128</sub>
           \overline{K}^0 \overline{K}^0 K^+
                                                                              \{ 1.8 \pm 0.8 \} \%
                                                                                                                                                                       \times B^2(K^{*+} \rightarrow K^0\pi^+)
                                                                                                                                                                   K^{0}K^{-}\pi^{+}\pi^{+} non-K^{*+}\overline{K}^{*0}
                                                                                                                                                                                                                                                         \times 10^{-3}
                                                                                                                                                                                                                                < 7.9
                                                                                                                                                                                                                                                                           CL=90%
                                                                                                                                                     Γ<sub>129</sub>
                                                                                                                                                               K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-}
                                                                                                                                                     \Gamma_{130}
                                                                                                                                                                   \phi \pi^{+} \pi^{+} \pi^{-}
                                                                                                                                                                                                                                 < 1
                                                                                                                                                                                                                                                         \times 10^{-3}
                                                                                                                                                                                                                                                                           CL=90%
                                                                                                                                                    Γ<sub>131</sub>
                                                                                                                                                                        \times B(\phi \rightarrow K^+K^-)
                                                                                                                                                                   K^+K^-\pi^+\pi^+\pi^- nonresonant
                                                                                                                                                     \Gamma_{132}
                                                                                                                                                                                                                                < 3
                                                                                                                                                                                                                                                         %
                                                                                                                                                                                                                                                                           CL=90%
```

Fractions of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

	$\phi\pi^+$	(6.1 ±	$0.6) \times 10^{-3}$	
Γ_{134}	$\phi \pi^+ \pi^0$	(2.3 ±	1.0) %	
	ϕho^+	< 1.4	%	CL=90%
Γ ₁₃₆	$\phi \pi^+ \pi^+ \pi^-$	< 2	× 10 ⁻³	CL=90%
Γ ₁₃₇	$K^{+}\overline{K}^{*}(892)^{0}$	(4.2 ±	$0.5) \times 10^{-3}$	
	$K^*(892)^+ \vec{K}^0$	(3.2 ±	1.5) %	
۲ ₁₃₉	$K^*(892)^+\overline{K}^*(892)^0$	(2.6 ±	1.1) %	

Doubly Cabibbo suppressed (DC) modes, $\Delta C = 1$ weak neutral current (C1) modes, or

Lepton Family number (LF) or Lepton number (L) violating modes

	cepton raining number (Tr.) or Le	pron number (L) \	/ioiating m	odes
Γ_{140}	$K^{+}\pi^{+}\pi^{-}$	DC	(6.8 ± 1.5) × 10 ⁻⁴	
Γ_{141}	$K^+ ho^0$	DC	(2.5 ± 1.2)	$) \times 10^{-4}$	
Γ ₁₄₂	$K^*(892)^0\pi^+$	DC	(3.6 ± 1.6		
Γ ₁₄₃	$K^+\pi^+\pi^-$ nonresonant	DC	(2.4 ± 1.2)		
Γ ₁₄₄	K+ K+ K-	DC	< 1.4	$\times 10^{-4}$	CL=90%
Γ ₁₄₅	φK+	DC	< 1.3	$\times 10^{-4}$	CL=90%
Γ ₁₄₆	$\pi^{+}e^{+}e^{-}$	C1	< 5.2	$\times 10^{-5}$	CL=90%
Γ_{147}	$\pi^+\mu^+\mu^-$	C1	< 1.5	× 10 ⁻⁵	CL=90%
	$ ho^+\mu^+\mu^-$	C1	< 5.6	$\times 10^{-4}$	CL=90%
	K+ e+ e-		[f] < 2.0	$\times 10^{-4}$	CL=90%
Γ ₁₅₀	$K^+\mu^+\mu^-$		[f] < 4.4	\times 10 ⁻⁵	CL=90%
Γ ₁₅₁	$\pi^+e^\pm\mu^\mp$	LF	[g] < 3.4	× 10 ⁻⁵	CL=90%
Γ_{152}	$\pi^{+} e^{+} \mu^{-}$				
Γ ₁₅₃	$\pi^+e^-\mu^+$				
Γ ₁₅₄	$K^+ e^{\pm} \mu^{\mp}$	LF	[g] < 6.8	× 10 ⁵	CL=90%
Γ_{155}	$K^+e^+\mu^-$				
Γ ₁₅₆	$K^+e^-\mu^+$				
Γ ₁₅₇	$\pi^-e^+e^+$	L	< 9.6	× 10 ⁻⁵	CL=90%
Γ ₁₅₈	$\pi^-\mu^+\mu^+$	L	< 1.7	$\times 10^{-5}$	CL=90%
Γ_{159}	$\pi^- e^+ \mu^+$	L	< 5.0	× 10 ⁻⁵	CL=90%
Γ_{160}	$\rho^-\mu^+\mu^+$	L	< 5.6	$\times 10^{-4}$	CL=90%
Γ ₁₆₁	$K^-e^+e^+$	L	< 1.2	$\times 10^{-4}$	CL=90%
Γ ₁₆₂	$K^-\mu^+\mu^+$	L	< 1.2	$\times 10^{-4}$	CL=90%
Γ ₁₆₃	$K^-e^+\mu^+$	L	< 1.3	\times 10 ⁻⁴	CL=90%
Γ ₁₆₄	$K^*(892)^-\mu^+\mu^+$	L	< 8.5	× 10 ⁻⁴	CL=90%

 Γ_{165} A dummy mode used by the fit.

- (33 ± 5)%
- [a] This is a weighted average of D^{\pm} (44%) and D^0 (56%) branching fractions. See " D^+ and $D^0 \to (\eta \text{ anything}) / (\text{total } D^+ \text{ and } D^0)$ " under " D^+ Branching Ratios" in these Particle Listings.
- [b] This value averages the e^+ and μ^+ branching fractions, after making a small phase-space adjustment to the μ^+ fraction to be able to use it as an e^+ fraction; hence our ℓ^+ here is really an e^+ .
- [c] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [d] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers.
- [e] The two experiments measuring this fraction are in serious disagreement. See the Particle Listings.
- [f] This mode is not a useful test for a ΔC=1 weak neutral current because both quarks must change flavor in this decay.
- [g] The value is for the sum of the charge states or particle/antiparticle states indicated.

CONSTRAINED FIT INFORMATION

An overall fit to 32 branching ratios uses 54 measurements and one constraint to determine 20 parameters. The overall fit has a $\chi^2=20.8$ for 35 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j),$ in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\rm total}.$ The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> ₁₁	5									
<i>x</i> ₁₆	4	2								
x ₂₅	18	29	8							
×26	14	7	31	25						
<i>x</i> 36	38	9	8	31	25					
x ₃₇	32	16	14	56	45	55				
x ₄₂	0	0	0	0	0	0	0			
x ₄₆	7	4	3	13	10	12	23	0		
<i>x</i> 55	9	5	4	17	14	16	30	0	18	
<i>x</i> 62	15	8	7	28	22	27	49	0	11	15
^x 76	21	11	9	37	29	36	65	0	15	20
x ₈₃	5	3	2	9	7	8	16	0	31	37
<i>x</i> 90	3	1	1	5	4	5	9	0	29	13
x ₉₆	5	2	2	9	7	8	15	0	3	5
X97	3	2	1	6	5	6	11	0	2	3
<i>x</i> ₁₀₁	19	10	9	35	28	33	61	0	14	18
×103	11	5	5	19	15	18	34	0	8	10
<i>×</i> 115	22	7	6	23	18	53	41	0	9	12
<i>x</i> 165	<u>-35</u>	-26	-12	-41	-34	-38	-55	-58	-46	-45
	X9	<i>x</i> ₁₁	<i>x</i> 16	x ₂₅	x ₂₆	x ₃₆	x ₃₇	x ₄₂	×46	x ₅₅
<i>x</i> 76	32									
x ₈₃	8	10								
x ₉₀	4	6	12							
X96	29	10	2	1						
<i>X</i> 97	8	7	2	1	15					
<i>x</i> ₁₀₁	30	40	10	5	9	7				
<i>x</i> ₁₀₃	16	22	5	3	5	4	43			
<i>x</i> ₁₁₅	20	26	6	4	6	4	25	14		
<i>x</i> ₁₆₅	-30	-38	-46	32	-16	-10	-35	-19	<u>-27</u>	
	x ₆₂	<i>x</i> 76	x ₈₃	x ₉₀	<i>x</i> 96	x ₉₇	×101	× ₁₀₃	x ₁₁₅	

D+ BRANCHING RATIOS

See the "Note on *D* Mesons" above. Some now-obsolete measurements have been omitted from these Listings.

C-quark decays $\Gamma(c \rightarrow e^{+} \text{anything})/\Gamma(c \rightarrow \text{anything})$ $VALUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $0.103 \pm 0.009 \stackrel{+}{-} 0.009 \qquad 378 \qquad ^{4} \text{ABBIENDI} \qquad 99 \text{K} \text{ OPAL} \qquad Z^{0} \rightarrow c\overline{c}$

 4 ABBIENDI 99K uses the excess of right-sign over wrong-sign leptons opposite reconstruced $D^*(2020)^+\to~D^0\,\pi^+$ decays in $Z^0\to~cZ.$

$\Gamma(c \rightarrow \mu^+ \text{ anything})/\Gamma(c \rightarrow \text{ anything})$

This is the average branching ratio for charm $\to \mu^+ X$. The mixture of charmed particles is unknown. We don't put this result in the Summary Table.

VALUE 0.085±0.007 OUR AVE	EVTS ERAGE	DOCUMENT ID		<u>TECN</u>	COMMENT
$0.090 \pm 0.007 ^{+0.007}_{-0.006}$	476	⁵ ABBIENDI	99ĸ	OPAL	$Z^0 \rightarrow \epsilon \overline{\epsilon}$
$0.086 \pm 0.017 ^{+0.008}_{-0.007}$	69	⁶ ALBRECHT	92F	ARG	e^+e^-pprox 10 GeV
$0.078 \pm 0.009 \pm 0.012$		ONG	88	MRK2	e+e- 29 GeV
$0.078 \pm 0.015 \pm 0.02$		BARTEL	87	JADE	e ⁺ e ⁻ 34.6 GeV
$0.082 \pm 0.012 {}^{+ 0.02}_{- 0.01}$		ALTHOFF	84G	TASS	e+ e- 34.5 GeV
• • • We do not use the	he followir	g data for average	s, fits	, limits,	etc. • • •
$0.089 \pm 0.018 \pm 0.025$		BARTEI	851	IADE	See BARTEL 87

 $^{^5}$ ABBIENDI 99k uses the excess of right-sign over wrong-sign leptons opposite reconstruced D*(2020)+ \to $D^0\pi^+$ decays in Z^0 \to $c\tau.$

⁶ ALBRECHT 92F uses the excess of right-sign over wrong-sign leptons in a sample of events tagged by fully reconstructed $D^*(2010)^+ \rightarrow D^0 \pi^+$ decays.

 D^{\pm}

$\Gamma(c \rightarrow \ell^+ \text{ anything})/\Gamma(c \rightarrow \text{ anything})$

This is an average (not a sum) of e^+ and μ^+ measurements.

EVTS DOCUMENT ID TECN COMMENT $0.095 \pm 0.006 ^{\,+\,0.007}_{\,-\,0.006}$ 7 ABBIENDI 99K OPAL $Z^0 \rightarrow c \overline{c}$

 7 ABBIENDI 99K uses the excess of right-sign over wrong-sign leptons opposite reconstruced $D^*(2020)^+\to~D^0\,\pi^+$ decays in $Z^0\to~c\,\overline{c}$.

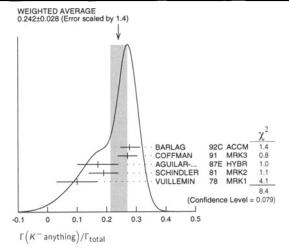
- Inclusive modes

$\Gamma(e^+ \text{ anything})/\Gamma_{to}$	tal			Г ₁ /Г
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.172±0.019 OUR AV	ERAGE			
$0.20 \begin{array}{c} +0.09 \\ -0.07 \end{array}$		AGUILAR 87E	HYBR	πρ, ρρ 360, 400 GeV
$0.170 \pm 0.019 \pm 0.007$	158	BALTRUSAIT858 SCHINDLER 81	MRK3	e+ e- 3.77, GeV
0.168 ± 0.064	23	SCHINDLER 81	MRK2	e+e- 3.771 GeV
• • • We do not use t	he followin			
$0.220 \substack{+0.044 \\ -0.022}$		BACINO 80	DLCO	e ⁺ e ⁻ 3.77 GeV

D^+ and $D^0 \rightarrow (e^+$ anything) / (total D^+ and D^0)

If measured at the $\psi(3770)$, this quantity is a weighted average of D^+ (44%) and D^0 (56%) branching fractions. Only experiments at $E_{\rm cm}=3.77$ GeV are included in the average here. We don't put this result in the Meson Summary Table.

VALUE	EVTS	DOCUMENT ID TECN COMMENT
0.110±0.011 OUR AVE	RAGE	Error includes scale factor of 1.1.
0.117 ± 0.011	295	BALTRUSAIT85B MRK3 e^+e^- 3.77 GeV
0.10 ±0.032		8 SCHINDLER 81 MRK2 $e^{+}e^{-}$ 3.771 GeV
0.072 ± 0.028		FELLER 78 MRK1 e^+e^- 3.772 GeV
• • • We do not use the	he follow	ring data for averages, fits, limits, etc. • • •
$0.096 \pm 0.004 \pm 0.011$	2207	9 ALBRECHT 96C ARG $e^{+}e^{-}pprox$ 10 GeV
$0.134 \pm 0.015 \pm 0.010$		10 ABE 93E VNS e^+e^- 58 GeV
$0.098 \pm 0.009 {}^{+ 0.006}_{- 0.005}$	240	11 ALBRECHT 92F ARG e^+e^-pprox 10 GeV
$0.096 \pm 0.007 \pm 0.015$		12 ONG 88 MRK2 e^+e^- 29 GeV
$0.116 ^{+\ 0.011}_{-\ 0.009}$		12 PAL 86 DLCO e^+e^- 29 GeV
$0.091 \pm 0.009 \pm 0.013$		12 AIHARA 85 TPC e^+e^- 29 GeV
$0.092 \pm 0.022 \pm 0.040$		12 ALTHOFF 841 TASS e^+e^- 34.6 GeV
0.091 ± 0.013		12 KOOP 84 DLCO See PAL 86
0.08 ±0.015		¹³ BACINO 79 DLCO e^+e^- 3.772 GeV


⁸ Isolates D^+ and $D^0 \rightarrow e^+ \times A$ and weights for relative production (44%–56%).

 Γ_2/Γ

F(K anything) /Faces

. (,	7.41			- 21
VALUE	EVT5	DOCUMENT ID	TECN	COMMENT
0.242 ± 0.028 OUR AVE	ERAGE	Error includes scale	factor of 1.	4. See the ideogram below.
$0.278 + 0.036 \\ -0.031$		¹⁴ BARLAG	92c ACCM	√ Cu 230 GeV
$0.271 \pm 0.023 \pm 0.024$		COFFMAN	91 MRK3	3 e ⁺ e 3.77 GeV
0.17 ± 0.07		AGUILAR	87E HYBR	πρ, ρρ 360, 400 GeV
0.19 ± 0.05	26	SCHINDLER	81 MRK2	? e ⁺ e [−] 3.771 GeV
0.10 ±0.07	3	VIIII I EMIN	78 MRK1	a+ a- 3 772 CaV

AGUILAR-... 868 HYBR See AGUILAR-

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.59 ±0.07 OUR AVI						
$0.612 \pm 0.065 \pm 0.043$		COFFMAN	91	MRK3	e^+e^- 3.77 GeV	
0.52 ±0.18	15	SCHINDLER	81	MRK2	e ⁺ e ⁻ 3.771 GeV	
0.39 ±0.29	3	VUILLEMIN	78	MRK1	e+ e- 3.772 GeV	
$\Gamma(K^+ \text{ anything})/\Gamma_{tc}$	otal					Γ ₄ /Ι
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	Γ4/Ι
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	Γ4/Ι
VALUE 0.058±0.014 OUR AVI	EVTS	DOCUMENT ID	91		e^+e^- 3.77 GeV	Γ ₄ /Ι
VALUE 0.058 ± 0.014 OUR AVI 0.055 ± 0.013 ± 0.009	EVTS			MRK3		
•	EVTS	COFFMAN	87E	MRK3 HYBR	e ⁺ e ⁻ 3.77 GeV	F 4/I Ge∨

 D^+ and $D^0 \rightarrow (\eta \text{ anything}) / (\text{total } D^+ \text{ and } D^0)$

If measured at the $\psi(3770)$, this quantity is a weighted average of D^+ (44%) and D^0 (56%) branching fractions. Only the experiment at $E_{\rm CM}=3.77$ GeV is used.

DOCUMENT ID TECN COMMENT PARTRIDGE 81 CBAL e+e- 3.77 GeV <0.13 • • We do not use the following data for averages, fits, limits, etc.

 15 BRANDELIK 79 DASP e^+e^- 4.03 GeV

Leptonic and semileptonic modes

VALUE	CL%		eson Decay Const DOCUMENT IE		TECN_	tings for the π^{\pm} .
0.0008 +0.000	6+0.0005 05-0.0002	1	16 BAI	98B	BES	e+e → D*+D-
• • • We do not	use the followin	g data	for averages, fits,			
< 0.00072	90		ADLER			e^+e^- 3.77 GeV
< 0.02	90	0	17 AUBERT	83	SPEC	μ^+ Fe, 250 GeV
16 BAI 98B obtain	$f_D = (300^+)$	180 + 8	30) MeV from this	s measu	rement.	
						ins equal amounts

We average our $\overline{K}{}^0e^+\nu_e$ and $\overline{K}{}^0\mu^+\nu_\mu$ branching fractions, after multiplying the latter by a phase-space factor of 1.03 to be able to use it with the $\overline{K}^0 e^+ \nu_e$ fraction. Hence our ℓ^+ here is really an e^+ .

VALUE	DOCUMENT ID		СОММЕ	NT
0.068±0.008 OUR AVERAGE				
0.067 ± 0.009	PDG	00	Our F($\overline{\kappa}^0 e^+ \nu_e) / \Gamma_{ ext{total}}$
$0.072 + 0.031 \\ -0.020$	PDG	00	1.03 ×	our $\Gamma(\overline{K}{}^0\mu^+ u_\mu)/\Gamma_{ ext{total}}$
$\Gamma(\overline{K}^0 e^+ \nu_e) / \Gamma_{\text{total}}$				Г9/Г
VALUE EVTS	DOCUMENT ID		TECN	COMMENT
0.067±0.009 OUR FIT				
$0.06 \begin{array}{l} +0.022 \\ -0.013 \end{array} \pm 0.007$ 13	BAI	91	MRK3	$e^+e^-pprox 3.77 \text{ GeV}$
$\Gamma(\overline{K}{}^0e^+ u_e)/\Gamma(\overline{K}{}^0\pi^+)$				Γ ₉ /Γ ₃₆
VALUE EVTS	DOCUMENT ID		TECN	COMMENT
2.32±0.31 OUR FIT	_			
2.60±0.35±0.26 186 1	⁸ BEAN	930	CLE2	$e^+e^-pprox\varUpsilon(4S)$

 $^{^{18}\, \}rm BEAN$ 93C uses $\overline{K}{}^0\, \mu^+ \nu_{\mu}$ as well as $\overline{K}{}^0\, e^+ \nu_e$ events and makes a small phase-space adjustment to the number of the μ^+ events to use them as e^+ events.

⁹ ALBRECHT 96c uses e^- in the hemisphere opposite to $D^{*+} \rightarrow D^0 \pi^+$ events.

¹⁰ ABE 93E also measures forward-backward asymmetries and fragmentation functions for

¹¹ ALBRECHT 92F uses the excess of right-sign over wrong-sign leptons in a sample of events tagged by fully reconstructed $D^*(2010)^+ \rightarrow D^0 \pi^+$ decays.

 $^{^{12}}$ Average BR for charm $ightarrow e^+$ X. Unlike at $E_{\rm Cm}=$ 3.77 GeV, the admixture of charmed

mesons is unknown. 13 Not independent of BACINO 80 measurements of $\Gamma(e^+$ anything)/ Γ_{total} for the D^+ and D^0 separately.

 $^{^{14}\,\}mathrm{BARLAG}$ 92C computes the branching fraction using topological normalization.

 $^{^{15}}$ The BRANDELIK 79 result is based on the absence of an η signal at $E_{\rm CM}=4.03$ GeV. PARTRIDGE 81 observes a substantially higher η cross section at 4.03 GeV.

0.66 ± 0.09 ± 0.14 ANJOS 91c E691 γ Be 80-240 GeV $\Gamma(K^0 μ^+ ν_μ)/\Gamma_{total}$ $V_{MUE} = V_{TS}$ DOCUMENT ID 10.07 ± 0.026 ± 0.012 14 BAI 91 MRK3 $e^+e^- \approx 3.77$ GeV $\Gamma(K^0 μ^+ ν_μ)/\Gamma(μ^+ anything)$ MULE EVTS DOCUMENT ID DOCUMENT ID COMMENT COMMENT COMMENT COMMENT COMMENT COMMENT COMMENT 10.07 ± 0.026 ± 0.06 84 19 AOKI 88 π = emulsion 19 From topological branching ratios in emulsion with an identified muon. $\Gamma(K^- π^+ e^+ ν_e)/\Gamma_{total}$ USE CLS EVTS DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID TECN COMMENT COMMENT COMMENT 0.041 ± 0.009 0.041 ± 0.009 13 AGUILAR 87F HYBR πρ. ρρ 360.4 GeV 66V CO.057 90 21 AGUILAR 87F HYBR πρ. ρρ 360.4 GeV 66V 22 AGUILAR-BENITEZ 87F computes the branching fraction using topological norm: tion. $\Gamma(K^- (892)^0 ℓ^+ ν_ℓ)/\Gamma_{total}$ We average our $K^{+0} e^+ ν_e$ and $K^{+0} μ^+ ν_\mu$ branching fractions, after multiplying latter by a phase-space factor of 1.05 to be able to use it with the $K^{+0} e^+ ν_e$ fract Hence our $ℓ^+$ here is really an e^+ MULE DOCUMENT ID COMMENT COMMEN	Γ(K ⁰ e+ ν _e)/Γ(K ⁻ π VALUE	r+π+) 	DOCUMENT ID		TECN	<u>COMMENT</u>	Г9/Г ₃₇
ABULE EVTS DOCUMENT ID TECN COMMENT 1.07 +0.015 +0.012).74±0.10 OUR FIT).66±0.09±0.14		ANJOS	91¢	E691	γ Be 80-240	GeV
1.07 $+0.029$ ± 0.012 14 BAI 91 MRK3 $e^+e^- \approx 3.77$ GeV $(R^0 \mu^+ \nu_\mu)/\Gamma(\mu^+ \text{anything})$ 1.08 $\mu^+ \nu_\mu = 0.000$ 1.09 $\mu^+ \nu_\mu = 0.000$ 1.00 $\mu^+ \nu_\mu = 0.0$			0.051415147.10		TECH	COLUMENT	Γ ₁₀ /Γ
ALULE							77 GeV
** We do not use the following data for averages, fits, limits, etc. * * * * * * * * * * * * * * * * * * *	$(\overline{K}^0 \mu^+ \nu_\mu) / \Gamma (\mu^+ a)$						Γ ₁₀ /Γ ₆
19 From topological branching ratios in emulsion with an identified muon.	• We do not use the				-		
14 20 BAI 91 MRK3 $e^+e^-\approx 3.7$ 15 20 BAI 91 MRK3 $e^+e^-\approx 3.7$ 16 30 S $= 0.007$ 0.007 UR FIT 17 20 BAI 91 MRK3 $e^+e^-\approx 3.7$ 18 4 20 BAI 91 MRK3 $e^+e^-\approx 3.7$ 18 4 20 BAI 91 MRK3 $e^+e^-\approx 3.7$ 19 21 AGUILAR							
0.041 \pm 0.007 OUR FIT 0.035 \pm 0.012 \pm 0.004 14 20 BAI 91 MRK3 $e^+e^-\approx 3.7$ 6 eV e do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	, .,,		S DOCUME	NT ID	;	TECN COMMI	Γ ₁₁ /Γ
• • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •			-				
**New do not use the following data for averages, fits, limits, etc. * * * * * * * * * * * * * * * * * * *	$0.035^{\begin{subarray}{c} +0.012 \\ -0.007 \end{subarray}} \pm 0.004$	1-	4 ²⁰ BAI		91		
20 BAI 91 finds that a fraction $0.79^{+0.15}_{-0.17}^{+0.09}_{-0.03}$ of combined D^+ and D^0 decay $\overline{K}\pie^+\nu_e$ (24 events) are $\overline{K}^*(892)e^+\nu_e$. 21 AGUILAR-BENITEZ 87F computes the branching fraction using topological normal toton. (\$\overline{K}^*(892)^0 \ell^+\nu_e\$)/\Gamma_{total}\$ We average our \$K^{*0}e^+\nu_e\$ and \$K^{*0}\mu^+\nu_\mu\$ branching fractions, after multiplying latter by a phase-space factor of 1.05 to be able to use it with the \$K^{*0}e^+\nu_e\$ fracther thence our \$\ell^+\$ here is really an e+. **MLUE** **DOCUMENT ID** **DOCUMENT ID** **DOCUMENT ID** **ODE ON OUT \$\Gamma(\overline{K}^{*0}e^+\nu_e)/\Gamma_{total}\$ **DOCUMENT ID** **DOCUMENT ID** **ODE ON OUT \$\Gamma(\overline{K}^{*0}e^+\nu_e)/\Gamma_{total}\$ **DOCUMENT ID** **DOCUMENT ID** **ODE ON OUT \$\Gamma(\overline{K}^{*0}e^+\nu_e)/\Gamma_{total}\$ **DOCUMENT ID** **DOC						etc. • • • HYBR πp, p,	p 360, 400
21 AGUILAR-BENITEZ 87F computes the branching fraction using topological normation. $(K^*(892)^0 \ell^+ \nu_\ell)/\Gamma_{total}$ We average our $K^{*0}e^+\nu_e$ and $K^{*0}\mu^+\nu_\mu$ branching fractions, after multiplying latter by a phase-space factor of 1.05 to be able to use it with the $K^{*0}e^+\nu_e$ fract Hence our ℓ^+ here is really an e^+ . $(K^*(892)^0 \ell^+\nu_e)/\Gamma_{\ell}K^{*0} = \frac{1}{\nu_e}$ fract Hence our ℓ^+ here is really an e^+ . $(ME) = \frac{1}{10000000000000000000000000000000000$	²⁰ BAl 91 finds that a	fraction ($0.79 + 0.15 + 0.09 \\ -0.17 - 0.03$	ofo	ombine	Gev d D ⁺ and D	odecays to
We average our \overline{K}^{*0} e+ ν_e and \overline{K}^{*0} $\mu^+\nu_\mu$ branching fractions, after multiplying latter by a phase-space factor of 1.05 to be able to use it with the \overline{K}^{*0} e+ ν_e fract Hence our ℓ^+ here is really an e+. MALUE DOCUMENT ID COMMENT DOCUMENT ID COMMENT COMMEN	21 AGUILAR-BENITEZ			ng fra	ction u	sing topologica	al normaliza-
latter by a phase-space factor of 1.05 to be able to use it with the \overline{K}^{*0} e ⁺ ν_e fracted Hence our ℓ^+ here is really an e ⁺ . MALUE 1.047±0.004 OUR AVERAGE 1.048±0.005 PDG PDG 1.05 \times \text{our } \Gamma(\beta^{*0} \end{array})^{\Gamma} \text{total} 1.046±0.006 PDG 0.0 \text{Our } \Gamma(\beta^{*0} \end{array})^{\Gamma} \text{total} 1.046±0.006 PDG 0.0 \text{Our } \Gamma(\beta^{*0} \end{array})^{\Gamma} \text{total} 1.046±0.006 PDG 0.0 \text{Our } \Gamma(\beta^{*0} \end{array})^{\Gamma} \text{total} 1.05 \times \text{our } \Gamma(\beta^{*0} \end{array})^{\Gamma} \text{Total} 1.05 \times \text{our } \text{OutMENT } \text{DOCUMENT } DOCUMEN	$(\overline{K}^*(892)^0 \ell^+ \nu_\ell)/\Gamma$ We average our \overline{K}	total *0e+⊬.a	and $\overline{K}^{st0}\mu^+ u$. b	ranchi	ing frac	tions, after m	Γ ₂₄ /Γ
1.047 \pm 0.004 OUR AVERAGE 1.048 \pm 0.005 PDG 00 00 1.05 × our $\Gamma(\overline{K}^{*0} e^{+} \nu_e)/\Gamma_{\text{total}}$ PDG 00 1.05 × our $\Gamma(\overline{K}^{*0} \mu^{+} \nu_{\mu})/\Gamma_{\text{total}}$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. 1.16 \pm 0.21 1.10 \pm 0.3 35 ADAMOVICH 91 OMEG π^{-} 340 GeV 1.16 \pm 0.23 1.05 OUR FIT 1.10 \pm 0.3 35 ADAMOVICH 91 OMEG π^{-} 340 GeV 1.64 \pm 0.05 OUR FIT 1.05 \pm 0.05 OUR FIT 1.05 \pm 0.05 OUR AVERAGE 1.06 \pm 0.05 0.062 0.07 1.07 1.080 0.080 0.090 0.	latter by a phase-s	pace factor	of 1.05 to be ab	le to u	use it wi	ith the \overline{K}^{*0} e	$\nu_{\rm e}$ fraction.
1.046 ± 0.006 PDG 00 1.05 × our $F(\overline{K}^{*0} \mu^{+} \nu_{\mu})/\Gamma$ $(\overline{K}^{*}(892)^{0} e^{+} \nu_{e})/\Gamma(K^{-} \pi^{+} e^{+} \nu_{e})$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. ALLUE DOCUMENT ID TECN COMMENT 1.0 ± 0.3 35 ADAMOVICH 91 OMEG π^{-} 340 GeV $(\overline{K}^{*}(892)^{0} e^{+} \nu_{e})/\Gamma(K^{-} \pi^{+} \pi^{+})$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. ALLUE DOCUMENT ID TECN COMMENT 1.53 ± 0.05 OUR FIT 1.54 ± 0.05 OUR AVERAGE 1.67 ± 0.09 ± 0.07 710 22 BEAN 93C CLE2 $e^{+}e^{-} \approx T(45)$ 1.52 ± 0.15 ± 0.09 35 ADAMOVICH 91 OMEG π^{-} 340 GeV 1.55 ± 0.08 ± 0.10 880 ALBRECHT 91 ARG $e^{+}e^{-} \approx 10.4$ GeV 1.49 ± 0.04 ± 0.05 ANJOS 89B E691 Photoproduction 22 BEAN 93C uses $\overline{K}^{*0} \mu^{+} \nu_{\mu}$ as well as $\overline{K}^{*0} e^{+} \nu_{e}$ events and makes a small phase- adjustment to the number of the μ^{+} events to use them as e^{+} events. $\Gamma(K^{-} \pi^{+} e^{+} \nu_{e} \text{ nonresonant})/\Gamma_{\text{total}}$ 23 ANJOS 89B assumes a $\Gamma(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+})/\Gamma_{\text{total}} = 9.1 \pm 1.3 \pm 0.4\%$. $\Gamma(K^{-} \pi^{+} \mu^{+} \nu_{\mu})/\Gamma_{\text{total}}$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. $\Gamma(\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu})/\Gamma_{\text{total}}$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. $\Gamma(\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu})/\Gamma_{\text{total}}$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. $\Gamma(\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu})/\Gamma_{\text{total}}$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. $\Gamma(\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu})/\Gamma_{\text{total}}$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. $\Gamma(\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu})/\Gamma_{\text{total}}$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. $\Gamma(\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu})/\Gamma_{\text{total}}$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. $\Gamma(\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu})/\Gamma_{\text{total}}$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. $\Gamma(\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu})/\Gamma_{\text{total}}$ Unseen decay modes of the $\overline{K}^{*}(892)^{0}$ are included. $\Gamma(\overline{K}^{*}(892)^{0} \mu^{+}$	0.047±0.004 OUR AVE		DOCUMENT ID				
Unseen decay modes of the $\overline{K}^*(892)^0$ are included. ALUE POSS DOCUMENT ID TECN COMMENT .16 $+0.24$ OUR FIT .0 ± 0.3 35 ADAMOVICH 91 OMEG π^- 340 GeV				00	1.05 ×	our $\Gamma(\overline{K}^{*0}\mu)$	total $^+ u_{\mu}^{})/\Gamma_{ m total}^{}$
35 ADAMOVICH 91 OMEG π^- 340 GeV	Unseen decay mod	des of the ${\cal F}$	$ar{\zeta}^*(892)^0$ are inc			COMMENT	Γ ₂₅ /Γ ₁₁
Unseen decay modes of the $\overline{K}^*(892)^0$ are included. ALUE EVTS DOCUMENT ID TECN COMMENT 1.53±0.05 OUR FIT 1.54±0.05 OUR AVERAGE 1.67±0.09±0.07 710 22 BEAN 33 CLE2 $e^+e^-\approx \Upsilon(45)$ 1.62±0.15±0.09 35 ADAMOVICH 91 OMEG π^- 340 GeV 1.55±0.08±0.10 880 ALBRECHT 91 ARG $e^+e^-\approx 10.4$ GeV ANJOS 898 E691 Photoproduction 22 BEAN 33c uses $\overline{K}^{*0}\mu^+\nu_\mu$ as well as $\overline{K}^{*0}e^+\nu_e$ events and makes a small phase- adjustment to the number of the μ^+ events to use them as e^+ events. $\Gamma(K^-\pi^+e^+\nu_e \text{ nonresonant})/\Gamma_{\text{total}}$ CLX DOCUMENT ID TECN COMMENT 714/ $\Gamma = (\Gamma_{16} + \frac{2}{3}\Gamma_2)$ ANJOS 898 E691 Photoproduction 890 898 E691 Photoproduction 890 898 E691 Photoproduction FIXALUE CLX DOCUMENT ID TECN COMMENT TOTALLE DOCUMENT ID DOCUMENT ID DOS2±0.004 OUR FIT Error includes scale factor of 1.1. FIXE BOOK BOOK BOOK BOOK BOOK BOOK BOOK BOO		35	ADAMOVICH	91	OMEG	π ⁻ 340 GeV	,
ALUE EVTS DOCUMENT ID TECN COMMENT 1.53±0.05 OUR FIT 1.67±0.09±0.07 710 22 BEAN 93C CLE2 $e^+e^-\approx \Upsilon(45)$ 1.62±0.15±0.09 35 ADAMOVICH 91 OMEG π^- 340 GeV 1.55±0.08±0.10 880 ALBRECHT 91 ARG $e^+e^-\approx 10.4$ GeV 1.49±0.04±0.05 ANJOS 898 E691 Photoproduction 22 BEAN 93C uses $\overline{K}^{*0}\mu^+\nu_\mu$ as well as $\overline{K}^{*0}e^+\nu_e$ events and makes a small phase- adjustment to the number of the μ^+ events to use them as e^+ events. $\Gamma(K^-\pi^+e^+\nu_e \text{ nonresonant})/\Gamma_{\text{total}}$ 23 ANJOS 898 E691 Photoproduction 23 ANJOS 898 assumes a $\Gamma(D^+\to K^-\pi^+\pi^+)/\Gamma_{\text{total}}=9.1\pm1.3\pm0.4\%$. $\Gamma(K^-\pi^+\mu^+\nu_\mu)/\Gamma_{\text{total}}$ $\Gamma(K^-$							Γ ₂₅ /Γ ₃₇
0.83 ± 0.05 OUR FIT 0.65 ± 0.05 OUR AVERAGE 0.67 ± 0.09 ± 0.07 710 22 BEAN 93c CLE2 $e^+e^- \approx T(45)$ 0.62 ± 0.15 ± 0.09 35 ADAMOVICH 91 OMEG π^- 340 GeV 0.55 ± 0.08 ± 0.10 880 ALBRECHT 91 ARG $e^+e^- \approx 10.4$ GeV 0.49 ± 0.04 ± 0.05 ANJOS 89B E691 Photoproduction 22 BEAN 93c uses $\overline{K}^{*0}\mu^+\nu_{\mu}$ as well as $\overline{K}^{*0}e^+\nu_{e}$ events and makes a small phase- adjustment to the number of the μ^+ events to use them as e^+ events. $\Gamma(K^-\pi^+e^+\nu_e \text{ nonresonant})/\Gamma \text{ total}$ $\frac{CLX}{DOCUMENT\ ID} \frac{TECN}{T}$ COMMENT 23 ANJOS 89B E691 Photoproduction 90 23 ANJOS 89B E691 Photoproduction 23 ANJOS 89B E691 Photoproduction 23 ANJOS 89B E691 Photoproduction 15 \(\frac{T}{4}\F\ = \frac{T}{16} + \frac{3}{3} \Gamma_2 \\ \frac{T}{2}\text{AUUE} \frac{C\text{DOCUMENT\ ID}}{DOCUMENT\ ID} \frac{TECN}{T\text{COMMENT\ ID}} \\ \frac{T(K^-\pi + \pi + \nu_\pi)}{T\text{Total}} \frac{DCUMENT\ ID}{DOCUMENT\ ID} \frac{TECN}{T\text{COMMENT\ ID}} \\ \frac{T(K^-\text{(892)}^0 \mu^+\nu_\mu)}{T\text{Fotal}} \frac{TECN}{T\text{COMMENT\ ID}} \\ \frac{TCN}{14}\F = \frac{COMMENT\ ID}{T\text{DOCUMENT\ ID}} \frac{TCN}{T\text{COMMENT\ ID}} \\ \frac{DOCUMENT\ ID}{DOCUMENT\ ID} \frac{TCN}{T\text{COMMENT\ ID}} \\ \frac{TCN}{14}\F = \frac{COMMENT\ ID}{T\text{DO\032}} \frac{TCN}{T\text{COMMENT\ ID}} \\ \frac{DOCUMENT\ ID}{T\text{DO\032}} \frac{TCN}{T\text{COMMENT\ ID}} \\ \frac{TCN}{T\text{COMMENT\ ID}} \frac{TCN}{T\text{COMMENT\ ID\00032}} \\ \frac{DOCUMENT\ ID}{T\text{DO\032}} \frac{TCN}{T\text{COMMENT\ ID\00032}} \\ \frac{DOCUMENT\ ID}{T\text{DO\032}} \frac{TCN}{T\text{COMMENT\ ID\00032}} \\ \frac{TCN}{T\te						COMMENT	
22 BEAN 93C CLE2 $e^+e^-\approx 7(45)$ 1.62±0.15±0.09 35 ADAMOVICH 91 OMEG π^- 340 GeV 1.55±0.08±0.10 880 ALBRECHT 91 ARG $e^+e^-\approx 10.4$ GeV 1.62±0.15±0.09 35 ADAMOVICH 91 OMEG π^- 340 GeV 1.62±0.08±0.10 880 ALBRECHT 91 ARG $e^+e^-\approx 10.4$ GeV 1.69±0.08±0.05 ANJOS 89B E691 Photoproduction 1.22 BEAN 93C uses $\overline{K}^{*0} \mu^+ \nu_\mu$ as well as $\overline{K}^{*0} e^+ \nu_e$ events and makes a small phase- 1.23 adjustment to the number of the μ^+ events to use them as e^+ events. $ \frac{\Gamma(K^-\pi^+e^+\nu_e \text{ nonresonant})}{\Gamma(K^-\pi^+e^+\nu_e \text{ nonresonant})} \frac{\Gamma(K^-\pi^+e^+\nu_e \text{ nonresonant})}{\Gamma(K^-\pi^+\mu^+\nu_\mu)} \frac{\Gamma(K^-\pi^+\pi^+)}{\Gamma(K^-\pi^+\pi^+)} \frac{\Gamma(K^-\pi^+\pi^+)}{\Gamma(K^-\pi^+\mu^+\nu_\mu)} \frac{\Gamma(K^-\pi^+\pi^+)}{\Gamma(K^-\pi^+\pi^+)} \Gamma(K^-\pi^+\pi$							
2.55±0.08±0.10 880 ALBRECHT 91 ARG $e^+e^-\approx 10.4$ GeV ANJOS 898 E691 Photoproduction 229 BEAN 93c uses $\overline{K}^{*0}\mu^+\nu_\mu$ as well as $\overline{K}^{*0}e^+\nu_e$ events and makes a small phase- adjustment to the number of the μ^+ events to use them as e^+ events. $\Gamma(K^-\pi^+e^+\nu_e \text{ nonresonant})/\Gamma_{\text{total}}$ $\frac{DOCUMENT\ ID}{23}$ C0.007 C0.008 C0.007 C0.008 C0			²² BEAN	9 3 C	CLE2	$e^+e^- \approx \tau$	(45)
2.49 \pm 0.04 \pm 0.05 ANJOS 89B E691 Photoproduction 22 BEAN 93c uses $\overline{K}^{*0} \mu^+ \nu_\mu$ as well as $\overline{K}^{*0} e^+ \nu_e$ events and makes a small phase-adjustment to the number of the μ^+ events to use them as e^+ events. $\Gamma(K^-\pi^+e^+\nu_e \text{ nonresonant})/\Gamma_{\text{total}}$ $\frac{C(K^-\pi^+e^+\nu_e \text{ nonresonant})}{2^3 \text{ ANJOS}} \frac{DOCUMENT ID}{89B} \frac{TECN}{E00} \frac{COMMENT}{E00}$ $\frac{COMMENT}{2^3 \text{ ANJOS}} \frac{DOCUMENT ID}{89B} \frac{TECN}{E00} \frac{COMMENT}{E00}$ $\frac{C(K^-\pi^+\mu^+\nu_\mu)}{\Gamma_{\text{total}}} \frac{DOCUMENT ID}{E00} \frac{DOCUMENT ID}{E00}$ $\frac{DOCUMENT ID}{E00} \frac{DOCUMENT ID}{E00}$ $\frac{DOCUMENT ID}{E00} \frac{DOCUMENT ID}{E00}$ $\frac{DOCUMENT ID}{E00} \frac{TECN}{E00} \frac{COMMENT}{E00}$ $\frac{EVTS}{E00} \frac{DOCUMENT ID}{E00} \frac{TECN}{E00} \frac{COMMENT}{E00}$ $\frac{COMMENT}{E00} \frac{DOCUMENT ID}{E00} \frac{TECN}{E00} \frac{COMMENT}{E00}$ $\frac{COMMENT}{E00} \frac{DOCUMENT ID}{E00} \frac{TECN}{E00} \frac{COMMENT}{E00}$ $\frac{COMMENT}{E00} \frac{COMMENT}{E00} \frac{COMMENT}{E00} \frac{COMMENT}{E00}$ $\frac{COMMENT}{E00} \frac{COMMENT}{E00} \frac{COMMENT}{E00} \frac{COMMENT}{E00}$ $\frac{COMMENT}{E00} \frac{COMMENT}{E00} \frac{COMMENT}{E00} \frac{COMMENT}{E00} \frac{COMMENT}{E00}$ $\frac{C(K^*(892)^0 \mu^+\nu_\mu)}{F(F(K^*(892)^0 \mu^+\nu_\mu)/F(F(F(K^*\pi^+\pi^+))} = (7.0 \pm 0.7) \times 10^{10} \text{s}^{-1} \text{ to get the q}$ $\frac{C(K^*(892)^0 \mu^+\nu_\mu)}{F(K^*(892)^0 \mu^+\nu_\mu)/F(K^*\pi^+\pi^+)} \frac{COMMENT}{F(E00} \frac{COMMENT}{E00}$ $\frac{C(K^*(892)^0 \mu^+\nu_\mu)}{F(E00} \frac{F(K^*(892)^0 \text{ are included}}{F(E00} \frac{F(K^*(892)^0 \text{ are included}}{F(E00} \frac{F(K^*(892)^0 \text{ are included}}{F(E00} \frac{F(K^*(892)^0 \text{ are included}}{F(E00} \frac{F(E00}{E00} \frac{F(E00}{E00}) \frac{F(E00}{E00}) \frac{F(E00}{E00} F(E$	$0.62 \pm 0.15 \pm 0.09$	35		91			
22 BEAN 93c uses $\overline{K}^{*0} \mu^+ \nu_\mu$ as well as $\overline{K}^{*0} e^+ \nu_e$ events and makes a small phase-adjustment to the number of the μ^+ events to use them as e^+ events. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		880					
adjustment to the number of the μ^+ events to use them as e^+ events.)+					
ALUE CL% DOCUMENT ID TECN COMMENT TO 23 ANJOS 898 E691 Photoproduction 23 ANJOS 898 assumes a $\Gamma(D^+ \to K^-\pi^+\pi^+)/\Gamma_{\text{total}} = 9.1 \pm 1.3 \pm 0.4\%$. $\Gamma(K^-\pi^+\mu^+\nu_\mu)/\Gamma_{\text{total}} = \frac{DOCUMENT\ ID}{1.032\pm0.004\ \text{OUR}\ \text{FIT}} = \frac{DOCUMENT\ ID}{1.032\pm0.004\ \text{Comment}} = \frac{DOCUMENT\ ID}{1.032\pm0.007\pm0.0075} = \frac{DOCUMENT\ ID}{1.0325\pm0.007\pm0.0075} = \frac{V^2}{24\ \text{KODAMA}} = \frac{V^2}{24\ KODA$							i pilase-space
23 ANJOS 89B assumes a $\Gamma(D^+ \to K^-\pi^+\pi^+)/\Gamma_{\text{total}} = 9.1 \pm 1.3 \pm 0.4\%$. $\Gamma(K^-\pi^+\mu^+\nu_\mu)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{14}/\Gamma = (\Gamma_{16} + \frac{2}{3}\Gamma_2)$ $0.032 \pm 0.004 \text{ OUR FIT} \text{Error} \text{includes scale factor of } 1.1$. $\Gamma(\overline{K}^{\bullet}(892)^0 \mu^+\nu_\mu)/\Gamma_{\text{total}} \qquad \qquad \qquad \Gamma_{14}/\Gamma = (\Gamma_{16} + \frac{2}{3}\Gamma_2)$ $0.032 \pm 0.004 \text{ OUR FIT} \text{Error} \text{includes scale factor of } 1.1$. $\Gamma(\overline{K}^{\bullet}(892)^0 \mu^+\nu_\mu)/\Gamma_{\text{total}} \qquad \qquad \qquad \Gamma_{15}/\Gamma_{1$		esonant),	/F _{total}				Γ ₁₃ /Γ
$\Gamma(K^-\pi^+\mu^+\nu_\mu)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{14}/\Gamma = (\Gamma_{16} + \frac{2}{3}\Gamma_2) \Gamma_{\text{total}} \qquad \qquad \Gamma_{15}/\Gamma_{\text{total}} \qquad \qquad \Gamma_{15}/\Gamma_{15}/\Gamma_{\text{total}} \qquad \qquad \Gamma_{15}/\Gamma_{1$	<0.007	90 2	DOCUMENT ID 23 ANJOS	89B	TECN E691	Photoproduc	tion
DOCUMENT ID 1.032±0.004 OUR FIT Error includes scale factor of 1.1. F($\overline{K}^*(892)^0 \mu^+ \nu_\mu$)/ Γ_{total} Unseen decay modes of the $\overline{K}^*(892)^0$ are included. DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT D.0325±0.0071±0.0075 224 CADAMA POST 226 POST 24 POST 25 POST 26 POST	²³ ANJOS 89B assume	s a Г(<i>D</i> + -	$\rightarrow K^-\pi^+\pi^+)$	′r _{tota}			
T($\overline{K}^{\bullet}(892)^0 \mu^+ \nu_{\mu}$)/ Γ_{total} Unseen decay modes of the $\overline{K}^{\bullet}(892)^0$ are included. DOCUMENT ID DOCUMENT ID DOCUMENT ID TECN DOCUMENT ID TECN DOCUMENT DOCUMENT ID TECN DOCUMENT DOCUMENT ID TECN COMMENT D.0325 ± 0.0071 ± 0.0075 224 24 KODAMA 92c E653 π^- emulsion 600 Ω 0.09 and then uses $\Gamma(D^0 \to K^-\mu^+\nu_{\mu})/\Gamma(D^0 \to K^-\mu^+\nu_{\mu}) = 0.43 \pm 0$ 0.09 and then uses $\Gamma(D^0 \to K^-\mu^+\nu_{\mu}) = (7.0 \pm 0.7) \times 10^{10} \text{s}^{-1}$ to get the η branching fraction. See also the footnote to KODAMA 92c in the next data block $\Gamma(\overline{K}^{\bullet}(892)^0 \mu^+\nu_{\mu})/\Gamma(K^-\pi^+\pi^+)$ Unseen decay modes of the $\overline{K}^{\bullet}(892)^0$ are included. VALUE DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT D.53 ± 0.06 OUR AVERAGE	/ALUE		DOCUMENT ID	-63		$\Gamma_{14}/\Gamma = (\Gamma_{16}$	₅ + 3 Γ ₂₆)/Γ
DOCUMENT ID TECN COMMENT 10.0044 \pm 0.006 OUR FIT Error includes scale factor of 1.1. 10.0325 \pm 0.0071 \pm 0.0075 224 24 KODAMA 92c E653 π^- emulsion 600 Ω 0.09 and then uses $\Gamma(D^+ \to \overline{K}^{*0}\mu^+\nu_\mu)/\Gamma(D^0 \to K^-\mu^+\nu_\mu) = 0.43 \pm 0$ 10.09 and then uses $\Gamma(D^0 \to K^-\mu^+\nu_\mu) = (7.0 \pm 0.7) \times 10^{10} \text{s}^{-1}$ to get the quark-ing fraction. See also the footnote to KODAMA 92c in the next data block of $\Gamma(\overline{K}^{*0}(892)^0 \mu^+\nu_\mu)/\Gamma(K^-\pi^+\pi^+)$ 11. Unseen decay modes of the $\overline{K}^{*0}(892)^0$ are included. 12. VALUE EVTS DOCUMENT ID TECN COMMENT 10. 13. 3 \pm 0.06 OUR FIT 0.53 \pm 0.05 OUR AVERAGE	$\Gamma(\overline{K}^{\bullet}(892)^{0} \mu^{+} \nu_{\mu}) /$	'F _{total}					Γ ₂₆ /Γ
2.0325 \pm 0.0071 \pm 0.0075 224 24 KODAMA 92C E653 π^- emulsion 600 00 \times 24 KODAMA 92C measures $\Gamma(D^+ \to \overline{K}^{*0} \mu^+ \nu_\mu)/\Gamma(D^0 \to K^- \mu^+ \nu_\mu) = 0.43 \pm 0$ 0.09 and then uses $\Gamma(D^0 \to K^- \mu^+ \nu_\mu) = (7.0 \pm 0.7) \times 10^{10} \text{s}^{-1}$ to get the q branching fraction. See also the footnote to KODAMA 92C in the next data block $\Gamma(\overline{K}^*(892)^0 \mu^+ \nu_\mu)/\Gamma(K^- \pi^+ \pi^+)$ Unseen decay modes of the $\overline{K}^*(892)^0$ are included. VALUE DOCUMENT ID TECN COMMENT 0.049 \pm 0.06 OUR FIT D.53 \pm 0.06 OUR AVERAGE	Unseen decay mo	des of the I	K*(892) ⁰ are in <u>DOCUMENT IE</u>	luded	l. <u>TECN</u>	COMMENT	
0.09 and then uses $\Gamma(D^0 \to K^-\mu^+\nu_\mu) = (7.0 \pm 0.7) \times 10^{10} s^{-1}$ to get the q branching fraction. See also the footnote to KODAMA 92c in the next data block $\Gamma(\overline{K}^{\bullet}(892)^0 \mu^+\nu_\mu)/\Gamma(K^-\pi^+\pi^+)$ Unseen decay modes of the $\overline{K}^{\bullet}(892)^0$ are included. VALUE EVTS DOCUMENT ID TECN COMMENT 0.53 \pm 0.06 OUR FIT 0.53 \pm 0.06 OUR AVERAGE	$0.0325 \pm 0.0071 \pm 0.0079$	5 224	²⁴ KODAMA	92	c E653		
$\Gamma(\overline{K}^{\bullet}(892)^{0}\mu^{+}\nu_{\mu})/\Gamma(K^{-}\pi^{+}\pi^{+})$ Γ_{26} Unseen decay modes of the $\overline{K}^{\bullet}(892)^{0}$ are included. VALUE EVIS DOCUMENT ID TECN COMMENT 0.49±0.06 OUR FIT OCCUMENT ID TECN COMMENT 0.39±0.06 OUR AVERAGE	0.09 and then uses	$\Gamma(D^0 \to I$	$(-\mu^+\nu_{\mu}) = (7)$.0 ± 0.	0.7) × 1	$10^{10}\mathrm{s}^{-1}$ to g	et the quoted
VALUE EVTS DOCUMENT ID TECN COMMENT 0.69±0.06 OUR FIT 0.53±0.06 OUR AVERAGE	Γ(K *(892) ⁰ μ ⁺ ν _μ)/	$\Gamma(K^-\pi^+)$	π⁺) Κ*(892) ⁰ are in	cluded	1.		Γ ₂₆ /Γ ₃₇
0.53 \pm 0.06 OUR AVERAGE 0.56 \pm 0.04 \pm 0.06 B75 FRABETTI 93E E687 γ Be $\overline{E}_{\gamma} \approx$ 200 Ge $^{\prime}$	<u>VALUE</u> 0.49±0.06 OUR FIT	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT	
· · · · · · · · · · · · · · · · · · ·		AGE 875	FRABETTI	93E	E687	γBe Ē~≈	200 GeV
$0.46\pm0.07\pm0.08$ 224 25 KODAMA 92C E653 π^- emulsion 600 G 25 KODAMA 92C uses the same $\overline{K}^{*0}\mu^+\nu_\mu$ events normalizing instead with E	$0.46 \pm 0.07 \pm 0.08$	224	²⁵ KODAMA	920	E653	π emulsio	п 600 GeV

VALUE	onresonant)	/Γ(K-π+μ+ <u>DOCUMENT ID</u>			$_{14} = \Gamma_{16}/(\Gamma_{14})$	16+3 26
0.083±0.029 OUR I 0.083±0.029	FIT	FRABETTI		E687	< 0.12 (90%	CL)
$\Gamma(\widetilde{K}^0\pi^+\pi^-e^+\nu_0$	e)/F _{total}					Γ ₁₇ /Γ
ALUE • • We do not us	<u>EVTS</u> se the following	DOCUMENT ID g data for averag				
$0.022 + 0.047 \pm 0.004$	4 1	²⁶ AGUILAR	87F	HYBR	πρ, pp 360,	400 GeV
²⁶ AGUILAR-BENI tion.		putes the branch	ing fra	ction u	sing topologica	al normaliza
(K-π+π ⁰ e+ν	EVTS	DOCUMENT ID				Γ ₁₈ /Ι
• • We do not us		-				
$0.044 + 0.052 \pm 0.00$ $0.044 + 0.013 \pm 0.00$ AGUILAR-BENI		²⁷ AGUILAR putes the branch				
tion. Γ((<i>K</i> *(892)π) ⁰ 6	e ⁺ ν _e)/Γ _{tota}	ı				Γ ₁₉ /Ι
Unseen decay VALUE	modes of the	K*(892) are incl		TECN	COMMENT	
<0.012	90	ANJOS	92	E691	Photoproduc	tion
$\Gamma((\overline{K}\pi\pi)^0e^+\nu_e)$,	TECH	COMMENT	Γ ₂₀ /Ι
<0.009	<u>CL%</u> 90	<u>DOCUMENT ID</u> ANJOS	92	TECN E691	Photoproduc	tion
Γ(Κ [—] π ⁺ π ⁰ μ ⁺ ν	ν _μ)/Γ(Κ π ⁻	+ μ+ ν _μ) <u>DOCUMENT ID</u>)		Γ ₁₄ = Γ ₂₁ /(Ι <u>COMMENT</u>	「 ₁₆ +⅔Г ₂₆
<0.042	90	FRABETTI		E687		200 GeV
Γ(κ ₁ (1270) ⁰ μ ⁺	ν _μ)/Γ(Κ *(ξ	392) ⁰ μ ⁺ ν _μ) <u>σοςυμέντ</u> ιδ)	<u>TECN</u>	COMMENT	Γ ₂₇ /Γ ₂
<0.78	95	ABE		CDF	<u>ρρ</u> 1.8 TeV	
Γ (Κ*(1410) ⁰ μ+	ν_{μ})/ $\Gamma(\overline{K}^{*}(8))$	$(392)^0 \mu^+ \nu_{\mu})$				Γ_{28}/Γ_{2}
<i>∨ALUE</i> <0.60	<u>CL%</u> 95	DOCUMENT ID		TECN CDF	<u>СОММЕНТ</u> Бр 1.8 TeV	
Γ(κ ₂ *(1430) ⁰ μ ⁺						Γ ₂₉ /Γ ₂
<i>∨ALUE</i> <0.19	<u>CL%</u> 95	DOCUMENT ID		TECN CDF	pp 1.8 TeV	
$\Gamma(\pi^0\ell^+\nu_\ell)/\Gamma(\widetilde{K}$						Γ ₂₂ /Γ
יון וון (ששיש ואין ו		DOCUMENT IE)	TECN	COMMENT	
VALUE	EVTS			CLE2	$e^+e^-\approx 1$	r(45)
VALUE 0.046±0.014±0.01	7 100	28 BARTELT ng data for averag	97			^(45)
VALUE 0.046±0.014±0.01 • • • We do not us 0.085±0.027±0.01	EVTS 100 se the followin 4 53	28 BARTELT ng data for averag ²⁹ ALAM	97 ges, fit: 93	s, limits CLE2	, etc. • • • See BARTE	LT 97
VALUE 0.046 ± 0.014 ± 0.01 • • • We do not u 0.085 ± 0.027 ± 0.01 28 BARTELT 97 t ments and form 0.017.	FVTS 7 100 se the followin 4 53 hus directly m 6 factors at q ²	28 BARTELT ag data for average 29 ALAM heasures the prod $^{=0}$: $ V_{cd}/V_{cs} ^2$	97 ges, fit: 93 uct of 2 - f]	CLE2 ratios s	see BARTE quared of CKI $(0)^2 = 0.04$	LT 97 M matrix ele 16 ± 0.014 :
VALUE 0.046 ± 0.014 ± 0.01 • • We do not u 0.085 ± 0.027 ± 0.01 28 BARTELT 97 t ments and form 0.017. 29 ALAM 93 thus	FVTS 7 100 se the followin 4 53 hus directly man factors at q ²	28 BARTELT ag data for average 29 ALAM heasures the prod $^{=0}$: $ V_{cd}/V_{cs} ^2$	97 ges, fits 93 luct of 2 - f]	CLE2 ratios s (0)/f	, etc. $ullet$ $ullet$ See BARTE quared of CKI $_+^{ m K}(0) ^2=0.04$ ed of CKM ma	LT 97 M matrix ele 16 ± 0.014 :
VALUE 0.046±0.014±0.01 • • • We do not u 0.085±0.027±0.01 28 BARTELT 97 t ments and form 0.017. 29 ALAM 93 thus and form factor Γ(π+π-e+ν _e)/	7 100 se the followin 4 53 hus directly mo factors at q^2 directly measus at $q^2=0$: $ V $	28 BARTELT g data for average 29 ALAM neasures the prod $= 0$: $ V_{cd}/V_{cs} ^2$ ares the product of	97 ges, fit: 93 luct of 2 . f] of ratio (0)/f	s, limits CLE2 ratios s $(0)/f$ s square $(0)/f$	setc. • • • • See BARTE quared of CKI $_{+}^{K}(0) ^{2}=0.04$ ed of CKM ma $_{-}^{2}=0.085\pm0.06$	LT 97 M matrix ele 16 ± 0.014 :
VALUE 0.046±0.014±0.01 • • • We do not u 0.085±0.027±0.01 28 BARTELT 97 t ments and form 0.017. 29 ALAM 93 thus and form factor Γ(π+π-e+ν _e)/	EVTS 100 se the followin 4 53 hus directly measus at q^2 directly measus at $q^2 = 0$: $ V $	28 BARTELT ag data for average 29 ALAM neasures the prod =0: $ V_{cd}/V_{cs} ^2$ ares the product of $ V_{cd}/V_{cs} ^2 + r_+^{\pi} $	97 ges, fit: 93 Juct of $f^2 + f^2$ of ratio $f(0)/f(0)$	s, limits CLE2 ratios s $(0)/f$ s square $(0)/f$ $(0)/f$ $(0)/f$ $(0)/f$ $(0)/f$ $(0)/f$	see BARTE quared of CKI $(0)^2 = 0.04$ ed of CKM ma $= 0.085 \pm 0.0$	LT 97 M matrix ele 16 ± 0.014 = otrix element 127 ± 0.014
VALUE 0.046±0.014±0.01 • • We do not u 0.085±0.027±0.01 28 BARTELT 97 t ments and form 0.017. 29 ALAM 93 thus and form factor Γ(π+π-e+ν _e)/ VALUE • • • We do not u <0.057 30 AGUILAR-BEN	EVTS 100 se the followin 4 53 hus directly measus at q^2 directly measus at $q^2=0$: V // Lotal	28 BARTELT ag data for average 29 ALAM neasures the prod $=0: V_{cd}/V_{cs} ^2$ ares the product of $ V_{cd}/V_{cs} ^2 \cdot \Gamma_+^{\pi} $ and data for average 30 AGUILAR	97 ges, fit: 93 fuct of 2 f1 of ratio (0)/f1 ges, fit 87F	s, limits CLE2 ratios s $(0)/f^2$ s square $(0)/f^2$	See BARTE quared of CKI $K(0)$ = 0.04 \pm 0.085 \pm 0.0 \pm 0.085 \pm 0.0 \pm 0.085 \pm 0.0 \pm 0.085 \pm 0.0	LT 97 M matrix ele 16 ± 0.014 : trix element 127 ± 0.014 F23/I
28 BARTELT 97 29 ALAM 93 thus and form factor (π+π-e+ν _e)/ 24 We do not u 0.017. 29 ALAM 93 thus and form factor (π+π-e+ν _e)/ 20.057 30 AGUILAR-BEN tion. Γ(ρ ⁰ e+ν _e)/Γtot	EVTS 100 se the followin 4 53 hus directly measus at q ² directly measus at q ² =0: v // total CL% see the followin 90 ITEZ 87F constal	28 BARTELT ag data for average 29 ALAM heasures the product of $\langle cd/V_{cs} \rangle^2$ ares the product of $\langle cd/V_{cs} \rangle^2 \cdot r_+^{\pi} \rangle$ and data for average 30 AGUILAR	97 ges, fit: 93 fuct of 2 f ² of ratio (0)/f ² ges, fit 87F hing fra	s, limits CLE2 ratios s $(0)/f^{\pm}$ s square $(0)/f^{\pm}$ s square $(0)/f^{\pm}$ s square $(0)/f^{\pm}$ TECN s, limits HYBR action u	see BARTE quared of CKI $\frac{1}{2}(0)$ $^2=0.04$ ed of CKM ma $=0.085\pm0.0$ $\frac{COMMENT}{1}$, etc. • • • $\frac{1}{2}$ \frac	LT 97 M matrix ele 16 ± 0.014 : trix element 127 ± 0.014 F23/I 400 GeV al normaliza
VALUE 0.046±0.014±0.01 • • • We do not u 0.085±0.027±0.01 28 BARTELT 97 t ments and form 0.017. 29 ALAM 93 thus and form factor Γ(π+π-e+ν _e)/ VALUE • • • We do not u <0.057 30 AGUILAR-BEN tion. Γ(ρ0 e+ν _e)/Γτοτ VALUE • • • We do not u	EVTS 100 17 100 18 53 18 4 53 19 61	28 BARTELT ag data for average 29 ALAM leasures the product of $ v_{cd}/v_{cs} ^2$ ares the product of $ v_{cd}/v_{cs} ^2 \cdot r_+^{\pi} ^2$ and data for average 30 AGUILAR apputes the branch pocument it and data for average galaxy.	97 93 93 uct of 97 97 97 97 98 98 98 98 98 98 98 98 98 98 98 98 98	s, limits CLE2 ratios s $(0)/f^{1}$ s squarat $(0)/f^{2}$ s squarat $(0)/f^{2}$ TECN s, limits HYBR action u TECN s, limits	see BARTE quared of CKI $\frac{K}{2}(0) ^2 = 0.04$ ed of CKM ma = 0.085 ± 0.0 . COMMENT, etc. • • • . $\pi p, pp$ 360, sing topologic . COMMENT, etc. • •	LT 97 M matrix ele 16 ± 0.014 : 127 ± 0.014 Can be compared to the compared
VALUE 0.046 ± 0.014 ± 0.01 • • We do not u 0.085 ± 0.027 ± 0.01 28 BARTELT 97 t ments and form 0.017. 29 ALAM 93 thus and form factor (π+π-e+ν _e)/ VALUE • • We do not u <0.057 30 AGUILAR-BEN tion. Γ(ρ0 e+ν _e)/Γτοτ VALUE • • We do not u <0.0037	EVTS 17 100 se the followin 4 53 hus directly measurs at q ² directly measurs at q ² =0: v 17 total 18 Eth followin 90 1TEZ 87F con 20 total 20 total 20 total 30 total 40 total 50 total 50 total 60 total 90 total 60 total 90 total	28 BARTELT g data for average 29 ALAM neasures the product $c = (v_{cd}/v_{cs})^2$ ares the product $c = (v_{cd}/v_{cs})^2 + r_+ ^{\pi}$ ng data for average 30 AGUILAR nputes the branching data for average BAI	97 93 93 uct of 97 97 97 97 98 98 98 98 98 98 98 98 98 98 98 98 98	s, limits CLE2 ratios s $(0)/f^{1}$ s squarat $(0)/f^{2}$ s squarat $(0)/f^{2}$ TECN s, limits HYBR action u TECN s, limits	see BARTE quared of CKI $\frac{K}{2}(0) ^2 = 0.04$ ed of CKM ma = 0.085 ± 0.0 . COMMENT, etc. • • • : $\pi p, pp$ 360, sing topologic	LT 97 M matrix ele 6 ± 0.014 : trix element 127 ± 0.014 . $123/1$ 400 GeV al normaliza $123/1$ 77 GeV
VALUE 0.046±0.014±0.01 • • • We do not u 0.085±0.027±0.01 28 BARTELT 97 t ments and form 0.017. 29 ALAM 93 thus and form factor Γ(π+π-e+ν _e)/ VALUE • • • We do not u <0.057 30 AGUILAR-BEN tion. Γ(ρ0 e+ν _e)/Γτοτ VALUE • • • We do not u	EVTS 17 100 se the followin 4 53 hus directly measurs at q ² directly measurs at q ² =0: v 17 total 18 Eth followin 90 1TEZ 87F con 20 total 20 total 20 total 30 total 40 total 50 total 50 total 60 total 90 total 60 total 90 total	28 BARTELT g data for average 29 ALAM neasures the product $c = (v_{cd}/v_{cs})^2$ ares the product $c = (v_{cd}/v_{cs})^2 + r_+ ^{\pi}$ ng data for average 30 AGUILAR nputes the branching data for average BAI	97 98 99 90 90 90 97 97 98 98 99 98 99 99 99 99 99 99 99 99 90 90 90 90 90	s, limits CLE2 ratios s (0)/f s squarr (0) 2 TECN s, limits ATECN action u TECN s, limits MRK3	see BARTE quared of CKI $\{(0)\}^2 = 0.04$ ed of CKM ma $= 0.085 \pm 0.0$. COMMENT in etc. • • • $\pi p, pp$ 360, sing topologic . COMMENT etc. • • • $e^+e^- \approx 3$.	LT 97 M matrix ele 16 ± 0.014 : 127 ± 0.014 Can be compared to the compared

$\Gamma(\rho^0 \mu^+ \nu_\mu) / \Gamma(\overline{K}^* (892)^0 \mu^+ \nu_\mu)$ $\Gamma_{31} / \Gamma_{26}$	$\Gamma(\overline{K}^*(892)^0\pi^+)/\Gamma(K^-\pi^+\pi^-)$			Γ ₇₆ /Γ ₃₇
VALUE EVTS DOCUMENT ID TECN COMMENT 0.061±0.014 OUR AVERAGE	Unseen decay modes of the			COMMENT
0.051±0.015±0.009 54 ³² AITALA 97 E791 π nucleus, 500 GeV	0.212±0.016 OUR FIT	DOCUMENT ID		COMMENT
$0.079\pm0.019\pm0.013$ 39 33 FRABETTI 97 E687 γ Be, $\overline{E}_{\gamma}\approx$ 220 GeV	0.210±0.015 OUR AVERAGE			
• • We do not use the following data for averages, fits, limits, etc. • •	$0.206 \pm 0.009 \pm 0.014$	FRABETTI	94G E687	γ Be, $\overline{E}_{\gamma} pprox$ 220 GeV
•	$0.255 \pm 0.014 \pm 0.050$	ANJOS	93 E691	γBe 90-260 GeV
$0.044^{+0.031}_{-0.025}\pm 0.014$ 4 34 KODAMA 93C E653 π^- emulsion 600 GeV	$0.21 \pm 0.06 \pm 0.06$	ALVAREZ		Photoproduction
³² AITALA 97 explicitly subtracts $D^+ \rightarrow \eta' \mu^+ \nu_\mu$ and other backgrounds to get this	$0.20 \pm 0.02 \pm 0.11$	ADLER		e ⁺ e ⁻ 3.77 GeV
result.	• • We do not use the following			
33 Because the reconstruction efficiency for photons is low, this FRABETTI 97 result also	< 0.053 90	SCHINDLER	81 MRK2	e+ e- 3.771 GeV
includes any $D^+ \to \eta' \mu^+ \nu_\mu \to \gamma \rho^0 \mu^+ \nu_\mu$ events in the numerator. 34 This KODAMA 93c result is based on a final signal of $4.0^{+2.8}_{-2.3}\pm 1.3$ events; the estimates of backgrounds that affect this number are somewhat model dependent.	$\Gamma(\overline{K}_0^*(1430)^0\pi^+)/\Gamma(K^-\pi^+)$ Unseen decay modes of the	π ⁺) K *(1430) ⁰ are in	ncluded	Γ ₈₅ /Γ ₃₇
	VALUE	DOCUMENT ID		COMMENT
$\Gamma(\phi e^+ \nu_e)/\Gamma_{\text{total}}$ Γ_{32}/Γ	0.41 ±0.04 OUR AVERAGE	DOCOMETT! IS		- Commercial
Decay modes of the ϕ not included in the search are corrected for.	$0.458 \pm 0.035 \pm 0.094$	FRABETTI	94G E687	$_{m{\gamma}}$ Be, $\overline{E}_{m{\gamma}} pprox$ 220 GeV
<u>ALUE CL% DOCUMENT ID TECN COMMENT</u> <0.0209 90 BAI 91 MRK3 e ⁺ e ⁻ ≈ 3.77 GeV	$0.400 \pm 0.031 \pm 0.027$	ANJOS	93 E691	γ Be 90-260 GeV
<0.0209 90 BAI 91 MRK3 e ⁺ e ⁻ ≈ 3.77 GeV	$\Gamma(\overline{K}^{\bullet}(1680)^{0}\pi^{+})/\Gamma(K^{-}\pi^{+})$	_+\		F., /F.,
$\Gamma(\phi \mu^+ u_\mu)/\Gamma_{ ext{total}}$				Γ ₈₆ /Γ _{3:}
Decay modes of the ϕ not included in the search are corrected for.	Unseen decay modes of the			COMMENT
VALUE CL% DOCUMENT ID TECN COMMENT	VALUE 0.160±0.032 OUR AVERAGE E	DOCUMENT ID		
<0.0372 90 BAI 91 MRK3 $e^+e^- \approx 3.77 \text{ GeV}$	0.182±0.023±0.028	FRABETTI	94G E687	$_{\gamma}^{\circ}$ Be, $\overline{E}_{\gamma}\approx$ 220 GeV
r/ et \/r/ Net\	$0.113 \pm 0.015 \pm 0.050$	ANJOS	93 E691	γ Be 90–260 GeV
$\lceil (\eta \ell^+ \nu_\ell) / \lceil (\pi^0 \ell^+ \nu_\ell) \rceil $,
VALUE CL% DOCUMENT ID TECN COMMENT	$\Gamma(K^-\pi^+\pi^+ \text{ nonresonant})/\Gamma$	$(K^-\pi^+\pi^+)$		Γ ₄₁ /Γ ₃ :
<1.5 90 BARTELT 97 CLE2 $e^+e^-\approx T(4S)$	VALUE	DOCUMENT ID	TECN	COMMENT
$\Gamma(\eta'(958)\mu^+\nu_{\mu})/\Gamma(\overline{K}^*(892)^0\mu^+\nu_{\mu})$ Γ_{35}/Γ_{26}	0.95 ±0.07 OUR AVERAGE	ED 4 DE TT:	046 5657	Po E 200 C-V
Decay modes of the $\eta'(958)$ not included in the search are corrected for.	$0.998 \pm 0.037 \pm 0.072$	FRABETTI	946 E687	γ Be, $E_{\gamma} \approx 220 \text{ GeV}$
VALUE CL% DOCUMENT ID TECN COMMENT	0.838 ± 0.088 ± 0.275 0.79 ± 0.07 ± 0.15	ANJOS ADLER	93 E691	γ Be 90–260 GeV $e^{+}e^{-}$ 3.77 GeV
<0.20 90 KODAMA 93B E653 π ⁻ emulsion 600 GeV	0.19 ±0.07 ±0.15	MULEK	or MKK3	e e 3.11 GeV
	$\Gamma(\overline{K}^0\pi^+\pi^0)/\Gamma_{\text{total}}$			Γ42/
Hadronic modes with a \overline{K} or $\overline{K}K\overline{K}$ ————	VALUE EVTS	DOCUMENT ID	TECN	COMMENT
$\Gamma(\overline{K}^0\pi^+)/\Gamma_{ ext{total}}$ Γ_{36}/Γ	0.097 ± 0.030 OUR FIT Error inc	cludes scale factor	of 1.1.	
VALUE EVTS <u>DOCUMENT ID TECN COMMENT</u>	0.107±0.029 OUR AVERAGE			1
0.0289±0.0026 OUR FIT Error includes scale factor of 1.1.	$0.102 \pm 0.025 \pm 0.016$ 159	ADLER		e ⁺ e 3.77 GeV
0.032 ±0.004 OUR AVERAGE	0.19 ±0.12 10			e ⁺ e ⁻ 3.771 GeV
$0.032 \pm 0.005 \pm 0.002$ 161 ADLER 88C MRK3 e^+e^- 3.77 GeV	42 SCHINDLER 81 (MARK-2) n		-//2770)) w beanching fraction t
0.002 ±0.000 ±0.002 101 ABLEN 000 MINNO C C 3.11 GCV				
25	be 0.78 ± 0.48 nb. We use the			
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV	be 0.78 ± 0.48 nb. We use the			of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt
0.033 ± 0.009 36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 0.033 ± 0.013 17 36 PERUZZI 77 MRK1 e^+e^- 3.77 GeV	be 0.78 \pm 0.48 nb. We use the $\Gamma(\overline{K}^0 \rho^+)/\Gamma(\overline{K}^0 \pi^+ \pi^0)$	e MARK-3 (ADLE	R 88C) value	of $\sigma=4.2\pm0.6\pm0.3$ nt Γ_{43}/Γ_{4}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	be 0.78 \pm 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ VALUE	MARK-3 (ADLE	R 88C) value <u>TEÇN</u>	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_{4} COMMENT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ VALUE 0.68 ± 0.08 ± 0.12	DOCUMENT ID ADLER	R 88C) value <u>TEÇN</u>	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb $\frac{\Gamma_{43}/\Gamma_{4}}{e^+ e^- 3.77 \text{ GeV}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	be 0.78 \pm 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ VALUE	DOCUMENT ID ADLER	R 88C) value <u>TEÇN</u>	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_{4} COMMENT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ VALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K}^0(892)^0 \pi^+)/\Gamma(\overline{K}^0 \pi^+ \pi^0)$ Unseen decay modes of the	DOCUMENT ID ADLER T**(892)0 are inc	R 88c) value	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt $ \frac{\Gamma_{43}/\Gamma_4}{COMMENT} $ e^+e^- 3.77 GeV $ \frac{\Gamma_{76}/\Gamma_4}{\Gamma_{76}/\Gamma_4} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	be 0.78 ± 0.48 nb. We use the $\Gamma\left(\overline{K^0} \rho^+\right)/\Gamma\left(\overline{K^0} \pi^+ \pi^0\right)$ $\frac{VALUE}{0.68 \pm 0.08 \pm 0.12}$ $\Gamma\left(\overline{K^*}(892)^0 \pi^+\right)/\Gamma\left(\overline{K^0} \pi^+ \pi^0\right)$ Unseen decay modes of the $\frac{VALUE}{0.000}$	DOCUMENT ID ADLER	R 88c) value	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb $\frac{\Gamma_{43}/\Gamma_{4}}{e^+ e^- 3.77 \text{ GeV}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $\frac{VALUE}{0.68 \pm 0.08 \pm 0.12}$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the $\frac{VALUE}{0.20 \pm 0.06}$ OUR FIT	DOCUMENT ID ADLER **(892)** **(892)** **DOCUMENT ID	886C) value TECN 87 MRK3 Sluded. TECN	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt
0.033 \pm 0.009 36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 0.033 \pm 0.013 17 36 PERUZZI 77 MRK1 e^+e^- 3.77 GeV 35 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^- \to \psi(3770)) \times$ branching fraction to be 0.14 \pm 0.03 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^- \to \psi(3770)) \times$ branching fraction to be 0.14 \pm 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to K_0^0\pi^+);$ it is the latter Γ that is actually measured. BIGI 95 points out that interference between	be 0.78 ± 0.48 nb. We use the $\Gamma\left(\overline{K^0} \rho^+\right)/\Gamma\left(\overline{K^0} \pi^+ \pi^0\right)$ $\frac{VALUE}{0.68 \pm 0.08 \pm 0.12}$ $\Gamma\left(\overline{K^*}(892)^0 \pi^+\right)/\Gamma\left(\overline{K^0} \pi^+ \pi^0\right)$ Unseen decay modes of the $\frac{VALUE}{0.000}$	DOCUMENT ID ADLER T**(892)0 are inc	886C) value TECN 87 MRK3 Sluded. TECN	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt $ \frac{\Gamma_{43}/\Gamma_4}{COMMENT} $ e^+e^- 3.77 GeV $ \frac{\Gamma_{76}/\Gamma_4}{\Gamma_{76}/\Gamma_4} $
0.033 \pm 0.009 36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 36 PERUZZI 77 MRK1 e^+e^- 3.771 GeV 35 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$). \star branching fraction to be 0.14 \pm 0.03 nb. We use the MARK-3 (ADLER 8BC) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$). \star branching fraction to be 0.14 \pm 0.05 nb. We use the MARK-3 (ADLER 8BC) value of $\sigma=4.2\pm0.6\pm0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to \overline{K^0}\pi^+)$ it is the latter Γ that is actually measured. BIGI 95 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $VALUE$ $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^*} (892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the $VALUE$ 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$	DOCUMENT ID ADLER O K*(892)0 are inc DOCUMENT ID ADLER	886C) value TECN 87 MRK3 Sluded. TECN	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt
0.033 \pm 0.009 36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 0.033 \pm 0.013 17 36 PERUZZI 77 MRK1 e^+e^- 3.77 GeV 35 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^- \to \psi(3770)) \times$ branching fraction to be 0.14 \pm 0.03 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^- \to \psi(3770)) \times$ branching fraction to be 0.14 \pm 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to K_0^0\pi^+);$ it is the latter Γ that is actually measured. BIGI 95 points out that interference between	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $\frac{VALUE}{0.68 \pm 0.08 \pm 0.12}$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the $\frac{VALUE}{0.20 \pm 0.06}$ OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$	DOCUMENT ID ADLER O K*(892)0 are inc DOCUMENT ID ADLER	## 88C) value ### TECN 87 MRK3 ### Iluded. ### TECN 87 MRK3	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $\frac{VALUE}{0.68 \pm 0.08 \pm 0.12}$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the $\frac{VALUE}{0.20 \pm 0.06}$ OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\frac{VALUE}{0.20 \pm 0.06})$	DOCUMENT ID ADLER O) K*(892) ⁰ are inc DOCUMENT ID ADLER (K ⁰ π+π ⁰) DOCUMENT ID DOCUMENT ID	## 88C) value ## 7ECN ## 87 MRK3 ## STUDEN ## 1ECN ## 1ECN ## 1ECN	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt
$\begin{array}{c} 0.033 \pm 0.009 & 36 & 35 \text{SCHINDLER} & 81 & \text{MRK2} \ e^+e^- \ 3.771 \text{GeV} \\ 0.033 \pm 0.013 & 17 & 36 \text{PERUZZI} & 77 & \text{MRK1} \ e^+e^- \ 3.771 \text{GeV} \\ \hline 35 \text{SCHINDLER} 81 & (\text{MARK-2}) \text{measures} \ \sigma(e^+e^- \to \psi(3770)) \times \text{branching} \text{fraction to} \\ be 0.14 \pm 0.03 \text{nb}. & \text{We use the MARK-3} \text{(ADLER} 88c) \text{value of} \ \sigma = 4.2 \pm 0.6 \pm 0.3 \text{nb}. \\ \hline 36 \text{PERUZZI} 77 (\text{MARK-1}) \text{measures} \ \sigma(e^+e^- \to \psi(3770)) \times \text{branching} \text{fraction to} \text{be} \\ 0.14 \pm 0.05 \text{nb}. & \text{We use the MARK-3} \text{(ADLER} 88c) \text{value of} \ \sigma = 4.2 \pm 0.6 \pm 0.3 \text{nb}. \\ \hline \Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+) \\ \text{It is generally assumed for modes such as} \ D^+ \to \overline{K^0}\pi^+ \text{that} \\ \Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to K_0^0\pi^+); \\ \text{it is the latter } \Gamma \text{that is actually measured}. \text{BIGI} 95 \text{points out that interference between} \\ \text{Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent.} \\ \hline VALUE \qquad \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT \\ \hline 0.321 \pm 0.025 \text{OUR FIT} \qquad Error \text{includes scale factor of } 1.1. \\ \hline \end{array}$	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $VALUE$ $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the $VALUE$ 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $VALUE$ $0.13 \pm 0.07 \pm 0.08$	PMARK-3 (ADLE DOCUMENT ID ADLER O) $K^*(892)^0$ are int DOCUMENT ID ADLER $(K^0\pi^+\pi^0)$	## 88C) value ## 7ECN ## 87 MRK3 ## STUDEN ## 1ECN ## 1ECN ## 1ECN	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt
0.033 \pm 0.009 36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 0.033 \pm 0.013 17 36 PERUZZI 77 MRK1 e^+e^- 3.77 GeV 35 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^- \to \psi(3770)) \times$ branching fraction to be 0.14 \pm 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^- \to \psi(3770)) \times$ branching fraction to be 0.14 \pm 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to K_0^0\pi^+);$ it is the latter Γ that is actually measured. BIGI 95 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent.	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ NALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the NALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^-\pi^+\pi^+\pi^0)/\Gamma_{\text{total}}$	DOCUMENT ID ADLER O) K*(892) ⁰ are inc DOCUMENT ID ADLER (K ⁰ π+π ⁰) DOCUMENT ID DOCUMENT ID	### ##################################	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 37 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$). $\sigma(e^+e^-) + \psi(3770)$ $\sigma(e^+e^-) + \psi(a^+e^-)$ $\sigma(e^+e^-)$ $\sigma(e^+e^-) + \psi(a^+e^-)$ $\sigma(e^+e^-)$ $\sigma(e$	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $VALUE$ $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the $VALUE$ 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $VALUE$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ $VALUE$ VAL	DOCUMENT ID ADLER O) K*(892) ⁰ are inc DOCUMENT ID ADLER (K ⁰ π+π ⁰) DOCUMENT ID DOCUMENT ID	### ##################################	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ VALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K}^*(892)^0 \pi^+)/\Gamma(\overline{K}^0 \pi^+ \pi^0)$ Unseen decay modes of the VALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ VALUE 0.064 ± 0.011 OUR FIT	DOCUMENT ID ADLER DOCUMENT ID ADLER (K ⁰ π+ π ⁰) DOCUMENT ID ADLER DOCUMENT ID ADLER	## 88C) value ## 7ECN ## 87 MRK3 ## MRK3 ## ## ## ## ## ## ## ## ## ## ## ## ##	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{76}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{45}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT Γ_{46}/Γ_4 COMMENT Γ_{46}/Γ_4 COMMENT
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 37 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 \pm 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 \pm 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to \overline{K^0}\pi^+);$ it is the latter Γ that is actually measured. BIG1 \overline{S} points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. VALUE EVTS DOCUMENT ID 0.321 \pm 0.04 OUR AVERAGE Error includes scale factor of 1.4. 0.348 \pm 0.024 \pm 0.022 473 TECN COMMENT 17 GEV 3.771 GeV 3.771 GeV 3.771 GeV 3.771 GeV 3.771 GeV 3.771 MRK1 $e^+e^- = 3.771$ GeV 3.770 MRK1 $e^+e^- = 3.771$ GeV	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ NALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^0} (892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the NALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ NALUE $0.064 \pm 0.011 \text{ OUR FIT}$ $0.058 \pm 0.012 \pm 0.012$ 142	DOCUMENT ID ADLER O) K* (892) ore int DOCUMENT ID ADLER (K* \pi + \pi 0) DOCUMENT ID ADLER DOCUMENT ID ADLER COFFMAN	## 88C) value ## TECN ## RK3 ## TECN	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{76}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{45}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT e^+e^- 3.77 GeV
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 375 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to K^0\pi^+);$ it is the latter I that is actually measured. BIGI 95 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. VALUE EVTS DOCUMENT ID TECN COMMENT 0.32 ± 0.04 OUR AVERAGE Error includes scale factor of 1.4. 0.348 ± 0.024 ± 0.022 473 37 BISHAI 97 CLE2 $e^+e^- \approx T(45)$ 0.274 ± 0.030 ± 0.031 264 ANJOS 90c E691 Photoproduction	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ NALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the NALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ NALUE $0.064 \pm 0.011 \text{ OUR FIT}$ $0.068 \pm 0.012 \pm 0.012$ $0.064 \pm 0.012 \pm 0.012$	DOCUMENT ID ADLER O) K* (892) O are inc DOCUMENT ID ADLER (KO \(\pi + \pi 0\)) DOCUMENT ID ADLER DOCUMENT ID COFFMAN Ig data for average	## 88C) value ## ## ## ## ## ## ## ## ## ## ## ## ##	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{76}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{45}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 Γ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ NALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the NALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ NALUE $0.064 \pm 0.011 \text{ OUR FIT}$ $0.068 \pm 0.012 \pm 0.012$ $0.064 \pm 0.012 \pm 0.012$	DOCUMENT ID ADLER O) K* (892) ore int DOCUMENT ID ADLER (K* \pi + \pi 0) DOCUMENT ID ADLER DOCUMENT ID ADLER COFFMAN	## 88C) value ## ## ## ## ## ## ## ## ## ## ## ## ##	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{76}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{45}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT e^+e^- 3.77 GeV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ VALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the VALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ VALUE $VALUE$	DOCUMENT ID ADLER MARK-3 (ADLE DOCUMENT ID ADLER (K ⁰ π+ π ⁰) DOCUMENT ID ADLER DOCUMENT ID ADLER DOCUMENT ID ADLER ADLE	## 88C) value ## 7ECN ## 87 MRK3 ## MRK3 ## 7ECN ## 87 MRK3 ## 7ECN ## 92B MRK3 ## 92B MRK3 ## 92C ACCM	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{76}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{45}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT Γ_{46}/Γ_4
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 37 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.03 nb. We use the MARK-3 (ADLER 86C) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma=4.2\pm0.6\pm0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to K_0^0\pi^+)$ It is the latter Γ that is actually measured. BIGI 95 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. VALUE VALUE EVTS DOCUMENT ID 18 COMMENT 0.321 ± 0.04 OUR AVERAGE Error includes scale factor of 1.1. 0.348 $\pm 0.024 \pm 0.022$ 473 37 BISHAI 97 CLE2 $e^+e^- \approx T(45)$ 0.274 $\pm 0.030 \pm 0.031$ 264 ANJOS 90 E691 Photoproduction 37 See BISHAI 97 for an isospin analysis of $D^+ \to \overline{K}\pi$ amplitudes. $\Gamma(K^-\pi^+\pi^+)/\Gamma_{\text{total}}$ EVTS DOCUMENT ID 18 COMMENT 19 TECN COMMENT 19 TO STATE 19 TO STATE 19 TO STATE 10 13 TECN COMMENT	be 0.78 ± 0.48 nb. We use the $\Gamma(K^0 \rho^+)/\Gamma(K^0 \pi^+ \pi^0)$ $VALUE$ $0.68 \pm 0.08 \pm 0.12$ $\Gamma(K^*(892)^0 \pi^+)/\Gamma(K^0 \pi^+ \pi^0)$ Unseen decay modes of the $VALUE$ 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(K^0 \pi^+ \pi^0 \text{ nonresonant})/\Gamma(VALUE)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ $VALUE$ 0.064 ± 0.011 OUR FIT $0.058 \pm 0.012 \pm 0.012$ • • We do not use the followin $0.034 + 0.056$ $0.022 + 0.047 \pm 0.004$ 1	DOCUMENT ID ADLER O) K* (892) ⁰ are int DOCUMENT ID ADLER (K* \pi + \pi^0) DOCUMENT ID ADLER COFFMAN IS data for averag 43 BARLAG 43 AGUILAR	TECN 87 MRK3 Lluded. 87 MRK3 TECN 87 MRK3 TECN 87 MRK3 TECN 928 MRK3 es, fits, limits, 92C ACCM 87F HYBR	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_{4} Γ_{43}/Γ_{4} Γ_{43}/Γ_{4} Γ_{45}/Γ_{4} Γ_{46}/Γ_{4} $\Gamma_{46}/\Gamma_{46}/\Gamma_{46}$ $\Gamma_{46}/\Gamma_{46}/\Gamma_{46}$ $\Gamma_{46}/\Gamma_{46}/\Gamma_{46}/\Gamma_{46}$ $\Gamma_{46}/\Gamma_{46}/\Gamma_{46}/\Gamma_{46}/\Gamma_{46}$ Γ_{46}/Γ_{4
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 37 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 \pm 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 \pm 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to \overline{K^0}\pi^+)$ it is the latter Γ that is actually measured. BIG $\Gamma(E^+)$ points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. VALUE EVTS DOCUMENT ID 1 TECN COMMENT 0.321 \pm 0.04 OUR AVERAGE Error includes scale factor of 1.1. 0.32 \pm 0.04 OUR AVERAGE Error includes scale factor of 1.4. 0.348 \pm 0.024 \pm 0.022 473 37 BISHAI 97 CLE2 $e^+e^-\approx \Gamma(4S)$ 0.274 \pm 0.030 \pm 0.031 264 AN JOS 90 CE691 Photoproduction 37 See BISHAI 97 for an isospin analysis of $D^+ \to \overline{K}\pi$ amplitudes. $\Gamma(K^-\pi^+\pi^+)/\Gamma_{\text{total}}$ VALUE EVTS DOCUMENT ID TECN COMMENT 1 TECN COMMENT 0.090 \pm 0.007 OUR AVERAGE 0.093 \pm 0.006 OUR FIT 0.091 \pm 0.007 OUR AVERAGE	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ VALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the VALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ VALUE $VALUE$	DOCUMENT ID ADLER O) K* (892) ⁰ are int DOCUMENT ID ADLER (K* \pi + \pi^0) DOCUMENT ID ADLER COFFMAN IS data for averag 43 BARLAG 43 AGUILAR	TECN 87 MRK3 Lluded. 87 MRK3 TECN 87 MRK3 TECN 87 MRK3 TECN 928 MRK3 es, fits, limits, 92C ACCM 87F HYBR	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{76}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{45}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT Γ_{46}/Γ_4
0.033 ± 0.009 36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 36 PERUZZI 77 MRK1 e^+e^- 3.771 GeV 375 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.03 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 0.14 ± 0.05 nb. 0.14	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $VALUE$ $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the $VALUE$ 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $VALUE$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ $VALUE$ 0.064 ± 0.011 OUR FIT $0.058 \pm 0.012 \pm 0.012$ 0.034 ± 0.0156 0.034 ± 0.0156 0.034 ± 0.0166 0.032 ± 0.0166 0.034 ± 0.0166	DOCUMENT ID ADLER O) K* (892) O are int DOCUMENT ID ADLER (K* \pi + \pi 0) DOCUMENT ID ADLER DOCUMENT ID ADLER COFFMAN Ig data for averag 43 BARLAG 43 AGUILAR BALTRUSAIT	87 MRK3 TECN 87 MRK3 TECN 87 MRK3 TECN 87 MRK3 TECN 92B MRK3 92C ACCM 87F HYBR 786E MRK3	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{76}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{45}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT Γ_{46}/Γ_4
$^{0.033}$ ±0.009 36 36 SCHINDLER 81 MRK2 0 0 e	be 0.78 ± 0.48 nb. We use the $\Gamma(K^0 \rho^+)/\Gamma(K^0 \pi^+ \pi^0)$ $VALUE$ $0.68 \pm 0.08 \pm 0.12$ $\Gamma(K^*(892)^0 \pi^+)/\Gamma(K^0 \pi^+ \pi^0)$ Unseen decay modes of the $VALUE$ 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(K^0 \pi^+ \pi^0 \text{ nonresonant})/\Gamma(VALUE)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ $VALUE$ 0.064 ± 0.011 OUR FIT $0.058 \pm 0.012 \pm 0.012$ • • We do not use the followin $0.034 + 0.056$ $0.022 + 0.047 \pm 0.004$ 1	DOCUMENT ID ADLER O) K* (892) O are int DOCUMENT ID ADLER (K* \pi + \pi 0) DOCUMENT ID ADLER DOCUMENT ID ADLER COFFMAN Ig data for averag 43 BARLAG 43 AGUILAR BALTRUSAIT	87 MRK3 TECN 87 MRK3 TECN 87 MRK3 TECN 87 MRK3 TECN 92B MRK3 92C ACCM 87F HYBR 786E MRK3	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{76}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{45}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT e^+e^- 3.77 GeV Γ_{46}/Γ_4 COMMENT Γ_{46}/Γ_4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	be 0.78 ± 0.48 nb. We use the $\Gamma(K^0 \rho^+)/\Gamma(K^0 \pi^+ \pi^0)$ $VALUE$ $0.68 \pm 0.08 \pm 0.12$ $\Gamma(K^*(892)^0 \pi^+)/\Gamma(K^0 \pi^+ \pi^0)$ Unseen decay modes of the $VALUE$ 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(K^0 \pi^+ \pi^0 \text{ nonresonant})/\Gamma(VALUE)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{total}$ $VALUE$ 0.064 ± 0.011 OUR FIT $0.058 \pm 0.012 \pm 0.012$ $0.034 \pm 0.012 \pm 0.012$ $0.024 \pm 0.016 \pm 0.004$ $0.034 \pm 0.016 \pm 0.004$ $0.063 \pm 0.014 \pm 0.012$	DOCUMENT ID ADLER O) K*(892)O are int DOCUMENT ID ADLER (KO x+xO) DOCUMENT ID ADLER COFFMAN Ng data for averag 43 BARLAG 43 AGUILAR BALTRUSAIT BARLAG 92C cor	87 MRK3 TECN 87 MRK3 TECN 87 MRK3 TECN 87 MRK3 TECN 92B MRK3 92C ACCM 87F HYBR 786E MRK3	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 37 36 PERUZZI 77 MRK1 e^+e^- 3.771 GeV 385 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 \pm 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 \pm 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 7 ($K^0\pi^+$)/ $\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K}^0\pi^+$ that $\Gamma(D^+ \to \overline{K}^0\pi^+) = 2\Gamma(D^+ \to K_0^0\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K}^0\pi^+$ that $\Gamma(D^+ \to \overline{K}^0\pi^+) = 2\Gamma(D^+ \to K_0^0\pi^+)$ it is the latter Γ that is actually measured. BIGI 95 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. 20 321 \pm 0.025 OUR FIT Error includes scale factor of 1.1. 30 321 \pm 0.04 OUR AVERAGE Error includes scale factor of 1.4. 30 348 \pm 0.024 \pm 0.022 473 37 BISHAI 97 CLE2 $e^+e^- \approx T(45)$ 30 37 See BISHAI 97 for an isospin analysis of $D^+ \to \overline{K}\pi$ amplitudes. 7 ($K^-\pi^+\pi^+$)/ Γ total 21 20 20 38 BALEST 94 CLE2 $e^+e^- \approx T(45)$ 31 0.091 \pm 0.007 OUR AVERAGE 32 39 SOCHMENT ID TECN COMMENT 33 OLOHOTOUR AVERAGE 34 DECUMENT ID TECN COMMENT 35 OLOHOTOUR AVERAGE 36 BALEST 94 CLE2 $e^+e^- \approx T(45)$ 37 GeV 39 39 SCHINDLER 81 MRK2 $e^+e^- \approx T(45)$ 30 OLOHOTOUR AVERAGE 30 OLOHOTOUR AVERAGE 31 BALEST 94 CLE2 $e^+e^- \approx T(45)$ 32 OLOHOTOUR AVERAGE 33 BALEST 94 CLE2 $e^+e^- \approx T(45)$ 34 OPERUZZI 77 MRK1 $e^+e^- = 3$.77 GeV 35 OLOHOTOUR SET BERCH ID TECN COMMENT 36 OLOHOTOUR AVERAGE 37 OLOHOTOUR AVERAGE 38 BALEST 94 CLE2 $e^+e^- \approx T(45)$ 39 OLOHOTOUR AVERAGE 40 PERUZZI 77 MRK1 $e^+e^- = 3$.77 GeV 40 OLOHOTOUR SET BERCH ID TECN COMMENT 40 OLOHOTOUR AVERAGE 50 OLOHOTOUR AVERAGE 51 OLOHOTOUR AVERAGE 52 OLOHOTOUR AVERAGE 53 OLOHOTOUR AVERAGE 54 OPERUZZI 77 MRK1 $e^+e^- = 3$.771 GeV	be 0.78 ± 0.48 nb. We use the $\Gamma(K^0 \rho^+)/\Gamma(K^0 \pi^+ \pi^0)$ $VALUE$ $0.68 \pm 0.08 \pm 0.12$ $\Gamma(K^*(892)^0 \pi^+)/\Gamma(K^0 \pi^+ \pi^0)$ Unseen decay modes of the VALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(K^0 \pi^+ \pi^0 \text{ nonresonant})/\Gamma(VALUE)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{total}$ $VALUE$ 0.064 ± 0.011 OUR FIT $0.058 \pm 0.012 \pm 0.012$ $0.034 \pm 0.012 \pm 0.012$ $0.024 \pm 0.016 \pm 0.004$ 0.034 ± 0.016 0.0	DOCUMENT ID ADLER O ADLER O ADLER O ADLER (K ⁰ #+ # ⁰) DOCUMENT ID ADLER COFFMAN NG data for average 43 BARLAG 43 AGUILAR BALTRUSAIT BARLAG 92C cor	TECN 87 MRK3 Eluded. 87 MRK3 TECN 87 MRK3 TECN 928 MRK3 928 MRK3 920 ACCM 87F HYBR F86E MRK3	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_{4} Γ_{43}/Γ_{4} Γ_{43}/Γ_{4} Γ_{45}/Γ_{4} Γ_{46}/Γ_{4}
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 37 36 PERUZZI 77 MRK1 e^+e^- 3.771 GeV 385 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 \pm 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 \pm 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 7 ($K^0\pi^+$)/ $\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K}^0\pi^+$ that $\Gamma(D^+ \to \overline{K}^0\pi^+) = 2\Gamma(D^+ \to K_0^0\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K}^0\pi^+$ that $\Gamma(D^+ \to \overline{K}^0\pi^+) = 2\Gamma(D^+ \to K_0^0\pi^+)$ it is the latter Γ that is actually measured. BIGI 95 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. 20 321 \pm 0.025 OUR FIT Error includes scale factor of 1.1. 30 321 \pm 0.04 OUR AVERAGE Error includes scale factor of 1.4. 30 348 \pm 0.024 \pm 0.022 473 37 BISHAI 97 CLE2 $e^+e^- \approx T(45)$ 30 37 See BISHAI 97 for an isospin analysis of $D^+ \to \overline{K}\pi$ amplitudes. 7 ($K^-\pi^+\pi^+$)/ Γ total 21 20 20 38 BALEST 94 CLE2 $e^+e^- \approx T(45)$ 31 0.091 \pm 0.007 OUR AVERAGE 32 39 SOCHMENT ID TECN COMMENT 33 OLOHOTOUR AVERAGE 34 DECUMENT ID TECN COMMENT 35 OLOHOTOUR AVERAGE 36 BALEST 94 CLE2 $e^+e^- \approx T(45)$ 37 GeV 39 39 SCHINDLER 81 MRK2 $e^+e^- \approx T(45)$ 30 OLOHOTOUR AVERAGE 30 OLOHOTOUR AVERAGE 31 BALEST 94 CLE2 $e^+e^- \approx T(45)$ 32 OLOHOTOUR AVERAGE 33 BALEST 94 CLE2 $e^+e^- \approx T(45)$ 34 OPERUZZI 77 MRK1 $e^+e^- = 3$.77 GeV 35 OLOHOTOUR SET BERCH ID TECN COMMENT 36 OLOHOTOUR AVERAGE 37 OLOHOTOUR AVERAGE 38 BALEST 94 CLE2 $e^+e^- \approx T(45)$ 39 OLOHOTOUR AVERAGE 40 PERUZZI 77 MRK1 $e^+e^- = 3$.77 GeV 40 OLOHOTOUR SET BERCH ID TECN COMMENT 40 OLOHOTOUR AVERAGE 50 OLOHOTOUR AVERAGE 51 OLOHOTOUR AVERAGE 52 OLOHOTOUR AVERAGE 53 OLOHOTOUR AVERAGE 54 OPERUZZI 77 MRK1 $e^+e^- = 3$.771 GeV	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ VALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^*}(892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the VALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ VALUE 0.064 ± 0.011 OUR FIT $0.058 \pm 0.012 \pm 0.012$ $0.034 + 0.056$ $0.034 + 0.056$ $0.034 + 0.056$ $0.022 + 0.007$ $0.022 + 0.007$ $0.022 + 0.007$ $0.023 + 0.013 \pm 0.012$ $0.063 + 0.014 \pm 0.012$ $0.063 +$	DOCUMENT ID ADLER O) K*(892)O are int DOCUMENT ID ADLER (KO x+xO) DOCUMENT ID ADLER COFFMAN Ng data for averag 43 BARLAG 43 AGUILAR BALTRUSAIT BARLAG 92C cor	TECN 87 MRK3 Eluded. 87 MRK3 TECN 87 MRK3 TECN 928 MRK3 928 MRK3 920 ACCM 87F HYBR F86E MRK3	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_{4} Γ_{43}/Γ_{4} Γ_{43}/Γ_{4} Γ_{45}/Γ_{4} Γ_{46}/Γ_{4}
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 375 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nb. 17 ($\overline{K^0}\pi^+$)/ $\Gamma(K^-\pi^+\pi^+)$ 18 it is generally assumed for modes such as $D^+ \rightarrow \overline{K^0}\pi^+$ that $\Gamma(D^+ \rightarrow \overline{K^0}\pi^+) = 2\Gamma(D^+ \rightarrow K^0_0\pi^+);$ 19 it is the latter Γ that is actually measured. BIGI 95 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. 10 10 12 12 0.025 OUR FIT Error includes scale factor of 1.4. 10 10 13 2 12 0.04 OUR AVERAGE 11 12 12 12 12 12 12 12 12 12 12 12 12 1	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ NALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^0} (892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the NALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0 \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0 \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0$	DOCUMENT ID ADLER DOCUMENT ID ADLER (K ⁰ π+ π ⁰) DOCUMENT ID ADLER DOCUMENT ID ADLER ADLER DOCUMENT ID ADLER 43 BARLAG 43 AGUILAR BALTRUSAIT BARLAG 92c cor r+) DOCUMENT ID DOCUMENT ID DOCUMENT ID ADLER	TECN 87 MRK3 Cluded. 87 MRK3 TECN 87 MRK3 TECN 87 MRK3 TECN 92B MRK3 es, fits, limits, 92c ACCM 87F HYBR F86E MRK3 mpute the brain	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 : Γ_{43}/Γ_4 : Γ_{43}/Γ_4 : Γ_{43}/Γ_4 : Γ_{43}/Γ_4 : Γ_{45}/Γ_4 : Γ_{46}/Γ_4 :
$^{30.033}$ ±0.009 36 36 SCHINDLER 31 MRK2 2 4 6 2 3.771 GeV 35 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^- \to \psi(3770))$ × branching fraction to be 0.14 ± 0.03 nb. We use the MARK-3 (ADLER 88C) value of σ = 4.2 ± 0.6 ± 0.3 nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^- \to \psi(3770))$ × branching fraction to be 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of σ = 4.2 ± 0.6 ± 0.3 nb. 36 PERUZZI 77 ($K^-\pi^+\pi^+$) It is generally assumed for modes such as $D^+ \to K^0\pi^+$ that $\Gamma(D^+ \to K^0\pi^+)$: it is the latter Γ that is actually measured. BIGI 36 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. VALUE EVTS DOCUMENT ID TECN COMMENT 0.32 ± 0.032 ± 0.032 ± 0.04 OUR AVERAGE Error includes scale factor of 1.4. 0.348 ± 0.024 ± 0.022 473 37 BISHAI 97 CLE2 $^{+}e^- \approx T(4S)$ 0.274 ± 0.030 ± 0.031 264 ANJOS 90c E691 Photoproduction 37 See BISHAI 97 for an isospin analysis of $D^+ \to K^-\pi$ amplitudes. $\Gamma(K^-\pi^+\pi^+)/\Gamma_{\text{total}} = \frac{EVTS}{EVTS} DOCUMENT ID TECN COMMENT 0.091 ± 0.007 0UR AVERAGE 0.093 ± 0.006 0UR FIT 0.091 ± 0.007 0UR AVERAGE 0.093 ± 0.006 0UR FIT 0.091 ± 0.007 0UR AVERAGE 0.093 ± 0.006 0UR FIT 0.091 ± 0.007 0UR AVERAGE 0.091 ± 0.013 ± 0.004 1164 ADLER 88c MRK3 ^{+}e^- \approx T(4S) 0.091 ± 0.019 239 39 SCHINDLER 81 MRK2 ^{+}e^- \approx T(4S) 0.091 ± 0.019 239 39 SCHINDLER 81 MRK2 ^{+}e^- \approx T(4S) 0.096 ± 0.008 1502 88 BALEST 94 CLE2 ^{+}e^- \approx T(4S) 0.096 ± 0.019 239 39 SCHINDLER 81 MRK2 ^{+}e^- \approx T(4S) 0.006 ± 0.019 239 39 SCHINDLER 81 MRK2 ^{+}e^- \approx T(4S) 0.006 ± 0.019 239 39 SCHINDLER 81 MRK2 ^{+}e^- \approx T(4S) 0.006 ± 0.019 239 39 SCHINDLER 81 MRK2 ^{+}e^- \approx T(4S) 0.006 ± 0.010 35 40 PERUZZI 77 MRK1 ^{+}e^- \approx 3.77 GeV • • • We do not use the following data for overages, fits, limits, etc. • • • • 0.064 + 0.015 0.014 80.011 8 41 AGUILAR 87F HYBR ^{+}e^- \approx 7 Cu 230 GeV$	be 0.78 ± 0.48 nb. We use the $\Gamma(K^0 \rho^+)/\Gamma(K^0 \pi^+ \pi^0)$ $0.68 \pm 0.08 \pm 0.12$ $\Gamma(K^*(892)^0 \pi^+)/\Gamma(K^0 \pi^+ \pi^0)$ Unseen decay modes of the VALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(K^0 \pi^+ \pi^0 \text{ nonresonant})/\Gamma(K^0 \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ 0.064 ± 0.011 OUR FIT $0.058 \pm 0.012 \pm 0.012$ 0.04 ± 0.016 0.034 ± 0.016 0.034 ± 0.016 0.045 ± 0	DOCUMENT ID ADLER O) K* (892) O are int DOCUMENT ID ADLER (K* # # * 0) DOCUMENT ID ADLER DOCUMENT ID ADLER COFFMAN Ing data for average 43 AGUILAR BALTRUSAIT BARLAG 92C cor F*) DOCUMENT ID ANJOS	## RECN Value ## TECN ## TECN ## TECN ## TECN ## TECN ## TECN ## POSS #	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 : $COMMENT$ $e^+e^- 3.77$ GeV Γ_{76}/Γ_4 $COMMENT$ $e^+e^- 3.77$ GeV Γ_{45}/Γ_4 $COMMENT$ $e^+e^- 3.77$ GeV Γ_{46}/Γ_4 $COMMENT$ $E^+e^- 3.77$ GeV $E^- COMMENT$ $E^+e^- 3.77$ GeV $E^- COMMENT$ $E^- CU 230$ GeV
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 375 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. $17(K^0\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to K^0\pi^+$ that $\Gamma(D^+ \to K^0\pi^+) = 2\Gamma(D^+ \to K^0\pi^+)$; it is the latter Γ that is actually measured. BIGI 95 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. WALUE EVTS DOCUMENT ID TECN COMMENT 10.32 ± 0.04 OUR AVERAGE Error includes scale factor of 1.4. 0.32 ± 0.04 OUR AVERAGE 10.274 ± 0.030 ± 0.031 264 ANJOS 90 C E691 Photoproduction 37 See BISHAI 97 for an isospin analysis of $D^+ \to K^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^$	be 0.78 ± 0.48 nb. We use the $\Gamma(K^0 \rho^+)/\Gamma(K^0 \pi^+ \pi^0)$ $0.68 \pm 0.08 \pm 0.12$ $\Gamma(K^\bullet(892)^0 \pi^+)/\Gamma(K^0 \pi^+ \pi^0)$ Unseen decay modes of the VALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(K^0 \pi^+ \pi^0 \text{ nonresonant})/\Gamma(K^0 \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ 0.064 ± 0.011 OUR FIT $0.058 \pm 0.012 \pm 0.012$ 0.04 ± 0.016 0.034 ± 0.0	DOCUMENT ID ADLER O) K* (892) O are int DOCUMENT ID ADLER (K* \(\pi \) \(\pi \) \(\pi \) ADLER DOCUMENT ID ADLER DOCUMENT ID ADLER COFFMAN Ig data for averag 43 BARLAG 43 AGUILAR BALTRUSAIT BARLAG 92C cor T* \(\) DOCUMENT ID ANJOS Ig data for averag	## B8C) value ## TECN ## RK3 ## TECN ## TECN ## TECN ## PACCM ## PACCM ## B7 MRK3 ## TECN ## PACCM ## PAC	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt \[\text{F43/\Gamma}{\Gamma}\\ \text{COMMENT} \\ \text{e^+ e^- 3.77 GeV} \\ \text{F46/\Gamma}{\Gamma}\\ \text{COMMENT} \\ \text{e^+ e^- 3.77 GeV} \\ \text{F46/\Gamma}{\Gamma}\\ \text{COMMENT} \\ \text{e^+ e^- 3.77 GeV} \\ \text{F46/\Gamma}{\Gamma}\\ \text{cOMMENT} \\ \text{e^+ e^- 3.77 GeV} \\ \text{tc. \cdot \cdot \cdot} \] \(\pi = 0.230 \text{ GeV} \\ \pi \text{p, pp 360, 400 GeV} \\ \text{see COFFMAN 92B} \\ \text{nching fraction by topolog} \\ \text{COMMENT} \\ \gamma \text{Be 90-260 GeV} \\ \text{etc. \cdot \cdot \cdot} \]
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 375 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 7 ($\overline{K^0}\pi^+$)/ $\Gamma(K^-\pi^+\pi^+)$ 1 it is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to K_0^0\pi^+);$ it is the latter Γ that is actually measured. BIGI 95 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. 1 NALUE 1 OZZ ± 0.04 OUR AVERAGE 1 EVTS 1 DOCUMENT ID 2 COMMENT 2 DOCUMENT ID 3 FECN 2 COMMENT 3 See BISHAI 97 for an isospin analysis of $D^+ \to \overline{K}\pi$ amplitudes. 1 F($K^-\pi^+\pi^+$)/ Γ total 2 VALUE 2 EVTS 2 DOCUMENT ID 3 FECN 3 FECN 3 FECN 4 ANJOS 3 FECN 5 GOMMENT 5 GOMMENT 5 GOMMENT 6 GOMMENT 6 GOMMENT 6 GOMMENT 6 GOMMENT 6 GOMMENT 6 GOMMENT 7 THORATCH IN TECN 6 GOMMENT 7 THORATCH IN THORATCH IN TECN 6 GOMMENT 7 THORATCH IN THORATCH IN TECN 7 THORATCH IN THORATCH IN TECN 7 THORATCH IN THORATCH IN TECN 7 THORATCH IN THO	be 0.78 ± 0.48 nb. We use the $\Gamma(\overline{K^0} \rho^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ NALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(\overline{K^0} (892)^0 \pi^+)/\Gamma(\overline{K^0} \pi^+ \pi^0)$ Unseen decay modes of the NALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(\overline{K^0} \pi^+ \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0 \pi^0 \text{ nonresonant})/\Gamma(\overline{K^0} \pi^+ \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0$	DOCUMENT ID ADLER O ADLER O ADLER O ADLER (KO x + x0) DOCUMENT ID ADLER DOCUMENT ID ADLER COFFMAN ADLER 43 BARLAG 43 AGUILAR BALTRUSAIT BARLAG 92C CON T+) DOCUMENT ID ANJOS ANJOS ANJOS ANJOS ANJOS ANJOS	## 88C) value ## 7ECN ## 87 MRK3 ## MRK3 ## 7ECN ## 87 MRK3 ## 7ECN ## 92B MRK3 ## 92C ACCM ## 87F HYBR ## F ## B6E MRK3 ## mpute the brain ## 7ECN ## 92C E691 ## es, fits, limits ## 89E E691	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 . Γ_{43}/Γ_4 . Γ_{43}/Γ_4 . Γ_{45}/Γ_4 . Γ_{46}/Γ_4 .
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 37 36 PERUZZI 77 MRK1 e^+e^- 3.771 GeV 38 5CHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 \pm 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 \pm 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to \overline{K^0}\pi^+)$ it is the latter Γ that is actually measured. BIG $\frac{1}{9}$ points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. VALUE EVTS DOCUMENT ID 12 COMMENT 13 BISHAI 97 CLE2 $e^+e^- \approx \Gamma(45)$ 0.321 \pm 0.04 OUR AVERAGE Error includes scale factor of 1.4. 0.348 \pm 0.024 \pm 0.022 473 37 BISHAI 97 CLE2 $e^+e^- \approx \Gamma(45)$ 0.274 \pm 0.030 \pm 0.031 264 ANJOS 90c E691 Photoproduction 37 See BISHAI 97 for an isospin analysis of $D^+ \to \overline{K}\pi$ amplitudes. $\Gamma(K^-\pi^+\pi^+)/\Gamma_{\text{total}}$ VALUE EVTS DOCUMENT ID 1ECN COMMENT 1.091 \pm 0.007 OUR AVERAGE 0.093 \pm 0.006 \pm 0.008 1502 38 BALEST 94 CLE2 $e^+e^- \approx \Gamma(45)$ 0.091 \pm 0.019 0.091 \pm 0.019 239 39 SCHINDLER 81 MRK2 $e^+e^- \approx 7$ (45) 0.091 \pm 0.019 0.091 \pm 0.010 85 40 PERUZZI 77 MRK1 $e^+e^- \approx 7$ 77 MRK1 $e^+e^- \approx 7$ 77 DeV 0.064 \pm 0.015 41 BARLAG 92C ACCM π^- Cu 230 GeV 0.064 \pm 0.014 0.063 \pm 0.028 18 BALEST 94 measures the ratio of $D^+ \to K^-\pi^+\pi^+$ and $D^0 \to K^-\pi^+$ branching fractions to be 2.35 \pm 0.16 \pm 0.16 and uses their absolute measurement of the $D^0 \to K^-\pi^+$ fraction (AKERIB 93).	be 0.78 ± 0.48 nb. We use the $\Gamma(K^0 \rho^+)/\Gamma(K^0 \pi^+ \pi^0)$ $0.68 \pm 0.08 \pm 0.12$ $\Gamma(K^\bullet(892)^0 \pi^+)/\Gamma(K^0 \pi^+ \pi^0)$ Unseen decay modes of the VALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(K^0 \pi^+ \pi^0 \text{ nonresonant})/\Gamma(K^0 \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ 0.064 ± 0.011 OUR FIT $0.058 \pm 0.012 \pm 0.012$ 0.04 ± 0.016 0.034 ± 0.0	DOCUMENT ID ADLER O) K* (892) O are int DOCUMENT ID ADLER (K* \(\pi \) \(\pi \) \(\pi \) ADLER DOCUMENT ID ADLER DOCUMENT ID ADLER COFFMAN Ig data for averag 43 BARLAG 43 AGUILAR BALTRUSAIT BARLAG 92C cor T* \(\) DOCUMENT ID ANJOS Ig data for averag	## 88C) value ## 7ECN ## 87 MRK3 ## MRK3 ## 7ECN ## 87 MRK3 ## 7ECN ## 92B MRK3 ## 92C ACCM ## 87F HYBR ## F ## B6E MRK3 ## mpute the brain ## 7ECN ## 92C E691 ## es, fits, limits ## 89E E691	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt \[\text{F43/\Gamma}{\Gamma}\\ \text{COMMENT} \\ \text{e^+ e^- 3.77 GeV} \\ \text{F46/\Gamma}{\Gamma}\\ \text{COMMENT} \\ \text{e^+ e^- 3.77 GeV} \\ \text{F46/\Gamma}{\Gamma}\\ \text{COMMENT} \\ \text{e^+ e^- 3.77 GeV} \\ \text{F46/\Gamma}{\Gamma}\\ \text{cOMMENT} \\ \text{e^+ e^- 3.77 GeV} \\ \text{tc. \cdot \cdot \cdot} \] \(\pi = 0.230 \text{ GeV} \\ \pi \text{p, pp 360, 400 GeV} \\ \text{see COFFMAN 92B} \\ \text{nching fraction by topolog} \\ \text{COMMENT} \\ \gamma \text{Be 90-260 GeV} \\ \text{etc. \cdot \cdot \cdot} \]
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 37 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 7 ($K^0\pi^+$)/ $\Gamma(K^-\pi^+\pi^+)$ 1 it is generally assumed for modes such as $D^+ \to K^0\pi^+$ that $\Gamma(D^+ \to K^0\pi^+) = 2\Gamma(D^+ \to K^0\pi^+)$; it is the latter Γ that is actually measured. BIGI g^+ points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. 7 NALUE 1 EVTS 1 DOCUMENT 1D 1 DOCUMENT 1 O.32 ±0.04 OUR AVERAGE 1 Error includes scale factor of 1.4. 1 O.348 $\pm0.024\pm0.022$ 473 37 BISHAI 97 CLE2 $e^+e^-\approx T(45)$ 1 0.274 $\pm0.030\pm0.031$ 264 ANJOS 90c E691 Photoproduction 37 See BISHAI 97 for an isospin analysis of $D^+ \to K^-\pi$ amplitudes. 7 ($K^-\pi^+\pi^+$)/ $K^-\pi^+$ total 1 NALUE 2 EVTS 2 DOCUMENT 1D 2 DOCUMENT 1D 3 BALEST 3 BALEST 4 CLE2 $e^+e^-\approx T(45)$ 1 O.991 ±0.019 239 39 SCHINDLER 81 MRK2 $e^+e^-\approx T(45)$ 1 O.991 ±0.019 239 39 SCHINDLER 81 MRK2 $e^+e^-\approx T(45)$ 1 O.991 ±0.019 239 39 SCHINDLER 81 MRK2 $e^+e^-\approx T(45)$ 2 O.086 ±0.020 85 40 PERUZZI 77 MRK1 $e^+e^-\approx T$. ToeV 2 O.086 ±0.020 85 40 PERUZZI 77 MRK1 $e^+e^-\approx T$. ToeV 3 BALEST 94 measures the ratio of E^+ ACCUMENT E^+ APP BACCUM E^+ BARLAG 92c ACCM E^- Cu 230 GeV 3 BALEST 94 measures the ratio of E^+ ACCUMENT E^+ APP BACCUM E^- BARLAG 92c ACCM E^- Cu 230 GeV 3 BALEST 94 measures the ratio of E^+ ACCUMENT E^+ BARLAG 92c ACCM E^- Cu 230 GeV 3 BALEST 94 measures the ratio of E^+ ACCUMENT E^- BARLAG 92c ACCM E^- Cu 230 GeV 3 BALEST 94 measures the ratio of E^+ ACCUMENT E^- BARLAG 92c ACCM E^- Cu 230 GeV 3 BALEST 94 measures the ratio of E^+ ACCUMENT E^- BARLAG 92c ACCM E^- BARLAG 93). 3 SCHINDLER 81 (MARK-2) measures E^- ACCTM	be 0.78 ± 0.48 nb. We use the $\Gamma(K^0 \rho^+)/\Gamma(K^0 \pi^+ \pi^0)$ VALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(K^* (892)^0 \pi^+)/\Gamma(K^0 \pi^+ \pi^0)$ Unseen decay modes of the VALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(K^0 \pi^+ \pi^0 \text{ nonresonant})/\Gamma(K^0 \pi^+ \pi^0)$ $0.13 \pm 0.07 \pm 0.08$ $\Gamma(K^- \pi^+ \pi^+ \pi^0)/\Gamma_{\text{total}}$ VALUE 0.064 ± 0.011 OUR FIT $0.058 \pm 0.012 \pm 0.012$ • • We do not use the followin $0.034^+0.056^ 0.022^+0.047^ 0.006^- \pm 0.004$ $0.063^+0.014^ 0.013^+$ $0.014^ 0.013^+$ $0.012^ 0.013^+$ $0.012^ 0.013^+$ 0.013^+	DOCUMENT ID ADLER DOCUMENT ID ADLER ADLER (KO \(\pi + \pi^0\)) ADLER DOCUMENT ID ADLER DOCUMENT ID ADLER COFFMAN AN AGUILAR BALTRUSAIT BARLAG 92C cor (r+) DOCUMENT ID ANJOS ANJOS AGUILAR	## 88C) value ## 7ECN ## 87 MRK3 ## MRK3 ## 7ECN ## 87 MRK3 ## 7ECN ## 92B MRK3 ## 92C ACCM ## 87F HYBR ## F ## B6E MRK3 ## mpute the brain ## 7ECN ## 92C E691 ## es, fits, limits ## 89E E691	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 COMMENT $e^+e^- 3.77$ GeV Γ_{76}/Γ_4 COMMENT $e^+e^- 3.77$ GeV Γ_{45}/Γ_4 COMMENT $e^+e^- 3.77$ GeV Γ_{46}/Γ_4 COMMENT $e^+e^- 3.77$ GeV Γ_{46}/Γ_4 COMMENT Γ_{46}/Γ_4 Γ_{46}/Γ_5 COMMENT Γ_{46}/Γ_5 Γ_{46}/Γ_5 COMMENT
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 37 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.03 nb. We use the MARK-3 (ADLER 88C) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma=4.2\pm0.6\pm0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to K^0_0\pi^+)$; it is the latter Γ that is actually measured. BIGI 3 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. **NALUE** EVTS** DOCUMENT ID** TECN** COMMENT** 0.32 ± 0.04 OUR AVERAGE** Error includes scale factor of 1.4. 0.348 ± 0.024 ± 0.022 473 37 BISHAI 97 CLE2 $e^+e^- \approx T(45)$ 0.274 ± 0.030 ± 0.031 264 ANJOS 90c E691 Photoproduction 37 See BISHAI 97 for an isospin analysis of $D^+ \to \overline{K}\pi$ amplitudes. $\Gamma(K^-\pi^+\pi^+)/\Gamma_{\text{total}}$ **NALUE** EVTS** DOCUMENT ID** TECN** COMMENT** 0.091 ± 0.013 ± 0.004 ANTERAGE** 0.093 ± 0.006 OUR FIT** 0.091 ± 0.019 239 39 SCHINDLER 81 MRK2 $e^+e^- \approx T(45)$ 0.091 ± 0.019 239 39 SCHINDLER 81 MRK2 $e^+e^- \approx T(45)$ 0.096 ± 0.019 239 39 SCHINDLER 81 MRK2 $e^+e^- \approx T(45)$ 0.006 ± 0.019 40 ADLER 80 MRK3 $e^+e^- \approx T(45)$ 0.006 ± 0.019 85 40 PERUZZI 77 MRK1 $e^+e^- \approx T(45)$ 0.006 ± 0.010 8 1502 81 BARLAG 92C ACCM π^- Cu 230 GeV • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	be 0.78 ± 0.48 nb. We use the $\Gamma(K^0 \rho^+)/\Gamma(K^0 \pi^+ \pi^0)$ NALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(K^* (892)^0 \pi^+)/\Gamma(K^0 \pi^+ \pi^0)$ Unseen decay modes of the NALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(K^0 \pi^+ \pi^0)$ nonresonant)/ $\Gamma(K^0 \pi^+ \pi^0)$ Notation $\Gamma(K^0 \pi^+ \pi^0)$ Notation $\Gamma(K^0 \pi^+ \pi^0)$ Notation $\Gamma(K^0 \pi^+ \pi^0)$ nonresonant)/ $\Gamma(K^0 \pi^+ \pi^0)$ nonresonant)/ $\Gamma(K^0 \pi^+ \pi^0)$ Notation $\Gamma(K^0 \pi^0)$ Notation $\Gamma($	DOCUMENT ID ADLER DOCUMENT ID ADLER (KO \(\pi + \pi 0\)) ADLER DOCUMENT ID ADLER DOCUMENT ID ADLER DOCUMENT ID ADLER 43 BARLAG 43 AGUILAR BALTRUSAIT BARLAG 92C cor (r+) DOCUMENT ID ANJOS ANJOS AGUILAR ANJOS AGUILAR ANJOS AGUILAR	## 88C) value ## ## 7ECN ## 87 MRK3 ## MRK3 ## ## ## ## ## ## ## ## ## ## ## ## ##	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 . Γ_{43}/Γ_4 . Γ_{43}/Γ_4 . Γ_{45}/Γ_4 . Γ_{46}/Γ_4 .
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 36 PERUZZI 77 MRK1 e^+e^- 3.771 GeV 375 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^- \to \psi(3770))$ × branching fraction to be 0.14 ± 0.03 nb. We use the MARK-3 (ADLER 88C) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^- \to \psi(3770))$ × branching fraction to be 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma=4.2\pm0.6\pm0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+) = 2\Gamma(D^+ \to K_0^0\pi^+);$ it is the latter Γ that is actually measured. BIGI 95 points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. WALUE $EVTS$ DOCUMENT ID 1ECN COMMENT 0.321 $\pm0.030\pm0.031$ 264 ANJOS 90c E691 Photoproduction 37 See BISHAI 97 for an isospin analysis of $D^+ \to \overline{K}\pi$ amplitudes. $\Gamma(K^-\pi^+\pi^+)/\Gamma_{total}$ VALUE $EVTS$ DOCUMENT ID 1ECN COMMENT 0.093 ±0.000 4 1164 ADLER 88C MRK3 $e^+e^- \approx T(4S)$ 0.091 ±0.007 OUR AVERAGE 0.093 $\pm0.0006\pm0.000$ 1502 38 BALEST 94 CLE2 $e^+e^- \approx T(4S)$ 0.091 $\pm0.013\pm0.000$ 1164 ADLER 88C MRK3 $e^+e^- 3.77$ GeV 0.091 $\pm0.013\pm0.000$ 1164 ADLER 88C MRK3 $e^+e^- 3.77$ GeV 0.091 ±0.019 239 39 SCHINDLER 81 MRK2 $e^+e^- 3.77$ GeV 0.096 ±0.015 41 BARLAG 92C ACCM π^- Cu 230 GeV 0.064 ±0.015 41 BARLAG 92C ACCM π^- Cu 230 GeV 0.064 ±0.015 41 BARLAG 92C ACCM π^- Cu 230 GeV 0.064 ±0.015 41 BARLAG 92C ACCM π^- Cu 230 GeV 0.064 ±0.015 41 BARLAG 92C ACCM π^- Cu 230 GeV 0.064 ±0.015 41 BARLAG 92C ACCM π^- branching fraction to be 0.38 ±0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 0.99 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^- \to \psi(3770))$ × branching fraction to be 0.38 ±0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 0.060 nb. We use the MARK-3 (ADLER 88C) value of $\sigma=4.2\pm0.6\pm0.3$ nb.	be 0.78 ± 0.48 nb. We use the $\Gamma(K^0 \rho^+)/\Gamma(K^0 \pi^+ \pi^0)$ NALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(K^* (892)^0 \pi^+)/\Gamma(K^0 \pi^+ \pi^0)$ Unseen decay modes of the NALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(K^0 \pi^+ \pi^0)$ nonresonant)/ $\Gamma(K^0 \pi^+ \pi^0)$ Notation $\Gamma(K^0 \pi^+ \pi^0)$ nonresonant)/ $\Gamma(K^0 \pi^0)$ nonres	DOCUMENT ID ADLER DOCUMENT ID ADLER (K ⁰ # # # 0) DOCUMENT ID ADLER DOCUMENT ID ADLER DOCUMENT ID ADLER ADLER DOCUMENT ID ADLER BARLAG 43 AGUILAR BALTRUSAIT BARLAG 92C COT T+) DOCUMENT ID ANJOS AGUILAR ANJOS AGUILAR # # # # 0) F K* (892) ⁰ are in	## 88C) value ## 7ECN ## 87 MRK3 ## MRK3 ## 7ECN ## 7ECN ## 87 MRK3 ## 7ECN ## 92B MRK3 ## 87 MRK3 ## 92C ACCM ## ## 87 HYBR ## 92C E691 ## 87 E691 ## 87 HYBR ## 88 HYBR ## 88 HYBR ## Cluded.	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 : Γ_{43}/Γ_4 : Γ_{43}/Γ_4 : Γ_{43}/Γ_4 : Γ_{45}/Γ_4 : Γ_{46}/Γ_4 : Γ_{46}/Γ_5 : Γ_{46}
36 35 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV 37 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.03 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. 36 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^-) + \psi(3770)$) × branching fraction to be 0.14 ± 0.05 nb. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2\pm0.6\pm0.3$ nb. $\Gamma(\overline{K^0}\pi^+)/\Gamma(K^-\pi^+\pi^+)$ It is generally assumed for modes such as $D^+ \to \overline{K^0}\pi^+$ that $\Gamma(D^+ \to \overline{K^0}\pi^+)=2\Gamma(D^+ \to \overline{K^0}\pi^+)=2\Gamma(D^+ \to \overline{K^0}\pi^+)$; it is the latter Γ that is actually measured. BIG \overline{g} points out that interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes, where both occur, could invalidate this assumption by a few percent. VALUE VALUE EVTS DOCUMENT ID 1 TECN COMMENT 1 O.321±0.025 OUR FIT 0.321±0.025 OUR FIT 0.321±0.032 ± 0.04 OUR AVERAGE Error includes scale factor of 1.4. 0.348±0.024±0.022 473 37 BISHAI 97 CLE2 $e^+e^-\approx T(45)$ 0.274±0.030±0.031 264 ANJOS 90c E691 Photoproduction 37 See BISHAI 97 for an isospin analysis of $D^+ \to \overline{K}\pi$ amplitudes. $\Gamma(K^-\pi^+\pi^+)/\Gamma_{total}$ VALUE EVTS DOCUMENT ID 1 TECN COMMENT 1 O.091±0.007 OUR AVERAGE 0.093±0.006±0.008 1502 38 BALEST 94 CLE2 $e^+e^-\approx T(45)$ 0.091±0.013 0.091±0.013 0.091±0.013 164 ADLER 88 MRK3 $e^+e^-3.77$ GeV 0.091±0.019 0.091±0.019 18 ARLAG 92C ACCM π^- Cu 230 GeV • • We do not use the following data for averages, fits, limits, etc. • • • 0.064+0.015 41 BARLAG 92C ACCM π^- Cu 230 GeV • • We do not use the following data for averages, fits, limits, etc. • • • 0.064+0.015 41 BARLAG 92C ACCM π^- Cu 230 GeV • • We do not use the following data for averages, fits, limits, etc. • • • 0.063+0.028 41 BARLAG 92C ACCM π^- Cu 230 GeV • • We do not use the following data for averages, fits, limits, etc. • • • 0.064+0.015 41 BARLAG 92C ACCM π^- Cu 230 GeV • • We do not use the following data for averages, fits, limits, etc. • • • 0.063+0.028 41 BARLAG 92C ACCM π^- Cu 230 GeV • • We do not use	be 0.78 ± 0.48 nb. We use the $\Gamma(K^0 \rho^+)/\Gamma(K^0 \pi^+ \pi^0)$ NALUE $0.68 \pm 0.08 \pm 0.12$ $\Gamma(K^* (892)^0 \pi^+)/\Gamma(K^0 \pi^+ \pi^0)$ Unseen decay modes of the NALUE 0.20 ± 0.06 OUR FIT $0.57 \pm 0.18 \pm 0.18$ $\Gamma(K^0 \pi^+ \pi^0)$ nonresonant)/ $\Gamma(K^0 \pi^+ \pi^0)$ Notation $\Gamma(K^0 \pi^+ \pi^0)$ Notation $\Gamma(K^0 \pi^+ \pi^0)$ Notation $\Gamma(K^0 \pi^+ \pi^0)$ nonresonant)/ $\Gamma(K^0 \pi^+ \pi^0)$ nonresonant)/ $\Gamma(K^0 \pi^+ \pi^0)$ Notation $\Gamma(K^0 \pi^0)$ Notation $\Gamma($	DOCUMENT ID ADLER DOCUMENT ID ADLER (KO \(\pi + \pi 0\)) ADLER DOCUMENT ID ADLER DOCUMENT ID ADLER DOCUMENT ID ADLER 43 BARLAG 43 AGUILAR BALTRUSAIT BARLAG 92C cor (r+) DOCUMENT ID ANJOS ANJOS AGUILAR ANJOS AGUILAR ANJOS AGUILAR	## 88C) value ## 7ECN ## 87 MRK3 ## MRK3 ## 7ECN ## 7ECN ## 87 MRK3 ## 7ECN ## 92B MRK3 ## 87 MRK3 ## 92C ACCM ## ## 87 HYBR ## 92C E691 ## 87 E691 ## 87 HYBR ## 88 HYBR ## 88 HYBR ## Cluded.	of $\sigma = 4.2 \pm 0.6 \pm 0.3$ nt Γ_{43}/Γ_4 COMMENT $e^+e^- 3.77$ GeV Γ_{76}/Γ_4 COMMENT $e^+e^- 3.77$ GeV Γ_{45}/Γ_4 COMMENT $e^+e^- 3.77$ GeV Γ_{46}/Γ_4 COMMENT $e^+e^- 3.77$ GeV Γ_{46}/Γ_4 COMMENT Γ_{46}/Γ_4 Γ_{46}/Γ_5 COMMENT Γ_{46}/Γ_5 Γ_{46}/Γ_5 COMMENT

		<u> </u>		$\Gamma(\overline{K}^0\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$	Γ ₇₈ /Γ ₄₆	K+-+-0)	$\Gamma(\overline{K}^*(892)^0 \rho^+ S\text{-wave})/\Gamma($
Γ ₅₅ /	COMMENT	<u>TECN</u>	DOCUMENT ID	VALUE EVTS 0.070±0.009 OUR FIT	,	$\overline{K}^*(892)^0$ are included. The tw	
				0.071 ±0.016 OUR AVERAGE	COMMENT		VALUE
	e ⁺ e ⁻ 3.77 G		ADLER	$0.066 \pm 0.015 \pm 0.005$ 168			0.26 ±0.25 OUR AVERAGE
. GeV			47 SCHINDLER	0.12 ±0.05 21 • • • We do not use the follow	γ Be 90~260 GeV e^+e^- 3.77 GeV		0.15 ±0.075±0.045 0.833±0.116±0.165
.			48 BARLAG				
	π [—] Cu 230 G			$0.042 + 0.019 \\ -0.017$	Γ ₇₉ /Γ		$\Gamma(\overline{K}^{\bullet}(892)^{0} \rho^{+} P$ -wave)/ Γ_{tc} Unseen decay modes of th
400 GeV	πр, рр 360,	87F HYBR	⁴⁸ AGUILAR	$0.243^{+0.064}_{-0.041} \pm 0.041$ 11	COMMENT		VALUE CL%
				47 SCHINDLER 81 (MARK-2)	γ Be 90-260 GeV		<0.001 90
by topolog	or $\sigma = 4.2 \pm 0$ iching fraction	npute the bran	I BARLAG 92C coi	be 0.51 ± 0.08 nb. We use the AGUILAR-BENITEZ B7F and ical normalization.	, etc. • • • • e ⁺ e ⁻ 3.77 GeV		• • We do not use the followi < 0.005 90
F /F-			- +1	$\Gamma(\overline{K}^0\pi^+\pi^+\pi^-)/\Gamma(K^-\pi^+$	Γ ₈₀ /Γ ₄₆	$(K^{-}\pi^{+}\pi^{+}\pi^{0})$	$\Gamma(\overline{K}^{\bullet}(892)^{0} \rho^{+} D$ -wave)/ $\Gamma($
Γ ₅₅ /Γ ₃₇	COMMENT	TECN	DOCUMENT ID	VALUE EVTS	- 00/ 140		Unseen decay modes of th
				0.78±0.10 OUR FIT	COMMENT	DOCUMENT ID TECN	VALUE
GeV	γBe 90-260 (92C E691	ANJOS	0.77±0.07±0.11 229	γ Be 90-260 GeV).15±0.09±0.045
Γ ₇₄ /Γ ₅₅		ıçluded.	•	$\Gamma(\overline{K^0} a_1(1260)^+)/\Gamma(\overline{K^0} \pi^+)$ Unseen decay modes of the	Г ₈₁ /Г		$\Gamma(\overline{K}^{+}(892)^{0} \rho^{+} D$ -wave long Unseen decay modes of th
	COMMENT	TEÇN	DOCUMENT ID	VALUE	COMMENT	DOCUMENT ID TECN	VALUE CL%
GeV	γBe 90–260 (Error includes scal ANJOS	1.15 ±0.19 OUR AVERAGE 1.66 ±0.28 ±0.40	e ⁺ e ⁻ 3.77 GeV	COFFMAN 92B MRK3	<0.007 90
	e ⁺ e ⁻ 3.77 C		COFFMAN	1.078±0.114±0.140	Γ ₈₃ /Γ ₄₆	$\pi^{+}\pi^{0}$)	$\Gamma(\overline{K}_1(1400)^0\pi^+)/\Gamma(K^-\pi^+)$
F "				$\Gamma(\overline{K}^0 a_2(1320)^+)/\Gamma_{\text{total}}$	20, 10	e $\overline{\mathcal{K}}_1$ (1400) 0 are included.	Unseen decay modes of th
Γ ₇₅ /Γ		ncluded	e an(1320) † arn i	Unseen decay modes of the	COMMENT	DOCUMENT ID TECN	VALUE 0.77 ±0.20 OUR FIT
	COMMENT		e a ₂ (1320) · are i <u>DOCUMENT ID</u>	VALUE CL%	e+e- 3.77 GeV	COFFMAN 92B MRK3	0.77 ±0.20 OOR FIT
GeV	γBe 90-260 (ANJOS	<0.003 90			
			-	• • We do not use the follow	Γ91/Γ46	•	$\Gamma(K^-\rho^+\pi^+\text{total})/\Gamma(K^-\pi^-)$
GeV	e ⁺ e ⁻ 3.77 C	92B MRK3	COFFMAN	<0.008 90	COMMENT	, etc. The next entry gives the DOCUMENT ID TECN	ALUE
Γ ₈₂ /Γ				$\Gamma(\overline{K}_1(1270)^0\pi^+)/\Gamma_{\text{total}}$	γBe 90-260 GeV		0.48±0.13±0.09
				Unseen decay modes of t	Γ ₉₂ /Γ ₄₆	$\pi^{+}\pi^{+}\pi^{0}$	$-(K^-\rho^+\pi^+3\text{-body})/\Gamma(K^-$
GeV	COMMENT γ Be 90-260 (<u>DOCUMENT ID</u> ANJOS	VALUE CL% <0.007 90	COMMENT	DOCUMENT ID TECN	ALUE
0.0					γBe 90-260 GeV		0.17 ±0.06 OUR AVERAGE 0.18 ±0.08 ±0.04
	ell, • • •	es, rits, limits,	ng data for averag	 We do not use the follow 			
GeV	e ⁺ e ⁻ 3.77 G		ng data for averag	<0.011 90	e ⁺ e ⁻ 3.77 GeV		
				<0.011 90	e ⁺ e ⁻ 3.77 GeV	COFFMAN 92B MRK3	$0.159 \pm 0.065 \pm 0.060$
		92B MRK3	COFFMAN		e ⁺ e [−] 3.77 GeV F₈₇/Γ₄₆	COFFMAN 92B MRK3 $(K^-\pi^+\pi^+\pi^0)$	0.159±0.065±0.060 Γ (Κ*(892)⁰ π⁺ π⁰ total)/Γ(
	e ⁺ e ⁻ 3.77 G	92B MRK3 ncluded. TECN	COFFMAN $\in \overline{K}_1$ (1400) 0 are i $rac{DOCUMENT ID}{N}$	<0.011 90 $ \Gamma(\overline{K}_1(1400)^0\pi^+)/\Gamma_{\text{total}} $ Unseen decay modes of the value $\Gamma(K)$	e^+e^- 3.77 GeV	COFFMAN 92B MRKS $(K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries place of the $\widetilde{K}^*(892)^0$ are included	$0.159\pm0.065\pm0.060$ $\Gamma(\overline{K}^*(892)^0\pi^+\pi^0\text{total})/\Gamma(\overline{K}^*(892)^0\rho^-\pi^+\pi^0\text{total})$ This includes $\overline{K}^*(892)^0\rho^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^$
Γ ₈₃ /Ι	e ⁺ e ⁻ 3.77 G	92B MRK3 ncluded. TECN es, fits, limits,	COFFMAN e $\overline{K}_1(1400)^0$ are i $\underline{DOCUMENT\ ID}$ ing data for averag	<0.011 90 $\Gamma(\overline{K}_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the following of the following the	e^+e^- 3.77 GeV	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0$) +, etc. The next two entries place of the $\bar{K}^*(892)^0$ are included occument to recomment to recommend the recommendation of the recommendation.	$\Gamma(K^*(892)^0\pi^+\pi^0\text{total})/\Gamma$ This includes $K^*(892)^0\rho^0$ fraction. Unseen decay moves the second seco
Γ ₈₃ /Γ	e ⁺ e ⁻ 3.77 C	92B MRK3 ncluded. TECN es, fits, limits, 92C E691	COFFMAN e $\overline{K}_1(1400)^0$ are i $\frac{DOCUMENT ID}{100}$ ing data for averag 49 ANJOS	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of ti VALUE CL% • • • We do not use the follow <0.009 90	e^+e^- 3.77 GeV	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries and the $K^*(892)^0$ are included and the second se	0.159 \pm 0.065 \pm 0.060 $\Gamma(K^*(892)^0 \pi^+ \pi^0 \text{total})/\Gamma$ This includes $K^*(892)^0 \rho^-$ fraction. Unseen decay more than 1.05 \pm 0.11 \pm 0.08
Γ ₈₃ /Γ GeV + _π + _π - οι	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90–260 C er the $\overline{K}^0\pi^+$	92B MRK3 ncluded. TECN es, fits, limits, 92C E691 10 π^+ in eith	COFFMAN e $\overline{K}_1(1400)^0$ are in <u>OOCUMENT IO</u> ing data for average 49 ANJOS where for $\overline{K}_1(1400)^0$	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of ti VALUE CL% • • • We do not use the follow <0.009 90 49 ANJOS 92c sees no evid	e^+e^- 3.77 GeV	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries includes of the $K^*(892)^0$ are included to the second of the se	0.159 \pm 0.065 \pm 0.060 $\Gamma(K^*(892)^0 \pi^+ \pi^0 \text{ total})/\Gamma(\Gamma(K^*(892)^0 \mu^+ \pi^0 \text{ total}))/\Gamma(\Gamma(K^*(892)^0 \mu^+ \pi^0 \text{ total})/\Gamma(K^*(892)^0 \pi^+ \pi^0 \text{ 3-body})/\Gamma(K^*(892)^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi$
Γ ₈₃ /Γ GeV + _π + _π - οι	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90–260 C er the $\overline{K}^0\pi^+$	92B MRK3 ncluded. TECN es, fits, limits, 92C E691 10 π^+ in eith	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS ence for $\overline{K}_1(1400)$ ereas COFFMAN	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of ti VALUE CL% • • • We do not use the follow <0.009 90	From the specifically 3-body etc. $ \frac{COMMENT}{\gamma \text{Be } 90-260 \text{ GeV}} $	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries and the $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{ANJOS} 92C E691$ Ftotal $E K^*(892)^0 \text{ are included.}$	0.159 \pm 0.065 \pm 0.060 $\Gamma(K^*(892)^0 \pi^+ \pi^0 \text{ total})/\Gamma(\Gamma)$ This includes $K^*(892)^0 \rho^0$ fraction. Unseen decay move the second secon
FeV + π+ π - οι + branching	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90–260 C er the $\overline{K}^0\pi^+$	92B MRK3 ncluded. TECN es, fits, limits, 92C E691 10 π^+ in eith	COFFMAN e $\overline{K}_1(1400)^0$ are in OOCUMENT 10 ing data for average 49 ANJOS ence for $\overline{K}_1(1400)$ ereas COFFMAN next entry.	<0.011 90 $\Gamma(K_1(1400)^0 \pi^+)/\Gamma_{\text{total}}$ Unseen decay modes of the value of the follows $<0.009 \qquad 90$ $^{49} \text{ ANJOS 92c sees no evid}$ $K^-\pi^+\pi^+\pi^0 \text{ channels, which is the follows of the follows}$ fraction to be large; see the	Fe+e- 3.77 GeV F87/F46 give the specifically 3-body ed. COMMENT 7 Be 90-260 GeV F88/F	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0$) +, etc. The next two entries procument in the following section of the $K^*(892)^0$ are included. ANJOS 92c E691 Fotal $E^*(892)^0$ are included. DOCUMENT ID 1ECN 1ECN 1ECN 1ECN 1ECN 1ECN 1ECN 1ECN	0.159 \pm 0.065 \pm 0.060 $\Gamma(K^*(892)^0 \pi^+ \pi^0 \text{ total})/\Gamma(K^*(892)^0 \rho^+ \pi^0 \text{ total})/\Gamma(K^*(892)^0 \rho^+ \pi^0 \text{ total})/\Gamma(K^*(892)^0 \rho^+ \pi^0 \text{ 3-body})/\Gamma(K^*(892)^0 \pi^+ \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0$
FeV + π+ π- α + branching	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90–260 C er the $\overline{K}^0\pi^+$	92B MRK3 ncluded. TECN es, fits, limits, 92C E691 0 π+ in eith 92B finds the	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS ence for $\overline{K}_1(1400)$ ereas COFFMAN next entry.	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{\text{total}}$ Unseen decay modes of the value of the follows of the value of the follows of the value of	e ⁺ e ⁻ 3.77 GeV	COFFMAN 928 MRKS $K = \pi + \pi + \pi^{0}$ +, etc. The next two entries y des of the $\overline{K}^{*}(892)^{0}$ are includ DOCUMENT 10 ANJOS 92c E691 Ftotal $E^{*}(892)^{0}$ are included. DOCUMENT 10 TECN and data for averages, fits, limits	0.159 \pm 0.065 \pm 0.060 $\Gamma(K^{\bullet}(892)^{0}\pi^{+}\pi^{0} \text{ total})/\Gamma$ This includes $K^{\bullet}(892)^{0}\rho$ fraction. Unseen decay move that $E^{\bullet}(892)^{0}\pi^{+}\pi^{0}$ 3-body)/ Unseen decay modes of the total t
FeV + π+ π- α + branching	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90–260 C er the $\overline{K}^0\pi^+$	92B MRK3 ncluded. TECN es, fits, limits, 92C E691 0 π+ in eith 92B finds the	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS ence for $\overline{K}_1(1400)$ ereas COFFMAN next entry.	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{\text{total}}$ Unseen decay modes of the street of the s	Fig. 6. e^+e^- 3.77 GeV F87/ Γ 46 F87/ Γ 46 F87/ Γ 46 F89/ Γ 46 F88/ Γ 4 COMMENT T88, Γ 5 Γ 68/ Γ 6 Γ 68/ Γ 6 Γ 68/ Γ 6 Γ 68/ Γ 7 Γ 68/ Γ 7 Γ 68/ Γ 7	COFFMAN 928 MRKS K-\pi+\pi+\pi+\pi+\pi +, etc. The next two entries processed in the two entries of the two entries processed in th	$(K^{\bullet}(892)^{0}\pi^{+}\pi^{0}\text{ total})/\Gamma$ This includes $K^{\bullet}(892)^{0}\rho$ fraction. Unseen decay modes of the following series
GeV + + + + - 0 + branching F83/F55	e+e- 3.77 C COMMENT etc. • • • γ Be 90-260 Ger the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 \(\pi + \) in eith 92B finds the ncluded. TECN	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS ence for $\overline{K}_1(1400)$ ereas COFFMAN next entry. in $\pi^+\pi^-$ e $\overline{K}_1(1400)^0$ are in	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{\text{total}}$ Unseen decay modes of the value of the follows of the value of the follows of the value of	From Early GeV From Early GeV From Early 3-body ed. COMMENT γ Be 90–260 GeV From Early GeV γ Be 90–260 GeV From Early GeV In this channel.	COFFMAN 928 MRK: $K - \pi + \pi + \pi^0$) +, etc. The next two entries induced of the $K^*(892)^0$ are included. ANJOS 92C E691 Fotal e $K^*(892)^0$ are included. DOCUMENT ID TECN ng data for averages, fits, limits 45 COFFMAN 92B MRK: ANJOS 92C sees a large signal	$(K^*(892)^0\pi^+\pi^0\text{total})/\Gamma$ This includes $K^*(892)^0\rho^0$ fraction. Unseen decay model. Unseen decay models of the MALUE $(2.\%)$ Unseen decay models of the MALUE $(2.\%)$ (3.008) (3.008) (4.5) See, however, the next entry
GeV + + + - 0 + branching F83/F55	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90-260 G er the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 \(\pi + \) in eith 92B finds the ncluded. TECN	COFFMAN e $\overline{K}_1(1400)^0$ are in OCCUMENT ID ing data for average 49 ANJOS ence for $\overline{K}_1(1400)$ ereas COFFMAN next entry. $(\pi^+\pi^-)$ e $\overline{K}_1(1400)^0$ are in OCCUMENT ID	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{\text{total}}$ Unseen decay modes of the value of κ^-	Fig. 6. e^+e^- 3.77 GeV F87/ Γ 46 F87/ Γ 46 F87/ Γ 46 F89/ Γ 46 F88/ Γ 4 COMMENT T88, Γ 5 Γ 68/ Γ 6 Γ 68/ Γ 6 Γ 68/ Γ 6 Γ 68/ Γ 7 Γ 68/ Γ 7 Γ 68/ Γ 7	COFFMAN 928 MRK: $K - \pi + \pi + \pi^0$) +, etc. The next two entries induced of the $K^*(892)^0$ are included. POCUMENT 10 TECN ANJOS 92C E691 Fotal E $K^*(892)^0$ are included. POCUMENT 10 TECN ng data for averages, fits, limits 45 COFFMAN 92B MRK: ANJOS 92C sees a large signa $\Gamma(K - \pi + \pi + \pi^0)$	$(K^*(892)^0\pi^+\pi^0\text{total})/\Gamma$ This includes $K^*(892)^0\rho^0$ fraction. Unseen decay model. Unseen decay models of the MALUE $(2.\%)$ Unseen decay models of the MALUE $(2.\%)$ (3.008) (3.008) (4.5) See, however, the next entry
GeV + + + + - 0 + branching F83/F55	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90-260 G er the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$	92B MRK3 ncluded. TECN es, fits, limits, 92C E691 0 π+ in eith 92B finds the ncluded. TECN 92B MRK3	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS ence for $\overline{K}_1(1400)$ ereas COFFMAN next entry. $(\pi + \pi^-)$ e $\overline{K}_1(1400)^0$ are in DOCUMENT ID COFFMAN	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{\text{total}}$ Unseen decay modes of the value of the	Fig. 6. e^+e^- 3.77 GeV F87/ Γ 46 F87/ Γ 46 F88/ Γ F88/ Γ COMMENT , etc. • • • e^+e^- 3.77 GeV In this channel. F88/ Γ 46	COFFMAN 928 MRK: K-\pi+\pi+\pi+\pi^0) +, etc. The next two entries processes of the \(\tilde{K}^*(892)^0\) are included. \(\tilde{DOCUMENT ID}\) Focument ID Tech g data for averages, fits, limits 45 COFFMAN 928 MRK: ANJOS 92C sees a large signa F(K-\pi+\pi+\pi^0) e \(\tilde{K}^*(892)^0\) are included. \(\tilde{DOCUMENT ID}\) TECH TEC	1.159 \pm 0.065 \pm 0.060 ($K^*(892)^0\pi^+\pi^0$ total)/ Γ (This includes $K^*(892)^0\rho^0$ fraction. Unseen decay mode of the second
GeV + _ + + o + branching F83/F55 GeV	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90–260 Ger the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 \(\pi + \) in eith 92B finds the ncluded. TECN 92B MRK3 ncluded. TECN	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS ence for $\overline{K}_1(1400)$ ereas COFFMAN next entry. $(\pi + \pi^-)$ e $\overline{K}_1(1400)^0$ are in DOCUMENT ID COFFMAN	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{\text{total}}$ Unseen decay modes of the value of κ^-	Fraction of the second section of the specifically 3-body ed. COMMENT	COFFMAN 928 MRK: $K - \pi + \pi + \pi^{0}$) +, etc. The next two entries the soft the $K^{*}(892)^{0}$ are included. DOCUMENT ID ANJOS 92C E691 Fotal E $K^{*}(892)^{0}$ are included. DOCUMENT ID TECN and gdata for averages, fits, limits 45 COFFMAN 92B MRK: ANJOS 92C sees a large signal F $(K - \pi + \pi + \pi^{0})$ E $K^{*}(892)^{0}$ are included. DOCUMENT ID TECN ANJOS 92C E691	1.159 \pm 0.065 \pm 0.060 (K*(892) ⁰ π + π ⁰ total)/ Γ (This includes K*(892) ⁰ ρ fraction. Unseen decay model. 1.05 \pm 0.11 \pm 0.08 (K*(892) ⁰ π + π ⁰ 3-body)/ Unseen decay modes of the second secon
GeV + ** + ** - * o ** branching F83/\(\Gamma_{55}\)	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90-260 Ger the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 \(\pi + \) in eith 92B finds the ncluded. TECN 92B MRK3 ncluded. TECN	COFFMAN e $\overline{K}_1(1400)^0$ are in OCCUMENT ID ing data for average 49 ANJOS ereas COFFMAN next entry. if $\pi^+\pi^-$) e $\overline{K}_1(1400)^0$ are in OCCUMENT ID COFFMAN e $\overline{K}^*(1410)^0$ are in OCCUMENT ID	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the second of the seco	Fig. 6. e^+e^- 3.77 GeV F87/ Γ 46 F87/ Γ 46 F88/ Γ F88/ Γ COMMENT , etc. • • • e^+e^- 3.77 GeV In this channel. F88/ Γ 46	COFFMAN 928 MRK: $K - \pi + \pi + \pi^{0})$ +, etc. The next two entries in the second of the $K^{*}(892)^{0}$ are included. $\frac{DOCUMENT ID}{ANJOS} 92C E691$ Fotal e $K^{*}(892)^{0}$ are included. $\frac{DOCUMENT ID}{ANJOS} 100$ ng data for averages, fits, limits 45 COFFMAN 928 MRK: ANJOS 92C sees a large signal $\Gamma(K - \pi + \pi + \pi^{0})$ e $K^{*}(892)^{0}$ are included. $\frac{DOCUMENT ID}{ANJOS} 92C E691$ $K^{*}(892)^{0}$ ANJOS 92C E691	1.159 \pm 0.065 \pm 0.060 (K*(892)° π + π ° total)/ Γ (This includes K*(892)° ρ ' fraction. Unseen decay mode. 1.05 \pm 0.11 \pm 0.08 (K*(892)° π + π ° 3-body)/ Unseen decay modes of the second seco
GeV + + + + - 0 + branching GeV GeV GeV GeV	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90–260 Ger the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 \(\pi + \) in eith 92B finds the ncluded. TECN 92B MRK3 ncluded. TECN	e $\overline{K}_1(1400)^0$ are in OCCUMENT ID TO THE TO TH	<0.011 90 $\Gamma(\overline{K}_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the second of the s	From this channel. Far/F46	COFFMAN 928 MRK: $K - \pi + \pi + \pi^0$) +, etc. The next two entries induction of the $K^*(892)^0$ are included. POCUMENT ID TECN ANJOS 92C E691 Total E $K^*(892)^0$ are included. POCUMENT ID TECN ng data for averages, fits, limits 45 COFFMAN 928 MRK: ANJOS 92C sees a large signa $K^*(892)^0$ are included. POCUMENT ID TECN ANJOS 92C E691 $K^*(892)^0$ are included. POCUMENT ID TECN ANJOS 92C E691 $K^*(892)^0$ are included.	2.159±0.065±0.060 - (K^* (892) $^0\pi^+\pi^0$ total) / Γ (
GeV + _ + + o + branching F83/F55 GeV	e^+e^- 3.77 G COMMENT etc. • • • γ Be 90–260 Ger the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 π+ in eith 92B finds the ncluded. TECN 92B MRK3 ncluded. TECN 92B MRK3	COFFMAN e $\overline{K}_1(1400)^0$ are in OCCUMENT ID ing data for average 49 ANJOS ince for $\overline{K}_1(1400)$ ereas COFFMAN next entry. if $\pi^+\pi^-$ COFFMAN e $\overline{K}^*(1410)^0$ are in DOCCUMENT ID COFFMAN f $\overline{K}^*(1410)^0$ are in DOCCUMENT ID COFFMAN	<0.011 90 $\Gamma(\overline{K}_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the value of the follow considers of the value of the follow considers of the value of the follow considers of the value of the value of the follow considers of the value of the value of the follow considers of the value of	From the specifically 3-body etc. $ \frac{COMMENT}{\gamma \text{ Be 90-260 GeV}} $ Fig. 17 GeV $ \frac{COMMENT}{\gamma \text{ Be 90-260 GeV}} $ The specifically 3-body etc. $ \frac{COMMENT}{\gamma \text{ Be 90-260 GeV}} $ Fig. 17 GeV In this channel. Fig. 188/Fig. 18	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries indes of the $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ reconsides $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ reconsides $K^*(892)^0$ are included. $\frac{45}{DOCUMENT ID}$ reconsides $K^*(892)^0$ are included. $\frac{45}{DOCUMENT ID}$ reconsides $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$	$(K^*(892)^0\pi^+\pi^0\text{total})/\Gamma$ This includes $K^*(892)^0\rho^0$ fraction. Unseen decay mode. In this includes $K^*(892)^0\rho^0$ fraction. Unseen decay mode. In this includes $K^*(892)^0\rho^0$ Unseen decay modes of the interval of this include of the interval of the interv
GeV + + + + + branchin, GeV F84/f	e^+e^- 3.77 G COMMENT etc. • • • γ Be 90–260 Ger the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G COMMENT e^+e^- 3.77 G	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 π+ in eith 92B finds the ncluded. TECN 92B MRK3 ncluded. TECN 92B MRK3	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS erice for $\overline{K}_1(1400)$ are in DOCUMENT ID COFFMAN e $\overline{K}^*(1410)^0$ are in DOCUMENT ID COFFMAN f $\overline{K}^0\pi^+\pi^+\pi^-$ e $\overline{K}^*(1410)^0$ are in DOCUMENT ID COFFMAN	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the value of the value of the follow consistency of the value of the val	e^+e^- 3.77 GeV	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries indes of the $\overline{K}^*(892)^0$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 Fotal $E K^*(892)^0 \text{ are included.}$ $\frac{DOCUMENT ID}{DOCUMENT ID}$ recompleted in the second of the included. $\frac{45 \text{ COFFMAN}}{ANJOS}$ 92c Sees a large signa $F(K^-\pi^+\pi^+\pi^0)$ $E K^*(892)^0 \text{ are included.}$ $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 $/\Gamma(K^-\pi^+\pi^+\pi^0)$ e K*(892) are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ recompleted included.	1.159 \pm 0.065 \pm 0.060 ($K^*(892)^0\pi^+\pi^0$ total)/ Γ (This includes $K^*(892)^0\rho^+$ fraction. Unseen decay models of the second secon
GeV + + +	e^+e^- 3.77 G COMMENT etc. • • • γ Be 90–260 Ger the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G COMMENT e^+e^- 3.77 G	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 π+ in eith 92B finds the ncluded. TECN 92B MRK3 ncluded. TECN 92B MRK3	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS erice for $\overline{K}_1(1400)$ are in DOCUMENT ID COFFMAN e $\overline{K}^*(1410)^0$ are in DOCUMENT ID COFFMAN f $\overline{K}^0\pi^+\pi^+\pi^-$ e $\overline{K}^*(1410)^0$ are in DOCUMENT ID COFFMAN	Co.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the value of the follows of the value of the follows of the value of th	F87/ Γ 46 give the specifically 3-body ed. COMMENT $ \gamma \text{Be } 90-260 \text{ GeV} $ F88/ Γ COMMENT $ e^+e^- 3.77 \text{ GeV} $ In this channel. F88/ Γ 46 COMMENT $ \gamma \text{Be } 90-260 \text{ GeV} $ F90/ Γ 46 COMMENT $ \gamma \text{Be } 90-260 \text{ GeV} $ F90/ Γ 46 COMMENT $ \gamma \text{Be } 90-260 \text{ GeV} $	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries in the property of the $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 Fotal e $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ reconsider a page signal of the property o	1.159 \pm 0.065 \pm 0.060 $(K^*(892)^0\pi^+\pi^0 \text{ total})/\Gamma($ This includes $K^*(892)^0\rho^-$ fraction. Unseen decay mode of the second of the secon
GeV + ** + * - c c + branchin, F83 / F55 GeV F84 / F55	e^+e^- 3.77 G COMMENT etc. • • • γ Be 90–260 Ger the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G COMMENT etc. • • •	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 π+ in eith 92B finds the ncluded. TECN 92B MRK3 ncluded. TECN 92B MRK3	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS ence for $\overline{K}_1(1400)$ are in DOCUMENT ID COFFMAN e $\overline{K}^*(1410)^0$ are in DOCUMENT ID COFFMAN ($\overline{K}^0\pi^+\pi^+\pi^-$) e $K^*(892)^-$ are in DOCUMENT ID ing data for average ALEEV	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the value of the follows of the value of the follows of the value of th	e^+e^- 3.77 GeV	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries induced of the $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ 15 total $E K^*(892)^0$ are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ 16 and a for averages, fits, limits are included. $\frac{45}{COFFMAN}$ 17 MRK: ANJOS 92C sees a large signal $F(K^-\pi^+\pi^+\pi^0)$ 18 EK*(892)0 are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ 17 ECN $\frac{TECN}{DOCUMENT ID}$ 18 Under the included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ 19 ECN $\frac{TECN}{DOCUMENT ID}$ 19 ECN $\frac{TECN}{DOCUMENT ID}$ 19 TECN $\frac{TECN}{DOCUMENT ID}$ 10 TECN $\frac{TECN}{TOTAL}$ 10 TECN $\frac{TECN}{TOTAL}$ 11 TOTAL	$(K^*(892)^0\pi^+\pi^0\text{total})/\Gamma$ This includes $K^*(892)^0\pi^+\pi^0\text{total})/\Gamma$ This includes $K^*(892)^0\pi^0$ fraction. Unseen decay model. $(892)^0\pi^+\pi^0$ Unseen decay modes of the series of the s
GeV + ** + * - c c + branchin, F83 / F55 GeV F84 / F55	e^+e^- 3.77 G COMMENT etc. • • • γ Be 90–260 Ger the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G COMMENT etc. • • • πN 20–70 Gev	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 π+ in eith 92B finds the ncluded. TECN 92B MRK3 ncluded. TECN 92B MRK3 ncluded. TECN 92B MRK3	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS ence for $\overline{K}_1(1400)$ are in DOCUMENT ID COFFMAN e $\overline{K}^*(1410)^0$ are in DOCUMENT ID COFFMAN ($\overline{K}^0\pi^+\pi^+\pi^-$) e $\overline{K}^*(1410)^0$ are in DOCUMENT ID COFFMAN ($\overline{K}^0\pi^+\pi^+\pi^-$) e $\overline{K}^*(892)^-$ are in DOCUMENT ID ing data for average ALEEV // Local e $\overline{K}^*(892)^0$ are in Exp.	Co.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the value of the follow co.009 90 $^{49} \text{ ANJOS 92C sees no evid}$ $K^-\pi^+\pi^+\pi^0 channels, with fraction to be large; see the constraint of the large of the constraint of the value of the constraint of the constr$	e^+e^- 3.77 GeV	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries indes of the $\overline{K}^*(892)^0$ are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ reconsides $\overline{K}^*(892)^0$ are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ reconsides $\overline{K}^*(892)^0$ are included. $\frac{45}{DOCUMENT ID}$ reconsides $\overline{K}^*(892)^0$ are included. $\frac{45}{DOCUMENT ID}$ reconsides $\overline{K}^*(892)^0$ are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ reconsideration of 1.1. ANJOS 92C E691	1.159 \pm 0.065 \pm 0.060 $ (K^*(892)^0\pi^+\pi^0 \text{total})/\Gamma(\text{This includes } K^*(892)^0\rho^- \text{fraction. Unseen decay model} $ $ \text{-}(.05\pm0.11\pm0.08) $ $ (K^*(892)^0\pi^+\pi^0 3\text{-body})/ \text{Unseen decay modes of the model} $ $ \text{-}0.008 \qquad 90 $ $ \text{-}45 \text{-See, however, the next entry} $ $ \text{-}(K^*(892)^0\pi^+\pi^0 3\text{-body})/ \text{Unseen decay modes of the model} $ $ \text{-}(.008) \qquad 90 $ $ \text{-}(.008) \qquad$
GeV + *** + ** - c + branchin F83 / F51 GeV F84 / F52	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90-260 C er the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G COMMENT etc. • • • π N 20-70 GeV	92B MRK3 ncluded. 7ECN es, fits, limits, 92c E691 0 π+ in eith 92B finds the ncluded. 7ECN 92B MRK3 ncluded. 7ECN 92B MRK3 ncluded. 7ECN 92B MRK3	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS conce for $\overline{K}_1(1400)$ ereas COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID COFFMAN e $\overline{K}^*(1410)^0$ are in DOCUMENT ID e $\overline{K}^*(892)^0$ are in DOCUMENT ID COFFMAN	(0.011) 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the second of the	e+ e- 3.77 GeV F87/Γ46 give the specifically 3-body ed. COMMENT γBe 90-260 GeV GEMENT γBe 90-260 GeV In this channel. F88/Γ46 COMMENT γBe 90-260 GeV F90/Γ46 COMMENT γBe 90-260 GeV GOMMENT γBe 90-260 GeV GOMMENT γBe 90-260 GeV GOMMENT γBe 90-260 GeV Γ54/Γ GEMENT γBe 90-260 GeV γBe 90-260 GeV	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries indes of the $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ reconsisting and a second seco	1.159 \pm 0.065 \pm 0.060 $ (K^*(892)^0\pi^+\pi^0 \text{total})/\Gamma(\text{This includes } K^*(892)^0\rho^- \text{fraction. Unseen decay model} $ $ \text{-}(.05\pm0.11\pm0.08) $ $ (K^*(892)^0\pi^+\pi^0 3\text{-body})/ \text{Unseen decay modes of the model} $ $ \text{-}0.008 \qquad 90 $ $ \text{-}45 \text{-See, however, the next entry} $ $ \text{-}(K^*(892)^0\pi^+\pi^0 3\text{-body})/ \text{Unseen decay modes of the model} $ $ \text{-}(.008) \qquad 90 $ $ \text{-}(.008) \qquad$
GeV + *** + ** - c + branchin, F83 / F55 GeV F84 / F55 F89 / F55	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90-260 C the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G COMMENT etc. • • • πN 20-70 GeV COMMENT etc. • • •	92B MRK3 ncluded. 7ECN es, fits, limits, 92c E691 0 π+ in eith 92B finds the ncluded. 7ECN 92B MRK3 ncluded. 7ECN 92B MRK3 ncluded. 7ECN 94 BIS2 luded. 7ECN 18ECN 1	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID IN	Co.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the second of the sec	e+e- 3.77 GeV	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries; does of the $\overline{K}^*(892)^0$ are included. $\frac{DOCUMENT ID}{DOCUMENT ID}$ 15 Total E $\overline{K}^*(892)^0$ are included. $\frac{FCN}{DOCUMENT ID}$ 16 ANJOS 926 E691 FOR THE STAND 928 MRK: $\frac{45}{COFFMAN}$ 17 ANJOS 926 E691 FOR THE STAND 928 MRK: $\frac{F(K^-\pi^+\pi^+\pi^0)}{ANJOS}$ 18 EK*(892) are included. $\frac{DOCUMENT ID}{ANJOS}$ 19 EK*(892) are included. $\frac{DOCUMENT ID}{ANJOS}$ 19 E691 TECN UNDOS 920 E691 TOTAL TECN TOTAL 1.159 \pm 0.065 \pm 0.060 $(K^*(892)^0\pi^+\pi^0\text{total})/\Gamma(K^*(892)^0\pi^+\pi^0\text{total})/\Gamma(K^*(892)^0\pi^+\pi^0\text{3-body})/\Gamma(K^*(892)^0\pi^+\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi$	
GeV + _ + _ + o + branching GeV GeV GeV GeV F89/F55	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90-260 C er the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G COMMENT etc. • • • π N 20-70 GeV	92B MRK3 ncluded. 7ECN es, fits, limits, 92c E691 0 π+ in eith 92B finds the ncluded. 7ECN 92B MRK3 ncluded. 7ECN 92B MRK3 ncluded. 7ECN 94 BIS2 luded. 7ECN 18ECN 1	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS conce for $\overline{K}_1(1400)$ ereas COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID COFFMAN e $\overline{K}^*(1410)^0$ are in DOCUMENT ID e $\overline{K}^*(892)^0$ are in DOCUMENT ID COFFMAN	(0.011) 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the second of the	e+ e- 3.77 GeV F87/Γ46 give the specifically 3-body ed. COMMENT γBe 90-260 GeV GEMENT γBe 90-260 GeV In this channel. F88/Γ46 COMMENT γBe 90-260 GeV F90/Γ46 COMMENT γBe 90-260 GeV GOMMENT γBe 90-260 GeV GOMMENT γBe 90-260 GeV GOMMENT γBe 90-260 GeV Γ54/Γ GEMENT γBe 90-260 GeV γBe 90-260 GeV	COFFMAN 928 MRK: $K - \pi + \pi + \pi^{0}$ +, etc. The next two entries indes of the K^{*} (892) ⁰ are included. $\frac{DOCUMENT ID}{DOCUMENT ID} = \frac{TECN}{TECN}$ ANJOS 92C E691 Fotal $E K^{*}$ (892) ⁰ are included. $\frac{DOCUMENT ID}{DOCUMENT ID} = \frac{TECN}{TECN}$ ANJOS 92C sees a large signa $F(K - \pi + \pi + \pi^{0})$ $E K^{*}$ (892) ⁰ are included. $\frac{DOCUMENT ID}{DOCUMENT ID} = \frac{TECN}{TECN}$ ANJOS 92C E691 $F(K - \pi + \pi + \pi^{0})$ $E K^{*}$ (892) are included. $\frac{DOCUMENT ID}{DOCUMENT ID} = \frac{TECN}{TECN}$ udes scale factor of 1.1. ANJOS 92C E691 $F(K - \pi + \pi + \pi^{0})$ and data for averages, fits, limits of ANJOS 92C E691 $F(K - \pi + \pi^{0})$ in g data for averages, fits, limits 46 ANJOS 92C E691 $F(K - \pi + \pi + \pi^{0})$ is signal here, COFFMAN 92B	1.159 \pm 0.065 \pm 0.060 (K*(892) ⁰ π + π ⁰ total)/F(This includes K*(892) ⁰ ρ fraction. Unseen decay model. 1.05 \pm 0.11 \pm 0.08 (K*(892) ⁰ π + π ⁰ 3-body)/ Unseen decay modes of the second
GeV + _ + _ + o + branching GeV GeV GeV GeV F89/F55	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90-260 C the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G COMMENT etc. • • • πN 20-70 GeV COMMENT etc. • • •	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 π+ in eith 92B finds the ncluded. TECN 92B MRK3 ncluded. TECN 92B MRK3 ncluded. TECN es, fits, limits, 94 BIS2 studed. TECN 1EQN 1EQN 1EQN 1EQN 1EQN 1EQN 1EQN 1EQ	COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID ing data for average 49 ANJOS ence for $\overline{K}_1(1400)$ ereas COFFMAN e $\overline{K}_1(1400)^0$ are in DOCUMENT ID COFFMAN e $\overline{K}^*(1410)^0$ are in DOCUMENT ID COFFMAN f $\overline{K}^0\pi^+\pi^+\pi^-$ e $K^*(892)^-$ are in DOCUMENT ID ing data for average ALEEV // Total e $\overline{K}^*(892)^0$ are in DOCUMENT ID ing data for average COFFMAN // $(\overline{K}^0\pi^+\pi^+\pi^-)$	Co.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the second of the sec	e+ e- 3.77 GeV F87/Γ46 Give the specifically 3-body ed. COMMENT γBe 90-260 GeV F88/Γ46 COMMENT γBe 90-260 GeV F90/Γ46 COMMENT γBe 90-260 GeV F90/Γ46 COMMENT γBe 90-260 GeV F90/Γ46 COMMENT γBe 90-260 GeV F34/Γ γBe 90-260 GeV F34/Γ γBe 90-260 GeV F34/Γ γBe 90-260 GeV F34/Γ γBe 90-260 GeV γBe 90	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries in the property of the $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 Fotal E $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92b MRK: 45 COFFMAN 92b MRK: ANJOS 92c sees a large signal $F(K^-\pi^+\pi^+\pi^0)$ E $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ e $K^*(892)^-$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ e $K^*(892)^-$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ e $K^*(892)^-$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ in gotata for averages, fits, limits 46 ANJOS 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ in gotata for averages, fits, limits 46 ANJOS 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ in signal here, COFFMAN 92B	0.159 \pm 0.065 \pm 0.060 $(K^*(892)^0\pi^+\pi^0 \text{ total})/\Gamma$ This includes $K^*(892)^0\rho$ fraction. Unseen decay mode of the second o
GeV + x + x - 0 + branching F83/F55 GeV F84/F GeV F89/F55	e^+e^- 3.77 C COMMENT etc. • • • γ Be 90-260 C the $\overline{K}^0\pi^+$ $\overline{K}_1(1400)^0\pi^+$ COMMENT e^+e^- 3.77 G COMMENT etc. • • • πN 20-70 GeV COMMENT etc. • • •	92B MRK3 ncluded. TECN es, fits, limits, 92c E691 0 π+ in eith 92B finds the ncluded. TECN 92B MRK3 ncluded. TECN 92B MRK3 cluded. TECN es, fits, limits, 94 BIS2 cluded. TECN sty, limits, 92B MRK3	COFFMAN E K 1 (1400) ⁰ are in DOCUMENT ID TO STANDARD TO STANDA	<0.011 90 $\Gamma(K_1(1400)^0\pi^+)/\Gamma_{total}$ Unseen decay modes of the second of the seco	e+ e- 3.77 GeV F87/Γ46 give the specifically 3-body ed. COMMENT γ Be 90-260 GeV F88/Γ46 COMMENT γ Be 90-260 GeV F90/Γ46 COMMENT γ Be 90-260 GeV F90/Γ46 COMMENT γ Be 90-260 GeV γ Be 90-260	COFFMAN 928 MRK: $K^-\pi^+\pi^+\pi^0)$ +, etc. The next two entries in the property of the $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 Fotal E $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92b MRK: 45 COFFMAN 92b MRK: ANJOS 92c sees a large signal $F(K^-\pi^+\pi^+\pi^0)$ E $K^*(892)^0$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ e $K^*(892)^-$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ e $K^*(892)^-$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ e $K^*(892)^-$ are included. $\frac{DOCUMENT ID}{ANJOS}$ 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ in gotata for averages, fits, limits 46 ANJOS 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ in gotata for averages, fits, limits 46 ANJOS 92c E691 $F(K^-\pi^+\pi^+\pi^0)$ in signal here, COFFMAN 92B	0.159 \pm 0.065 \pm 0.060 (K*(892) ⁰ π + π ⁰ total)/[(This includes K*(892) ⁰ ρ fraction. Unseen decay modes of the MALUE 0.05 \pm 0.11 \pm 0.08 (K*(892) ⁰ π + π ⁰ 3-body)/ Unseen decay modes of the MALUE 1.05 \pm 0.08 90 45 See, however, the next entry (Nesen decay modes of the MALUE 0.66 \pm 0.09 \pm 0.17 (K*(892) ⁰ π + π ⁰ 3-body)/ Unseen decay modes of the MALUE 0.66 \pm 0.09 \pm 0.17 (K*(892) ⁻ π + π +3-body) Unseen decay modes of the MALUE 0.24 \pm 0.12 \pm 0.09 (K*(892) ⁻ π + π +3-body) (NALUE) 0.24 \pm 0.12 \pm 0.09 (K*(892) ⁻ π + π +3-body) (O.002 90 46 Whereas ANJOS 92C finds in the next entry. (K*(π + π + π ⁰ nonresonant walue (K*(π + π + π) (K*(π + π + π) (K*(π - π + π + π) (K*(π - π) (K*(π - π + π) (K*(π - π) (K*(π - π + π) (K*(π - π) (K*(π - π + π) (K*(π - π) (K*(π - π + π) (K*(π - π)

	['] Γ (Κ⁰π+π ^{{0} a ₁ (1260) [∤]	†. The next two	entries give t	he specifically	Γ₉₃/Γ₅₅ 3-body reac-	Γ(K ⁰ π ⁺ π ⁺ π ⁻ π ⁰)/	EVTS	DOCUMENT ID	<u>TECN</u>	COMMENT	Г ₆₉ /
tion. VALUE	<u>CL%</u>	DOCUMENT ID		COMMENT		0.054 ^{+0.030} _{-0.014} OUR AVE					
0.60±0.10±0.17	90	SOLNA	92C E691	γBe 90-260	GeV	$0.099^{+0.036}_{-0.070}$	52	² BARLAG	92c ACCM	π^- Cu 230 Ge	.V
$(\overline{K}^0 \rho^0 \pi^+ 3\text{-body})$					Г94/Г	$0.044^{+0.052}_{-0.013}\pm0.007$	2 52	² AGUILAR	87F HYBR	πρ, ρρ 360, 40	00 GeV
	the followin	DOCUMENT ID g data for average COFFMAN	es, fits, limits			⁵² AGUILAR-BENITEZ ical normalization.	87F and BA	ARLAG 92C com	oute the bran	nching fraction b	y topolo
			328 MIKKS	e e 3.11	GeV	Γ(Κ 0 π ⁺ π ⁺ π ⁺ π ⁻ π	−)/Γ _{total}				Γ ₇₀ ,
$(K^0 \rho^0 \pi^+ 3\text{-body})$)/Γ(<i>K</i> ºπ¹		TECH	COMMENT	Г ₉₄ /Г ₅₅	VALUE		DOCUMENT ID BARLAG		COMMENT	
.07±0.04±0.06		<u>DOCUMENT ID</u> ANJOS	92c E691	<u>COMMENT</u> γ Be 90-260	GeV	0.0008 ± 0.0007 53 BARLAG 92c compu				π^{-} Cu 230 Ge ical normalizatio	
$(K^0 f_0(980)\pi^+)/$	F _{total}				Γ ₉₅ /Γ	Γ (Κ -π+π+π+π-π					Γ ₇₁
ALUE	<u>CL%</u>	DOCUMENT ID				VALUE		DOCUMENT ID	TECN	COMMENT	
<0.005	90	SOLNA	92c E691	γBe 90-260	GeV	0.0020±0.0018		⁴ BARLAG		π Cu 230 Ge	
¯(<i>Κ</i> ⁰π+π+π− no	nresonant)/Γ (Κ⁰π+π+ :	π)		Γ ₆₁ /Γ ₅₅	54 BARLAG 92c compu	tes the bran	nching fraction u	sing topologi	ical normalizatio	n.
VALUE D.12±0.06 OUR AVI	ERAGE	DOCUMENT ID	TECN	COMMENT		Γ(Κ ⁰ Κ ⁰ κ +)/Γ(κ -	π ⁺ π ⁺)				Γ_{72}/Γ_{1}
0.10±0.04 ±0.06		ANJOS		γBe 90-260		<u>VALUE</u> 0.20±0.09 OUR AVERA	<u>EVTS</u> GE Error	DOCUMENT ID includes scale far	tor of 2.4.	COMMENT	
$0.17 \pm 0.056 \pm 0.100$		COFFMAN	92B MRK3	e ⁺ e ⁻ 3.77	GeV	$0.14 \pm 0.04 \pm 0.02$	39	ALBRECHT	94ı ARG	e^+e^-pprox 10 Ge	
Γ(K ⁻ π ⁺ π ⁺ π ⁻	-)/F _{total}				Γ ₆₂ /Γ	0.34 ± 0.07	70	AMMAR	91 CLEO	$e^+e^-\approx 10.5$	GeV
ALUE		DOCUMENT ID	TECN	COMMENT				Pionic mode	s 		
	the followin	g data for average	es, fits, limits	, etc. • • •		$\Gamma(\pi^+\pi^0)/\Gamma(K^-\pi^+\pi^0)$	r+)			1	Γ ₁₀₀ /Γ
$0.0037 + 0.0012 \\ -0.0010$		⁵⁰ BARLAG	92c ACCM	π Cu 230	GeV	VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
50 BARLAG 920 com	putes the b	ranching fraction	using topolog	ical normaliza	tion.	$0.028 \pm 0.006 \pm 0.005$	34	SELEN	93 CLE2	$e^+e^-\approx \Upsilon(4)$	5)
Γ(K ⁻ π ⁺ π ⁺ π ⁻	-)/[(K-:	r+++)			Γ ₆₂ /Γ ₃₇	$\Gamma(\pi^+\pi^+\pi^-)/\Gamma(K^-$	$\pi^{+}\pi^{+}$)			1	Γ ₁₀₁ /Γ:
VALUE	<u>EVTS</u>	DOÇUMENT ID	TECN	COMMENT	. 02/ . 3/	VALUE	EVTS	DOCUMENT ID	TECN		
).080±0.009 OUR FI).083±0.009 OUR A\						0.0406±0.0034 OUR FI 0.0403±0.0035 OUR AV					
0.077 ± 0.008 ± 0.010	239	FRABETTI	97C E687	γ Be, $\overline{E}_{\gamma} \approx$	200 GeV	0.043 ±0.003 ±0.003	236	FRABETTI	97D E687	γ Be ≈ 200 G	GeV
.09 ±0.01 ±0.01	113	ANJO5	90D E691	Photoproduc		0.032 ±0.011 ±0.003	20			π = 340 GeV	
-(K*(892) ⁰ π+π+	\ /F/ <i>\</i>	·+ _+	-1		F /F	$0.035 \pm 0.007 \pm 0.003$ $0.042 \pm 0.016 \pm 0.010$	57	ANJOS BALTRUSAIT	89 E691 85E MRK3	Photoproducti 3 e^+e^- 3.77 G	
		ボ・オ・オ・オ 			Γ ₉₆ /Γ ₆₂					_	
ALUE		DOCUMENT ID	TECN	COMMENT		$\Gamma(\rho^0\pi^+)/\Gamma(\pi^+\pi^+\pi^+)$	_)	DOCUMENT ID	TECH		102/ 1
1.1 ±0.4 OUR FIT 1.25±0.12±0.23	Error inclu	ides scale factor o ANJOS	of 1.8. 90D E691	Photoproduc	*ion	0.289 ± 0.055 ± 0.058	55	FRABETTI		<u>COMMENT</u> γ Be ≈ 200 G	ieV
			900 6091	riiotoproduc	tion	55 FRABETTI 970 also				•	
Γ(Κ *(892) ⁰ ρ ⁰ π ⁺)					Γ ₉₇ /Γ ₃₇	resulting decay fract	ons are not	statistically sign	ificant.		
Unseen decay m	nodes of the	K*(892)0 are inc		COMMENT		$\Gamma(\rho^0\pi^+)/\Gamma(K^-\pi^+)$	r+)			•	Γ ₁₀₂ /Γ
				COMMENT		VALUE	<u>c1%</u>	DOCUMENT ID	TECN	COMMENT	
0.032 ^{+0.019} OUR FI	II Error in					• • We do not use th	-	-			
0.023±0.010±0.006		FRABETTI	97C E687	γ Be, $\overline{E}_{\gamma} \approx$	200 GeV	<0.015	90	ANJOS	89 E691	Photoproduction	חנ
					Γ_{97}/Γ_{96}	$\Gamma(\pi^+\pi^+\pi^-)$ nonreso	+\ /F/a	r+ +)		_	103/F ₁₀
$\Gamma(\overline{K}^*(892)^0 \rho^0 \pi^+)$)/F(<i>K*</i> (89	12) ⁰ π ⁺ π ⁺ π ⁻)	1				manity/i (x	·		ī	
VALUE		DOCUMENT ID	<u>TECN</u>	COMMENT		VALUE		DOCUMENT ID	TECN	COMMENT	
VALUE		DOCUMENT ID	<u>TECN</u>	COMMENT		,	``	•			ieV
0.36 +0.24 OUR FIT		DOCUMENT ID	of 1.8.	<u>COMMENT</u>		VALUE 0.62 ±0.11 OUR FIT 0.589±0.105±0.081 56 FRABETTI 97D also	56 includes f	DOCUMENT ID FRABETTI $(2(1270)\pi^{+})$ and	97D E687 f ₀ (980)π ⁺	γ Be \approx 200 G	
0.36 + 0.24 OUR FIT 0.75 ± 0.17 ± 0.19	Error inclu	DOCUMENT ID udes scale factor of ANJOS	of 1.8. 900 E691		ction	VALUE 0.62 ±0.11 OUR FIT 0.589±0.105±0.081	56 includes f	DOCUMENT ID FRABETTI $(2(1270)\pi^{+})$ and	97D E687 f ₀ (980)π ⁺	γ Be \approx 200 G	
0.36 + 0.24 OUR FIT 0.75 ± 0.17 ± 0.19 (K* (892) ⁰ π + π +	Error inclu π^- no- ρ)	DOCUMENT ID udes scale factor of ANJOS $/\Gamma(K^-\pi^+\pi^+)$	of 1.8. 900 E691			VALUE 0.62 \pm 0.11 OUR FIT 0.589 \pm 0.105 \pm 0.081 56 FRABETTI 97D also resulting decay fract $\Gamma(\pi^{+}\pi^{+}\pi^{-} \text{ nonreso})$	56 o includes f	DOCUMENT ID FRABETTI $ \begin{pmatrix} (1270) \pi^{+} & \text{and} \\ \text{statistically sign} \\ \mathbf{K}^{-} \pi^{+} \pi^{+} \end{pmatrix} $	97D E687 f ₀ (980)π ⁺	γ Be \approx 200 G modes in the fi	it, but t
0.36 $^{+0.24}_{-0.20}$ OUR FIT 0.75 \pm 0.17 \pm 0.19 $\Gamma(\overline{K}^{\circ}(892)^{0}\pi^{+}\pi^{+}$ Unseen decay Π_{VALUE}	Error inclu π^- no- ρ)	DOCUMENT ID udes scale factor of ANJOS	of 1.8. 90D E691 cluded.	Photoproduc	F98/F37	0.62 ±0.11 OUR FIT 0.589±0.105±0.081 56 FRABETTI 97D also resulting decay fract Γ(π+π+π- nonreso ναιυε	56 o includes f	$\frac{DOCUMENT\ ID}{6}$ FRABETTI $_2(1270)\pi^+$ and statistically sign	97D E687 f ₀ (980)π ⁺	γ Be \approx 200 G modes in the fi	
0.36 $^{+0.24}_{-0.20}$ OUR FIT 0.75 \pm 0.17 \pm 0.19 Γ (K^{+} (892) 0 π $^{+}$ π $^{+}$ Unseen decay IN CALUE 0.048 \pm 0.015 \pm 0.011	Error inclu π^- no- $ ho$),	DOCUMENT ID Ides scale factor of ANJOS $/\Gamma(K^-\pi^+\pi^+)$ $\overline{K}^*(892)^0$ are in DOCUMENT ID FRABETTI	7 TECN of 1.8. 90D E691 cluded.	Photoproduc	F98/F37	VALUE 0.62 \pm 0.11 OUR FIT 0.589 \pm 0.105 \pm 0.081 56 FRABETTI 97D also resulting decay fract $\Gamma(\pi^{+}\pi^{+}\pi^{-} \text{ nonreso})$	56 o includes f	DOCUMENT ID FRABETTI $ \begin{pmatrix} (1270) \pi^{+} & \text{and} \\ \text{statistically sign} \\ \mathbf{K}^{-} \pi^{+} \pi^{+} \end{pmatrix} $	97D E687 f ₀ (980) π ⁺ ificant.	$COMMENT$ γ Be ≈ 200 G modes in the fi	it, but t Γ ₁₀₃ /Γ
10.36 + 0.24 OUR FIT 0.75 ± 0.17 ± 0.19 Γ(K* (892) 0 π + π + Unseen decay in value 0.048 ± 0.015 ± 0.011	Error inclu π^- no- $ ho$),	DOCUMENT ID Ides scale factor of ANJOS /\(\(\begin{align*} \pi - \pi + \pi + \end{align*}\) \(\tilde{K} - \pi + \pi + \pi + \end{align*}\) \(\tilde{K} - \pi + \pi	of 1.8. 900 E691 cluded. 97C E687	Photoproduc	F98/F37	0.62 ±0.11 OUR FIT 0.589±0.105±0.081 56 FRABETTI 97D also resulting decay fract Γ(π+π+π- nonreso MALUE 0.025±0.005 OUR FIT 0.027±0.007±0.002	56 includes frions are not	DOCUMENT ID FRABETTI $(1270)\pi^{+}$ and statistically sign $(1270)\pi^{-}$	97D E687 f ₀ (980) π ⁺ ificant.	$_{\gamma}$ Be ≈ 200 G modes in the fi	it, but t Γ <u>103</u> /Γ:
$VALUE = 0.048 \pm 0.015 \pm 0.011$ $\Gamma(K^+ \rho^0 \pi^+ \pi^+) / \Gamma_{VALUE}$	Error inclu π^- no- $ ho$),	DOCUMENT ID	7ECN of 1.8. 900 E691 cluded. 7ECN 97C E687	Photoproduct $\frac{\textit{COMMENT}}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx \frac{\textit{COMMENT}}{\gamma \textit{COMMENT}}$	F ₉₈ /F ₃₇ 200 GeV F ₆₆ /F ₃₇	0.62 ±0.11 OUR FIT 0.589 ±0.105 ±0.081 56 FRABETTI 97b als resulting decay fract $\Gamma(\pi^+\pi^+\pi^- \text{ nonreso})$ Δευε 0.025 ±0.005 OUR FIT 0.027 ±0.002 $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma_{to}$ Δευε	56 includes frions are not	DOCUMENT ID FRABETTI $(1270)\pi^{+}$ and statistically sign $(1270)\pi^{-}$	97D E687 f _D (980) π ⁺ ificant. TECN 89 E691	$_{\gamma}$ Be ≈ 200 G modes in the fi	it, but t
2.36 $^{+0.24}_{-0.20}$ OUR FIT 2.75 \pm 0.17 \pm 0.19 Γ (K* (892) 0 π + π + Unseen decay in 2.048 \pm 0.015 \pm 0.011 Γ (K* ρ 0 π + π +)/ Γ VALUE	Error inclu π^- no- $ ho$),	DOCUMENT ID Ides scale factor of ANJOS /\(\(\begin{align*} \pi - \pi + \pi + \end{align*}\) \(\tilde{K} - \pi + \pi + \pi + \end{align*}\) \(\tilde{K} - \pi + \pi	of 1.8. 900 E691 cluded. 97C E687	Photoproduc $\frac{\textit{COMMENT}}{\gamma \text{Be, } E_{\gamma}} \approx$ $\frac{\textit{COMMENT}}{\gamma \text{COMMENT}}$	F ₉₈ /F ₃₇ 200 GeV F ₆₆ /F ₃₇	0.62 ±0.11 OUR FIT 0.589 ±0.105 ±0.081 56 FRABETTI 97b als resulting decay fract $\Gamma(\pi^+\pi^+\pi^- \text{ nonreso})$ Δευε 0.025 ±0.005 OUR FIT 0.027 ±0.002 $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma_{to}$ Δευε	56 includes finant)/Γ(f	DOCUMENT ID FRABETTI (1270) # and statistically sign (-####) DOCUMENT ID ANJOS	97D E687 f _D (980) π ⁺ ilficant. TECN 89 E691 TECN	γ Be ≈ 200 G modes in the final comment.	it, but t \[\begin{align*} \Gamma_{104} \end{align*} \]
2.36 $^{+0.24}_{-0.20}$ OUR FIT 0.75 $^{\pm0.17}_{-0.20}$ Our FIT OLD	Error includes π^- no- ρ), nodes of the	DOCUMENT ID DOCUMENT ID DOCUMENT ID FRABETTI DOCUMENT ID FRABETTI	of 1.8. 900 E691 cluded. 970 E687 970 E687	Photoproduct $\frac{\textit{COMMENT}}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx \frac{\textit{COMMENT}}{\gamma \textit{COMMENT}}$	F ₉₈ /F ₃₇ 200 GeV F ₆₆ /F ₃₇	0.62 ±0.11 OUR FIT 0.589±0.105±0.081 56 FRABETTI 97b also resulting decay fract $\Gamma(\pi^{+}\pi^{+}\pi^{-} \text{ nonreso})$ $\frac{VALUE}{0.025±0.005 \text{ OUR FIT}}$ 0.027±0.007±0.002 $\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma_{to}$ $\frac{VALUE}{0.019±0.012}$	56 p includes frions are not innant)/F(/	DOCUMENT ID 6 FRABETTI 2(1270) \(\pi^+\) and statistically sign \(\mathbb{K}^-\pi^+\pi^+\) \(\phi^-\) ANJOS \(\text{DOCUMENT ID}\) 7 BARLAG	97D E687 f _D (980) π ⁺ ifficant. TECN 89 E691 TECN 92C ACCM	$ comment $ $ \gamma \text{ Be } \approx 200 \text{ G} $ modes in the fi $ comment $ Photoproduction $ comment $ $ a$ $ a$ $ comment $ $ a$ $ a$ $ comment $ $ a$	T103/Γ: on F104/
2.36 $^{+0.24}$ OUR FIT 0.26 $^{+0.24}$ OUR FIT 0.75 $^{+0.17}$ ±0.19 (K*(892) 0 π + π + Unseen decay in walue 0.048 $^{+0.015}$ ±0.011 (K* $^{-0}$ 0.034 $^{+0.009}$ ±0.005 (K* $^{-0.034}$ ±0.009 $^{+0.005}$	Error inclu $\pi^- \text{ no-} \rho),$ nodes of the $\Gamma(K^- \pi^+ \pi^- \text{ nonresor})$	DOCUMENT ID ANJOS IT (K- \pi + \pi +) IT * (892) \(^0\) are in DOCUMENT ID FRABETTI FRABETTI POCUMENT ID FRABETTI THABETTI THABETTI	7ECN 900 E691 cluded. 970 E687 970 E687 970 E687	Photoproduct $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx$ $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx$ $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx$	15tion Γ98/Γ37 200 GeV Γ66/Γ37 200 GeV Γ67/Γ37	0.62 ±0.11 OUR FIT 0.589 ±0.105 ±0.081 56 FRABETTI 97D also resulting decay fract $\Gamma(\pi^+\pi^+\pi^- \text{ nonreso})$ ΔΑUΕ 0.025 ±0.005 OUR FIT 0.027 ±0.007 ±0.002 $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma_{to}$ ΔΑLUE 0.019 +0.015 57 BARLAG 92C computations	50 includes f. ions are not innant)/\(\(\rho\rho\rho\rho\rho\rho\rho\rho\rho\rho	DOCUMENT ID 6 FRABETTI $(2(1270)\pi^{+})$ and $(2(1270)\pi^{+})$ ANJOS DOCUMENT ID 7 BARLAG Inching fraction units of the properties of the propert	97D E687 f _D (980) π ⁺ ifficant. TECN 89 E691 TECN 92C ACCM	$COMMENT$ γ Be \approx 200 G modes in the final form $COMMENT$ Photoproduction $COMMENT$ π^- Cu 230 Georgical normalization	Γ103/Γ: on Γ104/ eV
2.36 $^{+0.24}_{-0.20}$ OUR FIT $0.75\pm0.17\pm0.19$ Oursen decay in the contract of the contract	Error includes π^- no- ρ), nodes of the	DOCUMENT ID Ides scale factor of ANJOS IF (K- \pi + \pi +) DOCUMENT ID FRABETTI FRABETTI THOUSE TO THE TO TH	7ECN 900 E691 cluded. 970 E687 970 E687 970 E687	Photoproduct $\frac{\textit{COMMENT}}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx \frac{\textit{COMMENT}}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx$	15tion Γ98/Γ37 200 GeV Γ66/Γ37 200 GeV Γ67/Γ37	0.62 ±0.11 OUR FIT 0.589 ±0.105 ±0.081 56 FRABETTI 97D also resulting decay fract $\Gamma(\pi^{+}\pi^{+}\pi^{-} \text{ nonreso})$ 20.225 ±0.005 OUR FIT 0.027 ±0.007 ±0.002 $\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma_{to}$ 21.225 ±0.012 57 BARLAG 92c computation of the computation of th	550 includes f , since f includes f in f in f includes f in f includes f include	DOCUMENT ID FRABETTI (1270) \(\pi^+\) and statistically sign (-\(\pi^+\pi^+\)) DOCUMENT ID ANJOS DOCUMENT ID BARLAG Inching fraction u	97D E687 f _D (980) π ⁺ ifficant. TECN 89 E691 TECN 92C ACCM sing topolog	$COMMENT$ γ Be ≈ 200 G modes in the final modes in the final mode. $COMMENT$ Photoproduction $COMMENT$ π^- Cu 230 Geometrical model is a compact of the final model.	Γ103/Γ ου Γ104,
ALUE 0.36 $^{+0.24}_{-0.20}$ OUR FIT 0.75 $^{\pm0.17}_{-0.19}$ 0.48 $^{\pm0.015}_{-0.00}$ 0.048 $^{\pm0.015}_{-0.005}$ 0.034 $^{\pm0.009}_{-0.005}$ 0.026	Error inclusion π^- no- ρ), nodes of the π^- nonreson π^- nonreson $\pi^ \pi^	DOCUMENT ID ANJOS IT (K- \pi + \pi +) IT * (892) \(^0\) are in DOCUMENT ID FRABETTI FRABETTI POCUMENT ID FRABETTI THABETTI THABETTI	7ECN 900 E691 cluded. 970 E687 970 E687 970 E687	Photoproduct $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx$ $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx$ $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx$	15tion Γ98/Γ37 200 GeV Γ66/Γ37 200 GeV Γ67/Γ37	0.62 ±0.11 OUR FIT 0.589 ±0.105 ±0.081 56 FRABETTI 97D also resulting decay fract $\Gamma(\pi^+\pi^+\pi^- \text{ nonreso})$ ΔΑUΕ 0.025 ±0.005 OUR FIT 0.027 ±0.007 ±0.002 $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma_{to}$ ΔΑLUE 0.019 +0.015 57 BARLAG 92C computations	55 sincludes f , sincludes f , sincludes f , sincludes f , since f si	DOCUMENT ID 6 FRABETTI 2(1270) \(\pi^+\) and statistically sign \(\mathbb{K}^-\pi^+\pi^+\) \(\mathbb{DOCUMENT ID}\) ANJOS 7 BARLAG Inching fraction u 1 DOCUMENT ID	97D E687 f _D (980) π ⁺ ifficant. TECN 89 E691 TECN 92C ACCM sing topolog	$COMMENT$ γ Be ≈ 200 G modes in the final mode	Γ103/Γ on Γ104/ eV on.
ALUE 0.36 $^{+0.24}_{-0.20}$ OUR FIT 0.75 $^{\pm0.17}_{\pm0.19}$ 0.76 $^{+0.29}_{-0.20}$ our FIT 0.75 $^{\pm0.17}_{\pm0.19}$ 0.048 $^{\pm0.015}_{\pm0.011}$ 0.048 $^{\pm0.015}_{\pm0.009}$ 0.034 $^{\pm0.009}_{\pm0.005}$ 0.048 $^{\pm0.009}_{\pm0.005}$ 0.026 ($K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	Error inclu \[\pi = \pi - \pi - \pi - \pi \] \[\pi \text{(K-\pi + \pi \text{ - nonresor} \\ \frac{c1\pi}{90} \\ \frac{c1\pi}{\text{VIS}} \]	DOCUMENT ID ANJOS IT (K- \pi + \pi +) IT * (892) \(^0\) are in DOCUMENT ID FRABETTI FRABETTI POCUMENT ID FRABETTI THABETTI THABETTI THABETTI	900 E691 cluded. 970 E687 970 E687 970 E687	Photoproduct $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx$ $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx$ $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx$	200 GeV F66/F37 200 GeV F67/F37 200 GeV	0.62 ±0.11 OUR FIT 0.589±0.105±0.081 56 FRABETTI 97b also resulting decay fract $\Gamma(\pi^+\pi^+\pi^- \text{ nonreso})$ ΔΑLUE 0.025±0.005 OUR FIT 0.027±0.007±0.002 $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma_{to}$ ΔΑLUE 0.019±0.015 57 BARLAG 92c computation $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^0)/\Gamma(\pi^0)/\Gamma$	55 sincludes f , sincludes f , sincludes f , sincludes f , since f si	DOCUMENT ID 6 FRABETTI 2(1270) \(\pi^+\) and statistically sign \(\mathbb{K}^-\pi^+\pi^+\) \(\mathbb{DOCUMENT ID}\) ANJOS 7 BARLAG Inching fraction u 1 DOCUMENT ID	97D E687 f _D (980) π ⁺ ifficant. TECN 89 E691 TECN 92C ACCM sing topolog	$COMMENT$ γ Be ≈ 200 G modes in the final mode	Γ ₁₀₃ /Γ on Γ ₁₀₄ /Γ οπ. Γ ₁₀₄ /Γ
ALUE 0.36 $^{+0.24}_{-0.20}$ OUR FIT 0.75 $^{\pm0.17}_{-0.19}$ 0.48 $^{\pm0.015}_{-0.00}$ 0.048 $^{\pm0.015}_{-0.005}$ 0.034 $^{\pm0.009}_{-0.005}$ 0.026	Error inclu \[\pi = \pi - \pi - \pi - \pi \] \[\pi \text{(K-\pi + \pi \text{ - nonresor} \\ \frac{c1\pi}{90} \\ \frac{c1\pi}{\text{VIS}} \]	DOCUMENT ID Ides scale factor of ANJOS / (K- π+ π+) K*(892) ⁰ are inc DOCUMENT ID FRABETTI The DOCUMENT ID FRABETTI THE DOCUMENT ID FRABETTI THE FRABETTI	7ECN 900 E691 cluded. 970 E687 970 E687 970 E687	Photoproduct $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx \frac{COMMENT}{\gamma Be,$	100 GeV Γ66/Γ37 200 GeV Γ67/Γ37 200 GeV Γ68/Γ	0.62 \pm 0.11 OUR FIT 0.589 \pm 0.105 \pm 0.081 56 FRABETTI 97b also resulting decay fract $\Gamma(\pi^+\pi^+\pi^-\text{ nonreso})$ VALUE 0.025 \pm 0.005 OUR FIT 0.027 \pm 0.007 \pm 0.002 $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma_{to}$ VALUE 0.019 \pm 0.012 57 BARLAG 92c computer $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^0)/\Gamma(\pi^0)/\Gamma$	55 pincludes f, fions are not innant)/Γ(f) tal 55 pites the bran (-π+π+) - CL% e following a	DOCUMENT ID 6 FRABETTI 2(1270) \(\pi^+\) and statistically sign \(\mathbb{K}^-\pi^+\pi^+\) DOCUMENT ID ANJOS DOCUMENT ID 7 BARLAG Inching fraction u DOCUMENT ID data for average:	97D E687 f _D (980) π ⁺ ifficant. TECN 89 E691 92c ACCM using topolog TECN 5, fits, limits,	$COMMENT$ γ Be ≈ 200 G modes in the final mode	Γ103/Γ on Γ104 Γ104/Γ on
ALUE 0.36 $^{+}0.24$ OUR FIT 0.75 $\pm 0.17 \pm 0.19$ (K*(892) $^{0}\pi^{+}\pi^{+}$ Unseen decay in 0.048 $\pm 0.015 \pm 0.011$ (K $^{-}\rho^{0}\pi^{+}\pi^{+}$)/[0.034 $\pm 0.009 \pm 0.005$ (K $^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}$ 0.022 $^{+}0.047$	Error includes π^- no- ρ), nodes of the $\Gamma(K^-\pi^+\pi^-$ - nonresor 90 21// Ftotal EVTS 04 1	DOCUMENT ID DOCUMENT ID DOCUMENT ID FRABETTI The DOCUMENT ID FRABETTI THE DOCUMENT ID FRABETTI THE DOCUMENT ID TRABETTI TO DOCUMENT ID TRABETTI TO DOCUMENT ID TRABETTI TO DOCUMENT ID TO DO	7ECN 900 E691 cluded. 97C E687 97C E687 97C E687 97C E687 97C E687	Photoproduct $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx \frac{COMMENT}{\gamma Be,$	100 GeV Γ66/Γ37 200 GeV Γ67/Γ37 200 GeV Γ68/Γ	0.62 ±0.11 OUR FIT 0.589±0.105±0.081 56 FRABETTI 97D also resulting decay fract $\Gamma(\pi^{+}\pi^{+}\pi^{-} \text{ nonreso})$ $\frac{VALUE}{0.025±0.005 \text{ OUR FIT}}$ 0.027±0.007±0.002 $\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma_{to}$ $\frac{VALUE}{0.019+0.015}$ 57 BARLAG 92c computation of the c	55 pincludes f, fions are not innant)/Γ(f) tal 55 pites the bran (-π+π+) - CL% e following a	DOCUMENT ID 6 FRABETTI 2(1270) \(\pi^+\) and statistically sign \(\mathbb{K}^-\pi^+\pi^+\) DOCUMENT ID ANJOS DOCUMENT ID 7 BARLAG Inching fraction u DOCUMENT ID data for average:	97D E687 f _D (980) π ⁺ ifficant. TECN 89 E691 92c ACCM using topolog TECN 5, fits, limits,	$COMMENT$ γ Be ≈ 200 G modes in the final mode	Γ103/Γ on Γ104 Γ104/Γ on
2.04 \times 0.24 OUR FIT 0.75 \pm 0.17 \pm 0.19 \times 0.15 \pm 0.17 \pm 0.19 \times 0.15 \pm 0.011 \times 0.048 \pm 0.015 \pm 0.011 \times 0.048 \pm 0.009 \pm 0.005 \times 0.006 \times 0.006 \times 0.007 \times 0.008 \pm 0.007 \times 0.008 \pm 0.008 \pm 0.008 \pm 0.008 \pm 0.008 \pm 0.008	Error includes π^- no- ρ), nodes of the $\Gamma(K^-\pi^+\pi^-$ - nonresor 90 21// Ftotal EVTS 04 1	DOCUMENT ID DOCUMENT ID DOCUMENT ID FRABETTI The DOCUMENT ID FRABETTI THE DOCUMENT ID FRABETTI THE DOCUMENT ID TRABETTI TO DOCUMENT ID TRABETTI TO DOCUMENT ID TRABETTI TO DOCUMENT ID TO DO	7ECN 900 E691 cluded. 97C E687 97C E687 97C E687 97C E687 97C E687 97C E687	Photoproduct $\frac{COMMENT}{\gamma \text{Be, } \overline{E}_{\gamma}} \approx \frac{COMMENT}{\gamma Be,$	T ₉₈ /Γ ₃₇ 200 GeV Γ ₆₆ /Γ ₃₇ 200 GeV Γ ₆₇ /Γ ₃₇ 200 GeV Γ ₆₈ /Γ 400 GeV 400 GeV	0.62 ±0.11 OUR FIT 0.589 ±0.105 ±0.081 56 FRABETTI 97b also resulting decay fract $\Gamma(\pi^+\pi^+\pi^- \text{ nonreso})$ (2.25 ±0.005 OUR FIT 0.027 ±0.007 ±0.002 $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma_{to}$ (2.12 57 BARLAG 92c computation of the control of the	50 includes f. foins are not to the foins are not	DOCUMENT ID 6 FRABETTI 2 (1270) π^+ and statistically sign $K^-\pi^+\pi^+$) DOCUMENT ID ANJOS DOCUMENT ID 7 BARLAG Inching fraction up DOCUMENT ID data for average: ANJOS	97D E687 f ₀ (980) π + initicant. 89 E691 92c ACCM asing topolog 7ECN 8, fits, limits, 89E E691 7ECN	$COMMENT$ γ Be ≈ 200 G modes in the final mode	Γ ₁₀₃ /Γ on Γ ₁₀₄ /Γ on. Γ ₁₀₄ /Γ on.
$KALUE$ 0.36 $+0.24$ OUR FIT 0.75 $\pm0.17\pm0.19$ 0.76 $+0.20$ OUR FIT 0.75 $\pm0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.776 $+0.19$ 0.776	Error inclu \[\pi = \pi - \pi_0 \], nodes of the \[\pi \text{(K-\pi + \pi} \] \[\pi \text{(K-\pi + \pi} \] \[\pi \text{(N-\pi + \pi)} \] \[\pi \text	DOCUMENT ID Ides scale factor of ANJOS / (K- π+ π+) / K* (892) ⁰ are inc DOCUMENT ID FRABETTI The properties of ANDERTY ID FRABETTI DOCUMENT ID FRABETTI DOCUMENT ID TOCUMENT I	7ECN 900 E691 cluded. 97C E687	Photoproduct $\frac{COMMENT}{\gamma \text{Be, } E_{\gamma}} \approx \frac{COMMENT}{\gamma \text{Be, } $	100 GeV Γ66/Γ37 200 GeV Γ67/Γ37 200 GeV Γ68/Γ 400 GeV	0.62 ±0.11 OUR FIT 0.589±0.105±0.081 56 FRABETTI 97b also resulting decay fract $\Gamma(\pi^+\pi^+\pi^- \text{ nonreso})$ ΔΑLUE 0.025±0.005 OUR FIT 0.027±0.007±0.002 $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma_{to}$ ΔΑLUE 0.19 +0.012 57 BARLAG 92c compute $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^-\pi^-\pi^-\pi^0)/\Gamma(\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	55 pincludes f , finds are not innant)/ $\Gamma(f)$ tal 57 pincludes the brain $(-\pi + \pi + \pi)$ 68 pincludes the brain $(-\pi + \pi)$ 69 pincludes the pincludes the pincludes the brain $(-\pi)$ 69 pincludes the pinclude	DOCUMENT ID 6 FRABETTI 2 (1270) π^+ and statistically sign K— $\pi^+\pi^+$) DOCUMENT ID ANJOS 7 BARLAG Inching fraction u DOCUMENT ID data for average: ANJOS	97D E687 f ₀ (980) π + initicant. 89 E691 92c ACCM asing topolog 7ECN 8, fits, limits, 89E E691 7ECN	$\begin{array}{c} \underline{COMMENT} \\ \gamma \text{ Be } \approx 200 \text{ G} \\ \text{modes in the fi} \\ \\ \underline{COMMENT} \\ \gamma \text{ Photoproduction} \\ \hline \gamma \text{ Comment} \\ \gamma \text{ Comment} \\ \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Photoproduction} \\ \hline \gamma \text{ Comment} \\ \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ comment} \\ \hline \gamma \text{ etc.} \bullet \text{ etc.} \\ \hline \gamma \text{ comment} \\ \hline \gamma \text{ etc.} \bullet \text{ etc.} \\ \hline \gamma \text{ etc.} \bullet \text{ etc.} \\ \hline \gamma \text{ etc.} \bullet \text{ etc.} \\ \hline \gamma \text{ etc.}$	Γ103/Γ on Γ104/ eV on. Γ104/Γ on 109/Γ1
$KALUE$ 0.36 $^{+}0.24$ OUR FIT 0.75 $^{\pm}0.17\pm0.19$ $\Gamma(K^{+}(892)^{0}\pi^{+}\pi^{+}$ Unseen decay in 0.048 $^{\pm}0.015\pm0.011$ $\Gamma(K^{-}\rho^{0}\pi^{+}\pi^{+})/\Gamma$ VALUE 0.034 $^{\pm}0.009\pm0.005$ $\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})$ VALUE 0.022 $^{\pm}0.008$ 0.022 $^{\pm}0.008$ 0.022 $^{\pm}0.008$ 0.020 • • • We do not use <0.015	Error inclu \[\pi = \pi - \pi_0 \], nodes of the \[\pi \text{(K-\pi + \pi} \] \[\pi \text{(K-\pi + \pi} \] \[\pi \text{(N-\pi + \pi)} \] \[\pi \text	DOCUMENT ID Ides scale factor of ANJOS / (K- π+ π+) / K* (892) ⁰ are inc DOCUMENT ID FRABETTI The properties of ANDERTY ID FRABETTI DOCUMENT ID FRABETTI DOCUMENT ID TOCUMENT I	7ECN 900 E691 cluded. 97C E687	Photoproduct $\frac{COMMENT}{\gamma \text{Be, } E_{\gamma}} \approx \frac{COMMENT}{\gamma \text{Be, } $	100 GeV Γ66/Γ37 200 GeV Γ67/Γ37 200 GeV Γ68/Γ 400 GeV	0.62 ±0.11 OUR FIT 0.589±0.105±0.081 56 FRABETTI 97D also resulting decay fract $\Gamma(\pi^{+}\pi^{+}\pi^{-} \text{ nonreso})$ $\frac{VALUE}{0.025±0.005 \text{ OUR FIT}}$ 0.027±0.007±0.002 $\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma_{to}$ $\frac{VALUE}{0.019+0.015}$ 57 BARLAG 92c computes a series of the computer of the compu	55 pincludes f pions are not innant)/ $\Gamma(f)$ tal 51 sutes the bran $K(-\pi^+\pi^+)$ CL% e following f 90 EVTS 275 ++)	DOCUMENT ID 6 FRABETTI 2 (1270) π^+ and statistically sign K- $\pi^+\pi^+$) DOCUMENT ID ANJOS DOCUMENT ID DOCUMENT ID data for average: ANJOS DOCUMENT ID JESSOP	97D E687 f ₀ (980) π + initicant. 89 E691 92c ACCM asing topolog 7ECN 8, fits, limits, 89E E691 7ECN	$\begin{array}{c} \underline{COMMENT} \\ \gamma \text{ Be } \approx 200 \text{ G} \\ \text{modes in the fi} \\ \\ \underline{COMMENT} \\ \gamma \text{ Photoproduction} \\ \hline \gamma \text{ Comment} \\ \gamma \text{ Comment} \\ \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Photoproduction} \\ \hline \gamma \text{ Comment} \\ \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ Comment} \\ \hline \gamma \text{ etc.} \bullet \bullet \bullet \\ \hline \gamma \text{ comment} \\ \hline \gamma \text{ etc.} \bullet \text{ etc.} \\ \hline \gamma \text{ comment} \\ \hline \gamma \text{ etc.} \bullet \text{ etc.} \\ \hline \gamma \text{ etc.} \bullet \text{ etc.} \\ \hline \gamma \text{ etc.} \bullet \text{ etc.} \\ \hline \gamma \text{ etc.}$	Γ103/Γ. On Γ104/Γ. Γ104/Γ. T109/Γ1
$KALUE$ 0.36 $+0.24$ OUR FIT 0.75 $\pm0.17\pm0.19$ 0.76 $+0.20$ OUR FIT 0.75 $\pm0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.776 $+0.19$ 0.776	Error inclu \[\pi = \pi - \pi_0 \], nodes of the \[\pi \text{(K-\pi + \pi} \] \[\pi \text{(K-\pi + \pi} \] \[\pi \text{(N-\pi + \pi)} \] \[\pi \text	DOCUMENT ID Ides scale factor of ANJOS / (K- π+ π+) / K* (892) ⁰ are inc DOCUMENT ID FRABETTI The properties of ANDERTY ID FRABETTI DOCUMENT ID FRABETTI DOCUMENT ID TOCUMENT I	7ECN 900 E691 cluded. 97C E687	Photoproduct $\frac{COMMENT}{\gamma \text{Be, } E_{\gamma}} \approx \frac{COMMENT}{\gamma \text{Be, } $	100 GeV Γ66/Γ37 200 GeV Γ67/Γ37 200 GeV Γ68/Γ 400 GeV	0.62 ±0.11 OUR FIT 0.589 ±0.105 ±0.081 56 FRABETTI 970 also resulting decay fract $\Gamma(\pi^+\pi^+\pi^-\text{ nonreso})$ $\frac{MLUE}{MLUE}$ 0.025 ±0.005 OUR FIT 0.027 ±0.002 $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma_{to}$ $\frac{MLUE}{MLUE}$ 0.019 ±0.015 57 BARLAG 92C complement $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(MLUE)$ • • • We do not use the $<$ 0.4 $\Gamma(\eta\pi^+)/\Gamma(\phi\pi^+)$ $\frac{MLUE}{MLUE}$ 0.49 ±0.08 $\Gamma(\eta\pi^+)/\Gamma(K^-\pi^+\pi^-\pi^0)$ Unseen decay modulue	Sign of the γ of the	DOCUMENT ID 6 FRABETTI 2 (1270) # + and statistically sign K - # + +) DOCUMENT ID ANJOS DOCUMENT ID 7 BARLAG Inching fraction u DOCUMENT ID data for average: ANJOS DOCUMENT ID JESSOP are included. S DOCUMENT	97D E687 f ₀ (980) π ⁺ ifficant. 89 E691 7ECN 92C ACCM using topolog 7ECN 5, fits, limits, 89E E691 7ECN 98 CLE2	$\begin{array}{c} \textit{COMMENT} \\ \gamma \text{ Be } \approx 200 \text{ G} \\ \text{modes in the fill} \\ \hline \textit{COMMENT} \\ \text{Photoproduction} \\ \hline \textit{The Color of the Comment} \\ \text{Photoproduction} \\ $	F103/F on F104/F on F104/F on F109/F1
$KALUE$ 0.36 $+0.24$ OUR FIT 0.75 $\pm0.17\pm0.19$ 0.76 $+0.20$ OUR FIT 0.75 $\pm0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.76 $+0.17\pm0.19$ 0.776 $+0.19$ 0.776	Error inclu \[\pi = \pi - \pi_0 \], nodes of the \[\pi \text{(K-\pi + \pi} \] \[\pi \text{(K-\pi + \pi} \] \[\pi \text{(N-\pi + \pi)} \] \[\pi \text	DOCUMENT ID Ides scale factor of ANJOS / (K- π+ π+) / K* (892) ⁰ are inc DOCUMENT ID FRABETTI The properties of ANDERTY ID FRABETTI DOCUMENT ID FRABETTI 51 AGUILAR Ing data for average 51 BARLAG	7ECN 900 E691 cluded. 97C E687	Photoproduct $\frac{COMMENT}{\gamma \text{Be, } E_{\gamma}} \approx \frac{COMMENT}{\gamma \text{Be, } $	100 GeV Γ66/Γ37 200 GeV Γ67/Γ37 200 GeV Γ68/Γ 400 GeV	0.62 ±0.11 OUR FIT 0.589±0.105±0.081 56 FRABETTI 97D als resulting decay fract $\Gamma(\pi^{+}\pi^{+}\pi^{-} \text{ nonreso})$ $\frac{NLUE}{NLUE}$ 0.025±0.005 OUR FIT 0.027±0.007±0.002 $\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma_{to}$ $\frac{NLUE}{NLUE}$ 0.019 +0.015 57 BARLAG 92c comption $\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{+}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{-}\pi^{0})/\Gamma(M^{-}\pi^{0})/\Gamma($	Sign of the γ of the	DOCUMENT ID 6 FRABETTI 2 (1270) # + and statistically sign K - # + +) DOCUMENT ID ANJOS DOCUMENT ID 7 BARLAG Inching fraction under the statistically sign ANJOS DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID JESSOP are included. S DOCUMENT ID ANJOS	97D E687 f ₀ (980) π ⁺ ifficant. TECN 89 E691 TECN 92c ACCM sing topolog TECN s, fits, limits, 89E E691 98 CLE2 NT ID s, fits, limits,	$\begin{array}{c} \textit{COMMENT} \\ \gamma \text{ Be } \approx 200 \text{ G} \\ \text{modes in the fill} \\ \hline \textit{COMMENT} \\ \text{Photoproduction} \\ \hline \textit{The Color of the Comment} \\ \text{Photoproduction} \\ $	Γ103/Γ Γ104/Γ Γ109/Γ Γ109/Γ Γ109/Γ

										$\frac{D}{}$
Γ(ωπ ⁺)/Γ(Κ ⁻ π Unseen decay	$+\pi^+$) modes of the	ω are included.		Γ ₁₁₁ /Γ ₃₇	Γ(K + K -1	r ⁺)/Γ(Κ ⁻ π ⁺ π ⁺)	DOCUMENT ID	TECN	COMMENT	Γ ₁₁₆ /Γ ₃
ALUE	<u>CL%</u> 90	DOCUMENT ID		COMMENT Photograduation		OUR AVERAGE				
<0.08		ANJUS	89E E691	Photoproduction	0.093 ± 0.01		JUN		Σ nucleus,	
$(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	⁻)/Γ _{total}			Γ ₁₀₇ /Γ	0.0976 ± 0.00	42±0.0046	FRABETTI	95B E687	Dalitz plot an	alysis
• • We do not us	e the followin	DOCUMENT ID g data for averag		etc. • •		$(K^-\pi^+\pi^+)$				Γ_{133}/Γ_{3}
.0010 + 0.0008 - 0.0007		⁵⁸ BARLAG		π ⁻ Cu 230 GeV	Unseer VALUE	decay modes of the	φ are included. DOCUMENT ID	TECN	COMMENT	
					0.068±0.005	OUR AVERAGE	•			-1
⁵⁸ BARLAG 92C co			using topolog		0.058 ± 0.006 0.062 ± 0.017		FRABETTI ADAMOVICH	958 E687 93 WA82	Dalitz plot an π 340 GeV	atysis
-(π+π+π+π-π			IENT ID	Γ ₁₀₇ /Γ ₃₇ TECN COMMENT	0.077 ± 0.011		DAOUDI	92 CLE2	$e^+e^-\approx 10.$	
0.023±0.004±0.0		58 FRABE			0.098 ± 0.032 0.071 ± 0.008 0.084 ± 0.021	3±0.007 84	ALVAREZ ANJOS BALTRUSAIT	90C NA14 88 E691 85E MRK3	Photoproducti Photoproducti e ⁺ e ⁻ 3.77 G	ion
• We do not us		-		, etc. • • •						
<0.019	90	ANJOS	5 89	E691 Photoproduction	• •	392) ⁰)/Γ(<i>K</i> π ⁺ π		-ludad		Γ ₁₃₇ /Γ ₃
$(\eta \rho^+)/\Gamma(\phi \pi^+)$				$\Gamma_{112}/\Gamma_{133}$	<u>VAL UE</u>	n decay modes of the EVTS	DOCUMENT ID	<u>TECN</u>	COMMENT	
Unseen decay ALUE	modes of the <u>CL%</u>	η are included. DOCUMENT ID	TECN	COMMENT		OUR AVERAGE E	rror includes scale 62 FRABETTI	e factor of 1.2 95B E687		nalveie
<1.11	90	JESSOP		$e^+e^-\approx \Upsilon(45)$	$0.044 \pm 0.003 \\ 0.058 \pm 0.009$		ANJOS	88 E691	Photoproduc	tion
$-(\eta \rho^+)/\Gamma(K^-\pi^-)$	+ π ⁺)			Γ ₁₁₂ /Γ ₃₇	0.048 ± 0.021				3 e ⁺ e ⁻ 3.77	
Unseen decay	modes of the	η are included. DOCUMENT ID	TECN	COMMENT	⁶² See FRA Dalitz pl	BETTI 958 for evide ot.	nce also of \overline{K}_0^* (1	.430) ^U K ⁺ ir	the $D^+ \rightarrow $	K ⁺ K ⁻ π
• • We do not us					Γ(K+K-	r+ nonresonant)/[Γ(K-π+π+)			Γ ₁₁₉ /Γ ₃
<0.13	90	DAOUDI	92 CLE2	See JESSOP 98	VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	. 119/. 3
·(π+π+π+π-π	-π ⁰)/Γ _{tot} 2	ı		Γ ₁₀₈ /Γ	0.050±0.009 0.049±0.008	9 OUR AVERAGE 3 ± 0.006 95	ANJOS	88 E691	Photoproduct	ion
ALUE		DOCUMENT IE	TECN_	COMMENT	0.059 ± 0.026				e ⁺ e ⁻ 3.77 C	
.0029 ^{+ 0.0029} - 0.0020		⁵⁹ BARLAG	92C ACCM	π^- Cu 230 GeV	Γ(<i>K</i> *(892)	$+\overline{K}^{0})/\Gamma(\overline{K}^{0}\pi^{+})$				Γ ₁₃₈ /Γ ₃
⁵⁹ BARLAG 92C co		ranching fraction	using topolog	ical normalization.	Unsee	n decay modes of the			COMMENT	
'(η'(958)π ⁺)/Γ				Γ ₁₁₃ /Γ ₁₃₃	<u>VALUE</u> 1.1±0.3±0.	<u>EVTS</u> .4 67	DOCUMENT ID FRABETTI	95 E687	$\gamma \text{ Be } \overline{E}_{\gamma} \approx 20$	00 GeV
Unseen decay ALUE	modes of the EVTS	η'(958) are incluing DOCUMENT ID		COMMENT	-(· ± 0)				. ,	
.82±0.14	126	JESSOP		$e^+e^-\approx \Upsilon(45)$		// total n decay modes of the				Γ ₁₃₄ /
$(\eta'(958)\pi^+)/\Gamma$	$(K^-\pi^+\pi^+)$)		Γ ₁₁₃ /Γ ₃₇	VALUE 0.023±0.01		63 BARLAG		<u>СОММЕНТ</u> 1 π [—] Cu 230 G	ieV
Unseen decay	modes of the	$\eta'(958)$ are inclu				92C computes the br				
/ALUE ■ • We do not us	<u>CL%</u> se the followin	<u>DOCUMENT ID</u> or data for average		etc. • • •		/Γ(K ⁻ π ⁺ π ⁺)	3		,	Γ ₁₃₄ /Γ ₃
<0.1	90	DAOUDI	92 CLE2		Unsee	n decay modes of the	ϕ are included.			134/13
<0.1 <0.13	90 90	ALVAREZ ANJOS	91 NA14 91B E691		VALUE	o not use the following	DOCUMENT ID		COMMENT	
		XIV303	716 E071	γ Be, $\overline{E}_{\gamma} \approx 145 \text{ GeV}$	<0.58	90	ALVAREZ		Photoproduct	tion
$(\eta'(958)\rho^+)/\Gamma$				Γ ₁₁₄ /Γ ₁₃₃	< 0.28	90	ANJOS		Photoproduct	
	modes of the	η' (958) are inclu DOCUMENT ID		COMMENT	Γ(φρ+)/Γ	$(K^-\pi^+\pi^+)$				Γ ₁₃₅ /Γ ₃
<0.86	90			$e^+e^-\approx \Upsilon(45)$	Unsee	n decay modes of the				1337 - 3
Γ(η'(958)ρ+)/Γ	(K+-+	1		Γ ₁₁₄ /Γ ₃₇	<u>∨ALUE</u> <0.16	<u>CL%</u> 90	DAOUDI		$e^+e^-\approx 10$	5 GeV
		η' (958) are incli	uded.	114/13/				72 0122	C C 15 10.	
ALUE	CL%	DOCUMENT ID	TECN_	COMMENT		$\pi^+\pi^0$ non- ϕ) $/\Gamma_{ m tota}$	DOCUMENT ID	TECN	COMMENT	Γ ₁₂₅ /Ι
• • • We do not us	se the followin	g data for averag	_	s, etc. • • • See JESSOP 98	0.015 + 0.00 0.015 + 0.00	7	64 BARLAG		1 π Cu 230 G	ieV
<0.17	-		_							
		nic modes wit	h a <i>K K</i> pai			92C computes the b		using topolog	gicai normanzati	
-(κ+ <i>R</i> 0)/Γ(<i>R</i> 0			0	Γ ₁₁₅ /Γ ₃₆		π ⁺ π ⁰ non-φ)/Γ(<i>K</i>	-π+π+) DOCUMENT ID	TECN	COMMENT	Γ ₁₂₅ /Γ ₃₇
		modes such as D^+ = $2\Gamma(D^+ \rightarrow$		that	<i>valuE</i> • • • We d	o not use the followin				
it is the latter	Γ that is actua	ılly measured. Bl	GI 95 points o	ut that interference between	< 0.25	90	ANJOS		Photoproducti	ion
		y Cabibbo-suppre by a few percent.		es, where both occur, could	r/k+720.	r ⁺ π ⁻)/Γ _{total}				Γ ₁₂₆ /
VALUE	EVTS	DOCUMENT IE		COMMENT	VALUE	// total	DOCUMENT ID	TEÇN	COMMENT	120/
.255±0.029 OUR	FIT	2.0 20m211 IL			<0.02	90	ALBRECHT	92B ARG	$e^+e^-\simeq 10.$.4 GeV
1.263 ± 0.035 OUR 1.25 ± 0.04 ± 0.02		FRABETTI	95 E687	γ Be $\overline{E}_{\gamma}pprox$ 200 GeV	Γ(K ⁰ K	$(r^+\pi^+)/\Gamma_{\text{total}}$				Γ ₁₂₇ /
$.271 \pm 0.065 \pm 0.03$		ANJOS	90c E691	γ Be	VALUE	, , - wall	DOCUMENT ID		COMMENT	
.317 ± 0.086 ± 0.04				3 e ⁺ e ⁻ 3.77 GeV		005±0.003	ALBRECHT	92B ARG	$e^+e^-\simeq 10.$	4 GeV
.25 ±0.15 • • We do not u	6 se the followin			? e ⁺ e [−] 3.771 GeV s, etc. • • •	• • • We d	o not use the followin	g data for average 65 BARLAG		, etc. • • • π Cu 230 G	ieV
0.222±0.041±0.02		60 BISHAI	_	$e^+e^-\approx \Upsilon(45)$		3 92c computes the bi				
⁶⁰ This BISHAI 97	result is redu	ndant with result	ts elsewhere in	the Listings.			=	J - 69		
Γ(K+K0)/Γ(K-	$-\pi^{+}\pi^{+}$)			Γ ₁₁₅ /Γ ₃₇)+ Κ*(892)⁰)/Γ_{toti} n decay modes of the		cluded.		Γ ₁₃₉ /
1,,, ,, ,,,,,,,,						wecay mouce or the	()			
VALUE 0.082 ± 0.010 OUR	EVT\$	DOCUMENT II	D TECN	COMMENT	VALUE		DOCUMENT ID	928 ARG	$\frac{COMMENT}{e^+e^-} \simeq 10.$	

N COMMENT 1 $\pi^- N$ 500 GeV its, etc. • • • 7 γ Be, $E_{\gamma} \approx 220$ GeV its, etc. • • • 7 γ Be, $E_{\gamma} \approx 220$ GeV its, etc. • • • 7 γ Be, $E_{\gamma} \approx 220$ GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 1 $\pi^- N$ 500 GeV its, etc. • • • 2 $\pi^- N$ 500 GeV its, etc. • • •
1 $\pi^- N$ 500 GeV its, etc. • • • 7 γ Be, $\overline{E}_{\gamma} \approx 220$ GeV 1 $\pi^- N$ 500 GeV 3 π^- emulsion 600 GeV K2 e^+e^- 29 GeV 60 e^+e^- 10 GeV 1 by higher-order electrow N COMMENT 1 $\pi^- N$ 500 GeV 7 γ Be, $\overline{E}_{\gamma} \approx 220$ GeV 1 its, etc. • • • K2 e^+e^- 29 GeV N COMMENT 1 $\pi^- N$ 500 GeV 1 $\pi^$
7 γ Be, $\overline{E}_{\gamma} \approx 220$ GeV 1 π^- N 500 GeV 3 π^- emulsion 600 GeV 82 e^+e^- 29 GeV 60 e^+e^- 10 GeV 148 by higher-order electrow N COMMENT 3 π^- emulsion 600 GeV 7 γ Be, $\overline{E}_{\gamma} \approx 220$ GeV 148, etc. •• 8 K2 e^+e^- 29 GeV 151, etc. •• 9 The $\overline{E}_{\gamma} \approx 220$ GeV 152 e^+e^- 29 GeV 153 π^- emulsion 600 GeV 154 π^- N 500 GeV 155, etc. •• 9 π^- 7 Be, $\overline{E}_{\gamma} \approx 220$ GeV 155, etc. •• 9 π^- 220 GeV 156, etc. •• 9 π^- 220 GeV 157 π^- 8 Fe, $\overline{E}_{\gamma} \approx 220$ GeV 158, etc. •• 9 π^- 9 GeV 159 π^- 9 GeV 150 GeV 150 GeV 150 π^- 9 GeV 150 GeV 150 π^- 9 GeV 150 GeV 150 GeV 150 π^- 9 GeV 150 GeV
1 π - N 500 GeV 3 π - emulsion 600 GeV 3 π - emulsion 600 GeV 10 e^+e^- 10 GeV 11 by higher-order electrow 12 N - emulsion 600 GeV 13 π - emulsion 600 GeV 14 π - N 500 GeV 15 π - N 500 GeV 16 π - N 500 GeV 17 π - N 500 GeV 18 π - N 500 GeV 19 π - N 500 GeV 10 π - N 500 GeV 11 π - N 500 GeV 11 π - N 500 GeV 12 π - π - π 500 GeV 13 π - π - π 500 GeV 14 π - π - π 500 GeV 15 π - π - π - π 500 GeV 16 π - π
3 π^- emulsion 600 GeV K2 e^+e^- 29 GeV CO e^+e^- 10 GeV 1 by higher-order electrow N COMMENT 3 π^- emulsion 600 GeV 7 π^- N 500 GeV 7 π^- N 500 GeV 1 π^- P Be, π^- 220 GeV 1 π^- P GeV
K2 e^+e^- 29 GeV e^+e^- 10 GeV T148 d by higher-order electrow $\frac{N}{3}$ π^- emulsion 600 GeV $\frac{N}{7}$ π^- 8500 GeV $\frac{N}{7}$ π^- 8500 GeV $\frac{N}{7}$ π^- 8 500 GeV $\frac{N}{7}$ π^- 8 500 GeV $\frac{N}{7}$ π^- 7 500 GeV $\frac{N}{7}$ π^- 7 500 GeV its, etc. • • • $\frac{N}{7}$ π^- 7 500 GeV its, etc. • • • • $\frac{N}{7}$ π^- 7 500 GeV $\frac{N}{7}$ π^- 8 7 9 GeV $\frac{N}{7}$ π^- 9 9 GeV $\frac{N}{7}$ π^- 9 9 GeV
To e^+e^- 10 GeV Fig. 16 by higher-order electrow N
d by higher-order electrow $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT $\frac{N}{N}$ Soo GeV $\frac{N}{N}$ COMMENT $\frac{N}{N}$ Soo GeV $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT $\frac{N}{N}$ PB, $\frac{N}{N}$ 220 GeV its, etc. • • • $\frac{N}{N}$ COMMENT $\frac{N}{N}$ PB, $\frac{N}{N}$ 220 GeV $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT
d by higher-order electrow $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT $\frac{N}{N}$ Soo GeV $\frac{N}{N}$ COMMENT $\frac{N}{N}$ Soo GeV $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT $\frac{N}{N}$ PB, $\frac{N}{N}$ 220 GeV its, etc. • • • $\frac{N}{N}$ COMMENT $\frac{N}{N}$ PB, $\frac{N}{N}$ 220 GeV $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT $\frac{N}{N}$ COMMENT
$\pi^- \text{ emulsion 600 GeV}$ $\frac{N}{\pi} = \frac{COMMENT}{\pi}$ $1 \pi^- N 500 \text{ GeV}$ $7 \gamma \text{ Be, } E_{\gamma} \approx 220 \text{ GeV}$ its, etc. • • • $K2 e^+ e^- 29 \text{ GeV}$ $\frac{N}{\pi} = \frac{COMMENT}{\pi}$ $1 \pi^- N 500 \text{ GeV}$ its, etc. • • • $7 \gamma \text{ Be, } E_{\gamma} \approx 220 \text{ GeV}$ its, etc. • • • $7 \gamma \text{ Be, } E_{\gamma} \approx 220 \text{ GeV}$ $K2 e^+ e^- 29 \text{ GeV}$ $K2 e^+ e^- 29 \text{ GeV}$
$\pi^- \text{ emulsion 600 GeV}$ $\frac{N}{\pi} = \frac{COMMENT}{\pi}$ $1 \pi^- N 500 \text{ GeV}$ $7 \gamma \text{ Be, } E_{\gamma} \approx 220 \text{ GeV}$ its, etc. • • • $K2 e^+ e^- 29 \text{ GeV}$ $\frac{N}{\pi} = \frac{COMMENT}{\pi}$ $1 \pi^- N 500 \text{ GeV}$ its, etc. • • • $7 \gamma \text{ Be, } E_{\gamma} \approx 220 \text{ GeV}$ its, etc. • • • $7 \gamma \text{ Be, } E_{\gamma} \approx 220 \text{ GeV}$ $K2 e^+ e^- 29 \text{ GeV}$ $K2 e^+ e^- 29 \text{ GeV}$
N COMMENT 1 $\pi^- N$ 500 GeV 7 γ Be, $E_{\gamma} \approx 220$ GeV its, etc. • • • K2 $e^+ e^- 29$ GeV N COMMENT 1 $\pi^- N$ 500 GeV its, etc. • • • 7 γ Be, $E_{\gamma} \approx 220$ GeV its, etc. • • • 8 π^- emulsion 600 GeV K2 $e^+ e^- 29$ GeV
N COMMENT 1 $\pi^- N$ 500 GeV 7 γ Be, $E_{\gamma} \approx 220$ GeV its, etc. • • • K2 $e^+ e^- 29$ GeV N COMMENT 1 $\pi^- N$ 500 GeV its, etc. • • • 7 γ Be, $E_{\gamma} \approx 220$ GeV its, etc. • • • 8 π^- emulsion 600 GeV K2 $e^+ e^- 29$ GeV
7 γ Be, $\overline{E}_{\gamma} \approx 220$ GeV its, etc. • • • K2 e^+e^- 29 GeV $\frac{\Gamma_{150}}{\pi^- N} \frac{COMMENT}{\pi^- N} = 220$ GeV its, etc. • • • 7 γ Be, $\overline{E}_{\gamma} \approx 220$ GeV K2 e^+e^- 29 GeV Γ_{151}
its, etc. • • • • \times K2 e^+e^- 29 GeV F15(N π^- N 500 GeV its, etc. • • • 7 γ Be, $\overline{E}_{\gamma} \approx 220$ GeV 3 π^- emulsion 600 GeV K2 e^+e^- 29 GeV
K2 e^+e^- 29 GeV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
N COMMENT $\pi^- N 500 \text{ GeV}$ its, etc. • • • $7 \gamma \text{ Be}, \overline{E}_{\gamma} \approx 220 \text{ GeV}$ $\kappa^- \text{ emulsion } 600 \text{ GeV}$ $\kappa^- \text{ etc} = 29 \text{ GeV}$ $\kappa^- \text{ COMMENT}$
N COMMENT $\pi^- N 500 \text{ GeV}$ its, etc. • • • $7 \gamma \text{ Be}, \overline{E}_{\gamma} \approx 220 \text{ GeV}$ $\kappa^- \text{ emulsion } 600 \text{ GeV}$ $\kappa^- \text{ etc} = 29 \text{ GeV}$ $\kappa^- \text{ COMMENT}$
1 $\pi^- N$ 500 GeV its, etc. • • • 7 γ Be, $\overline{E}_{\gamma} \approx 220$ GeV 3 π^- emulsion 600 GeV K2 $e^+ e^-$ 29 GeV
its, etc. • • • $ 7 \gamma \text{ Be, } \overline{E}_{\gamma} \approx 220 \text{ GeV} $
3 π emulsion 600 Ge\ K2 e+e- 29 GeV Γ ₁₅₇
K2 e ⁺ e 29 GeV Г ₁₅₇ <u>N СОММЕНТ</u>
Г ₁₅₇ N <u>соммент</u>
N COMMENT
N COMMENT
1 π N 500 GeV
Γ ₁₅₂
N COMMENT
its, etc. • •
7 γ Be, $\overline{E}_{\gamma} \approx 220$ GeV
K2 e ⁺ e 29 GeV
Γ ₁₅₃
N COMMENT nits, etc. • • •
_
7 γ Be, $\overline{E}_{\gamma} \approx 220$ Ge\ K2 e^+e^- 29 GeV
NZ e e Zi dev
Г ₁₅₄
N COMMENT
1 π N 500 GeV
Γ ₁₅₈
N COMMENT
its, etc. • • •
7 γ Be, \overline{E}_{γ} ≈ 220 Ge\
K2 e ⁺ e ⁻ 29 GeV
-
Γ ₁₅₆
N COMMENT
nits, etc. • •
7 γ Be, $\overline{E}_{\gamma} \approx 220$ Ge
K2 e ⁺ e ⁻ 29 GeV
Γ ₁₅ :
W COMMENT
N COMMENT
<u>N COMMENT</u> 1 π N 500 GeV
1 π N 500 GeV
1 π N 500 GeV nits, etc. • • •
1 $\pi^- N$ 500 GeV hits, etc. • • • 17 γ Be, $\overline{E}_{\gamma} \approx$ 220 GeV
1 $\pi^- N$ 500 GeV hits, etc. • • • 17 γ Be, $\overline{E}_{\gamma} \approx$ 220 GeV
79 ::Cm i88 R

 $A_{CP}(\phi\pi^{\pm})$ in $D^{\pm}
ightarrow \phi\pi^{\pm}$

 $+0.066 \pm 0.086$

the ratio of numbers of events observed, and similarly for the D^{-} .

	F _{total}	umber cons	ervation.			Γ ₁₅₈ /Γ
ALUE		EVT5	DOCUMENT ID		TECN	COMMENT
<1.7 × 10 ⁻⁵	90		AITALA	99G	E791	π - N 500 GeV
• • We do not	use th	e following	data for average	es, fits	, limits,	etc. • • •
$< 8.7 \times 10^{-5}$	90		FRABETTI	97B	E687	γ Be, $\overline{\it E}_{\gamma} pprox $ 220 GeV
$< 2.2 \times 10^{-4}$	90	0	KODAMA	95	E653	
$< 6.8 \times 10^{-3}$	90		WEIR	90B	MRK2	e ⁺ e ⁻ 29 GeV
$(\pi^- e^+ \mu^+)/1$						Γ ₁₅₉ /Γ
A test of le	pton-ni	Jmber cons	DOCUMENT ID		TECN	COMMENT
<5.0 × 10 ⁻⁵		90	AITALA		E791	π - N 500 GeV
• We do not	use th					
<1.1 × 10 ⁻⁴		-	FRABETTI		E687	
$< 3.7 \times 10^{-3}$		90	WEIR			e ⁺ e ⁻ 29 GeV
$(\rho^-\mu^+\mu^+)/1$	г	,,,				Γ ₁₆₀ /Γ
A test of le		umber cons	ervation.			. 100/
	CL%		DOCUMENT ID		TECN	COMMENT
<5.6 × 10 ⁻⁴	90	0	KODAMA		E653	π^- emulsion 600 GeV
(K-e+e+)/	[total					Γ ₁₆₁ /Ι
A test of le	pton-n		ervation.	_	T	
ALUE		<u>CL%</u>				COMMENT
<1.2 × 10 ⁻⁴		90	FRABETTI			γ Be, $\overline{E}_{\gamma} \approx 220$ GeV
• We do not	use th	e following				
<9.1 × 10 ⁻³		90	WEIR	90	в MRK	2 e ⁺ e ⁻ 29 GeV
$(K^-\mu^+\mu^+)/A$			ervation			Γ ₁₆₂ /Ι
			DOCUMENT ID		TECN	COMMENT
<1.2 × 10 ⁻⁴	90		FRABETTI		E687	_
• • We do not	use th	e following			, limits,	
$< 3.2 \times 10^{-4}$	90	0	KODAMA	95	E653	π^- emulsion 600 GeV
$< 4.3 \times 10^{-3}$	90		WEIR			e ⁺ e 29 GeV
Γ(K ⁻ e ⁺ μ ⁺)/ A test of le	Γ _{total}	umber cons	centation			Γ ₁₆₃ /
VALUE			DOCUMENT ID		TECN	COMMENT
<1.3 × 10 ⁻⁴		90	FRABETTI			_
• • We do not	r use th					' '
<4.0 × 10 ⁻³	. use th		WEIR			e ⁺ e ⁻ 29 GeV
		90	VVEIR	908	MIRKZ	e · e 29 GeV
		umber cons	servation.			Γ ₁₆₄ /
A test of le					TECN	COMMENT
A test of le	CL%	EVIS	DOCUMENT ID			
A test of le		0	DOCUMENT ID		E653	
$<8.5 \times 10^{-4}$ $CP(K^+K^-\pi)$ This is the	# CP- differe	VIOLATI $D^{\pm} \rightarrow I$ nce betwee	KODAMA NG DECAY-R K+ K-π±	95 RATE	E653	π ⁻ emulsion 600 GeV
A test of le <8.5 × 10 ⁻⁴	90 ± <i>CP</i> r differe	O VIOLATI D [±] → I nce between dths.	KODAMA NG DECAY-R K+ K-π±	95 RATE partial	ASYM widths	π ⁻ emulsion 600 GeV
A test of le ACP(K+K- This is the the sum of	± CP- r±) in different the windows OUR AND THE TENT THE	O VIOLATI D [±] → I nce betwee dths. DOCUMENT /ERAGE	NG DECAY-R K+ K- π^{\pm} In D+ and D- ID TECN	95 KATE partial	ASYN widths	π = emulsion 600 GeV IMETRIES for these modes divided b
A test of le A	± CP- r±) in differe f the wi OUR A	O VIOLATI D [±] → I nce betwee dths. DOCUMENT VERAGE AITALA	NG DECAY-R K+ K-π± n D+ and D- 1D TECN 978 Ε791	95 RATE partial	ASYM widths	π^- emulsion 600 GeV IMETRIES for these modes divided by the control of the
A test of k ALUE ACP (K+ K- \pi This is the the sum of -0.017 ± 0.027 (-0.014 ± 0.029 -0.031 ± 0.068	± CP- r±) in differe f the wi OUR AN 68 68	O VIOLATI D [±] → I nce betwee dths. DOCUMENT /ERAGE AITALA FRABETT	NG DECAY-R K+ K-π± n D+ and D- 1D TECN 978 E791 1 941 E687	95 RATE partial	ASYN widths MMENT 062 < A 14 < A	π^- emulsion 600 GeV IMETRIES for these modes divided by the second of the second
A test of k ALUE -0.5 × 10 ⁻⁴ ACP(K+K-π This is the the sum of calue -0.014±0.029 -0.031±0.068 68 FRABETTI	± CP- r±) in differe f the wi OUR A 68 68	O VIOLATII D [±] → I nce betwee dths. DOCUMENT VERAGE AITALA FRABETT nd AITALA	NG DECAY-R K+ K-π± n D+ and D- 10	95 RATE partial	E653 ASYM widths #MENT 062 < A 14 < A 0+ →	π^- emulsion 600 GeV IMETRIES for these modes divided by the second of the second
A test of Revalue $< 8.5 \times 10^{-4}$ $< 8.5 \times 10^{-4}$ $A_{CP}(K^+K^-\pi^- K^- K^- K^- K^- K^- K^- K^- K^- K^- K$	± CP- † in differe f the wi OUR Ai 68 68 941 ar the ra	O VIOLATI D [±] → I nce betwee dths. DOCUMENT FRAGE AITALA FRABETT AITALA tio of numb	NG DECAY-R K+ K-π± n D+ and D- 1D TECN 978 E791 1 94ι E687 A 978 measure ters of events of	95 RATE partial COM - 0. - 0. N(D) served	### E653 ASYN widths ###################################	π^- emulsion 600 GeV IMETRIES for these modes divided by the second of the second
A test of k ALONG AL	± CP- t difference of the wing the range of	O VIOLATII D± → I nce betwee dths. <u>DOCUMENT</u> VERAGE AITALA FRABETT id AITALA tio of numb + → K+	KODAMA NG DECAY-R $K+K-\pi^{\pm}$ D^{+} and D^{-} 10 TECN 978 E791 1 941 E687 A 978 measure overs of events of \overline{K}^{*0} , $D^{-} \rightarrow$	partial COM 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	### E653 ASYM widths ###################################	m ⁻ emulsion 600 GeV IMETRIES for these modes divided by the second of the second
A test of Revalue $< 8.5 \times 10^{-4}$ $< 8.5 \times 10^{-4}$ $A_{CP}(K^+ K^- \pi)$ This is the the sum of MALUE $= -0.017 \pm 0.027$ $= -0.014 \pm 0.029$ $= -0.031 \pm 0.068$ $= 68_{FRABETTI}(K^- \pi^+ \pi^+)$ $= A_{CP}(K^\pm K^{-0})$ This is the	± CP- t differe f the win 68 68 941 ar the ra	O VIOLATII D± → I nce betwee dths. DOCUMENT VERAGE AITALA FRABETT ad AITALA tio of numb + → K+ nce betwee	KODAMA NG DECAY-R $K+K-\pi^{\pm}$ D^{+} and D^{-} 10 TECN 978 E791 1 941 E687 A 978 measure overs of events of \overline{K}^{*0} , $D^{-} \rightarrow$	partial COM 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	### E653 ASYM widths ###################################	π^- emulsion 600 GeV IMETRIES for these modes divided by the second of the second
A test of ke value $<$ 8.5 \times 10 ⁻⁴ C 8.5 \times 10 ⁻⁴ C 7. This is the the sum of value $=$ 0.017 \pm 0.027 \leftarrow 0.014 \pm 0.029 \leftarrow 0.031 \pm 0.068 $=$ 68 FRABETTI $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	± CP- = the wind the range of	D [±] → Ince betwee dths. DOCUMENT VERAGE AITALA FRABETT AITALA tio of numb + → K ⁺ nce betwee dths. DOCUMENT VERAGE DOCUMENT	KODAMA NG DECAY-R $K+K-\pi^{\pm}$ $N=1$ $N=$	partial COM One N(D) partial	widths widths 062 < A 14 < A 14 , and s K*0	m ⁻ emulsion 600 GeV IMETRIES for these modes divided by the second of the second
A test of k ALUE $< 8.5 \times 10^{-4}$ $C = 6.5 \times 10^{-4}$ ACP(K+K- π This is the the sum of the thick of the sum of the thick of th	± CP- ## CP-	D [±] → Ince between dths. Document Verage AITALA FRABETI AITALA	KODAMA NG DECAY-R $K + K - \pi^{\pm}$ D^{+} and D^{-} 10 978 E791 1 941 E687 A 978 measure ors of events of $K^{\bullet 0}$, $D^{-} \rightarrow$ on D^{+} and D^{-} 1 D^{+} and D^{-}	95 RATE partial -00. N(E) N(E) partial con	widths MENT	π^- emulsion 600 GeV IMETRIES for these modes divided by $CP < +0.034$ (90% CL) $K^-K^+\pi^+)/N(D^+-1)$ imilarly for the D^- .
A test of ke value $<$ 8.5 \times 10 ⁻⁴ C 8.5 \times 10 ⁻⁴ C 7. This is the the sum of value $=$ 0.017 \pm 0.027 \leftarrow 0.014 \pm 0.029 \leftarrow 0.031 \pm 0.068 $=$ 68 FRABETTI $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	± CP- r±) in differe f the win OUR AN 68 68 941 ar the ra differe f the win OUR AN 69	D± → Ince betwee dths. DCCUMENT / FRAGE AITALA FRABETT id AITALA tio of numb + → K+ DOCUMENT / COMMENT	KODAMA NG DECAY-R $K+K-\pi^{\pm}$ D^{+} and D^{-} 10 978 E791 1 941 E687 1 978 measure vers of events of events of \overline{K}^{*0} , $D^{-} \rightarrow$ n D^{+} and D^{-} 10 11 12 13 14 15 16 17 17 17 18 19 18 19 18 18 18 18 18 18	95 RATE CON CON CON CON CON CON CON CO	### ### ### ### ### ### ### ### ### ##	π^- emulsion 600 GeV IMETRIES for these modes divided by the second
A test of k ALOVE ACP(K+K- π This is the the sum of -0.017±0.027 (-0.014±0.029 -0.031±0.068 68 FRABETTI $K-\pi+\pi+$), This is the the sum of -0.02 ±0.05 (-0.010±0.050 -0.12 ±0.13	± CP- ±) in differe f the wide of the wid	D± → Ince betwee dths. DCCUMENT / FRAGE AITALA FRABETT ind AITALA tio of numb + → K+ DCCUMENT / FRAGE AITALA FRABETT ince betwee didths. DCCUMENT / FRAGE AITALA FRABETT AITALA FRABETT	KODAMA NG DECAY-R $K+K-\pi^{\pm}$ D^{+} and D^{-} 978 E791 1 941 E687 A 978 measure F*0, D^{-} \rightarrow D^{+} and D^{-} D^{+} and D^{-} D^{+} D^{-} \rightarrow D^{+} D^{-} D^{-} \rightarrow 978 E791 978 E791 941 E687	95 RATE COM -000. N(D partial COM -00.	### ### ### ### ### ### ### ### ### ##	π^- emulsion 600 GeV IMETRIES for these modes divided by $CP < +0.034$ (90% CL) $K^-K^+\pi^+)/N(D^+-1)$ imilarly for the D^- .

This is the difference between D^+ and D^- partial widths for these modes divided by

⁷⁰ FRABETTI 941 and AITALA 97B measure $N(D^+ \rightarrow \phi \pi^+)/N(D^+ \rightarrow K^- \pi^+ \pi^+)$,

```
\begin{array}{c} \textbf{A}_{CP}(\pi^+\pi^-\pi^\pm) \text{ in } D^\pm \to \pi^+\pi^-\pi^\pm \\ \text{This is the difference between } D^+ \text{ and } D^- \text{ partial widths for these modes divided by} \\ \text{the sum of the widths.} \\ \underline{\textbf{VALUE}} & \underline{\textbf{DOCUMENT ID}} & \underline{\textbf{TECN}} & \underline{\textbf{COMMENT}} \\ -\textbf{0.017}\pm\textbf{0.042} & 71 \text{ AITALA} & 978 \text{ E791} & -0.086 < A_{CP} < +0.052 (90\% \text{ CL}) \\ \hline \textbf{71 AITALA} & 978 \text{ measure } N(D^+ \to \pi^+\pi^-\pi^+)/N(D^+ \to K^-\pi^+\pi^+), \text{ the ratio of numbers of events observed, and similarly for the } D^-. \\ \hline \\ \underline{\textbf{D^\pm}} & \textbf{PRODUCTION CROSS SECTION AT } \psi(\textbf{3770}) \\ \text{A compilation of the cross sections for the direct production of } D^\pm \text{ mesons at or near the } \psi(\textbf{3770}) \text{ peak in } e^+e^- \text{ production.} \end{array}
```

VALUE (nanobarns)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following data for average	es, fits	, limits,	etc. • • •
4.2 ±0.6 ±0.3				e+e- 3.768 GeV
5.5 ±1.0				e ⁺ e 3.771 GeV
$6.00 \pm 0.72 \pm 1.02$	74 SCHINDLER	80	MRK2	$e^{+}e^{-}$ 3.771 GeV
9.1 ±2.0	⁷⁵ PERUZZI	77	MRK1	e+ e- 3.774 GeV

72 This measurement compares events with one detected D to those with two detected D mesons, to determine the the absolute cross section. ADLER 88c measure the ratio of cross sections (neutral to charged) to be $1.36 \pm 0.23 \pm 0.14$. This measurement does not include the decays of the $\psi(3770)$ not associated with charmed particle production.

73 This measurement comes from a scan of the $\psi(3770)$ necessate white training particle productions. This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. PARTRIDGE 84 measures 6.4 ± 1.15 nb for the cross section. We take the phase space division of neutral and charged D mesons in $\psi(3770)$ decay to be 1.33, and we assume that the $\psi(3770)$ is an isosinglet to evaluate the cross sections. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and may amount to a few percent correction.

may amount to a rew percent correction. 74 This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. SCHINDLER 80 assume the phase space division of neutral and charged D mesons in $\psi(3770)$ decay to be 1.33, and that the $\psi(3770)$ is an isosinglet. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and may amount to a few percent correction.

75 This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. The phase space division of neutral and charged D mesons in $\psi(3770)$ decay is taken to be 1.33, and $\psi(3770)$ is assumed to be an isosinglet. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and may amount to a few percent correction. We exclude this measurement from the average because of uncertainties in the contamination from τ lepton pairs. Also see RAPIDIS 77.

$D^+ \rightarrow \overline{K}^*(892)^0 \ell^+ \nu_\ell$ FORM FACTORS

TECN COMMENT

92 E653 $\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$

90E E691 K*(892)0 e+ ve

 $r_{\nu} \equiv V(0)/A_1(0) \text{ in } D^+ \rightarrow \overline{K}^{\bullet}(892)^0 \ell^+ \nu_{\ell}$

VALUE	EVTS	DOCUMENT ID		ECN CO.	MMENT	
1.82±0.09 OUR AVE	RAGE					
$1.45 \pm 0.23 \pm 0.07$	763	ADAMOVICH	99 B		$(892)^{0} \mu^{+} \nu_{\mu}$	
$1.90 \pm 0.11 \pm 0.09$	3000	⁷⁶ AITALA	98B E	791 K*	$(892)^0 e^+ \nu_e$	
$1.84 \pm 0.11 \pm 0.09$	3034	AITALA	98F E		$(892)^0 \mu^+ \nu_{\mu}$	
$1.74 \pm 0.27 \pm 0.28$	874	FRABETTI	93E E	687 K*	$(892)^{0} \mu^{+} \nu_{\mu}$	
$2.00^{+0.34}_{-0.32}\pm0.16$	305	KODAMA	92 E	653 ₹ *	$(892)^0 \mu^+ \nu_{\mu}$	
$2.0 \pm 0.6 \pm 0.3$	183	ANJOS	90E E	691 K*	$(892)^0 e^+ \nu_e$	
⁷⁶ This is slightly di	fferent from	the AITALA 98B v	alue: se	ee ref. [5]	in AITALA 98F.	
$r_2 \equiv A_2(0)/A_1(0)$	in $D^+ \rightarrow$	K*(892)0 &+ v				
VALUE	EVTS	DOCUMENT ID		ECN CO	MMENT	
0.78±0.07 OUR AVE	RAGE					
$1.00 \pm 0.15 \pm 0.03$	763	ADAMOVICH	99 B		$(892)^0 \mu^+ \nu_{\mu}$	
$0.71 \pm 0.08 \pm 0.09$	3000	AITALA	98B E	791 K	$(892)^0 e^+ \nu_e$	
$0.75 \pm 0.08 \pm 0.09$	3034	AITALA	98F E	791 K	$(892)^{0} \mu^{+} \nu_{\mu}$	
$0.78 \pm 0.18 \pm 0.10$	874	FRABETTI	93E E	687 K	$(892)^0 \mu^+ \nu_{\mu}$	
$0.82^{+0.22}_{-0.23}\pm0.11$	305	KODAMA	92 E	653 K*	$(892)^0 \mu^+ \nu_{\mu}$	
0.0 ± 0.5 ± 0.2	183	ANJOS	90E E	691 K*	$(892)^0 e^+ \nu_e$	
$r_3 \equiv A_3(0)/A_1(0)$	in <i>D</i> ⁺ →	K*(892)0 £+ v	,			
VALUE	EVTS	DOCUMENT ID			MMENT	
0.04±0.33±0.29	3034	AITALA	98F E	791 K*	$(892)^0 \mu^+ \nu_{\mu}$	
5 /5 := D+	₩ (000)0	e +				
Γ_L/Γ_T in $D^+ \rightarrow$				EÇN CO	MMENT	
1.14±0.08 OUR AVI	EVTS FRAGE	DOCUMENT ID		ECA CO	YIRO EIV I	
1.09 ± 0.10 ± 0.02	763	ADAMOVICH	99 B	EAT K*	$(892)^0 \mu^+ \nu_{\mu}$	
1.20±0.13±0.13	874	FRABETTI	93E E		$(892)^{0} \mu^{+} \nu_{\mu}$	
1.20 1 0.10 1 0.13	017				···-/ μ · · μ	

KODAMA

ANJOS

305

183

 $1.18 \pm 0.18 \pm 0.08$

 $1.8 \begin{array}{c} +0.6 \\ -0.4 \end{array} \pm 0.3$

 D^{\pm} , D^{0}

Γ_+/Γ in $D^+ \rightarrow 0$			T.C	
VALUE 0.21 ± 0.04 OUR AVER	<u>EVTS</u> RAGE Erro	DOCUMENT ID r includes scale t	actor of 1.3.	See the ideogram below.
$0.28 \pm 0.05 \pm 0.02$	763	ADAMOVICE	1 99 BEAT	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$
$0.16 \pm 0.05 \pm 0.02$	305	KODAMA	92 E653	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$
$0.15 {}^{+ 0.07}_{- 0.05} \pm 0.03$	183	ANJOS	90E E691	$\overline{K}^*(892)^0 e^+ \nu_e$
WEIGHTED 0.21±0.04 (E		y 1.3)		
				χ^2
			ADAMOVICH KODAMA ANJOS	92 E653 0.7 90E E691 0.6
	1		(Con	3.2 fidence Level = 0.202)
-0.1 0	0.1 0.2	0.3 0.4	0.5 0.6	
Γ_+/Γ in	$D^+ \rightarrow \overline{K}^*$	$(892)^0 \ell^+ \nu_{\ell}$		

D± REFERENCES

			D- REFERENCES	
JUN	00	PRL 84 1857	S.Y. Jun et al.	(FNAL SELEX Collab.)
PDG	00	EPJ C15 1	3.1. 30n et al.	(France Sector Comb.)
ABBIENDI	99K	EPJ C8 573	G. Abbiendi et al.	(OPAL Collab.)
ABE	99P	PR D60 092005		(CDF Collab.)
ADAMOVICH AITALA	99 99G	EPJ C6 35	M. Adamovich et al. E.M. Aitala et al.	(CERN BEATRICE Collab.)
RONVICINI	990	PL B462 401	G. Bonsicini et al.	(FNAL E791 Collab.) (CLEO Collab.)
BONVICINI AITALA AITALA BAI	98B	PRL 80 1393	E.M. Aitala et al.	(FNAL E791 Collab.)
AITALA	98F	PL B440 435	E.M. Aitala et al.	(FNAL E791 Collab.)
BAI	98 B	PL B429 188	J.Z. Bai et al.	(BEPC BES Collab.)
JESSOP	98	PR D58 052002	C.P. Jessop et al.	(CLEO Collab.) (FNAL E791 Collab.)
AITALA	97R	Pl B403 377	F.M. Aitala et al.	(FNAL E791 Collab.)
AITALA	97C	PL B404 187	E.M. Aitala et al.	(FNAL E791 Collab.)
JESSOP AITALA AITALA AITALA BARTELT BISHAI	97	PL B405 373	J. Bartelt et al.	` (CLEO Collab.)
DISTING	97	PRL 78 3261	M. Bishai et al.	(CLEO Collab.)
FRABETTI FRABETTI	97 97B	PL B391 235	P.L. Frabetti et al.	(FNAL E687 Collab.) (FNAL E687 Collab.)
FRABETTI	97C	PL B401 131	P.L. Frabetti et al.	(FNAL E687 Collab.)
FRABETTI	97D	PL B407 79	P.L. Frabetti et al.	(FNAL E687 Collab.)
AITALA	96	PRL 76 364	E.M. Aitala et al.	(FNAL E791 Collab.)
ALBRECHT	96C	PL B374 249	H. Albrecht et al.	(ARGUS Collab.)
BIGI FRABETTI	95	PL B349 363	I.I. Bigi, H. Yamamoto	(NDAM, HARV) (FNAL E687 Collab.)
FRABETTI	95 95B	PL B351 591	P.L. Frabetti et al.	(FNAL E687 Collab.)
FRABETTI	95E	PL B359 403	P.L. Frabetti et al.	(FNAL E687 Collab.)
FRABETTI	95F	PL B363 259	P.L. Frabetti et al.	(FNAL E687 Collab.)
KODAMA	95	PL B345 85	K. Kodama et al.	(FNAL E653 Collab.)
ALBRECHT ALEEV	941 94	ZPHY C64 375	H. Albrecht et al.	(ARGUS Collab.) (Serpukhov BIS-2 Collab.)
ALECV	74	Translated from	M. Adamovich et al. E.M. Aitala et al. G. Bonvicini et al. E.M. Aitala et al. E.M. Aitala et al. E.M. Aitala et al. C.P. Jessop et al. E.M. Aitala et al. J. Bartelt et al. M. Bishai et al. P.L. Frabetti et al. P.L. Frabetti et al. P.L. Frabetti et al. E.M. Aitala et al. L. Bigi. H. Yamamoto P.L. Frabetti et al. R. Kodama et al. H. Albrecht et al. H. Albrecht et al. R. Robert et al. F. San Aieve et al. F. San Aieve et al. F. San Balest et al.	(Serpaknov BIS-2 Conab.)
BALEST	94	PRL 72 2328	R. Balest et al.	(CLEO Collab.)
FRABETTI	94D	PL B323 459	P.L. Frabetti et al.	(FNAL E687 Collab.)
FRABETTI FRABETTI	94G 941	PL B331 217	P.L. Frabetti et al.	(FNAL E687 Collab.) (FNAL E687 Collab.)
ABE	93E	PL B313 288	K. Abe et al.	(VENUS Collab.)
101101000	93	PL B305 177	M.I. Adamovich et al.	(CERN WA82 Collab.)
ADAMOVICH AKERIB ALAM ANJOS BEAN FRABETTI KODAMA KODAMA	93	PRL 71 3070	D.S. Akerib et al.	(CLEO Collab.)
ALAM	93	PRL 71 1311	M.S. Alam et al.	(CLEO Collab.)
ANJUS REAM	93	PR D48 55 PI B317 647	J.C. Anjos et al.	(FNAL E691 Collab.) (CLEO Collab.)
FRABETTI	93E	PL B307 262	P.L. Frabetti et al.	(FNAL E687 Collab.)
KODAMA	93B	PL B313 260	K. Kodama et al.	(FNAL E653 Collab.)
KODAMA	93C	PL B316 455	K. Kodama et al.	(FNAL E653 Collab.)
SELEN	93	PRL 71 1973	M.A. Selen et al.	(CLEO Collab.)
ALBRECHT	92B	PH B270 202	H. Albrecht et al	(ARGUS Collab.) (ARGUS Collab.)
ANJOS	92	PR D45 R2177	J.C. Anios et al.	(FNAL E691 Collab.)
ALBRECHT ALBRECHT ANJOS ANJOS	92C	PR D45 R2177 PR D46 1941 PRL 69 2892 ZPHY C55 383 ZPHY C48 29 PR D45 2196	J.C. Anjos et al.	(FNAL E691 Collab.)
ANJOS	92D	PRL 69 2892	J.C. Anjos et al.	(FNAL E691 Collab.)
BARLAG	92C	ZPHY C55 383	S. Barlag et al.	(ACCMOR Collab.) (ACCMOR Collab.)
COFFMAN DAOUDI	92B	PR D45 2196	D.M. Coffman et al.	(Mark III Collab.)
DAOUDI	92	PR D45 3965	M. Daoudi et al.	(CLEO Collab.)
FRABETTI	92	PL B281 167	P.L. Frabetti et al.	(FNAL E687 Collab.)
KODAMA	92	PL B274 246	K. Kodama et al.	(FNAL E653 Collab.)
KODAMA ADAMOVICH	92C	PL B286 187	K. Kodama et al.	(FNAL E653 Collab.) (WA82 Collab.)
	91	PL B255 634	H. Albrecht et al.	(ARGUS Collab.)
ALVAREZ	91	PL B255 639	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ALVAREZ	91B	PL B255 634 PL B255 639 ZPHY C50 11 PR D44 3383 PR D43 R2063 PRL 67 1507 PRL 66 1011	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
AMMAR	91	PR D44 3383	R. Ammar et al.	(CLEO Collab.)
ANJOS ROLNA	91B	PR D43 R2063	J.C. Anjos et al.	(FNAL E691 Collab.) (FNAL-TPS Collab.)
BAI	91	PRL 66 1011	Z. Bai et al.	(Mark III Collab.)
COFFMAN	91	PL B263 135	D.M. Coffman et al.	(Mark III Collab.)
	91	PL B263 584	P.L. Frabetti et al.	(FNAL E687 Collab.)
	90	ZPHY C47 539	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ALVAREZ	90C	PL B246 261	P.L. Frabetti et al. P.L. Frabetti et al. P.L. Frabetti et al. E.M. Aitala et al. H. Albrecht et al. II. Bigi, H. Yamamoto P.L. Frabetti et al. R. Kodama et al. H. Albrecht et al. A.N. A'eev et al. A.N. A'eev et al. A.N. A'eev et al. P.L. Frabetti et al. R. Abo et al. A. Bean et al. J.C. Anjos et al. A. Bean et al. R. Kodama et al. R. Kodama et al. A. Bean et al. B. C. Anjos et al. B. C. Anjos et al. B. C. Anjos et al. J.C. Anjos et al. J.C. Anjos et al. J.C. Anjos et al. S. Bariag et al. J.C. Anjos et al. S. Bariag et al. K. Kodama et al. M. Doudi et al. R. Kodama et al. M. Doudi et al. P.L. Frabetti et al. R. Kodama et al. R. Kodama et al. R. Andoucht et al. R. Andou	(CERN NA14/2 Collab.)

SOLNA	90C	PR D41 2705	J.C. Anjos et al.	(FNAL E691 Collab.)
2OL/A	90Đ	PR D42 2414	J.C. Anjos et al.	(FNAL E691 Collab.)
SOLNA	90E	PRL 65 2630	J.C. Anjos et al.	(FNAL E691 Collab.)
BARLAG	90C	ZPHY C46 563	S. Barlag et al.	(ACCMOR Collab.)
44 PH		PR D41 1384	A.J. Weir et al.	(Mark II Collab.)
	89	PRL 62 125	J.C. Anjos et al.	(FNAL E691 Collab.)
ANJOS		PRL 62 722	J.C. Anjos et al.	(FNAL E691 Collab.)
ANJOS	89E	PL B223 267	J.C. Anjos et al.	(FNAL E691 Collab.)
	88B	PRL 60 1375	J. Adler et al.	(Mark III Collab.)
ADLER	BBC	PRL 60 89	J. Adler et al.	(Mark III Collab.)
ALBRECHT ANJO\$	881	PL B210 267	H. Albrecht et al.	(ARGUS Collab.)
ANJUS	88	PRL 60 897	H. Albrecht et al. J.C. Anjos et al.	(FNAL E691 Collab.)
	88	FL 0207 113	J. MORI CL di.	(WA75 Collab.)
0110	88		P. Haas et al.	(CLEO Collab.)
	88	PRL 60 2587 PR D37 2391	R.A. Ong et al.	(Mark 11 Collab.)
RAAB ADAMOVICH	00		J.R. Raab et al.	(FNAL E691 Collab.)
ADLER		EPL 4 887 PL B196 107	M.I. Adamovich et al. J. Adler et al.	(Mark III Collab.)
			M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Alco	888	PL B193 140 ZPHY C40 321	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
AGUILAR	97E	ZPHY C36 551	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Also		ZPHY C40 321	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
ACHID AD	075	7DUN C26 FF0	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Also	88	ZPHY C38 520 erratum	W. Agana Demet et al.	(EEDC EITS COMBO.)
BARLAG	87R	ZPHY C36 539 ZPHY C37 17 ZPHY C37 17 ZPHY C33 339 PL B191 318 ZPHY C35 151 PR D33 1	S. Barlag et al.	(ACCMOR Collab.)
BARTEL	87	ZPHY C33 339	W. Bartel et al.	(JADE Collab.)
CSORNA	87	PL B191 318	S.E. Csorna et al.	(CLEO Collab.)
PALKA	87B	ZPHY C35 151	H. Palka et al.	(ACCMOR Collab.)
ABE	86	PR D33 1	K. Abe et al.	• •
AGUILAR	86B	ZPHY C31 491	M. Aguilar-Benitez et al. R.M. Baltrusaitis et al.	(LEBC-EHS Collab.)
BALTRUSAIT.	86E			(Mark III Collab.)
PAL AIHARA	86	PR D33 2708	T. Pal et al.	(DELCO Collab.)
		ZPHY C27 39	H. Aihara et al.	(TPC Collab.)
		PRL 54 1976	R.M. Baltrusaitis et al.	(Mark III Collab.)
BALTRUSAIT.	85E		R.M. Baltrusaitis et al.	(Mark III Collab.)
	85 J	PL 163B 277	W. Bartel et al.	(JADE Collab.)
ADAMOVICH		PL 140B 119	M.I. Adamovich et al.	(CERN WAS8 Collab.)
ALTHOFF ALTHOFF	84 J	ZPHY C22 219 PL 146B 443	M. Althoff et al. M. Althoff et al.	(TASSO Collab.) (TASSO Collab.)
DERRICK	84	PRL 53 1971	M. Derrick et al.	(HRS Collab.)
KOOP	84	PRL 52 970	D.E. Koop et al.	(DELCO Collab.)
PARTRIDGE		Thesis CALT-68-1150		(Crystal Ball Collab.)
AGUILAR	83B		M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
AUBERT	83	NP B213 31	J.J. Aubert et al.	(EMC Collab.)
PARTRIDGE	81	PRL 47 760	J.J. Aubert et al. R. Partridge et al. R.H. Schindler et al. G.H. Trilling W.J. Bacino et al. R.H. Schindler et al. A.A. Zholents et al.	(Crystal Ball Collab.)
SCHINDLER		PR D24 78	R.H. Schindler et al.	(Mark II Collab.)
TRILLING	81	PRPL 75 57	G.H. Trilling	(LBL, UCB) J
BACINO	80	PRL 45 329	W.J. Bacino et al.	(DELCO Collab.)
SCHINDLER	80	PR D21 2716	R.H. Schindler et al.	(Mark II Collab.)
ZHOLENTZ	80	PL 96B 214	A.A. Zholents et al.	` (NOVO)
Also	81	SJNP 34 814	A.A. Zholents et al.	(NOVO)
	_	Translated from YAF 34		
BACINO	79	PRL 43 1073	W.J. Bacino et al.	(DELCO Collab.)
BRANDELIK		PL 80B 412	R. Brandelik et al.	(DASP Collab.)
FELLER	78	PRL 40 274	J.M. Feller et al.	(Mark I Collab.)
VUILLEMIN	78		V. Vuillemin et al.	(Mark I Collab.)
GOLDHABER PERUZZI	77		G. Goldhaber et al. I. Peruzzi et al.	(Mark I Collab.) (Mark I Collab.)
PICCOLO	77	PL 70B 260	M. Piccolo et al.	(Mark I Collab.)
RAPIDIS	77	PRL 39 526	P.A. Rapidis et al.	(Mark I Collab.)
PERUZZI	76	PRL 37 569	I. Peruzzi et al.	(Mark 1 Collab.)
LINOZZI	"	· NE 31 307	C. OLLI CI M.	(Mark + Collab.)
		ATHER	BELATED DADERS -	
		- OTHER	RELATED PAPERS -	
RICHMAN	95	RMP 67 893	J.D. Richman, P.R. Burchat	(UCSB, STAN)

RICHMAN 95 RMP 67 893 J.D. Richman, P.R. Burchat (UCSB, STAN) ROSNER 95 CNPP 21 369 J. Rosner (CHIC)

ı

 $I(J^P) = \frac{1}{2}(0^-)$

DO MASS

The fit includes D^\pm , D^0 , D_5^\pm , $D^{*\pm}$, D^{*0} , and $D_5^{*\pm}$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
1864.5 ± 0.5 OUR FI		cludes scale factor	of 1.1.	
1864.1 ± 1.0 OUR AV	ERAGE			
1864.6± 0.3±1.0	641	BARLAG	90c ACCM	π — Cu 230 GeV
1852 ± 7	16	ADAMOVICH	87 EMUL	Photoproduction
1861 ± 4		DERRICK	84 HRS	e ⁺ e ⁻ 29 GeV
• • • We do not use	the followin	g data for averages	, fits, limits,	etc. • • •
1856 ±36	22	ADAMOVICH	84B EMUL	Photoproduction
1847 ± 7	1	FIORINO	81 EMUL	$\gamma N \rightarrow \overline{D}^0 +$
1863.8± 0.5		1 SCHINDLER	81 MRK2	$e^{+}e^{-}$ 3.77 GeV
1864.7± 0.6		¹ TRILLING	81 RVUE	e ⁺ e ⁻ 3.77 GeV
1863.0 ± 2.5	238	ASTON	80E OMEG	$\gamma p \rightarrow \overline{D}^0$
1860 ± 2	143	² AVERY	80 SPEC	$\gamma N \rightarrow D^{*+}$
1869 ± 4	35	² AVERY	80 SPEC	$\gamma N \rightarrow D^{*+}$
1854 ± 6	94	² ATIYA	79 SPEC	$\gamma N \rightarrow D^0 \overline{D}{}^0$
1850 ±15	64	BALTAY	78c HBC	$\nu N \rightarrow K^0 \pi \pi$
1863 ± 3		GOLDHABER	77 MRK1	D^0 , D^+ recoil spectra
1863.3± 0.9		¹ PERUZZI	77 MRK1	e+ e- 3.77 GeV
1868 ±11		PICCOLO	77 MRK1	e+e- 4.03, 4.41 GeV
1865 ±15	234	GOLDHABER	76 MRK1	$K\pi$ and $K3\pi$

1PERUZZI 77 and SCHINDLER 81 errors do not include the 0.13% uncertainty in the absolute SPEAR energy calibration. TRILLING 81 uses the high precision $J/\psi(15)$ and $\psi(25)$ measurements of ZHOLENTZ 80 to determine this uncertainty and combines the PERUZZI 77 and SCHINDLER 81 results to obtain the value quoted. TRILLING 81 enters the fit in the D^{\pm} mass, and PERUZZI 77 and SCHINDLER 81 enter in the $m_{D^{\pm}} - m_{D^{0}}$, below.

² Error does not include possible systematic mass scale shift, estimated to be less than 5 MeV.

$m_{D^\pm}-m_{D^0}$

The fit includes D^\pm , D^0 , D_s^\pm , $D^{*\pm}$, D^{*0} , and $D_s^{*\pm}$ mass and mass difference measurements.

VALUE (MeV)	DOCUMENT ID TECN COMMENT
4.79 ± 0.10 OUR FIT	rror includes scale factor of 1.1.
4.74 ± 0.28 OUR AVER	AGE
4.7 ±0.3	³ SCHINDLER 81 MRK2 e ⁺ e ⁻ 3.77 GeV
5.0 ±0.8	3 PERUZZI 77 MRK1 e^+e^- 3.77 GeV
³ See the footnote or	TRILLING 81 in the D^0 and D^{\pm} sections on the mass.

DO MEAN LIFE

Measurements with an error $>0.05\times10^{-12}$ s are omitted from the average, and those with an error $>0.1\times10^{-12}$ s or that have been superseded by later results have been removed from the Listings.

VALUE	$(10^{-12} s)$		EVTS	DOCUMENT ID		TECN	COMMENT
0.4126	± 0.0028	OUR AVE	RAGE				
	±0.003		35k	AITALA	99E	E791	$\kappa^-\pi^+$
0.4085	±0.0041	+0.0035 -0.0034	25k	BONVICINI	99	CLE2	$e^+e^-\approx \Upsilon(45)$
0.413	±0.004	±0.003	16k	FRABETTI	94D	E687	$K^-\pi^+, K^-\pi^+\pi^+\pi^-$
0.424	±0.011	±0.007	5118	FRABETTI	91	E687	$K^-\pi^+$
0.417	±0.018	±0.015	890	ALVAREZ	90	NA14	$K^{-}\pi^{+}\pi^{+}\pi^{-}$ $K^{-}\pi^{+}$, $K^{-}\pi^{+}\pi^{+}\pi^{-}$
0.388	+0.023 -0.021		641 4	BARLAG	90c	ACCM	π^- Cu 230 GeV
0.48	± 0.04	± 0.03	776	ALBRECHT	881	ARG	e^+e^- 10 GeV
0.422	± 0.008	± 0.010	4212	RAAB	88	E691	Photoproduction
0.42	± 0.05		90	BARLAG	87B	ACCM	K^- and π^- 200 GeV
	We do n	ot use the	following dat	ta for averages,	fits, I	imits, et	C. • • •
0.34	+0.06 -0.05	± 0.03	58	AMENDOLIA	88	5PEC	Photoproduction
0.46	$+0.06 \\ -0.05$		145	AGUILAR	87 D	HYBR	$\pi^- p$ and pp
0.50	±0.07	± 0.04	317	CSORNA	87	CLEO	e ⁺ e ⁻ 10 GeV
0.61	± 0.09	± 0.03	50	ABE	86	HYBR	γp 20 GeV
0.47	$^{+0.09}_{-0.08}$	± 0.05	74	GLADNEY	86	MRK2	e^+e^- 29 GeV
0.43	+0.07 -0.05	+0.01 -0.02	58	USHIDA	86в	EMUL	u wideband
0.37	$^{+0.10}_{-0.07}$		26	BAILEY	85	SILI	π^- Be 200 GeV

$|m_{D_1^0} - m_{D_2^0}|$

⁴BARLAG 90c estimate systematic error to be negligible.

VALUE (1010 h s-1) CL%

The D_1^0 and D_2^0 are the mass eigenstates of the D^0 meson. To calculate the following limits, we use $\Delta m = [2r/(1-r)]^{1/2} \hbar/4.126 \times 10^{-13}$ s, where r is the experimental D^0 - \overline{D}^0 mixing ratio.

DOCUMENT ID TECN COMMENT

< 7	95	5 GODANG	00 CLE2	e+ e-				
• • • We do not i	ise the follow	ing data for avera	ges, fits, limits	, etc. • • •				
<32	90	6,7 AITALA	98 E791	π^- nucleus, 500 GeV				
<24	90	8 AITALA	96c E791	π^- nucleus, 500 GeV				
<21	90	^{7,9} ANJOS	88C E691	Photoproduction				
⁵ This GODANG	5 00 limit is	s inferred from t	he $D^0 extstyle{-} \overline{D}{}^0$ m	ixing ratio $\Gamma(K^+\pi^-)$	ia			
$\overline{D}^0))/\Gamma(K^-\pi^-$	[⊢]) given near	the end of this D) Listings. Dec	ay-time information is use	d			
the DCS and $D^0 \rightarrow K^+\pi^-$ AITALA 98 all plitudes, and a	to distinguish DCS decays from $D^0 - \overline{D}^0$ mixing. The limit allows interference between the DCS and mixing ratios, and also allows CP violation. The strong phase between $D^0 \to K^+\pi^-$ and $\overline{D}^0 \to K^+\pi^-$ is assumed to be small. AITALA 98 allows interference between the doubly Cabibbo-suppressed and mixing amplitudes, and also allows CP violation in this term. This limit is inferred from the $D^0 - \overline{D}^0$ mixing ratio $\Gamma(K^+\pi^-$ or $K^+\pi^-\pi^+\pi^-$ (via							
$\overline{D}^0))/\Gamma(K^-\pi^0)$	$+$ or $\kappa^-\pi^+$	$\pi^+\pi^-$) near the	end of the D^{l}	Listings. Decay-time is $D^0 \cdot \overline{D}^0$ mixing.	n-			
⁸ This limit is in given near the	ferred from the D	ie D^0 - $\overline{D}{}^0$ mixing i 0 Listings.	atio Γ(<i>K</i> +ℓ−	$\overline{ u}_{\ell}(via\ \overline{D}^0))/\Gamma(\mathcal{K}^-\ell^+ u)$	e)			
				bbo-suppressed and mixing by about a factor of two				

$(\Gamma_{D_1^0} - \Gamma_{D_2^0})/\Gamma_{D^0}$

The D_1^0 and D_2^0 are the mass eigenstates of the D^0 meson. AITALA 99E uses a difference in directly measured decay rates to obtain its limit. The other experiments infer the limits here from limits on mixing, using $\Delta\Gamma/\Gamma$ $= [8r/(1+r)]^{1/2}$, where r is the experimental D^0 - \overline{D}^0 mixing ratio. See the footnotes to the entries below.

VALUE	CL%	DOCUMENT ID	<u>TECN</u>	COMMENT
$-0.116 < \Delta\Gamma/\Gamma < 0.020$	95	10 GODANG 0	CLE2	e+ e-

• • • We do not use the following data for averages, fits, limits, etc. • •								
$-0.08 < \Delta\Gamma/\Gamma < 0.12$		11 AITALA	99E E791	$K^{-}\pi^{+}$, $K^{+}K^{-}$				
$ \Delta\Gamma /\Gamma < 0.26$	90	^{12,13} AITALA	98 E791	π - nucleus, 500 GeV				
$ \Delta\Gamma /\Gamma < 0.20$	90		96c E791	π – nucleus, 500 GeV				
$ \Delta\Gamma /\Gamma < 0.17$	90	^{13,15} ANJOS	88c E691	Photoproduction				

 $^{10}\, {\rm This}$ GODANG 00 limit is inferred from the ${\it D}^0 {\rm -} \overline{\it D}{}^0$ mixing ratio $\Gamma({\it K}^+\pi^-$ (via (\overline{D}^0))/ $\Gamma(K^-\pi^+)$ given near the end of this D^0 Listings. Decay-time information is used D^{U})/ $\Gamma(K^{-}\pi^{+})$ given near the end of this D^{U} Listings. Decay-time information is used to distinguish DCS decays from $D^{0} \cdot \overline{D^{0}}$ mixing. The limit allows interference between the DCS and mixing ratios, and also allows CP violation. The phase between $D^{0} \rightarrow K^{+}\pi^{-}$ and $\overline{D^{0}} \rightarrow K^{+}\pi^{-}$ is assumed to be small.

11 AITALA 99E measures $\Delta \Gamma = 2|\Gamma(D^{0} \rightarrow K^{+}K^{-}) - \Gamma(D^{0} \rightarrow K^{-}\pi^{+})| = +0.04 \pm 0.14 \pm 0.04

0.05 ps $^{-1}$ and thus gets 90%-confidence-level limits - 0.20 $< \Delta \Gamma < +$ 0.28 ps $^{-1}$.

 $(N_{\rm c})^{-1}$ minutes where $(N_{\rm c})^{-1}$ may rather end of the $(N_{\rm c})^{-1}$ Listings. Decay-time information is used to distinguish doubly Cabibbo-suppressed decays from $D^0-\overline{D}^0$ mixing. ¹⁴ This limit is inferred from the $D^0-\overline{D}^0$ mixing ratio $\Gamma(K^+\ell^-\overline{\nu}_\ell({\rm via}\ \overline{D}^0))/\Gamma(K^-\ell^+\nu_\ell)$

given near the end of the D^0 Listings. 15 ANJOS 88C assumes no interference between doubly Cabibbo-suppressed and mixing amplitudes. When interference is allowed, the limit degrades by about a factor of two.

DO DECAY MODES

 $\overline{{\it D}}{}^{0}$ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_j/Γ)	Scale factor/ Confidence level
	Inclusive	modes	
Γ_1		(6.75±0.29)	%
	μ^+ anything	(6.6 ± 0.8)	%
	K ⁻ anything	(53 ±4)	
Γ ₄	\overline{K}^0 anything $+ K^0$ anything	(42 ±5)	
Γ ₅	K ⁺ anything	$(3.4 \begin{array}{c} +0.6 \\ -0.4 \end{array})$	%
Γ_6	η anything	[a] < 13	% CL=90%
	Semilepto	nic modes	
	$K^-\ell^+ u_\ell$	[b] (3.47 ± 0.17)	% S=1.3
	$K^-e^+\nu_e$	(3.64 ± 0.18)	
-	$K^-\mu^+ u_{\mu}$	(3.22 ± 0.17)	%
Γ_{10}	$K^-\pi^0e^+ u_e$	$(1.6 \begin{array}{c} +1.3 \\ -0.5 \end{array})$	%
Γ ₁₁	$\overline{K}{}^0\pi^-e^+ u_e$	(2.8 + 1.7 - 0.9)	%
Γ ₁₂	$\overline{K}^*(892)^- e^+ \nu_e$	(1.35±0.22)	%
	$\overline{K}^*(892)^- e^+ \nu_e \times B(K^{*-} \to \overline{K}^0 \pi^-)$		
Γ_{13}	$K^*(892)^-\ell^+\nu_{\ell}$		
Γ_{14}	$\overline{K}^*(892)^0 \pi^- e^+ \nu_e$		
	$K^-\pi^+\pi^-\mu^+\nu_\mu$		$\times 10^{-3}$ CL=90%
Γ_{16}	$(\overline{K}^*(892)\pi)^-\mu^+\nu_{\mu}$		$\times 10^{-3}$ CL=90%
Γ_{17}	$\pi^- e^+ \nu_e$	(3.7 ± 0.6)	× 10 ⁻³

A fraction of the following resonance mode has already appeared above as

	a submode of a charged-particle mode.	ue	nas ancady appeared above as	
Γ_{18}	$K^*(892)^-e^+\nu_e$		(2.02±0.33) %	
	Hadronic modes with	а	K or KKK	
Γ_{19}	$K^-\pi^+$		(3.83±0.09) %	
Γ ₂₀	$\overline{K}^0 \pi^0$		(2.11 ± 0.21) %	S=1.1
Γ ₂₁	$\overline{K}^0 \pi^+ \pi^-$	[c]	$(5.4 \pm 0.4)\%$	S=1.2
Γ_{22}	$\overline{K}{}^{0} \rho^{0}$		(1.21±0.17) %	
Γ ₂₃	$\overline{K}^{0}f_{0}(980)$		$(3.0 \pm 0.8) \times 10^{-3}$	
	$\times B(f_0 \rightarrow \pi^+\pi^-)$			
Γ ₂₄	$\overline{K}^0 f_2(1270)$		$(2.4 \pm 0.9) \times 10^{-3}$	
	$\times B(f_2 \rightarrow \pi^+\pi^-)$			
Γ_{25}	$\overline{K}^0 f_0(1370)$		$(4.3 \pm 1.3) \times 10^{-3}$	
	$\times B(f_0 \rightarrow \pi^+\pi^-)$			
Γ_{26}	$K^*(892)^-\pi^+$		$(3.4 \pm 0.3)\%$	
	\times B($K^{*-} \rightarrow \overline{K}{}^0\pi^-$)			
Γ_{27}	$K_0^*(1430)^-\pi^+$		$(6.4 \pm 1.6) \times 10^{-3}$	
	\times B($K_0^*(1430)^- \rightarrow \overline{K}^0\pi^-$)			
Γ28	$\overline{K}{}^0\pi^+\pi^-$ nonresonant		(1.47±0.24) %	
Γ_{29}	$K^-\pi^+\pi^0$	<i>c</i>]	(13.9 ±0.9) %	5=1.3
Γ ₃₀	$K^-\rho^+$		(10.8 ±1.0) %	
Γ ₃₁	$K^*(892)^-\pi^+$		(1.7 ±0.2)%	
	\times B($K^{*-} \rightarrow K^- \pi^0$)			
Γ_{32}	$\overline{K}^*(892)^0\pi^0$		$(2.1 \pm 0.3)\%$	
	$\times B(\overline{K}^{*0} \rightarrow K^-\pi^+)$			
Γ ₃₃	$\mathcal{K}^-\pi^+\pi^0$ nonresonant		$(6.9 \pm 2.5) \times 10^{-3}$	

 D^0

```
\Gamma_{34} \overline{K}{}^0\pi^0\pi^0
                                                                                                                                                                                                                             \Gamma_{84} K^-\pi^+\rho^0 total
                                                                                                                                                                                                                                                                                                                                                (6.3 \pm 0.4)\%
                     \overline{K}^*(892)^0\pi^0
                                                                                                                                                                                                                                                   K^-\pi^+\rho^0 3-body
                                                                                                                                                                                                                                                                                                                                                 (4.7 \pm 2.1) \times 10^{-3}
                                                                                                                    (1.1 \pm 0.2)\%
 Γ35
                                                                                                                                                                                                                             Γ85
                     \begin{array}{c} \times \ \mathsf{B}(\overline{K}^{*0} \to \overline{K}^0 \pi^0) \\ \overline{K}^0 \pi^0 \pi^0 \text{ nonresonant} \end{array}
                                                                                                                                                                                                                                                   \overline{K}^*(892)^0 \rho^0
                                                                                                                                                                                                                                                                                                                                                 ( 1.46 ± 0.32) %
                                                                                                                                                                                                                             Γ86
                                                                                                                                                                                                                                                       (7(892)^{o} \rho^{o})^{o}
\overline{K}^{*}(892)^{o} \rho^{0} transverse
\overline{K}^{*}(892)^{o} \rho^{0} S-wave
\overline{K}^{*}(892)^{o} \rho^{0} S-wave long.
\overline{K}^{*}(892)^{o} \rho^{0} P-wave
\overline{K}^{*}(892)^{o} \rho^{0} D-wave
 \Gamma_{36}
                                                                                                                   ( 7.8 \pm 2.0 ) \times 10^{-3}
                                                                                                                                                                                                                                                                                                                                                 (1.5 \pm 0.5)\%
                                                                                                                                                                                                                             Γ87
 \Gamma_{37} K^-\pi^+\pi^+\pi^-
                                                                                                        [c] ( 7.49±0.31) %
                                                                                                                                                                                                                             \Gamma_{88}
                                                                                                                                                                                                                                                                                                                                                ( 2.8 \pm 0.6 ) %
                                                                                                                                                                                                                                                                                                                                                                         \times 10<sup>-3</sup>
                                                                                                                                                                                                                             Γ89
                      K^-\pi^+\rho^0 total
                                                                                                                   (6.3 \pm 0.4)\%
                                                                                                                                                                                                                                                                                                                                              < 3
                                                                                                                                                                                                                                                                                                                                                                                                              CL=90%
 Γ<sub>38</sub>
                                                                                                                                                                                                                                                                                                                                                                               \times 10^{-3}
                           K^-\pi^+\rho^0 3-body
                                                                                                                    (4.7 \pm 2.1) \times 10^{-3}
                                                                                                                                                                                                                                                                                                                                              < 3
                                                                                                                                                                                                                                                                                                                                                                                                             CL=90%
 Γ39
                                                                                                                                                                                                                             \Gamma_{90}
                            \frac{K}{K^*}(892)^0 \rho^0 \times B(\overline{K}^{*0} \to K^-\pi^+)
                                                                                                                    ( 9.8 \pm 2.2 ) \times 10^{-3}
 \Gamma_{40}
                                                                                                                                                                                                                             \Gamma_{91}
                                                                                                                                                                                                                                                                                                                                                (1.9 \pm 0.6)\%
                                                                                                                                                                                                                                          K^*(892)^-\rho^+
                                                                                                                                                                                                                                                                                                                                                 ( 6.1 \pm 2.4 )%
                                                                                                                                                                                                                             \Gamma_{92}
                            K^-a_1(1260)^+
                                                                                                                                                                                                                                                   \hat{K}^*(892)^- \rho^+ longitudinal
 Γ41
                                                                                                                                                                                                                             Γ93
                                                                                                                                                                                                                                                                                                                                                (2.9 \pm 1.2)\%
                                                                                                                                                                                                                                                  K^*(892)^- \rho^+ \text{ transverse}

K^*(892)^- \rho^+ P-wave
                                 \times \hat{B}(a_1(1260)^+ \rightarrow \pi^+\pi^+\pi^-)
                                                                                                                                                                                                                             Γ94
                                                                                                                                                                                                                                                                                                                                               (3.2 \pm 1.8)\%
                      \overline{K}^*(892)^0 \pi^+ \pi^- \text{total}
 \times B(\overline{K}^{*0} \to K^- \pi^+)
\Gamma_{42}
                                                                                                                    (1.5 \pm 0.4)\%
                                                                                                                                                                                                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                             Γ<sub>95</sub>
                                                                                                                                                                                                                                                                                                                                              < 1.5
                                                                                                                                                                                                                             Γ<sub>96</sub>
                                                                                                                                                                                                                                           K^-\pi^+ f_0(980)
                                                                                                                                                                                                                                                                                                                                             < 1.1
                                                                                                                                                                                                                                                                                                                                                                                 %
                                                                                                                                                                                                                                                                                                                                                                                                              CL=90%

\frac{\times}{K^*}(892)^0 \pi^+ \pi^- 3\text{-body} 

\times B(K^{*0} \to K^- \pi^+)

 \Gamma_{43}
                                                                                                                    (9.5 \pm 2.1) \times 10^{-3}
                                                                                                                                                                                                                             Γ97
                                                                                                                                                                                                                                                  \overline{K}^*(892)^0 f_0(980)
                                                                                                                                                                                                                                                                                                                                              < 7
                                                                                                                                                                                                                                                                                                                                                                               × 10<sup>-3</sup>
                                                                                                                                                                                                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                             \Gamma_{98} \quad K_1(1270)^{-} \pi^{+}
                                                                                                                                                                                                                                                                                                                                    [d] (1.06 \pm 0.29)\%
                      K_1(1270)^-\pi^+
                                                                                                                                                                                                                                           K_1(1400)^-\pi^+
\Gamma_{44}
                                                                                                       [d] (3.6 \pm 1.0) \times 10^{-3}
                                                                                                                                                                                                                             Γ99
                                                                                                                                                                                                                                                                                                                                             < 1.2
                                                                                                                                                                                                                                                                                                                                                                                 %
                                                                                                                                                                                                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                            \Gamma_{100} \quad \overline{K}_{1}(1400)^{0} \, \pi^{0}
\Gamma_{101} \quad K^{*}(1410)^{-} \, \pi^{+}
                           \times B(K_1(1270)^- \to K^-\pi^+\pi^-)
                                                                                                                                                                                                                                                                                                                                                                                                             CL=90%
                                                                                                                                                                                                                                                                                                                                             < 3.7
                                                                                                                                                                                                                                                                                                                                                                                 %
\Gamma_{45} K^-\pi^+\pi^+\pi^- nonresonant \Gamma_{46} K^0\pi^+\pi^-\pi^0
                                                                                                                    (1.74 \pm 0.25)\%
                                                                                                                                                                                                                                                                                                                                              < 1.2
                                                                                                                                                                                                                                                                                                                                                                                 0/4
                                                                                                                                                                                                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                            \Gamma_{102} \quad K_0^*(1430)^- \pi^+ \\ \Gamma_{103} \quad K_2^*(1430)^- \pi^+
                                                                                                                                                                                                                                                                                                                                              ( 1.04±0.26) %
                                                                                                        [c] (10.0 \pm 1.2)%
                     \overline{K}^0 \eta \times B(\eta \to \pi^+\pi^-\pi^0)
                                                                                                                                                                                                                                                                                                                                                                             × 10<sup>-3</sup>
 Γ47
                                                                                                                    ( 1.6 \pm 0.3 ) \times 10^{-3}
                                                                                                                                                                                                                                                                                                                                             < 8
                                                                                                                                                                                                                                                                                                                                                                                                             CL=90%
\Gamma_{48}
                      \overline{K}^0 \dot{\omega} \times B(\dot{\omega} \rightarrow \pi^+ \pi^- \pi^0)
                                                                                                                    (1.9 \pm 0.4)\%
                                                                                                                                                                                                                             \Gamma_{104} \ \overline{K}_{2}^{*}(1430)^{0} \pi^{0}
                                                                                                                                                                                                                                                                                                                                              < 4
                                                                                                                                                                                                                                                                                                                                                                                                              CL=90%
                      K^*(892)^- \rho^+ \times B(K^{*-} \rightarrow \overline{K}^0 \pi^-)
                                                                                                                                                                                                                             \Gamma_{105} \ \overline{K}^*(892)^0 \pi^+ \pi^- \pi^0
                                                                                                                    (4.1 \pm 1.6)\%
Γ49
                                                                                                                                                                                                                                                                                                                                               (1.8 \pm 0.9)\%
                                                                                                                                                                                                                                               \dot{K}^*(892)^0 \eta
                                                                                                                                                                                                                             ۲<sub>106</sub>
                                                                                                                                                                                                                                                                                                                                                (1.9 \pm 0.5)\%

\overline{K}^{*}(892)^{0} \rho^{0} \times B(\overline{K}^{*0} \to \overline{K}^{0} \pi^{0})

                                                                                                                    (4.9 \pm 1.1) \times 10^{-3}
 Γ<sub>50</sub>
                                                                                                                                                                                                                                                                                                                                                (3.0 \pm 0.6)\%
                                                                                                                                                                                                                             \Gamma_{107} K^-\pi^+\omega
                                                                                                                                                                                                                                               \overline{K}^*(892)^0 \omega
                                                                                                                                                                                                                             Γ<sub>108</sub>
                                                                                                                                                                                                                                                                                                                                                (1.1 \pm 0.4)\%
                      K_1(1270)^-\pi^+
\Gamma_{51}
                                                                                                        [d] (5.1 \pm 1.4) \times 10^{-3}
                                                                                                                                                                                                                             \Gamma_{109} \quad K^- \pi^+ \eta'(958)
                                                                                                                                                                                                                                                                                                                                                (7.0 \pm 1.8) \times 10^{-3}
                     \begin{array}{c} X_1(1210) \stackrel{h}{\sim} X_1(1270) \stackrel{}{\sim} X_2(1270) \stackrel{}{\sim} X_3(1270) \stackrel{}{\sim
                                                                                                                                                                                                                                                \overline{K}^*(892)^0 \eta'(958)
                                                                                                                                                                                                                             \Gamma_{110}
                                                                                                                                                                                                                                                                                                                                              < 1.0
                                                                                                                                                                                                                                                                                                                                                                                                              CI -- 90%
                                                                                                                     ( 4.8 \pm 1.1 ) \times 10^{-3}
\Gamma_{52}
                                                                                                                                                                                                                                                                                                              Pionic modes
\Gamma_{53} \qquad \begin{array}{c} \stackrel{\wedge}{K^0} \pi^+ \pi^- \pi^0 \text{ nonresonant} \\ \stackrel{\wedge}{\Gamma_{54}} \qquad \stackrel{\wedge}{K^-} \pi^+ \pi^0 \pi^0 \end{array}
                                                                                                                                                                                                                             \Gamma_{111} \pi^{+}\pi^{-}
                                                                                                                                                                                                                                                                                                                                                  (1.52\pm0.09)\times10^{-3}
                                                                                                                    (2.1 \pm 2.1)\%
                                                                                                                                                                                                                             \Gamma_{112}^{111} \pi^0 \pi^0
                                                                                                                    (15 ±5 )%
                                                                                                                                                                                                                                                                                                                                                  ( 8.4 \pm 2.2 ) \times 10^{-4}
                                                                                                                                                                                                                             \Gamma_{113}^{-} \pi^+\pi^-\pi^0
              K^-\pi^+\pi^+\pi^-\pi^0
                                                                                                                                                                                                                                                                                                                                                  (1.6 \pm 1.1)\%
                                                                                                                                                                                                                                                                                                                                                                                                                    S=2.7
Γ<sub>55</sub>
                                                                                                                    \{4.0 \pm 0.4\}\%

\overline{K}^{*}(892)^{0} \pi^{+} \pi^{-} \pi^{0} \\
\times B(\overline{K}^{*0} \to K^{-} \pi^{+})

                                                                                                                                                                                                                             \Gamma_{114}^{-} \pi^{+}\pi^{+}\pi^{-}\pi^{-}
                                                                                                                                                                                                                                                                                                                                                  (7.3 \pm 0.5) \times 10^{-3}
                                                                                                                     ( 1.2 \pm 0.6 ) %
\Gamma_{56}
                                                                                                                                                                                                                             \Gamma_{115} \quad \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}
                                                                                                                                                                                                                                                                                                                                                  (1.9 \pm 0.4)\%
                                                                                                                                                                                                                             \Gamma_{116}^{--} \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{-}

\frac{\overline{K}^{*}(892)^{0} \eta}{\times B(\overline{K}^{*0} \to K^{-}\pi^{+})}

                                                                                                                                                                                                                                                                                                                                                  (4.0 \pm 3.0) \times 10^{-4}
                                                                                                                     ( 2.9 \pm 0.8 ) \times 10^{-3}
\Gamma_{57}
                                                                                                                                                                                                                                                                                     Hadronic modes with a K\overline{K} pair
                                  \times B(\eta' \rightarrow \pi^+ \pi^- \pi^0)
                                                                                                                                                                                                                             Γ<sub>117</sub> K+K-
                                                                                                                                                                                                                                                                                                                                                  (4.25\pm0.16)\times10^{-3}

\begin{array}{ccc}
K^{-}\pi^{+}\omega \times B(\omega \to \pi^{+}\pi^{-}\pi^{0}) \\
\overline{K}^{*}(892)^{0}\omega \\
\times B(\overline{K}^{*0} \to K^{-}\pi^{+})
\end{array}

Γ<sub>58</sub>
                                                                                                                     (2.7 \pm 0.5)\%
                                                                                                                                                                                                                              \Gamma_{118} K^0\overline{K}^0
                                                                                                                                                                                                                                                                                                                                                  ( 6.5 \pm 1.8 ) \times 10^{-4}
                                                                                                                                                                                                                                                                                                                                                                                                                     S=1.2
                                                                                                                     ( 7 \pm 3 ) \times 10^{-3}
 \Gamma_{59}
                                                                                                                                                                                                                              \Gamma_{119} K^0K^-\pi^+
                                                                                                                                                                                                                                                                                                                                                  ( 6.4~\pm1.0 ) \times\,10^{-3}
                                                                                                                                                                                                                                                                                                                                                                                                                    S=1.1
                                                                                                                                                                                                                                                 \overline{K}^*(892)^0 K^0
                                                                                                                                                                                                                                                                                                                                                                              \times 10<sup>-3</sup>
                                                                                                                                                                                                                                                                                                                                                                                                              CL=90%
                                                                                                                                                                                                                              \Gamma_{120}
                                                                                                                                                                                                                                                                                                                                               < 1.1
                                  \times B(\omega \rightarrow \pi^{+}\pi^{-}\pi^{0})
                                                                                                                                                                                                                                                          \times B(\overline{K}^{*0} \rightarrow K^-\pi^+)
 \Gamma_{60} \quad \overline{K}^0 \pi^+ \pi^+ \pi^- \pi^-
                                                                                                                     ( 5.8~\pm1.6 ) \times\,10^{-3}
                                                                                                                                                                                                                                                    K*(892)+K-
                                                                                                                                                                                                                                                                                                                                                  (2.3 \pm 0.5) \times 10^{-3}
                                                                                                                                                                                                                              \Gamma_{121}
 \Gamma_{61} \quad \overline{K}{}^{0} \pi^{+} \pi^{-} \pi^{0} \pi^{0} (\pi^{0})
                                                                                                                     (10.6 \begin{array}{c} +7.3 \\ -3.0 \end{array}) \%
                                                                                                                                                                                                                                                           \times B(K^{*+} \rightarrow K^0 \pi^+)
              \overline{K}^0 K^+ K^-
                                                                                                                                                                                                                             \Gamma_{122}
                                                                                                                                                                                                                                                    K^0K^-\pi^+ nonresonant
                                                                                                                                                                                                                                                                                                                                                 (2.3 \pm 2.3) \times 10^{-3}
                                                                                                                     (9.4 \pm 1.0) \times 10^{-3}
 Γ62
                                                                                                                                                                                                                             \Gamma_{123} \overline{K}^0 K^+ \pi^-
                                                                                                                                                                                                                                                                                                                                                ( 5.0 \pm 1.0 ) \times 10<sup>-3</sup>
             In the fit as \frac{1}{2}\Gamma_{74} + \Gamma_{64}, where \frac{1}{2}\Gamma_{74} = \Gamma_{63}.

\overline{K}^0 \phi \times B(\phi \to K^+ K^-) (4.3 ±0.5) × 10<sup>-3</sup>
                                                                                                                                                                                                                                                   K^*(892)^0 \, \overline{K}{}^0
                                                                                                                                                                                                                                                                                                                                                                             × 10<sup>-4</sup>
                                                                                                                                                                                                                                                                                                                                                                                                               CL=90%
                                                                                                                                                                                                                              \Gamma_{124}
                                                                                                                                                                                                                                                                                                                                               < 5
                                                                                                                                                                                                                                                          \times B(K^{*0} \rightarrow K^+\pi^-)
                      \overline{K}^0K^+K^- non-\phi
                                                                                                                     ( 5.1 \pm 0.8 ) \times 10<sup>-3</sup>
 Γ<sub>64</sub>
\Gamma_{65} \quad K_{5}^{0} K_{5}^{0} K_{5}^{0}
\Gamma_{66} \quad K^{+} K^{-} K^{-} \pi^{+}
                                                                                                                                                                                                                                                    K*(892)-K+
                                                                                                                                                                                                                              \Gamma_{125}
                                                                                                                                                                                                                                                                                                                                                 (1.2 \pm 0.7) \times 10^{-3}
                                                                                                                    (8.3 \pm 1.5) \times 10^{-4}
                                                                                                                                                                                                                                                        \times B(K^{*-} \rightarrow \overline{K}^0 \pi^-)
                                                                                                                    ( 2.1~\pm0.5 ) \times\,10^{-4}
                                                                                                                                                                                                                                                    \overline{\it K}^0\,{\it K}^+\pi^- nonresonant
                                                                                                                                                                                                                                                                                                                                                  (3.8 \begin{array}{c} +2.3 \\ -1.9 \end{array}) \times 10^{-3}
 \Gamma_{67} K^+ K^- \overline{K}{}^0 \pi^0
                                                                                                                                                                                                                              \Gamma_{126}
                                                                                                                     (7.2^{+4.8}_{-3.5}) \times 10^{-3}
                                                                                                                                                                                                                              \Gamma_{127} \quad K^+ \, K^- \, \pi^0
                                                                                                                                                                                                                                                                                                                                                ( 1.3 \pm 0.4 ) \times 10<sup>-3</sup>
                                                                                                                                                                                                                              \Gamma_{128} \quad K_{\,5}^{\,0} \, K_{\,5}^{\,0} \, \pi^{\,0}
                                                                                                                                                                                                                                                                                                                                               < 5.9 \times 10^{-4}
                    Fractions of many of the following modes with resonances have already
                                                                                                                                                                                                                              \Gamma_{129} \quad K^{+} K^{-} \pi^{+} \pi^{-}
                                                                                                                                                                                                                                                                                                                                       [e] (2.50\pm0.23)\times10^{-3}
                     appeared above as submodes of particular charged-particle modes. (Modes
                                                                                                                                                                                                                                                   \phi \pi^+ \bar{\pi}^- \times B(\phi \rightarrow K^+ K^-)
                                                                                                                                                                                                                                                                                                                                                  (5.3 \pm 1.4) \times 10^{-4}
                    for which there are only upper limits and \overline{K}^*(892)\rho submodes only appear
                                                                                                                                                                                                                              Γ<sub>130</sub>
                                                                                                                                                                                                                                                          \phi \rho^0 \times B(\phi \to K^+ K^-)
                                                                                                                                                                                                                                                                                                                                                  (3.0 \pm 1.6) \times 10^{-4}
                    below.)
                                                                                                                                                                                                                              Γ<sub>131</sub>
 \begin{array}{ccc} \Gamma_{68} & \overline{K}^0 \eta \\ \Gamma_{69} & \overline{K}^0 \rho^0 \end{array}
                                                                                                                                                                                                                                                    K^+ (892)^0 K^- \pi^+ + c.c.

\times B(K^{*0} \rightarrow K^+ \pi^-)
                                                                                                                                                                                                                                                                                                                                                  (9.0 \pm 2.3) \times 10^{-4}
                                                                                                                     (7.0 \pm 1.0) \times 10^{-3}
                                                                                                                                                                                                                              \Gamma_{132}
                                                                                                                                                                                                                                                                                                                                                                           × 10<sup>-4</sup>
                                                                                                                     (1.21 \pm 0.17)\%
                                                                                                                                                                                                                                                                                                                                       [f] < 5
                                                                                                                                                                                                                              Γ<sub>133</sub>
 \Gamma_{70} \quad K^- \rho^+
\Gamma_{71} \quad \overline{K}^0 \omega
                                                                                                                     (10.8 \pm 0.9)\%
                                                                                                                                                                                       5=1.2

\begin{array}{cccc}
\hat{K}^{*}(892)^{0} \overline{K}^{*}(892)^{0} \\
\times B^{2}(K^{*0} \to K^{+}\pi^{-})
\end{array}

                                                                                                                                                                                                                                                                                                                                                   (6 \pm 2) \times 10^{-4}
 Γ71
                                                                                                                     (2.1 \pm 0.4)\%
                                                                                                                                                                                                                              Γ<sub>134</sub>
 \Gamma_{72} = \overline{K}^0 \, \eta'(958)
                                                                                                                     (1.71 \pm 0.26)\%
 \Gamma_{73} \quad \overline{K}^0 f_0(980)
                                                                                                                    (5.7 \pm 1.6) \times 10^{-3}
                                                                                                                                                                                                                                                    K^+K^-\pi^+\pi^- non-\phi
                                                                                                                                                                                                                              \Gamma_{135}
 \Gamma_{74} \ \overline{K}{}^0 \phi
                                                                                                                                                                                                                                                    K^+K^-\pi^+\pi^- nonresonant
                                                                                                                    (8.6 \pm 1.0) \times 10^{-3}
                                                                                                                                                                                                                                                                                                                                               < 8
                                                                                                                                                                                                                                                                                                                                                                                \times 10^{-4}
                                                                                                                                                                                                                                                                                                                                                                                                               CL=90%
                                                                                                                                                                                                                              Γ<sub>136</sub>
 \Gamma_{75} \quad \begin{array}{cc} K^{-} a_{1} (1260)^{+} \\ \Gamma_{76} & \overline{K}^{0} a_{1} (1260)^{0} \end{array}
                                                                                                                                                                                                                              \Gamma_{137} \quad K^0 \overline{K}{}^0 \pi^+ \pi^-
                                                                                                                                                                                                                                                                                                                                                  ( 6.8 \pm 2.7 ) \times 10^{-3}
                                                                                                                   (7.3 \pm 1.1)\%
                                                                                                                                                                                                                              \Gamma_{138} \ K^+K^-\pi^+\pi^-\pi^0
                                                                                                                                                                                                                                                                                                                                                   (3.1 \pm 2.0) \times 10^{-3}
                                                                                                                  < 1.9 %
                                                                                                                                                                                  CL≈90%
 Γ<sub>76</sub>
                \overline{K}^0 f_2(1270)
                                                                                                                  (4.1 \pm 1.5) \times 10^{-3}
  Γ77
 \Gamma_{78} \frac{K^{-}a_{2}(1320)^{+}}{K^{0}f_{0}(1370)}
                                                                                                                  < 2 \times 10^{-3}
 Γ<sub>78</sub>
                                                                                                                                                                                  CL=90%
                                                                                                                                                                                                                                                  Fractions of most of the following modes with resonances have already
                                                                                                                   (6.9 \pm 2.1) \times 10^{-3}
                                                                                                                                                                                                                                                  appeared above as submodes of particular charged-particle modes.
 \Gamma_{80} K^*(892)^-\pi^+
                                                                                                                                                                                                                              \Gamma_{139} \ \overline{K}^*(892)^0 K^0
                                                                                                                                                                                                                                                                                                                                                                            \times 10<sup>-3</sup>
                                                                                                                                                                                                                                                                                                                                               < 1.6
                                                                                                                     (5.0 ±0.4)%
                                                                                                                                                                                       S=1.2
                                                                                                                                                                                                                                                                                                                                                                                                               CL=90%
                 K^*(892)^0 \pi^0
                                                                                                                                                                                                                              Γ<sub>140</sub> K*(892)+ K-
                                                                                                                                                                                                                                                                                                                                                ( 3.5 \pm 0.8 ) \times 10^{-3}
                                                                                                                     (3.1 \pm 0.4)\%
  Γ<sub>81</sub>
                                                                                                                                                                                                                              \Gamma_{141} \quad K^*(892)^0 \stackrel{?}{K}{}^0
  \Gamma_{82} = \overline{K}^* (892)^0 \pi^+ \pi^- \text{ total}
                                                                                                                     (2.2 \pm 0.5)\%
                                                                                                                                                                                                                                                                                                                                               < 8
                                                                                                                                                                                                                                                                                                                                                                                                                CL=90%
                                                                                                                                                                                                                             \Gamma_{142} \quad K^*(892)^- K^+ \\ \Gamma_{143} \quad \phi \pi^0
                       \overline{K}^*(892)^0 \pi^+ \pi^- 3-body
                                                                                                                                                                                                                                                                                                                                               (1.8 \pm 1.0) \times 10^{-3}
                                                                                                                     (1.42 \pm 0.32)\%
                                                                                                                                                                                                                                                                                                                                                                            \times 10^{-3}
                                                                                                                                                                                                                                                                                                                                                                                                               CL=90%
                                                                                                                                                                                                                                                                                                                                               < 1.4
                                                                                                                                                                                                                                                                                                                                                                                  \times 10^{-3}
                                                                                                                                                                                                                              \Gamma_{144} \phi\eta
                                                                                                                                                                                                                                                                                                                                               < 2.8
                                                                                                                                                                                                                                                                                                                                                                                                               C1 = 90\%
                                                                                                                                                                                                                                                                                                                                                                                  \times 10^{-3}
                                                                                                                                                                                                                                                                                                                                                                                                               CL=90%
                                                                                                                                                                                                                               \Gamma_{145} \phi \omega
                                                                                                                                                                                                                                                                                                                                                < 2.1
```

Γ ₁₄₆	$\phi \pi^+ \pi^-$		(1.07±0.2	og) v 10-3	
Γ ₁₄₇	$\phi \rho^0$		(6 ±3) × 10 ⁻⁴	
Γ ₁₄₈	$\phi \pi^+ \pi^-$ 3-body		(7 ±5) × 10 ⁻⁴	
Γ ₁₄₉			[f] < 7	×10 ⁻⁴	CL=90%
Γ ₁₅₀	$K^*(892)^0 K^- \pi^+$		[1] < 1	X 10 ·	CL=90%
	$\frac{K}{K}$ *(892) $^{0}K^{+}\pi^{-}$				
ر 151	$K^*(892)^0 \overline{K}^*(892)^0$				
Γ ₁₅₂	N (092) N (092)		(1.4 ± 0.5)) × 10 ⁻³	
	Ra	diative	modes		
Γ ₁₅₃	$\rho^0 \gamma$		< 2.4	\times 10 ⁻⁴	CL=90%
Γ ₁₅₄	$\omega \gamma$		< 2.4	$\times 10^{-4}$	CL=90%
Γ ₁₅₅	$\phi\gamma$		< 1.9	$\times 10^{-4}$	CL=90%
Γ ₁₅₆	\overline{K}^* (892) ⁰ γ		< 7.6	$\times 10^{-4}$	CL=90%
			ressed (DC) mo		
	$\Delta C = 2$ forbidde	n via n	nixing (C2M) m	odes,	
	$\Delta C = 1$ weak nea	ıtral cı	urrent (C1) mod	les, or	
_	Lepton Family nu		(<i>LF</i>) violating n		
Γ ₁₅₇	$K^+\ell^-\overline{ u}_\ell$ (via $\overline{D}{}^0$)	C2M	< 1.7	× 10 ⁻⁴	CL=90%
Γ ₁₅₈	$K^+\pi^-$	DC	(1.46 ± 0.3)		
Γ ₁₅₉	$K^+\pi^-$ (via $\overline{D}{}^0$)	C2M	< 1.6	$\times 10^{-5}$	CL=95%
Γ_{160}	$K^+\pi^-\pi^+\pi^-$	DC	(1.9 ±2.6) × 10 ⁻⁴	
Γ_{161}	$K^+\pi^-\pi^+\pi^-$ (via $\overline{D}{}^0$)	C2M	< 4	\times 10 ⁻⁴	CL=90%
Γ ₁₆₂	$K^+\pi^-$ or		< 1.0	$\times 10^{-3}$	CL=90%
	$K^+\pi^-\pi^+\pi^-$ (via $\overline{D}{}^0$)				
Γ ₁₆₃	μ^- anything (via $\overline{D}{}^0$)	C2M	< 4	\times 10 ⁻⁴	CL=90%
Γ ₁₆₄	e ⁺ e ⁻	CI	< 6.2	$\times 10^{-6}$	CL=90%
Γ ₁₆₅	$\mu_{\perp}^{+}\mu^{-}$	C1	< 4.1	\times 10 ⁻⁶	CL=90%
Γ ₁₆₆	$\pi^{0}e^{+}e^{-}$	C1	< 4.5	\times 10 ⁻⁵	CL=90%
Γ ₁₆₇	$\pi^{0}\mu^{+}\mu^{-}$	CI	< 1.8	$\times 10^{-4}$	CL=90%
Γ ₁₆₈	$\eta e^+ e^-$	CI	< 1.1	$\times 10^{-4}$	CL=90%
Γ ₁₆₉	$\eta \mu^+ \mu^-$	C1	< 5.3	× 10 ⁻⁴	CL=90%
Γ ₁₇₀	$\rho^0 e^+ e^-$	C1	< 1.0	× 10 ⁻⁴	CL=90%
Γ_{171}	$ ho^0 \mu^+ \mu^-$	C1	< 2.3	$\times 10^{-4}$	CL=90%
Γ ₁₇₂	$\omega e^+ e^-$	C1	< 1.8	$\times 10^{-4}$	CL=90%
Γ ₁₇₃	$\omega \mu^+ \mu^-$	C1	< 8.3	$\times 10^{-4}$	CL=90%
Γ ₁₇₄	$\phi e^+ e^-$	C1	< 5.2	$\times 10^{-5}$	CL=90%
Γ ₁₇₅	$\phi \mu^+ \mu^-$	CI	< 4.1	$\times 10^{-4}$	CL=90%
Γ ₁₇₆	$\overline{K}^0 e^+ e^-$		[g] < 1.1	× 10 ⁻⁴	CL=90%
Γ ₁₇₇	$\overline{K}^0 \mu^+ \mu^-$		[g] < 2.6	× 10 ⁻⁴	CL=90%
Γ ₁₇₈	\overline{K}^* (892) ⁰ e^+e^-		[g] < 1.4	$\times 10^{-4}$	CL=90%
Γ ₁₇₉	$\overline{K}^*(892)^0 \mu^+ \mu^-$		[g] < 1.18	$\times 10^{-3}$	CL=90%
Γ ₁₈₀	$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	C1	< 8.1	\times 10 ⁻⁴	CL=90%
Γ ₁₈₁	$\mu^{\pm} e^{\mp}$	LF	[h] < 8.1	$\times 10^{-6}$	CL≔90%
Γ ₁₈₂	$\pi^0 e^{\pm} \mu^{\mp}$	LF	[h] < 8.6	× 10 ⁻⁵	CL=90%
Γ ₁₈₃	$\eta e^{\pm} \mu^{\mp}$	LF	[h] < 1.0	× 10 ⁻⁴	CL=90%
Γ ₁₈₄	$\rho^0 e^{\pm} \mu^{\mp}$	LF	[h] < 4.9	× 10 ⁻⁵	CL=90%
Γ ₁₈₅	$\omega e^{\pm} \mu^{\mp}$	LF	[h] < 1.2	× 10 ⁻⁴	CL=90%
Γ ₁₈₆	$\phi e^{\pm} \mu^{\mp}$	LF	[h] < 3.4	× 10 ⁻⁵	CL=90%
Γ ₁₈₇	$\frac{\nabla}{K^0} e^{\pm} \mu^{\mp}$	LF	[h] < 3.4 [h] < 1.0	× 10 ⁻⁴	CL=90%
F100		1 F	[h] < 1.0	× 10 -4	CL -90%

[a] This is a weighted average of D^{\pm} (44%) and D^{0} (56%) branching fractions. See " D^+ and $D^0 \rightarrow (\eta \text{ anything}) / (\text{total } D^+ \text{ and } D^0)$ " under "D+ Branching Ratios" in these Particle Listings.

[h] < 1.0

 $(17.2 \pm 3.4)\%$

 $\Gamma_{188} \ \overline{K}^*(892)^0 e^{\pm} \mu^{\mp}$

 Γ_{189} A dummy mode used by the fit.

 \times 10⁻⁴

CL=90%

S=1.1

- [b] This value averages the e^+ and μ^+ branching fractions, after making a small phase-space adjustment to the μ^+ fraction to be able to use it as an e^+ fraction; hence our ℓ^+ here is really an e^+ .
- [c] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers.
- [d] The two experiments measuring this fraction are in serious disagreement. See the Particle Listings.
- [e] The experiments on the division of this charge mode amongst its submodes disagree, and the submode branching fractions here add up to considerably more than the charged-mode fraction.
- [f] However, these upper limits are in serious disagreement with values obtained in another experiment.
- [g] This mode is not a useful test for a $\Delta C{=}1$ weak neutral current because both quarks must change flavor in this decay.
- [h] The value is for the sum of the charge states or particle/antiparticle states indicated.

CONSTRAINED FIT INFORMATION

An overall fit to 51 branching ratios uses 122 measurements and one constraint to determine 28 parameters. The overall fit has a $\chi^2 = 64.5$ for 95 degrees of freedom.

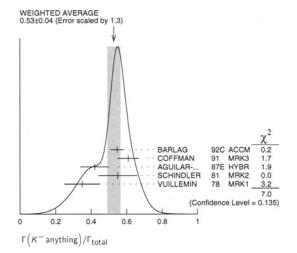
The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to

<i>x</i> ₈	6									
<i>X</i> 9	32	19								
<i>x</i> ₁₇	1	24	5							
<i>x</i> ₁₈	1	8	3	2						
<i>x</i> 19	13	46	42	11	6					
<i>x</i> ₂₀	1	5	3	1	24	8				
x ₂₁	1	6	4	2	36	10	66			
x ₂₉	3	11	9	3	7	23	16	18		
<i>x</i> 37	5	18	17	4	3	40	4	5	9	
x ₄₆	1	3	2	1	18	6	33	51	9	4
<i>x</i> 55	3	9	8	2	1	19	2	2	4	28
x ₆₄	1 1	3	2	1	16	5	30	46	8	2
x ₆₈	1	2	2	1	17 13	5 4	58	47 37	11	2
x ₇₁	1	4	3	1	21	6	24 39	60	6 10	2
X74	1	6	4	1	30	9	56	84	18	4
x ₈₀ x ₈₁	1	5	4	1	7	10	24	18	43	4
x ₈₃	1	3	3	1	0	7	1	1	2	18
×87	1	2	2	0	2	4	3	5	2	9
x ₉₈	0	2	1	0	7	3	13	20	4	3
x ₁₀₆	1	3	3	1	2	6	4	4	23	3
x ₁₁₇	8	28	25	7	4	60	5	6	14	24
x ₁₁₈	0	2	1	0	9	3	17	25	4	1
<i>x</i> ₁₁₉	1	4	3	1	14	6	26	39	7	3
x ₁₂₃	1	3	2	1	11	6	20	30	6	2
x ₁₄₀	0	2	1	0	11	3	20	30	5	1
<i>x</i> 189	-28	-21	-23	-7	-34	-32	-53	-70	-50	-26
	<i>x</i> ₂	<i>x</i> 8	<i>x</i> 9	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	<i>x</i> ₂₀	<i>x</i> ₂₁	<i>x</i> ₂₉	<i>X</i> 37
<i>x</i> 55	1									
x ₆₄	23	1								
x ₆₈	24	1	21							
x ₇₁	43	1	17	17						
x ₇₄	30	1	7	28	22					
x ₈₀	43	2	38	40	31	50				
×81	9	2	8	14	7	11	17			
x ₈₃	1	5	0	0	0	0	1	1		
×87	9	3	2	2	4	3	4	1	2	
<i>x</i> 98	40	1	9	9	17	12	17	4	1	4
x ₁₀₆	2	1	2	2	2	2	4	10	0	0
<i>x</i> ₁₁₇	3	12	3	3	2	4	6	6	4	2
×118	13	1 1	11 18	12 18	9 14	15 23	21 33	5 7	0	1 2
x ₁₁₉	15	1	13	14	11	18	25	6	0	2
X123	15	1	14	14	11	18	25	6	0	1
x ₁₄₀ x ₁₈₉	-68	-20	-33	-38	-45	- 43	-64	-39	-14	-23
103	X ₄₆	X55	<i>x</i> 64	x ₆₈	x ₇₁	X74	×80	X81	X83	×87
			•	•••					•	6
<i>X</i> 106	1									
<i>x</i> 117	2	4								
<i>x</i> ₁₁₈	5	1	2							
x ₁₁₉	8	2	4	10						
X ₁₂₃	6	1	3	7	12					
X ₁₄₀	6	1 25	2 -20	-18	12 _30	9: 24	_23			
<i>x</i> 189	34	-25 X106	-20 X117	-18	-30 X110	-24 X102	-23 X140			
	×98	<i>x</i> 106	<i>x</i> 117	X118	×119	X123	<i>X</i> 140			

D⁰ BRANCHING RATIOS

See the "Note on D Mesons" in the D^\pm Listings.

Some older now obsolete results have been omitted from these Listings.


— Inclusive modes —

Γ(e ⁺ anything)/Γ _{total}				Γ1/Γ
VALUE	EVT5	DOCUMENT ID	TECN	COMMENT
0.0675±0.0029 OUR AVERA	AGE			
$0.069 \pm 0.003 \pm 0.005$	1670	ALBRECHT	96c ARG	e^+e^-pprox 10 GeV
$0.0664 \pm 0.0018 \pm 0.0029$	4609	¹⁶ KUBOTA	96B CLE2	$e^+e^-\approx \Upsilon(45)$
$0.075 \pm 0.011 \pm 0.004$	137	BALTRUSAIT	85B MRK3	e^+e^- 3.77 GeV
• • • We do not use the fol	lowing dat	a for averages, fits,	limits, etc.	• •
0.15 ±0.05				π <i>p</i> , <i>pp</i> 360, 400 GeV
0.055 ±0.037	12	SCHINDLER	81 MRK2	e+e- 3.771 GeV
16 KUBOTA 96B uses D*+ subsequently decays to X		r ⁺ (and charge co	njugate) ever	its in which the D^0
F/++!==\/F				Γ- /Γ

$\Gamma(\mu^+$ anything) $/\Gamma_{tot}$	al ·				Γ2,
VALUE	EVT5	DOCUMENT ID	TECN	COMMENT	
0.066±0.008 OUR FIT 0.060±0.007±0.012	310	ALBRECHT	96c ARG	e^+e^-pprox 10 GeV	v

Γ(K anythin	g)/F _{total}			Г ₃ /Г
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.53 ±0.04 O	UR AVERAGE	Error includes scale	factor of 1.3.	See the ideogram below.
$0.546^{+0.039}_{-0.038}$		¹⁷ BARLAG	92C ACCM	π^- Cu 230 GeV
0.609 ± 0.032 ±	0.052	COFFMAN	91 MRK3	$e^{+}e^{-}$ 3.77 GeV
0.42 ± 0.08		AGUILAR	87E HYBR	πρ, ρρ 360, 400 GeV
0.55 ± 0.11	121	SCHINDLER	81 MRK2	e ⁺ e ⁻ 3.771 GeV
0.35 ± 0.10	19	VUILLEMIN	78 MRK1	e+e- 3.772 GeV

 $^{^{17}\,\}mathrm{BARLAG}$ 92C computes the branching fraction using topological normalization.

$[\Gamma(\overline{K}^0 \text{ anything}) +$	Γ(K ⁰ an	ything) $]/\Gamma_{total}$				Γ_4/Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.42 ±0.05 OUR AV	ERAGE					
$0.455 \pm 0.050 \pm 0.032$		COFFMAN	91	MRK3	e+ e- 3.77 GeV	
0.29 ± 0.11	13	SCHINDLER	81	MRK2	e ⁺ e ⁻ 3.771 GeV	
0.57 ± 0.26	6	VUILLEMIN	78	MRK1	e ⁺ e ⁻ 3.772 GeV	
$\Gamma(K^+ \text{ anything})/\Gamma_t$	otal					Г ₅ /Г
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
0.034+0.006 OUR AV	ERAGE					
$0.034 ^{+0.007}_{-0.005}$		¹⁸ BARLAG	920	ассм	π^- Cu 230 GeV	
$0.028 \pm 0.009 \pm 0.004$		COFFMAN	91	MRK3	e^+e^- 3.77 GeV	
$0.03 \begin{array}{l} +0.05 \\ -0.02 \end{array}$		AGUILAR	87E	HYBR	πρ, ρρ 360, 400 G	Ge∨
0.08 ± 0.03	25	SCHINDLER	81	MRK2	e+e- 3.771 GeV	

 $^{18}\,\mathrm{BARLAG}$ 92c computes the branching fraction using topological normalization.

Semileptonic modes

 $\Gamma(K^-\ell^+\nu_\ell)/\Gamma_{\text{total}}$

 Γ_7/Γ We average our $K^-e^+\nu_e$ and $K^-\mu^+\nu_\mu$ branching fractions, after multiplying the latter by a phase-space factor of 1.03 to be able to use it with the $K^-e^+\nu_P$ fraction. Hence our ℓ^+ here is really an e^+ .

VALUE		DOCUMENT ID		COMM	ENT	
0.0348±0.0017 OUR A	VERAGE	Error includes so				
0.0364 ± 0.0018		PDG	00	Our F	$(K^- e^+ \nu_e) / \Gamma_{\text{tota}}$	1
0.0331 ± 0.0018		PDG	00	1.03 ×	(K ⁻ e ⁺ ν _e)/Γ _{tota} c our F(K ⁻ μ ⁺ ν _μ)/r _{total}
$\Gamma(K^-e^+\nu_e)/\Gamma_{\text{total}}$						Г ₈ /Г
	EVTS	DOCUMENT ID		TECN	COMMENT	
0.0364 ± 0.0018 OUR FI	T					
$0.034 \pm 0.005 \pm 0.004$	55	ADLER	89	MRK3	e ⁺ e ⁻ 3.77 GeV	
$\Gamma(K^-e^+\nu_e)/\Gamma(K^-$	π ⁺)					Γ ₈ /Γ ₁₉
VALUE	EVT5	DOCUMENT ID		TECN	COMMENT	
0.95 ±0.04 OUR FIT						
0.95 ±0.04 OUR AVE	RAGE					
$0.978 \pm 0.027 \pm 0.044$	2510	¹⁹ BEAN	930	CLE2	$e^+e^-\approx T(45)$	5)
0.90 ±0.06 ±0.06	584	²⁰ CRAWFORD	91E	CLEO	$e^+e^-\approx 10.5$	GeV
$0.91 \pm 0.07 \pm 0.11$	250	²¹ ANJO5	89F	E691	Photoproduction	1
19 05 4 11 00 1/-	. +					

 19 BEAN 93C uses ${\it K^-\mu^+
u_{\mu}}$ as well as ${\it K^-e^+
u_e}$ events and makes a small phase-space adjustment to the number of the μ^+ events to use them as e^+ events. A pole mass of $2.00\pm0.12\pm0.18~{\rm GeV/c^2}$ is obtained from the q^2 dependence of the decay rate.

²⁰CRAWFORD 91B uses $K^-\,e^+\,\nu_e$ and $K^-\,\mu^+\,\nu_\mu$ candidates to measure a pole mass of $2.1^{+0.4}_{-0.2}^{+0.4}_{-0.2}^{+0.3}~{
m GeV}/c^2$ from the q^2 dependence of the decay rate.

²¹ ANJOS 89F measures a pole mass of $2.1^{+0.4}_{-0.2} \pm 0.2$ GeV/ c^2 from the q^2 dependence

$\Gamma(K^-\mu^+\nu_\mu)/\Gamma(K^-\mu^+\nu_\mu)$	-π ⁺)				Γ_9/Γ_{19}
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.84 ±0.04 OUR FIT	Г				
0.84 ±0.04 OUR AV	ERAGE				
$0.852 \pm 0.034 \pm 0.028$	1897	22 FRABETTI	95G E687	$\gamma \operatorname{Be} \overline{E}_{\gamma} = 220$	GeV
$0.82 \pm 0.13 \pm 0.13$	338	23 FRABETTI		$\gamma \operatorname{Be} \overline{E}_{\gamma} = 221$	
$0.79 \pm 0.08 \pm 0.09$	231	²⁴ CRAWFORD		$e^+e^-\approx 10.5$	

22 FRABETTI 95G extracts the ratio of form factors $f_+(0)/f_+(0)=-1.3^{+3.6}_{-3.4}\pm0.6$, and measures a pole mass of $1.87^{+0.11}_{-0.08}^{+0.11}_{-0.06}^{+0.07}$ GeV/c² from the q^2 dependence of the decay

rate. 23 FRABETTI 93I measures a pole mass of $2.1^{+0.7}_{-0.3} + 0.7_{-0.3}$ GeV/ c^2 from the q^2 dependence

²⁴ CRAWFORD 91B measures a pole mass of 2.00 \pm 0.12 \pm 0.18 GeV/ c^2 from the q^2 dependence of the decay rate.

$\Gamma(K^-\mu^+\nu_\mu)/\Gamma(\mu^+$	anything	:)				Γ_9/Γ_2
VALUE	EVTS	DOCUMENT ID	<u> </u>	TECN	COMMENT	
0.49 ±0.06 OUR FIT						
$0.472 \pm 0.051 \pm 0.040$	232	KODAMA	94	E653	π^- emulsion 60	0 GeV
• • • We do not use t	he followin	g data for averag	ges, fit	s, limits	, etc. • • •	
$0.32 \pm 0.05 \pm 0.05$	124	KODAMA	91	EMUL	ρΑ 800 GeV	
F/W0a+\/F						F /F

$\Gamma(K^-\pi^0e^+\nu_e)/\Gamma_{to}$	tal			Γ ₁₀ /Ι
VALUE	EVTS	DOCUMENT ID	TEÇN	COMMENT
$0.016^{+0.013}_{-0.005}\pm0.002$	4	25 BAI 91	MRK3	$e^+e^-pprox~3.77~GeV$

 $^{25}\,\mathrm{BAI}$ 91 finds that a fraction $0.79^{+0.15}_{-0.17}^{+0.09}_{-0.03}$ of combined D^{+} and D^{0} decays to $\overline{K}\pi e^+\nu_e$ (24 events) are $\overline{K}^*(892)e^+\nu_e$. BAI 91 uses 56 $K^-e^+\nu_e$ events to measure a pole mass of 1.8 \pm 0.3 \pm 0.2 GeV/ c^2 from the q^2 dependence of the decay rate.

$$\Gamma(\overline{K}^0\pi^-e^+\nu_e)/\Gamma_{total}$$
 $EVTS$ $DOCUMENT ID$ $TECN$ $COMMENT$ $0.028 + 0.017 ± 0.003$ 6 $EVTS$ E

 $^{26}\,\mathrm{BAI}$ 91 finds that a fraction $0.79^{\,+\,0.15\,+\,0.09}_{\,-\,0.17\,-\,0.03}$ of combined D^+ and D^0 decays to $\overline{K}\pi e^+\nu_e$ (24 events) are \overline{K}^* (892) $e^+\nu_e$.

Γ(K*(892)- e		Γ_{18}/Γ_{8}			
VALUE	ccay modes or the	DOCUMENT ID		COMMENT	
0.55 ± 0.09 OUF	₹ FIT				
$0.51 \pm 0.18 \pm 0.0$)6	CRAWFORD	91B CLEO	$e^+e^-\approx$	10.5 GeV
Γ(K*(892)-	$e^+ \nu_e) / \Gamma (\overline{K}{}^0 \pi^+$	+π ⁻)			Γ_{18}/Γ_{21}
Unseen de	ecay modes of the	K*(892) are in	cluded.		
V41145	•	DOCUMENT ID	TECN	COMMENT	

DOCUMENT ID TECN COMMENT 0.37 ± 0.06 OUR FIT 152 27 BEAN 93c CLE2 $e^+e^- \approx \Upsilon(45)$ $0.38 \pm 0.06 \pm 0.03$

 $^{^{27}\,\}mathrm{BEAN}$ 93C uses $K^{*-}\,\mu^{+}\,\nu_{\mu}$ as well as $K^{*-}\,e^{+}\,\nu_{e}$ events and makes a small phase-space adjustment to the number of the μ^+ events to use them as e^+ events.

** • We do not use the following data for averages, fits, limits, etc. • • • • • • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	80-240 GeV Γ_{20}/Γ_{21} $P = 10.36-10.7 \text{ GeV}$ $P = 10 \text{ GeV}$ $P = 10.7 \text{ GeV}$
NULLE **COMMENT** **ONLOWER** DOCUMENT** ID TECN** **ONLOWENT** **ONLOWER** DOCUMENT** ID TECN** **OMMENT** **ONLOWER** DOCUMENT** ID TECN** **ONLOWER** DOCUMENT** ID TECN** **OMMENT** **ONLOWER** DOCUMENT** ID TECN** **ONLOWER** DOCUMENT** ID TECN** **OMMENT** **ONLOWER** DOCUMENT** ID TECN** **ONLOWER** DOCUM	Γ_{20}/Γ_{21} $MENT$ $r = 10.36-10.7 \text{ GeV}$ $r = 10 \text{ GeV}$ $r = 10 \text{ GeV}$ $r = 10.7 \text{ GeV}$ $r =$
0.24 ± 0.07 ± 0.06 137 28 ALEXANDER 908 CLEO e^+e^- 10.5-11 GeV 20 ALEXANDER 908 cannot exclude extra π^0 's in the final state. See nearby data blocks for more detailed results. $\Gamma(K^*(892)^0\pi^-e^+\nu_e)/\Gamma(K^*(892)^0=e^+\nu_e)$ Γ_{14}/Γ_{18} Unseen decay modes of the $K^*(892)^0$ are included. Γ_{14}/Γ_{18} Unseen decay modes of the $K^*(892)^0$ are included. Γ_{14}/Γ_{18} Unseen decay modes of the $K^*(892)^0$ are included. Γ_{14}/Γ_{18} $\Gamma_{14}/\Gamma_{18}/\Gamma_{18}/\Gamma_{18}$ $\Gamma_{14}/\Gamma_{18}/$	MENT $t=10.36-10.7 \text{ GeV}$ $t=10.7 $
28 ALEXANDER 908 cannot exclude extra π^0 's in the final state. See nearby data blocks for more detailed results. The final state is common to the final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for more detailed results. The final state. See nearby data blocks for final state. See nearby data block for the final state. See nearby data block for final state. See nearby data block for detailed results. The final state for the final state. See nearby data block for final state. See nearb	e^- 10.36–10.7 GeV $e^ \approx$ 10 GeV $e^ \approx$ 10 T GeV 2P. e^+ $e^ \approx$ e^+ $e^ \approx$ e^+ $e^ \approx$ e^+ $e^ \approx$ e^+ e^- 3.77 GeV e^+ e^- 3.77 GeV e^- 2.87 GeV $e^ e^-$ 2.90 GeV $e^ e^-$ 4.03, 4.41 GeV
	$e^-\approx 10 \text{ GeV}$ $e^-\approx 10.7 \text{ GeV}$ $e^+\approx 10.7 \text{ GeV}$ $e^+e^-\approx 7(4S)$ $e^+e^-3.77 \text{ GeV}$ $e^-e^-3.77 \text{ GeV}$ $e^-e^-6.77 \text{ GeV}$ $e^-e^-6.77 \text{ GeV}$ $e^-e^-6.77 \text{ GeV}$ $e^-e^-6.77 GeV$
Unseen decay modes of the $K^*(892)^{2}0$ are included. Unseen decay modes of the $K^*(892)^{2}0$ and the limit of ALBRECHT $9F$ ARG $F^*(K^*)^{2}0$ and the limit of ALBRECHT $9F$ ARG $F^*(K^*)^{2}0$ and the limit includes of $F^*(K^*)^{2}0$ and the limit inc	$e^-\approx 10 \text{ GeV}$ $e^-\approx 10.7 \text{ GeV}$ $e^+\approx 10.7 \text{ GeV}$ $e^+e^-\approx 7(4S)$ $e^+e^-3.77 \text{ GeV}$ $e^-e^-3.77 \text{ GeV}$ $e^-e^-6.77 \text{ GeV}$ $e^-e^-6.77 \text{ GeV}$ $e^-e^-6.77 \text{ GeV}$ $e^-e^-6.77 GeV$
United to Lay modes of the Comment of Case of the Comment of the Comment of Case of C	PP. $\frac{\Gamma_{21}/\Gamma}{COMMENT}$ $e^{+}e^{-}\approx \Upsilon(45)$ $e^{+}e^{-} 3.77 \text{ GeV}$ $e^{+}e^{-} 3.77 \text{ GeV}$ $e^{+}e^{-} 3.77 \text{ GeV}$ $\pi^{+})/\Gamma_{\text{total}} \text{ for the branching fraction to be } 5.8 \pm 0.5 \pm 0.6 \text{ nb.}$ Γ_{21}/Γ_{19} $\frac{\Gamma_{21}}{\Gamma_{19}}$ $\frac{\Gamma_{22}}{\Gamma_{21}} = 220 \text{ GeV}$ $\frac{\Gamma_{21}}{\Gamma_{21}} = 220 \text{ GeV}$ $\frac{\Gamma_{22}}{\Gamma_{23}} = 4.03, 4.41 \text{ GeV}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{21}/Γ $e^{+}e^{-}\approx \Upsilon(45)$ $e^{+}e^{-}\approx 3.77 \text{ GeV}$ $e^{+}e^{-}3.77 \text{ GeV}$ $\pi^{+})/\Gamma_{\text{total}} \text{ for the branching fraction to be } 5.8 \pm 0.5 \pm 0.6 \text{ nb.}$ Γ_{21}/Γ_{19} $E_{\gamma}=220 \text{ GeV}$ $\rightarrow D^{*}+$ $e^{-}4.03, 4.41 \text{ GeV}$
29 The limit on $(\overline{K}^{*}(892)\pi)^{-} \mu^{+} \nu_{\mu}$ below is much stronger. $\Gamma(K^{-}\pi^{+}\pi^{-}\mu^{+}\nu_{\mu})/\Gamma(K^{-}\mu^{+}\nu_{\mu}) \qquad \Gamma_{15}/\Gamma_{9}$ $VALUE \qquad \qquad CLX \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $C0.037 \qquad 90 \qquad KODAMA \qquad 938 E653 \qquad \pi^{-} \text{ emulsion } 600 \text{ GeV}$ $\Gamma(K^{-}(892)\pi)^{-} \mu^{+} \nu_{\mu})/\Gamma(K^{-}\mu^{+}\nu_{\mu}) \qquad \Gamma_{16}/\Gamma_{9}$ $VALUE \qquad \qquad CLX \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $C0.043 \qquad 90 \qquad 30 KODAMA \qquad 938 E653 \qquad \pi^{-} \text{ emulsion } 600 \text{ GeV}$ $C0.043 \qquad 90 \qquad 30 KODAMA \qquad 938 E653 \qquad \pi^{-} \text{ emulsion } 600 \text{ GeV}$ $C0.043 \qquad 90 \qquad 30 KODAMA \qquad 938 E653 \qquad \pi^{-} \text{ emulsion } 600 \text{ GeV}$ $C0.043 \qquad 90 \qquad 30 KODAMA \qquad 938 E653 \qquad \pi^{-} \text{ emulsion } 600 \text{ GeV}$ $C0.043 \qquad 90 \qquad 30 KODAMA \qquad 938 E653 \qquad \pi^{-} \text{ emulsion } 600 \text{ GeV}$ $C0.043 \qquad 90 \qquad 30 KODAMA \qquad 938 E653 \qquad \pi^{-} \text{ emulsion } 600 \text{ GeV}$ $C0.043 \qquad 90 \qquad 30 KODAMA \qquad 938 E653 \qquad \pi^{-} \text{ emulsion } 600 \text{ GeV}$ $C0.043 \qquad 90 \qquad 30 KODAMA \qquad 938 E653 \qquad \pi^{-} \text{ emulsion } 600 \text{ GeV}$ $C0.043 \qquad 90 \qquad 30 KODAMA \qquad 938 E653 \qquad \pi^{-} \text{ emulsion } 600 \text{ GeV}$ $C0.044 \qquad C.044 \qquad C.$	$e^+e^-\approx \Upsilon(45)$ $e^+e^- \approx 7(45)$ $e^+e^- 3.77$ GeV $e^+e^- 3.77$ GeV $e^+e^- 3.77$ GeV $e^+e^- 3.77$ GeV $e^+e^- 3.77$ GeV $e^+e^- 3.77$ GeV $e^+e^- 3.77$ GeV $e^- \pi^+)/\Gamma$ total for the branching fraction to be 5.8 \pm 0.5 \pm 0.6 nb. $e^- 10.5$ $e^- 10$
$\Gamma(K^-\pi^+\pi^-\mu^+\nu_\mu)/\Gamma(K^-\mu^+\nu_\mu)$ Γ15/Γ9 VALUE CL% DOCUMENT ID TECN COMMENT COMMENT CL% DOCUMENT ID TECN COMMENT T16/Γ9 VALUE CL% DOCUMENT ID TECN COMMENT T17/Γ COMMENT T17/Γ COMMENT COM	$e^+e^-\approx \Upsilon(45)$ $e^+e^- 3.77 \text{ GeV}$ $e^+e^- 3.77 \text{ GeV}$ $e^+e^- 3.77 \text{ GeV}$ $e^+e^- 3.77 \text{ GeV}$ $e^+e^- 3.77 \text{ GeV}$ $e^-+e^- 3.77 \text{ GeV}$ $e^-+e^- 3.77 \text{ GeV}$ $e^- 5.8 \pm 0.5 \pm 0.6 \text{ nb}$. $e^- 5.8 \pm 0.5 \pm 0.6 \text{ nb}$. $e^- 10.5 \pm 0.6 \text{ nb}$.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8. e^+e^- 3.77 GeV 2. e^+e^- 3.771 GeV 2. e^+e^- 3.771 GeV e^+e^- 3.77 GeV e^+e^- 3.77 GeV e^+e^- 3.77 GeV 5.8 \pm 0.5 \pm 0.6 nb. 6.8 \pm 0.5 \pm 0.6 nb. e^- 7.21/ e^- 1.99 e^- 4.03, 4.41 GeV
	8. e^+e^- 3.77 GeV 2. e^+e^- 3.771 GeV 2. e^+e^- 3.771 GeV e^+e^- 3.77 GeV e^+e^- 3.77 GeV e^+e^- 3.77 GeV 5.8 \pm 0.5 \pm 0.6 nb. 6.8 \pm 0.5 \pm 0.6 nb. e^- 7.21/ e^- 1.99 e^- 4.03, 4.41 GeV
$ \Gamma((\overline{K}^{\bullet}(892)\pi)^{-}\mu^{+}\nu_{\mu})/\Gamma(K^{-}\mu^{+}\nu_{\mu}) \qquad \Gamma_{16}/\Gamma_{9} $ $ VALUE \qquad CLX \qquad DOCUMENT ID \qquad IECN \qquad COMMENT \qquad Sign Frequency of the product of the$	e^+e^- 3.771 GeV e^+e^- 3.77 GeV π^+)/ Γ_{total} for the branching fraction to $= 5.8 \pm 0.5 \pm 0.6$ nb. $= 5.8 \pm 0.5 \pm 0.6$ nb. $= 5.8 \pm 0.5 \pm 0.6$ nb. $= 6.8 \pm 0.5$ nc. $= 6.8 \pm 0.5$ nc
VALUE CL% DOCUMENT ID TECN COMMENT 30 KODAMA 93B E653 π^- emulsion 600 GeV 30 KODAMA 93B searched in $K^-\pi^+\pi^-\mu^+\nu_\mu$, but the limit includes other ($\overline{K}^*(892)\pi^-$) charge states. $\Gamma(\pi^-e^+\nu_e)/\Gamma_{\text{total}}$ VALUE EVTS DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT TECN TECN COMMENT TECN COMMENT TECN COMMENT TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TE	π^+)/ Γ_{total} for the branching fraction to = 5.8 ± 0.5 ± 0.6 nb. aching fraction to be 5.8 ± 0.5 ± 0.6 nb. Γ_{21}/Γ_{19} MENT E_{γ} =220 GeV $\rightarrow D^*+$ = 4.03, 4.41 GeV
	branching fraction to = 5.8 \pm 0.5 \pm 0.6 nb. nching fraction to be 5.8 \pm 0.5 \pm 0.6 nb. Γ_{21}/Γ_{19} MENT $E_{\gamma} = 220 \text{ GeV}$ $\rightarrow D^{*+}$ = 4.03, 4.41 GeV
30 KODAMA 938 searched in $K^-\pi^+\pi^-\mu^+\nu_\mu$, but the limit includes other (\overline{K}^* (892)π) − charge states. Γ(π-e+ν _e)/Γ _{total} Γ17/Γ ΛΟΙΟ37+0.0006 OUR FIT 0.0039+0.0023 ± 0.000 7 31 ADLER 89 MRK3 e^+e^- 3.77 GeV 31 This result of ADLER 89 gives $\begin{vmatrix} V_{Cd} & f_+^{\pi}(0) \\ V_{Cs} & f_+^{\pi}(0) \end{vmatrix}^2 = 0.057^+0.038 \\ V_{Cd} & f_+^{\pi}(0) \end{aligned}$ 10 10 10 10 10 10 10 10 10 10 10 10 10 1	= 5.8 ± 0.5 ± 0.6 nb. ching fraction to be 5.8 ± 0.5 ± 0.6 nb. Γ_{21}/Γ_{19} $E_{\gamma} = 220 \text{ GeV}$ $\rightarrow D^{+}$ = 4.03, 4.41 GeV
$\Gamma(\pi^-e^+\nu_e)/\Gamma_{\text{total}}$ Γ_{17}/Γ	nching fraction to be 5.8 \pm 0.5 \pm 0.6 nb. Γ_{21}/Γ_{19} $E_{\gamma}=220 \text{ GeV}$ $\rightarrow D^{*+}$ $= 4.03, 4.41 \text{ GeV}$
$\Gamma(\pi^-e^+\nu_e)/\Gamma_{\text{total}}$ Γ_{ALUE} $\Gamma_{\text{COMMENT }D}$ Γ_{EVTS} Γ	5.8 \pm 0.5 \pm 0.6 nb. \[\begin{align*}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E_{γ} =220 GeV $\rightarrow D^{++}$ = 4.03, 4.41 GeV
31 This result of ADLER 89 gives $\left \frac{V_{CS}}{V_{CS}} \cdot \frac{f_{+}^{\pi}(0)}{f_{+}^{\mu}(0)}\right ^2 = 0.057 + 0.038 \pm 0.005$. 1.42 ± 0.10 OUR FIT Error includes scale factor of 1.2. 1.65 ± 0.17 OUR AVERAGE 1.61 ± 0.10 ± 0.15 856 FRABETTI 94 JE687 γ Be Γ 1.7 ± 0.8 35 AVERY 80 SPEC γ N – γ Re Γ 1.8 ± 1.0 116 PICCOLO 77 MRK1 e^+e^- 1.9 ± 1.0 PICCOLO 77 MRK1 e^+e^- 1.101 ± 0.018 OUR AVERAGE 1.12 ± 0.10 OUR FIT Error includes scale factor of 1.2. 1.65 ± 0.17 OUR AVERAGE 1.61 ± 0.10 ± 0.15 856 FRABETTI 94 JE687 γ Be Γ 1.7 ± 0.8 35 AVERY 80 SPEC γ N – Γ 2.8 ± 1.0 116 PICCOLO 77 MRK1 e^+e^- 1.7 ± 0.8 35 AVERY 80 SPEC γ N – Γ 1.8 ± 1.0 116 PICCOLO 77 MRK1 e^+e^- 1.9 ± 1.0 PICCOLO 77 MRK1 e^+e^- 1.12 ± 0.10 OUR FIT Error includes scale factor of 1.2.	E_{γ} =220 GeV $\rightarrow D^{*+}$ = 4.03, 4.41 GeV
31 This result of ADLER 89 gives $ \frac{V_{Cd}}{V_{Cs}} \cdot \frac{f_{+}^{\pi}(0)}{f_{+}^{\pi}(0)} ^2 = 0.057^{+}0.038_{-} \pm 0.005$. 1.65±0.17 OUR AVERAGE 1.61±0.10±0.15 856 FRABETTI 94J E687 γ Be \overline{I} 1.7 ±0.8 35 AVERY 80 SPEC γ N - 1.61±0.107 OUR FIT 1.17 ±0.8 35 AVERY 80 SPEC γ N - 1.61±0.107 OUR FIT 1.19 ±0.102±0.017 OUR FIT 1.101±0.018 OUR AVERAGE 1.61±0.10±0.15 856 FRABETTI 94J E687 γ Be \overline{I} 1.7 ±0.8 35 AVERY 80 SPEC γ N - 1.61±0.107 OUR FIT 1.101±0.018 OUR AVERAGE 1.61±0.10±0.15 856 FRABETTI 94J E687 γ Be \overline{I} 1.7 ±0.8 35 AVERY 80 SPEC γ N - 1.61±0.107 OUR FIT 1.101±0.018 OUR AVERAGE 1.61±0.10±0.15 856 FRABETTI 94J E687 γ Be \overline{I} 1.7 ±0.8 35 AVERY 80 SPEC γ N - 1.61±0.107 OUR FIT 1.101±0.018 OUR AVERAGE 1.61±0.10±0.15 856 FRABETTI 94J E687 γ Be \overline{I} 1.7 ±0.8 35 AVERY 80 SPEC γ N - 1.61±0.107 OUR γ N - 1.61±0.107 OU	→ D*+ e ⁻ 4.03, 4.41 GeV
$\Gamma(\pi^-e^+\nu_e)/\Gamma(K^-e^+\nu_e)$ VALUE 0.102±0.017 OUR FIT 0.101±0.018 OUR AVERAGE 0.101±0.020±0.003 91 32 FRABETTI 968 E687 γ Be, $E_γ$ ≈ 200 GeV 1.7 ±0.8 2.8 ±1.0 116 PICCOLO 77 MRK1 2.8 ±1.0 116 PICCOLO 77 MRK1 7 ECN COMMENT 1.7 ±0.8 2.8 ±1.0 116 PICCOLO 77 MRK1 7 ECN COMMENT 1.7 ±0.8 2.8 ±1.0 116 PICCOLO 77 MRK1 7 ECN COMMENT 1.7 ±0.8 2.8 ±1.0 116 PICCOLO 77 MRK1 7 ECN COMMENT 1.7 ±0.8 2.8 ±1.0 1.8	→ D*+ e ⁻ 4.03, 4.41 GeV
$\Gamma(\pi^-e^+\nu_e)/\Gamma(K^-e^+\nu_e)$ $VALUE$ 0.102±0.017 OUR FIT 0.101±0.018 OUR AVERAGE 0.101±0.020±0.003 91 32 FRABETTI 96B E687 γ Be, $E_\gamma \approx 200$ GeV 116 PICCOLO 77 MRK1 e^+e^- 117 118 119 119 120 120 120 120 120 120	e ⁻ 4.03, 4.41 GeV
$\frac{VALUE}{0.102\pm0.017 \text{ OUR FIT}} = \frac{EVTS}{0.102\pm0.017 \text{ OUR FIT}} = \frac{DOCUMENT ID}{0.101\pm0.018 \text{ OUR AVERAGE}} = \frac{DOCUMENT ID}{0.101\pm0.020\pm0.003} = \frac{12CN}{32} \frac{COMMENT}{1000000000000000000000000000000000000$	
0.101 \pm 0.18 OUR AVERAGE 0.101 \pm 0.002 \pm 0.003 91 32 FRABETTI 96B E687 γ Be, $\overline{E}_{\gamma} \approx 200$ GeV 0.223 \pm 0.027 OUR AVERAGE Error includes scale factor of 1.2.	
$0.101\pm0.020\pm0.003$ 91 32 FRABETTI 968 E687 γ Be, $E_{\gamma}\approx 200$ GeV 0.223 ±0.027 OUR AVERAGE Error includes scale factor of 1.2.	
$0.103 \pm 0.039 \pm 0.013$ 87 3 BUTLER 35 CLE2 < 0.136 (30% CL) $0.350 \pm 0.028 \pm 0.067$ FRABETTI 94G E687 γ Be.	_
20	$E_{\gamma} \approx 220 \text{ GeV}$ $e^{-} \approx 10 \text{ GeV}$
	90–260 GeV
(7(0)	$E_{\gamma} = 221 \text{ GeV}$
33 BUTLER 95 has 87 \pm 33 $\pi^-e^+\nu_e$ events. The result gives $ \frac{V_{cd}}{V_{cs}} \cdot \frac{f_{+}^{*}(0)}{f_{+}^{*}(0)} ^2 = 0.052 \pm$ 0.12 \pm 0.01 \pm 0.07 ADLER 87 MRK3 e^+e^-) 3.77 GeV
0.020 ± 0.007 . $\Gamma(\overline{K}^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0) / \Gamma(\overline{K}^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi$	Γ ₇₃ /Γ ₂₁
——— Hadronic modes with a K or KKK ——— Unseen decay modes of the f ₀ (980) are included. VALUE	MENT
$\Gamma(K^-\pi^+)/\Gamma_{\text{total}}$ Γ_{19}/Γ Γ_{19}	e, $\overline{E}_{\gamma} \approx$ 220 GeV
We list measurements before radiative corrections are made. 0.088 + 0.035 + 0.012 ALBRECHT 930 ARG e ⁺ e ⁻	e ⁻ ≈ 10 GeV
VALUE EVIS DOCUMENTID TECH COMMENT	Γ /Γ
0.0335±0.0009 OUR AVERAGE 0.0335±0.0009 OUR AVERAGE 0.0382±0.0007±0.0012 34 ARTUSO 98 CLE2 CLEO average Unseen decay modes of the ℓ₂(1270) are included.	Γ ₇₇ /Γ ₂₁
0.0390 ± 0.0009 ± 0.0012 5392 35 BARATE 97C ALEP From Z decays <u>VALUE</u> <u>DOCUMENT ID TECN COMM</u>	IMENT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e, $\overline{E}_{\gamma} \approx$ 220 GeV
$0.0362 \pm 0.0034 \pm 0.0044$ 35 DECAMP 91J ALEP From Z decays $0.088 \pm 0.037 \pm 0.014$ ALBRECHT 93D ARG e^+e^-	
0.045 \pm 0.005 \pm 0.005 56 35 ABACHI 88 HRS e^+e^- 29 GeV 0.042 \pm 0.004 \pm 0.004 \pm 0.004 930 ADLER 886 MRK3 e^+e^- 3.77 GeV $\Gamma(\overline{K^0} f_0(1370))/\Gamma(\overline{K^0} \pi^+\pi^-)$	Γ ₇₉ /Γ ₂₁
0.041 + 0.006 263 37 SCHINDLER 81 MRK2 e^+e^- 3.771 GeV Unseen decay modes of the f_0 (1370) are included.	
0.043 ±0.010 130 38 PERUZZI 77 MRK1 e ⁺ e ⁻ 3.77 GeV VALUE DOCUMENT ID 1ECN COMM	MENT
• • • • We do not use the following data for averages, fits, limits, etc. • • • $\frac{1}{2}$ 0.123 \pm 0.035 \pm 0.049 FRABETTI 94G E687 γ Be,	, $\overline{E}_{\gamma} pprox$ 220 GeV
0.0369±0.0011±0.0016 40 COAN 98 CLE2 0.131±0.045±0.021 ALBRECHT 930 ARG e e	e ≈ 10 GeV
0.0391±0.0008±0.0017 4208 35,41 AKERIB 93 CLE2 $e^+e^-\approx 7(45)$ 34 This combines the CLEO results of ARTUSO 98, COAN 98, and AKERIB 93.	Γ ₈₀ /Γ ₂₁
35 ABACHI 88, DECAMP 91J, AKERIB 93, ALBRECHT 94F, and BARATE 97C use Unseen decay modes of the K*(892) are included.	MAENT
$D^*(2010)^+ \rightarrow D^0\pi^+$ decays. The π^+ is both slow and of low p_T with respect to the event thrust axis or nearest jet ($\approx D^{*+}$ direction). The excess number of such	WILK!
-the over background gives the number of D*(2010) t D0-t events and the	Ē ~ 220 GeV
function with DO K = + gives the DO K = + branching fraction	, ε _γ ≈ 220 GeV e ⁻ ≈ 10 GeV
of events than used by ALBRECHT 94F. 0.720±0.145±0.185 ANJOS 93 2691 768	90-260 G eV
37 SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^- \rightarrow \psi(3770)) \times$ branching fraction to 0.96 \pm 0.12 \pm 0.075 FRABETTI 928 E687 γ Be t_0	$E_{\gamma} = 221 \text{ GeV}$ $= 3.77 \text{ GeV}$
be 0.24 \pm 0.02 nb. We use the MARK-3 (ADLER 88C) value of σ = 5.8 \pm 0.5 \pm 0.6 nb. 0.84 \pm 0.06 \pm 0.08 ADLER 87 MRK3 e^+e^- 38 PERUZZI 77 (MARK-1) measures $\sigma(e^+e^- \rightarrow \psi(3770)) \times$ branching fraction to be 0.25 \pm 0.05 nb. We use the MARK-3 (ADLER 88C) value of σ = 5.8 \pm 0.5 \pm 0.6 nb. 1.05 \pm 0.26 \pm 0.07 25 SCHINDLER 81 MRK2 e^+e^- 0.25 \pm 0.07 10.5 nb. We use the MARK-3 (ADLER 88C) value of σ = 5.8 \pm 0.5 \pm 0.6 nb. 1.05 \pm 0.26 \pm 0.09 25 SCHINDLER 81 MRK2 e^+e^- 0.26 \pm 0.26 \pm 0.27 \pm 0.27 \pm 0.27 \pm 0.28 \pm 0.28 \pm 0.29	
39 ARTUSO 98. following ALBRECHT 94, uses D^{U} mesons from $B^{U} \rightarrow \blacksquare$	3.112 307
$D^*(2010)^+ \times \ell^- \overline{\nu}_{\ell}$ decays. Our average uses the CLEO average of this value with $1 - (K_*^*(1430)^- \pi^+)/\Gamma(K^0 \pi^+ \pi^-)$	Γ ₁₀₂ /Γ ₂₁
the values of COAN 98 and AKERIB 93. 40 COAN 98 assumes that $\Gamma(B \to \overline{D} X \ell^+ \nu)/\Gamma(B \to X \ell^+ \nu) = 1.0 - 3 V_{ub}/V_{cb} ^2 -$ Unseen decay modes of the $\overline{K}_0^*(1430)^-$ are included.	11.45A/T
0.010 \pm 0.005, the last term accounting for $\overline{B} \rightarrow D_S^+ K X \ell^- \overline{\nu}$. COAN 98 is included 0.19 \pm 0.5 OUR AVERAGE	MENI
in the CLEO average in ARTUSO 98. 41 This AKERIB 93 value does not include radiative corrections; with them, the value is $0.176 \pm 0.044 \pm 0.047$ FRABETTI 94G E687 γ Be,	, $\overline{E}_{\gamma} \approx$ 220 GeV
$0.0395 \pm 0.0008 \pm 0.0017$. AKERIB 93 is included in the CLEO average in ARTUSO 98. $0.208 \pm 0.055 \pm 0.034$ ALBRECHT 930 ARG e^+e^-	e [—] ≈ 10 GeV

$\Gamma(K_2^*(1430)^-\pi^+)$					Γ ₁₀₃ /Γ ₂₁
		₹ <mark>*</mark> (1430) are i			
<i>∨ALUE</i> <0.15	<u>CL%</u>	DOCUMENT ID ALBRECHT	93D A		COMMENT e+e-≈ 10 GeV
			930 F	-110	
Γ (Κ⁰π+π-nonre VALUE	sonant)/F(TECN	Γ ₂₈ /Γ ₂₁
0.27 ±0.04 OUR A	VERAGE	DOCUMENT ID		ILCIV	COMMENT
$0.263 \pm 0.024 \pm 0.041$		ANJOS FRABETTI	93 E		γBe 90-260 GeV
$0.26 \pm 0.08 \pm 0.05$ $0.33 \pm 0.05 \pm 0.10$		ADLER	92B E		γ Be \overline{E}_{γ} = 221 GeV e ⁺ e ⁻ 3.77 GeV
			0, ,		
Γ (K [–] π ⁺ π⁰)/Γ_{tot} VALUE	al EVTS	DOCUMENT ID		TECN	Γ ₂₉ /Γ
0.139±0.009 OUR F		udes scale factor			COMMENT
0.131 ± 0.016 OUR A		ADLER	000	ADV2	e+e- 3.77 GeV
0.133±0.012±0.013 0.117±0.043	931 37 '	46 SCHINDLER			e+e- 3.771 GeV
46 SCHINDLER 81	(MARK-2) m	easures σ(e+e-	→ ψ	(3770)) × branching fraction to
		MARK-3 (ADLE	R 88c)	value	of $\sigma = 5.8 \pm 0.5 \pm 0.6$ nb.
$\Gamma(K^-\pi^+\pi^0)/\Gamma(K^-\pi^+\pi^0)$	(π ⁺)				Γ_{29}/Γ_{19}
ALUE	Error includ	DOCUMENT ID les scale factor of		TECN	COMMENT
				f 1.5. S	iee the ideogram below.
$3.81 \pm 0.07 \pm 0.26$	10k	BARISH	96	CLE2	$e^+e^-\approx \Upsilon(4S)$
3.04±0.16±0.34		⁴⁷ ALBRECHT ALVAREZ		ARG NA14	e ⁺ e [−] ≈ 10 GeV
1.0 ±0.9 ±1.0 2.8 ±0.14±0.52	69 1050	KINOSHITA			Photoproduction $e^+e^-\sim 10.7 \text{ GeV}$
1.2 ±1.4	41	SUMMERS	84 I	E691	Photoproduction
⁴⁷ This value is calc	ulated from n	umbers in Table	1 of AL	BREC	HT 92P.
WEIGHTED	AVERAGE	. 4.5\			
3.47±0.30 (E	Error scaled by	/ 1.5)			
1	₩	Values ah	ove of	weighte	ed average, error,
	\wedge	and scale	factor a	are bas	ed upon the data in
		sarily the	same a	s our 'b	y are not neces-
		obtained f		east-sq	uares constrained fit of other (related)
		obtained f utilizing m	easure	east-sq ments	uares constrained fit
		obtained f utilizing m	easure	east-sq ments	uares constrained fit of other (related)
		obtained f utilizing m	easure	east-sq ments	uares constrained fit of other (related)
		obtained f utilizing m	easure	east-sq ments	uares constrained fit of other (related)
		obtained f utilizing m quantities	easure as add	east-sq ments d itional i	uares constrained fit of other (related) information. 96 CLE2 1.6
	<u></u>	obtained f utilizing m quantities	easure as add	east-sq ments o litional i	uares constrained fit of other (related) information.
	+ + :	obtained f utilizing m quantities	easure as add ARISH LBREC LVARE INOSH	east-sq ments d itional i	uares constrained fit of other (related) nformation. 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5
	++:	obtained f utilizing m quantities	easure as add ARISH LBREC LVARE	east-sq ments d itional i	uares constrained fit of other (related) information. 96 CLE2
	++:	obtained f utilizing m quantities	easure as add ARISH LBREC LVARE INOSH	east-sq ments of itional i	uares constrained fit of other (related) nformation. 2 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3
0 2	+ + - + - + - + - + - + - + - + - + - +	obtained f utilizing m quantities	ARISH LBREC LVARE INOSH UMME	east-sq ments d itional i	96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9
		obtained f utilizing m quantities	ARISH LBREC LVARE INOSH UMME	east-sq ments ditional i	96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9
	π ⁰)/Γ(κ ⁻ τ	obtained f utilizing m quantities	ARISH LBREC LVARE INOSH UMME	east-sq ments ditional i	96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9
$\Gamma(\kappa^-\pi^+$	π^0)/ $\Gamma(K^-\tau)$	obtained f utilizing m quantities	ARISH LBREC LVARE INOSH UMME	east-sq ments ditional i	uares constrained fit of other (related) nformation. 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9 dence Level = 0.300)
$\Gammaig(K^-\pi^+ig)/\Gammaig(K^-ig)$	π^0)/ Γ ($K^ \tau$ $\pi^+\pi^0$) $EVTS$	obtained f utilizing m quantities	ARISH LBREC LVARE INOSH UMME	east-sq ments ditional i	uares constrained fit of other (related) nformation. 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9 dence Level = 0.300)
$\Gamma(K^-\rho^+)/\Gamma(K^-\rho^+)/\Gamma(K^-\rho^+)$ WALUE 0.78 ±0.05 OUR A	π^0)/ Γ ($K^ \pi^+$ π^0) EVTS WERAGE	obtained f utilizing m quantities	ARISH LBREC LVARE INOSH UMMEI	east-sq ments ditional i	uares constrained fit of other (related) nformation. 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9 dence Level = 0.300)
$\Gamma(K^-\pi^+)/\Gamma(K^-\nu)/\Gamma($	π^0)/ Γ ($K^- \tau$ $\pi^+ \pi^0$) EVTS WERAGE	obtained f utilizing m quantities B A A A A A A A A A A A A A A A A A A	ARISH LBREC LVARE INOSH UMMEI	east-sq itional i	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{\chi^2}{1.6}$ $96 \text{ CLE2} = \frac{1.6}{1.6}$ $92P \text{ ARG} = 1.3$ $91B \text{ NA14} = 0.2$ $91 \text{ CLEO} = 1.5$ $84 \text{ E691} = \frac{0.3}{4.9}$ $\text{dence Level} = 0.300)$ $\frac{\sqrt{29}}{\sqrt{29}}$ $\frac{\sqrt{29}}{2$
$\Gamma(K^- \pi^+)/\Gamma(K^- \mu LUE)$ 0.78 ±0.05 OUR A 0.765 ±0.041 ±0.054 0.647 ±0.039 ±0.150 0.81 ±0.03 ±0.06	π^0)/ Γ ($K^- \tau$ $\pi^+ \pi^0$) EVTS WERAGE	obtained f utilizing m quantities B Quantities B C C C C C C C C C C C C C C C C C C	ARISH LBREC LVARE INOSH UMMEI	east-sq itional i	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ 992 PARG 1.3 918 NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9 dence Level = 0.300) $\frac{\sqrt{29}}{\sqrt{99}}$ $\frac{\sqrt{99}}{\sqrt{99}} = \frac{\sqrt{99}}{\sqrt{99}} \approx 220 \text{ GeV}$ $\gamma \text{Be}, \overline{E}_{\gamma} \approx 220 \text{ GeV}$ $\gamma \text{Be}, \overline{90} = 260 \text{ GeV}$ $e^+ e^- 3.77 \text{ GeV}$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-\nu$ 0.78 ±0.05 OUR A 0.765±0.041±0.054 0.647±0.039±0.150 0.81±0.03±0.06 ••• We do not use	π^0)/ Γ ($K^ \pi^+$ π^0) <u>EVTS</u> WERAGE	obtained f utilizing m quantities B quantities B A A A A A A A A A A A A A A A A A A	easurer as add ARISH LBREC LVARE INOSH UMME! 946 93 87 es, fits,	east-sq ments of itional i i i i i i i i i i i i i i i i i i i	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{\chi^2}{1.6}$ $96 \text{ CLE2} = \frac{1.6}{1.6}$ $92P \text{ ARG} = 1.3$ $91B \text{ NA14} = 0.2$ $91 \text{ CLEO} = 1.5$ $84 \text{ E691} = \frac{0.3}{4.9}$ $\text{dence Level} = 0.300)$ $\frac{\sqrt{129}}{\sqrt{129}}$ $\frac{\sqrt{129}}{$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-\nu LUE)$ 0.78 ± 0.05 OUR A 0.765 ± 0.041 ± 0.054 0.647 ± 0.039 ± 0.150 0.81 ± 0.03 ± 0.06 • • • We do not use 0.31 + 0.20 0.31 = 0.14	π^0)/ Γ ($K^- \tau$ $\pi^+ \pi^0$) EVTS WERAGE	obtained f utilizing m quantities B Quantities B C C C C C C C C C C C C C C C C C C	ARISH LBREC LVARE INOSH UMME!	east-sq itional i	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ 992 PARG 1.3 918 NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9 dence Level = 0.300) $\frac{\sqrt{29}}{\sqrt{99}}$ $\frac{\sqrt{99}}{\sqrt{99}} = \frac{\sqrt{99}}{\sqrt{99}} \approx 220 \text{ GeV}$ $\gamma \text{Be}, \overline{E}_{\gamma} \approx 220 \text{ GeV}$ $\gamma \text{Be}, \overline{90} = 260 \text{ GeV}$ $e^+ e^- 3.77 \text{ GeV}$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-\nu LUE)$ 0.78 ± 0.05 OUR A 0.765 ± 0.041 ± 0.054 0.647 ± 0.039 ± 0.150 0.81 ± 0.03 ± 0.06 • • • We do not use 0.31 + 0.20 0.31 = 0.14	π^0)/ Γ ($K^ \pi^+$ π^0) <u>EVTS</u> WERAGE	obtained f utilizing m quantities B quantities B A A A A A A A A A A A A A A A A A A	easurer as add ARISH LBRECLLYARE INOSH LUMME! 946 93 87 es, fits,	east-sq ments the ments of the	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{\chi^2}{1.6}$ $96 \text{ CLE2} = \frac{1.6}{1.6}$ $92P \text{ ARG} = 1.3$ $91B \text{ NA14} = 0.2$ $91 \text{ CLEO} = 1.5$ $84 \text{ E691} = \frac{0.3}{4.9}$ $\text{dence Level} = 0.300)$ $\frac{\sqrt{129}}{\sqrt{129}}$ $\frac{\sqrt{129}}{$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-\nu)$ 0.76 ± 0.05 OUR A $0.76 \pm 0.041 \pm 0.054$ $0.647 \pm 0.039 \pm 0.150$ $0.81 \pm 0.03 \pm 0.06$ • • • We do not use 0.31 ± 0.03 0.01 ± 0.03	π^0)/ Γ ($K^- \tau$) $\pi^+ \pi^0$) EVTS WERAGE e the following 13 31	obtained f utilizing m quantities B and a second s	easurer as add ARISH LBRECLLYARE INOSH LUMME! 946 93 87 es, fits,	east-sq ments the ments of the	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ $92P \text{ ARG} = 1.3$ $91B \text{ NA14} = 0.2$ $91 \text{ CLEO} = 1.5$ $84 \text{ E691} = \frac{0.3}{4.9}$ $\text{dence Level} = 0.300$ $\frac{\sqrt{29}}{\sqrt{29}}$ $\sqrt{2$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-\nu ALUE)$ 0.76 ± 0.05 OUR A 0.765 ± 0.041 ± 0.054 0.647 ± 0.039 ± 0.150 0.81 ± 0.03 ± 0.06 • • • We do not use 0.31 + 0.20 0.85 + 0.11 + 0.09 - 0.15 - 0.10 $\Gamma(K^*(892)^-\pi^+)$	π^0)/ $\Gamma(K^-\tau)$ $\pi^+\pi^0$) WERAGE the following 13 31 $\Gamma(K^-\pi^+\pi)$	obtained f utilizing m quantities B and a second s	easurer as add ARISH LBREC LVARE INOSH UMME! 946 93 87 es, fits, 84 81	east-sq ments continued in the continued	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9 dence Level = 0.300) $\frac{\sqrt{2}}{4.9}$ $\frac{\sqrt{2}}{\sqrt{2}}$
$\Gamma(K^-\pi^+)/\Gamma(K^-\nu_{ALUE})$ 0.78 ± 0.05 OUR A 0.765 ± 0.041 ± 0.054 0.647 ± 0.03 ± 0.06 0.81 ± 0.03 ± 0.06 0.81 ± 0.03 ± 0.06 0.81 ± 0.03 ± 0.06 0.81 ± 0.03 ± 0.00 0.81 ± 0.03 ± 0.00 0.81 ± 0.03 ± 0.00 0.81 ± 0.03 ± 0.00 0.81 ± 0.00 0.85 ± 0.11 ± 0.09 0.85 ± 0.11 ± 0.09 0.85 ± 0.15 ± 0.10 Unseen decay value	π^0)/ Γ ($K^-\pi$ $\pi^+\pi^0$) WERAGE te the following 13 31 / Γ ($K^-\pi^+\pi$ modes of the	obtained f utilizing m quantities B A A A A A A A A A A A A A A A A A A	ARISH LBREC LVARE INOSH UMME!	east-sq ments can HT ZZ ITTA RS (Confii J 10	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ $92P \text{ ARG} = 1.3$ $91B \text{ NA14} = 0.2$ $91 \text{ CLEO} = 1.5$ $84 \text{ E691} = \frac{0.3}{4.9}$ $\text{dence Level} = 0.300$ $\frac{\sqrt{29}}{\sqrt{29}}$ $\sqrt{2$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-\nu ALUE)$ 0.78 ±0.05 OUR A 0.765±0.041±0.054 0.647±0.039±0.150 0.81 ±0.03 ±0.06 • • • We do not use 0.31 +0.20 0.81 ±0.14 0.85 +0.11 +0.09 -0.15 -0.10 $\Gamma(K^{\bullet}(892)^-\pi^+)$ Unseen decay $VALUE$ 0.36 ±0.04 OUR F	π^0)/ Γ ($K^-\tau$) $\pi^+\pi^0$) EVTS WERAGE the following 13 31 / Γ ($K^-\pi^+\pi$) modes of the	obtained f utilizing m quantities B A A A A A A A A A A A A A A A A A A	ARISH LBREC LVARE INOSH UMME!	east-sq ments can HT ZZ ITTA RS (Confii J 10	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9 dence Level = 0.300) $\frac{\sqrt{2}}{4.9}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{6}$
$\Gamma(K^-\pi^+)/\Gamma(K^-\nu_{ALUE})$ 0.78 ± 0.05 OUR A 0.765 ± 0.041 ± 0.054 0.647 ± 0.03 ± 0.06 0.81 ± 0.03 ± 0.06 0.81 ± 0.03 ± 0.06 0.81 ± 0.03 ± 0.06 0.81 ± 0.03 ± 0.00 0.81 ± 0.03 ± 0.00 0.81 ± 0.03 ± 0.00 0.81 ± 0.03 ± 0.00 0.81 ± 0.00 0.85 ± 0.11 ± 0.09 0.85 ± 0.11 ± 0.09 0.85 ± 0.15 ± 0.10 Unseen decay value	π^0)/ Γ ($K^-\pi^-\pi^0$) WERAGE e the following 13 31 / Γ ($K^-\pi^+\pi^-\pi^0$) The following is the following income of the income werage.	obtained f utilizing m quantities B A A A A A A A A A A A A A A A A A A	ARISH LBREC LVARE INOSH 94G 93 98 es, fits, 84 81	east-sq ments can HT ZZ ITTA RS (Confii J 10	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ $92P \text{ ARG} = 1.3$ $91B \text{ NA14} = 0.2$ $91 \text{ CLEO} = 1.5$ $84 \text{ E691} = \frac{0.3}{4.9}$ $\text{dence Level} = 0.300$ $\frac{730}{\Gamma_{29}}$ $\frac{COMMENT}{\Gamma_{80}/\Gamma_{29}}$ $\frac{COMMENT}{\Gamma_{80}/\Gamma_{29}}$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-\nu_{ALUE})$ 0.78 ± 0.05 OUR A 0.765 ± 0.041 ± 0.054 0.647 ± 0.039 ± 0.150 0.81 ± 0.03 ± 0.06 • • • We do not use 0.31 + 0.20 0.85 + 0.11 + 0.09 - 0.15 - 0.10 $\Gamma(K^{\bullet}(892)^-\pi^+)$ Unseen decay V_{ALUE} 0.36 ± 0.04 OUR A 0.28 ± 0.04 OUR A	π^0)/ Γ ($K^-\pi^-\pi^-\pi^0$) WERAGE e the following 13 31 / Γ ($K^-\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	obtained f utilizing m quantities B d d d d d d d d d d d d d d d d d d	easurer as add ARISH LEREC LVARE IN INOSH MARISH STATE IN INOSH MARISH MARISH STATE IN INOSH MARISH STATE IN	east-sq ments continued in the continued	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9 dence Level = 0.300) $\frac{\sqrt{2}}{4.9}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{6}$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-$ 0.78 ±0.05 OUR A 0.765 ±0.041 ±0.054 0.647 ±0.039 ±0.150 0.81 ±0.03 ±0.06 • • • We do not use 0.31 +0.20 0.85 +0.11 +0.09 -0.15 -0.10 $\Gamma(K^0(892)^-\pi^+)$ Unseen decay $VALUE$ 0.28 ±0.04 OUR A 0.444 ±0.084 ±0.147	π^0)/ Γ ($K^-\pi^-\pi^-\pi^0$) WERAGE e the following 13 31 / Γ ($K^-\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	obtained f utilizing m quantities B A A A A A A A B A A B A A A A A B A	easurer as add ARISH LEREC LVARE INOSH I	east-sq ments continued in the continued	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ $96 \text{ CLE2} = \frac{1.6}{1.6}$ $92P \text{ ARG} = 1.3$ $91B \text{ NA14} = 0.2$ $91 \text{ CLEO} = 1.5$ $84 \text{ E691} = \frac{0.3}{4.9}$ 4.9 $4.$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-\nu_{ALUE}$ 0.78 ± 0.05 OUR A 0.765 ± 0.041 ± 0.054 0.647 ± 0.039 ± 0.150 0.81 ± 0.03 ± 0.06 • • • We do not use 0.31 + 0.20 0.31 + 0.20 0.85 + 0.11 + 0.09 0.15 + 0.10 $\Gamma(K^*(892)^-\pi^+)$ Unseen decay $VALUE$ 0.36 ± 0.04 OUR F 0.28 ± 0.04 OUR F 0.29 ± 0.0	π^0)/ Γ ($K^-\pi^-\pi^-\pi^0$) EVTS WERAGE the following 13 31 / Γ ($K^-\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	obtained f utilizing m quantities B A A A A A A A A A A A A A A A A A A	easurer as add ARISH LEREC LVARE INOSH I	east-sq ments continued in the continued	uares constrained fit of other (related) information. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ $92P \text{ ARG} = 1.3$ $91B \text{ NA14} = 0.2$ $91 \text{ CLEO} = 1.5$ $84 \text{ E691} = \frac{0.3}{4.9}$ $\text{dence Level} = 0.300$ $\frac{\Gamma_{30}/\Gamma_{23}}{4.9}$ $\text{dence Level} = 0.300$ $\frac{COMMENT}{780/\Gamma_{23}}$ $\frac{COMMENT}{\Gamma_{80}/\Gamma_{23}}$ $\frac{COMMENT}{\Gamma_{80}/\Gamma_{23}}$ $\frac{COMMENT}{\Gamma_{80}/\Gamma_{23}}$ $\frac{COMMENT}{\Gamma_{80}/\Gamma_{23}}$ $\frac{COMMENT}{\Gamma_{80}/\Gamma_{23}}$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^ 0.78 \pm 0.05$ OUR A $0.765 \pm 0.041 \pm 0.054$ $0.647 \pm 0.039 \pm 0.150$ $0.81 \pm 0.03 \pm 0.06$ • • • We do not use $0.31 + 0.20$ $0.85 \pm 0.14 + 0.09$ $0.85 \pm 0.14 + 0.09$ $0.86 \pm 0.04 + 0.09$ $\Gamma(K^+(892)^-\pi^+)$ $0.086 \pm 0.04 + 0.08$ $0.044 \pm 0.084 \pm 0.147$ $0.252 \pm 0.033 \pm 0.035$ $0.36 \pm 0.06 \pm 0.09$ $\Gamma(K^+(892)^0\pi^0)/\Gamma(K^-(892)^0\pi^0)$	π^0)/ Γ ($K^-\pi^-\pi^0$) $\pi^+\pi^0$) EVTS WERAGE the following 13 31 / Γ ($K^-\pi^+\pi^0$) WERAGE π^0	obtained f utilizing m quantities B A A A A A A A A A A A A A A A A A A	easurer as add ARISH LEREC LVARE INOSH UMME! 946 93 87 84 81 946 93 87	east-sq ments intronal i intronal i i i i i i i i i i i i i i i i i i i	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{\chi^2}{1.6}$ $96 \text{ CLE2} = \frac{1.6}{1.6}$ $918 \text{ NA14} = 0.2$ $91 \text{ CLEO} = 1.5$ $84 \text{ E691} = \frac{0.3}{4.9}$ $4.9 \text{ dence Level} = 0.300)$ $\frac{\sqrt{29}}{\sqrt{29}} = \frac{\sqrt{29}}{\sqrt{29}} = \frac{\sqrt{29}}{$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-\nu_{ALUE})$ 0.78 ±0.05 OUR A 0.765±0.041±0.054 0.647±0.039±0.150 0.81 ±0.03 ±0.06 • • • We do not use 0.31 ±0.14 0.85 ±0.14 ±0.09 -0.15 ±0.10 $\Gamma(K^+(892)^-\pi^+)$ Unseen decay $VALUE$ 0.36 ±0.04 OUR F 0.28 ±0.04 OUR A 0.404±0.084±0.147 0.252±0.033±0.035 0.36 ±0.06 ±0.09 $\Gamma(K^+(892)^0\pi^0)/\Gamma(K^-(892)^0\pi^0)$	π^0)/ Γ ($K^-\pi$ $\pi^+\pi^0$) EVTS WERAGE e the following 13 31 / Γ ($K^-\pi^+\pi^0$) modes of the ETT Error incomparation of the modes of the	obtained f utilizing m quantities B A A A A A A A A A A A A A A A A A A	easurer as add ARISH LEREC LVARE INOSH UMME! 946 93 87 84 81 946 93 87 cluded.	east-sq ments continued in the continued	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9 dence Level = 0.300) $\frac{\Gamma_{30}/\Gamma_{25}}{\Gamma_{30}/\Gamma_{25}}$ $\frac{COMMENT}{\Gamma_{30}/\Gamma_{25}}$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-\nu)$ 0.78 ± 0.05 OUR A $0.765 \pm 0.041 \pm 0.054$ $0.647 \pm 0.039 \pm 0.150$ $0.81 \pm 0.03 \pm 0.06$ • • • We do not use $0.31 + 0.20$ $0.85 + 0.11 + 0.09$ $0.85 + 0.11 + 0.09$ $0.15 + 0.15 + 0.10$ $\Gamma(K^{\bullet}(892)^-\pi^+)$ Unseen decay $VALUE$ 0.28 ± 0.04 OUR A $0.444 \pm 0.084 \pm 0.147$ $0.252 \pm 0.033 \pm 0.035$ 0.36 ± 0.06 $\Gamma(K^{\bullet}(892)^0\pi^0)/\Gamma$ Unseen decay $VALUE$	π^0)/ Γ ($K^-\pi^-\pi^0$) WERAGE e the following 13 31 / Γ ($K^-\pi^+\pi^0$) WERAGE T($K^-\pi^+\pi^0$) modes of the T($K^-\pi^+\pi^0$)	obtained f utilizing m quantities B A A A A A A A A A A A A A A A A A A	easurer as add ARISH LEREC LVARE INOSH UMME! 946 93 87 84 81 946 93 87 cluded.	east-sq ments continued in the continued	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9 dence Level = 0.300) $\frac{\Gamma_{30}/\Gamma_{25}}{\Gamma_{30}/\Gamma_{25}}$ $\frac{COMMENT}{\Gamma_{30}/\Gamma_{25}}$
$\Gamma(K^-\pi^+)$ $\Gamma(K^-\rho^+)/\Gamma(K^-\nu)$ 0.78 ± 0.05 OUR A $0.765 \pm 0.041 \pm 0.054$ $0.647 \pm 0.039 \pm 0.150$ $0.81 \pm 0.03 \pm 0.06$ • • • We do not use 0.31 ± 0.01 $0.85 \pm 0.01 \pm 0.01$ 0.85 ± 0.01 0.85 ± 0.01 0.86 ± 0.01	π^0)/ Γ ($K^-\pi^-\pi^0$) $\pi^+\pi^0$) $EVTS$ WERAGE e the following 13 31 / Γ ($K^-\pi^+\pi^0$) modes of the $\pi^+\pi^-\pi^0$ modes of the $\pi^+\pi^-\pi^0$ modes of the	obtained f utilizing m quantities B A A A A A A A A A A A A A A A A A A	easurer as add ARISH LEREC LVARE INOSH UMME! 946 93 87 es, fits, 84 81 946 93 87 cluded.	east-sq ments continued in the continued	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLE0 1.5 84 E691 0.3 4.9 dence Level = 0.300) $\frac{\Gamma_{30}/\Gamma_{25}}{4.9}$ dence Level = 0.300) $\frac{\Gamma_{30}/\Gamma_{25}}{\Gamma_{30}/\Gamma_{25}} = \frac{\Gamma_{30}}{\Gamma_{30}/\Gamma_{25}}$ COMMENT $\gamma_{30} = \frac{\Gamma_{30}}{\Gamma_{30}/\Gamma_{25}} = \frac{\Gamma_{30}}{\Gamma_{30}/\Gamma_{25}}$ $\gamma_{30} = \frac{\Gamma_{30}}{\Gamma_{30}/\Gamma_{25}} = \frac{\Gamma_{30}$
Γ(K ⁻ ρ ⁺)/Γ(K ⁻ 0.78 ±0.05 OUR A 0.765±0.041±0.055 0.81 ±0.03 ±0.06 • • • We do not use 0.31 +0.20 0.85 +0.11 +0.09 -0.15 -0.10 Γ(K*(892)-π*) Unseen decay VALUE 0.28 ±0.04 OUR A 0.44±0.084±0.147 0.252±0.033±0.035 0.36 ±0.06 ±0.09 Γ(K*(892) ⁰ π ⁰)/Γ Unseen decay VALUE 0.227±0.027 OUR E 0.221±0.029 OUR A	π^0)/ Γ ($K^-\pi^-\pi^0$) $\pi^+\pi^0$) EVTS WERAGE The the following and a sign of the sig	obtained f utilizing m quantities B A A A A A A A A A A A A A A A A A A	easurer as add ARISH LBRECL LVARE INVOSH UMME! 946 93 87 es, fits, 84 81 escluded. r of 1.3 946 93 87 ecluded.	east-sq ments interest interes	uares constrained fit of other (related) nformation. $\frac{\chi^2}{96 \text{ CLE2}} = \frac{1.6}{1.6}$ 96 CLE2 1.6 92P ARG 1.3 91B NA14 0.2 91 CLEO 1.5 84 E691 0.3 4.9 dence Level = 0.300) $\frac{\Gamma_{30}/\Gamma_{25}}{\Gamma_{30}/\Gamma_{25}}$ $\frac{COMMENT}{\Gamma_{30}/\Gamma_{25}}$

$\Gamma(K^-\pi^+\pi^0)$ nonres	onant)/Γ					Γ ₃₃ /Γ ₂₉
VALUE	<u>EVTS</u>	DOCUMENT I		TECN	COMMEN	Τ
0.049±0.018 OUR AVI	EKAGE E					~, 220 CaV
0.101 ± 0.033 ± 0.040		FRABETTI		E687		, ≈ 220 GeV
3.036±0.004±0.018 3.09 ±0.02 ±0.04		ANJOS ADLER	93 87	E691	e^+e^- 3	260 GeV
• • • We do not use t	he followin		٠.			
		-	_			
0.51 ±0.22	21	SUMMERS	84	E691	Photopro	auction
Γ (Κ*(892)⁰ π⁰)/Γ(Unseen decay mo	,	₹*(892) ⁰ are i	ncluded			Γ ₈₁ /Γ ₂₀
ALUE	EVTS	DOCUMENT I			COMMEN	T
1.49±0.23 OUR FIT	Error inclu	des scale factor				
1.65 ^{+0.39} ±0.20	122	PROCARIO	93B	CLE2	$K^0\pi^0\pi$	⁰ Dalitz plot
- (Κ ₂ *(1430) ⁰ π ⁰)/Γ	(K *(892) ⁰ π ⁰)	Tierra	0		Γ ₁₀₄ /Γ ₈₃
Unseen decay mo						
ALUE		<u>DOCUMENT II</u>		TEÇN		
<0.12	90	PROCARIO	93B	CLE2	$K^{U}\pi^{U}\pi$	⁰ Dalitz plot
「(K ⁰ π ⁰ π ⁰ nonreso	nant)/Γ(_ <u>EVTS</u>	Κ⁰π⁰)	n	TECN	COMMEN	Γ ₃₆ /Γ ₂
0.37±0.08±0.04	76	PROCARIO		CLE2		Dalitz plot
.37 ±0.00±0.04	10	PROCARIO	730	CLEZ	V - X - X	· Dancz piot
$(K^-\pi^+\pi^+\pi^-)/\Gamma$	total					Γ ₃₇ /Ι
ALUE		VTS DOCU	AENT IC)	TECN CO	
0.0749±0.0031 OUR F	-IT					
0.075 ±0.006 OUR	VERAGE			ctor of	1.3. See t	he ideogram
		below 48 44 D.D	COUT		4DC -	+ 2(40)
0.079 ±0.015 ±0.009		⁴⁸ ALBR 130 ⁴⁹ ALBR	ECHT			$^+e^- \approx T(45)$ $^+e^- \approx T(45)$
0.0680±0.0027±0.005 0.091 ±0.008 ±0.008		992 ADLE				+ e − 3.77 GeV
0.117 ±0.025		185 ⁵⁰ SCHII				+ e = 3.771 GeV
0.062 ±0.019		44 51 PERU	771			+ e = 3.77 GeV
48 ALBRECHT 94 use						
of events than used	ibu AIRR	ons from B → →	D C	v _ℓ de	cays. This	is a unierent se
⁴⁹ See the footnote of			easurer	nent of	Γ(K=π+	1/Ftotal for th
method used.						
50 SCHINDLER 81 (MARK-2) r	neasures $\sigma(e^+e^-)$	_ →	ψ(3770)) × bran	ching fraction t
be 0.68 ± 0.11 nb.	vve use th	e MARK-3 (ADI	EK 880	c) value	or $\sigma = 5$.	$\omega \pm 0.5 \pm 0.6 \mathrm{nt}$
$^{51}\text{PERUZZI}$ 77 (MA $^{0.36}\pm0.10\text{nb.}$ W	KK-1) Mea euse the N	isures σ(e ' e MARK-3 (ADI F	→ ψ(. ₹88C)	3770)) Value ∩	\times branchi f $\sigma = 5.8$	ng fraction to b + 0.5 + 0.6 nh.
0.30 ± 0.10 mg. W	c use the r	MARKET (ADEL	. 000,	Talue 0	0 - 5.5	± 0.5 ± 0.0 mg.
WEIGHTED						
0.075±0.006	(Error scale	ea by 1.3)				
	V	Values	above 4	of weigh	ted averag	e, error.
	٨	and sca	le facto	r are be	sed upon	the data in neces-
					best' valu guares co	es, nstrained fit
		utilizing	measu	rements	s of other (related)
		quantiti	es as a	dditiona	l information	on.
						2
						χ^2
	1		ALBR	ECHT	94 AR	G 0.1
	+1.7.		ALBRE		94F AR	G 1.2
	1		ADLER	R	88C MF	
	+	+	SCHIN		81 MR	
1 -	/		PERU	ZZI		
/	2000					6.6
	1			(Cor	nfidence I 4	
	\			(Cor	nfidence Le	6.6 evel = 0.160)

Γ(K-π+π+π-)/ VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
1.96±0.07 OUR FIT					
1.97±0.09 OUR AVE	RAGE				
$1.94 \pm 0.07 ^{+0.09}_{-0.11}$		JUN	00	SELX	Σ^- nucleus, 600 GeV
$1.7 \pm 0.2 \pm 0.2$	1745	ANJOS	9 2C	E691	ηBe 90-260 GeV
$1.90 \pm 0.25 \pm 0.20$	337	ALVAREZ	91B	NA14	Photoproduction
2.12 ± 0.16 ± 0.09		BORTOLETT	088	CLEO	$e^{+}e^{-}$ 10.55 GeV
2.0 ±0.9	48	BAILEY	86	ACCM	π^- Be fixed target
2.17 ± 0.28 ± 0.23		ALBRECHT	85F	ARG	e+ e- 10 GeV
2.0 ±1.0	10	BAILEY	83B	SPEC	π^- Be $\rightarrow D^0$
2.2 ±0.8	214	PICCOLO	77	MRK1	e+e- 4.03, 4.41 GeV

 $\Gamma(\kappa^-\pi^+\pi^+\pi^-)/\Gamma_{total}$

This includes K	/Г(<i>К</i> -я+я			Γ ₃₈ /Γ ₃₇	$\Gamma(K^-a_2(1320)^+)$					Γ ₇₈ /Ι
				entry gives the specifically	Unseen decay n	nodes of the a	a ₂ (1320) ⁺ are ir	icluded.		
				amplitude analyses of the	VALUE	<u>CL%</u>	DOCUMENT ID		COMMENT	
Κ − π + π + π − (ALUE	channel for v	DOCUMENT ID		COMMENT	<0.002	90	ANJOS	92c E69 1	γBe 90-260	GeV
.835±0.035 OUR AV	ERAGE				 ● ● We do not use 	the following	data for average	es, fits, limits,	, etc. • • •	
.80 ±0.03 ±0.05		ANJOS		• .	< 0.006	90	COFFMAN	92B MRK3	e ⁺ e ⁻ 3.77	GeV
.855 ± 0.032 ± 0.030 • • We do not use t	the following	COFFMAN data for averag		e ⁺ e ⁻ 3.77 GeV etc. • • •	$\Gamma(K_1(1270)^-\pi^+)$	/Γ(K ⁻ π ⁺ π	r ⁺ π ⁻)			Γ ₉₈ /Γ ₃
.98 ±0.12 ±0.10		ALVAREZ	91B NA14	Photoproduction	Unseen decay n ments disagree		$K_1(1270)^-$ are i here.	ncluded. The	MARK3 and	E691 exper
$(K^-\pi^+\rho^0$ 3-body)/Γ(K π ⁻	$^{+}\pi^{+}\pi^{-})$		Γ ₃₉ /Γ ₃₇	VALUE	<u>CL%</u>	DOCUMENT ID	<u>TECN</u>	COMMENT	
We rely on the channel for value				ses of the $K^-\pi^+\pi^+\pi^-$	0.14 ± 0.04 OUR 0.194 ± 0.056 ± 0.00	38	COFFMAN		e^+e^- 3.77	GeV
ALUE	<u>EVTS</u>	DOCUMENT ID		COMMENT	• • • We do not use	the following	data for average			
.063±0.028 OUR AV	ERAGE	ANTIOS	000 5601	D- 00 000 C-1/	<0.013	90	SOLNA	92C E691	γBe 90−260	GeV
.05 ±0.03 ±0.02 .084±0.022±0.04		ANJOS COFFMAN		γBe 90-260 GeV e ⁺ e ⁻ 3.77 GeV	$\Gamma(K_1(1400)^-\pi^+)$	/r				Г99/
• • We do not use t	the following				VALUE	/ ' total CL%_	DOCUMENT ID	TECN	COMMENT	199/
.77 ±0.06 ±0.06	-	2 ALVAREZ		Photoproduction	<0.012	90	COFFMAN		e+ e- 3.77	COV
					CU.U12	30	COFFINAN	JZB WIKKS	E E 3.11	GEV
.85 +0.11 -0.22	180) (v= _+) =	PICCOLO		e+e- 4.03, 4.41 GeV	$\Gamma(K^{+}(1410)^{-}\pi^{+})$	-	00011115115 (0	TECH	COLUMENT	Γ ₁₀₁ /
tion of this is K		onresonant. AL	VAREZ 918 CA	innot determine what frac-	<u>∨ALUE</u> <0.012	<u> ÇL%</u> 90	DOCUMENT ID		<u>соммент</u> e ⁺ e ⁻ 3.77	GeV
		\							• • • • • • • • • • • • • • • • • • • •	
	nodes of the	₹*(892) ⁰ are i		F86/F37 rely on the MARKIII and for values of the resonant	$\Gamma(\overline{K}^{\bullet}(892)^{0}\pi^{+}\pi^{-}$ This includes \overline{K}	(892)0 p0, e	$(-\pi^+\pi^+\pi^-)$ etc. The next en \overline{K}^* (892) 0 are inc	try gives the s	specifically 3-b	Γ ₈₂ /Γ ₃ ody fraction
substructure.	auc undiyaca			To values of the resolution	VALUE	lodes of the r	DOCUMENT ID		COMMENT	
ALUE	EVTS	DOCUMENT ID		COMMENT	0.30±0.06±0.03		ANJOS	92C E691		GeV
.195±0.03±0.03		SOLNA	92c E691	γBe 90-260 GeV						
• We do not use to	the following	_			Γ (Κ* (892) ⁰ π ⁺ π ⁻	3-body)/Γ	$(K^-\pi^+\pi^+\pi^-$	-)		Γ ₈₃ /Γ ₃
$\pm 0.09 \pm 0.09$		ALVAREZ		Photoproduction			\mathcal{K}^* (892) 0 are in			
.75 ±0.3	5	BAILEY		$\pi Be \rightarrow D^0$	VALUE		DOCUMENT ID	TECN C	OMMENT	
$.15 \begin{array}{l} +0.16 \\ -0.15 \end{array}$	20	PICCOLO	77 MRK1	e^+e^- 4.03, 4.41 GeV	0.19 ±0.04 OUR F 0.18 ±0.04 OUR A					
~····					0.165 ± 0.03 ± 0.045		ANJOS 9	2C F691 ~	Be 90-260 Ge	v
(K*(892) ⁰ p ⁰ trans Unseen decay m				Γ ₈₇ /Γ ₃₇	0.210±0.027±0.06				+ e - 3.77 Ge	
ALUE		DOCUMENT ID		COMMENT	$\Gamma(K^-\pi^+\pi^+\pi^-)$	onresonant)	$/\Gamma(K^-\pi^+\pi^+$	π^-)		Γ_{45}/Γ_{3}
0.20 ±0.07 OUR FIT	T				VALUE	′	DOCUMENT ID		COMMENT	,
.213±0.024±0.075		COFFMAN	92B MRK3	e ⁺ e ⁻ 3.77 GeV	0.233±0.032 OUR A	VERAGE				
S-wa ⁰ (892)	\ /F/V-	_+ _+1		F /F	$0.23 \pm 0.02 \pm 0.03$		ANJOS	92c E691	γBe 90-260	CoV
• •			al. de d	Γ ₈₈ /Γ ₃₇	$0.242 \pm 0.025 \pm 0.06$		COFFMAN		e ⁺ e ⁻ 3.77	
Unseen decay m		(* (892) are in			$0.242 \pm 0.025 \pm 0.06$					GeV
Unseen decay m ALUE		₹(892) are in <u>DOCUMENT ID</u>	<u>TEÇN</u>	COMMENT	$0.242 \pm 0.025 \pm 0.06$ $\Gamma(\overline{K}^0 \pi^+ \pi^- \pi^0) / I$		COFFMAN	92B MRK3	e ⁺ e ⁻ 3.77	GeV
Unseen decay m MLUE 1.375 ± 0.045 ± 0.06	nodes of the 7	(*(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS		COMMENT	$0.242 \pm 0.025 \pm 0.06$ $\Gamma(\overline{K}^0\pi^+\pi^-\pi^0)/I$	EVTS		92B MRK3		GeV
Unseen decay m ALUE	nodes of the 7	(*(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS	<u>TEÇN</u>	COMMENT	$0.242 \pm 0.025 \pm 0.06$ $\Gamma(\overline{K}^0 \pi^+ \pi^- \pi^0) / I$	EVTS	COFFMAN	928 MRK3	e ⁺ e ⁻ 3.77	GeV Γ ₄₆ /
Unseen decay m MLUE 1.375 ± 0.045 ± 0.06	ave long.)/	(*(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS	92c E691	<u>COMMENT</u> γ Be 90–260 GeV	$0.242 \pm 0.025 \pm 0.06$ $\Gamma(\overline{K}^0 \pi^+ \pi^- \pi^0)/I$ $\frac{VALUE}{0.100 \pm 0.012}$ OUR F	EVTS 140	COFFMAN DOCUMENT ID COFFMAN	928 MRK3	$e^{+}e^{-}$ 3.77 COMMENT $e^{+}e^{-}$ 3.77	GeV Γ ₄₆ /
Unseen decay m (ALUE) 1.375 \pm 0.045 \pm 0.06 (\overline{K}^{+} (892) ρ 5-wa	ave long.)/	(*(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS	92C E691	<u>COMMENT</u> γ Be 90–260 GeV	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K}^{0}\pi^{+}\pi^{-}\pi^{0})/I$ $\frac{VALUE}{0.100 \pm 0.012 \text{ OUR F}}$ 0.103 ± 0.022 ± 0.025 • • • We do not use	EVTS IT 140 the following	COFFMAN DOCUMENT ID COFFMAN data for averag	928 MRK3 TECN 928 MRK3 es, fits, limits	$e^{+}e^{-}$ 3.77 . <u>COMMENT</u> $e^{+}e^{-}$ 3.77 , etc. • •	GeV Γ46/ GeV
Unseen decay m (ALUE) 1.375 \pm 0.045 \pm 0.06 (\overline{K}^{+} (892) 0 ρ^{0} S-wa Unseen decay m	ave long.)/	₹*(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS Ttotal ₹*(892) ⁰ are in	92c E691 cluded.	<u>COMMENT</u> γ Be 90–260 GeV	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ <u>VALUE</u> 0.103 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.032 0.134 + 0.033	IT 140 the following	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG	928 MRK3 TECN 928 MRK3 es, fits, limits 920 ACCM	$e^{+}e^{-}$ 3.77 COMMENT $e^{+}e^{-}$ 3.77 $e^{+}e^{-}$ 0.77 $e^{+}e^{-}$ 0.77	GeV GeV GeV
Unseen decay m ALUE (R* (892) 0 p0 S-wa Unseen decay m ALUE <0.003	ave long.)/ modes of the 7	(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS total (* (892) ⁰ are in <u>DOCUMENT ID</u>	92c E691 cluded.	<u>COMMENT</u> γ Be 90–260 GeV Γ ₈₉ /Γ <u>COMMENT</u> e ⁺ e ⁻ 3.77 GeV	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K}^{0}\pi^{+}\pi^{-}\pi^{0})/I$ $\frac{VALUE}{0.100 \pm 0.012 \text{ OUR F}}$ 0.103 ± 0.022 ± 0.025 • • • We do not use	IT 140 the following	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG	928 MRK3 TECN 928 MRK3 es, fits, limits 920 ACCM	$e^{+}e^{-}$ 3.77 COMMENT $e^{+}e^{-}$ 3.77 $e^{+}e^{-}$ 0.77 $e^{+}e^{-}$ 0.77	GeV F46/ GeV GeV
Unseen decay m ΔLUE .375±0.045±0.06 (K*(892) ⁰ ρ ⁰ S-wa Unseen decay m ΔLUE <0.003 (K*(892) ⁰ ρ ⁰ P-wa	ave long.)/ nodes of the 7 nodes of the 7 90 ave)/\(\Gamma_{\text{total}}\)	(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS Total (* (892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN	92c E691 cluded. 1ECN 92B MRK3	<u>COMMENT</u> γ Be 90–260 GeV Γ ₈₉ /Γ	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ <u>VALUE</u> 0.100 ± 0.012 OUR F 0.103 ± 0.025 • • • • We do not use 0.134 $^+$ 0.033 53 BARLAG 92C cor	EVTS 140 the following	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction	928 MRK3 TECN 928 MRK3 es, fits, limits 920 ACCM	$e^{+}e^{-}$ 3.77 COMMENT $e^{+}e^{-}$ 3.77 $e^{+}e^{-}$ 0.77 $e^{+}e^{-}$ 0.77	GeV GeV GeV ation.
Unseen decay m ALUE .375±0.045±0.06 (K*(892) ⁰ ρ ⁰ S-wa Unseen decay m ALUE <0.003 (K*(892) ⁰ ρ ⁰ P-wa Unseen decay m	ave long.)/ nodes of the index	T*(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS Total T*(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN T*(892) ⁰ are in	92c E691 cluded. 92B MRK3 cluded.	COMMENT γ Be 90–260 GeV Γ89/Γ COMMENT e ⁺ e ⁻ 3.77 GeV Γ90/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K}^{0}\pi^{+}\pi^{-}\pi^{0})/I$ $\frac{VALUE}{0.100 \pm 0.012 \text{ OUR F}}$ 0.103 ± 0.022 ± 0.025 • • • • We do not use $0.134 + 0.032 - 0.033$ $53 \text{ BARLAG 92c cor}$ $\Gamma(\overline{K}^{0}\pi^{+}\pi^{-}\pi^{0})/I$	EVTS 140 the following	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction	92B MRK3 TECN 92B MRK3 92B MRK3 es, fits, limits 92C ACCM using topolog	$e^+e^- 3.77$ $\frac{COMMENT}{1} e^+e^- 3.77$ $\frac{1}{1} e^+e^- 3.77$ $\frac{1}{1} \pi^- \text{Cu } 230$ $\frac{1}{2} \text{gical normaliza}$	GeV GeV GeV ation.
Unseen decay m ALUE Unseen decay m Unseen decay m ALUE (**(892)** ρ** β** β** β** β** β** β** β** β** β	ave long.)/ nodes of the index	(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS Total (*(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN *(892) ⁰ are in <u>DOCUMENT ID</u>	92c E691 cluded. 92B MRK3 cluded. TECN TECN	COMMENT γ Be 90–260 GeV Γ89/Γ COMMENT e+ e- 3.77 GeV Γ90/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ <u>VALUE</u> 0.100 ± 0.012 OUR F 0.103 ± 0.025 • • • • We do not use 0.134 $^+$ 0.033 53 BARLAG 92C cor	EVTS 140 the following	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction	92B MRK3 TECN 92B MRK3 92B MRK3 es, fits, limits 92C ACCM using topolog	$e^{+}e^{-}$ 3.77 COMMENT $e^{+}e^{-}$ 3.77 $e^{+}e^{-}$ 0.77 $e^{+}e^{-}$ 0.77	GeV GeV GeV ation.
Unseen decay m ALUE .375±0.045±0.06 (K*(892) ⁰ ρ ⁰ S-w: Unseen decay m ALUE <0.003 (K*(892) ⁰ ρ ⁰ P-w: Unseen decay m ALUE <0.003	ave long.)/ nodes of the 7 nodes of the 7 90 rave)/\(\Gamma\) ave)/\(\Gamma\) ave)/\(\Gamma\) ave)/\(\Gamma\) 90	(892) ⁰ are in DOCUMENT ID ANJOS Total (* (892) ⁰ are in DOCUMENT ID COFFMAN (* (892) ⁰ are in DOCUMENT ID COFFMAN (* (892) ⁰ are in DOCUMENT ID COFFMAN	92c E691 cluded. 928 MRK3 cluded. 1ECN 928 MRK3	COMMENT γ Be 90–260 GeV Γ_{89}/Γ COMMENT e^+e^- 3.77 GeV COMMENT e^+e^- 3.77 GeV	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.033 53 BARLAG 92c cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE	EVTS 140 140 the following mputes the bra $-(\vec{K}^0\pi^+\pi^-$ EVTS ERAGE	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction DOCUMENT ID	92B MRK3 TECN 92B MRK3 es, fits, limits 92C ACCM using topolog	e^+e^- 3.77 COMMENT e^+e^- 3.77 e^+e^- 3.77 $e^ e^-$ 0.230 Gical normaliza COMMENT	GeV GeV ation. F46/F2
Unseen decay m ALUE 0.375±0.045±0.06 (K*(892) ⁰ \(\rho^0 \) S-wa Unseen decay m ALUE (0.003 (K*(892) ⁰ \(\rho^0 \) P-wa Unseen decay m ALUE (0.003 • • We do not use	ave long.)/ nodes of the index	(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS Total **(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN **(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN data for average	92c E691 cluded. 92e MRK3 cluded. 1ECN 92e MRK3 cluded. 92e MRK3 es, fits, limits,	COMMENT γ Be 90–260 GeV Γ_{89}/Γ COMMENT e^+e^- 3.77 GeV $COMMENT$ e^+e^- 3.77 GeV etc. • • •	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K}^{0}\pi^{+}\pi^{-}\pi^{0})/I$ MALUE 0.100 ± 0.012 OUR F 0.103 ± 0.025 • • • • We do not use 0.134 + 0.033 53 BARLAG 92c cor $\Gamma(\overline{K}^{0}\pi^{+}\pi^{-}\pi^{0})/I$ MALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21	EVTS 140 140 the following mputes the bra $-(K^0\pi^+\pi^-$ EVTS ERAGE 190	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction DOCUMENT ID 54 ALBRECHT	92B MRK3 TECN 92B MRK3 92c ACCM using topolog TECN 92P ARG	$e^+e^- 3.77$ $\frac{COMMENT}{c} e^+e^- 3.77$ $c, etc. \bullet \bullet$ $1 \pi^- \text{ Cu 230}$ $cical normaliza$ $\frac{COMMENT}{e^+e^- \approx 10}$	GeV GeV GeV tion. F46/F2
Unseen decay m ALUE (No.003)	ave long.)/ nodes of the 7 nodes of the 7 90 ave)/\(\Gamma\) total ct\(\frac{\chi_\lambda}{90}\) the following	(892) ⁰ are in DOCUMENT ID ANJOS Total (*(892) ⁰ are in DOCUMENT ID COFFMAN (*(892) ⁰ are in DOCUMENT ID COFFMAN COFFMAN ANJOS	92c E691 cluded. 92e MRK3 cluded. 1ECN 92e MRK3 cluded. 92e MRK3 es, fits, limits,	COMMENT γ Be 90–260 GeV Γ_{89}/Γ COMMENT e^+e^- 3.77 GeV COMMENT e^+e^- 3.77 GeV	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.103 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.033 53 BARLAG 92C cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84± 0.20 OUR FIT 1.86± 0.23 OUR AVE 1.80± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8	140 140 140 140 140 140 140 140	COFFMAN DOCUMENT ID COFFMAN data for average 33 BARLAG anching fraction DOCUMENT ID ALBRECHT ANJOS	92B MRK3 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691	$e^{+}e^{-} 3.77$ $\underbrace{COMMENT}_{i} e^{+}e^{-} 3.77$ $i, etc. \bullet \bullet$ $i \pi^{-} Cu 230$ $gical normaliza$ $\underbrace{COMMENT}_{p} e^{+}e^{-} \approx 11$ $\gamma Be 90-260$	GeV GeV GeV tition. F46/F2 0 GeV GeV
Unseen decay m ALUE 0.375±0.045±0.06 (K*(892) ⁰ \(\rho^0 \) S-wa Unseen decay m ALUE (0.003 (K*(892) ⁰ \(\rho^0 \) P-wa Unseen decay m ALUE (0.003 • • We do not use	ave long.)/ nodes of the 7 nodes of the 7 90 ave)/\(\Gamma\) total ct\(\frac{\chi_\lambda}{90}\) the following	(892) ⁰ are in DOCUMENT ID ANJOS Total (*(892) ⁰ are in DOCUMENT ID COFFMAN (*(892) ⁰ are in DOCUMENT ID COFFMAN COFFMAN ANJOS	92c E691 cluded. 92e MRK3 cluded. 1ECN 92e MRK3 cluded. 92e MRK3 es, fits, limits,	COMMENT γ Be 90–260 GeV Γ_{89}/Γ COMMENT e^+e^- 3.77 GeV $COMMENT$ e^+e^- 3.77 GeV etc. • • •	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.032 53 BARLAG 92c cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84± 0.20 OUR FIT 1.86± 0.23 OUR AVE 1.80± 0.20 ± 0.21 2.8 ± 0.8 1.85± 0.26± 0.30	140 the following inputes the brace $K^0\pi^+\pi^-$ EVTS ERAGE 190 46 158	COFFMAN DOCUMENT ID COFFMAN data for average 53 BARLAG anching fraction DOCUMENT ID ANDOS KINOSHITA	92B MRK3 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO	$e^{+}e^{-} 3.77$ $\underbrace{COMMENT}_{i} e^{+}e^{-} 3.77$ $i, etc. \bullet \bullet$ $l \pi^{-} Cu 230$ $gical normaliza$ $\underbrace{COMMENT}_{j} e^{+}e^{-} \approx 11$ $\gamma Be 90-260$ $e^{+}e^{-} \sim 10$	GeV GeV GeV tition. F46/F2 0 GeV GeV
Unseen decay m ALUE (No.003)	ave long.)/Indes of the 7 modes of t	(892) ⁰ are in DOCUMENT ID ANJOS Total (*(892) ⁰ are in DOCUMENT ID COFFMAN (*(892) ⁰ are in DOCUMENT ID COFFMAN ANJOS	92c E691 cluded. 92B MRK3 cluded. 92B MRK3 es, fits, limits, 92c E691	COMMENT γ Be 90–260 GeV Γ89/Γ COMMENT e+e- 3.77 GeV Γ90/Γ COMMENT e+e- 3.77 GeV etc. • • • γ Be 90–260 GeV	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.103 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.033 53 BARLAG 92C cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84± 0.20 OUR FIT 1.86± 0.23 OUR AVE 1.80± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8	140 the following inputes the brace $K^0\pi^+\pi^-$ EVTS ERAGE 190 46 158	COFFMAN DOCUMENT ID COFFMAN data for average 53 BARLAG anching fraction DOCUMENT ID ANDOS KINOSHITA	92B MRK3 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO	$e^{+}e^{-} 3.77$ $\underbrace{COMMENT}_{i} e^{+}e^{-} 3.77$ $i, etc. \bullet \bullet$ $l \pi^{-} Cu 230$ $gical normaliza$ $\underbrace{COMMENT}_{j} e^{+}e^{-} \approx 11$ $\gamma Be 90-260$ $e^{+}e^{-} \sim 10$	GeV GeV GeV tition. F46/F2 0 GeV GeV
Unseen decay m ALUE (N*(892) ⁰ ρ ⁰ S-W Unseen decay m ALUE (0.003 (K*(892) ⁰ ρ ⁰ P-W Unseen decay m ALUE (0.003 (0.003) (0.003) (0.003) (0.009) (0.009)	ave long.)/Indes of the 7 modes of t	₹*(892) ⁰ are in <u>POCUMENT ID</u> ANJOS **(892) ⁰ are in <u>POCUMENT ID</u> COFFMAN **(892) ⁰ are in <u>POCUMENT ID</u> COFFMAN data for average ANJOS	92c E691 cluded. 92B MRK3 cluded. 92B MRK3 es, fits, limits, 92c E691	COMMENT γ Be 90–260 GeV Γ ₈₉ /Γ COMMENT e ⁺ e ⁻ 3.77 GeV COMMENT e ⁺ e ⁻ 3.77 GeV etc. • • • • • γ Be 90–260 GeV Γ ₉₁ /Γ ₃₇	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.103 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.032 53 BARLAG 92C cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84± 0.20 OUR FIT 1.86± 0.23 OUR AVE 1.80± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85± 0.26± 0.30 54 This value is calculated.	140 the following 140 the following 150 the foll	COFFMAN DOCUMENT ID COFFMAN data for average 53 BARLAG anching fraction DOCUMENT ID ANDOS KINOSHITA	92B MRK3 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO	$e^{+}e^{-} 3.77$ $\underbrace{COMMENT}_{i} e^{+}e^{-} 3.77$ $i, etc. \bullet \bullet$ $l \pi^{-} Cu 230$ $gical normaliza$ $\underbrace{COMMENT}_{j} e^{+}e^{-} \approx 11$ $\gamma Be 90-260$ $e^{+}e^{-} \sim 10$	GeV GeV tition. F46/F2 0 GeV GeV GeV GeV GeV
Unseen decay m ALUE 0.375 \pm 0.045 \pm 0.06 (K* (892) 0 ρ^{0} S-wa Unseen decay m ALUE 0.003 • • • We do not use <0.009 (K* (892) 0 ρ^{0} D-wa Unseen decay m ALUE 0.003	ave long.)/Indes of the 7 modes of t	₹*(892) ⁰ are in <u>POCUMENT ID</u> ANJOS **(892) ⁰ are in <u>POCUMENT ID</u> COFFMAN **(892) ⁰ are in <u>POCUMENT ID</u> COFFMAN data for average ANJOS	92c E691 cluded. 92b MRK3 cluded. 92b MRK3 cluded. 92c E691 cluded. 1ECN 92c E691	COMMENT γ Be 90–260 GeV Γ ₈₉ /Γ COMMENT e ⁺ e ⁻ 3.77 GeV COMMENT e ⁺ e ⁻ 3.77 GeV etc. • • • • • γ Be 90–260 GeV Γ ₉₁ /Γ ₃₇	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.032 53 BARLAG 92c cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84± 0.20 OUR FIT 1.86± 0.23 OUR AVE 1.80± 0.20 ± 0.21 2.8 ± 0.8 1.85± 0.26± 0.30	140 140 140 140 140 140 140 140 140 140	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction DOCUMENT ID 54 ALBRECHT ANJOS KINOSHITA numbers in Table	92B MRK3 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO	$e^{+}e^{-} 3.77$ $\underbrace{COMMENT}_{i} e^{+}e^{-} 3.77$ $i, etc. \bullet \bullet$ $l \pi^{-} Cu 230$ $gical normaliza$ $\underbrace{COMMENT}_{j} e^{+}e^{-} \approx 11$ $\gamma Be 90-260$ $e^{+}e^{-} \sim 10$	GeV GeV tition. F46/F2 0 GeV GeV GeV GeV GeV
Unseen decay m ALUE 1.375±0.045±0.06 (K*(892) ⁰ ρ ⁰ 5-wa Unseen decay m ALUE 1.003 1.003 1.009 (K*(892) ⁰ ρ ⁰ P-wa Unseen decay m ALUE 1.009 (K*(892) ⁰ ρ ⁰ D-wa Unseen decay m ALUE 1.255±0.045±0.06	ave long.)/ nodes of the 7 20 ave)/[total nodes of the 7 21 22 30 the following 90 ave)/[(K- nodes of the 7 nodes of the 7 nodes of the 7	(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS Total *(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN *(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN data for averag ANJOS **(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN *(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN	92c E691 cluded. 92b MRK3 cluded. 92b MRK3 cluded. 92c E691 cluded. 1ECN 92c E691	COMMENT γ Be 90–260 GeV F89 Γ COMMENT e+e-3.77 GeV COMMENT e+e-3.77 GeV etc. • • • γ Be 90–260 GeV Γ91 Γ37 Γ37 Γ38 Γ91 Γ37 Γ38 Γ38	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.032 53 BARLAG 92c cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(\overline{K^0}\eta)/\Gamma(\overline{K^-\pi^+}$ Unseen decay in the second of the s	140 140 140 140 140 140 140 140 140 140	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction DOCUMENT ID 54 ALBRECHT ANJOS KINOSHITA numbers in Table	92B MRK3 es, fits, limits 92C ACCM using topolog FECN 92P ARG 92P ARG 92C E691 91 CLEO 1 of ALBREC	$e^{+}e^{-} 3.77$ $\underbrace{COMMENT}_{i} e^{+}e^{-} 3.77$ $i, etc. \bullet \bullet$ $l \pi^{-} Cu 230$ $gical normaliza$ $\underbrace{COMMENT}_{j} e^{+}e^{-} \approx 11$ $\gamma Be 90-260$ $e^{+}e^{-} \sim 10$	GeV GeV GeV tition. F46/F2
Unseen decay m ALUE 1.375 \pm 0.045 \pm 0.06 (K* (892) 0 ρ^{0} S-wa Unseen decay m ALUE 1.003 1.003 1.009 (K* (892) 0 ρ^{0} P-wa Unseen decay m ALUE 2.003 1.009 (K* (892) 0 ρ^{0} D-wa Unseen decay m ALUE 2.005 1.009 (K* (892) 0 ρ^{0} D-wa Unseen decay m ALUE 2.255 \pm 0.045 \pm 0.06 (K- π + f ₀ (980))/	ave long.)/ nodes of the 7	₹*(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS **(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN	20 E691 cluded. 928 MRK3 cluded. 928 MRK3 cluded. 920 E691 cluded. 7ECN 920 E691	COMMENT γ Be 90–260 GeV F89/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.032 53 BARLAG 92c cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(\overline{K^0}\eta)/\Gamma(\overline{K^-\pi^+}$ Unseen decay in the second of the s	140 the following 140 the foll	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction DOCUMENT ID 54 ALBRECHT ANJOS KINOSHITA numbers in Table pare included. DOCUMENT ID	92B MRK3 TECN 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC	e^+e^- 3.77 COMMENT e^+e^- 3.77 e^+e^- 3.77 e^+e^- 2.02 COMMENT $e^+e^-\approx 11$ $e^+e^-\approx 11$ $e^+e^-\approx 10$ $e^+e^-\sim 10$ CHT 92P.	GeV GeV tition. F46/F2 0 GeV GeV GeV GeV GeV
Unseen decay m ALUE (K*(892) 0 ρ^{0} S-wa Unseen decay m ALUE (0.003 • • • We do not use <0.009 • (K*(892) 0 ρ^{0} D-wa Unseen decay m ALUE 0.009 • (K*(892) 0 ρ^{0} D-wa Unseen decay m ALUE 0.255±0.045±0.06 • (K*- π + f_{0} (980))/ ALUE	ave long.)/Indes of the Indes o	(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS Total **(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN **(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN data for averag ANJOS **+ ** **- **(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS **DOCUMENT ID ANJOS	20 E691 cluded. 928 MRK3 cluded. 928 MRK3 cluded. 920 E691 cluded. 1ECN 920 E691 cluded. 1ECN 920 E691	COMMENT γ Be 90-260 GeV F89 Γ	0.242 ± 0.025 ± 0.06 $\Gamma(K^{0}\pi^{+}\pi^{-}\pi^{0})/I$ VALUE 0.100 ± 0.012 OUR F 0.1032 ± 0.025 • • • We do not use 0.134 + 0.032 - 0.033 53 BARLAG 92C cor $\Gamma(K^{0}\pi^{+}\pi^{-}\pi^{0})/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(K^{0}\eta)/\Gamma(K^{-}\pi^{+}U^{-})$ Unseen decay in VALUE	140 the following 140 the foll	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction DOCUMENT ID 54 ALBRECHT ANJOS KINOSHITA anumbers in Table pare included. DOCUMENT ID data for averag	92B MRK3 TECN 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC	e^+e^- 3.77 COMMENT e^+e^- 3.77 e^+e^- 3.77 e^+e^- 2.02 COMMENT $e^+e^-\approx 11$ $e^+e^-\approx 11$ $e^+e^-\approx 10$ $e^+e^-\sim 10$ CHT 92P.	GeV GeV ation. F46/F2 0 GeV GeV GeV T68/F1
Unseen decay m ALUE 0.375 \pm 0.045 \pm 0.06 (K* (892) 0 ρ^{0} 5-wa Unseen decay m ALUE 0.003 • • We do not use <0.009 (K* (892) 0 ρ^{0} D-wa Unseen decay m ALUE 2.009 (K* (892) 0 ρ^{0} D-wa Unseen decay m ALUE 1.255 \pm 0.045 \pm 0.06 (K- π + f_{0} (980)) / ALUE <0.011	ave long.)/Indes of the Indes o	₹*(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS **(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN	20 E691 cluded. 928 MRK3 cluded. 928 MRK3 cluded. 920 E691 cluded. 1ECN 920 E691 cluded. 1ECN 920 E691	COMMENT γ Be 90–260 GeV F89/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(K^{0}\pi^{+}\pi^{-}\pi^{0})/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.032 53 BARLAG 92c cor $\Gamma(K^{0}\pi^{+}\pi^{-}\pi^{0})/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.31 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(K^{0}\eta)/\Gamma(K^{-}\pi^{+}$ Unseen decay in VALUE • • • We do not use < 0.64	140 the following specific properties the branch of the following specific properties the branch of the following specific properties the foll	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction DOCUMENT ID 54 ALBRECHT ANJOS KINOSHITA anumbers in Table pare included. DOCUMENT ID data for averag	92B MRK3 TECN 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC	e^+e^- 3.77 • COMMENT • e^+e^- 3.77 • etc. • • • 1 π^- Cu 230 • gical normaliza • COMMENT • $e^+e^- \approx 11$ • 7 Be 90–260 • $e^+e^- \sim 10$ • CHT 92P. • COMMENT • etc. • • •	GeV GeV GeV tition. F46/F2 0 GeV GeV 1.7 GeV F68/F1
Unseen decay m ALUE 0.375 \pm 0.045 \pm 0.06 (K* (892) 0 ρ^{0} 5-wa Unseen decay m ALUE 0.003 • • We do not use <0.009 (K* (892) 0 ρ^{0} D-wa Unseen decay m ALUE 2.009 (K* (892) 0 ρ^{0} D-wa Unseen decay m ALUE 1.255 \pm 0.045 \pm 0.06 (K- π + f_{0} (980)) / ALUE <0.011	ave long.)/Indes of the Indes o	(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS Total **(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN **(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN data for averag ANJOS **+ ** **- **(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS **DOCUMENT ID ANJOS	20 E691 cluded. 928 MRK3 cluded. 928 MRK3 cluded. 920 E691 cluded. 1ECN 920 E691 cluded. 1ECN 920 E691	COMMENT γ Be 90–260 GeV F89/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(K^0\pi^+\pi^-\pi^0)/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.032 53 BARLAG 92c cor $\Gamma(K^0\pi^+\pi^-\pi^0)/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(K^0\pi)/\Gamma(K^-\pi^+$ Unseen decay if VALUE • • • We do not use <0.64 $\Gamma(K^0\pi)/\Gamma(K^0\pi^0)$	140 the following mputes the bra (K0 \(\pi + \pi - \) EVTS ERAGE 190 46 158 ulated from n) modes of the c CL% the following 90	COFFMAN DOCUMENT ID COFFMAN G data for average BARLAG COMMENT ID ANDOS KINOSHITA COMMENT ID COMMENT ID ALBRECHT ANJOS ALBRECHT	92B MRK3 TECN 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC	e^+e^- 3.77 • COMMENT • e^+e^- 3.77 • etc. • • • 1 π^- Cu 230 • gical normaliza • COMMENT • $e^+e^- \approx 11$ • 7 Be 90–260 • $e^+e^- \sim 10$ • CHT 92P. • COMMENT • etc. • • •	GeV GeV GeV tition. F46/F2 0 GeV GeV 1.7 GeV F68/F1
Unseen decay m ALUE 0.375 \pm 0.045 \pm 0.06 (K*(892) ⁰ ρ ⁰ S-wa Unseen decay m ALUE 0.003 • • We do not use <0.009 (K*(892) ⁰ ρ ⁰ D-w Unseen decay m ALUE 2.009 (K*(892) ⁰ ρ ⁰ D-w Unseen decay m ALUE	ave long.)/Indes of the Indes o	(892) ⁰ are in <u>DOCUMENT ID</u> ANJOS Total *(892) ⁰ are in <u>DOCUMENT ID</u> COFFMAN COFFMAN COFFMAN data for averag ANJOS	92c E691 cluded. 92b MRK3 cluded. 92c E691 cluded. 92c E691 cluded. 92c E691 cluded. 92c E691	COMMENT γ Be 90-260 GeV F89/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.032 0.134 + 0.033 53 BARLAG 92C cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay in Value • • We do not use <0.64 $\Gamma(\overline{K^0}\eta)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay in Value	140 the following the following the brace of the collowing the brace of the collowing the following	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction DOCUMENT ID 54 ALBRECHT ANJOS KINOSHITA numbers in Table pocument in data for averag ALBRECHT	92B MRK3 TECN 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC TECN es, fits, limits 89D ARG	e^+e^- 3.77 • COMMENT • e^+e^- 3.77 • etc. •	GeV GeV GeV tition. F46/F2 0 GeV GeV 1.7 GeV F68/F1
Unseen decay m ALUE 0.375 \pm 0.045 \pm 0.06 (K*(892) ⁰ ρ ⁰ S-wa Unseen decay m ALUE 0.003 • • We do not use <0.009 (K*(892) ⁰ ρ ⁰ D-wa Unseen decay m ALUE 0.009 (K*(892) ⁰ ρ ⁰ D-wa Unseen decay m ALUE 0.255 \pm 0.045 \pm 0.06 (K- π + f_0 (980))/ ALUE <0.011 (K*(892) ⁰ f_0 (980 Unseen decay m	ave long.)/ nodes of the 7 20 ave)/[total nodes of the 7 20 ave)/[total 90 rave)/[(K- nodes of the 7 /[total	(892) ⁰ are in DOCUMENT ID ANJOS Total *(892) ⁰ are in DOCUMENT ID COFFMAN T*(892) ⁰ are in DOCUMENT ID COFFMAN data for average ANJOS **(892) ⁰ are in DOCUMENT ID ANJOS **DOCUMENT ID ANJOS **DOCUMENT ID ANJOS **(892) ⁰ and find the ANJOS **(892) ⁰ and find the ANJOS	92c E691 cluded. 92B MRK3 cluded. 92B MRK3 es, fits, limits, 92c E691 cluded. 92c E691 cluded. 92c E691 75cN 92c E691	COMMENT γ Be 90-260 GeV F89 Γ COMMENT	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.103 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.033 53 BARLAG 92C COF $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay in VALUE • • • We do not use <0.64 $\Gamma(\overline{K^0}\eta)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay in VALUE	140 the following mputes the bra- EVTS ERAGE 190 46 158 ulated from n CL% the following 90 modes of the services EVTS modes of the services EVTS	COFFMAN DOCUMENT ID COFFMAN G data for average BARLAG COMMENT ID ANDOS KINOSHITA COMMENT ID COMMENT ID ALBRECHT ANJOS ALBRECHT	92B MRK3 TECN 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC TECN es, fits, limits 89D ARG	e^+e^- 3.77 • COMMENT • e^+e^- 3.77 • etc. • • • 1 π^- Cu 230 • gical normaliza • COMMENT • $e^+e^- \approx 11$ • 7 Be 90–260 • $e^+e^- \sim 10$ • CHT 92P. • COMMENT • etc. • • •	GeV GeV GeV tition. F46/F2 0 GeV GeV 1.7 GeV F68/F1
Unseen decay m ALUE 0.375 \pm 0.045 \pm 0.06 (K*(892) ⁰ ρ ⁰ S-wa Unseen decay m ALUE 0.003 • • We do not use <0.009 (K*(892) ⁰ ρ ⁰ D-w Unseen decay m ALUE 2.009 (K*(892) ⁰ ρ ⁰ D-w Unseen decay m ALUE	ave long.)/Indes of the Indes o	(892) ⁰ are in DOCUMENT ID ANJOS Total *(892) ⁰ are in DOCUMENT ID COFFMAN T*(892) ⁰ are in DOCUMENT ID COFFMAN data for average ANJOS **(892) ⁰ are in DOCUMENT ID ANJOS **DOCUMENT ID ANJOS **DOCUMENT ID ANJOS **(892) ⁰ and find the ANJOS **(892) ⁰ and find the ANJOS	20 E691 cluded. 928 MRK3 cluded. 928 MRK3 cluded. 920 E691 cluded. 920 E691 cluded. 920 E691 920 E691 920 E691	COMMENT γ Be 90-260 GeV F89/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.032 53 BARLAG 92c cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay in VALUE • • We do not use <0.64 $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay in VALUE 0.33 ± 0.04 OUR FIT	140 the following mputes the bri	COFFMAN DOCUMENT ID COFFMAN Gata for average 53 BARLAG anching fraction DOCUMENT ID SALBRECHT ANJOS KINOSHITA Numbers in Table The are included. DOCUMENT ID Gata for average ALBRECHT The are included. DOCUMENT ID 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC Es, fits, limits 89D ARG	$\begin{array}{c} e^+e^- \ 3.77 \\ \hline \\ \underline{COMMENT} \\ e^+e^- \ 3.77 \\ \text{, etc.} \bullet \bullet \bullet \\ 1 \ \pi^- \ \text{Cu} \ 230 \\ \text{gical normaliza} \\ \hline \\ \underline{COMMENT} \\ e^+e^- \approx 10 \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \sim 10 \\ \text{GIOCHERT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \underline{COMMENT} \\ \\ COMM$	GeV GeV GeV tition. F46/F2 0 GeV GeV F68/F1	
Unseen decay m ALUE 0.375 \pm 0.045 \pm 0.06 (K*(892) ⁰ ρ ⁰ S-wa Unseen decay m ALUE 0.003 • • We do not use <0.009 (K*(892) ⁰ ρ ⁰ D-w Unseen decay m ALUE 2.255 \pm 0.045 \pm 0.06 (K- π + f_0 (980))/ ALUE Co.011 (K*(892) ⁰ f_0 (980 Unseen decay m	ave long.)/ nodes of the 7 20 ave)/[total nodes of the 7 20 ave)/[total 90 /[total	(**(892)° are in DOCUMENT ID ANJOS **(892)° are in DOCUMENT ID COFFMAN **(892)° are in DOCUMENT ID ANJOS **DOCUMENT ID ANJOS ***********************************	20 E691 cluded. 928 MRK3 cluded. 928 MRK3 cluded. 920 E691 cluded. 920 E691 cluded. 920 E691 920 E691 920 E691	COMMENT γ Be 90-260 GeV F89/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.103 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.033 53 BARLAG 92C COF $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay if VALUE • • • We do not use < 0.64 $\Gamma(\overline{K^0}\eta)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay if VALUE 0.33 ± 0.04 OUR FIT 0.32 ± 0.04 OUR FIT 0.32 ± 0.04 OUR FIT	140 the following mputes the bri (KO π+π EVTS ERAGE 190 46 158 ulated from n characteristics the following 90 modes of the service EVTS and the following 90 modes of the service EVTS 225	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction DOCUMENT ID 54 ALBRECHT ANJOS KINOSHITA numbers in Table pocument in data for averag ALBRECHT	92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC Es, fits, limits 89D ARG	$\begin{array}{c} e^+e^- \ 3.77 \\ \hline \\ \underline{COMMENT} \\ e^+e^- \ 3.77 \\ \text{, etc.} \bullet \bullet \bullet \\ 1 \ \pi^- \ \text{Cu} \ 230 \\ \text{gical normaliza} \\ \hline \\ \underline{COMMENT} \\ e^+e^- \approx 10 \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \sim 10 \\ \text{GIOCHERT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \underline{COMMENT} \\ \\ COMM$	GeV GeV tion. Γ46/Γ2 0 GeV GeV
Unseen decay m ALUE (No.003) (K*(892) ⁰ ρ^0 S-wa Unseen decay m ALUE (0.003) (K*(892) ⁰ ρ^0 P-wa Unseen decay m ALUE (0.009) (K*(892) ⁰ ρ^0 D-w Unseen decay m ALUE (0.005) (K*(892) ⁰ ρ^0 D-w Unseen decay m ALUE (0.001) (K*(892) ⁰ ρ^0 D-w Unseen decay m ALUE (0.001) (MUE (0.001) (MUE (0.007) (K*(892) ⁰ ρ^0 ρ^0 ρ^0 D-w Unseen decay m ALUE (0.001)	ave long.)/ nodes of the 7 // total	(892) ⁰ are in DOCUMENT ID ANJOS (*) (892) ⁰ are in DOCUMENT ID COFFMAN (*) (892) ⁰ are in DOCUMENT ID COFFMAN (*) (892) ⁰ are in DOCUMENT ID COFFMAN (*) (892) ⁰ are in DOCUMENT ID ANJOS (*) (892) ⁰ and in DOCUMENT ID ANJOS (*) (892) ⁰ and in DOCUMENT ID ANJOS (*) (892) ⁰ and in DOCUMENT ID ANJOS	20 E691 cluded. 928 MRK3 cluded. 928 MRK3 cluded. 920 E691 cluded. 920 E691 cluded. 920 E691 0 1ECN 920 E691 0 2E E691 0 2E E691 0 2E E691	COMMENT γ Be 90-260 GeV F89/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.032 53 BARLAG 92c cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay in VALUE • • We do not use <0.64 $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay in VALUE 0.33 ± 0.04 OUR FIT	140 the following mputes the bri (KO π+π EVTS ERAGE 190 46 158 ulated from n characteristics the following 90 modes of the service EVTS and the following 90 modes of the service EVTS 225	COFFMAN DOCUMENT ID COFFMAN Gata for average 53 BARLAG anching fraction DOCUMENT ID SALBRECHT ANJOS KINOSHITA Numbers in Table The are included. DOCUMENT ID Gata for average ALBRECHT The are included. DOCUMENT ID 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC Es, fits, limits 89D ARG	$\begin{array}{c} e^+e^- \ 3.77 \\ \hline \\ \underline{COMMENT} \\ e^+e^- \ 3.77 \\ \text{, etc.} \bullet \bullet \bullet \\ 1 \ \pi^- \ \text{Cu} \ 230 \\ \text{gical normaliza} \\ \hline \\ \underline{COMMENT} \\ e^+e^- \approx 10 \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \sim 10 \\ \text{GIOCHERT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \underline{COMMENT} \\ \\ COMM$	GeV GeV tion. Γ46/Γ2 0 GeV GeV	
Unseen decay m ALUE (N=(892) ⁰ ρ^0 S-wa Unseen decay m ALUE (N=(892) ⁰ ρ^0 P-wa Unseen decay m ALUE (0.003 • • • We do not use (0.009 • (K*(892) ⁰ ρ^0 D-wa Unseen decay m ALUE (0.005 • • We do not use (0.009 • (K*(892) ⁰ ρ^0 D-wa Unseen decay m ALUE (0.011 • (K*(892) ⁰ f_0 (980)) Unseen decay m ALUE (0.011 • (K*(892) ⁰ f_0 (980) Unseen decay m ALUE (0.007	ave long.)/ nodes of the 7 // total	(892) ⁰ are in DOCUMENT ID ANJOS (*) (892) ⁰ are in DOCUMENT ID COFFMAN (*) (892) ⁰ are in DOCUMENT ID COFFMAN (*) (892) ⁰ are in DOCUMENT ID COFFMAN (*) (892) ⁰ are in DOCUMENT ID ANJOS (*) (892) ⁰ and in DOCUMENT ID ANJOS (*) (892) ⁰ and in DOCUMENT ID ANJOS (*) (892) ⁰ and in DOCUMENT ID ANJOS	20 E691 cluded. 928 MRK3 cluded. 928 MRK3 cluded. 920 E691 cluded. 920 E691 cluded. 920 E691 0 1ECN 920 E691 0 2E E691 0 2E E691 0 2E E691	COMMENT γ Be 90-260 GeV F89/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 ± 0.033 53 BARLAG 92C COF $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30	140 the following putes the branch following putes the branch following putes the branch following putes the following putes from following putes from following putes from following putes fo	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction DOCUMENT ID 54 ALBRECHT ANJOS KINOSHITA numbers in Table pare included. DOCUMENT ID data for averag ALBRECHT are included. DOCUMENT ID PROCARIO pare included.	92B MRK3 TECN 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC TECN es, fits, limits 89D ARG 7ECN 93B CLE2	$e^{+}e^{-} 3.77$ $\underbrace{COMMENT}_{i} e^{+}e^{-} 3.77$ $\vdots e^{+}e^{-} 3.77$ $\vdots e^{+}e^{-} 3.77$ $\vdots e^{+}e^{-} 3.77$ $\vdots e^{+}e^{-} \approx 10$ $\xi = 0$ $\vdots e^{+}e^{-} \approx 10$ $\xi = 0$	GeV GeV tion. Γ46/Γ2 0 GeV GeV
Unseen decay m ALUE OLONG (K*(892) ⁰ ρ^0 S-wa Unseen decay m ALUE OLONG (K*(892) ⁰ ρ^0 P-wa Unseen decay m ALUE OLONG (K*(892) ⁰ ρ^0 P-wa Unseen decay m ALUE OLONG (K*(892) ⁰ ρ^0 D-w Unseen decay m ALUE OLONG (K*(892) ⁰ ρ^0 D-w Unseen decay m ALUE OLONG (K*(892) ⁰ ρ^0 D-w Unseen decay m ALUE (O.001 (K*(892) ⁰ ρ^0 G/(980) Unseen decay m ALUE (O.007 (K*(892) ⁰ ρ^0 G/(980) Unseen decay m ALUE (O.007	ave long.)/ nodes of the following 90 frodes of the following 90	(**(892)° are in DOCUMENT ID ANJOS (**(892)° are in DOCUMENT ID COFFMAN (**(892)° are in DOCUMENT ID COFFMAN (**(892)° are in DOCUMENT ID COFFMAN (**(892)° are in DOCUMENT ID ANJOS (**(892)° are in DOCUMENT ID ANJOS (**(892)° and f. DOCUMENT ID ANJOS	20 E691 cluded. 928 MRK3 cluded. 928 MRK3 cluded. 920 E691 cluded. 920 E691 cluded. 920 E691 0 1ECN 920 E691 0 2E E691 0 2E E691 0 2E E691	COMMENT γ Be 90-260 GeV F89/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.103 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 + 0.033 53 BARLAG 92C COF $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.86 ± 0.23 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay is VALUE 0.33 ± 0.04 OUR FIT 0.32 ± 0.04 ± 0.03 $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay is VALUE 0.33 ± 0.04 OUR FIT 0.32 ± 0.04 ± 0.03 $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay is VALUE 0.31 ± 0.04 OUR FIT 0.32 ± 0.04 ± 0.03 $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay is VALUE 0.31 ± 0.04 OUR FIT 0.32 ± 0.04 ± 0.03	140 140 140 140 140 140 140 140 140 140	COFFMAN DOCUMENT ID COFFMAN data for average 33 BARLAG anching fraction DOCUMENT ID ALBRECHT ANJOS KINOSHITA numbers in Table To are included. DOCUMENT ID data for average ALBRECHT are included. DOCUMENT ID PROCARIO	92B MRK3 TECN 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC TECN es, fits, limits 89D ARG 7ECN 93B CLE2	$\begin{array}{c} e^+e^- \ 3.77 \\ \hline \\ \underline{COMMENT} \\ e^+e^- \ 3.77 \\ \text{, etc.} \bullet \bullet \bullet \\ 1 \ \pi^- \ \text{Cu} \ 230 \\ \text{gical normaliza} \\ \hline \\ \underline{COMMENT} \\ e^+e^- \approx 10 \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \sim 10 \\ \text{GIOCHERT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- = 10 \\ \text{GIOCHERT} \\ \hline \\ \underline{COMMENT} \\ \underline{COMMENT} \\ \\ COMM$	GeV GeV tion. F46/F2 0 GeV GeV
Unseen decay m ALUE (K*(892) ⁰ ρ^0 S-wa Unseen decay m ALUE (0.003 • • • We do not use (0.009 • (K*(892) ⁰ ρ^0 D-wa Unseen decay m ALUE (0.005 • • We do not use (0.009 • (K*(892) ⁰ ρ^0 D-wa Unseen decay m ALUE (0.011 • (K*(892) ⁰ δ_0 (980)) Unseen decay m ALUE (0.011 • (K*(892) ⁰ δ_0 (980) Unseen decay m ALUE (0.007 • (K*(892) ⁰ δ_0 (980) Unseen decay m ALUE (0.007	ave long.)/ nodes of the following 90 frodes of the following 90	(**(892)° are in DOCUMENT ID ANJOS (**(892)° are in DOCUMENT ID COFFMAN (**(892)° are in DOCUMENT ID COFFMAN (**(892)° are in DOCUMENT ID COFFMAN (**(892)° are in DOCUMENT ID ANJOS (**(892)° are in DOCUMENT ID ANJOS (**(892)° and f. DOCUMENT ID ANJOS	92c E691 cluded. 92b MRK3 cluded. 92e MRK3 res, fits, limits, 92c E691 cluded. 92c E691 0 (980) are inci 7ECN 92c E691 1 (1000) 1	COMMENT γ Be 90-260 GeV F89/Γ	0.242 ± 0.025 ± 0.06 $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 0.100 ± 0.012 OUR F 0.103 ± 0.022 ± 0.025 • • • We do not use 0.134 ± 0.033 53 BARLAG 92C cor $\Gamma(\overline{K^0}\pi^+\pi^-\pi^0)/I$ VALUE 1.84 ± 0.20 OUR FIT 1.86 ± 0.23 OUR AVE 1.80 ± 0.20 ± 0.21 2.8 ± 0.8 ± 0.8 1.85 ± 0.26 ± 0.30 54 This value is calc $\Gamma(\overline{K^0}\pi)/\Gamma(\overline{K^0}\pi^0)$ Unseen decay is VALUE 0.40 VALUE 0.33 ± 0.04 OUR FIT 0.32 ± 0.04 OUR FIT	140 140 140 140 140 140 140 140 140 140	COFFMAN DOCUMENT ID COFFMAN data for averag 53 BARLAG anching fraction DOCUMENT ID SALBRECHT ANJOS KINOSHITA numbers in Table pare included. DOCUMENT ID PROCARIO procument ID PROCARIO pare included. DOCUMENT ID	92B MRK3 92B MRK3 es, fits, limits 92C ACCM using topolog TECN 92P ARG 92C E691 91 CLEO 1 of ALBREC Es, fits, limits 89D ARG 93B CLE2	$e^{+}e^{-} 3.77$ $\underbrace{COMMENT}_{i} e^{+}e^{-} 3.77$ $\vdots e^{+}e^{-} 3.77$ $\vdots e^{+}e^{-} 3.77$ $\vdots e^{+}e^{-} 3.77$ $\vdots e^{+}e^{-} \approx 10$ $\xi = 0$ $\vdots e^{+}e^{-} \approx 10$ $\xi = 0$	GeV

 D^0

	e ω are included.	Γ ₇₁ /Γ ₁₉	$\Gamma(K^-\pi^+\pi^0\pi^0)/\Gamma_{\text{total}}$
VALUE		COMMENT	0.149±0.037±0.030 24 58 AI
0.54±0.10 OUR FIT 1.00±0.36±0.20	ALBRECHT 89D ARG	e ⁺ e [−] 10 GeV	• • We do not use the following data
			0.177±0.029 59 B/
$\Gamma(\overline{K^0}\omega)/\Gamma(\overline{K^0}\pi^+\pi^-)$ Unseen decay modes of th	e ω are included	Γ ₇₁ /Γ ₂₁	$0.209 + 0.074 \pm 0.012$ 9 59 AG
VALUE EVTS	DOCUMENT ID TECN	COMMENT	58 ADLER 88C uses an absolute norma
0.38±0.07 OUR FIT 0.33±0.09 OUR AVERAGE En	ror includes scale factor of 1.1		a detected $\overline{D}^0 \to K^+\pi^-$ in pure 59 AGUILAR-BENITEZ 87F and BARL
0.29 ± 0.08 ± 0.05 16		e^+e^-pprox 10 GeV	logical normalization. They do not
0.54 ± 0.14 ± 0.16 40		$e^+e^-\sim 10.7$ GeV	not included in the average.
⁵⁵ This value is calculated from	numbers in Table 1 of ALBRECH	Т 92Р.	$\Gamma(K^-\pi^+\pi^+\pi^-\pi^0)/\Gamma(K^-\pi^+)$
$\Gamma(\overline{K}{}^0\omega)/\Gamma(\overline{K}{}^0\pi^+\pi^-\pi^0)$		Γ ₇₁ /Γ ₄₆	<u>VALUE</u> <u>EVTS</u> <u>DO</u> 1.05±0.10 OUR FIT
Unseen decay modes of the VALUE	e ω are included. <u>DOCUMENT ID TECN</u>	COMMENT	0.98±0.11±0.11 225 ⁶⁰ Al
0.21 ±0.04 OUR FIT	DOCOMENT ID 1201	COMPLAT	⁶⁰ This value is calculated from number
$0.220 \pm 0.048 \pm 0.0116$	COFFMAN 92B MRK3	e ⁺ e ⁻ 3.77 GeV	$\Gamma(K^-\pi^+\pi^+\pi^-\pi^0)/\Gamma(K^-\pi^+\pi^+$
$\Gamma(\overline{K^0}\eta'(958))/\Gamma(\overline{K^0}\pi^+\pi^-)$)	Γ_{72}/Γ_{21}	VALUE EVTS DO
Unseen decay modes of th	· .	12/12	0.54±0.05 OUR FIT
D.32±0.04 OUR AVERAGE	DOCUMENT ID TECN	COMMENT	0.56±0.07 OUR AVERAGE
0.32±0.04 OUR AVERAGE 0.31±0.02±0.04 594	PROCARIO 93B CLE2	$\eta' \rightarrow \eta \pi^+ \pi^-, \rho^0 \gamma$	$0.55 \pm 0.07 + 0.12 \\ -0.09$ 167 KI
0.37 ± 0.13 ± 0.06 18		e+e- ≈ 10 GeV	0.57 ± 0.06 ± 0.05 180 AI
⁵⁶ This value is calculated from	numbers in Table 1 of ALBRECH	Т 92Р.	$\Gamma(\overline{K}^{+}(892)^{0}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}$
$\Gamma(K^{\bullet}(892)^{-}\rho^{+})/\Gamma(\overline{K}^{0}\pi^{+})$	$\pi^-\pi^0$)	Γ ₉₂ /Γ ₄₆	Unseen decay modes of the $\overline{K}^*(8)$
Unseen decay modes of th	•	· 74/ · 40	VALUE DO 0.45±0.15±0.15 AI
VALUE	DOCUMENT ID TECN		
0.606±0.188±0.126	COFFMAN 92B MRK3	e ⁺ e [−] 3.77 GeV	$\Gamma(\overline{K}^*(892)^0\eta)/\Gamma(K^-\pi^+)$
$\Gamma(K^*(892)^-\rho^+ \text{longitudinal})$	$)/\Gamma(\overline{K}^0\pi^+\pi^-\pi^0)$	Γ ₉₃ /Γ ₄₆	Unseen decay modes of the \overline{K}^* (8 VALUE EVTS DO
Unseen decay modes of th			0.49±0.12 OUR FIT
<i>√ALUE</i> 0.290±0.111	COFFMAN 92B MRK3	<u>соммент</u> e ⁺ e ⁻ 3.77 GeV	0.58±0.19 ⁺ 0.24 46 KII
		5.11 GeV	=(\(\frac{1}{2}\)\(\frac{1}2\)\(\frac{1}{2}\)\(\frac{1}2\)\(\frac{1}2\)\(\frac{1}
$\Gamma(K^*(892)^- \rho^+ \text{ transverse})$		Γ ₉₄ /Γ ₄₆	$\Gamma(\overline{K}^*(892)^0\eta)/\Gamma(K^-\pi^+\pi^0)$
Unseen decay modes of th	e K*(892) are included. <u>DOCUMENT ID TECN</u>	COMMENT	Unseen decay modes of the K*(8 VALUE
0.317±0.180		e ⁺ e ⁻ 3.77 GeV	0.134±0.034 OUR FIT
4-311 ± 0-100			0.13 ±0.02 ±0.03 214 PI
		F 15	
$\Gamma(K^{\bullet}(892)^{-}\rho^{+}P$ -wave $)/\Gamma_{\rm b}$		Г ₉₅ /Г	$\Gamma(K^-\pi^+\omega)/\Gamma(K^-\pi^+)$
$\Gamma(K^*(892)^+ ho^+P$ -wave $)/\Gamma_b$,	Unseen decay modes of the ω are
$\Gamma(K^{\bullet}(892)^{-}\rho^{+}P\text{-wave})/\Gamma_{0}$ Unseen decay modes of the VALUE CLX	e K*(892) are included. <u>DOCUMENT ID TECN</u>	,	$\frac{\Gamma(K^-\pi^+\omega)/\Gamma(K^-\pi^+)}{\text{Unseen decay modes of the }\omega \text{ are}}$ $\frac{VALUE}{0.78\pm0.12\pm0.10} \frac{EVTS}{99} \frac{DE}{61 \text{ Al}}$
$\Gamma(K^{\bullet}(892)^{-}\rho^{+}P\text{-wave})/\Gamma_{0}$ Unseen decay modes of the VALUE $CL\%$ <0.015 90	e K*(892) are included. <u>DOCUMENT ID</u> <u>TECN</u>	<u>СОММЕНТ</u> e ⁺ e ⁻ 3.77 GeV	Unseen decay modes of the ω are <u>VALUE</u> <u>EVTS</u> <u>DO</u>
$\frac{\Gamma(K^{\bullet}(892)^{-}\rho^{+}P\text{-wave})/\Gamma_{b}}{\text{Unseen decay modes of th}}$ $\frac{\text{CLX}}{\text{<0.015}}$ 90 57 Obtained using other $\overline{K}^{\bullet}(892)$	e K*(892) are included. DOCUMENT ID TECN 57 COFFMAN 92B MRK3 2) P-wave limits and isospin relat	COMMENT e^+e^- 3.77 GeV tions.	Unseen decay modes of the ω are \underline{VALUE} EVTS DC $0.78\pm0.12\pm0.10$ 99 61 Al 61 This value is calculated from number
T($K^{\bullet}(892)^{-} \rho^{+} P$ -wave)/ Γ_{b} Unseen decay modes of th CLX <0.015 90 57 Obtained using other $\overline{K}^{\bullet}(892)^{0} \rho^{0}$ transverse)/ Γ_{b} Unseen decay modes of th	the $K^*(892)^-$ are included. DOCUMENT ID TECN 57 COFFMAN 928 MRK3 2) ρP -wave limits and isospin relat $\Gamma(\overline{K}^0\pi^+\pi^-\pi^0)$ THE $K^*(892)^0$ are included.	<u>COMMENT</u> e ⁺ e ⁻ 3.77 GeV tions. Γ ₈₇ /Γ ₄₆	Unseen decay modes of the ω are <u>VALUE</u> <u>EVTS</u> <u>DC</u> 0.78±0.12±0.10 99 61 Al 61 This value is calculated from number $\Gamma(\overline{K}^{\bullet}(892)^{0}\omega)/\Gamma(K^{-}\pi^{+})$
$\Gamma(K^{\bullet}(892)^{-}\rho^{+}P\text{-wave})/\Gamma_{0}$ Unseen decay modes of the VALUE ≤ 0.015 90 57 Obtained using other $\overline{K}^{\bullet}(892)^{0}\rho^{0}$ transverse) /I Unseen decay modes of the VALUE	the $K^*(892)^-$ are included. DOCUMENT ID TECN 57 COFFMAN 92B MRK3 2) ρP -wave limits and isospin relat $\Gamma(\overline{K}^0\pi^+\pi^-\pi^0)$	<u>COMMENT</u> e ⁺ e ⁻ 3.77 GeV tions. Γ ₈₇ /Γ ₄₆	Unseen decay modes of the ω are $VALUE$ EVTS DC $0.78\pm0.12\pm0.10$ 99 61 Al 61 This value is calculated from number $\Gamma(\overline{K}^*(892)^0\omega)/\Gamma(K^-\pi^+)$ Unseen decay modes of the $\overline{K}^*(8)$
T(K*(892)- ρ + P-wave)/ Γ_0 Unseen decay modes of th VALUE <0.015 90 57 Obtained using other \overline{K} *(89 T(K*(892)0 ρ 0 transverse)/I Unseen decay modes of th VALUE 0.15 ±0.06 OUR FIT	The $K^*(892)^-$ are included. DOCUMENT ID TECN TOFFMAN 928 MRK3 22) ρP -wave limits and isospin relat $\Gamma(\overline{K}^0\pi^+\pi^-\pi^0)$ The $K^*(892)^0$ are included. DOCUMENT ID TECN	<u>COMMENT</u> e ⁺ e ⁻ 3.77 GeV tions. Γ ₈₇ /Γ ₄₆	Unseen decay modes of the ω are value $EVTS$ DC O .
T(K*(892) $^-\rho^+$ P-wave)/ Γ_0 Unseen decay modes of the ALUE \leq CL% \leq 0.015 90 57 Obtained using other \overline{K} *(89 $^-$ (\overline{K} *(892) $^0\rho^0$ transverse)/ \overline{I} Unseen decay modes of the ALUE \leq 0.15 \pm 0.06 OUR FIT \leq 0.126 \pm 0.111	The $K^*(892)^-$ are included. DOCUMENT ID TECN TOFFMAN 928 MRK3 22) ρP -wave limits and isospin relat $\Gamma(\overline{K}^0\pi^+\pi^-\pi^0)$ The $K^*(892)^0$ are included. DOCUMENT ID TECN	COMMENT e^+e^- 3.77 GeV tions. F87/F46 COMMENT e^+e^- 3.77 GeV	Unseen decay modes of the ω are $\underbrace{VALUE}_{EVTS}$ DC 0.78±0.12±0.10 99 61 Al 61 This value is calculated from number $\Gamma(\overline{K}^*(892)^0\omega)/\Gamma(K^-\pi^+)$ Unseen decay modes of the $\overline{K}^*(812)^0\omega)$ Unseen decay modes of the $\overline{K}^*(812)^0\omega)$ 17 62 Al 62 This value is calculated from number $\overline{K}^*(812)^0\omega$
T(K*(892)- ρ + P-wave)/ $\Gamma_{\rm b}$ Unseen decay modes of the VALUE SUBSTITUTE OF TABLE SUBSTITUTE OF THE SUBSTITUTE OF TH	The $K^*(892)^-$ are included. DOCUMENT ID TECN TOFFMAN 928 MRK3 22) ρ P-wave limits and isospin relat $\Gamma(\overline{K}^0\pi^+\pi^-\pi^0)$ The $K^*(892)^0$ are included. DOCUMENT ID TECN COFFMAN 928 MRK3	COMMENT e ⁺ e ⁻ 3.77 GeV tions. Γ ₈₇ /Γ ₄₆	Unseen decay modes of the ω are value $EVTS$ DC O .
T(K*(892) $^-\rho^+$ P-wave)/ Γ_0 Unseen decay modes of th ALUE <0.015 90 57 Obtained using other \overline{K}^* (89 -(\overline{K}^* (892) $^0\rho^0$ transverse)/ \overline{I} Unseen decay modes of th ALUE ALUE 1.12 ± 0.06 OUR FIT 1.126± 0.111 -(\overline{K}^0 a ₁ (1260) 0)/ Γ_{total} Unseen decay modes of th	te $K^*(892)^-$ are included. DOCUMENT ID TECN 57 COFFMAN 928 MRK3 2) ρP -wave limits and isospin relat $\Gamma(\overline{K}^0\pi^+\pi^-\pi^0)$ TECN TECN COFFMAN 928 MRK3 TECN TE	COMMENT e^+e^- 3.77 GeV tions. F87/F46 COMMENT e^+e^- 3.77 GeV	Unseen decay modes of the ω are value Σ
T(K*(892)- ρ + P-wave)/ Γ_0 Unseen decay modes of th VALUE <0.015 90 57 Obtained using other \overline{K} *(89 T(K*(892)0 ρ 0 transverse)/I Unseen decay modes of th VALUE 0.15 ± 0.06 OUR FIT 0.126 ± 0.111 T(K0 a ₁ (1260)0)/ Γ total Unseen decay modes of th	TECH ER (* (892) are included. DOCUMENT ID TECN 27 COFFMAN 28 MRK3 29 ρ P-wave limits and isospin relat $\Gamma(K^0\pi^+\pi^-\pi^0)$ TECN COFFMAN 29 MRK3 COFFMAN 29 MRK3 TECN DOCUMENT ID TECN	COMMENT e^+e^- 3.77 GeV tions. F87/F46 COMMENT e^+e^- 3.77 GeV	Unseen decay modes of the ω are value $EVTS$ DC $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ 17 62 Al $O.78\pm0.11\pm0.04$ 17 62 Al $O.78\pm0.11\pm0.04$ 17 62 Al $O.78\pm0.11\pm0.04$ 17 62 Al $O.78\pm0.11\pm0.04$ 17 $O.78\pm0.11\pm0.04$ 18 $O.78\pm0.11\pm0.04$ 19 $O.78\pm0.11\pm0.04$ 18 $O.78\pm0.11\pm0.04$ 19 $O.78\pm0.11\pm0.04$ 19 $O.78\pm0.11\pm0.04$ 19 $O.78\pm0.11\pm0.04$ 19 $O.78\pm0.11\pm0.04$ 19 $O.78\pm0.04$
T($K^*(892)^-\rho^+P$ -wave)/ Γ_0 Unseen decay modes of the MALUE <0.015 90 57 Obtained using other $\overline{K}^*(892)^0\rho^0$ transverse)/ Γ Unseen decay modes of the MALUE Unseen decay modes of the MALUE <0.019 90	the $K^*(892)^-$ are included. DOCUMENT ID TECN 57 COFFMAN 928 MRK3 2) ρP -wave limits and isospin relat $\Gamma(\overline{K}^0\pi^+\pi^-\pi^0)$ THE $K^*(892)^0$ are included. DOCUMENT ID TECN TOFFMAN 928 MRK3	COMMENT e ⁺ e ⁻ 3.77 GeV tions. F87/F46 COMMENT e ⁺ e ⁻ 3.77 GeV F76/F COMMENT e ⁺ e ⁻ 3.77 GeV	Unseen decay modes of the ω are value $EVTS$ DC $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ P($K^*(892)^0\omega$)/ $\Gamma(K^-\pi^+)$ Unseen decay modes of the $\overline{K}^*(EVTS)$ DC $O.28\pm0.11\pm0.04$ 17 62 Al $O.78\pm0.11\pm0.04$ 18 62 Al $O.78\pm0.11\pm0.04$ 17 62 Al $O.78\pm0.04$ 17 62 Al $O.78\pm0.04$ 18 Al $O.78\pm0.04$ 18 Al $O.78\pm0.04$ 18 Al $O.78\pm0.04$ 18 Al $O.78\pm0$
T(K*(892)- ρ + P-wave)/ Γ_b Unseen decay modes of the MALUE CL% <0.015 90 57 Obtained using other \overline{K} *(89 T(K*(892)0 ρ 0 transverse)/ Γ_b Unseen decay modes of the MALUE 0.126 ± 0.06 OUR FIT 0.126± 0.111 T(K*0 a ₁ (1260)0)/ Γ_{total} Unseen decay modes of the MALUE CL% <0.019 90 T(K ₁ (1270)- π +)/ Γ (\overline{K} 0 π +	the $K^*(892)^-$ are included. DOCUMENT ID TECN 57 COFFMAN 92B MRK3 2) ρP -wave limits and isospin relat $\Gamma(K^0\pi^+\pi^-\pi^0)$ The $K^*(892)^0$ are included. DOCUMENT ID TECN COFFMAN 92B MRK3 The $a_1(1260)^0$ are included. DOCUMENT ID TECN COFFMAN 92B MRK3 THE AND TECN COFFMAN 92B MRK3	COMMENT e+e-3.77 GeV tions. F87/F46 COMMENT e+e-3.77 GeV F76/F	Unseen decay modes of the ω are value $EVTS$ DC $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ P($K^*(892)^0\omega$)/ $\Gamma(K^-\pi^+)$ Unseen decay modes of the $\overline{K}^*(EVTS)$ DC $O.28\pm0.11\pm0.04$ 17 62 Al $O.78\pm0.11\pm0.04$ 18 63 Al $O.78\pm0.11\pm0.04$ 18 63 Al $O.78\pm0.11\pm0.04$ 19 63 Al $O.78\pm0.04$ 19 6
Unseen decay modes of the MALUE \sim CL% \sim CD Single Property of the MALUE \sim CL% \sim CD Single Property of the MALUE \sim CD Single Pro	the $K^*(892)^-$ are included. DOCUMENT ID TECN 57 COFFMAN 928 MRK3 2) ρP -wave limits and isospin relat $\Gamma(\overline{K}^0\pi^+\pi^-\pi^0)$ THE $K^*(892)^0$ are included. DOCUMENT ID TECN TOFFMAN 928 MRK3	COMMENT e^+e^- 3.77 GeV tions. F87/ Γ 46 COMMENT e^+e^- 3.77 GeV F76/ Γ COMMENT e^+e^- 3.77 GeV Γ 98/ Γ 46	Unseen decay modes of the ω are value $EVTS$ DC $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ P($K^*(892)^0\omega$)/ $\Gamma(K^-\pi^+)$ Unseen decay modes of the $\overline{K}^*(EVTS)$ DC $O.28\pm0.11\pm0.04$ 17 62 Al $O.78\pm0.11\pm0.04$ 18 62 Al $O.78\pm0.11\pm0.04$ 17 62 Al $O.78\pm0.04$ 17 62 Al $O.78\pm0.04$ 18 Al $O.78\pm0.04$ 18 Al $O.78\pm0.04$ 18 Al $O.78\pm0.04$ 18 Al $O.78\pm0$
T(K*(892)- ρ +P-wave)/ Γ_b Unseen decay modes of th ALUE <0.015 90 57 Obtained using other \overline{K} *(89 T(\overline{K} *(892)0 ρ 0 transverse)/ Γ_b Unseen decay modes of th ALUE 0.15 ± 0.06 OUR FIT 0.126±0.111 T(\overline{K} 0 a ₁ (1260)0)/ Γ_{total} Unseen decay modes of th ALUE <0.019 90 T(K_1 (1270)- π +)/ $\Gamma(\overline{K}$ 0 π + Unseen decay modes of th Unseen decay modes of th Unseen decay modes of th	TECN COFFMAN 92B MRK3 POCUMENT ID TECN TOFFMAN 92B MRK3 12) pP-wave limits and isospin related to the pocument id to the po	COMMENT e+e-3.77 GeV tions. F87/F46 COMMENT e+e-3.77 GeV F76/F COMMENT e+e-3.77 GeV F98/F46 COMMENT	Unseen decay modes of the ω are $\frac{VALUE}{VALUE}$ Decay modes of the \overline{K}^* (892) 0 ω) / $\Gamma(K^-\pi^+)$ Unseen decay modes of the \overline{K}^* (892) 0 ω) / $\Gamma(K^-\pi^+)$ Unseen decay modes of the \overline{K}^* (802) 0 ω) / $\Gamma(K^-\pi^+\pi^+\pi^-\pi^-)$ Unseen decay modes of the \overline{K}^* (802) 0 ω) / $\Gamma(K^-\pi^+\pi^+\pi^-\pi^-)$ Unseen decay modes of the \overline{K}^* (802) 0 ω) / $\Gamma(K^-\pi^+\pi^+\pi^-\pi^-)$ Unseen decay modes of the \overline{K}^* (802) 0 ω) / $\Gamma(K^-\pi^+\pi^+\pi^-\pi^-)$ Unseen decay modes of the \overline{K}^* (802) 0 ω) / $\Gamma(K^-\pi^+\pi^+\pi^-\pi^-)$ 0 0 0 0 0 0 0 0 0 0
T ($K^*(892)^- \rho^+ P$ -wave)/ Γ_b Unseen decay modes of th VALUE <0.015 90 57 Obtained using other $\overline{K}^*(892)^0 \rho^0$ transverse)/ Γ Unseen decay modes of th VALUE 0.15 ± 0.06 OUR FIT 0.126±0.111 T (\overline{K}^0 a ₁ (1260) ⁰)/ Γ total Unseen decay modes of th VALUE <0.019 90 T ($K_1(1270)^- \pi^+$)/ $\Gamma(\overline{K}^0 \pi^+$ Unseen decay modes of th VALUE 0.106±0.028 OUR FIT	TECN COFFMAN 92B MRK3 POCUMENT ID TECN TOFFMAN 92B MRK3 12) pP-wave limits and isospin related to the pocument id to the po	COMMENT e^+e^- 3.77 GeV tions. F87/ Γ 46 COMMENT e^+e^- 3.77 GeV F76/ Γ COMMENT e^+e^- 3.77 GeV Γ 98/ Γ 46	Unseen decay modes of the ω are $\frac{VALUE}{VALUE}$ Decay $\frac{EVTS}{VC}$ Decay $EVTS$
Unseen decay modes of the value $(K^*(892)^-\rho^+P\text{-wave})/\Gamma_0$ Unseen decay modes of the value $(0.015)^{-57}$ Obtained using other $K^*(892)^{-57}$ Obtained using other $K^*(892)^{-57}$ Obtained using other $K^*(892)^{-57}$ Obtained using other $K^*(892)^{-57}$ Unseen decay modes of the value $(0.015)^{-57}$ Unseen	TECN COFFMAN 92B MRK3 POCUMENT ID TECN TOFFMAN 92B MRK3 2) p P-wave limits and isospin related in the pocument in the poc	COMMENT e^+e^- 3.77 GeV tions. F87/F46 COMMENT e^+e^- 3.77 GeV F98/F46 COMMENT e^+e^- 3.77 GeV F98/F46 COMMENT e^+e^- 3.77 GeV	Unseen decay modes of the ω are value Σ and Σ and Σ are value is calculated from number $\Gamma(K^*(892)^0\omega)/\Gamma(K^-\pi^+)$ Unseen decay modes of the $K^*(82)^0\omega)/\Gamma(K^-\pi^+)$ Unseen decay modes of the $K^*(82)^0\omega)/\Gamma(K^-\pi^+\pi^+\pi^-\pi^-)$ Unseen decay modes of the $K^*(82)^0\omega)/\Gamma(K^-\pi^+\pi^+\pi^-)$ Unseen decay modes of the $K^*(82)^0\omega)/\Gamma(K^-\pi^+\pi^-\pi^-)$ Unseen decay modes of the $K^*(82)^0\omega)/\Gamma(K^-\pi^+\pi^-\pi^-)$
Unseen decay modes of the MALUE CL% (892) ρ^+P -wave)/ Γ_b Unseen decay modes of the MALUE 90 ρ^0 transverse)/ Γ_b Unseen decay modes of the MALUE 1.15 ± 0.06 OUR FIT 0.126 ± 0.111 Unseen decay modes of the MALUE CL% (0.019 90) $\Gamma(K_1(1270)^-\pi^+)/\Gamma(\overline{K}^0\pi^+)$ Unseen decay modes of the MALUE 1.11 $\Gamma(K_1(1270)^-\pi^+)/\Gamma(\overline{K}^0\pi^+)$ Unseen decay modes of the MALUE 1.106 ± 0.028 OUR FIT 0.10 ± 0.03 $\Gamma(K_1(1400)^0\pi^0)/\Gamma_{total}$ CL% MALUE 1.106 ± 0.03 $\Gamma(K_1(1400)^0\pi^0)/\Gamma_{total}$ CL% MALUE 1.106 ± 0.03	TECN COFFMAN 92B MRK3 2) ρ P-wave limits and isospin relate (π (π + π - π 0)) E π (π + π - π 0) E π (π + π 0) E π (π + π 0) E π (π 1 (1270) - α are included. E π (π 0) E π (π 1 (1270) - α are included. E π (π 1 (1270) -	COMMENT e^+ e^- 3.77 GeV tions. F87/F46 COMMENT e^+ e^- 3.77 GeV F98/F46 COMMENT e^+ e^- 3.77 GeV F98/F46 COMMENT e^+ e^- 3.77 GeV	Unseen decay modes of the ω are $\frac{VALUE}{VALUE}$ Decay modes of the \overline{K} and \overline{K} (892) 0 ω) / $\Gamma(K^-\pi^+)$ Unseen decay modes of the \overline{K} (892) 0 ω) / $\Gamma(K^-\pi^+)$ Unseen decay modes of the \overline{K} (892) 0 ω) / $\Gamma(K^-\pi^+)$ 0 0 0 0 0 0 0 0 0 0
T(K*(892)- ρ + P-wave)/ Γ_0 Unseen decay modes of the VALUE $<$ 0.015 $>$ 90 57 Obtained using other \overline{K} *(892) 0 ρ 0 transverse)/ Γ Unseen decay modes of the VALUE 0.15 \pm 0.06 OUR FIT 0.126 \pm 0.111 $\Gamma(\overline{K}^0$ $a_1(1260)^0)/\Gamma_{total}$ Unseen decay modes of the VALUE $<$ 0.019 $=$ 90 $\Gamma(K_1(1270)-\pi^+)/\Gamma(\overline{K}^0\pi^+)$ Unseen decay modes of the VALUE 0.106 \pm 0.028 OUR FIT 0.10 \pm 0.03 $\Gamma(\overline{K}_1(1400)^0\pi^0)/\Gamma_{total}$	TECN COFFMAN 92B MRK3 2) ρ P-wave limits and isospin relate (π (π + π - π 0)) E π (π + π - π 0) E π (π + π 0) E π (π + π 0) E π (π 1 (1270) - α are included. E π (π 0) E π (π 1 (1270) - α are included. E π (π 1 (1270) -	COMMENT e^+e^- 3.77 GeV tions. F87/F46 COMMENT e^+e^- 3.77 GeV F98/F46 COMMENT e^+e^- 3.77 GeV F98/F46 COMMENT e^+e^- 3.77 GeV	Unseen decay modes of the ω are value $EVTS$ DC $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ 99 61 Al $O.78\pm0.12\pm0.10$ Unseen decay modes of the $O.78\pm0.11\pm0.04$ 17 62 Al $O.78\pm0.11\pm0.04$ 17 63 Al $O.78\pm0.11\pm0.04$ 18 $O.78\pm0.11\pm0.04$ 18 $O.78\pm0.11\pm0.04$ 19 63 Al $O.78\pm0.11\pm0.04$ 19 63 Al $O.78\pm0.11\pm0.04$ 19 63 Al $O.78\pm0.11\pm0.04$ 19 10 Al $O.78\pm0.04$ 10 Al $O.78\pm0.04$ 10 Al $O.78\pm0.04$ 10 Al $O.78\pm0.04$ 10 Al $O.78$
T(K*(892)- ρ + P-wave)/ Γ_0 Unseen decay modes of the value \sim CL% $<$ 0.015 $>$ 90 $>$ 7 Obtained using other κ *(892) 0 ρ^0 transverse)/ Γ Unseen decay modes of the value \sim 0.15 \pm 0.06 OUR FIT 0.126 \pm 0.111 T(κ 0 a ₁ (1260) 0)/ Γ total \sim Unseen decay modes of the value \sim CL% $<$ 0.019 \sim 90 \sim CK ₁ (1270)- π +)/ Γ (κ 0 π + Unseen decay modes of the value \sim 0.10 \pm 0.03 \sim CK ₁ (1400) 0 π^0)/ Γ total \sim 0.10 \pm 0.03 \sim CK ₁ (1400) 0 π^0)/ Γ total \sim 0.037 \sim 90	TECN DOCUMENT ID TECN TOFFMAN P2B MRK3 2) \(\rho P\)-wave limits and isospin related. TECN TECN TECN TECN TECN TECN COFFMAN P2B MRK3 TECN COFFMAN P2B MRK3 TECN POCUMENT ID TECN TECN TECN TECN POCUMENT ID TECN	COMMENT e^+ e^- 3.77 GeV tions. F87/F46 COMMENT e^+ e^- 3.77 GeV F98/F46 COMMENT e^+ e^- 3.77 GeV F98/F46 COMMENT e^+ e^- 3.77 GeV	Unseen decay modes of the ω are value Σ and Σ and Σ are value is calculated from number $\Gamma(K^*(892)^0\omega)/\Gamma(K^-\pi^+)$ Unseen decay modes of the $K^*(82)^0\omega)/\Gamma(K^-\pi^+)$ Unseen decay modes of the $K^*(82)^0\omega)/\Gamma(K^-\pi^+\pi^+\pi^-\pi^-)$ Unseen decay modes of the $K^*(82)^0\omega)/\Gamma(K^-\pi^+\pi^+\pi^-)$ Unseen decay modes of the $K^*(82)^0\omega)/\Gamma(K^-\pi^+\pi^-\pi^-)$ Unseen decay modes of the $K^*(82)^0\omega)/\Gamma(K^-\pi^+\pi^-\pi^-)$
T(K*(892)- ρ + P-wave)/ Γ_b Unseen decay modes of th ALUE <0.015 90 57 Obtained using other \overline{K}^* (89 T(\overline{K}^* (892)0 ρ 0 transverse)/ Γ_b Unseen decay modes of th VALUE 0.15 ± 0.06 OUR FIT 0.126±0.111 T(\overline{K}^0 a ₁ (1260)0)/ Γ_{total} Unseen decay modes of th VALUE <0.019 90 T(K_1 (1270)- π +)/ $\Gamma(\overline{K}^0$ π + Unseen decay modes of th VALUE 0.106±0.028 OUR FIT 0.10 ± 0.03 T(K_1 (1400)0 π 0)/ Γ_{total} VALUE <0.037 90 T(K^* (892)0 π + π -3-body), Unseen decay modes of th	TECN COFFMAN 92B MRK3 POCUMENT ID TECN TOFFMAN 92B MRK3 2) p P-wave limits and isospin related in the pocument in the poc	COMMENT e+e-3.77 GeV tions. F87/F46 COMMENT e+e-3.77 GeV F98/F46 COMMENT e+e-3.77 GeV F100/F COMMENT e+e-3.77 GeV F100/F COMMENT e+e-3.77 GeV F100/F	Unseen decay modes of the ω are value $EVTS$ DC $VALUE$ VA
T(K*(892)* ρ * ρ *P-wave)/ Γ_b Unseen decay modes of the value \sim 0.015 90 57 Obtained using other κ *(892)* ρ 0 transverse)/ κ 1 Unseen decay modes of the value \sim 0.15 \pm 0.06 OUR FIT 0.126 \pm 0.111 T(κ 0 a ₁ (1260)*0)/ Γ total Unseen decay modes of the value \sim 0.019 90 T(κ 1(1270)* σ * σ 1)/ Γ 1(κ 0* σ * σ 4 Unseen decay modes of the value \sim 0.019 90 T(κ 1(1270)* σ 7)/ Γ 10 σ 7 Unseen decay modes of the value \sim 0.037 σ 9 T(κ 1(1400)* σ 70)/ Γ 10 σ 1 Value \sim 0.037 σ 9 Unseen decay modes of the value \sim 0.037 90 T(κ *(892)* σ * σ	TECN DOCUMENT ID TECN TOFFMAN P2B MRK3 2) ρ P-wave limits and isospin related. TECN DOCUMENT ID TECN TECN TECN TECN TECN TECN TECN COFFMAN P2B MRK3 TECN COFFMAN P2B MRK3 TECN COFFMAN P2B MRK3 TECN COFFMAN P2B MRK3 TECN TECN COFFMAN P3B MRK3 TECN	COMMENT e+e-3.77 GeV tions. F87/F46 COMMENT e+e-3.77 GeV F98/F46 COMMENT e+e-3.77 GeV F100/F COMMENT e+e-3.77 GeV F100/F COMMENT e+e-3.77 GeV F100/F	Unseen decay modes of the ω are value Σ 0.78 \pm 0.12 \pm 0.10 99 61 Al 61 This value is calculated from number $\Gamma(K^*(892)^0\omega)/\Gamma(K^-\pi^+)$ Unseen decay modes of the $K^*(812)^0\omega$ 0.28 \pm 0.11 \pm 0.04 17 62 Al 62 This value is calculated from number $\Gamma(K^*(892)^0\omega)/\Gamma(K^-\pi^+\pi^+\pi^-\pi^-)$ Unseen decay modes of the $K^*(812)^0\omega$ 0.76 \times 0.10 \times 0.11 \times 0.11 \times 0.12 \times 0.12 \times 0.13 \times 0.14 \times 0.15 \times 0.1
T(K*(892)*- ρ + P-wave)/ Γ_b Unseen decay modes of the VALUE (892)* ρ 0 transverse)/ Γ Unseen decay modes of the VALUE (1260)* Γ Unseen decay modes of the VALUE (1260)* Γ Unseen decay modes of the VALUE (1270)* Γ Unseen decay modes of the VALUE (1400)* Γ Unseen decay modes of the Unseen decay modes of the VALUE (1500)* Γ Unseen decay modes of the Unseen decay modes of the VALUE (1500)* Γ	The $K^*(892)^-$ are included. DOCUMENT ID TECN TOFFMAN P2B MRK3 P2) ρ P-wave limits and isospin relatively and isospin relatively and isospin relatively are included. DOCUMENT ID TECN COFFMAN TECN COFFMAN P2B MRK3 TECN COFFMAN P2B MRK3 TECN COFFMAN TECN COFFMAN P2B MRK3 TECN TECN COFFMAN P2B MRK3	COMMENT e+e-3.77 GeV tions. F87/F46 COMMENT e+e-3.77 GeV F98/F46 COMMENT e+e-3.77 GeV F100/F COMMENT e+e-3.77 GeV F100/F COMMENT e+e-3.77 GeV F100/F	Unseen decay modes of the ω are value $EVTS$ DC $VALUE$ VA
T ($K^*(892)^-\rho^+P$ -wave)/ Γ_b Unseen decay modes of the VALUE <0.015 90 57 Obtained using other $\overline{K}^*(892)^0\rho^0$ transverse)/ Γ_b Unseen decay modes of the VALUE 0.15 ± 0.06 OUR FIT 0.126±0.111 T (\overline{K}^0 a ₁ (1260) ⁰)/ Γ_{total} Unseen decay modes of the VALUE <0.019 90 T ($K_1(1270)^-\pi^+$)/ $\Gamma(\overline{K}^0\pi^+$ Unseen decay modes of the VALUE 0.106±0.028 OUR FIT 0.10 ± 0.03 T ($K_1(1400)^0\pi^0$)/ Γ_{total} VALUE <0.037 90 T ($K^*(892)^0\pi^+\pi^-3$ -body) Unseen decay modes of the VALUE 0.14 ± 0.04 OUR FIT 0.191±0.105	TECN DOCUMENT ID TECN TOFFMAN P2B MRK3 2) \(\rho P - \pi - \pi 0 \) TECN TOFFMAN P2B MRK3 TECN TECN TECN TECN TECN TECN TECN DOCUMENT ID TECN COFFMAN TECN	COMMENT e+e-3.77 GeV tions. F87/F46 COMMENT e+e-3.77 GeV F98/F46 COMMENT e+e-3.77 GeV F100/F COMMENT e+e-3.77 GeV F83/F46 COMMENT e+e-3.77 GeV F83/F46 COMMENT e+e-3.77 GeV	Unseen decay modes of the ω are value $EVTS$ DC $VALUE$ VA
Γ (K^{\bullet} (892) $^{-}$ ρ^{+} P -wave)/ Γ_{0} Unseen decay modes of the VALUE <0.015 90 57 Obtained using other \overline{K}^{\bullet} (892) 0 ρ^{0} transverse)/ Γ Unseen decay modes of the VALUE 0.15 ±0.06 OUR FIT 0.126±0.111 Γ (\overline{K}^{0} a1(1260) 0)/ Γ total Unseen decay modes of the VALUE <0.019 90 Γ (K_{1} (1270) $^{-}$ π^{+})/ Γ (\overline{K}^{0} π^{+} Unseen decay modes of the VALUE 0.106±0.028 OUR FIT 0.10 ±0.03 Γ (K_{1} (1400) 0 π^{0})/ Γ total VALUE <0.037 90 Γ (K^{*} (892) 0 π^{+} π^{-} 3-body),	TECN DOCUMENT ID TECN TOFFMAN P2B MRK3 2) \(\rho P - \pi - \pi 0 \) TECN TOFFMAN P2B MRK3 TECN TECN TECN TECN TECN TECN TECN DOCUMENT ID TECN COFFMAN TECN	COMMENT e+e-3.77 GeV tions. F87/F46 COMMENT e+e-3.77 GeV F98/F46 COMMENT e+e-3.77 GeV F100/F COMMENT e+e-3.77 GeV F100/F COMMENT e+e-3.77 GeV F83/F46 COMMENT e+e-3.77 GeV F83/F46	Unseen decay modes of the ω are value $EVTS$ DC $VALUE$ VA

$\Gamma(K^-\pi^+\pi^0\pi^0)/\Gamma_{tc}$	xal			Γ ₅₄ /Γ
VALUE	<u>EVT\$</u>	DOCUMENT ID		
0.149±0.037±0.030	24	58 ADLER		e ⁺ e ⁻ 3.77 GeV
• • We do not use the	he followir			
0.177 ± 0.029		⁵⁹ BARLAG	92C ACCM	π Cu 230 GeV
$0.209^{+0.074}_{-0.043} \pm 0.012$	9	⁵⁹ AGUILAR	87F HYBR	πp, pp 360, 400 GeV
a detected $\overline{D}^0 \rightarrow 59$ AGUILAR-BENITE:	K ⁺ π ⁻ in Z 87F and	pure $D\overline{D}$ events. BARLAG 92C corr	pute the brai	his decay channel opposite nching fraction using topo-
logical normalizatio not included in the		lo not distinguish t	he presence o	of a third π^0 , and thus are
(K-π+π+π-π ⁰)	/Γ(K ⁻ 1	r+) DOCUMENT ID	TECN	Γ ₅₅ /Γ ₁₉
.05±0.10 OUR FIT	225	60 ALBRECHT	92P ARG	e ⁺ e ⁻ ≈ 10 GeV
⁶⁰ This value is calcula				
$(K^-\pi^+\pi^+\pi^-\pi^0)$	•			Γ ₅₅ /Γ ₃₇
0.54±0.05 OUR FIT	EVTS	DOCUMENT ID	TECN	COMMENT
0.56±0.07 OUR AVER		MINOS.UT:	0. 5:55	.+ ,
$0.55 \pm 0.07 + 0.12$	167	KINOSHITA		e ⁺ e [−] ~ 10.7 GeV
.57 ± 0.06 ± 0.05	180	ANJOS	90D E691	Photoproduction
-(K*(892) ⁰ π+π-1 Unseen decay mo		'─ ѫ+ѫ+ѫ─ѫ⁰) e Ҡ * (892) ⁰ are inc	luded.	Γ ₁₀₅ /Γ ₅₅
ALUE		DOCUMENT ID	TECN	
).45±0.15±0.15		ANJOS	90D E691	Photoproduction
$(\overline{K}^*(892)^0\eta)/\Gamma(K$	$(-\pi^{+})$			Γ ₁₀₆ /Γ ₁₉
Unseen decay mo		$\overline{K}^*(892)^0$ and η		CO. 11.51.7
.49±0.12 OUR FIT	EVTS	DOCUMENT ID	<u>TECN</u>	COMMENT
$.58\pm0.19^{+0.24}_{-0.28}$	46	KINOSHITA	91 CLEO	$e^+e^-\sim$ 10.7 GeV
$\Gamma(\overline{K}^*(892)^0\eta)/\Gamma(K$				Γ ₁₀₆ /Γ ₂₉
Unseen decay mo		E K* (892) ⁰ and η DOCUMENT ID		COMMENT
0.134±0.034 OUR FIT		DOCUMENTID	<u>JECN</u>	COMMENT
0.13 ±0.02 ±0.03	214	PROCARIO	93B CLE2	$\mathcal{K}^{*0}\eta \to \kappa^-\pi^+/\gamma\gamma$
$(K^-\pi^+\omega)/\Gamma(K^-$	π ⁺)			Γ ₁₀₇ /Γ ₁₉
Unseen decay mo	des of the			
	_ <i>EVTS</i> 99	61 ALBRECHT		$\frac{COMMENT}{e^+e^-} \approx 10 \text{ GeV}$
).78±0.12±0.10 ⁶¹ This value is calcula			92P ARG Lof ALBR E C	
Γ (Κ *(892) ⁰ ω)/Γ(<i>k</i>	(~ _{\pi} +)			Γ ₁₀₈ /Γ ₁₉
	•	e \overline{K}^* (892) 0 and ω	are included.	,
ALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
0.28±0.11±0.04	17	62 ALBRECHT	92P ARG	e ⁺ e ⁻ ≈ 10 GeV
62 This value is calcula			1 of ALBREC	
Γ(Κ* (892) ⁰ ω)/Γ(<i>k</i>				Γ ₁₀₈ /Γ ₅₅
VALUE	<u>CL%</u>	e $\overline{K}^*(892)^0$ and ω	TECN	COMMENT
• • We do not use t				
<0.44	90	63 ANJOS		Photoproduction
63 Recovered from the malization consister	e publishe nt.	d limit, Γ(K *(892) ⁰ ω)/Γ _{total} ,	in order to make our nor-
$(K^-\pi^+\eta'(958))/$				Γ ₁₀₉ /Γ ₃₇
Unseen decay mo VALUE		e η ¹ (958) are includ <u>DOCUMENT ID</u>		COMMENT
0.093±0.014±0.019	286	PROCARIO	93B CLE2	$\eta' \to \eta \pi^+ \pi^-, \rho^0 \gamma$
Γ(K*(892) ⁰ η'(958))/r <i>(K</i> -			Γ ₁₁₀ /Γ ₁₀₉
		e $\overline{K}^*(892)^0$ are inc	luded.	- 107 - 107
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	
<0.15	90	PROCARIO	93B CLE2	

-(Κ ⁰ π+π+π-π-)/Γ /ALUE	(Κ ^U π ⁺ π ⁻) <u>VTS DOCUMENT ID</u>	Γ ₆₀ /Γ ₂₁
.107±0.029 OUR AVER	GE Error includes scale facto	or of 1.8. See the ideogram below
.07 ±0.02 ±0.01		ARG $e^+e^-\approx 10 \text{ GeV}$
.149±0.026	56 AMMAR 91 6 ANJOS 90D	CLEO $e^+e^- \approx 10.5 \text{ GeV}$
.18 ±0.07 ±0.04 64 This value is calculate:		E691 Photoproduction
• This value is calculated	from numbers in Table 1 of A	LERECHT 92P.
WEIGHTED AVE 0.107±0.029 (Err		
1	₩	
Λ A		
	Λ	
100	J	
		χ^2
]	ALBRE	
	AMMAI	
1 1	## \ ##:	6.2
الوا		(Confidence Level = 0.046)
-0.1 0 (.1 0.2 0.3 0.4	0.5
r/ k 0 -+ -+	π^-)/ $\Gamma(\overline{K}^0\pi^+\pi^-)$	
•	, , ,	
$(\overline{K}^0\pi^+\pi^-\pi^0\pi^0(\pi^0)$	/Γ _{total}	Γ ₆₁ /Γ
	VTS DOCUMENT ID	TECN COMMENT
$106^{+0.073}_{-0.029} \pm 0.006$	4 65 AGUILAR 87F	HYBR πρ, pp 360, 400 GeV
	7F computes the branching fra	ction using topological normaliza-
	nguish the presence of a third	
$(\overline{K}^0K^+K^-)/\Gamma(\overline{K}^0\pi$	⁺ π ⁻)	$\Gamma_{62}/\Gamma_{21} = (\Gamma_{64} + \frac{1}{2}\Gamma_{74})/\Gamma_{21}$
ALUE E	VTS OOCUMENT ID	TECN COMMENT
172±0.014 OUR FIT 178±0.019 OUR AVER/	CE	
20 ±0.05 ±0.04		E687 γ Be \overline{E}_{γ} = 221 GeV
170±0.022	136 AMMAR 91	CLEO $e^+e^-\approx 10.5 \text{ GeV}$
24 ± 0.08	BEBEK 86	CLEO e^+e^- near $\Upsilon(4S)$
185 ± 0.055	52 ALBRECHT 85B	ARG e ⁺ e ⁻ 10 GeV
$(\overline{K}^0\phi)/\Gamma(\overline{K}^0\pi^+\pi^-)$		Γ ₇₄ /Γ ₂₁
	of the ϕ are included.	TECH COLLIENT
158±0.016 OUR FIT	VTS <u>DOCUMENT ID</u>	TECN COMMENT
156±0.017 OUR AVER	GE	
13 ±0.06 ±0.02		E687 γ Be \overline{E}_{γ} = 221 GeV
163 ± 0.023	63 AMMAR 91	CLEO $e^+e^- \approx 10.5 \text{ GeV}$
155 ± 0.033 14 ± 0.05	56 ALBRECHT 87E 29 BEBEK 86	ARG e^+e^- 10 GeV CLEO e^+e^- near $\Upsilon(45)$
	ollowing data for averages, fits	
186±0.052		ARG See ALBRECHT 87E
(Κ ⁰ K+ K ⁻ non-φ)/[(K0++-)	Γ ₆₄ /Γ ₂₁
ALUE E	•	TECN COMMENT
093±0.014 OUR FIT		
088±0.019 OUR AVER/ 11 ±0.04 ±0.03		E687 γ Be \overline{E}_{γ} = 221 GeV
084±0.020		ARG e^+e^- 10 GeV
		And ere lodev
(KgKgKg)/F(K0#	•	Γ ₆₅ /Γ ₂₁
NLUE 0154±0.0025 OUR AVE		TECN COMMENT
0139 ± 0.0019 ± 0.0024	61 ASNER	96B CLE2 $e^+e^-\approx \Upsilon(45)$
035 ±0.012 ±0.006	10 FRABETTI	94」 E687 γ Be \overline{E}_{γ} =220
016 ±0.005	22 AMMAR	GeV' 91 CLEO $e^+e^-\approx 10.5$
		GeV
017 ±0.007 ±0.005	5 ALBRECHT	90c ARG $e^+e^-\approx 10 \text{ GeV}$
(K ⁺ K [−] K [−] π ⁺)/Γ(I	•	Γ ₆₆ /Γ ₃₇
0028±0.0007±0.0001	20 FRABETTI	95c E687 γ Be, $\overline{E}_{\gamma} \approx 200$
		GeV
$(K^+K^-\overline{K}^0\pi^0)/\Gamma_{\text{tot}}$	I	Γ ₆₇ /Γ
ALUE	DOCUMENT ID	TECN COMMENT
	66 BARLAG 92c	15514 - 5 000 5-1/
.0072 +0.0048 -0.0035	S BARLAG 92C	ACCM π Cu 230 GeV

	-	Pi	onic modes —		
$\Gamma(\pi^+\pi^-)/\Gamma$	(K ⁻ π ⁺)				Γ ₁₁₁ /
VALUE	· · · · /	EVTS	DOCUMENT ID	TECN	
0.0397 ± 0.0021 0.040 ± 0.002		RAGE 2043	AITALA	98c E791	π [—] nucleus, 5
0.043 ±0.007		177	FRABETTI	94c E687	GeV $\gamma Be E_{\gamma} = 220$
0.0348±0.0030	± 0.0023	227	SELEN	93 CLE2	$e^+e^-\approx \Upsilon(4)$
0.048 ±0.013		51	ADAMOVICH		π ⁻ 340 GeV
0.055 ±0.008		120	ANJOS	91D E691	Photoproduction
0.040 ±0.007		57	ALBRECHT	90c ARG	$e^+e^-\approx 10$
0.050 ±0.007		110	ALEXANDER	90 CLEO	e ⁺ e ⁻ 10.5-1 GeV
$\begin{array}{cc} 0.033 & \pm 0.010 \\ 0.033 & \pm 0.015 \end{array}$	±0.006	39	BALTRUSAIT ABRAMS	85E MRK3 79D MRK2	$e^{+}e^{-}$ 3.77 G $e^{+}e^{-}$ 3.77 G
Γ(π ⁰ π ⁰)/Γ(K-π+)				Γ ₁₁₂ /
VALUE 0.022 ± 0.004 ±				<u>TECN</u> <u>COMM</u> CLE2 e ⁺ e	<u>4ENT</u> - ≈ Υ(45)
$\Gamma(\pi^+\pi^-\pi^0)$	/Fantal			_	Г ₁₁
VALUE	E			TECN COMM	
0.016 ±0.011			includes scale fac		
$0.0390 + 0.0100 \\ -0.0095$	5	67 BA	RLAG 92c	ACCM π^- (u 230 GeV
0.011 ±0.004		10 68 BA	LTRUSAIT85E	MRK3 e+e	- 3.77 GeV
			g fraction using to		
contaminat	ion by extra	π ⁰ 's may pa	rtly explain the un	expectedly la	manzation. Pos rge value.
			are consistent with	ι ρο πο.	-
$\Gamma(\pi^+\pi^+\pi^-)$	• • •	-π+π+π- <u>εντ</u> ε <u>ε</u>) DOCUMENT ID	TECN COL	Г ₁₁₄ / _{имент}
0.098±0.006 C		GE			
0.095 ± 0.007 ±					e, $\overline{E}_{\gamma} \approx 200 \; \text{Ge}$
0.115 ± 0.023 ±			DAMOVICH 92	OMEG π^-	
0.108 ± 0.024 ±	U.008		RABETTI 92	E687 γB	
0.102 ± 0.013	0.007		MMAR 91		e ⁻ ≈ 10.5 GeV
0.096 ± 0.018 ±			NJOS 91		e 80-240 GeV
Γ(π+π+π-	t substructu	ire ($ ho^0 ho^0$, a_1^\pm otal	$5 \rho^{0}$'s per $\pi^{+} \pi^{+}$ = π^{\mp} , $\rho^{0} \pi^{+} \pi^{-}$).		Г ₁₁
Γ(π ⁺ π ⁺ π ⁻ ε	nt substructu π π ⁰)/Γ _b	otal $ ho^0 ho^0$, a_1^\pm	π^{\mp} , $\rho^0 \pi^+ \pi^-$).	TEÇN COMN	Γ ₁₁
Γ(π ⁺ π ⁺ π ⁻ π <u>VALUE</u> 0.0192 + 0.0041 - 0.0038	nt substructu π ⁻ π ⁰)/Γ _b	otal	$=\pi^{\mp}$, $\rho^0\pi^+\pi^-$). CUMENT ID ARLAG 920	<u>теси сома</u> АССМ т [—] (Γ₁₁ Su 230 GeV
Γ(π+π+π- <u>VALUE</u> 0.0192+0.0041 70 BARLAG 9	nt substructu π ⁻ π ⁰)/Γ _b L 3 2c computes	otal $\rho^0 \rho^0$, a_1^{\pm}	π^{\mp} , $\rho^0 \pi^+ \pi^-$).	<u>теси сома</u> АССМ т [—] (F ₁₁ MENT Cu 230 GeV rmalization.
Γ(π+π+π- 2010Ε 0.0192+0.0041 0.0192+0.0038 70 BARLAG 9: Γ(π+π+π+π+π-	nt substructu π ⁻ π ⁰)/Γ _b L 3 2c computes	otal $\rho^0 \rho^0$, a_1^{\pm} otal $\rho^0 \rho^0$ of ρ^0 otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$ of $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ or $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ or ρ^0	π π π ρ 0 π $+$ π $-$). COMENT ID RELAG 92C IN fraction using t	<u>TECN</u> <u>COM</u> M ACCM π [—] (opological no	Γ ₁₁ Eu 230 GeV rmalization.
Γ(π+π+π- 20192+0.0041 0.0192+0.0038 70 BARLAG 9: Γ(π+π+π+ VALUE	at substructure $\pi^-\pi^0$)/ Γ_{bl}	otal 70 BA s the branchir	$\pi \mp$, $\rho^0 \pi^+ \pi^-$). COMENT 1D ARLAG 92C Ing fraction using the component 1D	TECN COMM ACCM π Copological no	F ₁₁ Eu 230 GeV rmalization. F ₁₁
Γ(π+π+π- 20.0192+0.0041 0.0192+0.0038 70 BARLAG 9: Γ(π+π+π+ 20.0004±0.000	at substructure $\pi^-\pi^0$)/ Γ_{bl}	otal $\frac{DO}{70 \text{ BA}}$ s the branchin $\frac{DO}{71 \text{ BA}}$	$\frac{1}{\pi} \pi^{+}, \rho^{0} \pi^{+} \pi^{-}).$ COMENT 1D RRLAG 92C 10 fraction using t COMENT 1D RRLAG 92C	TECN COMM ACCM π Copological no TECN COMM ACCM π COMM	F ₁₁ Lu 230 GeV rmalization. F ₁₁ Lu 230 GeV
Γ(π+π+π- 20.0192+0.0041 0.0192+0.0038 70 BARLAG 9: Γ(π+π+π+ 20.0004±0.000	at substructure $\pi^-\pi^0$)/ Γ_{to} $\pi^-\pi^0$)/ Γ_{to} $\pi^-\pi^-\pi^-$) π^0 π^0 π^0 π^0 π^0 π^0	otal $\rho^0 \rho^0$, a_1^{\pm} otal $\rho^0 \rho^0$, a_1^{\pm} otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$, $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$ otal $\rho^0 $	$\pi \mp$, $\rho^0 \pi^+ \pi^-$). COMENT ID RRLAG 92C ang fraction using the coment ID RRLAG 92C ang fraction using the composition of the composition using the composition of the composition using the composition of the compos	TECN COMM ACCM π COMM TECN COMM ACCM π COMM	F ₁₁ Lu 230 GeV rmalization. F ₁₁ Lu 230 GeV
Γ(π+π+π- 20.0192+0.0041 70 BARLAG 9 Γ(π+π+π+ 20.0004±0.000 71 BARLAG 9	1 substructur π - π ⁰)/Γ _{tr} 2 c computes π - π - π - 1 2 c computes	otal $\rho^0 \rho^0$, a_1^{\pm} otal $\rho^0 \rho^0$, a_1^{\pm} otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$, $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$ otal $\rho^0 $	$\frac{1}{\pi} \pi^{+}, \rho^{0} \pi^{+} \pi^{-}).$ COMENT 1D RRLAG 92C 10 fraction using t COMENT 1D RRLAG 92C	TECN COMM ACCM π COMM TECN COMM ACCM π COMM	F ₁₁ Eu 230 GeV rmalization. F ₁₁ Eu 230 GeV rmalization.
Γ(π+π+π- NALUE 0.0192+0.0038 70 BARLAG 9 Γ(π+π+π+ NALUE 0.0004±0.000 71 BARLAG 9 Γ(K+K-)/Γ NALUE	it substructure $\pi^-\pi^0$)/ Γ_b Ξ^0	otal $\rho^0 \rho^0$, a_1^{\pm} otal $\rho^0 \rho^0$, a_1^{\pm} otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$, $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$ otal $\rho^0 \rho^0$ of $\rho^0 \rho^0$ otal $\rho^0 $	$\pi \mp$, $\rho^0 \pi^+ \pi^-$). COMENT ID RRLAG 92C ang fraction using the coment ID RRLAG 92C ang fraction using the composition of the composition using the composition of the composition using the composition of the compos	TECN COMM ACCM π Copological no TECN COMM ACCM π Copological no Topological no Topological no	F ₁₁ Eu 230 GeV rmalization. F ₁₁ Eu 230 GeV rmalization.
Γ(π+π+π- 20.0192+0.0041 70 BARLAG 9. Γ(π+π+π+ 20.0004±0.000 Γ(K+K-)/Γ	it substructure $\pi^-\pi^0$)/ Γ_{tt} 2c computes $\pi^-\pi^-\pi^-$) 3c 2c computes $\Gamma(K^-\pi^+)$ 5 OUR FIT	otal To BA s the branchir To BA To BA s the branchir To BA	$\pi \mp , \rho^0 \pi^+ \pi^-$). COMENT 1D RRLAG 92c Ing fraction using the company 1D RRLAG 92c	TECN COMM ACCM π Copological no TECN COMM ACCM π Copological no Topological no Topological no	Lu 230 GeV rmalization. F11 Cu 230 GeV rmalization. F17 F17
$\Gamma(\pi^{+}\pi^{+}\pi^{-})$ $0.0192^{+}0.0041$ $0.0192^{+}0.0038$ $0.0192^{+}0.0038$ $0.0192^{+}0.0038$ $0.0004^{+}0.000$ $0.0004^{+}0.003$ $0.1109^{+}0.0033$ $0.1109^{+}0.003$	th substructure $\pi^-\pi^0$)/ Γ_b 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes $\Gamma(K^-\pi^+)$ 5 OUR FIT 5 OUR AVER ± 0.003	otal 70 BA s the branchir 71 BA s the branchir Hadronic m EVTS RAGE 3317	Eπ∓, ρ ⁰ π+π−). COMENT ID ARLAG 92c ING fraction using the second se	TECN COMM ACCM π Copological no TECN COMM ACCM π Copological no TECN TECN TECN Pair 98c E791	F11 MENT Lu 230 GeV rmalization. F11 Lu 230 GeV rmalization. F117/ COMMENT T nucleus, 56 GeV
$\Gamma(\pi^{+}\pi^{+}\pi^{-})$ $0.0192^{+}0.0041$ $0.0192^{+}0.0038$ $0.0192^{+}0.0038$ $0.0004^{+}0.000$ $0.0004^{+}0.000$ $0.0004^{+}0.000$ $0.0004^{+}0.000$ $0.0004^{+}0.000$ $0.0004^{+}0.000$ $0.0004^{+}0.000$ $0.0004^{+}0.000$ $0.0004^{+}0.000$ $0.0004^{+}0.000$ $0.0004^{+}0.000$	at substructure $\pi^-\pi^0$)/ Γ_{tt} 2c computes $\pi^-\pi^-\pi^-$) 32 2c computes $\Gamma(K^-\pi^+)$ 4 OUR FIT B OUR AVER ± 0.003 ± 0.007	otal re ($\rho^0 \rho^0$, a_1^\pm otal 70 BA s the branchir // Total 71 BA s the branchir Hadronic m	Eπ∓, ρ ⁰ π+π−). COMENT ID RRLAG 92c ING fraction using the second se	TECN COMM ACCM π Copological no TECN COMM ACCM π Copological no Copological no Copological no Copological no TECN TECN	Γ_{11} Eu 230 GeV rmalization. Γ_{11} Eu 230 GeV rmalization. Γ_{117} COMMENT π^- nucleus, 56 π^- acres $\pi^ \pi^ \pi$
Γ(π+π+π- NALUE 0.0192+0.0041 70 BARLAG 9 Γ(π+π+π+ NALUE 0.0004±0.000 71 BARLAG 9 Γ(Κ+Κ-)/Γ NALUE 0.1109±0.003 0.1109±0.003 0.116 ±0.007 0.109 ±0.007	ts substructure $\pi^-\pi^0$)/ Γ_b 2c computes $\pi^-\pi^-\pi^-$) 32 c computes $\Gamma(K^-\pi^+)$ 5 OUR FIT 5 OUR AVEF ± 0.003 ± 0.007 ± 0.009	re (ρ ⁰ ρ ⁰ , a ¹ / ₁ otal 70 BA s the branchir // Γtotal Do 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581	COMENT ID IRLAG 92C	ACCM π COMM ACCM π Copological no TECN COMM ACCM π Copological no TECN TECN 98c E791 98c E791 96c CLE2 94c E687	Γ_{11} κ_{ENT}
Γ(π+π+π- 70 BARLAG 9. Γ(π+π+π+ 70 BARLAG 9. Γ(π+π+π+ 71 BARLAG 9. Γ(κ+κ-)/Γ ΛΑΙ UE 0.0004±0.000 71 BARLAG 9. Γ(κ+κ-)/Γ ΛΑΙ UE 0.1109±0.003 0.1109±0.003 0.116 ±0.007 0.109 ±0.007 0.107 ±0.029	at substructure $\pi^-\pi^0$)/ Γ_{tt} 2c computes $\pi^-\pi^-\pi^-$) 3c computes $\pi^-\pi^-\pi^-$) 4c OUR FIT 8c OUR AVER ± 0.003 ± 0.007 ± 0.009 ± 0.015	re (ρ ⁰ ρ ⁰ , a [±] rotal 70 BA s the branchir 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103	CUMENT ID RCLAG 92C IN Graction using to the second sec	TECN COMM ACCM π Copological no TECN COMM ACCM π Copological no TECN Pair 98c E791 96B CLE2 94c E687 92 OMEG	Γ_{11} σ_{ENT} σ_{EN
Γ(π+π+π- MALUE 0.0192+0.0031 70 BARLAG 9 Γ(π+π+π+ MALUE 0.0004±0.000 71 BARLAG 9 Γ(Κ+Κ-)/Γ MALUE 0.1109±0.0033 0.1109±0.0033 0.116±0.007 0.109±0.007 0.109±0.007 0.109±0.007	at substructure $\pi^-\pi^0$)/ Γ_{tt} 2c computes $\pi^-\pi^-\pi^-$) 3c computes $\pi^-\pi^-\pi^-$) 4c OUR FIT 8c OUR AVER ± 0.003 ± 0.007 ± 0.009 ± 0.015	re (ρ ⁰ ρ ⁰ , a [±] ₁ re (ρ	COMENT ID RRLAG 92C or graction using to the second state of the	TECN COMM ACCM π C opological no TECN COMM ACCM π C opological no TECN 98c E791 96B CLE2 94c E687 92 OMEG 92 E687	F11 Lu 230 GeV rmalization. F11 Lu 230 GeV rmalization. F117/ COMMENT π^- nucleus, 50 $e^+e^ e^ $
Γ(π+π+π- 20032 70 BARLAG 9 Γ(π+π+π+ MALUE 0.0004±0.000 71 BARLAG 9 Γ(κ+κ-)/Γ MALUE 0.1109±0.003 0.1109±0.003 0.110 ±0.003 0.110 ±0.007 0.109±0.007 0.109±0.007 0.109±0.007	to substructure $\pi^-\pi^0$)/ Γ_b 2c computes $\pi^-\pi^-\pi^-$) 32 computes $\pi^-\pi^-\pi^-$) 3	re (ρ ⁰ ρ ⁰ , a [±] ₁ otal 70 BA s the branchir // Γtotal DO 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34	CUMENT ID ARLAG 92C ong fraction using to the second sec	TECN COMM ACCM π C opological no TECN COMM ACCM π C opological no TECN 98C E791 96B CLE2 94C E687 92 OMEG 92 E687 91B NA14	Γ_{11} $KENT$ Eu 230 GeV rmalization. F11 Lu 230 GeV rmalization. F117/ COMMENT π^- nucleus, 50 GeV $e^+e^-\approx \gamma(4)$ geV π^- 340 GeV γ Be Photoproductic
Γ(π+π+π- MALUE 0.0192+0.0031 70 BARLAG 9 Γ(π+π+π+ MALUE 0.0004±0.000 71 BARLAG 9 Γ(Κ+Κ-)/Γ MALUE 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033	to substructure $\pi^-\pi^0$)/ Γ_{tt} 22c computes $\pi^-\pi^-\pi^-$) 32c computes $\pi^-\pi^-\pi^-$) 43 2c computes $\pi^-\pi^-\pi^-$) 5 OUR FIT 5 OUR AVEF ± 0.003 ± 0.007 ± 0.009 ± 0.015 ± 0.009	re (ρ ⁰ ρ ⁰ , a [±] ₁ re (ρ	COMENT ID RRLAG 92C or graction using to the second state of the	TECN COMM ACCM π Copological no TECN COMM ACCM π Copological no TECN Pair TECN 98c E791 96b CLE2 94c E687 92 OMEG 92 E687 91b NA14 91d E691	To the second s
Γ(π+π+π- NALUE 0.0192+0.0041 70 BARLAG 9 Γ(π+π+π+ NALUE 0.0004±0.000 71 BARLAG 9 Γ(Κ+Κ-)/Γ NALUE 0.1109±0.003 0.1109±0.003 0.1109±0.003 0.1109±0.007 0.109±0.007 0.109±0.007 0.109±0.007 0.109±0.007 0.109±0.007 0.109±0.007	ts substructure $\pi^-\pi^0$)/ Γ_{tb} 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes $\Gamma(K^-\pi^+)$ 5 OUR FIT 5 OUR AVEF ± 0.007 ± 0.009 ± 0.015 ± 0.009 ± 0.015	re (ρ ⁰ ρ ⁰ , a ¹ / ₁ otal 70 BA s the branchir 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34 193	Eπ∓, ρ ⁰ π+π−). COMENT ID RRLAG 92C ING fraction using the second se	TECN COMM ACCM π Copological no TECN COMM ACCM π Copological no TECN Pair 98c E791 96B CLE2 94c E687 92 OMEG 92 E687 91B NA14 91D E691 90c ARG	F11 MENT Eu 230 GeV rmalization. F11 Lu 230 GeV rmalization. F117/ COMMENT π^- nucleus, 56 $g \in V$ $e^+e^- \approx T(4$ $\gamma Be \ \overline{E}_{\gamma} = 220$ $g \in V$ γBe Photoproductic Photoproductic Photoproductic $e^+e^- \approx 10.6$ $e^+e^- = 10.5$ –11
Γ(π+π+π- MALUE 0.0192+0.0031 70 BARLAG 9 Γ(π+π+π+ MALUE 0.0004±0.000 71 BARLAG 9 Γ(κ+κ-)/Γ WALUE 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0030 0.1100±0.0030	to substructure $\pi^-\pi^0$)/ Γ_{tt} 2c computes $\pi^-\pi^-\pi^-$) 3c 2c computes $\pi^-\pi^-\pi^-$) 3c 2c computes $\pi^-\pi^-\pi^-$) 4c OUR FIT 8 OUR AVEF ± 0.003 ± 0.007 ± 0.009 ± 0.015 ± 0.009 ± 0.01 ± 0.009	re (ρ ⁰ ρ ⁰ , a ¹ / ₁ otal 70 BA s the branchir // Γtotal 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34 193 131	Eπ∓, ρ ⁰ π+π−). COMENT ID IRLAG 92C Ing fraction using the street of	TECN COMM ACCM π Copological no TECN COMM ACCM π Copological no TECN 98c E791 96B CLE2 94c E687 92 OMEG 92 E687 91B NA14 91D E691 90C ARG 90 CLEO85E MRK3	F117 Comment To 230 GeV Translization. F117 Comment To 230 GeV Translization. To 230 GeV Translization. To 230 GeV Translization. To 230 GeV Translization. To 340 GeV Translization. To 340 GeV Translization. To 340 GeV Translization.
Γ(π+π+π- NALUE 0.0192+0.0041 70 BARLAG 9 Γ(π+π+π+ NALUE 0.0004±0.000 71 BARLAG 9 Γ(Κ+Κ-)/Γ NALUE 0.1109±0.003 0.1109±0.003 0.1109±0.003 0.1109±0.007 0.100 ±0.007 0.107 ±0.029 0.138 ±0.027 0.16 ±0.05 0.107 ±0.010 0.10 ±0.02 0.117 ±0.010 0.122 ±0.018 0.113 ±0.030	ts substructure $\pi^-\pi^0$)/ Γ_{ts} 2c computes $\pi^-\pi^-\pi^-$) 3c 2c computes $\pi^-\pi^-\pi^-$) 3c 2c computes $\pi^-\pi^-\pi^-$) 4c OUR FIT 8 OUR AVEF ± 0.003 ± 0.007 ± 0.009 ± 0.015 ± 0.009 ± 0.01 ± 0.009 ± 0.01 ± 0.007 ± 0.012	re (ρ ⁰ ρ ⁰ , a ¹ / ₁ otal 70 BA s the branchir // total DO 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34 193 131 249	Eπ∓, ρ ⁰ π+π−). COMENT ID IRLAG 92C ING fraction using the second se	TECN COMM ACCM π Copological no TECN COMM ACCM π Copological no TECN 98c E791 96B CLE2 94c E687 92 OMEG 92 E687 91B NA14 91D E691 90C ARG 90 CLEO85E MRK3	T11 Lu 230 GeV rmalization. F11 Lu 230 GeV rmalization. F117/ COMMENT π^- nucleus, 50 G^{EV} π^- 340 GeV π^- 340 GeV π^- 340 GeV Photoproduction π^+ e ⁺ e ⁻ ≈ 10 π^- 10. π^- 10. π^- 77 GeV π^- 37 GeV
Γ(π+π+π- MALUE 0.0192+0.0038 70 BARLAG 9 Γ(π+π+π+ MALUE 0.0004±0.000 71 BARLAG 9 Γ(Κ+Κ-)/Γ MALUE 0.1109±0.003 0.1109±0.003 0.1109±0.007 0.109±0.007 0.107±0.029 0.117±0.010 0.122±0.018 0.113±0.030 Γ(Κ+Κ-)/Γ	to substructure $\pi^-\pi^0$)/ Γ_b 2c computes $\pi^-\pi^-\pi^-$) 3c 2c computes $\pi^-\pi^-\pi^-$) 3c 2c computes $\pi^-\pi^-\pi^-$) 4c Computes $\pi^-\pi^-\pi^-$) 5c OUR FIT 5c OUR AVEF ± 0.003 5c ± 0.007 5c ± 0.009 5c ± 0.01	re (ρ ⁰ ρ ⁰ , a ¹ / ₁ otal 70 BA s the branchir // Γtotal DO 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34 193 131 249 118	Eπ∓, ρ ⁰ π+π−). COMENT ID IRLAG 92C ING fraction using the second se	TECN COMM ACCM π C Oppological no TECN COMM ACCM π C Oppological no TECN 98c E791 98c E791 98c E687 92 OMEG 92 E687 91B NA14 91D E691 90c ARG 90 CLEO .85E MRK3 79D MRK2	Γ_{11} $MENT$ Lu 230 GeV rmalization. F11 Lu 230 GeV rmalization. F117/ COMMENT π^- nucleus, 50 GeV π^- 340 GeV π^- 340 GeV Photoproduction $e^+e^- \approx 10.0$ e^+e^- 10.5–11 GeV e^+e^- 3.77 Ge e^+e^- 3.77 Ge
Γ(π+π+π- MALUE 0.0192+0.0031 70 BARLAG 9 Γ(π+π+π+ MALUE 0.0004±0.000 71 BARLAG 9 Γ(κ+κ-)/Γ MALUE 0.1109±0.0033 0.1	the substructure $\pi^-\pi^0$)/ Γ_b $\pi^-\pi^0$)/ Γ_b $\pi^-\pi^0$)/ Γ_b $\pi^-\pi^-\pi^-$) 3 2cc computes $\pi^-\pi^-\pi^-$) 3 2cc computes $\pi^-\pi^-\pi^-$) 4 0.007 4 0.009 4 0.015 4 0.009 4 0.010 5 0.010 5 0.010 6 0.010 7 0.012 7 0.012	re (ρ ⁰ ρ ⁰ , a ¹ / ₁ otal 70 BA s the branchir // Γtotal 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34 193 131 249 118	Eπ∓, ρ ⁰ π+π−). COMENT ID IRLAG 92C Ing fraction using the street of	TECN COMM ACCM π C C Oppological no TECN COMM ACCM π C C Oppological no TECN Pair 98c E791 96B CLE2 94c E687 92 OMEG 92 E687 91B NA14 91D E691 90c ARG 90 CLEO 85E MRK3 79D MRK2	Γ_{11} $MENT$ Lu 230 GeV rmalization. F11 Lu 230 GeV rmalization. F117/ COMMENT π^- nucleus, 50 GeV π^- 340 GeV π^- 340 GeV Photoproduction $e^+e^- \approx 10.0$ e^+e^- 10.5–11 GeV e^+e^- 3.77 Ge e^+e^- 3.77 Ge
Γ(κ+π+π- 20.0192+0.0031 70 BARLAG 9 Γ(κ+π+π+ 20.0004±0.000 71 BARLAG 9 Γ(κ+κ-)/Γ 20.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.003 0.109±0.007 0.109±0.007 0.109±0.007 0.107±0.010 0.107±0.010 0.107±0.010 0.107±0.010 Γ(κ+κ-)/Γ Τhe un Γ(κ+κ-)/Γ Τhe un Γ(κ+π- VALUE	to substructure $\pi^-\pi^0$) / Γ_b 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes $\pi^-\pi^-\pi^-$) 4 3 9 0 0 Fig. 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	re (ρ ⁰ ρ ⁰ , a [±] ₁ rotal 70 BA s the branchir // Total 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34 193 118 s here are) measureme Dotal	TATALA ASNER FRABETTI ADAMOVICH FRABETTI ALVAREZ ANJOS ALBRECHT ALEXANDER BALTRUSAIT. ABRAMS redundant with ints by the same es	TECN COMM ACCM π C Opological no TECN COMM ACCM π C Opological no TECN Pair TECN 98c E791 96b CLE2 96c E687 92 OMEG 92 E687 91b NA14 91d E691 90c ARG 90 CLEO .85e MRK3 79d MRK2 h Γ(K+K- cperiments.	To the second s
Γ(κ+π+π- 20.0192+0.0031 70 BARLAG 9 Γ(κ+π+π+ 20.0004±0.000 71 BARLAG 9 Γ(κ+κ-)/Γ 20.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.003 0.109±0.007 0.109±0.007 0.109±0.007 0.107±0.010 0.107±0.010 0.107±0.010 0.107±0.010 Γ(κ+κ-)/Γ Τhe un Γ(κ+κ-)/Γ Τhe un Γ(κ+π- VALUE	to substructure $\pi^-\pi^0$) / Γ_b 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes $\pi^-\pi^-\pi^-$) 4 3 9 0 0 Fix $\pi^-\pi^-\pi^-$) 5 0 0 0 Fix $\pi^-\pi^-$ 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	re (ρ ⁰ ρ ⁰ , a [±] ₁ rotal 70 BA s the branchir // Total 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34 193 118 s here are) measureme Dotal	Eπ∓, ρ ⁰ π+π−). COMENT ID URLAG 92C on fraction using to the same even	TECN COMM ACCM π C Opological no TECN COMM ACCM π C Opological no TECN Pair TECN 98c E791 96b CLE2 96c E687 92 OMEG 92 E687 91b NA14 91d E691 90c ARG 90 CLEO .85e MRK3 79d MRK2 h Γ(K+K- cperiments.	To the second s
Γ(π+π+π- NALUE 0.0192+0.0038 70 BARLAG 9 Γ(π+π+π+ NALUE 0.0004±0.000 71 BARLAG 9 Γ(κ+κ-)/Γ NALUE 0.1109±0.0033 0.109±0.003 0.109±0.007 0.109±0.007 0.101 0.102 0.101 0.102 0.101 0.102 0.101 1.002 0.117 1.002 0.117 1.002 0.117 1.002 0.117 1.002 0.117 1.002 0.117 1.002 0.117 1.002 0.117 1.002 0.117 1.002 0.117 1.002 0.117 1.002 0.117 1.002 0.117 1.002 0.107 1.002 1.003 1	th substructure $\pi^-\pi^0$)/ Γ_b 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes $\pi^-\pi^-\pi^-$) 3 Courrest ± 0.007 ± 0.007 ± 0.009 ± 0.015	re (ρ ⁰ ρ ⁰ , a ¹ / ₁ otal 70 BA s the branchir // Γtotal DO 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34 193 131 249 118 s here are (r) measureme DO ollowing data	COMENT ID IRLAG 92C ong fraction using to the same expenses, fits, falla 92C ong traction using to the same expenses of the same expe	TECN COMM ACCM π C Oppological no TECN COMM ACCM π C Oppological no TECN 98c E791 98c E791 98c E791 98c E687 99 CMEG 90 CLEO .85E MRK3 79D MRK2 TCK+ K- Ceperlments. FECN COMM limits, etc. • E791 π n	T11 Lu 230 GeV rmalization. F11 Lu 230 GeV rmalization. F117/ COMMENT π^- nucleus, 50 $e^+e^-\approx \gamma(4)$ γ^- Be $E^-\approx \gamma(4)$ γ^- Be $E^-\approx \gamma(4)$ γ^- Be $E^-\approx \gamma(4)$ γ^- Be γ^- Plotoproduction γ^- Be
Γ(κ+π+π- 20.0192+0.0031 70 BARLAG 9 Γ(π+π+π+ 20.0004±0.000 71 BARLAG 9 Γ(κ+κ-)/Γ 20.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.003 0.1109±0.003 0.1109±0.003 1.1109±0.003 0.1109±0.003 Γ(κ+κ-)/Γ 1.110000 1.110000 1.110000 1.110000 1.1100000 1.11000000 1.1100000000	th substructure $\pi^-\pi^0$)/ Γ_b 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes $\pi^-\pi^-\pi^-$) 3 Courrest ± 0.007 ± 0.007 ± 0.009 ± 0.015	re (ρ ⁰ ρ ⁰ , a ¹ / ₁ otal 70 BA s the branchir // total 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34 193 131 249 118 s here are) measureme Dollowing data AΠ FR.	ETT, p ⁰ π+ π-). COMENT ID RRLAG 92C ING fraction using to the second secon	TECN COMM ACCM π = C opological no TECN COMM ACCM π = C opological no TECN Pair 98c E791 96B CLE2 94c E687 92 OMEG 92 OMEG 92 E687 91 B NA14 91D E691 90c ARG 90 CLEO .85E MRK3 79D MRK2 h Γ(K+K- cperlments, TECN COMM imits, etc. • TECN γ Be I 6687 γ Be I 6687 γ Be I 6687 γ Be I 6686 γ Perl 6687 γ Be I 6687 γ Be I 6686 γ Perl 6687 γ Be I 6687 γ Be I 6686 γ Perl 6687 γ Be I 668	Table 11 Table 12 Ta
$\Gamma(\mathbf{x}^+ \mathbf{x}^+ \mathbf{x}^-)$ $\frac{VALUE}{0.0092+0.0033}$ 70 BARLAG 9 $\Gamma(\mathbf{x}^+ \mathbf{x}^+ \mathbf{x}^+)$ $\frac{VALUE}{0.0004\pm0.000}$ 71 BARLAG 9 $\Gamma(\mathbf{K}^+ \mathbf{K}^-)/\Gamma$ $\frac{VALUE}{0.1109\pm0.0033}$ 0.1109 ±0.003 0.1109 ±0.003 0.1109 ±0.003 0.1109 ±0.003 0.1107 ±0.010 0.107	th substructure $\pi^-\pi^0$)/ Γ_b 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes ± 0.007 ± 0.009 ± 0.015 ± 0.007 ± 0.015 ± 0.0	Tre (ρ ⁰ ρ ⁰ , a ¹ / ₁ Total 70 BA Total 71 BA Total 71 BA Total 71 BA Total Total 71 BA Total Tota	COMENT ID ARLAG 92C IN TO THE TO T	TECN COMM ACCM π = C opological no TECN COMM ACCM π = C opological no TECN 98c E791 98c E791 98c E791 98c E687 92 OMEG 92 E687 91D NA14 91D E691 90c ARG 90 CLEO .85E MRK3 79D MRK2 h Γ(K+K- COMM limits, etc. • EFCN COMM Limits, etc. • EFCN COMM Limits, etc. • E791 π = n E687 γ Be i DMEG π = 3	F117/ Γ 10 230 GeV rmalization. F117/ COMMENT T0117/ COMMENT T0117/ T0117/ COMMENT T0117/ 0117/ T0117/ T0
Γ(π + π + π - $\frac{1}{2}$ 20.0192+0.0031 70 BARLAG 9 Γ(π + π + π + $\frac{1}{2}$ 20.0004±0.000 71 BARLAG 9 Γ(K + K -)/Γ 20.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0033 0.1109±0.0030 1.1109±0.0033 0.1109±0.0030 1	th substructure $\pi^-\pi^0$)/ Γ_b 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes $\pi^-\pi^-\pi^-$) 3 2c computes ± 0.007 ± 0.009 ± 0.015 ± 0.007 ± 0.015 ± 0.0	re (ρ ⁰ ρ ⁰ , a ¹ / ₁ otal 70 BA s the branchir // total 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34 193 1155 34 193 118 s here are) measureme Doollowing data AlT FR. AD AN	COMENT ID ARLAG 92C ong fraction using to the same excoment ID AITALA ASNER FRABETTI ADAMOVICH FRABETTI ALVAREZ ANJOS ALBRECHT ALEXANDER BALTRUSAIT. ABRAMS redundant with ints by the same excoment ID for averages, fits, FALA 98C EABETTI 94C	TECN COMM ACCM π C opological no TECN COMM ACCM π C opological no TECN Pair TECN 98c E791 96b CLE2 96c E687 92 OMEG 92 E687 91b NA14 91d E691 90c ARG 90 CLEO .85e MRK3 79d MRK2 h Γ(K+K- cperiments. TECN COMM limits, etc. • E791 π n C687 γ Be T	F11 MENT Eu 230 GeV rmalization. F117/ COMMENT π^- nucleus, 56 $e^+e^- \approx \gamma(4)$ $\gamma = E_{\gamma} = 220$ GeV $\gamma = E_{\gamma} = 20$ $\gamma = E$
$\Gamma(\mathbf{x}^+ \mathbf{x}^+ \mathbf{x}^-)$ $\frac{VALUE}{0.0092+0.0033}$ 70 BARLAG 9 $\Gamma(\mathbf{x}^+ \mathbf{x}^+ \mathbf{x}^+)$ $\frac{VALUE}{0.0004\pm0.000}$ 71 BARLAG 9 $\Gamma(\mathbf{K}^+ \mathbf{K}^-)/\Gamma$ $\frac{VALUE}{0.1109\pm0.0033}$ 0.1109 ±0.003 0.1109 ±0.003 0.1109 ±0.003 0.1109 ±0.003 0.1109 ±0.003 0.1109 ±0.003 0.1109 ±0.003 0.1107 ±0.010 0.1	to substructure $\pi^-\pi^0$) / Γ_b 2cc computes $\pi^-\pi^-\pi^-$) 32cc computes $\pi^-\pi^-\pi^-$) 32cc computes $\pi^-\pi^-\pi^-$) 32cc computes $\pi^-\pi^-\pi^-$) 32cc computes $\pi^-\pi^-\pi^-$) 4cc OUR FIVE $\pi^-\pi^-$ 0.007 ± 0.007 ± 0.009 ± 0.015 ± 0.001 ± 0.009 ± 0.012 ± 0.012 ± 0.012 ± 0.012 ± 0.012 ± 0.012 or used result $\pi^-\pi^-$) ot use the folial 19 ± 0.012 of $\pi^-\pi^-$	re (ρ ⁰ ρ ⁰ , a ¹ / ₁ rotal 70 BA s the branchir // Γtotal 71 BA s the branchir Hadronic m EVTS RAGE 3317 1102 581 103 155 34 193 131 249 118 s here are measureme poillowing data AN AN ALI	COMENT ID ARLAG 92C IN TO THE TO T	## ACCM # = C	F11 MENT Tu 230 GeV rmalization. F117 Lu 230 GeV rmalization. F117 COMMENT π^- nucleus, 50 GeV π^- 340 GeV Photoproductio $e^+e^- \approx 10.5-11$ GeV $e^+e^- = 3.77$ Ge F117/ Γ • • • ucleus, 500 GeV $E_{\gamma} = 220$ GeV to GeV

 D^0

$\Gamma(K^0\overline{K}^0)/\Gamma(\overline{K}^0\pi^+\pi^-)$ ALUE FUTS Γ_{118}/Γ_{21} Γ_{21} $\Gamma_$	$\Gamma(K^0K^-\pi^+ \text{ nonresonant})/I$	T(K-x+) DOCUMENT ID TECNC	Γ ₁₂₂ /Γ ₁₉
ALUE EVTS DOCUMENT ID TECN COMMENT 1.0120 ± 0.0033 OUR FIT Error includes scale factor of 1.3.	0.06±0.06		Be 80-240 GeV
0.0117±0.0033 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.	⁷⁶ The factor 100 at the top of	column 2 of Table I of ANJOS 91 s	should be omitted.
$0.0101 \pm 0.0022 \pm 0.0016$ 26 ASNER 96B CLE2 $e^+e^- \approx T(45)$	$\Gamma(\overline{K}^0 K^+ \pi^-)/\Gamma(K^- \pi^+)$		Γ ₁₂₃ /Γ ₁₉
$0.039 \pm 0.013 \pm 0.013$ 20 FRABETTI 94J E687 γ Be \overline{E}_{γ} =220 GeV	VALUE	DOCUMENT ID TECN C	OMMENT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.129±0.025 OUR FIT 0.10 ±0.05	77 ANJOS 91 E691 γ	Be 80-240 GeV
WEIGHTED AVERAGE	77 The factor 100 at the top of	column 2 of Table I of ANJOS 91 s	should be omitted.
0.0117±0.0033 (Error scaled by 1.3)	$\Gamma(\overline{K}^0K^+\pi^-)/\Gamma(\overline{K}^0\pi^+\pi^-)$		Γ ₁₂₃ /Γ ₂₁
Values above of weighted average, error,	VALUE EVTS	DOCUMENT ID TECN C	OMMENT
and scale factor are based upon the data in this ideogram only. They are not neces-	0.091 ± 0.018 OUR FIT 0.098 ± 0.020 55	AMMAR 91 CLEO e	+ e ⁻ ≈ 10.5 GeV
sarily the same as our "best" values, obtained from a least-squares constrained fit			Γ ₁₄₁ /Γ ₁₉
utilizing measurements of other (related) quantities as additional information.	$\Gamma(K^*(892)^0\overline{K}^0)/\Gamma(K^-\pi^+)$ Unseen decay modes of the		' 141 / ' 19
	VALUE	DOCUMENT ID TECN C	
		ng data for averages, fits, limits, et	
	$0.00^{+0.04}_{-0.00}$	78 ANJOS 91 E691 γ	Be 80-240 GeV
√ 2	⁷⁸ The factor 100 at the top of	column 2 of Table I of ANJOS 91	should be omitted.
ASNER 96B CLE2 0.3	$\Gamma(K^*(892)^0 \overline{K}^0) / \Gamma(\overline{K}^0 \pi^+ \pi^-)$		Γ ₁₄₁ /Γ ₂₁
FRABETTI 94J E687 2.2 ALEXANDER 90 CLEO 1.3	Unseen decay modes of th	e K*(892) ⁰ are included. <u>DOCUMENT ID TECN</u>	COMMENT
(Confidence Level = 0.148)	<u>VALUE</u> <u>CL%</u> <0.015 90		+ e ⁻ ≈ 10.5 GeV
	Γ(K*(892)-K+)/Γ(K-π+	-1	Γ ₁₄₂ /Γ ₁₉
0 0.02 0.04 0.06 0.08 0.1	Unseen decay modes of th		- 142/11
$\Gamma(K^0\overline{K}^0)/\Gamma(\overline{K}^0\pi^+\pi^-)$	VALUE	DOCUMENT ID TECN C	
$\Gamma(K^0\overline{K^0})/\Gamma(K^+K^-)$ $\Gamma_{118}/\Gamma_{117}$		ing data for averages, fits, limits, et	
ALUE EVTS DOCUMENT ID TECN COMMENT	0.00 + 0.03		Be 80-240 GeV
0.15±0.04 OUR FIT Error includes scale factor of 1.2. 0.24±0.16 4 72 CUMALAT 88 SPEC <i>nN</i> 0-800 GeV	•	column 2 of Table I of ANJOS 91	should be omitted.
72 Includes a correction communicated to us by the authors of CUMALAT 88.	$\Gamma(K^*(892)^-K^+)/\Gamma(\overline{K}^0\pi^+)$	•	Γ_{142}/Γ_{2}
$\Gamma(K^0K^-\pi^+)/\Gamma(K^-\pi^+)$ Γ_{119}/Γ_{19}	Unseen decay modes of th VALUE EVTS	e K*(892) are included. <u>DOCUMENT ID TECN</u>	COMMENT
VALUE DOCUMENT ID TECH COMMENT	0.034±0.019 12		e ⁺ e [−] ≈ 10.5 GeV
0.168±0.026 OUR FIT Error includes scale factor of 1.1. 0.16 ±0.06 73 ANJOS 91 E691 γBe 80-240 GeV	$\Gamma(\overline{K}^0K^+\pi^-\text{ nonresonant})/$	Γ(K-π+)	Γ ₁₂₆ /Γ ₁
73 The factor 100 at the top of column 2 of Table I of ANJOS 91 should be omitted.	VALUE		OMMENT
$\Gamma(K^0K^-\pi^+)/\Gamma(\overline{K^0}\pi^+\pi^-)$ Γ_{119}/Γ_{21}	0.10 + 0.06 - 0.05	80 ANJOS 91 E691 η	yBe 80-240 GeV
VALUE EVTS DOCUMENT ID TECN COMMENT 0.118±0.018 OUR FIT Error includes scale factor of 1.1.	80 The factor 100 at the top of	column 2 of Table I of ANJOS 91	should be omitted.
0.119±0.021 OUR AVERAGE Error includes scale factor of 1.3.	$\Gamma(K^+K^-\pi^0)/\Gamma(K^-\pi^+\pi^0)$)	Γ_{127}/Γ_{2}
0.108 \pm 0.019 61 AMMAR 91 CLEO $e^+e^-\approx 10.5~\text{GeV}$ 0.16 \pm 0.03 \pm 0.02 39 ALBRECHT 90C ARG $e^+e^-\approx 10~\text{GeV}$	VALUE EVTS	DOCUMENT ID TECN (COMMENT
	0.0095±0.0026 151	ASNER 96B CLE2 6	$e^+e^-\approx \Upsilon(45)$
$\Gamma(\overline{K}^{+}(892)^{0} K^{0})/\Gamma(K^{-}\pi^{+})$	$\Gamma(K_S^0 K_S^0 \pi^0) / \Gamma_{\text{total}}$		Γ ₁₂₈ /
Unseen decay modes of the K*(892) ⁰ are included. VALUE DOCUMENT ID TECN COMMENT COMMENT	VALUE <0.00059		$e^+e^- \approx \Upsilon(45)$
 • • We do not use the following data for averages, fits, limits, etc. 			, ,
0.00 + 0.03 - 0.00 74 ANJOS 91 E691 γBe 80-240 GeV	Γ(φπ ⁰)/Γ _{total}	DOCUMENT IDTECN_	Γ ₁₄₃ /
74 The factor 100 at the top of column 2 of Table I of ANJOS 91 should be omitted.	<0.0014 90	ALBRECHT 941 ARG	e ⁺ e ⁻ ≈ 10 GeV
$\Gamma(\overline{K}^{\bullet}(892)^{0}K^{0})/\Gamma(\overline{K}^{0}\pi^{+}\pi^{-})$ Γ_{139}/Γ_{21}	$\Gamma(\phi\eta)/\Gamma_{\text{total}}$		Γ ₁₄₄ /
Unseen decay modes of the $\overline{K}^*(892)^0$ are included.	VALUE CL%		COMMENT
VALUE CL% DOCUMENT ID TECN COMMENT CLOUDED $e^+e^- \approx 10.5 \text{ GeV}$	<0.0029 90	ALBRECHT 941 ARG	e ⁺ e ⁻ ≈ 10 GeV
• • • We do not use the following data for averages, fits, limits, etc. • • •	$\Gamma(\phi\omega)/\Gamma_{ ext{total}}$		Γ ₁₄₅ /
<0.03 90 ALBRECHT 90C ARG $e^+e^- \approx 10 \text{ GeV}$	<u>VALUE</u> <u>CL%</u> <0.0021 90		<u>COMMENT</u> e ⁺ e ≈ 10 GeV
$\Gamma(K^{\bullet}(892)^{+}K^{-})/\Gamma(K^{-}\pi^{+})$ Γ_{140}/Γ_{19}			
Unseen decay modes of the $K^*(892)^+$ are included.	$\Gamma(K^+K^-\pi^+\pi^-)/\Gamma(K^-\pi^-)$		Γ ₁₂₉ /Γ ₃
<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> <u>0.090 ± 0.020 OUR FIT</u>	0.0334±0.0028 OUR AVERAGE		
0.16 +0.08 75 ANJOS 91 E691 γ Be 80-240 GeV	$0.0313 \pm 0.0037 \pm 0.0036$	136 AITALA 980	GeV
75 The factor 100 at the top of column 2 of Table I of ANJOS 91 should be omitted.	$0.035 \pm 0.004 \pm 0.002$	244 FRABETTI 95C	GoV '
$\Gamma(K^{\bullet}(892)^{+}K^{-})/\Gamma(\overline{K}^{0}\pi^{+}\pi^{-})$ Γ_{140}/Γ_{21}	$0.041 \pm 0.007 \pm 0.005$	114 ALBRECHT 94I	ARG e ⁺ e ⁻ ≈10 Ge
	0.0314±0.010	89 AMMAR 91	CLEO $e^+e^-\approx 10.5$ GeV
Unseen decay modes of the $K^*(892)^+$ are included.	0.000 + 0.008	ANJOS 91	E691 γBe 80-240
VALUE EVTS DOCUMENT ID TECH COMMENT	$0.028 \begin{array}{l} +0.008 \\ -0.007 \end{array}$	711703	
	0.028 - 0.007	711303	GeV

$r^+\pi^-$)/Γ($K^-\pi^-$ Unseen decay mod	TATAT les of the	φ are included.		Γ ₁₄₆ /Γ ₃₇
	EVTS ERAGE	DOCUMENT ID		COMMENT 1.5. See the ideogram
±0.003		below. FRABETTI		
±0.005	28	ALBRECHT	950 E007	γ Be, $\overline{E}_{\gamma} \approx 200$ GeV $e^+e^- \approx 10$ GeV
±0.006	34	81 AMMAR		$e^+e^-\approx 10.5 \text{ GeV}$
We do not use the				
- 0.0066 - 0.0049	3	ANJOS	91 E691	γBe 80-240 GeV
	-			•
		ut notes that ϕho^0 aving more ϕho^0 ti		$6\pi^{+}\pi^{-}$. We put the mea-
Hent here to kee	p nom n	aving more φp	папфячя	•
WEIGHTED AV 0.014±0.004 (E		d by 1 E\		
0.01410.004 (E	IIOI Scale	d by 1.5)		
V				
\wedge				
				2
				χ^2
 	\		RABETTI	95C E687 1.2
	-		LBRECHT	94I ARG 0.5 91 CLEO 2.6
				4.4
		. \	(Con	fidence Level = 0.113)
0.01	0.02	0.03 0.04	0.05 0.06	
=(. + -)	-(+ + -)		
$\Gamma(\phi \pi^+ \pi^-)$	$I(K \pi$	π π		
/Γ(K ⁻ π ⁺ π ⁺	π-)			F /F
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1147/137
nseen decay mod	les of the	ϕ are included.		Γ ₁₄₇ /Γ ₃₇
	les of the <u>EVTS</u>	DOCUMENT ID		COMMENT
0.004 OUR AVE	les of the <u>EVTS</u>	DOCUMENT ID		. COMMENT 5. See the ideogram below.
004 OUR AVE	les of the <u>EVTS</u>	<u>DOCUMENT ID</u> Fror includes scale	e factor of 1.	COMMENT 5. See the ideogram below. π nucleus, 500 GeV
004 OUR AVE 009±0.008 003	les of the <u>EVTS</u>	<u>DOCUMENT ID</u> Fror includes scale AITALA	e factor of 1.! 98D E791	COMMENT 5. See the ideogram below. π nucleus, 500 GeV
004 OUR AVE 009±0.008 003 006±0.005	les of the <u>EVTS</u> RAGE E	DOCUMENT ID Fror includes scale AITALA FRABETTI	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT	98D E791 95C E687	$COMMENT$ 5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID. Error includes scale AITALA FRABETTI ALBRECHT albrecht	e factor of 1.1 98D E791 95C E687 94I ARG	5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $E_{\gamma} \approx 200$ GeV $e^+e^- \approx 10$ GeV
.004 OUR AVE .009±0.008 .003 .006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID. Error includes scale AITALA FRABETTI ALBRECHT and by 1.5)	e factor of 1.1 98D E791 95C E687 94I ARG	5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $E_{\gamma} \approx 200$ GeV $e^+e^- \approx 10$ GeV
004 OUR AVE 009±0.008 003 006±0.005 WEIGHTED AV	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT and by 1.5)	e factor of 1.1 98D E791 95C E687 94I ARG	5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $E_{\gamma} \approx 200$ GeV $e^+e^- \approx 10$ GeV
.004 OUR AVE .009±0.008 .003 .006±0.005	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT and by 1.5)	PROTECTION OF THE PROT	5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $E_{\gamma} \approx 200$ GeV $e^+e^- \approx 10$ GeV 98D E791 95C E687 94I ARG 2.5 4.3
.004 OUR AVE .009±0.008 .003 .006±0.005	les of the EVTS RAGE 28 VERAGE	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT and by 1.5)	PROTECTION OF THE PROT	5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $E_{\gamma} \approx 200$ GeV $e^+e^- \approx 10$ GeV $\frac{\chi^2}{1.1}$ 98D E791 1.1 95C E687 0.8 94I ARG 2.5
0.004 OUR AVEI 0.009±0.008 0.003 0.006±0.005 WEIGHTED AI 0.008±0.004 (E	28 VERAGE Error scale	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT albrecht ad by 1.5)	PROTECTION OF THE PROT	5. See the ideogram below. π nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx 200$ GeV $e^+e^- \approx 10$ GeV 98D E791 1.1 95C E687 981 ARG 2.5 4.3 fidence Level = 0.115)
0.004 OUR AVEI 0.009±0.008 0.003 0.006±0.005 WEIGHTED A\ 0.008±0.004 (E	28 VERAGE Error scale	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT albrecht ad by 1.5)	98D E791 98D E791 95C E687 94I ARG	5. See the ideogram below. π nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx 200$ GeV $e^+e^-\approx 10$ GeV 98D E791 1.1 95C E687 981 ARG 2.5 4.3 fidence Level = 0.115)
0.004 OUR AVEI 0.009±0.008 0.003 0.006±0.005 WEIGHTED A\ 0.008±0.004 (Ε Γ(φρ ⁰)/Γ(κ	Z8 VERAGE 101 101 10.00 107 10.00 10.	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT ad by 1.5)	98D E791 98D E791 95C E687 94I ARG	5. See the ideogram below. π nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx 200$ GeV $e^+e^-\approx 10$ GeV 98D E791 1.1 95C E687 981 ARG 2.5 4.3 fidence Level = 0.115)
004 OUR AVEI 009±0.008 003 006±0.005 WEIGHTED AN 0.008±0.004 (Ε Γ (φρ ⁰)/Γ (κ r - 3-body)/I seen decay more	28 VERAGE E 28 VERAGE Firor scale (K-\pi - \pi	DOCUMENT 10 Error includes scale AITALA FRABETTI ALBRECHT ad by 1.5) 2 0.03 0.04 + \pi -) + \pi + \pi -) c \phi are included.	PROTECTION OF THE PROT	5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $E_{\gamma} \approx 200$ GeV $e^+e^- \approx 10$ GeV 98D E791 1.1 95C E687 981 ARG 2.5 4.3 didence Level = 0.115)
H OUR AVEI 19±0.008 13 16±0.005 EIGHTED A\ 008±0.004 (Ε (φρ ⁰)/Γ (κ -3-body)/Ι en decay mode	Z8 VERAGE 101 101 10.00 107 10.00 10.	DOCUMENT ID Error includes scale AITALA FRABETTI ALBRECHT ad by 1.5) ATALA FRABETTI ALBRECHT ATALA FRABETTI ATALA FRABETTI ALBRECHT ATALA FRABETTI	PROPERTY OF THE PROPERTY OF TH	5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx 200$ GeV $e^+e^- \approx 10$ GeV 98D E791 98C E687 981 ARG 2.5 4.3 didence Level = 0.115) Γ_{148}/Γ_{37}
4 OUR AVEI 9±0.008 3 6±0.005 EIGHTED AN 008±0.004 (Ε (φρ ⁰)/Γ (κ -3-body)/I en decay mod	28 VERAGE Error scale 101 0.00 107 \(\text{K} - \pi \) 104 \(\text{CL%} \)	DOCUMENT 10 Error includes scale AITALA FRABETTI ALBRECHT ad by 1.5) 2 0.03 0.04 + \pi -) + \pi + \pi -) c \phi are included.	PROPERTY OF THE PROPERTY OF TH	5. See the ideogram below. π^- nucleus, 500 GeV γ Be, $\overline{E}_{\gamma} \approx 200$ GeV $e^+e^- \approx 10$ GeV $\frac{\chi^2}{1.1}$ 95C E687 $\frac{\chi^2}{4.3}$ 1.8 94I ARG $\frac{2.5}{4.3}$ 4.3 fidence Level = 0.115)

FRABETT! 95C E687 γ Be, $\overline{E}_{\gamma} \approx$ 200 GeV

 Γ_{132}/Γ_{37}

Γ(K*(892)0 K-π++	c.c.)/Г(K-π+π+π-)		Γ ₁₄₉ /Γ ₃₇
Unseen decay mode					
VALUE	CL% 8:	<u>DOCUMENT ID</u> 2 AITALA			500 Cal/
<0.01 • • • We do not use the			980 E791 es, fits, limits	π nucleus,	ou dev
< 0.017		² FRABETTI	95c E687	γ Be, $\overline{E}_{\gamma} \approx 2$	200 GeV
$0.010 + 0.016 \\ -0.010$		ANJOS	91 E691	γ Be 80–240	
82 These upper limits are			the next two	GALA DIOCKS.	
$\Gamma(K^{\bullet}(892)^{0} K^{-} \pi^{+})/$ The $K^{*0} K^{-} \pi^{+}$ as in $D^{*}(2010)^{\pm} \rightarrow U$ VALUE	nd K+0 K-	$+\pi^-$ modes are	ay modes of	the <i>K*</i> (892) ⁰ :	Γ ₁₅₀ /Γ ₃₇ e of the pion are included.
• • We do not use the					
$0.043 \pm 0.014 \pm 0.009$	55 8	³ ALBRECHT	94i ARG	$e^+e^-\approx 10$	GeV
83 This ALBRECHT 941	value is in	conflict with u	pper limits gi	ven above.	
$\Gamma(\overline{K}^{+}(892)^{0}K^{+}\pi^{-})/$	Γ <i>(K</i> -π+	π ⁺ π ⁻)			Γ_{151}/Γ_{37}
The $K^{*0}K^-\pi^+$ as	nd K *0 K⁻	+π modes are	distinguishe	by the charge	of the pion
	<u>EVTS</u>	DOCUMENT ID	<u>TECN</u>	COMMENT	are included.
• • We do not use the	-	-			
0.023±0.013±0.009		⁴ ALBRECHT	94I ARG	e ⁺ e ⁻ ≈ 10	GeV
84 This ALBRECHT 941			pper limits gi	ven above.	
Γ(K*(892) ⁰ K*(892) ⁰ Unseen decay mode			(*(892) are	included.	Γ_{152}/Γ_{37}
VALUE CL%	EVTS	DOCUMENT ID	TECN	COMMENT	
0.018±0.007 OUR AVI 0.016±0.006	ERAGE	Error includes so FRABETTI	ale factor of 95c E687	1.2. γ Be, $\overline{E}_{\gamma} \approx 2$	200 GeV
0.036 + 0.020 - 0.016		ANJOS	91 E691	,	
• • • We do not use the	11 following			γ Be 80-240	GEV
	IUIIOWING	AlTALA	98D E791		E00 CoV
<0.02 90 <0.033 90	8	5 AMMAR		π^- nucleus, $e^+e^-\approx 10$	
85 A corrected value (G.					
Γ(K+K-π+π-non-				COMMENT	Γ ₁₃₅ /Γ
• • • We do not use the	following				
0.0017 ± 0.0005	8	⁶ BARLAG	92c ACCN	π Cu 230	GeV
86 BARLAG 92C comput	es the bra	nching fraction	using topolog	gical normaliza	tion.
$\Gamma(K^+K^-\pi^+\pi^-nonr$	esonant)	/Γ(K=π+π+	+π ⁻)		Γ_{136}/Γ_{37}
VALUE	<u>CL%</u>	DOCUMENT ID		COMMENT	
<0.011	90	FRABETTI	95C E687	γ Be, $\overline{E}_{\gamma} \approx 1$	200 GeV
• • • We do not use the	following	data for averag	es, fits, limits	, etc. • • •	
$0.001 + 0.011 \\ -0.001$		ANJOS	91 E691	γBe 80-240	GeV
$\Gamma(K^0\overline{K}^0\pi^+\pi^-)/\Gamma(\overline{k}^0\pi^+\pi^-)$	⁷⁰ π ⁺ π [−])			Γ_{137}/Γ_{21}
VALUE	EVT			TECN COMM	
$0.126 \pm 0.038 \pm 0.030$	2	5 ALBRE	CHT 941	ARG e+e-	~ 10 GeV
$\Gamma(K^+K^-\pi^+\pi^-\pi^0)$	Γ _{total}	DOCUMENT ID	TECN	COMMENT	Γ ₁₃₈ /Γ
0.0031±0.0020		BARLAG		π – Cu 230	GeV
87 BARLAG 92C compu	tes the bra	nching fraction	using topolog	gical normaliza	tion.
		Radiative mo		_	
E(0 \) /E					F /F
$\Gamma(\rho^0\gamma)/\Gamma_{\text{total}}$ VALUE	<u>CL%</u>	DOCUMENT ID	TECN		Γ ₁₅₃ /Γ
<2.4 × 10 ⁻⁴	90	ASNER	98 CLE2	•	
			3		- ·-
$\Gamma(\omega\gamma)/\Gamma_{\text{total}}$					Γ ₁₅₄ /Γ
VALUE <2.4 × 10 ⁻⁴	90	DOCUMENT ID ASNER	98 CLE2	٠ .	1
	J U	MURICH	30 CLE2		_ '
$\Gamma(\phi\gamma)/\Gamma_{ m total}$					Γ ₁₅₅ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID			
<1.9 × 10 ⁻⁴	90	ASNER	98 CLE2		
$\Gamma(\overline{K}^{\bullet}(892)^{0}\gamma)/\Gamma_{\text{total}}$					Γ_{156}/Γ
VALUE	CL%	DOCUMENT ID			
<7.6 × 10 ⁻⁴	90	ASNER	98 CLE2		

Rare or forbidden modes

$\Gamma(K^+\ell^-\nu_\ell(\text{via }\overline{D}^0))/\Gamma(K^-\ell^+\nu_\ell)$

 Γ_{157}/Γ_{7}

ı

This is a $D^0 - \overline{D}{}^0$ mixing limit without the complications of possible doubly-Cabibbosuppressed decays that occur when using hadronic modes. For the limits on $|m_{D^0}|$ $m_{D_2^0}$ and $(\Gamma_{D_2^0} - \Gamma_{D_2^0})/\Gamma_{D^0}$ that come from the best mixing limit, see near the beginning of these D^0 Listings.

______ <u>CL%</u>_ DOCUMENT ID TECN COMMENT 88 AITALA 96C E791 π^- nucleus, 500 GeV < 0.005 90

⁸⁸ AITALA 96C uses $D^{*+} \rightarrow D^0 \pi^+$ (and charge conjugate) decays to identify the charm at production and $D^0 o K^- \ell^+ \nu_\ell$ (and charge conjugate) decays to identify the charm

 $\Gamma(K^+\pi^-)/\Gamma(K^-\pi^+)$

The $D^0 \to K^+\pi^-$ decay can occur directly by doubly Cabibbo-suppressed (DCS) decay, or indirectly by $D^0 \to \overline{D}^0$ mixing followed by $\overline{D}^0 \to K^+\pi^-$ decay. The experiments here use the charge of the pion in $D^*(2010)^\pm \to (D^0 \text{ or } \overline{D}^0)$ π^\pm decay to tell whether a D^0 or a $\overline{D}{}^0$ was born. Some of the experiments can use the decay time information to disentagle the two modes. Here, we list the DCS branching ratio; in the next data block we give the limits on the mixing ratio.

Some early limits have been omitted from this Listing; see our 1998 (EPJ C3 1) edition.

VALUE	CL% EVTS	DOCUMENT ID	TECN	COMMENT
0.0038 ±0.0008	OUR AVERAGE	Error includes scale 1		
$0.00332 \substack{+0.00063 \\ -0.00065}$	±0.00040 45	⁸⁹ GODANG	00 CLE2	e+ e-
$0.0068 \begin{array}{l} +0.0034 \\ -0.0033 \end{array}$	±0.0007	90 AITALA	98 E791	π nucleus,
0.0184 ±0.0059	±0.0034 19	⁹¹ BARATE	98W ALEP	e^+e^- at Z^0
0.0077 ± 0.0025	±0.0025 19	⁹² CINABRO	94 CLE2	$e^+e^-pprox onumber onumb$
• • • We do not us	se the following data	a for averages, fits, li	mits, etc. 🔹 🛭	•
< 0.011	90	92 AMMAR	91 CLEO	$e^+e^-\approx 10.5$
< 0.015	90 1 ± 6	93 ANJOS	88C E691	GeV Photoproduc-
<0.014	90	92 ALBRECHT	87K ARG	e^+e^- 10 GeV

 89 This GODANG 00 result assumes no $D^0 ext{-}\overline{D}{}^0$ mixing; the DCS ratio becomes 0.0048 \pm 0.0012 ± 0.0004 when mixing is allowed.

90 This AITALA 98 result assumes no $D^0 - \overline{D}{}^0$ mixing; the DCS ratio becomes $0.0090 + 0.0120 \pm 0.0044$ when mixing is allowed.

 91 BARATE 98w gets $0.0177^{+0.0060}_{-0.0056}\pm0.0031$ for the DCS ratio when mixing is allowed, assuming no interference between the DCS and mixing amplitudes. 92 CINABRO 94, AMMAR 91, and ALBRECHT 87K cannot distinguish between doubly

Cabibbo-suppressed decay and $D^0-\overline{D}^0$ mixing.

93 ANJOS 88C allows mixing but assumes no interference between the DC5 and mixing amplitudes. When interference is allowed, the limit degrades to 0.049.

$\Gamma(K^+\pi^-(\text{via }\overline{D}^0))/\Gamma(K^-\pi^+)$

 Γ_{159}/Γ_{19}

This is a D^0 - \bar{D}^0 mixing limit. The experiments here (1) use the charge of the pion in $D^*(2010)^\pm o (D^0 \ {
m or} \ \overline{D}{}^0) \ \pi^\pm$ decay to tell whether a D^0 or a $\overline{D}{}^{\bar 0}$ was born; and (2) use the decay-time distribution to disentangle doubly Cabibbo-suppressed decay and mixing. For the limits on $|m_{D_1^0}-m_{D_2^0}|$ and $(\Gamma_{D_1^0}-\Gamma_{D_2^0})/\Gamma_{D^0}$ that come from

the best mixing limit, see near the beginning of these D^0 Listings.

VALUE	CL% EVTS	DOCUMENT ID	TECN	COMMENT	
< 0.00041	95	94 GODANG	00 CLE2	e+ e-	
• • • We do	not use the follow	ing data for avera	ges, fits, limits	, etc. • • •	
< 0.0092	95	95 BARATE	98w ALEP	e^+e^- at Z^0	
<0.005	90 1 + 4	96 AN IOS	88C F691	Photoproduction	

 94 This GODANG 00 result assumes that the strong phase between $D^0\to K^+\pi^-$ and $\overline{D}{}^0\to K^+\pi^-$ is small, and limits only $D^0\to \overline{D}{}^0$ transitions via off-shell intermediate states. The limit on transitions via on-shell intermediate states is 0.0017. 95 This BARATE 98W result assumes no interference between the DCS and mixing ampliance.

tudes. When interference is allowed, the limit degrades to 0.036 (95%CL).

⁹⁶ This ANJOS 88c result assumes no interference between the DCS and mixing amplitudes. When interference is allowed, the limit degrades to 0.019. Combined with results on $K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$, the limit is, assuming no interference, 0.0037.

 $\Gamma(K^+\pi^-\pi^+\pi^-)/\Gamma(K^-\pi^+\pi^+\pi^-)$

The $D^0 \to K^+\pi^-\pi^+\pi^-$ decay can occur directly by doubly Cabibbo-suppressed (DCS) decay, or indirectly by $D^0 \to \overline{D}^0$ mixing followed by $\overline{D}^0 \to K^+\pi^-\pi^+\pi^$ decay. The experiments here use the charge of the pion in $D^*(2010)^{\pm} \to (D^0 \text{ or } \overline{D}^0)$ π^{\pm} decay to tell whether a D^0 or a \overline{D}^0 was born. Some of the experiments can use the decay-time information to disentagle the two modes. Here, we list the DCS branching ratio; in the next data block we give the limits on the mixing ratio.

Some early limits have been omitted from this Listing; see our 1998 (EPJ C3 1) edition.

VALUE	CL%_	EVTS	DOCUMENT ID		TECN	COMMENT
0.0025 + 0.0036 - 0.0034	±0.0003		⁹⁷ AITALA	98	E791	π [—] nucleus, 500 GeV
• • • We do not	use the followin	g data f	or averages, fits,	limits, 6	tc. • •	
< 0.018	90		98 AMMAR	91	CLEO	$e^+e^-\approx 10.5$
<0.018	90	5 ±	⁹⁹ ANJOS	88 C	E691	GeV Photoproduc- tion

⁹⁷ AITALA 98 uses the charge of the pion in $D^{*\pm} \to (D^0 \text{ or } \overline{D}{}^0) \pi^{\pm}$ to tell whether or a \overline{D}^0 was born. This result assumes no D^0 - \overline{D}^0 mixing; it becomes $-0.0020^{+0.0117}_{-0.0106}$ 0.0035 when mixing is allowed and decay-time information is used to distinguish doubly Cabibbo-suppressed decays from mixing.

 98 AMMAR 91 cannot distinguish between doubly Cabibbo-suppressed decay and D^0 - \overline{D}^0

99 ANJOS 88c uses decay-time information to distinguish doubly Cabibbo-suppressed (DCS) decays from $D^0-\overline{D}^0$ mixing. However, the result assumes no interference between the DCS and mixing amplitudes. When interference is allowed, the limit degrades to 0.033.

 $\Gamma(K^+\pi^-\pi^+\pi^-(\text{via }\overline{D}^0))/\Gamma(K^-\pi^+\pi^+\pi^-)$ Γ_{161}/Γ_{37}

This is a $D^0-\overline{D}^0$ mixing limit. The experiments here (1) use the charge of the pion in $D^*(2010)^{\pm} \rightarrow (D^0 \text{ or } \overline{D}^0)$ π^{\pm} decay to tell whether a D^0 or a \overline{D}^0 was born; and (2) use the decay-time distribution to disentangle doubly Cabibbo suppressed decay and mixing. For the limits on $|m_{D_1^0} - m_{D_2^0}|$ and $(\Gamma_{D_1^0} - \Gamma_{D_2^0})/\Gamma_{D^0}$ that come from the best mixing limit, see near the beginning of these \hat{D}^0 Listings.

CL% EVTS DOCUMENT ID TECN COMMENT 90 0 ± 4 100 ANJOS <0.005 88C E691 Photoproduction

100 ANJOS 88C uses decay-time information to distinguish doubly Cabibbo-suppressed (DCS) decays from $D^0 ext{-} \overline{D}{}^0$ mixing. However, the result assumes no interference between the DCS and mixing amplitudes. When interference is allowed, the limit degrades to 0.007. Combined with results on $K^{\pm}\pi^{\mp}$, the limit is, assuming no interference, 0.0037.

 $\Gamma(K^{+}\pi^{-}\text{ or }K^{+}\pi^{-}\pi^{+}\pi^{-}(\text{via }\overline{D}^{0}))/\Gamma(K^{-}\pi^{+}\text{ or }K^{-}\pi^{+}\pi^{+}\pi^{-})$ This is a D^0 - $\overline{D}{}^0$ mixing limit. For the limits on $|m_{D_1^0}-m_{D_2^0}|$ and $(\Gamma_{D_1^0}-\Gamma_{D_2^0})/\Gamma_{D^0}$

that come from the best mixing limit, see near the beginning of these D^0 Listings.

CL% DOCUMENT ID TECN COMMENT

ORS

90 101 AITALA 98 E791 π^- nucleus, 500 GeV < 0.0085

 $^{101}\,\mathrm{AITALA}$ 98 uses decay-time information to distinguish doubly Cabibbo-suppressed decays from $D^0\overline{D^0}$ mixing. The fit allows interference between the two amplitudes, and also allows CP violation in this term. The central value obtained is $0.0039 + 0.0036 \pm 0.0016$. When interference is disallowed, the result becomes 0.0021 \pm 0.0009 \pm 0.0002.

$\Gamma(\mu^- \text{ anything (via } \overline{D}^0)) / \Gamma(\mu^+ \text{ anything)}$ Γ_{163}/Γ_{2}

This is a D^0 - \overline{D}^0 mixing limit. See the somewhat better limits above. CL% DOCUMENT ID TECN COMMENT 86 SPEC π^- W 225 GeV < 0.0056 LOUIS • • • We do not use the following data for averages, fits, limits, etc. • • • BENVENUTI 85 CNTR μC, 200 GeV < 0.012 90 82 SPEC π^- , pFe $\rightarrow D^0$ < 0.044

 $\Gamma(e^+e^-)/\Gamma_{total} \qquad \Gamma_{164}/\Gamma \\ \text{A test for the } \Delta C = 1 \text{ weak neutral current. Allowed by first-order weak interaction}$ combined with electromagnetic interaction.

CL% EVTS DOCUMENT ID TECN COMMENT VALUE <6.2 × 10⁻⁶ 90 AITALA 996 E791 $\pi^- N$ 500 GeV • • • We do not use the following data for averages, fits, limits, etc. • • • $< 8.19 \times 10^{-6}$ PRIPSTEIN 00 E789 p nucleus, 800 GeV $< 1.3 \times 10^{-5}$ FREYBERGER 96 CLE2 $e^+e^-\approx \Upsilon(45)$ $< 1.3 \times 10^{-4}$ 88 MRK3 e+e- 3.77 GeV $< 1.7 \times 10^{-4}$ ALBRECHT 88G ARG e+e-10 GeV 90 <2.2 × 10⁻⁴ HAAS 88 CLEO e+e- 10 GeV

 $\Gamma(\mu^+\mu^-)/\Gamma_{total}$ A test for the $\Delta C=1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.

DOCUMENT ID CL% EVTS <4.1 × 10⁻⁶ ADAMOVICH 97 BEAT π^- Cu, W 350 GeV • • • We do not use the following data for averages, fits, limits, etc. • • • $<\!\!1.56\times 10^{-5}$ PRIPSTEIN 00 E789 p nucleus, 800 GeV <5.2 × 10⁻⁶ AITALA 99G E791 π^- N 500 GeV $< 4.2 \times 10^{-6}$ p Si, 800 GeV ALEXOPOU... 96 E771 90 $< 3.4 \times 10^{-5}$ FREYBERGER 96 CLE2 90 $< 7.6 \times 10^{-6}$ ADAMOVICH 95 BEAT See ADAMOVICH 97 90 $<4.4 \times 10^{-5}$ π^- emulsion 600 GeV KODAMA 95 E653 90 0 102 MISHRA $< 3.1 \times 10^{-5}$ 94 E789 -4.1 ± 4.8 events $< 7.0 \times 10^{-5}$ ALBRECHT e^+e^- 10 GeV 88G ARG $<1.1 \times 10^{-5}$ 90 π-W 225 GeV LOUIS 86 SPEC $< 3.4 \times 10^{-4}$ AUBERT 85 EMC Deep inelast. $\mu^- N$ 90

 102 Here MISHRA 94 uses "the statistical approach advocated by the PDG." For an alternate approach, giving a limit of 9×10^{-6} at 90% confidence level, see the paper.

 $\Gamma(\pi^0e^+e^-)/\Gamma_{total}$ A test for the $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions.

TECN__COMMENT DOCUMENT ID <4.5 × 10⁻⁵ FREYBERGER 96 CLE2 $e^+e^- \approx \Upsilon(45)$ 90

 $\Gamma(\pi^0\mu^+\mu^-)/\Gamma_{ ext{total}}$ A test for the $\Delta C = 1$ weak neutral current. Allowed by higher-order electroweak inter-

DOCUMENT ID CL% EVTS TECN_COMMENT <1.8 × 10⁻⁴ KODAMA 95 E653 π emulsion 600 GeV 90 • • • We do not use the following data for averages, fits, limits, etc. • • • $< 5.4 \times 10^{-4}$ 90 FREYBERGER 96 CLE2 $e^+e^- \approx \Upsilon(45)$ 3

(η e ⁺ e ⁻)/Γ _{to} A test for interactions	the $\Delta C = 1$ weak	neutral current. Allowed	Γ_{168}/Γ by higher-order electroweak
ALUE <1.1 × 10 ⁻⁴	<u>CL% EVTS</u> 90 0	FREYBERGER 96 CLE	
(ημ ⁺ μ ⁻)/Γ _t Α test for	otal the $\Delta C = 1$ weak	neutral current. Allowed	Γ ₁₆₉ /Γ by higher-order electroweak
interactions ALUE	s. <u>CL% EVTS</u>	DOCUMENT ID TECH	COMMENT
5.3×10^{-4}	90 0	FREYBERGER 96 CLE	
(ρ ⁰ e ⁺ e ⁻)/Γ ₁ A test for interactions	the $\Delta C = 1$ weak	neutral current. Allowed	Γ_{170}/Γ by higher-order electroweak
LUE	CL% EVTS	DOCUMENT ID TECH	COMMENT
1.0 × 10 ⁻⁴ • • We do not	90 2 103	FREYBERGER 96 CLE:	$e^+e^-pprox \Upsilon(45)$ ts. etc. • • •
4.5×10^{-4}	90 2	-	O e ⁺ e ⁻ 10 GeV
13 This FREYBE to $< 1.8 \times 10$	ERGER 96 limit is 0^{-4} using a photor	obtained using a phase-spa pole amplitude model.	ce model. The limit changes
$(ho^0 \mu^+ \mu^-)/\Gamma$	total		Γ ₁₇₁ /Γ
A test for interactions	the $\Delta C = 1$ weak	neutral current. Allowed	by higher-order electroweak
ALUE	CL% EVTS	DOCUMENT ID TECH	
	-	KODAMA 95 E653 data for averages, fits, limi	ts, etc. • • •
(4.9 × 10 ⁻⁴ (8.1 × 10 ⁻⁴	90 1 ¹⁰	FREYBERGER 96 CLE: HAAS B8 CLE	$e^+e^-pprox \varUpsilon$ (45) O e^+e^- 10 GeV
⁾⁴ This FREYBE	RGER 96 limit is	obtained using a phase-spa	ce model. The limit changes
το < 4.5 × 10 (ωe ⁺ e)/Γ _t		pole amplitude model.	F/F
A test for interactions	the $\Delta C = 1$ weak	neutral current. Allowed	Γ ₁₇₂ /Γ by higher-order electroweak
LUE	CL% EVTS	DOCUMENT ID TECH	COMMENT
1.8 × 10 ⁻⁴		FREYBERGER 96 CLE	$2 - e^+ e^- pprox ~ \varUpsilon (45)$ ce model. The limit changes
interactions	the $\Delta C = 1$ weaks.		F ₁₇₃ /F by higher-order electroweak
(8.3 × 10 ⁻⁴	<u>CL%EVTS</u> 	DOCUMENT ID TECH FREYBERGER 96 CLES	comment $comment$ $comment$ $comment$ $comment$
6 This FREYBE	RGER 96 limit is		ce model. The limit changes
	the $\Delta C=1$ weak	neutral current. Allowed	Γ_{174}/Γ by higher-order electroweak
interactions ALUE	CL% EVTS	DOCUMENT ID TECH	
5.2 × 10 ⁻⁵		FREYBERGER 96 CLE	$e^+e^-\approx \Upsilon(45)$
$to < 7.6 \times 10$	1 ^{−5} using a photor	obtained using a phase-spa pole amplitude model.	ce model. The limit changes
$(\phi \mu^+ \mu^-)/\Gamma_t$ A test for interactions	the $\Delta C = 1$ weak		Γ_{175}/Γ by higher-order electroweak
	CL% EVTS	DOCUMENT ID TECH FREYBERGER 96 CLE	COMMENT
On This FREYBE	ERGER 96 limit is		ce model. The limit changes
(K0 e+ e-)/I	· ·	pole ampirtude model.	F /F
Allowed by	first-order weak in	teraction combined with el	
4 <i>LUE</i> <1.1 × 10 ⁻⁴	<u>CL% EVTS</u> 90 0	FREYBERGER 96 CLE	
	=	data for averages, fits, limi	
1.7×10^{-3}	90	ADLER 89c MR	(3 e ⁺ e ⁻ 3.77 GeV
	F _{total} first-order weak in 	teraction combined with el	
<2.6 × 10 ⁻⁴	90 2	KODAMA 95 E653	π ⁻ emulsion 600 GeV
 We do not 6.7 × 10⁻⁴ 	use the following	data for averages, fits, limi FREYBERGER 96 CLE	
(K*(892) ⁰ e+	-		г с е ∼ /(43) Г ₁₇₈ /Г
Allowed by	first-order weak in	teraction combined with el	ectromagnetic interaction.
		9 =====================================	
1.4 x 10 ⁴	90 1 10	FREYBERGER 96 CLE	$e^+e^- \approx \tau(45)$

109 This FREYBERGER 96 limit is obtained using a phase-space model. The limit changes

to $< 2.0 \times 10^{-4}$ using a photon pole amplitude model.

```
\Gamma(\overline{K}^*(892)^0 \mu^+ \mu^-)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{179}/\Gamma
       Allowed by first-order weak interaction combined with electromagnetic interaction.
VALUE
VALUE CL% EVTS DOCUMENT ID TECN COMMENT

<1.18 × 10<sup>-3</sup> 90 1 ^{110} FREYBERGER 96 CLE2 e^+e^-\approx r(45)
^{110}\,\mathrm{This} FREYBERGER 96 limit is obtained using a phase-space model. The limit changes
    to < 1.0 \times 10^{-3} using a photon pole amplitude model.
\Gamma(\pi^+\pi^-\pi^0\mu^+\mu^-)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{180}/\Gamma
       A test for the \Delta C=1 weak neutral current. Allowed by higher-order electroweak inter-
       actions.
<u>VALUE</u> <u>CL% EVTS</u>

<8.1 × 10<sup>-4</sup> 90 1
                                              DOCUMENT ID TECN COMMENT
                                              KODAMA 95 E653 \pi^- emulsion 600 GeV
 \begin{array}{l} \Gamma \left( \mu^{\pm} \, e^{\mp} \right) / \Gamma_{total} \\ \text{A test of lepton family number conservation.} \end{array} 
                                                                                                         \Gamma_{181}/\Gamma
<u>VALUE</u> <u>CL% EVTS</u>

< 8.1 × 10<sup>-6</sup> 90
VALUE
                                           DOCUMENT ID
                                                                      TECN COMMENT
                                              AITALA 99G E791 \pi^- N 500 GeV

    •    •    •    We do not use the following data for averages, fits, limits, etc.    •    •    •

< 1.72 \times 10^{-5} 90

< 1.9 \times 10^{-5} 90

< 1.0 \times 10^{-4} 90
                                  PRIPSTEIN 00 E789 p nucleus, 800 GeV 2 <sup>111</sup> FREYBERGER 96 CLE2 e^+e^-\approx \Upsilon(45)
                                 4 ALBRECHT 886 ARG e<sup>+</sup>e<sup>-</sup> ≥ T(4

9 HAAS 88 CLEO e<sup>+</sup>e<sup>-</sup> 10 GeV

BECKER 87C MRK3 e<sup>+</sup>e<sup>-</sup> 3.77 Ge

PALKA 87 SILI 200 GeV ≠ p
< 2.7 × 10<sup>-4</sup> 90
< 2.7 × 10<sup>-4</sup> 90
< 1.2 × 10<sup>-4</sup> 90
< 9 × 10<sup>-4</sup> 90
<21 × 10<sup>-4</sup> 90
                                                                   87C MRK3 e+e- 3.77 GeV
                                              PALKA 87 SILI 200 GC ....
PALKA 87 MRK2 e<sup>+</sup>e<sup>-</sup> 29 GeV
                               0 112 RILES
^{111}\,\mathrm{This} is the corrected result given in the erratum to FREYBERGER 96.
112 RILES 87 assumes B(D \rightarrow K\pi) = 3.0% and has production model dependency.
\Gamma(\pi^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}
                                                                                                         \Gamma_{182}/\Gamma
       A test of lepton family number conservation. The value is for the sum of the two
       charge states.
                                              DOCUMENT ID TECN COMMENT
VALUE
                     CL% EVTS
 <8.6 × 10<sup>-5</sup> 90
                                              FREYBERGER 96 CLE2 e^+e^-\approx \Upsilon(4S)
\Gamma(\eta e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}
       A test of lepton family number conservation. The value is for the sum of the two
       charge states.
<u>VALUE</u> <u>CL% EVTS</u>

<1.0 × 10<sup>-4</sup> 90 0
                                               DOCUMENT ID TECN COMMENT
                                              FREYBERGER 96 CLE2 e^+e^- \approx \Upsilon(45)
\Gamma(\rho^0\,e^\pm\,\mu^\mp)/\Gamma_{total} \qquad \qquad \Gamma_{184}/\Gamma A test of lepton family number conservation. The value is for the sum of the two
        charge states.
VALUE CLY, EVTS DOCUMENT ID TECN COMMENT <4.9 \times 10^{-5} 90 0 113 FREYBERGER 96 CLE2 e^+e^- \approx \Upsilon(45)
VALUE
113 This FREYBERGER 96 limit is obtained using a phase-space model. The limit changes
    to < 5.0 \times 10^{-5} using a photon pole amplitude model.
\Gamma(\omega e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}
                                                                                                         \Gamma_{185}/\Gamma
       A test of lepton family number conservation. The value is for the sum of the two
       charge states.
 VALUE CL% EVTS DOCUMENT ID TECN COMMENT

<1.2 \times 10^{-4} 90 0 ^{114} FREYBERGER 96 CLE2 e^+e^- \approx \Upsilon(45)
                                               DOCUMENT ID TECN COMMENT
^{114}\,\mathrm{This} FREYBERGER 96 limit is obtained using a phase-space model. The same limit is
    obtained using a photon pole amplitude model.
\Gamma(\phi e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}
       A test of lepton family number conservation. The value is for the sum of the two
        charge states.
                                           DOCUMENT ID TECN COMMENT
VALUE CLY EVTS DOCUMENT ID TECN COMMENT

<3.4 \times 10^{-5} 90 0 115 FREYBERGER 96 CLE2 e^+e^- \approx r(45)
115 This FREYBERGER 96 limit is obtained using a phase-space model. The limit changes
    to < 3.3 \times 10^{-5} using a photon pole amplitude model.
\Gamma(\overline{K}^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}
       A test of lepton family number conservation. The value is for the sum of the two
       charge states.
<u>VALUE</u> <u>CL% EVTS</u>
<1.0 x 10<sup>-4</sup> 90 0
                                               DOCUMENT ID TECN COMMENT
                                              FREYBERGER 96 CLE2 e^+e^- \approx \Upsilon(45)
\Gamma(\overline{K}^{\bullet}(892)^{0}\,e^{\pm}\,\mu^{\mp})/\Gamma_{\mathrm{total}}
        A test of lepton family number conservation. The value is for the sum of the two
        charge states.
 VALUE CL% EVTS DOCUMENT ID TECN COMMENT

<1.0 \times 10^{-4} 90 0 ^{116} FREYBERGER 96 CLE2 e^+e^- \approx T(45)
VALUE
116\,\mbox{This} FREYBERGER 96 limit is obtained using a phase-space model. The same limit is obtained using a photon pole amplitude model.
```

D⁰ CP-VIOLATING DECAY-RATE ASYMMETRIES

$A_{CP}(K^+K^-)$ in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-$

This is the difference between D^0 and \overline{D}^0 partial widths for these modes divided by the sum of the widths. The D^0 and \overline{D}^0 are distinguished by the charge of the parent $D^*\colon D^{*+}\to D^0\pi^+$ and $D^{*-}\to D^0\pi^-$.

VALUE		EVTS	DOCUMENT ID		TECN	COMMENT
0.026	±0.035 OUR A	VERAGE				
-0.010	±0.049±0.012	609 11	⁷ AITALA	98c	E791	$-0.093 < A_{CP} < +0.073$ (90% CL)
+0.080	±0.061		BARTELT			-0.022 <a<sub>CP < +0.18 (90%CL)</a<sub>
+0.024	±0.084	11	7 FRABETTI	941	E687	$-0.11 < A_{CP} < +0.16$ (90% CL)

¹¹⁷ AITALA 98c and FRABETTI 94I measure $N(D^0 \rightarrow K^+ K^-)/N(D^0 \rightarrow K^- \pi^+)$, the ratio of numbers of events observed, and similarly for the $\overline{\mathcal{D}}^0$.

$A_{CP}(\pi^+\pi^-)$ in D^0 , $\overline{D}{}^0 \rightarrow \pi^+\pi^-$

This is the difference between D^0 and \overline{D}^0 partial widths for these modes divided by the sum of the widths. The D^0 and \overline{D}^0 are distinguished by the charge of the parent D^0 : $D^0+D^0\pi^+$ and $D^0-D^0\pi^-$.

WALUE

-0.049±0.078±0.030

343

118 AITALA

980 E791

-0.186 < A_CP <

```
98C E791 -0.186 <ACP < +0.088 (90% CL)
```

118 AITALA 9BC measures $N(D^0\to\pi^+\pi^-)/N(D^0\to \kappa^-\pi^+)$, the ratio of numbers of events observed, and similarly for the \overline{D}^0 .

$A_{CP}(K_S^0\phi)$ in D^0 , $\overline{D}{}^0 \rightarrow K_S^0\phi$

This is the difference between D^0 and \overline{D}^0 partial widths for these modes divided by the sum of the widths. The D^0 and \overline{D}^0 are distinguished by the charge of the parent $D^*: D^*+ \to D^0\pi^+$ and $D^*- \to D^0\pi^-$.

DOCUMENT ID TECN COMMENT

BARTELT 95 CLE2 $-0.182 < A_{CP} < +0.126$ (90%CL)

VALUE -0.028 ± 0.094

$A_{CP}(K_S^0\pi^0)$ in D^0 , $\overline{D}^0 \rightarrow K_S^0\pi^0$

This is the difference between D^0 and \overline{D}^0 partial widths for these modes divided by the sum of the widths. The D^0 and \overline{D}^0 are distinguished by the charge of the parent D^0 : $D^{0+} \to D^0\pi^+$ and $D^{0-} \to D^0\pi^-$.

Sociometria Tech Comment

VALUE 95 CLE2 -0.067 < A_{CP} < +0.031 (90%CL) -0.018±0.030 BARTELT

$A_{CP}(K^{\pm}\pi^{\mp})$ in $D^0 \rightarrow K^+\pi^-$, $\overline{D}{}^0 \rightarrow K^-\pi^+$

This is the difference between D^0 and \overline{D}^0 partial widths for these modes divided by the sum of the widths. The D^0 and \overline{D}^0 are distinguished by the charge of the parent

$D^{+} : D^{++} \rightarrow L$ VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
$+0.02^{+0.19}_{-0.20}\pm0.01$	45	¹¹⁹ GODANG	00	CLE2	-0.43 < A _{CP} < +0.34 (95%CL)	ı

 119 This GODANG 00 result assumes no $D^0 \mbox{-} \overline{D}{}^0$ mixing; it becomes $-0.01 \mbox{+} 0.16 \mbox{\pm} 0.01$ when mixing is allowed.

D⁰ PRODUCTION CROSS SECTION AT \$\psi(3770)

A compilation of the cross sections for the direct production of \mathcal{D}^0 mesons at or near the $\psi(3770)$ peak in e^+e^- production.

VALUE (nanobarns)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following data for average	s, fits, limit	s, etc. • • •
5.8 ±0.5 ±0.6	120 ADLER	88c MRK	3 e ⁺ e ⁻ 3.768 GeV
7.3 ±1.3	121 PARTRIDGE	84 CBAI	L e ⁺ e ⁻ 3.771 GeV
$8.00 \pm 0.95 \pm 1.21$	122 SCHINDLER	80 MRK	2 e ⁺ e ⁻ 3.771 GeV
11.5 ±2.5	123 PERUZZI	77 MRK	1 e ⁺ e ⁻ 3.774 GeV

120 This measurement compares events with one detected D to those with two detected D mesons, to determine the the absolute cross section. ADLER 88c find the ratio of cross sections (neutral to charged) to be $1.36\pm0.23\pm0.14$.

sections (neutral to charged) to be 1.30 \pm 0.63 \pm 0.14.

121 This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. PARTRIDGE 84 measures 6.4 \pm 1.15 nb for the cross section. We take the phase space division of neutral and charged D mesons in $\psi(3770)$ decay to be 1.33, and we assume that the $\psi(3770)$ is an isosinglet to evaluate the cross sections. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and may amount to a few percent correction.

may amount to a few percent correction.

122 This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. SCHINDLER 80 assume the phase space division of neutral and charged D mesons in $\psi(3770)$ decay to be 1.33, and that the $\psi(3770)$ is an isosinglet. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and may amount to a few percent correction. to a few percent correction.

123 This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. The phase space division of neutral and charged D mesons in $\psi(3770)$ decay is taken to be 1.33, and $\psi(3770)$ is assumed to be an isosinglet. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and may amount to a few percent correction. We exclude this measurement from the average because of uncertainties in the contamination from au lepton pairs. Also see RAPIDIS 77.

D⁰ REFERENCES

			R. Godang et al.	(CLEO Collab.)
	00	PRL 84 1857	S.Y. Jun et al.	(FNAL SELEX Collab.)
	00 00	EPJ C15 1 PR D61 032005	D. Pripstein et al.	(FNAL E789 Collab.)
AITALA AITALA	99E 99G	PRL 83 32 PL B462 401	E.M. Aitala et al. E.M. Aitala et al.	(FNAL E791 Collab.) (FNAL E791 Collab.)
BONVICINI	99	PRL 82 4586	G. Bonvicini et al.	(CLEO Collab.)
	98 98C	PL B421 405	E.M. Aitala et al. E.M. Aitala et al.	(FNAL E791 Collab.) (FNAL E791 Collab.) (FNAL E791 Collab.)
	98D 98	PL B423 185	E.M. Aitala et al. M. Artuso et al.	(FNAL E791 Collab.) (CLEO Collab.)
ASNER	98	PR D58 092001	D.M. Asner et al.	(CLEO Collab.)
COAN	98	PL B436 211 PRL 80 1150	R. Barate et al. T.E. Coan et al.	(ALEPH Collab.) (CLEO Collab.) (CERN BEATRICE Collab.)
ADAMOVICH BARATE	97 97C	PL B408 469 PL B403 367	M.I. Adamovich et al. R. Barate et al.	(CERN BEATRICE Collab.) (ALEPH Collab.)
AITALA ALBRECHT	96C 96C	PRL 77 2384	E.M. Aitala et al. H. Albrecht et al.	(FNÀL E791 Collab.) (ARGUS Collab.)
ALEXOPOU	96	PRL 77 2380	T. Alexopoulos et al.	(FNAL E771 Collab.) (CLEO Collab.)
ASNER BARISH	96B 96	PR D54 4211 PL B373 334	D.M. Asner et al. B.C. Barish et al.	(CLEO Collab.)
FRABETTI FREYBERGER	96B 96	PL B382 312	P.L. Frabetti et al. A. Freyberger et al.	(FNAL E687 Collab.) (CLEO Collab.)
Aiso	96B	PRL 76 3065 PRL 77 2147 (errata) PR D54 2994		•
KUBOTA ADAMOVICH	95	PL B353 563	Y. Kubota et al. M.I. Adamovich et al.	(CLEO Collab.) (CERN BEATRICE Collab.)
BARTELT BUTLER	95 95	PR D52 4860 PR D52 2656	J.E. Bartelt et al. F. Butler et al.	(CLEO Collab.) (CLEO Collab.)
FRABETTI FRABETTI	95C *	PL B354 486	P.L. Frabetti et al. P.L. Frabetti et al.	(CLEO Collab.) (FNAL E687 Collab.) (FNAL E687 Collab.)
KODAMA	95	PL 18345 85	K. Kodama et al.	(FNAL E653 Collab.)
ALBRECHT ALBRECHT	94 94F	PL B324 249 PL B340 125	H. Albrecht et al. H. Albrecht et al.	(ARGUS Collab.) (ARGUS Collab.)
ALBRECHT CINABRO	941 94	ZPHY C64 375	H. Albrecht et al. D. Cinabro et al.	(ARGUS Collab.) (CLEO Collab.)
FRABETTI	94C	PL B321 295	P.L. Frabetti et al.	(FNAL E687 Collab.)
FRABETTI FRABETTI	94D 94G	PL B323 459 PL B331 217	P.L. Frabetti et al. P.L. Frabetti et al. P.L. Frabetti et al.	(FNAL E687 Collab.) (FNAL E687 Collab.) (FNAL E687 Collab.)
FRABETTI FRABETTI	941 94 J	PI B340 254	P.L. Frabetti et al. P.L. Frabetti et al.	(FNAL E687 Collab.) (FNAL E687 Collab.)
KODAMA	94	PL B336 605	K. Kodama et al.	(FNAL E653 Collab.)
MISHRA AKERIB	94 93	PR D50 R9 PRL 71 3070	C.S. Mishra et al. D.S. Akerib et al.	(FNAL E789 Collab.) (CLEO Collab.)
ALBRECHT ANJO5	93D 93	PL B308 435 PR D48 56	H. Albrecht et al, J.C. Anjos et al.	(ARGUS Collab.) (FNAL E691 Collab.)
BEAN FRABETTI	93C 93I	PL B317 647	A. Bean et al. P.L. Frabetti et al.	(CLEO Collab.)
KODAMA	93B	PL B313 260	K. Kodama et al.	(FNAL E687 Collab.) (FNAL E653 Collab.)
PROCARIO SELEN	93B 93		M. Procario et al. M.A. Selen et al.	(CLEO Collab.) (CLEO Collab.)
ADAMOVICH ALBRECHT	92 92P	PL B280 163 ZPHY C56 7	M.I. Adamovich et al. H. Albrecht et al.	(CLEO COllab.) (CERN WA82 COllab.) (ARGUS COllab.)
SOLVA SOLVA	92B	PR D46 R1	H. Albrecht et al. J.C. Anjos et al. J.C. Anjos et al.	(FNAL E691 Collab.) (FNAL E691 Collab.)
BARLAG	92C 92C	PR D46 1941 ZPHY C55 383	S. Barlag et al.	(ACCMOR Collab.)
Also COFFMAN	90D 92B	ZPHY C48 29 PR D45 2196	S. Barlag et al. D.M. Coffman et al.	(ACCMOR Collab.) (Mark III Collab.)
Also FRABETTI	90 92	PRL 64 2615	J. Adler et al. P.L. Frabetti et al.	(Mark III Collab.) (FNAL E687 Collab.)
FRABETTI	92B	PL B286 195	P.L. Frabetti et al.	(FNAL E687 Collab.)
ALVAREZ AMMAR	91B 91	ZPHY C50 11 PR D44 3383	M.P. Alvarez et al. R. Ammar et al.	(CERN NA14/2 COllab.) (CLEO COllab.) (FNAL-TPS Collab.) (FNAL-TPS Collab.)
ANJOS ANJOS	91 91D	PR D43 R635 PR D44 R3371	J.C. Anjos et al. J.C. Anjos et al.	(FNAL-TPS Collab.) (FNAL-TPS Collab.)
BAI COFFMAN	91 91	PRL 66 1011	Z. Bai et al.	(Mark III Collab.)
CRAWFORD	91B	PL B263 135 PR D44 3394	D.M. Coffman et al. G. Crawford et al.	(Mark III Collab.) (CLEO Collab.)
DECAMP FRABETTI	91J 91		D. Decamp et al. P.L. Frabetti et al.	(ALEPH Collab.) (FNAL E687 Collab.)
KINOSHITA KODAMA	91 91	PR D43 2836 PRL 66 1819	K. Kinoshita et al. K. Kodama et al.	(CLEO Collab.) (FNAL E653 Collab.)
ALBRECHT	90C	ZPHY C46 9	H. Albrecht et al.	(ARGUS Collab.)
ALEXANDER ALEXANDER	90 90B	PRL 65 1184 PRL 65 1531	J. Alexander et al. J. Alexander et al.	(CLEO Collab.) (CLEO Collab.)
ALVAREZ ANJOS	90 90D	ZPHY C47 539 PR D42 2414	M.P. Alvarez et al. J.C. Anjos et al.	(CERN NA14/2 Collab.) (FNAL E691 Collab.)
BARLAG	90C 89	ZPHY C46 563 PRL 62 1821	S. Barlag et al. J. Adler et al.	` (ACCMOR Collab.) (Mark III Collab.)
ADLER	89C	PR D40 906	J. Adler et al.	(Mark III Collab.)
ALBRECHT ANJOS	89D 89F	ZPHY C43 181 PRL 62 1587	H. Albrecht et al. J.C. Anjos et al.	(ARGUS Collab.) (FNAL E691 Collab.)
ABACHI ADLER	88 88	PL B205 411 PR D37 2023	S. Abachi <i>et al.</i> J. Adler <i>et al</i> .	(HRS Collab.) (Mark III Collab.)
ADLER	88C	PRL 60 89	J. Adler et al.	(Mark III Collab.) (ARGUS Collab.)
ALBRECHT ALBRECHT	88G 881	PL B209 380 PL B210 267	H. Albrecht et al. H. Albrecht et al.	(ARGUS Collab.)
AMENDOLIA ANJOS	88 88C	EPL 5 407 PRL 60 1239	S.R. Amendolia et al. J.C. Anjos et al.	(NA1 Collab.) (FNAL E691 Collab.)
BORTOLETTO Also		PR D37 1719 PR D39 1471 erratum	D. Bortoletto et al.	CLEO Collab.)
CUMALAT	88	PL B210 253	J.P. Cumalat et al.	(E-400 Collab.)
HAAS RAAB	88 88	PRL 60 1614 PR D37 2391	P. Haas et al. J.R. Raab et al.	(CLEO Collab.) (FNAL E691 Collab.)
ADAMOVICH ADLER	87 87	EPL 4 887 PL B196 107	M.I. Adamovich et al. J. Adler et al.	(Mark III Collab.)
AGUILAR	87D 88B	PL B193 140 ZPHY C40 321	M. Aguilar-Benitez et al. M. Aguilar-Benitez et al.	(LÈBC-EHS Collab.) (LEBC-EHS Collab.)
AGUILAR	87E	ZPHY C36 551	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Also AGUILAR	88B 87F	ZPHY C40 321 ZPHY C36 559	M. Aguilar-Benitez et al. M. Aguilar-Benitez et al.	(LEBC-EHS Collab.) (LEBC-EHS Collab.)
Also ALBRECHT	88 87E	ZPHY C38 520 erratum ZPHY C33 359	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	87K	PL B199 447	H. Albrecht et al.	(ARGUS Collab.)
BARLAG BECKER	87B 87C	ZPHY C37 17 PL B193 147	S. Barlag et al. J.J. Becker et al.	(ACCMOR Collab.) (Mark III Collab.)
Also CSORNA	87D 87	PL B198 590 erratum PL B191 318	J.J. Becker et al. S.E. Csorna et al.	(Mark III Collab.) (CLEO Collab.)
PALKA RILES	87 87	PL B189 238	H. Palka et al. K. Riles et al.	(ACCMOR Collab.) (Mark II Collab.)
ABE	86	PR D35 2914 PR D33 1	K. Abe et al.	•
BAILEY BEBEK	86 86	ZPHY C30 51 PRL 56 1893	R. Bailey et al. C. Bebek et al.	(ACCMOR Collab.) (CLEO Collab.)
GLADNEY LOUIS	86 86	PR D34 2601 PRL 56 1027	L. Gladney et al. W.C. Louis et al.	(Mark II Collab.) (PRIN, CHIC, ISU)
USHIDA ALBRECHT	86B 858	PRL 56 1027 PRL 56 1771 PL 158B 525	N. Ushida et al. H. Albrecht et al.	(AICH, FNAL, KOBE, SEOU+) (ARGUS Collab.)
				,

ALBRECHT	85F	PL 150B 235	H. Albrecht et al.	(ARGUS Collab.)
AUBERT	85	PL 155B 461	J.J. Aubert et al.	(EMC Collab.)
BAILEY	85	ZPHY C28 357	R. Bailey et al.	(ABCCMR Collab.)
BALTRUSAIT	65B	PRL 54 1976	R.M. Baltrusaitis et al.	(Mark III Collab.)
BALTRUSAIT	85E	PRL 55 150	R.M. Baltrusaitis et al.	(Mark III Collab.)
BENVENUTI	85	PL 158B 531	A.C. Benvenuti et al.	(BCDMS Collab.)
AOAMOVICH	84B	PL 140B 123	M.I. Adamovich et al.	(CERN WASS Collab.)
DERRICK	84	PRL 53 1971	M. Derrick et al.	(HRS Collab.)
PARTRIDGE	84	Thesis CALT-68-1150	R.A. Partridge	(Crystal Ball Collab.)
SUMMERS	84	PRL 52 410	D.J. Summers et al.	(UCSB, CARL, COLO+)
BAILEY	83B	PL 132B 237	R. Bailey et al.	(ACCMOR Collab.)
BODEK	82	PL 113B 82	A. Bodek et al.	(ROCH, CIT, CHIC, FNAL+)
FIORINO	81	LNC 30 166	A. Fiorino et al.	, , ,
SCHINDLER	81	PR D24 78	R.H. Schindler et al.	(Mark If Collab.)
TRILLING	81	PRPL 75 57	G.H. Trilling	(LBL, UCB).
ASTON	BOE	PL 94B 113	D. Aston et al.	(BONN, CERN, EPOL, GLAS+)
AVERY	80	PRL 44 1309	P. Avery et al.	(ILL, FNAL, COLU)
SCHINDLER	80	PR D21 2716	R.H. Schindler et al.	(Mark II Collab.)
ZHOLENTZ	80	PL 96B 214	A.A. Zholents et al.	` (NOVO)
Aiso	81	SJNP 34 814	A.A. Zholents et al.	(NOVO)
		Translated from YAF 34		, ,
ABRAMS	79D	PRL 43 481	G.S. Abrams et al.	(Mark IF Collab.)
ATIYA	79	PRL 43 414	M.S. Atiya et al.	(COLU, ILL, FNAL)
BALTAY	78C	PRL 41 73	C. Baltay et al.	(COLU, BNL)
VUILLEMIN	78	PRL 41 1149	V. Vuillemin et al.	(Mark I Collab.)
GOLDHABER	77	PL 69B 503	G. Goldhaber et al.	(Mark I Collab.)
PERUZZI	77	PRL 39 1301	I. Peruzzi et al.	(Mark I Collab.)
PICCOLO	77	PL 70B 260	M. Piccolo et al.	(Mark I Collab.)
RAPIDIS	77	PRL 39 526	P.A. Rapidis et al.	(Mark I Collab.)
GOLDHABER	76	PRL 37 255	G. Goldhaber et al.	(Mark I Collab.)

- OTHER RELATED PAPERS -

RICHMAN ROSNER RMP 67 893 CNPP 21 369 J.D. Richman, P.R. Burchat J. Rosner (UCSB, STAN) (CHIC)

 $D^*(2007)^0$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

J consistent with 1, value 0 ruled out (NGUYEN 77).

D*(2007)0 MASS

The fit includes D^{\pm} , D^0 , D_s^{\pm} , $D^{*\pm}$, D^{*0} , and $D_s^{*\pm}$ mass and mass

VALUE (MeV)	DOCUMENT ID TECN COMMENT					
2006.7±0.5 OUR FIT Error in	cludes scale factor of 1.1.	_				
• • • We do not use the followi	ing data for averages, fits, limits, etc. • • •					
2006 ±1.5	¹ GOLDHABER 77 MRK1 e ⁺ e					
¹ From simultaneous fit to $D^*(2010)^+$, $D^*(2007)^0$, D^+ , and D^0 .						

$m_{D^*(2007)^0} - m_{D^0}$

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , and $D_{s}^{*\pm}$ mass and mass

VALUE (MeV)	EVTS	DOCUMENT ID TECN COMMENT
142.12±0.07 OUR FIT	Γ	
142.12±0.07 OUR AV	ERAGE	
$142.2 \pm 0.3 \pm 0.2$	145	ALBRECHT 95F ARG $e^+e^- \rightarrow \text{hadrons}$
$142.12 \pm 0.05 \pm 0.05$	1176	BORTOLETTO92B CLE2 $e^+e^- \rightarrow hadrons$
• • • We do not use	the followin	ng data for averages, fits, limits, etc. • • •
142.2 ±2.0		SADROZINSKI 80 CBAL $D^{*0} ightarrow D^0 \pi^0$
142.7 ±1.7		² GOLDHABER 77 MRK1 e ⁺ e ⁻
² From simultaneous	fit to D*($2010)^+$, $D^*(2007)^0$, D^+ , and D^0 .

D*(2007)0 WIDTH

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT	
<2.1	90 3	ABACHI	88B	HRS	$D^{*0} \rightarrow D^{+}\pi^{-}$	
3 Assuming $m_{D^{*0}} = 2$	007.2 ± 2.1	$1 \text{ MeV}/c^2$.				

D*(2007)0 DECAY MODES

 $\overline{\it D}^{*}(2007)^{0}$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ_j/Γ)
$\overline{\Gamma_1}$	$D^{0}_{-}\pi^{0}$	(61.9±2.9) %
Γ_2	$D^0 \gamma$	(38.1 ± 2.9) %

CONSTRAINED FIT INFORMATION

An overall fit to a branching ratio uses 3 measurements and one constraint to determine 2 parameters. The overall fit has a χ^2 = 0.5 for 2 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients Γ_i/Γ_{total} . The fit constrains the x_i whose labels appear in this array to sum to one. $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$

D*(2007)0 BRANCHING RATIOS

$\Gamma(D^0\pi^0)/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.619±0.029 OUR FIT						
• • We do not use to	the followin	ng data for average:	s, fits	, limits,	etc. • • •	
$0.596 \pm 0.035 \pm 0.028$	858	4 ALBRECHT	95F	ARG	$e^+e^- \rightarrow$	hadrons
$0.636 \pm 0.023 \pm 0.033$	1097	⁴ BUTLER	92	CLE2	$e^+e^- \rightarrow$	hadrons
$\Gamma(D^0\gamma)/\Gamma_{ m total}$						Γ2/Γ
VALUE	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT	
0.381 ± 0.029 OUR FIT	Г					
0.381 ± 0.029 OUR AV	ERAGE					
$0.404 \pm 0.035 \pm 0.028$	456	4 ALBRECHT	95F	ARG	$e^+e^- \rightarrow$	hadrons
$0.364 \pm 0.023 \pm 0.033$	621	⁴ BUTLER	92	CLE2	$e^+e^- \rightarrow$	hadrons
$0.37 \pm 0.08 \pm 0.08$		ADLER	88D	MRK3	e^+e^-	
• • We do not use to	the followin	ng data for averages	s, fits	, limits,	etc. • • •	
0.47 ±0.23		LOW	87	HRS	29 GeV e	+ e ⁻
0.53 ±0.13		BARTEL	85G	JADE	e^+e^- , ha	drons
0.47 ±0.12		COLES	82	MRK2	e^+e^-	
0.45 ±0.15		GOLDHABER	77	MRK1	e+ e-	
⁴ The BUTLER 92 a been constrained b		CHT 95F branching ors to sum to 100%		os are n	ot independ	lent, they have

D*(2007)0 REFERENCES

ALBRECHT	95F	ZPHY C66 63	H. Albrecht et al.	(ARGUS Collab.)
BORTOLETT	O 92B	PRL 69 2046	D. Bortoletto et al.	`(CLEO Collab.)
BUTLER	92	PRL 69 2041	F. Butler et al.	(CLEO Collab.)
ABACHI	88B	PL B212 533	S. Abachi et al.	(ANL, IND, MICH, PURD+)
ADLER	88D	PL B208 152	J. Adler et al.	(Mark III Collab.)
LOW	87	PL B183 232	E.H. Low et al.	(HRS Collab.)
BARTEL	85 G	PL 161B 197	W. Bartel et al.	(JADE Collab.)
COLES	82	PR D26 2190	M.W. Coles et al.	(LBL, SLAC)
SADROZINSK	1 80	Madison Conf. 681	H.F.W. Sadrozinski et al.	(PRIN, CIT+)
GOLDHABER	77	PL 69B 503	G. Goldhaber et al.	(Mark I Collab.)
NGUYEN	77	PRL 39 262	H.K. Nguyen et al.	(LBL, SLAC) J
		ОТНЕ	R RELATED PAPERS	S
		•		
SEMENOV	99	SPU 42 847		
17.444.41		Translated from UFN		(ALDE)

99	SPU 42 847	S.V. Semenov	
92	PL B284 421	A.N. Kamal, Q.P. Xu	(ALBE)
81	PRPL 75 57	G.H. Trilling	(LBL, UCB)
75	PRL 37 255	G. Goldhaber et al.	(Mark I Collab.)
	92 81	Translated from UFP 92 PL B284 421 81 PRPL 75 57	Translated from UFN 42 937. 92 PL B284 421 A.N. Kamal, Q.P. Xu 81 PRPL 75 57 G.H. Trilling

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

$D^*(2010)^{\pm}$ MASS

The fit includes D^\pm , D^0 , D_s^\pm , $D^{*\pm}$, D^{*0} , and $D_s^{*\pm}$ mass and mass difference measurements.

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT		
2010.0±0.5 OUR FIT Error incli	des scale factor of 1.1					
• • • We do not use the following	g data for averages, fit:	s, limits,	etc. •	• •		
2008 ±3	¹ GOLDHABER 77	MRK1	±	e+ e-		
2008.6±1.0	² PERUZZI 77	MRK1	±	e ⁺ e		
¹ From simultaneous fit to $D^*(2010)^+$, $D^*(2007)^0$, D^+ , and D^0 ; not independent of						

FELDMAN 77B mass difference below. PERUZZI 77 D° , mass difference below and PERUZZI 77 mass not independent of FELDMAN 77B mass difference below and PERUZZI 77 D° mass value.

$m_{D^*(2010)^+}-m_{D^+}$

The fit includes D^\pm , D^0 , D_s^\pm , $D^{*\pm}$, D^{*0} , and $D_s^{*\pm}$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID TECN	COMMENT
140.64 ± 0.10 OUR FIT	Error	includes scale factor of 1.1.	
140.64±0.08±0.06	620	BORTOLETTO92B CLE2	$e^+e^- \rightarrow hadrons$

$D^*(2010)^{\pm}$

$m_{D^*(2010)^+} - m_{D^0}$

The fit includes D^\pm , D^0 , D_s^\pm , $D^{*\pm}$, D^{*0} , and $D_s^{*\pm}$ mass and mass difference measurements.

VALUE (Me			VTS	DOCUMENT ID		<u>TECN</u>	COMMENT
		OUR FIT					
		OUR AVER					
145.54			511	ADINOLFI	99	BEAT	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.45	±0.02			BREITWEG	99	ZEUS	$D^{*\pm} \rightarrow D^0 \pi^{\pm} \rightarrow K^0 \pi^{\pm}$
145.42	±0.05			BREITWEG	99	ZEUS	$D^{*\pm} \xrightarrow{D^0} D^0 \pi^{\pm} \rightarrow $
145.5	±0.15		103	³ ADLOFF	97B	Hì	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.44	±0.08		152	³ BREITWEG	97	ZEUS	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.42	±0.11		199	3 BREITWEG	97	ZEUS	$D^{*\pm} \xrightarrow{D^0} D^0 \pi^{\pm}$
145.4	±0.2		48	3 DERRICK	95	ZEUS	$D^{\bullet\pm} \xrightarrow{\rightarrow} D^0 \pi^{\pm}$
145.39	± 0.06	± 0.03		BARLAG	92B	ACCM	π^- 230 GeV
145.5	± 0.2		115	3 ALEXANDER	91B	OPAL	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.30	±0.06			3 DECAMP	91 J	ALEP	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.40	± 0.05	± 0.10		ABACHI	88B	HRS	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.46	± 0.07	± 0.03		ALBRECHT	85F	ARG	$D^{*\pm} \rightarrow D^0 \pi^+$
145.5	± 0.3		28	BAILEY	83	SPEC	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.5	± 0.3		60	FITCH	81	SPEC	π - A
145.3	±0.5		30	FELDMAN	77B	MRK1	$D^{*+} \rightarrow D^0 \pi^+$
• • • W	e do not	use the follo	wing dat	a for averages, fit	ts, lir	nits, etc	. • • •
145.44	±0.09		122	³ BREITWEG	97B	ZEUS	$D^{*\pm} \rightarrow D^0 \pi^{\pm},$ $D^0 \rightarrow K^- \pi^+$
145.8	± 1.5		16	AHLEN	83	HRS	$D^{*+} \rightarrow D^0 \pi^+$
145.1	± 1.8		12	BAILEY	83	SPEC	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.1	± 0.5		14	BAILEY	83	SPEC	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.5	± 0.5		14	YELTON	82	MRK2	29 e ⁺ e ⁻ →
\sim 145.5				AVERY	80	SPEC	γA * '
145.2	± 0.6		2	BLIETSCHAU	79	BEBC	νp
³ Syste	matic er	ror not evalua	ated.				

$m_{D^*(2010)^+} - m_{D^*(2007)^0}$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the follow	ving data for average	s, fits	, limits,	etc. • • •	
2.6 ± 1.8	⁴ PERUZZI	77	MRK1	e^+e^-	

 $^{^4}$ Not independent of FELDMAN 77B mass difference above, PERUZZI 77 \mathcal{D}^0 mass, and GOLDHABER 77 D*(2007)0 mass.

$D^{\bullet}(2010)^{\pm}$ WIDTH

VALUE (MeV)							
< 0.131							
<1.1							
<2.2							
<2.0							
• • • We do not <1.1 <2.2							

D*(2010) DECAY MODES

 $D^*(2010)^{-}$ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_j/Γ)	
$\overline{\Gamma_1}$	$D^0 \pi^+$	(67.7±0.5) %	
Γ ₂ Γ ₃	$D^+\pi^0$	$(30.7 \pm 0.5) \%$	
Γ ₃	$D^+ \gamma$	(1.6 ± 0.4) %	

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=$ 0.3 for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to

D*(2010)+ BRANCHING RATIOS

•	π ⁺)/Γ	total									Γ_1/Γ
VALUE 0.577	±0.006	OUR FIT		DO	CUMENT ID		TECN		MMENT		
		OUR AVE	RAGE								
		9±0.0064		,7 RA	RTELT	98	CLE:	-م (+ _e -		
		±0.003			BRECHT		ARG		. •	 hadror 	
		±0.013			TIER		CLE	-		hadron	-
			following		for average				-		13
	±0.04	±0.04			LER		MR				
	±0.04	±0.04			LES	B2		(2 e ⁻			
	±0.15				LDHABER			$(1 e^{-})$			
-	π ⁰)/Γ			00	LUIIABEN	••	IVIIX				C- /C
•	**)/L	total									Γ_2/Γ
VALUE 0 207	±0.006	OUR FIT	EVTS		DOCUMENT	<u>ID</u>	2	EÇN	COMM	IENI	
		3±0.0062		5.6.7	BARTELT		98 (LE2	e+ e-	_	
			following		for average					_	
				uata	•			-			
		±0.008	1404	5	ALBRECH		95F A			_ → ha	
		±0.008	410	,	BUTLER		92 (_ → ha	drons
		± 0.02			ADLER				e+ e-		
0.34	±0.07				COLES		82 N	AKK2	e+ e⁻	_	
ר(ייי+	γ)/Γ _{tt}										Г3/Г
VALUE	///· to	Kal	CL%	EV.T.C	DOCU	14547	F /D		TECN	COMMEN	
	6 ±0.0	04 OUR F		LVIJ	DOCO	1412141	- IV	— '	LUIV	COMMEN	
		DS OUR A									
		042 + 0.002		-	5,6 BAR	TELT		98 C	LE2	e+ e-	
0.01	1 ±0.0	14 ± 0.016		12	5 BUTI			92 (LE2	e+e	→
										hadro	ns
• • •	We do r	ot use the	following	data	for average	s, fits	s, limi	ts, etc	. • •	•	
< 0.05	2		90		ALBF	RECH	ΙT	95F A	RG	e ⁺ e ⁻ - hadro	
0.17	±0.0	5 ±0.05			ADLE			88D N	/IRK3	e+ e-	
0.22	± 0.13	2			8 COLE	ES		82 N	ARK2	e+ e~	
5 Th	e branch n to 100		ere not in	deper	dent, they l	have	been	onstr	ained b	y the aut	hors to
				vetica		tha n	radict	ion o	f the r	atio of h	adronic
6 Sys	stematic	error inclu	ides thec	A CLICO	i error on i	rue p	# euici	1011 0	i the in		automo
sur 6 Sys _ ma	stematic ides.				the decay.		# euici	1011 0	i the in		automo

D*(2010)* REFERENCES

ADINOLFI	99	NP B547 3	M, Adinolfi et al.	(Beatrice Collab.)
BREITWEG	99	EPJ C6 67	J. Breitweg et al.	(ZEUS Collab.)
BARTELT	98	PRL 80 3919	J. Bartelt et al.	(CLEO II Collab.)
ADLOFF	97B	ZPHY C72 593	C. Adloff et al.	(H1 Collab.)
BREITWEG	97	PL B401 192	J. Breitweg et al.	(ZEUS Collab.)
BREITWEG	97B	PL B407 402	J. Breitweg et al.	(ZEUS Collab.)
ALBRECHT	95F	ZPHY C66 63	H, Albrecht et al.	(ARGUS Collab.)
DERRICK	95	PL B349 225	M. Derrick et al.	(ZEUS Collab.)
BARLAG	92B	PL B278 480	S. Barlag et al.	(ACCMOR Collab.)
BORTOLETTO	92B	PRL 69 2046	D. Bortoletto et al.	(CLEO Collab.)
BUTLER	92	PRL 69 2041	F. Butler et al.	(CLEO Collab.)
ALEXANDER	91B	PL B262 341	G. Alexander et al.	(OPAL Collab.)
DECAMP	91 J	PL B266 218	D. Decamp et al.	(ALEPH Collab.)
ABACHI	88B	PL B212 533	S. Abachi et al.	(ANL, IND, MICH, PURD+)
ADLER	88D	PL B208 152	J. Adler et al.	(Mark III Collab.)
ALBRECHT	85F	PL 150B 23S	H. Albrecht et al.	(ARGUS Collab.)
AHLEN	83	PRL 51 1147	S.P. Ahlen et al.	(AÑL, IND, LBL+)
BAILEY	83	PL 132B 230	R. Bailey et al.	(AMST, BRIS, CERN, CRAC+)
COLES	82	PR D26 2190	M.W. Coles et al.	(LBL, SLAC)
YELTON	82	PRL 49 430	J.M. Yelton et al.	(SLAC, LBL, UCB+)
FITCH	81	PRL 46 761	V.L. Fitch et al.	(PRIN, SACL, TORI+)
AVERY	60	PRL 44 1309	P. Avery et al.	(ILL, FNAL, COLU)
BLIETSCHAU	79	PL 86B 108	J. Blietschau et al.	(AACH3, BONN, CERN+)
FELDMAN	77B	PRL 38 1313	G.J. Feldman et al.	(Mark I Collab.)
GOLDHABER	77	PL 69B 503	G. Goldhaber et al.	(Mark I Collab.)
PERUZZI	77	PRL 39 1301	I. Peruzzi <i>et ai</i> .	(Mark I Coliab.)
		OTHER	RELATED PAPER	85 ——
		•		
SEMENOV	99	SPU 42 847	S.V. Semenov	
5-III-III	• •	Translated from UFN 42		
NUSSINOV	98	PL B418 383	S. Nussinov	
KAMAL	92	PL B284 421	A.N. Kamal, Q.P. Xu	(ALBE)
ALTHOFF	83C	PL 126B 493	M. Althoff et al.	(TASSO Čollab.)
BEBEK	82	PRL 49 610	C. Bebek et al.	(HARV, OSU, ROCH, RUTG+)
TRILLING	81	PRPL 75 57	G.H. Trilling	(LBL, UCB)
PERUZZI	76	PRL 37 569	I. Peruzzi et al.	(Mark I Collab.)

$D_1(2420)^0$

 $I(J^P) = \frac{1}{2}(1^+)$ I, J, P need confirmation.

Seen in $D^*(2010)^+\pi^-$. $J^P = 1^+$ according to ALBRECHT 89H.

D1 (2420)0 MASS

VALUE (MeV) 2422.2±1.8 OUR AVE	<u>EVTS</u> RAGE Err	DOCUMENT ID or includes scale		COMMENT
2421 $^{+1}_{-2}$ ± 2	286	AVERY	94C CLE2	$e^+e^- \rightarrow D^{*+}\pi^-X$
2422 ±2 ±2	51	FRABETTI		$\gamma \text{Be} \rightarrow D^{*+}\pi^- X$
2428 ±3 ±2	279	AVERY		$e^+e^- \rightarrow D^{*+}\pi^-X$
2414 ±2 ±5	171	ALBRECHT	89н ARG	$e^+e^- \rightarrow D^{*+}\pi^-X$
2428 ±8 ±5	171	ANJOS	89c TPS	$\gamma N \rightarrow D^{*+}\pi^{-}X$
• • • We do not use t	he following	g data for average	es, fits, limits	, etc. • • •
2425 ±3	235	¹ ABREU	98M DLPH	e^+e^-
¹ No systematic error	r given.			

D1 (2420)0 WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
18.9 + 4.6 OUR AVE	RAGE			
$20 + \frac{6}{5} \pm 3$	286	AVERY	94C CLE2	$e^+e^- \rightarrow D^{*+}\pi^-X$
$15 \pm 8 \pm 4$	51	FRABETTI	94B E687	$\gamma \text{Be} \rightarrow D^{*+} \pi^- X$
$23 \begin{array}{cccccccccccccccccccccccccccccccccccc$	279	AVERY	90 CLEO	$e^+e^- \rightarrow D^{*+}\pi^-X$
$13 \pm 6 \begin{array}{c} +10 \\ -5 \end{array}$	171	ALBRECHT	89н ARG	$e^+e^- \rightarrow D^{*+}\pi^-X$
• • • We do not use	the following	data for average	es, fits, limits,	etc. • • •
58 ±14 ±10	171	ANJOS	89C TPS	$\gamma N \rightarrow D^{*+}\pi^-X$

D1 (2420)0 DECAY MODES

 $\overline{\it D}_{1}(2420)^{0}$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	D*(2010)+π ⁻	seen
Γ_2	$D^+\pi^-$	not seen

D1 (2420) BRANCHING RATIOS

Γ(D*(2010)+	π^-)/ Γ_{total}				Γ1/Γ
VALUE		DOCUMENT ID		TECN	COMMENT
seen		AVERY	90	CLEO	$e^+e^- \rightarrow D^{*+}\pi^-X$
seen		ALBRECHT	89н	ARG	$e^+e^- \rightarrow D^*\pi^-X$
seen		ANJOS	89C	TPS	$\gamma N \rightarrow D^{*+}\pi^{-}X$
$\Gamma(D^+\pi^-)/\Gamma($	$D^*(2010)^+\pi^-)$				Γ_2/Γ_1
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.24	90	AVERY	90	CLEO	$e^+e^- \rightarrow D^+\pi^-X$

D₁(2420)⁰ REFERENCES

ABREU AVERY FRABETTI AVERY ALBRECHT ANJOS	94C 94B 90 89H	PL B426 231 PL B331 236 PRL 72 324 PR D41 774 PL B232 398 PRL 62 1717	P. Abreu et al. P. Avery et al. P.L. Frabetti et al. P. Avery, D. Besson H. Albrecht et al. J.C. Anjos et al.	(DELPHI COllab.) (CLEO COllab.) (FNAL E687 COllab.) (CLEO COllab.) (ARGUS COllab.) JI (FNAL E691 COllab.)
ANJO5	89C	PRL 62 1717	J.C. Anjos et al.	(FNAL E691 Collab.)

- OTHER RELATED PAPERS ----

SEMENOV 99 SPU 42 847 S.V. Semenov Translated from UFN 42 937.

 $I(J^P) = \frac{1}{2}(?^?)$ I needs confirmation.

OMITTED FROM SUMMARY TABLE Seen in $D^*(2007)^0\pi^+$. $J^P=0^+$ ruled out.

D1 (2420) * MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
2427±5 OUR AVERAGE	Error inc	ludes scale facto	or of 2.0.	
2425 ± 2 ± 2	146			$e^+e^- \rightarrow D^{*0}\pi^+X$
2443±7±5	190	ANJOS	89c TPS	$\gamma N \rightarrow D^0 \pi^+ X^0$

$m_{D_1^*(2420)^{\pm}} - m_{D_1^*(2420)^0}$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
4 ⁺² ₃ ±3	BERGFELD 94	B CLE2	$e^+e^- \rightarrow \text{hadrons}$

$D_1(2420)^{\pm}$ WIDTH

VALUE (MeV) 28± 8 OUR AVERAGE	EVTS	DOCUMENT ID	<u>TECN</u>	COMMENT
$26 + \frac{8}{7} \pm 4$	146	BERGFELD	94B CLE2	$e^+e^- \rightarrow D^{*0}\pi^+X$
$41\pm19\pm8$	190	ANJOS	89C TPS	$\gamma N \rightarrow D^0 \pi^+ X^0$

$D_1(2420)^{\pm}$ DECAY MODES

 $D_1^*(2420)^-$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$D^*(2007)^0 \pi^+$	seen
Γ2	$D^0 \pi^+$	not seen

D1(2420) BRANCHING RATIOS

$\Gamma(D^*(2007)^0 \star$	+)/Γ _{total}					Γ_1/Γ
VALUE		DOCUMENT ID		TECN_	COMMENT	
seen		ANJOS	89C	TPS	$\gamma N \rightarrow D^0$	$^{0}\pi^{+}X^{0}$
$\Gamma(D^0\pi^+)/\Gamma(D^0\pi^+)$	P*(2007) ⁰ π ⁺)					Γ_2/Γ_1
VALUE	CL%	DOCUMENT ID		TECN_	COMMENT	
• • • We do not	use the following	g data for average	s, fits	, limits,	etc. • • •	
<0.18	90	BERGFELD	94B	CLE2	$e^+e^- \rightarrow$	hadrons

D₁(2420) ± REFERENCES

	Bergfeld <i>et al.</i> . Anjos <i>et al</i> .
--	--

----- OTHER RELATED PAPERS ----

SEMENOV 99 SPU 42 847 S.V. Semenov Translated from UFN 42 937.

 $D_2^*(2460)^0$

 $I(J^P) = \frac{1}{2}(2^+)$

(CLEO Collab.) (FNAL E691 Collab.)

 $J^P = 2^+$ assignment strongly favored (ALBRECHT 89B).

D₂*(2460)0 MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
2458.9 ± 2.0 OUR AV	ERAGE Er	ror includes scale	factor of 1.2.	
2465 ±3 ±3	486	AVERY	94C CLE2	$e^+e^- \rightarrow D^+\pi^-X$
2453 ±3 ±2	128	FRABETTI	94B E687	$\gamma Be \rightarrow D^+\pi^-X$
2461 ±3 ±1	440	AVERY	90 CLEO	$e^+e^- \rightarrow D^{*+}\pi^-X$
2455 ±3 ±5	337	ALBRECHT	89B ARG	$e^+e^- \rightarrow D^+\pi^-X$
2459 ±3 ±2	153	ANJOS	89c TPS	$\gamma N \rightarrow D^{+} \pi^{-} X$
 • • We do not use 	the following	ng data for average	s, fits, limits,	etc. • • •
2461 ±6	126	¹ ABREU	98M DLPH	e^+e^-
2466 ±7	1	ASRATYAN	95 BEBC	$\begin{array}{ccc} 53,40 \ \nu(\overline{\nu}) \rightarrow \ p + \ X, \\ d + \ X \end{array}$
¹ No systematic en	or given.			- ,

D₂*(2460)0 WIDTH

		2.		
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
$28 + \frac{8}{7} \pm 6$	486	AVERY	94C CLE2	$e^+e^- \rightarrow D^+\pi^- X$
25±10± 5	128	FRABETTI	948 E687	$\gamma \text{Be} \rightarrow D^+ \pi^- X$
20^{+9+9}_{-12-10}	440	AVERY	90 CLEO	$e^+e^- \rightarrow D^{*+}\pi^-X$
$15 + 13 + 5 \\ -10 - 10$	337	ALBRECHT	89в ARG	$e^+e^- \rightarrow D^+\pi^-X$
20±10± 5	153	ANJOS	89C TPS	$\gamma N \rightarrow D^{+}\pi^{-}X$

D*(2460)0 DECAY MODES

 $\overline{D}_2^*(2460)^0$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ_i/Γ)
Γ ₁ Γ ₂	$D^{+}\pi^{-}$ $D^{*}(2010)^{+}\pi^{-}$	seen seen
' 2	D (2010) N	SCC11

 $D_2^*(2460)^0$, $D_2^*(2460)^+$, $D^*(2640)^\pm$

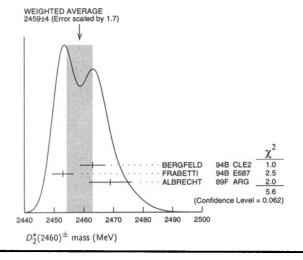
D2(2460) BRANCHING RATIOS

$\Gamma(D^+\pi^-)/\Gamma_{\text{total}}$				Г1/Г
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
seen	337	ALBRECHT	89B ARG	$e^+e^- \rightarrow D^+\pi^-X$
seen		ANJO\$	89C TPS	$\gamma N \rightarrow D^{+} \pi^{-} X$
$\Gamma(D^{*}(2010)^{+}\pi^{-})/\Gamma$	T _{total}			Г2/Г
VALUE		DOCUMENT ID	TECN	COMMENT
seen		AVERY	90 CLEO	$e^+e^- \rightarrow D^{*+}\pi^-X$
seen		ALBRECHT	89H ARG	$e^+e^- \rightarrow D^*\pi^-X$
$\Gamma(D^+\pi^-)/\Gamma(D^+(20))$)10) ⁺ π ⁻)			Γ_1/Γ_2
VALUE		DOCUMENT ID	TECN	COMMENT
2.3±0.6 OUR AVERAG	iΕ			
$2.2 \pm 0.7 \pm 0.6$		AVERY	94c CLE2	$e^+e^- \rightarrow D^{*+}\pi^-X$
2.3 ± 0.8		AVERY	90 CLEO	e ⁺ e ⁻
$3.0 \pm 1.1 \pm 1.5$		ALBRECHT	89H ARG	$e^+e^- \rightarrow D^*\pi^-X$

D₂*(2460)⁰ REFERENCES

ABREU ASRATYAN AVERY FRABETTI AVERY ALBRECHT ALBRECHT	95 94C 94B 90 89B 89H	PL B426 231 ZPHY C68 43 PL B331 236 PRL 72 324 PR D41 774 PL B221 422 PL B232 398	P. Abreu et al. A.E. Asratyan et al. P. Avery et al. P.L. Frabetti et al. P. Avery, D. Besson H. Albrecht et al. H. Albrecht et al.	(DELPHI Collab.) (BIRM, BELG, CERN+) (CLEO Collab.) (FNAL E687 Collab.) (CLEO Collab.) (ARGUS Collab.) JP (ARGUS Collab.)
ANJOS		PRL 62 1717	J.C. Anjos et al.	(FNAL E691 Collab.)

- OTHER RELATED PAPERS -


SEMENOV SPU 42 847 S.V. Semenov Translated from UFN 42 937.

$D_2^*(2460)^{\pm}$

 $I(J^P) = \frac{1}{2}(2^+)$

D2(2460) + MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	
2459±4 OUR AVERAGI	Error i	ncludes scale facto	or of 1.7. See	the ideogram below.
2463±3±3	310			$e^+e^- \rightarrow D^0\pi^+X$
2453 ± 3 ± 2	185	FRABETTI	94B E687	$\gamma \text{Be} \rightarrow D^0 \pi^+ X$
2469±4±6		ALBRECHT	89F ARG	$e^+e^- \rightarrow D^0\pi^+X$

$m_{D_2^{\bullet}(2460)^{\pm}} - m_{D_2^{\bullet}(2460)^{0}}$

DOCUMENT ID TECN COMMENT

0.9 ± 3.3 OUR A	VERAGE Eri	ror includes scale			
- 2 ±4 ±4		BERGFELD	94B CLE2	$e^+e^- \rightarrow hadrons$	
0 ±4				$\gamma Be \rightarrow D\pi X$	
14 ±5 ±8		ALBRECHT 89F ARG		$e^+e^- \rightarrow D^0\pi^+X$	
		D ₂ *(2460)±WI	DTH		
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
25 + 8 OUR AVER	AGE				
27 + 11 ± 5	310	BERGFELD	94B CLE2	$e^+e^- \rightarrow D^0\pi^+X$	
23± 9±5	185	FRABETTI	94B E687	$\gamma \text{Be} \rightarrow D^0 \pi^+ X$	

$D_2^*(2460)^{\pm}$ DECAY MODES

 $D_2^*(2460)^-$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ_I/Γ)
Γ ₁	$D^0 \pi^+ D^{*0} \pi^+$	seen
Γ2	$D^{*0}\pi^{+}$	seen

D*(2460)* BRANCHING RATIOS

$\Gamma(D^0\pi^+)/\Gamma_{\text{total}}$	DOCUMENT ID	TECN	COMMENT	Γ ₁ /Γ
seen	ALBRECHT	89F ARG	$e^+e^- \rightarrow$	D ⁰ π+X
$\Gamma(D^0\pi^+)/\Gamma(D^{*0}\pi^+)$				Γ_1/Γ_2
VALUE	DOCUMENT ID	TECN_	COMMENT	
1.9±1.1±0.3	BERGFELD	94B CLE2	e^+e^-	hadrons

$D_2^*(2460)^{\pm}$ REFERENCES

FRABETTI 94B PRL 72 324 P.L. Frabetti et al. (FNAL E68)	EO Collab.) 587 Collab.) SUS Collab.)
---	---

VALUE (MeV)

 $I(J^P) = \frac{1}{2}(??)$

OMITTED FROM SUMMARY TABLE Seen in $D^*(2010)^+\pi^+\pi^-$. Needs confirmation.

D*(2640)* MASS DOCUMENT ID

VALUE (MeV) 2637±2±6	66 ±	DOCUMENT ID	TECN 98M DLPH	$ \frac{COMMENT}{e^+e^- \rightarrow D^{*+}\pi^+\pi^-\chi} $	_ I
		D*(2640)± WID	TH		
<u>VALUE (MeV)</u> <15	<u>CL%</u> 95	DOCUMENT ID	TECN 98M DLPH	$\frac{COMMENT}{e^+e^- \rightarrow D^{*+}\pi^+\pi^- X}$	_ I

D*(2640)+ DECAY MODES

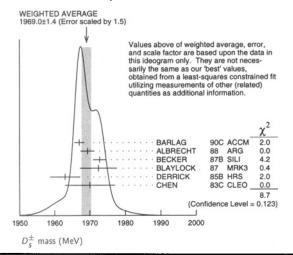
 $D^*(2640)^-$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ_j/Γ)					
Γ ₁	$D^*(2010)^+\pi^+\pi^-$	seen					
D*(2640)± REFERENCES							
ABREU	J 98M PL B426 231	P. Abreu et al.	(DELPHI Collab.)				

CHARMED, STRANGE MESONS $(C = S = \pm 1)$

 $D_s^+ = c\overline{s}$, $D_s^- = \overline{c}s$, similarly for D_s^* 's

$$I(J^P) = 0(0^-)$$


The angular distributions of the decays of the ϕ and $\overline{K}^*(892)^0$ in the $\phi\pi^+$ and $K^+\overline{K}^*(892)^0$ modes strongly indicate that the spin is zero. The parity given is that expected of a c3 ground state.

D MASS

The fit includes D^{\pm} , D^{0} , D_{S}^{\pm} , $D^{+\pm}$, D^{+0} , and $D_{S}^{*\pm}$ mass and mass difference measurements. Measurements of the D_{S}^{\pm} mass with an error greater than 10 MeV are omitted from the fit and average. A number of early measurements have been omitted altogether.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
1968.6± 0.6 OUR FIT	Error include	s scale factor of 1	.1.	
1969.0± 1.4 OUR AVER	AGE Error	ncludes scale fact	or of 1.5. Se	e the ideogram below
$1967.0 \pm 1.0 \pm 1.0$	54	BARLAG	90c ACCM	π Cu 230 GeV
1969.3± 1.4± 1.4		ALBRECHT	88 ARG	e ⁺ e ⁻ 9.4-10.6 GeV
$1972.7 \pm 1.5 \pm 1.0$	21	BECKER	87B SILI	200 GeV π,K,p
$1972.4 \pm 3.7 \pm 3.7$	27	BLAYLOCK	87 MRK3	e ⁺ e 4.14 GeV
$1963 \pm 3 \pm 3$	30	DERRICK	85B HRS	e^+e^- 29 GeV
1970 \pm 5 \pm 5	104	CHEN	83C CLEO	e+e- 10.5 GeV
• • • We do not use the	following dat	a for averages, fit	s, limits, etc.	• • •
1968.3± 0.7± 0.7	290	¹ ANJOS	88 E691	Photoproduction
1980 ±15	6	USHIDA	86 EMUL	ν wideband
$1973.6 \pm 2.6 \pm 3.0$	163	ALBRECHT	85D ARG	e ⁺ e 10 GeV
1948 ±28 ±10	65	AIHARA	84D TPC	e ⁺ e ⁻ 29 GeV
1975 \pm 9 \pm 10	49	ALTHOFF	84 TASS	e+e- 14-25 GeV
1975 ± 4	3	BAILEY	84 ACCM	hadron $+$ Be $\rightarrow \phi \pi^+ X$

 1 ANJOS 88 enters the fit via $m_{D_{s}^{\pm}}-m_{D^{\pm}}$ (see below).

$m_{D_{\bullet}^{\pm}}-m_{D^{\pm}}$

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , and $D_{s}^{*\pm}$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT I	D	TECN	COMMENT
99.2±0.5 OUR FIT	Error includ	es scale factor o	of 1.1.		
99.2±0.5 OUR AVE	RAGE				
$99.5 \pm 0.6 \pm 0.3$		BROWN	94	CLE2	$e^+e^-pprox \Upsilon(45)$
98.5±1.5	555	CHEN	89	CLEO	e+e- 10.5 GeV
99.0±0.8	2 9 0	ANJOS	88	E691	Photoproduction

Ds MEAN LIFE

Measurements with an error greater than $0.2\times 10^{-12}~\text{s}$ or with fewer than 100 events are omitted from the average.

VALUE	(10 ⁻¹² s)		EVTS	DOCUMENT ID		TECN	COMMENT
0.496	+0.010 -0.009	OUR AVE	RAGE				
0.518	± 0.014		1662	AITALA	99	E791	π ⁻ nucleus, 500 GeV
0.4863	± 0.0150	+0.0049 -0.0051	2167	² BONVICINI	99	CLE2	$e^+e^-pprox \Upsilon(4S)$
0.475	± 0.020	± 0.007	900	FRABETTI	93F	E687	γ Be, $D_s^+ \rightarrow \phi \pi^+$
0.50	± 0.06	±0.03	104	FRABETTI	90	E687	γ Be, $\phi \pi^+$
0.56	+0.13 -0.12	± 0.08	144	ALBRECHT	881	ARG	e^+e^- 10 GeV
0.47	±0.04	±0.02	228	RAAB	88	E691	Photoproduction
• • •	We do n	ot use the	following	data for averages,	fits,	limits, el	tc. • • •
0.33	+0.12 -0.08	±0.03	15	ALVAREZ	90	NA14	γ , $D_s^+ \rightarrow \phi \pi^+$
0.469	$+0.102 \\ -0.086$		54	3 BARLAG	90c	ACCM	π^- Cu 230 GeV
0.31	+0.24 -0.20	±0.05	18	AVERILL	89	HRS	e^+e^- 29 GeV
0.48	+ 0.06 - 0.05	±0.02	99	ANJOS	87B	E691	See RAAB 88
0.33	+0.10 -0.06		21	⁴ BECKER	87B	SILI	200 GeV π,Κ,ρ
0.57	+0.36 -0.26	±0.09	9	BRAUNSCH	87	TASS	$e^{+}e^{-}$ 35–44 GeV
0.47	±0.22	± 0.05	141	CSORNA	87	CLEO	e^+e^- 10 GeV
0.35	+0.24 -0.18	±0.09	17	JUNG	86	HRS	See AVERILL 89
0.26	$+0.16 \\ -0.09$		6	USHIDA	86	EMUL	u wideband
0.32	+0.30 -0.13		3	BAILEY	84	ACCM	hadron ⁺ Be $\rightarrow \phi \pi^+ X$
0.19	$^{+0.13}_{-0.07}$		4	USHIDA	83	EMUL	See USHIDA 86

²BONVICINI 99 obtains 1.19 \pm 0.04 for the ratio of D_s^+ to D_s^0 lifetimes.

D+ DECAY MODES

Branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. $D_{\rm g}^-$ modes are charge conjugates of the modes below.

	Mode	Scale factor Fraction (Γ_j/Γ) Confidence lev					
	Inclusive	e modes					
Γ_1	K^- anything	$\begin{pmatrix} 13 & +14 \\ -12 & \end{pmatrix} \%$					
Γ_2	\overline{K}^0 anything $+$ K^0 anything	(39 ±28)%					
Γ_3	K^+ anything	$(20 \begin{array}{c} +18 \\ -14 \end{array}) \%$					
Γ_4	non- $K\widetilde{K}$ anything	(64 ±17)%					
Γ ₅	e ⁺ anything	(8 + 6)%					
Γ ₆	ϕ anything	$(18 {}^{+15}_{-10})\%$					
	Leptonic and semileptonic modes						
Γ ₇	$\mu^+ \nu_{\mu}$	$(4.6 \pm 1.9) \times 10^{-3}$ S=1.	3				
	$\tau^+ \nu_{ au}$	(7 ± 4)%					
	$\phi \ell^+ \nu_\ell$	[a] $(2.0 \pm 0.5)\%$					
	$\eta \ell^+ \nu_\ell + \eta'(958) \ell^+ \nu_\ell$	[a] $(3.5 \pm 1.0)\%$					
<u></u>	$\eta \ell^+ \nu_{\ell}$	(2.6 ± 0.7)%					
Γ ₁₂	$\eta'(958)\ell^+\nu_\ell$	$(8.9 \pm 3.4) \times 10^{-3}$					
	Hadronic modes with a KT	ζ pair (including from a ϕ)					
Γ_{13}	$K^+\overline{K}^0$	$(3.6 \pm 1.1)\%$					
Γ ₁₄	$K^+K^-\pi^+$	[b] $(4.4 \pm 1.2)\%$ S=1.	1				
Γ_{15}	$\phi\pi^+$	[c] $(3.6 \pm 0.9)\%$					
Γ ₁₆	$K^{+}\overline{K}^{*}(892)^{0}$	[c] (3.3 \pm 0.9) %					
Γ ₁₇	$f_0(980)\pi^+$	[c] (1.8 ± 0.8)% S=1.	3				
Γ ₁₈	$K^{+}\overline{K}_{0}^{*}(1430)^{0}$	[c] $(7 \pm 4) \times 10^{-3}$					
• • •	$f_0(1710)\pi^+ \to K^+K^-\pi^+$	[d] $(1.5 \pm 1.9) \times 10^{-3}$					
Γ ₂₀ ·	$K^+K^-\pi^+$ nonresonant	$(9 \pm 4) \times 10^{-3}$					
₂₁	$K^0\overline{K}^0\pi^+$						
Γ ₂₂	$K^*(892)^+\overline{K}^0$	[c] $(4.3 \pm 1.4)\%$					

³BARLAG 90c estimates the systematic error to be negligible.

⁴BECKER 878 estimates the systematic error to be negligible.

D_s^{\sharp}

Γ_{23}	$K^+K^-\pi^+\pi^0$				_	-		
Γ ₂₄	$\phi \pi^+ \pi^0$		[c]	(9	±	5) %	
Γ ₂₅	$\phi \rho^+$		[c]					
Γ ₂₆	$\phi \pi^+ \pi^0$ 3-body		[c]				%	CL=90%
	$K^+K^-\pi^+\pi^0$ non- ϕ						%	
Γ ₂₇	ν+770 +							CL=90%
Γ ₂₈	$K^+\overline{K}^0\pi^+\pi^-$			< 2.8			%	CL=90%
Γ ₂₉	$K^{0}K^{-}\pi^{+}\pi^{+}$			(4.3				
Γ ₃₀	$K^*(892)^+\overline{K}^*(892)^0$		[c]	(5.8	±	2.5) %	
Γ ₃₁	$K^0K^-\pi^+\pi^+$ non- $K^{*+}\overline{K}$	•0		< 2.9	•		%	CL=90%
Γ32	$K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-}$			(8.3	±	3.3	$) \times 10^{-3}$	1
Γ33	$\phi\pi^+\pi^+\pi^-$		[c]					
	'		[-]				•	
۲ ₃₄	$K^+K^-\pi^+\pi^+\pi^-$ non- ϕ			(3.0) <u>T</u>	2.0) × 10 ⁻³	
-	Hadronic Hadronic	mode	5 Witi					
Γ ₃₅	$\pi^{+} \pi^{+} \pi^{-}$			(1.0	ı ±	0.4		S=1.2
Γ ₃₆	$ ho^0\pi^+$			< 8			× 10 ⁻⁴	CL=90%
Γ_{37}	$f_0(980)\pi^+$		[c]	(1.8	±	8.0) %	S=1.7
Γ ₃₈	$f_2(1270)\pi^+$		[c]	(2.3	t t	1.3) × 10 ⁻³	I
Γ39	$f_0(1500)\pi^+ \to \pi^+\pi^-\pi^-$	+	[e]				$) \times 10^{-3}$	
Γ40	$\pi^+\pi^+\pi^-$ nonresonant			< 2.₹			× 10-3	
Γ ₄₁	$\pi^{+}\pi^{+}\pi^{-}\pi^{0}$			< 12			%	CL=90%
								CL=3076
F ₄₂	$\eta\pi^+_{\perp}$			(1.7				
Γ ₄₃	$\omega\pi^+$		[c]				$) \times 10^{-3}$	
Γ_{44}	$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$			(6.9	+	3.0	$) \times 10^{-3}$,
Γ_{45}	$\pi^{+} \pi^{+} \pi^{-} \pi^{0} \pi^{0}$				_	-		
Γ_{46}	ηho^+		[c]	(10.8	±	3.1) %	
Γ_{47}	$\eta \pi^+ \pi^0$ 3-body		[c]	< 4			%	CL=90%
Γ ₄₈	$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$			(4.9		3.2) %	
Γ49	$\eta'(958) \pi^+$		[c]					
Γ ₅₀	$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}\pi^{0}$		[-1	(•			, ,-	
	$\eta'(958)\rho^{+}$		[c]	(10.1	_	20	1 0/	
Γ ₅₁	$\eta'(958) \pi^+ \pi^0$ 3-body			•		2.0	•	a
Γ ₅₂	$\eta'(958)\pi'\pi'3-body$		[c]	< 1.4	,		%	CL≔90%
	Modes wi	th one	or t	hree <i>i</i>	K's			
Γ ₅₃	$K^0\pi^+$			< 8			× 10 ⁻³	L=90%
Γ ₅₄	$K^{+}\pi^{+}\pi^{-}$			(1.0	٠ +	n 4		
Γ ₅₅	$\kappa^+ \rho^0$			< 2.9		•	× 10 ⁻³	CL=90%
Γ ₅₆	$K^*(892)^0\pi^+$					2.0) × 10 ⁻³	
						2.0		
Γ ₅₇	K+K+K-			< 6			× 10 ⁻⁴	
Γ ₅₈	ϕK^+		[c]	< 5			× 10 ⁻⁴	CL=90%
	$\Delta C = 1$ weak neu	itral ci	urren	t (C1) m	ode	s or	
	Lepton numb						.,	
г	$\pi^{+} e^{+} e^{-}$	··· (-)					10-4	G 008/
Γ ₅₉			[/]				× 10 ⁻⁴	CL=90%
L ⁶⁰	$\pi^{+}\mu^{+}\mu^{-}$		[f]				× 10 ⁻⁴	
Γ ₆₁	K+e+e-	C1		< 1.6			× 10 ⁻³	
Γ ₆₂	$K^+\mu^+\mu^-$	C1		< 1.4	,		× 10 ⁻⁴	CL=90%
Γ ₆₃	$K^*(892)^+ \mu^+ \mu^-$	C1		< 1.4	ŀ		× 10 ⁻³	CL=90%
Γ ₆₄	$\pi^+ e^\pm \mu^\mp$	LF	[g]	< 6.1			× 10 ⁻⁴	L=90%
Γ ₆₅	$K^+e^{\pm}\mu^{\mp}$	LF	[g]	< 6.3	3		\times 10 ⁻⁴	
Γ ₆₆	$\pi^{-}e^{+}e^{+}$	L	•-•	< 6.9			×10 ⁻⁴	CL=90%
Γ ₆₇	$\pi^{-}\mu^{+}\mu^{+}$	Ĺ		< 8.2			× 10 ⁻⁵	CL=90%
Γ ₆₈	$\pi - e^{+} \mu^{+}$	L		< 7.3			× 10 ⁻⁴	CL=90%
	κ-e+e+	L		< 6.3			× 10 ⁻⁴	CL=90%
Γ ₆₉	ν++						× 10	CL=90%
Γ ₇₀	$K^-\mu^+\mu^+ K^-e^+\mu^+$	L		< 1.8			× 10 ⁻⁴	
Γ ₇₁		L		< 6.8			× 10 ⁻⁴	
Γ_{72}	$K^*(892)^- \mu^+ \mu^+$	L		< 1.4	ŀ		× 10 ⁻³	CL≔90%
Γ ₇₃	A dummy mode used by the	e fit.		(80	±	5) %	

- [a] For now, we average together measurements of the $X\,e^+\,\nu_e$ and $X\,\mu^+\,\nu_\mu$ branching fractions. This is the average, not the sum.
- [b] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers.
- [c] This branching fraction includes all the decay modes of the final-state resonance.
- [d] This value includes only K^+K^- decays of the $f_0(1710)$, because branching fractions of this resonance are not known.
- [e] This value includes only $\pi^+\pi^-$ decays of the $f_0(1500)$, because branching fractions of this resonance are not known.
- [f] This mode is not a useful test for a ΔC=1 weak neutral current because both quarks must change flavor in this decay.
- [g] The value is for the sum of the charge states or particle/antiparticle states indicated.

CONSTRAINED FIT INFORMATION

An overall fit to 15 branching ratios uses 24 measurements and one constraint to determine 10 parameters. The overall fit has a $\chi^2=$ 17.5 for 15 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to

<i>X</i> 9	58								
<i>x</i> ₁₁	50	86							
<i>x</i> ₁₂	38	65	56						
x ₁₄	52	85	73	55					
<i>x</i> ₁₅	57	93	79	60	92				
<i>x</i> ₁₆	53	86	74	56	92	93			
x ₃₅	47	76	65	50	84	82	81		
<i>x</i> ₃₇	30	48	42	32	51	52	50	54	
<i>x</i> 73	-59	-93	-84	<u>~64</u>	-95	~96	-94	-86	<u>-64</u>
	х7	<i>x</i> 9	<i>x</i> ₁₁	<i>x</i> ₁₂	x ₁₄	<i>x</i> ₁₅	<i>x</i> ₁₆	<i>x</i> 35	x ₃₇

D+ BRANCHING RATIOS

A few older, now obsolete results have been omitted. They may be found in earlier editions.

	- inclusive mod	les .		 -	
Γ(K ⁻ anything)/Γ _{total}	DOCUMENT ID		TECN	COMMENT	Γ1/Γ
$0.13^{+0.14}_{-0.12} \pm 0.02$	COFFMAN	91	MRK3	e+e- 4.14 GeV	
$[\Gamma(K^0 \text{ anything}) + \Gamma(K^0 \text{ any})]$	thing)]/F _{total}		TECN	COMMENT	Γ2/Γ
0.39 ^{+0.28} _{-0.27} ±0.04	COFFMAN	91		e ⁺ e ⁻ 4.14 GeV	
Γ(K ⁺ anything)/Γ _{total}	DOCUMENT ID		TECN	COMMENT	Г ₃ /Г
0.20 ^{+0.18} _{-0.13} ±0.04	COFFMAN	91		e ⁺ e ⁻ 4.14 GeV	
Γ(non- K K anything) / Γ _{total}	DOCUMENT ID		TECN	COMMENT	Γ4/Γ
0.64±0.17±0.03	⁵ COFFMAN	91	MRK3	e+ e- 4.14 GeV	

⁵ COFFMAN 91 uses the direct measurements of the kaon content to determine this non- $K\overline{K}$ fraction. This number implies that a large fraction of D_s^+ decays involve η , η' , and/or non-spectator decays.

Γ(e [™] anything)/	total					Γ 5/ Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
0.077 + 0.057 + 0.043 - 0.043	.024 .021	BAI	97	BES	$e^+e^- \rightarrow$	$D_s^+D_s^-$
• • • We do not u	se the following	data for average	s, fits,	limits,	etc. • • •	
<0.20	90	⁶ BAI	90	MRK3	e ⁺ e ⁻ 4.14	GeV
⁶ Expressed as a	alue, the BAI 9	90 result is $\Gamma(e^+)$	anythi	ng)/Γ _{tol}	tal = 0.05 ±	0.05 ± 0.02.
$\Gamma(\phi \text{ anything})/\Gamma$	total					Γ 6/Γ

$\Gamma(\phi \text{ anything})/\Gamma_{\text{total}}$						
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.178^{igoplus 0.151}_{igoplus 0.072}^{igoplus 0.151}_{igoplus 0.063}^{igoplus 0.060}$	3	BAI	98	BES.	$e^+e^-\to$	$D_s^+ D_s^-$

Leptonic and semileptonic modes —

$\Gamma(\mu^+ u_\mu)/\Gamma_{ m total}$					Γ ₇ /Γ
See the "Note on Ps	eudoscala EVTS	ar-Meson Decay <u>DOCUMENT I</u>			he Listings for the π^{\pm} . COMMENT
• • • We do not use the f	ollowing	data for average	s, fits, I	imits, et	с. • • •
$0.015^{+0.013}_{-0.006} ^{+0.003}_{-0.002}$	3	7 BAI	95	BES	$e^+e^- \rightarrow D_s^+D_s^-$
$0.004 + 0.0018 + 0.0020 \\ -0.0014 - 0.0019$	8	8 AOKI	93	WA75	π^- emulsion 350 GeV
< 0.03	0	9 AUBERT	83	SPEC	μ^+ Fe, 250 GeV
7 BAL 95 uses one actua	D ⁺ →	$\mu^{+}\nu_{-}$ event to	gether	with two	$D^+ \rightarrow \tau^+ \nu$, events

- ⁷ BAI 95 uses one actual $D_s^+ \to \mu^+ \nu_\mu$ event together with two $D_s^+ \to \tau^+ \nu_\tau$ events and assumes μ - τ universality. This value of $\Gamma(\mu^+ \nu_\mu)/\Gamma_{\rm total}$ gives a pseudoscalar decay constant of $(430^{+150}_{-130} \pm 40)$ MeV.
- 8 AOKI 93 assumes the ratio of production cross sections of the D_s^+ and D^0 is 0.27. The value of $\Gamma(\mu^+\nu_\mu)/\Gamma_{\rm total}$ gives a pseudoscalar decay constant $f_{D_S}=(232\pm45\pm52)$ MeV.

 9 AUBERT 83 assume that the D_s^{\pm} production rate is 20% of total charm production rate.

FRABETTI 95B E687 Dalitz plot analysis

$\Gamma(\mu^+\nu_\mu)/\Gamma(\phi\pi^+)$ Γ_7/Γ_{15} See the "Note on Pseudoscalar-Meson Decay Constants" in the Listings for the π^\pm .	$\Gamma(K^+\overline{K}^0)/\Gamma(\phi\pi^+)$			Г	13/Г15
VALUE EVTS DOCUMENT ID TECN COMMENT 0.13 ±0.04 OUR FIT Error includes scale factor of 1.5.	VALUE EVTS	DOCUMENT ID	TECN	COMMENT	
0.173 ± 0.023 ± 0.035 182 ¹⁰ CHADA 98 CLE2 $e^+e^- \approx \Upsilon(45)$	1.01±0.16 OUR AVERAGE	411105	00- 5(01	0.	
• • We do not use the following data for averages, fits, limits, etc. • •	$1.15 \pm 0.31 \pm 0.19$ 68 $0.92 \pm 0.32 \pm 0.20$		90C E691	η Be e+e- 4.14 GeV	
0.245±0.052±0.074 39 11 ACOSTA 94 CLE2 See CHADA 98	$0.99 \pm 0.17 \pm 0.10$			e ⁺ e ⁻ 10 GeV	
10 CHADA 98 obtains $f_{D_{\mathrm{S}}}=$ (280 \pm 19 \pm 28 \pm 34) MeV from this measurement, using					_ ,
$\Gamma(D_s^+ \to \phi \pi^+)/\Gamma(\text{total}) = 0.036 \pm 0.009.$	$\Gamma(\phi\pi^+)/\Gamma_{\text{total}}$ We now have model-independ	lent mossurement	s of this bra	anching fraction a	Γ ₁₅ /
11 ACOSTA 94 obtains $f_{D_s} = (344 \pm 37 \pm 52 \pm 42)$ MeV from this measurement, using	no longer use the earlier, mod			mening fraction, an	10 30 1
$\Gamma(D_S^+ \to \phi \pi^+)/\Gamma(\text{total}) = 0.037 \pm 0.009.$	VALUE CL% EVTS	DOCUMENT		COMMENT	
	0.036 ±0.009 OUR FIT 0.036 ±0.009 OUR AVERAGE				
$\Gamma(\mu^+\nu_\mu)/\Gamma(\phi\ell^+\nu_\ell)$ Γ_7/Γ_9	0.0359±0.0077±0.0048	²³ ARTUSO	96 CI	LE2 e^+e^- at r	(45)
See the "Note on Pseudoscalar-Meson Decay Constants" in the Listings for the π [±] . ALUEEVTSDOCUMENT IDTECNCOMMENT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 BAI	95c B		` '
.23±0.08 OUR FIT Error includes scale factor of 1.5.	• • • We do not use the following	data for averages			
$1.16 \pm 0.06 \pm 0.03$ 23 12 KODAMA 96 E653 π^- emulsion, 600 GeV	0.051 ±0.004 ±0.008	25 BUTLER		, c.c. 5 = 5 LE2 e + e − ≈ 7	^(4 S)
12 KODAMA 96 obtains $f_{D_s} = (194 \pm 35 \pm 20 \pm 14)$ MeV from this measurement, using	<0.048 90	MUHEIM	94		(45)
$\Gamma(D_S^+ \to \phi \ell^+ \nu)/\Gamma_{\text{total}} = 0.0188 \pm 0.0029$. The third error is from the uncertainty on	0.046 ± 0.015	26 MUHEIM	94		
$\phi \ell^+ \nu_\ell$ branching fraction.	0.031 ±0.009	²⁶ MUHEIM ²⁵ FRABETT	94	107Bo = - 1	20 Cal
Γ/-+·· \ / Γ	0.031 ±0.009 ±0.006	25 ALBRECH		587 γ Be \overline{E}_{γ} =2RG e $^+e^-pprox1$	
$\Gamma(\tau^+ u_{ au})/\Gamma_{ ext{total}}$ Fe/ Γ See the "Note on Pseudoscalar-Meson Decay Constants" in the Listings for the π^\pm .	0.024 ±0.010 <0.041 90 0	24 ADLER		RG $e^+e^- \approx 1$	
See the "Note on Pseudoscalar-Meson Decay Constants" in the Listings for the #=. WALUEEVTS	$0.031 \pm 0.006 \begin{array}{l} +0.011 \\ -0.009 \end{array}$			LEO e ⁺ e ⁻ 10.5-	
0.074 \pm 0.028 \pm 0.024 16 13 ACCIARRI 97F L3 $D_s^{*+} \rightarrow \gamma D_s^+$	$0.031 \pm 0.000 - 0.009$ $0.048 \pm 0.017 \pm 0.019$	27 ALVAREZ	90c N.		
13 The second ACCIARRI 97F error here combines in quadrature systematic (0.016) and	>0.034 90	25 ANJOS	90B E	-	
normalization (0.018) errors. The branching fraction gives $f_{D_s} = (309 \pm 58 \pm 33 \pm 38)$		28		GeV '	
MeV.	0.02 ±0.01 405 0.033 ±0.016 ±0.010 9	28 CHEN	89 C	LEO e ⁺ e 10 G ASS e ⁺ e 35-4	eV
$\Gamma(\phi \ell^+ \nu_\ell) / \Gamma(\phi \pi^+)$ Γ_9 / Γ_{15}	$0.033 \pm 0.016 \pm 0.010$ 9 0.033 ± 0.011 30	28 DERRICK	85B H		
For now, we average together measurements of the $\Gamma(\phi e^+ \nu_\rho)/\Gamma(\phi \pi^+)$ and	²³ ARTUSO 96 uses partially rec				
$\Gamma(\phi\mu^+\nu_\mu)/\Gamma(\phi\pi^+)$ ratios. See the end of the D_S^+ Listings for measurements of	independent value for E/D	4VE(D0	ν+\	of 0.02 0.20 0	11100
$D_s^+ \rightarrow \phi \ell^+ \nu_\ell$ form-factor ratios.	independent value for $\Gamma(D_s^- \rightarrow 24 \text{ p.t.})$				
ALUE EVTS DOCUMENT ID TECN COMMENT	²⁴ BAI 95c uses $e^+e^- \to D_5^+ D_5^-$				
0.56±0.05 OUR FIT	obtain the first model-independe	1	-		
0.54±0.05 OUR AVERAGE	without assumptions about $\sigma(D)$				
$0.54 \pm 0.05 \pm 0.04$ 367 14 BUTLER 94 CLE2 $e^+e^- \approx T(45)$ $0.58 \pm 0.17 \pm 0.07$ 97 15 FRABETTI 93G E687 γ Be $\overline{E}_{\gamma} = 220$ GeV	statistical error is too large for to ADLER 90B used the same met	had to set a limit			
$0.57 \pm 0.15 \pm 0.15$ 104 16 ALBRECHT 91 ARG $e^+e^- \approx 10.4$ GeV	25 BUTLER 94, FRABETTI 93G.	ALBRECHT 91.	ALEXAND	DER 90B, and AN.	105 9
$0.49 \pm 0.10 + 0.10$ 54 17 ALEXANDER 90B CLEO e^+e^- 10.5–11 GeV	measure the ratio $\Gamma(D_S^+ \to q$	$(D_{S}^{+} \nu_{\ell})/\Gamma(D_{S}^{+} -$	• φπ), w	there $\ell = e$ and/o	rμ, a
	then use a theoretical calculati			$D_{S}^{+} \rightarrow \phi \ell^{+} \nu_{\ell})/\Gamma$	(D+
14 BUTLER 94 uses both $\phi e^+ u_e$ and $\phi \mu^+ u_\mu$ events, and makes a phase-space adjustment	$\overline{K}^{*0}\ell^+ u$). Not everyone uses t ²⁶ The two MUHEIM 94 values i	he same value for	r this ratio.	sulations based and	واخداني
to the latter to use them as $\phi e^+ \nu_e$ events.	data sets. The first uses measu	rements of the Di	(2460) ⁰ an	nd D _{e1} (2536)+, th	e seco
¹⁵ FRABETTI 93G measures the $\Gamma(\phi \mu^+ \nu_\mu)/\Gamma(\phi \pi^+)$ ratio.	uses B-decay factorization and I		-		
16 ALBRECHT 91 measures the $\Gamma(\phi e^+ \nu_e)/\Gamma(\phi \pi^+)$ ratio. 17 ALEXAN-	using the semileptonic width of				
DER 90B measures an average of the $\Gamma(\phi e^+ \nu_e)/\Gamma(\phi \pi^+)$ and $\Gamma(\phi \mu^+ \nu_\mu)/\Gamma(\phi \pi^+)$	here. Note also the upper limit				
ratios.	²⁷ ALVAREZ 90C relies on the Lunc				
$\Gamma(\eta \ell^+ \nu_\ell) / \Gamma(\phi \ell^+ \nu_\ell)$ Γ_{11} / Γ_9					
Unseen decay modes of the η and the ϕ are included.	²⁸ Values based on crude estimate statistical only.	es of the D_S^- pro-	uction leve	I. DERRICK 85B 6	rrors a
VALUE EVTS DOCUMENT ID TECH COMMENT				_	
1.27 \pm 0.19 OUR FIT 1.24 \pm 0.12 \pm 0.15 440 ¹⁸ BRANDENB 95 CLE2 $e^+e^-\approx r$ (45)	$\Gamma(\phi\pi^+)/\Gamma(K^+K^-\pi^+)$	t and to all aland		Г	15/F
1.24 \pm 0.12 \pm 0.15 440 1° BRANDENB 95 CLE2 $e^+e^-\approx 7$ (45) 18 BRANDENBURG 95 uses both e^+ and μ^+ events and makes a phase-space adjustment	Unseen decay modes of the o	DOCUMENT ID	TECN	COMMENT	
to use the μ^+ events as e ⁺ events.	0.82 ±0.08 OUR FIT				
	$0.807 \pm 0.067 \pm 0.096$	FRABETTI	95B E687	Dalitz plot analys	is
$\Gamma(\eta'(958)\ell^+\nu_\ell)/\Gamma(\phi\ell^+\nu_\ell)$ Γ_{12}/Γ_9	$\Gamma(K^+\overline{K}^{\bullet}(892)^0)/\Gamma(K^+K^-\pi$	+)		Г	16/Γ1
Unseen decay modes of the resonances are included. VALUECL% EVTS DOCUMENT ID TECN COMMENT	Unseen decay modes of the I	• -	uded.	•	-01 - 1
0.44±0.13 OUR FIT	VALUE	DOCUMENT ID		CDMMENT	
0.43±0.11±0.07 29 ¹⁹ BRANDENB 95 CLE2 $e^+e^- \approx \Upsilon(45)$	0.75 ±0.07 OUR FIT	FDADETT!	05- 540-	Dalla - I-a - · ·	-1-
• • We do not use the following data for averages, fits, limits, etc. • • •	$0.717 \pm 0.069 \pm 0.060$	FRABETTI	95B E687	Dalitz plot analys	AS
<1.6 90 ²⁰ KODAMA 93B E653 π ⁻ emulsion 600 GeV	$\Gamma(K^+\overline{K}^{ullet}(892)^0)/\Gamma(\phi\pi^+)$			Г	16/F
¹⁹ BRANDENBURG 95 uses both e^+ and μ^+ events and makes a phase-space adjustment	Unseen decay modes of the r				
to use the μ^+ events as e^+ events.	<u>VALUE</u> <u>EVTS</u> 0.92±0.09 OUR FIT	DOCUMENT ID	<u>TECN</u>	COMMENT	
20 KODAMA 938 uses μ^+ events.	0.95±0.10 OUR AVERAGE				
$\left[\lceil (\eta \ell^+ \nu_\ell) + \lceil (\eta'(958)\ell^+ \nu_\ell) \rceil / \lceil (\phi \ell^+ \nu_\ell) \right] \qquad \qquad \lceil 10 / \lceil 9 = (\lceil 11 + \lceil 12) / \lceil 9 \rceil \right]$	$0.85 \pm 0.34 \pm 0.20$ 9	ALVAREZ		Photoproduction	
Unseen decay modes of the resonances are included.	$0.84 \pm 0.30 \pm 0.22$	ADLER		e ⁺ e ⁻ 4.14 GeV	
VALUEEVTS DOCUMENT IDTECN_COMMENT	$1.05 \pm 0.17 \pm 0.12$ $0.87 \pm 0.13 \pm 0.05$ 117	CHEN ANJOS	89 CLEO 88 E691	e ⁺ e ⁻ 10 GeV Photoproduction	
1.72 \pm 0.23 OUR FIT 3.9 \pm 1.6 13 21 KODAMA 93 E653 π^- emulsion 600 GeV	1.44±0.37 87		87F ARG	e ⁺ e ⁻ 10 GeV	
• • We do not use the following data for averages, fits, limits, etc. • •				_	. ,_
1.67±0.17±0.17	$\Gamma(f_0(980)\pi^+)/\Gamma(K^+K^-\pi^+)$	(090) are include	ď	Į.	37/F ₁
21 KODAMA 93 uses μ^+ events.	Unseen decay modes of the f	DOCUMENT ID		COMMENT	
22 This BRANDENBURG 95 data is redundant with data in previous blocks.	0.40±0.16 OUR FIT Error include				
	$1.00 \pm 0.32 \pm 0.24$	FRABETTI	95B E687	Dalitz plot analys	is

 $1.00 \pm 0.32 \pm 0.24$

 D_s^{\pm}

$\Gamma(f_0(1710)\pi^+ \to K^+K^-\pi^+)/$	•	Γ ₁₉ /Γ ₁₄	$\Gamma(K^+K^-\pi^+\pi^+\pi^-\text{non-}\phi)/\Gamma(\phi\pi^+)$ Γ_{34}/Γ
This includes only K+ K- dec resonance are not known.	cays of the $f_0(1710)$, because	branching fractions of this	<u>VALUE</u> <u>CL% EVTS</u> <u>DOCUMENT ID</u> <u>TECN COMMENT</u> • • • • We do not use the following data for averages, fits, limits, etc. • • •
VALUE		COMMENT	<0.32 90 10 ANJOS 88 E691 Photoproduction
0.034±0.023±0.035	FRABETTI 958 E687	Dalitz plot analysis	
$\Gamma(K^{+}\overline{K}_{0}^{*}(1430)^{0})/\Gamma(K^{+}K^{-}\pi$.+)	Γ ₁₈ /Γ ₁₄	Hadronic modes without K's
Unseen decay modes of the \overline{K}		-, -:	$\Gamma(\pi^+\pi^+\pi^-)/\Gamma(K^+K^-\pi^+)$ Γ_{35}/Γ
VALUE	DOCUMENT ID TECN	COMMENT	VALUE EVTS DOCUMENT ID TECN COMMENT
0.150±0.052±0.052	FRABETTI 95B E687	Dalitz plot analysis	0.23 ±0.04 OUR FIT Error includes scale factor of 1.2. 0.265±0.041±0.031 98 FRABETTI 97D E687 γ Be ≈ 200 GeV
$\Gamma(K^+K^-\pi^+\text{nonresonant})/\Gamma(e^+K^-\pi^+)$	$\phi \pi^+$)	Γ_{20}/Γ_{15}	
VALUE EVTS	DOCUMENT ID TECN	COMMENT	$\Gamma(\pi^+\pi^+\pi^-)/\Gamma(\phi\pi^+)$ Γ_{35}/Γ
0.25±0.07±0.05 48	ANJOS 88 E691	Photoproduction	VALUE EVTS DOCUMENT ID TECN COMMENT 0.28±0.06 OUR FIT Error includes scale factor of 1.3.
$\Gamma(K^{\bullet}(892)^{+}\overline{K}^{0})/\Gamma(\phi\pi^{+})$		Γ_{22}/Γ_{15}	0.39±0.08 OUR AVERAGE
Unseen decay modes of the re			0.33±0.10±0.04 29 ADAMOVICH 93 WA82 π ⁻ 340 GeV
VALUE		COMMENT	0.44±0.10±0.04 ANJOS 89 E691 Photoproduction
1.20±0.21±0.13	CHEN 89 CLEO	e+e- 10 GeV	$\Gamma(\rho^0\pi^+)/\Gamma(\pi^+\pi^+\pi^-)$ Γ_{36}/Γ
$\Gamma(K^{\bullet}(892)^{+}\overline{K}^{0})/\Gamma(K^{+}\overline{K}^{0})$		Γ ₂₂ /Γ ₁₃	VALUE CL% DOCUMENT ID TECN COMMENT
Unseen decay modes of the K			<0.073 90 FRABETTI 97D E687 γ Be ≈ 200 GeV
VALUE CL%		COMMENT	$\Gamma(ho^0\pi^+)/\Gamma(\phi\pi^+)$ Γ_{36}/Γ
• • We do not use the following of the second	-	_	VALUE . CL% DOCUMENT ID TECN COMMENT
<0.9 90	FRABETTI 95 E687	γ Be $\overline{E}_{\gamma} \approx$ 200 GeV	• • • We do not use the following data for averages, fits, limits, etc. • •
$\Gamma(\phi\pi^+\pi^0)/\Gamma(\phi\pi^+)$		Γ ₂₄ /Γ ₁₅	< 0.08 90 ANJOS 89 E691 Photoproduction
VALUE CL% EVTS	DOCUMENT ID TECN	• •	<0.22 90 ALBRECHT 87G ARG e^+e^- 10 GeV
2.4±1.0±0.5 11	ANJOS 89E E691	Photoproduction	$\Gamma(f_0(980)\pi^+)/\Gamma(\pi^+\pi^+\pi^-)$ Γ_{37}/Γ
• • We do not use the following of	=		Unseen decay modes of the $f_0(980)$ are included.
<2.6 90	ALVAREZ 90C NA14	Photoproduction	1.7 ±0.6 OUR FIT Error includes scale factor of 2.4.
$\Gamma(\phi \rho^+)/\Gamma(\phi \pi^+)$		Γ_{25}/Γ_{15}	2.06 ± 0.27 ± 0.08 FRABETTI 97D E687 γ Be \approx 200 GeV
VALUE EVTS	DOCUMENT ID TECN	COMMENT	
1.86±0.26 ^{+0.29} _{-0.40} 253	AVERY 92 CLE2	$e^+e^-\simeq~10.5~{ m GeV}$	$\Gamma(f_0(980)\pi^+)/\Gamma(\phi\pi^+)$ Unseen decay modes of the resonances are included.
			VALUE DOCUMENT ID TECN COMMENT
$\Gamma(\phi\pi^+\pi^0$ 3-body)/ $\Gamma(\phi\pi^+)$		Γ ₂₆ /Γ ₁₅	0.49±0.20 OUR FIT Error includes scale factor of 2.6.
VALUE CL%	DOCUMENT ID TECN	COMMENT	0.28±0.10±0.03 ANJOS 89 E691 Photoproduction
<0.71 90	DAOUDI 92 CLE2	$e^+e^-\approx 10.5 \text{ GeV}$	$\Gamma(f_2(1270)\pi^+)/\Gamma(\pi^+\pi^+\pi^-)$ Γ_{38}/Γ
$\Gamma(K^+K^-\pi^+\pi^0$ non- ϕ)/ $\Gamma(\phi\pi^-$	+)	Γ_{27}/Γ_{15}	Unseen decay modes of the $f_2(1270)$ are included.
VALUE CL%	DOCUMENT ID TECN	COMMENT	VALUEDOCUMENT IDTECNCOMMENT $0.22 \pm 0.10 \pm 0.03$ FRABETTI97D E687 γ Be \approx 200 GeV
	⁹ ANJOS 89E E691	Photoproduction	0.22±0.10±0.03 FRABETTI 97D E687 γ Be ≈ 200 GeV
²⁹ Total minus ϕ component.			$\Gamma(f_0(1500)\pi^+ \to \pi^+\pi^-\pi^+)/\Gamma(\pi^+\pi^+\pi^-)$ Γ_{39}/Γ_{39}
$\Gamma(K^+\overline{K}{}^0\pi^+\pi^-)/\Gamma(\phi\pi^+)$		Γ_{28}/Γ_{15}	This includes only $\pi^+\pi^-$ decays of the $f_0(1500)$, because branching fractions of t
VALUE CL%	DOCUMENT ID TECN		resonance are not known. VALUE DOCUMENT ID TECN COMMENT
<0.77 90	ALBRECHT 92B ARG	$e^+e^-\simeq 10.4~{ m GeV}$	0.274 \pm 0.114 \pm 0.019 30 FRABETTI 97D E687 γ Be \approx 200 GeV
$\Gamma(K^0K^-\pi^+\pi^+)/\Gamma(\phi\pi^+)$		Γ ₂₉ /Γ ₁₅	30 FRABETTI 97D calls this mode $S(1475)\pi^+$, but finds the mass and width of this $S(1475)\pi^+$
VALUE	DOCUMENT ID TECN	COMMENT	to be in excellent agreement with those of the $f_0(1500)$.
1.2 ±0.2 ±0.2	ALBRECHT 928 ARG	$e^+e^-\simeq~10.4~{\rm GeV}$	$\Gamma(\pi^+\pi^+\pi^-\text{nonresonant})/\Gamma(\pi^+\pi^+\pi^-)$ Γ_{40}/Γ
F/W#(000)+W#(000)0\ /F(4-	+1	- /-	VALUE CL% DOCUMENT ID TECN COMMENT
$\Gamma(K^{+}(892)^{+}\overline{K}^{+}(892)^{0})/\Gamma(\phi\pi)$ Unseen decay modes of the re		Γ ₃₀ /Γ ₁₅	<0.269 90 ³¹ FRABETTI 97D E687 γ Be \approx 200 GeV
VALUE	DOCUMENT ID TECN	COMMENT	31 We rather arbitrarily use this FRABETTI 970 limit instead of the much large ANJOS
1.6±0.4±0.4	ALBRECHT 928 ARG	$e^+e^-\simeq~10.4~{\rm GeV}$	value given in the next entry. See, however, FRABETTI 97D on the difficulty of dist gangling the $f_0(1500) \pi^+$ and nonresonant modes.
$\Gamma(K^0K^-\pi^+\pi^+\text{non-}K^{*+}\overline{K}^{*0})$	\/ [(d= ⁺ \	Γ_{31}/Γ_{15}	
VALUE CL%	DOCUMENT ID TECN	*-•	$\Gamma(\pi^+\pi^+\pi^-\text{nonresonant})/\Gamma(\phi\pi^+)$ Γ_{40}/Γ_{40}
<0.80 90	ALBRECHT 928 ARG	e ⁺ e ⁻ ≃ 10.4 GeV	VALUE DOCUMENT ID TECN COMMENT
F/V+V= + + -\ = 1 + 1		- '-	• • • We do not use the following data for averages, fits, limits, etc. • • •
$\Gamma(K^+K^-\pi^+\pi^+\pi^-)/\Gamma(K^+K^-)$	•	Γ ₃₂ /Γ ₁₄	0.29±0.09±0.03 ANJOS 89 E691 Photoproduction
0.188±0.036±0.040 75	FRABETTI 97C E687	$\gamma \text{ Be, } \overline{E}_{\gamma} \approx 200 \text{ GeV}$	$\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\phi\pi^+)$
	. ABDETTI 7/C E00/	, se, sy ~ 200 dev	VALUE CL% DOCUMENT ID TECN COMMENT
$\Gamma(\phi\pi^+\pi^+\pi^-)/\Gamma(\phi\pi^+)$		Γ ₃₃ /Γ ₁₅	<3.3 90 ANJOS 89E E691 Photoproduction
VALUE CL% EVTS	DOCUMENT ID TECN		$\Gamma(\eta \pi^+)/\Gamma(\phi \pi^+)$ Γ_{42}/Γ
0.33±0.06 OUR AVERAGE 0.28±0.06±0.01 40	FRABETTI 97c E687	~Re F ~ 200 CaV	Unseen decay modes of the resonances are included.
0.28±0.06±0.01 40 0.58±0.21±0.10 21	FRABETTI 97C E687 FRABETTI 92 E687	· _ •	VALUE CL% EVTS DOCUMENT ID TECN COMMENT
0.42±0.13±0.07 19	ANJOS 88 E691		$0.48\pm0.03\pm0.04$ 920 JESSOP 98 CLE2 $e^+e^-\approx \Upsilon(4S)$
$1.11 \pm 0.37 \pm 0.28$ 62	ALBRECHT 85D ARG	e ⁺ e ⁻ 10 GeV	• • We do not use the following data for averages, fits, limits, etc. • • • • • ALEXANDED - 03 CLES - 500 JESCOD 08
• • • We do not use the following			0.54±0.09±0.06 165 ALEXANDER 92 CLE2 See JESSOP 98 <1.5 90 ANJOS 89E E691 Photoproduction
<0.24 90	ALVAREZ 90c NA14	Photoproduction	
$\Gamma(K^+K^-\pi^+\pi^+\pi^-\text{non-}\phi)/\Gamma_0$	total	Г ₃₄ /Г	$\Gamma(\omega \pi^+)/\Gamma(\phi \pi^+)$
VALUE		COMMENT	Unseen decay modes of the resonances are included. VALUE CLY DOCUMENT ID TECN COMMENT
0.003 +0.003	BARLAG 92C ACCM	π = 230 GeV	• • • We do not use the following data for averages, fits, limits, etc. • • •
- 0.002			< 0.5 90 ANJOS 89E E691 Photoproduction

(ωπ ⁺)/Γ(ηπ ⁺)	DOCUMENT ID 1	TECN COMMENT	Γ_{43}/Γ_{42}	Γ(K+K+K-) VALUE)/ι (φπ') <u>cι%</u>	DOCUMENT ID	TEÇN	COMMENT	Γ ₅₇ /Γ
16±0.04±0.03		CLE2 $e^+e^-\approx$	T(45)	<0.016	90	FRABETTI	95F E687	γ Be, $\overline{E}_{\gamma} \approx 2$	20 GeV
$(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{+}K^{-})$	-π ⁺)		Γ_{44}/Γ_{14}	Γ(φ <i>K</i> +)/Γ(φ	π^+)				Γ ₅₈ /Γ ₂
ALUE EVTS	DOCUMENT ID	TECN COMMENT		VALUE	CL%_	DOCUMENT ID	TECN	COMMENT	- 50,
158±0.042±0.031 37	FRABETTI 97C	E687 γ Be, $\overline{\mathcal{E}}_{oldsymbol{\gamma}}$:	≈ 200 GeV	<0.013	90	FRABETTI	95F E687	γ Be, $\overline{E}_{\gamma} \approx 2$	20 GeV
$(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(\phi\pi^{+})$			Γ ₄₄ /Γ ₁₅		t use the following	-			
LUE CL%	DOCUMENT ID	TECN COMMENT	- 47, - 25	< 0.071	90	SOLWA	92D E691	γ Be, $\overline{E}_{\gamma} \approx 1$	45 GeV
 We do not use the following 	data for averages, fits,	limits, etc. • • •			Ra	re or forbidden	modes		
0.29 90	ANJOS 89 E	E691 Photoprodi	uction	Γ(π ⁺ e ⁺ e ⁻)/	· .				F
$(\eta ho^+)/\Gamma(\phi \pi^+)$			Γ_{46}/Γ_{15}		' total e is not a useful te	st for a ∆C=1 w	eak neutral co	urrent because l	F59, both dua
Unseen decay modes of the i	resonances are included.		'46/'15	must chan	ge flavor in this d		can incurrent co	arrent because t	John quu
LUE EVTS		TECN COMMENT		VALUE	<u>CL%</u>	DOCUMENT ID		COMMENT	
98±0.20±0.39 447 • • We do not use the following		CLE2 e ⁺ e [−] ≈	T(45)	<2.7 × 10 ⁻⁴	90	AITALA	99G E791	π N 500 Ge	V
-	_			$\Gamma(\pi^+\mu^+\mu^-)$	/Γ _{total}				Γ ₆₀ ,
$36 \pm 0.38 + 0.36 \\ -0.38$ 217	AVERY 92 (CLE2 See JESSC	P 98		is not a useful te		eak neutral ci	urrent because t	oth quar
(ηπ+π0 3-body)/Γ(φπ+)			F/F	must chan VALUE	ge flavor in this d	ecay. DOCUMENT ID	TECN	COMMENT	
Unseen decay modes of the	resonances are included.		Γ_{47}/Γ_{15}	<1.4 × 10 ⁻⁴	90	AITALA	996 E791		
LUE CL%		TECN COMMENT			t use the following				•
1.1 90		CLE2 e ⁺ e ⁻ ≈	T(45)	$< 4.3 \times 10^{-4}$	90 0	KODAMA		π^- emulsion	600 GeV
We do not use the following	-								
		CLE2 See JESSO		Γ(K+e+e-)/		outral com * **	House be to	har arda	Γ _{61,}
We use the JESSOP 98 limit, of iment but with a much smaller	ven though the DAOUE data sample, is more re)। 92 limit, from th estrictive.	ne same exper-	A test for a	the ∆ <i>C</i> =1 weak n	iculiai Current. A	nowed by nigi	ner-order electro	WCAK IN
	• •			VALUE	<u>CL%</u>	DOCUMENT ID		COMMENT	
π ⁺ π ⁺ π ⁺ π [−] π [−] π ⁰)/Γ _{total}		TO	Γ ₄₈ /Γ	<1.6 × 10 ⁻³	90	AITALA	99G E791	π [™] N 500 Ge ^t	V
.UE		TECN COMMENT		$\Gamma(K^+\mu^+\mu^-)$	/Ftotal				Γ ₆₂
49 + 0.033 - 0.030	BARLAG 92C	ACCM π ⁻ 230 Ge	eV .	A test for	/·total the Δ <i>C</i> =1 weak n	eutral current. A	llowed by high	her-order electro	
-/(nen) _+\ /r/+\			F /F	actions. VALUE	CL% EVTS	DOCUMENT ID	TECH	COMMENT	
$(958)\pi^+)/\Gamma(\phi\pi^+)$ Unseen decay modes of the i	resonances are included		Γ_{49}/Γ_{15}	<1.4 × 10 ⁻⁴	90	AITALA		π N 500 Ge\	
UE CL% EVTS		TECN COMM	ENT		t use the following				•
.08±0.09 OUR AVERAGE						KODAMA		π emulsion	600 GeV
			-	$< 5.9 \times 10^{-4}$	90 N				
		98 CLE2 e ⁺ e ⁻	≈ <i>T</i> (45)	<5.9 × 10 ⁻⁴	90 0	RODAWA	75 2000		
			$\approx T(45)$ production	Γ(Κ*(892)+ μ	ι ⁺ μ)/Γ _{total}				Г ₆₃
	ALVAREZ S	91 NA14 Photo	, ,	Γ(K*(892)+ μ A test for t	-				Г ₆₃
$2.5 \pm 1.0 ^{+1.5}_{-0.4}$ 22	ALVAREZ S	91 NA14 Photo 900 ARG e ⁺ e ⁻	production	Γ(Κ*(892)+ μ	ι ⁺ μ)/Γ _{total}		llowed by high		Г ₆₃
2.5 $\pm 1.0 ^{+1.5}_{-0.4}$ 22 2.5 $\pm 0.5 \pm 0.3$ 215 • • We do not, use the following 1.20 $\pm 0.15 \pm 0.11$ 281	ALVAREZ S ALBRECHT S data for averages, fits, ALEXANDER S	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE	production ≈ 10.4 GeV ESSOP 98	$\Gamma(K^*(892)^+ \mu)$ A test for actions.	$\mu^+\mu^-)/\Gamma_{ ext{total}}$ the ΔC \approx 1 weak n	eutral current. A	llowed by high	her-order electro	Γ ₆₃ oweak int
2.5 $\pm 1.0 ^{+1.5}_{-0.4}$ 22 2.5 $\pm 0.5 \pm 0.3$ 215 • • We do not use the following	ALVAREZ S ALBRECHT S data for averages, fits, ALEXANDER S	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 918 E691 γ Be, $\bar{1}$	production $\approx 10.4~{ m GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145$	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$	$(a^+\mu^-)/\Gamma_{\text{total}}$ the $\Delta C=1$ weak n CL% EVTS 90 0	eutral current. A	llowed by high	her-order electro	F ₆₃ oweak int
2.5 ± 1.0 $^{+1.5}_{-0.4}$ 22 2.5 $\pm 0.5 \pm 0.3$ 215 • • We do not use the following 1.20 $\pm 0.15 \pm 0.11$ 281 1.3 90	ALVAREZ S ALBRECHT S data for averages, fits, ALEXANDER S	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE	production $\approx 10.4~{ m GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145~{ m V}$	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+}e^{\pm}\mu^{\mp})/$	$(a^+\mu^-)/\Gamma_{ ext{total}}$ the $\Delta C=1$ weak n CLX = EVTS 0 0	eutral current. Al <u>DOCUMENT ID</u> KODAMA	llowed by high	her-order electro	F ₆₃ oweak int
2.5 $\pm 1.0 + 1.5$ 22 2.5 $\pm 0.5 \pm 0.3$ 215 • • We do not use the following 1.20 $\pm 0.15 \pm 0.11$ 281 1.3 90 $(\eta'(958)\rho^+)/\Gamma(\phi\pi^+)$	ALVAREZ 9 ALBRECHT 9 data for averages, fits, ALEXANDER 9 ANJOS 9	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 918 E691 γ Be, $\bar{1}$	production $\approx 10.4~{ m GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145$	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for a citions. VALUE $< 1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})/A$ A test of invalue	$(a^+\mu^-)/\Gamma_{\text{total}}$ the $\Delta C=1$ weak n CL% EVTS 90 0	eutral current. Al <u>DOCUMENT ID</u> KODAMA	llowed by high	her-order electro <u>COMMENT</u> π — emulsion	F _{63,} oweak int
2.5 $\pm 1.0 ^{+1.5}_{-0.4}$ 22 2.5 $\pm 0.5 \pm 0.3$ 215 • • We do not use the following 1.20 $\pm 0.15 \pm 0.11$ 281 1.3 90 $(\pi/(958) \rho^+)/\Gamma(\phi \pi^+)$ Unseen decay modes of the	ALVAREZ S ALBRECHT S data for averages, fits, ALEXANDER S ANJOS S	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 918 E691 γ Be, $\bar{1}$	production $\approx 10.4~{ m GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145~{ m V}$	$\Gamma(K^{+}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+}e^{\pm}\mu^{\mp})$ A test of I	$\mu^+\mu^-$)/ Γ_{total} the $\Delta C=1$ weak n CLX EVTS 90 0	DOCUMENT ID KODAMA ber conservation.	TECN 95 E653	her-order electro <u>COMMENT</u> π — emulsion	Γ ₆₃ oweak int 600 GeV Γ ₆₄
2.5 $\pm 1.0 ^{+1.5}_{-0.4}$ 22 2.5 $\pm 0.5 ^{+0.5}_{-0.4}$ 215 • We do not use the following 1.20 $\pm 0.15 \pm 0.11$ 281 1.3 90 $(\pi/(958) \rho^+)/\Gamma(\phi \pi^+)$ Unseen decay modes of the ULE EVTS 137	ALVAREZ S ALBRECHT S data for averages, fits, ALEXANDER S AN JOS S resonances are included. DOCUMENT ID J JESSOP 98	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, i Get TECN COMMENT CLE2 $e^+e^- \approx$	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145$ $\sqrt{\Gamma_{51}/\Gamma_{15}}$	$\Gamma(K^{+}(892)^{+} \mu$ A test for actions. VALUE $< 1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})/A \text{ test of } VALUE$ $< 6.1 \times 10^{-4}$	the Δ C=1 weak n CL% EVTS 90 0 / Total epton-family-num 90	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID	TECN	her-order electro <u>COMMENT</u> π emulsion <u>COMMENT</u>	F63, oweak int
2.5 \pm 1.0 $^{+1.5}$ 22 2.5 \pm 0.3 215 • We do not use the following 1.20 \pm 0.15 \pm 0.11 281 1.3 90 $\pi/(958)\rho^+)/\Gamma(\phi\pi^+)$ Unseen decay modes of the 1.05 \pm 0.25 \pm 0.30 137 • We do not use the following 1.20 \pm 0.25 \pm 0.30	ALVAREZ S ALBRECHT S data for averages, fits, ALEXANDER S AN JOS S resonances are included. DOCUMENT ID J JESSOP 98	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, i Get TECN COMMENT CLE2 $e^+e^- \approx$	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145$ $\sqrt{\Gamma_{51}/\Gamma_{15}}$	$\Gamma(K^{+}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+}e^{\pm}\mu^{\mp})/A \text{ test of } VALUE$ $<6.1 \times 10^{-4}$ $\Gamma(K^{+}e^{\pm}\mu^{\mp})/A = 0$	the Δ C=1 weak n CL% EVTS 90 0 / Total epton-family-num 90	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA	TECN	her-order electro <u>COMMENT</u> π emulsion <u>COMMENT</u>	F63 oweak int 600 GeV F64
2.5 $\pm 1.0 ^{+1.5}_{-0.4}$ 22 2.5 $\pm 0.5 \pm 0.3$ 215 • • We do not use the following 1.20 $\pm 0.15 \pm 0.11$ 281 1.3 90 $(\pi/(958) \rho^+)/\Gamma(\phi \pi^+)$ Unseen decay modes of the LUE EVTS	ALVAREZ S ALBRECHT S data for averages, fits, ALEXANDER S ANJOS S resonances are included. DOCUMENT ID JESSOP 98 G data for averages, fits,	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, i Get TECN COMMENT CLE2 $e^+e^- \approx$	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $E_{\gamma} \approx 145$ V V V V V V	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of by VALUE $<6.1 \times 10^{-4}$ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of by A test of by A test of by VALUE	the Δ C=1 weak n CL% EVTS 90 0 / Total epton-family-num 90	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA	TECN	COMMENT COMMENT COMMENT COMMENT π N 500 Get	F ₆₃ oweak int 600 GeV F ₆₄
2.5 $\pm 1.0 ^{+1.5}_{-0.4}$ 22 2.5 $\pm 0.5 \pm 0.3$ 215 • • We do not use the following 1.20 $\pm 0.15 \pm 0.11$ 281 1.3 90 ($\eta'(958) \rho^+) / \Gamma(\phi \pi^+)$ Unseen decay modes of the 1.05 • • We do not use the following 1.20 $\pm 0.20 \pm 0.30$ 1.37 • • We do not use the following 1.4 $\pm 0.62 \pm 0.36$ 68	ALVAREZ S ALBRECHT S G data for averages, fits, ALEXANDER S ANJOS S resonances are included. DOCUMENT ID S J JESSOP 98 G data for averages, fits, AVERY 92 (91 NA14 Photo 900 ARG e ⁺ e ⁻ limits, etc. • • • 92 CLE2 See JE 91B E691 γBe, Get TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • •	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $E_{\gamma} \approx 145$ $\sqrt{\Gamma_{51}/\Gamma_{15}}$ $T(45)$	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. **MALUE** $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})/A$ A test of 1 $VALUE**$ $<6.1 \times 10^{-4}$ $\Gamma(K^{+} e^{\pm} \mu^{\mp})/A$ A test of 1	Total epton-family-numi CL% 90 0 / Total epton-family-numi CL% 90 / Total epton-family-numi epton-family-numi epton-family-numi	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation.	95 E653 TECN 996 E791 TECN	her-order electron <u>COMMENT</u> π^- emulsion <u>COMMENT</u> π^-N 500 GeV	F ₆₃ oweak int 600 GeV F ₆₄ V
2.5 $\pm 1.0 ^{+1.5}_{-0.4}$ 22 2.5 $\pm 0.5 \pm 0.3$ 215 • We do not use the following 20 $\pm 0.15 \pm 0.11$ 281 1.3 90 1.3 90 1.6 μ (958) ρ / μ	ALVAREZ ALBRECHT G data for averages, fits, ALEXANDER ANJOS resonances are included. DOCUMENT ID JESSOP G data for averages, fits, AVERY 92 (##)	91 NA14 Photo 900 ARG e ⁺ e ⁻ limits, etc. • • • 92 CLE2 See JE 918 E691 γBe, i Ge TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $E_{\gamma} \approx 145$ V V V V V V	$\Gamma(K^{+}(892)^{+} \mu$ A test for actions. **\text{24LUE} \left \(1.4 \times 10^{-3} \) $\Gamma(\pi^{+}e^{\pm}\mu^{\mp}) / \text{A test of } \text{A test of } $	the Δ C=1 weak n CL% EVTS 90 0 / Total epton-family-num CL% 90 / Total epton-family-num CL% 90 / Total epton-family-num 90	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID DOCUMENT ID	95 E653 TECN 996 E791 TECN	COMMENT π emulsion COMMENT π N 500 Geven	F63 600 GeV F64 V
2.5 ± 1.0 $^{+1.5}$ 22 2.5 ± 0.5 ± 0.3 215 • We do not use the following 1.20 $\pm 0.15 \pm 0.11$ 281 1.3 90 17/(958) ρ^+) / $\Gamma(\phi \pi^+)$ Unseen decay modes of the 1.0E EVTS 18 $\pm 0.28 \pm 0.30$ 137 • We do not use the following 14 $\pm 0.62 \pm 0.44$ 68 17/(958) $\pi^+ \pi^0 3$ -body) / $\Gamma(\phi$ Unseen decay modes of the 1.0E Unseen decay modes o	ALVAREZ S ALBRECHT S S data for averages, fits, ALEXANDER S ANJOS S resonances are included. DOCUMENT ID S S data for averages, fits, AVERY 92 (#+) resonances are included.	91 NA14 Photo 900 ARG e ⁺ e ⁻ limits, etc. • • • 92 CLE2 See JE 91B E691 γBe, Get TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $E_{\gamma} \approx 145$ $\sqrt{\Gamma_{51}/\Gamma_{15}}$ $T(45)$	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. **\times LUE** <1.4 \times 10^{-3} $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})/A$ A test of *\times LUE** <6.1 \times 10^{-4} $\Gamma(K^{+} e^{\pm} \mu^{\mp})/A$ A test of *\times LUE** <6.3 \times 10^{-4} $\Gamma(\pi^{-} e^{+} e^{+})/A$	the Δ C=1 weak n CL% EVTS 90 0 / Total epton-family-num CL% 90 / Total epton-family-num CL% 90 / Total epton-family-num 90 / Total	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA	95 E653 TECN 996 E791 TECN	COMMENT π emulsion COMMENT π N 500 Geven	F63 600 GeV F64 V
2.5 ± 1.0 $^{+1.5}$ 22 2.5 ± 0.5 ± 0.3 215 • We do not use the following 1.20 $\pm 0.15 \pm 0.11$ 281 1.3 90 $\pi'(958) \rho^+)/\Gamma(\phi \pi^+)$ Unseen decay modes of the 1.0E EVTS 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	ALVAREZ S ALBRECHT S S data for averages, fits, ALEXANDER S ANJOS S resonances are included. DOCUMENT ID S S data for averages, fits, AVERY 92 (\$\pi^+\$) resonances are included. DOCUMENT ID S \$\pi^-\$ \$\pi^+\$ \$\pi^-\$ \$\text{resonances are included.} \$\pi^-\$ \$\text{resonances are included.} \$\pi^-\$ \$\pi^-\$ \$\text{resonances are included.} \$\pi^-\$ \$\pi^-\$ \$\text{resonances are included.} \$\pi^-\$ \$\pi^-\$ \$\text{resonances are included.}	91 NA14 Photo 900 ARG e ⁺ e ⁻ limits, etc. • • • 92 CLE2 See JE 91B E691 γBe, Γ Get TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145$ γ γ γ γ γ γ γ	$\Gamma(K^{+}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of $ V $ (6.1×10^{-4}) $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of $ V $ (6.3×10^{-4}) $\Gamma(\pi^{-} e^{+} e^{+})$ A test of $ V $ A test of $ V $ A test of $ V $	the Δ C=1 weak n CL% EVTS 90 0 / Total epton-family-num CL% 90 / Total epton-family-num CL% 90 / Total epton-family-num 90	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA	95 E791 TECN 996 E791 996 E791	COMMENT π emulsion COMMENT π N 500 Geven	F63 weak int 600 GeV F64 V
2.5 $\pm 1.0 + 1.5$ 22 2.5 $\pm 0.5 - 0.4$ 25 • We do not use the following 20 $\pm 0.15 \pm 0.11$ 261 .20 $\pm 0.15 \pm 0.11$ 27 Unseen decay modes of the 27 ± 0.05 3 ± 0.05 3 ± 0.05 4 ± 0.05 4 ± 0.05 4 ± 0.05 4 ± 0.05 6 ± 0.05 7 ± 0.05 8 ± 0.05 8 ± 0.05 8 ± 0.05 9 \pm	ALVAREZ S ALBRECHT S S S S S S S S S S S S S S S S S S S	91 NA14 Photop 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, i Get TECN COMMENT CLE2 $e^+e^- \approx$ limits, etc. • • • CLE2 See JESSO TECN COMMENT CLE2 $e^+e^- \approx$	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145$ γ γ γ γ γ γ γ	$\Gamma(K^{+}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of b VALUE $<6.1 \times 10^{-4}$ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of i VALUE $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of i	the $\Delta C=1$ weak n CLX EVTS 90 0 (Ftotal epton-family-numi CLX 90 (Ftotal epton-family-numi CLX 90 (Ftotal epton-family-numi CLX 90 (Ftotal epton-number con	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA	95 E653 TECN 996 E791 TECN 996 E791	COMMENT π emulsion COMMENT π N 500 Geven COMMENT π N 500 Geven COMMENT π N 500 Geven	Γ ₆₃ weak int 600 GeV Γ ₆₄ Γ ₆₅
2.5 $\pm 1.0 ^{+1.5}_{-0.4}$ 22 2.5 $\pm 0.5 \pm 0.3$ 215 • We do not use the following 20 $\pm 0.15 \pm 0.11$ 281 .3 90 $\pi'(958) \rho^+)/\Gamma(\phi \pi^+)$ Unseen decay modes of the UE EVTS 8 ± 0.30 137 • We do not use the following 4 $\pm 0.62 ^{+0.44}_{-0.46}$ 68 $\pi'(958) \pi^+ \pi^0 3$ -body)/ $\Gamma(\phi$ Unseen decay modes of the UE 90 Use the following 90 Use the following 90 Use 4 $\pm 0.62 ^{+0.44}_{-0.46}$ 68	ALVAREZ ALBRECHT S data for averages, fits, ALEXANDER AN JOS Tesonances are included. DOCUMENT ID JESSOP S data for averages, fits, AVERY 92 AT JESSOP J	91 NA14 Photop 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, i Get TECN COMMENT CLE2 $e^+e^- \approx$ limits, etc. • • • CLE2 See JESSO TECN COMMENT CLE2 $e^+e^- \approx$	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145$ $T(45)$ $T(45)$	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of b VALUE $<6.1 \times 10^{-4}$ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of b VALUE $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of b VALUE $<6.9 \times 10^{-4}$	the Δ C=1 weak n CL% EVTS 90 0 (Total epton-family-num) CL% 90 (Total epton-family-num) CL% 90 (Total epton-family-num) CL% 90 (Total epton-number con-cL% 90	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA	95 E653 TECN 996 E791 TECN 996 E791	her-order electro COMMENT T emulsion COMMENT TN 500 Get COMMENT TN 500 Get	Γ ₆₃ oweak into 600 GeV Γ ₆₄ V Γ ₆₅ V
2.5 \pm 1.0 $^{+1.5}$ 22 2.5 \pm 0.3 215 • We do not use the following 20 \pm 0.15 \pm 0.11 26 • We do not use the following 201.33 90 $\pi'(958) \rho^{+})/\Gamma(\phi \pi^{+})$ Unseen decay modes of the 25 EVTS 8 \pm 0.28 \pm 0.30 137 • We do not use the following 4 \pm 0.62 $^{+0.44}$ 68 $\pi'(958) \pi^{+} \pi^{0} 3$ -body)/ $\Gamma(\phi$ Unseen decay modes of the 10 UE 21 Ct 8 0.05 Unseen decay modes of the 10 UE 25 US 0.05 US	ALVAREZ ALBRECHT S data for averages, fits, ALEXANDER ANJOS resonances are included. DOCUMENT ID JESSOP 8 data for averages, fits, AVERY 92 (7+) resonances are included. DOCUMENT ID JESSOP 98 (g data for averages, fits, DAOUDI 92 (91 NA14 Photo, 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, γ Get γ CLE2 $e^+e^-\approx$ limits, etc. • • • CLE2 See JESSO γ CLE2 γ CLE2 γ CLE3 γ CLE4 γ CLE4 γ CLE5 γ CLE5 γ CLE5 See JESSO CLE5 See JESSO γ CLE5 See JESSO CLE5 See JESSO γ See JESSO γ CLE5 See JESSO γ See JESO γ Se	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145$ $T(45)$ $T(45)$	$\Gamma(K^{+}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+}e^{\pm}\mu^{\mp})$ A test of by VALUE $<6.1 \times 10^{-4}$ $\Gamma(K^{+}e^{\pm}\mu^{\mp})$ A test of by $\Delta test of by$ $\Delta test of by \Delta test of by \Delta test of$	the Δ C=1 weak n CL% EVTS 90 0 (Total epton-family-num) CL% 90 (Total epton-family-num) CL% 90 (Total epton-family-num) CL% 90 (Total epton-number con-cL% 90	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA servation. DOCUMENT ID AITALA	95 E653 TECN 996 E791 TECN 996 E791	her-order electro COMMENT T emulsion COMMENT TN 500 Get COMMENT TN 500 Get	F63 oweak int 600 GeV F64 F65
2.5 \pm 1.0 $^{+1.5}$ 22 2.5 \pm 1.0 $^{+0.4}$ 21 2.5 \pm 0.3 215 3 • We do not use the following 1.20 \pm 0.15 \pm 0.11 28 281 281 290 $\pi'(958) \rho^+)/\Gamma(\phi \pi^+)$ Unseen decay modes of the 100 EVTS 8 \pm 0.28 \pm 0.30 137 3 • We do not use the following 4 \pm 0.62 $^{+0.44}$ 68 $\pi'(958) \pi^+ \pi^0$ 3-body)/ $\Gamma(\phi$ Unseen decay modes of the 100 Unseen dec	ALVAREZ ALBRECHT Stata for averages, fits, ALEXANDER AN JOS AN JO	91 NA14 Photo, 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, γ Get γ CLE2 $e^+e^-\approx$ limits, etc. • • • CLE2 See JESSO γ CLE2 γ CLE2 γ CLE3 γ CLE4 γ CLE4 γ CLE5 γ CLE5 γ CLE5 See JESSO CLE5 See JESSO γ CLE5 See JESSO CLE5 See JESSO γ See JESSO γ CLE5 See JESSO γ See JESO γ Se	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145$ $T(45)$ $T(45)$	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. **MALUE** <1.4 × 10 ⁻³ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})/A$ A test of μ **MALUE** <6.1 × 10 ⁻⁴ $\Gamma(K^{+} e^{\pm} \mu^{\mp})/A$ A test of μ **MALUE** <6.3 × 10 ⁻⁴ $\Gamma(\pi^{-} e^{+} e^{+})/A$ A test of μ **MALUE** <6.9 × 10 ⁻⁴ $\Gamma(\pi^{-} \mu^{+} \mu^{+})/A$ A test of μ **MALUE** <6.9 × 10 ⁻⁴ $\Gamma(\pi^{-} \mu^{+} \mu^{+})/A$ A test of μ **MALUE** **MALU	##" / Γtotal the Δ C=1 weak n	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA servation. DOCUMENT ID AITALA	95 E653 TECN 996 E791 TECN 996 E791 TECN 996 E791	her-order electro COMMENT T emulsion COMMENT TN 500 Get COMMENT TN 500 Get	F63 oweak int 600 GeV F64 F65
25. ± 1.0 $^{+1.5}$ 22. ± 0.5 ± 0.3 215. \bullet We do not use the following .20 $\pm 0.15 \pm 0.11$ 281. ± 0.3 90. \bullet Unseen decay modes of the \bullet We do not use the following \bullet 4 $\pm 0.62 + 0.44$ 68. \bullet We do not use the following \bullet Unseen decay modes of the \bullet We do not use the following \bullet Unseen decay modes of the \bullet We do not use the following \bullet Model	ALVAREZ ALBRECHT S data for averages, fits, ALEXANDER ANJOS resonances are included. DOCUMENT ID JESSOP 8 data for averages, fits, AVERY 92 (7+) resonances are included. DOCUMENT ID JESSOP 98 (g data for averages, fits, DAOUDI 92 (91 NA14 Photo, 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, γ Get γ CLE2 $e^+e^-\approx$ limits, etc. • • • CLE2 See JESSO γ CLE2 γ CLE2 γ CLE3 γ CLE4 γ CLE4 γ CLE5 γ CLE5 γ CLE5 See JESSO CLE5 See JESSO γ CLE5 See JESSO CLE5 See JESSO γ See JESSO γ CLE5 See JESSO γ See JESO γ Se	production $\approx 10.4 \text{ GeV}$ ESSOP 98 $\overline{E}_{\gamma} \approx 145$ $T(45)$ $T(45)$	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. **ALUE** <1.4 × 10 ⁻³ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of 1 **ALUE** <6.1 × 10 ⁻⁴ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of 1 **ALUE** <6.3 × 10 ⁻⁴ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of 1 **ALUE** <6.9 × 10 ⁻⁴ $\Gamma(\pi^{-} \mu^{+} \mu^{+})$ A test of 1 **ALUE** <6.9 × 10 ⁻⁵	Total epton-number con CL% EVTS 90	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA servation. DOCUMENT ID AITALA	95 E791 TECN 996 E791 TECN 996 E791 TECN 996 E791	COMMENT π emulsion COMMENT π N 500 GeV	F63 F64 F65 F67
2.5 \pm 1.0 $^{+1.5}$ 22 2.5 \pm 0.3 215 • We do not use the following 2.20 \pm 0.15 \pm 0.11 28 281 • We do not use the following 2.20 \pm 0.15 \pm 0.11 29 Unseen decay modes of the 1 EVTS 8 \pm 0.28 \pm 0.30 137 • We do not use the following 4 \pm 0.62 \pm 0.44 68 π' (958) π + π 0 3-body) / Γ (ϕ Unseen decay modes of the 1 UE 2.5 • We do not use the following 4 \pm 0.62 \pm 0.44 90 • We do not use the following 0.85 90 Mode π' Mode π' π' π' π' π' π' π' π'	ALVAREZ ALBRECHT S data for averages, fits, ALEXANDER ANJOS Tesonances are included. DOCUMENT ID JESSOP JESSO	91 NA14 Photo 900 ARG e ⁺ e ⁻ limits, etc. • • • 92 CLE2 See JE 91B E691 γBe, Γ Get TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO K'S TECN COMMENT CLE2 See JESSO K'S TECN COMMENT	production $\begin{array}{l} \approx 10.4 \text{ GeV} \\ \approx 10.4 \text{ GeV} \\ \approx 10.4 \text{ GeV} \\ \end{array}$ $\begin{array}{l} \approx 10.4 \text{ GeV} \\ \approx 145 \text{ V} \\ \hline \Gamma_{51}/\Gamma_{15} \\ \hline \Gamma_{(45)} \\ \hline \end{array}$ $\begin{array}{l} \Gamma_{52}/\Gamma_{15} \\ \hline \Gamma_{(45)} \\ \hline \end{array}$	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $< 1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of μ A test of μ A test of μ VALUE $< 6.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of μ VALUE $< 6.9 \times 10^{-4}$ $\Gamma(\pi^{-} \mu^{+} \mu^{+})$ A test of μ VALUE $< 6.9 \times 10^{-4}$ $= 6.9 \times 10^{-4}$ $= 6.9 \times 10^{-4}$ $= 6.9 \times 10^{-5}$ $= 6.2 \times 10^{-5}$ • • • We do no	Line	DOCUMENT ID AITALA SERVATION. DOCUMENT ID AITALA G data for average	95 E791 TECN 996 E791 TECN 997 E791	COMMENT π emulsion COMMENT π N 500 GeV	Γ ₆₃ weak into 600 GeV Γ ₆₄ V Γ ₆₅ V Γ ₆₆ V
2.5 \pm 1.0 $^{+1.5}$ 22 2.5 \pm 0.3 215 3 We do not use the following 1.20 \pm 0.15 \pm 0.11 28 1.3 90 $\pi'(958) \rho^+)/\Gamma(\phi \pi^+)$ Unseen decay modes of the 1 USE 8 \pm 0.28 \pm 0.30 137 3 We do not use the following 4 \pm 0.62 \pm 0.46 68 $\pi'(958) \pi^+ \pi^0 3$ -body)/ $\Gamma(\phi$ Unseen decay modes of the 1 USE 90 We do not use the following 1.20 \pm 0.49 90 Mode $\pi'(958) \pi^+ \pi^0 3$ -body)/ $\pi(\phi \pi^+)$ 0.85 90 Mode $\pi'(958) \pi^+ \pi^0 3$ -body)/ $\pi(\phi \pi^+)$	ALVAREZ ALBRECHT S data for averages, fits, ALEXANDER ANJOS Tesonances are included. DOCUMENT ID JESSOP JESSO	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, $\bar{\gamma}$ Get TECN COMMENT CLE2 $e^+e^-\approx$ limits, etc. • • • • CLE2 See JESSO TECN COMMENT CLE2 $e^+e^-\approx$ Limits, etc. • • • • CLE2 See JESSO K's	production $\begin{array}{l} \approx 10.4 \text{ GeV} \\ \approx 10.4 \text{ GeV} \\ \approx 10.4 \text{ GeV} \\ \end{array}$ $\begin{array}{l} \approx 10.4 \text{ GeV} \\ \approx 145 \text{ V} \\ \hline \Gamma_{51}/\Gamma_{15} \\ \hline \Gamma_{(45)} \\ \hline \end{array}$ $\begin{array}{l} \Gamma_{52}/\Gamma_{15} \\ \hline \Gamma_{(45)} \\ \hline \end{array}$	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. **ALUE** <1.4 × 10 ⁻³ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of 1 **ALUE** <6.1 × 10 ⁻⁴ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of 1 **ALUE** <6.3 × 10 ⁻⁴ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of 1 **ALUE** <6.9 × 10 ⁻⁴ $\Gamma(\pi^{-} \mu^{+} \mu^{+})$ A test of 1 **ALUE** <6.9 × 10 ⁻⁵	Total epton-number con CL% EVTS 90	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA servation. DOCUMENT ID AITALA	95 E791 TECN 996 E791 TECN 997 E791	COMMENT π emulsion COMMENT π N 500 GeV	Γ ₆₃ weak into 600 GeV Γ ₆₄ V Γ ₆₅ V Γ ₆₆ V
25. ± 1.0 , ± 1.0 , ± 0.0	ALVAREZ ALBRECHT S data for averages, fits, ALEXANDER ANJOS Tesonances are included. DOCUMENT ID JESSOP JESSO	91 NA14 Photo 900 ARG e ⁺ e ⁻ limits, etc. • • • 92 CLE2 See JE 91B E691 γBe, Γ Get TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO K'S TECN COMMENT CLE2 See JESSO K'S TECN COMMENT	production $\approx 10.4 \text{ GeV}$ $\approx 10.4 \text{ GeV}$ $\approx 10.4 \text{ GeV}$ ≈ 145 $7(45)$ $7(45)$ $7(45)$ $7(45)$ $7(45)$ $7(45)$ $7(45)$ $7(45)$ 1 1 1 1 1 1 1 1 1 1	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. **MALUE** <1.4 × 10 ⁻³ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})/A$ A test of μ **MALUE** <6.1 × 10 ⁻⁴ $\Gamma(K^{+} e^{\pm} \mu^{\mp})/A$ A test of μ **MALUE** <6.3 × 10 ⁻⁴ $\Gamma(\pi^{-} e^{+} e^{+})/A$ A test of μ **MALUE** <6.9 × 10 ⁻⁴ $\Gamma(\pi^{-} \mu^{+} \mu^{+})/A$ A test of μ **MALUE** <6.9 × 10 ⁻⁴ $\Gamma(\pi^{-} \mu^{+} \mu^{+})/A$ A test of μ **MALUE** <8.2 × 10 ⁻⁵ •• • We do no <4.3 × 10 ⁻⁴	Total epton-number concepts of the septon of	DOCUMENT ID AITALA SERVATION. DOCUMENT ID AITALA G data for average	95 E791 TECN 996 E791 TECN 997 E791	COMMENT π emulsion COMMENT π N 500 GeV	F63 F64 F65 F67
2.5 ± 1.0 $+1.5$ 22 2.5 ± 0.5 ± 0.3 215 • We do not use the following 20 $\pm 0.15 \pm 0.11$ 281 3 90 7/ (958) ρ^+) / $\Gamma(\phi \pi^+)$ Unseen decay modes of the 100 MeV 200 MeV 300	ALVAREZ ALBRECHT Stata for averages, fits, ALEXANDER ANJOS ALEXANDER STATE ST	91 NA14 Photo 900 ARG e ⁺ e ⁻ limits, etc. • • • 92 CLE2 See JE 91B E691 γBe, Γ Get TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO K'S TECN COMMENT CLE2 See JESSO K'S TECN COMMENT	production $\begin{array}{l} \approx 10.4 \text{ GeV} \\ \approx 10.4 \text{ GeV} \\ \approx 10.4 \text{ GeV} \\ \end{array}$ $\begin{array}{l} \approx 10.4 \text{ GeV} \\ \approx 145 \text{ V} \\ \hline \Gamma_{51}/\Gamma_{15} \\ \hline \Gamma_{(45)} \\ \hline \end{array}$ $\begin{array}{l} \Gamma_{52}/\Gamma_{15} \\ \hline \Gamma_{(45)} \\ \hline \end{array}$	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of V_{ALUE} $<6.1 \times 10^{-4}$ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of V_{ALUE} $<6.9 \times 10^{-4}$ $\Gamma(\pi^{-} \mu^{+} \mu^{+})$ A test of V_{ALUE} $<8.2 \times 10^{-5}$ • • We do no V_{ALUE} $<1.3 \times 10^{-4}$ V_{ALUE} V_{AL	Total epton-number concepts of the septon of	DOCUMENT ID AITALA SERVATION. DOCUMENT ID AITALA DOCUMENT ID AITALA SERVATION.	95 E653 TECN 996 E791 TECN 996 E791 TECN 996 E791 TECN 996 E791 996 E791 996 E791 596 E791 996 E791	her-order electron $\frac{COMMENT}{\pi}$ emulsion $\frac{COMMENT}{\pi}$ $\frac{N}{500}$ GeV $\frac{N}{500}$ $\frac{N}{500}$ GeV $\frac{N}{500}$ \frac{N}	Γ ₆₃ weak interest
1.5 ±1.0 +1.5 22 1.5 ±1.0 +1.5 23 1.5 ±0.5 ±0.3 215 • We do not use the following 2.20±0.15±0.11 26 281 3 90 $\frac{1}{9}(958)\rho^{+})/\Gamma(\phi\pi^{+})$ Unseen decay modes of the result of the	ALVAREZ ALBRECHT Stata for averages, fits, ALEXANDER ANJOS A	91 NA14 Photo 900 ARG e ⁺ e ⁻ limits, etc. • • • 92 CLE2 See JE 91B E691 γBe, Get TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO K'S TECN COMMENT TECN COMMENT MRK3 e ⁺ e ⁻ 4.1	production $\approx 10.4 \text{ GeV}$ $\approx 10.4 \text{ GeV}$ $\approx 10.4 \text{ GeV}$ ≈ 145 $7(45)$ $7(45)$ $7(45)$ $7(45)$ $7(45)$ $7(45)$ $7(45)$ $7(45)$ 1 1 1 1 1 1 1 1 1 1	$\Gamma(K^{+}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+}e^{\pm}\mu^{\mp})$ A test of μ VALUE $<6.1 \times 10^{-4}$ $\Gamma(K^{+}e^{\pm}\mu^{\mp})$ A test of μ VALUE $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-}e^{+}e^{+})$ A test of μ VALUE $<6.9 \times 10^{-4}$ $\Gamma(\pi^{-}\mu^{+}\mu^{+})$ A test of μ VALUE $<8.2 \times 10^{-5}$ • • We do no $<4.3 \times 10^{-4}$ $\Gamma(\pi^{-}e^{+}\mu^{+})$ A test of μ VALUE	Total epton-number con CL% EVTS 90 0 // Lotal epton-family-num CL% 90 // Lotal epton-number con CL%	DOCUMENT ID AITALA Servation. DOCUMENT ID AITALA AISERVATION AITALA SERVATION. DOCUMENT ID AITALA SERVATION. DOCUMENT IO	95 E791 TECN 996 E791	COMMENT π emulsion COMMENT π N 500 GeV COMMENT σ N 500 GeV COMMENT σ N 500 GeV	F63 600 GeV F65 7 F66 7 F67 7 F68
1.5 ± 1.0 $^{+1.5}_{-0.4}$ 22 1.5 ± 0.5 ± 0.3 215 • We do not use the following 20 $\pm 0.15 \pm 0.11$ 281 3 90 1.3 90 1.3 90 1.6 $\pm 0.15 \pm 0.11$ 281 281 3.3 90 1.6 $\pm 0.15 \pm 0.11$ 281 8.2 $\pm 0.28 \pm 0.30$ 137 • We do not use the following $\pm 0.62 \pm 0.46$ 68 1.6 $\pm 0.62 \pm 0.46$ 68 1.7 (958) $\pi^+ \pi^0$ 3-body) $/ \Gamma (\phi$ Unseen decay modes of the orange	ALVAREZ ALBRECHT S data for averages, fits, ALEXANDER ANJOS Tesonances are included. DOCUMENT ID JESSOP JESOP JESSOP JESOP JESSOP JESOP 91 NA14 Photo 900 ARG e ⁺ e ⁻ limits, etc. • • • 92 CLE2 See JE 91B E691 γBe, Get TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO TECN COMMENT CLE2 e ⁺ e ⁻ ≈ limits, etc. • • • CLE2 See JESSO K'S TECN COMMENT TECN COMMENT MRK3 e ⁺ e ⁻ 4.1	production ≈ 10.4 GeV ESSOP 98 E 7 ≈ 145 7(45) P 98 F52/Γ15 7(45) P 98 F53/Γ15 4 GeV F53/Γ13	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of V_{ALUE} $<6.1 \times 10^{-4}$ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of V_{ALUE} $<6.9 \times 10^{-4}$ $\Gamma(\pi^{-} \mu^{+} \mu^{+})$ A test of V_{ALUE} $<8.2 \times 10^{-5}$ • • We do no V_{ALUE} $<1.3 \times 10^{-4}$ V_{ALUE} V_{AL	Total epton-number con CL% EVTS 90 90	DOCUMENT ID AITALA SERVATION. DOCUMENT ID AITALA DOCUMENT ID AITALA SERVATION.	95 E791 TECN 996 E791	her-order electron $\frac{COMMENT}{\pi}$ emulsion $\frac{COMMENT}{\pi}$ $\frac{N}{500}$ GeV $\frac{N}{500}$ $\frac{N}{500}$ GeV $\frac{N}{500}$ \frac{N}	F63 600 GeV F65 7 F66 7 F67 7 F68	
1.5 ±1.0 +1.5 22 1.5 ±1.0 +1.5 23 1.5 ±0.5 ±0.3 215 • We do not use the following 20±0.15±0.11 26 20±0.15±0.11 27 Unseen decay modes of the 10 EVTS B±0.28±0.30 137 • We do not use the following 4±0.62+0.46 68 $T'(958)\pi^+\pi^03$ -body)/ $\Gamma(\phi$ Unseen decay modes of the 10 UE 20 CLS 21 29 Mode $T'(958)\pi^+\pi^03$ -body)/ $\Gamma(\phi$ Unseen decay modes of the 10 UE 21 21 22 22 23 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	ALVAREZ ALBRECHT S data for averages, fits, ALEXANDER ANJOS Tesonances are included. DOCUMENT ID JESSOP JESOP JESSOP JESOP JESSOP JESOP 91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, γ Get TECN COMMENT CLE2 $e^+e^- \approx$ limits, etc. • • • CLE2 See JESSO TECN COMMENT CLE2 $e^+e^- \approx$ limits, etc. • • • CLE2 See JESSO K'S TECN COMMENT MRK3 $e^+e^- = 4.1$ TECN COMMENT limits, etc. • • •	production ≈ 10.4 GeV ESSOP 98 E _γ ≈ 145 γ Γ ₅₁ /Γ ₁₅ Γ(45) F ₅₂ /Γ ₁₅ Γ(45) F ₅₃ /Γ ₁₅ 4 GeV Γ ₅₃ /Γ ₁₃ 200 GeV	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of $ V $ $<6.1 \times 10^{-4}$ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of $ V $ $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of $ V $ $<6.9 \times 10^{-4}$ $\Gamma(\pi^{-} \mu^{+} \mu^{+})$ A test of $ V $ $<8.2 \times 10^{-5}$ • • We do no $<4.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} \mu^{+})$ A test of $ V $ $<1.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} \mu^{+})$ A test of $ V $ $<1.3 \times 10^{-4}$ $<1.3 \times 10^{-4}$	Land	DOCUMENT ID AITALA Servation. DOCUMENT ID AITALA AISERVATION AITALA SERVATION. DOCUMENT ID AITALA SERVATION. DOCUMENT IO	95 E791 TECN 996 E791	COMMENT π emulsion COMMENT π N 500 GeV COMMENT σ N 500 GeV COMMENT σ N 500 GeV	Γ63 oweak int 600 GeV Γ64 Γ65 Γ66 Γ66 Γ66	
1.5 ±1.0 +1.5 22 1.5 ±0.5 ±0.3 215 • We do not use the following 20±0.15±0.11 20 281 3 90 7 (958) ρ^+) / Γ ($\rho \pi^+$) Unseen decay modes of the result of the second decay modes of the result of the result of the second decay modes of the result of the	ALVAREZ ALBRECHT Stata for averages, fits, ALEXANDER ANJOS ALEXANDER STATE ST	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, \bar{j} Get TECN COMMENT CLE2 $e^+e^- \approx$ limits, etc. • • • • CLE2 See JESSO K'S ———— TECN COMMENT CLE2 $e^+e^- \approx$ $e^+e^- \approx e $ Limits, etc. • • • CLE2 See JESSO K'S ———— TECN COMMENT TECN COMMENT $e^+e^- \approx e $	production ≈ 10.4 GeV ESSOP 98 E 7 ≈ 145 7(45) P 98 F52/Γ15 7(45) P 98 F53/Γ15 4 GeV F53/Γ13	$\Gamma(K^{+}(892)^{+} \mu \\ \text{A test for actions.}$ \sqrt{ALUE} $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+}e^{\pm}\mu^{\mp})$ $A \text{ test of } V_{ALUE} $ $<6.1 \times 10^{-4}$ $\Gamma(K^{+}e^{\pm}\mu^{\mp})$ $A \text{ test of } V_{ALUE} $ $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-}e^{+}e^{+})$ $A \text{ test of } V_{ALUE} $ $<6.9 \times 10^{-4}$ $\Gamma(\pi^{-}\mu^{+}\mu^{+})$ $A \text{ test of } V_{ALUE} $ $<8.2 \times 10^{-5}$ $•• We do no <4.3 \times 10^{-4}$ $\Gamma(\pi^{-}e^{+}\mu^{+})$ $A \text{ test of } V_{ALUE} $ $<7.3 \times 10^{-4}$ $\Gamma(K^{-}e^{+}e^{+})$ $A \text{ test of } V_{ALUE} $	the $\Delta C=1$ weak n CLX EVTS 90 0 Total epton-family-num CLX 90 Total epton-family-num CLX 90 Total epton-number con CLX 90	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA diservation. DOCUMENT IO AITALA diservation. DOCUMENT IO AITALA	95 E653 TECN 996 E791	COMMENT π emulsion COMMENT π N 500 GeV	F63 F64 F65 F65 F66 F68
2.5 $\pm 1.0 + 1.5$ 22 2.5 $\pm 0.5 \pm 0.3$ 215 • We do not use the following 2.20 $\pm 0.15 \pm 0.11$ 281 3 90 7/ (958) ρ^+) / $\Gamma(\phi \pi^+)$ Unseen decay modes of the 1 UE EVTS 8 $\pm 0.28 \pm 0.30$ 137 • We do not use the following 4 $\pm 0.62 + 0.46$ 68 7/ (958) $\pi^+ \pi^0$ 3-body) / $\Gamma(\phi$ Unseen decay modes of the 1 UE CLY 1.4 90 Model K ⁰ π^+) / $\Gamma(\phi \pi^+)$ UE CLY 2.21 90 K ⁰ π^+) / $\Gamma(K^+K^0)$ UE CLY • We do not use the following 1.53 90 K ⁺ $\pi^+ \pi^-$) / $\Gamma(\phi \pi^+)$ UE CLY • We do not use the following	ALVAREZ ALBRECHT Stata for averages, fits, ALEXANDER ANJOS ANJOS ALEXANDER STATE S	91 NA14 Photo 90D ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, γ Get TECN COMMENT CLE2 $e^+e^-\approx$ limits, etc. • • • • CLE2 See JESSO TECN COMMENT CLE2 $e^+e^-\approx$ limits, etc. • • • • CLE2 See JESSO TECN COMMENT TECN COMMENT TECN $e^+e^-\approx$ limits, etc. • • • • • • • • • • • • • • • • • • •	production ≈ 10.4 GeV ESSOP 98 F ₅₁ /Γ ₁₅ 7(45) P 98 F ₅₂ /Γ ₁₅ 7(45) P 98 F ₅₃ /Γ ₁₅ 4 GeV F ₅₄ /Γ ₁₅	$\Gamma(K^{\bullet}(892)^{+} \mu \\ \text{A test for } \mu \\ \text{actions.}$ $VALUE$ $< 1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp}) / \text{A test of } \mu \\ \text{A test of } \mu$	Total epton-number con CL% EVTS 90 0	DOCUMENT ID AITALA DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA AISERVATION. DOCUMENT IO AITALA AISERVATION. DOCUMENT IO AITALA AISERVATION. DOCUMENT IO AITALA SERVATION. DOCUMENT IO	95 E791 TECN 996 E791	COMMENT π emulsion COMMENT π N 500 GeV	F63 F64 F65 F66 F67 F67 F68
2.5 $\pm 1.0 + 1.5$ 22 2.5 $\pm 0.5 \pm 0.3$ 215 • We do not use the following 2.20 $\pm 0.15 \pm 0.11$ 281 3 90 7/ (958) ρ^+) / $\Gamma(\phi \pi^+)$ Unseen decay modes of the 1 UE EVTS 8 $\pm 0.28 \pm 0.30$ 137 • We do not use the following 4 $\pm 0.62 + 0.46$ 68 7/ (958) $\pi^+ \pi^0$ 3-body) / $\Gamma(\phi$ Unseen decay modes of the 1 UE CLY 1.4 90 Model K ⁰ π^+) / $\Gamma(\phi \pi^+)$ UE CLY 2.21 90 K ⁰ π^+) / $\Gamma(K^+K^0)$ UE CLY • We do not use the following 1.53 90 K ⁺ $\pi^+ \pi^-$) / $\Gamma(\phi \pi^+)$ UE CLY • We do not use the following	ALVAREZ ALBRECHT Stata for averages, fits, ALEXANDER ANJOS ANJOS ALEXANDER STATE S	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, \bar{j} Get TECN COMMENT CLE2 $e^+e^- \approx$ limits, etc. • • • • CLE2 See JESSO K'S ———— TECN COMMENT CLE2 $e^+e^- \approx$ $e^+e^- \approx e $ Limits, etc. • • • CLE2 See JESSO K'S ———— TECN COMMENT TECN COMMENT $e^+e^- \approx e $	production ≈ 10.4 GeV ESSOP 98 F ₅₁ /Γ ₁₅ 7(45) P 98 F ₅₂ /Γ ₁₅ 7(45) P 98 F ₅₃ /Γ ₁₅ 4 GeV F ₅₄ /Γ ₁₅	$\Gamma(K^{+}(892)^{+} \mu \\ \text{A test for actions.}$ \sqrt{ALUE} $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+}e^{\pm}\mu^{\mp})$ $A \text{ test of } V_{ALUE} $ $<6.1 \times 10^{-4}$ $\Gamma(K^{+}e^{\pm}\mu^{\mp})$ $A \text{ test of } V_{ALUE} $ $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-}e^{+}e^{+})$ $A \text{ test of } V_{ALUE} $ $<6.9 \times 10^{-4}$ $\Gamma(\pi^{-}\mu^{+}\mu^{+})$ $A \text{ test of } V_{ALUE} $ $<8.2 \times 10^{-5}$ $•• We do no <4.3 \times 10^{-4}$ $\Gamma(\pi^{-}e^{+}\mu^{+})$ $A \text{ test of } V_{ALUE} $ $<7.3 \times 10^{-4}$ $\Gamma(K^{-}e^{+}e^{+})$ $A \text{ test of } V_{ALUE} $	the $\Delta C=1$ weak n CLX EVTS 90 0 Total epton-family-num CLX 90 Total epton-family-num CLX 90 Total epton-number con CLX 90	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA diservation. DOCUMENT IO AITALA diservation. DOCUMENT IO AITALA	95 E791 TECN 996 E791	COMMENT π emulsion COMMENT π N 500 GeV	F63 F64 F65 F66 F67 F67 F68
2.5 ± 1.0 $+1.5$ 22 2.5 ± 0.5 ± 0.3 215 • We do not use the following 281 .20 $\pm 0.15 \pm 0.11$ 281 .3 90 17 (958) ρ^+) / $\Gamma(\phi \pi^+)$ Unseen decay modes of the 18 $EVTS$ 8 $\pm 0.28 \pm 0.30$ 137 • We do not use the following 4 $\pm 0.62 \pm 0.46$ 68 17 (958) $\pi^+ \pi^0$ 3-body) / $\Gamma(\phi$ Unseen decay modes of the 18 $EVTS$ 19 $EVTS$ 19 $EVTS$ 19 $EVTS$ 19 $EVTS$ 19 $EVTS$ 10 $EVTS$ 15 $EVTS$ 16 $EVTS$ 18 $EVTS$ 16 $EVTS$ 17 $EVTS$ 16 $EVTS$	ALVAREZ ALBRECHT Stata for averages, fits, ALEXANDER ANJOS ANJOS ALEXANDER STATE S	91 NA14 Photo 90D ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, γ Get TECN COMMENT CLE2 $e^+e^-\approx$ limits, etc. • • • • CLE2 See JESSO TECN COMMENT CLE2 $e^+e^-\approx$ limits, etc. • • • • CLE2 See JESSO TECN COMMENT TECN COMMENT TECN $e^+e^-\approx$ limits, etc. • • • • • • • • • • • • • • • • • • •	production ≈ 10.4 GeV ESSOP 98 F ₅₁ /Γ ₁₅ 7(45) P 98 F ₅₂ /Γ ₁₅ 7(45) P 98 F ₅₃ /Γ ₁₅ 4 GeV F ₅₄ /Γ ₁₅	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+}e^{\pm}\mu^{\mp})$ A test of μ VALUE $<6.1 \times 10^{-4}$ $\Gamma(K^{+}e^{\pm}\mu^{\mp})$ A test of μ VALUE $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-}e^{+}e^{+})$ A test of μ VALUE $<6.9 \times 10^{-4}$ $\Gamma(\pi^{-}\mu^{+}\mu^{+})$ A test of μ VALUE $<6.2 \times 10^{-5}$ • • We do no $<4.3 \times 10^{-4}$ $\Gamma(\pi^{-}e^{+}\mu^{+})$ A test of μ VALUE $<7.3 \times 10^{-4}$ $\Gamma(K^{-}e^{+}e^{+})$ A test of μ VALUE $<6.3 \times 10^{-4}$	the $\Delta C=1$ weak n CLX EVTS 90 0 (Ftotal epton-family-num) CLX 90 (Ftotal epton-family-num) CLX 90 (Ftotal epton-number con CLX 90	DOCUMENT ID AITALA DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA AISERVATION. DOCUMENT IO AITALA AISERVATION. DOCUMENT IO AITALA AISERVATION. DOCUMENT IO AITALA SERVATION. DOCUMENT IO	95 E791 TECN 996 E791	COMMENT π emulsion COMMENT π N 500 GeV	Γ ₆₃ weak interest
2.5 ± 1.0 $+1.5$ 22 2.5 ± 0.5 ± 0.3 215 • We do not use the following 20 $\pm 0.15 \pm 0.11$ 281 .3 90 7 (958) ρ^+) / $\Gamma(\phi \pi^+)$ Unseen decay modes of the 10 ± 0.11 281 • We do not use the following 137 • We do not use the following 14 $\pm 0.62 \pm 0.46$ 68 7 (958) $\pi^+ \pi^0$ 3-body) / $\Gamma(\phi$ Unseen decay modes of the 10 $\pm 0.62 \pm 0.46$ 90 Unseen decay modes of the 10 $\pm 0.62 \pm 0.46$ 90 .8 We do not use the following 185 90 Model 185 90 Model 185 90 ± 0.21 90	ALVAREZ ALBRECHT Stata for averages, fits, ALEXANDER ANJOS ALEXANDER STATE ST	91 NA14 Photo 90D ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, γ Get TECN COMMENT CLE2 $e^+e^-\approx$ limits, etc. • • • • CLE2 See JESSO TECN COMMENT CLE2 $e^+e^-\approx$ limits, etc. • • • • CLE2 See JESSO TECN COMMENT TECN COMMENT TECN $e^+e^-\approx$ limits, etc. • • • • • • • • • • • • • • • • • • •	production ≈ 10.4 GeV ESSOP 98 E _γ ≈ 145 γ Γ51/Γ15 Γ(45) Γ52/Γ15 Γ(45) Γ53/Γ15 4 GeV Γ53/Γ13 200 GeV Γ54/Γ15 220 GeV	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of 1 VALUE $<6.1 \times 10^{-4}$ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of 1 VALUE $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of 1 VALUE $<6.9 \times 10^{-4}$ $\Gamma(\pi^{-} \mu^{+} \mu^{+})$ A test of 1 VALUE $<8.2 \times 10^{-5}$ • • • We do no $<4.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} \mu^{+})$ A test of 1 VALUE $<7.3 \times 10^{-4}$ $\Gamma(K^{-} e^{+} e^{+})$ A test of 1 VALUE $<6.3 \times 10^{-4}$ $\Gamma(K^{-} \mu^{+} \mu^{+})$ A test of 1 VALUE $<6.3 \times 10^{-4}$	Full Fotal	DOCUMENT ID KODAMA ber conservation. DOCUMENT ID AITALA ber conservation. DOCUMENT ID AITALA diservation. DOCUMENT ID AITALA	95 E653 TECN 996 E791	COMMENT π = emulsion COMMENT π = N 500 GeV	Γ ₆₃ weak interest
2.5 ± 1.0 $+1.5$ 22 2.5 ± 0.5 ± 0.3 215 • We do not, use the following 281 .20 $\pm 0.15 \pm 0.11$ 281 .3 90 7 (958) ρ^+) / $\Gamma(\phi \pi^+)$ Unseen decay modes of the 1 EVTS 8 $\pm 0.28 \pm 0.30$ 137 • We do not use the following 4 $\pm 0.62 \pm 0.46$ 68 7 (958) $\pi^+ \pi^0$ 3-body) / $\Gamma(\phi$ Unseen decay modes of the 1 UE CLS 18 90 We do not use the following 8.85 90 Mode 18 90 .85 90 Mode 18 90 Mode 18 90 .86 π^+) / $\Gamma(\phi \pi^+)$ UE CLS 18 90 $K^0 \pi^+$) / $\Gamma(K^+ \overline{K}^0)$ 90 Mode 18	ALVAREZ ALBRECHT Stata for averages, fits, ALEXANDER ANJOS Tesonances are included. DOCUMENT ID JESSOP Stata for averages, fits, AVERY 92 AVERY 92 Stata for averages, fits, DAOUDI DESSOP Stata for averages, fits, DAOUDI 92 Stata for averages, fits, DAOUDI DOCUMENT ID ADLER BOOCUMENT ID Stata for averages, fits, FRABETTI 95 E DOCUMENT ID DOCUMENT ID FRABETTI	91 NA14 Photo 900 ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, \bar{i} Get TECN COMMENT CLE2 $e^+e^- \approx$ limits, etc. • • • • CLE2 See JESSO TECN COMMENT CLE2 $e^+e^- \approx$ CLE2 See JESSO K's TECN COMMENT CLE2 $e^+e^- \approx$ LIE $e^+e^- \approx$ e^+	production ≈ 10.4 GeV ESSOP 98 E 7 ≈ 145 7(45) P 98 F F F F F F F F F F F F F	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of b VALUE $<6.1 \times 10^{-4}$ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of 1 VALUE $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of 1 VALUE $<6.9 \times 10^{-4}$ $\Gamma(\pi^{-} \mu^{+} \mu^{+})$ A test of 1 VALUE $<8.2 \times 10^{-5}$ • • We do no $<4.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} \mu^{+})$ A test of 1 VALUE $<7.3 \times 10^{-4}$ $\Gamma(K^{-} e^{+} e^{+})$ A test of 1 VALUE $<6.3 \times 10^{-4}$ $\Gamma(K^{-} \mu^{+} \mu^{+})$ A test of 1 VALUE $<6.3 \times 10^{-4}$ $+ 4 \text{ test of 1}$ VALUE $<6.3 \times 10^{-4}$ $+ 4 \text{ test of 1}$ VALUE $<6.3 \times 10^{-4}$ $+ 4 \text{ test of 1}$ VALUE $<6.3 \times 10^{-4}$ $+ 4 \text{ test of 1}$ VALUE	Full Footal	DOCUMENT ID AITALA SERVATION. DOCUMENT ID DOCUMENT ID DOCUMENT ID	TECN 996 E791 TECN TECN 996 E791 TECN TECN	COMMENT π emulsion COMMENT π of N 500 GeV COMMENT π N 500 GeV	F63 F64 F65 F65 F66 F68 F69
2.5 \pm 1.0 $+$ 1.5 22 2.5 \pm 0.5 \pm 0.3 215 2.6 • We do not use the following 2.20 \pm 0.15 \pm 0.11 2.3 281 2.3 90 10/(958) ρ^+)/ $\Gamma(\phi\pi^+)$ 281 281 281 281 282 281 281 282 390 137 290 290 290 291 291 291 291 291 291 291 291	ALVAREZ ALBRECHT Stata for averages, fits, ALEXANDER ANJOS Tesonances are included. DOCUMENT ID JESSOP Stata for averages, fits, AVERY 92 AVERY 92 Stata for averages, fits, DAOUDI DESSOP Stata for averages, fits, DAOUDI 92 Stata for averages, fits, DAOUDI DOCUMENT ID ADLER BOOCUMENT ID Stata for averages, fits, FRABETTI 95 E DOCUMENT ID DOCUMENT ID FRABETTI	91 NA14 Photo 90D ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, \bar{I} Get TECN COMMENT CLE2 $e^+e^-\approx$ limits, etc. • • • • CLE2 See JESSO TECN COMMENT CLE2 $e^+e^-\approx$ Limits, etc. • • • • CLE2 See JESSO K'S TECN COMMENT TECN COMMENT Ilmits, etc. • • • • E687 γ Be $E_{\gamma}\approx$ TECN COMMENT γ Be, $E_{\gamma}\approx$	production ≈ 10.4 GeV ESSOP 98 E ₇ ≈ 145 7(45) P 98 F52/Γ15 7(45) IDP 98 F53/Γ15 4 GeV F54/Γ15 220 GeV F55/Γ15 220 GeV	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of V_{ALUE} $<6.1 \times 10^{-4}$ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of V_{ALUE} $<8.2 \times 10^{-5}$ • • We do no $<4.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} \mu^{+})$ A test of V_{ALUE} $<7.3 \times 10^{-4}$ $\Gamma(K^{-} e^{+} e^{+})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$ $\Gamma(K^{-} e^{+} e^{+})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$ $\Gamma(K^{-} e^{+} e^{+})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$ $\Gamma(K^{-} e^{+} e^{+})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$	the $\Delta C=1$ weak n CLX EVTS 90 0 Total epton-family-num CLX 90 Total epton-number con CLX EVTS 90 Total EVTS 90	DOCUMENT ID AITALA SERVATION. DOCUMENT ID AITALA	95 E791 TECN 996 E791	COMMENT π emulsion COMMENT π of Source of	Γ63 oweak int 600 GeV Γ64 Γ65 Γ66 Γ67 Γ67 Γ68
2.5 \pm 1.0 $^{+1.5}$ 22 2.5 \pm 1.0 $^{+0.4}$ 21 2.5 \pm 0.3 215 3 • We do not use the following 1.20 \pm 0.15 \pm 0.11 28 1.3 90 $\pi'(958) \rho^+)/\Gamma(\phi \pi^+)$ Unseen decay modes of the results 8 \pm 0.28 \pm 0.30 137 5 • We do not use the following 4 \pm 0.62 \pm 0.46 68 $\pi'(958) \pi^+ \pi^0 3$ -body)/ $\Gamma(\phi$ Unseen decay modes of the results 1.3 90 We do not use the following 1.26 \pm 2.4 90 We do not use the following 1.27 \pm 2.2 90 $\pi'(958) \pi^+ \pi^0 3$ -body) 1.28 \pm 2.2 \pm 3.2 90 $\pi'(958) \pi^+ \pi^0 3$ -body)/ $\Gamma(\phi \pi^+)$ 1.29 \pm 3.2 \pm 3.3 90 $\pi'(958) \pi^+ \pi^0 3$ -body)/ $\Gamma(\phi \pi^+)$ 1.20 \pm 3.4 \pm 5.5 \pm 5.6 \pm 6.8 \pm 7.7 \pm 7.7 \pm 7.8 \pm 8 \pm 7.8 \pm	ALVAREZ ALBRECHT Stata for averages, fits, ALEXANDER ANJOS ALEXANDER STATE ST	91 NA14 Photo 90D ARG e^+e^- limits, etc. • • • 92 CLE2 See JE 91B E691 γ Be, \bar{I} Get TECN COMMENT CLE2 $e^+e^-\approx$ limits, etc. • • • • CLE2 See JESSO TECN COMMENT CLE2 $e^+e^-\approx$ Limits, etc. • • • • CLE2 See JESSO K'S TECN COMMENT TECN COMMENT Ilmits, etc. • • • • E687 γ Be $E_{\gamma}\approx$ TECN COMMENT γ Be, $E_{\gamma}\approx$	production ≈ 10.4 GeV ESSOP 98 E 7 ≈ 145 7(45) P 98 F F F F F F F F F F F F F	$\Gamma(K^{\bullet}(892)^{+} \mu$ A test for actions. VALUE $<1.4 \times 10^{-3}$ $\Gamma(\pi^{+} e^{\pm} \mu^{\mp})$ A test of V_{ALUE} $<6.1 \times 10^{-4}$ $\Gamma(K^{+} e^{\pm} \mu^{\mp})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} e^{+})$ A test of V_{ALUE} $<8.2 \times 10^{-5}$ • • We do no $<4.3 \times 10^{-4}$ $\Gamma(\pi^{-} e^{+} \mu^{+})$ A test of V_{ALUE} $<7.3 \times 10^{-4}$ $\Gamma(K^{-} e^{+} e^{+})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$ $\Gamma(K^{-} e^{+} e^{+})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$ $\Gamma(K^{-} e^{+} e^{+})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$ $\Gamma(K^{-} e^{+} e^{+})$ A test of V_{ALUE} $<6.3 \times 10^{-4}$	Full Footal	DOCUMENT ID AITALA SERVATION. DOCUMENT ID AITALA	95 E791 7ECN 996 E791 7ECN 997 E791 7ECN 997 E791 7ECN 997 E791	COMMENT π emulsion COMMENT π of Source of	Γ ₆₃ weak interest

 D_s^{\pm} , $D_s^{*\pm}$

Γ(K ⁻ e ⁺ μ ⁺)/Γ	total ton-number co	nservation		Γ ₇₁ /Γ
VALUE		DOCUMENT ID	TECN	COMMENT
<6.8 × 10 ⁻⁴	90	AITALA	99G E791	π^- N 500 GeV
Γ(K*(892) – μ+ A test of lep	μ ⁺)/Γ _{total} ton-number co	nservation.		Γ ₇₂ /Γ
VALUE		DOCUMENT ID	TECN	COMMENT
<1.4 × 10 ⁻³	90 0	KODAMA	95 E653	π emulsion 600 GeV
	D _s ⁺ →	φt+ν _ε FORM	1 FACTOR	RS
$r_2 \equiv A_2(0)/A_1($	0) in $D_s^+ \rightarrow$			
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
1.60±0.24 OUR A	VERAGE 271	AITALA	00p E701	$\phi e^+ \nu_\mu$, $\phi \mu^+ \nu_\mu$
1.4 ±0.5 ±0.3	308		948 CLE2	
1.4 ±0.5 ±0.3 1.1 ±0.8 ±0.1	90	AVERY FRABETTI	946 CLE2	
2.1 +0.6 ±0.2 -0.5 ±0.2	19	KODAMA	93 E653	•
				μ
$r_{\nu} \equiv V(0)/A_1(0)$	$0) \text{ in } D_s^+ \to 0$			
VALUE 1.92 ± 0.32 OUR A	EVTS	DOCUMENT ID	TECN	COMMENT
1.92±0.32 OOR F 2.27+0.35+0.22	271	AITALA	99D E791	$\phi e^+ \nu_{\rho}, \phi \mu^+ \nu_{\mu}$
0.9 ±0.6 ±0.3			94B CLE2	
0.9 ±0.8 ±0.3 1.8 ±0.9 ±0.2	308 90		946 CLE2	
$2.3 \begin{array}{c} +1.1 \\ -0.9 \end{array} \pm 0.4$	19	KODAMA	93 E653	$\phi \mu^+ \nu_{\mu}$
Γ_L/Γ_T in D_s^+ -	$\rightarrow \phi \ell^+ \nu_\ell$			
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.72±0.18 OUR A		A. (55)	A CI FO	<u> </u>
1.0 ±0.3 ±0.2	308	AVERY 33 FRABETTI	948 CLE2	: φe Γν _e
1.0 ±0.5 ±0.1	90		94F E687	
$0.54 \pm 0.21 \pm 0.10$	19	33 KODAMA	93 E653	μ.
33 FRABETTI 94	F and KODAM	IA 93 evaluate Г $_L$	$/\Gamma_{m{T}}$ for a le	pton mass of zero.

D_s^{\pm} REFERENCES

			-	
AITALA	99	PL B445 449	E.M. Aitala et al.	(FNAL E791 Collab.)
AITALA	99D	PL B450 294	E.M. Aitala et al.	(FNAL E791 Collab.)
AITALA	99G	PL B462 401	E.M. Aitala et al.	(FNAL E791 Collab.)
BONVICIN:	99	PRL 82 4586	G. Bonvicini et al.	(CLEO Collab.)
BAI	98	PR D57 28	J.Z. Bai et al.	(BEPC BES Collab.)
CHADA	98	PR D58 032002	M. Chada et al.	(CLEO Collab.)
JESSOP	98	PR D58 052002	C.P. Jessop et al.	(CLEO Collab.)
ACCIARRI	97F	PL B396 327	M. Acciarri et al.	(L3 Collab.)
BAI	97	PR D56 3779	J.Z. Bai et al.	(BEPC BES Collab.)
BALEST	97	PRL 79 1436	R. Balest et al.	(CLEO Collab.)
FRABETTI	97C	PL B401 131	P.L. Frabetti et al.	(FNAL E687 Collab.)
FRABETTI	97D	PL B407 79	P.L. Frabetti et al.	(FNAL E687 Collab.)
ARTUSO	96	PL B378 364	M. Artuso et al.	(CLEO Collab.)
KODAMA	96	PL B382 299	K. Kodama et al.	(FNAL E653 Collab.)
BAI	95	PRL 74 4599	J.Z. Bai et al.	(BES Collab.)
BAI	95C	PR D52 3781	J.Z. Bai et al.	(BES Collab.)
BRANDENB	95	PRL 75 3804	G.W. Brandenburg et al.	(CLEO Collab.)
FRABETTI	95	PL B346 199	P.L. Frabetti et al.	(FNAL E687 Collab.)
FRABETTI	95B	PL B351 591	P.L. Frabetti et al.	(FNAL E687 Collab.)
FRABETTI	95E 95F	PL B359 403 PL B363 259	P.L. Frabetti et al. P.L. Frabetti et al.	(FNAL E687 Collab.) (FNAL E687 Collab.)
FRABETTI KODAMA	95 95		K. Kodama et al.	(FNAL E653 Collab.)
ACOSTA	94	PL B345 85 PR D49 5690	D. Acosta et al.	(CLEO Collab.)
AVERY	94B	PL B337 405		(CLEO Collab.)
BROWN	940	PR D50 1884	P. Avery et al. D. Brown et al.	(CLEO Collab.)
BUTLER	94	PL B324 255	F. Butler et al.	(CLEO Collab.)
FRABETTI	94F	PL B328 187	P.L. Frabetti et al.	(FNAL E687 Collab.)
MUHEIM	94	PR D49 3767	F. Muheim, S. Stone	(SYRA)
ADAMOVICH	93	PL B305 177	M.I. Adamovich et al.	(CERN WA82 Collab.)
AOKI	93	PTP 89 131	S. Aoki et al.	(CERN WA75 Collab.)
FRABETTI	93F	PRL 71 827	P.L. Frabetti et al.	(FNAL E687 Collab.)
FRABETTI	93G	PL B313 253	P.L. Frabetti et al.	(FNAL E687 Collab.)
KODAMA	93	PL B309 483	K. Kodama et al.	(FNAL E653 Collab.)
KODAMA	93B	PL B313 260	K. Kodama et al.	(FNAL E653 Collab.)
ALBRECHT	92B	ZPHY C53 361	H. Albrecht et al.	` (ARGUS Collab.)
ALEXANDER	92	PRL 68 1275	J. Alexander et al.	`(CLEO Collab.)
ANJOS	92D	PRL 69 2892	J.C. Anjos et al.	(FNAL E691 Collab.)
AVERY	92	PRL 68 1279	P. Avery et al.	(CLEO Collab.)
BARLAG	92C	ZPHY C55 383	S. Barlag et al.	(ACCMOR Collab.)
Also	90D	ZPHY C48 29	S. Barlag et al.	(ACCMOR Collab.)
DAQUDI	92	PR D45 3965	M. Daoudi et al.	(CLEO Collab.)
FRABETTI	92	PL B281 167	P.L. Frabetti et al.	(FNAL E687 Collab.)
ALBRECHT	91	PL B255 634	H. Albrecht et al.	(ARGUS Collab.)
ALVAREZ	91	PL B255 639	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ANJO\$		PR D43 R2063	J.C. Anjos et al.	(FNAL E691 Collab.)
COFFMAN	91	PL B263 135	D.M. Coffman et al.	(Mark III Collab.)
ADLER	90B	PRL 64 169	J.C. Adler et al.	(Mark III Collab.)
ALBRECHT		PL B245 315	H. Albrecht et al.	(ARGUS Collab.)
ALEXANDER	90B	PRL 65 1531	J. Alexander et al.	(CLEO Collab.)
ALVAREZ	90	ZPHY C47 539	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ALVAREZ	90C	PL B246 261	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ANJOS		PRL 64 2885	J.C. Anjos et al.	(FNAL E691 Collab.)
ANJOS	90C	PR D41 2705	J.C. Anjos et al.	(FNAL E691 Collab.)
BAI	90 90C	PRL 65 686	Z. Bai et al.	(Mark III Collab.)
BARLAG	90C	ZPHY C46 563	S. Barlag et al.	(ACCMOR Collab.)

FRABETTI	90	PL B251 639	P.L. Frabetti et al.	(FNAL E687 Collab.)
ADLER	89B	PRL 63 1211	J. Adler et al.	(Mark III Collab.)
Also	89D	PRL 63 2858 erratum		
ANJOS	89	PRL 62 125	J.C. Anjos et al.	(FNAL E691 Collab.)
ANJOS	89E	PL B223 267	J.C. Anjos et al.	(FNAL E691 Collab.)
AVERILL	89	PR D39 123	D.A. Averill et al.	(HRS Collab.)
CHEN	89	PL B226 192	W.Y. Chen et al.	(ČLEO Collab.)
ALBRECHT	88	PL B207 349	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	881	PL B210 267	H. Albrecht et al.	(ARGUS Collab.)
ANJOS	86	PRL 60 897	J.C. Anjos et al.	(FNAL E691 Collab.)
RAAB	88	PR D37 2391	J.R. Raab et ai.	(FNAL E691 Collab.)
ALBRECHT	87F	PL B179 398	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	87G	PL B195 102	H. Albrecht et al.	(ARGUS Collab.)
ANJOS	87B	PRL 58 1818	J.C. Anjos et al.	(FNÁL E691 Collab.)
BECKER	87B		H. Becker et al.	(NA11 and NA32 Collab.)
BLAYLOCK	87	PRL 58 2171	G.T. Blaylock et al.	(Mark III Collab.)
BRAUNSCH	87		W. Braunschweig et al.	(TASSO Coliab.)
CSORNA	87	PL B191 318	S.E. Çsorna et al.	(CLEO Collab.)
JUNG	86	PRL 56 1775	C. Jung et al.	(HRS Collab.)
USHIDA	86	PRL 56 1767	N. Ushida <i>et al.</i>	(FNAL E531 Collab.)
ALBRECHT	85D	PL 153B 343	H. Albrecht et al.	(ARGUS Collab.)
DERRICK	85B	PRL 54 2568	M. Derrick et al.	(HRS Collab.)
AIHARA	84D	PRL 53 2465	H. Aihara <i>et ai.</i>	(TPC Collab.)
ALTHOFF	84	PL 136B 130	M. Althoff et al.	(TÁSSO Collab.)
BAILEY	84	PL 139B 320	R. Bailey et al.	(ACCMOR Collab.)
AUBERT	83	NP B213 31	J.J. Aubert <i>et al.</i>	(EMC Collab.)
CHEN	83C	PRL 51 634	A. Chen et al.	(CLEO Collab.)
USHIDA	83	PRL 51 2362	N. Ushida <i>et al.</i>	(FNAL E653 Collab.)
		OTHER	R RELATED PAPERS	
		• • • • • • • • • • • • • • • • • • • •		

 $D_s^{*\pm}$

 $I(J^P) = 0(??)$

(UCSB, STAN)

J.D. Richman, P.R. Burchat

is natural, width and decay modes consistent with $\mathbf{1}^-.$

D₅*± MASS

The fit includes D^\pm , D^0 , D_s^\pm , $D^{*\pm}$, D^{*0} , and $D_s^{*\pm}$ mass and mass difference measurements.

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2112.4±0.7 OUR FIT	Error includes scale factor of 1.1		
2106.6±2.1±2.7	¹ BLAYLOCK 87	MRK3	$e^+e^- \rightarrow D_s^{\pm} \gamma X$

 1 Assuming D_{s}^{\pm} mass = 1968.7 \pm 0.9 MeV.

95 RMP 67 893

$m_{D_s^{\pm\pm}}-m_{D_s^{\pm}}$

The fit includes D^\pm , D^0 , D_8^\pm , $D^{*\pm}$, D^{*0} , and $D_8^{*\pm}$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
143.8 ± 0.4 OUR	FIT			_	
143.9 ± 0.4 OUR	AVERAGE				
143.76 ± 0.39 ± 0.40)	GRONBERG	95	CLE2	e+e-
144.22 ± 0.47 ± 0.37	7	BROWN			
$142.5 \pm 0.8 \pm 1.5$		² ALBRECHT	88	ARG	$e^+e^- \rightarrow D_s^{\pm} \gamma X$
$139.5 \pm 8.3 \pm 9.7$	60	AIHARA	84D	TPC	$e^+e^- o hadrons$
• • • We do not us	e the following	g data for average	s, fits	s, limits,	etc. • • •
143.0 ±18.0	8				FNAL 15-ft, ν- ² Η
110 ±46		BRANDELIK	79	DASP	$e^+e^- \rightarrow D_s^{\pm} \gamma X$
2 December Street, along	ALDDE				•

²Result includes data of ALBRECHT 84B.

		•			
VALUE (MeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
< 1.9	90	GRONBERG	95	CLE2	e^+e^-
< 4.5	90	ALBRECHT	88	ARG	$E_{cm}^{ee} = 10.2 \text{ GeV}$
• • • We do not	use the followin	g data for average	es, fit	s, limits,	etc. • • •
< 4.9	90	BROWN	94	CLE ₂	e+ e-
<22	90	BLAYLOCK	87	MRK3	$e^+ e^- \rightarrow D_s^{\pm} \gamma X$
					•

D** WIDTH

D*+ DECAY MODES

 D_s^{*-} modes are charge conjugates of the modes below.

	Mode	Fraction (F;/F)
$\overline{\Gamma_1}$	$D_s^+ \gamma$	(94.2±2.5) %
Γ_2	$D_s^+\pi^0$	(5.8 ± 2.5) %

Meson Particle Listings $D_s^{*\pm}$, $D_{s1}(2536)^{\pm}$

CONSTRAINED FIT INFORMATION

An overall fit to a branching ratio uses 1 measurements and one constraint to determine 2 parameters. The overall fit has a $\chi^2=$ 0.0 for 0 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> ₂	<u>-100</u>
	<i>X</i> 1

D*+ BRANCHING RATIOS

$\Gamma(D_s^+\gamma)/\Gamma_{ ext{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.942±0.026 OUR FIT					
• • We do not use the following	ig data for average	s, fit	s, limits,	etc. • • •	
seen	ASRATYAN	91	HLBC		
seen	ALBRECHT	88	ARG	$e^+e^- \rightarrow$	$D_s^{\pm} \gamma X$
seen	AIHARA	840)		-
seen	ALBRECHT	84E	3		
seen	BRANDELIK	79			
$\Gamma(D_s^+\pi^0)/\Gamma(D_s^+\gamma)$					Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT	-•
0.062±0.029 OUR FIT					
$0.062^{+0.020}_{-0.018}\pm0.022$	GRONBERG	95	CLE2	e^+e^-	

D_s*± REFERENCES

GRONBERG	95	PRL 75 3232	J. Gronberg et al. D. Brown et al. A.E. Asratyan et al. H. Albrecht et al. G.T. Blaylock et al. A.E. Asratyan et al. H. Aihara et al. H. Albrecht et al. R. Brandelik et al.	(CLEO Collab.)
BROWN	94	PR D50 1884		(CLEO Collab.)
ASRATYAN	91	PL B257 525		(ITEP, BELG, SACL+)
ALBRECHT	88	PL B207 349		(ARGUS Collab.)
BLAYLOCK	87	PRL 58 2171		(Mark III Collab.)
ASRATYAN	85	PL 156B 441		(ITEP, SERP)
AIHARA	84D	PRL 53 2465		(TPC Collab.)
ALBRECHT	84B	PL 146B 111		(ARGUS Collab.)
BRANDELIK	79	PL 80B 412		(DASP Collab.)

- OTHER RELATED PAPERS ----

KAMAL	92	PL B284 421	A.N. Kamal, Q.P. Xu	(ALBE)
BRANDELIK	78C	PL 76B 361	R. Brandelik et al.	(DASP Collab.)
BRANDELIK	77B	PL 70B 132	R Brandelik et at	(DASP Collab)

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Seen in $D^*(2010)^+ K^0$. Not seen in $D^+ K^0$ or $D^0 K^+$. $J^P=1^+$ assignment strongly favored.

$D_{\rm s1}(2536)^{\pm}$ MASS

VALUE (MEV)	EVTS	DOCUMENT ID	TECN	COMMENT
2535.35± 0.34±0.5 C	OUR EVALU	IATION		
2535.35± 0.34 OUR /	AVERAGE			
2534.2 ± 1.2	9	ASRATYAN	94 BEBC	$D^* K^0 X, D^{*0} K^{\pm} X$
$2535 \pm \ 0.6 \ \pm 1$	75	FRABETTI	94B E687	$\gamma \text{Be} \rightarrow D^{*+} K^{0} X,$ $D^{*0} K^{+} X$
$2535.3 \pm 0.2 \pm 0.5$	134	ALEXANDER	93 CLE2	e+e- → D*0K+X
$2534.8 \pm 0.6 \pm 0.6$	44	ALEXANDER	93 CLE2	$e^+e^- \rightarrow D^{*+}K^0X$
$2535.2 \pm 0.5 \pm 1.5$	28	ALBRECHT	92R ARG	$0.4 e^{+}e^{-} \rightarrow D^{*0} K^{+} X$ $e^{+}e^{-} \rightarrow D^{*+} K^{0} X$
$2536.6 \pm 0.7 \pm 0.4$		AVERY	90 CLEO	$e^+e^- \rightarrow D^{*+} K^0 X$
$2535.9 \pm 0.6 \pm 2.0$		ALBRECHT	89E ARG	$D_{s1}^* \to D^*(2010) K^0$
• • • We do not use	the following	g data for average		
2535 ± 28		1 ASRATYAN	88 HLBC	$\nu N \rightarrow D_S \gamma \gamma X$
1 Not seen in D* K.				-

$m_{D_{s1}(2536)^{\pm}} - m_{D_{s}^{\bullet}(2111)}$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
424±28	ASRATYAN 88	HLBC	$D_s^{*\pm}\gamma$

$D_{s1}(2536)^{\pm}$ WIDTH

VALUE (MeV) <2.3 • • • We do	90 not use the follow		TECN CLEO $e^+e^- \rightarrow D^{*0}K^+X$ ts, limits, etc. • •
<3.2	90 75	FRABETTI 948	B E687 $\gamma Be \rightarrow D^{*+} K^0 X$,
<3.9	90	ALBRECHT 92F	$ \begin{array}{ccc} D^{*0}K+X \\ R ARG & 10.4 & e^+e^- \rightarrow \\ D^{*0}K+Y \end{array} $
< 5.44	90		
<4.6	90	ALBRECHT 898	E ARG $D_{s1}^* \to D^*(2010) K^0$

$D_{s1}(2536)^+$ DECAY MODES

 $D_{\S1}(2536)^-$ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	D*(2010)+ K ⁰ D*(2007) ⁰ K+ D+ K ⁰	seen	
Γ_2	$D^*(2007)^0 K^+$	seen	
Γ_3	D^+K^0	not seen	
Γ4	D^0K^+	not seen	
Γ_5	$D_s^{*+}\gamma$	possibly seen	

D_{s1}(2536)+ BRANCHING RATIOS

$\Gamma(D^+K^0)/\Gamma(D^*C)$	2010)+ <i>K</i> ⁰))			Г3/Г1
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.40	90	ALEXANDER	93	CLEO	$e^+e^- \rightarrow D^{*+}K^0X$
<0.43	90	ALBRECHT	89E	ARG	$D_{s1}^* \to D^*(2010) K^0$
$\Gamma(D_s^{*+}\gamma)/\Gamma_{\text{total}}$					Γ ₅ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT
possibly seen		ASRATYAN	88	HLBC	$\nu N \rightarrow D_S \gamma \gamma X$
Γ(D ⁰ K ⁺)/Γ(D*(2	2007) ⁰ K+))			Γ_4/Γ_2
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.12	90	ALEXANDER	93	CLEO	$e^+e^- \rightarrow D^{*0}K^+X$
$\Gamma(D_s^{*+}\gamma)/\Gamma(D^*(2))$	007) ⁰ K+)				Γ ₅ /Γ ₂
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.42	90	ALEXANDER	93	CLEO	$e^+e^- \rightarrow D^{*0}K^+X$
$\Gamma(D^*(2007)^0K^+)$	/୮(<i>D</i> *(201	0)+ K ⁰)			Γ_2/Γ_1
VALUE		DOCUMENT ID		TECN	COMMENT
1.22±0.23 OUR AVE	RAGE				
$1.1\ \pm0.3$		ALEXANDER	93	CLEO	$e^{+}e^{-} \rightarrow D^{*0}K^{+}X, D^{*+}K^{0}X$
$1.4 \pm 0.3 \pm 0.2$		² ALBRECHT	92R	ARG	$0.4 e^+ e^- \rightarrow D^{*0} K^+ X, D^{*+} K^0 X$

²Evaluated by us from published inclusive cross-sections.

		$D_{s1}(253)$	6) REFERENCES	
ASRATYAN FRABETTI ALEXANDER ALBRECHT AVERY ALBRECHT ASRATYAN	94 94B 93 92R 90 89E 88	ZPHY C 61 563 PRL 72 324 PL B303 377 PL B297 425 PR D41 774 PL B230 162 ZPHY C40 483	A.E. Asratyan et al. P.L. Frabetti et al. J. Alexander et al. H. Albrecht et al. P. Avery, D. Besson H. Albrecht et al. A.E. Asratyan et al.	(BIRM, BELG, CERN+) (FNAL ESB7 Collab.) (CLEO Collab.) (ARGUS Collab.) (CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (ITEP, SERP)
		OTHER	RELATED PAPERS	
SEMENOV	99	SPU 42 847 Translated from UFN 42	S.V. Semenov 937.	

 $D_{sJ}(2573)^{\pm}$

 $D_{sJ}(2573)^{\pm}$

 $I(J^P) = 0(??)$

		$D_{oJ}(2573)^{\pm}$	MA	SS		
VALUE (MeV) 2573.5±1.7 OUR A	EVTS WERAGE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
2574.5 ± 3.3 ± 1.6		ALBRECHT	96	ARG		$e^+e^- \rightarrow D^0K^+X$
$2573.2^{+1.7}_{-1.6}\pm0.9$	217	KUBOTA	94	CLE2	+	$e^+e^-{\sim}~10.5~{\rm GeV}$
		$D_{sJ}(2573)^{\pm}$	WID	ТН		
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
15 +5 OUR AVI	ERAGE					
10.4 ± 8.3 ± 3.0		ALBRECHT	96	ARG		$e^+e^- \rightarrow D^0 K^+ X$
16 +5 ±3	217	KUBOTA	94	CLE2	_	$e^+e^-\sim 10.5 \text{ GeV}$

$D_{sJ}(2573)^+$ DECAY MODES

 $D_{sJ}(2573)^{-}$ modes are charge conjugates of the modes below.

м	lode			Fractio	Γ_i/Γ_i		
	0 ⁰ K ⁺ 0*(200)	7) ⁰ K+		seen not see	n		
		D _{eJ} (2	2573)+ BRAN	CHING R	ATIOS		
Г(<i>D</i> ⁰ К	(+)/r _{ti}	otal					Γ1/Γ
VALUE		<u>EVTS</u>	DOCUMENT IE			COMMENT	
seen		217	KUBOTA	94 CLE	2 ±	e- e-~	10.5 GeV
Γ(<i>D</i> *(2	2007) ⁰	K+)/Γ(<i>D</i> ⁰ K	; +)				Γ_2/Γ_1
Γ(<i>D</i> *(2 VALUE	2007) ⁰	K+)/Г(<i>D</i> ⁰ К	DOCUMENT ID	<u>TECN</u>	<u>снс</u>	COMMENT	Γ2/Γ1
	2007) ⁰ /	• •	•	94 CLE2		$\frac{COMMENT}{e^+e^-\sim 1}$	
VALUE		90 90	DOCUMENT ID	94 CLE2 EFERENC ht et al.	+	e+e-~ 1	
<0.33	Т 96	90 ZPHY C69 405 PRL 72 1972	DOCUMENT ID KUBOTA (2573) ** RE	94 CLE2 EFERENC the et al. a et al.	ES	e+e-~ 1	10.5 GeV

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}$, $B^0 = d\overline{b}$, $\overline{B}{}^0 = \overline{d}b$, $B^- = \overline{u}b$, similarly for B^* 's

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for T(4S) results and " $B^\pm/B^0/B_S^0$ /J-baryon Admixture" for results at higher energies. Most inclusive decay branching fractions are found in the Admixture sections. B^0 - B^0 mixing data are found in the B^0 section, while B_S^0 - B^0 mixing data and B-B mixing data for a B^0/B_S^0 admixture are found in the B_S^0 section. CP-violation data are found in the B^0 section. D-baryons are found near the end of the Baryon section.

The organization of the B sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

```
[Production and Decay of b-flavored Hadrons]
        • B±
            branching fractions
       • B<sup>0</sup>
            mass, mean life
            branching fractions
            polarization in B^0 decay
            [B-\overline{B}] Mixing
            B^0-\overline{B}^0 mixing
            [CP Violation in B Decay]
            CP violation
        • B^{\pm} B^{0} Admixture
            branching fractions
       • B^{\pm}/B^{0}/B_{s}^{0}/b-baryon Admixture
            mean life
            production fractions
            branching fractions
        • B*

 B* (5732)

            mass, width
        • B<sub>c</sub>
            mass, mean life
            branching fractions
            polarizaton in B_s^0 decay
            B_c^0 - \overline{B}_c^0 mixing
            B-\overline{B} mixing (admixture of B^0, B_s^0)
        • B*
            mass
        • B_{sJ}^* (5850)
            mass, width
        • B±
            mass, mean life
            branching fractions
At end of Baryon Listings:

    Λ<sub>b</sub>

            mass, mean life
            branching fractions
        • <u>=</u>0, <u>=</u> _
            mean life

    b-baryon Admixture

            branching fractions
```

PRODUCTION AND DECAY OF b-FLAVORED HADRONS

Updated March 2000 by L. Gibbons (Cornell University, Ithaca) and K. Honscheid (Ohio State University, Columbus).

This year, we opened a new chapter in *B* physics. A new generation of experiments, BABAR, BELLE, Hera-B, and CLEO III, saw first collisions and started to accumulate *B*-meson decays. The next Fermilab collider run will start soon. The long-awaited B-factory era has begun.

There is great hope these experiments will provide us with precise measurements of fundamental parameters of the Standard Model, in particular the weak-mixing angles and phase of the Cabibbo-Kobayashi-Maskawa matrix, and with it an improved understanding of CP violation and maybe even a glimpse at new physics.

While the underlying decay of the heavy quark is governed by the weak interaction, it is the strong force that is responsible for the formation of the hadrons that are observed by experimenters. Although this complicates the extraction of the the Standard Model parameters from the experimental data, it also means that decays of \boldsymbol{B} mesons provide an important laboratory to test our understanding of the strong interaction.

Arguably the most exciting development since the last edition of this review is the progress in b-quark processes for which amplitudes beyond the tree level play a major role. The long sought after $B^0 \to \pi^+\pi^-$ decays have finally been observed. Many other $b \to u$ and gluonic penguin transitions have been measured. In addition to branching fractions, limits on CP asymmetries have been measured for several modes. The results on rare hadronic B decays have also been used to probe possible values of the angle γ of the CKM triangle. First attempts to measure another CKM angle, $\sin(2\beta)$, have been reported by OPAL, CDF, and ALEPH.

For $b \to c$ transitions, the CLEO Collaboration used a sample of more than 18 million B decays to update branching fractions for many exclusive hadronic decay channels. New results on semileptonic decays have been reported by CLEO and the LEP Collaborations. Lifetime measurements improve steadily and now have reached a precision of a few percent.

Heavy-flavor physics is a very dynamic field, and in this brief review it is impossible to do justice to all recent theoretical and experimental developments. We will highlight a few new results but otherwise refer the interested reader to several excellent reviews [1–3].

Production and spectroscopy: Elementary particles are characterized by their masses, lifetimes, and internal quantum numbers. The bound states with a \bar{b} quark and a u or d antiquark are referred to as the B_d (\overline{B}^0) and the B_u (B^+) mesons, respectively. The first excitation is called the B^* meson. B^{**} is the generic name for the four orbitally excited (L=1) B-meson states that correspond to the P-wave mesons in the charm system, D^{**} . Mesons containing an s or a c quark are denoted B_s and B_c , respectively.

b-flavored hadrons

Experimental studies of b decay are performed at the $\Upsilon(4S)$ resonance near production threshold, as well as at higher energies in proton-antiproton collisions and Z decays. Most new results from CLEO are based on a sample of $\approx 9.7 \times 10^6$ $B\overline{B}$ events. At the Tevatron, CDF in particular has made significant contributions with 100 pb⁻¹ of data. Operating at the Z resonance, each of the four LEP Collaborations recorded slightly under a million $b\overline{b}$ events, while the SLD experiment collected about 0.1 million $b\overline{b}$ events.

For quantitative studies of B decays, the initial composition of the data sample must be known. The $\Upsilon(4S)$ resonance decays only to $B^0\overline{B}^0$ and B^+B^- pairs, while at high-energy collider experiments, heavier states such as B_s or B_c mesons and b-flavored baryons are produced as well. The current experimental limit for non- $B\overline{B}$ decays of the $\Upsilon(4S)$ is less than 4% at the 95% confidence level [4]. CLEO has measured the ratio of charged to neutral $\Upsilon(4S)$ decays using exclusive $B \to \psi K^{(*)}$ decays. Assuming isospin invariance and $\tau_{B^+}/\tau_{B^0} = 1.066 \pm 0.024$ they found [5]

$$\frac{f_{+}}{f_{0}} = \frac{B(\Upsilon(4S) \to B^{+}B^{-})}{B(\Upsilon(4S) \to B^{0}\overline{B}^{0})} = 1.044 \pm 0.069^{+0.043}_{-0.045} . \quad (1)$$

This is consistent with equal production of B^+B^- and $B^0\overline{B}^0$ pairs, and unless explicitly stated otherwise, we will assume $f_+/f_0=1$. This assumption is further supported by the near equality of the B^+ and B^0 masses. Again using exclusive $B\to J/\psi K^{(*)}$ decays, CLEO determined these masses to $m(B^0)=5.2791\pm0.0007\pm0.0003~{\rm GeV/c^2}$ and $m(B^+)=5.2791\pm0.0004\pm0.0004~{\rm GeV/c^2}$, respectively [6].

At high-energy collider experiments, b quarks hadronize as \overline{B}^0 , B^- , \overline{B}^0_s , and B_c^- mesons, or as baryons containing b quarks.

Over the last few years, there have been significant improvements in our understanding of the b-hadron sample composition. Table 1 summarizes the results showing the fractions f_d , f_u , f_s , and f_{baryon} of B^0 , B^+ , B_s^0 , and b baryons in an unbiased sample of weakly decaying b hadrons produced at the Z resonance and in $p\bar{p}$ collisions. A detailed account can be found elsewhere in this Review [7].

Table 1: Fractions of weakly decaying b-hadron species in $Z\to b\bar b$ decay and in $p\bar p$ collisions at $\sqrt(s)=1.8$ TeV.

b hadron	Fraction [%]
$\overline{B}_{s}^{-}, \overline{B}^{0}$ \overline{B}_{s}^{0} b baryons	38.9 ± 1.3 10.7 ± 1.4 11.6 ± 2.0

To date, the existence of the *b*-flavored mesons $(B^-, \overline{B}^0, B_s, B_c, B_c)$, and various excitations), as well as the Λ_b baryon has been established. The current world average of the B^*-B mass difference is $45.78\pm0.35~{\rm MeV}/c^2$. Using exclusive hadronic decays such as $B_s^0 \to J/\psi \phi$ and $\Lambda_b \to J/\psi \Lambda$, the masses of these states are now known with the precision of a few MeV.

The current world averages of the B_s and the Λ_b mass are $5.3696 \pm 0.0024~{\rm GeV}/c^2$ and $5.624 \pm 0.009~{\rm GeV}/c^2$, respectively. Clear evidence for the B_c , the last weakly decaying bottom meson, has been published by CDF [8]. They reconstruct the semileptonic decay $B_c \rightarrow J/\psi \ell X$, and extract a B_c mass of $6.40 \pm 0.39 \pm~0.13~{\rm GeV}/c^2$.

First indications of Ξ_b production have been presented by the LEP Collaborations [9–10].

Excited B-meson states have been observed by CLEO, CUSB, LEP, and CDF. Evidence for B^{**} production has been presented by CDF and the LEP experiments [11]. Inclusively reconstructing a bottom hadron candidate combined with a charged pion from the primary vertex, they see the B^{**} as a broad resonance around $5.697 \pm 0.009 \; \mathrm{GeV}/c^2$ in the $M(B\pi) \equiv M(B)$ mass distribution [12]. Due to the inclusive approach, the mass resolution is limited to about 40 MeV, which makes it very difficult to identify the narrow states, B_1 and B_2^* , separately. The LEP experiments have also provided evidence for excited B_s^{**} states.

Lifetimes: Precise lifetimes are key in extracting the weak parameters that are important for understanding the role of the CKM matrix in CP violation, such as the determination of V_{cb} and $B_s\overline{B}_s$ mixing measurements. In the naive spectator model, the heavy quark can decay only via the external spectator mechanism, and thus the lifetimes of all mesons and baryons containing b quarks would be equal. Nonspectator effects, such as the interference between contributing amplitudes, modify this simple picture and give rise to a lifetime hierarchy for b-flavored hadrons similar to the one in the charm sector. However, since the lifetime differences are expected to scale as $1/m_Q^2$, where m_Q is the mass of the heavy quark, the variation in the b system should be significantly smaller, of order 10% or less [14]. For the b system we expect

$$\tau(B^-) \geq \tau(\overline{B}^0) \approx \tau(B_s) > \tau(\Lambda_h^0) \gg \tau(B_c).$$
(2)

In the B_c , both quarks can decay weakly, resulting in its much shorter lifetime. Measurements of lifetimes for the various b-flavored hadrons thus provide a means to determine the importance of non-spectator mechanisms in the b sector.

Over the past years, the field has matured, and advanced algorithms based on impact parameter or decay length measurements exploit the potential of silicon vertex detectors. However, in order to reach the precision necessary to test theoretical predictions, the results from different experiments need to be averaged. This is a challenging task that requires detailed knowledge of common systematic uncertainties, and correlations between the results from different experiments. The average lifetimes for b-flavored hadrons given in this edition have been determined by the LEP B Lifetimes Working Group [15]. The papers used in this calculation are listed in the appropriate sections. A detailed description of the procedures and the treatment of correlated and uncorrelated errors can be found in [16]. The new world average b-hadron lifetimes are summarized in Table 2.

The first measurement of the B_c lifetime comes from the CDF Collaboration [8]. Lifetime measurements have reached a level of precision that the average b-hadron lifetime result becomes sensitive to the composition of the data sample. The result listed in Table 2 takes into account correlations between different experiments and analysis techniques, but does not correct for differences due to different admixtures of b-flavored hadrons. For inclusive lifetime measurements, the size of this effect can be estimated by dividing the available results into three sets. LEP measurements based on the identification of a lepton from the *b* decay yield $\tau_{b \text{ hadron}} = 1.537 \pm 0.020 \text{ ps}^{-1}$ [17–19]. The average b-hadron lifetime based on inclusive secondary vertex techniques is $\tau_{b \text{ hadron}} = 1.577 \pm 0.016 \text{ ps}^{-1} [18,20-24]$. Finally, CDF [25] used J/ψ mesons to tag the b vertex resulting in $\tau_{b\text{-hadron}} = 1.533 \pm 0.015^{+0.035}_{-0.031} \text{ ps}^{-1}$. Contrary to what is observed, the average b lifetime determined from a sample of semileptonic decays is expected to be larger than the lifetime extracted from inclusive decays. Given the precision of the measurements, however, the discrepancy is not yet significant. The resulting average b lifetime is listed in Table 2.

Table 2: Summary of inclusive and exclusive b-hadron lifetime measurements.

Lifetime [ps]
1.548 ± 0.032
1.653 ± 0.028
1.493 ± 0.062
$0.46^{+0.18}_{-0.16} \pm 0.03$
1.208 ± 0.051
1.564 ± 0.014

For comparison with theory, lifetime ratios are preferred. Experimentally we find [15]

$$\frac{\tau_{B^+}}{\tau_{B^0}} = 1.062 \pm 0.029 \; , \; \frac{\tau_{B_s}}{\tau_{B^0}} = 0.964 \pm 0.045 \; , \; \frac{\tau_{A_b}}{\tau_{B^0}} = 0.780 \pm 0.037 \; , \label{eq:tauB}$$

while theory makes the following predictions [26]

$$\frac{\tau_{B^+}}{\tau_{B^0}} = 1 + 0.05 \left(\frac{f_B}{200 \text{ MeV}}\right)^2 , \quad \frac{\tau_{B_s}}{\tau_{B^0}} = 1 \pm 0.01 , \quad \frac{\tau_{\Lambda_b}}{\tau_{B^0}} = 0.9 . \tag{4}$$

In conclusion, the pattern of measured B-meson lifetimes follows the theoretical expectations, and non-spectator effects are observed to be small. The short B_c lifetime has been predicted correctly. However, the Λ_b -baryon lifetime is unexpectedly short. As has been noted by several authors, the observed value of the Λ_b lifetime is quite difficult to accommodate theoretically [27–33]. This apparent breakdown of the heavy-quark expansion for inclusive, non-leptonic B decays could be caused by violations of local quark-hadron duality. Neubert, however, argues that this conclusion is premature because a reliable field-theoretical calculation is still lacking. Exploring a reasonable parameter space for the unknown hadronic matrix elements, he demonstrated that within the experimental errors, theory can

accommodate the measured lifetime ratios [1]. A recent calculation based on QCD sum rules [34] arrives at a similar conclusion allowing $\tau_{A_b}/\tau_{B^0}=0.79$ –0.87. An initial lattice study [35], on the other hand, finds $\tau_{A_b}/\tau_{B^0}=0.91$ –0.93.

Similar to the kaon system, neutral B mesons contain shortand long-lived components. The lifetime difference is, of course, significantly smaller, and recent experimental limits at 95%C.L. are

$$\frac{\Delta\Gamma_d}{\Gamma_d}$$
 < 0.82 and $\frac{\Delta\Gamma_s}{\Gamma_s}$ < 0.65. (5)

These results are based on a comparison of direct δm measurements with χ_d measurements for B_d [36] and a combination [37] of the various B_s proper time measurements. A more restrictive limit for the B_s system can be obtained if one assumes $\Gamma_{B_s} = \Gamma_{B_d}$.

Semileptonic B decays: Measurements of semileptonic B decays are important to determine the weak couplings $|V_{cb}|$ and $|V_{ub}|$. In addition, these decays can be used to probe the dynamics of heavy quark decay. The leptonic current can be calculated exactly, while corrections due to the strong interaction are restricted to the $b \to c$ and $b \to u$ vertices, respectively.

Experimentally, semileptonic decays have the advantage of large branching ratios and the characteristic signature of the energetic charged lepton. The neutrino, however, escapes undetected so a full reconstruction of the decaying B meson is impossible. Various techniques which take advantage of production at threshold or the hermiticity of the detector have been developed by the ARGUS, CLEO, and LEP experiments to overcome this difficulty.

Several different approaches have been used to measure the inclusive semileptonic rate $B \to X \ell \nu_{\ell}$. These are measurements of the inclusive single lepton momentum spectrum, measurements of dilepton events using charge and angular correlations first pioneered by ARGUS [38], measurements of leptons opposite a b-tagged jet at the Z, and measurements of the separate B^- and \overline{B}^0 branching ratios by using events which contain a lepton and a reconstructed B meson. The double-tagged methods (lepton-lepton) have the smallest model dependence, and only the dilepton results from the the $\Upsilon(4S)$ are used. The LEP averages [39] are based primarily on single lepton measurements, which rely on modeling of the semileptonic decays. The uncertainties involved in such modeling are, by their nature, ill-defined and difficult to quantify. The average LEP [39] and the $\Upsilon(4S)$ [40] rates are listed in Table 3. Differences in \mathbf{B}_{sl} measured at the $\Upsilon(4S)$ and the Z are expected due to the different admixture of b-flavored hadrons. Given the short Λ_b lifetime, the LEP value should be lower than the $\Upsilon(4S)$ result. Previous LEP determinations of $B \to X \ell \nu_{\ell}$ have been markedly higher than the $\Upsilon(4S)$ measurements. The current LEP measurements are now in much better agreement with expectations relative to the $\Upsilon(4S)$ rate.

A few new results on the branching fractions of exclusive semileptonic B decays have been reported. The current world averages are listed in Table 3. It is interesting to compare

b-flavored hadrons

the inclusive semileptonic branching fraction to the sum of branching fractions for exclusive modes, which agree at the 1σ level. The exclusive modes measured are consistent with saturating the inclusive rate.

The makeup of the non-D and D^* components of the B semileptonic process is a critical component in the determination of b lifetimes, B mixing, $|V_{cb}|$, and $|V_{ub}|$. It has been known for some time that the D^{**} excited states do not appear to account for the difference between the $D+D^*$ rates and the inclusive rate [41,42]. A recent inclusive $B\to D^*\pi\ell\nu_\ell X$ study by DELPHI [43] adds information regarding the breakdown into the $D^*\pi$ and $D\pi$ contributions. Unfortunately, we still lack information regarding detailed makeup of, and the hadronic mass spectrum for, this component.

Table 3: Inclusive and exclusive semileptonic branching fractions of B mesons. $B(\overline{B} \to X_u \ell^- \overline{\nu}_\ell) = 0.15 \pm 0.1\%$ [44] has been included in the sum of the exclusive branching fractions.

Mode		Branching fraction [%]
$\overline{\overline{B} o X \ell^- \overline{ u}_\ell(\varUpsilon(4S))}$	de natura de la contrata del la contrata de la contrata de la con	$10.49 \pm 0.17 \pm 0.43$
$b \to X \ell^- \overline{\nu}_{\ell}(Z)$		$10.58 \pm 0.07 \pm 0.17$
$\overline{\overline{B}} \to D\ell^-\overline{\nu}_\ell$		2.13 ± 0.22
$\overline{B} \to D^* \ell^- \overline{\nu}_{\ell}$		5.05 ± 0.25
$\overline{B} \to D^{(*)} \pi \ell^- \overline{\nu}_{\ell}$		2.26 ± 0.44
with $\overline{B} \to D_1^0(2420) \ell^- \overline{\nu}_\ell X$	0.74 ± 0.16	
$\overline{B} ightarrow D_2^{ullet0}(2460) \ell^- \overline{ u}_{oldsymbol{\ell}} X$	$< 0.65 \ 90\% \ CL$	
$\Sigma \mathrm{B}_{\mathrm{exclusive}}$		9.59 ± 0.56

Dynamics of semileptonic B decay and $|V_{cb}|$: Since leptons are not sensitive to the strong interaction, the amplitude for a semileptonic B decay can be factorized into two parts, a leptonic and a hadronic current. The leptonic factor can be calculated exactly, while the hadronic part is parameterized by form factors. A simple example is the transition $B \to D\ell\nu_\ell$. The differential decay rate in this case is given by

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{cb}^2| P_D^3 f_+^2(q^2) \tag{6}$$

where q^2 is the mass of the virtual W ($\ell\nu_\ell$), P_D is the D momentum and $f_+(q^2)$ is the single vector form factor which gives the probability that the final state quarks will form a D meson. Since the leptons are very light, the corresponding $f_-(q^2)$ form factor can be neglected. For $B\to D^*\ell\nu_\ell$ decays, in the limit of zero lepton mass there are three form factors which correspond to the three possible partial waves of the $B\to D^*\widehat{W}$ system (here \widehat{W} is the virtual W boson, which becomes the lepton-antineutrino pair). Currently, form factors cannot be predicted by theory and need to be determined experimentally. Over the last years, however, it has been appreciated that there is a symmetry of QCD that is useful in understanding systems containing one heavy quark. This symmetry arises when the

quark becomes sufficiently heavy to make its mass irrelevant to the nonperturbative dynamics of the light quarks. This allows the heavy quark degrees of freedom to be treated in isolation from the light quark degrees of freedom. This is analogous to the canonical treatment of hydrogenic atoms, in which the spin and other properties of the nucleus can be neglected. The behavior and electronic structure of the atom are determined by the light electronic degrees of freedom. Heavy quark effective theory (HQET) was created by Isgur and Wise [45], who define a single universal form factor, $\xi(v \cdot v')$, known as the Isgur-Wise function. In this function, v and v' are the four velocities of the initial and final state heavy mesons. The Isgur-Wise function cannot be calculated from first principles, but unlike the hadronic form factors mentioned above, it is universal to leading order. In the heavy quark limit, it is the same for all heavy meson to heavy meson transitions, and the four form factors parameterizing $B \to D^* \ell \nu_\ell$ and $B \to D \ell \nu_\ell$ decays can be related to this single function ξ .

In this framework the differential semileptonic decay rates as functions of $w=v_B\cdot v_{D(\bullet)}=(m_B^2+m_{D(\bullet)}^2-q^2)/2m_Bm_{D(\bullet)}$ are given by [1]

$$\frac{d\Gamma(\overline{B} \to D^* \ell \overline{\nu}_{\ell})}{dw} = \frac{G_F^2 M_B^5}{48\pi^3} r_*^3 (1 - r_*)^2 \sqrt{w^2 - 1} (w + 1)^2 \times \left[1 + \frac{4w}{w + 1} \frac{1 - 2wr_* + r_*^2}{(1 - r_*)^2} \right] |V_{cb}|^2 \mathcal{F}^2(w)
\frac{d\Gamma(\overline{B} \to D\ell \overline{\nu}_{\ell})}{dw} = \frac{G_F^2 M_B^5}{48\pi^3} r^3 (1 + r)^2 (w^2 - 1)^{3/2} |V_{cb}|^2 \mathcal{G}^2(w) \quad (7)$$

where $r_{(\bullet)} = M_{D^{(\bullet)}}/M_B$ and q^2 is the invariant momentum transfer. For $m_Q \to \infty$, the two form factors $\mathcal{F}(w)$ and $\mathcal{G}(w)$ coincide with the Isgur-Wise function $\xi(w)$.

Both CLEO [46] and ALEPH [47] have measured the differential decay rate distributions and extracted the ratio $\mathcal{G}(w)/\mathcal{F}(w)$ which is expected to be close to unity. The data are compatible with a universal form factor $\xi(w)$.

CLEO has also performed a direct measurement of the three form factors that are used to parameterize $B \to D^*\ell\nu_\ell$ decays [48]. These are usually expressed in terms of form factor ratios [49]. $R_1(w) = h_V(w)/h_{A_1}(w)$ and $R_2(w) = h_{A_2}(w)/h_{A_1}(w)$ where $h_V(w)$, $h_{A_1}(w)$ and $h_{A_2}(w)$ are the standard three HQET form factors in the zero lepton mass limit (see Ref. 49 and references therein). At zero recoil, i.e. w=1, CLEO finds $R_1(1)=1.18\pm0.30\pm0.12$ and $R_2(1)=0.71\pm0.2\pm0.07$. While the errors are still large, this is in good agreement with a theoretical prediction of $R_1(1)=1.3\pm0.1$ and $R_2(1)=0.8\pm0.2$ [1].

The universal form factor $\xi(w)$ describes the overlap of wave functions of the light degrees of freedom in the initial and final heavy meson. At zero recoil, i.e., when the two mesons move with the same velocity, the overlap is perfect and the form factor is absolutely normalized, $\xi(1)=1$. In principle, all that experimentalists have to do to extract a model-independent value for $|V_{cb}|$ is to measure $d\Gamma(B \to D^{(*)}\ell\nu_{\ell})/dw$ for $w \to 1$. However, in the real, world the b and c quarks are not infinitely heavy, so corrections to the limiting case have to be calculated.

The evaluation of $\mathcal{F}(1)$ and $\mathcal{G}(1)$ remains a topic of some theoretical controversy [1,50–54]. A middle ground could be characterized as

$$\mathcal{F}(1) = 0.92 \pm 0.05$$
,
 $\mathcal{G}(1) = 1.00 \pm 0.07$. (8)

The calculations of $\mathcal{F}(1)$ and $\mathcal{G}(1)$ most commonly accepted have relied upon some of the OPE techniques, and in fact these results are correlated at some level with the inclusive rate calculations. Concerns about duality violation, for example, enter these determinations as well. Other, "exclusive approaches" (see Ref. 54 and references therein) yield results similar to the values quoted and are free from duality uncertainties. However, they rely on modelling to estimate exclusive matrix elements, for which uncertainties are very difficult to quantify. Recently, there has been a prototype lattice determination that obtained an $\mathcal{F}(1)$ value only very slightly higher than the above with a preliminary uncertainty of 3.3%. These results are encouraging, and are free of the intimate correlation with the inclusive calculations. To fully understand the uncertainties, an unquenched calculation is needed.

Measurements of $\mathcal{F}(1)|V_{cb}|$ have been performed by the ALEPH, ARGUS, CLEO, DELPHI, and OPAL experiments. Because the differential decay rate actually vanishes at zero recoil, experimentally the decay rate must be measured as a function of w and extrapolated to zero. This requires a parameterization of the shape of the form factor $\mathcal{F}(w)$. Initial measurements used a linear parameterization and fit the slope and $\mathcal{F}(1)|V_{cb}|$ simultaneously. $\mathcal{F}(w)$ must have a positive curvature, so this linear parameterization results in an intercept that is biased low by about 2.6% [55]. More recent determinations [47,56–58] have used dispersion relation calculations [59,60] that relate the curvature to the slope. In either case, the slope and intercept parameters are highly correlated and require simultaneous averaging [61].

 $|V_{cb}|$ from exclusive $D*\ell\nu_\ell$ determinations and from inclusive determinations (discussed below) are summarized in Table 4. The various averages are in good agreement. Because of the correlations between slope and $\mathcal{F}(1)|V_{cb}|$, and the different meanings of the slopes in the linear and dispersion-relation-based parameterizations, the older CLEO [62] and ARGUS [63] $D^*\ell\nu$ measurements, based on the linear parameterization, have not here been averaged with the LEP results [47,57–58], based on the dispersion-relation parameterization. Determinations of $|V_{cb}|$ based on the $B\to D\ell\nu_\ell$ process [47,56] give consistent results, but with a factor of two larger uncertainty.

Heavy Quark Symmetry (HQS) has also allowed remarkable precision in the calculation of the semileptonic width $\Gamma(B \to X_c \ell \nu_\ell)$. The operator product expansion (OPE) of the width in terms of the (inverse) heavy quark mass and in α_s appears free of $1/m_b$ corrections, and at $1/m_b^2$ is given by [66]

Table 4: Current determinations of $|V_{cb}|$. The inclusive branching fractions have been adjusted for a $1.5 \pm 1.0\%$ $b \rightarrow u$ component relative to $b \rightarrow c$ [44]. The uncertainties are experimental followed by theoretical.

Mode	$ V_{cb} $
$\overline{\overline{B}} \to D^* \ell^- \overline{\nu}_{\ell} [64]$	$0.0367 \pm 0.0023 \pm 0.0018$
	(Dispersion relation $\mathcal{F}(w)$ parameterization)
$\overline{B} \to D^* \ell^- \overline{\nu}_{\ell}$ [65]	$0.0392 \pm 0.0030 \pm 0.0019$
	(Linear $\mathcal{F}(w)$ parameterization (+ bias correction))
$\Gamma(b \to c \ell \nu_{\ell})$	$0.0408 \pm 0.0005 \pm 0.0025$
,	$(B^0, B^+, B_s, \text{ and } b\text{-baryon admixture at the } Z)$
$\Gamma(B \to X_c \ell \nu_\ell)$	$0.0400 \pm 0.0010 \pm 0.0024$
	$(B^0,B^+ ext{ admixture at the }\varUpsilon(4S))$

$$\begin{split} \Gamma_{SL}(B) &= \frac{G_F^2 m_b^5 |V_{cb}|^2}{192\pi^3} \times \\ &\left[z_0 \left(1 - \frac{\mu_\pi^2 - \mu_G^2}{2m_b^2} \right) - 2 \left(1 - \frac{m_c^2}{m_b^2} \right)^4 \frac{\mu_G^2}{m_b^2} - \frac{2\alpha_S}{3\pi} z_0^{(1)} + \dots \right] \ . \ (9) \end{split}$$

At $1/m_b^2$, three nonperturbative parameters enter the expansion of the differential decay rate: μ_π^2 (or, closely related λ_1), which is related to the average kinetic energy of the b quark in the meson; μ_G^2 (or λ_2), which is related to the hyperfine splitting and can be determined from the $B-B^*$ mass difference; and $\overline{\Lambda}$, which relates the quark mass to the meson mass. This last enters implicitly since the b quark mass, not the B meson mass has been used. The parameters z_0 and $z_0^{(1)}$ are known phase space factors that depend on m_c^2/m_b^2 . Bigi [51] suggests an uncertainty of approximately 6% on $|V_{cb}|$ from such a calculation. Various calculations [67–68] are consistent with a central value

$$|V_{cb}| = 0.0411 \sqrt{\frac{\mathcal{B}(B \to X_c \ell \nu)}{0.105}} \sqrt{\frac{1.55 \text{ ps}}{\tau_B}} \left(1 - 0.024 \frac{\mu_\pi^2 - 0.5 \text{GeV}^2}{0.2 \text{GeV}^2}\right). \tag{10}$$

Combined with the semileptonic branching fractions at the $\Upsilon(4S)$ and the Z quoted above, one obtains the inclusive determinations of $|V_{cb}|$ listed in Table 4. These agree with the exclusive determinations.

The validity of the OPE-based calculation rests upon the assumption of quark-hadron duality. The uncertainty induced from this assumption is unknown. While expected to be small [69–71], there has been a suggestion that the assumption could mask corrections of order $1/m_b$ [72]. A 5% effect, for example, cannot be ruled out at this time.

Moments of the inclusive lepton [73] and hadron mass [74–76] spectra can be used both to determine the nonperturbative parameters and to test the OPE/HQS framework at the $1/m_b^2$ level. A preliminary moment analysis by CLEO [77] suggests that the parameters derived from the leptonic moments may be inconsistent with those from the hadronic moments. A variety of explanations for this exist: an experimental problem, slow convergence of the 1/m expansion for the higher moments,

b-flavored hadrons

or more fundamentally, duality violation. Further investigation is required.

Semileptonic $b \rightarrow u$ transitions: The simplest diagram for a rare B decay is obtained by replacing the $b \rightarrow c$ spectator diagram with a CKM suppressed $b \rightarrow u$ transition. These decays probe the small CKM matrix element V_{ub} , the magnitude of which sets bounds on the combination $\rho^2 + \eta^2$ in the Wolfenstein parameterization of the CKM matrix [78]. As with V_{cb} , extraction of V_{ub} has been attempted using both inclusive and exclusive semileptonic B decays. An accurate method of determining V_{ub} has been somewhat elusive. With exclusive techniques, the heavy-to-light $b \rightarrow u$ transition has no theoretical analogue to the zero recoil (w = 1) point in the heavy-to-heavy $b \to c$ transition of $B \to D^* \ell \nu$. Rather than calculating a correction of order 10% to the unit form factor expected for a heavy-to-heavy transition at w = 1 (in the infinite mass limit), the absolute normalization of the form factors must be predicted. This normalization dominates the uncertainty in exclusive determinations of V_{ub} .

There have been two exclusive V_{ub} analyses by the CLEO Collaboration: a simultaneous measurement of the $B \to \pi \ell \nu_\ell$ and the $B \to \rho \ell \nu_\ell$ transitions [79], and a second measurement of the $B \to \rho \ell \nu_\ell$ rate [80]. The results of the two analyses are largely statistically independent, and their results have been combined, with correlated uncertainties accounted for, to obtain $|V_{ub}| = (3.25 \pm 0.14^{+0.21}_{-0.29} \pm 0.55) \times 10^{-3}$, where the final error is the uncertainty from the form factors. New calculations based on light cone sum rules [81–83] and lattice calculations [84,85,86] promise to result in uncertainties in the 10% to 15% range soon. Uncertainties below 10% will require either unquenched lattice calculations or accurate measurements of the rate for $B \to K^* \ell^+ \ell^-$, which would allow one to extract $|V_{ub}|/|V_{cs}|$ from a double ratio of B and D decays [87].

In principle, the fully inclusive rate can be calculated reliably enough (barring an unexpectedly large violation of quark-hadron duality) to determine $|V_{ub}|$ with an accuracy under 10% [51]. Realizing this accuracy is extremely difficult in practice because the ferocious background from $b \to c \ell \nu_\ell$ decays forces experiments to limit measurement to a restricted region of the total phase space. Restriction of the theoretical rate to the restricted region can introduce large uncertainties in the calculation that can be difficult to quantify.

The published inclusive analyses at the $\Upsilon(4S)$ [88] have focused on leptons in the endpoint region of the single lepton spectrum, which are kinematically incompatible with coming from a $b \to c$ transition. Models were used to estimate the rate into the endpoint, from which $|V_{ub}/V_{cb}| = (0.08 \pm 0.02)$ is obtained. The error is dominated by the theoretical uncertainty, which has been very difficult to quantify. Because the endpoint region extends beyond the partonic endpoint and the size of the endpoint is of order $\Lambda_{\rm QCD}$, an infinite series of terms in the OPE rate calculation become equally important [89]. While the leading singularities can be resummed into a structure function [90,91], the structure function is unknown.

Another method for extracting $|V_{ub}|$ from the endpoint has been proposed [92] based on earlier suggestions [90,91] that involve comparison of the endpoint lepton spectrum to the photon spectrum in $b \to s \gamma$. These decays share the same structure function, and the comparison results in a large cancellation of the theoretical uncertainties. In principle, this technique could lead to a determination of $|V_{ub}|$ with an uncertainty under 10%.

Over the past several years, the ALEPH [93], DELPHI [94], and L3 [95] experiments have attempted inclusive measurements of the $b \to u \ell \nu_{\ell}$ rate. The approaches are disparate, but tend to be sensitive to $b \to u \ell \nu$ primarily when the mass of the hadronic system (m_{X_u}) is in the region $m_{X_u} \lesssim M_D$. They are sensitive to a significantly larger portion of the phase space than the endpoint analyses, but at the cost of very large backgrounds from $b \to c\ell\nu_{\ell}$ decays (signal:background ratios of order 1:10). The branching fractions obtained are listed in Table 5. An average by the LEP Heavy Flavour Group [37] results in $|V_{ub}|$ = $4.04^{+0.41}_{-0.46}(\exp)^{+0.43}_{-0.48}(b\rightarrow c)^{+0.24}_{-0.25}(b\rightarrow u)\pm 0.02(\tau_b)\pm 0.19({\rm HQS}).$ A note of caution, however. While observation of these decays at LEP is an experimental tour de force, the aggressive systematic errors assigned to unknown aspects of $b \to c\ell\nu_{\ell}$ and $b \to u\ell\nu_{\ell}$ processes remain a topic of discussion in the community. Among the concerns: the large uncertainties in the makeup of the non-D and D^* components of the background and the need for modeling of the $b \to u \ell \nu_{\ell}$ decays to correct for the smearing and nonuniform efficiency over the phase space of the decay.

A new proposal [89] to measure $|V_{ub}|$ inclusively in a restricted region of q^2 has promise. As mentioned above, measurements in the lepton endpoint region suffer from significant theoretical uncertainties from unknown structure functions. Analyses restricted to the hadronic mass range $m_{X_u} < \sqrt{\Lambda} m_b$ are affected by similar uncertainties, so the level appears to be much reduced [96,97], about 10%. The proposed method offers suppression of $b \to c\ell\nu_\ell$ background without introducing such uncertainties.

So far, the various determinations of $|V_{ub}|$ have produced consistent results. However, with the many theoretical and experimental difficulties with the measurements to date, the authors agree with the conservative assessment of the current uncertainties presented in the CKM review [98].

Table 5: Inclusive semileptonic branching fractions for $b \to u\ell\nu_{\ell}$ measured at LEP.

Experiment	Branching Fraction [10 ⁻³]
ALEPH [93] DELPHI [94] L3 [95]	$1.73 \pm 0.55 \pm 0.55$ $1.57 \pm 0.35 \pm 0.55$ $3.3 \pm 1.0 \pm 1.7$

Hadronic B decays: In hadronic decays of B mesons, the underlying weak transition of the b quark is overshadowed by strong interaction effects caused by the surrounding cloud of light quarks and gluons. While this complicates the extraction of CKM matrix elements from experimental results, it also turns

the B meson into an excellent laboratory to study perturbative and non-perturbative QCD, hadronization, and Final State Interaction (FSI) effects.

The precision of the experimental data has steadily improved over the past years. In 1997 CLEO updated most branching fractions for exclusive $B \to (n\pi)^- D^{(*)}$ and $B \to J/\psi K^{(*)}$ transitions. Tighter limits on color suppressed decays such as $\overline{B} \to D^0\pi^0$ have been presented [99]. Updated measurements of the polarization in $B \to J/\psi K^*$ resolved an outstanding discrepancy between theory and experiment [100]. Angular distributions have been studied for other B decays with two vector mesons in the final state including $B \to D^*\rho$, $B \to D^*D^*$, and $B \to D^*D^*$, CLEO found the relative phases of the helicity amplitudes in $B \to D^*\rho^-$ decays to be non-zero [101], implying that FSI effects may play a role in B decays after all. $B^0 \to D^{*+}D^{*-}$ decays have been observed with a branching fraction of $(9.9^{+4.2}_{-3.3} \pm 1.2) \times 10^{-4}$, providing unambiguous evidence for Cabibbo-suppressed $b \to ccd$ transitions [102,103].

Gronau and Wyler [104] first suggested that decays of the type $B \to DK$ can be used to extract the angle γ of the CKM unitarity triangle, $\gamma \approx \arg(V_{ub})$. The first example of such a Cabibbo-suppressed mode has been observed by CLEO [105]:

$$\frac{B(B^- \to D^0 K^-)}{B(B^- \to D^0 \pi^-)} = 0.055 \pm 0.014 \pm 0.005 \ . \tag{11}$$

Measurements of exclusive hadronic B decays have reached sufficient precision to challenge our understanding of the dynamics of these decays. It has been suggested that in analogy to semileptonic decays, two-body hadronic decays of B mesons can be expressed as the product of two independent hadronic currents, one describing the formation of a charm meson and the other the hadronization of the remaining $\overline{u}d$ (or $\overline{c}s$) system from the virtual W^- . Qualitatively, for a B decay with a large energy release, the $\overline{u}d$ pair, which is produced as a color singlet, travels fast enough to leave the interaction region without influencing the second hadron formed from the c quark and the spectator antiquark. The assumption that the amplitude can be expressed as the product of two hadronic currents is called "factorization" in this paper. By comparing exclusive hadronic B decays to the corresponding semileptonic modes the factorization hypothesis has been experimentally confirmed for certain $b \rightarrow c$ decays with large energy release [100]. An example is given by the longitudinal polarization of ρ mesons in $B \to D^* \rho$ decays, which was recently updated by the CLEO Collaboration [101]. Their result of $\Gamma_L/\Gamma = 0.878 \pm 0.034 \pm 0.040$ agrees well with the factorization expectation, 0.85-0.88 [106-109].

For internal spectator decays, the validity of the factorization hypothesis is also questionable and requires experimental verification. The naive color transparency argument used in the previous sections is not applicable to decays such as $B \to J/\psi K$, and there is no corresponding semileptonic decay for comparison. For internal spectator decays, one can only compare experimental observables to quantities predicted by

models based on factorization. Two such quantities are the production ratio

$$\mathcal{R} = \frac{B(B \to J/\psi K^*)}{B(B \to J/\psi K)} \tag{12}$$

and the amount of longitudinal polarization Γ_L/Γ in $B \to J/\psi K^*$ decays. The CLEO Collaboration published new data on $B \to$ charmonium transitions [110].

$$\mathcal{R} = 1.45 \pm 0.20 \pm 0.17$$
, $\Gamma_L/\Gamma = 0.52 \pm 0.07 \pm 0.04$, (13)

are now consistent with factorization-based models.

In the decays of charm mesons, the effect of color suppression is obscured by the effects of FSI or reduced by nonfactorizable effects. Because of the larger mass of the b quark, a more consistent pattern of color-suppression is expected in the B system, and current experimental results seem to support that color-suppression is operative in hadronic decays of B mesons. Besides $B \to$ charmonium transitions, no other color-suppressed decay has been observed experimentally [99]. The current upper limit on $B(\overline{B}^0 \to D^0 \pi^0)$ is 0.012% at 90% C.L.

By comparing hadronic B^- and \overline{B}^0 decays, the relative contributions from external and internal spectator decays have been disentangled. For all decay modes studied, the B^- branching fraction was found to be larger than the corresponding \overline{B}^0 branching ratio, indicating constructive interference between the external and internal spectator amplitudes. In the BSW model [111], the two amplitudes are proportional to effective coefficients, a_1 and a_2 , respectively. A least squares fit using experimental results and a model by Neubert et al. [112] gives

$$a_2/a_1 = 0.22 \pm 0.04 \pm 0.06$$
, (14)

where we have ignored uncertainties in the theoretical predictions. The second error is due to the uncertainty in the B-meson production fractions (f_+, f_0) and lifetimes (τ_+, τ_0) that enter into the determination of a_2/a_1 in the combination $(f_+\tau_+/f_0\tau_0)$. As this ratio increases, the value of a_2/a_1 decreases. Varying $(f_+\tau_+/f_0\tau_0)$ in the allowed experimental range excludes a negative value of a_2/a_1 . Other uncertainties in the magnitude of the decay constants f_D and f_{D^*} , as well as in the hadronic form factors, can change the magnitude of a_2/a_1 , but not its sign.

The magnitude of a_2 determined from this fit to the ratio of B^- and B^0 branching fractions is consistent with the value of $|a_2|$ determined from the fit to the $B \to J/\psi X$ decay modes, which only proceed via the color suppressed amplitude. The coefficient a_1 also shows little or no process dependency.

The observation that the coefficients a_1 and a_2 have the same relative sign in B^- decay came as a surprise, since destructive interference was observed in hadronic charm decay. The sign of a_2 disagrees with the theoretical extrapolation from the fit to charm meson decays using the BSW model. It also disagrees with the expectation from the $1/N_c$ rule [113]. The result may be consistent with the expectation of perturbative QCD [114]. B. Stech proposed that the observed interference

b-flavored hadrons

pattern in charged B and D decay can be understood in terms of the running strong coupling constant α_s [115]. A solution based on PQCD factorization theorems has been suggested by B. Tseng and H.N. Li [116].

Although constructive interference has been observed in all the B^- modes studied so far, these comprise only a small fraction of the total hadronic rate. It is conceivable that higher-multiplicity B^- decays demonstrate a very different behavior.

It is intriguing that $|a_1|$ determined from the $B \to D^{(*)}\pi$, $D^{(*)}\rho$ modes agrees well with the value of a_1 extracted from $B \to DD_s$ decays. The observation of color-suppressed decays such as $\overline{B}^0 \to D^0\pi^0$ would give another measure of $|a_2|$ complementary to that obtained from $B \to \text{charmonium decays}$.

In summary, experimental results on exclusive B decay match very nicely with theoretical expectations. Unlike charm, the b quark appears to be heavy enough so that corrections due to the strong interaction are small. Factorization and color-suppression are at work. An intriguing pattern of constructive interference in charged B decays has been observed.

Inclusive hadronic decays: Over the last years, inclusive B decays have become an area of intensive studies, experimentally as well as theoretically. Since the hadronization process to specific final state mesons is not involved in inclusive calculations, the theoretical results and predictions are generally believed to be more reliable.

CLEO and the LEP Collaborations presented new measurements of inclusive $b \rightarrow c$ transitions that can be used to extract n_c , the number of charm quarks produced per b decay. Naively we expect $n_c = 115\%$, with the additional 15% coming from the fragmentation of the W boson to $\bar{c}s$. This expectation can be verified experimentally by adding all inclusive $b \to c$ branching fractions. Using CLEO and DELPHI results, we can perform the calculation shown in Table 6. Modes with 2 charm quarks in the final state are counted twice. For the unobserved $B \to \eta_c X$ decay, we take the experimental upper limit. B_s mesons and b baryons produced at the Z, but not at the $\Upsilon(4S)$, cause the increase in D_s and Λ_c production rates seen by LEP. To first order, however, this should not affect the charm yield, as it should be compensated by reduced branching fractions for D mesons. This reduction is not reflected in the current data, but the errors in the D branching fractions are still large. In addition, there are significant uncertainties in the D_s and Λ_c absolute branching fractions.

New measurements of the multiplicity of charm quarks per b decay have also been reported by ALEPH and OPAL [117]. Combining this with the DELPHI results yields a new correlated average of $n_c = 1.151 \pm 0.022 \pm 0.022 \pm 0.051$, where the errors are statistical, systematic and due to the uncertainties in charm branching fractions [118]. There is now good agreement between the results from the $\Upsilon(4S)$ and the Z^0 .

Table 6: Charm yield per B decay.

Channel	Branchi	ng fraction [%]
	$\Upsilon(4S)$ [100]	LEP (DELPHI) [119]
$B \rightarrow D^0 X$	63.6 ± 3.0	60.05 ± 4.29
$+ B \rightarrow D^+X$	23.5 ± 2.7	23.01 ± 2.13
$+ B \rightarrow D_s^+ X$	12.1 ± 1.7	16.65 ± 4.50
$+ B \rightarrow \Lambda_c^{+} X$	2.9 ± 2.0	8.90 ± 3.0
$+ B \to \Xi_c^{+,0} X$	2.0 ± 1.0	4.00 ± 1.60
$+ 2 \times B \rightarrow J/\psi_{\text{direct}} X$	0.8 ± 0.08	,
$+ 2 \times B \rightarrow \psi(2S)_{\text{direct}}$	$X = 0.35 \pm 0.05$	i
$+ 2 \times B \rightarrow \chi_{c1} X$	0.37 ± 0.07	•
$+ 2 \times B \rightarrow \chi_{c2} X$	0.25 ± 0.1	
$+ 2 \times B \rightarrow \eta_c X$	< 0.9 (90%C.L.)	
$+ 2 \times b \rightarrow (c\overline{c})X$		2.00 ± 0.65
n_c	110 ± 5	115.1 ± 7.4

The $b\to c\overline{c}s$ transition: It was previously assumed that the conventional $b\to c\overline{u}d\to DX$ and $b\to c\overline{c}s\to DD_sX$ mechanisms account for all D-meson production in B decay. Buchalla et al. [120] suggested that a significant fraction of D mesons could also arise from $b\to c\overline{c}s$ transitions with light quark pair production at the upper vertex, i.e. $b\to c\overline{c}s\to D\overline{D}X_s$. The two mechanisms can be distinguished by the different final states they produce. In the first case the final state includes only D mesons, whereas in the second case two D mesons can be produced, one of which has to be a \overline{D} .

Table 7: CLEO results on $B \to DDK$ decays.

Mode	Branching fraction
$\overline{B(\overline{B}^0 \to D^{*+} \overline{D}^0 K^-)}$	$0.45^{+0.25}_{-0.19} \pm 0.08\%$
$B(B^-\to D^{*0}\overline{D}^0K^-)$	$0.54^{+0.33}_{-0.24} \pm 0.12\%$
$B(\overline{B}^0 \to D^{*+} \overline{D}^{*0} K^-)$	$1.30^{+0.61}_{-0.47} \pm 0.27\%$
$B(B^- \to D^{*0}\overline{D}^{*0}K^-)$	$1.45^{+0.78}_{-0.58} \pm 0.36\%$

Two routes to search for this addition to $\Gamma(b \to c\bar{c}s)$ have been pursued experimentally. In an exclusive search for $B \rightarrow$ $D\overline{D}K$ decays, CLEO required the final state to include a D and a \overline{D} meson. Statistically significant signals are observed for several $D^{(*)}\overline{D}^{(*)}$ combinations. The preliminary CLEO results are listed in Table 7 [121]. While the observation of these decays proves the existence of \overline{D} -meson production at the upper vertex, a more inclusive measurement is needed to estimate the overall magnitude of this effect. A recent CLEO analysis exploits the fact that the flavor of the final state D-meson tags the decay mechanism. High momentum leptons (p_{ℓ} > 1.4 GeV/c) are used to classify the flavor of the decaying B meson. $b \to c\overline{u}d$ transitions lead to $D\ell^+$ combinations, while the observation of $\overline{D}\ell^+$ identifies the new $b \to c\bar{c}s$ mechanism. Angular correlations are used to remove combinations with both particles coming from the same B meson. CLEO finds [122]

$$\frac{\Gamma(\overline{B} \to \overline{D}X)}{\Gamma(\overline{B} \to DX)} = 0.100 \pm 0.026 \pm 0.016 , \qquad (15)$$

which implies

$$B(\overline{B} \to \overline{D}X) = 0.079 \pm 0.022. \tag{16}$$

We can now calculate $n_{cc} = B(b \to c\bar{c}s)$. n_{cc} is related to n_c , the number of charm quarks produced per b decay

$$n_c = 1 + n_{cc} - n_{B \to \text{no charm}} . \tag{17}$$

Using the data listed in Table 6 and the above result, we find

$$n_{cc} = (23.9 \pm 3.0)\%$$
 (18)

The contribution from $B \to \Xi_c^0 X$ was reduced by 1/3 to take into account the fraction that is not produced by the $b \to c \overline{c} s$ subprocess, but by $b \to c \overline{u} d + s \overline{s}$ quark pair production.

This result is consistent with theoretical predictions, $n_{cc}=22\pm6\%$ [28,123]. $b\to D\overline{D}X$ decays have also been observed at LEP and at the SLC. ALEPH [102] finds

$$B(B \to D^0 \overline{D}^0 X + D^0 D^{\mp} X) = 0.078^{+0.02}_{-0.018} {}^{+0.017}_{-0.015} {}^{+0.005}_{-0.004}, \quad (19)$$

where the last error reflects the uncertainty in D meson branching fractions. DELPHI and SLD look for double charm decays of b hadrons by selecting events that are consistent with having two decay vertices. They find $n_{2c} = (13.6 \pm 4.2)\%$ [124] and $n_{2c} = (16.2 \pm 1.9 \pm 4.2)\%$ [125], respectively. n_{2c} does not include $B \rightarrow$ Charmonium production. Taking this into account we find that these results are consistent with n_{cc} . DELPHI used a b-tagging technique to measure the inclusive charmless B branching fraction to 0.033 ± 0.021 . Subtracting charmonium production allows them to set an upper limit on charmless b decays of 3.7% at 95% CL [124].

Charm Counting and the Semileptonic Branching Fraction: The charm yield per B meson decay is related to an intriguing puzzle in B physics: the experimental value for the semileptonic branching ratio of B mesons, $B(B \to X \ell \nu) = 10.49 \pm 0.17 \pm 0.43\%$ ($\Upsilon(4S)$, is significantly below the theoretical lower bound B > 12.5% from QCD calculations within the parton model [126]. Since the semileptonic and hadronic widths are connected via

$$1/\tau = \Gamma = \Gamma_{\text{Semileptonic}} + \Gamma_{\text{Hadronic}}$$

an enhanced hadronic rate is necessary to accommodate the low semileptonic branching fraction. The hadronic width, which can be expressed as

$$\Gamma_{
m Hadronic} = \Gamma(b
ightarrow car{c}s) + \Gamma(b
ightarrow car{u}d) + \Gamma(b
ightarrow sg \, + \, {
m no \, charm})$$

is constraint by another experimental quantity, n_c , the average number of charm quarks produced per b decay.

For years it has been difficult to accommodate the experimental results with the theoretical preference for a larger values for $B_{\rm sl}$, n_c and n_{cc} . Additional confusion has been caused by an apparent discrepancy between LEP (Z^0) and CLEO ($\Upsilon(4S)$) results. The latter issue, however, has been resolved with both the LEP average for $B_{\rm sl}$ and n_c coming down. There is now good agreement between the experiments. Several explanations of this $n_c/B_{\rm sl}$ discrepancy have been proposed:

- 1. enhancement of $b \to c\bar{c}s$ due to large QCD corrections or a breakdown of local duality;
- 2. enhancement of $b \rightarrow c\bar{u}d$ due to non-perturbative effects:
- 3. enhancement of $b \to sg$ and/or $b \to dg$ due to New Physics;
- 4. systematic problem in the experimental results;

or the problem could be caused by some combination of the above.

Arguably the most intriguing solution to this puzzle would be an enhanced $b \to sg$ rate but as we will see in the next section, new results from CLEO and LEP show no indication for New Physics and place tight limits on this process.

 ${\rm B}(b\to c\bar u d)$ has been calculated to next-to-leading order. Bagan et al. [127] find:

$$r_{ud} = \frac{\mathrm{B}(b
ightarrow car{u}d)}{\mathrm{B}(b
ightarrow c\ell
u)} = 4.0 \pm 0.4
ightarrow \mathrm{B}(b
ightarrow car{u}d)_{\mathrm{Theory}} = 41 \pm 4\%$$

which compares well with the experimental value of $43\pm6\%$ [100] but the errors are still too large to completely rule out an enhanced $b \to c\bar{u}d$ rate.

The theoretically preferred solution calls for an enhancement of the $b\to c\bar c s$ channel [127,28]. Increasing the $b\to c\bar c s$ component, however, would increase the average number of c quarks produced per b quark decay as well as n_{cc} , the number of b decays with 2 charm quarks in the final state. This is not supported by the data, in particular the value of n_c appears to be too low at the few σ -level. Systematic problems with D meson branching fractions have been pointed out as potential solution [128] but new results from ALEPH [129] and CLEO [130] on B($D^0\to K^-\pi^+$) make this less likely.

After years of experimental and theoretical efforts the missing charm/ B_{sl} problem has begun to fade away. The discrepancy between experiments at the $\Upsilon(4S)$ and the Z^0 has been resolved. More data are needed to either resolve this issue or to demonstrate that the problem persists.

Rare B decays: All B-meson decays that do not occur through the usual $b \to c$ transition are known as rare B decays. These include both tree level semileptonic and hadronic $b \to u$ decays that are suppressed by the small CKM matrix element V_{ub} , as well as higher order processes such as electromagnetic and gluonic penguin decays. Branching fractions are typically around 10^{-5} , for exclusive channels, and sophisticated background suppression techniques are essential for these analyses.

Arguably the most exciting new experimental results since the last edition of this review are in the field of rare B decays. For many charmless B-decay modes the addition of new data and the refinement of analysis techniques allowed CLEO to observe signals where previously there have been upper limits. For other channels new tighter upper limits have been published.

Hadronic $b \to u$ transitions: Using almost 20 million charged and neutral B decays, CLEO successfully reconstructed a handful of exclusive hadronic $B^0 \to \pi^+\pi^-$ decays [131]. As

b-flavored hadrons

can be seen in Table 8, the branching fraction for this mode is about a factor of 4 smaller than the rate of $B \to K\pi$ transitions. This is not good news for CP-violation studies. Not only is the branching fraction very small, but in addition the analysis will be complicated by "penguin pollution."

A theoretically clean method to determine the sum of the angles $\beta + \gamma$ of the unitarity triangle has been proposed by Snyder and Quinn [136]. They suggest that a sample of 10^3 $B \to \rho\pi$ decays, together with a Dalitz plot analysis, allow a measurement of $\beta + \gamma$ to about 6°. CLEO has recently measured the branching fraction for these modes [132]

$$B(B^+ \to \rho^0 \pi^+) = (1.5 \pm 0.5 \pm 0.4) \times 10^{-5}$$
 (20)

$$B(B^0 \to \rho^{\pm} \pi^{\mp}) = (3.5^{+1.1}_{-1.0} \pm 0.5) \times 10^{-5}$$
 (21)

but it will take a while before a sufficiently large data sample will be available.

Table 8: Summary of CLEO results on $B \to \pi\pi, K\pi$, and KK branching fractions. The branching fractions and the 90% C.L. upper limits are given in units of 10^{-5} . Using the notation of Gronau et al. [137], the third column indicates the dominant amplitudes for each decay (T, C, P, E denote tree, color suppressed, penguin, and exchange amplitudes and the unprimed (primed) amplitudes refer to $\bar{b} \to \bar{u}u\bar{d}$ ($\bar{b} \to \bar{u}u\bar{s}$) transitions, respectively.)

$ Mode \\ (B \rightarrow) $	В	Amplitude	Theoretical expectation
$\pi^+\pi^ \pi^+\pi^0$	$0.43^{+0.16}_{-0.14} \pm 0.05$	-(T+P)	0.8-2.6
$\pi^0\pi^0$	< 1.3 < 0.93	$-(T+C)/\sqrt{(2)}$ $-(C-P)/\sqrt{(2)}$	0.4-2.0 0.006-0.1
$K^+\pi^-$	$1.72^{+0.25}_{-0.24} \pm 0.12$	-(T'+P')	0.7-2.4
$K^+\pi^0$	$1.16_{-0.27}^{+0.30}_{-0.13}^{+0.14}$	$-(T'+C'+P')/\sqrt{(2)}$	0.3 - 1.3
$K^0\pi^-$	$1.82^{+0.46}_{-0.40} \pm 0.16$	P'	0.8 - 1.5
$K^0\pi^0$	$1.46_{-0.51}^{+0.59}_{-0.33}^{+0.24}$	$-(C'-P')/\sqrt{(2)}$	0.3 – 0.8
$\overline{K^+K^-}$	< 0.19	E	
K^+K^0	< 0.51	P	0.07 - 0.13
K^0K^0	< 1.7	P	0.07-0.12

Electromagnetic penguin decays: The observation of the decay $B \to K^*(892)\gamma$, reported in 1993 by the CLEO II experiment, provided first evidence for the one-loop penguin diagram [138]. Using a larger data sample, the analysis was re-done in 1999 [139] yielding a total of 125 events and

$$B(B^0 \to K^{*0}\gamma) = (4.55^{+0.72}_{-0.68} \pm 0.34) \times 10^{-5}$$
, (22)

$$B(B^+ \to K^{*+}\gamma) = (3.76^{+0.89}_{-0.83} \pm 0.28) \times 10^{-5}$$
. (23)

The decay $B \to K_2^*(1430)\gamma$ was seen with a branching fraction of $(1.66^{+0.59}_{-0.53} \pm 0.13) \times 10^{-5}$. No evidence for the decays $B \to \rho \gamma$ and $B \to \omega \gamma$ was found. The current upper limit for the ratio $B(B \to (\rho/\omega)\gamma)/B(B \to K^*\gamma)$ is 0.32 at 90% CL. The limit on the ratio of branching fractions implies that $|V_{td}/V_{ts}| < 0.75$ at 90% CL.

The observed branching fractions were used to constrain a large class of Standard Model extensions [140]. However, due to

the uncertainties in the hadronization, only the inclusive $b \to s \gamma$ rate can be reliably compared with theoretical calculations. This rate can be measured from the endpoint of the inclusive photon spectrum in B decay. CLEO [141] found

$$B(b \to s\gamma) = (3.15 \pm 0.35 \pm 0.41) \times 10^{-4} (CLEO)$$
, (24)

to be compared to the Standard Model rate [142-144] of

$$B(b \to s\gamma)_{SM} = (3.28 \pm 0.33) \times 10^{-4}$$
. (25)

ALEPH used a lifetime tagged sample of $Z \to b\bar{b}$ events to search for high-energy photons in the hemisphere opposite to the tag. This allows them to measure the photon spectrum from B decays which ultimately leads to [145]

$$B(b \to s\gamma) = (3.11 \pm 0.80 \pm 0.72) \times 10^{-4} \text{ (ALEPH)}.$$
 (26)

Our theoretical understanding of inclusive $b \to s \gamma$ transitions has been significantly enhanced by two new calculations that now include all terms to next-to-leading order [142–144]. The expected Standard Model rate, while slightly larger now, is still consistent with both the CLEO and ALEPH results. The substantially reduced uncertainties result in tighter constraints on new physics such as double Higgs models [146].

Gluonic penguin decays: A larger total rate is expected for gluonic penguins, the counterpart of $b \to s\gamma$ with the photon replaced by a gluon.

Experimentally, it is a major challenge to measure the inclusive $b \to sg$ rate. The virtual gluon hadronizes as a $q\overline{q}$ pair without leaving a characteristic signature in the detector. CLEO extended D- ℓ correlation measurements described in the section on hadronic B decays to obtain the flavor specific decay rate $\Gamma(\overline{B} \to DX)_{\text{lower vertex}}/\Gamma_{\text{total}}$. This quantity should be 1 minus corrections for charmonium production, $b \to u$ transitions, $B \to \text{baryons}$, and D_s production at the lower vertex. Most importantly, the $b \to sg$ rate must also be subtracted. To remove uncertainties due to $B(D^0 \to K^-\pi^+)$, CLEO normalizes to $\Gamma(\overline{B} \to DX \ell \nu_{\ell})/\Gamma(\overline{B} \to X \ell \nu_{\ell})$. Their preliminary result is

$$\frac{\Gamma(\overline{B} \to DX)_{\text{lower vertex}}/\Gamma_{\text{total}}}{\Gamma(\overline{B} \to DX\ell\nu_{\ell})/\Gamma(\overline{B} \to X\ell\nu_{\ell})} = 0.901 \pm 0.034 \pm 0.014 \quad (27)$$

whereas $0.903\pm0.018-(b\to sg)$ was expected. This corresponds to an upper limit of $B(b\to sg)<6.8\%$ at 90% CL [122]. DELPHI [147] studied the p_T spectrum of charged kaons in B decays and found a model-dependent limit $B(b\to sg)<5\%$ (95% C.L.). These results agree well with the Standard Model prediction of $B(\overline{B}\to no\,charm)=(1.6\pm0.8)\%$ [148], and there is little experimental support for new physics and an enhanced $b\to sg$ rate [149]. However, experimental uncertainties are still large, and it is too early to draw final conclusions.

Exclusive decays such as $B \to K^+\pi^-$ are suppressed at tree level and are expected to proceed via loop processes. CLEO studied these decay modes, and all 4 $K\pi$ combinations have been observed [131]. The results are listed in Table 8.

THIS PAGE IS MISSING

THIS PAGE IS MISSING

THIS PAGE IS MISSING

	D, D*, or D	modes			K or K* modes		
Г8	$D^-\pi^+$	$(3.0 \pm 0.4) \times 10^{-3}$		Γ_{69} $K^{+}\pi^{-}$		$.5 \begin{array}{c} +0.5 \\ -0.4 \end{array}) \times 10^{-5}$	
Г9	$D^-\rho^+$	$(7.9 \pm 1.4) \times 10^{-3}$		- 0 0	< 4	_	CL=90%
Γ10	$\overline{D}^0 \pi^+ \pi^-$	$< 1.6 \times 10^{-3}$	CL=90%				CL 70 / 4
Γ_{11}	$D^*(2010)^-\pi^+$	$(2.76 \pm 0.21) \times 10^{-3}$		$\Gamma_{71} \eta' K^0$		$.7 \ ^{+2.8}_{-2.2}) \times 10^{-5}$	
Γ ₁₂	$D^-\pi^+\pi^+\pi^-$	$(8.0 \pm 2.5) \times 10^{-3}$		$\Gamma_{72} = \eta' K^* (892)^0$	< 3		CL=90%
Γ ₁₃	$(D^-\pi^+\pi^+\pi^-)$ nonresonant	$(3.9 \pm 1.9) \times 10^{-3}$		$\Gamma_{73} = \eta K^*(892)^0$	< 3		CL=90%
Γ ₁₄	$D^-\pi^+\rho^0$	$(1.1 \pm 1.0) \times 10^{-3}$		$\Gamma_{74} \eta K^0$	< 3		CL=90%
Г ₁₅	$D^- a_1 (1260)^+$ $D^* (2010)^- \pi^+ \pi^0$	$(6.0 \pm 3.3) \times 10^{-3}$		Γ ₇₅ ω Κ ⁰ Γ ₇₆ ω Κ*(892) ⁰	< 5 < 2	-	CL=90% CL=90%
Г ₁₆	$D^*(2010)^- \pi^+ \pi^-$ $D^*(2010)^- \rho^+$	$(1.5 \pm 0.5)\%$ $(6.8 \pm 3.4) \times 10^{-3}$		Γ ₇₆ ωΚ*(892) ⁰ Γ ₇₇ Κ ⁺ Κ ⁻	< 4		CL=90%
Γ ₁₇ Γ ₁₈	$D^*(2010)^- \pi^+ \pi^+ \pi^-$	$(7.6 \pm 1.8) \times 10^{-3}$	5=1.4	Γ_{78}^{77} $\kappa^0 \overline{\kappa}^0$	< 1	-	CL=90%
Γ ₁₉	$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	$(0.0 \pm 2.5) \times 10^{-3}$	3=1.4	$\Gamma_{79}^{78} K^{+} \rho^{-}$	< 3		CL=90%
. 19	resonant	(0.0 ±2.0 / × 20		$\Gamma_{\rm BO}$ $K^0\pi^+\pi^-$			
Γ_{20}	$D^*(2010)^-\pi^+\rho^0$	$(5.7 \pm 3.2) \times 10^{-3}$		Γ_{81}^{00} $\kappa^{0}\rho^{0}$	< 3	i.9 × 10 ⁻⁵	CL=90%
Γ_{21}	$D^*(2010)^- a_1(1260)^+$	$(1.30 \pm 0.27)\%$		$\Gamma_{82} K^0 f_0(980)$	< 3		CL=90%
Γ ₂₂	$\underline{D}^*(2010)^-\pi^+\pi^+\pi^-\pi^0$	(3.5 ±1.8)%		Γ ₈₃ K*(892)+ τ			CL=90%
Γ ₂₃	$\overline{D}_{2}^{*}(2460)^{-}\pi^{+}$	$< 2.2 \times 10^{-3}$	CL=90%	Γ ₈₄			CL=90%
Γ ₂₄	$\overline{D}_{2}^{*}(2460)^{-}\rho^{+}$	< 4.9 × 10 ⁻³	CL=90%	$\Gamma_{85} K_2^*(1430)^+$	·π < 2		CL=90%
Γ_{25}	D- D+	$< 1.2 \times 10^{-3}$	CL=90%	Γ ₈₆ Κ ⁰ Κ ⁺ Κ ⁻	< 1	_	CL=90%
Γ ₂₆	$D^-D_s^+$	$(8.0 \pm 3.0) \times 10^{-3}$		Γ_{87} $K^0\phi$	< 3		CL=90%
Γ ₂₇	$D^*(2010)^-D_s^+$	$(9.6 \pm 3.4) \times 10^{-3}$		$\Gamma_{88} K^-\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi$			CL=90%
Γ ₂₈	$D^-D_s^{\bullet+}$	$(1.0 \pm 0.5)\%$		$\Gamma_{89} K^*(892)^0 \pi$			CL=90%
Γ_{29}	$D^*(2010)^- D_s^{*+}$	$(2.0 \pm 0.7)\%$		Γ ₉₀ K*(892)			CL=90%
Γ ₃₀	$D_s^+\pi^-$	$< 2.8 \times 10^{-4}$	CL=90%	Γ ₉₁			CL=90%
Г31	$D_{s}^{*+}\pi^{-}$	$< 5 \times 10^{-4}$	CL=90%	$\Gamma_{92} K_1(1400)$			CL=90%
Γ ₃₂	$D_s^+ \rho^-$	$< 7 \times 10^{-4}$	CL≃90%	Γ_{93} $K^- a_1 (15)$ Γ_{94} $K^* (892)^0 K^+$	$(b)^+$ $(b) < 2$		CL=90% CL=90%
Γ ₃₃	$D_s^{*+}\rho^-$	< 8 × 10 ⁻⁴	CL=90%		K- < €	-	CL=90%
Γ ₃₄	$D_s^+ a_1(1260)^-$	< 2.6 × 10 ⁻³	CL=90%		< 2 < 3	•	CL=90%
		< 2.2 × 10 ⁻³	CL=90%	$\Gamma_{96} = K_1 (1400)^0 \rho^0$ $\Gamma_{97} = K_1 (1400)^0 \phi$	< 5	•	CL=90%
Г ₃₅	$D_s^{*+} a_1(1260)^-$			$\Gamma_{98} K_2^*(1430)^0 \rho^0$		•	CL=90%
Γ ₃₆ .	D-K+		CL=90%	20 21	< 1	_	CL=90%
Γ ₃₇	$D_s^{*-}K^+$	$< 1.7 \times 10^{-4}$	CL=90%			4.0 ±1.9) × 10 ⁵	CL 70 /8
Г38	D=K*(892)+	< 9.9 × 10 ⁻⁴	CL=90%	$\Gamma_{100} K^*(892)^0 \gamma \\ \Gamma_{101} K_1(1270)^0 \gamma$	< 7		CL=90%
Γ ₃₉	$D_s^{*-}K^*(892)^+$	$< 1.1 \times 10^{-3}$	CL=90%	$\Gamma_{102} K_1(1270)^0 \gamma$	< 4	•	CL=90%
Γ ₄₀	$D_s^-\pi^+K^0$	< 5 × 10 ⁻³	CL=90%	$\Gamma_{103} K_2^* (1430)^0 \gamma$	< 4		CL=90%
Γ ₄₁	$D_s^{*-}\pi^+K^0$	$< 3.1 \times 10^{-3}$	CL=90%	$\Gamma_{104} K_2^*(1480)^0 \gamma$	< 3	•	CL=90%
Γ_{42}	$D_s^- \pi^+ K^* (892)^0$	$< 4 \times 10^{-3}$	CL=90%	$\Gamma_{105} K_3^* (1780)^0 \gamma$	< 1		CL=90%
Γ ₄₃	$D_s^{*-}\pi^+K^*(892)^0$	$< 2.0 \times 10^{-3}$	CL=90%	$\Gamma_{106} K_4^*(2045)^0 \gamma$	< 4	_	CL=90%
Γ44	$\overline{D}^{0}\pi^{0}$	$< 1.2 \times 10^{-4}$	CL=90%	1106 114(2013) 7			
Γ_{45}	$\overline{D}_{-}^{0} \rho^{0}$	< 3.9 × 10 ⁻⁴	CL=90%		Light unflavored meson n		
Γ ₄₆	$\overline{D}^0\eta$	< 1.3 × 10 ⁻⁴	CL=90%	$\Gamma_{107} \pi^{+} \pi^{-}$	< 1	_	CL=90%
Γ_{47}	$\overline{D}{}^0_0\eta'$	< 9.4 × 10 ⁻⁴	CL=90%	$\Gamma_{108}^{101} \pi^0 \pi^0$	< 9		CL=90%
. Γ ₄₈	$\overline{D}^0\omega$	$< 5.1 \times 10^{-4}$	CL=90%	$\Gamma{109} \eta \pi^0$	< !		CL=90%
Γ49	$\overline{D}^*(2007)^0\pi^0$	< 4.4 × 10 ⁻⁴	CL=90%	$\Gamma_{110} \eta \eta$	< 1	-	CL=90% CL=90%
Γ ₅₀	$\overline{D}^*(2007)^0 \rho^0$	< 5.6 × 10 ⁻⁴	CL=90%	$\Gamma_{111} \eta' \pi^0$	< 1	-	CL=90%
Γ ₅₁	$\overline{D}^*(2007)^0\eta$	< 2.6 × 10 ⁻⁴	CL=90%	$\Gamma_{112} \eta' \eta'$ $\Gamma_{112} \eta' \eta'$	< :	_	CL=90%
Γ ₅₂	$\overline{D}^*(2007)^0 \eta'$	$< 1.4 \times 10^{-3}$ $< 7.4 \times 10^{-4}$	CL=90%	$\Gamma_{113} \eta' \eta \ \Gamma_{114} \eta' ho_0^0$	< :	_	CL=90%
Γ ₅₃	$\overline{D}^*(2007)^0\omega$		CL=90%	$\Gamma_{115}^{114} \eta \rho^0$	< :		CL=90%
Γ ₅₄	D*(2010)+ D*(2010)-	$(6.2 \begin{array}{c} +4.1 \\ -3.1 \end{array}) \times 10^{-4}$		$\Gamma_{116} \omega \eta$	<	1.2 × 10 ⁻⁵	CL=90%
Γ ₅₅	$D^*(2010)^+D^-$	$< 1.8 \times 10^{-3}$	CL=90%	$\Gamma_{117}^{110} \omega \eta'$	< (6.0 × 10 ⁻⁵	CL=90%
Γ ₅₆	$D^{(*)0}\overline{D}^{(*)0}$	< 2.7 %	CL=90%	$\Gamma_{118}^{11} \omega \rho^0$	< 1	1.1 × 10 ⁻⁵	CL=90%
	Charmonius	m modes		Γ_{119} $\omega\omega$	< 1		CL=90%
Γ ₅₇	$J/\psi(1S)K^0$	(8.9 ±1.2)×10 ⁻⁴		Γ_{120} $\phi\pi^0$	</td <td></td> <td>CL=90%</td>		CL=90%
Γ ₅₈	$J/\psi(1S)K^+\pi^-$	$(1.2 \pm 0.6) \times 10^{-3}$		$\Gamma_{121} \phi_{\eta}$	< 9		CL=90%
Γ ₅₉	$J/\psi(1S)K^*(892)^0$	$(1.50 \pm 0.17) \times 10^{-3}$		$\Gamma_{122} \phi \eta'$	< 3		CL=90%
Γ ₆₀	$J/\psi(1S)\pi^0$	< 5.8 × 10 ⁻⁵	CL=90%	$\Gamma_{123} \phi \rho^0$	< 1		CL=90%
Γ ₆₁	$J/\psi(1S)\eta$	$< 1.2 \times 10^{-3}$	CL=90%	Γ_{124} $\phi\omega$	< 2		CL=90%
Γ ₆₂	$J/\psi(1S)\rho^0$	< 2.5 × 10 ⁻⁴	CL=90%	$\Gamma_{125} \phi \phi$	< 1		CL=90%
Γ ₆₃	$J/\psi(1S)\omega$	$< 2.7 \times 10^{-4}$	CL=90%	$\Gamma_{126} \pi^{+} \pi^{-} \pi^{0}$	< 1		CL=90%
Γ ₆₄	$\psi(25) K^{0}$	< 8 × 10 ⁻⁴	CL=90%	$egin{array}{ccc} \Gamma_{127}^{12} & ho^0 \pi^0 \ \Gamma_{128} & ho^\mp \pi^\pm \end{array}$	< 2		CL=90%
Γ ₆₅	$\psi(2S)K^{+}\pi^{-}$	< 1 ×10 ⁻³		$\Gamma_{128} \rho^+ \pi^{\pm}$	[c] < 6		CL=90% CL=90%
Γ ₆₆	ψ(2\$) K*(892) ⁰	$(9.3 \pm 2.3) \times 10^{-4}$		$\Gamma_{129}^{-1} \pi^{+} \pi^{-} \pi^{+} \pi^{-} $ $\Gamma_{130} \rho^{0} \rho^{0}$	< 2		CL=90%
Γ ₆₇	$\chi_{c1}(1P)K^{0}$	< 2.7 × 10 ⁻³		- ()T	π^{\pm} [c] < 4		CL=90%
Γ ₆₈	$\chi_{c1}(1P) K^*(892)^0$	< 2.1 × 10 ⁻³	CL=90%		π^{\pm} [c] < 3	4	CL=90%
				$\Gamma_{132} = \frac{a_2(1320)^+}{\Gamma_{133}} = \frac{\pi^+\pi^-\pi^0\pi^0}{\pi^0}$	(3 H) > 1	•	CL=90%
				$\Gamma_{134} \rho^+ \rho^-$	·	2.2 × 10 ⁻³	CL=90%
				$\Gamma_{135} = a_1(1260)^0$	π^0		CL=90%
				$\Gamma_{136} \omega \pi^0$	1 200 E 10 1 4 1		CL=90%

 B^0

	$\pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	<	9.0	\times 10 ⁻³	CL=90%
Γ_{138}	$a_1(1260)^+ \rho^-$	<	3.4	$\times 10^{-3}$	CL=90%
Γ_{139}	$a_1(1260)^0 \rho^0$	<	2.4	$\times 10^{-3}$	CL=90%
Γ140	$\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{-} \pi^{-}$	<	3.0	$\times 10^{-3}$	CL=90%
Γ ₁₄₁	$a_1(1260)^+ a_1(1260)^-$	<	2.8	$\times 10^{-3}$	CL=90%
Γ ₁₄₂	$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0}$	<	1.1	%	CL=90%
		Baryon modes			
Γ ₁₄₃	p p	<	7.0	×10 ⁻⁶	CL=90%
Γ ₁₄₄	$p\overline{p}\pi^{+}\pi^{-}$	<	2.5	\times 10 ⁻⁴	CL=90%
Γ ₁₄₅	p Λπ ⁻	<	1.3	$\times 10^{-5}$	CL=90%
Γ ₁₄₆	7A	<	3.9	× 10 ⁻⁶	CL=90%
Γ ₁₄₇	$\Delta^0 \overline{\Delta}{}^0$	<	1.5	$\times 10^{-3}$	CL=90%
Γ ₁₄₈	$\Delta^{++}\Delta^{}$	<	1.1	× 10 ⁻⁴	CL=90%
Γ ₁₄₉	$\overline{\Sigma}_c^{}\Delta^{++}$	<	1.0	$\times 10^{-3}$	CL=90%
	$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}$	(1.3 ± 0.6)	$\times 10^{-3}$	
Γ ₁₅₁	$\overline{\Lambda}_{c}^{-} p$	<	2.1	$\times 10^{-4}$	CL=90%
Γ ₁₅₂	$\overline{\Lambda}_{c}^{c} p \pi^{0}$	<	5.9	$\times 10^{-4}$	CL=90%
	$\overline{\Lambda}_c^c p \pi^+ \pi^- \pi^0$	<	5.07	$\times 10^{-3}$	CL=90%
Γ ₁₅₄	$\overline{\Lambda}_{c}^{c} p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	<	2.74	× 10 ⁻³	CL=90%
-54	t.				

Lepton Family number (LF) violating modes, or $\Delta B = 1$ weak neutral current (B1) modes

Γ ₁₅₅	$\gamma\gamma$		<	3.9	$\times 10^{-5}$	CL=90%
Γ ₁₅₆	e ⁺ e ⁻	B1	<	5.9	$\times 10^{-6}$	CL=90%
Γ ₁₅₇	$\mu^+\mu^-$	B1	<	6.8	$\times 10^{-7}$	CL=90%
Γ ₁₅₈	$K^0e^+e^-$	B1	<	3.0	\times 10 ⁻⁴	CL=90%
	$K^0 \mu^+ \mu^-$	B1	<	3.6	$\times 10^{-4}$	CL=90%
	$K^*(892)^0 e^+ e^-$	B1	<	2.9	$\times 10^{-4}$	CL=90%
	$K^*(892)^0 \mu^+ \mu^-$	B1	<	4.0	$\times 10^{-6}$	CL=90%
Γ ₁₆₂	$K^*(892)^0 \nu \overline{\nu}$	B1	<	1.0	$\times 10^{-3}$	CL=90%
Γ ₁₆₃	$e^{\pm}\mu^{\mp}$	LF	[c] <	3.5	$\times 10^{-6}$	CL=90%
Γ ₁₆₄	$e^{\pm} \tau^{\mp}$	LF	[c] <	5.3	\times 10 ⁻⁴	CL=90%
Γ ₁₆₅	$\mu^{\pm} au^{\mp}$	LF	[c] <	8.3	$\times 10^{-4}$	CL=90%

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] B^0 and B^0_c contributions not separated. Limit is on weighted average of the two decay rates.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.

BO BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^{\pm} section.

$\Gamma(\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.105 ±0.008 OUR AVERAGE					
$0.1078 \pm 0.0060 \pm 0.0069$				$e^+e^- \rightarrow \Upsilon(45)$	
$0.093 \pm 0.011 \pm 0.015$	ALBRECHT	94	ARG	$e^+e^- \rightarrow \Upsilon(4S)$	
$0.099 \pm 0.030 \pm 0.009$	HENDERSON	92	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$	
• • We do not use the following	ng data for average	s, fits	, limits,	etc. • • •	
$0.109 \pm 0.007 \pm 0.011$	ATHANAS	94	CLE2	Sup. by ARTUSO	97

 30 ARTUSO 97 uses partial reconstruction of $B\to D^{\star}\ell\nu\ell$ and inclusive semileptonic branching ratio from BARISH 968 (0.1049 \pm 0.0017 \pm 0.0043).

$\Gamma(D^-\ell^+ u_\ell)/\Gamma_{ m total}$	Γ ₂ /Γ
ℓ denotes e or μ , not the sum.	

ℓ denotes e or μ , not the	ne sum.			
VALUE	DOCUMENT ID		TECN	COMMENT
0.0210 ± 0.0019 OUR AVERA	GE			
$0.0209 \pm 0.0013 \pm 0.0018$	31 BARTELT	99	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
$0.0235 \pm 0.0020 \pm 0.0044$	³² BUSKULIC			$e^+e^- \rightarrow Z$
0.018 ±0.006 ±0.003	³³ FULTON			$e^+e^- \rightarrow \Upsilon(45)$
$0.020 \pm 0.007 \pm 0.006$	34 ALBRECHT	891	ARG	$e^+e^- \rightarrow \gamma(45)$
• • • We do not use the foll	owing data for average	es, fit	s, limits,	etc. • • •
$0.0187 \pm 0.0015 \pm 0.0032$	35 ATHANAS	97	CLE2	Repl. by BARTELT 99

- 31 Assumes equal production of \mathcal{B}^+ and \mathcal{B}^0 at the $\varUpsilon(4S)$.
- $^{32}\,\text{BUSKULIC}$ 97 assumes fraction (B+) = fraction (B0) = (37.8 \pm 2.2)% and PDG 96 values for B lifetime and branching ratio of D^* and D decays.
- 33 FULTON 91 assumes assuming equal production of B^0 and B^+ at the $\Upsilon(4S)$ and uses Mark III D and D^* branching ratios.
- 34 ALBRECHT 89) reports $0.018 \pm 0.006 \pm 0.005$. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0 \rightarrow K^-\pi^+$).
- 35 ATHANAS 97 uses missing energy and missing momentum to reconstruct neutrino.

$\Gamma(D^*(2010)^-\ell^+\nu_\ell)/\Gamma_{ti}$	otal				Γ3/Γ
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.0460±0.0027 OUR AVER	AGE				
$0.0508 \pm 0.0021 \pm 0.0066$		36 ACKERSTAFF	97G OPAL	$e^+e^- \rightarrow Z$	<i>!</i>
$0.0553 \pm 0.0026 \pm 0.0052$		³⁷ BUSKULIC	97 ALEP	$e^+e^- \rightarrow \bar{z}$	<u> </u>
$0.0552 \pm 0.0017 \pm 0.0068$		³⁸ ABREU	96P DLPH	$e^+e^- \rightarrow \bar{z}$	7
$0.0449 \pm 0.0032 \pm 0.0039$	376	³⁹ BARISH	95 CLE2	$e^+e^- \rightarrow 7$	r(45)
$0.045 \pm 0.003 \pm 0.004$		⁴⁰ ALBRECHT	94 ARG	$e^+e^- \rightarrow 7$	r(45)
$0.047 \pm 0.005 \pm 0.005$	235	⁴¹ ALBRECHT	93 ARG	$e^+e^- \rightarrow 1$	(45)
$0.040 \pm 0.004 \pm 0.006$		42 BORTOLETTO	O89B CLEO	$e^+e^- \rightarrow 1$	r(45)
• • • We do not use the fo	llowing (data for averages, fit	ts, limits, etc	. • • •	
$0.0518 \pm 0.0030 \pm 0.0062$	410	⁴³ BUSKULIC	95N ALEP	Sup. by	
				BUŚKULI	
seen	398	44 SANGHERA	93 CLE2	$e^+e^- \rightarrow 1$	r(45)
$0.070 \pm 0.018 \pm 0.014$		45 ANTREASYAN	90B CBAL	$e^+e^- \rightarrow 1$	r(45)
		46 ALBRECHT	89c ARG	$e^+e^- \rightarrow 1$	r(45)
$0.060 \pm 0.010 \pm 0.014$		47 ALBRECHT	89J ARG	$e^+e^- \rightarrow 1$	r(45)
$0.070 \pm 0.012 \pm 0.019$	47	48 ALBRECHT	87J ARG	$e^+e^- \rightarrow 1$	r(45)
36 ACKERSTAFF 97G assu	mes frac	tion $(B^+) = fraction$	$1(B^0) = (37)$.8 ± 2.2)% and	1 PDG 96

- values for B lifetime and branching ratio of D^* and D decays.
- 37 BUSKULIC 97 assumes fraction (B^+) = fraction (B^0) = (37.8 \pm 2.2)% and PDG 96 values for B lifetime and D^* and D branching fractions.
- 38 ABREU 96P result is the average of two methods using exclusive and partial $D^{f *}$ recon-
- 39 BARISH 95 use B(D $^0\to~K^-\pi^+)$ = (3.91 \pm 0.08 \pm 0.17)% and B(D*+ $\to~D^0\pi^+)$ $= (68.1 \pm 1.0 \pm 1.3)\%$.
- ⁴⁰ ALBRECHT 94 assumes B($D^{*+} \rightarrow D^0 \pi^+$) = 68.1 \pm 1.0 \pm 1.3%. Uses partial recon-
- Struction of D^{*+} and is independent of D^0 branching ratios. 41 ALBRECHT 93 reports 0.052 \pm 0.005 \pm 0.006. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0 \rightarrow K^-\pi^+$). We have taken their average e and μ value. They also obtain $\alpha = 2*\Gamma^0/(\Gamma^- + \Gamma^+) 1 = 1.1 \pm 0.4 \pm 0.2$, $A_{AF}=3/4*(\Gamma^{-}-\Gamma^{+})/\Gamma=0.2\pm0.08\pm0.06$ and a value of $|V_{cb}|=0.036-0.045$ depending on model assumptions. ⁴² We have taken average of the the BORTOLETTO 898 values for electrons and muons,
- 0.046 \pm 0.005 \pm 0.007. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0 \to K^-\pi^+$). The measurement suggests a D^* polarization parameter value $\alpha=0.65\pm0.66\pm0.25$.
- 43 BUSKULIC 95N assumes fraction $(B^+)=$ fraction $(B^0)=38.2\pm1.3\pm2.2\%$ and au_{B^0} = 1.58 ± 0.06 ps. $\Gamma(D^{*-}\ell^+\nu_{\ell})/\text{total} = [5.18 - 0.13(\text{fraction}(B^0) - 38.2) - 1.5(\tau_{B^0})]$
- ⁴⁴Combining $\overline{D}^{*0}\ell^+\nu_\ell$ and $\overline{D}^{*-}\ell^+\nu_\ell$ SANGHERA 93 test V-A structure and fit the decay angular distributions to obtain $A_{FB}=3/4*(\Gamma^--\Gamma^+)/\Gamma=0.14\pm0.06\pm0.03$. Assuming a value of V_{Ch} , they measure V, A_1 , and A_2 , the three form factors for the $D^*\ell\nu_\ell$ decay, where results are slightly dependent on model assumptions.
- ⁴⁵ ANTREASYAN 90B is average over B and \overline{D}^* (2010) charge states.
- 46 The measurement of ALBRECHT 89c suggests a D^* polarization γ_L/γ_T of 0.85 \pm 0.45. or $\alpha = 0.7 \pm 0.9$.
- 47 ALBRECHT 89) is ALBRECHT 87, value rescaled using B($D^*(2010)^- \rightarrow D^0 \pi^-$) = 0.57 \pm 0.04 \pm 0.04. Superseded by ALBRECHT 93.
- ⁴⁸ ALBRECHT 87J assume μ -e universality, the B($\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$) = 0.45, the B($D^0 \rightarrow B^0 \overline{B}{}^0$) $K^-\pi^+)=(0.042\pm0.004\pm0.004)$, and the B($D^*(2010)^-\to D^0\pi^-)=0.49\pm0.08$. Superseded by ALBRECHT 89J.

 $\Gamma(\rho^-\ell^+\nu_\ell)/\Gamma_{\text{total}}$ Γ_4/Γ $\ell=\mathrm{e}$ or μ , not sum over e and μ modes.

VALUE (units 10-4) _____ CL%_ DOCUMENT ID TECN COMMENT 2.57±0.29+0.53 -0.62 ⁴⁹ BEHRENS 00 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

 • • We do not use the following data for averages, fits, limits, etc. • • • $2.5 \pm 0.4 \begin{array}{l} +0.7 \\ -0.9 \end{array}$ ⁵⁰ ALEXANDER 96T CLE2 Repl. by BEHRENS 00 ⁵¹ BEAN 93B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

- 49 BEHRENS 00 reports systematic errors $^{+0.33}_{-0.46}\pm0.41$, where the second error is theoretical model dependence. We combine these in quadrature. 50 ALEXANDER 96T gives systematic errors $^{+0.5}_{-0.7}\pm0.5$ where the second error reflects
- the estimated model dependence. We combine these in quadrature. Assumes isospin symmetry: $\Gamma(B^0 \to \rho^- \ell^+ \nu_\ell) = 2 \times \Gamma(B^+ \to \rho^0 \ell^+ \nu_\ell) \sim 2 \times \Gamma(B^+ \to \omega \ell^+ \nu_\ell)$.
- ⁵¹ BEAN 93B limit set using ISGW Model. Using isospin and the quark model to combine $\Gamma(\rho^0\,\ell^+\nu_\ell)$ and $\Gamma(\omega\,\ell^+\nu_\ell)$ with this result, they obtain a limit $<(1.6{-}2.7)\times 10^{-4}$ at 90% CL for $B^+\to (\omega or\ \rho^0)\,\ell^+\nu_\ell$. The range corresponds to the ISGW, WSB, and KS models. An upper limit on $|V_{ub}/V_{cb}|<0.08{-}0.13$ at 90% CL is derived as well.

 $\Gamma(\pi^-\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10-4) DOCUMENT ID TECN COMMENT $\overline{}^{52}$ ALEXANDER 96T CLE2 $e + e^- \rightarrow \Upsilon(45)$ $1.8 \pm 0.4 \pm 0.4$

 52 ALEXANDER 96T gives systematic errors $\pm 0.3\,\pm\,0.2$ where the second error reflects the estimated model dependence. We combine these in quadrature. Assumes isospin symmetry: $\Gamma(B^0 \to \pi^- \ell^+ \nu_{\ell}) = 2 \times \Gamma(B^+ \to \pi^0 \ell^+ \nu_{\ell})$.

 $\Gamma(\pi^-\mu^+\nu_\mu)/\Gamma_{\text{total}}$ Γ_6/Γ DOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • • •

53 ALBRECHT 91c ARG 53 In ALBRECHT 91c, one event is fully reconstructed providing evidence for the $b \rightarrow u$

error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$

⁶⁸ ALBRECHT 90J reports 0.0028 ± 0.0009 ± 0.0006 for B($D^*(2010)^+ \rightarrow D^0 \pi^+$) = 0.57 ± 0.06 . We rescale to our best value B($D^{\bullet}(2010)^{+}\rightarrow D^{0}\pi^{+}$) = (67.7 ±0.5) \times 10^{-2} . Our first error is their experiment's error and our second error is the systematic

and uses Mark III branching fractions for the D.

$\Gamma(K^+$ anything)/ Γ_{total}	Γ ₇ /Γ
VALUE	DOCUMENT ID TECN COMMENT
0.78±0.08	⁵⁴ ALBRECHT 96D ARG $e^+e^- \rightarrow \Upsilon(45)$
⁵⁴ Average multiplicity.	
$\Gamma(D^-\pi^+)/\Gamma_{\text{total}}$	Г ₈ /г
VALUE	EVTS DOCUMENT ID TECN COMMENT
0.0030±0.0004 OUR AVERA	
$0.0029 \pm 0.0004 \pm 0.0002$	81 55 ALAM 94 CLE2 $e^+e^- \rightarrow \Upsilon(45)$
0.0027 ± 0.0006 ± 0.0005	56 BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(45)$ 22 57 ALBRECHT 90J ARG $e^+e^- \rightarrow \Upsilon(45)$
$0.0048 \pm 0.0011 \pm 0.0011$	_1
$0.0051 + 0.0028 + 0.0013 \\ -0.0025 - 0.0012$	4 58 BEBEK 87 CLEO $e^{+}e^{-} \to \Upsilon(45)$
	owing data for averages, fits, limits, etc. • • •
$0.0031 \pm 0.0013 \pm 0.0010$	7 57 ALBRECHT 88K ARG $e^+e^- \rightarrow \Upsilon(45)$
0.000032 \pm 0.000023. (9.0 \pm 0.6) \times 10 ⁻² . Our is the systematic error from at the Υ (45). 56 BORTOLETTO 92 assumed Mark III branching fractions of the system assumed that the system as the	$\mathbf{B}^{0} \overline{B}^{0} : B^{+} B^{-}$ production ratio is 45:55. Superseded by AL-
58 BEBEK 87 value has been noted for BORTOLETTO	en updated in BERKELMAN 91 to use same assumptions as
$\Gamma(D^-\rho^+)/\Gamma_{\text{total}}$	٦/و٦
	EVTS DOCUMENT ID TECN COMMENT
D.0079±0.0014 OUR AVERA 0.0078±0.0013±0.0005	79 ⁵⁹ ALAM 94 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
$0.009 \pm 0.005 \pm 0.003$	9 60 ALBRECHT 901 ARG $e^+e^- \rightarrow \Upsilon(4S)$
	9 60 ALBRECHT 90J ARG $e^+e^- \rightarrow \Upsilon(45)$ owing data for averages, fits, limits, etc. • • •
• • • We do not use the followay: $\pm 0.012 \pm 0.009$ 59 ALAM 94 reports [B(B^C	owing data for averages, fits, limits, etc. • • • 6 60 ALBRECHT 88K ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+) \times B(D^+ \rightarrow K^-\pi^+\pi^+)] = 0.000704 \pm 0.000704$
• • • We do not use the followard of the following of th	owing data for averages, fits, limits, etc. • • • 6 60 ALBRECHT 88K ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+) \times B(D^+ \rightarrow K^-\pi^+\pi^+)] = 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+) = 0.000704 \pm W of the second error is their experiment's error and our second error or using our best value. Assumes equal production of B^+ and B^0 B^0 B^0 B^+ B^- production ratio is 45:55. Superseded by AL-$
• • • We do not use the folk 0.022 ±0.012 ±0.009 59 ALAM 94 reports [B(B ⁰ 0.00096 ± 0.000070. (9.0 ± 0.6) × 10 ⁻² . Or is the systematic error fro B ⁰ at the T(45). 60 ALBRECHT 88K assumes BRECHT 90J which assume	owing data for averages, fits, limits, etc. • • • 6 60 ALBRECHT 88 κ ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+) \times B(D^+ \rightarrow K^-\pi^+\pi^+)] = 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+) = 0.000704 \pm 0.000000000000000000000000000000000$
• • • We do not use the folk 0.022 ±0.012 ±0.009 59 ALAM 94 reports [B(B ⁰ 0.000096 ± 0.000070. (9.0 ± 0.6) × 10 ⁻² . Or is the systematic error fro B ⁰ at the \(\tau(45)\). 60 ALBRECHT 88\(\text{K}\) assumes BRECHT 90J which assur	owing data for averages, fits, limits, etc. • • • • 6 60 ALBRECHT 88 \times ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+) \times B(D^+ \rightarrow K^-\pi^+\pi^+)] = 0.000704 \pm We$ divide by our best value $B(D^+ \rightarrow K^-\pi^+\pi^+) = 0.000704 \pm We$ divide by our best value B($D^+ \rightarrow K^-\pi^+\pi^+) = 0.000704 \pm We$ ur first error is their experiment's error and our second error on using our best value. Assumes equal production of B^+ and $B^0 \overline{B}{}^0 \cdot B^+ B^-$ production ratio is 45:55. Superseded by ALmes 50:50.
• • • We do not use the folk 0.022 ±0.012 ±0.009 59 ALAM 94 reports [B(B ⁰ 0.00096 ± 0.000070. (9.0 ± 0.6) × 10 ⁻² . Or is the systematic error fro B ⁰ at the T(45). 60 ALBRECHT 88K assumes BRECHT 90J which assum T(D ⁰ π+π-)/Γtotal VALUE CL% EVT	owing data for averages, fits, limits, etc. • • • 6 60 ALBRECHT 88K ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+) \times B(D^+ \rightarrow K^-\pi^+\pi^+)] = 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+) = U first error is their experiment's error and our second error or using our best value. Assumes equal production of B^+ and B^0B^0B^0B^+B^- production ratio is 45:55. Superseded by ALMES 50:50.$
• • • We do not use the foll 0.022 ±0.012 ±0.009 59 ALAM 94 reports [B(B ⁰ 0.000070. (9.0 ± 0.6) × 10 ⁻² . Ot is the systematic error fro B ⁰ at the T(45). 60 ALBRECHT 88x assumes BRECHT 90J which assur [T(D ⁰ π + π -)/Γtotal VALUE CL% EVT (-0.0016) 90	owing data for averages, fits, limits, etc. • • • 6
• • • We do not use the foll $0.022 \pm 0.012 \pm 0.009$ $59 \text{ ALAM } 94 \text{ reports } [B(B^0 \ 0.000096 \pm 0.000070. \ (9.0 \pm 0.6) \times 10^{-2}. \text{ Or}$ is the systematic error from $B^0 \ $ at the $T(4S)$. $60 \ \text{ ALBRECHT } 80 \text{ sa sumes}$ BRECHT 90 J which assumes BRECHT 90 J which assumes $T(D^0 \pi^+ \pi^-)/\Gamma_{\text{total}}$ where $T(B^0 \times B^0 \times$	owing data for averages, fits, limits, etc. • • • 6
• • • We do not use the following by the series of the se	owing data for averages, fits, limits, etc. • • • 6
• • • We do not use the folk $0.022 \pm 0.012 \pm 0.009$ $59 \text{ ALAM } 94 \text{ reports } [B(B^G 0.000096 \pm 0.000070. (9.0 \pm 0.6) \times 10^{-2}. \text{ Outisithe systematic error fro}} B^D \text{ at the } T(45). \\ 60 \text{ ALBRECHT } 88\text{K assumes} \text{ BRECHT } 90\text{J which assument } T(D^D + \pi^-)/\Gamma \text{ total } \text{ VALUE} $	owing data for averages, fits, limits, etc. • • • • 6 60 ALBRECHT 88 \times ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+) \times B(D^+ \rightarrow K^-\pi^+\pi^+)] = 0.000704 \pm 2000704 \pm 200070$
• • • We do not use the folk $0.022 \pm 0.012 \pm 0.009$ $59 \text{ ALAM } 94 \text{ reports } [B(B^0] 0.000906 \pm 0.000070.$ $(9.0 \pm 0.6) \times 10^{-2}.$ Other is the systematic error from B^0 at the $T(45)$. $60 \text{ ALBRECHT } 88\text{K assumes BRECHT } 90\text{J which assumes BRECHT } 90\text{J which assumes BRECHT } 90\text{J which assumes } T(D^0 \pi^+ \pi^-)/\Gamma \text{ total } VALUE CL\% EVT$ <0.0016 <0.007 <0.034 <0.007 <0.034 <0.007 <0.034 <0.007 <0.034 <0.007 <0.034 <0.007 <0.034 <0.007 <0.05 <0.007 <0.034 <0.007 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 $<$	owing data for averages, fits, limits, etc. • • • • 6 60 ALBRECHT 88× ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+)$ × B($D^+ \rightarrow K^-\pi^+\pi^+$)] = 0.000704 \pm We divide by our best value B($D^+ \rightarrow K^-\pi^+\pi^+$) = ur first error is their experiment's error and our second error musing our best value. Assumes equal production of B^+ and $B^0B^0.B^+B^-$ production ratio is 45:55. Superseded by ALmes 50:50. Table 10 In the second error of 10
• • • We do not use the folk 0.022 ±0.012 ±0.009 59 ALAM 94 reports [B(B ⁰ 0.000096 ± 0.000070. (9.0 ± 0.6) × 10 ⁻² . Ot is the systematic error fro B ⁰ at the T(45). 60 ALBRECHT 88% assumes BRECHT 90J which assum (D ⁰ π+π-)/Γtotal VALUE CL% EVT <0.0016 90 • • We do not use the folk <0.007 90 <0.034 90 0.07 ±0.05 61 Assumes equal production 62 BORTOLETTO 92 assur Mark III branching fractuo followed by D ⁰ ₀ (2340) → D [*] ₂ (2460) → D ⁰ π is < 63 BEBEK 87 assume the K ⁻ π+) = (4.2 ± 0.4 ± were used. 64 Corrected by us using	owing data for averages, fits, limits, etc. • • • • 6 60 ALBRECHT 88× ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+$) × B($D^+ \rightarrow K^-\pi^+\pi^+$)] = 0.000704 \pm We divide by our best value B($D^+ \rightarrow K^-\pi^+\pi^+$) = 10 ur first error is their experiment's error and our second error on using our best value. Assumes equal production of B^+ and 10 B 10
• • • We do not use the folk 0.022 ±0.012 ±0.009 59 ALAM 94 reports [B(B ⁰ 0.000096 ± 0.000070. (9.0 ± 0.6) × 10 ⁻² . Ou is the systematic error fro B ⁰ at the T(45). 60 ALBRECHT 88K assumes BRECHT 90J which assumes BRECHT 90J which assumes BRECHT 90J which assumes believed by Moderate 100 on the folk of the fo	owing data for averages, fits, limits, etc. • • • • 6 60 ALBRECHT 88× ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+$) × B($D^+ \rightarrow K^-\pi^+\pi^+$)] = 0.000704 \pm We divide by our best value B($D^+ \rightarrow K^-\pi^+\pi^+$) = 10 ur first error is their experiment's error and our second error musing our best value. Assumes equal production of B^+ and 10 B 10 ALAM 94 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ owing data for averages, fits, limits, etc. • • • 62 BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 63 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 64 BEHRENDS 83 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ nor B^+ and B^0 at the $\Upsilon(4S)$ and uses must for the D . The product branching fraction into $D^*_0(2340)\pi$ $D^0\pi$ is < 0.0001 at 90% CL and into $D^*_2(2460)$ followed by 0.0004 at 90% CL. $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%. B($D^0 \rightarrow K^-\pi^+\pi^+\pi^-) = (9.1 \pm 0.8 \pm 0.8)$ %
• • • We do not use the folk $0.022 \pm 0.012 \pm 0.009$ 59 ALAM 94 reports $ B(B^0 = 0.000090.59) = 0.000090.59$ ALAM 94 reports $ B(B^0 = 0.000090.59) = 0.000090.59$ $(9.0 \pm 0.6) \times 10^{-2}.$ Ot is the systematic error from B^0 at the $T(45)$. 60 ALBRECHT 88% assumes BRECHT 903 which assumes BRECHT 903 which assumes $T(D^0 \pi^+ \pi^-)/\Gamma$ total V^{ALUE} CL^{∞}_{2} E^{VT} <0.0016 90 <0.034 90 <0.034 90 <0.07 ±0.05 <0.034 90 <0.07 ±0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	owing data for averages, fits, limits, etc. • • • • 6 60 ALBRECHT 88× ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+$) × B($D^+ \rightarrow K^-\pi^+\pi^+$)] = 0.000704 \pm We divide by our best value B($D^+ \rightarrow K^-\pi^+\pi^+$) = 10 ur first error is their experiment's error and our second error musing our best value. Assumes equal production of B^+ and 10 B 10
• • • We do not use the folk 0.022 ±0.012 ±0.009 59 ALAM 94 reports [B(B ^C 0.00096 ± 0.000070. (9.0 ± 0.6) × 10 ⁻² . Ot is the systematic error fro B ⁰ at the T(4S). 60 ALBRECHT 88x assumes BRECHT 90J which assur (CL% EVT <0.0016 90 • • We do not use the folk <0.007 90 <0.034 90 0.07 ±0.05 61 Assumes equal production 62 BORTOLETTO 92 assur Mark III branching fraction followed by D ⁰ ₀ (2340) → D [*] ₂ (2460) → D ⁰ π is < 63 BBEK 87 assume the K ⁻ π ⁺) = (4.2 ± 0.4 ± were used. 64 Corrected by us using and B(T(4S) → B ⁰ . D ⁰ π + π ⁻)B(D̄0 → K ⁺ Γ(D*(2010) - π ⁺)/Γtotal	owing data for averages, fits, limits, etc. • • • • 6 60 ALBRECHT 88 \times ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+) \times B(D^+ \rightarrow K^-\pi^+\pi^+)] = 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+)= 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+)= 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+)= 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+)= 0.000704 \pm We divide by our best value. Assumes equal production of B^+ and B^0B^0.B^+B^- production ratio is 45:55. Superseded by ALMES 50:50. Fig. DOCUMENT ID TECN COMMENT 61 ALAM 94 CLE2 e^+e^- \rightarrow \Upsilon(45) lowing data for averages, fits, limits, etc. • • 62 BORTOLETTO92 CLEO e^+e^- \rightarrow \Upsilon(45) lowing data for averages, fits, limits, etc. • • 63 BEBEK 87 CLEO e^+e^- \rightarrow \Upsilon(45) in of B^+ and B^0 at the T(45) mes equal production of B^+ and B^0 at the T(45) mes equal production of B^+ and B^0 at the T(45) mes equal production of B^+ and B^0 at the T(45) in of B^+ and T(45) for T(45) decays 43% to T(45) for T(45) decays 43% to T(45)$
0.022 \pm 0.012 \pm 0.009 59 ALAM 94 reports [B(B^0 0.00096 \pm 0.000070. (9.0 \pm 0.6) \times 10 ⁻² . Oi is the systematic error fro B^0 at the $T(4S)$. 60 ALBRECHT 88% assumes BRECHT 90J which assum $\Gamma(\overline{D^0}\pi^+\pi^-)/\Gamma \text{total}$ $\frac{VALUE}{\sqrt{0.0016}} \qquad \frac{CL\%}{90} \qquad \frac{EVT}{\sqrt{0.0016}}$ •• • We do not use the foll <0.007 90 <0.034 90 0.07 \pm 0.05 61 Assumes equal production 62 BORTOLETTO 92 assur Mark III branching fraction followed by $D_0^*(2340) \rightarrow D_2^*(2460) \rightarrow D_0^*\pi$ is <63 BBBEK 87 assume the $K^-\pi^+$) = (4.2 \pm 0.4 \pm 0.4 were used. 64 Corrected by us using and B($T(4S) \rightarrow B_0^0$ $D^0\pi^+\pi^-$)B($D^0 \rightarrow K^+$ $T(D^*(2010)^-\pi^+)/\Gamma_{\text{total}}$ $VALUE$ 0.00276 \pm 0.00021 OUR AVE	owing data for averages, fits, limits, etc. • • • • 6 60 ALBRECHT 88 \times ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+) \times B(D^+ \rightarrow K^-\pi^+\pi^+)] = 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+) = 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+) = 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+) = 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+) = 0.000704 \pm We divide by our best value. Assumes equal production of B^+ and B^0 B^0.B^+B^- production ratio is 45:55. Superseded by ALMES 50:50. Fig. Comment D $
• • • We do not use the foll $0.022 \pm 0.012 \pm 0.009$ 59 ALAM 94 reports $[B(B^G)$ 0.00096 ± 0.000070 . $(9.0 \pm 0.6) \times 10^{-2}$. Ook is the systematic error from B^O at the $T(4S)$. 60 ALBRECHT 88x assumes BRECHT 90J which assumes $T(\overline{D^O}\pi^+\pi^-)/\Gamma$ total $T(T(T(T(T(T(T(T(T(T(T(T(T(T(T(T(T(T(T($	owing data for averages, fits, limits, etc. • • • • 6 60 ALBRECHT 88 \times ARG $e^+e^- \rightarrow \Upsilon(4S)$ $^{0} \rightarrow D^-\rho^+) \times B(D^+ \rightarrow K^-\pi^+\pi^+)] = 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+)= 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+)= 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+)= 0.000704 \pm We divide by our best value B(D^+ \rightarrow K^-\pi^+\pi^+)= 0.000704 \pm We divide by our best value. Assumes equal production of B^+ and B^0B^0.B^+B^- production ratio is 45:55. Superseded by ALMES 50:50. Fig. DOCUMENT ID TECN COMMENT 61 ALAM 94 CLE2 e^+e^- \rightarrow \Upsilon(45) lowing data for averages, fits, limits, etc. • • 6 ^{62} BORTOLETTO92 CLEO e^+e^- \rightarrow \Upsilon(45) lowing data for averages, fits, limits, etc. • • 6 ^{63} BEBEK 87 CLEO e^+e^- \rightarrow \Upsilon(45) on of B^+ and B^0 at the T(45) and uses one for the D. The product branching fraction into D_0^*(2340)\pi on of B^+ and B^0 at the T(45) and uses one for the D. The product branching fraction into D_0^*(2340)\pi D^0\pi is < 0.0001 at 90% CL. and into D_2^*(2460) followed by 0.0004 at 90% CL. T(4S) decays 43% to B^0B^0. We rescale to 50%. B(D^0 \rightarrow 0.000) and B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-) = (9.1 \pm 0.8 \pm 0.8) assumptions: B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-) = (9.1 \pm 0.8 \pm 0.8) assumptions: B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-) = (0.042 \pm 0.006) B^0 \rightarrow 0.0000 The product branching ratio is B(B^0 \rightarrow 0.000) assumptions: B(D^0 \rightarrow K^-\pi^+) = (0.042 \pm 0.006) B^0 \rightarrow 0.0000 The product branching ratio is B(B^0 \rightarrow 0.000) B(D^0 \rightarrow 0.000) The product branching ratio is B(B^0 \rightarrow 0.000) B(D^0 \rightarrow 0.0$

⁶⁸ ALBRECHT 90J ARG $e^+e^- \rightarrow \Upsilon(45)$

86F ARG

87 CLEO $e^+e^- \rightarrow \Upsilon(45)$

87c ARG $e^+e^- \rightarrow \Upsilon(4S)$

84 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

 $e^+e^- \rightarrow \gamma(45)$

on D branching ratios.

94J OPAL e+e+ → Z

69 BEBEK

71 ALBRECHT

72 ALBRECHT

 65 BRANDENBURG 98 assume equal production of B^+ and B^0 at $\Upsilon(45)$ and use the D^* reconstruction technique. The first error is their experiment's error and the second error

 66 ALAM 94 assume equal production of B^+ and B^0 at the \varUpsilon (45) and use the CLEO II

B(D^* (2010)⁺ \rightarrow $D^0\pi^+$) and absolute B($D^0 \rightarrow K^-\pi^+$) and the PDG 1992 B($D^0 \rightarrow K^-\pi^+$) and the PDG 1992 B($D^0 \rightarrow K^-\pi^+$) and the PDG 1992 B($D^0 \rightarrow K^-\pi^+$) and B(D

10⁻². Our first error is their experiment's error and our second error is the systematic

73 GILES

5

41

• • • We do not use the following data for averages, fits, limits, etc. • • • 70 AKERS

is the systematic error from the PDG 96 value of $B(D^* \rightarrow D\pi)$.

 $0.00236 \pm 0.00088 \pm 0.00002$ 12

 $0.00236 \,{}^{+\, 0.00150}_{-\, 0.00110} \pm 0.00002$

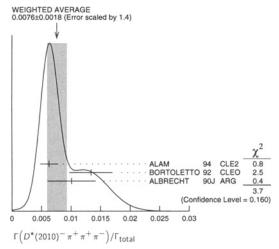
 $0.010 \pm 0.004 \pm 0.001$

 $0.0035 \pm 0.002 \pm 0.002$

 $0.017 \pm 0.005 \pm 0.005$

0.0027 ±0.0014 ±0.0010

```
error from using our best value. Assumes equal production of B^+ and B^0 at the T(4S) and uses Mark III branching fractions for the D.


69 BEBEK 87 reports 0.0028 + 0.0015 + 0.0016 for B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.0016
 0.06. We rescale to our best value B(D^{+}(2010)^{+} \rightarrow D^{0}\pi^{+}) = (67.7 \pm 0.5) \times 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value. Updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92 and ALBRECHT 90.

70 Assumes B(Z \rightarrow D\bar{D}) = 0.217 and 38\% B_{d} production fraction.
 71 ALBRECHT 87c use PDG 86 branching ratios for D and D*(2010) and assume
     B(\Upsilon(4S) \rightarrow B^+B^-) = 55\% and B(\Upsilon(4S) \rightarrow B^0\overline{B}^0) = 45\%. Superseded by AL-
     BRECHT 901.
 72 ALBRECHT 36F uses pseudomass that is independent of D^0 and D^+ branching ratios. 73 Assumes B(D^{\bullet}(2010)^+ \rightarrow D^0 \pi^+) = 0.60 ^+0.08_- Assumes B(T(4S) \rightarrow B^0 \overline{B}{}^0) = 0.40 \pm 0.02 Does not depend on D branching ratios.
\Gamma(D^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                                     \Gamma_{12}/\Gamma
VALUE
                                                    DOCUMENT ID TECN COMMENT
0.0080 \pm 0.0021 \pm 0.0014
                                               <sup>74</sup> BORTOLETTO92 CLEO e^+e^- \rightarrow \Upsilon(4S)
 ^{74} BORTOLETTO 92 assumes equal production of \mathit{B}^{+} and \mathit{B}^{0} at the \varUpsilon(45) and uses
      Mark III branching fractions for the D
\Gamma((D^-\pi^+\pi^+\pi^-) \text{ nonresonant})/\Gamma_{\text{total}}
                                                                                                                     \Gamma_{13}/\Gamma
                                                    DOCUMENT ID
                                                                               TECN COMMENT
                                                75 BORTOLETTO92 CLEO e^+e^- \rightarrow \Upsilon(45)
0.0039 \pm 0.0014 \pm 0.0013
 ^{75} BORTOLETTO 92 assumes equal production of B^+ and B^0 at the \varUpsilon(45) and uses Mark III branching fractions for the D
\Gamma(D^-\pi^+\rho^0)/\Gamma_{\text{total}}
                                                                                                                      \Gamma_{14}/\Gamma
                                                    DOCUMENT ID TECN COMMENT
                                               ^{76} BORTOLETTO92 CLEO e^+e^- \rightarrow \Upsilon(4S)
0.0011 \pm 0.0009 \pm 0.0004
 ^{76} BORTOLETTO 92 assumes equal production of B^+ and B^0 at the \varUpsilon(45) and uses Mark III branching fractions for the D
\Gamma(D^-a_1(1260)^+)/\Gamma_{total}
                                                                                                                      \Gamma_{15}/\Gamma
                                                    DOCUMENT ID TECN COMMENT
                                                77 BORTOLETTO92 CLEO e^+e^- \rightarrow \Upsilon(45)
0.0060 \pm 0.0022 \pm 0.0024
  ^{77}BORTOLETTO 92 assumes equal production of B^+ and B^0 at the \varUpsilon(45) and uses
      Mark III branching fractions for the D
\Gamma(D^{*}(2010)^{-}\pi^{+}\pi^{0})/\Gamma_{\text{total}}
                                                         DOCUMENT ID TECN COMMENT
VALUE
                                     EVTS
                                                    <sup>78</sup> ALBRECHT 90J ARG e^+e^- \rightarrow \Upsilon(4S)
0.0152 \pm 0.0052 \pm 0.0001
                                           51
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                             8 ^{79} ALBRECHT 87C ARG e^+e^- \rightarrow \Upsilon(4S)
  <sup>78</sup> ALBRECHT 90J reports 0.018 \pm 0.004 \pm 0.005 for B(D^*(2010)^+ \rightarrow D^0 \pi^+) = 0.57 \pm 0.005
     0.06. We rescale to our best value B(D^*(2010)^+ \rightarrow D^0 \pi^+) = (67.7 ± 0.5) × 10.7 ± 0.00 ur first error is their experiment's error and our second error is the systematic error
      from using our best value. Assumes equal production of B^+ and B^0 at the \Upsilon(4S) and uses Mark III branching fractions for the D.
  79 ALBRECHT 87c use PDG 86 branching ratios for D and D*(2010) and assume
     B(T(45) \rightarrow B^+B^-) = 55\% and B(T(45) \rightarrow B^0\overline{B}^0) = 45\%. Superseded by ALBRECHT 90.
\Gamma \big(D^{+}(2010)^{-}\rho^{+}\big)/\Gamma_{\rm total}
VALUE <u>EVTS</u>
0.0068 ±0.0034 OUR AVERAGE
                                                         DOCUMENT ID
                                                                                TECN COMMENT
                                                     ^{80} BORTOLETTO92 CLEO e^+\,e^- 
ightarrow \, \varUpsilon(45)
0.0160 ±0.0113 ±0.0001
                                                    <sup>81</sup> ALBRECHT 90J ARG e^+e^- \rightarrow \Upsilon(45)
0.00589 \pm 0.00352 \pm 0.00004 19
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.0074\ \pm0.0010\ \pm0.0014 76 ^{82,83} ALAM
                                                                               94 CLE2 Sup. by JESSOP 97
0.081 \pm 0.029 \begin{array}{c} +0.059 \\ -0.024 \end{array}
                                                    84 CHEN
                                                                               85 CLEO e^+e^- \rightarrow \Upsilon(4S)
                                           19
  80 BORTOLETTO 92 reports 0.019 \pm 0.008 \pm 0.011 for B(D*(2010)+ \rightarrow D<sup>0</sup> \pi+) =
      0.57 \pm 0.06. We rescale to our best value B(D*(2010)+ \rightarrow D<sup>0</sup>\pi+) = (67.7 \pm 0.5) \times
      10-2. Our first error is their experiment's error and our second error is the systematic
      error from using our best value. Assumes equal production of B^+ and B^0 at the \Upsilon(4S) and uses Mark III branching fractions for the D.
  <sup>81</sup> ALBRECHT 90J reports 0.007 \pm 0.003 \pm 0.003 for B(D*(2010)+ \rightarrow D<sup>0</sup> \pi+) = 0.57 \pm
     0.06. We rescale to our best value B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 ± 0.5) x 10<sup>-2</sup>. Our first error is their experiment's error and our second error is the systematic error
      from using our best value. Assumes equal production of B^{\pm} and B^{0} at the \Upsilon(4S) and
       ises Mark III branching fractions for the D
  ^{82} ALAM 94 assume equal production of B^+ and B^0 at the \Upsilon(45) and use the CLEO II
     B(D^*(2010)^+ \to D^0\pi^+) and absolute B(D^0 \to K^-\pi^+) and the PDG 1992 B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+) and B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+).
  <sup>83</sup> This decay is nearly completely longitudinally polarized, \Gamma_L/\Gamma=(93\pm5\pm5)\%, as
      expected from the factorization hypothesis (ROSNER 90). The nonresonant \pi^+\pi^0
  contribution under the \rho^+ is less than 9% at 90% CL. B4 Uses B(D^* \rightarrow D^0 \pi^+) = 0.6 ± 0.15 and B(T(4S) \rightarrow B^0 \overline{B}{}^0) = 0.4. Does not depend
```

 R^0

ALUE	<u> CL% E</u>			DOCUMENT ID		TECN	COMMENT
0.0076±0.0018 OUF	RAVERAGE			below.	or of	1.4. See	the ideogram
$0.0063 \pm 0.0010 \pm 0.0$	0011	49 85	,86	ALAM BORTOLETT	94	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
$0.0134 \pm 0.0036 \pm 0.0$	0001						T(45)
$0.0101 \pm 0.0041 \pm 0.0$	0001	26	88	ALBRECHT	106	ARG	$e^+e^- \rightarrow \Upsilon(45)$
• • We do not use t	he following	data fo	r a	verages, fits, lin	nits, e	tc. • •	•
0.033 ±0.009 ±0.0)16	27	89	ALBRECHT			
(0.042	90		90	BEBEK	87	CLEO	$e^{+} e^{-} \rightarrow \\ \Upsilon(45)$

- ⁸⁵ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \rightarrow D^0\pi^+)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$.
- 86 The three pion mass is required to be between 1.0 and 1.6 GeV consistent with an a_1 meson. (If this channel is dominated by a_1^+ , the branching ratio for $\overline{D}{}^*-a_1^+$ is twice that for $\overline{D}{}^*-\pi^+\pi^+\pi^-$.)
- 87 BORTOLETTO 92 reports $0.0159\pm0.0028\pm0.0037$ for B($D^*(2010)^+ \rightarrow D^0\pi^+$) = 0.57 \pm 0.06. We rescale to our best value B($D^*(2010)^+ \rightarrow D^0\pi^+$) = (67.7 \pm 0.5) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the T(4S) and uses Mark III branching fractions for the D.
- 88 ALBRECHT 90J reports $0.012\pm0.003\pm0.004$ for $B(D^*(2010)^+\to D^0\pi^+)=0.57\pm0.06$. We rescale to our best value $B(D^*(2010)^+\to D^0\pi^+)=(67.7\pm0.5)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the T(4S) and uses Mark III branching fractions for the D.
- ⁸⁹ ALBRECHT 87c use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \rightarrow B^+B^-) = 55\%$ and $B(\Upsilon(4S) \rightarrow B^0\overline{B}^0) = 45\%$. Superseded by ALBRECHT 90J.
- 90 BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92.

$\Gamma((D^*(2010)^-\pi^+\pi^+\pi^-$) nonresonant)/F _{total}			Γ ₁₉ /Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.0000 \pm 0.0019 \pm 0.0016$	91 BORTOLETTO92	CLEO	$e^+e^- \rightarrow$	T(45)

 91 BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.

$$\frac{\Gamma(D^{+}(2010)^{-}\pi^{+}\rho^{0})/\Gamma_{total}}{\nu_{AUUE}} = \frac{DOCUMENT ID}{9^{2} \text{ BORTOLETTO92}} \frac{TECN}{\text{CLEO}} \frac{COMMENT}{e^{+}e^{-} \rightarrow T(45)}$$

92 BORTOLETTO 92 reports $0.0068\pm0.0032\pm0.0021$ for $B(D^*(2010)^+\to D^0\pi^+)=0.57\pm0.06$. We rescale to our best value $B(D^*(2010)^+\to D^0\pi^+)=(67.7\pm0.5)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(45)$ and uses Mark III branching fractions for the D.

$\Gamma(D^*(2010)^- a_1(1260)^+)$)/Γ _{total}			Γ ₂₁ /Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
0.0130±0.0027 OUR AVERA	GE			
$0.0126 \pm 0.0020 \pm 0.0022$			$e^+e^- \rightarrow$	
$0.0152 \pm 0.0070 \pm 0.0001$	95 BORTOLETTO92	CLEO	$e^+e^- \rightarrow$	T(4S)

 93 ALAM 94 value is twice their $\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\rm total}$ value based on their observation that the three pions are dominantly in the $a_1(1260)$ mass range 1.0 to 1.6 GeV.

⁹⁴ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(45)$ and use the CLEO II $B(D^+(2010)^+ \to D^0\pi^+)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.

95 BORTOLETTO 92 reports $0.018\pm0.006\pm0.006$ for $B(D^*(2010)^+\to D^0\pi^+)=0.57\pm0.06$. We rescale to our best value $B(D^*(2010)^+\to D^0\pi^+)=(67.7\pm0.5)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(45)$ and uses Mark III branching fractions for the D.

96 ALBRECHT 901 reports $0.041\pm0.015\pm0.016$ for $B(D^*(2010)^+\to D^0\pi^+)=0.57\pm0.06$. We rescale to our best value $B(D^*(2010)^+\to D^0\pi^+)=(67.7\pm0.5)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the T(4S) and uses Mark III branching fractions for the D.

97 ALAM 94 assumes equal production of B^+ and B^0 at the $\Upsilon(45)$ and use the CLEO II absolute $B(D^0\to K^-\pi^+)$ and $B(D_2^\bullet(2460)^+\to D^0\pi^+)=30\%$.

⁹⁸ ALAM 94 assumesequal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0\to K^-\pi^+$) and B($D_2^*(2460)^+\to D^0\pi^+$) = 30%.

⁹⁹ GIBAUT 96 reports 0.0087 \pm 0.0024 \pm 0.0020 for B($D_s^+ \to \phi \pi^+$) = 0.035. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = (3.6 \pm 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

100 ALBRECHT 92G reports $0.017 \pm 0.013 \pm 0.006$ for $B(D_s^+ \to \phi \pi^+) = 0.027$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ branching ratios, e.g., $B(D^+ \to K^- \pi^+ \pi^+) = 7.7 \pm 1.0\%$.

101 BORTOLETTO 92 reports $0.0080 \pm 0.0045 \pm 0.0030$ for $B(D_s^+ \to \phi \pi^+) = 0.030 \pm 0.011$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the T(4S) and uses Mark III branching fractions for the D.

 102 BORTOLETTO 90 assume B($D_{\rm S} \rightarrow \phi \pi^+)=2\%$. Superseded by BORTOLETTO 92.

103 GIBAUT 96 reports $0.0093 \pm 0.0023 \pm 0.0016$ for $B(D_s^+ \to \phi \pi^+) = 0.035$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

104 ALBRECHT 92G reports $0.014 \pm 0.010 \pm 0.003$ for $B(D_s^+ \to \phi \pi^+) = 0.027$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ and $D^*(2010)^+$ branching ratios, e.g., $B(D^0 \to K^- \pi^+) = 3.71 \pm 0.25\%$, $B(D^+ \to K^- \pi^+ \pi^+) = 7.1 \pm 1.0\%$, and $B(D^*(2010)^+ \to D^0 \pi^+) = 5.5 \pm 4\%$.

105 BORTOLETTO 92 reports $0.016\pm0.009\pm0.006$ for $B(D_s^+\to\phi\pi^+)=0.030\pm0.011$. We rescale to our best value $B(D_s^+\to\phi\pi^+)=(3.6\pm0.9)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(45)$ and uses Mark III branching fractions for the D and $D^*(2010)$.

 106 BORTOLETTO 90 assume B($D_{\rm S} o \phi \pi^+$) = 2%. Superseded by BORTOLETTO 92.

Γ(D-D ⁺)/Γ _{total}	DOCUMENT ID	TECN	Γ ₂₈ /
0.010±0.005 OUR AVER	AGE		
0.010 ± 0.004 ± 0.002	107 GIBAUT		$e^+e^- \rightarrow \Upsilon(45)$
0.020 ± 0.014 ± 0.005	108 ALBRECHT		$e^+e^- \rightarrow \Upsilon(45)$
to our best value B($0100 \pm 0.0035 \pm 0.0022 \text{ f}$	or $B(D_s^+ \rightarrow \phi)$	$(\pi^+) = 0.035$. We resca
experiment's error and 108 ALBRECHT 92G repo	$D_s^+ \rightarrow \phi \pi^+) = (3.6 \pm 0.00)$ our second error is the sy orts $0.027 \pm 0.017 \pm 0.00$	0.9 \times 10^{-2} estematic error 09 for $B(D_s^+)$	from using our best value $\phi \pi^+ = 0.027$. W
rescale to our best val experiment's error and	ue B($D_s^+ \rightarrow \phi \pi^+$) = (3 our second error is the sy σ^+ branching ratios, e.g.,	$0.6 \pm 0.9) \times 10^{-6}$ stematic error	$^{-2}$. Our first error is the from using our best value
$\left[\Gamma \left(D^{+}(2010)^{-}D_{5}^{+} \right) + \frac{1}{2} \right]$		/ total TECN	(Г ₂₇ +Г ₂₉)/
4.15±1.11 ^{+0.99} -1.02			$e^+e^- \rightarrow \Upsilon(45)$
¹⁰⁹ BORTOLETTO 90 re	ports 7.5 ± 2.0 for B(D)	$^+ \rightarrow \phi \pi^+) =$	= 0.02. We rescale to ou
best value $B(D_s^+ \rightarrow error and our second e$	$\phi\pi^+)=(3.6\pm0.9) imes10$ error is the systematic error) ⁻² . Our first or from using o	error is their experiment our best value.
Γ(D *(2010) [—] D * ⁺)/Γ		TECN	Γ ₂₉ /
0.020±0.007 OUR AVER	AGE		
$0.020 \pm 0.006 \pm 0.005$ $0.019 \pm 0.011 \pm 0.005$	¹¹⁰ GIBAUT ¹¹¹ ALBRECHT	96 CLE2	$e^+e^- \rightarrow \Upsilon(45)$ $e^+e^- \rightarrow \Upsilon(45)$
	0203 ± 0.0050 ± 0.0036 f		
to our best value B($0.203 \pm 0.0030 \pm 0.0030 + 0.$	- n a) × 1n ⁻²	Our first error is the
experiment's error and 11 ALBRECHT 926 repo	$D_s^+ \rightarrow \phi \pi^+) = (3.6 \pm 0.00)$ our second error is the syerts $0.026 \pm 0.014 \pm 0.00$	stematic error	from using our best value $\rightarrow \phi \pi^+$) = 0.027. W
rescale to our best val	ue B($D_s^+ \rightarrow \phi \pi^+$) = (3 our second error is the sy	.6 ± 0.9) × 10	-2. Our first error is the
Assumes PDG 1990 E	our second error is the sy D^+ and D^* (2010) D^+ brand D^+ D^+ D	ching ratios, e.	g., $B(D^0 \rightarrow \kappa^- \pi^+)$:
$(D_s^+\pi^-)/\Gamma_{\text{total}}$	S.A. DOSHATATA		Г ₃₀ /
	CL% DOCUMENT ID 90 112 ALEXANDER	93B CLE2	$e^+e^- \rightarrow \Upsilon(45)$
• • • We do not use the	following data for average	es, fits, limits,	etc. • • •
			$e^+e^- \rightarrow \Upsilon(45)$
12 ALEXANDER 93B rep	orts $< 2.7 \times 10^{-4}$ for B	$(D_5^+ \rightarrow \phi \pi^+$) = 0.037. We rescale t
our best value B(Ds+	$\rightarrow \phi \pi^+) = 0.036.$		
BORTOLETTO 90 as	sume B($D_s \rightarrow \phi \pi^+$) =	2%.	
$\Gamma(D_s^{*+}\pi^-)/\Gamma_{\text{total}}$			Γ ₃₁ /Ι
/ALUE	CL% DOCUMENT ID	TECN	COMMENT
	90 114 ALEXANDER		
ALEXANDER 93B rep	orts $< 4.4 \times 10^{-4}$ for B	$(D_5^+ \rightarrow \phi \pi^+$) = 0.037. We rescale t
our best value $B(D_{S}^{+}$			
$\Gamma(D_s^+\pi^-)+\Gamma(D_s^-K)$	(+)]/F _{total} (CL% DOCUMENT ID (90 115 ALBRECHT		(Г ₃₀ +Г ₃₆)/Г
ALUE	CL% DOCUMENT ID	TECN	COMMENT
<0.0013	90 113 ALBRECHT	93E ARG	$e^+e^- \rightarrow \Upsilon(45)$
** ALBRECH 93E repor	ts $< 1.7 \times 10^{-3}$ for B(D)	$\phi_{5}^{+} \rightarrow \phi \pi^{+}) =$	0.027. We rescale to ou
best value $B(D_S^+ \rightarrow$			
$\left[\Gamma(D_s^{*+}\pi^-) + \Gamma(D_s^{*-}\right]$	CL% DOCUMENT ID	TECN	(\(\Gamma_{31} + \Gamma_{37}\)/
	CL% <u>DOCUMENT ID</u> 90 ¹¹⁶ ALBRECHT		
	ts $< 1.2 \times 10^{-3}$ for B(D)	$_{5}^{+}\rightarrow\phi\pi^{+})=$	0.027. We rescale to ou
best value $B(D_s^+ \rightarrow$	$\phi\pi^+)=0.036.$		
$(D_s^+ \rho^-)/\Gamma_{\text{total}}$	CLV DOCUMENT ID	TECN	Γ ₃₂ /1
<0.0007	CL% DOCUMENT ID 90 117 ALEXANDER following data for average	93B CLE2	$e^+e^- \rightarrow \Upsilon(45)$
	90 118 ALBRECHT		
	orts $< 6.6 \times 10^{-4}$ for B(
	. 1.	5 ""	, The rescale t
our best value B(D _S ⁺		.	
118 ALBRECHT 93E repor	ts $< 2.2 \times 10^{-3}$ for B(D)	$^+_5 \rightarrow \phi \pi^+) =$	0.027. We rescale to ou
our best value $B(D_s^+)$ 118 ALBRECHT 93E repor best value $B(D_s^+)$	ts $< 2.2 \times 10^{-3}$ for B(D)	$_{5}^{+}\rightarrow\phi\pi^{+})=$	0.027. We rescale to ou

```
\Gamma(D_s^{*+}\rho^-)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{33}/\Gamma
                          90 119 ALEXANDER 93B CLE2 e^+e^- \rightarrow \Upsilon(45)
VALUE
• • • We do not use the following data for averages, fits, limits, etc. • • •
               90 ^{120} ALBRECHT 93E ARG e^+e^-
ightarrow \varUpsilon(4.5)
^{119}\,\text{ALEXANDER} 93B reports <7.4\times10^{-4} for B(D _s^+ \rightarrow~\phi\pi^+) = 0.037. We rescale to
    our best value B(D_c^+ \rightarrow \phi \pi^+) = 0.036.
^{120} ALBRECHT 93E reports < 2.5 \times\,10^{-3} for B(D _{\rm s}^+\,\rightarrow\,\phi\pi^+) = 0.027. We rescale to our
     best value B(D_s^+ \rightarrow \phi \pi^+) = 0.036.
\Gamma(D_s^+ a_1(1260)^-)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{34}/\Gamma
                            DOCUMENT ID TECN COMMENT
^{121} ALBRECHT 93E reports < 3.5 \times 10^{-3} for B(D_5^+ 	o \phi \pi^+) = 0.027. We rescale to our
    best value B(D_c^+ \rightarrow \phi \pi^+) = 0.036.
\Gamma(D_s^{*+}a_1(1260)^-)/\Gamma_{\text{total}}
                                           DOCUMENT ID TECN COMMENT
                        <u>CL%</u>
                              90 122 ALBRECHT 93E ARG e^+e^- \rightarrow T(45)
^{122} ALBRECHT 93E reports < 2.9 \times 10 ^{-3} for B(D_s^+ 	o \phi \pi^+) = 0.027. We rescale to our
    best value B(D_s^+ \rightarrow \phi \pi^+) = 0.036.
\Gamma(D_s^-K^+)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{36}/\Gamma
                         90 123 ALEXANDER 93B CLE2 e^+e^- \rightarrow \Upsilon(45)
 < 0.00024
90 124 BORTOLETTO90 CLEO e^+e^- \rightarrow r(45)
^{123} ALEXANDER 93B reports < 2.3 \times 10^{-4} for B(D_s^+ 	o \phi \pi^+) = 0.037. We rescale to
    our best value B(D_s^+ \rightarrow \phi \pi^+) = 0.036.
124 BORTOLETTO 90 assume B(D_S \rightarrow \phi \pi^+) = 2%.
\Gamma(D_s^{*-}K^+)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{37}/\Gamma
                    CL% OOCUMENT ID TECN COMMENT

90 125 ALEXANDER 93B CLE2 e^+e^- \rightarrow \Upsilon(4S)
VALUE
 < 0.00017
^{125} ALEXANDER 93B reports < 1.7 	imes 10^{-4} for B(D_S^+ 
ightarrow \phi \pi^+) = 0.037. We rescale to
    our best value B(D_s^+ \rightarrow \phi \pi^+) = 0.036.
\Gamma(D_s^-K^*(892)^+)/\Gamma_{total}
                                                                                                 \Gamma_{38}/\Gamma
                         CL% DOCUMENT ID TECN COMMENT

90 ^{126} ALEXANDER 938 CLE2 e^+e^- \rightarrow \Upsilon(45)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                           90 ^{127} ALBRECHT 93E ARG e^+e^- 
ightarrow \varUpsilon(45)
^{126} ALEXANDER 93B reports < 9.7 \times 10^{-4} for B(D_s^+ \rightarrow~\phi\pi^+) = 0.037. We rescale to
    our best value B(D_s^+ \rightarrow \phi \pi^+) = 0.036.
127 ALBRECHT 93E reports < 4.6 \times 10<sup>-3</sup> for B(D_{c}^{+} \rightarrow \phi \pi^{+}) = 0.027. We rescale to our
    best value B(D_S^+ \rightarrow \phi \pi^+) = 0.036.
\Gamma(D_s^{*-}K^*(892)^+)/\Gamma_{total}
                                                                                                \Gamma_{39}/\Gamma
                    90 128 ALEXANDER 938 CLE2 e^+e^- \rightarrow \Upsilon(45)
VALUE
< 0.0011

    • • We do not use the following data for averages, fits, limits, etc.

                     90 129 ALBRECHT 93E ARG e^+e^- \rightarrow T(45)
^{128} ALEXANDER 93B reports < 11.0 \times 10^{-4} for B(D_s^+ 	o \phi \pi^+) = 0.037. We rescale to
    our best value B(D_s^+ \rightarrow \phi \pi^+) = 0.036.
129 ALBRECHT 93E reports < 5.8 \times 10^{-3} \text{ for B}(D_s^+ \to \phi \pi^+) = 0.027. We rescale to our
    best value B(D_s^+ \rightarrow \phi \pi^+) = 0.036.
\Gamma(D_s^-\pi^+K^0)/\Gamma_{total}
                                                                                                \Gamma_{40}/\Gamma
<u>VALUE</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

<0.005 90 ^{130} ALBRECHT 93E ARG e^+e^- \rightarrow T(45)
<sup>130</sup> ALBRECHT 93E reports < 7.3 \times 10^{-3} for B(D_e^+ \to \phi \pi^+) = 0.027. We rescale to our
    best value B(D_s^+ \rightarrow \phi \pi^+) = 0.036.
\Gamma(D_s^{*-}\pi^+K^0)/\Gamma_{\text{total}}
                                                                                                \Gamma_{41}/\Gamma
                        <u>CL%</u>
                                          DOCUMENT ID TECN COMMENT
VALUE
                            90 131 ALBRECHT 93E ARG e^+e^- \rightarrow \Upsilon(45)
^{131} ALBRECHT 93E reports < 4.2 \times 10^{-3} for B(D_5^+ \rightarrow \phi \pi^+) = 0.027. We rescale to our
    best value B(D_s^+ \rightarrow \phi \pi^+) = 0.036.
\Gamma(D_s^-\pi^+K^*(892)^0)/\Gamma_{\text{total}}
                                                                                                \Gamma_{42}/\Gamma
                      CLK DOCUMENT ID TECN COMMENT

90 ^{132} ALBRECHT 93E ARG e^+e^- \rightarrow \Upsilon(4S)
^{132} ALBRECHT 93E reports <5.0\times10^{-3} for B(D _{\varsigma}^{+}~\rightarrow~\phi\pi^{+})=0.027. We rescale to our
```

best value B($D_5^+ \rightarrow \phi \pi^+$) = 0.036.

 B^0

$(O_s^{-\pi}\pi^+K^*(892)^0)/\Gamma_{\text{total}}$ ALUE CLY DOCUMENT ID TECH COMMENT	$\Gamma(\overline{D}^{\circ}(2007)^{0} ho^{0})/\Gamma_{total}$ VALUE CLY DOCUMENT ID TECN COMMENT
20.0020 90 133 ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$	<0.00056 90 ¹⁴⁸ NEMATI 98 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
³ ALBRECHT 93E reports $< 2.7 \times 10^{-3}$ for B($D_5^+ \rightarrow \phi \pi^+$) = 0.027. We rescale to our	• • • We do not use the following data for averages, fits, limits, etc. • •
best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.	<0.00117 90 149 ALAM 94 CLE2 Repl. by NEMATI 98
	¹⁴⁸ NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96
$\overline{D}^0\pi^0)/\Gamma_{ ext{total}}$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 149 ALAM 94 assume equal production of B^+ and B^0 at the Υ (45) and use the CLEO I
UE CL% DOCUMENT ID TECN COMMENT	$B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+)$
0.00012 90 ¹³⁴ NEMATI 98 CLE2 $e^+e^- \rightarrow \Upsilon(45)$	$K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+)$ and $B(D^0\to K^-\pi^+\pi^+\pi^-)/B(D^0\to K^-\pi^+)$.
• We do not use the following data for averages, fits, limits, etc. • • 0.00048 90 135 ALAM 94 CLE2 Repl. by NEMATI 98	
. ,	Γ(Φ*(2007) ⁰ η)/Γ _{total} VALUE CL% DOCUMENT ID TECN COMMENT
⁴ NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions.	VALUE CL% DOCUMENT ID TECN COMMENT < 0.00026 90 150 NEMATI 98 CLE2 $e^+e^- \rightarrow T(45)$
ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II	• • We do not use the following data for averages, fits, limits, etc. • • •
absolute B($D^0 \rightarrow K^-\pi^+$) and the PDG 1992 B($D^0 \rightarrow K^-\pi^+\pi^0$)/B($D^0 \rightarrow K^-\pi^+$)	<0.00069 90 ¹⁵¹ ALAM 94 CLE2 Repl. by NEMATI 98
and B($D^0 \to K^-\pi^+\pi^+\pi^-$)/B($D^0 \to K^-\pi^+$).	150 NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 9
$\overline{D}^0 ho^0) / \Gamma_{ ext{total}}$ $\Gamma_{ ext{45}} / \Gamma$	values for D^0 , D^{*0} , η , η' , and ω branching fractions.
LUECL% EVTS DOCUMENT IDTECN COMMENT	¹⁵¹ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO
0.00039 90 136 NEMATI 98 CLE2 $e^+e^- \rightarrow \tau(45)$	$B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$
We do not use the following data for averages, fits, limits, etc.	$K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+)$ and $B(D^0\to K^-\pi^+\pi^+\pi^-)/B(D^0\to K^-\pi^+)$.
0.00055 90 ¹³⁷ ALAM 94 CLE2 Repl. by NEMATI 98	$\Gamma(\overline{D}^*(2007)^0 \eta')/\Gamma_{\text{total}}$ Γ_{52}/Γ_{52}
0.0006 90 $\frac{138}{6}$ BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(45)$	VALUE CL% DOCUMENT ID TECN COMMENT
0.0027 90 4 139 ALBRECHT 88K ARG $e^+e^- \rightarrow r$ (45)	<0.0014 90 BRANDENB 98 CLE2 $e^+e^- \to \Upsilon(45)$
NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(45)$ and use the PDG 96	• • • We do not use the following data for averages, fits, limits, etc. • •
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(45)$ and use the CLEO II	<0.0019 90 ¹⁵² NEMATI 98 CLE2 e ⁺ e → T(45) <0.0027 90 ¹⁵³ ALAM 94 CLE2 Repl. by NEMATI 98
absolute B($D^0 \to K^-\pi^+$) and the PDG 1992 B($D^0 \to K^-\pi^+\pi^0$)/B($D^0 \to K^-\pi^+$)	
and B($D^0 \rightarrow K^-\pi^+\pi^+\pi^-$)/B($D^0 \rightarrow K^-\pi^+$).	¹⁵² NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 9 values for D^0 , D^{*0} , η , η' , and ω branching fractions.
⁸ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses	values for D° , D° , η , η , and ω branching fractions. 153 ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(45)$ and use the CLEO
Mark III branching fractions for the D . 9 ALBRECHT 88K reports < 0.003 assuming $B^0 \overline{B}{}^0 : B^+ B^-$ production ratio is 45:55.	$B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$
We rescale to 50%.	$K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+)$ and $B(D^0\to K^-\pi^+\pi^+\pi^-)/B(D^0\to K^-\pi^+)$.
	$\Gamma(\overline{D}^*(2007)^0\omega)/\Gamma_{\text{total}}$ Γ_{53}/Γ_{53}
D ⁰ η)/Γ _{total} Γ ₄₆ /Γ	VALUECL%DOCUMENT_IDTECNCOMMENT
LUE CL% DOCUMENT ID TECN COMMENT 0.00013 90 140 NEMATI 98 CLE2 $e^+e^- \rightarrow \Upsilon(45)$	<0.00074 90 154 NEMATI 98 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
• • We do not use the following data for averages, fits, limits, etc. • •	• • • We do not use the following data for averages, fits, limits, etc. • •
0.00068 90 141 ALAM 94 CLE2 Repl. by NEMATI 98	<0.0021 90 ¹⁵⁵ ALAM 94 CLE2 Repl. by NEMATI 98
NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(45)$ and use the PDG 96	154 NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(45)$ and use the PDG 90
	values for D^0 , D^{*0} , η , η' , and ω branching fractions.
values for D^0 , D^{*0} , η , η^I , and ω branching fractions.	values for D^0 , D^{*0} , η , η' , and ω branching fractions. ¹⁵⁵ ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ¹² ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$.
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ¹ ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO B($D^*(2007)^0 \rightarrow D^0\pi^0$) and absolute B($D^0 \rightarrow K^-\pi^+$) and the PDG 1992 B($D^0 - K^-\pi^+\pi^0$)/B($D^0 \rightarrow K^-\pi^+$) and B($D^0 \rightarrow K^-\pi^+\pi^-$)/B($D^0 \rightarrow K^-\pi^+$). $\Gamma(D^*(2010)^+D^*(2010)^-)/\Gamma_{total}$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO B(D^* (2007) D^0 D^0 π^0) and absolute B(D^0
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ¹ ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. $\overline{D^0}\eta')/\Gamma_{\text{total}}$ $\underline{CL\%}$ $DOCUMENT ID$ \underline{TECN} $COMMENT$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$. $F(D^*(2010)^+D^*(2010)^-)/F_{total}$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)$. $ \overline{D^0 \eta'}/\Gamma_{\text{total}} $ $ \underline{CL\%} $	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$. $F(D^*(2010)^+D^*(2010)^-)/\Gamma_{total}$ F_{54}/F_{CLE} F_{CD} $F_{$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$. $ \frac{(D^0 \eta')}{\Gamma \text{total}} \frac{CL\%}{DOCUMENT ID} \frac{TECN}{D^0 \times D^0} \frac{COMMENT}{D^0} $ • We do not use the following data for averages, fits, limits, etc. • • • 0.00086 90 $\frac{143}{A}$ ALAM 94 CLE2 Repl. by NEMATI 98	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. $F(D^*(2010)^+D^*(2010)^-)/F_{total}$ Following $D^0 \to D^0$ TECN COMMENT (6.2 $\frac{1}{2}$.9 \pm 1.0) × 10 $\frac{1}{2}$ ARTUSO 99 CLE2 $e^+e^- \to T(45)$ • • We do not use the following data for averages, fits, limits, etc. • • • < 6.1 × 10 $\frac{1}{2}$ 90 157 BARATE 98Q ALEP $e^+e^- \to Z$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$. $ \frac{(D^0 \eta')/\Gamma_{\text{total}}}{(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)} = \frac{\Gamma_{\text{47}}/\Gamma_{\text{100094}}}{(D^0 \to K^-\pi^+\pi^+)} = \frac{\Gamma_{\text{47}}/\Gamma_{\text{100094}}}{(D^0 \to K^-\pi^+\pi^+\pi^+)} = \frac{\Gamma_{\text{47}}/\Gamma_{\text{100094}}}{(D^0 \to K^-\pi^+\pi^+)} = \frac{\Gamma_{\text{47}}/\Gamma_{\text{100094}}}{(D^0 \to K^-\pi^+\pi^+)} = \frac{\Gamma_{\text{47}}/\Gamma_{\text{100094}}}{(D^0 \to K^-\pi^+\pi^+)} = \frac{\Gamma_{\text{47}}/\Gamma_{\text{100094}}}{(D^0 \to K^-\pi^+\pi^+)} =$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$. $F(D^*(2010)^+D^*(2010)^-)/F_{total}$ Total (6.2 + 4.0 \(\frac{4}{2}.9 \) \(\frac{4}{1}.0 \) \(\) \(\frac{1}{1}.0 \) \(\frac{1}.0 \) \(\frac{1}{1}.0 \) \(\frac{1}{1}.0 \) \(\frac{1}.0 \) \(\frac{1}{1}.0 \) \(\frac{1}.0 \) \
values for D^0 , $D^{\bullet 0}$, η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. $ \overline{D^0 \eta'}/\Gamma_{\text{total}} $	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+, \pi^+, \pi^-)/B(D^0 \to K^-\pi^+)$. F($D^*(2010)^+$ $D^*(2010)^-$)/Ftotal $DCUMENT ID$ TECN COMMENT (6.2 $\frac{4.0}{2.9}\pm 1.0$) × 10^{-4} 156 ARTUSO 99 CLE2 $e^+e^- \to T(45)$ • • We do not use the following data for averages, fits, limits, etc. • • • < 6.1 × 10^{-3} 90 157 BARATE 980 ALEP $e^+e^- \to Z$ < 2.2 × 10^{-3} 90 158 ASNER 97 CLE2 Repl. by ARTUSO 9156 ARTUSO 99 uses $B(T(45) \to B^0\overline{B}^0) \simeq (48 \pm 4)\%$.
values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.	values for D^0 , $D^{\bullet 0}$, η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^{\bullet}(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 B
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. $D^0\eta')/\Gamma \text{total}$ $UE \qquad \qquad CL_N^* \qquad DOCUMENT ID \qquad TECN \qquad COMMENT \qquad DO0094 \qquad 90 \qquad 142 \qquad NEMAT1 \qquad 98 \qquad CLE2 \qquad e^+e^- \to T(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • 0.00086 90 143 ALAM 94 CLE2 Repl. by NEMAT1 98 Values for D^0 , D^{*0} , η , η' , and ω branching fractions. 3ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$. F($D^*(2010)^+$ $D^*(2010)^-$)/Ftotal For $D^*(D^0 \rightarrow K^-\pi^+)$ and $D^*(D^0 \rightarrow K^-\pi^+)$ and $D^0 \rightarrow K^-\pi^+$ and D^0
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$. F47/F LUE OLYMPITID 12EN OLYMPITID 142 NEMATI 98 CLE2 90 142 NEMATI 98 CLE2 90 143 ALAM 94 CLE2 Repl. by NEMATI 98 Very Borner of the following data for averages, fits, limits, etc. 0.00086 90 143 ALAM 94 CLE2 Repl. by NEMATI 98 Values for D^0 , D^{*0} , η , η' , and ω branching fractions. 3 ALAM 94 assumes equal production of B^+ and B^0 at the $T(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 3 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$. F($D^*(2010)^+$)/F(total TECN OMMENT TO TECN COMMENT (6.2+4.0 \pm 1.0) \times 10-4 156 ARTUSO 99 CLE2 $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • (6.1 \times 10-3 90 157 BARATE 980 ALEP $e^+e^- \rightarrow Z$ < 2.2 \times 10-3 90 158 ASNER 97 CLE2 Repl. by ARTUSO 9156 ARTUSO 99 uses $B(T(45) \rightarrow B^0\overline{B}^0) \approx (48 \pm 4)\%$. 157 BARATE 980 (ALEPH) observes 2 events with an expected background of 0.10 \pm 0.6 which corresponds to a branching ratio of $(2.3+\frac{1}{1}.\frac{9}{2}\pm0.4)\times10^{-3}$. 158 ASNER 97 at CLEO observes 1 event with an expected background of 0.022 \pm 0.01
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. F47/F LUE OLYMONIC DOUGH 90 142 NEMATI 98 CLE2 $e^+e^- \to T(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • 0.00086 90 143 ALAM 94 CLE2 Repl. by NEMATI 98 Values for D^0 , D^{*0} , η , η' , and ω branching fractions. 3 ALAM 94 assumes equal production of B^+ and B^0 at the $T(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 3 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$. F($D^*(2010)^+$ $D^*(2010)^-$)/Ftotal For $D^*(D^0 \rightarrow K^-\pi^+)$ and $D^*(D^0 \rightarrow K^-\pi^+)$ and $D^0 \rightarrow K^-\pi^+$ and D^0
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. $D^0\eta')/\Gamma \text{total}$ $LUE \qquad \qquad CL\% \qquad DOCUMENT ID \qquad TECN \qquad COMMENT \\ 0.00094 \qquad 90 \qquad 142 \text{ NEMATI} \qquad 98 \text{CLE2} e^+e^- \to T(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • 0.00086 90 143 ALAM 94 CLE2 Repl. by NEMATI 98 2 NEMATI 98 2 NEMATI 98 3 the T(4S) and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 3ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. $D^0\omega)/\Gamma_{\text{total}} \qquad TECN \qquad COMMENT.$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$. F($D^*(2010)^+$ $D^*(2010)^-$)/Ftotal Po(2010) Thotal Po(
values for D^0 , $D^{\bullet0}$, η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. Top η')/\(\triangle \text{Total}\) CL\(\text{\text{\text{\$OOCUMENT ID } TECN COMMENT } \) • • We do not use the following data for averages, fits, limits, etc. • • • 0.00094 90 \(\frac{143}{3} \) ALAM \(\text{94} \) CLE2 \(\text{Repl. by NEMATI } \) • • We do not use the following data for averages, fits, limits, etc. • • • 0.00086 90 \(\frac{143}{3} \) ALAM \(\text{94} \) CLE2 \(\text{Repl. by NEMATI } \) 2 NEMATI 98 assumes equal production of B^+ and B^0 at the $T(4S)$ and use the PDG 96 values for D^0 , D^0 , η' , η' , and ω branching fractions. 3 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. (\text{D0}\) \(\text{\text{\$D^0\text{\$\overline MENT }} \) \(\text{\$OCUMENT ID TECN } \) \(\text{\$COMMENT } \) \(\text{\$\text{\$V\$} \) \(\text{\$\text{\$\overline MENT }} \) \(\text{\$\text{\$\overline MENT }} \) \(\text{\$\overline MENT } \) \(\$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^+)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+)$ and BDG 19
values for D^0 , $D^{\bullet 0}$, η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$. $D^0\eta')/\Gamma$ total $D^0\eta'/\Gamma$ total $D^0\eta'/$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$. F($D^*(2010)^+D^*(2010)^-$)/Ftotal FECN COMMENT ID TECN COMMENT (6.2+\frac{4.0}{2.9}\pm 1.0) \times 10^{-4} \qquad \qua
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. $D^0\eta')/\Gamma \text{total} \qquad \qquad \Gamma_{47}/\Gamma \qquad \Gamma$	values for D^0 , $D^{\bullet 0}$, η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^{\bullet}(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$. $T(D^{\bullet}(2010)^+D^{\bullet}(2010)^-)/T_{total}$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+)$. $D^0\eta')/\Gamma_{\text{total}}$ $D^0\eta')/\Gamma_{\text{total}}$ $D^0\eta')/\Gamma_{\text{total}}$ 142 NEMATI 98 CLE2 $e^+e^- \to T(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • 0.00096 90 143 ALAM 94 CLE2 Repl. by NEMATI 98 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 3 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$. F($D^*(2010)^+D^*(2010)^-$)/Ftotal FECN COMMENT ID TECN COMMENT (6.2+\frac{4.0}{2.9}\pm 1.0) \times 10^{-4} \qquad \qua
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. $D^0\eta')/\Gamma \text{total}$ LUE CL% DOCUMENT ID 142 NEMATI 98 CLE2 $e^+e^- \to T(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • 0.00086 90 143 ALAM 94 CLE2 Repl. by NEMATI 98 2 NEMATI 98 assumes equal production of B^+ and B^0 at the $T(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 3 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. (D0w)/ T total LUE CL% DOCUMENT ID TECN COMMENT T48/ T C.0.00061 90 144 NEMATI 98 CLE2 $e^+e^- \to T(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^+)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$. F($D^*(2010)^+D^*(2010)^-$)/Ftotal F54/ VALUE CLX DOCUMENT ID TECN COMMENT (6.2 $^+4.0$ ±1.0) × 10 $^-4$ 156 ARTUSO 99 CLE2 $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • < 6.1 × 10 $^{-3}$ 90 157 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ < 2.2 × 10 $^{-3}$ 90 158 ASNER 97 CLE2 Repl. by ARTUSO 99 156 ARTUSO 99 uses $B(T(45) \rightarrow B^0B^0) \simeq (48 \pm 4)\%$. 157 BARATE 98Q (ALEPH) observes 2 events with an expected background of 0.10 ± 0.0 which corresponds to a branching ratio of $(2.3_{-1.2}^{+1.9} \pm 0.4) \times 10^{-3}$. 158 ASNER 97 at CLEO observes 1 event with an expected background of 0.022 ± 0.01 This correcsponds to a branching ratio of $(5.3_{-3.7}^{+7.1} \pm 1.0) \times 10^{-4}$. F($D^*(2010)^+D^-$)/Ftotal OLEO Observes 1 event with an expected background of 0.022 ± 0.01 This correcsponds to a branching ratio of $(5.3_{-3.7}^{+7.1} \pm 1.0) \times 10^{-4}$. F($D^*(2010)^+D^-$)/Ftotal OLEO Observes 1 event with an expected background of 0.022 ± 0.01 This correcsponds to a branching ratio of $(5.3_{-3.7}^{+7.1} \pm 1.0) \times 10^{-4}$. F($D^*(2010)^+D^-$)/Ftotal OLEO Observes 1 event with an expected background of 0.022 ± 0.01 This correcsponds to a branching ratio of $(5.3_{-3.7}^{+7.1} \pm 1.0) \times 10^{-4}$. F($D^*(2010)^+D^-$)/Ftotal OLEO Observes 1 event with an expected background of 0.022 ± 0.01 This correcsponds to a branching ratio of $(5.3_{-3.7}^{+7.1} \pm 1.0) \times 10^{-4}$.
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. Total CL% DOCUMENT ID TECN COMMENT O.00094 90 142 NEMATI 98 CLE2 $e^+e^- \to T(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • 0.00086 90 143 ALAM 94 CLE2 Repl. by NEMATI 98 PO VAIUES for D^0 , D^{*0} , η , η' , and ω branching fractions. 3 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^0\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^0\pi^0)/B(D^0 \to K^$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and BDG $B(D^0 \to K^-\pi^$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. $D^0\eta')/\Gamma \text{total}$ CE^* $D^0 \text{CLE}$ CE^* $D^0 \text{DOWMENT } D$ $D^0 \text{SUBMATI}$ • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0 \pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^+)/B(D^0 \rightarrow K^-\pi^+)$. $T(D^*(2010)^+D^*(2010)^-)/T_{total}$ F ₅₄ / $\frac{DOCUMENT ID}{I}$ TECN COMMENT (6.2 $\frac{+4.0}{2.9}\pm1.0$) × 10 ⁻⁴ 156 ARTUSO 99 CLE2 $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • < 6.1 × 10 ⁻³ 90 157 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ < 2.2 × 10 ⁻³ 90 158 ASNER 97 CLE2 Repl. by ARTUSO 99 156 ARTUSO 99 uses $B(T(45) \rightarrow B^0\bar{B}^0) \simeq (48 \pm 4)\%$. 157 BARATE 98Q (ALEPH) observes 2 events with an expected background of 0.10 \pm 0.0 which corresponds to a branching ratio of $(2.3\frac{+1.9}{-1.9}\pm0.4) \times 10^{-3}$. 158 ASNER 97 at CLEO observes 1 event with an expected background of 0.022 \pm 0.01 This correcsponds to a branching ratio of $(5.3\frac{+7.1}{-3.7}\pm1.0) \times 10^{-4}$. F($D^*(2010)^+D^-$)/ T_{total} QLE QLE C_{L} DOCUMENT ID TECN COMMENT (45) C_{L} CLE C_{L} DOCUMENT ID TECN C_{L} COMMENT (45) C_{L} VALUE C_{L} DOCUMENT ID TECN C_{L} COMMENT (45) C_{L} VALUE C_{L} DOCUMENT ID TECN C_{L} COMMENT (45) C_{L} VALUE C_{L} DOCUMENT ID TECN C_{L} COMMENT (45) C_{L} POCUMENT ID C_{L} POC
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$. $D^0\eta')/\Gamma \text{total}$ $LUE \qquad \qquad CL^{**} \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ 0.00094 90 142 NEMATI 98 CLE2 $e^+e^- \to T(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • 0.00086 90 143 ALAM 94 CLE2 Repl. by NEMATI 98 2 NEMATI 98 assumes equal production of B^+ and B^0 at the $T(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 3ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. $D^0\omega)/\Gamma_{total} \qquad CL^{**} \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ 0.00051 90 145 ALAM 94 CLE2 Repl. by NEMATI 98 4 NEMATI 98 assumes equal production of B^+ and B^0 at the $T(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η' , and ω branching fractions. 5 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)$.	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$. $T(D^*(2010)^+D^*(2010)^-)/T_{total}$ Following $D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. Following data for averages, fits, limits, etc. • • • • • We do not use the following data for averages, fits, limits, etc. • • • • • $D^0 \to D^0 \to D^0$ and $D^0 \to D^0 \to D^0$ and $D^0 \to D^0 \to D^0$ and $D^0 \to D^0$ and $D^0 \to D^0$ and $D^0 \to D^0$ are the following data for averages, fits, limits, etc. • • • • • $D^0 \to D^0$ and $D^0 \to D^0$ and $D^0 \to D^0$ and $D^0 \to D^0$ are the following data for averages, fits, limits, etc. • • • • • $D^0 \to D^0$ and $D^0 \to D^0$ and $D^0 \to D^0$ and $D^0 \to D^0$ and $D^0 \to D^0$ are the following data for averages, fits, limits, etc. • • • $D^0 \to D^0$ and $D^0 \to D^0$ and $D^0 \to D^0$ are the following ratio of $D^0 \to D^0$ and $D^0 \to D^0$ are the following data for averages, fits, limits, etc. • • • $D^0 \to D^0$ and $D^0 \to D^0$ and $D^0 \to D^0$ are the following data for averages, fits, limits, etc. • • • $D^0 \to D^0$ and $D^0 \to D^0$ and $D^0 \to D^0$ and $D^0 \to D^0$ are the following data for averages, fits, limits, etc. • • • $D^0 \to D^0$ and $D^0 \to D$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. $D^0\eta')/\Gamma \text{total}$ $UE \qquad CL\% \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ 0.00094 90 142 NEMATI 98 CLE2 $e^+e^- \to T(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • 0.00086 90 143 ALAM 94 CLE2 Repl. by NEMATI 98 2 NEMATI 98 assumes equal production of B^+ and B^0 at the $T(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 3ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. $D^0\omega)/\Gamma \text{total}$ $UE \qquad CL\% \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ 0.00061 90 144 NEMATI 98 CLE2 $e^+e^- \to T(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • 0.00063 90 145 ALAM 94 CLE2 Repl. by NEMATI 98 AND PATION OF D^0 and D^0 at the D^0 and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 5 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute D^0 and D^0 are D^0 and use the CLEO II absolute D^0 are D^0 and D^0 are D^0 and the PDG 1992 D^0 and D^0 are D^0 and use the CLEO II absolute D^0 are D^0 and D^0 are D^0	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+, \pi^+)$ and $B(D^0 \to K^-\pi^+, \pi^+)$ and $B(D^0 \to K^-\pi^+, \pi^+, \pi^-)/B(D^0 \to K^-\pi^+)$. $T(D^*(2010)^+D^*(2010)^-)/\Gamma_{total}$ $\frac{CLX}{DOCUMENT\ ID}$ $\frac{DOCUMENT\ ID}{TECN}$ $\frac{TECN}{COMMENT}$ (6.2 $\frac{1}{2}$,9 \pm 1.0) × 10 $^{-4}$ 156 ARTUSO 99 CLE2 $e^+e^- \to T(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • < 6.1 × 10 $^{-3}$ 90 157 BARATE 980 ALEP $e^+e^- \to Z$ < 2.2 × 10 $^{-3}$ 90 158 ASNER 97 CLE2 Repl. by ARTUSO 9 156 ARTUSO 99 uses $B(T(4S) \to B^0\overline{B}^0) \simeq (48 \pm 4)\%$. 157 BARATE 980 (ALEPH) observes 2 events with an expected background of 0.10 \pm 0.0 which corresponds to a branching ratio of $(2.3\frac{1}{1}.\frac{1}{2} \pm 0.4) \times 10^{-3}$. 158 ASNER 97 at CLEO observes 1 event with an expected background of 0.022 \pm 0.01 This correcesponds to a branching ratio of $(5.3\frac{1}{2}.\frac{1}{2}.\frac{1}{2} \pm 0.4) \times 10^{-3}$. $T(D^*(2010)^+D^-)/\Gamma_{total}$ $\frac{CLX}{2}$ $\frac{DOCUMENT\ ID}{2}$ $\frac{TECN}{2}$ $\frac{CDMMENT}{2}$ • • We do not use the following data for averages, fits, limits, etc. • • < 5.6 × 10 $^{-3}$ 90 BARATE 980 ALEP $e^+e^- \to Z$ $T(D^{(*)0}\overline{D}^{(*)0})/\Gamma_{total}$ $\frac{DOCUMENT\ ID}{2}$ $\frac{TECN}{2}$ $\frac{CDMMENT}{2}$ $\frac{DOCUMENT\ ID}{2}$ $\frac{TECN}{2}$ $\frac{CDMMENT}{2}$ $\frac{TECN}{2}$ T
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. $D^0\eta')/\Gamma \text{total}$ CL_K^* $DOCUMENT ID$ • • We do not use the following data for averages, fits, limits, etc. • • • 0.00096 90	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. Fig. 10 $F_{K^-\pi^+\pi^+}$ and $F_{K^-\pi^+}$ and $F_{K^$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. Tech in the polar of	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. $\Gamma(D^*(2010)^+D^*(2010)^-)/\Gamma_{total}$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 3 ALAM 94 assumes equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)$. 1 ABO $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. $\Gamma(D^*(2010)^+D^*(2010)^-)/\Gamma_{total}$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B^0 \to K^-\pi^+$ and $B^0 \to K^-\pi^+$.	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 - K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$. $T(D^*(2010)^+D^*(2010)^-)/\Gamma_{total}$ VALUE CLX. DOCUMENT ID TECN COMMENT (6.2 $\frac{1}{2}$,9 \pm 1.0) × 10 $^{-4}$ 156 ARTUSO 99 CLE2 $e^+e^- \rightarrow T(45)$ • • We do not use the following data for averages, fits, limits, etc. • • • (6.1 × 10 $^{-3}$ 90 157 BARATE 980 ALEP $e^+e^- \rightarrow Z$ < 2.2 × 10 $^{-3}$ 90 158 ASNER 97 CLE2 Repl. by ARTUSO 9156 ARTUSO 99 uses $B(T(45) \rightarrow B^0\overline{B}^0) \simeq (48 \pm 4)\%$. 157 BARATE 980 (ALEPH) observes 2 events with an expected background of 0.10 \pm 0.00 which corresponds to a branching ratio of $(2.3^+_{-1.2}^{1.2} \pm 0.4) \times 10^{-3}$. 158 ASNER 97 at CLEO observes 1 event with an expected background of 0.022 \pm 0.01 This correcsponds to a branching ratio of $(5.3^+_{-1.2}^{7.1} \pm 1.0) \times 10^{-4}$. $\Gamma(D^*(2010)^+D^-)/\Gamma_{total}$ VALUE CLY. DOCUMENT ID TECN COMMENT (-1.8 × 10 $^{-3}$ 90 ASNER 97 CLE2 $e^+e^- \rightarrow T(45)$ • • We do not use the following data for averages, fits, limits, etc. • • • (5.6 × 10 $^{-3}$ 90 BARATE 980 ALEP $e^+e^- \rightarrow Z$ $\Gamma(D^{(*)0}\overline{D^{(*)0}})/\Gamma_{total}$ VALUE Q.0.27 90 BARATE 980 ALEP $e^+e^- \rightarrow Z$ $\Gamma(D^{(*)0}\overline{D^{(*)0}})/\Gamma_{total}$ VALUE OND AVERAGE 8.5 \pm 1.2 \pm 0.6 159 JESSOP 97 CLE2 $e^+e^- \rightarrow T(45)$ 1.5 \pm 2.3 \pm 1.7 160 ABE 96H CDF $p\overline{p}$ at 1.8 TeV
values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the PDG 1982 $B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)/B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)/B(D^0	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 - K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+)$ and the PDG 1992 $B(D^0 - K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$. F($D^*(2010)^+$ $D^*(2010)^-$)/Ftotal $DCUMENT ID$ TECN COMMENT [54/] VALUE CLY DOCUMENT ID TECN COMMENT [6.2 $\frac{1}{2}$.9 \pm 1.0) \times 10 $^{-4}$ 156 ARTUSO 99 CLE2 $e^+e^- \rightarrow T(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • (6.1 \times 10 $^{-3}$ 90 157 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ < 2.2 \times 10 $^{-3}$ 90 158 ASNER 97 CLE2 Repl. by ARTUSO 99 156 ARTUSO 99 uses $B(T(4S) \rightarrow B^0\overline{B}^0) \simeq (48 \pm 4)\%$. 157 BARATE 98Q (ALEPH) observes 2 events with an expected background of 0.10 \pm 0.0 which corresponds to a branching ratio of $(2.3^+\frac{1}{1}.2^+2.0.4) \times 10^{-3}$. 158 ASNER 97 at CLEO observes 1 event with an expected background of 0.022 \pm 0.01 This correcsponds to a branching ratio of $(5.3^+\frac{7}{1}.1^+2.1.0) \times 10^{-4}$. F($D^*(2010)^+D^-$)/Ftotal $DCUMENT$ $DCUME$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. It ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO III absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. $(D^0 \eta')/\Gamma \text{total} \qquad \qquad CL\% \qquad DOCUMENT ID \qquad TECN \qquad COMMENT \\ 10.00094 \qquad 90 \qquad 142 \text{ NEMATI} \qquad 98 \qquad \text{CLE2} \qquad e^+e^- \to T(45)$ • • We do not use the following data for averages, fits, limits, etc. • • • 10.00086 \qquad 90 \qquad 143 \text{ ALAM} \qquad 94 \qquad CLE2 \text{ Repl. by NEMATI 98} \qquad 182 \text{ NEMATI 98} \qquad assumes equal production of B^+ and B^0 at the $T(45)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 13 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO III absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$. $(D^0 \omega)/\Gamma \text{ total} \qquad \qquad DCUMENT ID \qquad TECN \qquad COMMENT \\ 144 \text{ NEMATI} \qquad 98 \qquad \text{CLE2} \qquad e^+e^- \to T(45)$ • • We do not use the following data for averages, fits, limits, etc. • • • 10.00061 \qquad 90 \qquad 145 \text{ ALAM} \qquad 94 \qquad CLE2 \text{ Repl. by NEMATI 98} \qquad 144 \qquad NEMATI 98 \qquad Assume equal production of B^+ and B^0 at the $T(45)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 145 \qquad ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO III absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$. 146 \qquad NEMATI 98 assumes equal production of B^+ and B^0 at the $T(45)$ and use the CLEO III absolute $B(D^0 \to K^-\pi^+\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^0)/B(D^0 \to K^$	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(4S)$ and use the CLEO $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and B $D^0 \to K^-$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$.	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^+)/B(D^0 \to K^-\pi^+)$. For $T(D^*(2010)^+D^*(2010)^-)/\Gamma_{total}$ For $T(D^*(2010)^+D^*(2010)^+)/\Gamma_{total}$ For $T(D^*(2010)^+)/\Gamma_{total}$ For $T(D^*(2010)^+)/\Gamma_{total}$ For $T(D^*(2010)^+)/\Gamma_{total}$ For $T(D^*(2010)^+)/\Gamma_{total}$ For $T(D^*(2010)$
values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assumes equal production of B^+ and B^0 at the $T(45)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. 1 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO II absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+)$ and $B($	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 - K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+)$ and the PDG 1992 $B(D^0 - K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$. The proof of B^+ and B^0
values for D^0 , D^{*0} , η , η' , and ω branching fractions. It ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO III absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+)$. $(D^0 \eta')/\Gamma_{\text{total}} \qquad $	values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $T(45)$ and use the CLEO $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+\pi^+)$ and the PDG 1992 $B(D^0 - K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$. $T(D^*(2010)^+D^*(2010)^-)/\Gamma_{total}$ VALUE $CL\%$ $DOCUMENT ID$ $(6.2^{+4.0}_{-2.9}\pm 1.0)\times 10^{-4}$ 156 $ARTUSO$ 99 CLE2 $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • < 6.1 $\times 10^{-3}$ 90 157 BARATE 980 ALEP $e^+e^- \rightarrow Z$ < 2.2 $\times 10^{-3}$ 90 158 ASNER 97 CLE2 Repl. by ARTUSO 99 156 ARTUSO 99 uses $B(T(45) \rightarrow B^0\overline{B}^0) \simeq (48 \pm 4)\%$. 157 BARATE 980 (ALEPH) observes 2 events with an expected background of 0.10 \pm 0.0 which corresponds to a branching ratio of $(2.3^{+1.9}_{-1.2}\pm 0.4)\times 10^{-3}$. 158 ASNER 97 at CLEO observes 1 event with an expected background of 0.022 \pm 0.01 This correcsponds to a branching ratio of $(5.3^{+7.1}_{-3.7}\pm 1.0)\times 10^{-4}$. $T(D^*(2010)^+D^-)/\Gamma_{total}$ VALUE (-1.8×10^{-3}) 90 ASNER 97 CLE2 $e^+e^- \rightarrow T(45)$ • • We do not use the following data for averages, fits, limits, etc. • • • < 5.6 $\times 10^{-3}$ 90 BARATE 980 ALEP $e^+e^- \rightarrow T(45)$ • • We do not use the following data for averages, fits, limits, etc. • • • < 5.6 $\times 10^{-3}$ 90 BARATE 980 ALEP $e^+e^- \rightarrow T(45)$ • • We do not use the following data for averages e^+ and e^+ $e^ e^

```
^{161} BORTOLETTO 92 reports 6 \pm 3 \pm 2 for B(J/\psi(15) \rightarrow e^+e^-) = 0.069 \pm 0.009. We
     rescale to our best value B(J/\psi(15) \rightarrow e^+e^-) = (5.93 \pm 0.10) \times 10<sup>-2</sup>. Our first error is their experiment's error and our second error is the systematic error from using
     our best value. Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
```

 162 ALBRECHT 90J reports 8 \pm 6 \pm 2 for B($J/\psi(15) \rightarrow e^{+}e^{-}) = 0.069 \pm 0.009$. We rescale to our best value B($J/\psi(15) \rightarrow e^+e^-$) = (5.93 \pm 0.10) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

ALUE	<u>CL%</u> <u>E</u>	VT5	DOCUMENT ID	TECN	COMMENT
0.00116±0.0009			¹⁶³ BORTOLETT		T(45)
 We do not 	use the following	data 1	for averages, fits, lir	mits, etc. •	• •
<0.0013	90		164 ALBRECHT	87D ARG	$e^+e^- \rightarrow \Upsilon(45)$
< 0.0063	90	2	GILES	84 CLEO	e+e- → T(45)

 0.069 ± 0.009 . We rescale to our best value B($J/\psi(15) \rightarrow e^+e^-$) = (5.93 \pm 0.10) \times 10^{-2} . Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹⁶⁴ ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. $K\pi$ system is specifically selected as nonresonant.

ı

VALUE E	VT5	DOCUMENT	ID	TECN	COMMENT	
0.00150±0.00017 OUR AVER	AGE					
$0.00174 \pm 0.00020 \pm 0.00018$		¹⁶⁵ ABE	980	CDF	ρ - 1.8 Te\	,
$0.00132 \pm 0.00017 \pm 0.00017$		166 JESSOP	97	CLE2	$e^+e^- \rightarrow$	T(45)
$0.00128 \pm 0.00066 \pm 0.00002$		167 BORTOLE	TTO92	CLEO	$e^+e^- \rightarrow$	T(45)
$0.00128 \pm 0.00060 \pm 0.00002$	6	168 ALBRECH	ر 90 کا		$e^+e^- \rightarrow$	r(45)
0.0041 ±0.0018 ±0.0001	5	¹⁶⁹ BEBEK	87	CLEO	$e^+e^- \rightarrow$	T(45)
• • We do not use the follo	wing	data for average:	s, fits, lir	nits, etc	. • • •	. ,
$0.00136 \pm 0.00027 \pm 0.00022$		¹⁷⁰ ABE	964	CDF	Sup. by AE	RF 980
$0.00169 \pm 0.00031 \pm 0.00018$	29	171 ALAM		CLE2		
		172 ALBRECH		ARG	e+ e- →	
0.0040 ±0.0030		173 ALBAJAR		UA1	$E_{\rm cm}^{p\overline{p}} = 630$	
0.0033 ±0.0018	5	174 ALBRECH	T 87D	ARG	$e^+e^- \rightarrow$	
0.0041 ±0.0018	5	175 ALAM		CLEO	Repl. by B	
165 ABE 980 reports [B(B^0 - 0.14 ± 0.15 . We multiply b						

166 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

167 BORTOLETTO 92 reports 0.0011 \pm 0.0005 \pm 0.0003 for B(J/ ψ (1S) $\to e^+e^-$) = 0.069 ± 0.009 . We rescale to our best value B $(J/\psi(1S) \rightarrow e^+e^-) = (5.93 \pm 0.10) \times$ 10^{-2} . Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 168 ALBRECHT 90J reports $0.0011 \pm 0.0005 \pm 0.0002$ for B(J/ ψ (15) $ightarrow \ e^+ \ e^-$) = 0.069 ± 0.0002 0.009. We rescale to our best value $B(J/\psi(1S) \rightarrow e^+e^-) = (5.93 \pm 0.10) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹⁶⁹ BEBEK 87 reports $0.0035 \pm 0.0016 \pm 0.0003$ for B($J/\psi(1S) \rightarrow e^+e^-$) = 0.069 ± 0.009 . We rescale to our best value B($J/\psi(1S) \rightarrow e^+e^-$) = $(5.93\pm0.10)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Updated in BORTOLETTO 92 to use the same assumptions.

 170 ABE 96H assumes that B($B^+ \to J/\psi K^+$) = (1.02 \pm 0.14) \times 10⁻³.

171 The neutral and charged B events together are predominantly longitudinally polarized, $\Gamma_L/\Gamma=0.080\pm0.08\pm0.05$. This can be compared with a prediction using HQET, 0.73 (KRAMER 92). This polarization indicates that the $B \to \psi K^*$ decay is dominated by the CP = -1 CP eigenstate. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

172 ALBRECHT 946 measures the polarization in the vector-vector decay to be predominantly longitudinal, $\Gamma_T/\Gamma=0.03\pm0.16\pm0.15$ making the neutral decay a *CP* eigenstate when the K^{*0} decays through $K_S^0 \pi^0$.

¹⁷³ ALBAJAR 91E assumes B_d^0 production fraction of 36%.

¹⁷⁴ ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. Superseded by ALBRECHT 90J.

¹⁷⁵ ALAM 86 assumes B^{\pm}/B^0 ratio is 60/40. The observation of the decay $B^+ \rightarrow$ $J/\psi K^*(892)^+$ (HAAS 85) has been retracted in this paper.

		<u>DOCUMEN</u>	T ID	TECN	COMMENT	
1.39±0.36±0.10			96Q	CDF	$\rho \overline{\rho}$	
Γ _{total}						Γ ₆₀ /Γ
CL%	EVT5	DOCUMEN	T ID	TECN	COMMENT	
90		BISHAI	96	CLE2	$e^+e^- \rightarrow$	T(45)
use the	followi	ng data for av	erages, fits	, limits	etc. • • •	
90		176 ACCIARE	RI 97C	L3		
90	1	177 ALEXAN	DER 95	CLE2	Sup. by B	ISHAI 96
assum						
	<u>CL%</u> 90 90 use the 90 90	use the following 90 90 1	CLK EVTS DOCUMEN 90 BISHAI use the following data for av 90 176 ACCIARF 90 1 177 ALEXAN	Ttotal	Ttotal	Total CL% EVTS DOCUMENT ID TECN COMMENT 90 BISHAI 96 CLE2 $e^+e^- \rightarrow$ use the following data for averages, fits, limits, etc. • • • 90 176 ACCIARRI 97c L3

```
\Gamma(J/\psi(1S)\eta)/\Gamma_{\text{total}}
                                                                                                    \Gamma_{61}/\Gamma
                               <u>CL%</u>
                                            DOCUMENT ID
 <1.2 × 10<sup>-3</sup>
                                       178 ACCIARRI
                                                               97c L3
                               90
<sup>178</sup> ACCIARRI 97c assumes B^0 production fraction (39.5 \pm 4.0%) and B_s (12.0 \pm 3.0%).
\Gamma(J/\psi(1S)\rho^0)/\Gamma_{\text{total}}
                                                                                                     \Gamma_{62}/\Gamma
                                             DOCUMENT ID
                                                                    TECN COMMENT
 <2.5 × 10<sup>-4</sup>
                                             BISHAL
                                                                96 CLE2 e^+e^- \to \Upsilon(45)
\Gamma(J/\psi(1S)\omega)/\Gamma_{\text{total}}
                                                                                                     \Gamma_{63}/\Gamma
                                             DOCUMENT ID
                                                                   TECN COMMENT
 <2.7 × 10<sup>-4</sup>
                                             BISHAL
                                                                96 CLE2 e^+e^- \to \Upsilon(45)
\Gamma(\psi(2S)K^0)/\Gamma_{total}
                                                                                                     \Gamma_{64}/\Gamma
VALUE
                               CL%
                                             DOCUMENT ID
                                                                   TECN__COMMENT
                                       179 ALAM
 <0.0008
                               90
                                                               94 CLE2 e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                       ^{179} BORTOLETTO92 CLEO e^+\,e^-\to~\Upsilon(4S) ^{179} ALBRECHT 90J ARG e^+\,e^-\to~\Upsilon(4S)
                               90
                               90
<sup>179</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\psi(2S)K^{+}\pi^{-})/\Gamma_{\text{total}}
                                                                                                     \Gamma_{65}/\Gamma
                                             DOCUMENT ID
                                                                   TECN COMMENT
                              CL%
                                       180 \, \overline{\text{ALB}} RECHT 90J ARG e^+ \, e^- \rightarrow \, \Upsilon(45)
                               90
<sup>180</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\psi(2S)K^*(892)^0)/\Gamma_{\text{total}}
                                                                                                     \Gamma_{66}/\Gamma
                                    ) × 10<sup>-4</sup> OUR AVERAGE
                               <u>CL%</u>
VALUE
                                                                      TECN COMMENT
  (9.3
             +2.3
                                          181 ABE
    0.00090 \pm 0.00022 \pm 0.00009
                                                                   980 CDF
                                          <sup>182</sup> BORTOLETTO92 CLEO e^+e^- \rightarrow \Upsilon(45)
   0.0014 \pm 0.0008 \pm 0.0004
\bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet
                                          182 ALAM
                                 90
                                                                   94 CLE2 e^+e^- \rightarrow \Upsilon(45)
 < 0.0019
                                          182 ALBRECHT 901 ARG e^+e^- \rightarrow r(4S)
 < 0.0023
                                 90
<sup>181</sup> ABE 980 reports [B(B^0 \rightarrow \psi(2S) \, K^*(892)^0)]/[B(B^+ \rightarrow J/\psi(1S) \, K^+)] = 0.908 \pm 0.001
    0.194\pm0.10. We multiply by our best value B(B^+ \rightarrow J/\psi(15)\,K^+)=(9.9\pm1.0)\times10<sup>-4</sup>. Our first error is their experiment's error and our second error is the systematic error from
      using our best value.
<sup>182</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\chi_{c1}(1P)K^0)/\Gamma_{total}
                                                                                                     \Gamma_{67}/\Gamma
                                             DOCUMENT ID
                                      183 ALAM
                                                                94 CLE2 e^+e^- \rightarrow \Upsilon(45)
^{183}BORTOLETTO 92 assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\chi_{c1}(1P)K^*(892)^0)/\Gamma_{total}
                                                                                                     \Gamma_{68}/\Gamma
                    <u>CL%</u>
                                             DOCUMENT ID
                                                                 TECN COMMENT
                                      184 ALAM
                               90
                                                                94 CLE2 e^+e^- \rightarrow \Upsilon(4S)
 ^{184}BORTOLETTO 92 assumes equal production of B^+ and B^0 at the \varUpsilon(4S).
\Gamma(K^+\pi^-)/\Gamma_{\text{total}}
                                                                                                     \Gamma_{69}/\Gamma
VALUE (units 10<sup>-5</sup>)
                                             DOCUMENT ID TECN COMMENT
    1.5^{+0.5}_{-0.4}\pm0.14
                                             GODANG
                                                               98 CLE2 e^+e^- \rightarrow \Upsilon(45)
 • • • We do not use the following data for averages, fits, limits, etc. • • •
                                        185 ADAM
    2.4^{+1.7}_{-1.1}\pm0.2
                                                                96D DLPH e^+e^- \rightarrow Z
 < 1.7
                                             ASNER
                                                                96 CLE2 Sup. by ADAM 96D
                                        186 BUSKULIC
 < 3.0
                                        187 ABREU
 < 9
                               90
                                                                95N DLPH Sup. by ADAM 96D
                                        188 AKERS
 < 8.1
                               90
                                                                94L OPAL e^+e^- \rightarrow Z
                                        189 BATTLE
                                                                93 CLE2 e^+e^- \rightarrow \Upsilon(4S)
 < 2.6
                               90
                                                                             e^+e^- \rightarrow \Upsilon(4S)
 <18
                               90
                                             ALBRECHT
                                                                91B ARG
                                        190 AVERY
                                                                898 CLEO e^+e^- \rightarrow \Upsilon(4S)
 < 9
                               90
                                                                87 CLEO e^+e^- \rightarrow \Upsilon(4S)
 <32
                               90
                                            AVERY
```

 185 ADAM 96D assumes $f_{B^0}=f_{B^-}=0.39$ and $f_{B_s}=0.12.$ Contributions from B^0 and B_s decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons. 186 BUSKULIC 96v assumes PDG 96 production fractions for B^0 , B^+ , B_5 , b baryons.

 187 Assumes a B^0 , B^- production fraction of 0.39 and a B_5 production fraction of 0.12. Contributions from B^0 and B^0 decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons.

188 Assumes B($Z \to b\overline{b}$) = 0.217 and B_d^0 (B_s^0) fraction 39.5% (12%).

¹⁸⁹BATTLE 93 assumes equal production of $B^{0}\overline{B}{}^{0}$ and $B^{+}B^{-}$ at $\Upsilon(4S)$.

 190 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.

$\Gamma(K^0\pi^0)/\Gamma_{\text{total}}$						Γ70	/г
VALUE	CL%	DOCUMENT ID		TECN	COMMENT		
<4.1 × 10 ⁻⁵	90	GODANG	98	CLE2	$e^+e^- \rightarrow$	T(45)	
• • • We do not use	the following	ng data for averages	, fit:	s, limits,	etc. • • •		
$< 4.0 \times 10^{-5}$	90	ASNER	96	CL F2	Ren. by G	ODANG 98	

 B^0

「(ガ K ⁰)/「 _{total}		DOÇUMENT ID	TECN	COMMENT	Γ ₇₁ /Γ	Γ (Κ⁰ f₀(980)) /Γ _{tx}	otal <u>CL%</u>	DOCUMENT ID	TECN	COMMENT	Г ₈₂ /
4.7 ^{+2.7} _{-2.0} ±0.9) × 10 ⁻	-5	BEHRENS	98 CLE2	e+e- →	T(45)	<3.6 × 10 ⁻⁴	90	201 AVERY		e+ e- →	T(45)
_{2.0} _ 500, x 50 (ศ		DZ: III Z	70 0222		•	²⁰¹ AVERY 89B reports rescale to 50%.	orts < 4.2	$ imes 10^{-4}$ assuming (.he ↑(45) d	ecays 43% to	o <i>B⁰ B̄</i> ⁰ . V
(N V (035).)\!	otal <u>CL%</u>	DOCUMENT ID	TECN	COMMENT	Γ ₇₂ /Γ		-				- ,
3.9 × 10 ⁻⁵	90	BEHRENS	98 CLE2		T(45)	Γ(K*(892)+π ⁻)/					Γ ₈₃ /
		DEFINENS	30 CLL2		1 (43)	<u>∨ALUE</u> <7.2 × 10 ⁻⁵	<u>CL%</u>	DOCUMENT ID		$e^+e^- \rightarrow$	2015
(η K*(892) ⁰)/Γ _{to}	tal				Γ ₇₃ /Γ	<3.8 × 10 ⁻⁴	90 90	ASNER ²⁰² AVERY		e+e- →	
ALUE	<u>CL%</u>	DOCUMENT ID		COMMENT		• • We do not use					, (.0)
(3.0 × 10 ⁻⁵	90	BEHRENS	98 CLE2	e+e- →	T(45)	$< 6.2 \times 10^{-4}$	90	ALBRECHT		e+ e- →	T(45)
$(\eta K^0)/\Gamma_{\text{total}}$					Γ ₇₄ /Γ	$< 5.6 \times 10^{-4}$	90	203 AVERY		e+ e- →	
ALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT		202 AVERY 89B repo	orts < 4.4	$\times10^{-4}$ assuming 1	the Υ(45) d	ecays 43% to	o <i>B</i> 0 B 0. W
(3.3 × 10 ^{—5}	90	BEHRENS	98 CLE2	$e^+e^- \rightarrow$	T(45)	rescale to 50%. 203 AVERY 87 report	te / 7 v 10	-4 assuming the Y	(AS) decays	40% to 80 F	0 We recca
(ω K ⁰)/Γ _{total}					F /F	to 50%.	.,	assuming the r	(45) accays	40/4 10 0 0	, , , , , , , , , , , , , , , , , , ,
LUE // total	C1%	DOCUMENT ID	TECN_		Γ ₇₅ /Γ	Γ(K*(892) ⁰ π ⁰)/I	г.				Γ /
(5.7 × 10 ⁻⁵		91 BERGFELD	98 CLE2		ı	1 (N (092) 7 7/1		DOCUMENT ID	TECN	COMMENT	Г ₈₄ /
⁹¹ Assumes equal pro					i	<2.8 × 10 ⁻⁵	<u>CL%</u> 90	ASNER		e+e- →	7(45)
			().		'			HOIVER	70 CLLI		, (,
$(\omega K^*(892)^0)/\Gamma_{tc}$					Г ₇₆ /Г	$\Gamma(K_2^*(1430)^+\pi^-)$)/F _{total}				Γ ₈₅ /
ALUE	<u>CL%</u> 1	DOCUMENT ID				VALUE	<u>CL%</u>	DOCUMENT ID	<u>TECN</u>		
<2.3 × 10 ⁻⁵		92 BERGFELD	98 CLE2			<2.6 × 10 ⁻³	90	ALBRECHT	91B ARG	e+ e- →	T(45)
⁹² Assumes equal pro	duction of <i>t</i>	3^+ and B^0 at the	e T (45).		1	Γ(K ⁰ K+K-)/Γ _t					Γ ₈₆ /
$\Gamma(K^+\pi^-) + \Gamma(\pi^-)$	+ _ _)]/[.	n e nt		ſΓ	₅₉ +Γ ₁₀₇)/Γ	VALUE		DDCUMENT ID	TECN	COMMENT	. 907
ALUE	EVTS	DDCUMENT	ID TECN	-		<1.3 × 10 ⁻³	90	ALBRECHT	91E ARG	e+e- →	T(45)
1.9±0.6)×10	-5 OUR AVI	ERAGE			···						, ,
$2.8^{+1.5}_{-1.0}\pm 2.0) \times 10^{-1}$	-5	¹⁹³ ADAM	96p DLPi	н e ⁺ e ⁻ -	• Z	$\Gamma(K^0\phi)/\Gamma_{ m total}$					Γ ₈₇ /
					-	VALUE	<u>CL%</u>	204 DEDOCES O		COMMENT	
$1.8^{+0.6}_{-0.5}^{+0.3}_{-0.4}) \times 10^{-1}$		ASNER		? e+e	→ T(45)	<3.1 × 10 ⁻⁵ • • • We do not us	90 e the follow	²⁰⁴ BERGFELD	98 CLE2	etc	
• We do not use			es, fits, limits,	etc. • • •		<8.8 × 10 ⁻⁵	90	ASNER		e+e- →	T(45)
$2.4^{+0.8}_{-0.7}\pm0.2)\times10^{-1}$	-5	194 BATTLE	93 CLE2	e+e	→ Υ(45)	$< 7.2 \times 10^{-4}$	90 90	ALBRECHT	918 ARG	e+e → e+e- →	. ,
93 ADAM 960 assum	nes f_0 = f	_ = 0.39 and f	$r_{\rm p} = 0.12$. Co	ontributions	from B ⁰ and	<4.2 × 10 ⁻⁴	90	205 AVERY		e+ e- →	
B _s decays cannot	be separate	d. Limits are give	on for the weigh	hted average	of the decay	$<1.0 \times 10^{-3}$	90	206 AVERY	87 CLEO	$e^+e^- \rightarrow$	T(45)
rates for the two r	neutral R me	econs			•	²⁰⁴ Assumes equal p	roduction o	of B^+ and B^0 at the	e Υ(45).		
94 BATTLE 93 assur	nes equal pro	oduction of B. B.	and B B	at 1 (45).		205 AVERY 898 repo	orts < 4.9	\times 10 ⁻⁴ assuming	the $\Upsilon(45)$ d	ecays 43% t	o <i>B⁰ B̄⁰.</i> W
(K+K-)/F _{total}					Γ ₇₇ /Γ	rescale to 50%. 206 AVERY 87 report	rs < 13 v 1	10-3 assuming the	r/45) decays	40% to 807	₹0 We resca
ALUE	CL%	DOCUMENT ID	TECN	COMMENT		to 50%.			(,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<4.3 × 10 ⁻⁶	90	GODANG	98 CLE2		T(45)	$\Gamma(K^-\pi^+\pi^+\pi^-)$	/E				Г ₈₈ /
We do not use		-				VALUE	/ ' total	DOCUMENT ID	TECN	ÇOMMENT	' 887
<4.6 × 10 ⁻⁵ <0.4 × 10 ⁻⁵	90	¹⁹⁵ ADAM ASNER	96D DLPH 96 CLE2			<2.3 × 10 ⁻⁴	90	207 ADAM		e ⁺ e ⁻ →	Z
$< 1.8 \times 10^{-5}$		196 BUSKULIC	96V ALEP			• • • We do not us					
<1.2 × 10 ⁻⁴	90 1	¹⁹⁷ ABREU	95N DLPH	Sup. by AC	AM 96D	$< 2.1 \times 10^{-4}$	90	²⁰⁸ ABREU	95N DLPH	Sup. by Al	DAM 960
<0.7 × 10 ⁵		¹⁹⁸ BATTLE	93 CLE2			²⁰⁷ ADAM 96D assu	mes fp0 =	$= f_{B-} = 0.39$ and f	$B_{\rm c} = 0.12$.	Contributions	from B ⁰ ar
⁹⁵ ADAM 96D assum	ies $f_{B^0} = f$	$B^{-} = 0.39$ and f	$B_{\rm s} = 0.12$. Co	ontributions	from $B^{f 0}$ and	B. decays canno	it he senara	ated. I imits are give	n for the wei	ghted averag	ge of the deca
B _s decays cannot rates for the two i	be separate	d. Limits are give	n for the weigh	hted average	of the decay	rates for the two 208 Assumes a B ⁰ ,	neutral B	mesons.	and a B ₋ r	production fr	action of 0.1
96 BUSKULIC 96V a	ssumes PDG	96 production fr	actions for B^0	, B ⁺ , B _s , b	baryons.	Contributions fro	om B ⁰ and	1 B ⁰ decays cannot	be separated	d. Limits are	given for the
¹⁹⁷ Assumes a B ⁰ , B	production	on fraction of 0.39	9 and a B _s pre	oduction fra	ction of 0.12.	weighted average	e of the dec	cay rates for the two	neutral B m	iesons.	•
Contributions from	n B ⁰ and E	$rac{1}{5}^{0}$ decays cannot	be separated.	Limits are	given for the	$\Gamma(K^{*}(892)^{0}\pi^{+}\pi^{-})$	-1 /r				Г ₈₉ /
weighted average 198 BATTLE 93 assur	of the decay	rates for the two	neutral B me	sons.		VALUE	//' total	DOCUMENT ID	TECN	COMMENT	1 89/
	nes equal pr	Danction of P. B	* allu B ' B	at 1 (43).		<1.4 × 10 ⁻³	90	ALBRECHT	91E ARG	e ⁺ e ⁻ →	T(45)
$(K^0\overline{K^0})/\Gamma_{\text{total}}$					Г ₇₈ /Г			71201120111	,,,,,,,,,		
ALUE	<u>CL%</u>	DOCUMENT ID		COMMENT		$\Gamma(K^*(892)^0 \rho^0)/1$	total				Γ ₉₀ /
<1.7 × 10 ⁻⁵	90	GODANG	98 CLE2	e+e- →	T(45)	VALUE	<u>CL%</u>	DOCUMENT ID		COMMENT	
$(K^+\rho^-)/\Gamma_{\text{total}}$					Γ ₇₉ /Γ	<4.6 × 10 ⁻⁴	90	ALBRECHT	91B ARG	e ⁺ e ⁻ →	T(45)
ALUE	CL%	DOCUMENT ID	TECN	COMMENT	. 197 .	• • • We do not us		-			
<3.5 × 10 ⁻⁵	90	ASNER	96 CLE2		T(45)	<5.8 × 10 ⁻⁴	90	²⁰⁹ AVERY ²¹⁰ AVERY		e+e- →	
					`	<9.6 × 10 ⁻⁴	90			e+e- →	
/ .at					Γ ₈₀ /Γ	²⁰⁹ AVERY 89B represented to 50%.		ū	` '	•	
•	C1 9/	DOCUMENT ID		COMMENT	 	210 AVERY 87 report	ts < 1.2 × 1	10^{-3} assuming the $^{\prime}$	r(45) decays	40% to B ⁰ [\overline{B}^0 . We resca
$(K^0\pi^+\pi^-)/\Gamma_{\text{tot}}$	<u>CL%</u>	g data for average				to 50%.					
• We do not use	the followin		91E ARG	e+ e ⁻ →	1 (45)	Γ(K*(892) ⁰ f ₀ (98	ιο))/Γ _{tnt=}	nt			Г91/
• We do not use		ALBRECHT			Г /Г	VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
• • We do not use <4.4 × 10 ⁻⁴	the followin	ALBRECHT			1 (81 / 1		90	211 AVERY			T(45)
ALUE • • We do not use $<4.4 \times 10^{-4}$ $(K^0 \rho^0)/\Gamma_{\text{total}}$	the followin	ALBRECHT DOCUMENT ID		COMMENT	Γ ₈₁ /Γ	<1.7 × 10 ⁻⁴	90		BAR CEEO	e+e- →	1 (40)
ALUE	the followin			_		<1.7 x 10 ⁴ 211 AVERY 89B rep					
ALUE • • We do not use (4.4×10^{-4}) $(K^0 \rho^0) / \Gamma_{\text{total}}$ ALUE (3.9×10^{-5})	90 CL% 90	<u>DOCUMENT ID</u> ASNER	96 CLE2	$\overline{e^+} e^- \rightarrow$							
ALUE • We do not use (4.4×10^{-4}) $(K^{0} \rho^{0}) / \Gamma_{total}$ $ALUE$ (3.9×10^{-5}) • We do not use (3.2×10^{-4})	90 CL% 90 the followin 90	<u>DOCUMENT ID</u> ASNER g data for averag ALBRECHT	7ECN 96 CLE2 es, fits, limits, 91B ARG	$e^+e^- \rightarrow etc. \bullet \bullet \bullet e^+e^- \rightarrow$	T(45)	211 AVERY 89B represcale to 50%.	orts < 2.0				o B ⁰ B̄ ⁰ . V
ALUE • • We do not use $<4.4 \times 10^{-4}$ $(K^0 \rho^0) / \Gamma_{\text{total}}$ ALUE • • We do not use $<3.9 \times 10^{-5}$ • • We do not use $<3.2 \times 10^{-4}$ $<5.0 \times 10^{-4}$	the following 90 CL% 90 the following 90 90	DOCUMENT ID ASNER g data for average ALBRECHT 199 AVERY	96 CLE2 es, fits, limits, 91B ARG 89B CLEO	$ \begin{array}{ccc} e^{+}e^{-} \rightarrow \\ etc. \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ e^{+}e^{-} \rightarrow \\ \end{array} $	T(45) T(45)	211 AVERY 89B rep	orts < 2.0		the 7(45) d	lecays 43% t	
ALUE • We do not use (4.4×10^{-4}) • ($(6^0 \rho^0)$) / $(6^0 \rho^0)$	CL% 90 CL% 90 the followin 90 90 1 90 2	DOCUMENT ID ASNER g data for average ALBRECHT 199 AVERY 200 AVERY	96 CLE2 es, fits, limits, 91B ARG 89B CLEO 87 CLEO	$ \begin{array}{cccc} e^{+}e^{-} & \rightarrow \\ etc. & \bullet & \bullet \\ e^{+}e^{-} & \rightarrow \\ e^{+}e^{-} & \rightarrow \\ e^{+}e^{-} & \rightarrow \\ \end{array} $	T(45) T(45) T(45) T(45)	²¹¹ AVERY 89B represcale to 50%. $\Gamma(K_1(1400)^+\pi^-)$	orts < 2.0)/Γ _{total}	$ imes 10^{-4}$ assuming	the 7(45) d	lecays 43% t	о в ⁰ в ⁰ . v
NUE • We do not use (4.4×10^{-4}) $(K^0 p^0)/\Gamma_{total}$ $4UE$ • We do not use (3.9×10^{-5}) • We do not use (3.2×10^{-4}) (5.0×10^{-4})	90	DOCUMENT ID ASNER g data for average ALBRECHT 199 AVERY 200 AVERY 10 ⁻⁴ assuming	96 CLE2 es, fits, limits, 91B ARG 89B CLEO 87 CLEO the T(45) de	$e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- ^- \rightarrow e^-e^- $	T(45) T(45) T(45) T(45) D B ⁰ B̄ ⁰ . We	211 AVERY 89B represcale to 50%. Γ(Κ ₁ (1400)+π ⁻) VALUE	orts < 2.0 / \(\bigcup_{\text{total}} \)	× 10 ⁻⁴ assuming	the 7(45) d	lecays 43% to	о в ⁰ в ⁰ . у

VALUE	/Γ _{total}		Г93	/r	Γ(K*(1680) ⁰	•				Γ ₁₀₄ /Γ
	<u>CL%</u> 90 2		$e^+e^- \rightarrow Z$		<u>∨ALUE</u> <0.0020	<u>CL%</u>	DOCUMENT ID 223 ALBRECHT	89G ARG	$e^+e^- \rightarrow$	T(45)
<2.3 × 10 ⁻⁴ • • We do not use		g data for averages, fits, limit				-				• •
<3.9 × 10 ⁻⁴			Sup. by ADAM 96D		rescale to 50	89G reports < %.	0.0022 assuming	the T(45) de	cays 45% to	B°B°. V
P decays cappot	mes $I_{B^0} = I_{B^0}$	$_{B^{-}}=0.39$ and $f_{B_{S}}=0.12.$ d. Limits are given for the we	Contributions from B° a	and	Γ(<i>K</i> 3(1780) ⁰	y)/F _{total}				Γ ₁₀₅ /
rates for the two	neutral B me	esons.			VALUE	<u>CL%</u>	DOCUMENT ID		COMMENT	
		n fraction of 0.39 and a B_S			<0.010	90	224 ALBRECHT	89G ARG	e+e- →	
		t ⁰ decays cannot be separate rates for the two neutral <i>B</i> n		the	to 50%.	89G reports < 0	0.011 assuming the	$\Upsilon(45)$ decays	45% to B ^U E	³⁰ . We resca
-	-	Tatas to the tite hearts b				\				
Г(K*(892) ⁰ K+ K	ː=)/Γ _{total}		Г94	_ι /Γ	Γ (K [*] ₄ (2045) ⁰	•				Γ ₁₀₆ /
VALUE	CL%_	DOCUMENT ID TECN			VALUE	<u>C1%</u>	DOCUMENT ID		COMMENT	m(+c)
<6.1 × 10 ⁻⁴	90	ALBRECHT 91E ARG	$e^+e^- \rightarrow \Upsilon(45)$		<0.0043	90	225 ALBRECHT	89G ARG	$e^+e^- \rightarrow$	
$(K^*(892)^0 \phi) / \Gamma_t$	total		Γ ₉₅	;/ r	rescale to 50		0.0048 assuming	the T(45) de	ecays 45% to	o <i>B</i> ∘ B∘. V
ALUE	CL%	DOCUMENT ID TECN	COMMENT		F/_+\ /F					-
<2.1 × 10 ⁻⁵		¹¹⁴ BERGFELD 98 CLE2		ı	Γ(π ⁺ π ⁻)/Γ _{tc}		DOCUMENT IE	TECH	ÇOMMENT	Γ ₁₀₇ /
	e the following	g data for averages, fits, limit			<u>∨ALUE</u> <1.5 × 10 ⁻⁵		GODANG		$e^+e^- \rightarrow$	T/45)
$<4.3 \times 10^{-5}$	90	ASNER 96 CLE2	. ,				ring data for averag			(45)
<3.2 × 10 ⁻⁴ <3.8 × 10 ⁻⁴	90 90 2	ALBRECHT 918 ARG P15 AVERY 898 CLEC	$e^+e^- \rightarrow \Upsilon(4S)$ 0 $e^+e^- \rightarrow \Upsilon(4S)$		$< 4.5 \times 10^{-5}$	90	²²⁶ ADAM		e+e- →	7
< 3.8 × 10 · · · · · · · · · · · · · · · · · ·			$e^+e^- \rightarrow \Upsilon(45)$		$<2.0 \times 10^{-5}$	90	ASNER		Repl. by G	
		B^+ and B^0 at the $\Upsilon(4S)$.	()		$< 4.1 \times 10^{-5}$	90	²²⁷ BUSKULIC			
		10^{-4} assuming the $\Upsilon(45)$	decays 43% to #0 80	We	<5.5 × 10 ⁻⁵	90	228 ABREU		Sup. by Al	
rescale to 50%		· ,			$<4.7 \times 10^{-5}$	90	²²⁹ AKERS ²³⁰ BATTLE		e+e- →	
to 50%.	$.5 < 4.7 \times 10^{-1}$	$^{-4}$ assuming the $arphi(45)$ decay	s 40% to B ^o B ^o . We reso	cale	$<2.9 \times 10^{-5}$ $<1.3 \times 10^{-4}$	90 90	230 BATTLE 230 ALBRECHT	93 CLE2 90B ARG	$e^+e^- \rightarrow e^+e^- \rightarrow$	٠,,
					$< 7.7 \times 10^{-5}$	90	231 BORTOLET			. ,
$\Gamma(K_1(1400)^0 \rho^0) / \Gamma(K_1(1400)^0 \rho^0)$	r _{total}		Г ₉₆	₅ /Γ	<2.6 × 10 ⁻⁴	90	231 BEBEK		e+e- →	
ALUE	<u>CL%</u>	DOCUMENT ID TECN			$< 5 \times 10^{-4}$	90 4	GILES	84 CLEO	$e^+e^- \rightarrow$	
<3.0 × 10 ⁻³	90	ALBRECHT 918 ARG	$e^+e^- \rightarrow \Upsilon(45)$		226 ADAM 96D	assumes $f_{\mathbf{R}0} =$	$f_{B^-} = 0.39 \text{ and } f$	$B_c = 0.12$.		
$(K_1(1400)^0 \phi)/\Gamma$	Ta-a-1		Г97	./୮	227 BUSKULIC	96v assumes PI	OG 96 production f	-3 ractions for B	0, B+, B _c ,	b baryons.
ALUE	CL%	DOCUMENT ID TECN		·,·	228 Assumes a E	3 ⁰ , B ⁻ product	ion fraction of 0.39	and a B _s pro	oduction frac	tion of 0.12.
<5.0 × 10 ⁻³	90	ALBRECHT 91B ARG	$e^+e^- \rightarrow \Upsilon(45)$		229 Assumes B($Z \rightarrow b\bar{b} = 0.3$	217 and $B_{d}^{0}\left(B_{S}^{0} ight)$ (raction 39.5%	(12%).	
		// //	` _		230 Assumes equ	al production o	of $B^0\overline{B}{}^0$ and B^+B	- at Υ(45).		
$\Gamma(K_2^{\bullet}(1430)^0 \rho^0) /$	/Γ _{total}		Г98	₃ /Γ	231 Paper assum	ies the $\varUpsilon(45)$ d	lecays 43% to ${\it B}^{0} \overline{\it E}$	⁰ . We rescale	to 50%.	
VALUE	<u>CL%</u>	DOCUMENT ID TECN			$\Gamma(\pi^0\pi^0)/\Gamma_{tot}$	_•				Γ ₁₀₈ /
<1.1 × 10 ⁻³	90	ALBRECHT 91B ARG	$e^+e^- \rightarrow \Upsilon(45)$		VALUE	21 	DOCUMENT IC	TECN	COMMENT	108/
$\Gamma(K_2^{\bullet}(1430)^0\phi)/\Gamma$	[total		Г99	./ Г	<9.3 × 10 ⁻⁶	90	GODANG		e+e- →	T(45)
VALUE	CL%	DOCUMENT IDTECN		,, .			ing data for averag			. ()
<1.4 × 10 ⁻³	90	ALBRECHT 91B ARG	$e^+e^- \rightarrow \Upsilon(45)$	_	$< 0.91 \times 10^{-5}$	90	ASNER	96 CLE2	Repl. by G	ODANG 98
			· ·		$<6.0 \times 10^{-5}$	90	²³² ACCIARRI	95H L3	$e^+e^- \rightarrow$	Z
Γ(K*(892) ⁰ γ)/Γ _t			Γ ₁₀₀)/I	²³² ACCIARRI 9	15H assumes $f_{\mathbf{R}^0}$	$_0 = 39.5 \pm 4.0$ and	$f_{B_c} = 12.0$	± 3.0%.	
VALUE (units 10 ⁻⁵)	<u>C1%</u>		TECN COMMENT					,		
4.0±1.7±0.8		8 ²¹⁷ AMMAR 93	3 CLE2 $e^+e^- \rightarrow \mathcal{T}(45)$		Γ(ηπ ⁰)/Γ _{total}					Γ ₁₀₉ /
• • We do not use	e the followin	g data for averages, fits, limit			VALUE	<u>CL%</u>	DOCUMENT IL			
< 21	90		6D DLPH e^+e^- → Z		<8 × 10 ⁻⁶	90	BEHRENS ving data for averag	98 CLE2	e+e- →	7 (45)
< 42	90		96 ARG $e^+e^- \rightarrow$				•			-
. 04		219 м/=оч	T(45)		$<2.5 \times 10^{-4}$ $<1.8 \times 10^{-3}$	90 90	²³³ ACCIARRI ²³⁴ ALBRECHT	95н L3 90в ARG	e+e- → e+e- →	
< 24	90	²¹⁹ AVERY 8	9B CLEO $e^+e^- \rightarrow \Upsilon(4S)$. (30)
<210	90	AVERY 8	7 CLEO $e^+e^- \rightarrow$		234 ALDDECUT	on assumes 1B	$_0=39.5\pm4.0$ and mes equal production	n et B0 ⊒0 - n B² = 15:0 :	⊥ J.U79, nd D+ n	+ T(45)
<210			T(45)		ALBRECHT	Ann illust asent	nes equal production	ਮਾਹਾ ਲ ਨ ਕੁ	nu <i>5 ' B</i> ' 3	L 1 (45).
<210					-/ \/-					Γ ₁₁₀ /
²¹⁷ AMMAR 93 obse	erved 6.6 ± 2	.8 events above background.			$\Gamma(\eta\eta)/\Gamma_{\text{total}}$					
²¹⁷ AMMAR 93 obse ²¹⁸ ADAM 96D assur	mes $f_{B^0} = f_{B^0}$	$_{B^-} = 0.39$ and $f_{B_S} = 0.12$.	0 = 0		VALUE	<u>C1%</u>	DOCUMENT IE		COMMENT	
217 AMMAR 93 obse 218 ADAM 96D assur 219 AVERY 898 repo	mes $f_{B^0} = f_{B^0}$.8 events above background. $B_s = 0.39$ and $B_s = 0.12$. $B_s = 0.12$.	decays 43% to ${\cal B}^0 \overline{\cal B}^0$.	We	<u>VALUE</u> <1.8 × 10 ^{−5}	90	BEHRENS	98 CLE2	$e^+e^- \rightarrow$	T(45)
217 AMMAR 93 obse 218 ADAM 96D assur 219 AVERY 89B repo rescale to 50%.	imes $f_{B^0} = f_E$ orts < 2.8 ×	$_{B^-} = 0.39$ and $f_{B_S} = 0.12$.	•		<u>VALUE</u> <1.8 × 10 ⁻⁵ • • • We do no	90 ot use the follow	BEHRENS ving data for averag	98 CLE2	$e^+e^- \rightarrow$, etc. • • •	, ,
217 AMMAR 93 obse 218 ADAM 96D assur 219 AVERY 89B repo rescale to 50%.	imes $f_{B^0} = f_E$ orts < 2.8 ×	$_{\rm BT}=0.39$ and $f_{\rm B_S}=0.12$. $_{\rm 10^{-4}}$ assuming the $\Upsilon(45)$	Γ ₁₀₁		VALUE <1.8 × 10 ⁻⁵ • • • We do not <4.1 × 10 ⁻⁴	90 ot use the follow 90	BEHRENS ving data for averag ²³⁵ ACCIARRI	98 CLE2 ges, fits, limits 95н L3	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$	
217 AMMAR 93 obse 218 ADAM 96D assur 219 AVERY 89B reporescale to 50%. Γ(K ₁ (1270) ⁰ γ)/Γ	imes $f_{B^0} = f_E$ orts < 2.8 × $\Gamma_{\text{total}} = \frac{CL\%}{E}$	$g_{-}=0.39$ and $f_{B_{5}}=0.12$. 10^{-4} assuming the $\Upsilon(45)$	F ₁₀₁		VALUE <1.8 × 10 ⁻⁵ • • • We do not <4.1 × 10 ⁻⁴	90 ot use the follow 90	BEHRENS ving data for averag	98 CLE2 ges, fits, limits 95н L3	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$. ,
217 AMMAR 93 obse 218 ADAM 960 assur 219 AVERY 89B reporescale to 50%. Γ(Κ ₁ (1270) ⁰ γ)/Γ VALUE <0.0070	innes $f_{B^0} = f_{B^0}$ orts < 2.8 × $\frac{\Gamma_{\text{total}}}{90}$	$g_{3}=0.39$ and $f_{B_{3}}=0.12$. 10^{-4} assuming the $\Upsilon(45)$ $\frac{DOCUMENT~ID}{TECN}$ TECN	$ \begin{array}{c} \Gamma_{101} \\ \hline $	ı/Γ —	VALUE <1.8 × 10 ⁻⁵ • • • We do not <4.1 × 10 ⁻⁴ 235 ACCIARRI 9	90 ot use the follow 90 95H assumes f _B 1	BEHRENS ving data for averag ²³⁵ ACCIARRI	98 CLE2 ges, fits, limits 95н L3	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$	Z
217 AMMAR 93 obse 218 ADAM 960 assur 219 AVERY 898 repc rescale to 50%. Γ(Κ ₁ (1270) ⁰ γ)/Γ WALUE <0.0070 220 ALBRECHT 89G	innes $f_{B^0} = f_{B^0}$ orts < 2.8 × $\frac{\Gamma_{\text{total}}}{90}$	$g_{-}=0.39$ and $f_{B_{5}}=0.12$. 10^{-4} assuming the $\Upsilon(45)$	$ \begin{array}{c} \Gamma_{101} \\ \hline $	ı/Γ —	VALUE <1.8 × 10 ⁻⁵ • • • We do not <4.1 × 10 ⁻⁴ 235 ACCIARRIST	90 be use the follow 90 95H assumes f _B	BEHRENS ving data for average 235 ACCIARRI $_0=39.5\pm4.0$ and	98 CLE2 ges, fits, limits, 95H L3 I $f_{B_S} = 12.0 \pm$	e+e- → , etc. • • • e+e- → ± 3.0%.	Z
217 AMMAR 93 obse 118 ADAM 96D assur 119 AVERY 89B repc rescale to 50%. -(K ₁ (1270) ⁰ γ)/Γ WALUE <0.0070 220 ALBRECHT 89G rescale to 50%.	The second seco	$g_{3}=0.39$ and $f_{B_{3}}=0.12$. 10^{-4} assuming the $\Upsilon(45)$ $\frac{DOCUMENT~ID}{TECN}$ TECN	$ \begin{array}{c} \Gamma_{101} \\ \hline $	ı/Γ —	$VALUE$ <1.8 × 10 ⁻⁵ • • • We do not <4.1 × 10 ⁻⁴ 235 ACCIARRI S $\Gamma(\eta' \pi^0)/\Gamma_{\text{total Value}}$	90 ot use the follow 90 95H assumes f_{B^1}	BEHRENS ving data for average 235 ACCIARRI $_0=39.5\pm4.0$ and $_{0}=0.000$	98 CLE2 ges, fits, limits, 95H L3 I $f_{B_S} = 12.0 \pm$	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ \pm 3.0%.	z Г ₁₁₁ /
217 AMMAR 93 obse 218 ADAM 96D assur 219 AVERY 89B repc rescale to 50%. Γ(K ₁ (1270) ⁰ γ)/Γ VALUE <0.0070 220 ALBRECHT 89G rescale to 50%.	The second seco	$g_{3}=0.39$ and $f_{B_{3}}=0.12$. 10^{-4} assuming the $\Upsilon(45)$ $\frac{DOCUMENT~ID}{TECN}$ TECN	$ \begin{array}{c} \Gamma_{101} \\ \hline $	ι/Γ — We	VALUE <1.8 × 10 ⁻⁵ • • • We do not <4.1 × 10 ⁻⁴ 235 ACCIARRIST	90 be use the follow 90 95H assumes f _B	BEHRENS ving data for average 235 ACCIARRI $_0=39.5\pm4.0$ and	98 CLE2 ges, fits, limits, 95H L3 I $f_{B_S} = 12.0 \pm$	e+e- → , etc. • • • e+e- → ± 3.0%.	z Г ₁₁₁ /
217 AMMAR 93 obse 218 ADAM 96D assuri 219 AVERY 898 repc rescale to 50%. (K ₁ (1270) ⁰ γ)/Γ WALUE <0.0070 220 ALBRECHT 896 rescale to 50%. (K ₁ (1400) ⁰ γ)/Γ	imes $f_{B0} = f_E$ orts < 2.8 × Ftotal $\frac{cL\%}{90}$ G reports < 0 Ftotal $\frac{cL\%}{200}$	$B_3 = 0.39$ and $B_3 = 0.12$. $B_3 = 0.12$	Γ_{101} $e^+e^- ightarrow \Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. Γ_{102}	ι/Γ — We	$VALUE$ <1.8 × 10 ⁻⁵ • • • We do not <4.1 × 10 ⁻⁴ 235 ACCIARRI S $\Gamma(\eta'\pi^0)/\Gamma_{\text{tot}}$ $VALUE$ <1.1 × 10 ⁻⁵	90 of use the follow 90 95H assumes f_{B^1} 21 21 20 20 20 20 20 20 20 20	BEHRENS ving data for average 235 ACCIARRI $_0=39.5\pm4.0$ and $_{0}=0.000$	98 CLE2 ges, fits, limits, 95H L3 I $f_{B_S} = 12.0 \pm$	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ $\pm 3.0\%$.	z Γ ₁₁₁ / Γ(45)
117 AMMAR 93 obse 118 ADAM 96D assur 119 AVERY 89B repc rescale to 50%. -(K ₁ (1270) ⁰ γ)/Γ -(MLUE) -(20 ALBRECHT 89G rescale to 50%. -(K ₁ (1400) ⁰ γ)/Γ -(MLUE)	imes $f_{B0} = f_E$ orts < 2.8 × Ftotal $\frac{cL\%}{90}$ G reports < 0 Ftotal $\frac{cL\%}{200}$	$g_{-}=0.39$ and $f_{B_{S}}=0.12$. 10^{-4} assuming the $\Upsilon(4S)$ $\frac{DOCUMENT~ID}{220}$ ALBRECHT 89G ARG 0.0078 assuming the $\Upsilon(4S)$	Γ_{101} $e^+e^- ightarrow \Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. Γ_{102}	ι/Γ — We	$VALUE$ <1.8 × 10 ⁻⁵ • • • We do not <4.1 × 10 ⁻⁴ 235 ACCIARRI 9 $\Gamma(\eta' \pi^0)/\Gamma_{\text{total}}$ $VALUE$ <1.1 × 10 ⁻⁵ $\Gamma(\eta' \eta')/\Gamma_{\text{total}}$	90 of use the follow 90 of assumes f_{B^1}	BEHRENS ving data for average 235 ACCIARRI 0 = 39.5 ± 4.0 and DOCUMENT IS BEHRENS	98 CLE2 ges, fits, limits, 95H L3 $If_{B_s} = 12.0 \pm 1.0 \pm $	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ $\pm 3.0\%$. COMMENT $e^+e^- \rightarrow$	z Γ ₁₁₁ / Γ(45)
217 AMMAR 93 obse 218 ADAM 960 assur 219 AVERY 898 repc rescale to 50%. C(K1(1270) ⁰ \gamma)/F ALUE <0.0070 220 ALBRECHT 896 rescale to 50%. C(K1(1400) ⁰ \gamma)/F ALUE <0.0043 221 ALBRECHT 896	imes $f_{B0} = f_E$ orts < 2.8 × Ftotal $\frac{CL\%}{90} = \frac{3}{3}$ G reports < 0 Ftotal $\frac{CL\%}{90} = \frac{3}{3}$	$B_3 = 0.39$ and $B_3 = 0.12$. $B_3 = 0.12$	$\begin{array}{c} \Gamma_{101} \\ \hline e^+e^- \rightarrow \Upsilon(4S) \\ \text{decays 45\% to } B^0 \overline{B}^0. \\ \hline \\ \Gamma_{102} \\ \hline e^+e^- \rightarrow \Upsilon(4S) \\ \hline \end{array}$	we 	$VALUE$ <1.8 × 10 ⁻⁵ • • • We do not <4.1 × 10 ⁻⁴ 235 ACCIARRI S $\Gamma(\eta^{\prime} \pi^{0})/\Gamma_{\text{tota}}$ $VALUE$ <1.1 × 10 ⁻⁵ $\Gamma(\eta^{\prime} \eta^{\prime})/\Gamma_{\text{tota}}$ VALUE	90 of use the follow 90 95H assumes f_{B^1} 21 21 20 20 20 20 20 20 20 20	BEHRENS ving data for average 235 ACCIARRI $_0=39.5\pm4.0$ and $_{0}=0.000$	98 CLE2 ges, fits, limits. 95H L3 1 f _{Bs} = 12.0 = 7 TECN 98 CLE2	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ $\pm 3.0\%$.	Z Γ ₁₁₁ / Γ ₍₄₅₎ Γ ₁₁₂ /
217 AMMAR 93 obse 218 ADAM 960 assur 219 AVERY 898 reporrescale to 50%. Γ(Κ ₁ (1270) ⁰ γ)/Γ 220 ALBRECHT 896 rescale to 50%. Γ(Κ ₁ (1400) ⁰ γ)/Γ 221 ALBRECHT 896 rescale to 50%.	imes $f_{B0} = f_E$ orts < 2.8 × Ftotal $\frac{CL\%}{90}$ G reports < 0 Ftotal $\frac{CL\%}{90}$	$g_{3}=0.39$ and $f_{B_{3}}=0.12$. 10^{-4} assuming the $\Upsilon(4S)$ $\frac{DOCUMENT\ ID}{10^{-4}}$ $\frac{TECN}{10^{-4}}$ $\frac{TECN}{10^{-$	$\begin{array}{c} \Gamma_{101} \\ \hline e^+e^- \rightarrow \Upsilon(4S) \\ \text{decays 45\% to } B^0 \overline{B}^0. \\ \hline \\ \Gamma_{102} \\ \hline e^+e^- \rightarrow \Upsilon(4S) \\ \hline \end{array}$	we 	VALUE <1.8 × 10 ⁻⁵ • • • We do not consider the constant of the constant o	90 bit use the follow 90 95H assumes f _B : CL% 90	BEHRENS ving data for average 235 ACCIARRI 0 = 39.5 ± 4.0 and DOCUMENT IS BEHRENS	98 CLE2 ges, fits, limits. 95H L3 1 f _{Bs} = 12.0 = 7 TECN 98 CLE2	e+e- → , etc. • • • e+e- → ± 3.0%. COMMENT e+e- →	Z Γ ₁₁₁ / Γ(45) Γ ₁₁₂ /
217 AMMAR 93 obse 218 ADAM 96D assur 219 AVERY 89B repc rescale to 50%. Γ(Κ ₁ (1270) ⁰ γ)/Γ καιυΕ <0.0070 220 ALBRECHT 89G rescale to 50%. Γ(Κ ₁ (1400) ⁰ γ)/Γ καιυΕ <0.0043 221 ALBRECHT 89G rescale to 50%.	Immes $f_{B0} = f_{E}$ orts $< 2.8 \times$	$g_{3}=0.39$ and $f_{B_{3}}=0.12$. 10^{-4} assuming the $\Upsilon(4S)$ $\frac{DOCUMENT\ ID}{10^{-4}}$ $\frac{TECN}{10^{-4}}$ $\frac{TECN}{10^{-$	COMMENT $e^+e^- \rightarrow \Upsilon(45)$ decays 45% to $B^0\overline{B}^0$. $COMMENT$ $e^+e^- \rightarrow \Upsilon(45)$ decays 45% to $B^0\overline{B}^0$.	νe 2/Γ we	VALUE <1.8 × 10 ⁻⁵ • • • We do not consider the constant of the constant o	90 bit use the follow 90 95H assumes f _B 21 21 21 21 90 90	BEHRENS ving data for average 235 ACCIARRI 0 = 39.5 ± 4.0 and DOCUMENT IS BEHRENS DOCUMENT IS BEHRENS	98 CLE2 yes, fits, limits, 95H L3 1 f _{Bs} = 12.0 = yes, fits, limits, 95H L3 1 f _{Bs} = 12.0 = yes, fits, limits, 1 f _{Bs} = 12.0 = yes, fits, limits, linits, limits, limits, limits, limits, limits, limits, limits, lin	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ $\pm 3.0\%$. COMMENT $e^+e^- \rightarrow$ COMMENT $e^+e^- \rightarrow$	Z Γ ₁₁₁ / Γ(45) Γ ₁₁₂ / Γ(45)
217 AMMAR 93 obser 218 ADAM 960 assur 219 AVERY 898 repc rescale to 50%. Γ (Κ ₁ (1270) ⁰ γ) / Γ VALUE <0.0070 220 ALBRECHT 896 rescale to 50%. Γ (Κ ₁ (1400) ⁰ γ) / Γ VALUE <0.0043 221 ALBRECHT 896 rescale to 50%. Γ (Κ ₂ (1430) ⁰ γ) / Γ	Immes $f_{B0} = f_{E}$ orts $< 2.8 \times$	$g_{3}=0.39$ and $f_{B_{3}}=0.12$. 10^{-4} assuming the $\Upsilon(4S)$ $\frac{DOCUMENT\ ID}{4}$ $\frac{TECN}{4}$ \frac	Γ_{101} $e^+e^- \rightarrow \Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. Γ_{102} $e^+e^- \rightarrow \Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. Γ_{103}	νe 2/Γ we	$VALUE$ <1.8 × 10 ⁻⁵ • • • We do not <4.1 × 10 ⁻⁴ 235 ACCIARRI 9 $\Gamma(\eta' \pi^0)/\Gamma_{\text{total}}$ VALUE <1.1 × 10 ⁻⁵ $\Gamma(\eta' \eta')/\Gamma_{\text{total}}$ VALUE <4.7 × 10 ⁻⁵ $\Gamma(\eta' \eta)/\Gamma_{\text{total}}$ VALUE	90 bit use the follow 90 95H assumes f _B 1 CL% 90 CL%	BEHRENS ving data for average 235 ACCIARRI 0 = 39.5 ± 4.0 and DOCUMENT IS BEHRENS DOCUMENT IS BEHRENS	98 CLE2 yes, fits, limits, 95H L3 1 f _{Bs} = 12.0 = 7 TECN 98 CLE2 7 TECN 98 CLE2	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ \pm 3.0%. COMMENT $e^+e^- \rightarrow$ COMMENT $e^+e^- \rightarrow$	Z \[\Gamma_{111} / \] \[\T(45) \] \[\Gamma_{112} / \] \[\T(45) \] \[\Gamma_{113} / \]
217 AMMAR 93 obse 218 ADAM 96D assur 219 AVERY 89B repc rescale to 50%. Γ(Κ ₁ (1270) ⁰ γ)/Γ 220 ALBRECHT 89G rescale to 50%. Γ(Κ ₁ (1400) ⁰ γ)/Γ 221 ALBRECHT 89G rescale to 50%. Γ(Κ ₂ (1430) ⁰ γ)/I 221 ALBRECHT 89G rescale to 50%.	Immes $f_{B0} = f_{E}$ orts $< 2.8 \times$ Ftotal CL% 90 Greports < 0 Ftotal 90 Greports < 0 Ftotal 90 Ftotal GL%	$g_{3} = 0.39$ and $f_{B_{5}} = 0.12$. 10^{-4} assuming the $\Upsilon(4S)$ $\frac{DOCUMENT\ ID}{220}$ ALBRECHT 89G ARG 0.0078 assuming the $\Upsilon(4S)$ $\frac{DOCUMENT\ ID}{221}$ ALBRECHT 89G ARG 0.0048 assuming the $\Upsilon(4S)$ $\frac{DOCUMENT\ ID}{221}$ ALBRECHT 89G ARG	Γ_{101} $e^{+}e^{-} \rightarrow \Upsilon(45)$ decays 45% to $B^{0}\overline{B}^{0}$. Γ_{102} $e^{+}e^{-} \rightarrow \Upsilon(45)$ decays 45% to $B^{0}\overline{B}^{0}$. Γ_{103} Γ_{103} Γ_{103}	νe 2/Γ we	VALUE <1.8 × 10 ⁻⁵ • • • We do not consider the constant of the constant o	90 bit use the follow 90 95H assumes f _B 21 21 21 21 90 90	BEHRENS ving data for average 235 ACCIARRI 0 = 39.5 ± 4.0 and DOCUMENT IS BEHRENS DOCUMENT IS BEHRENS	98 CLE2 yes, fits, limits, 95H L3 1 f _{Bs} = 12.0 = 7 TECN 98 CLE2 7 TECN 98 CLE2	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ $\pm 3.0\%$. COMMENT $e^+e^- \rightarrow$ COMMENT $e^+e^- \rightarrow$	Z \[\Gamma_{111}/\] \[\T(45) \] \[\Gamma_{112}/\] \[\T(45) \] \[\Gamma_{113}/\]
217 AMMAR 93 obse 218 ADAM 96D assuri 219 AVERY 898 repc rescale to 50%. ((K ₁ (1270) ⁰ γ)/Γ WALUE <0.0070 220 ALBRECHT 896 rescale to 50%. ((K ₁ (1400) ⁰ γ)/Γ WALUE 0.0043 221 ALBRECHT 896 rescale to 50%. ((K ₂ (1430) ⁰ γ)/1 WALUE <4.0 × 10 ⁻⁴	imes $f_{B0} = f_{E}$ orts $< 2.8 \times$ Ftotal CL% 90 G reports < 0 Ftotal 90 G reports < 0 Ftotal 90 G reports < 0 Ftotal 90 G reports < 0	$g_{3}=0.39$ and $f_{B_{S}}=0.12$. 10^{-4} assuming the $\Upsilon(4S)$ $\frac{DOCUMENT\ ID}{220}$ ALBRECHT 89G ARG $\frac{DOCUMENT\ ID}{221}$ ALBRECHT 89G ARG $\frac{DOCUMENT\ ID}{221}$ ALBRECHT 89G ARG $\frac{DOCUMENT\ ID}{222}$ ALBRECHT 89G ARG $\frac{DOCUMENT\ ID}{222}$ ALBRECHT 89G ARG $\frac{DOCUMENT\ ID}{2222}$ ALBRECHT 89G ARG	Γ_{101} $e^{+}e^{-} \rightarrow \Upsilon(45)$ decays 45% to $B^{0}\overline{B}^{0}$. Γ_{102} $e^{+}e^{-} \rightarrow \Upsilon(45)$ decays 45% to $B^{0}\overline{B}^{0}$. Γ_{103} $e^{+}e^{-} \rightarrow \Upsilon(45)$ $e^{+}e^{-} \rightarrow \Upsilon(45)$	we we	VALUE <1.8 × 10 ⁻⁵ • • • We do not consider the constant of the constant o	90 bit use the follow 90 95H assumes f _B 1 CL% 90 90 CL% 90	BEHRENS ving data for average 235 ACCIARRI 0 = 39.5 ± 4.0 and DOCUMENT IS BEHRENS DOCUMENT IS BEHRENS	98 CLE2 yes, fits, limits, 95H L3 1 f _{Bs} = 12.0 = 7 TECN 98 CLE2 7 TECN 98 CLE2	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ \pm 3.0%. COMMENT $e^+e^- \rightarrow$ COMMENT $e^+e^- \rightarrow$	Z Γ111/ T(45) Γ112/ T(45) Γ113/ T(45)
217 AMMAR 93 obse 218 ADAM 960 assur 219 AVERY 898 reporescale to 50%. Γ(K ₁ (1270) ⁰ γ)/Γ VALUE <0.0070 220 ALBRECHT 896 rescale to 50%. Γ(K ₁ (1400) ⁰ γ)/Γ VALUE <0.0043 221 ALBRECHT 896 rescale to 50%. Γ(K ₂ (1430) ⁰ γ)/Γ VALUE <4.0 × 10 ⁻⁴	imes $f_{B0} = f_{E}$ orts $< 2.8 \times$ Ftotal CL% 90 G reports < 0 Ftotal 90 G reports < 0 Ftotal 90 G reports < 0 Ftotal 90 G reports < 0	$g_{3} = 0.39$ and $f_{B_{5}} = 0.12$. 10^{-4} assuming the $\Upsilon(4S)$ $\frac{DOCUMENT\ ID}{220}$ ALBRECHT 89G ARG 0.0078 assuming the $\Upsilon(4S)$ $\frac{DOCUMENT\ ID}{221}$ ALBRECHT 89G ARG 0.0048 assuming the $\Upsilon(4S)$ $\frac{DOCUMENT\ ID}{221}$ ALBRECHT 89G ARG	Γ_{101} $e^{+}e^{-} \rightarrow \Upsilon(45)$ decays 45% to $B^{0}\overline{B}^{0}$. Γ_{102} $e^{+}e^{-} \rightarrow \Upsilon(45)$ decays 45% to $B^{0}\overline{B}^{0}$. Γ_{103} $e^{+}e^{-} \rightarrow \Upsilon(45)$ $e^{+}e^{-} \rightarrow \Upsilon(45)$	we we	$VALUE$ <1.8 × 10 ⁻⁵ • • • We do not <4.1 × 10 ⁻⁴ 235 ACCIARRI 9 $\Gamma(\eta' \pi^0)/\Gamma_{\text{total}}$ VALUE <1.1 × 10 ⁻⁵ $\Gamma(\eta' \eta')/\Gamma_{\text{total}}$ VALUE <4.7 × 10 ⁻⁵ $\Gamma(\eta' \eta)/\Gamma_{\text{total}}$ VALUE	90 bit use the follow 90 95H assumes f _B 1 CL% 90 90 CL% 90	BEHRENS ving data for average 235 ACCIARRI 0 = 39.5 ± 4.0 and DOCUMENT IS BEHRENS DOCUMENT IS BEHRENS	98 CLE2 ges, fits, limits, 95H L3 1 f _{Bs} = 12.0 = 98 CLE2 98 CLE2 7ECN 98 CLE2	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ \pm 3.0%. COMMENT $e^+e^- \rightarrow$ COMMENT $e^+e^- \rightarrow$	Z \[\Gamma_{111} / \] \[\T(45) \] \[\Gamma_{112} / \] \[\T(45) \] \[\Gamma_{113} / \]

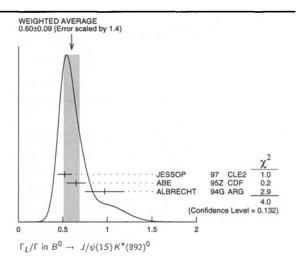
 B^0

$\Gamma(\eta \rho^0)/\Gamma_{\text{total}}$		DOCUMENT ID	TECN	Γ ₁₁₅ /Γ	Γ(π ⁺ π ⁻ π ⁺ π ⁻)/	F _{total}	DOCUMENT ID	TECH	COMMENT	Γ ₁₂₉ /Γ
<1.3 × 10 ⁻⁵	90	BEHRENS		$e^{+}e^{-} \rightarrow \Upsilon(45)$	<u>∨ALUE</u> <2.3 × 10 ⁻⁴	90	²⁵⁰ ADAM	96D DLPH	$e^+e^- \rightarrow$	z
Γ(ωη) /Γ _{total}		DOCUMENT :-		Γ ₁₁₆ /Γ	• • • We do not use <2.8 × 10 ⁻⁴	90	²⁵¹ ABREU	95N DLPH	Sup. by Al	
<1.2 × 10 ⁻⁵	<u>CL%</u> 90	236 BERGFELD	98 CLE2	·	<6.7 × 10 ⁻⁴	90	²⁵² ALBRECHT		$e^+e^- \rightarrow$	T(45)
²³⁶ Assumes equal pr				i	250 ADAM 96D assur 251 Assumes a B^0 , E	mes $f_{B^0} =$	$f_{B^-} = 0.39 \text{ and } f_E$	$B_s = 0.12.$	-dd 6-	
$\Gamma(\omega\eta')/\Gamma_{\text{total}}$				г 1117/Г	252 ALBRECHT 90B	limit assu	mes equal productio	n of $B^0\overline{B}^0$ and	nd B ⁺ B ⁻ a	tion of 0.12.
VALUE	<u>CL%</u>	DOCUMENT ID	TECN		$\Gamma(\rho^0 \rho^0)/\Gamma_{\text{total}}$					Γ ₁₃₀ /Γ
<6.0 × 10 ⁻⁵ 237 Assumes equal pr	90	237 BERGFELD	98 CLE2	<u> </u>	VALUE	CL%	DOCUMENT_ID		COMMENT	
	oduction d	in prairie at the	1 (43).		<2.8 × 10 ⁻⁴ • • • We do not use	90 the follow	²⁵³ ALBRECHT wing data for average		$e^+e^- \rightarrow$ i. etc. • • •	T(45)
Γ(ωρ ⁰)/Γ _{total}	<u>CL%</u>	DOCUMENT ID	TECN	Γ ₁₁₈ /Γ	<2.9 × 10 ⁻⁴	90	254 BORTOLETT			T(45)
<1.1 × 10 ⁻⁵	90	238 BERGFELD	98 CLE2	1	<4.3 × 10 ⁻⁴	90	254 BEBEK		e+ e ⁻ →	` '
²³⁸ Assumes equal pr	oduction o	if \mathcal{B}^+ and \mathcal{B}^0 at the	T(45).	I	²⁵³ ALBRECHT 90B ²⁵⁴ Paper assumes th	fimit assure $\Upsilon(45)$	mes equal production decays 43% to $B^0\overline{B}$	n of $B^U \overline B^U$ and 0 . We rescale	nd <i>B</i> + <i>B</i> - a e to 50%.	it $\Upsilon(45)$.
$\Gamma(\omega\omega)/\Gamma_{total}$				Γ ₁₁₉ /Γ	Γ(a ₁ (1260) [∓] π [±])					Γ ₁₃₁ /Γ
<1.9 × 10 ⁻⁵	<u>CL%</u> 90	DOCUMENT ID 239 BERGFELD	98 CLE2		VALUE	CL%	DOCUMENT ID		COMMENT	
²³⁹ Assumes equal pr	-			i	<4.9 × 10 ⁻⁴	90	255 BORTOLETT			T(45)
				- I	• • • We do not use <6.3 × 10 ⁻⁴	e the follow 90	wing data for averag ²⁵⁶ ALBRECHT			T(45)
Γ(φπ ⁰)/Γ _{total}	CL%	DOCUMENT ID	TECN	Γ ₁₂₀ /Γ	$< 6.3 \times 10^{-3}$	90	255 BEBEK		$e^+e^- \rightarrow$	
<0.5 × 10 ⁻⁵	90	240 BERGFELD	98 CLE2	1	255 Paper assumes ti		decays 43% to $B^0\overline{B}$	⁰ . We rescale	e to 50%.	, ,
²⁴⁰ Assumes equal pr	oduction o	of \mathcal{B}^+ and \mathcal{B}^0 at the	T(45).		²⁵⁶ ALBRECHT 90B	limit assu	mes equal productio	n of $B^0\overline{B}^0$ a	nd B^+B^- a	it T(45).
$\Gamma(\phi\eta)/\Gamma_{\text{total}}$				Γ ₁₂₁ /Γ	$\Gamma(a_2(1320)^{\mp}\pi^{\pm})$	/Γ _{total}				Γ ₁₃₂ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID	TECN		<u>VALUE</u> <3.0 × 10 ^{−4}	<u>CL%</u> 90	DOCUMENT ID 257 BORTOLETI		COMMENT	T(45)
<0.9 × 10 ⁻⁵	90	241 BERGFELD	98 CLE2	<u>!</u>	<3.0 × 10 → • • • We do not use					1 (43)
²⁴¹ Assumes equal pr	oduction o	of B ⁺ and B [∪] at the	T(45).	1	$<1.4 \times 10^{-3}$	90	257 BEBEK		e+e- →	T(45)
$\Gamma(\phi \eta')/\Gamma_{\text{total}}$				Γ ₁₂₂ /Γ	257 Paper assumes ti	ne 7(45)	decays 43% to $B^0\widetilde{B}$	6^0 . We rescale	to 50%.	
<3.1 × 10 ⁻⁵	<u>CL%</u> 90	DOCUMENT ID 242 BERGFELD	98 CLE2	·	$\Gamma(\pi^{+}\pi^{-}\pi^{0}\pi^{0})/\Gamma$	total				Γ ₁₃₃ /Γ
²⁴² Assumes equal pr				i	VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
$\Gamma(\phi \rho^0)/\Gamma_{\rm total}$			· -/-	Γ ₁₂₃ /Γ	<3.1 × 10 ⁻³ ²⁵⁸ ALBRECHT 908	90 limit assu	²⁵⁸ ALBRECHT		$e^+e^- \rightarrow$ nd B^+B^- a	
VALUE	<u>CL%</u>	DOCUMENT ID					1450. p. 0000010			
<1.3 × 10 ⁻⁵	90	243 BERGFELD	98 CLE2	Į.	$\Gamma(\rho^+\rho^-)/\Gamma_{\text{total}}$	CL%	DOCUMENT ID	TECN	COMMENT	Γ ₁₃₄ /Γ
²⁴³ Assumes equal pr	oduction o	or B⊤ and B∪ at the	7 (45).	I	<2.2 × 10 ⁻³	90	259 ALBRECHT		e ⁺ e ⁻ →	T(45)
Γ(φω)/Γ _{total}				Г ₁₂₄ /Г	²⁵⁹ ALBRECHT 90B	limit assu	imes equal productio	on of $B^0\overline{B}^0$ a	nd B^+B^- (at T(45).
<2.1 × 10 ⁻⁵	<u>CL%</u> 90	DOCUMENT ID 244 BERGFELD	98 CLE2	· I	$\Gamma(a_1(1260)^0\pi^0)/$	Γ _{total}				Γ ₁₃₅ /Γ
²⁴⁴ Assumes equal pr				i	VALUE	<u>cl%</u>	DOCUMENT ID		COMMENT	
$\Gamma(\phi\phi)/\Gamma_{\text{total}}$	•		. ,	Γ ₁₂₅ /Γ	<1.1 × 10 ⁻³	90	260 ALBRECHT			
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	260 ALBRECHT 90B	iimit assu	imes equal productio	on of B ^o B ^o a	na <i>B™ B</i> = 2	
<1.2 × 10 ⁻⁵	90	245 BERGFELD	98 CLE2	<u> </u>	$\Gamma(\omega \pi^0)/\Gamma_{\text{total}}$		page//===================================		CO. 11	Γ ₁₃₆ /Γ
• • • We do not use					<u>VALUE</u> <1.4 × 10 ^{−5}	<u>CL%</u> 90	DOCUMENT ID 261 BERGFELD		COMMENT	
<3.9 × 10 ^{—5} ²⁴⁵ Assumes equal pr	90 oduction o	ASNER of 8 ⁺ and 8 ⁰ at the		$e^+e^- \rightarrow \Upsilon(45)$	• • • We do not us				, etc. • • •	
			. 1 (53).	I	$<4.6 \times 10^{-4}$	90	262 ALBRECHT		$e^+e^- \rightarrow$	T(45)
Γ(π+π-π ⁰)/Γ _{tot}	al <u>CL%</u>	DOCUMENT ID	TECN	Γ ₁₂₆ /Γ	261 Assumes equal p 262 ALBRECHT 90B				nd D+ D-	- T(AE)
<7.2 × 10 ⁻⁴	90			$e^+e^- \rightarrow \Upsilon(45)$			' '	m vi oʻbʻa	nu D · B a	` .
²⁴⁶ ALBRECHT 90B				nd B^+B^- at $\Upsilon(4S)$.	Γ(π ⁺ π ⁺ π ⁻ π ⁻ π ⁻	°)/F _{total}	DOCUMENT ID) TECN	COMMENT	Γ ₁₃₇ /Γ
$\Gamma(ho^0\pi^0)/\Gamma_{ m total}$				Γ ₁₂₇ /Γ	<9.0 × 10 ⁻³	90	263 ALBRECHT			
VALUE	CL%	DOCUMENT ID		COMMENT	263 ALBRECHT 90B	limit assu				
<2.4 × 10 ⁻⁵ • • • We do not use	90 the follow	ASNER		$e^+e^- \rightarrow \Upsilon(45)$	Γ(a ₁ (1260)+ρ ⁻)	/[total				Γ ₁₃₈ /Γ
<4.0 × 10 ⁻⁴	e the rollov 90			$e^+e^- \rightarrow \Upsilon(45)$	VALUE	/ ' total		TECN_		
				nd B^+B^- at $\Upsilon(45)$.	<3.4 × 10 ⁻³ 264 ALBRECHT 90B	90	²⁶⁴ ALBRECHT	90B ARG	$e^+e^- \rightarrow$	T(45)
$\Gamma(ho^{\mp}\pi^{\pm})/\Gamma_{\text{total}}$				Γ ₁₂₈ /Γ	Γ(a ₁ (1260) ⁰ ρ ⁰)/		imes equar productio	ou or B., B., 9	nu B' B' a	
VALUE 5	<u>CL9</u>			N COMMENT	Ι (a 1(1260) ο ρο΄)/	total CL%	DOCUMENT IN	TECN	COMMENT	Γ ₁₃₉ /Γ
<8.8 x 10 ⁻⁵ • • • We do not use	90 the follow	ASNER ving data for average		$\begin{array}{ccc} 2 & e^+e^- \rightarrow & \Upsilon(4S) \\ \text{5, etc.} & \bullet & \bullet \end{array}$	<2.4 × 10 ⁻³	90	265 ALBRECHT			T(45)
	90	248 ALBRECHT		$e^+e^- \rightarrow \Upsilon(4S)$	²⁶⁵ ALBRECHT 90B	limit assu				
$< 5.2 \times 10^{-4}$										
$< 5.2 \times 10^{-3}$	90	²⁴⁹ BEBEK		$0 e^+e^- \rightarrow \Upsilon(45)$	$\Gamma(\pi^+\pi^+\pi^+\pi^-\pi$	~	total			Γ ₁₄₀ /Γ
<5.2 × 10 ⁻³ ²⁴⁸ ALBRECHT 90в	limit assur	nes equal production	of B ⁰ B ⁰	FO $e^+e^- \rightarrow \mathcal{T}(4S)$ and B^+B^- at $\mathcal{T}(4S)$. For 43% to $B^0\overline{B}^0$. We rescale	$\Gamma(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	~ я ⁻)/Г <u>८</u> .%	·) TECN	COMMENT	

Г(a ₁ (1260) ⁺ a ₁ (126	60))/[Γ ₁₄₁ /Γ
VALUE	<u>CL%</u>	DOCUMENT I				
<2.8 × 10 ⁻³ • • We do not use t	90 the follow	267 BORTOLET				T(45)
$< 6.0 \times 10^{-3}$	90	268 ALBRECHT		ARG	e+ e- →	T(45)
²⁶⁷ BORTOLETTO 89 We rescale to 50%		< 3.2 × 10 3 as:	suming t	ne / (4	5) decays 4	3% to B° B°.
²⁶⁸ ALBRECHT 908 Ii	mit assun	nes equal producti	ion of <i>B</i> ⁽	${}^0\overline{B}{}^0$ an	d B^+B^- a	t T(45).
Γ(π ⁺ π ⁺ π ⁺ π ⁻ π ⁻	O) .	/Fa				Γ ₁₄₂ /Γ
VALUE	^ ^) <u>CL%</u> _	DOCUMENT I	ID.	TECN	COMMENT	142/
<1.1 × 10 ⁻²	90	269 ALBRECHT		ARG	e+e- →	T(45)
269 ALBRECHT 90B II						,
		nes equal produce	.0 0. 2			
$\Gamma(p\overline{p})/\Gamma_{\text{total}}$						Г ₁₄₃ /Г
VALUE E	<u>CL%</u>	DOCUMENT I			COMMENT	
<7.0 × 10 ⁻⁶	90	270 COAN		CLE2	e ⁺ e →	T(45)
• • • We do not use t						_
$<1.8 \times 10^{-5}$ $<3.5 \times 10^{-4}$	90 90	271 BUSKULIC 272 ABREU		ALEP DLPH	e ⁺ e [−] → Sup. by Al	
$<3.4 \times 10^{-5}$	90	273 BORTOLET			e+e- →	
$<1.2 \times 10^{-4}$	90	274 ALBRECHT		ARG	$e^+e^- \rightarrow$	
$<1.7 \times 10^{-4}$	90	²⁷³ BEBEK		CLEO		
²⁷⁰ Assumes equal pro-	duction o	fB^+ and B^0 at t	the $\Upsilon(4)$	5).		
²⁷¹ BUSKULIC 96v as	sumes P[OG 96 production	fractions	for B ⁰	$, B^{+}, B_{S},$	b baryons.
272 Assumes a \mathcal{B}^0 , \mathcal{B}^-	product	ion fraction of 0.3	39 and a	B _s pro	duction frac	tion of 0.12.
²⁷³ Paper assumes the						00
²⁷⁴ ALBRECHT 88F re rescale to 50%.	eports < 1	1.3×10^{-4} assum	ing the	T(45)	decays 45%	to $B^U\overline{B}{}^U$. We
Γ(ρ̄ρ̄π ⁺ π ⁻)/Γ _{total}	I					Γ ₁₄₄ /Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT	ID	TECN	COMMENT	
<2.5	90	²⁷⁵ BEBEK			$e^+e^- \rightarrow$	Y(45)
 a • We do not use t 	the follow	-	iges, fits	, limits,	etc. • • •	
<9.5	90	276 ABREU			Sup. by A	
$5.4 \pm 1.8 \pm 2.0$		277 ALBRECHT		ARG	a+a	$\Upsilon(45)$
²⁷⁵ BEBEK 89 reports to 50%. ²⁷⁶ Assumes a <i>B</i> ⁰ , <i>B</i> ⁻	product	0^{-4} assuming the	e '' (4 <i>5</i>) 39 and a	decays B _S pro	43% to B ⁰ i	tion of 0.12.
275 BEBEK 89 reports to 50%. 276 Assumes a <i>B</i> ⁰ , <i>B</i> ⁻ 277 ALBREĆHT 88F r We rescale to 50% 「(pʌʌ̃ –)/Г _{total}	product eports 6.	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ ass	e $\Upsilon(45)$ 39 and a suming t	decays B _S pro he T(4	43% to B ⁰ I duction frac S) decays 4	tion of 0.12.
275 BEBEK 89 reports to 50%. 276 Assumes a <i>B</i> ⁰ , <i>B</i> - 277 ALBRECHT 88F r We rescale to 50% $\Gamma(p \overline{\Lambda} \pi^{-})/\Gamma_{total}$ VALUE	product eports 6.4	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ ass	e $\Upsilon(45)$ 39 and a surning t	decays B_S prohe $\Upsilon(4)$	43% to B ⁰ induction fraction	tion of 0.12. 15% to $B^0 \overline{B}{}^0$. Γ_{145}/Γ
275 BEBEK 89 reports to 50%. 276 ASSUMES a B ⁰ , B ⁻ 277 ALBREĆHT 88F r We rescale to 50% Γ(pĀπ ⁻)/Γ _{total} value <1.3 × 10 ⁻⁵	product eports 6.4 <u>CL%</u> 90	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ ass $\frac{DOCUMENT}{278}$ COAN	e Y (4 <i>S</i>) 39 and a suming t	decays B _S pro he T(4) <u>TECN</u> CLE2	43% to $B^0\bar{l}$ duction fraction fraction fraction fraction fraction decays 4 $\frac{COMMENT}{e^+e^- \rightarrow}$	tion of 0.12. 15% to $B^0 \overline{B}{}^0$. Γ_{145}/Γ
275 BEBEK 89 reports to 50%. 276 ASSUMES a B ⁰ , B ⁻ 277 ALBREĆHT 88F r We rescale to 50% Γ(pĀπ ⁻)/Γ _{total} value <1.3 × 10 ⁻⁵ • • • We do not use to to 50%.	product eports 6.4	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ ass $\frac{DOCUMENT}{278}$ COAN ring data for avera	e $\Upsilon(45)$ 39 and a suming to suming to 99 ages, fits,	decays B_S protein $T(4)$ $TECN$ $TECN$ $TLE2$, limits,	43% to $B^0 \tilde{I}$ duction frac S) decays 4 COMMENT $e^+e^- \rightarrow$ etc. • • •	rition of 0.12. 15% to $B^0 \overline{B}^0$. Γ_{145}/Γ $\Gamma_{(45)}$
275 BEBEK 89 reports to 50%. 276 Assumes a B ⁰ , B ⁻ 277 ALBREĆHT 88F r We rescale to 50% Γ(pĀπ ⁻)/Γ _{total} value <1.3 × 10 ⁻⁵ • • • We do not use to <1.8 × 10 ⁻⁴	product eports 6.4	0^{-4} assuming the ion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ ass $\frac{DOCUMENT}{278}$ COAN ring data for avera 279 ALBRECHT	e $\Upsilon(4S)$ 39 and a suming t 10 99 ages, fits,	decays B_S pro the $\Upsilon(4)$ $\frac{TECN}{CLE2}$, limits,	43% to $B^0\bar{l}$ duction fraction fraction fraction fraction fraction decays 4 $\frac{COMMENT}{e^+e^- \rightarrow}$	rition of 0.12. 15% to $B^0 \overline{B}^0$. Γ_{145}/Γ $\Gamma_{(45)}$
275 BEBEK 89 reports to 50%. 276 Assumes a B ⁰ , B ⁻ 277 ALBREĆHT 88 r r We rescale to 50% \[\begin{align*}	product eports 6.4 CL% 90 the follow 90 duction of	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ ass $\frac{DOCUMENT}{278}$ COAN ring data for avera $\frac{279}{6}$ ALBRECHT of B^+ and B^0 at	e $\Upsilon(45)$ 39 and a suming t 10 99 ages, fits, 88F	decays B_{S} protection for the $T(4)$ $\frac{TECN}{CLE2}$, limits, ARG	43% to B^0 duction fraction fraction fraction fraction fraction $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^- \rightarrow e^-e^- \rightarrow e^- \rightarrow e^-e$	tition of 0.12. 15% to $B^0 \overline{B}^0$. Γ_{145}/Γ $T(45)$
275 BEBEK 89 reports to 50%. 276 Assumes a B ⁰ , B ⁻ 277 ALBRECHT 88F r We rescale to 50% Γ(pĀπ⁻)/Γtotal <u>VALUE</u> <1.3 × 10 ⁻⁵ • • • We do not use to <1.8 × 10 ⁻⁴ 278 Assumes equal pro 279 ALBRECHT 88F rerescale to 50%.	product eports 6.4 CL% 90 the follow 90 duction of	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ ass $\frac{DOCUMENT}{278}$ COAN ring data for avera $\frac{279}{6}$ ALBRECHT of B^+ and B^0 at	e $\Upsilon(45)$ 39 and a suming t 10 99 ages, fits, 88F	decays B_{S} protection for the $T(4)$ $\frac{TECN}{CLE2}$, limits, ARG	43% to B^0 duction fraction fraction fraction fraction fraction $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^- \rightarrow e^-e^- \rightarrow e^- \rightarrow e^-e$	tition of 0.12. 15% to $B^0 \overline{B}^0$. Γ_{145}/Γ $T(45)$ $T(45)$ to $B^0 \overline{B}^0$. We
275 BEBEK 89 reports to 50%. 276 ASSUMES a B ⁰ , B ⁻ 277 ALBREĆHT 88F r We rescale to 50% Γ(pĀπ ⁻)/Γtotal <u>VALUE</u> <1.3 × 10 ⁻⁵ • • • We do not use to <1.8 × 10 ⁻⁴ 278 Assumes equal pro 279 ALBRECHT 88F rerescale to 50%. Γ(ΛΛ)/Γtotal	product eports 6.4 CL% 90 the follow 90 duction of	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ ass $\frac{DOCUMENT}{278}$ COAN ring data for avera $\frac{279}{6}$ ALBRECHT of B^+ and B^0 at	e $\Upsilon(45)$ 39 and a suming t 99 ages, fits, 88F the $\Upsilon(4.5)$	decays B_S prohe $T(4)$ $TECN$ $CLE2$, limits, ARG S). $T(4S)$	43% to B^0 duction fraction fraction fraction fraction fraction $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^- \rightarrow e^-e^- \rightarrow e^- \rightarrow e^-e$	tition of 0.12. 15% to $B^0 \overline{B}^0$. Γ_{145}/Γ $T(45)$
275 BEBEK 89 reports to 50%. 276 Assumes a B ⁰ , B ⁻ 277 ALBREĆHT 88° r We rescale to 50% F(pĀπ⁻)/Ftotal VALUE <1.3 × 10 ⁻⁵ • • • We do not use to 1.8 × 10 ⁻⁴ 278 Assumes equal pro 279 ALBRECHT 88° rescale to 50%. F(ĀA)/Ftotal VALUE	product eports 6.1. CL% 90 the follow 90 duction ceports < 3	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the composition of 0.4 $0 \pm 2.0 \pm 2.0$ assuming data for avera $0.00 \pm 2.00 \pm 0.00$ at 0.00 ± 0.00 at 0.00 ± 0.00 assuming 0.00 ± 0.00 as 0.0	e $\Upsilon(45)$ 39 and a suming t 99 ages, fits 88F the $\Upsilon(4.5)$	decays B_S prohe $T(4)$ $TECN$ CLE2, limits, ARG S). $T(4S)$	43% to B^0 iduction frac S) decays 4 $\frac{COMMENT}{e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^-$	tion of 0.12. 15% to $B^0 \overline{B}^0$. Γ_{145}/Γ T(45) T(45) to $B^0 \overline{B}^0$. We
275 BEBEK 89 reports to 50%. 276 Assumes a B ⁰ , B ⁻ 277 ALBRECHT 88° r We rescale to 50% Γ(ρ̄/π̄ -)/Γtotal VALUE <1.3 × 10 -5 • • We do not use to 1.8 × 10 -4 278 Assumes equal pro 279 ALBRECHT 88° r rescale to 50%. Γ(Λ̄/Λ)/Γtotal VALUE <3.9 × 10 -5	product eports 6.1. CL% 90 the follow 90 duction ceports < 3	0^{-4} assuming the final fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the final fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECHT of B^+ and B^0 at 1.0 ± 1.0 assuming 1.0 ± 1.0 $1.0 \pm$	e $\Upsilon(45)$ 39 and a suming t 99 ages, fits, 88F the $\Upsilon(4)$ hing the	decays B _S pro he T(4 TECN CLE2 , limits, ARG S). T(4S)	43% to B^0 duction fraction	tion of 0.12. 15% to $B^0 \overline{B}^0$. Γ_{145}/Γ T(45) T(45) to $B^0 \overline{B}^0$. We
275 BEBEK 89 reports to 50%. 276 Assumes a B ⁰ , B ⁻ 277 ALBREĆHT 88F r We rescale to 50% \[\begin{align*}	product eports 6.1. CL% 90 the follow 90 duction ceports < 3	0^{-4} assuming the final fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the final fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECHT of B^+ and B^0 at 1.0 ± 1.0 assuming 1.0 ± 1.0 $1.0 \pm$	e $\Upsilon(45)$ 39 and a suming t 99 ages, fits, 88F the $\Upsilon(4)$ hing the	decays B _S pro he T(4 TECN CLE2 , limits, ARG S). T(4S)	43% to B^0 duction fraction	tition of 0.12. 15% to $B^0 \overline{B}^0$. Γ_{145}/Γ T(45) T(45) to $B^0 \overline{B}^0$. We Γ_{146}/Γ T(45)
275 BEBEK 89 reports to 50%. 276 Assumes a B ⁰ , B ⁻² 277 ALBREĆHT 88F r We rescale to 50% Γ(pĀπ ⁻)/Γtotal value <1.3 × 10 ⁻⁵ • • • We do not use to <1.8 × 10 ⁻⁴ 278 Assumes equal pro 279 ALBRECHT 88F re rescale to 50%. Γ(Λ)/Γtotal value <3.9 × 10 ⁻⁵ 280 Assumes equal pro Γ(Δ ⁰ Δ̄ ⁰)/Γtotal	product eports 6.1. CL% 90 the follow 90 duction ceports < 2 CL% 90 duction co	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECHT of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the coordinate of B^0 at 2.0 \times 10 ⁻⁴ assuming the coordinate of B^0 at 3.0 \times 10 ⁻⁴ and B^0 at 3.1 \times 10 ⁻⁴ and B^0 10 ⁻⁴ and B	e $\Upsilon(4.5)$ 39 and a suming t 99 ages, fits, 88F the $\Upsilon(4.5)$ 99 the $\Upsilon(4.5)$	decays $B_{\rm S}$ prohe $T(4)$ TECN CLE2, limits, ARG S). $T(45)$ CLE2	43% to B^0 i duction frac S) decays 4 $\frac{COMMENT}{e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow e^-e^- ^- \rightarrow e^-e^-	tition of 0.12. 15% to $B^0 \overline{B}^0$. Γ_{145}/Γ $\Gamma_{(45)}$ $\Gamma_{(45)}$ to $\Gamma_{(45)}$ $\Gamma_{(45)}$ $\Gamma_{(45)}$ $\Gamma_{(45)}$
275 BEBEK 89 reports to 50%. 276 Assumes a B ⁰ , B ⁻ 277 ALBRECHT 88F r We rescale to 50% \[\begin{align*}	product eports 6.1 CL% 90 the follow 90 duction ceports < 3 CL% 90 duction c	0^{-4} assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the following data for avera 279 ALBRECHT of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the following form of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the following form of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming form of B^+ and B^0 at 2.0 \times 10 ⁻⁴ and B^0 10 ⁻⁴ and	99 ages, fits, 88F the T(4, 10) 99 the T(4, 10)	decays $B_{\rm S}$ prohe $\Upsilon(4)$ $\frac{TECN}{CLE2}$, limits, ARG $S_{\rm S}$). $\frac{TECN}{CLE2}$ $S_{\rm S}$.	43% to B^0 duction fraction	tion of 0.12. 15% to $B^0\overline{B}^0$. Γ_{145}/Γ T(45) T(45) to $B^0\overline{B}^0$. We Γ_{146}/Γ T(45)
275 BEBEK 89 reports to 50%. 276 Assumes a B ⁰ , B ⁻ 277 ALBRECHT 88° r We rescale to 50% Γ(ρ̄/π̄ -)/Γtotal VALUE <1.3 × 10 -5 • • We do not use to 1.8 × 10 -4 278 Assumes equal pro 279 ALBRECHT 88° r rescale to 50%. Γ(ΛΛ)/Γtotal VALUE <3.9 × 10 -6 280 Assumes equal pro Γ(Δ ⁰ /Δ ⁰)/Γtotal VALUE <0.0015	product eports 6.1 CL% 90 the follow 90 duction ceports < 2 CL% 90 duction c	0^{-4} assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECHT of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the finite fraction of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming fraction of B^+ and B^0 at 2.1 0 ± 0.0	e $T(4.5)$ 39 and a suming t 99 ages, fits, 88F the $T(4.5)$ ing the 1D 99 the $T(4.5)$	decays B_{S} prohe $T(4)$ CLE2, limits, ARG $S(5)$. $T(4S)$	43% to B^0 duction fraction	tition of 0.12. 15% to $B^0\overline{B}^0$.
275 BEBEK 89 reports to 50%. 276 Assumes a B ⁰ , B ⁻ 277 ALBRECHT 88F re We rescale to 50% \[\begin{align*}	product eports 6.1 CL% 90 the follow 90 duction ceports < 2 CL% 90 duction c	0^{-4} assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECHT of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the finite fraction of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming fraction of B^+ and B^0 at 2.1 0 ± 0.0	e $T(4.5)$ 39 and a suming t 99 ages, fits, 88F the $T(4.5)$ ing the 1D 99 the $T(4.5)$	decays B_{S} prohe $T(4)$ CLE2, limits, ARG $S(5)$. $T(4S)$	43% to B^0 duction fraction	tition of 0.12. 15% to $B^0\overline{B}^0$.
275 BEBEK 89 reports to 50%. 276 ASSUMES a B ⁰ , B ⁻ 277 ALBREĆHT 88F r We rescale to 50% Γ (ρĀπ⁻) / Γ total 278 ASSUMES equal pro 278 ASSUMES equal pro 279 ALBRECHT 88F rerescale to 50%. Γ (ΛΛ) / Γ total 280 ASSUMES equal pro Γ (Δ⁰Δ⁰) / Γ total 281 ASSUMES equal pro 290 ASSUMES equal pro Γ (Δ⁰Δ⁰) / Γ total 280 ASSUMES equal pro Γ (Δ⁰Δ⁰) / Γ total 281 BORTOLETTO 89 to 50%.	production conduction	0^{-4} assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECHT of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the finite fraction of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming fraction of B^+ and B^0 at 2.1 0 ± 0.0	e $T(4.5)$ 39 and a suming t 99 ages, fits, 88F the $T(4.5)$ ing the 1D 99 the $T(4.5)$	decays B_{S} prohe $T(4)$ CLE2, limits, ARG $S(5)$. $T(4S)$	43% to B^0 duction fraction	tition of 0.12. 15% to $B^0\overline{B}^0$.
275 BEBEK 89 reports to 50%. 276 ASSUMES a B ⁰ , B ⁻² 277 ALBREĆHT 88F r We rescale to 50% \[\(\bar{\rho} \bar{\pi} \sup \subseteq \text{LVE} \] <1.3 × 10 ⁻⁵ • • • We do not use to <1.8 × 10 ⁻⁴ 278 ASSUMES equal pro 279 ALBRECHT 88F refrescale to 50%. \[\(\bar{\rho} \bar{\rho} \rangle \subseteq \text{LVE} \] <3.9 × 10 ⁻⁶ 280 ASSUMES equal pro \[\bar{\rho} \alpha \bar{\rho} \subseteq \text{LVE} \] <3.9 × 10 ⁻⁶ 280 ASSUMES equal pro \[\bar{\rho} \alpha \bar{\rho} \bar{\rho} \subseteq \text{LVE} \] <4.0.0015 281 BORTOLETTO 83	production conduction	0^{-4} assuming the sion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the sion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECHT of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming B^+ and B^0 at B^0 at B^+ and B^0 at	e $T(4.5)$ 39 and a suming t 99 ages, fits, 88F the $T(4.5)$ 10 99 the $T(4.5)$ TTO89 g $T(4.5)$	decays B _S pro he T(4 TECN CLE2 , limits, ARG S). T(4S) TECN CLE2 S).	43% to B^0 duction fraction	tion of 0.12. 15% to $B^0\overline{B}^0$. Γ_{145}/Γ $T(45)$ to $B^0\overline{B}^0$. We Γ_{146}/Γ $T(45)$ Γ_{147}/Γ $T(45)$ Γ_{147}/Γ $T(45)$ Γ_{148}/Γ $T(48)$
275 BEBEK 89 reports to 50%. 276 ASSUMES a B ⁰ , B ⁻ 277 ALBRECHT 88F r We rescale to 50% \[\begin{align*}	production conduction	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the composition of 0.4 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECHT of B^+ and B^0 at $0 \pm 2.0 \times 10^{-4}$ assuming $0 \pm 2.0 \times 10^{-4}$ as $0 $	e T (45) 39 and a suming t 99 ages, fits, 88F the T (4, sing the 10 17 17 189 g T (45)	decays B _S pro he T(4 TECN CLE2, limits, ARG 5). T(4S) TECN CLE2 S).	43% to B^0 i duction frac S) decays A $\begin{array}{c} COMMENT \\ e^+e^- \rightarrow \\ e^+e^- \rightarrow \\ decays \ 45\% \\ \hline \\ COMMENT \\ e^+e^- \rightarrow \\ 43\% \ to \ B^0$	tion of 0.12. 15% to $B^0 \overline{B}^0$. Γ_{145}/Γ $\Gamma_{(45)}$ to $B^0 \overline{B}^0$. We Γ_{146}/Γ $\Gamma_{(45)}$
275 BEBEK 89 reports to 50%. 276 ASSUMES a B ⁰ , B ⁻ 277 ALBREĆHT 88F r We rescale to 50% \[\begin{align*}	production control of the points of the poin	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the composition of 0.4 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECHT of B^+ and B^0 at $0 \pm 2.0 \times 10^{-4}$ assuming the composition of $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ as $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ as $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ as $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times$	99 ages, fits, 88F the \(\tau(4.5) \) 99 the \(\tau(4.5) \) 10 TTO89	decays B _S pro he T(4 TECN CLE2, limits, ARG S). T(4S) TECN CLE2 CLE0 CLE0 CLE0 CLEO CLEO	43% to B^0 i duction frac S) decays A COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^$	tition of 0.12. 15% to $B^0 \overline{B}^0$. 145/ Γ 145/ 145/
275 BEBEK 89 reports to 50%. Scattering and B ⁰ , B ⁻² 276 ASSUMES a B ⁰ , B ⁻² 277 ALBREĆHT 88F re We rescale to 50% \[\(\bar{P} \bar{\pi} \) \\ \Gamma \text{total} \] \[\sqrt{\pi} \bar{\pi} \] \\ \\ \Gamma \text{total} \] \[\sqrt{\pi} \bar{\pi} \] \\ \\ \\ \Gamma \text{total} \] \[\sqrt{\pi} \bar{\pi} \] \\ \Gamma \text{total} \] \[\sqrt{\pi} \bar{\pi} \bar{\pi} \] \\ \Gamma \text{total} \] \[\sqrt{\pi} \bar{\pi} \bar{\pi} \] \\ \Gamma \text{total} \] \[\sqrt{\pi} \bar{\pi} \bar{\pi} \] \\ \Gamma \text{total} \] \[\sqrt{\pi} \bar{\pi} \bar{\pi} \bar{\pi} \] \[\sqrt{\pi} \bar{\pi} \bar{\pi} \bar{\pi} \bar{\pi} \\ \text{total} \] \[\sqrt{\pi} \bar{\pi} \bar{\pi} \bar{\pi} \bar{\pi} \\ \text{total} \] \[\sqrt{\pi} \bar{\pi} \bar{\pi} \bar{\pi} \bar{\pi} \bar{\pi} \\ \text{total} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	production control of the points of the poin	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the composition of 0.4 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECHT of B^+ and B^0 at $0 \pm 2.0 \times 10^{-4}$ assuming the composition of $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ assuming the composition of $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ as a composition of $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ and $0 \pm 2.0 \times 10^{-4}$ as a composition of $0 \pm 2.0 \times 10^{-4}$ and	99 ages, fits, 88F the \(\tau(4.5) \) 99 the \(\tau(4.5) \) 10 TTO89	decays B _S pro he T(4 TECN CLE2, limits, ARG S). T(4S) TECN CLE2 CLE0 CLE0 CLE0 CLEO CLEO	43% to B^0 i duction frac S) decays A COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^$	tition of 0.12. 15% to $B^0 \overline{B}^0$. 145/ Γ 145/ 145/ 145/ 146/ Γ 145/ 145/
275 BEBEK 89 reports to 50%. 276 ASSUMES a B ⁰ , B ⁻ 277 ALBREĆHT 88F r We rescale to 50% Γ(ρĀπ⁻)/Γtotal VALUE <1.3 × 10 ⁻⁵ • • • We do not use to <1.8 × 10 ⁻⁴ 278 ASSUMES equal pro 279 ALBRECHT 88F re rescale to 50%. Γ(ΛΛ)/Γtotal VALUE <3.9 × 10 ⁻⁶ 280 ASSUMES equal pro Γ(Δ⁰Δ⁰)/Γtotal VALUE <0.0015 281 BORTOLETTO 89 to 50%. Γ(Δ++ Δ)/Γtotal VALUE <1.1 × 10 ⁻⁴ 282 BORTOLETTO 89 rescale to 50%.	production control of the points of the following of the	0^{-4} assuming the cion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the composition of 0.4 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECHT of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the composition of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the composition of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the composition of B^+ and B^0 at 2.0 \times 2.1 BORTOLET \times 2.1 SOUTH \times 2.1 BORTOLET \times 2.1 SOUTH \times 2.2 BORTOLET \times 2.1 \times	e $T(45)$ 39 and a suming t 99 ages, fits, 88F the $T(4,5)$ ing the $T(4,5)$ TTO89 Suming $T(45)$	decays B _S pro he T(4 TECN CLE2, limits, ARG S). T(4S) TECN CLE2 SS). TECN CLEO CLEO CLEO T(4S)	43% to B^0 i duction frac S) decays A COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^$	tion of 0.12. 15% to $B^0 \overline{B}^0$. 145/ Γ 145/ 145) Γ 145/ Γ 145/ Γ 145/ Γ 145/ Γ 147/ Γ 145) 147/ Γ 145/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 149/ Γ
275 BEBEK 89 reports to 50%. 276 ASSUMES a B ⁰ , B ⁻ 277 ALBREĆHT 88F r We rescale to 50% \[\begin{align*}	product eports 6.1. CL% 90 the follow 90 duction ceports < 2. 90 duction components = 2. 90 9 reports 21 21 21 21 21 21 21 21 21 21 21 21 21	0^{-4} assuming the fine fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the fine fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECH of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the fine fraction of B^+ and B^0 at 280 COAN of B^+ and B^0 at 281 BORTOLE 0 ± 0.0018 assuming 0 ± 0.0018 and 0 ± 0.0018 and 0 ± 0.0018 and 0 ± 0.0018 and 0 ± 0.0018 assuming 0 ± 0.0018 and $0 \pm 0.$	e T(45) 39 and a suming t 99 ages, fits, 88F the T(4, sing the T(4, sin	decays B _S pro he T(4 TECN CLE2 Limits, ARG S). TECN CLE2 CLE0 decays TECN CLEO TECN CLEO TECN CLEO TECN TECN CLEO TECN TECN TECN TECN TECN TECN TECN TECN	43% to B^0 duction fraction	tion of 0.12. 15% to $B^0 \overline{B}^0$. Γ 145/ Γ T (45) to $B^0 \overline{B}^0$. We Γ 146/ Γ T (45) Γ 147/ Γ Γ (45) Γ 148/ Γ Γ 148/ Γ Γ 148/ Γ Γ 149/ Γ 149/ Γ
275 BEBEK 89 reports 276 ASSUMES a B ⁰ , B ⁻ 277 ALBRECHT 88° r We rescale to 50% Γ (ρ/λπ −) / Γ total VALUE <1.3 × 10 −5 • • • We do not use to 1.8 × 10 −4 278 ASSUMES equal pro 279 ALBRECHT 88° rescale to 50%. Γ (ΛΛ) / Γ total VALUE <3.9 × 10 −6 280 ASSUMES equal pro Γ (Δ⁰Δ⁰) / Γ total VALUE <0.0015 281 BORTOLETTO 8° to 50%. Γ (Δ+ Δ −) / Γ total VALUE 21.1 × 10 −4 282 BORTOLETTO 8° rescale to 50%. Γ (Σ − Δ + +) / Γ total VALUE <0.0015	production of the property of the production of the property o	0^{-4} assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECH of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the finite fraction of B^+ and B^0 at 280 COAN of B^+ and B^0 at 281 BORTOLE 0 ± 0.0018 assuming 0 ± 0.0018 and 0 ± 0.0018 assuming 0 ± 0.0018 and 0 ± 0.0018 assuming 0 ± 0.0018 and 0	e T (45) 39 and a suming t 99 ages, fits, 88F the T (4, 10) 10 TTO89 g T (45) 10 TTO89 suming the	decays B _S pro CLE2 Limits, ARG S). TECN CLE2 CLE2 CLE0 CLE0 CLE0 CLEO CLEO CLEO CLEO CLEO CLEO CLEO CLEO	43% to B^0 duction fraction	tion of 0.12. 15% to $B^0 \overline{B}^0$. 145/ Γ 145/ Γ 145/ Γ 145/ Γ 146/ Γ 146/ Γ 147/ Γ 147/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 149/ Γ
275 BEBEK 89 reports to 50%. 276 ASSUMES a B ⁰ , B ⁻ 277 ALBRECHT 88° r We rescale to 50% Γ(ρ/π π ⁻)/ Γ total VALUE <1.3 × 10 ⁻⁵ • • • We do not use to 1.8 × 10 ⁻⁴ 278 ASSUMES equal pro 279 ALBRECHT 88° rescale to 50%. Γ(ΛΛ)/Γ total VALUE <3.9 × 10 ⁻⁶ 280 ASSUMES equal pro Γ(Δ⁰Δ⁰)/Γ total VALUE <0.0015 281 BORTOLETTO 8° to 50%. Γ(Δ++ Δ)/ Γ total VALUE 41.1 × 10 ⁻⁴ 282 BORTOLETTO 8° rescale to 50%. Γ(Σ Δ++)/ Γ total VALUE <0.0015	production of the property of the production of the property o	0^{-4} assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECH of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the finite fraction of B^+ and B^0 at 280 COAN of B^+ and B^0 at 281 BORTOLE 0 ± 0.0018 assuming 0 ± 0.0018 and 0 ± 0.0018 assuming 0 ± 0.0018 and 0 ± 0.0018 assuming 0 ± 0.0018 and 0	e T (45) 39 and a suming t 99 ages, fits, 88F the T (4, 10) 10 TTO89 g T (45) 10 TTO89 suming the	decays B _S pro CLE2 Limits, ARG S). TECN CLE2 CLE2 CLE0 CLE0 CLE0 CLEO CLEO CLEO CLEO CLEO CLEO CLEO CLEO	43% to B^0 duction fraction	tion of 0.12. 15% to $B^0 \overline{B}^0$. 145/ Γ 145/ Γ 145/ Γ 145/ Γ 146/ Γ 146/ Γ 147/ Γ 147/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 149/ Γ
275 BEBEK 89 reports to 50%. 276 ASSUMES a B ⁰ , B ⁻ 277 ALBRECHT 88° r We rescale to 50% Γ(ρ/π π ⁻)/ Γ total VALUE <1.3 × 10 ⁻⁵ • • • We do not use to 1.8 × 10 ⁻⁴ 278 ASSUMES equal pro 279 ALBRECHT 88° rescale to 50%. Γ(ΛΛ)/Γ total VALUE <3.9 × 10 ⁻⁶ 280 ASSUMES equal pro Γ(Δ⁰Δ⁰)/Γ total VALUE <0.0015 281 BORTOLETTO 8° to 50%. Γ(Δ++ Δ)/ Γ total VALUE 41.1 × 10 ⁻⁴ 282 BORTOLETTO 8° rescale to 50%. Γ(Σ Δ++)/ Γ total VALUE <0.0015	product eports 6.1 CL% 90 the follow 90 duction control contr	0^{-4} assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECH of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the finite fraction of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the finite fraction of B^+ and B^0 at 2.0 \times 2.0 \times 2.0 \times 3.1 \times 3.1 \times 3.1 \times 3.1 \times 4.3 \times 3.1 \times 4.3 \times 4.3 \times 5.1 \times 5.2 \times 5.3 \times	e T (45) 39 and a suming t 99 ages, fits, 88F the T (4, 10) 10 TTO89 g T (45) 10 TTO89 suming the	decays B _S pro CLE2 Limits, ARG S). TECN CLE2 CLE2 CLE0 CLE0 CLE0 CLEO CLEO CLEO CLEO CLEO CLEO CLEO CLEO	43% to B^0 duction fraction	tion of 0.12. 15% to $B^0 \overline{B}^0$. 145/ Γ 145/ Γ 145/ Γ 145/ Γ 146/ Γ 146/ Γ 147/ Γ 147/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 149/ Γ
275 BEBEK 89 reports 276 ASSUMES a B ⁰ , B ⁻ 277 ALBRECHT 88° r We rescale to 50% \[\begin{align*} a	reproduction control of the ports of the po	0^{-4} assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECH of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the finite fraction of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the finite fraction of B^+ and B^0 at 2.0 \times 2.0 \times 2.0 \times 3.1 \times 3.1 \times 3.1 \times 3.1 \times 4.3 \times 3.1 \times 4.3 \times 4.3 \times 5.1 \times 5.2 \times 5.3 \times	e T (45) 39 and a suming t 99 ages, fits, 88F the T (4, 10) 10 TTO89 g T (45) 10 TTO89 suming the	decays B _S pro CLE2 Limits, ARG S). TECN CLE2 CLE2 CLE0 CLE0 CLE0 CLEO CLEO CLEO CLEO CLEO CLEO CLEO CLEO	43% to B^0 duction fraction	tion of 0.12. 15% to $B^0 \overline{B}^0$. 145/ Γ 145/ Γ 145/ Γ 145/ Γ 146/ Γ 146/ Γ 147/ Γ 147/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 148/ Γ 149/ Γ
275 BEBEK 89 reports 276 ASSUMES a B ⁰ , B ⁻ 277 ALBRECHT 88° r We rescale to 50% \[\(\rho \overline{A} \pi - \right) \right \text{total} \] \[\lambda \text{LUE} \] \[\lambda \text{LOE} \text{LOE} \] \[\lambda \te	reproduction control of the ports of the po	0^{-4} assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the finite fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming data for avera 279 ALBRECH of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the finite fraction of B^+ and B^0 at 2.0 \times 10 ⁻⁴ assuming the finite fraction of B^+ and B^0 at 2.0 \times 2.0 \times 2.0 \times 3.1 \times 3.1 \times 3.1 \times 3.1 \times 4.3 \times 3.1 \times 4.3 \times 4.3 \times 5.1 \times 5.2 \times 5.3 \times	e $T(4.5)$ 39 and a suming t 99 ages, fits, 88F the $T(4.5)$ 10 TTO89 g $T(4.5)$ 10 TTO89 suming 10 TTO89	decays B_s product of the $T(4s)$	43% to B^0 duction fracts) decays 45% $\frac{COMMENT}{e^+e^-} \rightarrow \text{etc.} \bullet	tion of 0.12. 15% to $B^0 \overline{B}^0$. 145/ Γ 145/ Γ 145/ Γ 145/ Γ 146/ Γ 146/ Γ 147/ Γ 148/ Γ 148/ Γ 149/ Γ 149/ Γ 145/ Γ 145/ Γ
275 BEBEK 89 reports 276 ASSUMES a B ⁰ , B ⁻ 277 ALBRECHT 88° r We rescale to 50% Γ (ρ/π −) / Γ total VALUE <1.3 × 10−5 • • • We do not use to 1.8 × 10−4 278 ASSUMES equal pro 279 ALBRECHT 88° rescale to 50%. Γ (Λ/Λ) / Γ total VALUE <3.9 × 10−6 280 ASSUMES equal pro Γ (Δ⁰ Δ⁰) / Γ total VALUE <0.0015 281 BORTOLETTO 8° to 50%. Γ (Δ + Δ −) / Γ total VALUE <1.1 × 10−4 282 BORTOLETTO 8° rescale to 50%. Γ (Σ − Δ + +) / Γ total VALUE <0.0010 283 PROCARIO 94 rej	reproduction control of the ports of the po	0^{-4} assuming the sion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the sion fraction of 0.3 $0 \pm 2.0 \pm 2.2$ assuming the sion fraction of 0.4 $0 \pm 2.0 \times 10^{-4}$ assuming the sion fraction of $0 \pm 2.0 \times 10^{-4}$ assuming the sion fraction of $0 \pm 2.0 \times 10^{-4}$ assuming the sion fraction of $0 \pm 2.0 \times 10^{-4}$ assuming the sion fraction of $0 \pm 2.0 \times 10^{-4}$ assuming the sion fraction of $0 \pm 2.0 \times 10^{-4}$ as $0 \pm 2.0 \times 10^{-4}$	e $T(45)$ 39 and a suming t 99 ages, fits, 88F the $T(4$, sing the 1D TTO89 g $T(45)$ ID TTO89 suming $T(45)$	decays B_s product of the $T(4s)$	43% to B^0 duction fracts) decays 45% $\frac{COMMENT}{e^+e^-} \rightarrow \text{etc.} \bullet	tion of 0.12. 15% to $B^0 \overline{B}^0$. 145/ Γ 145/ Γ 145/ Γ 145/ Γ 146/ Γ 146/ Γ 147/ Γ 147/ Γ 148/ Γ 148/ Γ 149/ Γ 149/ Γ 149/ Γ 150/ Γ

```
\Gamma(\overline{\Lambda}_c^- p)/\Gamma_{\text{total}}
                                                                                                                                                                            \Gamma_{151}/\Gamma
                                                                             DOCUMENT ID
VALUE
                                                     CL%
                                                                                                                   TECN COMMENT
 <2.1 × 10<sup>-4</sup>
                                                                  285 FU
                                                                                                              97 CLE2 e^+e^- \rightarrow \Upsilon(45)
                                                     90
^{285}\,\mathrm{FU} 97 uses PDG 96 values of \Lambda_{C} branching ratio.
\Gamma(\overline{\Lambda}_c^- \rho \pi^0)/\Gamma_{\text{total}}
                                                                                                                                                                             \Gamma_{152}/\Gamma
                                                  CL%
                                                                             DOCUMENT ID TECN COMMENT
                                             90 286 FU
 <5.9 × 10<sup>-4</sup>
                                                                                                              97 CLE2 e^+e^- \rightarrow \Upsilon(45)
^{286}\,\mathrm{FU} 97 uses PDG 96 values of \varLambda_{\mathcal{C}} branching ratio.
\Gamma(\overline{\Lambda}_c^- p \pi^+ \pi^- \pi^0) / \Gamma_{\text{total}}
                                                                                                                                                                             \Gamma_{153}/\Gamma
                                             <u>CL% DOCU</u>
90 287 FU
                                                                             DOCUMENT ID TECN COMMENT
<5.07 × 10<sup>-3</sup>
                                                                                                              97 CLE2 e^+e^- \rightarrow \Upsilon(45)
^{287} FU 97 uses PDG 96 values of \Lambda_C branching ratio.
\Gamma(\overline{\Lambda}_c^- \rho \pi^+ \pi^- \pi^+ \pi^-)/\Gamma_{\text{total}}
                                                                                                                                                                             \Gamma_{154}/\Gamma
                                          <u>ct%</u> <u>pocu</u>
90 288 FU
                                                                             DOCUMENT ID TECN COMMENT
 <2.74 × 10<sup>-3</sup>
                                                                                          97 CLE2 e^+e^- \rightarrow \Upsilon(45)
^{288}\,\mathrm{FU} 97 uses PDG 96 values of \varLambda_{\mathcal{C}} branching ratio.
\Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                                                                                             \Gamma_{155}/\Gamma
                                                                             DOCUMENT ID TECN COMMENT
VALUE
                                                  __CL%_
 <3.9 × 10<sup>-5</sup>
                                                90 ^{289} ACCIARRI 951 L3 e^+e^- \rightarrow Z
<sup>289</sup> ACCIARRI 95I assumes f_{B^0}=39.5\pm4.0 and f_{B_5}=12.0\pm3.0\%.
 \Gamma(e^+e^-)/\Gamma_{total} \qquad \qquad \Gamma_{156}/\Gamma_{total} \qquad \Gamma_{156}/\Gamma_{total} \qquad \qquad \Gamma_{156}/\Gamma_{total} \qquad \qquad \Gamma_{156}/\Gamma_{total} \qquad \Gamma_{156}/\Gamma_{total} \qquad \qquad \Gamma_{156}/\Gamma_{total} \qquad \qquad \Gamma_{156}/\Gamma_{total} \qquad \Gamma
            tions.
                                                                             DOCUMENT ID TECN COMMENT
VALUE
                                                   CL%
 <5.9 × 10<sup>-6</sup>
                                                                             AMMAR
                                                      90
                                                                                                              94 CLE2 e^+e^- \rightarrow \Upsilon(45)
 • • • We do not use the following data for averages, fits, limits, etc. • • •
 <\!\!1.4\times10^{-5}
                                                                    <sup>290</sup> ACCIARRI
                                                                                                              978 L3
                                                      90
                                                                     291 AVERY
 <\!2.6\times10^{-5}
                                                                                                                898 CLEO e^+e^- \rightarrow \Upsilon(45)
                                                                     292 ALBRECHT
 < 7.6 \times 10^{-5}
                                                                                                              87D ARG e^+e^- \rightarrow \Upsilon(45)
                                                                    <sup>293</sup> AVERY
  < 6.4 \times 10^{-5}
                                                      90
                                                                                                               87 CLEO e^+e^- \rightarrow \Upsilon(45)
  <3 × 10<sup>-4</sup>
                                                      90
                                                                             GILES
                                                                                                               84 CLEO Repl. by AVERY 87
 ^{290} ACCIARRI 978 assume PDG 96 production fractions for B^+ , B^0 , B_{\rm S} , and \Lambda_b .
 <sup>291</sup> AVERY 89B reports < 3 \times 10^{-5} assuming the \Upsilon(45) decays 43% to B^0 \, \overline{B}{}^0. We rescale
 ^{292} ALBRECHT 87D reports < 8.5 	imes 10^{-5} assuming the 	au(4S) decays 45% to B^0\overline{B}^0. We
rescale to 50%. 293 AVERY 87 reports < 8 \times 10 ^{-5} assuming the \varUpsilon(45) decays 40% to {\it B}^0\overline{\it B}^0. We rescale
\Gamma(\mu^+\mu^-)/\Gamma_{total} Test for \Delta B=1 weak neutral current. Allowed by higher-order electroweak interactions
tions.
                                                     CL%
                                                                              DOCUMENT ID
                                                                                                              TECN COMMENT
                                                                    294 ABE
  <6.8 × 10<sup>-7</sup>
                                                                                                               98 CDF pp at 1.8 TeV
 • • • We do not use the following data for averages, fits, limits, etc. • • •
 <\!4.0\times10^{-5}
                                                                            ABBOTT
                                                                                                               90
  < 1.0 \times 10^{-5}
                                                                     <sup>295</sup> ACCIARRI
                                                                                                                97B L3
                                                      90
                                                                     <sup>296</sup> ABE
 <\!1.6\times10^{-6}
                                                                                                                96L CDF Repl. by ABE 98
                                                      90
  <\!5.9\times10^{-6}
                                                                          AMMAR
                                                      90
                                                                                                                94 CLE2 e^+e^- \rightarrow \Upsilon(4S)
 <\!8.3\times10^{-6}
                                                                     <sup>297</sup> ALBAJAR
                                                                                                                91c UA1 E_{cm}^{p\bar{p}} = 630 \text{ GeV}
                                                      90
                                                                     <sup>298</sup> ALBAJAR
  < 1.2 \times 10^{-5}
                                                                                                                91c UA1 E_{\text{cm}}^{p\overline{p}} = 630 GeV
  < 4.3 \times 10^{-5}
                                                                     <sup>299</sup> AVERY
                                                                                                                89B CLEO e^+e^- \rightarrow \Upsilon(4S)
                                                      90
  <\!4.5\times10^{-5}
                                                                                                               87D ARG e^+e^- \rightarrow \Upsilon(45)
                                                                     300 ALBRECHT
                                                      90
  < 7.7 \times 10^{-5}
                                                                     301 AVERY
                                                                                                                87 CLEO e^+e^- \rightarrow r(45)
                                                      90
                                                                                                                84 CLEO Repl. by AVERY 87
                                                                            GILES
 <sup>294</sup> ABE 98 assumes production of \sigma(B^0)=\sigma(B^+) and \sigma(B_5)/\sigma(B^0)=1/3. They nor-
         malize to their measured \sigma(B^0, p_T(B) > 6, |y| < 1.0) = 2.39 \pm 0.32 \pm 0.44 \,\mu b.
 ^{295} ACCIARRI 97B assume PDG 96 production fractions for B^+,\, {\cal B}^0,\, B_{\rm S},\, {\rm and}\,\, \Lambda_{\rm D}.
 ^{296}\,\mathrm{ABE} 96L assumes equal B^0 and B^+ production. They normalize to their measured
         \sigma(B^+, p_T(B) > 6 \text{ GeV}/c, |y| < 1) = 2.39 \pm 0.54 \,\mu\text{b}.
^{297}B^0 and B^0_s are not separated.
 <sup>298</sup> Obtained from unseparated B^0 and B^0_s measurement by assuming a B^0:B^0_s ratio 2:1.
 ^{299} AVERY 89B reports <5\times10^{-3} assuming the \varUpsilon(45) decays 43% to \emph{B}^{0}\,\overline{\emph{B}^{0}} . We rescale
^{300} ALBRECHT 870 reports < 5 \times\,10^{-5} assuming the \it T(45) decays 45% to \it B^0\,\overline{\it B}^0 . We
rescale to 50%. 301 AVERY 87 reports < 9 \times 10<sup>-5</sup> assuming the \Upsilon(45) decays 40% to B^0\overline{B}^0. We rescale
tions.
                                                                             DOCUMENT ID TECN COMMENT
                                                  <u>CL%</u>
 VALUE
                                                                             ALBRECHT 91E ARG e^+e^- \rightarrow \Upsilon(45)
  < 3.0 \times 10^{-4}
                                                     90
 90 <sup>302</sup> AVERY
   < 5.2 \times 10^{-4}
                                                                                                           87 CLEO e^+e^- \rightarrow \Upsilon(4S)
```

 302 AVERY 87 reports $<6.5\times10^{-4}$ assuming the $\varUpsilon(45)$ decays 40% to ${\cal B}^0\,\overline{\cal B}^0.$ We rescale


 B^0

tions.					_	order electro	weak intera
VALUE	CL%		DOCUMENT ID		TEÇN	COMMENT	
<3.6 × 10 ⁻⁴	90		AVERY			$e^+e^- \rightarrow$	T(45)
 Φ • We do not us 	e the follow	ing d	ata for average	s, fits	i, limits,	etc. • • •	
$< 5.2 \times 10^{-4}$	90		ALBRECHT	91E	ARG	$e^+e^- \rightarrow$	T(45)
303 AVERY 87 report to 50%.	ts < 4.5 × 1	0-4	assuming the 7	^(4 <i>S</i>)	decays	40% to B ⁰ B	⁰ . We resca
Γ(K*(892) ⁰ e ⁺ e	_)/F _{total}						Γ ₁₆₀ /
Test for $\Delta B = VALUE$	= 1 weak ne 		DOCUMENT ID		TECN	COMMENT	
<2.9 × 10 ⁻⁴	90		ALBRECHT		ARG	e ⁺ e ⁻ →	T(4S)
$\Gamma(K^*(892)^0 \mu^+ \mu^-)$ Test for $\Delta B =$	~)/Γ _{total}	utral	current				Γ ₁₆₁ /
VALUE	CL%	ULIBI	DOCUMENT ID		TECN	COMMENT	
<4.0 × 10 ⁻⁶	90	304	AFFOLDER	99B	CDF	ρ p̄ at 1.8 T	eV .
• • We do not us	e the follow	ring d	ata for average	s, fits	, limits,	etc. • • •	
<2.5 × 10 ⁵	90	305	ABE	96L	CDF	Repl. by Af	
-		200				EOLDER Epp = 630	? 99в
$< 2.3 \times 10^{-5}$	90	300	ALBAJAR		UA1		
$< 3.4 \times 10^{-4}$	90		ALBRECHT		ARG	$e^+e^- \rightarrow$	T(4S)
^{Ю4} AFFOLDER 99в							
¹⁰⁵ ABE 961 measur ¹⁰⁶ ALBAJAR 91C a	ed relative t issumes 36%	o B ⁰ 6 of 7	$\rightarrow J/\psi(1S)K$ Equarks give B	*(892 0 me	2) ⁰ using sons.	PDG 94 bra	nching ratio
(K*(892) ⁰ νν)/							Γ ₁₆₂ /
Test for $\Delta B = ALUE$	= 1 weak ne 	eutrai	DOCUMENT ID		TECN	COMMENT	
<1.0 × 10 ⁻³	90		ADAM			e ⁺ e ⁻ →	7
¹⁰⁷ ADAM 96D assu						e e	_
·(e [±] μ [∓])/Γ _{total}	J	_		3			Г ₁₆₃ /
Test of lepton	family nun <u>CL%</u>	nber o	onservation. <u>DOCUMENT ID</u>		<u>TEÇN</u>	COMMENT	
<3.5 × 10 ^{—6}	90		ABE	98v	CDF	p p at 1.8 T	eV .
• • We do not us	e the follow	ing d	ata for average	s, fits	, limits,	etc. • • •	
$< 1.6 \times 10^{-5}$	90	308	ACCIARRI	97B	L3	$e^+e^- \rightarrow$	Z
<5.9 × 10 ⁻⁶	, 9 0		AMMAR	94	CLE2	$e^+e^- \rightarrow$	T(45)
$< 3.4 \times 10^{-5}$	90		AVERY			e+e- →	
<4.5 × 10 ⁻⁵	90	311	ALBRECHT		ARG		
<7.7 × 10 ⁻⁵	90	311	AVERY	87		e+e- →	
				84		Repl. by AV	
	90		GILES				
⁰⁸ ACCIARRI 97в г	assume PD		production frac	tions			ι Λ _b .
⁰⁸ ACCIARRI 97B a ⁰⁹ Paper assumes ti ¹⁰ ALBRECHT 870	assume PD θ	lecay:	production fract 43% to $B^0 \overline{B}^0$	tions). We	rescale	to 50%.	_
⁰⁸ ACCIARRI 97B a ⁰⁹ Paper assumes ti ¹⁰ ALBRECHT 870 rescale to 50%. ¹¹ AVERY 87 repor	assume PD0 he $\Upsilon(45)$ oreports $<$	lecay:	production fraction $B^0 \overline{B^0}$	tions). We the	rescale Ƴ(45) c	to 50%. lecays 45% t	o <i>B⁰ B</i> ⁰ . V
⁰⁸ ACCIARRI 97B a ⁰⁹ Paper assumes ti ¹⁰ ALBRECHT 87C rescale to 50%. ¹¹ AVERY 87 repor to 50%.	assume PD0 he $\Upsilon(45)$ oreports $<$	lecay:	production fraction $B^0 \overline{B^0}$	tions). We the	rescale Ƴ(45) c	to 50%. lecays 45% t	o <i>B⁰ B⁰.</i> V
08 ACCIARRI 978 a 09 Paper assumes to 10 ALBRECHT 870 rescale to 50%. AVERY 87 report to 50%. $^{-}$ ($e^{\pm} \tau^{\mp}$)/ Γ_{total}	assume PD0 he Υ (45) of reports $<$	lecays 5 × 3 3−5 a	production fracts 43% to $B^0\overline{B^0}$ 10^{-5} assuming the γ	tions). We the	rescale Ƴ(45) c	to 50%. lecays 45% t	o <i>B⁰ B</i> ⁰ . V
08 ACCIARRI 978 a 09 Paper assumes ti 10 ALBRECHT 87c rescale to 50%. 11 AVERY 87 repor to 50%. (e± τ∓)/「total Test of lepton	assume PD0 he $\Upsilon(45)$ coreports $<$ rts $< 9 \times 10$	lecays 5 × 3 3−5 a	production fracts 43% to $B^0\overline{B}^0$ 10^{-5} assuming the T conservation.	tions). We the (45)	e rescale T(45) c decays 4	to 50%. decays 45% t 40% to <i>B⁰ B</i>	o <i>B⁰ B⁰. V</i>
08 ACCIARRI 978 a 09 Paper assumes ti 10 ALBRECHT 87c rescale to 50%. 11 AVERY 87 repor to 50%. (e± 7∓)/Ftotal Test of lepton ALUE	assume PD0 he Υ (45) of reports $<$	lecays 5 × 3 3−5 a	production fracts 43% to $B^0\overline{B^0}$ 10^{-5} assuming the γ	tions). We ; the (4S)	e rescale T(45) c decays 4	to 50%. lecays 45% t	ο Β ⁰ Β̄ ⁰ . V
08 ACCIARRI 978 a 09 Paper assumes ti 10 ALBRECHT 870 111 AVERY 87 repor to 50%. $(e^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$ Test of lepton ΔLUE $< 5.3 \times 10^{-4}$	assume PDG the $\Upsilon(45)$ coreports $<$ or reports $<$	decays 5 × 3 3−5 a	production fraction 1 43% to 1 0 1 0 1 0 1 0 0 assuming the 2 conservation. 1 0 $^{$	tions). We ; the (4S)	rescale T (4 5) of decays 4	to 50%. decays 45% t 40% to <i>B⁰ B</i>	$0 B^0 \overline{B}^0$. We rescon
111 AVERY 87 report to 50%. $(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton ALUE $<5.3 \times 10^{-4}$ Test of lepton Test of lepton MLUE	assume PDG the $\Upsilon(45)$ coreports $<$ or reports $<$	decays 5 × 3 3−5 a	production fraction 1 43% to 1 0 1 0 1 0 1 0 0 assuming the 2 conservation. 1 0 $^{$	tions). We the (4 <i>S</i>)	e rescale T(45) d decays 4 <u>TECN</u> CLE2	to 50%. decays 45% t 40% to <i>B⁰ B</i>	0 B ⁰ B ⁰ . We rescar Γ ₁₆₄ /
08 ACCIARRI 978 a 09 Paper assumes ti 10 ALBRECHT 870 rescale to 50%. 111 AVERY 87 report to 50%. ($e^{\pm} \tau^{\mp}$)/\(\Gamma_{total} \text{total}\)	assume PD0 the $\Upsilon(45)$ corresports < test	decays 5 × 3 3−5 a	production fraction and the second section of the second	tions). We ; the (4 <i>S</i>)	e rescale T(45) d decays 4 <u>TECN</u> CLE2	to 50%. lecays 45% to $B^0\overline{B}$ COMMENT $e^+e^- \rightarrow$	$0.8^{0}B^{0}$. We rescond Γ_{164} . $\Upsilon^{(45)}$
08 ACCIARRI 978 a 09 Paper assumes ti 10 ALBRECHT 870 rescale to 50%. 111 AVERY 87 report to 50%. ($e^{\pm} \tau^{\mp}$)/\(\Gamma_{total} \text{total}\)	assume PDI he $\Upsilon(45)$ of reports $<$ or reports $<$ 0. In this parameter $=$ 0. In th	5 × 1 5 × 1 10 – 5 a	production frac 5 43% to B ⁰ B ⁰ 10 ⁻⁵ assuming assuming the T conservation. <u>DOCUMENT ID</u> AMMAR AMMAR	94	rescale (45) c decays 4 TECN CLE2	to 50%. lecays 45% to $B^0\overline{B}$ $COMMENT$ $e^+e^- \rightarrow COMMENT$	$6 B^0 \overline{B}^0$. We resconside Γ_{164} . Γ_{165}
08 ACCIARRI 978 a 09 Paper assumes ti 10 ALBRECHT 87c rescale to 50%. 111 AVERY 87 repor to 50%. ($e^{\pm} \tau^{\mp}$)/\(\Gamma_{total} \text{\text{Total}}\) Test of lepton ALUE ($\mu^{\pm} \tau^{\mp}$)/\(\Gamma_{total} \text{\text{Total}}\) Test of lepton ALUE ($\mu^{\pm} \tau^{\mp}$)/\(\Gamma_{total} \text{\text{Total}}\) Test of lepton ALUE (8.3 × 10^{-4}	assume PDI the T(45) to preports < rts < 9 × 10 family num	5 × 1 5 × 1 7 – 5 2 7 – 5 2	production fracts 43% to B ⁰ B ⁰ 10 ⁻⁵ assuming the T conservation. DOCUMENT ID AMMAR CONSERVATION IN	94	rescale (45) c decays 4 TECN CLE2	to 50%. lecays 45% to $B^0\overline{B}$ $COMMENT$ $e^+e^- \rightarrow COMMENT$	$6 B^0 \overline{B}^0$. We resconside Γ_{164} . Γ_{165}
08 ACCIARRI 978 a 09 Paper assumes ti 10 ALBRECHT 870 rescale to 50%. 111 AVERY 87 report to 50%. $(-\frac{e^{\pm} \tau^{\mp}}{10000000000000000000000000000000000$	assume PDI the T(45) of preports < tris < 9 × 10 family num	5 × 1 5 × 1 5 × 1 5 × 1 5 × 1 6 × 1	production fracts 43% to B^0B^0 to B^0B^0 to B^0B^0 to B^0B^0 to B^0B^0 to B^0B^0 assuming the T^0 conservation. DOCUMENT ID AMMAR AMMAR ZATION IN (12) D^0 at D^0	94 94 115) h	rescale (45) c decays 4 TECN CLE2 TECN CLE2 DECAY	to 50%. lecays 45% to $B^0\overline{B}$ COMMENT $e^+e^- \rightarrow$ COMMENT $e^+e^- \rightarrow$	$B^0 B^0$. We rescale Γ_{164} / Γ_{165} / Γ_{165} / Γ_{165} /
08 ACCIARRI 978 a 09 Paper assumes ti 10 ALBRECHT 870 rescale to 50%. 111 AVERY 87 report to 50%.	assume PDI the T(45) of preports < tris < 9 × 10 family num	5 × 1 5 × 1 5 × 1 5 × 1 5 × 1 6 × 1	production fracts 43% to B^0B^0 (10 ⁻⁵ assuming the T conservation. DOCUMENT ID AMMAR ZATION IN 12)0 at $B^0 \rightarrow J/\psi$ (with $CP = -$	94 94 (15) h	rescale (45) c decays TECN CLE2 TECN CLE2 PECAY (*(892))	to 50%. lecays 45% to $B^0\overline{B}$ COMMENT $e^+e^- \rightarrow$ COMMENT $e^+e^- \rightarrow$	$B^0 B^0$. We rescale Γ_{164} / Γ_{165} / Γ_{165} / Γ_{165} /
08 ACCIARRI 97B 2 09 Paper assumes ti 10 AL BRECHT 87c rescale to 50%. 111 AVERY 87 report to 50%. $(e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$ Test of lepton $\frac{ALUS}{\sqrt{4}} \times 10^{-4}$ $\Gamma_{L}/\Gamma \text{ in } B^{0} \rightarrow \Gamma_{L}/\Gamma = 1[0] \text{ v}$ $\kappa_{S}^{0} \pi^{0} \text{ is a pu}$ $\frac{ALUS}{\sqrt{4}} \times 10^{-4}$	assume PDI he Υ(45) α reports < rts < 9 × 10 family nun	ARI **(89)	production fractions assuming the Υ conservation. DOCUMENT ID AMMAR ZATION IN 12) ⁰ at $B^0 \to J/\psi$ at $B^0 \to J/\psi$ at $B^0 \to J/\psi$ at $B^0 \to J/\psi$	94 94 115) #	rescale (45) c decays TECN CLE2 TECN CLE2 CLE2 CLE2 TECN CLE2	to 50%. lecays 45% to $B^0\overline{B}$ COMMENT $e^+e^- \rightarrow$ COMMENT $e^+e^- \rightarrow$ O followed by	$B^0 B^0$. We rescaled T_{164} / T_{165} / T_{165} / T_{165} / T_{165} / T_{165} / T_{165} /
08 ACCIARRI 978 a 09 Paper assumes ti 10 ALBRECHT 870 rescale to 50%. 111 AVERY 87 report to 50%. $(-\frac{1}{2} + \frac{1}{2}) \Gamma_{\text{total}} \Gamma_{\text{est}} = \frac{1}{2} \Gamma_{\text{est}$	assume PDI he Υ(45) α reports < rts < 9 × 10 family nun	ARI	production fractions and the production of the	94 94 115) # 94 94 94 94 94 94	TECN CLE2 TECN CLE2 TECN CLE2 TECN CLE2 TECN CLE2	to 50%. lecays 45% to 40% to $B^0\overline{B}$ COMMENT $e^+e^- \rightarrow$ COMMENT $e^+e^- \rightarrow$ O followed by COMMENT 5ee the ideage	$0.80 \overline{B}^0$. Vo resci
08 ACCIARRI 97B 2 09 Paper assumes ti 10 ALBRECHT 87C rescale to 50%. 111 AVERY 87 report to 50%. $(e^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$ Test of lepton $\frac{ALUE}{(5.3 \times 10^{-4})}$ (8.3×10^{-4}) $\Gamma_{L}/\Gamma = 1[0] \text{ w}$ $\frac{ALUE}{(5.3 \times 10^{-4})}$ $\Gamma_{L}/\Gamma = 1[0] \text{ w}$ $\frac{ALUE}{(5.3 \times 10^{-4})}$ $\Gamma_{L}/\Gamma = 1[0] \text{ w}$ $\frac{ALUE}{(5.3 \times 10^{-4})}$ 1.60 \(\pm 0.09 \text{ OUR AV} \) 0.52 \(\pm 0.07 \pm 0.04 \text{ OV} \)	assume PDI the T(45) of preports < to be reports < to separate the preports	ARI	production fractions assuming the T conservation. DOCUMENT ID AMMAR ZATION IN 12)0 at $B^0 \rightarrow J/\psi$ with $CP = D$ DOCUMENT ID DOCUMENT ID DOCUMENT ID at $CP = D$ DOCUMENT ID DOCUMENT I	94 94 115) A 115) A 115) A 115) A	TECN CLE2 TECN CLE2 TECN CLE2 TECN CLE2 TECN CLE2 TECN CLE2 to 50%. lecays 45% to 40% to $B^0\overline{B}$ COMMENT $e^+e^- \rightarrow$ COMMENT $e^+e^- \rightarrow$ O followed by COMMENT See the ideog $e^+e^- \rightarrow$	B^0B^0 . Vo Pick B^0B^0 . V	
08 ACCIARRI 978 a 09 Paper assumes ti 10 ALBRECHT 870 rescale to 50%. 111 AVERY 87 report to 50%. $(-\frac{e^{\pm} \tau^{\mp}}{10000000000000000000000000000000000$	assume PDI he Υ(45) α reports < rts < 9 × 10 family nun	ARI *(89 ** ** ** ** ** ** ** ** ** ** ** ** **	production fractions and the production of the	94 94 15) # 14-11 95 95 95	TECN CLE2 TECN CLE2 TECN CLE2 TECN CLE2 TECN CLE2	to 50%. lecays 45% to 40% to $B^0\overline{B}$ COMMENT $e^+e^- \rightarrow$ COMMENT $e^+e^- \rightarrow$ O followed by COMMENT 5ee the ideage	$B^0 B^0$. We rescribed to $B^0 B^0$. We rescribed to $T(45)$. The $T(45)$ and $T(45)$ are the second to $T(45)$ are the second to $T(45)$ and $T(45)$ are the second to $T(45)$ are the second to $T(45)$ and $T(45)$ are th

 312 JESSOP 97 is the average over a mixture of $B^{
m 0}$ and $B^{
m +}$ decays. The P-wave fraction

is found to be $0.16 \pm 0.08 \pm 0.04$

 313 Averaged over an admixture of B^0 and B^+ decays.

$$\Gamma_L/\Gamma$$
 in $B^0 \rightarrow D^{\bullet-} \rho^+$

VALUE

0.93±0.05±0.05

VALUE

EVTS

DOCUMENT ID

TECN

COMMENT

TECN

COMMENT

T(4S)

$B^0-\overline{B}^0$ MIXING

Written March 2000 by O. Schneider (Univ. of Lausanne)

Formalism in quantum mechanics

There are two neutral $B^0-\overline{B}^0$ meson systems, $B_d-\overline{B}_d$ and $B_s-\overline{B}_s$ (generically denoted $B_q-\overline{B}_q$, q=s,d), which exhibit the phenomenon of particle-antiparticle mixing [1]. Such a system is produced in one of its two possible states of well-defined flavor: $|B^0\rangle$ ($\overline{b}q$) or $|\overline{B}^0\rangle$ ($b\overline{q}$). Due to flavor-changing interactions, this initial state evolves into a time-dependent quantum superposition of the two flavor states, $a(t)|B^0\rangle + b(t)|\overline{B}^0\rangle$, satisfying the equation

$$i\frac{\partial}{\partial t} {a(t) \choose b(t)} = \left(\mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \right) {a(t) \choose b(t)},$$
 (1)

where ${\bf M}$ and ${\bf \Gamma}$, known as the mass and decay matrices, describe the dispersive and absorptive parts of $B^0-\overline B{}^0$ mixing. These matrices are hermitian, and CPT invariance requires $M_{11}=M_{22}\equiv M$ and $\Gamma_{11}=\Gamma_{22}\equiv \Gamma$, where M and Γ are the mass and decay width of the B^0 and $\overline B{}^0$ flavor states.

The two eigenstates of the effective hamiltonian matrix $(\mathbf{M} - \frac{i}{2}\Gamma)$ are given by

$$|B_{\pm}\rangle = p|B^{0}\rangle \pm q|\overline{B}^{0}\rangle,$$
 (2)

and correspond to the eigenvalues

$$\lambda_{\pm} = \left(M - \frac{i}{2}\Gamma\right) \pm \frac{q}{p}\left(M_{12} - \frac{i}{2}\Gamma_{12}\right) , \qquad (3)$$

where

$$\frac{q}{p} = \sqrt{\frac{M_{12}^{\star} - \frac{i}{2}\Gamma_{12}^{\star}}{M_{12} - \frac{i}{2}\Gamma_{12}}}.$$
 (4)

We choose a convention where Re(q/p) > 0 and $CP|B^0\rangle = |\overline{B}^0\rangle$. An alternative notation is

$$|B_{\pm}\rangle = \frac{(1+\epsilon)|B^0\rangle \pm (1-\epsilon)|\overline{B}^0\rangle}{\sqrt{2(1+|\epsilon|^2)}} \quad \text{with} \quad \frac{1-\epsilon}{1+\epsilon} = \frac{q}{p}.$$
 (5)

The time dependence of these eigenstates of well-defined masses $M_{\pm}=\mathrm{Re}(\lambda_{\pm})$ and widths $\Gamma_{\pm}=-2\,\mathrm{Im}(\lambda_{\pm})$ is given by

the phases $e^{-i\lambda_{\pm}t}=e^{-iM_{\pm}t}e^{-\frac{1}{2}\Gamma_{\pm}t}$: the evolution of a pure $|B^0\rangle$ or $|\overline{B}{}^{0}\rangle$ state at t=0 is thus given by

$$|B^{0}(t)\rangle = g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B}^{0}\rangle,$$
 (6)

$$|\overline{B}^{0}(t)\rangle = g_{+}(t)|\overline{B}^{0}\rangle + \frac{p}{g}g_{-}(t)|B^{0}\rangle, \qquad (7)$$

where

$$g_{\pm}(t) = \frac{1}{2} \left(e^{-i\lambda_{+}t} \pm e^{-i\lambda_{-}t} \right) . \tag{8}$$

This means that the flavor states oscillate into each other with time-dependent probabilities proportional to

$$|g_{\pm}(t)|^2 = \frac{e^{-\Gamma t}}{2} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) \pm \cos(\Delta m t) \right],$$
 (9)

where

$$\Delta m = |M_+ - M_-|, \quad \Delta \Gamma = |\Gamma_+ - \Gamma_-|. \tag{10}$$

Time-integrated mixing probabilities are only well defined when considering decays to flavor-specific final states, i.e. final states f such that the instantaneous decay amplitudes $A_{\overline{f}} = \langle \overline{f} | H | B^0
angle$ and $\overline{A}_f = \langle f|H|\overline{B}^0\rangle$, where H is the weak interaction hamiltonian, are both zero. Due to mixing, a produced B^0 can decay to the final state \overline{f} (mixed event) in addition to the final state f (unmixed event). Restricting the sample to these two decay channels, the time-integrated mixing probability is given by

$$\chi_f^{B^0 \to \overline{B}^0} = \frac{\int_0^\infty |\langle \overline{f} | H | B^0(t) \rangle|^2 dt}{\int_0^\infty |\langle \overline{f} | H | B^0(t) \rangle|^2 dt + \int_0^\infty |\langle f | H | B^0(t) \rangle|^2 dt}$$

$$= \frac{|\xi_f|^2 (x^2 + y^2)}{|\xi_f|^2 (x^2 + y^2) + 2 + x^2 - y^2},$$
(11)

where we have defined $\xi_f = \frac{q}{n} \frac{A_{\overline{f}}}{A_f}$ and

$$x = \frac{\Delta m}{\Gamma}, \quad y = \frac{\Delta \Gamma}{2\Gamma}.$$
 (12)

The mixing probability $\chi_f^{\overline B{}^0 \to B^0}$ for the case of a produced $\overline{B}{}^0$ is obtained by replacing ξ_f with $1/\xi_f$ in Eq. (11). It is different from $\chi_f^{B^0 \to \overline{B}^0}$ if $|\xi_f|^2 \neq 1$, a condition reflecting noninvariance under the CP transformation. CP violation in the decay amplitudes is discussed elsewhere [2] and we assume $|\overline{A}_{\overline{f}}| = |A_f|$ from now on. The deviation of $|q/p|^2$ from 1, namely the quantity

$$1 - \left| \frac{q}{p} \right|^2 = \frac{4 \operatorname{Re}(\epsilon)}{1 + |\epsilon|^2} + \mathcal{O}\left(\left(\frac{\operatorname{Re}(\epsilon)}{1 + |\epsilon|^2} \right)^2 \right) , \tag{13}$$

describes CP violation in $B^0-\overline{B}^0$ mixing. As can be seen from Eq. (4), this can occur only if $M_{12} \neq 0$, $\Gamma_{12} \neq 0$ and if the phase difference between M_{12} and Γ_{12} is different from 0 or π .

In the absence of CP violation, $|q/p|^2 = 1$, $Re(\epsilon) = 0$, the mass eigenstates are also CP eigenstates,

$$CP |B_{\pm}\rangle = \pm |B_{\pm}\rangle, \tag{14}$$

the phases $\varphi_{M_{12}} = \arg(M_{12})$ and $\varphi_{\Gamma_{12}} = \arg(\Gamma_{12})$ satisfy

$$\sin(\varphi_{M_{12}} - \varphi_{\Gamma_{12}}) = 0, \qquad (15)$$

the mass and decay width differences reduce to

$$\Delta m = 2 |M_{12}|, \qquad \Delta \Gamma = 2 |\Gamma_{12}|, \qquad (16)$$

and the time-integrated mixing probabilities $\chi_f^{B^0 \to \overline{B}^0}$ and $\chi_f^{\overline{B}^0 \to B^0}$ become both equal to

$$\chi = \frac{x^2 + y^2}{2(x^2 + 1)} \,. \tag{17}$$

Standard Model predictions and phenomenology

In the Standard Model, the transitions $B_q^0 \to \overline{B}_q^0$ and $\overline{B}_q^0 \to B_q^0$ are due to the weak interaction. They are described, at the lowest order, by the box diagrams involving two W bosons and two up-type quarks, as is the case for $K^0-\overline{K}^0$ mixing. However, the long range interactions arising from intermediate virtual states are negligible for the neutral B meson systems, because the large B mass is away from the region of hadronic resonances. The calculation of the dispersive and absorptive parts of the box diagrams yields the following predictions for the off-diagonal element of the mass and decay matrices [3],

$$M_{12} = -\frac{G_F^2 m_W^2 \eta_B m_{B_q} B_{B_q} f_{B_q}^2}{12\pi^2} S_0(m_t^2/m_W^2) (V_{tq}^* V_{tb})^2 \qquad (18)$$

$$\Gamma_{12} = \frac{G_F^2 m_b^2 \eta_B' m_{B_q} B_{B_q} f_{B_q}^2}{8\pi}$$

$$\times \left[(V_{tq}^* V_{tb})^2 + V_{tq}^* V_{tb} V_{cq}^* V_{cb} \mathcal{O}\left(\frac{m_c^2}{m_b^2}\right) + (V_{cq}^* V_{cb})^2 \mathcal{O}\left(\frac{m_c^4}{m_t^4}\right) \right] \qquad (19)$$

where G_F is the Fermi constant, m_W the W mass, m_i the mass of quark i, and where $m_{B_{m{q}}}=M,\,f_{B_{m{q}}}$ and $B_{B_{m{q}}}$ are the $B_{m{q}}^0$ mass, decay constant and bag parameter. The known function $S_0(x_t)$ can be approximated very well with $0.784 x_t^{0.76}$ [4] and V_{ij} are the elements of the CKM matrix [5]. The QCD corrections η_B and η_B' are of order unity. The only non negligible contributions to M_{12} are from top-top diagrams. The phases of M_{12} and Γ_{12} satisfy

$$\varphi_{M_{12}} - \varphi_{\Gamma_{12}} = \pi + \mathcal{O}\left(\frac{m_c^2}{m_b^2}\right) \tag{20}$$

implying that the mass eigenstates have mass and width differences of opposite signs. This means that, like in the $K^0-\overline{K}^0$ system, the "heavy" state with mass $M_{\text{heavy}} = \max(M_+, M_-)$ has a smaller decay width than that of the "light" state with mass $M_{\text{light}} = \min(M_+, M_-)$. We thus redefine

$$\Delta m = M_{\text{heavy}} - M_{\text{light}}, \quad \Delta \Gamma = \Gamma_{\text{light}} - \Gamma_{\text{heavy}}, \quad (21)$$

where Δm is positive by definition and $\Delta \Gamma$ is expected to be positive in the Standard Model.

Furthermore, since Γ_{12} is, like M_{12} , dominated by the top-top diagrams, the quantity

$$\left| \frac{\Gamma_{12}}{M_{12}} \right| \simeq \frac{3\pi}{2} \frac{m_b^2}{m_W^2} \frac{1}{S_0(m_t^2/m_W^2)} \sim \mathcal{O}\left(\frac{m_b^2}{m_t^2}\right) \eqno(22)$$

 B^0

is small, and a power expansion of $|q/p|^2$ yields

$$\left|\frac{q}{p}\right|^2 = 1 + \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin(\varphi_{M_{12}} - \varphi_{\Gamma_{12}}) + \mathcal{O}\left(\left|\frac{\Gamma_{12}}{M_{12}}\right|^2\right). \quad (23)$$

Therefore, considering both Eqs. (20) and (22), the CP-violating parameter

$$1 - \left| \frac{q}{p} \right|^2 \simeq \operatorname{Im} \left(\frac{\Gamma_{12}}{M_{12}} \right) \tag{24}$$

is expected to be tiny: $\sim \mathcal{O}(10^{-3})$ for the $B_d - \overline{B}_d$ system and $\lesssim \mathcal{O}(10^{-4})$ for the $B_s - \overline{B}_s$ system [6].

In the approximation of negligible CP violation in the mixing, the ratio $\Delta\Gamma/\Delta m$ is equal to the small quantity $|\Gamma_{12}/M_{12}|$ of Eq. (22); it is hence independent of CKM matrix elements, *i.e.* the same for the $B_d-\overline{B}_d$ and $B_s-\overline{B}_s$ systems. It can be calculated with lattice QCD techniques; typical results are $\sim 5\times 10^{-3}$ with quoted uncertainties of 30% at least. Given the current experimental knowledge (discussed below) on the mixing parameter x,

$$\begin{cases} x_d = 0.73 \pm 0.03 & (B_d - \overline{B}_d \text{ system}) \\ x_s \gtrsim 20 \text{ at } 95\% \text{ CL} & (B_s - \overline{B}_s \text{ system}) \end{cases},$$
 (25)

the Standard Model thus predicts that $\Delta\Gamma/\Gamma$ is very small for the $B_d-\overline{B}_d$ system (below 1%), but may be quite large for the $B_s-\overline{B}_s$ system (up to \sim 20%). This width difference is caused by the existence of final states to which both the B_q^0 and \overline{B}_q^0 mesons can decay. Such decays involve $b\to c\overline{c}q$ quark-level transitions, which are Cabibbo-suppressed if q=d and Cabibbo-allowed if q=s. If the final states common to B_s^0 and \overline{B}_s^0 are predominantly CP-even as discussed in Ref. 7, then the $B_s-\overline{B}_s$ mass eigenstate with the largest decay width corresponds to the CP-even eigenstate. Taking Eq. (21) into account, one thus expects $\Gamma_{\text{light}}=\Gamma_+$ and

$$\Delta m_s = M_- - M_+ > 0$$
, $\Delta \Gamma_s = \Gamma_+ - \Gamma_- > 0$. (26)

Experimental issues and methods for oscillation analuses

Time-integrated measurements of B^0 - \overline{B}^0 mixing were published for the first time in 1987 by UA1 [8] and ARGUS [9], and since then by many different experiments. These are typically based on counting same-sign and opposite-sign lepton pairs from the semileptonic decay of the produced $b\bar{b}$ pairs. At high energy colliders, such analyses cannot easily separate the B_d and B_s contributions, therefore experiments at $\Upsilon(4S)$ machines are best suited to measure χ_d .

However, better sensitivity is obtained from time-dependent analyses aimed at the direct measurement of the oscillation frequencies Δm_d and Δm_s , from the proper time distributions of B_d or B_s candidates identified through their decay in (mostly) flavor-specific modes and suitably tagged as mixed or unmixed. This is particularly true for the $B_s - \overline{B}_s$ system where the large value of x_s implies maximal mixing, i.e. $\chi_s \simeq 1/2$. In such analyses, performed at high-energy colliders, the neutral B

mesons are either partially reconstructed from a charm meson, or selected from a lepton with high transverse momentum with respect to the b jet, or selected from a reconstructed displaced vertex. The proper time $t=\frac{m_B}{p}L$ is measured from the distance L between the production vertex and the B decay vertex, as measured with a silicon vertex detector, and from an estimate of the B momentum p.

The statistical significance S of an oscillation signal can be approximated as [10]

$$S \approx \sqrt{N/2} f_{\text{sig}} \left(1 - 2\eta \right) e^{-(\Delta m \sigma_t)^2/2}, \qquad (27)$$

where N and $f_{\rm sig}$ are the number of candidates and the fraction of signal in the selected sample, η is the mistag probability, and σ_t is the proper time resolution. The quantity $\mathcal S$ decreases very quickly as Δm increases; this dependence is controlled by σ_t , which is therefore a critical parameter for Δm_s analyses. The proper time resolution $\sigma_t \sim \frac{m_B}{\langle p \rangle} \sigma_L \oplus t \frac{\sigma_p}{p}$ includes a constant contribution due to the decay length resolution σ_L (typically 0.1–0.3 ps), and a term due to the relative momentum resolution $\frac{\sigma_p}{p}$ (typically 10–20% for partially reconstructed decays), which increases with proper time.

In order to tag a B candidate as mixed or unmixed, it is necessary to determine its flavor state both at production (initial state) and at decay (final state). The initial and final state mistag probabilities, η_i and η_f , degrade $\mathcal S$ by a total factor $(1-2\eta)=(1-2\eta_i)(1-2\eta_f)$. In inclusive lepton analyses, the final state is tagged by the charge of the lepton from $b\to \ell^-$ decays; the biggest contribution to η_f is then due to $\overline{b}\to \overline{c}\to \ell^-$ decays. Alternatively, the charge of a reconstructed charm meson $(D^{*-}$ from B_d^0 or D_s^- from B_s^0), or that of a kaon thought to come from a $b\to c\to s$ decay [11], can be used. For fully inclusive analyses based on topological vertexing, final state tagging techniques include jet charge [12] and charge dipole methods [11].

The initial state tags are somewhat less dependent on the procedure used to select B candidates. They can be divided in two groups: the ones that tag the initial charge of the \bar{b} quark contained in the B candidate itself (same-side tag), and the ones that tag the initial charge of the other b quark produced in the event (opposite-side tag). On the same side, the charge of a track from the primary vertex is correlated with the production state of the B if that track is a decay product of a B^{**} state or the first particle in the fragmentation chain [13,14]. Jet charge techniques work on both sides. Finally, the charge of a lepton from $b \to \ell^-$ or of a kaon from $b \to c \to s$ can be used as opposite side tags, keeping in mind that their performance depends on integrated mixing. At SLC, the beam polarization produced a sizeable forward-backward asymmetry in the $Z \to b\bar{b}$ decays and provided another very interesting and effective initial state tag based on the polar angle of the B candidate [11]. Initial state tags have also been combined to reach $\eta_i \sim 26\%$ at LEP [14,15] or even 16% at SLD [11] with full efficiency. The equivalent figure at CDF is currently $\sim 40\%$ [16].

In the absence of experimental evidence for a width difference, and since $\Delta\Gamma/\Delta m$ is predicted to be very small, oscillation analyses typically neglect $\Delta\Gamma$ and describe the data with the physics functions $\Gamma e^{-\Gamma t} (1 \pm \cos \Delta m t)/2$. As can be seen from Eq. (9), a non zero value of $\Delta\Gamma$ would effectively reduce the oscillation amplitude with a small time-dependent factor that would be very difficult to distinguish from time resolution effects. Whereas measurements of Δm_d are usually extracted from the data using a maximum likelihood fit, no significant $B_s - \overline{B}_s$ oscillations have been seen so far, and all B_s analyses set lower limits on Δm_s . The original technique used to set such limits was to study the likelihood as a function of Δm_s . However, these limits turned out to be difficult to combine. A method was therefore developed [10], in which a B_s oscillation amplitude A is measured at each fixed value of Δm_s , using a maximum likelihood fit based on the functions $\Gamma_s e^{-\Gamma_s t} (1 \pm A \cos \Delta m_s t)/2$. To a very good approximation, the statistical uncertainty on A is Gaussian and equal to 1/S [10]. Measurements of A performed at a given value of Δm_s can be averaged easily. If $\Delta m_s = \Delta m_s^{\rm true}$, one expects $\mathcal{A}=1$ within the total uncertainty $\sigma_{\mathcal{A}}$; however, if Δm_s is far from its true value, a measurement consistent with A = 0 is expected. A value of Δm_s can be excluded at 95% CL if $A + 1.645 \sigma_A \leq 1$. If Δm_s^{true} is very large, one expects $\mathcal{A}=0$, and all values of Δm_s such that $1.645 \, \sigma_{\mathcal{A}}(\Delta m_s) < 1$ are expected to be excluded at 95% CL. Because of the proper time resolution, the quantity $\sigma_{\mathcal{A}}(\Delta m_s)$ is an increasing function of Δm_s and one therefore expects to be able to exclude individual Δm_s values up to $\Delta m_s^{\rm sens}$, where $\Delta m_s^{\rm sens}$, called here the sensitivity of the analysis, is defined by $1.645 \, \sigma_{\mathcal{A}}(\Delta m_s^{\text{sens}}) = 1$.

B_d mixing studies

Many $B_d - \overline{B}_d$ oscillations analyses have been performed by the ALEPH [17,12], CDF [13,18], DELPHI [19], L3 [20], OPAL [21] and SLD [11] collaborations. Although a variety of different techniques have been used, the Δm_d results have remarkably similar precision. The systematic uncertainties are not negligible; they are often dominated by sample composition, mistag probability, or b-hadron lifetime contributions. Before being combined, the measurements are adjusted on the basis of a common set of input values, including the b-hadron lifetimes and fractions published in this Review. Some measurements are statistically correlated. Systematic correlations arise both from common physics sources (fragmentation fractions, lifetimes, branching ratios of b hadrons), and from purely experimental or algorithmic effects (efficiency, resolution, tagging, background description). Combining all published measurements [17,13,19,20,21] and accounting for all identified correlations as described in Ref. 22 yields $\Delta m_d = 0.478 \pm 0.012 \text{(stat)} \pm 0.013 \text{(syst)} \text{ ps}^{-1}.$

On the other hand, ARGUS and CLEO have published timeintegrated measurements based on semileptonic decays [23,24], which average to $\chi_d^{\Upsilon(4S)}=0.156\pm0.024$. The width difference $\Delta\Gamma_d$ could in principle be extracted from the measured value of Γ_d , and the above averages for Δm_d and χ_d (see Eqs. (12) and (17)). The results are however compatible with $\Delta\Gamma_d=0$, and their precision is still insufficient to provide an interesting constraint. Neglecting $\Delta\Gamma_d$ and using the measured B_d lifetime, the Δm_d and χ_d results are combined to yield the world average

$$\Delta m_d = 0.472 \pm 0.017 \text{ ps}^{-1}$$
 (28)

or, equivalently,

$$\chi_d = 0.174 \pm 0.009. \tag{29}$$

Evidence for CP violation in B_d mixing has been searched for, both with semileptonic and inclusive B_d decays, in samples where the initial flavor state is tagged. In the semileptonic case, where the final state tag is also available, the following asymmetry

$$\frac{N(\overline{B}_d^0(t) \to \ell^+ \nu_\ell X) - N(B_d^0(t) \to \ell^- \overline{\nu}_\ell X)}{N(\overline{B}_d^0(t) \to \ell^+ \nu_\ell X) + N(B_d^0(t) \to \ell^- \overline{\nu}_\ell X)}$$

$$= a_{CP} \simeq 1 - |q/p|_d^2 \simeq \frac{4 \text{Re}(\epsilon_d)}{1 + |\epsilon_d|^2} \tag{30}$$

has been measured, either in time-integrated analyses at CLEO [24] and CDF [25], or in more recent and sensitive time-dependent analyses at LEP [26,27,28]. In the inclusive case, also investigated at LEP [29,27,30], no final state tag is used, and the asymmetry [31]

$$\frac{N(B_d^0(t) \to \text{all}) - N(\overline{B}_d^0(t) \to \text{all})}{N(B_d^0(t) \to \text{all}) + N(\overline{B}_d^0(t) \to \text{all})}$$

$$\simeq a_{CP} \left[\frac{x_d}{2} \sin(\Delta m_d t) - \sin^2\left(\frac{\Delta m_d t}{2}\right) \right]$$
(31)

must be measured as a function of the proper time to extract information on CP violation. In all cases asymmetries compatible with zero have been found, with a precision limited by the available statistics. A simple average of all published and preliminary results [24–30] neglecting small possible statistical correlations and assuming half of the systematics to be correlated, is $a_{CP}=-0.017\pm0.016$, a result which does not yet constrain the Standard Model.

The Δm_d result of Eq. (28) provides an estimate of $|M_{12}|$ and can be used, together with Eqs. (16) and (18), to extract the modulus of the CKM matrix element V_{td} within the Standard Model [32]. The main experimental uncertainties on the resulting estimate of $|V_{td}|$ come from m_t and Δm_d ; however, these are at present completely dominated by the 15–20% uncertainty usually quoted on the hadronic matrix element $f_{B_d}\sqrt{B_{B_d}}\sim 200$ MeV obtained from lattice QCD calculations [33].

B, mixing studies

 $B_s-\overline{B}_s$ oscillation has been the subject of many recent studies from ALEPH [14], CDF [34], DELPHI [35,15], OPAL [36] and SLD [37]. No oscillation signal has been found so far. The

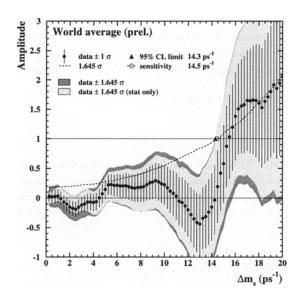


Figure 1: Combined measurements of the B_s oscillation amplitude as a function of Δm_s [22], including all preliminary results available at the end of 1999. The measurements are dominated by statistical uncertainties. Neighboring points are statistically correlated.

most sensitive analyses appear to be the ones based on inclusive lepton samples, and on samples where a lepton and a D_s meson have been reconstructed in the same jet. All results are limited by the available statistics. These are combined to yield the amplitudes \mathcal{A} shown in Fig. 1 as a function of Δm_s [22].

As before, the individual results have been adjusted to common physics inputs, and all known correlations have been accounted for; furthermore, the sensitivities of the inclusive analyses, which depend directly through Eq. (27) on the assumed fraction f_s of B_s mesons in an unbiased sample of weakly-decaying b hadrons, have been rescaled to a common value of $f_s = 0.100 \pm 0.012$ [22]. The combined sensitivity for 95% CL exclusion of Δm_s values is found to be 14.5 ps⁻¹. All values of Δm_s below 14.3 ps⁻¹ are excluded at 95% CL, and no deviation from $\mathcal{A}=0$ is seen in Fig. 1 that would indicate the observation of a signal.

Some Δm_s analyses are still preliminary [15,37]. Using only published results, the combined Δm_s result is

$$\Delta m_s > 10.6 \text{ ps}^{-1}$$
 at 95% CL, (32)

with a sensitivity of 12.1 ps^{-1} .

The information on $|V_{ts}|$ obtained, in the framework of the Standard Model, from the combined limit is hampered by the hadronic uncertainty, as in the B_d case. However, many uncertainties cancel in the frequency ratio

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \, \xi^2 \left| \frac{V_{ts}}{V_{td}} \right|^2 \,, \tag{33}$$

where $\xi = (f_{B_s}\sqrt{B_{B_s}})/(f_{B_d}\sqrt{B_{B_d}})$, of order unity, is currently estimated from lattice QCD with a 5-6% uncertainty [33]. The CKM matrix can be constrained using the experimental results on Δm_d , Δm_s , $|V_{ub}/V_{cb}|$ and ϵ_K , together with theoretical inputs and unitarity conditions [32]. Given the information available from $|V_{ub}/V_{cb}|$ and ϵ_K measurements, the constraint from our knowledge on the ratio $\Delta m_d/\Delta m_s$ is presently more effective in limiting the position of the apex of the CKM unitarity triangle than the one obtained from the Δm_d measurements alone, due to the reduced hadronic uncertainty in Eq. (33). We note also that the Standard Model would not easily accommodate values of Δm_s above $\sim 25 \, \mathrm{ps}^{-1}$.

Information on $\Delta\Gamma_s$ can be obtained by studying the proper time distribution of untagged data samples enriched in B_s mesons [38]. In the case of an inclusive B_s selection [39] or a semileptonic B_s decay selection [40,41], both the shortand long-lived components are present, and the proper time distribution is a superposition of two exponentials with decay constants $\Gamma_s \pm \Delta \Gamma_s/2$. In principle, this provides sensitivity to both Γ_s and $(\Delta \Gamma_s/\Gamma_s)^2$. Ignoring $\Delta \Gamma_s$ and fitting for a single exponential leads to an estimate of Γ_s with a relative bias proportional to $(\Delta\Gamma_s/\Gamma_s)^2$. An alternative approach, which is directly sensitive to first order in $\Delta\Gamma_s/\Gamma_s$, is to determine the lifetime of B_s candidates decaying to CP eigenstates; measurements already exist for $B^0_s \to J/\psi \phi$ [42] and $B^0_s \to$ $D_s^{(*)+}D_s^{(*)-}$ [43], which are mostly CP-even states [7]. An estimate of $\Delta\Gamma_s/\Gamma_s$ has also been obtained directly from a measurement of the $B_s^0 \to D_s^{(*)+}D_s^{(*)-}$ branching ratio [43], under the assumption that these decays practically account for all the CP-even final states.

Present data is not precise enough to efficiently constrain both Γ_s and $\Delta\Gamma_s/\Gamma_s$; since the B_s and B_d lifetimes are predicted to be equal within less than a percent [44], an expectation compatible with the current experimental data [45], the constraint $\Gamma_s = \Gamma_d$ can also be used to extract $\Delta\Gamma_s/\Gamma_s$. Applying the combination procedure described in Ref. 22 on the published B_s lifetime results [40,42,46] yields

$$\Delta\Gamma_s/\Gamma_s < 0.65$$
 at 95% CL (34)

without external constraint, or

$$\Delta\Gamma_s/\Gamma_s < 0.33$$
 at 95% CL (35)

when constraining $1/\Gamma_s$ to the measured B_d lifetime. These results are not yet precise enough to test Standard Model predictions.

$Average\ b\hbox{-}hadron\ mixing\ and\ b\hbox{-}hadron\ production\ fractions$

Let f_u , f_d , f_s and f_{baryon} be the B_u , B_d , B_s and b-baryon fractions composing an unbiased sample of weakly-decaying b hadrons produced in high energy colliders. LEP experiments have measured $f_s \times \mathrm{BR}(B_s^0 \to D_s^- \ell^+ \nu_\ell X)$ [47], $\mathrm{BR}(b \to \Lambda_b^0) \times \mathrm{BR}(\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell X)$ [48] and $\mathrm{BR}(b \to \Xi_b^-) \times \mathrm{BR}(\Xi_b^- \to \Xi^- \ell^- \overline{\nu}_\ell X)$ [49] from partially reconstructed final

states including a lepton, $f_{\rm baryon}$ from protons identified in b events [50], and the production rate of charged b hadrons [51]. The various b hadron fractions have also been measured at CDF from electron-charm final states [52]. All the published results have been combined following the procedure and assumptions described in Ref. 22, to yield $f_u = f_d = (38.4 \pm 1.8)\%$, $f_s = (11.7 \pm 3.0)\%$ and $f_{\rm baryon} = (11.5 \pm 2.0)\%$ under the constraints

$$f_u = f_d$$
 and $f_u + f_d + f_s + f_{\text{baryon}} = 1$. (36)

Time-integrated mixing analyses performed with lepton pairs from $b\bar{b}$ events produced at high energy colliders measure the quantity

$$\overline{\chi} = f_d' \, \chi_d + f_s' \, \chi_s \,, \tag{37}$$

where f'_d and f'_s are the fractions of B_d and B_s hadrons in a sample of semileptonic b-hadron decays. Assuming that all b hadrons have the same semileptonic decay width implies $f'_q = f_q/(\Gamma_q \tau_b)$ (q=s,d), where τ_b is the average b-hadron lifetime. Hence $\overline{\chi}$ measurements can be used to improve our knowledge on the fractions f_u , f_d , f_s and $f_{\rm baryon}$.

Combining the above estimates of these fractions with the average $\bar{\chi} = 0.118 \pm 0.005$ (published in this *Review*), χ_d from Eq. (29) and $\chi_s = \frac{1}{2}$ yields, under the constraints of Eq. (36),

$$f_u = f_d = (38.9 \pm 1.3)\%,$$
 (38)

$$f_s = (10.7 \pm 1.4)\%, \tag{39}$$

$$f_{\text{baryon}} = (11.6 \pm 2.0)\%,$$
 (40)

showing that mixing information substantially reduces the uncertainty on f_s . These results and the averages quoted in Eqs. (28) and (29) for χ_d and Δm_d have been obtained in a consistent way by the B oscillations working group [22], taking into account the fact that many individual measurements of Δm_d depend on the assumed values for the b-hadron fractions.

Summary and prospects

 $B^0-\overline{B}^0$ mixing has been a field of intense study in the last few years. The mass difference in the $B_d-\overline{B}_d$ system is very well measured (with an accuracy of $\sim 3.5\%$) but, despite an impressive theoretical effort, the hadronic uncertainty still limits the precision of the extracted estimate of $|V_{td}|$. The mass difference in the $B_s-\overline{B}_s$ system is much larger and still unmeasured. However, the current experimental lower limit on Δm_s already provides, together with Δm_d , a significant constraint on the CKM matrix within the Standard Model. No strong experimental evidence exists yet for the rather large decay width difference expected in the $B_s-\overline{B}_s$ system. It is interesting to recall that the ratio $\Delta \Gamma_s/\Delta m_s$ does not depend on CKM matrix elements in the Standard Model (see Eq. (22)), and that a measurement of either Δm_s or $\Delta \Gamma_s$ could be turned into a Standard Model prediction of the other one.

The LEP and SLD experiments have still not finalized all their B_s oscillation analyses, but a measurement of Δm_s from data collected at the Z pole becomes unlikely. In the near future, the most promising prospects for B_s mixing are from

Run II at the Tevatron, where both Δm_s and $\Delta \Gamma_s$ are expected to be measured; CDF will be able to observe B_s oscillations for values of Δm_s up to $\sim 40~{\rm ps}^{-1}$ [53], well above the current Standard Model prediction.

CP violation in B mixing, which has not been seen yet, as well as the phases involved in B mixing, will be further investigated with the large statistics that will become available both at the B factories and at the Tevatron.

B mixing may not have delivered all its secrets yet, because it is one of the phenomena where new physics might very well reveal itself (for example new particles involved in the box diagrams). Theoretical calculations in lattice QCD are becoming more reliable and further progress in reducing hadronic uncertainties is expected. In the long term, a stringent check of the consistency, within the Standard Model, of the B_d and B_s mixing measurements with all other measured observables in B physics (including CP asymmetries in B decays) will be possible, allowing to place limits on new physics or, better, discover new physics.

References

- T.D. Lee and C.S. Wu, Ann. Rev. Nucl. Sci. 16, 511 (1966);
 I.I. Bigi and A.I. Sanda, "CP violation," Cambridge, Cambridge Univ. Press, 2000;
 G.C. Branco, L. Lavoura, and J.P. Silva, "CP violation," Clarendon Press Oxford, 1999;
 see also the review on B⁰-B

 ⁰ mixing by H. Quinn in C. Caso et al., Eur. Phys. J. C3, 1 (1998).
- See the review on CP violation in B decays by H. Quinn and A. Sanda in this publication.
- A.J. Buras, W. Slominski, and H. Steger, Nucl. Phys. B245, 369 (1984).
- A.J. Buras and R. Fleischer, in "Heavy Flavours II," ed. A.J. Buras and M. Lindner, Singapore World Scientific (1998).
- M. Kobayashi and K. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- I.I. Bigi et al., in "CP violation," ed. C. Jarlskog, Singapore World Scientific, 1989.
- 7. R. Aleksan et al., Phys. Lett. B316, 567 (1993).
- C. Albajar et al., UA1 Collab., Phys. Lett. B186, 247 (1987).
- H. Albrecht et al., ARGUS Collab., Phys. Lett. B192, 245 (1987).
- H.-G. Moser and A. Roussarie, Nucl. Instrum. Methods 384, 491 (1997).
- SLD Collab., SLAC-PUB-7228, SLAC-PUB-7229, SLAC-PUB-7230, contrib. to 28th Int. Conf. on High Energy Physics, Warsaw, 1996.
- ALEPH Collab., contrib. 596 to Int. Europhysics Conf. on High Energy Physics, Jerusalem, 1997.
- F. Abe et al., CDF Collab., Phys. Rev. Lett. 80, 2057 (1998), Phys. Rev. D59, 032001 (1999) Phys. Rev. D60, 051101 (1999); Phys. Rev. D60, 072003 (1999);
 T. Affolder et al., CDF Collab., Phys. Rev. D60, 112004 (1999).
- R. Barate et al., ALEPH Collab., Eur. Phys. J. C4, 367 (1998); Eur. Phys. J. C7, 553 (1999).

B^0

- DELPHI Collab., contrib. 4.520 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999; contrib. 236 to 29th Int. Conf. on High Energy Physics, Vancouver, 1998.
- 16. M. Paulini, private communication.
- D. Buskilic et al., ALEPH Collab., Z. Phys. C75, 397 (1997).
- 18. CDF Collab.,
 - www-cdf.fnal.gov/physics/new/bottom/bottom.html.
- P. Abreu et al., DELPHI Collab., Z. Phys. C76, 579 (1997).
- M. Acciarri et al., L3 Collab., Eur. Phys. J. C5, 195 (1998).
- G. Alexander et al., OPAL Collab., Z. Phys. C72, 377 (1996);
 K. Ackerstaff et al., OPAL Collab., Z. Phys. C76, 401 (1997); Z. Phys. C76, 417 (1997).
- 22. ALEPH, CDF, DELPHI, L3, OPAL, and SLD Collab., "Combined results on b-hadron production rates, lifetimes, oscillations, and semileptonic decays," LEPHFS note 99-02, to be subm. as CERN-EP preprint; the combined results on B mixing and b hadron fractions included in the above paper or published in this Review have been obtained by the B oscillations working group; see http://www.cern.ch/LEPBOSC/ for more information.
- H. Albrecht et al., ARGUS Collab., Z. Phys. C55, 357 (1992); Phys. Lett. B324, 249 (1994).
- J. Bartelt et al., CLEO Collab., Phys. Rev. Lett. 71, 1680 (1993).
- 25. F. Abe et al., CDF Collab., Phys. Rev. D55, 2546 (1997).
- K. Ackerstaff et al., OPAL Collab., Z. Phys. C76, 401 (1997).
- DELPHI Collab., conf. note 97-98, contrib. 449 to Int. Europhysics Conf. on High Energy Physics, Jerusalem, 1997.
- ALEPH Collab., conf. note 99-026, contrib. 4-421 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
- G. Abbiendi et al., OPAL Collab., Eur. Phys. J. C12, 609 (2000).
- ALEPH Collab., conf. note 98-032, contrib. 4-396 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
- M. Beneke, G. Buchalla, and I. Dunietz, Phys. Lett. B393, 132 (1997);
 I. Dunietz, Eur. Phys. J. C7, 197 (1999).
- See the review on the CKM quark-mixing matrix by F.J. Gilman, K. Kleinknecht and B. Renk in this publication.
- S. Aoki, talk at 19th Int. Symp. on Lepton and Photon Interactions, Stanford, 1999, hep-ph/9912288;
 P. Ball et al., "B decays at the LHC," hep-ph/0003238 and CERN-TH/2000-101, to appear in the proceedings of the 1999 workshop on Standard Model physics at the LHC, CERN.
- F. Abe et al., CDF Collab., Phys. Rev. Lett. 82, 3576 (1999).
- W. Adam et al., DELPHI Collab., Phys. Lett. B414, 382 (1997).
- G. Abbiendi et al., OPAL Collab., Eur. Phys. J. C11, 587 (1999).
- SLD Collab., SLAC-PUB-8225, contrib. to 19th Int. Symp. on Lepton and Photon Interactions, Stanford, 1999.

- K. Hartkorn and H.-G. Moser, Eur. Phys. J. C8, 381 (1999).
- M. Acciarri et al., L3 Collab., Phys. Lett. B438, 417 (1998).
- F. Abe et al., CDF Collab., Phys. Rev. D59, 032004 (1999).
- DELPHI Collab., contrib. 4.520 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
- 42. F. Abe et al., CDF Collab., Phys. Rev. D57, 5382 (1998).
- R. Barate et al., ALEPH Collab., CERN-EP/2000-036, Feb. 2000, subm. to Phys. Lett. B.
- See for example M. Beneke, G. Buchalla, and I. Dunietz, Phys. Rev. D54, 4419 (1996).
- 45. See the review on production and decay of b-hadrons by L. Gibbons and K. Honscheid in this publication.
- 46. D. Buskulic et al., ALEPH Collab., Phys. Lett. B377, 205 (1996);
 P. Abreu et al., DELPHI Collab., Z. Phys. C71, 11 (1996);
 K. Ackerstaff et al., OPAL Collab., Phys. Lett. B426, 161 (1998).
- P. Abreu et al., **DELPHI** Collab., Phys. Lett. **B289**, 199 (1992);
 - P.D. Acton et al., **OPAL** Collab., Phys. Lett. **B295**, 357 (1992);
 - D. Buskulic et al., ALEPH Collab., Phys. Lett. B361, 221 (1995).
- P. Abreu et al., DELPHI Collab., Z. Phys. C68, 375 (1995);
 R. Barate et al., ALEPH Collab., Eur. Phys. J. C2, 197
- 49. P. Abreu et al., DELPHI Collab., Z. Phys. C68, 541 (1995);
 D. Buskulic et al., ALEPH Collab., Phys. Lett. B384, 449 (1996).
- R. Barate et al., ALEPH Collab., Eur. Phys. J. C5, 205 (1998).
- DELPHI Collab., contrib. 5_515 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
- F. Abe et al., CDF Collab., Phys. Rev. D60, 092005 (1999);
 T. Affolder et al., CDF Collab., Phys. Rev. Lett. 84, 1663 (2000).
- 53. CDF Collab., "Update to Proposal P-909: physics performance of the CDF II detector with an inner silicon layer and a time-of-flight detector," Jan. 1999; see www-cdf.fnal.gov/upgrades/btb_update_jan99.ps.

B⁰-B⁰ MIXING PARAMETERS

For a discussion of $B^0-\overline{B}^0$ mixing see the note on " $B^0-\overline{B}^0$ Mixing" in the ${\cal B}^0$ Particle Listings above.

 χ_d is a measure of the time-integrated $B^0 ext{-} \overline{B}{}^0$ mixing probability that a produced $B^0(\overline{B}^0)$ decays as a $\overline{B}^0(B^0)$. Mixing violates $\Delta B \neq 2$ rule.

$$\chi_d = \frac{x_d^2}{2(1+x_d^2)}$$

$$x_d = \frac{\Delta m_{B^0}}{\Gamma_{B^0}} = (m_{B^0_H} - m_{B^0_L}) \ \tau_{B^0} \ ,$$

where H, L stand for heavy and light states of two B^0 CP eigenstates and $\tau_{B^0} = \frac{1}{0.5(\Gamma_{B_H^0} + \Gamma_{B_L^0})}$

This B^0 - $\overline B^0$ mixing parameter is the probability (integrated over time) that a produced B^0 (or $\overline B^0$) decays as a $\overline B^0$ (or B^0), e.g. for inclusive lepton decays

$$\chi_d = \Gamma(B^0 \to \ell^- X \text{ (via } \overline{B}^0)) / \Gamma(B^0 \to \ell^{\pm} X)$$

$$= \Gamma(\overline{B}^0 \to \ell^{\pm} X \text{ (via } B^0)) / \Gamma(\overline{B}^0 \to \ell^{\pm} X)$$

 $=\Gamma(\overline{B}^0\to\ell^+\mathrm{X}\ (\mathrm{via}\ B^0))/\Gamma(\overline{B}^0\to\ell^\pm\mathrm{X})$ Where experiments have measured the parameter $r=\chi/(1-\chi)$, we have converted to χ . Mixing violates the $\Delta B \neq 2$ rule.

Note that the measurement of χ at energies higher than the $\Upsilon(4S)$ have not separated χ_d from χ_s where the subscripts indicate $B^0(\overline{b}d)$ or $B^0_s(\overline{b}s)$. They are listed in the $B_s^0 - \overline{B}_s^0$ MIXING section.

The experiments at $\varUpsilon(4S)$ make an assumption about the $B^0\overline{B}{}^0$ fraction and about the ratio of the ${\it B}^{\pm}$ and ${\it B}^{0}$ semileptonic branching ratios (usually that it equals one).

OUR EVALUATION, provided by the LEP B Oscillation Working Group, includes χ_d calculated from Δm_{P0} and τ_{P0} .

	D°	Ь°		
VALUE	<u>CL%_</u>	DOCUMENT ID	TECN	COMMENT
0.174±0.009 OUR E	ALUATIO	ON		
0.156±0.024 OUR A	/ERAGE			
$0.16 \pm 0.04 \pm 0.04$		314 ALBRECHT	94 ARG	$e^+e^- \rightarrow \Upsilon(45)$
$0.149 \pm 0.023 \pm 0.022$		315 BARTELT	93 CLE2	$e^+e^- \rightarrow \Upsilon(45)$
0.171 ± 0.048				$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use th	e followin	g data for averages,	fits, limits, e	etc. • • •
0.20 ±0.13 ±0.12		317 ALBRECHT	96D ARG	$e^+e^- \rightarrow \Upsilon(4S)$
$0.19 \pm 0.07 \pm 0.09$		318 ALBRECHT		$e^+e^- \rightarrow \Upsilon(45)$
0.24 ±0.12		319 ELSEN		e+e- 35-44 GeV
$0.158 + 0.052 \\ -0.059$		ARTUSO	89 CLEO	$e^+e^- \rightarrow \Upsilon(45)$
0.17 ±0.05		320 ALBRECHT	871 ARG	$e^+e^- \rightarrow \Upsilon(4S)$
< 0.19	90	321 BEAN	87B CLEO	$e^+e^- \rightarrow \Upsilon(45)$
< 0.27	90	322 AVERY		$e^+e^- \rightarrow \Upsilon(4S)$
314 41 DDECUT 44		4 0 000 0 004		

314 ALBRECHT 94 reports r=0.194 \pm 0.062 \pm 0.054. We convert to χ for comparison. Uses tagged events (lepton + pion from D^*).

315 BARTELT 93 analysis performed using tagged events (lepton+pion from D^*). Using dilepton events they obtain $0.157 \pm 0.016 \stackrel{+}{-} 0.028$.

316 ALBRECHT 92L is a combined measurement employing several lepton-based techniques. It uses all previous ARGUS data in addition to new data and therefore supersedes AL-BRECHT 87I. A value of $r=20.6\pm7.0\%$ is directly measured. The value can be used to measure $x=\Delta M/\Gamma=0.72\pm0.15$ for the B_{df} meson. Assumes $f_{+-}/f_{0}=1.0\pm0.05$ and uses $\tau_{B^{\pm}}/\tau_{B^0} = (0.95 \pm 0.14) (f_{+-}/f_0)$.

317 Uses $D^{*+}K^{\pm}$ correlations. 318 Uses $(D^{*+}\ell^{-})K^{\pm}$ correlations.

 $^{319}\,\mathrm{These}$ experiments see a combination of B_{S} and B_{d} mesons.

320 ALBRECHT 87I is inclusive measurement with like-sign dileptons, with tagged *B* decays plus leptons, and one fully reconstructed event. Measures *r*=0.21 ± 0.08. We convert to *χ* for comparison. Superseded by ALBRECHT 92L.

321 BEAN 87B measured r < 0.24; we converted to χ .

 $^{322}\,\mathrm{Same}$ -sign dilepton events. Limit assumes semileptonic BR for B^+ and B^0 equal. If B^0/B^\pm ratio <0.58, no limit exists. The limit was corrected in BEAN 87B from r < 0.30 to r < 0.37. We converted this limit to χ .

$\Delta m_{B^0} = m_{B^0_H} - m_{B^0_L}$

 Δm_{B^0} is a measure of 2π times the $B^0 \text{-} \overline{B}{}^0$ oscillation frequency in time-dependent mixing experiments.

The second "OUR EVALUATION" (0.478 \pm 0.018) is an average of the data listed below performed by the LEP B Oscillation Working Group as described in our "Review of B- \overline{B} Mixing" in the B0 Section of these Listings. The averaging procedure takes into account correlations between the measurements.

The first "OUR EVALUATION" (0.472 \pm 0.017), also provided by the LEP B Oscillation Working Group, includes Δm_d calculated from χ_d measured at $\Upsilon(45)$.

VALUE (10 ¹² ħ s ⁻¹) EVTS 0.472±0.017 OUR EVALUATION		TECN	COMMENT
	323 ABE	99ĸ CDF	pp̃ at 1.8 TeV
$0.500 \pm 0.052 \pm 0.043$	³²⁴ ABE	99Q CDF	ρp̄ at 1.8 TeV

```
0.516 \pm 0.099 + 0.029 \\ -0.035
                                          325 AFFOLDER
                                                                   99c CDF
                                                                                   ρ at 1.8 TeV
0.471 + 0.078 + 0.033 \\ -0.068 - 0.034
                                          <sup>326</sup> ABE
                                                                    98c CDF
                                                                                    p at 1.8 TeV
                                          327 ACCIARRI
0.458 \pm 0.046 \pm 0.032
                                                                    98D L3
                                           328 ACCIARRI
0.437 \pm 0.043 \pm 0.044
                                                                    98<sub>D</sub> L3
                                           329 ACCIARRI
                                                                                    e^+ \, e^- \rightarrow Z
0.472 \pm 0.049 \pm 0.053
                                                                    98D L3
                                           330 ABREU
                                                                    97N DLPH e^+e^- \rightarrow Z
0.523 \pm 0.072 \pm 0.043
                                          328 ABREU
                                                                    97N DLPH e^+e^- \rightarrow Z
0.493 \pm 0.042 \pm 0.027
                                          331 ABREU
0.499 \pm 0.053 \pm 0.015
                                                                    97N DLPH e^+e^- \rightarrow Z
                                          327 ABREU
0.480 \pm 0.040 \pm 0.051
                                                                    97N DLPH e^+e^- \rightarrow Z
0.444 \pm 0.029 ^{\,+\,0.020}_{\,-\,0.017}
                                          ^{328} ACKERSTAFF 97u OPAL ~e^+\,e^- 
ightarrow ~\it Z
0.430 \pm 0.043 ^{+0.028}_{-0.030}
                                          ^{327} ACKERSTAFF 97v OPAL e^+\,e^-
ightarrow~Z
                                           <sup>332</sup> BUSKULIC 97D ALEP e^+e^- \rightarrow Z
0.482 ± 0.044 ± 0.024
                                           328 BUSKULIC
                                                                   970 ALEP e^+e^- \rightarrow Z
0.404 \pm 0.045 \pm 0.027
                                           327 BUSKULIC
                                                                   97D ALEP e^+e^- \rightarrow Z
0.452 \pm 0.039 \pm 0.044
                                           ^{333} ALEXANDER 96v OPAL e^+e^- \rightarrow Z
0.539 \pm 0.060 \pm 0.024
                                          <sup>334</sup> ALEXANDER 96V OPAL e^+e^- \rightarrow Z
0.567 \pm 0.089 + 0.029 \\ -0.023
• • • We do not use the following data for averages, fits, limits, etc. • •
                                          335 ACCIARRI
0.444 \pm 0.028 \pm 0.028
                                                                   98D L3 e^+e^- \rightarrow Z
                                          336 ABREU
                                                                    97N DLPH e^+e^- \rightarrow Z
0.497 \pm 0.035
0.467 \pm 0.022 + 0.017 \\ -0.015
                                          ^{337} ACKERSTAFF 97v OPAL \,e^+\,e^-
ightarrow\,Z\,
0.446 ± 0.032
                                          338 BUSKULIC 97D ALEP e^+e^- \rightarrow Z
0.531^{\,+\,0.050}_{\,-\,0.046}\,\pm\,0.078
                                          339 ABREU
                                                                    96Q DLPH Sup. by ABREU 97N
0.496^{\,+\,0.055}_{\,-\,0.051}\,\pm\,0.043
                                           327 ACCIARRI
                                                                    96E L3
                                                                                    Repl. by ACCIARRI 980
0.548 \pm 0.050 \, {}^{+\, 0.023}_{-\, 0.019}
                                          ^{340} ALEXANDER 96v OPAL e^+e^- \rightarrow Z
                                          341 AKERS
                                                                   95J OPAL Repl. by ACKER-
STAFF 97v
                                          327 AKERS
                                                                    95J OPAL Repl. by ACKER-
STAFF 97V
94M DLPH Sup. by ABREU 97N
0.462 + 0.040 + 0.052 \\ -0.053 - 0.035
0.50 ±0.12 ±0.06
                                           330 ABREU
                                          333 AKERS
0.508 \pm 0.075 \pm 0.025
                                                                    94C OPAL Repl. by ALEXAN-
DER 96V
94H OPAL Repl. by ALEXAN-
DER 96V
                                  153 334 AKERS
0.57 \pm 0.11 \pm 0.02
0.50 \begin{array}{l} +0.07 \\ -0.06 \end{array} \begin{array}{l} +0.11 \\ -0.10 \end{array}
                                          327 BUSKULIC
                                                                    94B ALEP Sup. by BUSKULIC 97D
0.52 \begin{array}{l} +0.10 \\ -0.11 \end{array} \begin{array}{l} +0.04 \\ -0.03 \end{array}
                                          334 BUSKULIC
                                                                    93K ALEP Sup. by BUSKULIC 97D
323 Uses di-muon events.
324 Uses di-muon events.
324 Uses jet-charge and lepton-flavor tagging.
325 Uses \ell- D*+-\ell events.
326 Uses \pi-B in the same side.
327 Uses \ell-\ell.
328 Uses \ell-Qhem.
```

329 Uses ℓ - ℓ with impact parameters. 330 Uses $D^{*\pm}$ - Q_{hem} .

331 Uses $\pi_s^{\pm} \ell$ - Q_{hem} . 332 Uses $D^{*\pm}$ - ℓ/Q_{hem} .

333 Uses D*± 1-Qhem

334 Uses D*±-ℓ.
335 ACCIARRI 98D combines results from ℓ-ℓ, ℓ-Qhem, and ℓ-ℓ with impact parameters.

336 ABREU 97N combines results from $D^{*\pm}$ - Q_{hem} , ℓ - Q_{hem} , π_S^{\pm} ℓ - Q_{hem} , and ℓ - ℓ .

337 ACKERSTAFF 97v combines results from ℓ - ℓ , ℓ - Q_{hem} , D^* - ℓ , and $D^{*\pm}$ - Q_{hem} .

 $^{338}\, \rm BUSKULIC$ 97D combines results from ${\it D^{*\pm}-\ell/Q_{hem}}$, ${\it \ell\text{-}Q_{hem}}$, and ${\it \ell\text{-}\ell}$.

339 ABREU 96Q analysis performed using lepton, kaon, and jet-charge tags. 340 ALEXANDER 96V combines results from $D^{*\pm}\ell$ and $D^{*\pm}\ell$ -Q_{hem}.

341 AKERS 95J combines results fromt charge measurement, $D^{*\pm}\ell$ - $Q_{
m hem}$ and ℓ - ℓ .

 $x_d = \Delta m_{B^0}/\Gamma_{B^0}$ The second "OUR EVALUATION" (0.740 \pm 0.031) is an average of the data listed in Δm_{B^0} section performed by the LEP B Oscillation Working Group as described in our "Review of $B - \overline{B}$ Mixing" in the B^0 Section of these Listings. The averaging procedure takes into account correlations between the measurements.

The first "OUR EVALUATION" (0.730 \pm 0.029), also provided by the LEP B Oscillation Working Group, includes χ_d measured at $\Upsilon(45)$.

0.730 ±0.029 OUR EVALUATION 0.740 ± 0.031 OUR EVALUATION

DOCUMENT ID

CP VIOLATION IN B DECAY - STANDARD MODEL PREDICTIONS

Revised January 2000 by H. Quinn (SLAC) and A.I. Sanda (Nagoya University).

With the commissioning of the asymmetric B Factories at KEKB and PEP II, and of CESR III and with the completion of the main ring injector at Fermilab, we are headed into an exciting time for the study of CP violation in B meson decays. This review outlines the basic ideas of such studies. For the most part, we follow the discussions given in Refs. [1-3].

Time evolution of neutral B meson states

Neutral B mesons, like neutral K mesons, have mass eigenstates which are not flavor eigenstates. This subject is reviewed separately [4]. Here we give some formulae to establish the notation used in this review. The mass eigenstates are given by:

$$|B_1\rangle = p|B^0\rangle + q|\overline{B}^0\rangle ,$$

 $|B_2\rangle = p|B^0\rangle - q|\overline{B}^0\rangle ,$ (1)

where B^0 and \overline{B}^0 are flavor eigenstates containing the \overline{b} and b quarks respectively. The ratio

$$\frac{q}{p} = + \sqrt{\frac{M_{12}^{\star} - \frac{i}{2}\Gamma_{12}^{\star}}{M_{12} - \frac{i}{2}\Gamma_{12}}} . \tag{2}$$

Here, the CP operator is defined so that $CP|B^0\rangle = |\overline{B}^0\rangle$, and CPT symmetry is assumed. We define $M_{12} = \overline{M}_{12}e^{i\xi}$, where the phase ξ is restricted to $-\frac{1}{2}\pi < \xi < \frac{1}{2}\pi$, and \overline{M}_{12} is taken to be real but not necessarily positive; and similarly (with a different phase) for Γ_{12} . The convention used here is that the real part of q/p is positive.

The differences in the eigenvalues $\Delta M=M_2-M_1$ and $\Delta\Gamma=\Gamma_1-\Gamma_2$ are given by

$$\Delta M = -2\operatorname{Re}\left(rac{q}{p}(M_{12} - rac{i}{2}\Gamma_{12})
ight)$$

$$\simeq -2\overline{M}_{12}$$

$$\Delta \Gamma = -4\operatorname{Im}\left(rac{q}{p}(M_{12} - rac{i}{2}\Gamma_{12})
ight)$$

$$\simeq 2\overline{\Gamma}_{12}\cos\zeta. \tag{3}$$

Here we denoted $\frac{\Gamma_{12}}{M_{12}} = re^{i\zeta}$. As we expect $r \sim 10^{-3}$ in the Standard Model for B_d , we kept only the leading order term in r. In the Standard Model, with these conventions and given that all models give a positive value for the parameter B_B , ΔM is positive, so that B_2 is heavier than B_1 ; this is unlikely to be tested soon. (Note that a common alternative convention is to name the two states B_L and B_H for light and heavy respectively; then the sign of q/p becomes the quantity to be tested.)

This review focuses on the B_d system, but also mentions some possibly interesting studies for CP violation in B_s decays, which may be pursued at hadron colliders. Much of the discussion here can be applied directly for B_s decays with the appropriate replacement of the spectator quark type.

The time evolution of states starting out at time t=0 as pure B^0 or \overline{B}^0 is given by:

$$\begin{split} |B^{0}(t)\rangle &= g_{+}(t)|B^{0}\rangle + \frac{q}{p}\,g_{-}(t)|\overline{B}^{0}\rangle \\ |\overline{B}^{0}(t)\rangle &= g_{+}(t)|\overline{B}^{0}\rangle + \frac{p}{q}\,g_{-}(t)|B^{0}\rangle, \end{split} \tag{4}$$

where

$$g_{\pm}(t) = \frac{1}{2}e^{-iM_1t}e^{-\frac{1}{2}\Gamma_1t}\left[1 \pm e^{-i\Delta Mt}e^{\frac{1}{2}\Delta\Gamma t}\right] . \tag{5}$$

We define

$$\begin{split} A(f) &= \langle f | H | B^0 \rangle ,\\ \overline{A}(f) &= \langle f | H | \overline{B}^0 \rangle ,\\ \overline{\rho}(f) &= \overline{A}(f) = \rho(f)^{-1} , \end{split} \tag{6}$$

where f is a final state that is possible for both B^0 and \overline{B}^0 decays. The time-dependent decay rates are thus given by

$$\Gamma(B^{0}(t) \to f)$$

$$\propto e^{-\Gamma_{1}t} |A(f)|^{2} \left[K_{+}(t) + K_{-}(t) \left| \frac{q}{p} \right|^{2} |\overline{\rho}(f)|^{2} + 2 \operatorname{Re} \left[L^{*}(t) \left(\frac{q}{p} \right) \overline{\rho}(f) \right] \right], \tag{7}$$

$$\Gamma(\overline{B}^{0}(t) \to f)$$

$$\propto e^{-\Gamma_{1}t} |\overline{A}(f)|^{2} \left[K_{+}(t) + K_{-}(t) \left| \frac{p}{q} \right|^{2} |\rho(f)|^{2} + 2\operatorname{Re} \left[L^{*}(t) \left(\frac{p}{q} \right) \rho(f) \right] \right], \tag{8}$$

where

$$|g_{\pm}(t)|^{2} = \frac{1}{4}e^{-\Gamma_{1}t}K_{\pm}(t) ,$$

$$g_{-}(t)g_{+}^{*}(t) = \frac{1}{4}e^{-\Gamma_{1}t}L^{*}(t) ,$$

$$K_{\pm}(t) = 1 + e^{\Delta\Gamma t} \pm 2e^{\frac{1}{2}\Delta\Gamma t}\cos\Delta Mt ,$$

$$L^{*}(t) = 1 - e^{\Delta\Gamma t} + 2ie^{\frac{1}{2}\Delta\Gamma t}\sin\Delta Mt .$$
(9)

For the case of B_d decays the quantity $\Delta\Gamma/\Gamma$ is small and is usually dropped, for B_s decays it may be significant [6] and hence is retained in Eqs. 4-8.

Three classes of CP violation in B decays

When two amplitudes with different phase-structure contribute to a B decay, they may interfere and produce CP-violating effects [5]. There are three distinct types of CP violation: (1) CP violation from nonvanishing relative phase between the mass and the width parts of the mixing matrix which gives $|q/p| \neq 1$, often called "indirect;" (2) Direct CP violation, which is any effect that indicates two decay amplitudes have different weak phases (those arising from Lagrangian couplings), in particular it occurs whenever $|\rho(f)| \neq 1$; (3) Interference between a decays with and without mixing which can occur for decays to CP eigenstates whenever $Arg((q/p)\overline{\rho}(f)) \neq 0$. This can occur even for modes where both the other types do not, i.e. |q/p|, $|\rho(f)| = 1$.

(1) Indirect CP violation

In the next few years, experiments will accumulate a large number of semileptonic B decays. Any asymmetry in the wrong-sign semileptonic decays (or in any other wrong-flavor decays) is a clean sign of indirect CP violation.

The semileptonic asymmetry for the wrong sign B_q decay, where q = d or s, is given by

$$a_{SL}(B_q) = \frac{\Gamma(\overline{B}_q(t) \to \ell^+ X) - \Gamma(B_q(t) \to \ell^- X)}{\Gamma(\overline{B}_q(t) \to \ell^+ X) + \Gamma(B_q(t) \to \ell^- X)}$$
$$= \frac{|p/q|^2 - |q/p|^2}{|p/q|^2 + |q/p|^2} = r_{B_q} \sin \zeta_{B_q} , \qquad (10)$$

where we kept only the leading order term in r_{B_q} . Within the context of the Standard Model, if hadronic rescattering effects are small then $\sin \zeta_{B_q}$ is small because M_{12} and Γ_{12} acquire their phases from the same combination of CKM matrix elements. Since this asymmetry is tiny in the Standard Model, this may be a fruitful area to search for physics beyond the Standard Model.

(2) Direct CP violation

Direct CP violation is the name given to CP violation that arises because there is a difference between the weak phases of any two decay amplitudes for a single decay. Weak phases are those that arise because of a complex coupling constant in the Lagrangian. Note that a single weak phase from a complex coupling constant is never physically meaningful because it can generally be removed by redefining some field by a phase. Only the differences between the phases of couplings which cannot be changed by such redefinitions are physically meaningful. The strong and electromagnetic couplings can always be defined to be real but, as Kobayashi and Maskawa first observed, in the three generation Standard Model one cannot remove all the phases from the CKM matrix by any choice of field redefinitions [7].

There are two distinct ways to observe direct CP-violation effects in B decays:

• $|\overline{A}_{\overline{f}}/A_f| \neq 1$ leading to rate asymmetries for CP-conjugate decays. Here, two amplitudes with different weak phases must contribute to the same decay; they must also have different

strong phases, that is, the phases that arise because of absorptive parts (often called final-state interaction effects). When the final state f has different flavor content than its CP conjugate, this gives a rate asymmetry that is directly observable. The asymmetry is given by

$$a = \frac{2A_1A_2\sin(\xi_1 - \xi_2)\sin(\delta_1 - \delta_2)}{A_1^2 + A_2^2 + 2A_1A_2\cos(\xi_1 - \xi_2)\cos(\delta_1 - \delta_2)},$$
 (11)

where the A_i are the magnitudes, the ξ_i are the weak phases, and the δ_i are the strong phases of the two amplitudes contributing to A_f . The impact of direct CP violation of this type in decays of neutral B's to flavor eigenstates is discussed below.

• Any difference (other than an overall sign) between the CP asymmetries for decays of B_d mesons to flavor eigenstates, or between those of neutral B_s mesons, is an evidence of direct CP violation. As is shown below, such asymmetries arise whenever the decay weak phase is not canceled by the mixing weak phase, hence any two different results imply that there is a difference between the weak phases of the amplitudes for the two decays. Only if the asymmetries are the same can one choose a phase convention which ascribes all CP-violating phases to the mixing amplitude. For example, the expected asymmetries for the $B \to J/\psi K_S$ and $B \to \pi\pi$ decays are different (whether or not penguin graphs add additional direct CP-violating effects of the type $|\overline{A_f}/A_f| \neq 1$ in the latter channel) because the dominant decay amplitudes have different weak phases in the Standard Model.

(3) Decays of B^0 and \overline{B}^0 to CP eigenstates

In decays to ${\cal CP}$ eigenstates, the time-dependent asymmetry is given by

$$a_f(t) = \frac{\Gamma(\overline{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\overline{B}^0(t) \to f) + \Gamma(B^0(t) \to f)} . \tag{12}$$

Asymmetry is generated if: (i) both $A(B \to f)$ and $A(\overline{B} \to f)$ are nonzero; and (ii) the mixing weak phase in $\frac{q}{p}$ is different from the weak decay phase in $\overline{p}(f)$. To the leading order in r, the Standard Model predicts

$$q/p = \frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} = e^{-i2\phi_{\text{mixing}}} \ .$$
 (13)

If there is only one amplitude (or two with the same weak phase) contributing to $A(B \to f)$ and $A(\overline{B} \to f)$ then $|\overline{\rho}(f)| = 1$ and the relationship between the measured asymmetry and the Kobayshi-Maskawa phases is cleanly predicted by

$$a_f(t) = \operatorname{Im}\left(\frac{q}{p}\overline{\rho}(f)\right) \sin \Delta M t$$
$$= -\eta_f \sin 2(\phi_{\text{mixing}} + \phi_{\text{decay}}) \sin \Delta M t . \tag{14}$$

Here we have used the fact that in such cases we can write $\overline{\rho}(f) = \eta_f e^{-i2\phi_{\text{decay}}}$ where $\eta_f = \pm$ is the CP eigenvalue of the state f. The weak phases ϕ_{mixing} and ϕ_{decay} are parameterization dependent quantities, but the combination $\phi_{\text{mixing}} + \phi_{\text{decay}}$ is parameterization independent. This is CP violation due to the interference between decays with and without mixing. Note

 B^0

that a single measurement of $\sin(2\phi)$ yields four ambiguous solutions for ϕ .

When more than one amplitude with different weak phases contribute to a decay to a CP eigenstate there can also be direct CP violation effects $|\lambda_f = (q/p) \, \rho(f)| \neq 1$ and the asymmetry takes the more complicated form

$$a_f(t) = \frac{(|\lambda_f|^2 - 1)\cos(\Delta M t) + 2\operatorname{Im}\lambda_f\sin(\Delta M t)}{(1 + |\lambda_f|^2)} \ . \tag{15}$$

The quantity λ_f involves the ratio of the two amplitudes that contribute to A_f as well as their relative strong phases and hence introduces the uncertainties of hadronic physics into the relationship between the measured asymmetry and the K-M phases. However in certain cases such channels can be useful in resolving the ambiguities mentioned above. If $\cos(2\phi)$ can be measured as well as $\sin(\phi)$ only a two-fold ambiguity remains. This can be resolved only by knowledge of the sign of certain strong phase shifts [8].

When a B meson decays to a CP self-conjugate set of quarks the final state is in general a mixture of CP even and CP odd states, which contribute opposite sign and hence partially canceling asymmetries. In two special cases, namely the decay to two spin zero particles, or one spin zero and one non-zero spin particle there is a unique CP eigenvalue because there is only one possible relative angular momentum between the two final state particles. Quasi-two-body modes involving two particles with non-zero spin can sometimes be resolved into contributions of definite CP by angular analysis of the decays of the "final-state" particles [9].

There can also be a direct CP violation in these channels from the interference of two contributions to the same decay amplitude, $|\rho(f)| \neq 1$. This introduces dependence on the relative strengths of the two amplitude contributions and on their relative strong phases. Since these cannot be reliably calculated at present, this complicates the attempt to relate the measured asymmetry to the phases of CKM matrix elements.

$Standard\ Model\ predictions\ for\ CP\mbox{-}violating\ asymmetries$

• Unitarity Triangles

The requirement that the CKM matrix be unitary leads to a number of relationships among its entries. The constraints that the product of row i with the complex conjugate of row j is zero are generically referred to as "unitarity triangles" because they each take the form of a sum of three complex numbers equal to zero and hence can be represented by triangles in the complex plane. There are six such relationships, (see for example Ref. 10); the most commonly studied is that with all angles of the same order of magnitude, given by the relationship

$$V_{ud}V_{vb}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0. (16)$$

This relation can be represented as a triangle on the complex plane, as shown in Fig. 1, where the signs of all three angles are also defined. When the sides are scaled by $|V_{cd}V_{cb}^*|$, the apex of

the triangle is the point ρ , η , where these parameters are defined by the Wolfenstein parameterization of the CKM matrix [11]. If $\eta = 0$, the CKM matrix is real and there is no CP violation in the Standard Model.

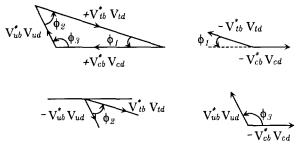


Figure 1: Angles of the unitarity triangle are related to the Kobayashi-Maskawa phases of the CKM matrix. The right-hand rule gives the positive direction of the angle between two vectors. This figure was reproduced from Ref. 1 with permission from Cambridge University Press.

The angles of the triangle are

$$\phi_{1} = \pi - \arg\left(\frac{-V_{tb}^{*}V_{td}}{-V_{cb}^{*}V_{cd}}\right) = \beta ,$$

$$\phi_{2} = \arg\left(\frac{V_{tb}^{*}V_{td}}{-V_{ub}^{*}V_{ud}}\right) = \alpha ,$$

$$\phi_{3} = \arg\left(\frac{V_{ub}^{*}V_{ud}}{-V_{cb}^{*}V_{cd}}\right) = \gamma .$$

$$(17)$$

Two naming conventions for these angles are commonly used in the literature [12,13]; we provide the translation dictionary in Eq. (17), but use the ϕ_i notation in the remainder of this review, where ϕ_i is the angle opposite the side $V_{ib}^*V_{id}$ of the unitarity triangle and i represents the i-th up-type quark. As defined here, for consistency with the measured value of ϵ_K , these angles are all positive in the Standard Model, thus a determination of the sign of these angles constitutes a test of the Standard Model [14].

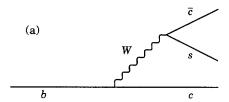
There are two other independent angles of the Standard Model which appear in other triangles. These are denoted

$$\chi = \arg\left(\frac{-V_{cs}^* V_{cb}}{V_{ts}^* V_{tb}}\right) = \beta_s$$

$$\chi' = \arg\left(\frac{-V_{ud}^* V_{us}}{V_{cd}^* V_{cs}}\right) = -\beta_K .$$
(18)

Again there are two naming conventions in common usage so we give both. These angles are of order λ^2 and λ^4 respectively [15], where $\lambda = V_{us}$. The first of them is the phase of the B_s mixing and thus is in principle measurable, though it will not be easy to achieve a result significantly different from zero for such a small angle. The angle χ' will be even more difficult to measure. Meaningful standard model tests can be defined which use the measured value of λ coupled with χ and any two of the three ϕ_i [16].

A major aim of CP-violation studies of B decays is to make enough independent measurements of the sides and angles that


this unitarity triangle is overdetermined, and thereby check the validity of the Standard Model predictions that relate various measurements to aspects of this triangle. Constraints can be made on the basis of present data on the B-meson mixing and lifetime, and on the ratio of charmless decays to decays with charm (V_{ub}/V_{cb}) , and on ϵ in K decays [17]. These constraints have been discussed in many places in the literature; for a recent summary of the measurements involved, see Ref. [18]. Note, however, that any given "Standard Model allowed range" cannot be interpreted as a statistically-based error range. The ranges of allowed values depend on matrix element estimates. Improved methods to calculate such quantities, and understand the uncertainties in them, are needed to further sharpen tests of the Standard Model. Recent progress in lattice simulation using dynamical fermions seems encouraging [19]. It can be hoped that reliable computations of f_B , B_B , and B_K will be completed in the next few years. This will reduce the theoretical uncertainties in the relationships between measured mixing effects and the magnitudes of CKM parameters.

In the Standard Model there are only two independent phases in this triangle since, by definition, the three angles add up to π . The literature often discusses tests of whether the angles add up to π ; but this really means tests of whether relationships between different measurements, predicted in terms of the two independent parameters in the Standard Model, hold true. For example, many models that go beyond the Standard Model predict an additional contribution to the mixing matrix. Any change in phase of M_{12} will change the measured asymmetries so that $\phi_1(\text{measured}) \to \phi_1 - \phi_{\text{new}}$ and $\phi_2(\text{measured}) \to \phi_2 + \phi_{\text{new}}$. Thus the requirement that the sum of the three angles must add up to π is not sensitive to ϕ_{new} [20]. However, the angles as determined from the sides of the triangle would, in general, no longer coincide with those measured from asymmetries. It is equally important to check the asymmetries in channels for which the Standard model predicts very small or vanishing asymmetries. A new mixing contribution which changes the phase of M_{12} will generate significant asymmetries in such channels. In the Standard Model the CKM matrix must be unitary, this leads to relationships among its entries.

• Standard Model decay amplitudes

In the Standard Model, there are two classes of quark-level diagrams that contribute to hadronic B decays, as shown in Fig. 2. Tree diagrams are those where the W produces an additional quark-antiquark pair. Penguin diagrams are loop diagrams where the W reconnects to the same quark line. Penguin diagrams can further be classified by the nature of the particle emitted from the loop: gluonic or QCD penguins if it is a gluon, and electroweak penguins if it is a photon or a Z boson. In addition, one can label penguin diagrams by the flavor of the up-type quark in the loop; for any process all three flavor types contribute. For some processes, there are additional annihilation-type diagrams; these always contribute to the same CKM structure as the corresponding trees. For a

detailed discussion of the status of calculations based on these diagrams, or rather on the more complete operator product approach which also includes higher order QCD corrections see, for example, Ref. 21. Note that the distinction between tree and penguin contributions is a heuristic one, the separation of contributions by the operator that enters is more precise.

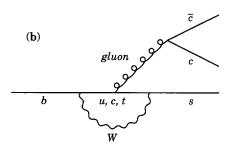


Figure 2: Quark level processes for the example of $b \to c\bar{c}s$. (a) Tree diagram; (b) Penguin diagram. In the case of electroweak penguin contributions, the gluon is replaced by a Z or a γ .

To explore possible CP violations, it is useful to tabulate all possible decays by the CKM structure of the various amplitudes. Let us first consider decays $b \to q \overline{q}'s$. The CKM factors for the diagrams for such decays are given in Table 1. Here we have used the fact that, for all such decays, the contribution to the amplitude from penguin graphs has the structure

$$A_P(q\bar{q}s) = V_{tb}V_{ts}^*P_t + V_{cb}V_{cs}^*P_c + V_{ub}V_{us}^*P_u , \qquad (19)$$

where the P_i quantities are the amplitudes described by the loop diagram with a flavor i quark apart from the explicitly shown CKM factor (i.e., including strong phases). These are actually divergent quantities, so it is convenient to use a Standard Model unitarity relationship, $V_{tb}V_{ts}^* + V_{cb}V_{cs}^* + V_{ub}V_{us}^* = 0$, to regroup them in the following way

$$A_P(q\bar{q}s) = V_{cb}V_{cs}^*(P_c - P_t) + V_{ub}V_{us}^*(P_u - P_t) , \qquad (20)$$

or, equivalently,

$$A_{P}(q\bar{q}s) = V_{tb}V_{ts}^{*}(P_{t} - P_{c}) + V_{ub}V_{us}^{*}(P_{u} - P_{c}) . \tag{21}$$

The first term is of order λ^2 , whereas the second is of order λ^4 , and can be ignored in most instances. For modes with $q' \neq q$, there are no penguin contributions. Note also that for the $q\overline{q} = u\overline{u}, d\overline{d}$ cases, the QCD penguin graphs contribute only to the isospin zero combinations, whereas tree graphs contribute

only for $u\overline{u}$ and hence have both $\Delta I=0$ and $\Delta I=1$ parts, as do electroweak penguins.

The CKM coefficients for $b \to q\overline{q}'d$ are listed in Table 2. A similar exercise to that described above for the penguins yields

$$A_P(q\bar{q}d) = V_{tb}V_{td}^*(P_t - P_c) + V_{ub}V_{ud}^*(P_u - P_c) . \tag{22}$$

Here the two CKM contributions are of the same order of magnitude λ^3 , so both must be considered. This grouping is generally preferred over the alternative, because the second term here is somewhat smaller than the first term; it has no top-quark contribution and would vanish if the up and charm quarks were degenerate. In early literature it was often dropped, but, particularly for modes where there is no tree contribution, its effect in generating direct CP violation may be important [22]. Here the $q\bar{q}=u\bar{u},d\bar{d}$ cases in the penguin graph contribute only to the isospin zero combinations, yielding $\Delta I=1/2$ for the three-quark combination, whereas tree graphs and electroweak penguins have both $\Delta I=1/2$ and $\Delta I=3/2$ parts. For $q\bar{q}=c\bar{c}$, isospin does not distinguish between tree and penguin contributions.

Modes with direct CP violation

The largest direct CP violation is expected when there are two comparable magnitude contributions with different weak phases. Modes where the tree graphs are Cabibbo suppressed, compared to the penguins or modes with two comparable penguin contributions, are thus the best candidates. As can be seen from the tables and expressions for penguin contributions above, there are many possible modes to study. Because strong phases cannot usually be predicted, there is no clean prediction as to which modes will show the largest direct CP-violation effects. One interesting suggestion is to study three-body modes with more than one resonance in the same kinematic region. Then the different amplitudes can have very different, possibly known, strong phase structure because of the resonance (Breit-Wigner) phases [23].

Over the past two years, new information has become available from the CLEO Collaboration which suggests that penguin contributions, at least for some modes, are larger than initial estimates suggested. This is seen by using SU(3) and comparing $B \to K\pi$ and $B \to \pi\pi$ decays. To get an order of

Table 1: $B \rightarrow q\overline{q}s$ decay modes

Quark process	Leading term	Secondary term	Sample B_d modes	B_d angle	Sample B_s modes	B_s angle
$b \to c\overline{c}s$	$V_{cb}V_{cs}^* = A\lambda^2$ tree + penguin $(c-t)$	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$ penguin only $(u - t)$	$J/\psi \ K_S$	β	$J/\psi\eta \ D_s\overline{D}_s$	0
$b \to s \overline{s} s$	$V_{cb}V_{cs}^{\bullet} = A\lambda^2$ penguin only(c - t)	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$ penguin only $(u - t)$	ϕK_S	β	$\phi\eta'$	0
$b \to u \overline{u} s$ $b \to d \overline{d} s$	$V_{cb}V_{cs}^* = A\lambda^2$ penguin only $(c-t)$	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$ tree + penguin(u - t)	$\pi^0 K_S$ ρK_S	competing terms	$\phi\pi^0 \ K_S \overline{K}_S$	competing terms

Table 2: $B \rightarrow q\overline{q}d$ decay modes

Quark process	Leading term	Secondary term	Sample B_d modes	B_d angle	Sample B_s modes	B_{s} angle	
$b \to c \bar{c} d$ $V_{cb} V_{cd}^* = -A \lambda^3$ V_t tree + penguin $(c - u)$		$V_{tb}V_{td}^* = A\lambda^3(1-\rho+i\eta)$ penguin only $(t-u)$	D+D-	* <i>β</i>	J/\psiK_S	*\beta_s competing terms	
$b \to s\overline{s}d$	$V_{tb}V_{td}^* = A\lambda^3(1- ho+i\eta)$ penguin only $(t-u)$, , , , , , , , , , , , , , , , , , ,		competing terms	ϕK_S		
$b \to u\overline{u}d$ $b \to d\overline{d}d$	$V_{ub}V_{ud}^* = A\lambda^3(\rho - i\eta)$ tree + penguin(u - c)	$V_{tb}V_{td}^* = A\lambda^3(1- ho+i\eta)$ penguin only $(t-c)$	$\pi\pi;\pi ho$ πa_1	*α	$\pi^0 K_S onumber ho^0 K_S$	competing terms	
$b \to c \overline{u} d$	$V_{cb}V_{ud}^* = A\lambda^2$	0	$ \begin{array}{c c} D^0\pi^0, \ D^0\rho^0 \\ & \searrow & \downarrow \\ C \end{array} $	eta P eigenstate	$\begin{array}{c} D^0K_S \\ \ \ CP \ \text{eigenstate} \end{array}$	0	

^{*}Leading terms only, large secondary terms shift asymmetry.

magnitude picture, we ignore such details as Clebsch-Gordan coefficients and assume that top penguins dominate the penguin contributions. Thus, we identify the tree and penguin contributions, minus their CKM coefficients, as T and P, the same for both modes. Writing $A_{T,P}(K\pi)$ for the tree and penguin contributions to the $K\pi$ amplitude, and similarly for $\pi\pi$ from the Tables, we see that $|A^T(K\pi)/A^T(\pi\pi)| = \mathcal{O}(\lambda)$. Thus, if the tree graph matrix elements were to dominate both decays, we would expect $Br(B \to K\pi)/Br(B \to \pi\pi) \sim \mathcal{O}(\lambda^2)$. Naively, this was expected, since the ratio of tree to penguin contribution was estimated to be $\frac{P}{T} = \frac{\alpha_S}{12\pi} \log \frac{m_t^2}{m_b^2} \sim \mathcal{O}(0.02)$. Experimentally, this is not so [24]; in fact, the $K\pi$ branching ratio is larger. This indicates that $A^{P}(K\pi) \sim A^{T}(\pi\pi)$, which suggests that $\frac{P}{T} = \mathcal{O}(\lambda)$ or larger, considerably bigger than expected. Note that this is one way that new physics could be hidden in modes with $|\rho(f)| \neq 1$; any new physics contribution can always be written as a sum of two terms with the weak phases of the two Standard Model terms (for example in Eq. (22)), and thus, when added to the Standard Model contributions, appears only as a change in the sizes of P and T from that expected in the Standard Model. However, we cannot calculate these relative sizes well enough to identify such an effect with confidence.

From the point of view of looking for direct CP-violation effects, a large P/T is good news. The largest asymmetry is expected when the interfering amplitudes have comparable magnitudes. This may be so in $B \to K\pi$ decay (or the penguin contribution may even be larger than the tree). There is no reason for the strong phases to be equal (although they could both be small). Therefore, $B^\pm \to K^\pm \pi$ is a likely hunting ground for direct CP violation. (Note there is no gluonic penguin contribution to charged $B \to \pi\pi$, and hence, no significant CP violation expected in the Standard Model.) However, as we will see below, a large P/T complicates the relationship between the measured asymmetry in neutral B decays to $\pi^+\pi^-$ and KM phases.

Studies of CP eigenstates

• $f = J/\psi K_S$

The asymmetry in the Golden Mode $B \to J/\psi K_S$ [25] will be measured soon. Since, using Eq. (20), the dominant penguin contribution has the same weak phase as the tree graph, and the remaining term is tiny, there is effectively only one weak phase in the decay amplitude. Hence, in the asymmetry, all dependence on the amplitudes cancel. With about 1% uncertainty,

$$\frac{q}{p}\overline{\rho}(J/\psi K_S) \simeq -\frac{V_{tb}^* V_{td}}{V_{tb}V_{td}^*} \cdot \frac{V_{cb}V_{cs}^*}{V_{cb}^* V_{cs}} \cdot \frac{V_{cs}V_{cd}^*}{V_{cs}^* V_{cd}} \equiv -e^{-2i\phi_1} , \quad (23)$$

where the last factor arises from the K^0 - \overline{K}^0 mixing amplitude and appears because of the K_S in the final state. The asymmetry is thus given by

$$a_{J/\psi K_S} = \sin(2\phi_1)\sin\Delta Mt , \qquad (24)$$

where the angle ϕ_1 is defined in Fig. 1. Given current constraints a large positive value for $\sin(2\phi_1)$ will be strongly suggestive that the KM ansatz for CP violation is at least one of the sources of this interesting phenomenon.

•
$$B^0 \rightarrow \pi^+\pi^-$$

The tree and penguin terms appear at the same order in λ (see Eq. (22) and Table 2.) If penguin decays were negligible the asymmetry would directly measure $\sin(2\phi_2)$. Given the enhanced penguin contribution seen from comparing $\pi\pi$ and $K\pi$ decays, the penguins cannot be ignored, and a treatment that does not assume $|\rho(f)|=1$ must be made.

If all six modes of $B^+\to \pi^+\pi^0$, $B^0\to \pi^+\pi^-$, $B^0\to \pi^0\pi^0$ and their charge conjugates can be measured with sufficient accuracy, ϕ_2 can be extracted using an isospin analysis [26], up to small corrections from electroweak penguins. However, the branching ratio for the charged modes is less than 10^{-5} [24], and that for the more difficult to measure $B^0\to \pi^0\pi^0$ is expected to be even smaller. Therefore, further ingenuity is needed to get at this angle cleanly. A future possibility is to study the Dalitz plot of $B\to 3\pi$ decays [27].

Further Measurements

As Tables 1 and 2 suggest there are many more CP-eigenstate modes that are interesting to study, both for B_d and similarly for B_s decays. The latter states are not accessible for the B factories operating at the $\Upsilon(4S)$ resonance, but may be studied at hadronic colliders. The CDF result on the asymmetry in the $J/\psi K_S$ mode is an indication of the capabilities of such facilities for B physics [29]. Upgrades of the Fermilab detectors are in progress and proposals for new detectors with the capability to achieve fast triggers for a larger variety of purely hadronic modes are under development, promising some future improvement in this capability.

In addition to CP-eigenstate modes there are many additional modes for which particular studies have been proposed, in particular those focussed on extracting ϕ_3 (γ). Modes such as DK, DK^* and D^*K where the D mesons decay to CP eigenstates provide theoretically clean extraction of this parameter but have small branching ratios [30]. Other approaches involve the more copious $K\pi$ modes but rely on the use of isospin and SU(3) (U-spin) symmetries, so have larger theoretical uncertainties [31]. This is an active area of current theoretical work.

For a recent review of how predictions for CP-violating effects are affected by Beyond Standard Model effects see Ref. 28. There are also many ways to search for new physics effects in B decays that do not involve just the CP-violation effects. For example searches for isospin breaking effects in $K\pi$ modes have recently been suggested as a likely method to isolate such effects [32].

References

- Much of what is presented is explained in further detail in I.I. Bigi and A.I. Sanda, CP Violation, Cambridge University Press, Cambridge (1999).
- For a review of CP violation in B decays see: I.I. Bigi, V.A. Khoze, N.G. Uraltsev, and A.I. Sanda, in CP Violation, ed. C. Jarlskog (World Scientific, Singapore, 1989).
- Y. Nir and H.R. Quinn, Ann. Rev. Nucl. Sci. 42, 211 (1992).
- 4. See our review on " $B^0-\overline{B}{}^0$ Mixing" by O. Schneider in the B^0 Listings in the full *Review*.
- A.B. Carter and A.I. Sanda, Phys. Rev. Lett. 45, 952 (1980); Phys. Rev. D23, 1567 (1981).

B^0

- R. Aleksan et al., Phys. Lett. **B316**, 567 (1993); M. Beneke, G. Buchalla, I. Duniety, Phys. Rev. D54, 4419 (1996).
- See our review on the CKM mixing matrix by F.J. Gilman, K. Kleinknecht and B. Renk in the full Review.
- Y. Grossman and H. Quinn, Phys. Rev. **D56**, 7259 (1997).
- 9. J.R. Dell'Aquila and C.A. Nelson, Phys. Rev. D33, 101 (1986);
 - B. Kayser et al., Phys. Lett. B237, 3339 (1990); I. Dunietz et al., Phys. Rev. **D43**, 2193 (1991).
- R. Alexsan, B. Kayser, and D. London, Phys. Rev. Lett. **73**, 18 (1994).
- 11. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
- 12. The angles of the unitarity triangle ϕ_1 , ϕ_2 , ϕ_3 are those used in J.L. Rosner, A.I. Sanda, and M. Schmidt in Proc. Fermilab Workshop on High Sensitivity Beauty Physics at Fermilab, A.J. Slaughter, N. Lockyer and M. Schmidt, eds., 1987.
- C.O. Dib et al., Phys. Rev. D41, 1522 (1990). See also Y. Nir SLAC Report 412 p. 102 (1992) for careful definition of the signs in the α, β, γ notation.
- 14. Y. Nir and H. Quinn, Phys. Rev. D42, 1473 (1990).
- 15. I.I. Bigi and A.I. Sanda, Nucl. Phys. **B193**, 85 (1981); I.I. Bigi, in Proceedings of the Tau-Charm Workshop, SLAC-Report 343, p. 169 (1989).
- 16. J.P. Silva and L. Wolfenstein Phys. Rev. **D55**, 5331 (1997).
- 17. See our review on "CP Violation" by L. Wolfenstein in the full Review.
- 18. Adam F. Falk, talk presented at 19th International Symposium on Lepton and Photon Interactions at High-Energies (LP 99) (Stanford, CA 9-14 Aug 1999) hep-ph/9908520.
- 19. S. Aoki, talk presented at 19th International Symposium on Lepton and Photon Interactions at High-Energies (LP) 99) (Stanford, CA, 9-14 Aug 1999).
- See for example Y. Nir and D. Silverman, Nucl. Phys. **B345**, 301 (1990).
- G. Buchalla, A J. Buras, M E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
- 22. J.M. Gérard and W.S. Hou, Phys. Rev. **D43**, 2909 (1991) and Phys. Lett. **B253**, 478 (1991); H. Simma, G. Eilam, and D. Wyler, Nucl. Phys. B352, 367 (1991);
 - R. Fleischer, Phys. Lett. **B341**, 205 (1994).
- 23. D. Atwood and A. Soni, Z. Phys. C64, 241 (1994); Phys. Rev. Lett. 74, 220 (1995).
- 24. Y. Kwon et al., CLEO-CONF-99-14, Talk given at 19th International Symposium on Lepton and Photon Interactions at High-Energies (LP 99) (Stanford, CA, 9-14 Aug 1999) hep-ex/9908039.
- I.I. Bigi and A.I. Sanda, Nucl. Phys. B193, 85 (1981); Nucl. Phys. **B281**, 41 (1987).
- M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
- 27. H.R. Quinn and A.E. Snyder, Phys. Rev. 48, 2139 (1993).
- 28. CP Violation beyond the Standard Model. By Y. Grossman, Y. Nir, R. Rattazzi, SLAC-PUB-7379, Jan 1997. In Heavy flavours II p. 755, A.J. Buras, M. Lindner, eds., e-Print Archive: hep-ph/9701231.
- 29. CDF Collaboration: T. Affolder et al., Phys. Rev. D61, 072005 (2000).
- 30. I. Dunietz, Phys. Lett. **B270**, 75 (1991);

- M. Gronau and D. Wyler, Phys. Lett. **B265**, 172 (1991); D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. 78, 3257 (1997).
- See for example M. Gronau, J.L. Rosner, and D. London, Phys. Rev. Lett. 73, 21 (1994);
 - M. Gronau, O.F. Hernandez, D. London, and J.L. Rosner Phys. Rev. D50, 4529 (1994);
 - M. Gronau and J.L. Rosner, Phys. Rev. Lett. 76, 1200
 - R. Fleischer and T. Mannel, Phys. Rev. **D57**, 2752 (1998); M. Neubert and J. L. Rosner, Phys. Lett. B441, 403 (1998) and Phys. Rev. Lett. 81, 5076 (1998);
 - M. Neubert, Invited talk at High Energy Physics International Euroconference on Quantum Chromo Dynamics (QCD '99) (Montpellier, France, 7-13 July 1999) hep-ph/9909564.
- 32. Y. Grossman, M. Neubert, and A.L. Kagan (Cincinnati U.). SLAC-PUB-8243, hep-ph/9909297.

CP VIOLATION PARAMETERS

$\operatorname{Re}(\epsilon_{\mathcal{B}^0})/(1+\left|\epsilon_{\mathcal{B}^0}\right|^2)$

CP Impurity in $B^0_{m{d}}$ system. It is obtained from either $a_{m{\ell}m{\ell}}$, the charge asymmetry in like-sign dilepton events or $a_{c\,p}$, the time-dependent asymmetry of inclusive B^0 and \overline{B}^0 decays.

VALUE	DOCUMENT ID	TEC	N COMMENT				
0.002±0.007 OUR AVERAGE							
$0.001 \pm 0.014 \pm 0.003$	342 ABBIENDI	99J OP/	NL e ⁺ e ⁻ →	Z			
$0.002 \pm 0.007 \pm 0.003$	343 ACKERSTAFF	970 OP	NL e+e- →	Z			
< 0.045	344 BARTELT	93 CLE	2 e ⁺ e ⁻ →	T(45)			

 342 Data analyzed using the time-dependent asymmetry of inclusive B^0 decay. The production flavor of B^0 mesons is determined using both the jet charge and the charge of econdary vertex in the opposite hemisphere.

 343 ACKERSTAFF 970 assumes CPT and is based on measuring the charge asymmetry in a sample of ${\cal B}^0$ decays defined by lepton and Q_{hem} tags. If ${\cal CPT}$ is not invoked, ${\rm Re}(\epsilon_{\cal B})=-0.006\pm0.006$ is found. The indirect ${\cal CPT}$ violation parameter is determined to ${\rm Im}(\delta{\cal B})=-0.020\pm0.016\pm0.006$.

³⁴⁴BARTELT 93 finds $a_{\ell\ell}=0.031\pm0.096\pm0.032$ which corresponds to $|a_{\ell\ell}|<0.18$, which yields the above $|\text{Re}(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2|$.

$sin(2\beta)$

For a discussion of CP violation, see the note on "CP Violation in B Decay Standard Model Predictions" in the B^0 Particle Listings above. $\sin(2\beta)$ is a measure of the CP-violating amplitude in the $B_d^0 \rightarrow J/\psi(15) K_S^0$.

TECN COMMENT

**************************************			COMMENT
0.9 ±0.4 OUR AVERAGE			
$0.79^{+0.41}_{-0.44}$	³⁴⁵ AFFOLDER	00c CDF	ρ̄p̄ at 1.8 TeV
$3.2 \begin{array}{c} +1.8 \\ -2.0 \end{array} \pm 0.5$	³⁴⁶ ACKERSTAFF	98z OPAL	$e^+e^- \rightarrow Z$
• • • We do not use the following	lowing data for average	s, fits, limits	, etc. • • •
$1.8 \pm 1.1 \pm 0.3$			Repl: by AF- FOLDER 00c
345 AFFOLDER 00c uses about B ⁰ was determined using and a soft-lepton tag.			. The production flavor of side tag, a jet-charge tag,

- 346 ACKERSTAFF 98z uses 24 candidates for $B_d^0 o J/\psi(15)\,K_S^0$ decay. A combination of jet-charge and vertex-charge techniques were used to tag the B_d^0 production flavor. ³⁴⁷ ABE 98U uses 198 \pm 17 $B_d^0 \to J/\psi(15) K^0$ events. The production flavor of B^0 was determined using the same side tagging technique.

 $B^0 \rightarrow D^{\bullet-} \ell^+ \nu_{\ell}$ FORM FACTORS

R_1 (form factor ratio \sim	V/A_1)				
VALUE	DOCUMENT ID		TECN	COMMENT	
$1.16 \pm 0.30 \pm 0.12$	DUBOSCQ	96	CLE2	$e^+e^- \to$	T(45)
R_2 (form factor ratio \sim	A_2/A_1)				
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.71 \pm 0.22 \pm 0.07$	DUBOSCQ	96	CLE2	e^+e^-	T(45)
$ ho_{A_1}^2$ (form factor slope)					
VALUE	DOCUMENT ID		TEÇN	COMMENT	
0.91±0.15±0.06	DUBOSCQ	96	CLE2	$e^+e^- \rightarrow$	7(45)

Meson Particle Listings B^0 , B^{\pm}/B^0 ADMIXTURE

B ⁰ REFERENCES					
AFFOLDER BEHRENS CSORNA ABBIENDI	00C 00 00 99J	PR D61 072005 PR D61 052001 PR D61 111101 EPJ C12 609	T. Affolder et al. B.H. Behrens et al. S.E. Csorna et al. G. Abbiendi et al.	(CDF Collab.) (CLEO Collab.) (CLEO Collab.)	
ABE ABE	99K	PR D60 051101 PR D60 072003	G. Abbiendi et al. F. Abe et al. F. Abe et al.	(OPAL Collab.) (CDF Collab.) (CDF Collab.)	
AFFÖLDER AFFÖLDER	99B 99C	PRL 83 3378 PR D60 112004	T. Affolder et al.	(CDF Collab.)	
ARTUSO BARTELT	99 99	PRL 82 3020 PRL 82 3746	M. Artuso et al. J. Bartelt et al. T.E. Coan et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.)	
COAN ABBOTT ABE	99 98B 98	PL B423 419	B. Abbott et al. F. Abe et al.	(D0 Collab)	
ABE ABE	98B 98C	PR D57 5382 PRL 80 2057	F. Abe et al. F. Abe et al.	(CDF Collab.) (CDF Collab.) (CDF Collab.)	
Also ABE	99C 98O	PR D58 072001	F. Abe et al. F. Abe et al.	(CDF Collab.) (CDF Collab.)	
ABE ABE ABE	98Q 98U 98V	PR D58 092002 PRL 81 5513 PRL 81 5742	F. Abe et al. F. Abe et al. F. Abe et al.	(CDF Collab.) (CDF Collab.) (CDF Collab.)	
ACCIARRI ACCIARRI	98D 98S	EPJ C5 195 PL B438 417	M. Acciarri et al. M. Acciarri et al.	(L3 Collab.) (L3 Collab.)	
ACKERSTAFF BARATE	98Q	EPJ C4 387	K. Ackerstaff et al. R. Barate et al.	(OPAL Collab.) (ALEPH Collab.)	
BEHRENS BERGFELD BRANDENB	98 98 98	PRL 81 272	B.H. Behrens et al. T. Bergfeld et al. G. Brandenbrug et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.)	
GODANG NEMATI	98 98	PRL 80 3456 PR D57 5363	R. Godang et al. B. Nemati et al.	(CLEO Collab.) (CLEO Collab.)	
ABE ABREU	97J 97F	ZPHY C74 19	K. Abe et al. P. Abreu et al.	(SLD Collab.) (DELPHI Collab.)	
Also ABREU ACCIARRI	97K 97N 97B	ZPHY C75 579 erratum ZPHY C76 579 PL B391 474	P. Abreu et al. M. Acciarri et al.	(DELPHI Collab.) (L3 Collab.)	
ACCIARRI ACKERSTAFF	97C	PL B391 481	M. Acciarri et al. M. Acciarri et al. K. Ackerstaff et al. K. Ackerstaff et al.	(L3 Collab.) (OPAL Collab.)	
ACKERSTAFF ACKERSTAFF	97U 97V	ZPHY C76 401 ZPHY C76 417	K. Ackerstaff et al.	(OPAL Collab.) (OPAL Collab.)	
ARTUSO ASNER	97 97	PDI 70 700	M. Artuso et al. D. Asner et al.	(CLEO Collab.) (CLEO Collab.)	
ATHANAS BUSKULIC BUSKULIC	97 97 97D	PI R395 373	M. Athanas et al. D. Buskulic et al. D. Buskulic et al.	(CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.)	
FU JESSOP	97	ZPHY C75 397 PRL 79 3125 PRL 79 4533	X. Fu et al. CP Jesson et al.	(CLEO Collab.) (CLEO Collab.)	
ABE ABE	96B 96C	PR D53 3496 PRL 76 4462	F. Abe et al. F. Abe et al. F. Abe et al.	(CDF Collab.) (CDF Collab.) (CDF Collab.)	
ABE ABE ABE	96H 96L 96Q	PRL 76 4675	F. Abe et al. F. Abe et al. F. Abe et al.	(CDF Collab.) (CDF Collab.)	
ABREU ABREU	96P 96Q	ZPHY C71 539 ZPHY C72 17	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)	
ACCIARRI ADAM	96E 96D	ZPHY C72 207	M. Acciarri et al. W. Adam et al.	(L3 Collab.) (DELPHI Collab.)	
ALBRECHT ALEXANDER ALEXANDER	96 T	PL B374 256 PRL 77 5000 ZPHY C72 377	H. Albrecht et al. J.P. Alexander et al. G. Alexander et al.	(ARGUS Collab.) (CLEO Collab.) (DPAL Collab.)	
ASNER BARISH	96	PR D53 1039 PRL 76 1570	D.M. Asner et al. B.C. Barish et al.	(CLEO Collab.) (CLEO Collab.)	
BISHAI BUSKULIC	96 96J	PL B369 186 ZPHY C71 31 PL B384 471	M. Bishai et al. D. Buskulic et al.	(CLEO Collab.) (ALEPH Collab.)	
BUSKULIC DUBOSCQ GIBAUT	96V 96 96	PRL 76 3898 PR D53 4734	D. Buskulic et al. J.E. Duboscq et al. D. Gibaut et al.	(ALEPH Collab.) (CLEO Collab.) (CLEO Collab.)	
PDG ABE	96 95Z	PR D54 1 PRL 75 3068	F. Ahe et al.	(CDF Collab.)	
ABREU ABREU	95N 95Q	PL B357 255 ZPHY C6B 13	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)	
ACCIARRI ACCIARRI ADAM	95H 95I 95	PL B363 127 PL B363 137 7PHY C68 363	M. Acciarri et al. M. Acciarri et al. W. Adam et al.	(L3 Collab.) (L3 Collab.) (DELPHI Collab.)	
AKERS AKERS	95J	ZPHY C68 363 ZPHY C66 555 ZPHY C67 379	R. Akers et al. R. Akers et al.	(OPAL Collab.) (OPAL Collab.)	
ALEXANDER Also	95C	PL B341 435 PL B347 469 (erratum)	J. Alexander et al. J. Alexander et al.	(CLEO Collab.) (CLEO Collab.)	
BARISH BUSKULIC ABE	95 95N 94D	PR D51 1014 PL B359 236 PRL 72 3456	B.C. Barish et al. D. Buskulic et al. F. Abe et al.	(CLEO Collab.) (ALEPH Collab.) (CDF Collab.)	
ABREU AKERS	94M		P. Abreu et al. R. Akers et al.	(DELPHI Collab.) (OPAL Collab.)	
AKERS AKERS	94H 94J	PL B336 585 PL B337 196	R. Akers et al. R. Akers et al.	(OPAL Collab.) (OPAL Collab.)	
AKERS ALAM ALBRECHT	94L 94 94	PL B337 393 PR D50 43 PL B324 249	R. Akers et al. M.S. Alam et al. H. Albrecht et al.	(OPAL Collab.) (CLEO Collab.) (ARGUS Collab.)	
ALBRECHT AMMAR	94G 94	PL B340 217 PR D49 5701	H. Albrecht et al. R. Ammar et al.	(ARGUS Collab.) (CLEO Collab.)	
ATHANAS Also	94 95	PRL 73 3503 PRL 74 3090 (erratum)	M. Athanas et al. M. Athanas et al.	(CLEO Collab.) (CLEO Collab.)	
BUSKULIC PDG PROCARIO	94B 94 94	PL B322 441 PR D50 1173 PRL 73 1306	D. Buskulic et al. L. Montanet et al. M. Procario et al.	(ALEPH Collab.) (CERN, LBL, BOST+) (CLEO Collab.)	
STONE ABREU	94	HEPSY 93-11 ZPHY C57 181	P. Abreu et al.	(DELPHI Collab.)	
ABREU ACTON ALBRECHT	93G 93C 93	PL B312 253 PL B307 247 ZPHY C57 533	P. Abreu et al. P.D. Acton et al.	(DELPHI Collab.) (OPAL Collab.) (ARGUS Collab.)	
ALBRECHT ALEXANDER	93E	ZPHY C60 11	H. Albrecht et al. H. Albrecht et al. J. Alexander et al.	(ARGUS Collab.) (CLEO Collab.)	
AMMAR BARTELT	93 93	PRL 71 674 PRL 71 1680	R. Ammar et al. J.E. Bartelt et al.	(CLEO Collab.) (CLEO Collab.)	
BATTLE BEAN BUSKULIC	93 938 93D	PRL 71 3922 PRL 70 2681	M. Battle <i>et al.</i> A. Bean <i>et al.</i> D. Buskulic <i>et al.</i>	(CLEO Collab.) (CLEO Collab.) (ALEPH Collab.)	
Also BUSKULIC	94H		D. Buskulic et al.	(ALEPH Collab.)	
SANGHERA ALBRECHT	93 92C	PR D47 791 PL B275 195	S. Sanghera et al. H. Albrecht et al.	(CLEO Collab.) (ARGUS Collab.)	
ALBRECHT ALBRECHT BORTOLETT	92G 92L		H. Albrecht et al. H. Albrecht et al. D. Bortoletto et al.	(ARGUS Collab.) (ARGUS Collab.) (CLEO Collab.)	
HENDERSON KRAMER		PR D45 21 PR D45 2212 PL B279 181	S. Henderson et al. G. Kramer, W.F. Palmer	(CLEO Collab.) (HAMB, OSU)	
ALBAJAR ALBAJAR	91C 91E	PL B262 163 PL B273 540	C. Albajar <i>et al.</i> C. Albajar <i>et al.</i>	(UA1 Collab.) (UA1 Collab.)	
ALBRECHT ALBRECHT	91B 91C	PL B254 288 PL B255 297	H. Albrecht et al. H. Albrecht et al.	(ARGUS Collab.) (ARGUS Collab.)	

ALBRECHT 91E	PL B262 148	H. Albrecht et al.	(ARGUS Collab.)
BERKELMAN 91	ARNPS 41 1	K. Berkelman, S. Stone	(CORN, SYRA)
"Decays of B M			
FULTON 91	PR D43 651	R. Fulton et al.	(CLEO Collab.)
ALBRECHT 90B	PL B241 278	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT 90J	ZPHY C48 543	H. Albrecht et al.	(ARGUS Collab.)
ANTREASYAN 90B	ZPHY C48 553	D. Antreasyan et al.	(Crystal Ball Collab.)
BORTOLETTO 90	PRL 64 2117	D. Bortoletto et ai.	(CLEO Collab.)
ELSEN 90	ZPHY C46 349	E. Elsen et al.	(JADE Collab.)
ROSNER 90	PR D42 3732		
WAGNER 90	PRL 64 1095	S.R. Wagner et al.	(Mark II Collab.)
ALBRECHT 89C	PL B219 121	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT 89G	PL B229 304	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT 89J	PL B229 175	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT 89L	PL B232 554	H. Albrecht et al.	(ARGUS Collab.)
ARTUSO 89	PRL 62 2233	M. Artuso et al.	(CLEO Collab.)
AVERILL 89	PR D39 123	D.A. Averill et ai.	(HRS Collab.)
AVERY 89B	PL B223 470	P. Avery et al.	(CLEO Collab.)
BEBEK 89	PRL 62 B	C. Bebek et al.	(CLEO Collab.)
BORTOLETTO 89	PRL 62 2436	D. Bortoletto et al.	(CLEO Collab.)
BORTOLETTO 89B	PRL 63 1667	D. Bortoletto et al.	(CLEO Collab.)
ALBRECHT 88F	PL B209 119	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT 88K	PL B215 424	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT 87C	PL B185 218	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT 87D	PL B199 451	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT 871	PL B192 245	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT 87J	PL B197 452	H. Albrecht et al.	(ARGUS Collab.)
AVERY 87	PL B183 429	P. Avery et al.	(CLEO Collab.)
BEAN 87B	PRL 58 183	A. Bean et al.	(CLEO Collab.)
BEBEK 87	PR D36 1289	C. Bebek et al.	(CLEO Collab.)
ALAM 86	PR D34 3279	M.S. Alam et al.	(CLEO Collab.)
ALBRECHT 86F	PL B182 95	H. Albrecht et al.	(ARGUS Collab.)
PDG 86	PL 170B	M. Aguilar-Benitez et al.	(CERN, CIT+)
CHEN 85	PR D31 2386	A. Chen et al.	(CLEO Collab.)
HAAS 85	PRL 55 1248	J. Haas et al.	(CLEO Collab.)
AVERY 84	PRL 53 1309	P. Avery et al.	(CLEO Collab.)
GILES 84	PR O30 2279	R. Giles et al.	(CLEO Collab.)
BEHRENDS 83	PRL 50 881	S. Behrends et al.	(CLEO Collab.)

B^{\pm}/B^0 ADMIXTURE

B DECAY MODES

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that $B(\Upsilon(4S)\to B\overline{B})=100\%$.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibity would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical when only one of the specified particles is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross sections.

 $\overline{\mathcal{B}}$ modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

	Mode	Frac	Fraction (Γ_j/Γ)			
		Semileptonic and leptonic	modes			
Γ_1	$B \rightarrow$	$e^+ u_e$ anything [a] (10.41±0.29) %	S=:	1.2	

```
\Gamma_2
               B \rightarrow \bar{p}e^+\nu_e anything
                                                                             < 1.6
                                                                                                      \times 10^{-3}
                                                                                                                       CL=90%
           B \rightarrow \mu^+ \nu_\mu anything
                                                                       [a] ( 10.3 \pm 0.5 ) %
Гз
          B \rightarrow \ell^+ \nu_\ell anything
                                                                     [a,b] ( 10.45 \pm 0.21) %
              B \rightarrow D^- \ell^+ \nu_\ell anything B \rightarrow \overline{D}{}^0 \ell^+ \nu_\ell anything
\Gamma_5
                                                                       [b] ( 2.7 \pm0.8 ) %
\Gamma_6
                                                                       [b] ( 7.0 ±1.4)%
               B \rightarrow D^{*-}\ell^{+}\nu_{\ell} anything
\Gamma_7
               B \rightarrow D^{*0} \ell^+ \nu_{\ell} anything
Γ8
               B \rightarrow \overline{D}^{**}\ell^+\nu_{\ell}
                                                                    [b,c] ( 2.7 \pm0.7)%
                   B \rightarrow \overline{D}_1(2420)\ell^+\nu_\ell any-
                                                                               ( 7.4 \pm 1.6 ) \times 10<sup>-3</sup>
Γ<sub>10</sub>
                         thing
\Gamma_{11}
                   B \rightarrow \bar{D}\pi \ell^+ \nu_{\ell} anything +
                                                                               ( 2.3 \pm 0.4)%
                         D^*\pi\ell^+\nu_\ell anything
                    B \rightarrow \overline{D}_2^*(2460)\ell^+\nu_\ell any-
                                                                                                      \times 10^{-3}
                                                                                                                        CL=95%
                                                                             < 6.5
\Gamma_{12}
                   thing B \to D^{*-}\pi^+\ell^+\nu_\ell any-
                                                                              (1.00\pm0.34)\%
\Gamma_{13}
               thing {\cal B} 	o D_s^- \ell^+ 
u_\ell anything
                                                                                                      \times 10^{-3}
                                                                                                                        CL=90%
\Gamma_{14}
                  B \rightarrow D_s^- \ell^+ \nu_\ell K^+ anything [b] < 6
                                                                                                      \times 10^{-3}
                                                                                                                        CL=90%
Γ<sub>15</sub>
                   B \rightarrow D_s^- \ell^+ \nu_\ell K^0 anything [b] < 9
                                                                                                                        CL=90%
\Gamma_{16}
               B \rightarrow \ell^+ \nu_\ell noncharmed
Γ17
               B \to K^+ \ell^+ \nu_\ell anything B \to K^- \ell^+ \nu_\ell anything B \to K^0 / \overline{K}^0 \ell^+ \nu_\ell anything
\Gamma_{18}
                                                                       [b] ( 6.0 \pm 0.5 )%
                                                                      [b] (10 \pm 4) \times 10^{-3}
Γ19
                                                                      [b] ( 4.4 \pm 0.5 ) %
```

Meson Particle Listings B^{\pm}/B^{0} ADMIXTURE

D. Dit on D. andro								
_	D , D^+ , or	D ₅ m						
Γ ₂₁	$B \rightarrow D^{\pm}$ anything $B \rightarrow D^{0} / \overline{D}^{0}$ anything				±1.9			
Г ₂₂	$B \rightarrow D^*/D^*$ anything $B \rightarrow D^*(2010)^{\pm}$ anything				±2.9			S=1.1
Г ₂₃	$B \rightarrow D^*(2007)^0$ anything				±1.6 ±2.7			
Γ ₂₄ Γ ₂₅	$B \rightarrow D^{\pm}_{s}$ anything	[d]			±2.7			
Γ ₂₆	$B \rightarrow D^{(*)}\overline{D}^{(*)}K^0 +$	[<i>d</i> , <i>e</i>]	(7.1	+2.7 -1.7) %		
Γ ₂₇	$D^{(*)}\overline{D}^{(*)}K^{\pm}$ $b \to c\overline{c}s$		1	22	±4) %		
Γ ₂₈	$B \to D_s^{(*)} \overline{D}^{(*)}$	[d,e]			±1.3	-		
Γ ₂₉	$B \to D^* D^* (2010)^{\pm}$	[6]		5.9			10-3	CL=90%
Γ30	$B \to DD^*(2010)^{\pm} + D^*D^{\pm}$	[d]		5.5			10-3	CL=90%
Γ31	$B \rightarrow DD^{\pm}$	[d]		3.1			10-3	CL=90%
Γ ₃₂	$B \rightarrow D_s^{(*)\pm} \overline{D}^{(*)} X(n\pi^{\pm})$	[d,e]	(9	+5 -4) %		
Γ ₃₃	$B \to D^*(2010)\gamma$	[-,-]			-4		10-3	CI 008/
	$B \to D^{+}(2010)^{r_{f}}$ $B \to D_{s}^{+}\pi^{-}, D_{s}^{*+}\pi^{-}, D_{s}^{+}\rho^{-},$	[al	<	1.1 5			10-4	CL=90% CL=90%
Г ₃₄	$D^{*+} = D^{+} = 0$, [U]	`	3		^	10	CL = 90 /6
	$D_{s}^{*+}\rho^{-}, D_{s}^{+}\pi^{0}, D_{s}^{*+}\pi^{0},$							
	$D_s^+ \eta$, $D_s^{*+} \eta$, $D_s^+ \rho^0$,							
	$D_s^{*+} ho^0$, $D_s^+ \omega$, $D_s^{*+} \omega$							
Γ ₃₅	$B \rightarrow D_{s1}(2536)^+$ anything		<	9.5		×	₁₀ -3	CL=90%
	Charmonii	um me	ode	* 5				
Γ ₃₆	$B \rightarrow J/\psi(1S)$ anything		(± 0.06	i) %		
Γ37	$B o J/\psi(1S)$ (direct) any-		(8.0	± 0.8) ×	10-3	
	thing							
Γ38	$B \to \psi(2S)$ anything		(± 0.5			
Г39	$B \to \chi_{c1}(1P)$ anything				±0.7			
Γ ₄₀	$B \to \chi_{c1}(1P)$ (direct) any-		(3.7	±0.7) ×	10-3	
_	thing (1.0) anothing						10-3	CI 008/
Γ ₄₁	$B \rightarrow \chi_{c2}(1P)$ anything $B \rightarrow \eta_c(1S)$ anything		<	3.8 9			10 3 10-3	CL=90% CL=90%
Γ ₄₂	$B \rightarrow \eta_c(13)$ anything		`	9			10 -	CL=90%
	K or K	mod	les					
Γ ₄₃	$B \rightarrow K^{\pm}$ anything	[d]			±2.5	-		
Γ ₄₄	$B \rightarrow K^+$ anything			66	±5) %		
Γ ₄₅	$B \to K^-$ anything			13	±4) %		
[46	$B \rightarrow K^0 / \overline{K}^0$ anything	[d]		64	±4) %		
Γ ₄₇	$B \to K^*(892)^{\pm}$ anything $B \to K^*(892)^0 / \overline{K}^*(892)^0$ any-	[4]		18	±6 ±2.6) %		
48	thing	[d]	(14.0	I 2.0) 70		
Γ49	$B \rightarrow K^*(892)\gamma$							
Γ ₅₀	$B \rightarrow K_1(1400)\gamma$		<	4.1		×	10-4	CL=90%
Γ ₅₁	$B \rightarrow K_2^*(1430)\gamma$		<	8.3			10-4	CL=90%
Γ ₅₂	$B \rightarrow K_2(1770)\gamma$		<	1.2		×	10-3	CL=90%
Γ ₅₃	$B \rightarrow K_3^*(1780)\gamma$		<	3.0		×	10-3	CL=90%
Γ ₅₄	$B \rightarrow K_4^*(2045)\gamma$		<	1.0		×	10-3	CL=90%
Γ ₅₅	$B \rightarrow \overline{b} \rightarrow \overline{s} \gamma$		(2.3	±0.7) ×	10-4	
Γ ₅₆	$B \rightarrow \overline{b} \rightarrow \overline{s} gluon$		<	6.8		%		CL=90%
Γ ₅₇	$B ightarrow \eta$ anything		<	4.4		×	10-4	CL=90%
Γ ₅₈	$B \rightarrow \eta'$ anything		(6.2	$+2.1 \\ -2.6$) ×	10-4	
_	Light unflavore							
	$B \to \pi^{\pm}$ anything	[d,f]			±7	-		
Γ ₆₀	$B \rightarrow \eta$ anything $B \rightarrow \rho^0$ anything				±1.6			
	$B \rightarrow \rho$ anything $B \rightarrow \omega$ anything			21 81	±5) %		CL=90%
Γ ₆₂	$B \rightarrow \phi$ anything				± 0.7			S=1.8
Γ ₆₄	$B \rightarrow \phi K^*(892)$		<				10-5	CL=90%
- 04	, , ,							
_	Baryon	mode						
Γ ₆₅	$B \rightarrow \Lambda_c^{\pm}$ anything		(6.4	±1.1) %		
66	$B \rightarrow \Lambda_c^+$ anything							
Γ ₆₇	$B \rightarrow \overline{\Lambda}_c^-$ anything						_	
Γ ₆₈	$B \rightarrow \overline{\Lambda}_{c}^{-} e^{+}$ anything		<				10-3	CL=90%
Γ69	$B \rightarrow \Lambda_c^- p$ anything		(3.6	±0.7) %		
Γ ₇₀	$B \to \overline{\Lambda_c} p e^+ \nu_e$ $B \to \overline{\Sigma_c} - \text{anything}$ $B \to \overline{\Sigma_c} - \text{anything}$		<				10-3	CL=90%
Γ ₇₁	$B \to \overline{\Sigma}_c^-$ anything		(4.2	±2.4) ×	10-3	
Γ ₇₂	$B \to \overline{\Sigma}_c^-$ anything		<				10-3	CL=90%
Γ73	$B \to \overline{\Sigma}_{0}^{6} \text{ anything}$ $B \to \overline{\Sigma}_{0}^{6} N(N = p \text{ or } n)$		(4.6	±2.4) ×	10^{-3}	
Γ ₇₄	$B \to \overline{\Sigma}_c^{\delta} N(N = p \text{ or } n)$		<				10-3	CL=90%
Γ ₇₅	$B \to \Xi_c^0$ anything		(1.4	±0.5) ×	10-4	
. •	$\times B(\Xi_c^0 \to \Xi^- \pi^+)$		•					

```
( 4.5 ^{+1.3}_{-1.2} ) \times 10<sup>-4</sup>
\Gamma_{76} B \rightarrow \Xi_c^+ anything
                 \times B(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)
\Gamma_{77} B \rightarrow p/\bar{p} anything
                                                                     [d] (8.0 \pm 0.4)\%
                                                                     [d] ( 5.5 \pm0.5 )%
\Gamma_{78} B \rightarrow p/\overline{p}(direct) anything
\Gamma_{79} B \rightarrow \Lambda/\overline{\Lambda} anything
                                                                     [d] (4.0 \pm 0.5)\%
\Gamma_{80} B \rightarrow \Lambdaanything
\Gamma_{81} B \rightarrow \overline{\Lambda} anything
\Gamma_{82} \quad B \rightarrow \Xi^{-}/\overline{\Xi}^{+} anything
                                                                     [d] (2.7 \pm 0.6) \times 10^{-3}
\Gamma_{83} B \rightarrow baryons anything
                                                                            (6.8 \pm 0.6)\%
\Gamma_{84} B \rightarrow p\overline{p} anything
                                                                            (2.47 \pm 0.23)\%
\Gamma_{85} \quad B \rightarrow \Lambda \overline{p} / \overline{\Lambda} p anything
                                                                     [d] ( 2.5 \pm 0.4)%
                                                                                                   \times 10^{-3}
         B \rightarrow \Lambda \overline{\Lambda} anything
                                                                          < 5
                                                                                                                    CL=90%
                         Lepton Family number (LF) violating modes or
                             \Delta B = 1 weak neutral current (B1) modes
\Gamma_{87} \quad B \, \rightarrow \, e^+ \, e^- \, s
                                                                                                   \times 10^{-5}
                                                         B1
                                                                         < 5.7
                                                                                                                    CL=90%
\Gamma_{88} B \rightarrow \mu^+ \mu^- s
                                                          B1
                                                                                                   \times 10^{-5}
                                                                          < 5.8
                                                                                                                    CL=90%
                                                                                                   \times 10^{-5}
\Gamma_{89} \quad B \rightarrow e^{\pm} \mu^{\mp} s
                                                         LF
                                                                                2.2
                                                                                                                    CL=90%
     [a] These values are model dependent. See 'Note on Semileptonic Decays'
          in the B+ Particle Listings.
     [b] An \ell indicates an e or a \mu mode, not a sum over these modes.
    [c] D^{**} stands for the sum of the D(1 \, {}^{1}P_{1}), D(1 \, {}^{3}P_{0}), D(1 \, {}^{3}P_{1}), D(1 \, {}^{3}P_{2}),
          D(2^{1}S_{0}), and D(2^{1}S_{1}) resonances.
    [d] The value is for the sum of the charge states or particle/antiparticle
          states indicated.
     [e] D^{(*)}\overline{D}^{(*)} stands for the sum of D^*\overline{D}^*, D^*\overline{D}, D\overline{D}^*, and D\overline{D}.
     [f] Inclusive branching fractions have a multiplicity definition and can be
                           B±/B0 ADMIXTURE BRANCHING RATIOS
\Gamma(\ell^+\nu_\ell \text{anything})/\Gamma_{\text{total}}
These branching fraction values are model dependent. See the note on "Semileptonic
         Decays of B Mesons at the beginning of the B^+ Particle Listings.
VALUE DOCUMENT ID TECN COMMENT

9.1045±0.0021 OUR AVERAGE Includes data from the 2 datablocks that follow this
                                                  ^{1} HENDERSON 92 CLEO e^{+}e^{-} \rightarrow \Upsilon(45)
0.108 ±0.002 ±0.0056
   ^1\,\text{HENDERSON} 92 measurement employs e and \mu. The systematic error contains 0.004 in quadrature from model dependence. The authors average a variation of the Isgur, Scora, Grinstein, and Wise model with that of the Altarelli-Cabibbo-Corbò-Maiani-Martinelli
       model for semileptonic decays to correct the acceptance.
\Gamma(e^+ \nu_e anything)/\Gamma_{total} These branching fraction values are model dependent. See the note on "Semileptonic"
         Decays of B Mesons at the beginning of the B+ Particle Listings.
<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>
The data in this block is included in the average printed for a previous datablock.
0.1041±0.0029 OUR AVERAGE Error includes scale factor of 1.2.
                                                   <sup>2</sup> BARISH
                                                                         96B CLE2 e^+e^- \rightarrow \Upsilon(45)
0.1049 \pm 0.0017 \pm 0.0043
                                                  <sup>3</sup> ALBRECHT 93H ARG e^+e^- \rightarrow \Upsilon(45)
0.097 \pm 0.005 \pm 0.004
                                                   <sup>4</sup> YANAGISAWA 91 CSB2 e^+e^- \rightarrow r(45)
0.100 \pm 0.004 \pm 0.003
                                                  <sup>5</sup> ALBRECHT 90H ARG e^+e^- \rightarrow r(45)
0.103 \pm 0.006 \pm 0.002
                                                  6 WACHS
                                                                            89 CBAL Direct e at 7(45)
0.117 \pm 0.004 \pm 0.010
0.120 ±0.007 ±0.005
                                                    CHEN
                                                                           84 CLEO Direct e at 7(45)
• • • We do not use the following data for averages, fits, limits, etc. • • • 0.132 ±0.008 ±0.014 7 KLOPFEN... 838 CUSB Direct e at \Upsilon(45)
   <sup>2</sup> BARISH 96B analysis performed using tagged semileptonic decays of the B. This technique is almost model independent for the lepton branching ratio.

ALBRECHT 93H analysis performed using tagged semileptonic decays of the B. This technique is almost model independent for the lepton branching ratio.
    ^4YANAGISAWA 91 also measures an average semileptonic branching ratio at the ^7(55) of 9.6–10.5% depending on assumptions about the relative production of different ^8
   meson species.

5 ALBRECHT 90H uses the model of ALTARELLI 82 to correct over all lepton momenta.
   0.099 \pm 0.006 is obtained using ISGUR 898.

6 Using data above p(e) = 2.4 GeV, WACHS 89 determine \sigma(B \rightarrow e \nu \text{up})/\sigma(B \rightarrow e \nu \text{charm}) < 0.065 at 90% CL.

7 Ratio \sigma(b \rightarrow e \nu \text{up})/\sigma(b \rightarrow e \nu \text{charm}) < 0.055 at CL = 90%.
\Gamma(\mu^+\nu_\mu anything)/\Gamma_{\rm total}
These branching fraction values are model dependent. See the note on "Semilepto Decays of B Mesons at the beginning of the B^+ Particle Listings.
```

90H ARG $e^+e^- \rightarrow \Upsilon(45)$ 84 CLEO Direct μ at $\Upsilon(45)$ $0.108 \pm 0.006 \pm 0.01$ CHEN $0.112 \pm 0.009 \pm 0.01$ LEVMAN 84 CUSB Direct μ at $\Upsilon(45)$ 8 ALBRECHT 90H uses the model of ALTARELLI 82 to correct over all lepton momenta. 0.097 \pm 0.006 is obtained using ISGUR 89B.

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>
The data in this block is included in the average printed for a previous datablock.

8 ALBRECHT

0.103±0.005 OUR AVERAGE

 $0.100 \pm 0.006 \pm 0.002$

$\Gamma(\overline{p}e^+\nu_e \text{ anything})/\Gamma_{\text{total}}$ <u>VALUE</u> <u>CL%</u>	•
<0.0016 90	ALBRECHT 90H ARG $e^+e^- \rightarrow \Upsilon(4S)$
$\Gamma(D^-\ell^+\nu_\ell \text{ anything})/\Gamma(\ell\ell)$ $\ell=e \text{ or } \mu$.	$^{+}\nu_{\ell}$ anything) Γ_{5}/Γ_{4}
VALUE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9.26±0.07±0.04	9 FULTON 91 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ → $K^-\pi^+\pi^+) = (9.1 \pm 1.3 \pm 0.4)\%$ as measured by MARK III.
$ \frac{1}{(D^0 \ell^+ \nu_\ell \text{ anything})} / \Gamma(\ell^- \ell^- \ell^- \ell^- \ell^- \ell^- \ell^- \ell^- \ell^- \ell^- $	T ₆ /Γ ₄ DOCUMENT ID TECN COMMENT
0.67±0.09±0.10	¹⁰ FULTON 91 CLEO $e^+e^- \rightarrow \Upsilon(45)$
10 FULTON 91 uses B(D^0 \rightarrow	$\kappa^{-}\pi^{+}$) = (4.2 ± 0.4 ± 0.4)% as measured by MARK III.
$(D^{*-}\ell^+\nu_\ell \text{ anything})/\Gamma_{to}$	•
ALUE (units 10 ⁻²)	DOCUMENT ID TECN COMMENT
	wing data for averages, fits, limits, etc. • • • 11 BARISH 95 CLE2 $e^+e^- ightarrow \Upsilon(4S)$
11 BARISH BE USB B(D0)	$K^-\pi^+$) = (3.91 ± 0.08 ± 0.17)% and B($D^{*+} \rightarrow D^0\pi^+$)
$= (68.1 \pm 1.0 \pm 1.3)\%.$	
$(D^{*0}\ell^+\nu_\ell \text{ anything})/\Gamma_{to}$	
ALUE (units 10 ⁻²)	DOCUMENT ID TECN COMMENT
ullet $ullet$ We do not use the follo	wing data for averages, fits, limits, etc. • • • 12 BARISH 95 CLE2 $e^+e^- \rightarrow \Upsilon(45)$
¹² BARISH 95 use B($D^0 \rightarrow$	$K^-\pi^+$) = (3.91 ± 0.08 ± 0.17)%, B($D^{*+} \rightarrow D^0\pi^+$) = (*0.5 ± 0.3 ± 0.33)%.
$(\overline{D}^{\bullet \bullet} \ell^+ \nu_{\ell}) / \Gamma_{\text{total}}$	Г9/Г
and $D(2^{1}S_{1})$ resonances	n of the $D(1^{1}P_{1})$, $D(1^{3}P_{0})$, $D(1^{3}P_{1})$, $D(1^{3}P_{2})$, $D(2^{1}S_{0})$, s. $\ell = e$ or μ , not sum over e and μ modes.
0.027±0.005±0.005	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
• • We do not use the follo	wing data for averages, fits, limits, etc. • • •
< 0.028 95	5 14 BARISH 95 CLE2 $e^+e^- \rightarrow \Upsilon(45)$
taken their average e and a ¹⁴ BARISH 95 use B(D ⁰ → channels are zero, and use	$K^-\pi^+$) = (3.91 ± 0.08 ± 0.17)%, assume all nonresonant
	GISW model for relative abundances of D^{**} states.
$\overline{(D_1(2420)\ell^+ u_\ell}$ anything	T)/Ftotal F10/F
$(\overline{D}_1(2420)\ell^+\nu_\ell \text{ anything})$ 0.0074 ± 0.0016	z)/ Γ_{total} $\Gamma_{10}/\Gamma_{\text{comment iD}}$ $\Gamma_{10}/\Gamma_{\text{comment}}$ $\Gamma_{10}/\Gamma_{\text{comment}}$ Γ_{15} BUSKULIC 978 ALEP $e^+e^- \rightarrow Z$
$\overline{(D_1(2420)\ell^+\nu_\ell)}$ anything MLUE 0.0074 \pm 0.0016	2)/ Γ_{total} $\Gamma_{10}/\Gamma_{-\frac{DOCUMENT\ ID}{15}}$ Γ_{ECN} COMMENT 15 BUSKULIC 97B ALEP $e^+e^- \rightarrow Z$ owing data for averages, fits, limits, etc. • •
$(\overline{D}_1(2420)\ell^+\nu_\ell \text{ anything})$ $MLUE$ 0.0074 ± 0.0016 \bullet • We do not use the folloween 1^5 BUSKULIC 978 assumes E and B(ℓ) \rightarrow 8) = 0.378 +	The second state of the second states of the secon
$(\overline{D}_1(2420)\ell^+\nu_\ell \text{ anything})$ ALUE .0074±0.0016 • We do not use the followen 15 BUSKULIC 97B assumes Be and B(b \rightarrow B) = 0.378 ± 16 BUSKULIC 95B reports f_E $\overline{D}^*(2010)^-\pi^+) = (2.04 \pm 1.00)$	The state of the
($\overline{D}_1(2420)\ell^+\nu_\ell$ anything MLUE 0.0074±0.0016 • • We do not use the folloween 15 BUSKULIC 97B assumes Be and $B(b \rightarrow B) = 0.378 \pm 16$ BUSKULIC 95B reports $f_B = 0.388 \pm 16$ BUSKULIC 95B reports f_B	The second state of the production for the product
($\overline{D}_1(2420)\ell^+\nu_\ell$ anything MLUE 1.0074±0.0016 •• We do not use the followen 15 BUSKULIC 97B assumes E and B($b \rightarrow B$) = 0.378 ± 16 BUSKULIC 95B reports f_B $\overline{D}^*(2010)^-\pi^+)$ = (2.04 a single B charge state. [$\Gamma(D\pi\ell^+\nu_\ell$ anything) + Γ_{MLUE}	The state of the
($\overline{D}_1(2420)\ell^+\nu_\ell$ anything MALUE 1.0074±0.0016 • • We do not use the follower 15 BUSKULIC 97B assumes E and B($b \rightarrow B$) = 0.378 \pm 16 BUSKULIC 95B reports f_B $\overline{D}^*(2010)^-\pi^+) = (2.04 \pm$ a single B charge state. [$\Gamma(D\pi\ell^+\nu_\ell$ anything) + Γ_{MALUE} 1.0226±0.0029±0.0033	Comparison Co
($\overline{D}_1(2420)\ell^+\nu_\ell$ anything MALUE 1.0074±0.0016 • • We do not use the follower 15 BUSKULIC 97B assumes E and B($b \rightarrow B$) = 0.378 \pm 16 BUSKULIC 95B reports f_B $\overline{D}^*(2010)^-\pi^+) = (2.04 \pm$ a single B charge state. [$\Gamma(D\pi\ell^+\nu_\ell$ anything) + Γ MALUE 17 BUSKULIC 97B assumes is assuming that all observed	Comparison Co
($\overline{D}_1(2420)\ell^+\nu_\ell$ anything MLUE 1.0074±0.0016 • • We do not use the followen 15 BUSKULIC 978 assumes E and B($b \rightarrow B$) = 0.378 ± 6 BUSKULIC 958 reports f_E $\overline{D}^*(2010)^-\pi^+$) = (2.04 ± a single B charge state. [$\Gamma(D\pi\ell^+\nu_\ell$ anything) + Γ MLUE 1.0226±0.0029±0.0033 17 BUSKULIC 978 assumes E assuming that all observed A correction has been apple $\Gamma(\overline{D}_2^*(2460)\ell^+\nu_\ell$ anything	The state of the production of B_0^{0} and A_0^{0} . The state of the production of B_0^{0} and A_0^{0} . The state of the production of B_0^{0} and A_0^{0} . The state of the production of B_0^{0} and A_0^{0} .
($\overline{D}_1(2420)\ell^+\nu_\ell$ anything MALUE .0074 \pm 0.0016 • We do not use the followen 15 BUSKULIC 97B assumes E and B($b \rightarrow B$) = 0.37B \pm 16 BUSKULIC 95B reports f $\overline{D}^*(2010)^-\pi^+)$ = (2.04 \pm a single B charge state. ($\Gamma(D\pi\ell^+\nu_\ell$ anything) + Γ 16 BUSKULIC 97B assumes E assuming that all observed A correction has been application of the correction of the correction has been applicative (2.48)	The state of the production of B_0^0 and A_0^0 . The state of the production of B_0^0 and A_0^0 . The state of the production of B_0^0 and A_0^0 . The state of the production of B_0^0 and A_0^0 . The state of the production of B_0^0 and A_0^0 . The state of the production of B_0^0 and A_0^0 .
($\overline{D}_1(2420)\ell^+\nu_\ell$ anything MLUE 0.0074±0.0016 • • We do not use the follower 15 BUSKULIC 97B assumes E and B($b \rightarrow B$) = 0.378 ± 16 BUSKULIC 95B reports f_B $\overline{D}^*(2010)^-\pi^+)$ = (2.04 : a single B charge state. [$\Gamma(D\pi\ell^+\nu_\ell$ anything) + Γ MLUE 0.0226±0.0029±0.0033 17 BUSKULIC 97B assumes I assuming that all observed A correction has been apple $\Gamma(\overline{D}_2^*(2460)\ell^+\nu_\ell$ anything MLUE <0.0065 95	Company Com
($\overline{D}_1(2420)\ell^+\nu_\ell$ anything MLUE 0.0074±0.0016 • • We do not use the followen 15 BUSKULIC 97B assumes E and $B(b \rightarrow B) = 0.378 \pm 16$ BUSKULIC 97B reports $f_B = 0.378 \pm 16$ BUSKULIC 95B reports $f_B = 0.378 \pm 16$ BUSKULIC 97B reports $f_B = 0.378 \pm 16$ BUSKULIC 97B assumes I assuming that all observed A correction has been apple ($\overline{D}_2^*(2460)\ell^+\nu_\ell$ anything MLUE 0.0065 • • We do not use the follower 18 A revised number based or	The state of the
T($\overline{D}_1(2420)\ell^+\nu_\ell$ anything MALUE 1.0074±0.0016 •• We do not use the follower 15 BUSKULIC 97B assumes E and B($b \rightarrow B$) = 0.78 $b = 0.78$	The state of the
To $D_1(2420)\ell^+\nu_\ell$ anything MALUE 10074±0.0016 • We do not use the follower 15 BUSKULIC 97B assumes Be and $B(b \rightarrow B) = 0.378 \pm 16$ BUSKULIC 95B reports $f_B = 0.026 \pm 0.0029 \pm 0.0033$ 17 BUSKULIC 97B assumes I assuming that all observed A correction has been apple $f_B = 0.026 \pm 0.0029 \pm 0.0033$ 17 BUSKULIC 97B assumes I assuming that all observed A correction has been apple $f_B = 0.026 \pm 0.0029 \pm 0.0033$ 10 BUSKULIC 97B assumes I assuming that all observed A correction has been apple $f_B = 0.026 \pm 0.0029 \pm 0.0033$ 18 A revised number based or 0.20 and $g_B = 0.029 \pm 0.003$ 19 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 19 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 19 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 19 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 19 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 19 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 19 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 19 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$ 10 BUSKULIC 95B reports $f_B = 0.029 \pm 0.003$	The state of the production of the production fraction of the production of the pro
($\overline{D}_1(2420)\ell^+\nu_\ell$ anything ALUE .0074±0.0016 • We do not use the follower by the follow	The state of the
T($\overline{D}_1(2420)\ell^+\nu_\ell$ anything MALUE 1.0074±0.0016 1.0 • We do not use the follower 1.5 BUSKULIC 97B assumes E and B($b \rightarrow B$) = 0.378 ± 1.6 BUSKULIC 97B reports f_B $\overline{D}^*(2010)^-\pi^+)$ = (2.04 a single B charge state. [$\Gamma(D\pi\ell^+\nu_\ell$ anything) + Γ MALUE 1.00226±0.0029±0.0033 1.7 BUSKULIC 97B assumes E assuming that all observed A correction has been apply assuming that all observed A correction has been apply (2.00065) 95 • • We do not use the follower based on 0.20 and B($b \rightarrow B$) = 0.19 BUSKULIC 95B reports f_B $\overline{D}^*(2010)^-\pi^+) \le 0.81 \times 1000$ Includes resonant and mature $\Gamma(D^*-\pi^+) = 0.000$ Includes resonant and mature $\Gamma(D^*-\pi^+) = 0.000$ Includes resonant and mature $\Gamma(D^*-\pi^+) = 0.000$	The state of the production of B_s^0 and A_b^0 . To substitute A_s^0 at A_s^0 and A_s^0 and A_s^0 are states. The substitute A_s^0 and A_s^0 are states. The substitute A_s^0 and A_s^0 are states. The substitute A_s^0 and A_s^0 are substituted as the production of the production of A_s^0 and A_s^0 . The substitute A_s^0 and A_s^0 and A_s^0 are substituted as the production of A_s^0 and A_s^0 . The substitute A_s^0 and A_s^0 are substituted as the production of A_s^0 and A_s^0 . The substitute A_s^0 and A_s^0 are substituted as the production of A_s^0 and A_s^0 are substituted A_s^0 are substituted A_s^0 and $A_s^$

 $0.7)10^{-3}$. Above value assumes $f_B = 0.37 \pm 0.03$.

```
\Gamma(D_s^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}
                                                                                                                                                               \Gamma_{14}/\Gamma
                                                                       DOCUMENT ID
                                                                                                          TECN COMMENT
                                                                <sup>21</sup> ALBRECHT 93E ARG e^+e^- \rightarrow \Upsilon(4S)
 <sup>21</sup> ALBRECHT 93E reports < 0.012 for B(D_s^+ \rightarrow \phi \pi^+) = 0.027. We rescale to our best
       value B(D_c^+ \to \phi \pi^+) = 0.036.
\Gamma(D_s^-\ell^+\nu_\ell K^+ \text{ anything})/\Gamma_{\text{total}}
                                                                                                                                                              \Gamma_{15}/\Gamma
                                                                       DOCUMENT ID
                                                                                                           TECN COMMENT
                                                CL%
                                                                22 ALBRECHT 93E ARG e^+e^- \rightarrow \Upsilon(45)
 < 0.006
 <sup>22</sup> ALBRECHT 93E reports < 0.008 for B(D_s^+ \rightarrow \phi \pi^+) = 0.027. We rescale to our best
       value B(D_s^+ \to \phi \pi^+) = 0.036.
\Gamma(D_s^-\ell^+\nu_\ell K^0 \text{ anything})/\Gamma_{\text{total}}
                                                                                                                                                               \Gamma_{16}/\Gamma
                                                CL%
                                                                       DOCUMENT ID
                                                                                                          TECN COMMENT
                                                               23 ALBRECHT 93E ARG e^+e^- \rightarrow \Upsilon(45)
 <sup>23</sup> ALBRECHT 93E reports < 0.012 for B(D_s^+ \rightarrow \phi \pi^+) = 0.027. We rescale to our best
       value B(D_s^+ \to \phi \pi^+) = 0.036.
\Gamma(\ell^+\nu_\ell \text{ noncharmed})/\Gamma(\ell^+\nu_\ell \text{ anything})
            \ell denotes e or \mu, not the sum. These experiments measure this ratio in very limited
            momentum intervals
                                                                       DOCUMENT ID
                                    CL%_EVTS
                                                                                                            TECN COMMENT
                                                                24 ALBRECHT
                                                                                                    94c ARG e^+e^- \rightarrow \Upsilon(45)
                                                                25 BARTELT
                                                                                                    93B CLE2 e^+e^- \rightarrow r(4S)
                                                 107
                                                                <sup>26</sup> ALBRECHT
                                                                                                                          e^+e^- \rightarrow \tau(45)
                                                                                                    91c ARG
                                                    77
                                                               27 FULTON
                                                                                                     90 CLEO e^+e^- \rightarrow r(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                               <sup>28</sup> ALBRECHT 90 ARG e^+e^- \rightarrow \Upsilon(4S)
                                                    41
                                                                <sup>29</sup> BEHRENDS
                                                                                                   87 CLEO e^+e^- \rightarrow \Upsilon(4S)
84 CLEO Direct e at \Upsilon(4S)
 <0.04
                                    90
                                                                       CHEN
 < 0.04
                                    90
                                                                       KLOPFEN... 83B CUSB Direct e at \Upsilon(4S)
 < 0.055
                                    90
  <sup>24</sup> ALBRECHT 94c find \Gamma(b \rightarrow c)/\Gamma(b \rightarrow all) = 0.99 \pm 0.02 \pm 0.04.
 <sup>25</sup> BARTELT 938 (CLEO II) measures an excess of 107 \pm 15 \pm 11 leptons in the lepton momentum interval 2.3–2.6 GeV/c which is attributed to b \rightarrow v \ell v_{\ell}. This corresponds to
       a model-dependent partial branching ratio \Delta B_{u\,b} between (1.15 \pm 0.16 \pm 0.15) \times 10<sup>-4</sup>
       as evaluated using the KS model (KOERNER 88), and (1.54 \pm 0.22 \pm 0.20) \times 10<sup>-4</sup>
       using the ACCMM model (ARTUSO 93). The corresponding values of |V_{UB}|/|V_{CB}| are 0.056 \pm 0.006 and 0.076 \pm 0.008, respectively.
  <sup>26</sup> ALBRECHT 91C result supersedes ALBRECHT 90. Two events are fully reconstructed
       providing evidence for the b\to u transition. Using the model of ALTARELLI 82, they obtain |V_{ub}/V_{Cb}|=0.11\pm0.012 from 77 leptons in the 2.3–2.6 GeV momentum range.
 27 FULTON 90 observe 76 \pm 20 excess e and \mu (lepton) events in the momentum interval p=2.4-2.6 GeV signaling the presence of the b\to u transition. The average branching ratio, (1.8\pm0.4\pm0.3)\times10^{-4}, corresponds to a model-dependent measurement of
        approximately |V_{\mu b}/V_{cb}|=0.1 using B(b \rightarrow c \ell \nu) = 10.2 \pm 0.2 \pm 0.7\%.
 <sup>28</sup> ALBRECHT 90 observes 41 \pm 10 excess e and \mu (lepton) events in the momentum interval p=2.3-2.6 GeV signaling the presence of the b\to u transition. The events correspond to a model-dependent measurement of |V_{ub}/V_{Cb}|=0.10\pm0.01.
 29 The quoted possible limits range from 0.018 to 0.04 for the ratio, depending on which model or momentum range is chosen. We select the most conservative limit they have calculated. This corresponds to a limit on |V_{ub}|/|V_{Cb}| < 0.20. While the endpoint technique employed is more robust than their previous results in CHEN 84, these results a constant of the control of t
       do not provide a numerical improvement in the limit.
\Gamma(K^+\ell^+\nu_\ell \text{ anything})/\Gamma(\ell^+\nu_\ell \text{ anything})
 \ell denotes e or \mu, not the sum.
                                                                                                                                                           \Gamma_{18}/\Gamma_{4}
VALUE 0.58 ± 0.05 OUR AVERAGE
                                                                       DOCUMENT ID TECN COMMENT
                                                                                                   94c ARG e^+e^- \rightarrow \Upsilon(4S)
0.594 \pm 0.021 \pm 0.056
                                                                       ALBRECHT
                                                                ^{30}\,\mathrm{ALAM}
                                                                                                    878 CLEO e^+e^- \rightarrow \Upsilon(45)
0.54 \pm 0.07 \pm 0.06
  30 ALAM 87B measurement relies on lepton-kaon correlations.
\Gamma(K^-\ell^+\nu_\ell \text{ anything})/\Gamma(\ell^+\nu_\ell \text{ anything})
                                                                                                                                                           \Gamma_{19}/\Gamma_{4}
           \ell denotes e or \mu, not the sum.
                                                                       DOCUMENT ID TECN COMMENT
0.092 ± 0.035 OUR AVERAGE
                                                                                                   94C ARG e^+e^- \rightarrow \Upsilon(4S)
87B CLEO e^+e^- \rightarrow \Upsilon(4S)
0.086 \pm 0.011 \pm 0.044
                                                                       ALBRECHT
                                                                31 ALAM
0.10 \pm 0.05 \pm 0.02
  31 ALAM 87B measurement relies on lepton-kaon correlations.
\Gamma(K^0/\overline{K}^0\ell^+\nu_\ell \text{ anything})/\Gamma(\ell^+\nu_\ell \text{ anything})
                                                                                                                                                           \Gamma_{20}/\Gamma_4
           \ell denotes e or \mu, not the sum. Sum over K^0 and \overline{K}^0 states.
                                                                                                    TECN COMMENT
                                                                     DOCUMENT ID
0.42 ±0.05 OUR AVERAGE
                                                                32 ALBRECHT
                                                                                                94c ARG e^+e^- \rightarrow \Upsilon(4S)
0.452 \pm 0.038 \pm 0.056
                                                                <sup>33</sup> ALAM
                                                                                                   87B CLEO e^+e^- \rightarrow \tau(4S)
0.39 \pm 0.06 \pm 0.04
  ^{32} ALBRECHT 94c assume a K^0/\overline{K}^0 multiplicity twice that of K^0_5.
  33 ALAM 87B measurement relies on lepton-kaon correlations
```

B^{\pm}/B^{0} ADMIX	TORE
(n _c)	DOCUMENT ID TECN COMMENT
1.10±0.05	³⁴ GIBBONS 97B CLE2 $e^+e^- \rightarrow \Upsilon(45)$ ving data for averages, fits, limits, etc. • • •
0.98 ± 0.16 ± 0.12	35 ALAM 87B CLEO $e^+e^- \rightarrow \Upsilon(4S)$
	, -
$pK^-\pi^+) = 0.044 \pm 0.006$	counting using B($D_S^+ \rightarrow \phi \pi$) = 0.036 ± 0.009 and B($A_C^+ \rightarrow$
35 From the difference between	n K^- and K^+ widths. ALAM 87B measurement relies on does not consider the possibility of $B\overline{B}$ mixing. We have
Γ(D [±] anything)/Γ _{total}	Γ ₂₁ /Γ
0.241 ± 0.019 OUR AVERAGE	BOCOMENT ID TECH COMMENT
$0.240 \pm 0.013 ^{+0.015}_{-0.016}$	³⁶ GIBBONS 97B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
0.25 ±0.04 ±0.02	³⁷ BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$
$0.23 \pm 0.05 \begin{array}{l} +0.01 \\ -0.02 \end{array}$	³⁸ ALBRECHT 91H ARG $e^+e^- \rightarrow \Upsilon(45)$
	ving data for averages, fits, limits, etc. • • •
0.21 ±0.05 ±0.01 20k	³⁹ BORTOLETTO87 CLEO Sup. by BORTO- LETTO 92
0.0008 ± 0.00082 . We divid 10^{-2} . Our first error is the error from using our best va 37 BORTOLETTO 92 reports [0.0030 ± 0.0018 . We divide	$(B(B \to D^{\pm} \text{ anything}) \times B(D^{+} \to K^{-} \pi^{+} \pi^{+})] = 0.0226 \pm 0$ by our best value $B(D^{+} \to K^{-} \pi^{+} \pi^{+}) = (9.0 \pm 0.6) \times 0$
38 ALBRECHT 91H reports [B) 0.0027 ± 0.0040. We divide	ir experiment's error and our second error is the systematic slue. (B \rightarrow D^{\pm} anything) \times B(D^{+} \rightarrow $K^{-}\pi^{+}\pi^{+}$)] = 0.0209 \pm by our best value B(D^{+} \rightarrow $K^{-}\pi^{+}\pi^{+}$) = (9.0 \pm 0.6) \times cir experiment's error and our second error is the systematic
error from using our best va ³⁹ BORTOLETTO 87 reports [0.004 ± 0.002. We divide by	lue. $[B(B \to D^{\pm} \text{ anything}) \times B(D^{+} \to K^{-}\pi^{+}\pi^{+})] = 0.019 \pm 0.01$
$\Gamma(D^0/\overline{D}^0 \text{ anything})/\Gamma_{\text{total}}$	F ₂₂ /F
VALUE EVTS	DOCUMENT ID TECN COMMENT Error includes scale factor of 1.1.
0.635±0.029 OUR AVERAGE 0.655±0.025±0.015	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2.635±0.029 OUR AVERAGE 0.655±0.025±0.015 0.61±0.05±0.01 0.51±0.08±0.01	DOCUMENT ID TECN COMMENT Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow \tau(45)$ 41 BORTOLETTO92 CLEO $e^+e^- \rightarrow \tau(45)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow \tau(45)$
ALUE EVTS .635±0.029 OUR AVERAGE .655±0.025±0.015 .61±0.05±0.01 .51±0.08±0.01 . • We do not use the follow	DOCUMENT ID TECN COMMENT Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow \tau(45)$ 41 BORTOLETTO92 CLE0 $e^+e^- \rightarrow \tau(45)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow \tau(45)$ ring data for averages, fits, limits, etc. • •
EVTS 0.635±0.029 OUR AVERAGE 0.655±0.025±0.015 0.61 ±0.05 ±0.01 0.51 ±0.08 ±0.01 0.51 ±0.08 ±0.01 0.55 ±0.07 ±0.01 0.55 ±0.07 ±0.01 0.63 ±0.19 ±0.01	DOCUMENT ID TECN COMMENT Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow \tau(45)$ 41 BORTOLETTO92 CLEO $e^+e^- \rightarrow \tau(45)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow \tau(45)$ ring data for averages, fits, limits, etc. • • • 43 BORTOLETTO87 CLEO $e^+e^- \rightarrow \tau(45)$ 44 GREEN 83 CLEO Repl. by BORTO- LETTO 87
WiluE EVTS 0.635±0.029 OUR AVERAGE 0.655±0.025±0.015 0.61±0.05±0.01 0.51±0.08±0.01 ■ ● ● We do not use the follow 0.55±0.07±0.01 21k 0.63±0.19±0.01 40 GIBBONS 97B reports [B(E 0.0006±0.00075. We divide Our first error is their experi	Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow \tau(45)$ 41 BORTOLETTO92 CLE0 $e^+e^- \rightarrow \tau(45)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow \tau(45)$ 42 ALBRECHT 91H ORG $e^+e^- \rightarrow \tau(45)$ 43 BORTOLETTO87 CLEO $e^+e^- \rightarrow \tau(45)$ 44 GREEN 83 CLEO Repl. by BORTOLETTO87 45 ED ON 45 Organishing) \times B(45 Organishing) \times
### EVTS 0.635±0.029 OUR AVERAGE 0.655±0.025±0.015 0.61±0.05±0.01 0.51±0.08±0.01 • • • We do not use the follow 0.55±0.07±0.01 21k 0.63±0.19±0.01 40 GIBBONS 97B reports [B(E 0.0006±0.00075. We divide Our first error is their experi using our best value. 41 BORTOLETTO 92 reports [0.0012±0.0014. We divide Our first error is their experi using our best value our first error is their experi 0.0012±0.0014. We divide Our first error is their experi using our best value our first error is their experi using our best value.	Error includes scale factor of 1.1. $^{40} \text{ GIBBONS} \qquad 978 \text{ CLE2} \qquad e^+e^- \rightarrow \Upsilon(45) \\ ^{41} \text{ BORTOLETTO92} \qquad \text{CLEO} \qquad e^+e^- \rightarrow \Upsilon(45) \\ ^{42} \text{ ALBRECHT} \qquad 91\text{ H} \text{ ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ ^{42} \text{ ALBRECHT} \qquad 91\text{ H} \text{ ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ ^{43} \text{ BORTOLETTO87} \qquad \text{CLEO} \qquad e^+e^- \rightarrow \Upsilon(45) \\ ^{44} \text{ GREEN} \qquad 83 \qquad \text{CLEO} \qquad \text{Repl. by BORTO-LETTO87} \\ \text{ LETO 87} \qquad \text{LETO 87} \\ \text{ By our best value B}(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}. \\ \text{ment's error and our second error is the systematic error from } \\ \text{B(B} \rightarrow D^0/\overline{D}^0 \text{ anything}) \times \text{B(}D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}. \\ \text{ment's error and our second error is the systematic error from } \\ \text{B(B} \rightarrow D^0/\overline{D}^0 \text{ anything}) \times \text{B(}D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}. \\ \text{ment's error and our second error is the systematic error from } \\ \text{B(B)} \qquad \text{EVALUATION } \\ EVALUA$
0.635±0.029 OUR AVERAGE 0.635±0.025±0.015 0.61 ±0.05 ±0.01 0.51 ±0.08 ±0.01 0.51 ±0.08 ±0.01 0.51 ±0.08 ±0.01 0.55 ±0.07 ±0.01 21k 0.63 ±0.19 ±0.01 40 GIBBONS 978 reports [B(E 0.0006±0.00075. We divide Our first error is their experi using our best value. 41 BORTOLETTO 92 reports 0.0012±0.0014. We divide Our first error is their experi using our best value. 42 ALBRECHT 91H reports [B 0.0015±0.0025. We divide Our first error is their experi	Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow \tau(45)$ 41 BORTOLETTO92 CLE0 $e^+e^- \rightarrow \tau(45)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow \tau(45)$ 43 BORTOLETTO87 CLE0 $e^+e^- \rightarrow \tau(45)$ 43 BORTOLETTO87 CLE0 $e^+e^- \rightarrow \tau(45)$ 43 BORTOLETTO87 CLE0 $e^+e^- \rightarrow \tau(45)$ 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 43 by our best value B($D^0 \rightarrow K^-\pi^+$) = $(3.83\pm0.09)\times10^{-2}$. The energy second error is the systematic error from B($B \rightarrow D^0/D^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$)] = $(0.0233\pm0.09)\times10^{-2}$.
### EVTS 0.635±0.029 OUR AVERAGE 0.655±0.025±0.015 0.61 ±0.05 ±0.01 0.51 ±0.08 ±0.01 0.51 ±0.08 ±0.01 • • • We do not use the follow 0.55 ±0.07 ±0.01 21k 0.063 ±0.19 ±0.01 40 GIBBONS 978 reports [B(E 0.0006±0.00075. We divide Our first error is their experi using our best value. 41 BORTOLETTO 92 reports [0.0012±0.0014. We divide Our first error is their experi using our best value. 42 ALBRECHT 91H reports [B(E 0.0015±0.0025. We divide Our first error is their experi using our best value. 43 BORTOLETTO 87 reports [0.0015±0.0021. We divide 0.0015±0.0021. We divide 0.0015±0.0021. We divide 0.0015±0.0021. We first error is their experi	Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow r(45)$ 41 BORTOLETTO92 CLE0 $e^+e^- \rightarrow r(45)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow r(45)$ 43 BORTOLETTO87 CLE0 $e^+e^- \rightarrow r(45)$ 43 BORTOLETTO87 CLE0 $e^+e^- \rightarrow r(45)$ 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 43 BORTOLETTO87 CLE0 $e^+e^- \rightarrow r(45)$ 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 45 by our best value $B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from $B(B \rightarrow D^0/\overline{D}^0$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from $(B \rightarrow D^0/\overline{D}^0$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$.
Wilve EVTS 0.635±0.029 OUR AVERAGE 0.655±0.025±0.015 0.61±0.05±0.01 0.51±0.08±0.01 0.51±0.08±0.01 0.51±0.08±0.01 40 GIBBONS 978 reports [B(E 0.0006±0.00075. We divide Our first error is their experiusing our best value. 41 BORTOLETTO 92 reports Our 1910 our first error is their experiusing our best value. 42 ALBRECHT 91H reports [B 0.0015±0.0025. We divide Our first error is their experiusing our best value. 43 BORTOLETTO 87 reports [0.0015±0.0021. We divide Our first error is their experiusing our best value. 44 BRECHT 91H reports [B 0.0015±0.0021. We divide Our first error is their experiusing our best value. 44 GREEN 83 reports [B(B → 0.004. We divide by our be	Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow r(45)$ 41 BORTOLETTO92 CLE0 $e^+e^- \rightarrow r(45)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow r(45)$ wing data for averages, fits, limits, etc. • • • 43 BORTOLETTO87 CLE0 $e^+e^- \rightarrow r(45)$ wing data for averages, fits, limits, etc. • • • 43 BORTOLETTO87 CLE0 $e^+e^- \rightarrow r(45)$ 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 $^{32} \rightarrow D^0/\bar{D}^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$)] = 0.0251 \pm by our best value B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09)×10 ⁻² . ment's error and our second error is the systematic error from (B $\rightarrow D^0/\bar{D}^0$ anything) \times B($\rightarrow $
### EVTS 0.635±0.029 OUR AVERAGE 0.655±0.025±0.015 0.61±0.05±0.01 0.51±0.08±0.01 0.51±0.08±0.01 • • We do not use the follow 0.55±0.07±0.01 21k 0.63±0.19±0.01 40 GIBBONS 97B reports [B(β) 0.0006±0.00075. We divide Our first error is their expering using our best value. 41 BORTOLETTO 92 reports [0.0012±0.0014. We divide Our first error is their expering using our best value. 42 ALBRECHT 91H reports [B(β) 0.0015±0.0025. We divide Our first error is their expering using our best value. 43 BORTOLETTO 87 reports [0.0015±0.0021. We divide our first error is their expering using our best value. 44 GREEN 83 reports [B(β) 0.004. We divide by our be first error is their expering using our best value. 47 GREEN 83 reports [18] 48 GREEN 83 reports [18] 49 GREEN 83 reports [18] 40 Und first error is their experimer using our best value.	Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow \tau(4S)$ 41 BORTOLETTO92 CLEO $e^+e^- \rightarrow \tau(4S)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow \tau(4S)$ ining data for averages, fits, limits, etc. • • • 43 BORTOLETTO87 CLEO $e^+e^- \rightarrow \tau(4S)$ ining data for averages, fits, limits, etc. • • • 43 BORTOLETTO87 CLEO $e^+e^- \rightarrow \tau(4S)$ ining data for averages, fits, limits, etc. • • • 43 BORTOLETTO87 CLEO $e^+e^- \rightarrow \tau(4S)$ ining data for averages, fits, limits, etc. • • • 40 DO $e^+e^- \rightarrow \tau(4S)$ ining data for averages, fits, limits, etc. • • • • 41 BORTOLETTO87 CLEO $e^+e^- \rightarrow \tau(4S)$ ining data for averages, fits, limits, etc. • • • • 42 BORTOLETTO87 CLEO $e^+e^- \rightarrow \tau(4S)$ ining data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •
EVTS 0.635±0.029 OUR AVERAGE 0.655±0.025±0.015 0.61 ±0.05 ±0.01 0.51 ±0.08 ±0.01 0.51 ±0.08 ±0.01 1.51 ±0.08 ±0.01 1.63 ±0.19 ±0.01 21k 1.63 ±0.19 ±0.01 240 GIBBONS 97B reports [B(E 0.0006±0.00075. We divide Our first error is their experi using our best value. 41 BORTOLETTO 92 reports [0.0012±0.0014. We divide Our first error is their experi using our best value. 42 ALBRECHT 91H reports [B(E) 0.0015±0.0025. We divide Our first error is their experi using our best value. 43 BORTOLETTO 87 reports [0.0015±0.0021. We divide Our first error is their experi using our best value. 44 GREEN 83 reports [B(B → 0.004. We divide by our be first error is their experimer using our best value.	Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow r(4s)$ 41 BORTOLETTO92 CLEO $e^+e^- \rightarrow r(4s)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow r(4s)$ 43 BORTOLETTO92 CLEO $e^+e^- \rightarrow r(4s)$ sing data for averages, fits, limits, etc. • • • 43 BORTOLETTO87 CLEO $e^+e^- \rightarrow r(4s)$ 44 GREEN 83 CLEO Repl. by BORTOLETTO87 $e^+e^- \rightarrow r(4s)$ 45 BORTOLETTO87 CLEO $e^+e^- \rightarrow r(4s)$ 45 BORTOLETTO87 $e^+e^- \rightarrow r(4s)$ 46 GREEN 83 CLEO Repl. by DORTOLETTO 87 $e^+e^- \rightarrow r(4s)$ 47 Error and our second error is the systematic error from $e^+e^- \rightarrow r(4s)$ $e^+e^-\rightarrow r(4$
AULUE EVTS 1.635±0.029 OUR AVERAGE 1.655±0.025±0.015 1.61±0.05±0.01 1.51±0.08±0.01 1.51±0.08±0.01 1.63±0.19±0.01 21k 1.63±0.19±0.01 240 GIBBONS 978 reports [B(E 0.0006±0.00075. We divide Our first error is their experiusing our best value. 41 BORTOLETTO 92 reports [B 0.0012±0.0014. We divide Our first error is their experiusing our best value. 42 ALBRECHT 91H reports [B 0.0015±0.0025. We divide Our first error is their experiusing our best value. 43 BORTOLETTO 87 reports [0.0015±0.0021. We divide Our first error is their experiusing our best value. 44 GREEN 83 reports [B(B → 0.004. We divide by our befirst error is their experiusing our best value. F(D*(2010)±anything)/Ferror to the texperiments of their experiments o	Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 41 BORTOLETTO92 CLE0 $e^+e^- \rightarrow \Upsilon(4S)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow \Upsilon(4S)$ wing data for averages, fits, limits, etc. • • • • 43 BORTOLETTO97 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 45 Do not best value $B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from $B(B \rightarrow D^0/\overline{D}^0$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from $B(B \rightarrow D^0/\overline{D}^0$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from $B(B \rightarrow D^0/\overline{D}^0$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from $B(B \rightarrow D^0/\overline{D}^0$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from $B(B \rightarrow D^0/\overline{D}^0$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from $B(B \rightarrow D^0/\overline{D}^0$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from D^0/\overline{D}^0 anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. Our nt's error and our second error is the systematic error from D^0/\overline{D}^0 anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. Our nt's error and our second error is the systematic error from D^0/\overline{D}^0 anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. Our nt's error and our second error is the systematic error from D^0/\overline{D}^0 anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. Our nt's error and our second error is the systematic error from D^0/\overline{D}^0 anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. Our nt's error and our second error is the systematic error from D^0/\overline{D}^0 anything) $\times B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.$
0.63 ± 0.029 OUR AVERAGE 0.655 ± 0.025 ± 0.015 0.651 ± 0.05 ± 0.01 0.51 ± 0.08 ± 0.01 0.51 ± 0.08 ± 0.01 0.51 ± 0.08 ± 0.01 0.55 ± 0.07 ± 0.01 0.63 ± 0.19 ± 0.01 0.63 ± 0.19 ± 0.01 0.63 ± 0.19 ± 0.01 0.63 ± 0.19 ± 0.01 0.006± 0.00075. We divide 0.007 first error is their experiusing our best value. 42 ALBRECHT 91r reports [B (B ← 0.0015 ± 0.0025. We divide 0.0015 ± 0.0025. We divide 0.0015 ± 0.0021. We divide 0.0015 ± 0.0021. We divide 0.0015 ± 0.0021. We divide 0.0015 ± 0.0025 their experiusing our best value. 44 GREEN 83 reports [B (B → 0.004. We divide by our best value. 54 O.004. We divide by our best value. 55 D.004. We divide by our best value. 66 D.004. We divide by our best value. 67 (D*(2010) ± anything) / Γ waller value. 67 (D*(2010) ± anything) / Γ waller value. 60.027 ± 0.016 OUR AVERAGE 0.227 ± 0.016 OUR AVERAGE 0.227 ± 0.019 ± 0.01 0.205 ± 0.019 ± 0.001	Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow r(4s)$ 41 BORTOLETTO92 CLEO $e^+e^- \rightarrow r(4s)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow r(4s)$ 43 BORTOLETTO92 CLEO $e^+e^- \rightarrow r(4s)$ 43 BORTOLETTO92 CLEO $e^+e^- \rightarrow r(4s)$ 44 GREEN 91H ARG $e^+e^- \rightarrow r(4s)$ 45 BORTOLETTO87 CLEO $e^+e^- \rightarrow r(4s)$ 46 GREEN 83 CLEO Repl. by BORTOLETTO 87 8 $\rightarrow D^0/\bar{D}^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$)] = 0.0251 \pm 42 by our best value B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . The second error is the systematic error from 10 B($B \rightarrow D^0/\bar{D}^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$)] = 0.0233 \pm 45 by our best value B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . The second error is the systematic error from 10 B($B \rightarrow D^0/\bar{D}^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$)] = 0.0194 \pm 45 by our best value B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . The systematic error from 10 B($B \rightarrow D^0/\bar{D}^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$)] = 0.0210 \pm 45 by our best value B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . Our not second error is the systematic error from 10 B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . Our not second error is the systematic error from 10 B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . Our not second error is the systematic error from 10 B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . Our not second error is the systematic error from 10 B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . Our not second error is the systematic error from 10 B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . Our not second error is the systematic error from 10 B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . Our not second error is the systematic error from 10 B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . Our not second error is the systematic error from 10 B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . Our not second error is the systematic error from 10 B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . Our not second error is the systematic error from 10 B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 ⁻² . Our not second error is the systemat
0.635±0.029 OUR AVERAGE 0.655±0.025±0.015 0.615±0.05±0.01 0.651±0.05±0.01 0.51±0.08±0.01 0.51±0.08±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.64±0.0075. We divide 0.0016±0.00075. We divide 0.0016±0.0014. We divide 0.0016±0.0014. We divide 0.0016±0.0015±0.0015. We divide 0.0015±0.0021. We divide 0.0015±0.0021. We divide 0.0016±0.0021. We divide 0.0016±0.0021. We divide 0.0016±0.0021. We divide 0.0016±0.0021. We divide 0.004. We divide by our be first error is their experiment using our best value. F(D*(2010)±anything)/Γ _E VALUE EVTS 0.247±0.019±0.01 0.265±0.019±0.007 0.230±0.028±0.009	Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow \tau(45)$ 41 BORTOLETTO92 CLEO $e^+e^- \rightarrow \tau(45)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow \tau(45)$ 43 BORTOLETTO97 CLEO $e^+e^- \rightarrow \tau(45)$ 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 3 $\rightarrow D^0/\bar{D}^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$)] = 0.0251 \pm by our best value B($D^0 \rightarrow K^-\pi^+$) = $(3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from (B $\rightarrow D^0/\bar{D}^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$)] = 0.0233 \pm by our best value B($D^0 \rightarrow K^-\pi^+$) = $(3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from (B $\rightarrow D^0/\bar{D}^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$) = $(3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from (B $\rightarrow D^0/\bar{D}^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$) = $(3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from (B(B $\rightarrow D^0/\bar{D}^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$) = $(3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from (B(B $\rightarrow D^0/\bar{D}^0$ anything) \times B($D^0 \rightarrow K^-\pi^+$) = $(3.83 \pm 0.09) \times 10^{-2}$. Our net's error and our second error is the systematic error from D^0/\bar{D}^0 anything) \times B($D^0 \rightarrow K^-\pi^+$) = $(3.83 \pm 0.09) \times 10^{-2}$. Our nt's error and our second error is the systematic error from the systematic error from D^0/\bar{D}^0 anything) \times B($D^0 \rightarrow K^-\pi^+$) = $(3.83 \pm 0.09) \times 10^{-2}$. Our nt's error and our second error is the systematic error from the systematic error from D^0/\bar{D}^0 anything) \times B($D^0 \rightarrow K^-\pi^+$) = $(3.83 \pm 0.09) \times 10^{-2}$. Our nt's error and our second error is the systematic error from the systematic error from D^0/\bar{D}^0 anything) \times B($D^0 \rightarrow K^-\pi^+$) = $(3.83 \pm 0.09) \times 10^{-2}$. Our nt's error and our second error is the systematic error from the systematic error from D^0/\bar{D}^0 anything) \times B($D^0 \rightarrow K^-\pi^+$) = $(3.83 \pm 0.09) \times 10^{-2}$. Our nt's error and our second error is the systematic error from the systematic error
0.635±0.029 OUR AVERAGE 0.635±0.025±0.015 0.615±0.05±0.015 0.615±0.05±0.01 0.51±0.08±0.01 0.51±0.08±0.01 0.63±0.19±0.01 21k 0.63±0.19±0.01 40 GIBBONS 97B reports [B(E 0.0006±0.00075. We divide Our first error is their experiusing our best value. 41 BORTOLETTO 92 reports [0.0012±0.0014. We divide Our first error is their experiusing our best value. 42 ALBRECHT 91H reports [B(Ou015±0.0025. We divide Our first error is their experiusing our best value. 43 BORTOLETTO 87 reports [0.0015±0.0021. We divide Our first error is their experiusing our best value. 44 GREEN 83 reports [B(B → 0.004. We divide by our be first error is their experiment using our best value. F(D*(2010)±anything)/Γ _E VALUE EVTS 0.227±0.016 OUR AVERAGE 0.247±0.019±0.01 0.205±0.019±0.007 0.230±0.028±0.009	Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow r(45)$ 41 BORTOLETTO92 CLE0 $e^+e^- \rightarrow r(45)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow r(45)$ 43 BORTOLETTO92 CLE0 $e^+e^- \rightarrow r(45)$ 43 BORTOLETTO97 CLE0 $e^+e^- \rightarrow r(45)$ 43 BORTOLETTO87 CLE0 $e^+e^- \rightarrow r(45)$ 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 43 DO 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 45 DO 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 45 DO 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 45 DO 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 45 DO 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 45 DO 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 45 DO 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 45 DO 44 DO 44 DO 44 Sup our best value B(44 DO 44 Has 44 Sup. 44 GREEN 83 CLEO Repl. by OBORTOLETTO 87 45 DO 44 DO 44
0.63±0.029 OUR AVERAGE 0.655±0.025±0.015 0.61±0.05±0.01 0.51±0.08±0.01 0.51±0.08±0.01 0.55±0.07±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.19±0.01 0.63±0.0075. We divide Our first error is their experiusing our best value. 0.64 BORTOLETTO 92 reports [0.0012±0.0014. We divide Our first error is their experiusing our best value. 0.0015±0.0025. We divide Our first error is their experiusing our best value. 0.0015±0.0021. We divide Our first error is their experiusing our best value. 0.0015±0.0021. We divide Our first error is their experiusing our best value. 0.004. We divide by our be first error is their experiment using our best value. (C)0*(2010)±anything)/Γ _E 0.27±0.016 OUR AVERAGE 0.247±0.019±0.01 0.205±0.019±0.007 0.230±0.028±0.009 • • We do not use the follow	Error includes scale factor of 1.1. 40 GIBBONS 978 CLE2 $e^+e^- \rightarrow \tau(45)$ 41 BORTOLETTO92 CLE0 $e^+e^- \rightarrow \tau(45)$ 42 ALBRECHT 91H ARG $e^+e^- \rightarrow \tau(45)$ 43 BORTOLETTO97 CLE0 $e^+e^- \rightarrow \tau(45)$ 43 BORTOLETTO87 CLE0 $e^+e^- \rightarrow \tau(45)$ 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 44 GREEN 83 CLEO Repl. by BORTOLETTO 87 45 by our best value $B(D^0 \rightarrow K^-\pi^+) = (3.83 \pm 0.09) \times 10^{-2}$. ment's error and our second error is the systematic error from $(B \rightarrow D^0/\overline{D}^0)$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = 0.0233 \pm 0.09 \times 10^{-2}$. ment's error and our second error is the systematic error from $(B \rightarrow D^0/\overline{D}^0)$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = 0.0233 \pm 0.09 \times 10^{-2}$. ment's error and our second error is the systematic error from $(B \rightarrow D^0/\overline{D}^0)$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = 0.0194 \pm 0.009 \times 10^{-2}$. ment's error and our second error is the systematic error from $(B \rightarrow D^0/\overline{D}^0)$ anything) $\times B(D^0 \rightarrow K^-\pi^+) = 0.0210 \pm 0.0010 \times 0.001$

⁵⁰ CSORNA

45 GIBBONS 97B reports B($B \rightarrow D^*(2010)^+$ anything) = 0.239 \pm 0.015 \pm 0.014 \pm 0.009 using CLEO measured D and D^* branching fractions. We rescale to our PDG 96 values

of D and D^* branching ratios. Our first error is their experiment's error and our second error is the systematic error from using our best value.

510

85 CLEO Repl. by BORTO-LETTO 87

 $0.27 \pm 0.06 \ ^{+0.08}_{-0.06}$

⁴⁶ ALBRECHT 96D reports B($B \to D^*(2010)^+$ anything) 0.196 ± 0.019 using CLEO measured B($D^*(2010)^+ \to D^0\pi^+$) = $0.681 \pm 0.01 \pm 0.013$, B($D^0 \to K^-\pi^+$) = 0.0401 ± 0.0014 , B($D^0 \to K^-\pi^+\pi^+\pi^-$) = 0.081 ± 0.005 , We rescale to our PDG 96 values of D and D^* branching ratios. Our first error is their experiment's error and our second error is the systematic error from using our best value. 47 BORTOLETTO 92 reports B($B \rightarrow D^*(2010)^+$ anything) = 0.25 \pm 0.03 \pm 0.04 using MARK II B($D^*(2010)^+ \rightarrow D^0\pi^+$) = 0.57 \pm 0.06 and B($D^0 \rightarrow K^-\pi^+$) = 0.042 \pm 0.008. We rescale to our PDG 96 values of D and D^* branching ratios. Our first error is their experiment's error and our second error is the systematic error from using our best ⁴⁸ ALBRECHT 91H reports $0.348 \pm 0.060 \pm 0.035$ for B(D*(2010)+ $\rightarrow D^0 \pi^+$) = 0.55 \pm 0.04. We rescale to our best value $B(D^*(2010)^+ \to D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Uses the PDG 90 $B(D^0 \to K^-\pi^+) = 0.0371 \pm 0.0025$. ⁴⁹ BORTOLETTO 87 uses old MARK III (BALTRUSAITIS 86E) branching ratios B(0 $D^0\pi^+$) is 0.13 \pm 0.02 \pm 0.012. Superseded by BORTOLETTO 92. 50 V – A momentum spectrum used to extrapolate below p=1 GeV. We correct the value assuming B($D^0 \to K^-\pi^+$) = 0.042 \pm 0.006 and B($D^{*+} \to D^0\pi^+$) = 0.6 \pm 0.15. The product branching fraction is B(B $\rightarrow D^{*+}X$)·B(D*+ $\rightarrow \pi^{+}D^{0}$)·B(D⁰ $\rightarrow K^{-}\pi^{+}$) $= (68 \pm 15 \pm 9) \times 10^{-4}$ $\Gamma(D^*(2007)^0 \text{ anything})/\Gamma_{\text{total}}$ Γ_{24}/Γ VALUE DOCUMENT ID TECN COMMENT 51 GIBBONS $0.260 \pm 0.023 \pm 0.015$ 978 CLE2 $e^+e^- \rightarrow \Upsilon(45)$ ⁵¹ GIBBONS 978 reports B($B \to D^*(2007)^0$ anything) 0.247 \pm 0.012 \pm 0.018 \pm 0.018 using CLEO measured ${\it D}$ and ${\it D}^*$ branching fractions. We rescale to our PDG 96 values of D and D* branching ratios. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(D_s^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{25}/Γ DOCUMENT ID TECN COMMENT 0.100±0.025 OUR AVERAGE $0.117 \pm 0.009 ^{+0.028}_{-0.029}$ 52 GIBAUT 96 CLE2 $e^+e^- \rightarrow \Upsilon(45)$ $0.081 \pm 0.014 ^{+\ 0.019}_{-\ 0.020}$ ⁵³ ALBRECHT 92G ARG $e^+e^- \rightarrow \Upsilon(4S)$ $0.085 \pm 0.013 \, {}^{+\, 0.020}_{-\, 0.021}$ ⁵⁴ BORTOLETTO90 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $0.105 \pm 0.028 \, {}^{+\, 0.025}_{-\, 0.026}$ 55 HAAS 86 CLEO $e^+e^- \rightarrow \Upsilon(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • ⁵⁶ ALBRECHT 87H ARG $e^+e^- \rightarrow \Upsilon(45)$ $0.116 \pm 0.030 \pm 0.028$ 52 GIBAUT 96 reports 0.1211 \pm 0.0039 \pm 0.0088 for B(D $_{S}^{+}$ \rightarrow $\phi\pi^{+}$) = 0.035. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = (3.6 ± 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. ⁵³ ALBRECHT 92G reports [B($B \rightarrow D_S^{\pm}$ anything) \times B($D_S^{+} \rightarrow \phi \pi^{+}$)] = 0.00292 \pm 0.00039 ± 0.00031 . We divide by our best value B($D_c^+ \rightarrow \phi \pi^+$) = $(3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ⁵⁴ BORTOLETTO 90 reports [B($B \rightarrow D_s^{\pm}$ anything) \times B($D_s^{+} \rightarrow \phi \pi^{+}$)] = 0.00306 \pm 0.00047. We divide by our best value B($D_s^+ \to \phi \pi^+$) = (3.6 \pm 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using 55 HAAS 86 reports [B($B \rightarrow D_s^{\pm}$ anything) \times B($D_s^{+} \rightarrow \phi \pi^{+}$)] = 0.0038 \pm 0.0010. We divide by our best value B($D_s^{+} \rightarrow \phi \pi^{+}$) = (3.6 \pm 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. $64 \pm 22\%$ decays are 2-body. ⁵⁶ ALBRECHT 87H reports [B($B \rightarrow D_s^{\pm}$ anything) \times B($D_s^{+} \rightarrow \phi \pi^{+}$)] = 0.0042 \pm 0.0009 ± 0.0006 . We divide by our best value B($D_s^+ \rightarrow \phi \pi^+$) = $(3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $46 \pm 16\%$ of $B \rightarrow D_{S}X$ decays are 2-body. Superseded by ALBRECHT 92G. $\left[\Gamma(D^{(\bullet)}\overline{D}^{(\bullet)}K^0) + \Gamma(D^{(\bullet)}\overline{D}^{(\bullet)}K^{\pm})\right]/\Gamma_{total}$ Γ_{26}/Γ DOCUMENT ID TECN COMMENT 0.071 + 0.025 + 0.010 -0.015 - 0.00957 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ $^{\rm 57}\,{\rm The}$ systematic error includes the uncertainties due to the charm branching ratios. Γ(c̄cs)/Γ_{total} Γ_{27}/Γ DOCUMENT ID TECN COMMENT 58 COAN 0.219±0.037 98 CLE2 $e^+e^- \rightarrow \Upsilon(45)$ 58 COAN 98 uses D-L correlation. $\Gamma(D_s^{(*)}\overline{D}^{(*)})/\Gamma(D_s^{\pm} \text{ anything})$ Sum over modes. Γ_{28}/Γ_{25}

DOCUMENT ID

⁵⁹ BARATE

GIBAUT

0.49 ±0.04 OUR AVERAGE $0.56 \begin{array}{c} +0.21 \\ -0.15 \end{array} \begin{array}{c} +0.09 \\ -0.08 \end{array}$

 $0.457 \pm 0.019 \pm 0.037$

 $0.58 \pm 0.07 \pm 0.09$

 0.56 ± 0.10

TECN COMMENT

98Q ALEP $e^+e^- \rightarrow Z$

ALBRECHT 92G ARG $e^+e^- \rightarrow \Upsilon(45)$

BORTOLETTO90 CLEO $e^+e^- \rightarrow r(45)$

96 CLE2 $e^+e^- \rightarrow \Upsilon(45)$

Meson Particle Listings B^{\pm}/B^{0} ADMIXTURE

⁵⁹ BARATE 98Q me the third error re	asures B(B sults from	$\rightarrow D_S(-)D(-)$ the uncertainty or) = 0.056 <u> </u>	0.015 - 0.008 - 0.0 t D branching ra	111, where tios and is	$\Gamma(J/\psi(1S))$ (direct) anythin	DOCUM
dominated by the	uncertainty	f on B($D_s^+ \rightarrow \phi_7$	r ⁺). We divi	$de B(B \rightarrow D_S^{(*)}$) 万(*)) by ▮	0.0080±0.0008	70 BALES
our best value of	$B(B \rightarrow D_s)$	$_{\rm S}$ anything)= 0.1 =	£ 0.025.		ı	⁷⁰ BALEST 95B assume PDG	
Γ(<i>D</i> * <i>D</i> *(2010)±)	/Γ _{total}				Γ ₂₉ /Γ	are reconstructed in $J/\psi(15)$ branching ratio contains $J/\psi(15)$	
VALUE	CL%_	DOCUMENT ID				through $\psi(2S) \rightarrow J/\psi(1S)$	5), $\chi_{c1}(1P)$
<5.9 × 10 ⁻³	90	BARATE	98Q ALEP	• e ⁺ e ⁻ → Z	ı	the measured inclusive rate: $J/\psi(1S)$ (direct) X branchi	ng ratio.
[F(DD*(2010) ±)	+Γ(D* Ε	D [±])]/Γ _{total} Φ <u>Ο</u> ΣΜΕΝΤΙΟ) TECN	COMMENT	Г ₃₀ /Г	$\Gamma(\psi(2S))$ anything $\Gamma(\psi(2S))$	
<5.5 × 10 ⁻³	90	BARATE		$e^+e^- \rightarrow Z$	1	VALUE EV 0.0035±0.0005 OUR AVERAG	<u>VTS DO</u> i E
(DD [±])/Γ _{total}					Г ₃₁ /Г	$0.0034 \pm 0.0004 \pm 0.0003$ $0.0046 \pm 0.0017 \pm 0.0011$	240 ⁷¹ B <i>A</i> 8 AL
ALUE	CL%	DOCUMENT IE	TECN	COMMENT		71 BALEST 95B assume PDG	
<3.1 × 10 ⁻³	90	BARATE	98Q ALEF	$e^+e^- \rightarrow Z$	I	$\psi(25)$ X, $\psi(25) \rightarrow \ell^+\ell^-$) = 0.30 ±
$(D_s^{(\bullet)\pm}\overline{D}^{(\bullet)}X($	nπ±))/Γι				Γ ₃₂ /Γ	$J/\psi(15) \pi^{+} \pi^{-}) = 0.37 \pm 0$	
.094 + 0.040 + 0.034 -0.031 - 0.024		DOCUMENT ID	980 ALEP		ı	$\Gamma(\chi_{c1}(1P) \text{ anything})/\Gamma_{\text{total}}$	al <u>VTS DC</u>
			-			0.0042 ± 0.0007 OUR AVERAG	iE
⁶⁰ The systematic e	ror includes	the uncertainties	due to the c	harm branching r	atios.	$0.0040 \pm 0.0006 \pm 0.0004$ 1 $0.0105 \pm 0.0035 \pm 0.0025$	112 ⁷² B <i>i</i> 73 AL
$(D^*(2010)\gamma)/\Gamma_t$	otal				Г ₃₃ /Г	72 BALEST 958 assume B(χ_c	
ALUE	<u>CL%</u>	DOCUMENT IE		COMMENT		value. Fit to ψ -photon inva	ı(ır) → J/ ariant mass d
<1.1 × 10 ⁻³	90	61 LESIAK		$L e^+e^- \rightarrow \Upsilon($		component. 73 ALBRECHT 92E assumes r	10 v = /1P\ :
1 LESIAK 92 set a for the range of	limit on the masses of A	e inclusive process 192–2045 MeV, inc	$B(b \rightarrow s\gamma)$ dependent of	$0 < 2.8 \times 10^{-3}$ assumptions above	at 90% CL out s-ouark		
hadronization.		20.0 10000 110				$\Gamma(\chi_{c1}(1P))$ (direct) anythin	-,,
$(D_s^+\pi^-, D_s^{*+}\pi^-)$	-, D+o-	$, D_{a}^{\bullet+} \rho^{-}, D_{-}^{+}$	π^0 , $D_{\pi}^{*+}\pi^0$	$D_{\pi}^{+}\eta, D_{\pi}^{*+}\eta$	$D_{*}^{+} \rho^{0}$.	VALUE	74 BALE
				5 11 - 5 12	Г ₃₄ /Г	0.0037±0.0007	
$D_s^{*+} \rho^0$, $D_s^+ \omega$, $D_s^+ \omega$		000000000000000000000000000000000000000		COMMENT		⁷⁴ BALEST 95B assume PDG and $\mu^+\mu^-$ modes. The μ^+	
4 <i>LUE</i> < 0.0005	90	DOCUMENT ID		$e^+e^- \rightarrow \gamma$	(45)	directly from B decays and	d also from f
⁵² ALEXANDER 93						the measured inclusive rate $\chi_{C1}(1P)$ (direct) X branchi	
		$\phi \pi^+) = 0.036$					
model-dependent	upper limit	$ V_{ub} / V_{cb} <$	0.16 at CL=	90%.	provides a	$\Gamma(\chi_{c2}(1P))$ anything $\Gamma(\chi_{c2}(1P))$	
						<u>VALUE</u> <u>CL% EVTS</u> <0.0038 90 35	<u>досиі</u> 75 BALE
(<i>D_{s1}</i> (2536) ⁺ any					Γ ₃₅ /Γ	75 BALEST 95B assume B(χ_c	
		P-wave D+ mes				value. $J/\psi(15)$ mesons ar	
<u> </u>	<u>CL%</u> 90	DOCUMENT IE 63 BISHAI		$\begin{array}{c} COMMENT \\ e^+e^- \rightarrow \Upsilon(\end{array}$	(45)	1994 branching fractions ar	e used. If int
						to B($B \rightarrow \chi_{c2}(1P)X$) =(,0.25 ± 0.10
63 Assuming factoria	ation, the t	D Constant	+ 13 at 10ast	a lactor of 2.5 th	nes smaner	$\Gamma(\eta_c(1S))$ anything $\Gamma(\eta_c(1S))$	
than $f_{D_s^+}$.						VALUE CL%	
$(J/\psi(1S)$ anythi	ng) /[Г36/Г	<0.009 90	⁷⁶ BALE
(J/ \((13) all \(\) (13) ALUE (units 10 ⁻²)	total י / (איי EVTS	DOCUMENT ID	TECN	COMMENT	- 30/ '	76 BALEST 958 assume PDG are reconstructed in $J/\psi(1$	
.15±0.06 OUR AVI						are reconstructed in $J/\psi(1$ $< m_{\eta_C(15)} < 3010 \text{ MeV}/c^2$	ی → e · e ک
$13 \pm 0.06 \pm 0.02$	1489	64 BALEST	95B CLE2				-
$30 \pm 0.45 \pm 0.02$	27 120	66 ALBRECHT	N 90 CBAL 87D ARG	$e^+e^- \rightarrow \Upsilon(e^+e^- \rightarrow \Upsilon(e^-e^- \rightarrow $,	$\Gamma(K^{\pm} \text{ anything})/\Gamma_{\text{total}}$	
$24 \pm 0.27 \pm 0.02$ $37 \pm 0.25 \pm 0.02$	120 52	67 ALAM		$e^+e^- \rightarrow r(e^+e^-)$		VALUE 0.789 ± 0.025 OUR AVERAGE	DOCU
• • We do not use					,	0.789 ± 0.025 OUR AVERAGE 0.82 ± 0.01 ± 0.05	ALBF
4 +0.6 -0.5	7	68 ALBRECHT	85H ARG	$e^+e^- \rightarrow \gamma$	45)	$0.775 \pm 0.015 \pm 0.025$	77 ALBR
0.5 1 ±0.21±0.23	46	69 HAAS		Repl. by ALAN	•	0.85 ±0.07 ±0.09	ALAN
⁴ BALEST 95B rep						• • We do not use the follo	-
We rescale to ou	r best valu	ie B $(J/\psi(1S) \rightarrow \text{it's error and our})$	$e^{+}e^{-}) = 0$	$(5.93 \pm 0.10) \times 3$	10 ⁻² . Our	seen	⁷⁸ BROI ⁷⁹ GIAN
first error is their	experimen	t's error and our	second error	is the systematic	error from	seen 77 ALBRECHT 931 value is n	•
using our best va	ue They ranching frac	measure $J/\psi(1S)$ ctions. The rescali	→ e'e an ing is the san	nd μ™ μ and use ne for either mod	: PDG 1994 e so we use	K anything ALBRECHT	
م+ <u>-</u> -						⁷⁸ Assuming $\Upsilon(4S) \rightarrow B\overline{B}$,	a total of 3.3
65 MASCHMANN 9	0 reports 1.	$12 \pm 0.33 \pm 0.25$ for $B(J/\psi(15) \rightarrow e$	τ B(J/ψ(15) + ο⊂\ = /5 :	$\rightarrow e^{+}e^{-}) = 0.0$	69 ± 0.009.	(the second error is system leads to a value for (b-qua	
error is their exp our best value.	eriment's er	rror and our secon	d error is the	systematic error	from using	⁷⁹ GIANNINI 82 at CESR-CU	SB observed
66 ALBRECHT 87D	reports 1.0	$7 \pm 0.16 \pm 0.22$ for	$B(J/\psi(1S)$	$\rightarrow e^+e^-)=0.0$	69 ± 0.009.	than 0.82 ± 0.10 below th	reshold. Con
We rescale to ou	r best value	$B(J/\psi(15) \rightarrow e$	$+e^{-}) = (5.9)$	$93 \pm 0.10) \times 10^{-1}$	² . Our first	$\Gamma(K^+ \text{ anything}) / \Gamma_{\text{total}}$	
error is their exp	eriment's er	rror and our secon	d error is the	e systematic error	from using	VALUE	<u>DOCUI</u>
our best value 4	LBRECHT					0.66 ±0.05	⁸⁰ ALBR
our best value. A 0.0081 ± 0.0023				$\pm \pm 1 = 0.074 \pm$		 • • We do not use the follow 	wing data for
our best value. A 0.0081 ± 0.0023 ALAM 86 reports	s 1.09 ± 0.1						
our best value. A 0.0081 ± 0.0023 ALAM 86 reports rescale to our be	§ 1.09 ± 0.1 est value B(16 ± 0.21 for B($J/\psi(1S) ightarrow \mu^+$ rror and our second	$\mu^{-}) = (5.88$	$3 \pm 0.10) \times 10^{-2}$	2. Our first	$0.620 \pm 0.013 \pm 0.038$	81 ALBR
our best value. A 0.0081 ± 0.0023 Tescale to our be error is their exp our best value.	s 1.09 ± 0.1 est value B(eriment's ei	$(J/\psi(1S) ightarrow \mu^+$ rror and our secon	μ^-) = (5.88 od error is the	$3 \pm 0.10) \times 10^{-2}$ e systematic error	2. Our first from using	$0.620 \pm 0.013 \pm 0.038$ $0.66 \pm 0.05 \pm 0.07$	81 ALBR 81 ALAM
our best value. A 0.0081 ± 0.0023 67 ALAM 86 reports rescale to our be error is their exp our best value. 68 Statistical and sy	s 1.09 ± 0.1 est value B(eriment's er esternatic er it of 0.007 1	$(J/\psi(1S) \rightarrow \mu^{+}$ rror and our second rors were added in for $B \rightarrow J/\psi(1S)$	μ^{-}) = (5.88 od error is the quadrature.	$3 \pm 0.10) \times 10^{-2}$ systematic error ALBRECHT 85H	2. Our first from using	$0.620 \pm 0.013 \pm 0.038$	81 ALBR 81 ALAN on-kaon corre eutral <i>B</i> mess
our best value. A 0.0081 ± 0.0023 67 ALAM 86 reports rescale to our be error is their exp our best value. 68 Statistical and sy	5 1.09 ± 0.1 est value B(eriment's en estematic en	$(J/\psi(1S) \rightarrow \mu^+)$ rror and our secon	μ^{-}) = (5.88 od error is the quadrature.	$3 \pm 0.10) \times 10^{-2}$ systematic error ALBRECHT 85H	2. Our first from using	0.620 ± 0.013 ± 0.038 0.66 ± 0.05 ± 0.07 80 Measurement relies on lept not include mixing of the ne	81 A 81 A on-kaon eutral B

$(J/\psi(1S))$ (direct) anything		T-4		Г37/Г
.0080±0.0008	70 BALEST		$e^+e^- \rightarrow $	Υ(45)
⁷⁰ BALEST 95B assume PDG 19	_			` '
are reconstructed in $J/\psi(15)$ branching ratio contains $J/\psi(15)$ through $\psi(25) \rightarrow J/\psi(15)$, the measured inclusive rates, $J/\psi(15)$ (direct) X branching	$ ightarrow e^+e^-$ and $J/25$) mesons direct $\chi_{C1}(1P) ightarrow J/25$ BALEST 95B corr	$\psi(1S) \rightarrow \mu^+ \mu$ by from B decays	$^-$. The B $^-$	$\rightarrow J/\psi(15)$ X om feeddown $\psi(15)$. Using inds the $B \sim 0$
(ψ(2S) anything) /Γ _{total}	S DOCUMENT	TID TECN	COMMEN	Г ₃₈ /Г
.0035±0.0005 OUR AVERAGE .0034±0.0004±0.0003 240 .0046±0.0017±0.0011		958 CLE2		→ T(45) → T(45)
71 BALEST 95B assume PDG 19 $\psi(25) X, \ \psi(25) \rightarrow \ \ell^+ \ell^-)$ $J/\psi(15) \pi^+ \pi^-) = 0.37 \pm 0.0$	$= 0.30 \pm 0.05 \pm$	0.04 and B(B	$\rightarrow \psi(25)$	X, ψ(25) -
$(\chi_{c1}(1P))$ anything $/\Gamma_{total}$	<u>DOCUMEN</u>	T ID TECN	COMMEN	Г ₃₉ /Г
.0042±0.0007 OUR AVERAGE .0040±0.0006±0.0004 112	2 72 BALEST	95B CLE2	a+a	→ Υ(45)
$0.0040 \pm 0.0008 \pm 0.0004$ 113	73 ALBRECH			$\rightarrow \Upsilon(45)$ $\rightarrow \Upsilon(45)$
72 BALEST 958 assume B(χ_{c1} (value. Fit to ψ -photon invarige component. 73 ALBRECHT 92E assumes no	ant mass distribut	on allows for a)×10 ⁻² , t X _C 1(1 <i>P</i>) ar	he PDG 1994 Id a χ _{C2} (1 <i>P</i>)
$(\chi_{c1}(1P)(\text{direct}) \text{ anything})$) / Fa-a-1			Γ40/Γ
ALUE		TECN	COMMENT	. 40/ •
.0037±0.0007	74 BALEST		e ⁺ e →	T(45)
74 BALEST 95B assume PDG 19 and $\mu^+\mu^-$ modes. The B directly from B decays and a the measured inclusive rates, $\chi_{C1}(1P)$ (direct) X branching	→ χ _{C1} (1P)X br also from feeddow BALEST 95B corr	5) mesons are re anching ratio ϵ 0 n through $\psi(25)$ 0 ects for the feed	constructed ontains $\chi_{c1}(x) \rightarrow \chi_{c1}(x)$ down and f	in the e^+e^- (1P) meson 1P) γ . Using inds the B $-$
$(\chi_{c2}(1P)$ anything) $/\Gamma_{total}$				Γ ₄₁ /Γ
ALUE CL% EVTS	DOCUMENT ID	TECN	<u>COMMENT</u>	74/
<0.0038 90 35	75 BALEST	95B CLE2	$e^+e^- \rightarrow$	T(45)
⁷⁵ BALEST 95B assume B(χ_{C2}) value. $J/\psi(15)$ mesons are 1994 branching fractions are to B($B \rightarrow \chi_{C2}(1P)$ X) =(0.	reconstructed in t used. If interpreted	he e^+e^- and , I as signal, the 3	$() imes 10^{-2}$, t $\mu^+ \mu^-$ mod (5 ± 13) even	he PDG 1994 les, and PDC ts correspond
$(\eta_c(1S))$ anything $/\Gamma_{\text{total}}$				Γ ₄₂ /Γ
ALUE CL%	DOCUMENT ID	TECN_		m(-0)
<0.009 $76 \text{ BALEST 95B assume PDG 1}$ $\text{are reconstructed in } J/\psi(15)$ $< m_{\eta_c}(15) < 3010 \text{ MeV/}c^2.$	994 values for sub	mode branching		(15) mesons
(K [±] anything)/F _{total}	DOCUMENT ID	TECN	COMMENT	Γ ₄₃ /Γ
.789±0.025 OUR AVERAGE	DOCOMENT 1D			-
$.82 \pm 0.01 \pm 0.05$	ALBRECHT		e+e- → '	
.775 ± 0.015 ± 0.025	77 ALBRECHT			r(45)
.85 ±0.07 ±0.09 • • We do not use the followi	ALAM	878 CLEO		(43)
	78 BRODY	82 CLEO		r(46)
een een	79 GIANNINI		+e- → 1	
 ALBRECHT 931 value is not K⁻ anything ALBRECHT 94 Assuming T(45) → BB, at (the second error is systemaleads to a value for (b-quark) 	to values. total of 3.38 ± 0.3 tic). In the conte	he sum of $B \rightarrow 4 \pm 0.68$ kaons point of the stand	K^+ anythioer $\Upsilon(4S)$ derd B -decay	ng and B → ecay is found model, this
79 GIANNINI 82 at CESR-CUSE than 0.82 ± 0.10 below three	3 observed 1.58 ±	$0.35~K^0$ per had	Fronic event $b \rightarrow cX$	much higher decay.
(K+ anything)/F _{total}	DOCUMENT ID	TECN (OMMENT	F44/F
	80 ALBRECHT	94c ARG	'+e- → '	r(45)
		es, fits, limits, e	tč. • • •	
• • We do not use the following				T/45)
0.66 ±0.05 • • • We do not use the following 0.620±0.013±0.038 0.66 ±0.05 ±0.07 80 Measurement relies on lepton	81 ALBRECHT 81 ALAM	94¢ ARG 87B CLEO	ı+ e- →. + e- →	r(45)

Meson Particle Listings B^{\pm}/B^0 ADMIXTURE

Γ(K anything)/Γ _{total}	DOCUMENT ID	TECN	COMMENT	Γ ₄₅ /Γ	Γ(η anything)/Γ _{tot}	cl%	DOCUMENT ID	TECN	COMMENT	Γ ₅₇ /
0.13 ±0.04	82 ALBRECHT	94c ARG	e+ e- →	T(45)	<4.4 × 10 ⁻⁴	90	91 BROWDER		$e^+e^- \rightarrow$	T(45)
• • We do not use the follow	ving data for average	es, fits, limits,	, etc. • • •		⁹¹ BROWDER 98 se	arch for hig	h momentum B -			
$0.165 \pm 0.011 \pm 0.036$	83 ALBRECHT	94C ARG	$e^+e^- \rightarrow$							
0.19 ±0.05 ±0.02	B3 ALAM		e ⁺ e ⁻ →	, ,	Γ(η' anything)/Γ _{to}	tal	DOCUMENT ID	TECN	COMMENT	Γ ₅₈ /
B2 Measurement relies on lepto not include mixing of the ne a mixing parameter r of (18)	utral B meson. Mixi	It is for the v ng effects wer	weak decay v e corrected f	ertex and does or by assuming	$(6.2\pm1.6^{+1.3}_{-2.0})\times10^{-1}$	-4	92 BROWDER		$e^+e^- \rightarrow$	T(45)
83 Measurement relies on lept of the neutral <i>B</i> meson.		. It includes	production t	hrough mixing	⁹² BROWDER 98 ob production betwee pretation of $b \rightarrow$	en 2.0 and :	2.7 GeV / <i>c</i> . The I	branching fra	action is base	d on the inte
$\Gamma(K^0/\overline{K}^0)$ anything) $\Gamma_{ ext{total}}$				Γ ₄₆ /Γ	color-suppressed b			iddes addicid	MIAI UNCERTAIN	ties due to ti
VALUE	DOCUMENT ID	TECN	COMMENT		$\Gamma(\pi^{\pm} \text{ anything})/\Gamma$					Γ ₅₉ /
0.64 ±0.04 OUR AVERAGE	84 ALDDECUT	046 ADC	e+e- →	27(45)	VALUE	total	DOCUMENT ID	TECN	COMMENT	' 59/
0.642±0.010±0.042 0.63 ±0.06 ±0.06	84 ALBRECHT ALAM	94C ARG 87B CLEO	$e^+e^- \rightarrow e^+e^- \rightarrow$		3.585±0.025±0.070		93 ALBRECHT		$e^+e^- \rightarrow$	T(45)
B4 ALBRECHT 94C assume a				,	93 ALBRECHT 93 e 0.025 \pm 0.080.	xcludes π [±]	from K_5^0 and Λ	decays. If	included, the	y find 4.105
Γ (K*(892)[±] anything) /Γ _{tc}	tal DOCUMENT ID	TEĆN	COMMENT	Γ ₄₇ /Γ	$\Gamma(\eta \text{ anything})/\Gamma_{tot}$	tal				Γ ₆₀ /
0.182±0.054±0.024	ALBRECHT	94J ARG	$e^+e^- \rightarrow$	T(45)	VALUE 0.176±0.011±0.012		DOCUMENT ID		$\begin{array}{cc} COMMENT \\ e^+e^- \rightarrow \end{array}$	T(45)
T/K#/00010 / 17#/00010	abina\/F			- 1-			NUBUIA	70 CLE2	. c e →	1 (43)
「(<i>K</i> *(892) ⁰ / <i>下</i> *(892) ⁰ an <u>y</u> value	rthing)/I total	TECN	COMMENT	Γ ₄₈ /Γ	$\Gamma(ho^0$ anything $)/\Gamma_{ m t}$	otal				Γ ₆₁ /
0.146±0.016±0.020	ALBRECHT	94J ARG	$e^+e^- \rightarrow$	T(45)	VALUE		DOCUMENT ID			2(45)
				` '	0.208±0.042±0.032		ALBRECHT	94J ARG	$e^+e^- \rightarrow$	1 (45)
$\Gamma(K^*(892)\gamma)/\Gamma_{\text{total}}$				Γ ₄₉ /Γ	$\Gamma(\omega \text{ anything})/\Gamma_{to}$	tal				Γ ₆₂ /
VALUE CL% ■ ■ We do not use the follow	DOCUMENT ID		COMMENT		VALUE	CL%	DOCUMENT ID			
$<1.5 \times 10^{-3}$ 90	85 LESIAK		$e^+e^- \rightarrow$	2(45)	<0.81	90	ALBRECHT	94J ARG	$e^+e^- \rightarrow$	T(45)
$<1.5 \times 10^{-4}$ 90	ALBRECHT		$e^+e^- \rightarrow$		$\Gamma(\phi \text{ anything})/\Gamma_{to}$	tal				Γ ₆₃ ,
85 LESIAK 92 set a limit on t					VALUE		DOCUMENT ID			
for the range of masses of					0.035 ±0.007 OUR					m(+5)
hadronization.					0.0390±0.0030±0.00 0.023 ±0.006 ±0.00		ALBRECHT BORTOLET		$e^+e^- \rightarrow$ $e^+e^- \rightarrow$	
$\Gamma(K_1(1400)\gamma)/\Gamma_{\text{total}}$				Γ ₅₀ /Γ			DOMICLET	. 500 CLE		, ,
										Г
VALUE CL%	DOCUMENT ID	TECN	COMMENT		Γ(φ <i>K</i> *(892))/Γ _{tot}	tai				¹ 64 <i>/</i>
<4.1 × 10 ⁻⁴ 90	ALBRECHT	88н ARG	$e^+e^- \rightarrow$	T(45)	VALUE	CL%	DOCUMENT IE			' 64/
	ALBRECHT	88н ARG es, fits, limits,	$e^+e^- \rightarrow$, ,	•	<u>CL%</u> 90	94 BERGFELD	98 CLE2		164/
<4.1 × 10⁻⁴ 90 ◆ • • We do not use the follow <1.6 × 10⁻³ 90 86 LESIAK 92 set a limit on the follow 	ALBRECHT wing data for average ⁸⁶ LESIAK the inclusive process	88H ARG es, fits, limits, 92 CBAL $B(b \rightarrow 5\gamma)$	$e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $< 2.8 \times 10^{\circ}$	Υ(45) 3 at 90% CL	VALUE <2.2 × 10^{−5} 94 Assumes equal pro	90 guction of	94 BERGFELD	98 CLE2		_
$<4.1 \times 10^{-4}$ 90 • • • We do not use the follow $<1.6 \times 10^{-3}$ 90	ALBRECHT wing data for average ⁸⁶ LESIAK the inclusive process	88H ARG es, fits, limits, 92 CBAL $B(b \rightarrow 5\gamma)$	$e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $< 2.8 \times 10^{\circ}$	Υ(45) 3 at 90% CL	VALUE <2.2 × 10^{−5}	90 guction of	94 BERGFELD B+ and B ⁰ at th	98 CLE2 ne Υ(4 <i>S</i>).	2	_
<1.1 × 10 ⁻⁴ • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on the range of masses of hadronization.	ALBRECHT wing data for average ⁸⁶ LESIAK the inclusive process	88H ARG es, fits, limits, 92 CBAL $B(b \rightarrow 5\gamma)$	$e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $< 2.8 \times 10^{\circ}$	T(45) -3 at 90% CL about s-quark	VALUE $<2.2 \times 10^{-5}$ 94 Assumes equal pro $\Gamma(A_c^{\pm} \text{ anything})/\Gamma_1$ VALUE $0.064 \pm 0.008 \pm 0.008$	90 oduction of total CL%	94 BERGFELD B+ and B ⁰ at th	98 CLE2 ne Υ(45). 72 TECN 92 CLEC	$\frac{COMMENT}{COMMENT}$	Γ _{65/}
<4.1 × 10 ⁻⁴ • • • • We do not use the follow <1.6 × 10 ⁻³ 86 LESIAK 92 set a limit on the for the range of masses of hadronization. F(K²(1430)γ)/Γtotal	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind	88H ARG es, fits, limits, 92 CBAL $B(b \rightarrow s\gamma)$ ependent of a	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ < 2.8 × 10 assumptions	Υ(45) 3 at 90% CL	VALUE <2.2 × 10 ⁻⁵ 94 Assumes equal pro Γ (Λ [±] _C anything)/Γ ₁ VALUE 0.064±0.008±0.00 • • • We do not use	90 oduction of total CL%	94 BERGFELD B ⁺ and B ⁰ at th DOCUMENT ID 95 CRAWFORD ng data for average	98 CLE2 ne Υ(45). <u>7ΕCΝ</u> 92 CLEC ges, fits, limit	$\frac{c}{c} = \frac{comment}{c}$ $c = e^+e^- \rightarrow ts, etc. \bullet \bullet \bullet$	Γ ₆₅ /
<1.1 × 10 ⁻⁴ • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on the range of masses of hadronization.	ALBRECHT wing data for average ⁸⁶ LESIAK the inclusive process	88H ARG es, fits, limits, 92 CBAL $B(b \rightarrow 5\gamma)$	$e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $< 2.8 \times 10^{\circ}$	7(45) -3 _{at 90%} CL about s-quark	$VALUE$ <2.2 × 10 ⁻⁵ 94 Assumes equal pro $\Gamma(A_c^{\pm} \text{ anything})/\Gamma_1$ $VALUE$ 0.064±0.008±0.00 • • • We do not use 0.14 ±0.09	90 oduction of total CL% 60 CL% 60 CL% 60 CL% 60 CL%	94 BERGFELD B ⁺ and B ⁰ at th DOCUMENT ID 95 CRAWFORD ng data for averag 96 ALBRECHT	98 CLE2 ne $\Upsilon(4S)$. 92 CLEC ges, fits, limit 88E ARG	$\frac{C}{C} = \frac{COMMENT}{C}$ $c + e^{-} \rightarrow c$ $c + e^{-} \rightarrow c$	Γ _{65,} (45)
<1.1 × 10 ⁻⁴ 90 • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on the forthe range of masses of hadronization. $\Gamma(K_2^2(1430)\gamma)/\Gamma_{total}$ VALUE <8.3 × 10 ⁻⁴ 90	ALBRECHT wing data for average 86 LESIAK che inclusive process 892–2045 MeV, ind	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of a	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ < 2.8 × 10 assumptions	7(45) -3 at 90% CL about s-quark F ₅₁ /F	$VALUE$ <2.2 × 10 ⁻⁵ 9^4 Assumes equal pro $\Gamma(A_c^{\pm} \text{ anything})/\Gamma_1$ $VALUE$ 0.064±0.008±0.00 • • • We do not use 0.14 ±0.09 <0.112	90 oduction of total CL% 08 the following 90	94 BERGFELD B+ and B ⁰ at th DOCUMENT ID 95 CRAWFORD ng data for averag 96 ALBRECHT 97 ALAM	98 CLE2 ne T(45). 92 CLEC ges, fits, limit 88E ARG 87 CLEC	$\begin{array}{ccc} COMMENT \\ O & e^+e^- \rightarrow \\ e^+e^- \rightarrow \\ O & e^+e^- \rightarrow \end{array}$	Γ ₆₅ / (45) (45) (45) (45)
<1.1 × 10 ⁻⁴ 90 • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on the forthe range of masses of hadronization. $\Gamma(K_2^*(1430)\gamma)/\Gamma_{total} = \frac{CL\%}{90}$ $\Gamma(K_2(1770)\gamma)/\Gamma_{total}$ $\Gamma(K_2(1770)\gamma)/\Gamma_{total}$	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of a TECN 88H ARG	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ e^{+}e^{-} \rightarrow \\ e^{+}e^{-} \rightarrow \\ < 2.8 \times 10^{\circ} \\ \text{assumptions} \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \end{array}$	7(45) -3 _{at 90%} CL about s-quark	$VALUE$ <2.2 × 10 ⁻⁵ 94 Assumes equal pro $\Gamma(A_c^{\pm} \text{ anything})/\Gamma_1$ $VALUE$ 0.064±0.008±0.00 • • • We do not use 0.14 ±0.09	CL% 90 oduction of total CL% 08 the following 90 result derive	94 BERGFELD B+ and B ⁰ at th DOCUMENT IE 95 CRAWFORD ng data for averag 96 ALBRECHT 97 ALAM ed from lepton ba	98 CLE2 ne T(45). 92 CLEC ges, fits, limit 88E ARG 87 CLEC	$\begin{array}{ccc} COMMENT \\ O & e^+e^- \rightarrow \\ e^+e^- \rightarrow \\ O & e^+e^- \rightarrow \end{array}$	T(45) T(45)
<4.1 × 10 ⁻⁴ 90 • • • We do not use the follow $<1.6 \times 10^{-3}$ 90 86 LESIAK 92 set a limit on the for the range of masses of hadronization. $\Gamma(K_2^*(1430)\gamma)/\Gamma_{total} = \frac{CL\%}{90}$ $\Gamma(K_2(1770)\gamma)/\Gamma_{total} = \frac{CL\%}{CL\%}$ $VALUE = \frac{CL\%}{CL\%}$ $VALUE = \frac{CL\%}{CL\%}$	ALBRECHT wing data for average 86 LESIAK che inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of a TECN 88H ARG	$e^+e^- \rightarrow$ $e^+e^- \rightarrow$ $e^+e^- \rightarrow$ $< 2.8 \times 10^\circ$ assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$	7(45) -3 at 90% CL about s-quark F ₅₁ /F 7(45)	VALUE <2.2 × 10 ⁻⁵ 94 Assumes equal pro \(\begin{align*} \Gamma_{\text{c}} \angle \text{anything} \end{align*} \sqrt{\Gamma_{\text{c}}} \\ \(\begin{align*} \Lambda_{\text{d}} \angle \text{anything} \end{align*} \sqrt{\Gamma_{\text{d}}} \\ \(\begin{align*} \text{anything} \end{align*} \sqrt{\Gamma_{\text{d}}} \\ \(\begin{align*} \text{align*} \\ a	90 oduction of total CL% 98 the following 90 result derived B± decay	94 BERGFELD B+ and B ⁰ at th DOCUMENT IE 95 CRAWFORD ng data for averag 96 ALBRECHT 97 ALAM ed from lepton be tare A _C .	98 CLE2 ne T(45). 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla	COMMENT O $e^+e^- \rightarrow 0$ $e^+e^- \rightarrow 0$ tions. Assum	Γ ₆₅ / (45) (45) (45) (45) tes all charm
 <1.1 × 10⁻⁴ 90 • We do not use the follow <1.6 × 10⁻³ 90 86 LESIAK 92 set a limit on t for the range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal value <6.3 × 10⁻⁴ 90 Γ(Κ₂(1770)γ)/Γtotal value <1.2 × 10⁻³ 90 	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID 87 LESIAK	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of a TECN 88H ARG TECN 92 CBAL	$e^+e^- \rightarrow$, etc. • • • $e^+e^- \rightarrow$ < 2.8 × 10 ^o assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$	7(45) -3 at 90% CL about s-quark F ₅₁ /F 7(45) T ₆₂ /F 7(45)	$VALUE$ <2.2 × 10 ⁻⁵ 94 Assumes equal pro $\Gamma(A_c^{\pm} \text{ anything})/\Gamma_1$ VALUE 0.064±0.008±0.00 • • We do not use 0.14 ±0.09 <0.112 95 CRAWFORD 92	90 oduction of total	94 BERGFELD B^+ and B^0 at the specific position of the specific position B^+ and B^0 at the specific position B^0 at the specific position B^0 and B^0 are A_C .	98 CLE2 ne $\Upsilon(4S)$. 92 CLE6 ges, fits, limit 88E ARG 87 CLE6 aryon correla	$\frac{COMMENT}{COMMENT}$ $0 e^{+}e^{-} \rightarrow 0$ $e^{+}e^{-} \rightarrow 0$	T(45) $T(45)$ $T(45)$ $T(45)$ see all charms $T(45)$ $T(45)$ $T(45)$ $T(45)$ $T(45)$ $T(45)$ $T(45)$
<4.1 × 10 ⁻⁴ 90 • • • We do not use the follow $<1.6 \times 10^{-3}$ 90 86 LESIAK 92 set a limit on the for the range of masses of hadronization. $\Gamma(K_2^*(1430)\gamma)/\Gamma_{total} = \frac{CL\%}{90}$ $\Gamma(K_2(1770)\gamma)/\Gamma_{total} = \frac{CL\%}{CL\%}$ $VALUE = \frac{CL\%}{CL\%}$ $VALUE = \frac{CL\%}{CL\%}$	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID 87 LESIAK the inclusive process	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG 1ECN 92 CBAL	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \text{, etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ < 2.8 \times 10^{\circ} \\ \text{assumptions} \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ < 2.8 \times 10^{\circ} \\ \end{array}$	τ(45) -3 at 90% CL about s-quark Γ ₅₁ /Γ τ(45) Γ ₆₂ /Γ τ(45) -3 at 90% CL	VALUE <2.2 × 10 ⁻⁵ 94 Assumes equal pro F (A [±] _c anything)/F ₁ VALUE 0.064±0.008±0.00 • • We do not use 0.14 ±0.09 <0.112 95 CRAWFORD 92 baryons in B ⁰ and 96 ALBRECHT 88E r and used B(A ⁺ _c - 97 Assuming all bary	$\frac{CL\%}{90}$ oduction of total $\frac{CL\%}{90}$ 08 the followin $\frac{90}{90}$ result derived d B^{\pm} decay measured B($+$ $pK^-\pi^+$) yons result	94 BERGFELD B^+ and B^0 at the DOCUMENT IL 95 CRAWFORD ng data for average 96 ALBRECHT 97 ALAM et from lepton better A_c^+ are A_c^- . A_c^+	98 CLE2 ne T(45). 9 TECN 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla † → pK-7 com ABRAM: ryons, ALAM	COMMENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	T(45) $T(45)$ $T(45)$ $T(45)$ hes all charms $T(45)$ $T(45)$ hes all charms $T(45)$ $T(45)$ hes all charms
<.1. × 10 ⁻⁴ 90 • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on t for the range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal WALUE <8.3 × 10 ⁻⁴ 90 Γ(Κ2(1770)γ)/Γtotal WALUE <1.2 × 10 ⁻³ 97 87 LESIAK 92 set a limit on the second s	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID 87 LESIAK the inclusive process	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG 1ECN 92 CBAL	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \text{, etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ < 2.8 \times 10^{\circ} \\ \text{assumptions} \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ < 2.8 \times 10^{\circ} \\ \end{array}$	τ(45) -3 at 90% CL about s-quark Γ ₅₁ /Γ τ(45) Γ ₆₂ /Γ τ(45) -3 at 90% CL	VALUE <2.2 × 10 ⁻⁵ 94 Assumes equal pro F (A [±] / _c anything)/F ₁ VALUE 0.064±0.008±0.00 • • We do not use 0.14 ±0.09 <0.112 95 CRAWFORD 92 baryons in B ⁰ and 96 ALBRECHT 88E r and used B(A [±] / _c 97 Assuming all bary fraction is 7.4 ± 2	$\frac{CL\%}{90}$ oduction of total $\frac{CL\%}{90}$ 08 the following $\frac{CL\%}{90}$ result derived $\frac{B^{\pm}}{90}$ decay measured B(+ $pK^-\pi^+$) yons result 2.9%. The latest $\frac{B^+}{90}$ of B^+	94 BERGFELD B^+ and B^0 at the property of the property o	98 CLE2 ne T(45). 9 TECN 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla † → pK-7 com ABRAM: ryons, ALAM	COMMENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$T(45)$ $T(45)$ $T(45)$ $T(45)$ hes all charm $= 0.12 \pm 0.06$ above number
<1.1 × 10 ⁻⁴ 90 • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on t for the range of masses of hadronization. $\Gamma(K_2^*(1430)\gamma)/\Gamma_{total}$ $VALUE$ <8.3 × 10 ⁻⁴ 90 $\Gamma(K_2(1770)\gamma)/\Gamma_{total}$ $VALUE$ <1.2 × 10 ⁻³ 90 87 LESIAK 92 set a limit on the range of masses of the control of the range of masses of the set of the control of the range of masses of the set of the control of the range of masses of the control of the range of masses of the control of the range of masses of the control of the contro	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID 87 LESIAK the inclusive process	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG 1ECN 92 CBAL	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \text{, etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ < 2.8 \times 10^{\circ} \\ \text{assumptions} \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ < 2.8 \times 10^{\circ} \\ \end{array}$	τ(45) -3 at 90% CL about s-quark Γ ₅₁ /Γ τ(45) Γ ₆₂ /Γ τ(45) -3 at 90% CL	VALUE <2.2 × 10 ⁻⁵ 94 Assumes equal pro F (A [±] / _c anything)/F ₁ VALUE 0.064±0.008±0.00 • • We do not use 0.14 ±0.09 <0.112 95 CRAWFORD 92 baryons in B ⁰ and 96 ALBRECHT 88E r and used B(A ⁺ / _c - 97 Assuming all bary	$\frac{CL\%}{90}$ oduction of total $\frac{CL\%}{90}$ 08 the following $\frac{CL\%}{90}$ result derived $\frac{B^{\pm}}{90}$ decay measured B(+ $pK^-\pi^+$) yons result 2.9%. The latest $\frac{B^+}{90}$ of B^+	94 BERGFELD B^+ and B^0 at the property of the property o	98 CLE2 ne T(45). 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla + → pK-7 om ABRAM: ryons, ALAN is model inde	COMMENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\Gamma(45)$ $\Upsilon(45)$ $\Upsilon(45)$ res all charms $= 0.12 \pm 0.06$ above numbers the branchi
 <1.1 × 10⁻⁴ 90 • • We do not use the follow <1.6 × 10⁻³ 90 86 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal walue 90 Γ(Κ2(1770)γ)/Γtotal walue 01.2 × 10⁻³ 90 Γ(Κ2(1770)γ)/Γtotal walue 01.2 × 10⁻³ 90 Γ(Κ3(1780)γ)/Γtotal walue 01.2 × 10⁻³ 90 Γ(Κ³(1780)γ)/Γtotal walue 01.2 × 10⁻³ 90 	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID 87 LESIAK the inclusive process	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of : TECN 88H ARG 7ECN 92 CBAL B($b \rightarrow s \gamma$) ependent of :	$e^+e^- \rightarrow$, etc. • • • • • • • • • • • • • • • • • • •	T(45) -3 at 90% CL about s-quark Γ ₅₁ /Γ T(45) Γ ₆₂ /Γ T(45) -3 at 90% CL about s-quark	VALUE $<2.2 \times 10^{-5}$ 94 Assumes equal pro $\Gamma\left(A_c^{\pm} \text{ anything}\right)/\Gamma_1$ VALUE 0.064 ± 0.008 ± 0.00 • • • We do not use 0.14 ± 0.09 <0.112 95 CRAWFORD 92 baryons in B^0 and 96 ALBRECHT 88cr and used $B(A_c^+ \rightarrow 97$ Assuming all bary fraction is 7.4 ± 2 $\Gamma\left(A_c^+ \text{ anything}\right)/\Gamma_{VALUE}$	$\frac{CL\%}{90}$ oduction of total $\frac{CL\%}{90}$ 08 the following $\frac{CL\%}{90}$ result derived $\frac{B^{\pm}}{90}$ decay measured B(+ $pK^-\pi^+$) yons result 2.9%. The latest $\frac{B^+}{90}$ of B^+	94 BERGFELD B^+ and B^0 at the DOCUMENT ID 95 CRAWFORD ng data for average 96 ALBRECHT 97 ALAM end from lepton because A_c . ($B \rightarrow A_c^+ X$)·B(A_c) = (2.2±1.0)% from charmed ballimit given above ling)	98 CLE2 ne $\Upsilon(4S)$. 9 CLEC 19 CLEC 1	COMMENT COMMENT COMMENT COMMENT COMMENT COMMENT	$\Gamma_{65}/\Gamma_{65}/\Gamma_{66}/\Gamma_{65}$ $\Gamma(45)$ $\Gamma(45)$ $\Gamma(45)$ hes all charm $\Gamma_{66}/\Gamma_{66}/\Gamma_{65}$
 <4.1 × 10⁻⁴ 90 • • We do not use the follow <1.6 × 10⁻³ 90 86 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ[*]₂(1430)γ)/Γtotal watue 60.3 × 10⁻⁴ 90 Γ(Κ₂(1770)γ)/Γtotal watue 61.2 × 10⁻³ 90 87 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ[*]₃(1780)γ)/Γtotal 	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID 87 LESIAK the inclusive process 892–2045 MeV, ind	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of a TECN 88H ARG 1ECN 92 CBAL B($b \rightarrow s \gamma$) ependent of a	$e^+e^- \rightarrow$, etc. • • • • • • • • • • • • • • • • • • •	T(45) -3 at 90% CL about s-quark Γ ₅₁ /Γ T(45) Γ ₆₂ /Γ T(45) -3 at 90% CL about s-quark	VALUE <2.2 × 10 ⁻⁵ 94 Assumes equal pro \(\begin{align*} \be	90 oduction of total	94 BERGFELD B^+ and B^0 at the DOCUMENT ID 95 CRAWFORD ng data for average 96 ALBRECHT 97 ALAM and from lepton between A_c^+ A	98 CLE2 ne $\Upsilon(4S)$. 9 CLE6 es, fits, limit 88E ARG 87 CLE6 aryon correla $^+_{C} \rightarrow pK^-$, com ABRAM: ryons, ALAM is model inde	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^+e^- \rightarrow e^-e^- ^- \rightarrow e^-e^- $	$\Gamma_{65}/\Gamma_{65}/\Gamma_{66}/\Gamma_{65}$ $\Gamma(45)$ $\Gamma(45)$ $\Gamma(45)$ hes all charm $\Gamma_{66}/\Gamma_{66}/\Gamma_{65}$
<4.1 × 10 ⁻⁴ 90 • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal VALUE <1.2 × 10 ⁻³ 90 87 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal VALUE <3.0 × 10 ⁻³ 90	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID 87 LESIAK the inclusive process 892–2045 MeV, ind	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of : TECN 88H ARG 7ECN 92 CBAL B($b \rightarrow s \gamma$) ependent of :	$e^+e^- \rightarrow$, etc. • • • • • • • • • • • • • • • • • • •	τ(45) -3 at 90% CL about s-quark Γ ₅₁ /Γ τ(45) Γ ₆₂ /Γ τ(45) -3 at 90% CL about s-quark Γ ₅₃ /Γ τ(45)	VALUE $<2.2 \times 10^{-5}$ 94 Assumes equal pro $\Gamma\left(A_c^{\pm} \text{ anything}\right)/\Gamma_1$ VALUE 0.064 ± 0.008 ± 0.00 • • • We do not use 0.14 ± 0.09 <0.112 95 CRAWFORD 92 baryons in B^0 and 96 ALBRECHT 88cr and used $B(A_c^+ \rightarrow 97$ Assuming all bary fraction is 7.4 ± 2 $\Gamma\left(A_c^+ \text{ anything}\right)/\Gamma_{VALUE}$	90 oduction of total	94 BERGFELD B^+ and B^0 at the DOCUMENT ID 95 CRAWFORD ng data for average 96 ALBRECHT 97 ALAM and from lepton between A_c^+ A	98 CLE2 ne $\Upsilon(4S)$. 9 CLE6 es, fits, limit 88E ARG 87 CLE6 aryon correla $^+_{C} \rightarrow pK^-$, com ABRAM: ryons, ALAM is model inde	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^+e^- \rightarrow e^-e^- ^- \rightarrow e^-e^- $	$\Gamma_{65}/\Gamma_{65}/\Gamma_{66}/\Gamma_{65}$ $\Gamma(45)$ $\Gamma(45)$ $\Gamma(45)$ hes all charm $\Gamma_{66}/\Gamma_{66}/\Gamma_{65}$
 <1.1 × 10⁻⁴ 90 • • We do not use the follow <1.6 × 10⁻³ 90 86 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal walue 90 Γ(Κ2(1770)γ)/Γtotal walue 01.2 × 10⁻³ 90 Γ(Κ2(1770)γ)/Γtotal walue 01.2 × 10⁻³ 90 Γ(Κ3(1780)γ)/Γtotal walue 01.2 × 10⁻³ 90 Γ(Κ³(1780)γ)/Γtotal walue 01.2 × 10⁻³ 90 	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID 87 LESIAK the inclusive process 892–2045 MeV, ind	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of a TECN 88H ARG 92 CBAL B($b \rightarrow s \gamma$) ependent of a	$e^+e^- \rightarrow$, etc. • • • • • • • • • • • • • • • • • • •	T(45) -3 at 90% CL about s-quark Γ ₅₁ /Γ T(45) Γ ₆₂ /Γ T(45) -3 at 90% CL about s-quark	VALUE <2.2 × 10 ⁻⁵ 94 Assumes equal pro $\Gamma(A_c^{+}$ anything)/ Γ_{1} VALUE 0.064 ± 0.008 ± 0.00 • • • We do not use 0.14 ± 0.09 <0.112 95 CRAWFORD 92 baryons in B^0 and 96 ALBRECHT 88E r and used $B(A_c^{+}$ 97 Assuming all bary fraction is 7.4 ± 2 $\Gamma(A_c^{+}$ anything)/ Γ_{NALUE} 0.19 ± 0.13 ± 0.04 98 AMMAR 97 uses	90 oduction of total CL% 90 result derived B^{\pm} decay measured $B(+pK^-\pi^+)$ yons result 2.9%. The I	94 BERGFELD B^+ and B^0 at the property of the property o	98 CLE2 ne $\Upsilon(4S)$. 9 CLE6 es, fits, limit 88E ARG 87 CLE6 aryon correla $^+_{C} \rightarrow pK^-$, com ABRAM: ryons, ALAM is model inde	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^-e^-e^-$ 1 86 conclude ependent. COMMENT $e^+e^- \rightarrow e^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^$	$\Gamma_{65}/\Gamma_{65}/\Gamma_{66}/\Gamma_{66}/\Gamma_{65}$
<4.1 × 10 ⁻⁴ 90 • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal walue 61.2 × 10 ⁻³ 90 87 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal walue 61.2 × 10 ⁻³ 90 87 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal walue 61.3 × 10 ⁻³ 90 Γ(Κ³(1780)γ)/Γtotal 61.3 × 10 ⁻³ 90 Γ(Κ³(2045)γ)/Γtotal 90	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID 87 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT ALBRECHT	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of a TECN 88H ARG 92 CBAL B($b \rightarrow s \gamma$) ependent of a	$e^+e^- \rightarrow$, etc. • • • • • • $e^+e^- \rightarrow$ $< 2.8 \times 10^\circ$ assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $< 2.8 \times 10^\circ$ assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$	T(45) -3 at 90% CL about s-quark Γ51/Γ T(45) Γ52/Γ T(45) -3 at 90% CL about s-quark Γ53/Γ T(45) Γ54/Γ	VALUE <2.2 × 10 ⁻⁵ 94 Assumes equal pro \(\begin{align*} \be	90 oduction of total CL% 90 result derived B^{\pm} decay measured $B(+pK^-\pi^+)$ yons result 2.9%. The I	94 BERGFELD B^+ and B^0 at the property of the property o	98 CLE2 ne $T(4S)$. 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla $^+ \rightarrow pK^- \gamma$ om ABRAM: ryons, ALAN is model indu 97 CLE2 $^+ \gamma$	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^-e^-e^-$ 1 86 conclude ependent. COMMENT $e^+e^- \rightarrow e^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^- \rightarrow e^-e^$	$T(45)$ $T(45)$ $T(45)$ res all charms 0.12 ± 0.06 above number the branchi T_{66}/T_{1} $T(45)$
<4.1 × 10 ⁻⁴ 90 • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal walue 61.2 × 10 ⁻³ 90 Γ(Κ2(1770)γ)/Γtotal 90 87 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal 90 87 LESIAK 92 set a limit on the for the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal 90 Γ(Κ³(1780)γ)/Γtotal 90 Γ(Κ³(1780)γ)/Γtotal 90 88 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal 90 88 LESIAK 92 set a limit on the forthe range of masses of	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT POCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT ALBRECHT DOCUMENT ID ALBRECHT ALBRECHT DOCUMENT ID ALBRECHT ALBRECHT DOCUMENT ID 88 LESIAK the inclusive process	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 92 CBAL 88H ARG	$e^+e^- \rightarrow$ $e^+e^- \rightarrow$ $e^+e^- \rightarrow$ $< 2.8 \times 10^\circ$ assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ $< 2.8 \times 10^\circ$ assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$	T(45) -3 at 90% CL about s-quark Γ51/Γ T(45) -3 at 90% CL about s-quark Γ53/Γ T(45) -3 at 90% CL about s-quark Γ54/Γ T(45) -3 at 90% CL about s-quark	VALUE $<2.2 \times 10^{-5}$ 94 Assumes equal pro $\Gamma\left(A_c^{+} \text{ anything}\right)/\Gamma_{0}$ VALUE 0.064 ± 0.008 ± 0.00 • • We do not use 0.14 ± 0.09 <0.112 95 CRAWFORD 92 baryons in B^0 and 96 ALBRECHT 88E m and used $B(A_c^{+} - 9^7)$ Assuming all bary fraction is 7.4 ± 2 $\Gamma\left(A_c^{+} \text{ anything}\right)/\Gamma_{VALUE}$ 0.19 ± 0.13 ± 0.04 98 AMMAR 97 uses $\Gamma\left(A_c^{-} e^{+} \text{ anything}\right)$	90 oduction of total CLS 90 oresult derived B^{\pm} decay measured B $+ pK^{-}\pi^{+}$ 2.5%. The I	94 BERGFELD B^+ and B^0 at the property of the property	98 CLE2 ne $\Upsilon(4S)$. 9 CLE6 19 CLE6 19 CLE6 19 CLE6 19 CLE6 19 CLE6 19 PK-7 10 OM ABRAM: 19 OM ABRAM: 19 OM ABRAM: 19 OM ABRAM: 19 OM ABRAM: 20 TECA 20 Pt - 1.4 CLE6 20 Pt - 1.4 CLE6 21 CLE6 22 CLE6 23 CLE6 24 CLE6 25 CLE6 26 CLE6 26 CLE6 27 CLE6 28 CLE	2. COMMENT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$T(45)$ $T(45)$ $T(45)$ $T(45)$ sees all charms $= 0.12 \pm 0.06$ above number the branching T_{66}/Γ $T(45)$
<1.1 × 10 ⁻⁴ 90 •• We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on t for the range of masses of hadronization. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT POCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT ALBRECHT DOCUMENT ID ALBRECHT ALBRECHT DOCUMENT ID ALBRECHT ALBRECHT DOCUMENT ID 88 LESIAK the inclusive process	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 92 CBAL 88H ARG	$e^+e^- \rightarrow$ $e^+e^- \rightarrow$ $e^+e^- \rightarrow$ $< 2.8 \times 10^\circ$ assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ $< 2.8 \times 10^\circ$ assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$	T(45) -3 at 90% CL about s-quark Γ51/Γ T(45) -3 at 90% CL about s-quark Γ53/Γ T(45) -3 at 90% CL about s-quark Γ54/Γ T(45) -3 at 90% CL about s-quark	VALUE <2.2 × 10−5 94 Assumes equal pro \(\begin{align*} \begi	oduction of total $\frac{CL\%}{90}$ The following the following $\frac{CL\%}{90}$ The following $\frac{CL\%}{90}$ The following $\frac{L}{90}$ The following \frac{L}	94 BERGFELD B^+ and B^0 at the property of the property o	98 CLE2 ne $\Upsilon(4S)$. 9 CLE6 19 CLE6 19 CLE6 19 CLE6 19 CLE6 19 CLE6 19 PK-7 10 OM ABRAM: 19 OM ABRAM: 19 OM ABRAM: 19 OM ABRAM: 19 OM ABRAM: 20 TECA 20 Pt - 1.4 CLE6 20 Pt - 1.4 CLE6 21 CLE6 22 CLE6 23 CLE6 24 CLE6 25 CLE6 26 CLE6 26 CLE6 27 CLE6 28 CLE	2. COMMENT $ \begin{array}{cccccccccccccccccccccccccccccccccc$	T(45) $T(45)$ $T(45)$ $T(45)$ the sall charms $T(45)$ $T(45)$ $T(45)$ $T(45)$ $T(45)$
 <4.1 × 10⁻⁴ 90 < • • We do not use the follow < 1.6 × 10⁻³ 90 < 86 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT BOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT BESIAK the inclusive process 892–2045 MeV, ind	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 92 CBAL B($b \rightarrow s \gamma$) ependent of i	$e^+e^- \rightarrow$, etc. • • • • $e^+e^- \rightarrow$ < 2.8 × 10' assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10' assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10' assumptions	T(45) -3 at 90% CL about s-quark Γ51/Γ T(45) -3 at 90% CL about s-quark Γ53/Γ T(45) -3 at 90% CL about s-quark Γ54/Γ T(45) -3 at 90% CL about s-quark	VALUE <2.2 × 10−5 94 Assumes equal pro Γ(Λ [±] _c anything)/Γ ₁ VALUE 0.064±0.008±0.00 • • We do not use 0.14 ±0.09 <0.112 95 CRAWFORD 92 baryons in B ⁰ and 96 ALBRECHT 88E r and used B(Λ [±] _c - 97 Assuming all bary fraction is 7.4 ± 2 Γ(Λ [±] _c anything)/Γ VALUE 0.19±0.13±0.04 98 AMMAR 97 uses Γ(Λ̄- e ⁺ anything) VALUE <0.05 99 BONVICINI 98 us Γ(Λ̄- panything)/Γ	oduction of total $\frac{CL\%}{90}$ The following the following $\frac{CL\%}{90}$ The following $\frac{CL\%}{90}$ The following $\frac{L}{90}$ The following \frac{L}	94 BERGFELD B^+ and B^0 at the property of the property o	98 CLE2 ne $T(4S)$. 9 TECN 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla $^+ \rightarrow pK^- \gamma$ com ABRAM: ryons, ALAN is model indu 97 CLE2 5 (P_ℓ > 1.4 C	comment $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- $	$T(45)$ $T(45)$ $T(45)$ $T(45)$ Here all charms 0.12 ± 0.06) Above number the branchi T_{66}/T $T(45)$ T_{68}/T
<4.1 × 10 ⁻⁴ 90 • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on the forther range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal WALUE <1.2 × 10 ⁻³ 90 87 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal WALUE <3.0 × 10 ⁻³ 90 Γ(Κ³(1780)γ)/Γtotal WALUE <3.0 × 10 ⁻³ 90 Γ(Κ³(2045)γ)/Γtotal WALUE <1.0 × 10 ⁻³ 90 88 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal WALUE <1.0 × 10 ⁻³ 90 88 LESIAK 92 set a limit on the forther range of masses of hadronization. Γ(Γ) → 3γ)/Γtotal WALUE 1.0 × 10 ⁻³ 90 1.5 × 10 ⁻³ 90 1.6 × 10 ⁻³ 90 1.7 × 10 ⁻³ 90 1.8 × 10 ⁻³ 90 1.9 × 10 ⁻³ 90 1.0	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT ALBRECHT DOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT BOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT BE LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID 88 LESIAK the inclusive process 892–2045 MeV, ind	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG 7ECN 88H ARG 7ECN 88H ARG	$e^+e^- \rightarrow$, etc. • • • • $e^+e^- \rightarrow$ < 2.8 × 10' assumptions $COMMENT$ $e^+e^- \rightarrow$ < 2.8 × 10 assumptions $COMMENT$ $e^+e^- \rightarrow$ < 2.8 × 10 assumptions $COMMENT$ $e^+e^- \rightarrow$ < 2.6 × 10 assumptions	T(45) -3 at 90% CL about s-quark Γ ₅₁ /Γ T(45) Γ ₅₂ /Γ T(45) -3 at 90% CL about s-quark Γ ₅₃ /Γ T(45) Γ ₅₄ /Γ T(45) -3 at 90% CL about s-quark	VALUE <2.2 × 10−5 94 Assumes equal pro \(\begin{align*} \begin{align*} \lambda \times \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	oduction of total $\frac{CL\%}{90}$ The following $\frac{CL\%}{90}$ The following $\frac{CL\%}{90}$ The following $\frac{LL\%}{90}$	94 BERGFELD B^+ and B^0 at the property of the property	98 CLE2 ne $T(45)$. 9	$\begin{array}{cccc} & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	T_{65}/T_{45} T_{45} T_{45} T_{45} res all charms $= 0.12 \pm 0.06$) above number the branchi T_{66}/T_{45} T_{68}/T_{50} $T_{69}/T_{69}/T_{60}$
<.4.1 × 10 ⁻⁴ 90 • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on t for the range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal WALUE (1.2 × 10 ⁻³ 90 87 LESIAK 92 set a limit on t for the range of masses of hadronization. Γ(Κβ(1780)γ)/Γtotal VALUE (3.0 × 10 ⁻³ 90 Γ(Κ²(2045)γ)/Γtotal VALUE (1.0 × 10 ⁻³ 90 88 LESIAK 92 set a limit on to for the range of masses of hadronization. Γ(Κβ(1780)γ)/Γtotal VALUE (1.0 × 10 ⁻³ 90 88 LESIAK 92 set a limit on to for the range of masses of hadronization. Γ(Γ) → 3γ)/Γtotal VALUE (1.0 × 10 ⁻³ 90 Γ(Κ²(2045)γ)/Γtotal VALUE (1.0 × 10 ⁻³ 90 Γ(Κ²(2045)γ)/Γtotal VALUE (2.32±0.57±0.35) × 10 ⁻⁴	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT BOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT BESIAK the inclusive process 892–2045 MeV, ind	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG 7ECN 88H ARG 7ECN 88H ARG	$e^+e^- \rightarrow$, etc. • • • • $e^+e^- \rightarrow$ < 2.8 × 10' assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10' assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10' assumptions	T(45) -3 at 90% CL about s-quark Γ51/Γ T(45) -3 at 90% CL about s-quark Γ53/Γ T(45) -3 at 90% CL about s-quark Γ54/Γ T(45) -3 at 90% CL about s-quark Γ55/Γ T(45) -7 (45) -7 (45) -7 (45) -7 (45)	VALUE <2.2 × 10−5 94 Assumes equal pro Γ(Λ [±] _c anything)/Γ ₁ VALUE 0.064±0.008±0.00 • • We do not use 0.14 ±0.09 <0.112 95 CRAWFORD 92 baryons in B ⁰ and 96 ALBRECHT 88E r and used B(Λ [±] _c - 97 Assuming all bary fraction is 7.4 ± 2 Γ(Λ [±] _c anything)/Γ VALUE 0.19±0.13±0.04 98 AMMAR 97 uses Γ(Λ̄- e ⁺ anything) VALUE <0.05 99 BONVICINI 98 us Γ(Λ̄- panything)/Γ	oduction of total $\frac{CL\%}{90}$ observed a $\frac{CL\%}{90}$ of the following $\frac{CL\%}{90}$ of the fol	94 BERGFELD B+ and B ⁰ at the process of the proc	98 CLE2 ne $T(45)$. 9	comment $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- ^- \rightarrow e^-e^- $	T(45) T(45) T(45) T(45) T(45) T(45) T(45) T66/Γ T(45) T68/Γ T(45) T69/Γ
<.4.1 × 10 ⁻⁴ 90 • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on t for the range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal WALUE (8.3 × 10 ⁻⁴ 90 87 (Κ2(1770)γ)/Γtotal WALUE (1.2 × 10 ⁻³ 90 87 LESIAK 92 set a limit on to for the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal WALUE (3.0 × 10 ⁻³ 90 88 LESIAK 92 set a limit on to for the range of masses of hadronization. Γ(Κ³(2045)γ)/Γtotal WALUE (1.0 × 10 ⁻³ 90 88 LESIAK 92 set a limit on to for the range of masses of hadronization. Γ(δ → 37)/Γtotal WALUE (2.32±0.57±0.35) × 10 ⁻⁴ Γ(δ → 3gluon)/Γtotal	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT POCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT DOCUMENT ID 88 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID 88 LESIAK the inclusive process 892–2045 MeV, ind	88H ARG es, fits, limits, 92 CBAL B($b \to s \gamma$) ependent of i TECN 88H ARG 92 CBAL B($b \to s \gamma$) ependent of i TECN 92 CBAL B($b \to s \gamma$) ependent of i TECN 88H ARG	$e^+e^- \rightarrow$, etc. • • • • $e^+e^- \rightarrow$ < 2.8 × 10' assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10' assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10' assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10 assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10 assumptions	T(45) -3 at 90% CL about s-quark Γ ₅₁ /Γ T(45) Γ ₅₂ /Γ T(45) -3 at 90% CL about s-quark Γ ₅₃ /Γ T(45) Γ ₅₄ /Γ T(45) -3 at 90% CL about s-quark	VALUE <2.2 × 10−5 94 Assumes equal pro \(\begin{align*} \begin{align*} \lambda \text{-} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	90 oduction of total CL% 90 result derived B^{\pm} decay measured B_{+} $\rho K^{-}\pi^{+}$) your result A^{\pm} anyth a high-mon $A^{-}_{c} \rho$ anyth $A^{-}_{c} \rho$ anyth $A^{-}_{c} \rho$	94 BERGFELD B+ and B ⁰ at the process of the proc	98 CLE2 ne $\Upsilon(4S)$. 9 TECN 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla $^+ \rightarrow pK^- \gamma$ com ABRAM: ryons, ALAN is model indu 97 CLE2 5 (P_ℓ > 1.4 C	$\begin{array}{cccc} & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	7(45) 7(45) 7(45) 7(45) 10 12 ± 0.06; 10 20 ± 0.06; 10 20 ± 0.06; 11 20 ± 0.06; 12 ± 0.06; 13 ± 0.06; 14 5) 15 − 7(45) 16 − 7(45) 17 − 7(45) 17 − 7(45)
<4.1 × 10 ⁻⁴ 90 • • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal walue 61.2 × 10 ⁻³ 90 Γ(Κ2(1770)γ)/Γtotal 90 87 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal 90 87 LESIAK 92 set a limit on the for the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal 90 Γ(Κ³(1780)γ)/Γtotal 90 Γ(Κ³(1780)γ)/Γtotal 90 88 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal 90 88 LESIAK 92 set a limit on the forthe range of masses of	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID 87 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT BE LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID 88 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID ALAM DOCUMENT ID ALAM	88H ARG es, fits, limits, 92 CBAL B($b \to s \gamma$) ependent of i TECN 88H ARG 92 CBAL B($b \to s \gamma$) ependent of i TECN 92 CBAL B($b \to s \gamma$) ependent of i TECN 92 CBAL B($b \to s \gamma$) ependent of i	$e^+e^- \rightarrow$, etc. • • • • $e^+e^- \rightarrow$ < 2.8 × 10' assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10' assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10' assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10 assumptions $\frac{COMMENT}{e^+e^- \rightarrow}$ < 2.8 × 10 assumptions	7(45) -3 at 90% CL about s-quark F51/F 7(45) -3 at 90% CL about s-quark F53/F 7(45) -3 at 90% CL about s-quark F54/F 7(45) -3 at 90% CL about s-quark F55/F 7(45) -7(45) -7(45) -7(45) -7(45) -7(45) -7(45) -7(45)	VALUE <2.2 × 10−5 94 Assumes equal pro Γ(Λ [±] _c anything)/Γ ₁ VALUE 0.064±0.008±0.00 • • We do not use 0.14 ±0.09 <0.112 95 CRAWFORD 92 baryons in B ⁰ and 96 ALBRECHT 88ter and used B(Λ ⁺ _c 97 Assuming all bary fraction is 7.4 ± 2 Γ(Λ [±] _c anything)/Γ VALUE 0.19±0.13±0.04 98 AMMAR 97 uses Γ(Λ̄ ⁻ _c e ⁺ anything) VALUE <0.05 99 BONVICINI 98 us Γ(Λ̄ ⁻ _c panything)/VALUE 0.57±0.05±0.05 Γ(Λ̄ ⁻ _c ρe ⁺ ν _e)/Γ(Λ̄ VALUE <0.04	90 oduction of total CL% 80 the following points and points po	94 BERGFELD B^+ and B^0 at the process of the	98 CLE2 ne $\Upsilon(4S)$. 9 TECN 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla $^+ \rightarrow pK^- \gamma$ com ABRAM: ryons, ALAN is model indu 97 CLE2 $^+ \gamma$	2 COMMENT $c = e^+e^- \rightarrow c^ c = e^+e^- \rightarrow c^-$	7(45) 7(45) 7(45) 10 12 ± 0.06; 11 above numb 12 the branchi 13 fee/Γ 7(45) 7(45) 7(45) 7(45)
<.1. × 10 ⁻⁴ 90 • • • We do not use the follow <.1.6 × 10 ⁻³ 86 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal WALUE <.1.2 × 10 ⁻³ 90 87 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal WALUE <3.0 × 10 ⁻³ 90 Γ(Κ³(2045)γ)/Γtotal WALUE <1.0 × 10 ⁻³ 90 88 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal WALUE <1.0 × 10 ⁻³ 90 88 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Γβ¬3γ)/Γtotal WALUE (2.½ (2.32±0.57±0.35) × 10 ⁻⁴ Γ(β¬5gluon)/Γtotal WALUE (2.½ (2.½ (2.57) (2.½ (2.½ (2.57) (2.½ (2.½ (2.57) (2.½ (2.½ (2.57) (2.½ (2.½ (2.57) (2.½ (2.½ (2.57) (2.½ (2.½ (2.57) (2.½ (2.½ (2.57) (2.½ (2.½ (2.57) (2.½ (2.57) (2.½ (2.½ (2.57) (2.57) (2.½ (2.57)	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID 87 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT BE LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID 88 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALAM DOCUMENT ID ALAM	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of a **TECN** 88H ARG 92 CBAL B($b \rightarrow s \gamma$) ependent of a **TECN** 88H ARG **TECN** 92 CBAL B($b \rightarrow s \gamma$) ependent of a **TECN** 92 CBAL B($b \rightarrow s \gamma$) ependent of a **TECN** 95 CLE2 **TECN** 98 CLE2	$\begin{array}{c} e^+e^- \rightarrow \\ e^+e^- \rightarrow \\ e^+e^- \rightarrow \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^- \rightarrow} \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^- \rightarrow} \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^- \rightarrow} \\ < 2.9 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^- \rightarrow} \\ < \frac{COMMENT}{e^+e^- \rightarrow} \\ \\ \hline \\ \frac{COMMENT}{e^+e^- \rightarrow} \\ \\ \end{array}$	T(45) -3 at 90% CL about s-quark Γ51/Γ T(45) Γ52/Γ T(45) -3 at 90% CL about s-quark Γ53/Γ T(45) Γ54/Γ T(45) -3 at 90% CL about s-quark Γ55/Γ T(45) -7(45) Γ56/Γ T(45)	VALUE <2.2 × 10−5 94 Assumes equal pro Γ(Λ [±] c anything)/Γ ₁ VALUE 0.064±0.008±0.00 • • • We do not use 0.14 ±0.09 <0.112 95 CRAWFORD 92 baryons in B ⁰ and 96 ALBRECHT 88E m and used B(Λ [±] c - 97 Assuming all bary fraction is 7.4 ± 2 Γ(Λ [±] c anything)/Γ VALUE 0.19±0.13±0.04 98 AMMAR 97 uses Γ(Λ̄-c e anything) VALUE <0.05 99 BONVICINI 98 us Γ(Λ̄-ρ anything)/VALUE 0.57±0.05±0.05 Γ(Λ̄-ρ e + ν _e)/Γ(Λ VALUE	90 oduction of total CL% 80 the following points and points po	94 BERGFELD B^+ and B^0 at the process of the	98 CLE2 ne $\Upsilon(4S)$. 9 TECN 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla $^+ \rightarrow pK^- \gamma$ com ABRAM: ryons, ALAN is model indu 97 CLE2 $^+ \gamma$	2 COMMENT $c = e^+e^- \rightarrow c^ c = e^+e^- \rightarrow c^-$	7(45) 7(45) 7(45) 10
<.1. × 10 ⁻⁴ 90 • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal VALUE (1.2 × 10 ⁻³ 90 87 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal VALUE (3.0 × 10 ⁻³ 90 Γ(Κ²(2045)γ)/Γtotal VALUE (1.0 × 10 ⁻³ 90 Γ(Κ³(2045)γ)/Γtotal VALUE (1.0 × 10 ⁻³ 90 Γ(Κ³(2045)γ)/Γtotal VALUE (1.0 × 10 ⁻³ 90 Γ(Κ³(2045)γ)/Γtotal VALUE (2.32±0.57±0.35) × 10 ⁻⁴ Γ(Β→ 3 gluon)/Γtotal VALUE (2.32±0.57±0.35) × 10 ⁻⁴ Γ(Β→ 3 gluon)/Γtotal VALUE (2.068 90	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID 87 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT BOCUMENT ID ALBRECHT BOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT ALBRECHT DOCUMENT ID ALBRECHT DOCUMENT ID ALBRECHT DOCUMENT ID ALAM DOCUMENT ID ALAM DOCUMENT ID ALAM DOCUMENT ID ALAM	88H ARG es, fits, limits, 92 CBAL $B(b \rightarrow s \gamma)$ ependent of a TECN 88H ARG 1ECN 92 CBAL $B(b \rightarrow s \gamma)$ ependent of a TECN 88H ARG 1ECN 92 CBAL $B(b \rightarrow s \gamma)$ ependent of a TECN 92 CBAL $B(b \rightarrow s \gamma)$ ependent of a TECN 92 CBAL $B(b \rightarrow s \gamma)$ ependent of a TECN 92 CBAL $B(b \rightarrow s \gamma)$ ependent of a TECN 93 CLE2 94 CLE2 95 CLE2	$\begin{array}{c} e^+e^- \rightarrow \\ e^+e^- \rightarrow \\ < 2.8 \times 10 \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < 2.8 \times 10 \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < 2.8 \times 10 \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < 2.6 \times 10 \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < \frac{COMMENT}{e^+e^-} \rightarrow \\ < \frac{COMMENT}{e^+e^-} \rightarrow \\ \\ \frac{COMMENT}{e^+} \rightarrow \\ \\ $	7(45) -3 at 90% CL about s-quark F51/F 7(45) F52/F 7(45) -3 at 90% CL about s-quark F53/F 7(45) -3 at 90% CL about s-quark F54/F 7(45) 7(45) 7(45) 7(45) 7(45) 7(45) 7(45)	VALUE <2.2 × 10−5 94 Assumes equal pro Γ(A [±] canything)/Γ ₁ VALUE 0.064±0.008±0.00 • • We do not use 0.14 ±0.09 <0.112 95 CRAWFORD 92 baryons in B ⁰ and 96 ALBRECHT 88E r and used B(A [†] cholory) 77 Assuming all bary fraction is 7.4 ± 2 Γ(A ⁺ canything)/Γ VALUE 0.19±0.13±0.04 98 AMMAR 97 uses Γ(Ā̄cehanything)/ VALUE <0.05 99 BONVICINI 98 us Γ(Ā̄cρe+νe)/Γ(Ā̄cholory)/ VALUE 0.57±0.05±0.05 Γ(Ā̄cholory)/Γ(Ā̄cholory)/ VALUE <0.04 100 BONVICINI 98 us	oduction of total CL% 90 oduction of total CL% 08 the followin 90 result derived B^{\pm} decay measured $B(b^{\pm}, b^{\pm}, b^{\pm})$ and the followin $(A_c^{\pm}, b^{\pm}, b^{\pm})$ a high-mon $(A_c^{\pm}, b^{\pm}, b^{\pm})$ oses the elect $(A_c^{\pm}, b^{\pm}, b^{\pm})$ oses the elect $(A_c^{\pm}, b^{\pm}, b^{\pm})$ oses the elect	94 BERGFELD B^+ and B^0 at the process of the	98 CLE2 ne $\Upsilon(4S)$. 9 TECN 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla $^+ \rightarrow pK^- \gamma$ com ABRAM: ryons, ALAN is model indu 97 CLE2 $^+ \gamma$	2 COMMENT $c = e^+e^- \rightarrow c^ c = e^+e^- \rightarrow c^-$	T(45) T(45) T(45) T(45) T(45) T(45) T(45) T66/Γ T(45) T68/Γ T(45) T69/Γ T(45) T70/Γ
<4.1 × 10 ⁻⁴ 90 < • • • We do not use the follow <1.6 × 10 ⁻³ 90 ⁸⁶ LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal wature CL% < 8.3 × 10 ⁻⁴ 90 Γ(Κ2(1770)γ)/Γtotal wature CL% < 1.2 × 10 ⁻³ 90 87 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal wature CL% < 3.0 × 10 ⁻³ 90 Γ(Κ⁴(2045)γ)/Γtotal wature CL% < 1.0 × 10 ⁻³ 90 88 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Κ⁴(2045)γ)/Γtotal wature CL% (2.3 × 10 ⁻³ 90 88 LESIAK 92 set a limit on the forthe range of masses of hadronization. Γ(Ϝ→ 3γ)/Γtotal wature CL% (2.32±0.57±0.35) × 10 ⁻⁴ Γ(Ε→ 3 5gluon)/Γtotal wature CL% EVTS < 0.066 90 • • We do not use the follow < 0.08 2 89 COAN 98 uses D-ℓ correlation	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT DOCUMENT ID ALAM DOCUMENT I	88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 88H ARG TECN 92 CBAL B($b \rightarrow s \gamma$) ependent of i TECN 95 CLE2 98 CLE2 es, fits, limits 95D ARG	$\begin{array}{c} e^+e^- \rightarrow \\ e^+e^- \rightarrow \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < \frac{COMMENT}{e^+e^-} \rightarrow \\ < \frac{COMMENT}{e^+e^-} \rightarrow \\ \\ \frac{COMMENT}{e^+} \rightarrow \\ \\ CO$	T(45) -3 at 90% CL about s-quark Γ51/Γ T(45) Γ52/Γ T(45) -3 at 90% CL about s-quark Γ53/Γ T(45) Γ54/Γ T(45) -3 at 90% CL about s-quark Γ55/Γ T(45) -7 (45) -7 (45) -7 (45) -7 (45) -7 (45) -7 (45) -7 (45)	VALUE	oduction of total ct% 90 coduction of total ct% 90 result derived $d B^{\pm}$ decay measured $B(k) \rightarrow pK - \pi^{+}$) yons result $t = 0$. The $t = 0$ decay measured $t = 0$ decay measur	94 BERGFELD B+ and B ⁰ at the process of the proc	98 CLE2 ne $T(4S)$. 9 TECN 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla $^+ \rightarrow pK^- \gamma$ com ABRAM: ryons, ALAN is model indu 97 CLE2 6 (P_ℓ) > 1.4 C	COMMENT CO	T(45) T(45) T(45) T(45) T(45) tes all charms 0.12±0.06; above numb the branchi T66/Γ T(45) T68/Γ T(45) T69/Γ T(45) T70/Γ T(45)
<.4.1 × 10 ⁻⁴ 90 • • We do not use the follow <1.6 × 10 ⁻³ 90 86 LESIAK 92 set a limit on the forth range of masses of hadronization. Γ(Κ²(1430)γ)/Γtotal WALUE <1.2 × 10 ⁻³ 90 87 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal WALUE <3.0 × 10 ⁻³ 90 Γ(Κ³(2045)γ)/Γtotal WALUE <1.0 × 10 ⁻³ 90 Γ(Κ³(2045)γ)/Γtotal WALUE <1.0 × 10 ⁻³ 90 88 LESIAK 92 set a limit on the range of masses of hadronization. Γ(Κ³(1780)γ)/Γtotal WALUE (1.0 × 10 ⁻³ 90 Γ(Κ³(2045)γ)/Γtotal WALUE (2.32±0.57±0.35) × 10 ⁻⁴ Γ(Β→ 3 gluon)/Γtotal WALUE (2.32±0.57±0.35) × 10 ⁻⁴ Γ(Β→ 3 gluon)/Γtotal WALUE (2.36 EVTS <0.068 90 • • • We do not use the follow	ALBRECHT wing data for average 86 LESIAK the inclusive process 892–2045 MeV, ind DOCUMENT ID ALBRECHT LID ALBRECHT LID BERCHT BOCUMENT ID ALBRECHT LID BERCHT BOCUMENT ID ALBRECHT LID BERCHT 88H ARG es, fits, limits, 92 CBAL B($b \rightarrow s \gamma$) ependent of : TECN 88H ARG 92 CBAL B($b \rightarrow s \gamma$) ependent of : TECN 92 CBAL B($b \rightarrow s \gamma$) ependent of : TECN 95 CBAL 95 CBAL 96 CBAL B($b \rightarrow s \gamma$) ependent of :	$\begin{array}{c} e^+e^- \rightarrow \\ e^+e^- \rightarrow \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < 2.8 \times 10^\circ \\ \text{assumptions} \\ \\ \hline \\ \frac{COMMENT}{e^+e^-} \rightarrow \\ < \frac{COMMENT}{e^+e^-} \rightarrow \\ < \frac{COMMENT}{e^+e^-} \rightarrow \\ \\ \frac{COMMENT}{e^-} \rightarrow \\ \\ C$	7(45) -3 at 90% CL about s-quark F51/F 7(45) -3 at 90% CL about s-quark F53/F 7(45) -3 at 90% CL about s-quark F53/F 7(45) -3 at 90% CL about s-quark F54/F 7(45) -7(45)	VALUE <2.2 × 10−5 94 Assumes equal pro Γ(A [±] canything)/Γ ₁ VALUE 0.064±0.008±0.00 • • We do not use 0.14 ±0.09 <0.112 95 CRAWFORD 92 baryons in B ⁰ and 96 ALBRECHT 88E r and used B(A [†] cholory) 77 Assuming all bary fraction is 7.4 ± 2 Γ(A ⁺ canything)/Γ VALUE 0.19±0.13±0.04 98 AMMAR 97 uses Γ(Ā̄cehanything)/ VALUE <0.05 99 BONVICINI 98 us Γ(Ā̄cρe+νe)/Γ(Ā̄cholory)/ VALUE 0.57±0.05±0.05 Γ(Ā̄cholory)/Γ(Ā̄cholory)/ VALUE <0.04 100 BONVICINI 98 us	gooduction of total CL% 90 result derived B± decay measured B(+ PK- \(\pi + \) 2.9%. The I cl% 90 result derived B± decay measured B(+ PK- \(\pi + \) 2.9%. The I cl% 90 sees the elect CL% 90	94 BERGFELD B+ and B ⁰ at the process of the proc	98 CLE2 ne $\Upsilon(4S)$. 9 TECN 92 CLEC ges, fits, limit 88E ARG 87 CLEC aryon correla $\uparrow \rightarrow pK^- \tau$ om ABRAM: ryons, ALAN is model inde 97 CLE2 $(F_{\ell}) = 1.4 \text{ C}$ 98 CLE2 um above 0. 98 CLE2 um above 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7(45) 7(45) 7(45) 7(45) 10 12 ± 0.06 10 20 ± 0.06 1	

0.00008 \pm 0.00007. We divide by our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (5.0 \pm 1.3) \times 10⁻². Our first error is their experiment's error and our second error is the systematic

error from using our best value.

(\$\overline{\subset}_{\text{c}}\arrangle \text{anything}\)/\(\text{\text{total}}\)	Γ(baryons anything)/Γ _{total} Γ ₈₃ /Γ VALUE DOCUMENT ID TECN COMMENT
VALUE CL% DOCUMENT ID TECN COMMENT < 0.010 90 102 PROCARIO 94 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$	0.068±0.005±0.003 113 ALBRECHT 920 ARG e^+e^- → $\Upsilon(4S)$
⁰² PROCARIO 94 reports [B($B \to \overline{\Sigma}_c^-$ anything) \times B($\Lambda_c^+ \to pK^-\pi^+$)] = < 0.00048 .	• • We do not use the following data for averages, fits, limits, etc. • • •
We divide by our best value B($\Lambda_C^+ \to p K^- \pi^+$) = 0.050.	0.076 ± 0.014 114 ALBRECHT 89K ARG $e^+e^- \rightarrow T(4S)$
(T) anything) /F	¹¹³ ALBRECHT 920 result is from simultaneous analysis of p and Λ yields, $p\bar{p}$ and $\Lambda\bar{p}$ corr lations, and various lepton-baryon and lepton-baryon-antibaryon correlations. Supersed
(Coanything)/F _{total} ALUE EVTS DOCUMENT ID TECH COMMENT	ALBRECHT 89K. 114 ALBRECHT 89K obtain this result by adding their their measurements (5.5 \pm 1.6)% f
$0.0046 \pm 0.0021 \pm 0.0012$ 76 103 PROCARIO 94 CLE2 $e^+e^- \rightarrow \Upsilon(45)$	direct protons and $(4.2 \pm 0.5 \pm 0.6)\%$ for inclusive A production. They then assum
⁰³ PROCARIO 94 reports $[B(B \to \overline{\Sigma}_c^0 \text{ anything}) \times B(\Lambda_c^+ \to pK^-\pi^+)] = 0.00023 \pm$	$(5.5 \pm 1.6)\%$ for neutron production and add it in also. Since each B decay has two baryons, they divide by 2 to obtain $(7.6 \pm 1.4)\%$.
0.00008 \pm 0.00007. We divide by our best value B($\Lambda_c^+ \rightarrow p K^- \pi^+$) = (5.0 \pm 1.3) \times	
10 ⁻² . Our first error is their experiment's error and our second error is the systematic	$\Gamma(p\overline{p}$ anything)/ Γ_{total} Γ_{84} Includes p and \overline{p} from Λ and $\overline{\Lambda}$ decay.
error from using our best value.	VALUE EVTS DOCUMENT ID TECN COMMENT
$ (\overline{\Sigma}_c^0 N(N = p \text{ or } n)) / \Gamma_{\text{total}} $ Γ_{74} / Γ	0.0247 ± 0.0023 OUR AVERAGE 0.024 ± 0.001 ± 0.004 CRAWFORD 92 CLEO e^+e^- → $\Upsilon(45)$
ALUE CL% DOCUMENT ID TECN COMMENT COMMENT $ \downarrow 0 $ $ \downarrow$	$0.025 \pm 0.002 \pm 0.002$ 918 ALBRECHT 89K ARG $e^+e^- \rightarrow \Upsilon(4S)$
$^{1.04}$ PROCARIO 94 reports < 0.0017 for B($\Lambda_c^+ \rightarrow pK^-\pi^+$) = 0.043. We rescale to our	$\Gamma(p\overline{p}anything)/\Gamma(p/\overline{p}anything)$ Γ_{84}/Γ_{7}
best value B($\Lambda_c^+ \rightarrow pK^-\pi^+$) = 0.050.	Includes p and \overline{p} from A and \overline{A} decay.
Č	VALUE DOCUMENT ID TECN COMMENT
$\Gamma(\Xi_c^0 \text{ anything } \times B(\Xi_c^0 \to \Xi^- \pi^+))/\Gamma_{\text{total}}$ Γ_{75}/Γ	• • • We do not use the following data for averages, fits, limits, etc. • • •
ALUE (units 10 ⁻³) DOCUMENT ID TECH COMMENT	$0.30 \pm 0.02 \pm 0.05$ 115 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$
0.144 ± 0.048 ± 0.021 105 BARISH 97 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$	¹¹⁵ CRAWFORD 92 value is not independent of their $\Gamma(p\overline{p})$ anything)/ Γ_{total} value.
105 BARISH 97 find 79 \pm 27 Ξ_c^0 events.	$\Gamma(\Lambda \overline{p}/\overline{\Lambda}p \text{ anything})/\Gamma_{\text{total}}$ Γ_{85}/Γ_{85}
$\Gamma(\Xi_c^+ \text{ anything } \times B(\Xi_c^+ \to \Xi^- \pi^+ \pi^+))/\Gamma_{total}$ Γ_{76}/Γ	Includes p and \overline{p} from Λ and $\overline{\Lambda}$ decay. VALUE
VALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT	0.025±0.004 OUR AVERAGE
$0.453 \pm 0.096 \stackrel{+ \ 0.085}{- \ 0.065}$ 106 BARISH 97 CLE2 $e^+ e^- \rightarrow \ \varUpsilon(45)$	0.029±0.005±0.005 CRAWFORD 92 CLEO $e^+e^- \rightarrow \Upsilon(45)$ 0.023±0.004±0.003 165 ALBRECHT 89k ARG $e^+e^- \rightarrow \Upsilon(45)$
106 BARISH 97 find 125 \pm 28 Ξ_C^+ events.	
$\frac{1}{c} = \frac{1}{c} = \frac{1}{c}$	$\Gamma(\Lambda \overline{\rho}/\overline{\Lambda} \rho \text{ anything})/\Gamma(\Lambda/\overline{\Lambda} \text{ anything})$ Γ_{85}/Γ_{10}
$\Gamma(p/\overline{p}$ anything $)/\Gamma_{ ext{total}}$ Γ_{77}/Γ	Includes p and \overline{p} from Λ and $\overline{\Lambda}$ decay. VALUE DOCUMENT ID TECN COMMENT
Includes p and \overline{p} from Λ and $\overline{\Lambda}$ decay. VALUE EVTS DOCUMENT ID TECN COMMENT	• • We do not use the following data for averages, fits, limits, etc. • • •
0.080±0.004 OUR AVERAGE	$0.76\pm0.11\pm0.08$ 116 CRAWFORD 92 CLEO $e^+e^- ightarrow$ $\varUpsilon(45)$
$0.080 \pm 0.005 \pm 0.005$ ALBRECHT 931 ARG $e^+e^- \rightarrow \Upsilon(45)$ $0.080 \pm 0.005 \pm 0.003$ CRAWFORD 92 CLEO $e^+e^- \rightarrow \Upsilon(45)$	116 CRAWFORD 92 value is not independent of the
0.080 \pm 0.005 \pm 0.003 CRAWFORD 92 CLEO $e^+e^- \rightarrow \Upsilon(45)$ 0.082 \pm 0.005 \pm 0.013 2163 107 ALBRECHT 89K ARG $e^+e^- \rightarrow \Upsilon(45)$	$[\Gamma(\Lambda \overline{\rho} \text{ anything}) + \Gamma(\overline{\Lambda} \rho \text{ anything})]/\Gamma_{\text{total}}$ value.
• • • We do not use the following data for averages, fits, limits, etc. • • •	$\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma_{\text{total}}$ Γ_{86}/Γ_{86}
100	VALUE CL% EVTS DOCUMENT ID TECN COMMENT
>0.021 108 ALAM 838 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	$CL\%$ EVTS DOCUMENT ID TECN COMMENT (45) CRAWFORD 92 CLEO $e^+e^- \rightarrow \Upsilon(45)$
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with	VALUE CL% EVTS DOCUMENT ID TECN COMMENT
$>$ 0.021 108 ALAM 83B CLEO $e^+e^- ightarrow \varUpsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons.	VALUE CL% EVTS DOCUMENT ID TECN COMMENT <0.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • <0.0088 90 12 ALBRECHT 89¢ ARG $e^+e^- \rightarrow T(45)$
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of p and \overline{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays.	VALUE CL% EVTS DOCUMENT ID TECN COMMENT <0.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • <0.0088 90 12 ALBRECHT 89¢ ARG $e^+e^- \rightarrow T(45)$ $\Gamma(\Lambda \overline{\Lambda}$ anything) / $\Gamma(\Lambda / \overline{\Lambda}$ anything) Γ_{86}/Γ_{1}
>0.021 108 ALAM 838 CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89x include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of p and \overline{p} . Using assumed yields below cut, B($B \rightarrow p + X$) = 0.03 not	VALUE CL% EVTS DOCUMENT ID TECN COMMENT <0.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • <0.0088 90 12 ALBRECHT 89¢ ARG $e^+e^- \rightarrow T(45)$
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of p and p . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. $\Gamma(p/p) \frac{1}{2} $	VALUE CL% EVTS DOCUMENT ID TECN COMMENT <0.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow \Upsilon(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • <0.0088 90 12 ALBRECHT 89k ARG $e^+e^- \rightarrow \Upsilon(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})$ $\Gamma_{BC}/\Gamma_{COMMENT}$ VALUE CL% DOCUMENT ID TECN COMMENT
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of p and \overline{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. $\Gamma(p/\overline{p}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{78}/\Gamma_{\text{total}} \qquad \qquad \Gamma_{78}/\Gamma_{total$	VALUE CL% EVTS DOCUMENT ID TECN COMMENT <0.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow \Upsilon(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.0088 90 12 ALBRECHT 89 κ ARG $e^+e^- \rightarrow \Upsilon(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})$ VALUE CL% DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of p and p . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. $\Gamma(p/p) \frac{1}{2} $	VALUE CL% EVTS DOCUMENT ID TECN COMMENT <0.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • <0.0088 90 12 ALBRECHT 89K ARG $e^+e^- \rightarrow T(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})$ Fabruary CL% DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • <0.13 90 117 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ 117 CRAWFORD 92 value is not independent of their $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma_{\text{total}}$ value.
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from A decays. $\Gamma(p/\bar{p}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{\text{TB}}/\Gamma_{\text{NLUE}} \qquad \qquad \Gamma_{\text{TB}}/\Gamma_{\text{COMMENT ID}} \qquad \Gamma_{\text{TCN}} \qquad \Gamma_{\text{COMMENT}} = 0.0055 \pm 0.005 \pm 0.005 \pm 0.0055 \pm 0.005 \pm $	VALUE CL% EVTS DOCUMENT ID TECN COMMENT <0.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow \Upsilon(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • <0.0088 90 12 ALBRECHT 89κ ARG $e^+e^- \rightarrow \Upsilon(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything}) \qquad \Gamma_{86}/\Gamma_{7}$ VALUE CL% DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • <0.13 90 117 CRAWFORD 92 CLEO $e^+e^- \rightarrow \Upsilon(45)$ 117 CRAWFORD 92 value is not independent of their Γ(ΛΛαnything)/Γ _{total} value. $\Gamma(e^+e^-s)/\Gamma_{total} \qquad \Gamma_{87}/\Gamma_{total} \qquad \Gamma_{87}/\Gamma_{total} \qquad \Gamma_{87}/\Gamma_{10}$
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89x include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of p and \overline{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. $ \Gamma(p/\overline{p}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{\text{78}}/\Gamma_{\text{VALUE}} \qquad \qquad \Gamma_{\text{78}}/\Gamma_{\text{78}}/\Gamma_{\text{VALUE}} \qquad \qquad \Gamma_{\text{78}}/\Gamma_{\text{78}}/\Gamma_{\text{78}} \qquad \qquad \Gamma_{\text{78}}/\Gamma_{\text{78}}/\Gamma_{\text{78}} \qquad \qquad \Gamma$	VALUE CL% EVTS DOCUMENT ID TECN COMMENT CO.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • <0.0088 90 12 ALBRECHT 89κ ARG $e^+e^- \rightarrow T(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})$ VALUE CL% DOCUMENT ID TECN COMMENT OO 117 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ 117 CRAWFORD 92 value is not independent of their Γ($\Lambda \overline{\Lambda} \text{anything}$)/Γ _{total} value. $\Gamma(e^+e^-s)/\Gamma_{total}$ $TECN COMMENT TCOMMENT TCOMMENT TCOMMENT TCOMMENT TCOMMENT TCOMMENT TCOMMENT TECN COMMENT TCOMMENT TCOMMENT TECN COMMENT TCOMMENT TECN COMMENT TCOMMENT TECN COMMENT TCOMMENT TCOMMENT TECN COMMENT TCOMMENT
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of ρ and $\bar{\rho}$. Using assumed yields below cut, $B(B \rightarrow \rho + X) = 0.03$ not including protons from Λ decays. $\Gamma(\rho/\bar{\rho}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{78}/\Gamma_{\text{WALUE}} \qquad \qquad \Gamma_{79}/\Gamma_{\text{WALUE}} $	VALUE CL% EVTS DOCUMENT ID TECN COMMENT <0.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow \Upsilon(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • <0.0088 90 12 ALBRECHT 89κ ARG $e^+e^- \rightarrow \Upsilon(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything}) \qquad \Gamma_{86}/\Gamma_{7}$ VALUE CL% DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • <0.13 90 117 CRAWFORD 92 CLEO $e^+e^- \rightarrow \Upsilon(45)$ 117 CRAWFORD 92 value is not independent of their Γ(ΛΛαnything)/Γ _{total} value. $\Gamma(e^+e^-s)/\Gamma_{total} \qquad \Gamma_{87}/\Gamma_{total} \qquad \Gamma_{87}/\Gamma_{total} \qquad \Gamma_{87}/\Gamma_{10}$
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of ρ and $\bar{\rho}$. Using assumed yields below cut, $B(B \rightarrow \rho + X) = 0.03$ not including protons from Λ decays. $\Gamma(\rho/\bar{\rho}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{78}/\Gamma_{\text{WALUE}} \qquad \text{EVTS} \qquad DOCUMENT ID \qquad \text{TECN} \qquad COMMENT \\ 0.055 \pm 0.005 \pm 0.0055 \qquad \text{ALBRECHT} \qquad 931 \text{ ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.055 \pm 0.006 \pm 0.005 \qquad \text{CRAWFORD} \qquad 92 \text{CLEO} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.055 \pm 0.016 \qquad 1220 \qquad 109 \text{ALBRECHT} \qquad 89K \text{ ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 109 \text{ALBRECHT} \qquad 89K \text{ Subtract contribution of } \Lambda \text{ decay from the inclusive proton yield.} $ $\Gamma(\Lambda/\bar{\Lambda} \text{anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{79}/\Gamma_{\text{WALUE}} \qquad \text{EVTS} \qquad DOCUMENT ID \qquad \text{TECN} \qquad COMMENT \\ \hline 0.040 \pm 0.005 \text{ OUR AVERAGE}$	VALUE CL% EVTS DOCUMENT ID TECN COMMENT (4.5) • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of ρ and $\bar{\rho}$. Using assumed yields below cut, $B(B \rightarrow \rho + X) = 0.03$ not including protons from Λ decays. $\Gamma(\rho/\bar{\rho}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{78}/\Gamma_{\text{WALUE}} \qquad \qquad \Gamma_{79}/\Gamma_{\text{WALUE}} $	VALUE CL% EVTS DOCUMENT ID TECN COMMENT CO.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.0088 90 12 ALBRECHT 89K ARG $e^+e^- \rightarrow T(45)$ F($\Lambda \overline{\Lambda}$ anything)/ $\Gamma(\Lambda / \overline{\Lambda}$ anything) VALUE CL% DOCUMENT ID TECN COMMENT < 0.013 90 117 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ 117 CRAWFORD 92 value is not independent of their $\Gamma(\Lambda \overline{\Lambda}$ anything)/ Γ_{total} value. F(e^+e^-s)/ Γ_{total} Test for $\Delta B = 1$ weak neutral current. VALUE CL% DOCUMENT ID TECN COMMENT < 0.013 Value. F(e^+e^-s)/ Γ_{total} Test for $\Delta B = 1$ weak neutral current. VALUE CL% DOCUMENT ID TECN COMMENT < 0.013 Value. F(e^+e^-s)/ e^-s) 90 GLENN 98 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.015 90 BEBEK 81 CLEO $e^+e^- \rightarrow T(45)$
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of ρ and $\bar{\rho}$. Using assumed yields below cut, $B(B \rightarrow \rho + X) = 0.03$ not including protons from Λ decays. $\Gamma(\rho/\bar{\rho}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{78}/\Gamma$ VALUE	VALUE CL% EVTS DOCUMENT ID TECN COMMENT CO.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • • 0.0088 90 12 ALBRECHT 89κ ARG $e^+e^- \rightarrow T(45)$ F(ΛΛαηγthing)/Γ(Λ/Λαηγthing) Γ(Λ/Λαηγthing) Γ(Λ/Λαηγthing) Γ(Λ/Λαηγthing) Γ(Λ/Λαηγthing) Γ(ΛΛαηγthing) Γ(ΛΛαηγthing) Γ(ΛΛαηγthing) Γ(ΛΛαηγthing) Γ(ΛΛαηγthing) Γ(ΛΛαηγthing) Γ(ΛΛαηγthing) Γ(Ληλαηγthing) Γ(Ληλαηγτhing) Γ(Ληλαηγτh
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. $\Gamma(p/\bar{p}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{78}/\Gamma_{\text{WALUE}} \qquad \qquad \Gamma_{79}/\Gamma_{\text{WALUE}} \qquad \qquad \Gamma_{79}$	VALUE CL% EVTS DOCUMENT ID TECN COMMENT (AS) = • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. $\Gamma(p/\bar{p}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{78}/\Gamma_{\text{WALUE}} \qquad \qquad \Gamma_{79}/\Gamma_{\text{WALUE}} \qquad \qquad \Gamma_{79}$	VALUE CL% EVTS DOCUMENT ID TECN COMMENT CO.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • • 0.0088 90 12 ALBRECHT 89κ ARG $e^+e^- \rightarrow T(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})$ $\Gamma(\Lambda / \overline{\Lambda} an$
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. $\Gamma(p/\bar{p}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{78}/\Gamma_{\text{WALUE}} \qquad \qquad \Gamma_{79}/\Gamma_{\text{WALUE}} \qquad \qquad \Gamma_{79}$	VALUE CL% EVTS DOCUMENT ID TECN COMMENT CO.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of ρ and $\bar{\rho}$. Using assumed yields below cut, $B(B \rightarrow \rho + X) = 0.03$ not including protons from Λ decays. $ \Gamma(\rho/\bar{\rho}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} $	VALUE CL% EVTS DOCUMENT ID TECN COMMENT CO.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.0088 90 12 ALBRECHT 89K ARG $e^+e^- \rightarrow T(45)$ \[\begin{align*} align
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89x include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of p and \overline{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. $\Gamma(p/\overline{p}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{78}/\Gamma$ VALUE EVTS DOCUMENT ID TECN COMMENT 0.055 \pm 0.005 \pm 0.006 \pm 0.005 \pm 0.007 ALBRECHT 89k ARG $e^+e^- \rightarrow \Upsilon(45)$ 0.059 ALBRECHT 89k subtract contribution of Λ decay from the inclusive proton yield. $\Gamma(A/\overline{A} \text{anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{79}/\Gamma$ $VALUE EVTS DOCUMENT ID TECN COMMENT $	VALUE CL% EVTS DOCUMENT ID TECN COMMENT CO.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.0088 90 12 ALBRECHT 89K ARG $e^+e^- \rightarrow T(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda/\overline{\Lambda} \text{anything})$ $VALUE$ CL% DOCUMENT ID TECN COMMENT (O.13) $= 0.013$ 90 117 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ $= 0.13$ 117 CRAWFORD 92 value is not independent of their $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma_{\text{total}}$ value. $\Gamma(e^+e^-s)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. $VALUE$ CL% DOCUMENT ID TECN COMMENT (O.5.7 × 10 ⁻⁵ 90 GLENN 98 CLEO $e^+e^- \rightarrow T(45)$ $= 0.05$ 90 BEBEK 81 CLEO $e^+e^- \rightarrow T(45)$ $= 0.05$ 90 BEBEK 81 CLEO $e^+e^- \rightarrow T(45)$ $= 0.05$ 90 GLENN 98 CLEO $e^+e^- \rightarrow T(45)$
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. F(p/p(direct) anything)/Ftotal F78/F VALUE EVTS DOCUMENT ID CRAWFORD 0.055 \pm 0.005 \pm 0.0055 ALBRECHT 931 ARG $e^+e^- \rightarrow \Upsilon(45)$ 0.055 \pm 0.016 1220 109 ALBRECHT 89K ARG $e^+e^- \rightarrow \Upsilon(45)$ 109 ALBRECHT 89K ARG $e^+e^- \rightarrow \Upsilon(45)$ 109 ALBRECHT 89K ARG $e^+e^- \rightarrow \Upsilon(45)$ 109 ALBRECHT 93K ARG $e^+e^- \rightarrow \Upsilon(45)$ 109 ALBRECHT 93K ARG $e^+e^- \rightarrow \Upsilon(45)$ 109 ALBRECHT 100 ACKERSTAFF 100 ACKERS	VALUE CL% EVTS DOCUMENT ID TECN COMMENT CO.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.0088 90 12 ALBRECHT 89K ARG $e^+e^- \rightarrow T(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline$
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow T(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays.	VALUE CL% EVTS DOCUMENT ID TECN COMMENT (45) ••• We do not use the following data for averages, fits, limits, etc. ••• <0.0088 90 12 ALBRECHT 89K ARG $e^+e^- \rightarrow T(45)$ ••• We do not use the following data for averages, fits, limits, etc. ••• <0.0088 90 12 ALBRECHT 89K ARG $e^+e^- \rightarrow T(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})$ Fab./
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. $\Gamma(p/\bar{p}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{78}/\Gamma_{\text{WALUE}} \qquad \qquad \Gamma_{79}/\Gamma_{\text{WALUE}} \qquad \qquad \Gamma_{79}$	VALUE CL% EVTS DOCUMENT ID TECN COMMENT (AS) ••• We do not use the following data for averages, fits, limits, etc. ••• <0.0088 90 12 ALBRECHT 89K ARG $e^+e^- \rightarrow T(45)$ ••• We do not use the following data for averages, fits, limits, etc. ••• <0.0088 90 12 ALBRECHT 89K ARG $e^+e^- \rightarrow T(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})$ Fab./ F
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow T(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays.	VALUE CL% EVTS DOCUMENT ID TECN COMMENT (45) ••• We do not use the following data for averages, fits, limits, etc. ••• <0.0088 90 12 ALBRECHT 89K ARG $e^+e^- \rightarrow T(45)$ ••• We do not use the following data for averages, fits, limits, etc. ••• <0.0088 90 12 ALBRECHT 89K ARG $e^+e^- \rightarrow T(45)$ $\Gamma(\Lambda \overline{\Lambda} \text{anything})/\Gamma(\Lambda / \overline{\Lambda} \text{anything})$ Fab./
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89k include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. $ \Gamma(p/\bar{p}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} $	VALUE CL% EVTS DOCUMENT ID TECN COMMENT CO.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 107 ALBRECHT 89K include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. $\Gamma(p/\bar{p}(\text{direct}) \text{ anything})/\Gamma_{\text{total}} \qquad \Gamma_{78}/\Gamma_{\text{WALUE}} \qquad \text{EVTS} \qquad DOCUMENT ID \qquad \text{TECN} \qquad COMMENT \\ 0.055 \pm 0.005 \pm 0.005 \pm 0.005 \qquad \text{CRAWFORD} \qquad 92 \text{CLEO} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.055 \pm 0.016 \qquad 1220 \qquad 109 \text{ALBRECHT} \qquad 89K \text{ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.055 \pm 0.016 \qquad 1220 \qquad 109 \text{ALBRECHT} \qquad 89K \text{ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.055 \pm 0.016 \qquad 1220 \qquad 109 \text{ALBRECHT} \qquad 89K \text{ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.055 \pm 0.016 \qquad 1220 \qquad 109 \text{ALBRECHT} \qquad 89K \text{ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.055 \pm 0.016 \qquad 1220 \qquad 109 \text{ALBRECHT} \qquad 89K \text{ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.055 \pm 0.016 \qquad 1220 \qquad 109 \text{ALBRECHT} \qquad 89K \text{ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.055 \pm 0.016 \qquad 1220 \qquad 109 \text{ALBRECHT} \qquad 89K \text{ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.055 \pm 0.016 \qquad 1220 \qquad 109 \text{ALBRECHT} \qquad 89K \text{ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.055 \pm 0.016 \qquad 1220 \qquad 109 \text{ALBRECHT} \qquad 89K \text{ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 0.040 \pm 0.005 \text{DUR AVERAGE} \qquad 0.042 \pm 0.005 \text{DUR AVERAGE} \qquad 0.042 \pm 0.005 \pm 0.006 \qquad 943 \qquad \text{ALBRECHT} \qquad 89K \text{ARG} \qquad e^+e^- \rightarrow \Upsilon(45) \\ \bullet \bullet \bullet \text{We do not use the following data for averages, fits, limits, etc.} \bullet \bullet \\ 0.022 \pm 0.003 \pm 0.0022 \qquad 110 \text{ACKERSTAFF} 97N \text{OPAL} \qquad e^+e^- \rightarrow Z \\ > 0.011 \qquad 111 \text{ALAM} \qquad 83B \text{CLEO} \qquad e^+e^- \rightarrow \Upsilon(45) \\ 110 \text{ACKERSTAFF} 97N \text{assues} B(b \rightarrow B) = 0.868 \pm 0.041, i.e., \text{an admixture of} B^0, B^\pm, \text{and} B_5. \\ 111 \text{ALAM} 83B \text{reported their result as} > 0.022 \pm 0.007 \pm 0.004. \text{Values are for} (B(\Lambda X) + B(\Lambda X))/2. \text{Data are consistent with equal yields of } p \text{ and } \bar{p}. \text{Using assumed} \text{yields below cut,} B(B \rightarrow \Lambda X) = 0.03. \\ \Gamma(A \text{anything})/\Gamma(\overline{\Lambda} \text{anything}) \qquad \Gamma_{ECN} COMMENT \qquad \Gamma_{E$	VALUE CL% EVTS DOCUMENT ID TECN COMMENT CO.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow T(45)$ 107 ALBRECHT 89x include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays.	VALUE C1% EVTS DOCUMENT ID TECN COMMENT C0.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • C0.0088 90 12 ALBRECHT B9K ARG $e^+e^- \rightarrow T(45)$ F86/Γ7 MAINTHING)/Γ(Λ/Āanything) F86/Γ7 MALUE CLK DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • C0.13 90 117 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ 117 CRAWFORD 92 value is not independent of their Γ(ΛĀanything)/Γ _{total} value. $\Gamma(e^+e^-s)/\Gamma_{total}$ Test for $\Delta B = 1$ weak neutral current. MALUE CLK DOCUMENT ID TECN COMMENT CS.7 × 10 ⁻⁵ 90 GLENN 98 CLEO $e^+e^- \rightarrow T(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • C0.05 90 BEBEK 81 CLEO $e^+e^- \rightarrow T(45)$ F88/ $T(\mu^+\mu^-s)/\Gamma_{total}$ Test for $\Delta B = 1$ weak neutral current. MALUE CLK DOCUMENT ID TECN COMMENT CLK CLK DOCUMENT ID TECN COMMENT CLK CLK CLK DOCUMENT ID TECN COMMENT (F88/ F88/ F
>0.021 108 ALAM 83B CLEO $e^+e^- \rightarrow T(45)$ 107 ALBRECHT 89x include direct and nondirect protons. 108 ALAM 83B reported their result as > 0.036 \pm 0.009. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, $B(B \rightarrow p + X) = 0.03$ not including protons from Λ decays. F(p/ \bar{p} (direct) anything)/ \bar{r} NALUE	VALUE CL% EVTS DOCUMENT ID TECN COMMENT (AS) 0.005 90 CRAWFORD 92 CLEO $e^+e^- \rightarrow T(45)$ 0.005 90 12 ALBRECHT 89K ARG 0.005 89 117 CRAWFORD 92 CLEO 0.005 90 GLENN 98 CLEO 0.005 90 GLENN 98 CLEO 0.005 90 BEBEK 81 CLEO 0.005 90 BEBEK 81 CLEO 0.005 90 BEBEK 81 CLEO 0.005 90 GLENN 98 CLEO Repl. by GLENN 98 CLE

B^{\pm}/B^{0} ADMIXTURE, $B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

B±/B⁰ ADMIXTURE REFERENCES

		B-/B	ADMIXTURE REFERENCES	
BARATE	980	EPJ C4 387	R. Barate et al.	(ALEPH Collab.)
BARATE BERGFELD	98	PRL 81 272	R. Barate et al. T. Bergfeld et al.	(ALEPH Collab.) (CLED Collab.)
BIŞHAI	98	PR D57 3847	M. Bishai et al.	(CLEO Collab.)
BONVICINI BROWDER	98	PR D57 6604	G. Bonvicini et al.	(CLEO Collab.) (CLEO Collab.)
CDAN	98 98	PRL 81 1786 PRL 80 1150	T.E. Browder et al. T.E. Coan et al.	(CLEO Collab.)
GLENN	98	PRL 80 2289	S Glenn et ai	(CLEO Collab.)
ACKERSTAFF	97N	ZPHY C74 423	K. Ackerstaff et al.	(OPAL Collab.)
AMMAR BARISH	97	PR D55 13 PRL 79 3599	R. Ammar et al. B. Barish et al.	(CLEO Collab.) (CLEO Collab.)
			D. Buskulic et al.	(ALEPH Collab.)
GIBBONS	97B	PR D56 3783	 L. Gibbons et al. H. Albrecht et al. 	(CLEO Collab.)
ALBRECHT	96D	PL B374 256	H. Albrecht et al. B.C. Barish et al.	(ARGUS Collab.)
GIBAUT	96	PR D53 4734	D. Gibaut et al.	(CLEO Collab.) (CLEO Collab.)
KUBOTA	96	PR D53 6033	Y. Kubota et al.	(CLEO Collab.)
PDG	96	ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014	N.C. N	(6150 6:41)
ALAM	95D	PKL 74 2885 PL B353 554	M.S. Alam <i>et al.</i> H. Albrecht <i>et al.</i>	(CLEO Collab.) (ARGUS Collab.)
BALEST	95B	PR D52 2661	R. Balest et al.	(CLEO Collab.)
BARISH	95	PR D51 1014	B.C. Barish et al.	(CLEO Collab.)
BUSKULIC ALBRECHT	95B	PL B345 103 ZPHY C62 371	D. Buskulic et al. H. Albrecht et al.	(ALEPH Collab.) (ARGU\$ Collab.)
ALBRECHT	94J	ZPHY C61 1	H. Albrecht et al.	(ARGUS Collab.)
PROCARIO	94	PRL 73 1306	M. Procario et al.	(CLEO Collab.) (ARGUS Collab.)
ALBRECHT	93	ZPHY C57 533	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT ALBRECHT	93E	ZPHY C60 11 PL B318 397	H. Albrecht et al. H. Albrecht et al.	(ARGUS Collab.) (ARGUS Collab.)
AL BRECHT	0.31	7PHY C58 191	H. Albrecht et al.	(ARGUS Collab.)
ALEXANDER	93B	PL B319 365	J. Alexander et al.	(CLEO Collab.)
	93	PL B311 307	M. Artuso	(SYRA)
BARTELT ALBRECHT		PRL 71 4111 PL B277 209	J.E. Bartelt et al.	(CLEO Collab.) (ARGUS Collab.)
ALBRECHT	92G	ZPHY C54 1	 H. Albrecht et al. H. Albrecht et al. 	(ARGUS Collab.)
ALBRECHT	920	ZPHY C54 1 ZPHY C56 1	H. Albrecht et al.	(ARGUS Collab.) (ARGUS Collab.)
BORTOLETTO	92	PR D45 21	D. Bortoletto et al.	(CLEO Collab.)
CRAWFORD	92	PR D45 752 PR D45 2212	G. Crawford et al.	(CLEO Collab.) (CLEO Collab.)
HENDERSON LESIAK	92	7PHY C56 33	S. Henderson et al. T. Lesiak et al.	(Crystal Ball Collab.)
ALBRECHT	91C	PL B255 297 ZPHY C52 353 PR D43 651 PRI 66 2436	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	91H	ZPHY C52 353	H. Albrecht et al.	(ARGUS Collab.)
YANAGISAWA	91	PR D43 651 PRL 66 2436	R. Fulton <i>et al.</i> C. Yanagisawa <i>et al.</i>	`(CLEO Collab.) (CUSB II Collab.)
ALBRECHT	90	PL B234 409	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	90H	PL B249 359	H. Albrecht et al.	(ARGUS Collab.)
BORTOLETTD Also	90	PRL 64 2117	 D. Bortoletto et al. D. Bortoletto et al. 	(CLEO Collab.) (CLEO Collab.)
FULTON	90	PR D45 21 PRL 64 16	R. Fulton et al.	(CLEO Collab.)
			W.S. Maschmann et al.	(Crystal Ball Collab.)
PDG	90	ZPHY C46 555 PL B239 ZPHY C42 519 PR D39 799 ZPHY C42 33	J.J. Hernandez et al.	(IFÍC, BOST, CIT+) (ARGUS Collab.)
ALBRECH I	898	ZPHY C42 519 DR D30 700	H. Albrecht et al. N. Isgur et al.	(ARGUS CONAB.) (TNTO, CIT)
WACHS	89	ZPHY C42 33	K. Wachs et al.	(Crystal Ball Collab.)
ALBRECHT	88E	PL B210 263 PL B210 258	H. Albrecht et al.	(ARGUS Collab.) (ARGUS Collab.)
ALBRECHT	88H	PL B210 258	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT ALBRECHT KOERNER ALAM ALAM	87	ZPHY C38 511 PRI 59 22	J.G. Korner, G.A. Schuler M.S. Alam et al.	(MANZ, DESY) (CLEO Collab.)
ALAM	87B	PRL 59 22 PRL 58 1814 PL B199 451 PL B187 425	M.S. Alam et al.	(CLEO Collab.) (ARGUS Collab.)
ALBRECHT	87D	PL B199 451	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT BEAN	87H 87	PL B187 425 PR D35 3533	H. Albrecht et al. A. Bean et al.	(ARGUS Collab.) (CLEO Collab.)
BEHRENDS	87	PRL 59 407	S. Behrends et al.	(CLEO Collab.)
BORTOLETTO	87	PRL 59 407 PR D35 19	D. Bortoletto et al.	(CLEO Collab.)
ALAM	86	PR D34 3279	M.S. Alam et al.	(CLEO Collab.)
BALTRUSAIT	B6E	PRL 56 2140	R.M. Baltrusaitis et al. D. Bortoletto et al.	(Mark III Collab.)
BALTRUSAIT BORTOLETTO HAAS	86	PRL 56 2781	J. Haas et al.	(CLEO Collab.) (CLEO Collab.)
			H. Albrecht et al.	(ARGUS Collab.)
CSORNA	85	PRL 54 1894	S.E. Csorna et al.	(CLEO Collab.)
CSORNA HAAS AVERY CHEN LEVMAN ALAM GREEN	65 84	PRI 53 1309	J. Haas et al. P. Avery et al	(CLEO Collab.) (CLEO Collab.)
CHEN	84	PRL 52 1084	P. Avery et al. A. Chen et al.	(CLEO Collab.)
LEVMAN	64	PL 141B 271	G.M. Levman <i>et al</i> .	(CUSB Collab.)
ALAM	83B	PRL 51 1143	M.S. Alam et al.	(CLEO Collab.)
		PRL 51 347 PL 130B 444	J. Green <i>et al.</i> C. Klopfenstein <i>et al.</i>	(CLEO Collab.) (CUSB Collab.)
KLOPFEN ALTARELLI	82	NP B208 365	G. Altarelli et al.	(ROMA, INFN, FRAS)
BRODY	82	PRL 48 1070	A.D. Brody et al. G. Giannini et al.	(CLEO Collab.)
	82	NP B206 1	G. Giannini <i>et al.</i> C. Bebek <i>et al</i> .	(CUSB Collab.)
	81 81	PRL 46 84 PRL 46 88	C. Bebek er al. K. Chadwick et al.	(CLEO Collab.) (CLEO Collab.)
	80	PRL 44 10	G.S. Abrams et al.	(SLAC, LBL)

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

B±/B0/B0/b-baryon ADMIXTURE MEAN LIFE

Each measurement of the B mean life is an average over an admixture of various bottom mesons and baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different B mean life.

"OUR EVALUATION" is an average of the data listed below performed by the LEP B Lifetime Working Group as described in our review "Production and Decay of b-flavored Hadrons" in the B^\pm Section of these Listings. The averaging procedure takes into account correlations between the measurements and asymmetric lifetime errors, but ignores the small differences due to different techniques.

VALUE (10 ⁻¹² s) EVTS	DOCUMENT ID	TECN_	COMMENT	
1.564 ± 0.014 OUR EVALUATION	N			
$1.533 \pm 0.015 ^{+0.035}_{-0.031}$	1 ABE	98B CDF	$p\overline{p}$ at 1.8 TeV	
1.549±0.009±0.015	² ACCIARRI	98 L3	$e^+e^- \rightarrow Z$	
$1.611 \pm 0.010 \pm 0.027$	³ ACKERSTAFF	97F OPAL	$e^+e^- \rightarrow Z$	
$1.582 \pm 0.011 \pm 0.027$	3 ABREU	96E DLPH	$e^+e^- \rightarrow Z$	
1.533 ± 0.013 ± 0.022 19.8k	⁴ BUSKULIC	96F ALEP	$e^+e^- \rightarrow Z$	

$1.564 \pm 0.030 \pm 0.036$		⁵ ABE,K	95B SLD	$e^+e^- \rightarrow Z$
$1.542 \pm 0.021 \pm 0.045$		⁶ ABREU	94L DLPH	$e^+e^- \rightarrow Z$
$1.523 \pm 0.034 \pm 0.038$	5372	⁷ ACTON	93L OPAL	$e^+e^- \rightarrow Z$
$1.511 \pm 0.022 \pm 0.078$		⁸ BUSKULIC	930 ALEP	$e^+e^- \rightarrow Z$
• • • We do not use	the follo	wing data for avera	ges, fits, lim	ts, etc. • • •
$1.575 \pm 0.010 \pm 0.026$		⁹ ABREU	96E DLPH	$e^+e^- \rightarrow Z$
$1.50 \begin{array}{l} +0.24 \\ -0.21 \end{array} \pm 0.03$		¹⁰ ABREU	94P DLPH	$e^+e^- \rightarrow Z$
$1.46 \pm 0.06 \pm 0.06$	5344	¹¹ ABE	93J CDF	Repl. by ABE 98B
$1.23 \begin{array}{c} +0.14 \\ -0.13 \end{array} \pm 0.15$	188	¹² ABREU	930 DLPH	Sup. by ABREU 94L
$1.49 \pm 0.11 \pm 0.12$	253	¹³ ABREU	93G DLPH	Sup. by ABREU 94L
$1.51 \begin{array}{c} +0.16 \\ -0.14 \end{array} \pm 0.11$	130	¹⁴ ACTON	93C OPAL	$e^+e^- \rightarrow Z$
$1.535 \pm 0.035 \pm 0.028$	7357	⁷ ADRIANI	93K L3	Repl. by ACCIARRI 98
1.28 ± 0.10		15 ABREU	92 DLPH	Sup. by ABREU 94L
$1.37 \pm 0.07 \pm 0.06$	1354	16 ACTON	92 OPAL	Sup. by ACTON 93L
$1.49 \pm 0.03 \pm 0.06$		¹⁷ BUSKULIC	92F ALEP	Sup. by BUSKULIC 96F
$1.35 \begin{array}{c} +0.19 \\ -0.17 \end{array} \pm 0.05$		¹⁸ BUSKULIC	92G ALEP	$e^+e^- \rightarrow Z$
$1.32 \pm 0.08 \pm 0.09$	1386	¹⁹ ADEVA	91H L3	Sup. by ADRIANI 93K
$1.32 \begin{array}{c} +0.31 \\ -0.25 \end{array} \pm 0.15$	37	²⁰ ALEXANDER	91G OPAL	$e^+e^- \rightarrow Z$
$1.29 \pm 0.06 \pm 0.10$	2973	21 DECAMP	91c ALEP	Sup. by BUSKULIC 92F
$1.36 \begin{array}{l} +0.25 \\ -0.23 \end{array}$		²² HAGEMANN	90 JADE	Eee = 35 GeV
1.13 ±0.15		²³ LYONS	90 RVUE	
$1.35 \pm 0.10 \pm 0.24$		BRAUNSCH	89B TASS	Ecm = 35 GeV
$0.98 \pm 0.12 \pm 0.13$		ONG	89 MRK2	<i>E</i> ^{ee} _{CM} = 29 GeV
$1.17 \begin{array}{c} +0.27 \\ -0.22 \end{array} \begin{array}{c} +0.17 \\ -0.16 \end{array}$		KLEM	88 DLCO	Ecm = 29 GeV
$1.29 \pm 0.20 \pm 0.21$		²⁴ ASH	87 MAC	Eee ≥9 GeV
$1.02 \begin{array}{l} +0.42 \\ -0.39 \end{array}$	301	²⁵ BROM	87 HRS	Eee = 29 GeV

¹ Measured using inclusive $J/\psi(1S) \rightarrow \mu^{+}\mu^{-}$ vertex.

CHARGED 6-HADRON ADMIXTURE MEAN LIFE

VALUE (10 ⁻¹² s)	DOCUMENT ID		TECN	COMMENT
1.72±0.08±0.06	²⁶ ADAM	95	DLPH	$e^+e^- \rightarrow Z$
²⁶ ADAM 95 data analyzed u	using vertex-charge te	hniq	ue to tag	<i>b</i> -hadron charge.

NEUTRAL b-HADRON ADMIXTURE MEAN LIFE

VALUE (10 ⁻¹² s)	DOCUMENT IE		TECN	COMMENT
1.58±0.11±0.09	27 ADAM	95	DLPH	$e^+e^- \rightarrow Z$
27 ADAM 95 data analyzed usi	ng vertex-charge to	chniq	ue to tag	b-hadron charge.

² ACCIARRI 98 uses inclusively reconstructed secondary vertex and lepton impact parameter.

3 ACKERSTAFF 97F uses inclusively reconstructed secondary vertices.

⁴ BUSKULIC 96F analyzed using 3D impact parameter. ⁵ ABE,K 95B uses an inclusive topological technique.

 $^{^6}$ ABREU 94L uses charged particle impact parameters. Their result from inclusively reconstructed secondary vertices is superseded by ABREU 96E. 7 ACTON 93L and ADRIANI 93K analyzed using lepton (e and μ) impact parameter at Z.

⁸ BUSKULIC 930 analyzed using dipole method.

⁹ Combines ABREU 96E secondary vertex result with ABREU 94L impact parameter result.

 $^{^{10}}$ From proper time distribution of $b o J/\psi(1S)$ anything.

 $^{^{11}}$ ABE 93J analyzed using $J/\psi(1S)
ightarrow \mu \mu$ vertices.

 $^{^{12}}$ ABREU 93D data analyzed using $D/D^*\ell$ anything event vertices.

 $^{^{13}}$ ABREU 93G data analyzed using charged and neutral vertices. 14 ACTON 93C analysed using $D/D^*\ell$ anything event vertices.

¹⁵ ABREU 92 is combined result of muon and hadron impact parameter analyses. Hadron tracks gave $(12.7 \pm 0.4 \pm 1.2) \times 10^{-13}$ s for an admixture of B species weighted by production fraction and mean charge multiplicity, while muon tracks gave $(13.0\pm1.0\pm0.8)\times$ $10^{-13}\,\mathrm{s}$ for an admixture weighted by production fraction and semileptonic branching

¹⁶ ACTON 92 is combined result of muon and electron impact parameter analyses

 $^{^{17}\,\}mathrm{BUSKULIC}$ 92F uses the lepton impact parameter distribution for data from the 1991

¹⁸ BUSKULIC 92G use $J/\psi(15)$ tags to measure the average b lifetime. This is comparable to other methods only if the $J/\psi(15)$ branching fractions of the different b-flavored hadrons are in the same ratio.

19 Using $Z \to e^+ X$ or $\mu^+ X$, ADEVA 91H determined the average lifetime for an admixture of B hadrons from the impact parameter distribution of the lepton.

20 Using $Z \to J/\psi(15) X$, $J/\psi(15) \to \ell^+ \ell^-$, ALEXANDER 91G determined the average lifetime for an admixture of B hadrons from the decay point of the $J/\psi(15)$.

²¹ Using $Z \to e X$ or μX , DECAMP 91C determines the average lifetime for an admixture of B hadrons from the signed impact parameter distribution of the lepton.

of B hadrons from the signed impact parameter distribution of the repeat.

22 HAGEMANN 90 uses electrons and muons in an impact parameter analysis.

23 LYONS 90 combine the results of the B lifetime measuresments of ONG 89, BRAUNSCHWEIG 898, KLEM 88, and ASH 87, and JADE data by private communication.

They use statistical techniques which include variation of the error with the mean life, and possible correlations between the systematic errors. This result is not independent of the measured results used in our average.

of the measured results used in our arrange. 24 We have combined an overall scale error of 15% in quadrature with the systematic error of ± 0.7 to obtain ± 2.1 systematic error.

²⁵ Statistical and systematic errors were combined by BROM 87.

MEAN LIFE RATIO $ au_{ ext{charged }b ext{-hadron}}/ au_{ ext{neutral }b ext{-hadron}}$							
VALUE	DOCUMENT ID TECN COMMENT						
$1.09^{+0.11}_{-0.10}\pm0.08$	²⁸ ADAM 95 DLPH $e^+e^- \rightarrow Z$						
²⁸ ADAM 95 data analyz	ed using vertex-charge technique to tag b-hadron charge.						
	$ \Delta \tau_B /\tau_{BB}$						

 $au_{b,\overline{b}}$ and $|\Delta au_b|$ are the mean life average and difference between b and \overline{b} hadrons.

VALUE	DOCUMENT ID TECN COMMENT
$-0.001 \pm 0.012 \pm 0.008$	²⁹ ABBIENDI 991 OPAL $e^+e^- \rightarrow Z$
²⁹ Data analyzed using both opposite hemisphere.	the jet charge and the charge of secondary vertex in the

B PRODUCTION FRACTIONS AND DECAY MODES

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LEP and at the Tevatron.

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more \emph{D} 's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical when only one of the specified particles is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross sections.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include

Scale factor/ Mode Fraction (Γ_j/Γ)

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the LEP B Oscillation Working Group as described in the note "Production and Decay of b-Flavored Hadrons" in the B^{\pm} Particle Listings. Values assume

$$\begin{array}{ll} B(\overline{b} \to B^+) = B(\overline{b} \to B^0) \\ B(\overline{b} \to B^+) + B(\overline{b} \to B^0) + B(\overline{b} \to B^0) + B(b \to b\text{-baryon}) = 100 \ \%. \end{array}$$

The notation for production fractions varies in the literature (f_d , d_{R^0} , $f(b \to \overline{B}^0)$, Br $(b \to \overline{B}^0)$). We use our own branching fraction notation here, $B(\overline{b} \rightarrow B^{0})$.

Γ_1	B ⁺	(38.9 ± 1.3) %
Γ_2	B^0	(38.9 ± 1.3) %
Γ_3	B_s^0	$(10.7 \pm 1.4)\%$
Γ_4	b-baryon	(11.6 ± 2.0)%
Гс	B _c	_

DECAY MODES

Semileptonic and leptonic modes

	Deliniopeoine an	a ichte	ine megas
Γ_6	u anything		(23.1 ± 1.5) %
Γ_7	$\ell^+ u_\ell$ anything	[a]	(10.73 ± 0.18) % \$=1.1
Г8	$e^+ u_e$ anything		(10.86 ± 0.35) %
Γ_9	$\mu^+ u_{m{\mu}}$ anything		(10.95 ⁺ 0.29) %
Γ_{10}	$D^-\ell^+ u_\ell$ anything	[a]	(2.02 ± 0.29) %
Γ_{11}	$\overline{D}{}^0\ell^+ u_\ell$ anything	[ə]	(6.6 ± 0.6)%
Γ_{12}	$D^{*-}\ell^+\nu_\ell$ anything	[a]	(2.76 ± 0.29) %
Γ_{13}	$\overline{D}_i^0 \ell^+ u_\ell$ anything	[a,b]	seen
Γ ₁₄	$D_j^-\ell^+ u_\ell$ anything	[a,b]	seen
Γ ₁₅	$\overline{D}_2^*(2460)^0 \ell^+ \nu_\ell$ anything		seen
Γ ₁₆	$D_2^*(2460)^-\ell^+\nu_\ell$ anything		seen
Γ_{17}	charmless $\ell \overline{ u}_\ell$	[a]	$(1.7 \pm 0.6) \times 10^{-3}$
Γ ₁₈	$ au^+ u_ au$ anything		(2.6 ± 0.4) %
Γ19	$\overline{c} \rightarrow \ell^- \overline{\nu}_{\ell}$ anything	[a]	(8.3 ± 0.4) %

	Charmed meson a	nd baryon modes
Γ ₂₀	$\overline{\mathcal{D}}{}^0$ anything	(60.5 ± 3.2) %
Γ_{21}	$D^0D_s^{\pm}$ anything	[c] (9.1 + 3.9) %
Γ_{22}	$D^{\mp} \mathcal{D}_{s}^{\pm}$ anything	[c] $(4.0 + 2.3)\%$
Γ_{23}	$\overline{D}{}^0D^0$ anything	[c] $(5.1 + 2.0)\%$
Γ ₂₄	D^0D^\pm anything	[c] $(2.7 + 1.8)\%$
Γ_{25}	$D^{\pm}D^{\mp}$ anything	$[c] < 9 \times 10^{-3} CL = 90\%$
Γ ₂₆	D ⁻ anything	$(23.7 \pm 2.3)\%$
₂₇	D*(2010)+ anything	(17.3 ± 2.0) %
Γ ₂₈	$D_1(2420)^0$ anything	(5.0 ± 1.5)%
Γ ₂₉	$D^*(2010)^{\mp} D_s^{\pm}$ anything	[c] $(3.3 + 1.6)\%$
Γ ₃₀	$D^0 D^* (2010)^{\pm}$ anything	[c] $(3.0 + 1.1 \atop -0.9)\%$
Γ ₃₁	$D^*(2010)^{\pm} D^{\mp}$ anything	[c] $(2.5 + 1.2)\%$
Γ ₃₂	$D^*(2010)^{\pm} D^*(2010)^{\mp}$ anything	[c] $(1.2 \pm 0.4)\%$
Γ ₃₃	$D_2^*(2460)^0$ anything	$(4.7 \pm 2.7)\%$
Γ ₃₄	\overline{D}_s anything	(18 ± 5)%
Γ ₃₅	Λ_c anything	(9.7 ± 2.9) %
Γ ₃₆	₹ / canything	[d] $(117 \pm 4)\%$
_	Charmoniu	
Γ ₃₇	$J/\psi(1S)$ anything	$(1.16 \pm 0.10)\%$
Г ₃₈	$\psi(2S)$ anything	$(4.8 \pm 2.4) \times 10^{-3}$
Г39	$\chi_{c1}(1P)$ anything	(1.8 ± 0.5) %
_	K or K*	
Γ ₄₀	$\overline{s}\gamma$	$(3.1 \pm 1.1) \times 10^{-4}$
Γ ₄₁ Γ ₄₂	K [±] anything K ⁰ anything	(74 ± 6) % (29.0 ± 2.9) %
' 42	Pion n	·
Γ ₄₃	π^{\pm} anything	(397 ±21)%
Γ ₄₄	π^0 anything	[d] (278 ±60)%
	Baryon	modes
Γ ₄₅	p/\overline{p} anything	(13.1 ± 1.1) %
	Other	modes
Γ ₄₆	charged anything	[d] (497 ± 7)%
Γ47	hadron+ hadron-	$(1.7 + 1.0) \times 10^{-5}$
•••		
Γ ₄₈	charmless	$(7 \pm 21) \times 10^{-3}$
	Baryon	modes
Γ_{49}	$\Lambda/\overline{\Lambda}$ anything	$(5.9 \pm 0.6)\%$
Γ ₅₀	b-baryon anything	$(10.2 \pm 2.8)\%$
	$\Delta B = 1$ weak neutral	current (B1) modes
Γ ₅₁	e ⁺ e ⁻ anything	
Γ ₅₂	$\mu^+\mu^-$ anything B1	$< 3.2 \times 10^{-4} \text{ CL} = 90\%$
Γ ₅₃		
_		
	a] An ℓ indicates an e or a μ mode,	
[£	 D_j represents an unresolved mixto wave) states. 	ure of pseudoscalar and tensor D^{**} (P-
[c	•	charge states or particle/antiparticle

- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [d] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE BRANCHING RATIOS

$\Gamma(B_s^0)/[\Gamma(B^+)+\Gamma(B^0)]$)]				Γ ₃ /(Γ ₁ +Γ ₂)
VALUE	DOCUMENT ID		TECN	COMMENT	
0.21 ±0.04 OUR AVERAG					
0.213 ± 0.068	³⁰ AFFOLDER	00E	CDF	p₱ at 1.8	TeV
$0.21 \pm 0.036 ^{+0.038}_{-0.030}$	31 ABE	99P	CDF	p ρ at 1.8	TeV
30 AFFOLDER 00E uses set 31 ABE 99P uses the numb association with the dou					
$\Gamma(b\text{-baryon})/[\Gamma(B^+)+$	$\Gamma(\mathcal{B}^0)$				$\Gamma_4/(\Gamma_1+\Gamma_2)$
VALUE	DOCUMENT ID		TECN.	COMMENT	
0.118±0.042	32 AFFOLDER	00-	CDF	ρ ̄ρ at 1.8	T-1/

 32 AFFOLDER 00E uses several electron-charm final states in $b \rightarrow ce^{-}$ X.

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

(vanything)/I total					F6/1
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT	
0.2308±0.0077±0.0124	33,34 ACCIARRI	96C	L3	$e^+e^- \rightarrow$	Z
33 ACCIARRI 96C assumes re missing-energy spectrum.	elative b semileptonic	decay	rates e	:μ:τ of 1:1:0	.25. Based on
34 Assumes Standard Model	value for $R_{m{B}}$.				
$\Gamma(\ell^+ u_\ell$ anything)/ $\Gamma_{ m total}$					Γ ₇ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.1073 ± 0.0018 OUR AVERA	GE Error includes so	ale fac	ctor of	l.1.	
$0.1083 \pm 0.0010 {}^{+ 0.0028}_{- 0.0024}$	35 ABBIENDI	00E	OPAL	$e^+e^- \rightarrow$	Z
$0.1016 \pm 0.0013 \pm 0.0030$	³⁶ ACCIARRI	00	L3	$e^+e^- \rightarrow$	Z
$0.1085 \pm 0.0012 \pm 0.0047$	37,38 ACCIARRI	96 C	L3	$e^+e^- \rightarrow$	Z
$0.1106 \pm 0.0039 \pm 0.0022$	³⁹ ABREU	95D	DLPH	e+ e- →	Z
0.114 ±0.003 ±0.004	⁴⁰ BUSKULIC	94G	ALEP	$e^+e^- \rightarrow$	Z
0.100 ±0.007 ±0.007	⁴¹ ABREU	93C	DLPH	$e^+e^- \rightarrow$	Z
• We do not use the following the follo	wing data for averag	es. fits	, limits	etc. • • •	
0.105 ±0.006 ±0.005	⁴² AKERS		OPAL		BBIENDI 00E

- 35 ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \to b \overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic
- 36 ACCIARRI 00 result obtained from a combined fit of $R_b = \Gamma(Z \to b \, \overline{b})/\Gamma(Z \to \text{hadrons})$ and $B(b \to \ell \nu X)$, using double-tagging method.
- 38 Assumes Standard Model value for RB.
- 39 ABREU 95D give systematic errors ± 0.0019 (model) and 0.0012 (R_{C}). We combine these in quadrature
- 40 BUSKULIC 945 uses e and μ events. This value is from a global fit to the lepton p and BUSICILIC 946 uses e and μ events. This value is from a global int to the lepton ρ and ρ (relative to jet) spectra which also determines the b and c production fractions, the fragmentation functions, and the forward-backward asymmetries. This branching ratio depends primarily on the ratio of dileptons to single leptons at high ρ_T , but the lower ρ_T portion of the lepton spectrum is included in the global fit to reduce the model dependence. The model dependence is ± 0.0026 and is included in the systematic error.
- 41 ABREU 93c event count includes ee events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain $0.100 \pm 0.007 \pm 0.007$.
- 42 AKERS 93B analysis performed using single and dilepton events.

$\Gamma(e^+\nu_e$ anything)/	Ttotal				Γ_8/Γ
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.1086±0.0035 OUR	WERAGE				
$0.1078 \pm 0.0008 + 0.005 \\ -0.004$	60 16	43 ABBIENDI	00E OPAL	$e^+e^- \rightarrow Z$	
$0.1089 \pm 0.0020 \pm 0.005$	51 4	4,45 ACCIARRI	96C L3	$e^+e^- \rightarrow Z$	
$0.107 \pm 0.015 \pm 0.007$	260	46 ABREU	93c DLPH	$e^+e^- \rightarrow Z$	
$0.138 \pm 0.032 \pm 0.008$	3	⁴⁷ ADEVA	91c L3	$e^+e^- \rightarrow Z$	
• • • We do not use t	the following	g data for averages,	fits, limits, e	tc. • • •	
$0.086 \pm 0.027 \pm 0.008$	3	⁴⁸ ABE	93E VNS	$E_{\text{CM}}^{\text{ee}} = 58 \text{ GeV}$	
$0.109 \begin{array}{l} +0.014 \\ -0.013 \end{array} \pm 0.005$	55 2719	⁴⁹ AKERS	93B OPAL	Repl. by ABBI- ENDI 00E	
$0.111 \pm 0.028 \pm 0.026$	5	BEHREND	900 CELL	$E_{\text{Cm}}^{\text{ee}} = 43 \text{ GeV}$	
$0.150 \pm 0.011 \pm 0.022$	2	BEHREND	90D CELL	$E_{\text{CM}}^{ee} = 35 \text{ GeV}$	
$0.112 \pm 0.009 \pm 0.011$	1	ONG	88 MRK2	$E_{\rm CM}^{\it ee}$ = 29 GeV	
$0.149 \begin{array}{l} +0.022 \\ -0.019 \end{array}$		PAL	86 DLCO	$E_{\mathrm{CM}}^{\mathrm{ee}} =$ 29 GeV	
$0.110 \pm 0.018 \pm 0.010$)	AIHARA	85 TPC	£ee = 29 GeV	
0.111 ±0.034 ±0.040)	ALTHOFF	84J TASS	Eee 34.6 Ge	/
0.146 ±0.028		KOOP	84 DLCO	Repl. by PAL 80	5
$0.116 \pm 0.021 \pm 0.017$	7	NELSON	83 MRK2	<i>Eee</i> = 29 GeV	
43					

- 43 ABBIEND1 00e result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b \bar{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic
- error.

 44 ACCIARRI 96C result obtained by a fit to the single lepton spectrum
- 45 Assumes Standard Model value for R_B.
- ASsumes Standard Model value for R_B.
 ABREU 93c event count includes ee events. Combining ee, μμ, and eμ events, they obtain 0.100 ± 0.007 ± 0.007.
 ADEVA 91c measure the average B(b → eX) branching ratio using single and double tagged b enhanced Z events. Combining e and μ results, they obtain 0.113 ± 0.010 ± 0.006. Constraining the initial number of b quarks by the Standard Model prediction 0.378 ± 3 MeV) for the decay of the Z into bb, the electron result gives 0.112 ± 0.004 ± 0.008. They obtain 0.119 ± 0.003 ± 0.006 when e and μ results are combined. Used to measure the bb width itself, this electron result gives 370 ± 12 ± 24 MeV and combined with the muon result gives 385 ± 7 ± 22 MeV.
 ABF 93F experiment also measures forward-backward asymmetries and fragmentation
- 48 ABE 93E experiment also measures forward-backward asymmetries and fragmentation functions for b and c.
- 49 AKERS 93B analysis performed using single and dilepton events.

$\Gamma(\mu^+\nu_\mu$ anything)/ Γ_{to}	tai				٦/و٦
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.1095 + 0.0029 OUR AVE	RAGE				
$0.1096 \pm 0.0008 ^{+0.0034}_{-0.0027}$		50 ABBIENDI	00E OPAL	$e^+e^- \rightarrow Z$	
$0.1082 \pm 0.0015 \pm 0.0059$	51	, ⁵² ACCIARRI	96C L3	$e^+e^- \rightarrow Z$	
$0.110 \pm 0.012 \pm 0.007$	656	⁵³ ABREU	93C DLPH	$e^+e^- \rightarrow Z$	
$0.113 \pm 0.012 \pm 0.006$		54 ADEVA	91C L3	$e^+e^- \rightarrow 7$	

• • • We do not use the following	data for averages,	fits, limits, e	tc. • • •
$0.122 \pm 0.006 \pm 0.007$	⁵² UENO	96 AMY	e^+e^- at 57.9 GeV
$0.101 \begin{array}{c} +0.010 \\ -0.009 \end{array} \pm 0.0055 4248$	⁵⁵ AKERS		Repl. by ABBI- ENDI 00E
$0.104 \pm 0.023 \pm 0.016$	BEHREND	90D CELL	$E_{cm}^{ee} = 43 \text{ GeV}$
$0.148 \pm 0.010 \pm 0.016$	BEHREND	90D CELL	<i>E</i> cm = 35 GeV
$0.118 \pm 0.012 \pm 0.010$	ONG	88 MRK2	Ecm= 29 GeV
$0.117 \pm 0.016 \pm 0.015$	BARTEL	87 JADE	E_{cm}^{ee} = 34.6 GeV
0.114 ±0.018 ±0.025	BARTEL		Repl. by BARTEL 87
$0.117 \pm 0.028 \pm 0.010$	ALTHOFF	84G TASS	<i>E</i> ^{ee} _{cm} = 34.5 GeV
$0.105 \pm 0.015 \pm 0.013$	ADEVA	838 MRKJ	Ecm = 33-38.5 GeV
$0.155 \begin{array}{l} +0.054 \\ -0.029 \end{array}$	FERNANDEZ	83D MAC	Een = 29 GeV

- ⁵⁰ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b \bar{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic
- error. 51 ACCIARRI 96c result obtained by a fit to the single lepton spectrum.
- 52 Assumes Standard Model value for R_B .

 53 ABREU 93C event count includes $\mu\mu$ events. Combining e.e., $\mu\mu$, and $e\mu$ events, they

35 ABREU 93c event count includes $\mu\mu$ events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain 0.100 ± 0.007 ± 0.007. 54 ADEVA 91c measure the average B($b \rightarrow e X$) branching ratio using single and double tagged b enhanced Z events. Combining e and μ results, they obtain 0.113 ± 0.010 ± 0.006. Constraining the initial number of b quarks by the Standard Model prediction (378 ± 3 MeV) for the decay of the Z into $b\bar{b}$, the muon result gives $0.123 \pm 0.003 \pm 0.006$. They obtain $0.119 \pm 0.003 \pm 0.006$ when e and μ results are combined. Used to measure the $b\bar{b}$ width itself, this muon result gives $394 \pm 9 \pm 22$ MeV and combined with the electron result gives $385 \pm 7 \pm 22$ MeV.

55 AKERS 93B analysis performed using single and dilepton events.

$\Gamma(D^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$				Γ_{10}/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
0.0202±0.0026±0.0013	⁵⁶ AKERS	95Q OPAL	$e^+e^- \rightarrow Z$	

⁵⁶ AKERS 95Q reports $[B(\overline{b} \rightarrow D^- \ell^+ \nu_{\ell} \text{ anything}) \times B(D^+ \rightarrow K^- \pi^+ \pi^+)] = (1.82 \pm 1.82 \pm 1.8$ $0.20 \pm 0.12 \times 10^{-3}$. We divide by our best value B(D⁺ $\rightarrow K^- \pi^+ \pi^+$) = $(9.0 \pm 0.6) \times$ 10-2. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{D}^0 \ell^+ \nu_\ell \text{ anything})/\Gamma_{\text{total}}$ Γ_{11}/Γ DOCUMENT ID TECN COMMENT 57 AKERS 95Q OPAL $e^+e^- \rightarrow Z$ $0.066 \pm 0.006 \pm 0.001$

 57 AKERS 95Q reports [B($\bar{b} \rightarrow \overline{D}{}^0$ $\ell^+\nu_\ell$ anything) \times B($D^0 \rightarrow K^-\pi^+$)] = (2.52 \pm 0.14 \pm 0.17) \times 10 $^{-3}$. We divide by our best value B($D^0 \rightarrow K^-\pi^+$) = (3.83 \pm 0.09) \times 10 $^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D^{\bullet-}\ell^+\nu_{\ell} \text{ anything})/\Gamma_{\text{total}}$ Γ_{12}/Γ DOCUMENT ID TECN COMMENT 95Q OPAL $e^+e^- \rightarrow Z$ $0.0276 \pm 0.0027 \pm 0.0011$ 58 AKERS 58 AKERS 95Q reports $[B(\overline{b}\to~D^*\ell^+\nu_{\ell}X)\times B(D^{*+}\to~D^0\pi^+)\times B(D^0\to~K^-\pi^+)]$ = $((7.53 \pm 0.47 \pm 0.56) \times 10^{-4})$ and uses B(D*+ \rightarrow D⁰ π +) = 0.681 \pm 0.013 and $B(D^0 \to K^-\pi^+) = 0.0401 \pm 0.0014$ to obtain the above result. The first error is the experiments error and the second error is the systematic error from the D^{*+} and D^0 branching ratios.

 $\Gamma(\overline{D}_i^0 \ell^+ \nu_\ell \text{ anything})/\Gamma_{\text{total}}$ Γ_{13}/Γ D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states. VALUE DOCUMENT ID TECN COMMENT 59 AKERS 950 OPAL $e^+e^- \rightarrow Z$

⁵⁹ AKERS 95Q quotes the product branching ratio B($\bar{b} \to \bar{D}_i^0 \ell^+ \nu_\ell X$) B($\bar{D}_i^0 \to D^{*+} \pi^-$) $= ((6.1 \pm 1.3 \pm 1.3) \times 10^{-3}).$

$\Gamma(D_i^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_{14}/Γ D_i represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states. DOCUMENT ID TECN COMMENT

60 AKERS 95Q OPAL $e^+e^- \rightarrow Z$ ⁶⁰ AKERS 95Q quotes the product branching ratio B($\bar{b} \to D_i^- \ell^+ \nu_\ell$ anything) B($D_i^- \to$

 $D^0\pi^-$) = ((7.0 ± 1.9 $^{+1.2}_{-1.3}$) × 10 $^{-3}$).

 $\Gamma(\overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything}) / \Gamma_{\text{total}}$ Γ_{15}/Γ DOCUMENT ID TECN COMMENT VALUE 61 AKERS 95Q OPAL $e^+e^- \rightarrow Z$

⁶¹ AKERS 95Q quotes the product branching ratio B($\bar{b} \to \bar{D}_2^*(2460)^0 \ell^+ \nu_\ell$ anything) $B(D_2^*(2460)^0 \rightarrow D^+\pi^-) = (1.6 \pm 0.7 \pm 0.3) \times 10^{-3}.$

 $\Gamma(D_2^*(2460)^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$ Γ_{16}/Γ DOCUMENT ID VALUE TECN COMMENT 62 AKERS 95Q OPAL $e^+e^- \rightarrow Z$

⁶² AKERS 95Q quotes the product branching ratio B($\bar{b} \rightarrow D_2^*(2460) \ell^+ \nu_{\ell}$ anything) $B(D_2^*(2460)^+ \rightarrow D^0\pi^-) = 4.2 \pm 1.3^{+0.7}_{-1.2}$

Heavy Flavour Steering G tions between the measure				
ALUE	DOCUMENT ID	TECN	COMMENT	
00167±0.00055 OUR EVALU 0017 ±0.0005 OUR AVERA				
$0157 \pm 0.00035 \pm 0.00055$	63 ABREU	00p DLPH	$e^+e^- \rightarrow Z$	
0173±0.00055±0.00055	64 BARATE	99G ALEP		
033 ±0.0010 ±0.0017 ABREU 00D result obtained	from a fit to the nu	98K L3	$e^+e^- \rightarrow Z$	rhed and
depleted samples and their l $ au_{m b}$ $= 1.564 \pm 0.014$ ps. Uses lifetime tagged $bar b$ sam	epton spectra, and in	assuming $ V_c angle$	$ a = 0.0384 \pm 0.0$	0033 and
ACCIARRI 98K assumes R _b	= 0.2174 ± 0.0009	at Z decay.		
$(au^+ u_ au$ anything $)/\Gamma_{ m total}$				Γ ₁₈ /Γ
±0.4 OUR AVERAGE	DOCUMENT ID	TECN	COMMENT	
	66,67 ACCIARRI	96c L3	$e^+e^- \rightarrow Z$	
$5\pm0.30\pm0.37$ 405 ±0.7 ±0.8 1032	⁶⁸ BUSKULIC ⁶⁹ ACCIARRI	95 ALEP 94c L3	$e^+e^- \rightarrow Z$ $e^+e^- \rightarrow Z$	
$\pm 0.7 \pm 0.8$ 1032 • We do not use the follow				
$8 \pm 0.76 \pm 0.62$	BUSKULIC	93B ALEP	Repl. by BUSKL	JLIC 95
ACCIARRI 96C result obtain	ed from missing end	ergy spectrum	1.	
⁷⁷ Assumes Standard Model va ⁸⁸ BUSKULIC 95 uses missing	energy technique.			
⁹ This is a direct result using	tagged ob events at	t the $oldsymbol{Z}$, but $oldsymbol{s}$	pecies are not sep	arated.
$\overline{b} \rightarrow \overline{c} \rightarrow \ell^- \overline{\nu}_\ell$ anythin				Γ19/Γ
LUE 183 ±0.004 OUR AVERAGE	<u>DOCUMENT ID</u>	TECN	COMMENT	
$0840 \pm 0.0016 + 0.0039 \\ -0.0036$	- ⁷⁰ ABBIENDI	00E OPAL	$e^+e^- \rightarrow Z$	
- 0.0036 0770 ± 0.0097 ± 0.0046	71 ABREU	95D DLPH	$e^+e^- \rightarrow Z$	
82 ±0.003 ±0.012	72 BUSKULIC		$e^+e^- \rightarrow Z$	
 We do not use the follow 77 ±0.004 ±0.007 	ing data for average 73 AKERS		etc. • • • Repl. by ABBIE	NEU OOF
ABBIENDI 00E result is det	ermined by compari	ing the distrib	oution of several k	tinematic
variables of leptonic events network techniques. The fireror. ABREU 95D give systematithese in quadrature. This readata. 2 abata. $(\overline{b} \rightarrow \ell^+ \nu_{\ell} any thing)/\Gamma_{tot}$	st error is statistic; c errors ± 0.0033 (result is from the sa μ events. This va	$Z \rightarrow bb$ sathe second emodel) and 0 ime global fit	imple using artificing in the total system $0.0032 (R_C)$. We as their $\Gamma(\overline{b} \rightarrow 0.0032)$	combine chu ₍ X)
network, techniques. The fireror, ABREU 95D give systematives in quadrature. This rotata. PBUSKULIC 94G uses e and $\Gamma(\overline{b} \rightarrow \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{to}}$	st error is statistic; c errors ± 0.0033 () esult is from the sa μ events. This va tal data.	$Z \rightarrow bb$ sa the second endodel) and Come global fit lue is from the	mple using artificition is the total sylonomy. We as their $\Gamma(\overline{b} \rightarrow b)$ he same global fit	ostematic combine $\ell^+ \nu_\ell X$
network techniques. The firerror. ABREU 95D give systemati these in quadrature. This rodata. BUSKULIC 94G uses e and $\Gamma(\bar{b} \to \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{to}}$ AKERS 93B analysis perforr	st error is statistic; c errors ± 0.0033 () esult is from the sa μ events. This va tal data.	$Z \rightarrow bb$ sa the second endodel) and Come global fit lue is from the	mple using artificition is the total sylonomy. We as their $\Gamma(\overline{b} \rightarrow b)$ he same global fit	ostematic combine $\ell^+ \nu_\ell X$
network techniques. The firerror. ABREU 95D give systemati these in quadrature. This ridata. BUSKULIC 94G uses e and $\Gamma(\bar{b} \to \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{to}}$ AKERS 93B analysis perforn \overline{D}^0 anything) / Γ_{total} $U \in \mathcal{U}$	st error is statistic; c errors ±0.0033 (i esult is from the sa \$\mu\$ events. This va tal data. ned using single and \$\mu\$ DOCUMENT 10	Z → bb sa the second el model) and C ame global fit lue is from tl dilepton eve	mple using artificirror is the total sy $0.0032~(R_C)$. We as their $\Gamma(\overline{b} \rightarrow b)$ he same global fit ints.	combine $\ell^+ \nu_\ell \times$) as their
network techniques. The fireror. 1 ABREU 95D give systematisthese in quadrature. This redata. 2 BUSKULIC 94G uses e and $\Gamma(\overline{b} \rightarrow \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{to}}$ 3 AKERS 93B analysis perform $(\overline{D}^0 \text{ anything})/\Gamma_{\text{total}}$ LUE 605 \pm 0.029 \pm 0.014	st error is statistic; c errors ± 0.0033 (i esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT 10}{74}$ $\frac{DOCUMENT 10}{74}$	$Z \rightarrow bb$ sa the second ei model) and 0 ime global fit lue is from the dilepton eve $\frac{TECN}{96Y \text{ ALEP}}$ of or $B(D^0 - (3.83 \pm 0.09))$	mple using artificity of the total systems of the	esternatic combine $\ell^+\nu_\ell \times$): as their Γ_{20}/Γ
network, techniques. The fireror. ABREU 95D give systemation these in quadrature. This redata. BUSKULIC 94G uses e and $f(\bar{b} \rightarrow \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ AKERS 93B analysis perform the properties of the propertie	st error is statistic; c errors ± 0.0033 (i esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT 10}{74}$ $\frac{DOCUMENT 10}{74}$	$Z \rightarrow bb$ sa the second ei model) and 0 ime global fit lue is from the dilepton eve $\frac{TECN}{96Y \text{ ALEP}}$ of or $B(D^0 - (3.83 \pm 0.09))$	mple using artificity of the total systems of the	combine $\ell^+\nu_\ell \times$): as their Γ_{20}/Γ 383. We st error is our best
network, techniques. The fire refror. ABREU 95D give systemation these in quadrature. This redata. BUSKULIC 94G uses e and $f(\overline{b} \rightarrow \ell^+\nu_\ell \text{anything})/\Gamma_{\text{total}}$ AKERS 93B analysis perform the properties of the properties of the properties of the rescale to our best value e (and the properties of the pro	st error is statistic; c errors ± 0.0033 (i esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT 10}{74}$ $\frac{DOCUMENT 10}{74}$	$Z \rightarrow bb$ sa the second elemodel) and Came global fit lue is from the dilepton eve $\frac{TECN}{96Y ALEP}$ is for B($D^0 = (3.83 \pm 0.09)$ the systemati	mple using artificity of the total sy $0.0032~(R_C)$. We as their $\Gamma(\overline{b}\to 0.0032)$ he same global fithints. $\frac{COMMENT}{e^+e^-\to Z} \to K^-\pi^+) = 0.0$ $\times 10^{-2}$. Our first cerror from using	combine $\ell^+\nu_\ell \times$): as their Γ_{20}/Γ
network, techniques. The fireror. ABREU 95D give systemati these in quadrature. This rotata. BUSKULIC 94G uses e and $\Gamma(\overline{b} \to \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{to}}$. AKERS 93B analysis perform \overline{D}^0 anything) / Γ_{total} . UE 05±0.029±0.014 BUSKULIC 96Y reports 0.6 rescale to our best value R (their experiment's error and value. R R R anything) / Γ_{total} . R	st error is statistic; c errors ± 0.0033 (i esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT\ iO}{74\ BUSKULLO}$ $05\pm0.024\pm0.016$ $00\rightarrow K^{-}\pi^{+})=$ our second error is	$Z \rightarrow bb$ sa the second el model) and C ime global fit lue is from tl idlepton eve	mple using artificity of the total sy $0.0032~(R_C)$. We as their $\Gamma(\overline{b}\to 0.0032)$ he same global fithints. $\frac{COMMENT}{e^+e^-\to Z} \to K^-\pi^+) = 0.0$ $\times 10^{-2}$. Our first cerror from using	combine $\ell^+\nu_\ell \times$): as their Γ_{20}/Γ 383. We st error is our best
network techniques. The fire refror. ABREU 95D give systematishese in quadrature. This redata. BUSKULIC 94G uses e and $\Gamma(\bar{b} - \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ $\nu \in \rho$ BUSKULIC 95G uses e and ρ AKERS 93B analysis perform ρ BUSKULIC 96V reports 0.6 rescale to our best value 80 their experiment's error and value. D0 ρ ρ ρ ρ ρ ρ ρ ρ	st error is statistic; c errors ± 0.0033 (i) esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT\ IO}{74\ BUSKULLO}$ $05\pm 0.024\pm 0.016$ $D^0\to K^-\pi^+)=$ our second error is $\frac{DOCUMENT\ IO}{75\ BARATE}$	$Z \rightarrow bb$ sa the second elemodel) and Come global fit lue is from the dilepton even $\frac{TECN}{96Y}$ ALEP (3.83 ± 0.09) the systemati	mple using artificities of the total systems of the total systems of the total systems of the same global fit onts. $\frac{COMMENT}{e^+e^- \to Z} \to K^-\pi^+) = 0.0$) \times 10 ⁻² . Our first cerror from using $\frac{COMMENT}{e^+e^- \to Z} \to K^-\pi^+ \to Z$	restematic combine $\ell^+ \nu_\ell \times$): as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ
network, techniques. The firerror. ABREU 95D give systemation these in quadrature. This redata. BUSKULIC 94G uses e and $\Gamma(\bar{b} \rightarrow \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ BUSKULIC 94G uses e and $\Gamma(\bar{b} \rightarrow \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ Buskulic 96V reports 0.66 rescale to our best value Best to use their experiment's error and value. Buskulic 96V reports 0.66 rescale to our best value	st error is statistic; c errors ± 0.0033 (i) esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT\ IO}{74\ BUSKULLO}$ $05\pm 0.024\pm 0.016$ $D^0\to K^-\pi^+)=$ our second error is $\frac{DOCUMENT\ IO}{75\ BARATE}$	Z → bb sa the second el model) and C ime global fit lue is from tl dilepton eve TECN. 96Y ALEP 6 for B(D ⁰ — (3.83 ± 0.09) the systemati TECN. 98Q ALEP due to the ch	mple using artificity artificity of the total sy 0.0032 (R_C). We as their $\Gamma(\overline{b} \rightarrow he \text{ same global fit})$ ints. $\frac{COMMENT}{e^+e^- \rightarrow Z} \rightarrow K^-\pi^+) = 0.0$) $\times 10^{-2}$. Our first cerror from using $\frac{COMMENT}{e^+e^- \rightarrow Z}$ carm branching rat	restematic combine $\ell^+ \nu_\ell \times$): as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ
network techniques. The fire refror. ABREU 95D give systemati these in quadrature. This r data. BUSKULIC 94G uses e and $\Gamma(\bar{b} - \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ $\nu \in D^0$ BUSKULIC 95G uses e and $\nu \in D^0$ AKERS 93B analysis perform $\nu \in D^0$ BUSKULIC 96V reports 0.6 rescale to our best value 80 their experiment's error and value. D0 D_s^{\pm} anything)/ Γ_{total} $\nu \in D^0$ p_s^{\pm} anything)/ Γ_{total} $\nu \in D^0$ p_s^{\pm} anything)/ Γ_{total} $\nu \in D^0$ The systematic error include D_s^{\pm} D_s^{\pm} anything)/ Γ_{total} $\nu \in D^0$	st error is statistic; c errors ± 0.0033 (i esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT IO}{74 \text{ BUSKULIC}}$ $05 \pm 0.024 \pm 0.016$ $D^0 \rightarrow K^-\pi^+) = \text{our second error is}$ $\frac{DOCUMENT ID}{75 \text{ BARATE}}$ es the uncertainties	Z — bb sa the second el model) and C ime global fit lue is from tl i dilepton eve	mple using artificity artificity of the total sy 0.0032 (R_C). We as their $\Gamma(\overline{b} \rightarrow he \text{ same global fit})$ ints. $\frac{COMMENT}{e^+e^- \rightarrow Z} \rightarrow K^-\pi^+) = 0.0$) $\times 10^{-2}$. Our first cerror from using $\frac{COMMENT}{e^+e^- \rightarrow Z}$ carm branching rat	combine $\ell^+\nu_\ell \times$): as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ itios.
network techniques. The firefree rior. ABREU 95D give systemati these in quadrature. This ridata. BUSKULIC 94G uses e and $\Gamma(\bar{b} \rightarrow \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ ν_E 05 ± 0.029 ± 0.014 BUSKULIC 96Y reports 0.6 rescale to our best value B(their experiment's error and value. ν_E 07 D_s^+ anything)/ Γ_{total} ν_E 91 ± 0.020 ± 0.034 ν_E 91 ± 0.020 ± 0.034 ν_E 17 the systematic error include ν_E 18 ± 0.020 ± 0.034 ν_E 19 ± 0.020 ± 0.034 ν_E 19 ± 0.020 ± 0.034 10 ± 0.020 ± 0.031 ν_E 10 ± 0.020 ± 0.031 ν_E 10 ± 0.020 ± 0.031 10 ± 0.020 ± 0.031	st error is statistic; c errors ± 0.0033 (i esult is from the sa μ events. This va tal data. ned using single and 74 BUSKULIC $05 \pm 0.024 \pm 0.016$ $05 \pm 0.024 \pm 0.016$ our second error is $00000000000000000000000000000000000$	Z — bb sa the second el model) and C ime global fit lue is from tl i dilepton eve TECN 96Y ALEP 6 for B(D ⁰ — (3.83 ± 0.09) the systemati TECN 98Q ALEP due to the ch	mple using artificity and the control of the total sy $0.0032~(R_C)$. We as their $\Gamma(\overline{b} \rightarrow he \text{ same global fit})$ ints. $\frac{COMMENT}{e^+e^- \rightarrow Z} \rightarrow K^-\pi^+) = 0.0$) $\times 10^{-2}$. Our first cerror from using $\frac{COMMENT}{e^+e^- \rightarrow Z}$ carm branching rational comment $\frac{COMMENT}{e^+e^- \rightarrow Z}$	combine $\ell^+\nu_\ell \times$): as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ i.i.os. Γ_{22}/Γ
network, techniques. The fireror. ABREU 95D give systematic these in quadrature. This redata. BUSKULIC 94G uses e and $\Gamma(\bar{b} \rightarrow \ell^+\nu_\ell \text{anything})/\Gamma_{\text{total}}$ BUSKULIC 996 reports 0.6 BUSKULIC 967 reports 0.6 BUSKULIC 967 reports 0.6 rescale to our best value B(their experiment's error and value. D0 D_s^{\pm} anything)/ Γ_{total} UE 91 + 0.020 + 0.034 The systematic error include $D^{\pm}D_s^{\pm}$ anything)/ Γ_{total} UE 40 + 0.017 + 0.016 The systematic error include $D^{\pm}D_s^{\pm}$ anything)/ Γ_{total} UE	st error is statistic; c errors ± 0.0033 (i) esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT\ IO}{74\ BUSKULIC}$ $\frac{DOCUMENT\ IO}{1000000000000000000000000000000000000$	Z — bb sa the second el model) and C ime global fit lue is from tl i dilepton eve	mple using artificity ror is the total sy 0.0032 ($R_{\rm C}$). We as their $\Gamma(\overline{b} \rightarrow he \text{ same global fit})$ ints. $\frac{COMMENT}{e^+e^- \rightarrow Z} \rightarrow K^-\pi^+) = 0.0$) \times 10 ⁻² . Our first cerror from using $\frac{COMMENT}{e^+e^- \rightarrow Z}$ sarm branching rat $\frac{COMMENT}{e^+e^- \rightarrow Z}$ sarm branching rat $\frac{COMMENT}{e^+e^- \rightarrow Z}$	combine $\ell^+\nu_\ell \times$): as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ i.i.os. Γ_{22}/Γ
network, techniques. The fireror. ABREU 95D give systematic these in quadrature. This redata. BUSKULIC 946 uses e and $\Gamma(\bar{b} \rightarrow \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ ν_ℓ BUSKULIC 95 anything)/ Γ_{total} ν_ℓ BUSKULIC 96Y reports 0.6 rescale to our best value B(their experiment's error and value. DO D_s^{\pm} anything)/ Γ_{total} ν_ℓ D1 + 0.020 + 0.034 The systematic error include D_r^{\pm} D_s^{\pm}	st error is statistic; c errors ± 0.0033 (i) esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT\ IO}{74\ BUSKULIC}$ $\frac{DOCUMENT\ IO}{1000000000000000000000000000000000000$	Z — bb sa the second el model) and C ime global fit lue is from tl i dilepton eve	mple using artificity from the total sy 0.0032 ($R_{\rm C}$). We as their $\Gamma(\overline{b} \rightarrow he \text{ same global fit})$ ints. $\frac{COMMENT}{e^+e^- \rightarrow Z} \rightarrow K^-\pi^+) = 0.0$) \times 10 ⁻² . Our first cerror from using $\frac{COMMENT}{e^+e^- \rightarrow Z}$ sarm branching rat $\frac{COMMENT}{e^+e^- \rightarrow Z}$ sarm branching rat $\frac{COMMENT}{e^+e^- \rightarrow Z}$ sarm branching rat $\frac{COMMENT}{e^+e^- \rightarrow Z}$	restematic combine $\ell^+\nu_\ell \times$) as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ clos. Γ_{22}/Γ
network, techniques. The fire reformable to the property of t	st error is statistic; c errors ± 0.0033 (i) esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT\ IO}{74\ BUSKING}$ $\frac{DOCUMENT\ IO}{75\ BARATE}$ es the uncertainties $\frac{DOCUMENT\ ID}{76\ BARATE}$ es the uncertainties	Z → bb sa the second el model) and C ime global fit lue is from tl idilepton eve	mple using artificities of the total sy $0.0032~(R_C)$. We as their $\Gamma(\overline{b} \to 0.0032~(R_C)$ whe same global fit ints. $\frac{COMMENT}{e^+e^- \to Z} \to K^-\pi^+) = 0.0$ $0.0000000000000000000000000000000$	restematic combine $\ell^+\nu_\ell \times$) as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ clos. Γ_{22}/Γ
network, techniques. The fire retror. 1 ABREU 95D give systemati these in quadrature. This r data. 2 BUSKULIC 94G uses e and $\Gamma(\bar{b} \rightarrow \ell^+ \nu_\ell anything)/\Gamma_{total}$ 1 AKERS 93B analysis perforr 1 ABREU 967 reports 0.6 rescale to our best value B(their experiment's error and value. 1 ABREU 967 reports 0.6 rescale to our best value B(their experiment's error and value. 1 ABUSKULIC 967 reports 0.6 rescale to our best value B(their experiment's error and value. 1 ABUSKULIC 967 reports 0.6 rescale to our best value B(their experiment's error and value. 1 ABUSKULIC 967 reports 0.6 rescale to our best value B(their experiment's error and value. 1 ABUSKULIC 967 reports 0.6 rescale to our best value B(their experiment's error include to 0.01 + 0.020 + 0.034 - 0.018 - 0.022 - 0.018 - 0.025 - 0.031 - 0.022 - 0.031	st error is statistic; c errors ± 0.0033 (i) esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT\ IO}{74\ BUSKULLC}$ $\frac{D0}{5} \pm 0.024 \pm 0.016$ $\frac{D0}{7} \longrightarrow K^-\pi^+) = 0$ our second error is $\frac{DOCUMENT\ ID}{75\ BARATE}$ es the uncertainties $\frac{DOCUMENT\ ID}{76\ BARATE}$ es the uncertainties $\frac{DOCUMENT\ ID}{77\ BARATE}$ es the uncertainties	Z — bb sa the second el model) and C ime global fit lue is from tl idilepton eve 1 dilepton eve 1 fcn 96 ALEP 6 for B(D ⁰ (3.83 ± 0.09) the systemati 1 fcn 98 ALEP due to the ch 1 fcotal 1 fcn 98 ALEP due to the ch 1 fcn 98 ALEP due to the ch	mple using artificity artificity for the total synon into the total synon into the total synon into the same global fit ints. $\frac{COMMENT}{e^+e^- \to Z} + K^-\pi^+) = 0.0$ $1 \times 10^{-2}. \text{ Our firstic error from using }$ $\frac{COMMENT}{e^+e^- \to Z}$ $1 \times 10^{-2}. \text{ Our firstic error from using }$ $\frac{COMMENT}{e^+e^- \to Z}$ $1 \times 10^{-2}. \text{ The proposition of the error from the error from using }$ $\frac{COMMENT}{e^+e^- \to Z}$ $1 \times 10^{-2}. The proposition of the error from the $	restematic combine $\ell^+\nu_\ell \times$) as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ clos. Γ_{22}/Γ
network, techniques. The fire rior. ABREU 95D give systemation these in quadrature. This redata. BUSKULIC 94G uses e and $\Gamma(\bar{b} \rightarrow \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ BUSKULIC 94G uses e and $\Gamma(\bar{b} \rightarrow \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ BUSKULIC 94G uses e and $\Gamma(\bar{b} \rightarrow \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ BUSKULIC 96Y reports 0.6 rescale to our best value B(their experiment's error and value. BUSKULIC 96Y reports 0.6 rescale to our best value B(their experiment's error and value. BUSKULIC 96Y reports 0.6 rescale to our best value B(their experiment's error and value. BUSKULIC 96Y reports 0.6 rescale to our best value B(their experiment's error and value. BUSKULIC 96Y reports 0.6 rescale to our best value B(their experiment's error and value. BUSKULIC 96Y reports 0.6 rescale to our best value B(their experiment's error include COD D $_5^\pm$ anything)/ Γ total BUSKULIC 96Y reports 0.6 rescale to 0.014 - 0.011 The systematic error include COD D $_5^\pm$ anything) Γ total BUSKULIC 940 uses Γ anything)/ Γ total	st error is statistic; c errors ± 0.0033 (i) esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT IO}{74} BUSKINTCO 05 \pm 0.024 \pm 0.016 \frac{DOCUMENT IO}{75} BARATE es the uncertainties \frac{DOCUMENT ID}{76} BARATE es the uncertainties \frac{DOCUMENT ID}{76} BARATE es the uncertainties \frac{DOCUMENT ID}{77} BARATE es the uncertainties$	Z — bb sa the second el model) and C ime global fit lue is from tl dilepton eve 1 dilepton ev	mple using artificities of the total synonic in the total synonic in the total synonic in the total synonic in the same global fit ints. $\frac{COMMENT}{e^+e^- \to Z}$ $+ K^-\pi^+) = 0.0$ $+ 10^{-2}. \text{ Our first in the certain from using }$ $\frac{COMMENT}{e^+e^- \to Z}$ $+ COMMENT$ $+ e^+e^- \to Z$ $+ COMMENT$	restematic combine $\ell^+\nu_\ell \times$): as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ cios. Γ_{22}/Γ cios. Γ_{22}/Γ cios.
network, techniques. The fire rior. ABREU 95D give systemati these in quadrature. This r data. BUSKULIC 94G uses e and $\Gamma(\bar{D} \to \ell^+ \nu_\ell anything)/\Gamma_{to}$ AKERS 93B analysis perforr (\bar{D}^0) anything) / Ftotal LUE BUSKULIC 96Y reports 0.6 rescale to our best value B(their experiment's error and value. (D^0) anything) / Ftotal LUE 901 + 0.020 + 0.034 5 The systematic error include (D^0) anything) / Ftotal LUE 904 + 0.017 + 0.016 6 The systematic error include (D^0) anything) + $\Gamma(D^0)$ anything) / Ftotal LUE 131 + 0.026 + 0.048 17 The systematic error include (D^0) anything) / Ftotal LUE 1051 + 0.016 + 0.012	st error is statistic; c errors ± 0.0033 (i) esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT IO}{74 \text{ BUSKULLC}}$ $05 \pm 0.024 \pm 0.016$ $D^0 \rightarrow K^-\pi^+) = \text{our second error is}$ $\frac{DOCUMENT ID}{75 \text{ BARATE}}$ es the uncertainties $\frac{DOCUMENT ID}{76 \text{ BARATE}}$ es the uncertainties $\frac{DOCUMENT ID}{77 \text{ BARATE}}$ es the uncertainties $\frac{DOCUMENT ID}{77 \text{ BARATE}}$ es the uncertainties	Z — bb sather second en model) and Commodel) and Commodel	mple using artificity ror is the total sy 0.0032 (R_C). We as their $\Gamma(\overline{b} \to he \text{ same global fit})$ ints. $\frac{COMMENT}{e^+e^- \to Z} \to K^-\pi^+) = 0.0$) $\times 10^{-2}$. Our first cerror from using $\frac{COMMENT}{e^+e^- \to Z}$ earm branching rat $\frac{COMMENT}{e^+e^- \to Z}$	restematic combine $\ell^+ \nu_\ell \times$): as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ does. Γ_{22}/Γ does. Γ_{22}/Γ does. Γ_{23}/Γ
network, techniques. The fire error. TABREU 95D give systematic these in quadrature. This reformable of the property of the p	st error is statistic; c errors ± 0.0033 (i) esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT IO}{74 \text{ BUSKULLC}}$ $05 \pm 0.024 \pm 0.016$ $D^0 \rightarrow K^-\pi^+) = \text{our second error is}$ $\frac{DOCUMENT ID}{75 \text{ BARATE}}$ es the uncertainties $\frac{DOCUMENT ID}{76 \text{ BARATE}}$ es the uncertainties $\frac{DOCUMENT ID}{77 \text{ BARATE}}$ es the uncertainties $\frac{DOCUMENT ID}{77 \text{ BARATE}}$ es the uncertainties	Z — bb sather second en model) and Commodel) and Commodel	mple using artificity ror is the total sy 0.0032 (R_C). We as their $\Gamma(\overline{b} \to he \text{ same global fit})$ ints. $\frac{COMMENT}{e^+e^- \to Z} \to K^-\pi^+) = 0.0$) $\times 10^{-2}$. Our first cerror from using $\frac{COMMENT}{e^+e^- \to Z}$ earm branching rat $\frac{COMMENT}{e^+e^- \to Z}$	restematic combine $\ell^+\nu_\ell \times$): as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ clos. Γ_{22}/Γ clos. Γ_{22}/Γ clos. Γ_{23}/Γ clos. Γ_{23}/Γ
network, techniques. The fire ror. ABREU 95D give systemation these in quadrature. This redata. BUSKULIC 94G uses e and $\Gamma(\bar{D} \to \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ BUSKULIC 94G uses e and $\Gamma(\bar{D} \to \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ BUSKULIC 94G uses e and $\Gamma(\bar{D} \to \ell^+ \nu_\ell \text{anything})/\Gamma_{\text{total}}$ BUSKULIC 96V reports 0.6 rescale to our best value B(their experiment's error and value. BUSKULIC 96V reports 0.6 rescale to our best value B(their experiment's error and value. BUSKULIC 96V reports 0.6 rescale to our best value B(their experiment's error include value. BUSKULIC 96V reports 0.6 rescale to our best value B(their experiment's error include value. BUSKULIC 96V reports 0.6 rescale to our best value B(their experiment's error include value. BUSKULIC 96V reports 0.6 rescale to our best value B(their experiment's error include value. BUSKULIC 96V reports 0.6 rescale to our best value B(their experiment's error include CD D D anything) \Gamma\text{Total} BUSKULIC 96V reports 0.6 rescale to our best value B(their experiment's error include CD D D anything) \Gamma\text{Total} BUSKULIC 96V reports 0.6 rescale to our best value B(their experiment's error include CD D D anything) \Gamma\text{Total} BUSKULIC 96V reports 0.6 rescale to our best value B(their experiment's error include CD D D anything) \Gamma\text{Total} BUSKULIC 96V reports 0.6 rescale to our best value B(their experiment's error include CD D D anything) \Gamma\text{Total} BUSKULIC 94V reports 0.6 rescale to our best value B(their experiment's error include CD D D D D D D D D D D D D D D D D D D	st error is statistic; c errors ± 0.0033 (i) esult is from the sa μ events. This va tal data. ned using single and $\frac{DOCUMENT IO}{74 \text{ BUSKULLC}}$ $05 \pm 0.024 \pm 0.016$ $D^0 \rightarrow K^-\pi^+) = \text{our second error is}$ $\frac{DOCUMENT ID}{75 \text{ BARATE}}$ es the uncertainties $\frac{DOCUMENT ID}{76 \text{ BARATE}}$ es the uncertainties $\frac{DOCUMENT ID}{77 \text{ BARATE}}$ es the uncertainties $\frac{DOCUMENT ID}{77 \text{ BARATE}}$ es the uncertainties	Z — bb sa the second el model) and C ime global fit lue is from tl i dilepton eve FECN 96Y ALEP 6 for B(D ⁰ — (3.83 ± 0.09) the systemati FECN 98Q ALEP due to the ch // Ttotal FECN 98Q ALEP due to the ch 98Q ALEP due to the ch	mple using artificity ror is the total sy norm is the total sy no.0032 (R_C). We as their $\Gamma(\overline{b} \rightarrow he \text{ same global fit})$ ints. $\frac{COMMENT}{e^+e^- \rightarrow Z}, K^-\pi^+) = 0.0$) $\times 10^{-2}$. Our first cerror from using $\frac{COMMENT}{e^+e^- \rightarrow Z}$ carm branching rat $\frac{COMMENT}{e^+e^- \rightarrow Z}$ arm branching rat $\frac{(\Gamma_{21} + he^-)}{e^+e^- \rightarrow Z}$ common branching rat $\frac{COMMENT}{e^+e^- \rightarrow Z}$	restematic combine $\ell^+ \nu_\ell \times$): as their Γ_{20}/Γ 383. We st error is our best Γ_{21}/Γ does. Γ_{22}/Γ does. Γ_{22}/Γ does. Γ_{23}/Γ

SALVE SOUMENT ID TECN COMMENT COMME	$[\Gamma(\overline{D}^0 D^0 \text{ anything}) + \Gamma(D)]$	DOCUMENT ID TECN COMMENT
$\Gamma(D^+D^+$ anything)/Γ total VALVE		
CONCENT ID TECH COMMENT PROCUMENT ID TECH COMMENT PROCUMENT ID TECH COMMENT		
SARATE 980 ALEP $e^+e^- \rightarrow Z$ Total SOCUMENT ID TECH COMMENT Tech COMMENT Tech COMMENT Tech COMMENT Tech COMMENT Tech COMMENT Tech Tech COMMENT Tech	•	Γ ₂₅ /Ι
DOCUMENT ID TECN COMMENT 18 BUSKULIC 96v reports 0.234 ± 0.013 ± 0.010 for B($D^+ \rightarrow K^-\pi^+\pi^+$) = 0.091. W. rescale to our best value B($D^+ \rightarrow K^-\pi^+\pi^+$) = (9.0 ± 0.6) × 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using on best value. 17 (D*(2010)*+ anything) / Total 28 Uses lepton tags to select $Z \rightarrow b\bar{D}$ events. 18 (D_1(2420)° anything) / Total 29 Uses lepton tags to select $Z \rightarrow b\bar{D}$ events. 19 (D_1(2420)° anything) / Total 20 OCUMENT ID TECN COMMENT 20 OCUMENT ID TECN COMMENT 21 OCUMENT ID TECN COMMENT 22 OCUMENT ID TECN COMMENT 23 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 24 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 25 Uses lepton tags to select $Z \rightarrow b\bar{D}$ events. 17 (D*(2010)*+ D^+ anything) / Total 20 OCUMENT ID TECN COMMENT 20 OCUM		
DOCUMENT ID TECN COMMENT 18 BUSKULIC 96v reports 0.234 ± 0.013 ± 0.010 for B($D^+ \rightarrow K^-\pi^+\pi^+$) = 0.091. W. rescale to our best value B($D^+ \rightarrow K^-\pi^+\pi^+$) = (9.0 ± 0.6) × 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using on best value. 17 (D*(2010)*+ anything) / Total 28 Uses lepton tags to select $Z \rightarrow b\bar{D}$ events. 18 (D_1(2420)° anything) / Total 29 Uses lepton tags to select $Z \rightarrow b\bar{D}$ events. 19 (D_1(2420)° anything) / Total 20 OCUMENT ID TECN COMMENT 20 OCUMENT ID TECN COMMENT 21 OCUMENT ID TECN COMMENT 22 OCUMENT ID TECN COMMENT 23 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 24 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 25 Uses lepton tags to select $Z \rightarrow b\bar{D}$ events. 17 (D*(2010)*+ D^+ anything) / Total 20 OCUMENT ID TECN COMMENT 20 OCUM	「(D=anything) / Госон	Гэс / I
181 BUSKULIC 96V reports 0.234 ± 0.013 ± 0.010 for B($D^+ \rightarrow K^-\pi^+\pi^+)$ = 0.091. W rescale to our best value B($D^+ \rightarrow K^-\pi^+\pi^+)$ = (9.0 ± 0.6) × 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using or best value. 172 D^+ (2010) + anything) / D^+ total		•
rescale to our best value $B(D^+ \to K^-\pi^+\pi^+) = (9.0 \pm 0.6) \times 10^{-2}$. Our first erris is their experiment's error and our second error is the systematic error from using our best value. [CP'(2010)+anything)/[total] P2 ACKERSTAFF 98E OPAL $e^+e^- \to Z$ 82 ACKERSTAFF 98E OPAL $e^+e^- \to Z$ 82 Uses lepton tags to select $Z \to b\bar{b}$ events. [CD'(2420)0 anything)/[total] PALUE POCUMENT ID		
DOCUMENT ID TECN COMMENT 10.173±0.016±0.012 82 ACKERSTAFF 980 OPAL $e^+e^- \rightarrow Z$ 82 Model lepton tags to select $Z \rightarrow b\bar{b}$ events. 17 ($D_1(2420)^0$ anything)/ Γ_{total} DOCUMENT ID TECN COMMENT 183 ACKERSTAFF 97W assumes $B(D_2^*(2460)^0 \rightarrow D^{*+}\pi^-) = 0.21 \pm 0.04$ and $\Gamma_{b\bar{b}}/\Gamma_{hadrons} = 0.216$ at Z decay. 17 ($D^*(2010)^{\mp}D_3^{\pm}$ anything)/ Γ_{total} DOCUMENT ID TECN COMMENT 184 ARATE 980 ALEP $e^+e^- \rightarrow Z$ 185 ARATE 980 ALEP $e^+e^- \rightarrow Z$ 184 The systematic error includes the uncertainties due to the charm branching ratios. 185 The systematic error includes the uncertainties due to the charm branching ratios. 185 The systematic error includes the uncertainties due to the charm branching ratios. 185 The systematic error includes the uncertainties due to the charm branching ratios. 186 The systematic error includes the uncertainties due to the charm branching ratios. 187 ($D^*(2010)^{\pm}D^{\mp}$ anything)/ Γ_{total} DOCUMENT ID TECN COMMENT 185 BARATE 980 ALEP $e^+e^- \rightarrow Z$ 185 The systematic error includes the uncertainties due to the charm branching ratios. 186 The systematic error includes the uncertainties due to the charm branching ratios. 187 DOCUMENT ID TECN COMMENT 188 ACKERSTAFF 97W 2010) Φ^+ anything)/ Φ^+ total 189 BUSKULIC 96V reports 0.183 Φ^+ 0.002 Φ^+ 0.003 Φ^+ 0.004 Φ^+ 0.004 Φ^+ 0.004 Φ^+ 0.004 Φ^+ 0.004 Φ^+ 0.005 Φ^+ 0.007 Φ^+ 0.007 Φ^+ 0.008 Φ^+ 0.009 Φ^+	rescale to our best value B(is their experiment's error a	$D^+ \to K^- \pi^+ \pi^+ = (9.0 \pm 0.6) \times 10^{-2}$. Our first erro
82 ACKERSTAFF 98¢ OPAL $e^+e^- \rightarrow Z$ 82 Uses lepton tags to select $Z \rightarrow b\bar{b}$ events. F(D ₁ (2420) ⁰ anything)/ Γ total POCUMENT 10 TECN COMMENT 10.055±0.014±0.006 83 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 83 ACKERSTAFF 97W oPAL $e^+e^- \rightarrow Z$ 83 ACKERSTAFF 97W oPAL $e^+e^- \rightarrow Z$ 84 BARATE 98¢ ALEP $e^+e^- \rightarrow Z$ 85 Harate error includes the uncertainties due to the charm branching ratios. F(D ⁰ (2010) [±] D [‡] anything)/ Γ total POCUMENT 10 TECN COMMENT 10.003±0.009±0.007 84 BARATE 98¢ ALEP $e^+e^- \rightarrow Z$ 85 The systematic error includes the uncertainties due to the charm branching ratios. F(D ⁰ (2010) [±] D [‡] anything)/ Γ total POCUMENT 10 TECN COMMENT 10.003±0.009±0.007 85 BARATE 98¢ ALEP $e^+e^- \rightarrow Z$ 86 The systematic error includes the uncertainties due to the charm branching ratios. F(D ⁰ (2010) [±] D [‡] anything)/ Γ total POCUMENT 10 TECN COMMENT 10.005±0.009±0.005 86 BARATE 98¢ ALEP $e^+e^- \rightarrow Z$ 86 The systematic error includes the uncertainties due to the charm branching ratios. F(D ⁰ (2010) [±] D [‡] (2010) [‡] anything)/ Γ total POCUMENT 10 TECN COMMENT 10.012±0.009±0.0002 87 BARATE 98¢ ALEP $e^+e^- \rightarrow Z$ 87 The systematic error includes the uncertainties due to the charm branching ratios. F(D ⁰ (2(2460) ⁰ anything)/ Γ total POCUMENT 10 TECN COMMENT 10.012±0.003±0.002 88 ACKERSTAFF 97W assumes B(D ⁰ (2(2460) ⁰ $\rightarrow D^{0+\pi^-}) = 0.21 \pm 0.04$ and Γ_0D^- 1/hadrons = 0.216 at Z decay. F(D ⁰ (2)(2460) ⁰ anything)/ Γ total POCUMENT 10 TECN COMMENT 10.08±0.02±0.013 88 ACKERSTAFF 97W assumes B(D ⁰ (2(2460) ⁰ $\rightarrow D^{0+\pi^-}) = 0.21 \pm 0.04$ and Γ_0D^- 1/hadrons = 0.216 at Z decay. F(D ⁰ (2)(2460) ⁰ anything)/ Γ total POCUMENT 10 TECN COMMENT 10.08±0.02±0.013 89 BUSKULIC 96V reports 0.183 ± 0.019 ± 0.009 for B(D ¹ / ₂ $\rightarrow \phi \pi^+$) = 0.036. W rescale to our best value B(D ¹ / ₂ $\rightarrow \phi \pi^+$) = (3.6 ± 0.9)×10 ⁻² . Our first error is the experiment's error and our second error is the systematic error from using our best value. F(D ⁰ $\rightarrow D^+$ 1 and OUT average 10.097±0.013±0.025 90 BUSKULIC 96V r		
$\Gamma(D_1(2420)^0$ anything)/Γ total 0.050 ± 0.014 ± 0.006 83 ACKERSTAFF 97W OPAL $rac{+}{e^+}e^- \rightarrow Z$ 83 ACKERSTAFF 97W assumes B($D_2^*(2460)^0 \rightarrow D^* + \pi^-$) = 0.21 ± 0.04 an Γ_{DD}^*		
DOCUMENT ID TECN COMMENT 83 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 84 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 10.03 $e^+ = 0.010 + 0.012$ 84 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 84 The systematic error includes the uncertainties due to the charm branching ratios. 17 ($e^- = 0.010 + 0.012$ 85 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 85 The systematic error includes the uncertainties due to the charm branching ratios. 18 T($e^- = 0.008 + 0.009$ 85 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 86 The systematic error includes the uncertainties due to the charm branching ratios. 18 T($e^- = 0.008 + 0.009$ 86 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 86 The systematic error includes the uncertainties due to the charm branching ratios. 19 T($e^- = 0.009 + 0.009$ 86 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 86 The systematic error includes the uncertainties due to the charm branching ratios. 19 T($e^- = 0.009 + 0.009$ 87 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 87 The systematic error includes the uncertainties due to the charm branching ratios. 19 T($e^- = 0.009 + 0.009$ 87 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 88 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 88 ACKERSTAFF 97W oPAL $e^+e^- \rightarrow Z$ 88 ACKERSTAFF 97W assumes B($e^- = 0.009 + 0.009$ 89 BUSKULIC 96Y reports 0.183 ± 0.019 ± 0.009 for B($e^- = 0.009 + 0.009$ 10 Jay 10 J	82 Uses lepton tags to select 2	$Z \rightarrow b \overline{b}$ events.
83 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 83 ACKERSTAFF 97W assumes $B(D_2^*(2460)^0 \rightarrow D^{*+}\pi^-) = 0.21 \pm 0.04$ and $\Gamma_{bD}^{-1}\Gamma_{hadrons} = 0.216$ at Z decay. $\Gamma(D^*(2010)^{+}D_3^{+}\text{ anything})/\Gamma_{total} \qquad \qquad \Gamma_{29}/\Gamma_{hadrons} = 0.216$ 84 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 85 The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^0D^*(2010)^{+}\text{ anything})/\Gamma_{total} \qquad \qquad \Gamma_{30}/\Gamma_{hadrons} = 0.005 - 0.005$ 85 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 85 The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{+}D_3^{+}\text{ anything})/\Gamma_{total} \qquad \qquad \Gamma_{30}/\Gamma_{hadrons} = 0.005$ 86 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 87 The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{+}D_3^{+}\text{ on}) = 0.005$ 86 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 87 The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{+}D_3^{+}\text{ on}) = 0.005$ 87 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 87 The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{+}D_3^{+}\text{ on}) = 0.002$ 87 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 87 The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{+}D_3^{+}\text{ on}) = 0.002$ 88 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 89 BUSKULIC 96Y Pay assumes B(D_2^*(2460)^0 → D^*+\pi^-) = 0.21 ± 0.04 and DOLUMENT ID TECN COMMENT		
83 ACKERSTAFF 97W assumes $B(D_2^*(2460)^0 \rightarrow D^*+\pi^-) = 0.21 \pm 0.04$ and $\Gamma_{b\overline{b}}F/\Gamma_{hadrons} = 0.216$ at Z decay. $\Gamma(D^*(2010)^+D_2^+\text{anything})/\Gamma_{total} \qquad \qquad \Gamma_{29}/\Gamma_{hadrons} = 0.216$ $\frac{1}{2} P_{ALUE} \qquad \frac{1}{2} P_{AUD} \qquad \frac{1}{2} P_{AU$		
$\Gamma_{Db}^{-}/\Gamma_{hadrons} = 0.216$ at Z decay. Γ($D^{\circ}(2010)^{+}D_{3}^{+}$ anything)/ Γ_{total} $\Gamma_{DOUMENT ID}$ $\Gamma_{DOUMENT ID}$ Γ_{ECN} $\Gamma_{DOUMENT ID}$ Γ_{ECN} $\Gamma_{DOUMENT ID}$ Γ_{ECN} $\Gamma_{DOUMENT}$ $\Gamma_{DOUMENT ID}$ Γ_{ECN} $\Gamma_{DOUMENT}$ $\Gamma_{DOUMENT ID}$	83 ACKERSTAFF 97w assur	mes B($D_2^*(2460)^0 \rightarrow D^{*+}\pi^-$) = 0.21 ± 0.04 and
DOCUMENT ID TECN COMMENT 10.033 $^{+}0.030 ^{+}0.032 ^{+}0.033 ^{+}0.039 ^{+}0.039 ^{+}0.039$ 84 The systematic error includes the uncertainties due to the charm branching ratios. F(D^0 P^(2010) $^{\pm}$ anything)/Ftotal DOCUMENT ID S5 BARATE B8Q ALEP $e^{+}e^{-} \rightarrow Z$ 85 The systematic error includes the uncertainties due to the charm branching ratios. F(D^0(2010) $^{\pm}$ D $^{\pm}$ anything)/Ftotal DOCUMENT ID TECN COMMENT T31/ DOCUMENT ID TECN COMMENT T32/ DOCUMENT ID TECN COMMENT T33/ TABARATE B8Q ALEP $e^{+}e^{-} \rightarrow Z$ 87 The systematic error includes the uncertainties due to the charm branching ratios. F(D^0(2010) $^{\pm}$ D $^{+}$ C010 $^{+}$ Anything)/Ftotal DOCUMENT ID DOCUMENT ID TECN COMMENT T33/ TABARATE B8Q ALEP $e^{+}e^{-} \rightarrow Z$ 87 BARATE B8Q ALEP $e^{+}e^{-} \rightarrow Z$ 88 ACKERSTAFF 97W OPAL $e^{+}e^{-} \rightarrow Z$ 88 ACKERSTAFF 97W OPAL $e^{+}e^{-} \rightarrow Z$ 88 ACKERSTAFF 97W OPAL $e^{+}e^{-} \rightarrow Z$ 88 BACKERSTAFF 97W OPAL $e^{+}e^{-} \rightarrow Z$ 89 BUSKULIC 96Y reports 0.183 \pm 0.019 \pm 0.009 for B($b^{+}_{1} \rightarrow b^{+}_{1}	$\Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at}$	Z decay. ¯
0.033 $^+$ 0.010 $^+$ 0.012 84 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 84 The systematic error includes the uncertainties due to the charm branching ratios. F(D ⁰ D*(2010) $^+$ anything)/ $^+$ total VALUE DOCUMENT ID TECN COMMENT 0.030 $^+$ 0.009 $^+$ 0.000 0.000 85 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 85 The systematic error includes the uncertainties due to the charm branching ratios. F(D*(2010) $^+$ D $^+$ anything)/ $^+$ total VALUE DOCUMENT ID TECN COMMENT 0.025 $^+$ 0.000 $^+$ 0.000 86 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 86 The systematic error includes the uncertainties due to the charm branching ratios. F(D*(2010) $^+$ D*(2010) $^+$ anything)/ $^+$ total VALUE DOCUMENT ID TECN COMMENT 0.012 $^+$ 0.003 $^+$ 0.002 87 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 87 The systematic error includes the uncertainties due to the charm branching ratios. F(D*(2(2460)^0 anything)/ $^+$ total VALUE DOCUMENT ID TECN COMMENT 0.047 $^+$ 0.004 $^+$ 0.004 $^+$ 0.005 88 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 88 ACKERSTAFF 97W assumes 8(D*(2*(2460)^0 $\rightarrow D^*+\pi^-) = 0.21 \pm 0.04$ an F _D E/ $^+$ 6 hadrons = 0.216 at Z decay. F(D*(3 anything)/ $^+$ 7 total VALUE DOCUMENT ID TECN COMMENT 0.18 $^+$ 0.024 $^+$ 0.013 88 BCKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 89 BUSKULIC 96Y reports 0.183 $^+$ 0.019 $^+$ 0.009 for B(D* $^+$ 0.004 $^+$ 0.018 $^+$ 0.004 $^+$ 0.018 $^+$ 0.005		,
The systematic error includes the uncertainties due to the charm branching ratios. The composition of the charm branching ratios and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios are compositive and the charm branching ratios. The composition of the charm branching ratios.		
$\Gamma(D^0D^*(2010)^{\pm}$ anything)/ Γ_{total} $DOCUMENT ID$ $DOCUMENT ID$ $TECN$ $COMMENT$ $DOCUMENT ID$ $TECN$ $COMMENT$ $DOCUMENT ID$ $TECN$ $COMMENT$ $DOCUMENT ID$ $TECN$ $COMMENT$ $TOCMENT$ T		·
20.030 + 0.007 + 0.007 35 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 85 The systematic error includes the uncertainties due to the charm branching ratios. F(D*(2010)±D* anything)/Γtotal FECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT TO .0.025 + 0.010 + 0.005 86 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 86 The systematic error includes the uncertainties due to the charm branching ratios. F(D*(2010)±D*(2010)* anything)/Γtotal DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT TO .0.012 + 0.004 ± 0.002 R7 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 87 The systematic error includes the uncertainties due to the charm branching ratios. F(D*(2460)*0 anything)/Γtotal DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT TO .0.047 ± 0.024 ± 0.013 R8 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ R8 ACKERSTAFF 97W assumes B(D*(2460)*0 → D*+π ⁻) = 0.21 ± 0.04 and Γ _b D/Γ hadrons = 0.216 at Z decay. F(D*(3 anything)/Γtotal VALUE DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT TO .0.047 ± 0.024 ± 0.013 R8 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ R8 BUSKULIC 96Y reports 0.183 ± 0.019 ± 0.009 for B(D*(5) → Φ*(7) + 0.036. We rescale to our best value B(D*(5) → Φ*(7) + 0.009 for B(D*(7) → Φ*(7) + 0.0		
85 The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^{\bullet}(2010)^{\pm}D^{\mp} \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{31}/\Gamma_{\text{total}} \qquad \qquad \Gamma_{32}/\Gamma_{\text{total}} \qquad \qquad \Gamma_{33}/\Gamma_{\text{total}} \qquad \qquad \Gamma_{34}/\Gamma_{\text{total}} \qquad \qquad \Gamma_{35}/\Gamma_{\text{total}} \qquad \qquad \Gamma_{35}/\Gamma_{\text{total}} \qquad \qquad \Gamma_{35}/\Gamma$	VALUE	DOCUMENT ID TECN COMMENT
The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes the uncertainties due to the charm branching ratios. The systematic error includes	0.030 + 0.009 + 0.007 - 0.006 - 0.005	⁸⁵ BARATE 98Q ALEP $e^+e^- \rightarrow Z$
20.025 $^+$ 0.010 $^+$ 0.006 86 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 86 The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{\pm}D^*(2010)^{\mp} \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{32}/\Gamma_{32}/\Gamma_{32} = \Gamma_{32}/\Gamma_{32}/\Gamma_{32}/\Gamma_{32} = \Gamma_{32}/\Gamma_{32}/\Gamma_{32} = \Gamma_{32}/\Gamma_{32}/\Gamma_{32}/\Gamma_{32} = \Gamma_{32}/\Gamma_{32}/\Gamma_{32}/\Gamma_{32} = \Gamma_{32}/\Gamma_{32}/\Gamma_{32}/\Gamma_{32} = \Gamma_{32}/\Gamma_{32}/\Gamma_{32}/\Gamma_{32}/\Gamma_{32} = \Gamma_{32}/\Gamma_$	⁸⁵ The systematic error includ	es the uncertainties due to the charm branching ratios.
86 The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{\pm}D^*(2010)^{\mp} \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{32}/\Gamma_{\text{NALUE}} \qquad \qquad \Gamma_{33}/\Gamma_{\text{NALUE}} \qquad \qquad \Gamma_{34}/\Gamma_{\text{NALUE}} \qquad \qquad \Gamma$		
86 The systematic error includes the uncertainties due to the charm branching ratios. $ \Gamma(D^{\bullet}(2010)^{\pm}D^{\bullet}(2010)^{\mp} \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{32}/\Gamma_{0.003} = 0.002 \qquad 87 \text{ BARATE} \qquad 980 \text{ ALEP} \qquad e^{+}e^{-} \rightarrow Z $ 87 The systematic error includes the uncertainties due to the charm branching ratios. $ \Gamma(D_{2}^{\bullet}(2460)^{0} \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{33}/\Gamma_{0.004} = 0.003 \qquad 88 \text{ ACKERSTAFF} \qquad 970 \text{ OPAL} \qquad e^{+}e^{-} \rightarrow Z $ 88 ACKERSTAFF 97W assumes $B(D_{2}^{\bullet}(2460)^{0} \rightarrow D^{\bullet+}\pi^{-}) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\bar{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(\bar{D}_{3} \text{ anything})/\Gamma_{\text{total}} \qquad \qquad DOCUMENT \text{ in } IECN \qquad COMMENT \qquad ON The systematic error from using our best value and the systematic error from using our best value and the systematic error from using our best value and the experiment's error and our second error is the systematic error from using our best value and the experiment's error and our second error is the systematic error from using our best value and the experiment's error and our second error is the systematic error from using our best value and the experiment's error and our second error is the systematic error from using our best value. \Gamma(\bar{C}/C \text{ anything})/\Gamma_{\text{total}} \qquad DOCUMENT \text{ in } IECN \qquad COMMENT \qquad O.097 \pm 0.013 \pm 0.025 \qquad 90 \text{ BUSKULIC} \qquad 96\text{ YALEP} \qquad e^{+}e^{-} \rightarrow Z \qquad O.097 \pm 0.013 \pm 0.025 \qquad 90 \text{ BUSKULIC} \qquad 96\text{ YALEP} \qquad e^{+}e^{-} \rightarrow Z \qquad O.097 \pm 0.013 \pm 0.025 \qquad 90 \text{ BUSKULIC} \qquad 96\text{ YALEP} \qquad e^{+}e^{-} \rightarrow Z \qquad O.097 \pm 0.013 \pm 0.025 \qquad 90 \text{ BUSKULIC} \qquad 96\text{ YALEP} \qquad e^{+}e^{-} \rightarrow Z \qquad O.097 \pm 0.013 \pm 0.006 \text{ for } B(D_{1}^{+} \rightarrow \rho K^{-}\pi^{+}) = 0.044 \text{ W} \qquad O.097 \pm 0.013 \pm 0.006 \text{ for } B(D_{1}^{+} \rightarrow \rho K^{-}\pi^{+}) = 0.044 \text{ W} \qquad O.097 \pm 0.013 \pm 0.006 \text{ for } B(D_{1}^{+} \rightarrow \rho K^{-}\pi^{+}) = 0.044 \text{ W} \qquad O.097 \pm 0.013 \pm 0.006 \text{ for } B(D_{1}^{+} \rightarrow \rho K^{-}\pi^{+}) = 0.044 \text{ W} \qquad O.097 \pm 0.013 \pm 0.006 \text{ for } B(D_{1}^{+} \rightarrow \rho K^{-}\pi^{+}) = 0.044 \text{ W} \qquad O.097 \pm 0.013 \pm 0.006 \text{ for } B(D_{1}^{+} \rightarrow \rho K^{-}\pi^{+}) = 0.044 \text{ W} \qquad O.097 \pm 0.013 \pm $	0.025 + 0.010 + 0.006 - $0.009 - 0.005$	⁸⁶ BARATE 98Q ALEP $e^+e^- \rightarrow Z$
0.012 $^+$ 0.004 $^+$ 0.002 87 BARATE 98Q ALEP $e^+e^- \rightarrow Z$ 87 The systematic error includes the uncertainties due to the charm branching ratios. Γ(D_2^* (2460) 0 anything)/Γtotal VALUE 0.047 $^+$ 0.024 $^+$ 0.013 88 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 88 ACKERSTAFF 97W assumes $B(D_2^*$ (2460) $^0 \rightarrow D^*+\pi^-$) = 0.21 \pm 0.04 an Γ _b $_D^-$ Γhadrons = 0.216 at Z decay. Γ(\overline{D}_s anything)/Γtotal VALUE 90CUMENT ID 1ECN COMMENT 193/1 194/10 195/1 hadrons = 0.216 at Z decay. Γ(\overline{D}_s anything)/Γtotal VALUE 90CUMENT ID 1ECN COMMENT 194/10 195/1 hadrons = 0.216 at Z decay. Γ(\overline{D}_s anything)/Γtotal VALUE 90CUMENT ID 1ECN COMMENT 196/1 hadrons = 0.216 at Z decay. Γ(\overline{D}_s anything)/Γtotal VALUE 90CUMENT ID 1ECN COMMENT 196/1 hadrons = 0.236. Where C_s is the systematic error from using our best value experiment's error and our second error is the systematic error from using our best value Γ(D_s A C_s anything)/Γtotal VALUE 90 BUSKULIC 96Y reports 0.110 ± 0.014 ± 0.006 for $B(A_c^+ \rightarrow pK^-\pi^+) = 0.044$. Where C_s is the systematic error from using our best value. Γ(C_s / Canything)/Γtotal VALUE 100 F(C_s / Canything)/Γtotal VALUE 117 ± 0.04 OUR AVERAGE 1.147±0.041 1.230±0.036±0.065 91 ABREU 98D DLPH C_s e+e- C_s Z 91 ABREU 98D results are extracted from a fit to the C_s tagging probability distributio based on the impact parameter.		es the uncertainties due to the charm branching ratios.
87 The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D_2^*(2460)^0 \text{ anything})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{33}/\Gamma_{\text{total}} \qquad \qquad \Gamma_{34}/\Gamma_{\text{total}} \qquad \qquad \Gamma_{34}/\Gamma_{to$		
87 The systematic error includes the uncertainties due to the charm branching ratios. $ \Gamma(D_2^\bullet(2460)^0 \text{ anything})/\Gamma_{\text{total}} $ $ \frac{DOCUMENT\ ID}{88\ \text{ACKERSTAFF}} \frac{TECN}{90\ \text{OP}^+\pi^-} = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(D_s^\bullet(2460)^0 - D^{\bullet+}\pi^-) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(D_s^\bullet(2460)^0 - D^{\bullet+}\pi^-) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(D_s^\bullet(2460)^0 - D^{\bullet+}\pi^-) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(D_s^\bullet(2460)^0 - D^{\bullet+}\pi^-) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(D_s^\bullet(2460)^0 - D^{\bullet+}\pi^-) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(D_s^\bullet(2460)^0 - D^{\bullet+}\pi^-) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(D_s^\bullet(2460)^0 - D^{\bullet+}\pi^-) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(D_s^\bullet(2460)^0 - D^{\bullet+}\pi^-) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(D_s^\bullet(2460)^0 - D^{\bullet+}\pi^-) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(D_s^\bullet(2460)^0 - D^{\bullet+}\pi^-) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at } Z \text{ decay.} $ $ \Gamma(D_s^\bullet(2460)^0 - D^{\bullet+}\pi^-) = 0.21 \pm 0.04 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{b\overline{b}}/\Gamma_{b\overline{b}} = 0.044 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{b\overline{b}}/\Gamma_{b\overline{b}}/\Gamma_{b\overline{b}} = 0.044 \text{ and } \Gamma_{b\overline{b}}/\Gamma_{$		
$\Gamma(D_s^*(2460)^0$ anything)/ Γ_{total} NALUE DOCUMENT ID Ref ACKERSTAFF 97w OPAL Ref $e^+e^- \rightarrow Z$ 88 ACKERSTAFF 97w assumes $B(D_s^*(2460)^0 \rightarrow D^*+\pi^-) = 0.21 \pm 0.04$ and $\Gamma_{b\bar{b}}/\Gamma_{hadrons} = 0.216$ at Z decay. $\Gamma(\bar{D}_s \text{ anything})/\Gamma_{total}$ NALUE DOCUMENT ID Ref ACKERSTAFF 97w assumes $B(D_s^*(2460)^0 \rightarrow D^*+\pi^-) = 0.21 \pm 0.04$ and $\Gamma_{b\bar{b}}/\Gamma_{hadrons} = 0.216$ at Z decay. $\Gamma(\bar{D}_s \text{ anything})/\Gamma_{total}$ NALUE DOCUMENT ID Ref ACCOMMENT Rescale to our best value $B(D_s^+ \rightarrow \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is the experiment's error and our second error is the systematic error from using our best value $\Gamma(b \rightarrow \Lambda_c \text{ anything})/\Gamma_{total}$ NALUE DOCUMENT ID DOCUMENT ID Ref ACCOMMENT Rescale to our best value $B(\Lambda_c^+ \rightarrow \rho K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$. Our first error in their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\bar{C}/c \text{ anything})/\Gamma_{total}$ NALUE DOCUMENT ID Ref ACKERSTAFF 97w OPAL EP $e^+e^- \rightarrow Z$ DOCUMENT ID Ref ACKERSTAFF 97w OPAL EP $e^+e^- \rightarrow Z$ Ref BUSKULIC 96Y ALEP $e^+e^- \rightarrow Z$ Ref ACKERSTAFF 97w OPAL EP $e^+e^- \rightarrow Z$ Ref BUSKULIC 96Y ALEP $e^+e^- \rightarrow Z$ Ref ACKERSTAFF 97w OPAL EP $e^+e^- \rightarrow Z$ Ref BUSKULIC 96Y ALEP $e^+e^- \rightarrow Z$ Ref ACKERSTAFF 97w OPAL EP $e^+e^- \rightarrow Z$ Ref BUSKULIC 96Y ALEP $e^+e^- \rightarrow Z$ POCUMENT ID Ref ACKERSTAFF 97w OPAL EP $e^+e^- \rightarrow Z$ Ref BUSKULIC 96Y ALEP $e^+e^- \rightarrow Z$ Ref ACKERSTAFF 97w OPAL EP $e^+e^- \rightarrow Z$ Ref ACKERSTAF 97w OPAL EP $e^+e^$		es the uncertainties due to the charm branching ratios.
NALUE DOCUMENT ID 1ECN COMMENT 88 ACKERSTAFF 97W OPAL $e^+e^- \rightarrow Z$ 88 ACKERSTAFF 97W assumes $B(D_2^+(2460)^0 \rightarrow D^{++}\pi^-) = 0.21 \pm 0.04$ and $\Gamma_{b\overline{b}}/\Gamma_{hadrons} = 0.216$ at Z decay. FOS anything)/ Γ_{total} NALUE DOCUMENT ID DOCUMENT ID 1ECN COMMENT TECN COMMENT 10.18 ± 0.02 ± 0.04 89 BUSKULIC 96Y ALEP $e^+e^- \rightarrow Z$ 89 BUSKULIC 96Y ALEP $e^+e^- \rightarrow Z$ 89 BUSKULIC 96Y REPORTS 0.183 ± 0.019 ± 0.009 for $B(D_5^+ \rightarrow \phi \pi^+) = 0.036$. We rescale to our best value $B(D_5^+ \rightarrow \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is the experiment's error and our second error is the systematic error from using our best value FOS BUSKULIC 96Y REPORTS 0.110 ± 0.014 ± 0.006 for $B(A_c^+ \rightarrow \rho K^- \pi^+) = 0.044$. We rescale to our best value $B(A_c^+ \rightarrow \rho K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$. Our first error their experiment's error and our second error is the systematic error from using our best value. FOS BUSKULIC 96Y REPORTS 0.110 ± 0.014 ± 0.006 for $B(A_c^+ \rightarrow \rho K^- \pi^+) = 0.044$. We rescale to our best value $B(A_c^+ \rightarrow \rho K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$. Our first error their experiment's error and our second error is the systematic error from using our best value. FOS BUSKULIC 96Y ALEP $e^+e^- \rightarrow Z$ POCUMENT ID DOCUMENT ID TECN COMMENT Table DOCUMENT ID TECN COMMENT Table POCUMENT ID TECN COMMENT Table POCUMENT ID TECN COMMENT Table POCUMENT ID TECN TO MARCH THE POCUMENT	$\Gamma(D_5^*(2460)^0$ anything) $/\Gamma_t$	oral F ₃₃ /F
BBACKERSTAFF 97w assumes $B(D_s^+(2460)^0 \rightarrow D^{++}\pi^-) = 0.21 \pm 0.04$ and $\Gamma_{b\overline{b}}/\Gamma_{hadrons} = 0.216$ at Z decay. **Tobal Nature **Document ID** **BBUSKULIC** **BUSKULIC** **BU	VALUE	DOCUMENT ID TECN COMMENT
$\Gamma_{b\overline{b}}/\Gamma_{hadrons} = 0.216$ at Z decay. $\Gamma_{D\overline{b}}/\Gamma_{hadrons} = 0.216$ at Z decay. $\Gamma_{D\overline{b}}/\Gamma_$		
NALUE 90 BUSKULIC 96Y ALEP 97 BUSKULIC 96Y ALEP 90 BUSKULIC 96Y ALEP 91 ABREU 98D DLPH 96Y ALEP 96Y ALEP 96Y ALEP 96Y ALEP 96Y ALEP 96Y ALEP 97 ABREU 98D DLPH 96Y ALEP 96Y	$\Gamma_{b\overline{b}}/\Gamma_{\text{hadrons}} = 0.216 \text{ at}$	Z decay.
NALUE 90 BUSKULIC 96Y ALEP 97 BUSKULIC 96Y ALEP 90 BUSKULIC 96Y ALEP 91 ABREU 98D DLPH 96Y ALEP 96Y ALEP 96Y ALEP 96Y ALEP 96Y ALEP 96Y ALEP 97 ABREU 98D DLPH 96Y ALEP 96Y	- -	Γ ₃₄ /Γ
89 BUSKULIC 96Y reports $0.183 \pm 0.019 \pm 0.009$ for $B(D_5^+ \to \phi \pi^+) = 0.036$. W rescale to our best value $B(D_5^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is the experiment's error and our second error is the systematic error from using our best value $\Gamma(b \to \Lambda_c \text{ anything})/\Gamma_{\text{total}}$ 90 BUSKULIC 96Y ALEP $e^+e^- \to Z$ 90 BUSKULIC 96Y reports $0.110 \pm 0.014 \pm 0.006$ for $B(\Lambda_c^+ \to \rho K^- \pi^+) = 0.044$. W rescale to our best value $B(\Lambda_c^+ \to \rho K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$. Our first error their experiment's error and our second error is the systematic error from using our best value. F(Z/canything)/ Γ_{total} VALUE DOCUMENT ID 1ECN COMMENT F(Z/canything)/ Γ_{total} VALUE DOCUMENT ID 1ECN COMMENT F(Z/canything)/ Γ_{total} VALUE DOCUMENT ID 1ECN COMMENT F(Z/canything)/ Γ_{total} VALUE 90 ABREU 98D DLPH $e^+e^- \to Z$ 91 ABREU 98D DLPH $e^+e^- \to Z$ 91 ABREU 98D results are extracted from a fit to the b -tagging probability distributio based on the impact parameter.	VALUE	DOCUMENT ID TECN COMMENT
rescale to our best value $B(D_S^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value $\Gamma(b \to \Lambda_c \text{ anything})/\Gamma_{\text{total}}$ $\frac{DOCUMENT\ ID}{90\ BUSKULIC}$ $\frac{TECN}{96\ YALEP}$ $\frac{COMMENT}{e^+e^- \to Z}$ $\frac{25}{90\ BUSKULIC}$ 96Y ALEP $e^+e^- \to Z$ $\frac{1}{90\ BUSKULIC}$ 96Y ALEP $\frac{1}{90\ BUSKULIC}$ 96Y ALEP $\frac{1}{90\ BUSKULIC}$ $\frac{1}{90\ BUSKULIC}$ 96Y ALEP $\frac{1}{90\ BUSKULIC}$ $\frac{1}{90\ BUSKULIC}$ 98D DLPH $\frac{1}{90\ BUSKULIC}$ 91 ABREU 98D DLPH $\frac{1}{90\ BUSKULIC}$ 91 ABREU 98D Presults are extracted from a fit to the b -tagging probability distribution based on the impact parameter.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	rescale to our best value B($(D_c^+ \rightarrow \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is thele
VALUE DOCUMENT ID 1ECN COMMENT 90 BUSKULIC 96Y ALEP $e^+e^- \rightarrow Z$ 90 BUSKULIC 96Y reports 0.110 \pm 0.014 \pm 0.006 for B($\Lambda_c^+ \rightarrow pK^-\pi^+$) $=$ 0.044. W rescale to our best value B($\Lambda_c^+ \rightarrow pK^-\pi^+$) $=$ (5.0 \pm 1.3) \times 10 ⁻² . Our first error their experiment's error and our second error is the systematic error from using our besvalue. F(\overline{C}/C canything)/ Γ_{total} VALUE DOCUMENT ID 1ECN COMMENT F36/1 236/1 241.147 \pm 0.041 91 ABREU 98D DLPH $e^+e^- \rightarrow Z$ 91 ABREU 98D DLPH $e^+e^- \rightarrow Z$ 91 ABREU 98D DLPH $e^+e^- \rightarrow Z$ 91 ABREU 98D Presults are extracted from a fit to the b -tagging probability distributio based on the impact parameter.		
90 BUSKULIC 96Y reports 0.110 \pm 0.014 \pm 0.006 for B($\Lambda_c^+ \rightarrow \rho K^- \pi^+$) = 0.044. We rescale to our best value B($\Lambda_c^+ \rightarrow \rho K^- \pi^+$) = (5.0 \pm 1.3) \times 10 ⁻² . Our first error their experiment's error and our second error is the systematic error from using our best value.		N 135/1 DOCUMENT ID TECN COMMENT
rescale to our best value $B(A_c^+ \to pK^-\pi^+) = (5.0 \pm 1.3) \times 10^{-2}$. Our first error their experiment's error and our second error is the systematic error from using our best value. $\Gamma(Z/canything)/\Gamma_{total}$ VALUE 1.17 ±0.04 OUR AVERAGE 1.147±0.041 91 ABREU 98D DLPH 98D DLPH 98D DLPH 98D DLPH 99B DLPH 99B DLPH 99B DLPH 99B DLPH 99B DLPH 99B Presults are extracted from a fit to the b -tagging probability distribution based on the impact parameter.		
their experiment's error and our second error is the systematic error from using our best value.		
VALUE DOCUMENT ID TECN COMMENT 1.17 \pm 0.04 OUR AVERAGE 1.147 \pm 0.041 91 ABREU 98D DLPH $e^+e^- \rightarrow Z$ 1.230 \pm 0.036 \pm 0.065 92 BUSKULIC 94 ALEP $e^+e^- \rightarrow Z$ 91 ABREU 98D results are extracted from a fit to the b -tagging probability distribution based on the impact parameter.	their experiment's error and	$(A_c^+ \rightarrow pK^-\pi^+) = (5.0 \pm 1.3) \times 10^{-4}$. Our first error is our second error is the systematic error from using our best
1.17 \pm 0.04 OUR AVERAGE 1.147 \pm 0.041 91 ABREU 98D DLPH $e^+e^- \rightarrow Z$ 1.230 \pm 0.036 \pm 0.065 92 BUSKULIC 96Y ALEP $e^+e^- \rightarrow Z$ 91 ABREU 98D results are extracted from a fit to the b -tagging probability distributio based on the impact parameter.		Γ ₃₆ /Γ
1.230 \pm 0.036 \pm 0.065 92 BUSKULIC 96Y ALEP $e^+e^- \rightarrow Z$ 91 ABREU 98D results are extracted from a fit to the <i>b</i> -tagging probability distributio based on the impact parameter.	VALUE 1.17 ±0.04 OUR AVERAGE	
91 ABREU 98D results are extracted from a fit to the b-tagging probability distributio based on the impact parameter.	1.147 ± 0.041	
based on the impact parameter.		
⁹² BUSKULIC 96Y assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons, an PDG 96 branching ratios for charm decays. This is sum of their inclusive \overline{D}^0 , D^- , \overline{D}_s and Λ_c branching ratios, corrected to include inclusive Ξ_c and charmonium.	based on the impact param 92 BUSKULIC 96Y assumes Pl	eter. DG 96 production fractions for B^0 , B^+ , $B_{ m g}$, b baryons, and

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

$\Gamma(J/\psi(1S) \text{ anything})/\Gamma_{\text{total}}$ Γ_{37}/Γ	$\Gamma(\text{hadron}^+ \text{hadron}^-)/\Gamma_{\text{total}}$ Γ_{47}/Γ_{47}
<u>VALUE (units 10⁻²) CL% EVTS DOCUMENT ID TECN COMMENT</u> 1.16±0.10 OUR AVERAGE	<u>VALUE (units 10⁻⁵)</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> 1.7 ^{+1.9} ±0.2 105,106 BUSKULIC 96V ALEP $e^+e^- \rightarrow Z$
$1.12\pm0.12\pm0.10$ 93 ABREU 94P DLPH $e^+e^- \rightarrow Z$	-0. F
1.16±0.16±0.14 121 ⁹⁴ ADRIANI 93J L3 $e^+e^- → Z$ 1.21±0.13±0.08 BUSKULIC 92G ALEP $e^+e^- → Z$	105 BUSKULIC 96V assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons.
$1.21\pm0.13\pm0.08$ BUSKULIC 926 ALEP $e^+e^- \rightarrow Z$ • • • We do not use the following data for averages, fits, limits, etc. • • •	106 Average branching fraction of weakly decaying B hadrons into two long-lived charge hadrons, weighted by their production cross section and lifetimes.
1.3 $\pm 0.2 \pm 0.2$ 95 ADRIANI 92 L3 $e^+e^- \rightarrow Z$	Γ(charmless)/Γ _{total} Γ ₄₈ /Ι
<4.9 90 MATTEUZZI 83 MRK2 E_{Cm}^{ee} = 29 GeV	VALUE DOCUMENT ID TECH COMMENT
⁹³ ABREU 94P is an inclusive measurement from b decays at the Z . Uses $J/\psi(15) ightharpoonup$	0.007 ±0.021 107 ABREU 980 DLPH $e^+e^- \rightarrow Z$
e^+e^- and $\mu^+\mu^-$ channels. Assumes $\Gamma(Z\to b\overline{b})/\Gamma_{ m hadron}=0.22$. 94 ADRIANI 93) is an inclusive measurement from b decays at the Z . Uses $J/\psi(1S)\to \mu^+\mu^-$ and $J/\psi(1S)\to e^+e^-$ channels.	107 ABREU 98D results are extracted from a fit to the b-tagging probability distribution based on the impact parameter. The expected hidden charm contribution of 0.026 ± 0.000 has been subtracted.
95 ADRIANI 92 measurement is an inclusive result for B($Z \to J/\psi(15)X$) $\approx (4.1 \pm 0.7 \pm 0.3) \times 10^{-3}$ which is used to extract the b-hadron contribution to $J/\psi(15)$ production.	$\Gamma(\Lambda/\overline{\Lambda}_{anything})/\Gamma_{total}$ $\Gamma_{49}/\Gamma_{botal}$
$\Gamma(\psi(2S) \text{ anything})/\Gamma_{\text{total}}$ Γ_{38}/Γ	VALUE DOCUMENT ID TECN COMMENT 0.059 ±0.006 OUR AVERAGE
VALUE DOCUMENT ID TECN COMMENT	$0.0587 \pm 0.0046 \pm 0.0048$ ACKERSTAFF 97N OPAL $e^+e^- \rightarrow Z$
0.0048±0.0022±0.0010 96 ABREU 94P DLPH e+e→ Z	0.059 $\pm 0.007 \pm 0.009$ ABREU 95c DLPH $e^+e^- \to Z$
⁹⁶ ABREU 94P is an inclusive measurement from b decays at the Z . Uses $\psi(25) \rightarrow J/\psi(15) \pi^+\pi^-$, $J/\psi(15) \rightarrow \mu^+\mu^-$ channels. Assumes $\Gamma(Z \rightarrow b\bar{b})/\Gamma_{hadron} = 0.22$.	Γ(b-baryon anything)/Γ _{total} Γ ₅₀ /Γ
$\Gamma(\chi_{c1}(1P) \text{ anything})/\Gamma_{\text{total}}$ Γ_{39}/Γ	0.102 \pm 0.007 \pm 0.027 108 BARATE 98V ALEP $e^+e^- \rightarrow Z$
VALUE EVTS DOCUMENT ID TECH COMMENT	108 BARATE 98V assumes B($B_S \rightarrow pX$) = 8 ± 4% and B(b -baryon $\rightarrow pX$) = 58 ± 6%
0.018±0.005 OUR AVERAGE	
$0.014 \pm 0.006 \stackrel{+ 0.004}{- 0.002}$ 97 ABREU 94P DLPH $e^+e^- \rightarrow Z$	$\Gamma(\mu^+\mu^-$ anything)/ $\Gamma_{ ext{total}}$ Γ_{52}/Γ Test for $\Delta B=1$ weak neutral current.
$0.024 \pm 0.009 \pm 0.002$ 19 ⁹⁸ ADRIANI 93. L3 $e^+e^- \rightarrow Z$	VALUE CL% DOCUMENT ID TECH COMMENT
⁹⁷ ABREU 94P is an inclusive measurement from b decays at the Z. Uses $\chi_{C1}(1P) \rightarrow 0$	<3.2 x 10 ⁻⁴ 90 ABBOTT 98B D0 p p 1.8 TeV • • • We do not use the following data for averages, fits, limits, etc. • • •
$J/\psi(15)\gamma$, $J/\psi(15)\to \mu^+\mu^-$ channels. Assumes no $\chi_{C2}(1P)$ and $\Gamma(Z\to b\overline{b})/\Gamma$ hadron =0.22.	$<5.0 \times 10^{-5}$ 90 109 ALBAJAR 91C UA1 $E_{\rm cm}^{p\bar{p}}=630~{\rm GeV}$
⁹⁸ ADRIANI 93J is an inclusive measurement and assumes χ_{c1} come from b decays at Z .	<0.02 95 ALTHOFF 84G TASS $E_{\text{cm}}^{\text{ee}}$ = 34.5 GeV
Uses $J/\psi(15) \rightarrow \mu^+\mu^-$ channel.	<0.007 95 ADEVA 83 MRKJ $E_{\rm CM}^{ee} = 30-38 \; {\rm GeV}$
$\Gamma(\chi_{c1}(1P) \text{ anything})/\Gamma(J/\psi(1S) \text{ anything})$ Γ_{39}/Γ_{37}	<0.007 95 BARTEL 83B JADE $E_{CM}^{ee}=$ 33–37 GeV
VALUE EVTS DOCUMENT ID TECN COMMENT	109 Both ABBOTT 98B and GLENN 98 claim that the efficiency quoted in ALBAJAR 910
• • We do not use the following data for averages, fits, limits, etc. • • •	was overestimated by a large factor.
1.92 ± 0.82 121 99 ADRIANI 93. L3 $e^+e^- \rightarrow Z$ 99 ADRIANI 93.1 is a ratio of inclusive measurements from <i>b</i> decays at the <i>Z</i> using only the	$ [\Gamma(e^+e^- \text{ anything}) + \Gamma(\mu^+\mu^- \text{ anything})]/\Gamma_{\text{total}} $ Test for $\Delta B = 1$ weak neutral current. ($\Gamma_{51} + \Gamma_{52}$)/ Γ
$J/\psi(15) \rightarrow \mu^{+}\mu^{-}$ channel since some systematics cancel.	VALUE CL% DOCUMENT ID TECN COMMENT
	• • • We do not use the following data for averages, fits, limits, etc. • •
$\Gamma(\overline{s}\gamma)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) CL% DOCUMENT ID TECN COMMENT	<0.008 90 MATTEUZZI 83 MRK2 E_{cm}^{ee} = 29 GeV
3.11±0.80±0.72 100 BARATE 981 ALEP $e^+e^- \rightarrow Z$	Γ(ν ∇anything) / Γ _{total} Γ ₅₃ /Γ
	VALUE DOCUMENT ID TECN COMMENT
< 5.4 90 101 ADAM 960 DLPH $e^+e^- \to Z$	• • • We do not use the following data for averages, fits, limits, etc. • • • $<3.9\times10^{-4} \qquad \qquad ^{110} \text{ GROSSMAN} \qquad 96 \text{RVUE} e^+e^- \rightarrow \text{ Z}$
<12 90 102 ADRIANI 93L L3 $e^+e^- \rightarrow Z$ 100 BARATE 98I uses liftime tagged $Z \rightarrow b\overline{b}$ sample.	$<$ 3.9 \times 10 ⁻⁴ 110 GROSSMAN 96 RVUE $e^+e^- \rightarrow Z$ 110 GROSSMAN 96 limit is derived from the ALEPH BUSKULIC 95 limit B($B^+ \rightarrow \tau^+ \nu_{\tau}$
Fig. 101 ADAM 96D assumes $f_{B0} = f_{B^-} = 0.39$ and $f_{B_S} = 0.12$.	$< 1.8 \times 10^{-3}$ at CL=90% using conservative simplifying assumptions.
102 ADRIANI 93L result is for $\bar{b} \to \bar{s} \gamma$ is performed inclusively.	
$\Gamma(K^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{41}/Γ	$B^{\pm}/B^0/B_s^0/b$ -baryon ADMIXTURE REFERENCES
VALUE DOCUMENT ID TECH COMMENT	ABBIENDI 00E EPJ C13 225 G. Abbiendi et al. (OPAL Collab.)
0.74±0.06 OUR AVERAGE	_ ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.)
$0.72 \pm 0.02 \pm 0.06$ BARATE 98V ALEP $e^+e^- \rightarrow Z$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00 EPJ C13 47 M. Acciarri et al. (L3 Collab.) AFFOLDER 00E PRL 84 1663 T. Affolder et al. (CDF Collab.)
0.72 \pm 0.06 BARATE 98V ALEP $e^+e^- \rightarrow Z$ 0.88 \pm 0.05 \pm 0.18 ABREU 95C DLPH $e^+e^- \rightarrow Z$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00 EPJ C13 47 M. Acciarri et al. (L3 Collab.) AFFOLDER 00E PRL 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPJ C12 609 G. Abbiendi et al. (OPAL Collab.) ABR 09P PR D60 092005 F. Abre et al. (CDF Collab.)
0.72 \pm 0.02 \pm 0.06 BARATE 98V ALEP $e^+e^- \rightarrow Z$ 0.88 \pm 0.05 \pm 0.18 ABREU 95C DLPH $e^+e^- \rightarrow Z$ $\Gamma(K_5^0 \text{anything})/\Gamma_{\text{total}}$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00 EPJ C13 47 II. A Collab. AFFOLDER 00E PPL 84 1663 T. Affolder et al. (DF Collab.) ABBIENDI 99J EPJ C12 609 G. Abbienci et al. (CDF Collab.) ABE 99P PR D60 092005 F. Abe et al. (ALPF Collab.) BARATE 99G EPI C6555 R. Barate et al. (ALPF Collab.)
0.72 \pm 0.06 BARATE 98V ALEP $e^+e^- \rightarrow Z$ 0.88 \pm 0.05 \pm 0.18 ABREU 95C DLPH $e^+e^- \rightarrow Z$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00 EPJ C13 47 M. Acciarri et al. (L3 Collab.) AFFOLDER 00E PRL 84 1863 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPJ C12 609 G. Abbienci et al. (CDF Collab.) ABE 99P PR D50 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ C6 555 R. Barate et al. (ALEPH Collab.) ABBOTT 98B PL B423 419 B. Abbott et al. (CDF Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABREU 98D PL B426 133 P. Abreu et al. (CDF Collab.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00 EPJ C13 47 M. Acciarri et al. (L3 Collab.) AFFOLDER 00E PRL 84 1863 T. Affolder et al. (CDF Collab.) ABBLENDI 99J EPJ C12 609 G. Abbienci et al. (CDF Collab.) ABE 99P PR D60 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ C6 555 R. Barate et al. (ALEPH Collab.) ABBOTT 98B PL B423 419 B. Abbott et al. (CDF Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABREU 98D PL B426 133 P. Abreu et al. (DELPHI Collab.) ABREU 98H PL B425 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 PL B416 220 M. Acciarri et al. (DELPHI Collab.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00 EPJ C13 47 M. Acciarri et al. (L1 Sollab.) AFFOLDER 00E PRL 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPJ C12 609 G. Abbienoi et al. (CDF Collab.) ABE 99P PR D60 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ C6 5555 R. Barate et al. (CDF Collab.) ABBOTT 98B PL B423 419 B. Abbott et al. (CDF Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABREU 98D PL B423 419 B. Abbott et al. (CDF Collab.) ABREU 98H PL B425 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98K PL B45 220 M. Acciarri et al. (L3 Collab.) ACCIARRI 98K PL B45 174 M. Acciarri et al. (L3 Collab.) ACCIARRI 98K PL B45 174 M. Acciarri et al. (CDR.) ACCIARRI 98K PL B45 174 M. Acciarri et al. (CDR.) ACCIARRI 98K PL B45 174 M. Acciarri et al. (DPA. Collab.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00 EPJ. 13 47 M. Acciarri et al. (L. Sollab.) AFFOLDER 00E PRL 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPJ. C12 609 G. Abbienoi et al. (CDF Collab.) ABE 99P PR D60 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ. G6 5555 R. Barate et al. (ALEPH Collab.) ABBOTT 98B PL B423 419 B. Abbott et al. (CDF Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABREU 98D PL B423 419 B. Abbott et al. (CDF Collab.) ABREU 98H PL B425 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98H PL B452 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 PL B46 220 M. Acciarri et al. (L. Scollab.) ACCIARRI 98E EPJ. C1 439 M. Acciarri et al. (L. Scollab.) BARATE 98I PL B429 169 R. Barate et al. (ALEPH Collab.) BARATE 980 EPJ. C4 387 R. Barate et al. (ALEPH Collab.)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00 EPJ C13 47 M. Acciarri et al. (LI Sollab.) AFFOLDER 00E PRL 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPJ C12 609 G. Abbienoi et al. (CDF Collab.) ABE 99P PR D60 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ C6 555 F. Abe et al. (CDF Collab.) ABBOTT 98B PL B423 419 B. Abbott et al. (CDF Collab.) ABBOTT 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABE 38B PR D57 5382 F. Abe et al. (CDF Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABREU 98D PL B426 153 P. Abreu et al. (DELPHI Collab.) ABREU 98H PL B425 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 P. B416 220 M. Acciarri et al. (LI Sollab.) ACCIARRI 98K PL B436 174 M. Acciarri et al. (LI Sollab.) ACKIRSTAFF 98E EPJ C1 439 R. Barate et al. (ALEPH Collab.) BARATE 980 EPJ C4 387 R. Barate et al. (ALEPH Collab.) BARATE 98V EPJ C5 205 R. Barate et al. (ALEPH Collab.) BARATE 98V EPJ C5 205 R. Barate et al. (ALEPH Collab.) GLENN 98 PRL 80 2298 S. Glenn et al. (CLEC Collab.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00E PPL 84 1663 T. Affolder et al. (LI Sollab.) AFFOLDER 00E PPL 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EP. LCJ 609 G. Abbienci et al. (CDF Collab.) ABE 99P PR D60 092005 F. Abe et al. (CDF Collab.) BARATE 99G EP. LG 6555 F. Abe et al. (CDF Collab.) ABBOTT 98B PL B423 419 B. Abbott et al. (CDF Collab.) ABBOTT 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABE 38B PR D57 5382 F. Abe et al. (CDF Collab.) ABE 38B PP D57 5382 F. Abe et al. (CDF Collab.) ABREU 98D PL B423 139 P. Abreu et al. (DELPHI Collab.) ABREU 98D PL B425 139 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98P PL B416 220 M. Acciarri et al. (LI Sollab.) ACCIARRI 98K PL B436 174 M. Acciarri et al. (LI Sollab.) ACKIENTAFF 98E EP. LG 439 R. Barate et al. (ALEPH Collab.) BARATE 98U EP. C4 387 R. Barate et al. (ALEPH Collab.) BARATE 98V EP. LC 305 R. Barate et al. (ALEPH Collab.) BARATE 98V EP. LC 337 R. Barate et al. (ALEPH Collab.) ACKIENTAFF 97F ZPHY C73 397 K. Ackerstaff et al. (OPAL Collab.) CHENN 98 PRL 80 2299 S. Glenn et al. (CLEC Collab.) ACKIERSTAFF 777 ZPHY C74 423 K. Ackerstaff et al. (OPAL Collab.)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00 EPJ C13 47 M. Acciarri et al. (L3 Collab.) AFFOLDER 00E PPR 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPJ C12 609 G. Abbienci et al. (CDF Collab.) ABE 99P PR D60 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ C6 555 F. Abe et al. (CDF Collab.) ABBOTT 98B PL B423 419 B. Abbott et al. (DO Collab.) ABE 98B PR D57 5832 F. Abe et al. (DO Collab.) ABE 98B PR D57 5832 F. Abe et al. (DO Collab.) ABE 98B PR D57 5832 P. Abreu et al. (DELPHI Collab.) ABREU 98D PL B426 193 P. Abreu et al. (DELPHI Collab.) AGREU 98D PL B426 193 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 P. B462 209 M. Acciarri et al. (L3 Collab.) ACCIARRI 98K PL B456 174 M. Acciarri et al. (L3 Collab.) ACKIRSTAFF 98E EPJ C1 439 K. Ackerstaff et al. (DPAL Collab.) BARATE 98U EPJ C3 505 R. Barate et al. (ALEPHI Collab.) BARATE 98V EPJ C5 505 R. Barate et al. (ALEPHI Collab.) GLENN 98 PRL 80 2289 ACKERSTAFF 97N ZPHY C73 397 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97N ZPHY C74 423 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 97N ZPHY C74 425 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 97N ZPHY C74 425 K. Ackerstaff et al. (OPAL Collab.) ABRU 96E PL B377 195 P. Abreu et al. (DELPHI Collab.)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00 EPJ 134 7 M. Acciarri et al. (LI Sollab.) AFFOLDER 00E PPR 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPJ 126 609 G. Abbienci et al. (CDF Collab.) ABE 99P PR D60 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ 16 6555 R. Barate et al. (ALEPH Collab.) ABED 98B PR D57 5882 F. Abe et al. (CDF Collab.) ABE 98B PR D57 5882 F. Abe et al. (DD Collab.) ABE 98B PR D57 5882 F. Abe et al. (DD Collab.) ABE 98B PR D57 5882 F. Abe et al. (DCF Collab.) ABEU 98D PL B426 133 P. Abreu et al. (DELPHI Collab.) ABREU 98D PL B426 133 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98H PL B425 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98K PL B4616 220 M. Acciarri et al. (LI Sollab.) ACCIARRI 98K PL B4616 220 M. Acciarri et al. (LI Collab.) ACCIARRI 98K PL B4616 220 M. Acciarri et al. (LI Collab.) BARATE 98U EPJ C1 439 K. Ackerstaff et al. (OPAL Collab.) BARATE 98V EPJ C5 50S R. Barate et al. (ALEPH Collab.) BARATE 98V EPJ C5 20S R. Barate et al. (ALEPH Collab.) ACKERSTAFF 97N ZPHY C73 397 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 97N ZPHY C74 423 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 97N ZPHY C74 425 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 97N ZPHY C76 425 K. Ackerstaff et al. (OPAL Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00 EPJ C13 47 M. Acciarri et al. (L13 Collab.) AFFOLDER 00E PRL 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPJ C12 609 G. Abbienoi et al. (CDF Collab.) ABE 99P PR D50 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ C6 555 R. Barate et al. (ALEPHI Collab.) ABE 98B PR D57 5382 F. Abe et al. (DD Collab.) ABE 98B PR D57 5382 P. Abreu et al. (DD Collab.) ABE 98B PR D57 5382 P. Abreu et al. (DD Collab.) ABREU 98D PL B423 139 P. Abreu et al. (DELPHI Collab.) ABREU 98D PL B426 133 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 P. B452 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 P. B452 139 P. Abreu et al. (L13 Collab.) ACCIARRI 98 P. B456 174 M. Acciarri et al. (L13 Collab.) ACCIARRI 98V PL B456 174 M. Acciarri et al. (L13 Collab.) BARATE 980 EPJ C1 439 R. Barate et al. (ALEPHI Collab.) BARATE 980 EPJ C5 205 R. Barate et al. (ALEPHI Collab.) GLENN 98 PRL 80 2289 S. Glenn et al. (ALEPHI Collab.) ACKERSTAFF 97N ZPHY C73 397 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 97N ZPHY C74 423 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 97N ZPHY C74 425 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 97N ZPHY C76 425 K. Ackerstaff et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACMM 96C ZPHY C76 955 M. Acairri et al. (DELPHI Collab.) BUSKULIC 96 F. PL 839 151 D. Buskulic et al. (ALEPH Collab.)
0.72 ± 0.02 ± 0.06	ABREU 00D PL B478 14 P. Abreu et al. (CELPHI Collab.) ACCIARRI 00 EPR 84 1663 T. Affolder et al. (LI Sollab.) ABBIENDI 99J EPJ. C12 609 G. Abbienoi et al. (CDF Collab.) ABE 99P PR D50 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ. C6 555 F. Abe et al. (CDF Collab.) ABE 99B PR D57 5382 F. Abe et al. (CDF Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABE 98B PR D57 5382 F. Abe et al. (DD Collab.) ABE 98B PR D57 5382 F. Abe et al. (DD Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABEU 98D PL B426 133 P. Abreu et al. (DELPHI Collab.) ABREU 98D PL B426 133 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98P PL B425 139 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98P PL B456 120 M. Acciarri et al. (LI Collab.) ACCIARRI 98P EPJ C1 439 M. Acciarri et al. (LI Collab.) ACKIRSTAFF 98D EPJ C1 439 R. Barate et al. (ALEPHI Collab.) BARATE 98V EPJ C5 205 R. Barate et al. (ALEPHI Collab.) BARATE 98V EPJ C5 205 R. Barate et al. (ALEPHI Collab.) ACKIRSTAFF 97N ZPHY C73 397 M. Accessfaff et al. (DPAL Collab.) ACKIRSTAFF 97N ZPHY C74 423 M. Accessfaff et al. (DPAL Collab.) ACKIRSTAFF 97N ZPHY C74 425 M. Accessfaff et al. (DPAL Collab.) ACKIRSTAFF 97N ZPHY C76 425 M. Accessfaff et al. (DPAL Collab.) ACKIRSTAFF 97N ZPHY C76 425 M. Accessfaff et al. (DPAL Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ADAM 96C ZPHY C72 207 W. Adam et al. (DELPHI Collab.) BUSKULIC 96V PL B338 471 D. Buskulic et al. (ALEPH Collab.) BUSKULIC 96V PL B384 471 D. Buskulic et al. (ALEPH Collab.)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ABREU 00D PL B478 14 P. Abreu et al. (CELPHI Collab.) ACCIARRI 00E PPL 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPL C12 609 G. Abbienoi et al. (CDF Collab.) ABBE 99P PR D60 092005 F. Abe et al. (CDF Collab.) BARATE 99G PPL 6555 R. Barate et al. (ALEPH Collab.) ABBOTT 98B PL B423 419 B. Abbott et al. (DD Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABEU 98D PL B425 419 B. Abbott et al. (DD Collab.) ABREU 98D PL B425 399 P. Abreu et al. (CDF Collab.) ABREU 98H PL B425 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 PL B46 220 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 98K PL B456 174 M. Acciarri et al. (DLCHPII Collab.) ACCIARRI 98K PL B436 174 M. Acciarri et al. (L1 Collab.) BARATE 98I PL B429 169 R. Barate et al. (ALEPH Collab.) BARATE 98V EPJ C5 205 R. Barate et al. (ALEPH Collab.) GLENN 98 PR 80 2298 S. Glenn et al. (ALEPH Collab.) ACKERSTAFF 97N ZPHY C73 397 K. Ackerstaff et al. (ALEPH Collab.) ACKERSTAFF 97N ZPHY C73 397 K. Ackerstaff et al. (ALEPH Collab.) ACKERSTAFF 97N ZPHY C73 397 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97N ZPHY C73 397 M. Acciarri et al. (DPAL Collab.) ACKERSTAFF 97N ZPHY C73 397 M. K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97N ZPHY C73 397 M. K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97N ZPHY C73 397 M. Acciarri et al. (DELPHI Collab.) ACKERSTAFF 98W PL B377 195 P. Abreu et al. (DELPHI Collab.) ACKERSTAFF 98W ZPHY C75 425 M. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 98W ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ADAM 96 ZPHY C72 207 M. Acciarri et al. (DELPHI Collab.) BUSKULIC 96F PL B369 151 D. Buskulic et al. (ALEPH Collab.) BUSKULIC 96V PL B384 471 D. Buskulic et al. (ALEPH Collab.) GROSSMAN 96 NP B46 369 V. Grossman, Z. Ligeti, E. Nardi
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ABREU 00D PL B478 14 P. Abreu et al. (CELPHI Collab.) ACCIARRI 00E PPL 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPL C12 609 G. Abbienoi et al. (CDF Collab.) ABBIENDI 99J EPL C2 609 G. Abbienoi et al. (CDF Collab.) ABBE 99P PR D80 092005 F. Abe et al. (CDF Collab.) BARATE 99G PPL 6555 R. Barate et al. (ALEPH Collab.) ABBOTT 98B PPL 642 419 B. Abbott et al. (DD Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABREU 98D PL B476 193 P. Abreu et al. (DD Collab.) ABREU 98H PL B475 399 P. Abreu et al. (DELPHI Collab.) ABREU 98H PL B475 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98K PPL B486 120 M. Acciarri et al. (LI Collab.) ACCIARRI 98K PPL B486 174 M. Acciarri et al. (LI Collab.) ACKERSTAFF 98E EPJ C1 439 K. Ackerstaff et al. (DRAC Collab.) BARATE 98U EPJ C4 387 R. Barate et al. (ALEPH Collab.) BARATE 98U EPJ C5 205 R. Barate et al. (ALEPH Collab.) GLENN 98 PRL 80 2298 S. Glenn et al. (ALEPH Collab.) ACKERSTAFF 97F ZPHY C73 397 K. Ackerstaff et al. (ALEPH Collab.) ACKERSTAFF 97F ZPHY C73 425 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97V ZPHY C74 423 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97V ZPHY C75 425 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97V ZPHY C75 425 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97V ZPHY C75 425 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97V ZPHY C75 425 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97V ZPHY C75 425 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97V ZPHY C75 425 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97V ZPHY C75 425 K. Ackerstaff et al. (DELPHI Collab.) ACKERSTAFF 97V ZPHY C75 425 K. Ackerstaff et al. (DELPHI Collab.) ACKERSTAFF 97V ZPHY C75 425 K. Ackerstaff et al. (DELPHI Collab.) ACKERSTAFF 97V ZPHY C75 425 K. Ackerstaff et al. (DELPHI Collab.) ACKERSTAFF 97V ZPHY C75 425 K. Ackerstaff et al. (DELPHI Collab.) ACKERSTAFF 97V ZPHY C72 207 W. Adam et al. (DELPHI Collab.) BUSKULIC 96F PL B369 151 D. Buskulic et al. (ALEPH Collab.) BUSKULIC 96F PL B369 151 D. Buskulic et al. (ALEPH Collab.) ASO 96B NP B480 753 (erra
0.72 \pm 0.02 \pm 0.06 BARATE 98V ALEP $e^+e^- \rightarrow Z$ 0.88 \pm 0.05 \pm 0.18 BREU 95C DLPH $e^+e^- \rightarrow Z$ $+ e^- \rightarrow Z$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00E EPJ C13 47 M. Acciarri et al. (LI Sollab.) AFFOLDER 00E PRL 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPJ C12 609 G. Abbiendi et al. (CDF Collab.) ABE 99P PR D60 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ C6 5555 R. Barate et al. (CDF Collab.) ABBOTT 98B PL B423 419 B. Abbott et al. (CDF Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.) ABREU 98D PL B426 193 P. Abreu et al. (CDELPHI Collab.) ABREU 98H PL B425 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 PL B46 220 M. Acciarri et al. (LI Sollab.) ACCIARRI 98 PL B46 220 M. Acciarri et al. (LI Sollab.) ACCIARRI 98E EPJ C1 439 M. Acciarri et al. (LI Sollab.) BARATE 98I PL B429 169 R. Barate et al. (ALEPH Collab.) BARATE 98U EPJ C4 387 R. Barate et al. (ALEPH Collab.) BARATE 98V EPJ C5 205 R. Barate et al. (ALEPH Collab.) ACKERSTAFF 97F ZPHY C73 397 M. Accerstaff et al. (OPAL Collab.) ACKERSTAFF 97F ZPHY C74 423 M. Accerstaff et al. (OPAL Collab.) ACKERSTAFF 97F ZPHY C74 425 M. Accerstaff et al. (OPAL Collab.) ACKERSTAFF 97F ZPHY C75 425 M. Accerstaff et al. (OPAL Collab.) ACKERSTAFF 97F ZPHY C76 425 M. Accerstaff et al. (OPAL Collab.) ACKERSTAFF 97F ZPHY C76 425 M. Accerstaff et al. (OPAL Collab.) ACKERSTAFF 97F ZPHY C76 425 M. Accerstaff et al. (OPAL Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ADAM 96 ZPHY C79 551 M. Acciarri et al. (DELPHI Collab.) ADAM 96 ZPHY C79 561 M. Acciarri et al. (DELPHI Collab.) BUSKULIC 96F PL B384 471 D. Buskulic et al. (DELPHI Collab.) BUSKULIC 96F PL B384 471 D. Buskulic et al. (ALEPH Collab.) ABE D1 96 PR D54 1 M. Acciarri et al. (ALEPH Collab.) ABE D1 96 PR D54 1 M. Acciarri et al. (ALEPH Collab.) ABE D1 96 PR D54 1 M. Acciarri et al. (ALEPH Collab.) ABE D1 96 PR D54 1 M. Acciarri et al. (ALEPH
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ABREU 00D PL B478 14 P. Abreu et al. (DELPHI Collab.) ACCIARRI 00E PPL 84 1663 T. Affolder et al. (CDF Collab.) AFFOLDER 00E PPR 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPL C12 609 G. Abbiendi et al. (CDF Collab.) ABE 99P PR D60 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ C6 555 R. Barate et al. (ALEPH Collab.) ABE 98B PR D57 5362 F. Abe et al. (CDF Collab.) ABE 98B PR D57 5362 F. Abe et al. (CDF Collab.) ABREU 98D PL B423 419 B. Abbott et al. (CDF Collab.) ABREU 98D PL B425 193 P. Abreu et al. (CDF Collab.) ABREU 98H PL B425 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 PL B46 220 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 98K PL B46 27 M. Acciarri et al. (LI Collab.) ACCIARRI 98K PL B496 174 M. Acciarri et al. (LI Collab.) ACKERSTAFF 98I PL B429 169 R. Barate et al. (ALEPH Collab.) BARATE 98U EPJ C1 439 K. Ackerstaff et al. (ALEPH Collab.) GLENN 98 PRL 80 2298 S. Glenn et al. (ALEPH Collab.) ACKERSTAFF 97F ZPHY C73 397 K. Ackerstaff et al. (ALEPH Collab.) ACKERSTAFF 97F ZPHY C73 397 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97F ZPHY C73 397 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97F ZPHY C73 397 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97F ZPHY C73 397 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97F ZPHY C73 397 M. Acciarri et al. (DPAL Collab.) ACKERSTAFF 97F ZPHY C73 397 M. Acciarri et al. (DPAL Collab.) ACKERSTAFF 98F ZPHY C75 425 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 98F ZPHY C75 425 M. Ackerstaff et al. (DPAL Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ADAM 96 ZPHY C72 207 W. Adam et al. (DELPHI Collab.) BUSKULIC 96F PL B369 151 D. Buskulic et al. (ALEPH Collab.) BUSKULIC 96F PL B369 151 D. Buskulic et al. (ALEPH Collab.) BUSKULIC 96F PL B369 151 D. Buskulic et al. (ALEPH Collab.) BUSKULIC 96F PL B369 151 D. Buskulic et al. (ALEPH Collab.) BUSKULIC 96F PL B369 151 D. Buskulic et al. (ALEPH Collab.) BUSKULIC 96F PL B369 151 D. Buskulic et al. (ALEPH Collab.) BUSKULIC 96F PL B369 151 D. Busk
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ABREU ODD PL B478 14 P. Abreu et al. (CELPHI Collab.) ACCIARN OE EPJ C13 47 M. Acciarri et al. (LS Collab.) AFFOLDER ODE PRL 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPJ C12 609 G. Abbienci et al. (CDF Collab.) ABE 99P PR D50 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ C6 555 R. Barate et al. (ALEPH Collab.) ABBOTT 98B PL B423 419 B. Abbott et al. (CDF Collab.) ABE 38B PR D57 5382 F. Abe et al. (CDF Collab.) ABREU 98D PL B423 419 B. Abbott et al. (CDF Collab.) ABREU 98D PL B425 133 P. Abreu et al. (CDF Collab.) ARREU 98D PL B425 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98P PL B416 220 M. Acciarri et al. (LS Collab.) ACCIARRI 98P PL B416 220 M. Acciarri et al. (LS Collab.) ACCIARRI 98P EPJ C1 439 K. Accessfaff et al. (DELPHI Collab.) BARATE 980 EPJ C1 439 R. Barate et al. (ALEPH Collab.) BARATE 980 EPJ C3 505 R. Barate et al. (ALEPH Collab.) BARATE 980 EPJ C5 205 R. Barate et al. (ALEPH Collab.) ACKERSTAFF 97N ZPHY C73 397 K. Ackessfaff et al. (DPAL Collab.) ACKERSTAFF 97N ZPHY C74 423 K. Ackessfaff et al. (DPAL Collab.) ACKERSTAFF 97N ZPHY C74 425 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97N ZPHY C74 425 K. Ackerstaff et al. (DPAL Collab.) ACKERSTAFF 97N ZPHY C75 425 K. Ackerstaff et al. (DPAL Collab.) ACCIARRI 96C PPH C377 1379 M. Acciarri et al. (DPAL Collab.) ADAM 96 ZPHY C72 207 W. Adam et al. (DELPHI Collab.) BUSKULIC 96V PL B384 471 D. Buskulic et al. (ALEPH Collab.) BUSKULIC 96V PL B384 471 D. Buskulic et al. (ALEPH Collab.) BUSKULIC 96V PL B384 471 D. Buskulic et al. (ALEPH Collab.) ABREU 96C PL B377 135 P. Abreu et al. (DELPHI Collab.) BUSKULIC 96V PL B384 471 D. Buskulic et al. (ALEPH Collab.) ABREU 95C PL B387 437 P. Abreu et al. (DELPHI Collab.) ABREU 95C PL B387 437 P. Abreu et al. (DELPHI Collab.) ABREU 95C PL B384 471 D. Buskulic et al. (ALEPH Collab.) ABREU 95C PL B384 471 D. Buskulic et al. (ALEPH Collab.) ABREU 95C PL B384 471 P. Abreu et al. (DELPHI Collab.) ABREU 95C PL B384 471 P. Abreu et al. (DELPHI Collab.) ABREU 95C PL B38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ABREU ODD PL B478 14 P. Abreu et al. (CELPHI Collab.) ACCIARN OE EPJ C13 47 M. Acciarri et al. (L3 Collab.) AFFOLDER ODE PRL 84 1663 T. Affolder et al. (CDF Collab.) ABBIENDI 99J EPJ C12 609 G. Abbienci et al. (CDF Collab.) ABE 99P PR D50 092005 F. Abe et al. (CDF Collab.) BARATE 99G EPJ C6555 R. Barate et al. (CDF Collab.) ABBOTT 98B PL B423 419 B. Abbott et al. (CDF Collab.) ABE 38B PR D57 5382 F. Abe et al. (CDF Collab.) ABREU 98D PL B423 419 B. Abbott et al. (CDF Collab.) ABREU 98D PL B426 133 P. Abreu et al. (DELPHI Collab.) ARREU 98D PL B425 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 PL B416 220 M. Acciarri et al. (L3 Collab.) ACCIARRI 98 PL B416 220 M. Acciarri et al. (L3 Collab.) ACCIARRI 98E EPJ C1 439 K. Accessfaff et al. (DALEPH Collab.) BARATE 980 EPJ C4 387 R. Barate et al. (ALEPH Collab.) BARATE 980 EPJ C5 205 R. Barate et al. (ALEPH Collab.) GLENN 98 PRL 80 2299 S. Glenn et al. (ALEPH Collab.) ACKERSTAFF 977 ZPHY C73 397 K. Accessfaff et al. (ALEPH Collab.) ACKERSTAFF 977 ZPHY C74 423 K. Accessfaff et al. (ALEPH Collab.) ACKERSTAFF 977 ZPHY C74 425 K. Accessfaff et al. (OPAL Collab.) ACKERSTAFF 978 ZPHY C74 425 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 397 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C PJ C4 387 R. Barate et al. (ALEPH Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) ACCIARRI 96C PJ C4 423 K. Accessfaff et al. (OPAL Collab.) AC
0.72 \pm 0.02 \pm 0.06	ABREU 00D PL B478 14 P. Abreu et al. (COELPHI Collab.) ACCIARRI 00E EPJ C13 47 M. Acciarri et al. (LOCO Collab.) ABBIENDI 99J EPJ C12 609 G. Abbiendi et al. (CDF Collab.) ABBIENDI 99J EPJ C12 609 G. Abbiendi et al. (CDF Collab.) BARATE 99P PR D50 092005 F. Abe et al. (CDF Collab.) BARATE 99B PR D57 5882 F. Abe et al. (CDF Collab.) ABBEU 98B PR D57 5882 F. Abe et al. (CDF Collab.) ABREU 98D PL B423 419 B. Abbott et al. (D0 Collab.) ABREU 98D PL B426 193 P. Abreu et al. (D0 Collab.) ABREU 98D PL B425 399 P. Abreu et al. (DELPHI Collab.) ACCIARRI 98 PL B416 220 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 98 PL B416 220 M. Acciarri et al. (ELPHI Collab.) ACCIARRI 98 PL B425 139 M. Acciarri et al. (LOCO COLLAB.) ACCIARRI 98 PL B426 193 M. Acciarri et al. (DALPHI Collab.) ACCIARRI 98 PL B429 199 R. Barate et al. (OPAL Collab.) BARATE 98U EPJ C1 387 R. Barate et al. (ALEPH Collab.) BARATE 98U EPJ C5 305 R. Barate et al. (ALEPH Collab.) GLENN 98 PRI 80 2289 ACKERSTAFF 977 ZPHY C73 397 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 977 ZPHY C74 423 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 978 ZPHY C75 425 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 978 ZPHY C76 425 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 979 ZPHY C76 425 K. Ackerstaff et al. (OPAL Collab.) ACKERSTAFF 970 ZPHY C77 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C71 379 M. Acciarri et al. (DELPHI Collab.) ACCIARRI 96C ZPHY C72 307 W. Adam et al. (DELPHI Collab.) BUSKULIC 96V PL B384 471 D. Buskulic et al. (ALEPH Collab.) ABS 960 PP D53 1 BUSKULIC 96V PL B384 471 D. Buskulic et al. (ALEPH Collab.) ABS 960 PP D53 19 PN D54 53 99 PN D54 10 PN D56 753 (erratum) PDG 96 PR D54 1 ABS 970 PN D54 10 PN D56 753 (erratum) PDG 96 PR D54 1 ABS 970 PN D54 10 PN D54 10 PN D56

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE, B^{*} , B_{s}^{*} (5732)

ABREU	93C	PL 8301 145	P. Abreu et al.	(DELPHI Collab.)
ABREU	93D	ZPHY C57 181	P. Abreu et al.	(DELPHI Collab.)
ABREU	93G	PL B312 253	P. Abreu et al.	(DELPHI Collab.)
ACTON	93C	PL B307 247	P.D. Acton et al.	(OPAL Collab.)
ACTON	93L	ZPHY C60 217	P.D. Acton et al.	(OPAL Collab.)
ADRIANS	931	PL B317 467	O. Adriani et al.	(L3 Collab.)
ADRIANI	93K	PL B317 474	O. Adriani et al.	(L3 Collab.)
ADRIANI	93L	PL B317 637	O. Adriani et al.	(L3 Collab.)
AKER\$	93B	ZPHY C60 199	R. Akers et al.	(OPAL Collab.)
BUSKULIC	93B	PL B298 479	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	930	PL B314 459	D. Buskulic et al.	(ALEPH Collab.)
ABREU	92	ZPHY C53 567	P. Abreu et al.	(DELPHI Collab.)
ACTON	92	PL B274 513	D.P. Acton et al.	(OPAL Collab.)
ADRIANI	92	PL B288 412	O. Adriani et al.	(L3 Collab.)
BU\$KULIC	92F	PL B295 174	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	92G	PL B295 396	D. Buskulic et al.	(ALEPH Collab.)
ADEVA	91C	PL B261 177	B. Adeva et al.	(L3 Collab.)
ADEVA	91H	PL B270 111	B. Adeva et al.	(L3 Collab.)
ALBAJAR	91C	PL B262 163	C. Albajar et al.	(UA1 Collab.)
ALEXANDER	91G	PL B266 485	G. Alexander et al.	(OPAL Collab.)
DECAMP	91C	PL B257 492	D. Decamp et al.	(ALEPH Collab.)
BEHREND	90D	ZPHY C47 333	H.J. Behrend et al.	(CELLO Collab.)
HAGEMANN	90	ZPHY C48 401	J. Hagemann et al.	(JADE Collab.)
LYON5	90	PR D41 982	L. Lyons, A.J. Martin, D.H. Saxon	(OXF, BRIS+)
BRAUN5CH	89B	ZPHY C44 1	R. Braunschweig et al.	(TASSO Collab.)
ONG	89	PRL 62 1236	R.A. Ong et al.	(Mark II Collab.)
KLEM	88	PR D37 41	D.E. Klem et al.	(DELCO Collab.)
ONG	88	PRL 60 2587	R.A. Ong et al.	(Mark II Collab.)
ASH	87	PRL 58 640	W.W. Ash et al.	(MAC Collab.)
BARTEL	87	ZPHY C33 339	W. Bartel et al.	(JADE Collab.)
BROM	87	PL B195 301	J.M. Brom et al.	(HRS Collab.)
PAL	86	PR D33 2708	T. Pal et al.	(DELCO Collab.)
AIHARA	85	ZPHY C27 39	H. Aihara <i>et al</i> .	(TPC Collab.)
BARTEL	85J	PL 163B 277	W. Bartel et al.	(JADE Collab.)
ALTHOFF	84G	ZPHY C22 219	M. Althoff et ai.	(TASSO Collab.)
ALTHOFF	84J	PL 146B 443	M. Althoff et al.	(TASSO Collab.)
KOOP	84	PRL 52 970	D.E. Koop et al.	(DELCO Collab.)
ADEVA	83	PRL 50 799	B. Adeva et al.	(Mark-J Collab.)
ADEVA	838	PRL 51 443	B. Adeva et al.	(Mark-J Collab.)
BARTEL	83B	PL 132B 241	W. Bartel et al.	(JADE Coffab.)
FERNANDEZ	83D	PRL 50 2054	E. Fernandez et al.	(MAC Collab.)
MATTEUZZI	83	PL 129B 141	C. Matteuzzi et al.	(Mark II Collab.)
NELSON	83	PRL 50 1542	M.E. Nelson et al.	(Mark II Collab.)

$$I(J^P) = \frac{1}{2}(1^-)$$

 $I,\ J,\ P$ need confirmation. Quantum numbers shown are quark-model predictions.

B* MASS

From mass difference below and the average of our ${\cal B}$ masses $.(m_{{\cal B}^\pm} + m_{{\cal B}^0})/2.$

VALUE (MeV)
5325.0±0.6 OUR FIT

DOCUMENT ID

m _{R*}	_	m _B

		BE	1		
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
45.78 ± 0.35 OUR	FIT				
45.78±0.35 OUR	AVERAGE				
$46.2 \pm 0.3 \pm 0.8$		¹ ACKERSTAFF	97N	OPAL	$e^+e^- \rightarrow Z$
$45.3 \pm 0.35 \pm 0.87$	7 4227	¹ BUSKULIC	96 D	ALEP	Eee = 88-94 GeV
$45.5 \ \pm 0.3 \ \pm 0.8$		¹ ABREU	95R	DLPH	<i>E</i> cm= 88-94 GeV
46.3 ±1.9	1378				<i>E</i> ee = 88-94 GeV
$46.4 \pm 0.3 \pm 0.8$		² AKERIB	91	CLE2	$e^+e^- \rightarrow \gamma X$
45.6 ±0.8					$e^+e^- \rightarrow \gamma X, \gamma \ell X$
45.4 ± 1.0		³ LEE-FRANZIN	1190	CSB2	$e^+e^- \rightarrow \Upsilon(5S)$
• • • We do not	use the followin	g data for average	s, fits	s, limits,	etc. • • •
52 ±2 ±4	1400	4 HAN	85	CUSB	$e^+e^- \rightarrow \gamma e X$

¹ u. d. s flavor averaged.

² These papers report E_{γ} in the B^* center of mass. The $m_{B^*}-m_B$ is 0.2 MeV higher.

 $E_{\rm CIM}=10.61-10.7$ GeV. Admixture of B^0 and B^+ mesons, but not B_s . 3 LEE-FRANZINI 90 value is for an admixture of B^0 and B^+ . They measure 46.7 \pm 0.4 \pm 0.2 MeV for an admixture of B^0 , B^+ , and B_s , and use the shape of the photon line to separate the above value.

 $^4\,\mathrm{HAN}$ 85 is for $E_\mathrm{CM}=$ 10.6–11.2 GeV, giving an admixture of B^0 , B^+ , and B_S .

$ (m_{B^{*+}} -$	$m_{B+})$	$-(m_{B^{*0}}$	$-m_{B^0}$)
------------------	-----------	----------------	--------------

VALUE (MeV)	CL%	DOCUMENT ID	TECN	COMMENT
<6	95	ABREU	95R DLPH	<i>E</i> ee = 88-94 GeV

B* DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	Βγ	dominant

B* REFERENCES

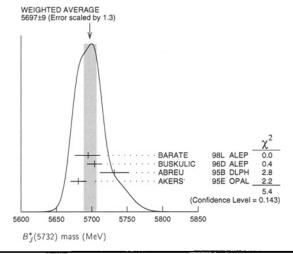
ACKERSTAFF	97M	ZPHY C74 413	K. Ackerstaff et al.	(OPAL Collab.)
BUSKULIC	96D	ZPHY C69 393	D. Buskulic et al.	(ALEPH Collab.)
ABREU	95R	ZPHY C68 353	P. Abreu et al.	(DELPHI Collab.)
ACCI ARRI	95 B	PL B345 589	M. Acciarri et al.	` (L3 Collab.)
AKERIB	91	PRL 67 1692	D.S. Akerib et əl.	(CLÈO Collab.)
WU	91	PL B273 177	Q.W. Wu et al.	(CÚSB II Collab.)
LEE-FRANZINI	90	PRL 65 2947	J. Lee-Franzini et al.	(CUSB II Collab.)
HAN	85	PRL 55 36	K. Han et al.	(COŁU, LSÙ, MPIM, STON)

$$I(J^P) = ?(?^?)$$

I, J, P need confirmation.

OMITTED FROM SUMMARY TABLE

Signal can be interpreted as stemming from several narrow and broad resonances. Needs confirmation.


B* (5732) MASS

VALUE (MeV) 5697± 9 OUR AVE	<u>EVTS</u> RAGE Erro	DOCUMENT ID or includes scale fa		COMMENT see the ideogram below.
5695 + 17 - 19		1 BARATE	98L ALEP	$e^+e^- \rightarrow Z$
5704 ± 4 ± 10	1944	² BUSKULIC	96D ALEP	Eee = 88-94 GeV
5732 ± 5 ± 20	2157	ABREU	95B DLPH	Ecm= 88-94 GeV
5681 ± 11	1738	AKERS	95E OPAL	Eee = 88-94 GeV
• • • We do not us	se the followi	ng data for averag	es, fits, limits	i, etc. • • •
5713 ± 2		3 ACCIARRI	99N L3	$e^+e^- \rightarrow Z$

¹ BARATE 98L uses fully reconstructed B mesons to search for B^{**} production in the $B\pi^\pm$ system. In the framework of heavy quark symmetry (HQS), they also measured the mass of B_2^* to be $5739^+_{-11}^{-4}^{-4}$ MeV/ c^2 and the relative production rate of $B(b\to B_2^*\to B^{(*)}\pi)/B(b\to B_{u,d})=(31\pm 9^{+6}_{-5})\%$.

² Using $m_{B\pi} - m_B = 424 \pm 4 \pm 10$ MeV.

³ ACCIARRI 99N uses inclusive reconstructed B mesons to search for B^{**} production in the $B^{(*)}\pi^{\pm}$ system. In the framework of HQET, they measured the mass of B_1^* and B_2^* to be 5670 \pm 10 \pm 13 MeV and 5768 \pm 5 \pm 6 with the B($b \rightarrow B^{**}$) $= (32 \pm 3 \pm 6) \times 10^{-2}$. They also reported the evidence for the existence of an excited B-meson state or mixture of states in the region 5.9–6.0 GeV.

B* (5732) WIDTH

VALUE (MeV) 128±18 OUR AVI	EVTS ERAGE	DOCUMENT ID		COMMENT
145 ± 28	2157	ABREU	958 DLPH	<i>E</i> € = 88–94 GeV
116 ± 24	1738	AKERS	95E OPAL	Ecm = 88-94 GeV

B*(5732) DECAY MODES

	Mode	Fraction (T _J /T)
$\overline{\Gamma_1}$	$B^*\pi + B\pi$	dominant

B*(5732) REFERENCES

		_		
ACCIARRI	99N	PL B465 323	M. Acciarri et al.	(L3 Collab.)
BARATÉ	98L	PL 8425 215	R. Barate et al.	(ALEPH Collab.)
BUSKULIC	96D	ZPHY C69.393	D. Buskulic et al.	(ALEPH Collab.)
ABREU	95B	PL 8345 598	P. Abreu et al.	(DELPHI Collab.)
AKERS	95E	ZPHY C66 19	R. Akers et al.	(OPAL Collab.)

BOTTOM, STRANGE MESONS

 $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \overline{B}_s^0 = \overline{s}b,$ similarly for B_s^* 's

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quarkmodel predictions.

BO MASS

		•		
VALUE (MeV)	EVTS	DOCUMENT I	TECN_	COMMENT
5369.6± 2.4 OUR FIT				
5369.6± 2.4 OUR AVE	RAGE			
5369.9 ± 2.3 ± 1.3	32	¹ ABE	96B CDF	ρρ at 1.8 TeV
5374 ±16 ±2	3	ABREU	94D DLPH	$e^+e^- \rightarrow Z$
5359 ±19 ±7	1	¹ AKERS	94J OPAL	$e^+e^- \rightarrow Z$
5368.6 ± 5.6 ± 1.5	2	BUSKULIC	93G ALEP	$e^+e^- \rightarrow Z$
• • • We do not use th	e following	data for averages	, fits, limits, et	C. • • •
5370 ± 40	6	² AKERS	94J OPAL	$e^+e^- \rightarrow Z$
5383.3 ± 4.5 ± 5.0	14	ABE	93F CDF	Repl by ABE 96B
1 From the decay B_{s}	→ J/ψ(15)	ι φ.		
² From the decay B _c	5- +			
- From the decay Br	→ ν π'.			

 m_B is the average of our B masses $(m_{B^\pm} + m_{B^0})/2$.

VALUE (MeV) CL%	DOCUMENT ID	TECN	COMMENT
90.4±2.4 OUR FIT			
89.7±2.7±1.2	ABE 96	B CDF	$p\bar{p}$ at 1.8 TeV
• • We do not use the follow	wing data for averages, f	its, limits,	etc. • • •
80 to 130 68	LEE-FRANZINI90	CSB2	$e^+e^- \rightarrow \Upsilon(55)$

$m_{B_{sH}^0} - m_{B_{sL}^0}$

See the $B_s^0 - \overline{B}_s^0$ MIXING section near the end of these B_s^0 Listings.

BO MEAN LIFE

"OUR EVALUATION" is an average of the data listed below performed by the LEP B Lifetimes Working Group as described in our review "Production and Decay of b-flavored Hadrons" in the B^\pm Section of the Listings. The averaging procedure takes into account correlations between the measurements and asymmetric lifetime errors.

VALUE (10 ⁻¹² s)	EVTS	DOCUMENT ID	TECN	COMMENT
1.493±0.062 OUR EV	ALUATION			
$1.36 \pm 0.09 ^{+ 0.06}_{- 0.05}$		³ ABE	99D CDF	$ ho \overline{ ho}$ at 1.8 TeV
$1.34 \begin{array}{l} +0.23 \\ -0.19 \end{array} \pm 0.05$		⁴ ABE	98B CDF	$p\overline{p}$ at 1.8 TeV
$1.72 \begin{array}{c} +0.20 \\ -0.19 \end{array} \begin{array}{c} +0.18 \\ -0.17 \end{array}$		⁵ ACKERSTAFF	98F OPAL	$e^+e^- \rightarrow Z$
$1.50 \ ^{+ 0.16}_{- 0.15} \ \pm 0.04$		³ ACKERSTAFF	98G OPAL	$e^+e^- \rightarrow Z$
$1.47 \pm 0.14 \pm 0.08$		⁶ BARATE	98c ALEP	$e^+e^- \rightarrow Z$
$1.56 \begin{array}{l} +0.29 \\ -0.26 \end{array} \begin{array}{l} +0.08 \\ -0.07 \end{array}$		³ ABREU	96F DLPH	$e^+e^- \rightarrow Z$
$1.65 \ ^{+ 0.34}_{- 0.31} \ \pm 0.12$		⁶ ABREU	96F DLPH	$e^+e^- \rightarrow Z$
$1.76 \pm 0.20 \begin{array}{l} +0.15 \\ -0.10 \end{array}$		⁷ ABREU	96F DLPH	$e^+e^- \rightarrow Z$
$1.60 \pm 0.26 \stackrel{+0.13}{-0.15}$		8 ABREU	96F DLPH	$e^+e^- \rightarrow Z$
$1.54 \ ^{+0.14}_{-0.13} \ \pm 0.04$		³ BUSKULIC	96M ALEP	
• • We do not use t	he followin		s, fits, limits	, etc. • • •
1.51 ± 0.11		⁹ BARATE	98C ALEP	$e^+e^- \rightarrow Z$
$1.34 \begin{array}{l} +0.23 \\ -0.19 \end{array} \pm 0.05$		10 ABE	96N CDF	Repl. by ABE 988
1.67 ± 0.14		¹¹ ABREU	96F DLPH	$e^+e^- \rightarrow Z$
$\begin{array}{cccc} 1.61 & +0.30 & +0.18 \\ -0.29 & -0.16 \end{array}$	90	⁶ BUSKULIC	96E ALEP	Repl. by BARATE 98C
$1.42 \begin{array}{c} +0.27 \\ -0.23 \end{array} \pm 0.11$	76	³ ABE	95R CDF	Repl. by ABE 99D
$1.74 \begin{array}{l} +1.08 \\ -0.69 \end{array} \pm 0.07$	8	12 ABE	95R CDF	Sup. by ABE 96N
$1.54 \begin{array}{l} +0.25 \\ -0.21 \end{array} \pm 0.06$	79	3 AKERS	95G OPAL	Repl. by ACKER- STAFF 98G
$1.59 \ ^{+ 0.17}_{- 0.15} \ \pm 0.03$	134	³ BUSKULIC	950 ALEP	Sup. by BUSKULIC 96M
0.96 ±0.37	41	¹³ ABREU	94E DLPH	Sup. by ABREU 96F
$1.92 \ ^{+ 0.45}_{- 0.35} \ \pm 0.04$	31	³ BUSKULIC	94c ALEP	Sup. by BUSKULIC 950
$1.13 \begin{array}{l} +0.35 \\ -0.26 \end{array} \pm 0.09$	22	³ ACTON	93H OPAL	Sup. by AKERS 956

- ³ Measured using $D_s^-\ell^+$ vertices.
- 4 Measured using fully reconstructed $B_S
 ightarrow \ J/\psi(1S) \, \phi$ decay.
- 5 ACKERSTAFF 98F use fully reconstructed $D_s^+\to~\phi\pi^-$ and $D_s^-\to~K^{*0}\,K^-$ in the inclusive \mathcal{B}_s^0 decay.
- $\frac{6}{2}$ Measured using D_S hadron vertices.
- ⁷ Measured using $\phi \ell$ vertices.
- 8 Measured using inclusive D_{s} vertices.
- 9 Combined results from $D_{\rm S}^{-}\ell^{+}$ and $D_{\rm S}$ hadron.
- 10 ABE 96N uses 58 \pm 12 exclusive $B_{\rm S} \to J/\psi(1S)\,\phi$ events.
- 11 Combined result for the four ABREU 96F methods. 12 Exclusive reconstruction of $B_5 \rightarrow \psi \phi$.
- ¹³ ABREU 94E uses the flight-distance distribution of D_s vertices, ϕ -lepton vertices, and D_S µ vertices.

$|\Delta\Gamma_{B_{\bullet}^{0}}|/\Gamma_{B_{\bullet}^{0}}$

 $arGamma_{B_{arsigma}^0}$ and $|\Delta \Gamma_{B_{arsigma}^0}|$ are the decay rate average and difference between two

The first "OUR EVALUATION," < 0.33 (CL=95%), also provided by the LEP B Oscillation Working Group, including the assumption of $\Gamma_{g}=\frac{1}{\tau_{B_{d}}}.$

The second "OUR EVALUATION," < 0.65 (CL=95%), is an average of all available B_5 semi-leptonic lifetime measurements with the $\Delta\Gamma_{B^0}/\Gamma_5$ analyses performed by the LEP B Osciallation Working Group as described in our "Review on $B - \overline{B}$ Mixing" in the B^0 Section of these Listings.

• • We do no	t use the follow	ving data for averag	es, fits, limits	i, etc. • • •
< 0.83	95	14 ABE		pp at 1.8 TeV
< 0.67	95	15 ACCIARRI	985 L3	$e^+e^- \rightarrow Z$

B_s^0 DECAY MODES

These branching fractions all scale with $B(\overline{b} \rightarrow B_s^0)$, the LEP B_s^0 production fraction. The first four were evaluated using $B(\bar{b} \rightarrow B_S^0) =$ $(10.7 \pm 1.4)\%$ and the rest assume $B(\overline{b} \rightarrow B_S^0) = 12\%$.

The branching fraction B($B_s^0 \to D_s^- \ell^+ \nu_\ell$ anything) is not a pure measurement since the measured product branching fraction $B(\overline{b} \to B_s^0) \times$ $B(B_0^0 \to D_-^- t^+ \nu_{\ell}$ anything) was used to determine $B(\bar b \to B_0^0)$, as described in the note on "Production and Decay of *b*-Flavored Hadrons."

	Mode	Fraction (Γ _j	/Γ) Confidence leve
Γ1	D anything	(92 ± 3	1)%
Γ_2	$D_s^-\ell^+\nu_\ell$ anything	[a] (8.1 ±	2.4) %
Γ3	$D_s^-\pi^+$	< 13	%
Γ4	$D_s^{(*)} + D_s^{(*)} -$	< 21.8	% 90%
Γ_5	$J/\psi(1S)\dot{\phi}$	(9.3 ±	$3.3) \times 10^{-4}$
Γ ₆	$J/\psi(1S)\pi^0$	< 1.2	× 10 ⁻³ 90%
Γ ₇	$J/\psi(1S)\eta$	< 3.8	$\times 10^{-3}$ 90%
Γ8	$\psi(2S)\phi$	seen	
Γ۹	$\pi^+\pi^-$	< 1.7	× 10 ⁻⁴ 90%
Γ ₁₀	$\pi^{0} \pi^{0}$	< 2.1	× 10 ⁴ 90%
Γ_{11}	$\eta \pi^0$	< 1.0	$\times 10^{-3}$ 90%
Γ12	$\dot{\eta}\eta$	< 1.5	× 10 ⁻³ 90%
	π ⁺ κ ⁻	< 2.1	× 10 ⁻⁴ 90%
	K+K-	< 5.9	× 10 ⁻⁵ 90%
	$\rho \overline{\rho}$	< 5.9	× 10 ⁻⁵ 90%
Γ16	γγ	< 1.48	× 10 ⁻⁴ 90%
Γ17	$\phi\gamma$	< 7	× 10 ⁻⁴ 90%
		nber (LF) violating n	
	$\Delta B = 1$ weak n	eutral current ($B1$) n	
Γ_{1B}	$\mu^+\mu^-$	B1 < 2.0	×10 ⁻⁶ 90%
	e+ e-	B1 < 5.4	× 10 ⁻⁵ 90%
Γ_{20}	$e^{\pm}\mu^{\mp}$	LF $[b] < 6.1$	× 10 ⁻⁶ 90%
Γ ₂₁	$\phi u \overline{ u}$	B1 < 5.4	× 10 ⁻³ 90%

- [a] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [b] The value is for the sum of the charge states or particle/antiparticle states indicated.

B⁰ BRANCHING RATIOS

$\Gamma(D_s^- \text{ anything})/\Gamma_{\text{total}}$

 Γ_1/Γ

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.92±0.31 OUR AVE	RAGE			
$0.81 \pm 0.24 \pm 0.22$	90	¹⁶ BU S KULIC	96E ALEP	$e^+e^- \rightarrow Z$
$1.56 \pm 0.58 \pm 0.44$	147	¹⁷ ACTON	92N OPAL	$e^+e^- \rightarrow Z$

¹⁶ BUSKULIC 96E separate $c\overline{c}$ and $b\overline{b}$ sources of D_s^+ mesons using a lifetime tag, subtract generic $\overline{b} \to W^+ \to D_5^+$ events, and obtain $B(\overline{b} \to B_5^0) \times B(B_5^0 \to D_5^-$ anything) = 0.088 ± 0.020 ± 0.020 assuming B($D_{\rm S} \to \phi \pi$) = (3.5 ± 0.4) × 10⁻² and PDG 1994 values for the relative partial widths to other $D_{\rm S}$ channels. We evaluate using our current values B($\overline{b} \rightarrow B_5^0$) = 0.107 \pm 0.014 and B($D_5 \rightarrow \phi \pi$) = 0.036 \pm 0.009. Our first error is their experiment's and our second error is that due to $B(\bar{b} \to B_c^0)$ and $B(D_c \to B_c^0)$

 $^{17}\text{ACTON}$ 92N assume that excess of 147 \pm 48 D_{S}^0 events over that expected from B^0 , B^+ , and $c\overline{c}$ is all from B_s^0 decay. The product branching fraction is measured to be $B(\overline{b} \to B_5^0)B(B_5^0 \to D_5^- \text{ anything}) \times B(D_5^- \to \phi \pi^-) = (5.9 \pm 1.9 \pm 1.1) \times 10^{-3}.$ We evaluate using our current values B($\overline{b} \to B_s^0$) = 0.107 \pm 0.014 and B($D_s \to \phi \pi$) \pm 0.036 \pm 0.009. Our first error is their experiment's and our second error is that due to $B(\overline{b} \to B_s^0)$ and $B(D_s \to \phi \pi)$.

 $\Gamma(D_g^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$ The values and averages in this section serve only to show what values result if one assumes our $B(\bar{b} \to B_g^0)$. They cannot be thought of as measurements since the underlying product branching fractions were also used to determinine $B(\vec{b} \to B_s^0)$ as described in the note on "Production and Decay of b-Flavored Hadrons."

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.081 ± 0.024 OUR AVE	RAGE			
$0.076 \pm 0.012 \pm 0.021$	134	¹⁸ BUSKULIC	950 ALEP	$e^+e^- \rightarrow Z$
$0.107 \pm 0.043 \pm 0.029$		¹⁹ ABREU	92M DLPH	$e^+e^- \rightarrow Z$
$0.103 \pm 0.036 \pm 0.028$	18	²⁰ ACTON	92N OPAL	$e^+e^- \rightarrow Z$
• • We do not use the	ne followi	ng data for average	s, fits, limits,	etc. • • •
$0.13 \pm 0.04 \pm 0.04$	27	²¹ BUSKULIC	92E ALEP	$e^+e^- \rightarrow Z$

 $^{18}\, {\rm BUSKULIC}$ 950 use $D_5\, \ell$ correlations. The measured product branching ratio is ${\rm B}(\overline{b} \to$ B_s) × B($B_s \to D_s^- \ell^+ \nu_\ell$ anything) = $(0.82 \pm 0.09^{+0.13}_{-0.14})$ % assuming B($D_s \to \phi \pi$) $\frac{1}{5}$ (3.5 \pm 0.4) \times 10⁻² and PDG 1994 values for the relative partial widths to the six other $D_{\rm S}$ channels used in this analysis. Combined with results from $\Upsilon(4S)$ experiments this can be used to extract B($\overline{b} \to B_s$) = (11.0 \pm 1.2 $^{+2.5}_{-2.6}$)%. We evaluate using our current values B($\overline{b} \rightarrow B_s^0$) = 0.107 ± 0.014 and B($D_s \rightarrow \phi \pi$) = 0.036 ± 0.009. Our first error is their experiment's and our second error is that due to $B(\overline{b} \to B_c^0)$ and

 19 ABREU 92M measured muons only and obtained product branching ratio B(Z
ightarrow b or $\overline{b}) \times \mathrm{B}(\overline{b} \to B_{\mathrm{S}}) \times \mathrm{B}(B_{\mathrm{S}} \to D_{\mathrm{S}} \, \mu^+ \, \nu_{\mu} \, \mathrm{anything}) \times \mathrm{B}(D_{\mathrm{S}} \to \phi \, \pi) = (18 \pm 8) \times 10^{-5}.$ We evaluate using our current values B($\bar{b}\to B_2^0$) = 0.107 \pm 0.014 and B($D_S\to \phi\pi$) = 0.036 \pm 0.009. Our first error is their experiment's and our second error is that due to $B(\overline{b} \to B_s^0)$ and $B(D_s \to \phi \pi)$. We use $B(Z \to b \text{ or } \overline{b}) = 2B(Z \to b \overline{b}) =$ $2 \times (0.2212 \pm 0.0019)$

 20 ACTON 92N is measured using $D_{\rm S} \to \phi \pi^+$ and $K^*(892)^0 K^+$ events. The product branching fraction measured is measured to be B($\bar{b} \to B_s^0$)B($B_s^0 \to D_s^- t^+ \nu_\ell$ anything) $\times B(D_c^- \to \phi \pi^-) = (3.9 \pm 1.1 \pm 0.8) \times 10^{-4}$. We evaluate using our current values $B(\overline{b}\to B_S^0)=0.107\pm0.014$ and $B(D_S\to\phi\pi)=0.036\pm0.009$. Our first error is their experiment's and our second error is that due to $B(\overline{b} \to B_s^0)$ and $B(D_s \to \phi \pi)$.

²¹ BUSKULIC 92E is measured using $D_S \rightarrow \phi \pi^+$ and $K^*(892)^0 K^+$ events. They use 2.7 \pm 0.7% for the $\phi\pi^+$ branching fraction. The average product branching fraction is measured to be $B(\overline{b}\to B_S^0)B(B_S^0\to D_S^-\ell^+\nu_\ell$ anything) =0.020 \pm 0.0055 $_-^+$ 0.006. We evaluate using our current values B($\bar{b} \rightarrow B_0^0$) = 0.107 \pm 0.014 and B($D_S \rightarrow \phi \pi$) = 0.036 \pm 0.009. Our first error is their experiment's and our second error is that due to B($\overline{b} \to B_s^0$) and B($D_s \to \phi \pi$). Superseded by BUSKULIC 950.

$\Gamma(D_s^-\pi^+)/\Gamma_{\text{total}}$ VALUE EVTS DOCUMENT ID TECN COMMENT 22 AKERS 94J OPAL $e^+e^- \rightarrow Z$ • • • We do not use the following data for averages, fits, limits, etc. • • • BUSKULIC 93G ALEP $e^+e^- \rightarrow Z$ 1

 22 AKERS 94J sees $\,\leq$ 6 events and measures the limit on the product branching fraction $f(\overline{b} \to B_S^0) \cdot B(B_S^0 \to D_S^- \pi^+) < 1.3\%$ at CL = 90%. We divide by our current value $B(\overline{b} \rightarrow B_s^0) = 0.105.$

$\Gamma(D_s^{(*)} + D_s^{(*)} -)/\Gamma$	total				Γ_4/Γ
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
<0.218	90	BARATE	98Q ALEP	$e^+e^- \rightarrow Z$	

I

$\Gamma(J/\psi(1S)\phi)/\Gamma_{\text{total}}$

 Γ_5/Γ

VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
0.93±0.28±0.17		²³ ABE	96Q	CDF	ρĪ
• • • We do not use t	he follow	ing data for average	es, fits	, limits,	etc. • • •
<6	1	²⁴ AKERS	94 J	OPAL	$e^+e^- \rightarrow Z$
seen	14	²⁵ ABE	93F	CDF	ρ p̄ at 1.8 TeV
seen	1	²⁶ ACTON	92N	OPAL	Sup. by AKERS 941
23					

²³ ABE 96Q assumes $f_U=f_d$ and $f_S/f_U=0.40\pm0.06$. Uses $B\to J/\psi(1S)$ K and $B\to J/\psi(1S)$ $J/\psi(15)$ K* branching fractions from PDG 94. They quote two systematic errors, ± 0.10 and \pm 0.14 where the latter is the uncertainty in $f_{
m s}$. We combine in quadrature

²⁴AKERS 94J sees one event and measures the limit on the product branching fraction $f(\overline{b}\to B_S^0)\cdot B(B_S^0\to J/\psi(1S)\phi)<7\times10^{-4}$ at CL = 90%. We divide by $B(\overline{b}\to B)$ $B_c^0) = 0.112.$

²⁵ ABE 93F measured using $J/\psi(1S) \rightarrow \mu^+ \mu^-$ and $\phi \rightarrow K^+ K^-$.

²⁶ In ACTON 92N a limit on the product branching fraction is measured to be $f(\overline{b} \to B_s^0) \cdot B(B_s^0 \to J/\psi(15) \phi) \le 0.22 \times 10^{-2}$.

 $\Gamma(J/\psi(1S)\pi^0)/\Gamma_{\text{total}}$ Γ_6/Γ <u>CL%</u> DOCUMENT ID TECN VALUE 27 ACCIARRI 97C L3 $<1.2 \times 10^{-3}$ 90

 $^{27}\,\mathrm{ACCIARRI}$ 97c assumes \mathcal{B}^0 production fraction (39.5 \pm 4.0%) and \mathcal{B}_{S} (12.0 \pm 3.0%).

 $\Gamma(J/\psi(1S)\eta)/\Gamma_{\text{total}}$ CL% DOCUMENT ID TECN <3.8 × 10⁻³ 28 ACCIARRI 97C L3 90

²⁸ ACCIARRI 97c assumes B^0 production fraction (39.5 \pm 4.0%) and B_5 (12.0 \pm 3.0%).

 Γ_8/Γ $\Gamma(\psi(2S)\phi)/\Gamma_{\text{total}}$ VALUE EVTS DOCUMENT ID TECN COMMENT BUSKULIC 93G ALEP $e^+e^- \rightarrow Z$ $\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$ Г9/Г DOCUMENT ID TECN COMMENT CL% <1.7 × 10⁻⁴ 29 BUSKULIC 96V ALEP $e^+e^- \rightarrow Z$ 90

²⁹ BUSKULIC 96 \vee assumes PDG 96 production fractions for B^0 , B^+ , B_5 , b baryons.

 $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ Γ_{10}/Γ 30 ACCIARRI 95H assumes $f_{\mbox{\it B}^0}=39.5\pm4.0$ and $f_{\mbox{\it B}_{\mbox{\tiny S}}}=12.0\pm3.0\%.$

 $\Gamma(\eta \pi^0)/\Gamma_{\text{total}}$ Γ_{11}/Γ 90 31 ACCIARRI 95H L3 $e^+e^- \rightarrow Z$ 31 ACCIARRI 95H assumes $f_{B^0}=39.5\pm4.0$ and $f_{B_0}=12.0\pm3.0\%$.

 $\Gamma(\eta\eta)/\Gamma_{\text{total}}$ Γ_{12}/Γ DOCUMENT ID TECN COMMENT ³² ACCIARRI 95H L3 $e^+e^- \rightarrow Z$ 90 ³² ACCIARRI 95H assumes $f_{B^0}=39.5\pm4.0$ and $f_{B_s}=12.0\pm3.0\%$.

 $\Gamma(\pi^+ K^-)/\Gamma_{\text{total}}$ Γ_{13}/Γ <u>CL%</u> DOCUMENT ID TECN COMMENT <2.1 × 10⁻⁴ 33 BUSKULIC 96V ALEP $e^+e^- \rightarrow Z$ 90 • • • We do not use the following data for averages, fits, limits, etc. • • • 34 AKERS 90 94L OPAL $e^+e^- \rightarrow Z$ ³³ BUSKULIC 96v assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons. 34 Assumes B($Z \to b\bar{b}$) = 0.217 and B_d^0 (B_s^0) fraction 39.5% (12%).

 $\Gamma(K^+K^-)/\Gamma_{\text{total}}$ Γ_{14}/Γ <u>CL%</u> DOCUMENT ID TECN COMMENT <5.9 × 10⁻⁵ 35 BUSKULIC 96v ALEP e+e → Z • • • We do not use the following data for averages, fits, limits, etc. • • • 36 AKERS 90 94L OPAL e+e- → Z 35 BUSKULIC 96v assumes PDG 96 production fractions for B^0 , B^+ , B_5 , b baryons. ³⁶ Assumes B($Z \rightarrow b\overline{b}$) = 0.217 and B_d^0 (B_s^0) fraction 39.5% (12%).

 $\Gamma(p\overline{p})/\Gamma_{\text{total}}$ Γ₁₅/Γ CL% DOCUMENT ID TECN COMMENT 90 37 BUSKULIC 96V ALEP e+e- → Z VALUE <5.9 × 10⁻⁵ 37 BUSKULIC 96v assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons.

 $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ DOCUMENT ID TECN COMMENT CL% VALUE <14.8 × 10⁻⁵ 90 38 ACCIARRI 951 L3 e+e- → Z ³⁸ ACCIARRI 951 assumes $f_{B^0}=$ 39.5 \pm 4.0 and $f_{B_S}=$ 12.0 \pm 3.0%.

$\Gamma(\phi\gamma)/\Gamma_{\text{total}}$					Γ ₁₇ /Γ
VALUE	<u>CL%</u>			COMMENT	
<7 × 10 ⁻⁴	90	³⁹ ADAM	960 DLPI	$e^+e^- \rightarrow Z$	
³⁹ ADAM 96D assu	$lmes f_{B^0} =$	$f_{B^-}=0.39$ and f	$B_{\rm S} = 0.12.$		
$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ Test for $\Delta B =$	- 1 wesk nei	itral current			Γ ₁₈ /Γ
VALUE TOTAL	CL%_	DOCUMENT IE	TECN	COMMENT	
<2.0 × 10 ⁻⁶	90	⁴⁰ ABE	98 CDF	pp at 1.8 TeV	
• • We do not us	se the followi	ing data for averag	ges, fits, limit	s, etc. • • •	
$< 3.8 \times 10^{-5}$	90	⁴¹ ACCIARRI	97B L3	$e^+e^- \rightarrow Z$	
$< 8.4 \times 10^{-6}$	90	⁴² ABE		Repl. by ABE	98
⁴⁰ ABE 98 assume	s production	of $\sigma(B^0) = \sigma(B)$	$+$) and $\sigma(B)$	$\lambda/\sigma(B^0) = 1/3$.	They nor-
malize to their r	neasured $\sigma(I$	$B^0, \rho_T(B) > 6, y $	< 10) - 23	9 + 0 32 + 0 44	th.
41 ACCIARRI 97B	assume PDG	96 production fra	actions for B	+ 80 B and A	
		so production inc		10,05,000	D.
42 ABE 96L assum	ies B+/B.	production ratio	3/1. They i	ormalize to their	measured
⁴² ABE 96L assum	ies B^+/B_s	production ratio		ormalize to their	measured
⁴² ABE 96L assum $\sigma(B^+, p_T(B))$	ies B^+/B_s	production ratio $ y < 1) = 2.39 \pm 1$		normalize to their	measured
$\sigma(B^+, p_T(B)) > \frac{42}{\sigma(B^+, p_T(B))}$	nes B ⁺ /B _s 6 GeV/c,	production ratio : $y < 1) = 2.39 \pm$		normalize to their	measured Γ_{19}/Γ
42 ABE 96L assum $\sigma(B^+, p_T(B)) > \Gamma(e^+e^-)/\Gamma_{\text{total}}$ Test for $\Delta B = \Gamma(B^+)$	nes B ⁺ / B _s 6 GeV/ <i>c</i> , ₁	production ratio : $y <1)=2.39\pm$	0.54 μb.	ormalize to their	measured
42 ABE 96L assum $\sigma(B^+, p_T(B)) > \frac{1}{(e^+e^-)/\Gamma_{\text{total}}}$ Test for $\Delta B = \frac{1}{2}$ $\frac{1}{2}$	nes B ⁺ /B _s 6 GeV/c,	production ratio : $y <1)=2.39\pm 0.000$ utral current. <u>DOCUMENT ID</u>	0.54 μb. <u>TECN</u>	ormalize to their	measured
⁴² ABE 96L assum $\sigma(B^+, p_T(B)) > \frac{(e^+e^-)}{\Gamma_{\text{total}}}$ Test for $\Delta B = \frac{MLUE}{\Gamma_{\text{total}}} = \frac{1}{\Gamma_{\text{total}}}$	thes B^+/B_S $0.6 \text{ GeV}/c$, $0.5 \text$	production ratio: $y <1)=2.39\pm$ utral current. DOCUMENT IC 43 ACCIARRI	0.54 μb.) <u>TECN</u> 97B L3	comment $e^+e^- \rightarrow Z$	reasured Γ ₁₉ /Γ
⁴² ABE 96L assum $\sigma(B^+, p_T(B)) > \frac{(e^+e^-)}{\Gamma_{\text{total}}}$ Test for $\Delta B = \frac{MLUE}{2}$	thes B^+/B_S $0.6 \text{ GeV}/c$, $0.5 \text$	production ratio: $y <1)=2.39\pm$ utral current. DOCUMENT IC 43 ACCIARRI	0.54 μb.) <u>TECN</u> 97B L3	comment $e^+e^- \rightarrow Z$	reasured Γ ₁₉ /Γ
⁴² ABE 96L assum $\sigma(B^+, p_T(B)) > \frac{1}{(e^+e^-)/\Gamma_{\text{total}}}$ Test for $\Delta B = \frac{MLUE}{\sqrt{5.4} \times 10^{-5}}$	thes B^+/B_S $0.6 \text{ GeV}/c$, $0.5 \text$	production ratio: $y <1)=2.39\pm$ utral current. DOCUMENT IC 43 ACCIARRI	0.54 μb.) <u>TECN</u> 97B L3	comment $e^+e^- \rightarrow Z$	F ₁₉ /Γ
42 ABE 96L assum $\sigma(B^+, p_T(B)) > (e^+e^-)/\Gamma_{\text{total}}$ Test for $\Delta B = \frac{MLUE}{4^3}$ ACCIARRI 97B 43 43 ACCIARRI 97B 45	these B^+/B_s is $6 \text{ GeV}/c$, $\frac{1}{3}$ is $\frac{cL\%}{90}$ goals assume PDG	production ratio: $y <1)=2.39\pm$ utral current. DOCUMENT IC 43 ACCIARRI	0.54 μb.) <u>TECN</u> 97B L3	comment $e^+e^- \rightarrow Z$	reasured Γ ₁₉ /Γ
42 ABE 96L assum $\sigma(B^+, p_T(B)) > (e^+e^-)/\Gamma_{\text{total}}$ Test for $\Delta B = \frac{MLUE}{43}$ ACCIARRI 978.4 Lets of lepton $\frac{4}{4}$ Lets of lepton $\frac{4}{4}$	these B^+/B_s is $6 \text{ GeV}/c$, $\frac{1}{3}$ is $\frac{cL\%}{90}$ goals assume PDG	production ratio $ y < 1$) = 2.39 \pm utral current. <u>DOCUMENT IE</u> 43 ACCIARRI 96 production fra	0.54 μb. 7ECN 97B L3 actions for B	ormalize to their $COMMENT$ $e^+e^- \to Z$ e^+, B^0, B_5 , and A	F ₁₉ /Γ
42 ABE 96L assum $\sigma(B^+, p_T(B)) > (e^+e^-)/\Gamma_{\text{total}}$ Test for $\Delta B = \frac{64.0E}{4^3}$ ACCIARRI 97B . $(e^\pm \mu^\mp)/\Gamma_{\text{total}}$ test of lepton $\frac{64.0E}{4^3}$ ALUE	nes B^+/B_s 6 GeV/ c , $\frac{1}{2}$ = 1 weak net $\frac{CL\%}{90}$ assume PDG $\frac{CL\%}{90}$ family numb	production ratio	0.54 μb. 97B L3 actions for B 7ECN 98V CDF	COMMENT $e^+e^- \rightarrow Z$ $+$, B^0 , B_s , and A COMMENT $p\bar{p}$ at 1.8 TeV	Γ ₁₉ /Γ
42 ABE 96L assum $\sigma(B^+, p_T(B)) > (e^+e^-)/\Gamma_{\text{total}}$ Test for $\Delta B = \frac{64.0E}{4^3}$ ACCIARRI 97B . $(e^\pm \mu^\mp)/\Gamma_{\text{total}}$ test of lepton $\frac{64.0E}{4^3}$ ALUE	nes B^+/B_s 6 GeV/ c , $\frac{1}{2}$ = 1 weak net $\frac{CL\%}{90}$ assume PDG $\frac{CL\%}{90}$ family numb	production ratio	0.54 μb. 97B L3 actions for B 7ECN 98V CDF	COMMENT $e^+e^- \rightarrow Z$ $+$, B^0 , B_s , and A COMMENT $p\bar{p}$ at 1.8 TeV	Γ ₁₉ /Γ
42 ABE 96L assum $\sigma(B^+, p_T(B)) > (e^+e^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 6.4 \times 10^{-5}$ ACCIARRI 97B at test of lepton $\Delta B = 6.1 \times 10^{-6}$ • • We do not us	nes B^+/B_s 6 GeV/ c , $\frac{1}{2}$ = 1 weak net $\frac{CL\%}{90}$ assume PDG $\frac{CL\%}{90}$ family numb	production ratio	978 L3 actions for B TECN 978 L3 actions for B TECN 98∨ CDF ges, fits, limit	COMMENT $e^+e^- \rightarrow Z$ $+$, B^0 , B_s , and A COMMENT $p\bar{p}$ at 1.8 TeV	Γ ₁₉ /Γ
42 ABE 96L assum $\sigma(B^+, P_T(B)) > (e^+e^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 6.4 \times 10^{-5}$ ACCIARRI 97B at test of lepton ALUE 43 ACCIARRI 97B at test of lepton 44 AUE 45 We do not us 44 We do not us 44 We 45	nes B^+/B_s $= 6 \text{ GeV}/c$, $ _3$ $= 1 \text{ weak net}$ $= \frac{CL\%}{90}$ assume PDG family numb $= \frac{CL\%}{90}$ se the following	production ratio (1) = 2.39 ± utral current. DOCUMENT IE 43 ACCIARRI per conservation. DOCUMENT IE ABE ing data for averal 44 ACCIARRI	978 L3 ctions for B 7ECN 978 L3 ctions for B 7ECN 98∨ CDF ges, fits, limit 978 L3	comment $e^+e^- \rightarrow Z$ E^+B^0 , B_S , and A E^+B^0 , B_S , and A E^-B^0 ,	Γ ₁₉ /Γ
$\sigma(B^+, p_T(B)) > (e^+e^-)/\Gamma \text{total}$ Test for $\Delta B = \frac{MLUE}{43}$ ACCIARRI 978: $(e^{\pm}\mu^{\mp})/\Gamma \text{total}$ test of lepton	nes B^+/B_s $= 6 \text{ GeV}/c$, $ _3$ $= 1 \text{ weak net}$ $= \frac{CL\%}{90}$ assume PDG family numb $= \frac{CL\%}{90}$ se the following	production ratio (1) = 2.39 ± utral current. DOCUMENT IE 43 ACCIARRI per conservation. DOCUMENT IE ABE ing data for averal 44 ACCIARRI	978 L3 ctions for B 7ECN 978 L3 ctions for B 7ECN 98∨ CDF ges, fits, limit 978 L3	comment $e^+e^- \rightarrow Z$ E^+B^0 , B_S , and A E^+B^0 , B_S , and A E^-B^0 ,	Γ ₁₉ /Γ

POLARIZATION IN BO DECAY

DOCUMENT ID

45 ADAM

TECN COMMENT

960 DLPH $e^+e^- \rightarrow Z$

CL%

90

⁴⁵ ADAM 96D assumes $f_{B^0} = f_{B^-} = 0.39$ and $f_{B_s} = 0.12$.

 $< 5.4 \times 10^{-3}$

Γ_L/Γ in $B_s^0 \to .$	$J/\psi(1S)\phi$				
VALUE	EVTS	DOCUMENT ID	TE	ECN	COMMENT
$0.56 \pm 0.21 ^{+0.02}_{-0.04}$	19	ABE	95z CE	DF	pp̄ at 1.8 TeV

BO-BO MIXING

For a discussion of $B^0_S - \overline{B}^0_S$ mixing see the note on " $B^0 - \overline{B}^0$ Mixing" in the B⁰ Particle Listings above.

 $\chi_{\rm S}$ is a measure of the time-integrated $B_{\rm S}^0 - \overline{B}_{\rm S}^0$ mixing probability that produced $B_5^0(\overline{B}_5^0)$ decays as a $\overline{B}_5^0(B_5^0)$. Mixing violates $\Delta B \neq 2$ rule.

$$\chi_s = \frac{x_s^2}{2(1+x_s^2)}$$

$$x_{s} = \frac{\Delta m_{B_{s}^{0}}}{\Gamma_{B_{s}^{0}}} = (m_{B_{sH}^{0}} - m_{B_{sL}^{0}}) \tau_{B_{s}^{0}},$$

where H, L stand for heavy and light states of two B_s^0 CP eigenstates and $\tau_{B_s^0} = \frac{1}{0.5(\Gamma_{B_s^0H} + \Gamma_{B_s^0L})}$.

χ_B at high energy

This is a B- \overline{B} mixing measurement for an admixture of B^0 and B^0_s at high energy, $\chi_B=f'_d\chi_d+f'_s\chi_s$

where f_d' and f_d' are the branching ratio times production fractions of B_d^0 and B_d^0 mesons relative to all b-flavored hadrons which decay weakly. Mixing violates ΔB_d^0

VALUE C	% EVTS	DOCUMENT ID	TECN	COMMENT
0.118 ±0.005 OUR AVER	AGE			
$0.1192 \pm 0.0068 \pm 0.0051$		⁴⁶ ACCIARRI	99D L3	$e^+e^- \rightarrow Z$
$0.131 \pm 0.020 \pm 0.016$		⁴⁷ ABE	971 CDF	p p 1.8 TeV
$0.1107 \pm 0.0062 \pm 0.0055$		48 ALEXANDER	96 OPAL	$e^+e^- \rightarrow Z$
$0.121 \pm 0.016 \pm 0.006$		⁴⁹ ABREU	94J DLPH	$e^+e^- \rightarrow Z$
$0.114 \pm 0.014 \pm 0.008$		⁵⁰ BUSKULIC	94G ALEP	$e^+e^- \rightarrow Z$
0.129 ± 0.022		⁵¹ BUSKULIC	92B ALEP	$e^+e^- \rightarrow Z$
$0.176 \pm 0.031 \pm 0.032$	1112	⁵² ABE	916 CDF	p p 1.8 TeV
$0.148 \pm 0.029 \pm 0.017$		⁵³ ALBAJAR	910 UA1	p p̄ 630 GeV

• • • V	/e do not	use the fo	ollowing data	for a	verages, fits, lim	nits, e	tc. • •	•
0.136	±0.037	±0.040		54	UENO	96	AMY	e ⁺ e at 57.9 GeV
0.144	±0.014	+0.017 -0.011		55	ABREU	94F	DLPH	Sup. by ABREU 941
0.131	±0.014			56	ABREU	94 J	DLPH	$e^+e^- \rightarrow Z$
0.123	± 0.012	± 0.008			ACCIARRI	94D	L3	Repl. by AC- CIARRI 990
0.157	±0.020	± 0.032		57	ALBAJAR	94	UA1	$\sqrt{s} = 630 \text{ GeV}$
0.121	$^{+0.044}_{-0.040}$	±0.017	1665	58	ABREU	93C	DLPH	Sup. by ABREU 94J
0.143	+0.022 -0.021	±0.007		59	AKERS	93B	OPAL	Sup. by ALEXAN- DER 96
0.145	+0.041 -0.035	±0.018		60	ACTON	92c	OPAL	$e^+e^- \rightarrow Z$
0.121	±0.017	±0.006		61	ADEVA	92C	L3	Sup. by AC- CIARRI 940
0.132	±0.22	$^{+0.015}_{-0.012}$	823	62	DECAMP	91	ALEP	$e^+e^- \rightarrow Z$
0.178	$^{+0.049}_{-0.040}$	± 0.020		63	ADEVA	90P	L3	$e^+ e^- \rightarrow Z$
0.17	$^{+0.15}_{-0.08}$			64,65	WEIR	90	MRK2	e^+e^- 29 GeV
0.21	$^{+0.29}_{-0.15}$			64	BAND	88	MAC	Eee = 29 GeV
>0.02			90		BAND	88	MAC	Eee = 29 GeV
0.121	±0.047			64,66	ALBAJAR	87c	UA1	Repl. by AL-
<0.12			90	64,67	SCHAAD	85	MRK2	BAJAR 91D Eee = 29 GeV

⁴⁶ ACCIARRI 99D uses maximum-likelihood fits to extract χ_b as well as the A_{FB}^b in $Z o \parallel$ $b\,\overline{b}$ events containing prompt leptons.

 47 Uses di-muon events. 48 ALEXANDER 96 uses a maximum likelihood fit to simultaneously extract χ as well as the forward-backward asymmetries in $e^+e^- \rightarrow Z \rightarrow b\overline{b}$ and $c\overline{c}$.

49 This ABREU 94J result is from 5182 $\ell\ell$ and 279 $\Lambda\ell$ events. The systematic error includes 0.004 for model dependence. 50 BUSKULIC 94G data analyzed using ee, $e\mu$, and $\mu\mu$ events.

51 BUSKULIC 928 uses a jet charge technique combined with electrons and muons. 52 ABE 916 measurement of χ is done with $e\mu$ and ee events.

 53 ALBAJAR 91D measurement of χ is done with dimuons.

54 UENO 96 extracted χ from the energy dependence of the forward-backward asymmetry. 55 ABREU 94F uses the average electric charge sum of the jets recoiling against a b-quark jet tagged by a high p_T muon. The result is for $\overline{\chi}=f_d\chi_d+0.9f_g\chi_S$.

56 This ABREU 941 result combines $\ell\ell$, $\Lambda\ell$, and jet-charge ℓ (ABREU 94F) analyses. It is for $\overline{\chi} = f_d \chi_d + 0.96 f_s \chi_s$.

57 ALBAJAR 94 uses dimuon events. Not independent of ALBAJAR 91D.

 58 ABREU 93C data analyzed using e.e, $e\,\mu$, and $\mu\mu$ events.

⁵⁹ AKERS 93B analysis performed using dilepton events.

 $^{60}\,\text{ACTON}$ 92C uses electrons and muons. Superseded by AKERS 93B.

61 ADEVA 92c uses electrons and muons.
62 DECAMP 91 done with opposite and like-sign dileptons. Superseded by BUSKULIC 92B. 63 ADEVA 90P measurement uses $ee,~\mu\mu,$ and $e\mu$ events from 118k events at the Z.

Superseded by ADEVA 92c. 64 These experiments are not in the average because the combination of $B_{\rm S}$ and B_{d} mesons which they see could differ from those at higher energy.

65 The WEIR 90 measurement supersedes the limit obtained in SCHAAD 85. The 90% CL ⁶³ The WEIR 90 measurement supersedes the minic obtained in Schane 3.6. decays are 0.06 and 0.38. decays are 0.06 and 0.38. decays are 0.06 and 0.38. decays are 0.06 all BAJAR 87c measured $\chi = (B^0 \to B^0 \to \mu^+ X)$ divided by the average production weighted semileptonic branching fraction for B hadrons at 546 and 630 GeV. decays are probability for hadron containing B quark to produce a positive lepton.

 $\begin{array}{l} \Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} \\ \Delta m_{B_s^0} \text{ is a measure of } 2\pi \text{ times the } B_s^0 \cdot \overline{B}_s^0 \text{ oscillation frequency in time-dependent} \end{array}$

"OUR EVALUATION" is an average of the data listed below performed by the LEP B Oscillation Working Group as described in our "Review of B- \overline{B} Mixing" in the B^0 Section of these Listings. The averaging procedure takes into account correlations

VALUE (10 ¹² h s ⁻¹)	CL%	DOCUMENT ID	TEC	N COMMENT
>10.6 (CL = 95%)	DUR EVAL	.UATION		
> 5.2	95	68 ABBIENDI	995 OP	AL $e^+e^- \rightarrow Z$
> 5.8	95	⁶⁹ ABE	99J CD	F ρp̄ at 1.8 TeV
> 9.6	95	⁷⁰ BARATE	99) ALI	$EP e^+e^- \rightarrow Z$
> 6.5	95	⁷¹ ADAM	97 DLI	PH $e^+e^- \rightarrow Z$
• • We do not use	the follow	ing data for averages	, fits, lim	nits, etc. • • •
<96	95	⁷² ABE	990 CD	F ρp̄ at 1.8 TeV
> 7.9	95	⁷³ BARATE	98c ALE	
> 3.1	95	74 ACKERSTAFF		
> 2.2	95	75 ACKERSTAFF		AL Repl. by ABBIENDI 99s
> 6.6	95	⁷⁶ BUSKULIC	96M ALE	EP Repl. by BARATE 98c
> 2.2	95	⁷⁵ AKERS	95J OP	
> 5.7	95	77 BUSKULIC	95J ALI	STAFF 97∨ EP e ⁺ e ⁻ → Z
> 1.8	95	⁷⁵ BUSKULIC	94R A1 I	$EP e^+e^- \rightarrow Z$

 69 ABE 99J uses ϕ ℓ - ℓ correlation.

⁷⁰BARATE 99J uses combination of an inclusive lepton and D_s^- -based analyses.

 71 ADAM 97 combines results from $D_{\rm S}$ ℓ - $Q_{
m hem}$, ℓ - $Q_{
m hem}$, and $\bar{\ell}$ - ℓ .

 72 ABE 99D assumes $\tau_{B_{\nu}^0}=$ 1.55 \pm 0.05 ps and $\Delta\Gamma/\Delta \textit{m}=$ (5.6 \pm 2.6) \times 10 $^{-3}.$

 73 BARATE 98c combines results from $D_{\rm S}\,h\text{-}\ell/Q_{\rm hem},~D_{\rm S}\,h\text{-}K$ in the same side, $D_{\rm S}\,\ell\text{-}\ell/Q_{\rm hem}$ and $D_{\rm S}\,\ell\text{-}K$ in the same side.

74 Uses *t-Q*hem

75 Uses *t-t.*76 BUSKULIC 96M uses D_S lepton correlations and lepton, kaon, and jet charge tags. 77 BUSKULIC 95J uses t-Qhem. They find $\Delta m_S>5.6~[>6.1]$ for $f_S=10\%~[12\%]$. We interpolate to our central value $f_S=10.5\%$.

 $x_{\rm S}=\Delta m_{B_{\rm S}^0}/\Gamma_{B_{\rm S}^0}$ This is derived by the LEP $_B$ Oscillation Working Group from the results on $\Delta m_{B_{\rm S}^0}$ and "OUR EVALUATION" of the B_s^0 mean lifetime.

DOCUMENT ID >15.7 (CL = 95%) OUR EVALUATION

This $B_s^0 - \overline{B}_s^0$ integrated mixing parameter is derived from x_s above.

<u>VALUE</u> <u>CL%</u> <u>DOCUMENT ID</u>

>0.4980 (CL = 95%) OUR EVALUATION

B REFERENCES

		- 3		
ABBIENDI	995	EPJ C11 587	G. Abbiendi et al.	(OPAL Collab.)
ABE	99D		F. Abe et al.	(CDF Collab.)
ABE	991		F. Abe et al.	(CDF Collab.)
ACCIARRI BARATE Aiso	99D		M. Acciarri et al.	(L3 Collab.)
BARATE	991	EPJ C7 553 EPJ C12 181 (erratum)	R Barate et al.	(ALEPH Collab.) (ALEPH Collab.)
ARF	98	PR D57 R3811	F. Abe et al.	(CDF Collab.)
ABE ABE	98B	PR D57 5382	F. Abe et ai.	(CDF Collab.)
ABE	98V	PRL 81 5742	F. Abe et ai.	(CDF Collab.)
ACCIARRI	985	PL B438 417	M. Acciarri et al.	(L3 Collab.)
	98F 98G	EPJ C2 407 PL B426 161	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF BARATE	98C	EPJ C4 367	K. Ackerstaff et al. R. Barate et al.	(OPAL Collab.) (ALEPH Collab.)
BARATE	98Q	EPJ C4 387	R. Barate et al.	(ALEPH Collab.)
PDG	98	EPJ C3 1	R. Barate et al. C. Caso et al. F. Abe et al. M. Acciarri et al. M. Acciarri et al.	,
ABE	971	PR D55 2546	F. Abe et al.	(CDF Collab.)
ACCIARRI	97B	PL B391 474	M. Acciarri et al.	(L3 Collab.)
ACCIARRI ACKERSTAFF	97C	PL B391 481 ZPHY C76 401	K. Ackerstaff et al.	(L3 Collab.) (OPAL Collab.)
ACKERSTAFF	97V	ZPHY C76 417	K. Ackerstaff et al.	(OPAL Collab.)
ADAM	97	PL B414 382	W. Adam et al.	(DELPHI Collab.)
ABE	96B			(CDF Collab.)
ABE	96L	PRL 76 4675	F. Abe et al.	(CDF Collab.)
ABE ABE	96N 96Q	PRL 77 1945 PR D54 6596	F. Abe et al.	(CDF Collab.) (CDF Collab.)
ABE ABREU ADAM	96F	ZPHY C71 11	F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. W. Adam et al. G. Alexander et al.	(DELPHI Collab.)
ADAM	96D	ZPHY C72 207	W. Adam et al.	(DELPHI Collab.)
ALEXANDER	96	ZPHY C70 357	G. Alexander et al. D. Buskulic et al.	(OPAL Collab.)
BUSKULIC	96E	ZPHY C69 585	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	96M	PL B377 205	D. Buskulic et al.	(ALEPH Collab.)
PDG	96	PR D54 1	D. Buskulic et al.	(ALEPH Collab.)
UENO	96	PL B381 365	K. Ueno et al.	(AMY Collab.)
ABE	95R	PRL 74 4988	F. Abe et al.	(CDF Collab.)
ABE	95Z	PRL 75 3068	F. Abe et al.	(CDF Collab.)
ACCIARRI	95H	PL B363 127	M. Acciarri et al. M. Acciarri et al.	(L3 Collab.) (L3 Collab.)
AKERS	95G	PL 8377 205 PL 8384 471 PR D54 1 PL 8381 365 PRL 74 4988 PRL 75 3068 PL 8363 127 PL 8363 137 PL 8350 273	R. Akers et al.	(OPAL Collab.)
AMEDO	OE I	7DHV CGG REE	R. Akers et al.	(OPAL Collab.)
BUSKULIC	953	PL B356 409 PL B361 221 PL B324 500	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	950	PL B361 221	D. Buskulic et al.	(ALEPH Collab.)
ABREU ABREU	94D 94E		P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.)
ABREU	946	PI R280 100	P. Abreu et al.	(DELPHI Collab.)
ABREU	94F		P. Abreu et al.	(DELPHI Collab.)
ABREU	94J	PL B332 488	P. Abreu et al.	(DELPHI Collab.)
ACCIARRI	94D	PL B335 542	M. Acciarri et al.	(L3 Collab.)
AKERS AKERS	94J 94L	PL B337 196 PL B337 393	R. Akers et al. R. Akers et al.	(OPAL Collab.) (OPAL Collab.)
MILENS	94L		C. Albajar et al.	(UA1 Collab.)
			D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	94C	PL B322 275	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC			D. Buskulic et al.	(ALEPH Collab.)
PDG ABE	94 93F	PR D50 1173 PRL 71 1685	L. Montanet et al. F. Abe et al.	(CERN, LBL, BOST+) (CDF Collab.)
ARREII	93¢	PL B301 145	P. Abreu et al.	(DELPHI Collab.)
		PL B312 501	P.D. Acton et al.	(OPAL Collab.)
AKERS	93B	ZPHY C60 199	R. Akers et al.	(OPAL Collab.)
BUSKULIC	93G	PL B311 425	D. Buskulic et al.	(ALEPH Collab.)
ABREU	92M 92C	PL B289 199	P. Abreu et al. D.P. Acton et al.	(DELPHI Collab.)
ACTON ACTON	92C 92N	PL B276 379 PL B295 357	P.D. Acton et al.	(OPAL Collab.) (OPAL Collab.)
ADEVA	92C	PL B288 395	B. Adeva et al.	(L3 Collab.)
BUSKULIC	92B	PL B284 177	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	92E	PL B294 145	D. Buskulic et al.	(ALEPH Collab.)
ABE	91G	PRL 67 3351	F. Abe et al. C. Albajar et al.	(CDF Collab.)
ALBAJAR DECAMP	91D 91	PL B262 171 PL B258 236	C. Albajar et al. D. Decamp et al.	(UA1 Collab.) (ALEPH Collab.)
ADEVA		PL B250 230 PL B252 703	B. Adeva et al.	(L3 Collab.)
LEE-ERANZIN	1 90	PRL 65 2947	J. Lee-Franzini et al.	(CUSB II Collab.)
WEIR	90	PL B240 289	A.J. Weir et al.	(Mark II Collab.)
BAND	88	PL B200 221	H.R. Band et al.	(MAC Collab.)
ALBAJAR SCHAAD	87C 85	PL B186 247 PL 160B 188	C. Albajar <i>et al.</i> T. Schaad <i>et al.</i>	(UA1 Collab.) (Mark II Collab.)
SCHAAD	0.5	. 2 1000 100	Jenapa et al.	(mark ii Conab.)

ı

 $I(J^P) = 0(1^-)$

OMITTED FROM SUMMARY TABLE

I, J, P need confirmation. Quantum numbers shown are quarkmodel predictions.

B* MASS

From mass difference below and the $B_{\,{f c}}^{\,{f 0}}$ mass.

DOCUMENT ID 5416.6±3.5 OUR FIT

 $m_{B_c^*} - m_{B_c}$

VALUE (MeV)

DOCUMENT ID TECN COMMENT

47.0±2.6 OUR FIT 47.0±2.6

¹ LEE-FRANZINI 90 CSB2 $e^+e^- \rightarrow \Upsilon(5S)$

 $^1\text{LEE-FRANZINI}$ 90 measure 46.7 \pm 0.4 \pm 0.2 MeV for an admixture of B^0 , B^+ , and $B_{\rm g}.$ They use the shape of the photon line to separate the above value for $B_{\rm S}.$

 $\left| (m_{B_s^*} - m_{B_s}) - (m_{B^*} - m_{B}) \right|$

VALUE (MeV) DOCUMENT ID TECN COMMENT 95R DLPH Ecm = 88-94 GeV <6

B DECAY MODES

Fraction (Γ_i/Γ) Mode Γ_1 $B_S \gamma$ dominant

B* REFERENCES

ABREU 95R ZPHY C68 353 LEE-FRANZINI 90 PRL 65 2947

P. Abreu et al. J. Lee-Franzini et al.

(DELPHI Collab.) (CUSB II Collab.)

 $B_{sJ}^*(5850)$

 $I(J^P) = ?(??)$ I, J, P need confirmation.

OMITTED FROM SUMMARY TABLE

Signal can be interpreted as coming from $\overline{b}s$ states. Needs confir-

B_{sJ}^* (5850) MASS

VALUE (MeV) EVTS TECN COMMENT 95E OPAL Ecm = 88-94 GeV **AKERS** 5853±15 141

$B_{AJ}^{*}(5850)$ WIDTH

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT 95E OPAL $E_{
m CM}^{\it ee} = 88-94 \; {
m GeV}$ 47±22 141 **AKERS**

B*, (5850) REFERENCES

95E ZPHY C66 19 AKERS

R. Akers et al.

(OPAL Collab.)

BOTTOM, CHARMED MESONS

 $(B=C=\pm 1)$

 $B_c^+ = c\overline{b}, B_c^- = \overline{c}b,$ similarly for B_c^* 's

 $I(J^P) = 0(0^-)$ I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

BE MASS

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT
6.4 ±0.39±0.13	¹ ABE	98м	CDF	ρ <u>ρ</u> 1.8 TeV
• • • We do not use the	following data for averages	, fits,	limits,	etc. • • •
6.32±0.06	² ACKERSTAFF	980	OPAL	$e^+e^- \rightarrow Z$
¹ ABE 98M observed 20 > 4.8 standard deviati	$.4^{+6.2}_{-5.5}$ events in the B^+_c ons. The mass value is est	→ . imate	$t/\psi(1s)$	$\ell\nu_{\ell}$ with a significance of $m(J/\psi(15)\ell)$.
² ACKERSTAFF 980 ob	served 2 candidate events ind of 0.63 ± 0.20 events.	n the	$B_c \rightarrow$	$J/\psi(1S)\pi^+$ channel with

BE MEAN LIFE

VALUE (10 ⁻¹² s)	DOCUMENT ID	TECN	COMMENT			
$0.46^{+0.18}_{-0.16}\pm0.03$	³ ABE	98M CDF	p p			
³ The lifetime is measured from the $J/\psi(1S)\ell$ decay vertices.						

B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$)

Fraction (Γ_j/Γ)

Confidence level

B_ modes are charge conjugates of the modes below.

	The following quantities are not put $\Gamma_{I}/\Gamma \times B(\overline{b} \to B_{C})$.	ire branching ratios	; rather the fracti	on
Γ_1	$J/\psi(1S)\ell^+ u_\ell$ anything	(5.2^{+2}_{-2})	$\binom{4}{1} \times 10^{-5}$	
Γ_2	$J/\psi(1S)\pi^+$	< 8.2	× 10 ⁻⁵	90%
Γ_3	$J/\psi(1S)\pi^{+}\pi^{+}\pi^{-}$	< 5.7	× 10 ⁻⁴	90%
Γ4	$J/\psi(1S) a_1(1260)$	< 1.2	$\times 10^{-3}$	90%
Γ ₅	$D^*(2010)^+ \overline{D}{}^0$	< 6.2	× 10 ⁻³	90%

B⁺ BRANCHING RATIOS

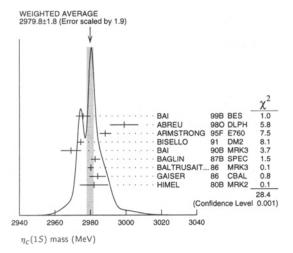
VALUE	S)ℓ ⁺ νℓ any	CL%	DOCUMENT ID	TECN	COMMENT	
(5.2^{+2}_{-2})	$^{4}_{1}) \times 10^{-5}$		4 ABE	98м CDF	p ₱ 1.8 TeV	
• • • We	do not use t	he followi	ng data for average	s, fits, limits	, etc. • • •	
< 1.6	× 10 ⁻⁴	90	5 ACKERSTAFF	980 OPAL	$e^+e^- \rightarrow 2$?
< 1.9	× 10 ⁻⁴	90	6 ABREU	97E DLPH	e+e~ → 2	7
< 1.2	$\times 10^{-4}$	90	⁷ BARATE	97H ALEP	$e^+e^- \rightarrow Z$?
5 ACKE $^{6.95}$ × 6 ABRE 7 BARA at 90% candid	RSTAFF 980 10 ^{—5} at 90° U 97E value li 1.4 ps. TE 97H report 6CL. We resca ate event is	reports: ${}^{\circ}$ CL. We isted is fo ts B($Z \rightarrow$ ale to our found, co	$s(b \rightarrow B^+)$ and B(B(Z $\rightarrow B_c X)/B(Z)$ rescale to our PDG r an assumed $\tau_{B_c} = B_c X)/B(Z \rightarrow qq)$ PDG 96 values of E propaged to all the $\frac{25}{19}$ GeV and $\tau_{B_c} = \frac{1}{19}$	$Z \rightarrow qq) \times$ 98 values o = 0.4 ps and $Q \rightarrow B(B_C \rightarrow B)$ known back	$B(B_C \rightarrow J/\psi$ $f(B(Z \rightarrow b\overline{b}))$ $f(B(Z \rightarrow b\overline{b})$. $6 imes10^{-4}$ for $<5.2 imes10^{-5}$ $\psi(15)\mu^+ u_{\mu}$
Γ (J/ψ(1	S)π ⁺)/Γ _{to}	_{tal} × B($\overline{b} \rightarrow B_c$)			$\Gamma_2/\Gamma \times B$
VALUE		CL%	DOCUMENT ID			
<8.2 × 10	∖− 5	90	⁸ BARATE	97H ALEP	$e^+e^- \rightarrow 2$	-

```
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                              ^{9} ACKERSTAFF 980 OPAL e^{+}e^{-} \rightarrow Z ^{10} ABREU 97E DLPH e^{+}e^{-} \rightarrow Z
< 2.4 \times 10^{-4}
                                  90
 < 3.4 \times 10^{-4}
 < 2.0 \times 10^{-5}
                                             11 ABE
                                  95
                                                                       96R CDF ρ 7 1.8 TeV
  <sup>8</sup> BARATE 97H reports B(Z\to B_cX)/B(Z\to qq)·B(B_c\to J/\psi(15)\pi) <3.6\times10^{-5} at 90%CL. We rescale to our PDG 96 values of B(Z\to b\bar{b}).
   <sup>9</sup> ACKERSTAFF 980 reports B(Z \rightarrow B<sub>C</sub>X)/B(Z \rightarrow qq)×B(B<sub>C</sub> \rightarrow J/\psi(15) \pi^+) <
     1.06 \times 10^{-4} at 90%CL. We rescale to our PDG 98 values of B(Z \rightarrow b\overline{b}).
 ^{10} ABREU 97E value listed is for an assumed 	au_{B_C}= 0.4 ps and improves to 2.7 	imes 10 ^{-4} for
    	au_{B_c} = 1.4 	ext{ ps.}
 <sup>11</sup> ABE 96R reports B(b \rightarrow B<sub>C</sub> X)/B(b \rightarrow B<sup>+</sup> X)·B(B<sup>+</sup><sub>C</sub> \rightarrow J/\psi(15)\pi<sup>+</sup>)/B(B<sup>+</sup> \rightarrow
     J/\psi(15)\,{
m K}^+) < 0.053 at 95%CL for 	au_{B_c} = 0.8 ps. It changes from 0.15 to 0.04 for
    0.17 ps< 	au_{B_c} < 1.6 ps. We rescale to our PDG 96 values of B(b 
ightarrow B^+) = 0.378 \pm 0.022
     and B(B^+ \rightarrow J/\psi(15)K^+) = 0.00101 \pm 0.00014.
                                                                                                            \Gamma_3/\Gamma \times B
\Gamma(J/\psi(1S)\pi^{+}\pi^{+}\pi^{-})/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_{c})
                             on 12 ABREU
                                                DOCUMENT ID
                                                                           TECN COMMENT
<5.7 × 10<sup>-4</sup>
                                                                       97E DLPH e^+e^- \rightarrow Z
 ^{12}\,\mathrm{ABREU} 97E value listed is independent of 0.4 ps< \tau_{B_C} < 1.4 ps.
\Gamma(J/\psi(1S) a_1(1260))/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_c)
                           <1.2 × 10<sup>-3</sup>
 <sup>13</sup> ACKERSTAFF 980 reports B(Z \rightarrow B_C X)/B(Z \rightarrow qq)×B(B_C \rightarrow J/\psi(15) a_1(1260))
     < 5.29 \times 10^{-4} at 90%CL. We rescale to our PDG 98 values of B(Z \rightarrow b\overline{b}).
\Gamma(D^{\bullet}(2010)^{+}\overline{D}{}^{0})/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_{c})
                                                                                                            \Gamma_5/\Gamma \times B
                                                 DOCUMENT ID TECN COMMENT
                               <u>CL%</u>
                                                                  98Q ALEP e^+e^- \rightarrow Z
 <6.2 × 10<sup>-3</sup>
                                            14 BARATE
                                  90
 ^{14} BARATE 98Q reports B(Z \rightarrow B_cX)×B(B_c \rightarrow D^*(2010)^+\overline{D}{}^0)<1.9\times10^{-3} at 90%CL. We rescale to our PDG 98 values of B(Z \rightarrow b\overline{b}).
```

B[±] REFERENCES

ABE	98M	PRL 81 2432	F. Abe <i>et al</i> .	(CDF Collab.)
Also	98R	PR D58 112004	F. Abe et al.	(CDF Collab.)
ACKERSTAFF	980	PL B420 157	K. Ackerstaff et al.	(ÓPAL Collab.)
BARATE	98Q	EPJ C4 387	R. Barate et al.	(ALEPH Collab.)
PDG	98	EPJ C3 1	C. Caso et al.	
ABREU	97E	PL B398 207	P. Abreu et al.	(DELPHI Collab.)
BARATE	97H	PL B402 213	R. Barate et al.	(ALEPH Collab.)
ABE	96R	PRL 77 5176	F. Abe et al.	(CDF Collab.)
PDG	96	PR D54 1		,

Confidence level


cc MESONS

$\eta_c(15)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

$\eta_c(1S)$ MASS

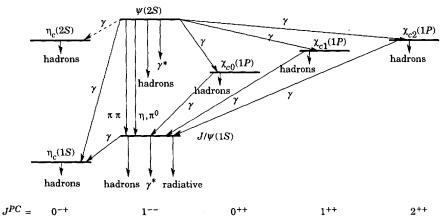
			0.0014454545	TC411	COLLEGE
2979.8+	1.8 OUR AVER	<u>EVTS</u> AGE Fr	DOCUMENT ID		See the ideogram below.
2975.8±					$\psi(25) \rightarrow \gamma X$
2999 ±	8	25	ABREU	980 DLPH	e+e- → e+e- +hadrons
2988.3+	3.3		ARMSTRONG	95F E760	$\overline{p}p \rightarrow \gamma \gamma$
2974.4±	1.9		1 BISELLO	91 DM2	$J/\psi \rightarrow \eta_C \gamma$
2969 ±	4 ± 4	80		90B MRK3	$J/\psi \rightarrow$
	27				7 K + K - K + K -
2982.6+	2.3	12	BAGLIN		
2980.2±	1.6		1 BALTRUSAIT		
2984 ±	2.3± 4.0		GAISER	86 CBAL	$J/\psi \rightarrow \gamma X, \psi(25) \rightarrow \gamma X$
2982 ±		18	3 HIMEL	80B MRK2	e+e-
		TOHOWING	data for averages		
2956 ±1	2 ±12		BAI	90B MRK3	$J/\psi \rightarrow \gamma K^{+} K^{-} K_{5}^{0} K_{1}^{0}$
2976 ±	8		4 BALTRUSAIT	.84 MRK3	$J/\psi \rightarrow 2\phi\gamma$
2980 ±	9		3 PARTRIDGE	80B CBAL	e+e-
² Using	ge of several de- an η_C width of adjusted by us t $\phi\phi$.	13.2 Me\		nass = 3097	MeV.

			$\eta_c(1S)$ WIDT	Ή		
VALUE (MeV)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
13.2+ 3.8 O	UR AVE	RAGE				
23.9 + 12.6			ARMSTRONG	95F	E760	$\overline{p}p \rightarrow \gamma\gamma$
7.0^{+}_{-} 7.5_{-}		12	BAGLIN	87в	SPEC	$\bar{p}p \rightarrow \gamma \gamma$
10.1 + 33.0		23	⁵ BALTRUSAIT.	.86	MRK3	$J/\psi \rightarrow \gamma \rho \overline{\rho}$
11.5 ± 4.5			GAISER	86	CBAL	$J/\psi \rightarrow \gamma X, \psi(2S) \rightarrow \gamma X$
• • • We do no	t use the	followi	ng data for averages			
<40	90	18	HIMEL	80B	MRK2	e+ e-
<20	90		PARTRIDGE	80B	CBAL	e^+e^-
⁵ Positive and	negative	errors o	orrespond to 90% o	onfic	lence (ev	/el.
		7	c(1S) DECAY M	OD	ES	

Mode

Fraction (Γ_i/Γ)

	Decays involving	g hadronic reso	nances	
Γ_1	$\eta'(958)\pi\pi$	(4.1	±1.7) %	
Γ_2	ρρ	(2.6	±0.9) %	
Γ ₂ Γ ₃	$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(2.0	±0.7) %	
Γ_4	K*(892)K*(892)	(8.5	$\pm 3.1) \times 10^{-3}$	
Γ_5	$\phi\phi$	(7.1	$\pm 2.8) \times 10^{-3}$	
Γ ₅ Γ ₆ Γ ₇	$a_0(980)\pi$	< 2	%	90%
Γ7	$a_2(1320)\pi$	< 2	%	90%
Γ8	$K^*(892)\overline{K} + c.c.$	< 1.28	3 %	90%
وا	$f_2(1270)\eta$	< 1.1	%	90%
Γ ₁₀	$\omega \omega$	< 3.1	× 10 ³	90%


Decays into stable hadrons

Γ_{11}	$K\overline{K}\pi$	(5.5 ±1.7) %	
Γ_{12}	ηππ	$(4.9 \pm 1.8) \%$	
Γ ₁₃	$\pi^+\pi^-K^+K^-$	$(2.0 \begin{array}{c} +0.7 \\ -0.6 \end{array}) \%$	
Γ ₁₄	$2(K^{+}K^{-})$	(2.1 ±1.2) %	
Γ ₁₅	$2(\pi^{+}\pi^{-})$	$(1.2 \pm 0.4) \%$	
۲ ₁₆	ρ p	$(1.2 \pm 0.4) \times 10$	3
Γ_{17}	$K\overline{K}\eta$	< 3.1 %	90%
Γ_{1B}	$\pi^+\pi^-\rho\overline{\rho}$	< 1.2 %	90%
Γ19	$\Lambda \overline{\Lambda}$	< 2 × 10	-3 90%

Radiative decays

$\Gamma_{20} \gamma \gamma \qquad (3.0 \pm 1.2) \times$	10-4
--	------

THE CHARMONIUM SYSTEM

The current state of knowledge of the charmonium system and transitions, as interpreted by the charmonium model. Uncertain states and transitions are indicated by dashed lines. The notation γ^* refers to decay processes involving intermediate virtual photons, including decays to e^+e^- and $\mu^+\mu^-$.

 $\eta_c(1S)$

	WIDTHS	•	120)π)/Γ _{total}		r
$\Gamma(\gamma\gamma)$		Γ ₂₀	<u>CL%</u> 90	DOCUMENT ID T BALTRUSAIT86 N	APK3 1/4 - n ~
VALUE (keV) EVTS DOCUMENT ID	TECN COMMENT			DALINOSAIT20 N	
7.4± 1.4 OUR AVERAGE 6.9± 1.7± 2.1 76 ± ACCIARRI	99T L3 77		70)η)/Γ _{total}		Г
19		<u>∨ALUE</u> <0.01 1	<u>CL%</u> 90	9 BALTRUSAIT86 N	ADK2 1/du
	98 AMY 58 e ⁺ e ⁻	•		BALIRUSAII50 N	$\eta_{KK3} J/\psi \rightarrow \eta_C \gamma$
6.7^{+}_{-} $\frac{2.4}{1.7}$ ± 2.3 ARMSTRONG		Γ(ωω),			Γ ₁
	94H ARG γγ	<u>∨ALUE</u> <0.0031	<u>CL%</u> 90	9 BALTRUSAIT86 N	ADV2 1/1/2
- 1.0	90B CLEO $e^+e^- \rightarrow e^+e^-\eta_C$			ing data for averages, fits,	
- J.4	88D TPC $e^+e^- \rightarrow e^+e^- X$	< 0.0063		•	$J/\psi \rightarrow \gamma \omega \omega$
	86 PLUT $\gamma\gamma \to K\overline{K}\pi$	r/v7.	-) /F		F.
• • We do not use the following data for average $8.0 \pm 2.3 \pm 2.4$ 17 7 ADRIANI	93N L3 $e^+e^- \rightarrow e^+e^-\eta_c$		r)/F _{total}	_EVTS DOCUMENT ID	Γ ₁ TECN COMMENT
6.0± 2.3± 2.4 17 ADRIANI 6.Re-evaluated by AIHARA 88D.	asy is $e \cdot e \rightarrow e \cdot e \cdot \eta_C$	0.055	±0.017 OUR EVALU	ATION (Treating systema	atic errors as correlated.)
7 Superseded by ACCIARRI 99T.			±0.008 OUR AVERA	GE 33 ⁹ BISELLO	91 DM2 J/ψ →
			$\pm 0.0142 \pm 0.0132$	33 - BISELLO	$\gamma K^+ K^-$
$\eta_c(1S)$ $\Gamma(i)\Gamma(\gamma\gamma)/$	/Γ(total)	0.0543	$\pm0.0094\pm0.0094$	68 ⁹ BISELLO	91 DM2 $J/\psi \rightarrow$
$\Gamma(K\overline{K}\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$	Г ₁₁ Г	Γ ₂₀ /Γ		as 9.11 p	γ K [±] π [∓]
ALUE (keV) CL% EVTS DOCUMENT	-	0.048	±0.011	12 HIMEL	T86 MRK3 $J/\psi \rightarrow \eta_C$
0.94±0.18 OUR AVERAGE 0.84±0.21 8 ALBRECH	IT 94H ARG $\gamma\gamma \rightarrow K^{\pm}K_c^0$	U.161 _∓	+0.092 -0.073		80B MRK2 $\psi(25) \rightarrow \eta$
	FT 94H ARG $\gamma\gamma \rightarrow K^{\pm}K_{5}^{0}$ CH 89 TASS $\gamma\gamma \rightarrow K\overline{K}\pi$		e do not use the follow' 90	ring data for averages, fits,	limits, etc. • • • 80B CBAL $J/\psi \rightarrow \eta_C$
$1.5 \begin{array}{c} +0.60 \pm 0.3 \\ -0.45 \pm 0.3 \end{array}$ 7 8 BERGER	86 PLUT $\gamma\gamma \to K\overline{K}\pi$	<0.107		- PARTRIDGE	
■ • • We do not use the following data for average	• •	$\Gamma(\eta \pi \pi)$			Γ ₁
<0.63 95 8 BEHREND		π [∓]	.018 OUR EVALUATION		TECN COMMENT
<4.4 95 ALTHOFF		0.047±0	.015 OUR AVERAGE		
8 K^{\pm} K_{5}^{0} π^{\mp} corrected to $K\overline{K}\pi$ by factor 3.		0.054 ± 0		9 BALTRUSAIT86 N	
		0.037±0	.013±0.020 18	PARTRIDGE 808 C	$CBAL J/\psi \to \eta \pi^+ \pi^- \gamma$
$\eta_c(1S)$ BRANCHING	G RATIOS		- K+ K-)/Γ _{total}		Г1
HADRONIC DE	CAYS	VALUE	EVTS	DOCUMENT ID 1	TECN COMMENT
$(\eta'(958)\pi\pi)/\Gamma_{\text{total}}$		Γ ₁ /Γ	.007 OUR AVERAGE		
(7 (330) # #) / I total ALUE EVTS DOCUMENT ID		0.021±0		9 BALTRUSAIT86 N	MRK3 $J/\psi \rightarrow \eta_C \gamma$
	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	0.014 + 0	.022 .009	12 HIMEL 80B N	MRK2 $\psi(25) \rightarrow \eta_C \gamma$
r/a a\ /r	•				-
Γ (ρρ)/Γ_{total} VALUE (units 10 ^{–3}) CL% EVTS DOCUMENT		1 (2(11) VALUE	π ⁻))/Γ _{total}	EVTS DOCUMENT ID	Γ ₁ τεςν comment
	TECN COMMENT ternaticerrors as correlated.)		0.004 OUR EVALUA		TECH COMMENT
AE ± 0 OHD AVERAGE	, , , , , , , , , , , , , , , , , , ,				
25 ± 8 OUR AVERAGE	0.0		0.0031 OUR AVERAG		01 DM2 1/-/-
26.0± 2.4±8.8 113 ⁹ BISELLO	91 DM2 $J/\psi \rightarrow \gamma \rho^0 \rho^0$	0.0105±	0.0031 OUR AVERAGE 0.0017 ± 0.0034	137 ⁹ BISELLO	91 DM2 $J/\psi \rightarrow \gamma 2\pi^+ 2\pi^-$
26.0± 2.4±8.8 113 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$	0.0105± ,- 0.013 ±	0.0017 ± 0.0034 0.006	137 ⁹ BISELLO	
$26.0\pm2.4\pm8.8$ 113 9 BISELLO 23.6 $\pm10.6\pm8.2$ 32 9 BISELLO • • We do not use the following data for average	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$	0.0105±	0.0017 ± 0.0034 0.006	137 ⁹ BISELLO 25 ⁹ BALTRUSAIT	$\gamma 2\pi^+ 2\pi^-$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	0.0105± 0.013 ± 0.020 ±	0.0017±0.0034 0.006 0.015 0.010	137 ⁹ BISELLO 25 ⁹ BALTRUSAIT	$\gamma 2\pi^{+} 2\pi^{-}$ 86 MRK3 $J/\psi \rightarrow \eta_{C} \gamma$ 80B MRK2 $\psi(25) \rightarrow \eta_{C} \gamma$
26.0 ± 2.4 ± 8.8 113 9 BISELLO 23.6 ± 10.6 ± 8.2 32 9 BISELLO • • • We do not use the following data for average <140 90 9 BALTRUS $^{-}$ (K*(892) 0 K $^{-}$ π^{+} + c.c.)/ Γ_{total}	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	0.0105± 0.013 ± 0.020 ± 7 ₃ /Γ Γ(2(<i>K</i> -	0.0017 ± 0.0034 0.006	137 ⁹ BISELLO 25 ⁹ BALTRUSAIT ¹² HIMEL	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$
26.0 \pm 2.4 \pm 8.8 113 9 BISELLO 23.6 \pm 10.6 \pm 8.2 32 9 BISELLO • • • We do not use the following data for average <140 90 9 BALTRUS - (K*(892)*0 K- π ++ c.c.)/ Γ_{total}	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	0.0105± 0.013 ± 0.020 ± F₃/F F(2(K -	0.0017±0.0034 0.006 0.015 0.010	137 ⁹ BISELLO 25 ⁹ BALTRUSAIT ¹² HIMEL	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$
26.0 \pm 2.4 \pm 8.8 113 9 BISELLO 23.6 \pm 10.6 \pm 8.2 32 9 BISELLO • • We do not use the following data for average $<$ 140 90 9 BALTRUS $= \frac{(K^{+}(892)^{0} K^{-}\pi^{+} + c.c.)}{F_{total}} / F_{total}$ ALUE EVTS DOCUMENT ID 9 BALTRUSAIT	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ $\frac{TECN}{MRK3} \frac{COMMENT}{J/\psi \rightarrow \eta_C \gamma}$	0.0105± 0.013 ± 0.020 ± F₃/F F(2(K^-) VALUE 0.021 ±(0.021±(0.0015))	0.0017±0.0034 0.006 0.015 0.010 FK-))/F _{total}	137 ⁹ BISELLO 25 ⁹ BALTRUSAIT 12 HIMEL	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 80B MRK2 $\psi(25) \rightarrow \eta_C \gamma$ FINAL COMMENT ARG $\gamma \gamma \rightarrow K^+ K^- K^+$
26.0 \pm 2.4 \pm 8.8 113 9 BISELLO 23.6 \pm 10.6 \pm 8.2 32 9 BISELLO 9 BOSELLO • • We do not use the following data for average (140 90 9 BALTRUS) $(K^*(892)^0K^-\pi^+ + \text{c.c.})/\Gamma_{\text{total}}$ ALUE EVTS DOCUMENT ID 1.02 \pm 0.007 63 9 BALTRUSAIT $(K^*(892)\overline{K}^*(892))/\Gamma_{\text{total}}$	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	0.0105± 0.013 ± 0.020 ± 0.020 ± 0.021±0 0.021±0	0.0017±0.0034 0.006 0.015 0.010 FK-))/Ftotal 0.010±0.006	137 ⁹ BISELLO 25 ⁹ BALTRUSAIT 12 HIMEL <u>DOCUMENT ID</u> 1 ALBRECHT 94H A	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ FINAL COMMENT ARG $\gamma \gamma \rightarrow K^+ K^- K^+$
26.0 \pm 2.4 \pm 8.8 113 9 BISELLO 23.6 \pm 10.6 \pm 8.2 32 9 BISELLO • • We do not use the following data for average (140 90 9 BALTRUS $-\frac{E}{2}$ $-E$	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	0.0105± 0.013 ± 0.020 ± (F ₃ /Γ Γ(2(K ⁻ VALUE 0.021±((F ₄ /Γ Γ(pp))	0.0017±0.0034 0.006 0.015 0.010 FK-))/Ftotal 0.010±0.006 (Ftotal oits 10-4) EV7S	137 ⁹ BISELLO 25 ⁹ BALTRUSAIT 12 HIMEL <u>DOCUMENT ID</u> 1 ALBRECHT 94H A	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 80B MRK2 $\psi(25) \rightarrow \eta_C \gamma$ FINAL COMMENT ARG $\gamma \gamma \rightarrow K^+ K^- K^+$
26.0 \pm 2.4 \pm 8.8 113 9 BISELLO 23.6 \pm 10.6 \pm 8.2 32 9 BISELLO • • We do not use the following data for average (140 90 9 BALTRUS \cdot (K*(892) ⁰ $K^-\pi^+$ + c.c.)/ Γ total \cdot 2.02 \pm 0.007 63 9 BALTRUSAIT \cdot (K*(892) \overline{K} *(892))/ Γ total \cdot 2.1 \cdot 3 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 6 \cdot 6 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 9 \cdot 6 \cdot 9 \cdot 9 \cdot 9 \cdot 6 \cdot 9	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 1.86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $e^+e^- \rightarrow$	0 0.0105± 0.013 ± 0.020 † Γ3/Γ Γ(2(Κ ⁻	0.0017±0.0034 0.006 0.015 0.010 	137 9 BISELLO 25 9 BALTRUSAIT 12 HIMEL DOCUMENT ID ALBRECHT 94H A DOCUMENT ID 9 BISELLO 91 II	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 80B MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 80B MRK2 $\psi(25) \rightarrow \eta_C \gamma$ TECN COMMENT ARG $\gamma \gamma \rightarrow K^+ K^- K^+$ THECN COMMENT DM2 $J/\psi \rightarrow \gamma p \overline{p}$
26.0 \pm 2.4 \pm 8.8 113 9 BISELLO 23.6 \pm 10.6 \pm 8.2 32 9 BISELLO • • We do not use the following data for average (140 90 9 BALTRUS (K*(892) ⁰ $K^-\pi^+$ + c.c.)/ Γ_{total} ALUE E 0.007 63 9 BALTRUSAIT (K*(892) \overline{K}^{\bullet} (892))/ Γ_{total} ALUE (units 10-4) EVTS DOCUMENT ID 65 31 OUR AVERAGE 2 \pm 28 \pm 27 14 9 BISELLO	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT TECN COMMENT 12 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$	0 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021±0 0.021±0 0.021±0 0.021±0 0.021±0 10± 3± 11± 6	0.0017±0.0034 0.006 0.015 0.010 FK-))/\(\Gamma\)/\(\Gamma\) 0.010±0.006 \(\Gamma\) \(9 BISELLO 25 9 BALTRUSAIT 12 HIMEL DOCUMENT ID ALBRECHT 94H A DOCUMENT ID 9 BISELLO 9 BALTRUSAIT86 N	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 807 TECN COMMENT TECN COMMENT DM2 $J/\psi \rightarrow \gamma_D \overline{\rho}$ MRK3 $J/\psi \rightarrow \eta_C \gamma$
26.0± 2.4±8.8 113 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO • • We do not use the following data for average <140 90 9 BALTRUS	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	0 0.0105± 0.013 ± 0.020 ± Γ3/Γ Γ(2(K ⁻	0.0017±0.0034 0.006 0.015 0.010 	9 BISELLO 25 9 BALTRUSAIT 12 HIMEL DOCUMENT ID ALBRECHT 94H A DOCUMENT ID 9 BISELLO 9 BALTRUSAIT86 N	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 80B MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 80B MRK2 $\psi(25) \rightarrow \eta_C \gamma$ TECN COMMENT ARG $\gamma \gamma \rightarrow K^+ K^- K^+$ THECN COMMENT DM2 $J/\psi \rightarrow \gamma p \overline{p}$
26.0± 2.4±8.8 113 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO 9.0 9 BALTRUS - • • We do not use the following data for average (140 90 9 BALTRUS - (K*(892) ⁰ K ⁻ π ⁺ + c.c.)/Γ _{total} - (K*(892) ^K *(892))/Γ _{total} - (K*(892) K*(892))/Γ _{total} - (K*(892) K*(892) K*(892))/Γ _{total} - (K*(892) K*(892) K*(892))/Γ _{total}	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT THECN COMMENT 11 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	0 0.0105± 0.013 ± 0.020 ± 0.020 ± 0.021±0 Γ3/Γ Γ(2(Κ ⁻	0.0017±0.0034 0.006 0.015 0.010 FK-))/\(\Gamma\)/\(\Gamma\) 0.010±0.006 (\Gamma\) (9 BISELLO 25 9 BALTRUSAIT 12 HIMEL DOCUMENT ID ALBRECHT 94H A DOCUMENT ID 9 BISELLO 9 BALTRUSAIT86 N	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 80B MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ 80B MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ TECN COMMENT ARG $\gamma \gamma \rightarrow K^+ K^- K^+$ THECN COMMENT DM2 $J/\psi \rightarrow \gamma p \overline{p}$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK2 $\psi(2S) \rightarrow \eta_C \gamma$
26.0 ± 2.4 ± 8.8 113	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	0 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021±0 0.021±0 0.021±0 0.021±0 0.021±0 12± 40 10± 3± 11± 6 29±29 -15 Γ ₈ /Γ Γ(κ̄κ̄ɾ̄ɾ̄ɾ̄κ̄κ̄ɾ̄ɾ̄κ̄κ̄ɾ̄ɾ̄κ̄κ̄κ̄ɾ̄ɾ̄κ̄κ̄κ̄ɾ̄ɾ̄κ̄κ̄ɾ̄ɾ̄κ̄κ̄κ̄ɾ̄ɾ̄κ̄κ̄ɾ̄ɾ̄κ̄κ̄κ̄ɾ̄κ̄κ̄κ̄ɾ̄κ	0.0017±0.0034 0.006 0.015 0.010 FK-))/\(\Gamma\)/\(\Gamma\) 0.010±0.006 (\Gamma\) (137 9 BISELLO 25 9 BALTRUSAIT 12 HIMEL DOCUMENT ID ALBRECHT 94H A DOCUMENT ID 9 BISELLO 9 BALTRUSAIT86 N 12 HIMEL 80B N	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 807 TECN COMMENT TECN COMMENT DM2 $J/\psi \rightarrow \gamma_D \overline{\rho}$ MRK3 $J/\psi \rightarrow \eta_C \gamma$
26.0 ± 2.4 ± 8.8 113	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT THECN COMMENT 11 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	0 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021±0 Γ3/Γ Γ(2(Κ ⁻	0.0017±0.0034 0.006 0.015 0.010 FK-))/\(\Gamma\)/\(\Gamma\) 0.010±0.006 (\Gamma\) (137	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ TECN COMMENT THECN COMMENT DM2 $J/\psi \rightarrow \gamma_C \overline{\rho}$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK2 $\psi(25) \rightarrow \eta_C \gamma$ TECN COMMENT
26.0 ± 2.4 ± 8.8 113	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 180 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ 186 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ 186 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0_S K^\pm$ 91 DM2 $J/\psi \rightarrow \gamma K^0_S K^\pm$	0.0105± 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021± 0.021± 0.021± 0.021± 0.021± 10± 36 10± 36 11± 6 29+29 -15 Γ8/Γ Γ(ΚΚ: π ⁴ VALUE π ⁰ <0.031	0.0017±0.0034 0.006 0.015 0.010 FK-))/\(\Gamma\)/\(\Gamma\) 0.010±0.006 (\Gamma\) Cotal bits 10^-4) DUR AVERAGE 4 18 23 7)/\(\Gamma\) 0.010±0.001 2.23	137	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ TECN COMMENT THECH COMMENT DM2 $J/\psi \rightarrow \gamma_C \gamma$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK4 $\psi(25) \rightarrow \eta_C \gamma$
26.0± 2.4±8.8 113 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO 9.0 PBALTRUS -• • We do not use the following data for average (140 90 9 BALTRUS (K*(892) ⁰ K ⁻ π*+ c.c.)/Γ _{total} (ΔΕΔΕ ΕΥΤΣ DOCUMENT ID (ΔΕΔΕ ΕΛΕ ΕΛΕ ΔΕ ΔΕ ΕΛΕ ΔΕ	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+K^-\pi^+\pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0_S K^\pm$ 91 DM2 $J/\psi \rightarrow \gamma K^0_S K^\pm$ 91 DM2 $J/\psi \rightarrow \gamma K^0_S K^\pm$	0.0105± 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021±0 0.021±0 0.021±0 0.021±0 12± 40 10± 3± 11± 6 29±29 -15 Γ8/Γ Γ(ΚΚ: π0 <0.031 Γ5/Γ Γ(π+π	0.0017±0.0034 0.006 0.015 0.010 K-))/\(\Gamma\) \(\Gamma\) \(\	137	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ FINAL COMMENT ARG $\gamma \rightarrow K + K - K -$
26.0 ± 2.4 ± 8.8 113 9 BISELLO 23.6 ± 10.6 ± 8.2 32 9 BISELLO • • We do not use the following data for average c140 90 9 BALTRUS (K*(892) ⁰ K - π + + c.c.)/Γtotal ALUE	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 786 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ 786 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0_S K^\pm$ 91 DM2 $J/\psi \rightarrow \gamma K^0_S K^\pm$ 91 DM2 $J/\psi \rightarrow \gamma K^0_S K^\pm$	0.0105± 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021± 0.021± 0.021± 0.021± 0.021± 10± 36 10± 36 11± 6 29+29 -15 Γ8/Γ Γ(ΚΚ: π ⁴ VALUE π ⁰ <0.031	0.0017±0.0034 0.006 0.015 0.010 FK-))/\(\Gamma\)/\(\Gamma\) 0.010±0.006 \(\Gamma\)/\(\Gamma\) \(\Gamma\) \(137	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ TECN COMMENT THECH COMMENT DM2 $J/\psi \rightarrow \gamma_C \gamma$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK4 $\psi(25) \rightarrow \eta_C \gamma$
26.0± 2.4±8.8 113 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO 9 10 9 BISELLO 90 9 BALTRUS (K*(892) ⁰ K ⁻ π ⁺ + C.C.)/Γ _{total} ΔLUE EVTS DOCUMENT ID (K*(892) K*(892))/Γ _{total} ΔLUE Louits 10 ⁻⁴) EVTS DOCUMENT ID (K*(892) K̄ + C.C.)/Γ _{total} ΔLUE LOUITS 10 ⁻⁴) 9 BALTRUSAIT (K*(892) K̄ + C.C.)/Γ _{total} ΔLUE LOUITS 10 ⁻⁴) 9 BISELLO (ΦΦ)/Γτοtal ΔLUE LOUITS 10 ⁻⁴) EVTS DOCUMENT ID (ΦΦ)/Γτοtal ΔLUE LOUITS 10 ⁻⁴) EVTS DOCUMENT ID 1±28 OUR EVALUATION (Treating systematic 11±22 OUR AVERAGE	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0 K^+ \pi^-$ T86 MRK3 $J/\psi \rightarrow \gamma K^0 K^+ \pi^-$ T87 COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0 K^+ K^-$ TECN COMMENT errors as correlated.)	0.0105± 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021±0 0.021±0 0.021±0 0.021±0 12± 40 10± 3± 11± 6 29+29 -15 Γ8/Γ Γ(ΚΚ: π0 <0.031 Γ5/Γ Γ(π+π ΛΛΙΘΕ (0.012)	0.0017±0.0034 0.006 0.015 0.010 K−))/\(\Gamma\) 0.010±0.006 \(\Gamma\) \(137	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ TECN COMMENT THECN COMMENT DM2 $J/\psi \rightarrow \gamma_C \gamma$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ TECN COMMENT TY TECN TECN TO THE
26.0± 2.4±8.8 113 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO 9.0 9 BISELLO 9.0 9 BALTRUS. (K*(892) ⁰ K ⁻ π*+ c.c.)/Γ _{total} ΔLUE EVTS DOCUMENT ID (K*(892) K*(892))/Γ _{total} ΔLUE Louits 10 ⁻⁴) EVTS DOCUMENT ID (K*(892) K+ c.c.)/Γ _{total} ΔLUE LOUITS 10 ⁻⁴) 9 BALTRUSAIT (K*(892) K+ c.c.)/Γ _{total} ΔLUE LOUITS 10 ⁻⁴) 9 BISELLO (ΦΦ)/Γ _{total} ΔLUE (units 10 ⁻⁴) EVTS DOCUMENT ID (1±28 OUR EVALUATION (Treating systematic 11±22 OUR AVERAGE	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+K^-\pi^+\pi^-$ 86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K_0^0 K^{\pm}\pi^+$ 91 DM2 $J/\psi \rightarrow \gamma K_0^0 K^{\pm}\pi^-$ 191 DM2 $J/\psi \rightarrow \gamma K_0^0 K^{\pm}\pi^-$ 91 DM2 $J/\psi \rightarrow \gamma K_0^0 K^{\pm}\pi^-$ 191 DM2 $J/\psi \rightarrow \gamma K_0^0 K^{\pm}\pi^-$	0.0105± 0.0105± 0.013 ± 0.020 ± 0.020 ± 0.021±0 0.021±0 0.021±0 0.021±0 12± 40 10± 3± 11± 6 29+29 15 Γ ₈ /Γ π ⁺ π ⁰ √ΔLUE √ΔLUE √0.031 Γ ₅ /Γ (π ⁺ π ΛΔLUE √0.012 Γ(ΛΛ),	0.0017±0.0034 0.006 0.015 0.010	137	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ FINAL COMMENT THECH COMMENT DM2 $J/\psi \rightarrow \gamma_D \overline{\rho}$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ THECH COMMENT MRK3 $J/\psi \rightarrow \eta_C \gamma$ THECH COMMENT MRK4 $J/\psi \rightarrow \eta_C \gamma$ THECH COMMENT MRK5 $J/\psi \rightarrow \eta_C \gamma$ THECH COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMME
26.0± 2.4±8.8 113 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO • • We do not use the following data for average <140 90 9 BALTRUS (K*(892)*0 K - π + + c.c.) / Γtotal ΔΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕ	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 786 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 10 DM2 $e^+ e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ 186 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0_S K^\pm$ 17 TECN COMMENT 18 errors as correlated.) 908 MRK3 $J/\psi \rightarrow \gamma K^0_S K^\pm K^\pm$	0.0105± 0.0105± 0.013 ± 0.020 ± 0.020 ± 0.021±0 0.021±0 0.021±0 0.021±0 12± 40 10± 3± 11± 6 29+29 15 Γ ₈ /Γ π ⁺ π ⁰ √ΔLUE √ΔLUE √0.031 Γ ₅ /Γ (π ⁺ π ΛΔLUE √0.012 Γ(ΛΛ),	0.0017±0.0034 0.006 0.015 0.010 K−))/\(\Gamma\) 0.010±0.006 \(\Gamma\) \(137	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ TECN COMMENT THECN COMMENT DM2 $J/\psi \rightarrow \gamma_C \gamma$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ TECN COMMENT TY TECN TECN TO THE
26.0± 2.4±8.8 113 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO • • We do not use the following data for average <140 90 9 BALTRUS (140 90 9 BALTRUS (K*(892) ⁰ K ⁻ π ⁺ + c.c.)/Γtotal ΔΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕ	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+K^-\pi^+\pi^-$ 86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K_0^0 K^{\pm}\pi^+$ 91 DM2 $J/\psi \rightarrow \gamma K_0^0 K^{\pm}\pi^-$ 191 DM2 $J/\psi \rightarrow \gamma K_0^0 K^{\pm}\pi^-$ 91 DM2 $J/\psi \rightarrow \gamma K_0^0 K^{\pm}\pi^-$ 191 DM2 $J/\psi \rightarrow \gamma K_0^0 K^{\pm}\pi^-$	0.0105± 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021±0 0.021±0 0.021±0 0.021±0 12± 40 10± 3± 11± 6 29+29 -15 Γ ₈ /Γ Γ _π Λ _{LUE}	0.0017±0.0034 0.006 0.015 0.010 K-) / Γtotal	137	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ FINAL COMMENT THECH COMMENT DM2 $J/\psi \rightarrow \gamma_D \overline{\rho}$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ THECH COMMENT MRK3 $J/\psi \rightarrow \eta_C \gamma$ THECH COMMENT MRK4 $J/\psi \rightarrow \eta_C \gamma$ THECH COMMENT THE COMMENT
26.0± 2.4±8.8 113 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO • • We do not use the following data for average <140 90 9 BALTRUS	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0 K^+ K^-$ 91 DM2 $J/\psi \rightarrow \gamma K^0 K^+ K^-$ TECN COMMENT errors as correlated.) 908 MRK3 $J/\psi \rightarrow \gamma K^+ K^- K^+ K^- K^+ K^- K^0 K^+ K^- K^0 K^- K^- K^0 K^- K^- K^0 K^- K^- K^0 K^- K^- K^- K^0 K^0 K^- K^- K^0 K^0 K^- K^- K^0 K^0 K^- K^- K^0 K^0 K^- K^- K^0 K^0 K^- K^- K^0 K^- K^- K^0 K^0 K^0 K^0 K^0 K^0 K^0 K^0 K^0 K^0$	0.0105± 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021±0 0.021±0 0.021±0 0.021±0 12± 40 10± 3± 11± 6 29+29 -15 Γ(ΚΚ) π [±] π ⁰ <0.031 Γ5/Γ Γ(π ⁺ π ναιυε <0.012 Γ(ΛΛ) ναιυε 0.002 Γ,Γ/Γ/Γ	0.0017±0.0034 0.006 0.015 0.010 K -	137 9 BISELLO 25 9 BALTRUSAIT 12 HIMEL DOCUMENT ID ALBRECHT 94H A DOCUMENT ID 9 BISELLO 91 1 9 BALTRUSAIT86 N 12 HIMEL 80B N DOCUMENT ID 9 BALTRUSAIT86 N DOCUMENT ID 1 HIMEL 80B N DOCUMENT ID 1 HIMEL 80B N	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ FINAL COMMENT THECH COMMENT DM2 $J/\psi \rightarrow \gamma_C \gamma$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK2 $\psi(25) \rightarrow \eta_C \gamma$ THECH COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COME
26.0± 2.4±8.8 113 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO 1•• We do not use the following data for average 140 90 9 BALTRUS	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_c \gamma$ TECN COMMENT 186 MRK3 $J/\psi \rightarrow \eta_c \gamma$ TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+K^-\pi^+\pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_c \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0_S K^{\pm}$; 91 DM2 $J/\psi \rightarrow \gamma K^+K^-K^-K^-K^-K^-K^-K^-K^-K^-K^-K^-K^-K^-K$	0.0105± 0.0105± 0.013 ± 0.020 ± 0.020 ± 0.021±0 0.0	0.0017±0.0034 0.006 0.015 0.010 K-) / Γ total 0.010±0.006 Γ total 0.015 0.010	137	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ FINAL COMMENT THECH COMMENT DM2 $J/\psi \rightarrow \gamma_C \gamma$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ THECH COMMENT
26.0 ± 2.4 ± 8.8 113	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_c \gamma$ TECN COMMENT 186 MRK3 $J/\psi \rightarrow \eta_c \gamma$ TECN COMMENT 91 DM2 $e^+ e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_c \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0 S^+ K^+$ 91 DM2 $J/\psi \rightarrow \gamma K^+ K^-$ TECN COMMENT errors as correlated.) 908 MRK3 $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$ 908 MRK3 $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$ 908 MRK3 $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$ 91 DM2 $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$ 91 DM2 $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$	0.0105± 0.0105± 0.013 ± 0.020 ± 0.020 ± 0.021±0 0.0	0.0017±0.0034 0.006 0.015 0.010 K-) / Γ total 0.010±0.006 Γ total 0.015 0.010	137	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(25) \rightarrow \eta_C \gamma$ FINAL COMMENT THECH COMMENT DM2 $J/\psi \rightarrow \gamma_C \gamma$ MRK3 $J/\psi \rightarrow \eta_C \gamma$ MRK2 $\psi(25) \rightarrow \eta_C \gamma$ THECH COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COMENT THE COMMENT THE COMMENT THE COMMENT THE COMMENT THE COME
26.0 ± 2.4 ± 8.8 113 9 BISELLO 23.6 ± 10.6 ± 8.2 32 9 BISELLO 23.6 ± 10.6 ± 8.2 32 9 BISELLO 24.0 90 9 BALTRUS (140 90 9 BALTRUS (140 90 9 BALTRUS (140	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0 K^\pm \pi^-$ T86 MRK3 $J/\psi \rightarrow \gamma K^0 K^\pm \pi^-$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^+ K^- K^- K^-$ TECN COMMENT errors as correlated.) 908 MRK3 $J/\psi \rightarrow \gamma K^+ K^- K^- K^- K^- K^- K^- K^- K^- K^- K^-$	0.0105± 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021±0 0.021±0 0.021±0 0.021±0 12± 40 10± 3± 11± 6 29+29 -15 Γ(Κ΄Κ΄ π ⁺ ΜΑΙΘΕ	0.0017±0.0034 0.006 0.015 0.010 K−)) / Γtotal 0.010±0.006 Γtotal 0.015 0.010 EVTS DUR AVERAGE 18 23 7) / Γtotal	9 BISELLO 25 9 BALTRUSAIT 12 HIMEL DOCUMENT ID ALBRECHT 94H A DOCUMENT ID 9 BISELLO 91 10 9 BALTRUSAIT86 N 12 HIMEL 80B N DOCUMENT ID 9 BALTRUSAIT86 N DOCUMENT ID 9 BALTRUSAIT86 N DOCUMENT ID 9 BISELLO 91 10 9 BALTRUSAIT86 N DOCUMENT ID 9 BISELLO 91 10 9 BISELLO 9	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ FINAL COMMENT ARG $\gamma \rightarrow K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K -$
26.0± 2.4±8.8 113 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO 23.6±10.6±8.2 32 9 BISELLO 24.0 90 9 BALTRUS (K*(892)** (K** + C.C.) / Γtotal ΔΕ.UE EVTS DOCUMENT ID 1.02±0.007 63 9 BALTRUSAIT (K*(892)* (K*(892)) / Γtotal ΔΕ.UΕ (units 10** 4) EVTS DOCUMENT ID 12±28±27 14 9 BISELLO 10±50 9 9 BALTRUSAIT (K*(892)* (K** + C.C.) / Γtotal ΔΕ.UΕ (units 10** 4) BISELLO 20.0128 90 BISELLO 20.0132 90 9 BISELLO 20.0132 90 9 BISELLO 20.0132 90 9 BISELLO 20.01428 90 BISELLO 20.0152 90 9 90 90 90 90	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_c \gamma$ TECN COMMENT 186 MRK3 $J/\psi \rightarrow \eta_c \gamma$ TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+K^-\pi^+\pi^-$ T86 MRK3 $J/\psi \rightarrow \eta_c \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0_5 K^\pm$; 91 DM2 $J/\psi \rightarrow \gamma K^+K^-K^-K^-K^-K^-K^-K^-K^-K^-K^-K^-K^-K^-K$	0.0105± 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021±0 0.021±0 0.021±0 0.021±0 12± 40 10± 3± 11± 6 29±29 -15 Γ ₈ /Γ π ⁴ π ⁰ <0.031 Γ ₅ /Γ Γ(π ⁷ π <0.002 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) √ΔLUE (0.012 Γ(π ⁷ π) γΔLUE (0.012 Γ(π) γΔLU	0.0017±0.0034 0.006 0.015 0.010 K−))/Γtotal .010±0.006 Γtotal .015 .010 .010±0.006 .010±0.0	9 BISELLO 25 9 BALTRUSAIT 12 HIMEL DOCUMENT ID ALBRECHT 94H A DOCUMENT ID 9 BISELLO 91 10 9 BALTRUSAIT86 N 12 HIMEL 80B N DOCUMENT ID 9 BALTRUSAIT86 N DOCUMENT ID 9 BALTRUSAIT86 N DOCUMENT ID 9 BISELLO 91 10 9 BALTRUSAIT86 N DOCUMENT ID 9 BISELLO 91 10 9 BISELLO 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26.0 ± 2.4 ± 8.8 113	91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho$ es, fits, limits, etc. • • • AIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$ 86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ TECN COMMENT 91 DM2 $J/\psi \rightarrow \gamma K^0 S K^{\pm} \gamma$ 91 DM2 $J/\psi \rightarrow \gamma K^+ K^- K^- K^- K^- K^- K^- K^- K^- K^- K^-$	0.0105± 0.0105± 0.020 ± 0.020 ± 0.020 ± 0.021±0 Γ3/Γ Γ(2(Κ ⁻ ΛΑΙΨΕ 0.021±0 12± 40 10± 3± 11± 6 29±29 -15 Γ(Κ ⁻ π ⁰	0.0017 \pm 0.0034 0.006 0.015 0.010 $F(F)$ / Ftotal 0.010 \pm 0.006 (Ftotal 0.010 \pm 0.006 (137	86 MRK3 $J/\psi \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ 808 MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ FINAL COMMENT ARG $\gamma \rightarrow K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K + K - K -$

RADIATIVE DECAYS	Decays involving	hadronic resonances	
	Γε οπ	(1.27±0.09) %	
$(\gamma \gamma)/\Gamma_{\text{total}}$ Γ_{20}/Γ	$\Gamma_6 \qquad \rho^0 \pi^0$	$(4.2 \pm 0.5) \times 10^{-3}$	
ALUE (units 10 ⁻⁴) CL% DOCUMENT ID TECN COMMENT	$\Gamma_7 = a_2(1320) \rho$	(1.09±0.22) %	
3.0 ±1.2 OUR AVERAGE	$\Gamma_8 \omega \pi^+ \pi^+ \pi^- \pi^-$	$(8.5 \pm 3.4) \times 10^{-3}$	
$2.80^{+0.67}_{-0.58}\pm 1.0$ ARMSTRONG 95F E760 $\overline{p}p \rightarrow \gamma\gamma$	$\Gamma_9 \omega \pi^+ \pi^-$	$(7.2 \pm 1.0) \times 10^{-3}$	
6 $^{+4}_{-3}$ ± 4 BAGLIN 87B SPEC $\bar{p}p \rightarrow \gamma\gamma$	$\Gamma_{10} = \omega f_2(1270)$	$(4.3 \pm 0.6) \times 10^{-3}$	
• We do not use the following data for averages, fits, limits, etc. • • •	Γ_{11}^{*} $K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	$(6.7 \pm 2.6) \times 10^{-3}$	
< 9 90 9 BISELLO 91 DM2 $J/\psi \rightarrow \gamma \gamma \gamma$	$\Gamma_{12} = \omega K^*(892) \overline{K} + \text{c.c.}$	$(5.3 \pm 2.0) \times 10^{-3}$	
(18 90 13 BLOOM 83 CBAL $J/\psi \rightarrow \eta_C \gamma$	$\Gamma_{13}^{-1} = K^{+} \vec{K}^{*} (892)^{-} + \text{c.c.}$	$(5.0 \pm 0.4) \times 10^{-3}$	
13 Using B $(J/\psi(15) \rightarrow \gamma \eta_{\mathcal{C}}(15)) = 0.0127 \pm 0.0036$.	$\Gamma_{14} = K^0 \overline{K}^* (892)^0 + \text{c.c.}$	$(4.2 \pm 0.4) \times 10^{-3}$	
_	Γ_{15}^{+} $K_1(1400)^{\pm}K^{\mp}$	$(3.8 \pm 1.4) \times 10^{-3}$	
$_{I}\Gamma_{f}/\Gamma_{\text{total}}^{2}$ in $p\overline{p} \rightarrow \eta_{c}(1S) \rightarrow \gamma\gamma$ $\Gamma_{16}\Gamma_{20}/\Gamma^{2}$	$\Gamma_{16} \omega \pi^0 \pi^0$	$(3.4 \pm 0.8) \times 10^{-3}$	
ALUE (units 10 ⁻⁶) EVTS DOCUMENT ID TECN COMMENT	$\Gamma_{17} b_1(1235)^{\pm} \pi^{\mp}$	[a] $(3.0 \pm 0.5) \times 10^{-3}$	
.36 +0.08 OUR AVERAGE Error includes scale factor of 1.1.	$\Gamma_{18} \omega K^{\pm} K_{5}^{0} \pi^{\mp}$	[a] $(2.9 \pm 0.7) \times 10^{-3}$	
	$\Gamma_{19} b_1(1235)^0 \pi^0$	$(2.3 \pm 0.6) \times 10^{-3}$	
.336 $^{+0.080}_{-0.070}$ ARMSTRONG 95F E760 $\bar{p}p \rightarrow \gamma\gamma$	$\Gamma_{20} \phi K^*(892)\overline{K} + \text{c.c.}$	$(2.04\pm0.28)\times10^{-3}$	
.68 $^{+0.42}_{-0.31}$ 12 BAGLIN 878 SPEC $\overline{p}p \rightarrow \gamma\gamma$	$\Gamma_{21} \omega K \overline{K}$	$(1.9 \pm 0.4) \times 10^{-3}$	
20.31	$\Gamma_{22}^{-1} \qquad \omega f_0(1710) \rightarrow \ \omega K \overline{K}$	$(4.8 \pm 1.1) \times 10^{-4}$	
$\eta_c(1S)$ REFERENCES	Γ_{23} $\phi_2(\pi^+\pi^-)$	$(1.60\pm0.32)\times10^{-3}$	
,	$\Gamma_{24} \Delta(1232)^{++} \overline{p} \pi^{-}$	$(1.6 \pm 0.5) \times 10^{-3}$	
CCIARRI 99T PL B461 155 M. Acciarri et al. (L3 Collab.) AI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.)	$\Gamma_{25} \omega \eta$	$(1.58\pm0.16)\times10^{-3}$	
BREU 980 PL B441 479 P. Abreu et al. (DELPHI Collab.)	$\Gamma_{26} \phi K \overline{K}$	$(1.48 \pm 0.22) \times 10^{-3}$	
HIRAI 98 PL B424 405 M. Shirai et al. (AMY Collab.) RMSTRONG 95F PR D52 4839 T.A. Armstrong et al. (FNAL, FERR, GENO+)	$\Gamma_{27} \qquad \phi f_0(1710) \to \phi K \overline{K}$	$(3.6 \pm 0.6) \times 10^{-4}$	_
LBRECHT 94H PL B338 390 H. Albrecht et al. (ARGUS Collab.) DRIANI 93N PL B318 575 O. Adriani et al. (L3 Collab.)	$\Gamma_{28} p \overline{p} \omega$	$(1.30\pm0.25)\times10^{-3}$	S=1
ISELLO 91 NP B350 1 D. Bisello et al. (DM2 Collab.)	$\Gamma_{29} = \Delta(1232)^{++} \overline{\Delta}(1232)^{}$	$(1.10\pm0.29)\times10^{-3}$	
Al 90B PRL 65 1309 Z. Bai et al. (Mark III Collab.) HEN 90B PL B243 169 W.Y. Chen et al. (CLEO Collab.)	$\Gamma_{30} \Sigma (1385)^{-} \overline{\Sigma} (1385)^{+} \text{ (or c.c.)}$	[a] $(1.03\pm0.13)\times10^{-3}$ $(9 \pm 4)\times10^{-4}$	٠.
AGLIN 89 PL B231 557 C. Bagiin, S. Baird, G. Bassompierre (R704 Collab.) EHREND 89 ZPHY C42 367 H.J. Behrend et al. (CELLO Collab.)	$\Gamma_{31} p \overline{p} \eta'(958)$	` '	S=1
RAUNSCH 89 ZPHY C41 533 W. Braunschweig et al. (TASSO Collab.)	$\Gamma_{32} \phi f_2'(1525)$		5=2
IHARA 88D PRL 60 2355 H. Aihara et al. (TPC Collab.) AGLIN 87B PL B187 191 C. Baglin et al. (R704 Collab.)	$\Gamma_{33} \phi \pi^+ \pi^-$	$(8.0 \pm 1.2) \times 10^{-4}$	
ALTRUSAIT 86 PR D33 629 R.M. Baltrusaitis et al. (Mark III Collab.) ERGER 86 PL 167B 120 C. Berger et al. (PLUTO Collab.)	$\Gamma_{34} \phi K^{\pm} K_5^0 \pi^{\mp}$	[a] $(7.2 \pm 0.9) \times 10^{-4}$ $(6.8 \pm 2.4) \times 10^{-4}$	
AISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.)	$\Gamma_{35} \omega f_1(1420)$		
LTHOFF 85B ZPHY C29 189 M. Althoff et al. (TASSO Collab.) ALTRUSAIT 84 PRL 52 2126 R.M. Baltrusaitis et al. (CIT, UCSC+) JP	$\Gamma_{36} \phi \eta$	$(6.5 \pm 0.7) \times 10^{-4}$	
LOOM 83 ARNS 33 143 E.D. Bloom, C. Peck (SLAC, CIT) IIMEL 80B PRL 45 1146 T.M. Himel et al. (SLAC, LBL, UCB)	$\Gamma_{37} = \Xi(1530) - \Xi^{+}$	$(5.9 \pm 1.5) \times 10^{-4}$ $(5.1 \pm 3.2) \times 10^{-4}$	
ARTRIDGE 80B PRL 45 1150 R. Partridge et al. (CIT, HARV, PRIN+)	$\Gamma_{38} p K^{-} \overline{\Sigma} (1385)^{0} $ $\Gamma_{39} \omega \pi^{0}$	$(5.1 \pm 3.2) \times 10^{-4}$ $(4.2 \pm 0.6) \times 10^{-4}$	S=1
. OTHER RELATED PAPERS ———		$(3.3 \pm 0.4) \times 10^{-4}$	3=1
	$\Gamma_{40} \phi \eta'(958)$	$(3.3 \pm 0.4) \times 10^{-4}$	S=1
RMSTRONG 89 PL B221 216 T.A. Armstrong et al. (CERN, CDEF, BIRM+)	$\Gamma_{41} \phi f_0(980) \\ \Gamma_{42} \Xi (1530)^0 \overline{\Xi}{}^0$	$(3.2 \pm 0.9) \times 10^{-4}$	3-1
	$\Gamma_{43} = (1330) \pm \Gamma_{43} = \Sigma(1385) - \Sigma^+ \text{ (or c.c.)}$	[a] $(3.1 \pm 0.5) \times 10^{-4}$	
$J/\psi(1S)$ $I^{G}(J^{PC}) = 0^{-(1^{-})}$	$\Gamma_{44} = \rho f_1(1285)$	$(2.6 \pm 0.5) \times 10^{-4}$	S=1
$J/\psi(1J)$	$\Gamma_{45} = \rho \eta$	$(1.93\pm0.23)\times10^{-4}$	
	$\Gamma_{46} = \omega \eta'(958)$	$(1.67 \pm 0.25) \times 10^{-4}$	
J/ψ(1S) MASS	$\Gamma_{47} \omega f_0(980)$	$(1.4 \pm 0.5) \times 10^{-4}$	
,., ,	$\Gamma_{48} = \rho \eta'(958)$	$(1.05\pm0.18)\times10^{-4}$	
ALUE (MeV) EVTS DOCUMENT ID TECN COMMENT 1096.87±0.04 OUR AVERAGE	$\Gamma_{49} p \bar{p} \phi$	$(4.5 \pm 1.5) \times 10^{-5}$	
1096.89 ± 0.09 502 ¹ ARTAMONOV 00 OLYA $e^+e^- \rightarrow \text{hadrons}$	$\Gamma_{50} = a_2(1320)^{\pm} \pi^{\mp}$	$[a] < 4.3 \times 10^{-3}$	CL=90
$1096.87 \pm 0.03 \pm 0.03$ ARMSTRONG 938 E760 $\bar{p}p \rightarrow e^+e^-$	$\Gamma_{51} = K \overline{K}_{2}^{*}(1430) + \text{c.c.}$	< 4.0 × 10 ⁻³	CL=90
1096.95 \pm 0.1 \pm 0.3 193 BAGLIN 87 SPEC $\bar{p}p \rightarrow e^+e^-$ X	$\Gamma_{52} = K_1 (\bar{1}270)^{\pm} K^{\mp}$	$< 3.0 \times 10^{-3}$	CL=90
• • We do not use the following data for averages, fits, limits, etc. • • •	$\Gamma_{53} K_2^*(1430)^0 \overline{K}_2^*(1430)^0$	$< 2.9 \times 10^{-3}$	CL=90
0097.5 ± 0.3 GRIBUSHIN 96 FMPS 515 π ⁻ Be → 2μX	$\Gamma_{54} = K^{\frac{2}{8}} (892)^{0} \overline{K}^{*} (892)^{0}$	$< 5 \times 10^{-4}$	CL=90
1098.4 ± 2.0 38k LEMOIGNE 82 GOLI 190 π^- Be $\rightarrow 2\mu$	$\Gamma_{55} \phi f_2(1270)$	< 3.7 × 10 ⁻⁴	CL=90
3096.93±0.09 502 ² ZHOLENTZ 80 REDE e ⁺ e ⁻	$\Gamma_{56} \rho \overline{\rho} \rho$	$< 3.1 \times 10^{-4}$	CL=90
1097.0 ±1 3 BRANDELIK 79C DASP e ⁺ e ⁻	$\Gamma_{57} \phi \eta (1440) \rightarrow \phi \eta \pi \pi$	$< 2.5 \times 10^{-4}$	CL=90
¹ Reanalysis of ZHOLENTZ 80 using new electron mass (COHEN 87) and radiative corrections (KURAEV 85).	$\Gamma_{58} \omega f_2'(1525)$	$< 2.2 \times 10^{-4}$	CL=90
² Superseded by ARTAMONOV 00.	$\Gamma_{59} \Sigma (1385)^{0} \overline{\Lambda}$	< 2 ×10 ⁻⁴	CL=90
3 From a simultaneous fit to e^+e^- , $\mu^+\mu^-$ and hadronic channels assuming $\Gamma(e^+e^-)$	$\Gamma_{60} \Delta(1232)^{+}\overline{p}$	$< 1 \times 10^{-4}$	CL=90
$=\Gamma(\mu^+\mu^-).$	$\Gamma_{61} \Sigma^{\dot{0}} \overline{\Lambda}$	< 9 ×10 ⁻⁵	CL=90
4444	$\Gamma_{62} \phi \pi^0$	$< 6.8 \times 10^{-6}$	CL=90
$J/\psi(1S)$ WIDTH		stable badross	
VALUE (keV) DOCUMENT ID TECN COMMENT		stable hadrons	
B7 ± 5 OUR AVERAGE	$\Gamma_{63} 2(\pi^{+}\pi^{-})\pi^{0}$	(3.37±0.26) %	
BAI 95B BES e^+e^-	$\Gamma_{64} = 3(\pi^{+}\pi^{-})\pi^{0}$	(2.9 ±0.6) %	
99 $\pm 12 \pm 6$ ARMSTRONG 93B E760 $\overline{p}p \rightarrow e^+e^-$	$\Gamma_{65} = \pi^{+} \pi^{-} \pi^{0}$ $\Gamma_{66} = \pi^{+} \pi^{-} \pi^{0} K^{+} K^{-}$	(1.50±0.20) %	
$35.5 + 6.1 4$ HSUEH 92 RVUE See γ mini-review		(1.20±0.30) %	
⁴ Using data from COFFMAN 92, BALDINI-CELIO 75, BOYARSKI 75, ESPOSITO 758,	$\Gamma_{67} = 4(\pi^{+}\pi^{-})\pi^{0}$	$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$	
BRANDELIK 79c.	$\Gamma_{68} \pi^+\pi^-K^+K^-$	$(7.2 \pm 2.3) \times 10^{-3}$	
111600 00000000000000000000000000000000	Γ_{69} $KK\pi$	$(6.0 \pm 0.5) \times 10^{-3}$	S=:
$J/\psi(1S)$ DECAY MODES	$egin{array}{lll} \Gamma_{70} & ho \overline{ ho} \pi^+ \pi^- \ \Gamma_{71} & 2(\pi^+ \pi^-) \end{array}$	$(6.0 \pm 0.5) \times 10^{-3}$	3
Scale factor/		$(4.0 \pm 2.0) \times 10^{-3}$	
Mode Fraction (Γ_j/Γ) Confidence level	12	$(4.0 \pm 2.0) \times 10^{-3}$	
Γ ₁ hadrons (87.7 ±0.5)%	13 _a <u>=</u> a	$(4 \pm 4) \times 10^{-3}$	
Γ_2 virtual $\gamma \rightarrow$ hadrons (17.0 ± 2.0) %	11 a to a section of	$(3.1 \pm 1.3) \times 10^{-3}$	
The state of the s	$\Gamma_{75} = 2(\pi^{+}\pi^{-})K^{+}K^{-}$	[b] $(2.3 \pm 0.9) \times 10^{-3}$	
$\Gamma_3^- e^+e^-$ (5.93±0.10)%	$\Gamma_{76} \rho \overline{\rho} \pi^+ \pi^- \pi^0$	[M] () 3 + n 0 1 ~ 1n - 3	S=:

$J/\psi(15)$

	_		_4			
_ ₇₇ p p	$(2.12\pm0.10)\times10^{-3}$		$\Gamma(\text{virtual}\gamma o \text{hadrons})$			
Γ ₇₈ <i>p̄p̄η</i>	$(2.09\pm0.18)\times10^{-3}$		VALUE (keV)	DOCUMENT ID		COMMENT
Γ ₇₉ ρππ ⁻	$(2.00\pm0.10)\times10^{-3}$		12 ±2	⁵ BOYARSKI	75 MRK1	e+ e-
Γ ₈₀	$(2.2 \pm 0.4) \times 10^{-3}$		5 Included in Γ (hadrons).			
Γ ₈₁ Ξ <u>Ξ</u>	$(1.8 \pm 0.4) \times 10^{-3}$	S=1.8	-4 1 3			
Γ ₈₂ ΛΛ	$(1.30\pm0.12)\times10^{-3}$	S=1.1	Γ(e ⁺ e ⁻)			
$\Gamma_{83}^{0} p \overline{p} \pi^{0}$	$(1.09\pm0.09)\times10^{-3}$		VALUE (keV)	DOCUMENT ID	TECN	COMMENT
$\Gamma_{84} \Lambda \overline{\Sigma}^- \pi^+ \text{ (or c.c.)}$	[a] $(1.06 \pm 0.12) \times 10^{-3}$		5.26±0.37 OUR EVALUATION			
$\Gamma_{85} pK^{-}\overline{\Lambda}$	$(8.9 \pm 1.6) \times 10^{-4}$		• • We do not use the following	ing data for averages	i, fits, limits,	etc. • • •
$\Gamma_{86} 2(K^+K^-)$	$(7.0 \pm 3.0) \times 10^{-4}$		5.14 ± 0.39	BAI	95B BES	e^+e^-
$\Gamma_{87} pK^{-}\overline{\Sigma}^{0}$	$(2.9 \pm 0.8) \times 10^{-4}$		5.36 ^{+ 0.29} - 0.28	⁶ HSUEH	92 RVUE	See T mini-
Γ ₈₈ K+K-	$(2.37\pm0.31)\times10^{-4}$		4.72±0.35	ALEXANDER	89 RVUF	See 7 mini-
$\Gamma_{89} \Lambda \overline{\Lambda} \pi^0$	$(2.2 \pm 0.6) \times 10^{-4}$		4.4 ±0.6		79c DASP	
Γ ₉₀ π ⁺ π ⁻	$(1.47\pm0.23)\times10^{-4}$		4.6 ±0.8	7 BALDINI	75 FRAG	
Γ ₉₁ κ ⁰ ₅ κ ⁰ ₁	$(1.08\pm0.14)\times10^{-4}$		4.8 ±0.6	BOYARSKI	75 MRK1	
$\Gamma_{92} = \Lambda \Sigma + c.c.$	< 1.5 × 10 ⁻⁴	CL=90%	4.6 ±1.0	ESPOSITO	75B FRAM	e^+e^-
	< 5.2 × 10 ⁻⁶	CL=90%	⁶ From a simultaneous fit to e	$e^{+}e^{-}$, $u^{+}u^{-}$, and	hadronic chi	annels assumi
Γ_{93} $K_S^0 K_S^0$	< 5.2 × 10 -	CL = 90 /4	$=\Gamma(\mu^+\mu^-).$, , , ,		
Radi	ative decays		⁷ Assuming equal partial width	ns for e ⁺ e ⁻ and u ⁺	u ⁻ .	
$\Gamma_{94} \gamma \eta_c(1S)$	(1.3 ±0.4)%		• • •		-	
$\Gamma_{95} \gamma \pi^+ \pi^- 2\pi^0$	$(8.3 \pm 3.1) \times 10^{-3}$		$\Gamma(\mu^+\mu^-)$			
Γ ₉₆ γηππ	$(6.1 \pm 1.0) \times 10^{-3}$		VALUE (keV)	DOCUMENT ID	TECN	COMMENT
$\Gamma_{97} \gamma \eta (1440) \rightarrow \gamma K \overline{K} \pi$	[c] $(9.1 \pm 1.8) \times 10^{-4}$		 ● ● We do not use the follow 	ing data for averages	s, fits, limits,	etc. • • •
$\Gamma_{9B} \gamma \eta (1440) \rightarrow \gamma \gamma \rho^0$	$(6.4 \pm 1.4) \times 10^{-5}$		5.13±0.52	BAI	95B BES	e^+e^-
	$(3.0 \pm 0.5) \times 10^{-4}$		4.8 ±0.6	BOYARSKI	75 MRK1	e^+e^-
	$(3.0 \pm 0.3) \times 10^{-3}$		5 ±1	ESPOSITO	75B FRAM	e^+e^-
Γ_{100} $\gamma \rho \rho$ Γ_{101} $\gamma \eta_2 (1870) \rightarrow \gamma \pi^+ \pi^-$	$(6.2 \pm 2.4) \times 10^{-4}$					
	$(6.2 \pm 2.4) \times 10^{-3}$ $(4.31 \pm 0.30) \times 10^{-3}$		$\Gamma(\gamma\gamma)$			
$\Gamma_{102} \gamma \eta'(958)$	$(2.8 \pm 0.5) \times 10^{-3}$		VALUE (eV) CL%	DOCUMENT ID	TECN	COMMENT
$\Gamma_{103} \gamma 2\pi^{+} 2\pi^{-}$		S=1.9	<5.4 90	BRANDELIK	79c DASP	e^+e^-
$\Gamma_{104} \gamma K^{+} K^{-} \pi^{+} \pi^{-}$	$(2.1 \pm 0.6) \times 10^{-3}$		-			
$\Gamma_{105} \gamma f_4(2050)$	$(2.7 \pm 0.7) \times 10^{-3}$		J/w	(1S) Γ(i)Γ(e+e-)/Γ(total)	
$\Gamma_{106} \gamma \omega \omega$	$(1.59\pm0.33)\times10^{-3}$,.	. , ,, .	.,	
$\Gamma_{107} \gamma \eta(1440) \rightarrow \gamma \rho^0 \rho^0$	$(1.7 \pm 0.4) \times 10^{-3}$	S=1.3	This combination of a			
$\Gamma_{108} \gamma f_2(1270)$	$(1.38\pm0.14)\times10^{-3}$		and with the total width channel, in the e^+e^-		ie integrated	cross section
$\Gamma_{109} \gamma f_0(1710) \rightarrow \gamma K \overline{K}$	$(8.5 \begin{array}{c} +1.2 \\ -0.9 \end{array}) \times 10^{-4}$	S=1.2	Channel in the eve	annimation.		
$\Gamma_{110} \gamma f_0(1710) \rightarrow \gamma \pi \pi$	-0.5		$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma$			
	$(8.6 \pm 0.8) \times 10^{-4}$		VALUE (keV)	DOCUMENT ID	TECN	COMMENT
$\Gamma_{111} \gamma \eta \\ \Gamma_{112} \gamma f_1(1420) \rightarrow \ \gamma K \overline{K} \pi$	$(8.8 \pm 0.8) \times 10^{-4}$					
			• • We do not use the follow	-		
$\Gamma_{113} \gamma f_1(1285)$	$(6.1 \pm 0.9) \times 10^{-4}$		4 ±0.8	8 BALDINI	75 FRAG	
$\Gamma_{114} \gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$	$(4.5 \pm 1.2) \times 10^{-4}$		3.9 ± 0.8	^B ESPOSITO	75B FRAM	e'e
$\Gamma_{115} \ \gamma f_2'(1525)$	$(4.7 \begin{array}{c} +0.7 \\ -0.5 \end{array}) \times 10^{-4}$		$\Gamma(e^+e^-) \times \Gamma(e^+e^-)/\Gamma_{to}$			
$\Gamma_{116} \gamma f_2(1950) \rightarrow$	$(7.0 \pm 2.2) \times 10^{-4}$		VALUE (keV)	DOCUMENT ID	TECN	COMMENT
$\gamma K^*(892) \overline{K}^*(892)$	· / · ·		• • • We do not use the follow			
$\Gamma_{117} \gamma K^*(892) \overline{K}^*(892)$	$(4.0 \pm 1.3) \times 10^{-3}$					
$\Gamma_{118} \gamma \phi \phi$	$(4.0 \pm 1.2) \times 10^{-4}$	S=2.1	0.35 ± 0.02	BRANDELIK 8 BALDINI	79C DASP 75 FRAG	
$\Gamma_{119} \gamma p \overline{p}$	$(3.8 \pm 1.0) \times 10^{-4}$		0.32 ± 0.07 0.34 ± 0.09	8 ESPOSITO	75 FRAG	
$\Gamma_{120} \gamma \eta(2225)$	$(2.9 \pm 0.6) \times 10^{-4}$		0.36 ± 0.10	8 FORD	75 SPEC	
$\Gamma_{121} \gamma \eta(1760) \rightarrow \gamma \rho^0 \rho^0$	$(1.3 \pm 0.9) \times 10^{-4}$,, ,, ,,	
$\Gamma_{122} \gamma \pi^0$	$(3.9 \pm 1.3) \times 10^{-5}$		$\Gamma(\mu^+\mu^-) \times \Gamma(e^+e^-)/\Gamma_{ti}$	otal		
$\Gamma_{123} \gamma p \overline{p} \pi^+ \pi^-$	$< 7.9 \times 10^{-4}$	CL=90%	VALUE (keV)	DOCUMENT ID	TECN	COMMENT
	< 5 × 10 ⁻⁴	CL=90%	• • • We do not use the follow	ing data for average	s, fits, limits	, etc. • • •
$\Gamma_{124} \gamma \gamma = \Gamma_{124} \gamma = \Gamma_$	< 1.3 × 10 ⁻⁴	CL=90%	0.51 ± 0.09	DASP	75 DASP	
$\Gamma_{125} \gamma \Lambda \Lambda$	< 5.5 × 10 ⁻⁵	CL=90% CL=90%	0.38±0.05	8 ESPOSITO	75B FRAM	
$\Gamma_{126} = 3\gamma$	< 5.5 × 10 °	CL = 30 70	0.50 ± 0.00	25. 05.10	, 00 1 mail	
$\Gamma_{127} \gamma f_0(2200)$		CI 00.08/	$\Gamma(p\overline{p}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$			
$\Gamma_{128} \gamma f_J(2220)$	> 2.50 × 10 ³	CL=99.9%	VALUE (eV)	DOCUMENT ID	TECN	COMMENT
$\Gamma_{129} \gamma f_J(2220) \rightarrow \gamma \pi \pi$	$(8 \pm 4) \times 10^{-5}$		9.7±1.7	9 ARMSTRONG		
$\Gamma_{130} \gamma f_J(2220) \rightarrow \gamma K \overline{K}$	$(8.1 \pm 3.0) \times 10^{-5}$		⁸ Data redundant with branch			
$\Gamma_{131} \gamma f_J(2220) \rightarrow \gamma p \overline{p}$	$(1.5 \pm 0.8) \times 10^{-5}$		9 Using $\Gamma_{\text{total}} = 85.5 + 6.1 \text{ M}$	MeV.		
$\Gamma_{132} \gamma f_0(1500)$	$<(5.7 \pm 0.8) \times 10^{-4}$		total _ 03.5 _ 5.8 M			
$\Gamma_{133} \gamma e^+ e^-$	$(8.8 \pm 1.4) \times 10^{-3}$					
	(0.0 ±1.4) × 10		***	ACL DOANGLES	CDATION	•
[a] The value is for the sum o	, ,		J/ψ	(15) BRANCHIN	G RATIOS	i

- [a] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [b] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [c] See the "Note on the $\eta(1440)$ " in the $\eta(1440)$ Particle Listings.

$J/\psi(1S)$ PARTIAL WIDTHS

Γ(hadrons)	• • •				г.
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	'1
• • We do not use the f				-	
74.1 ± 8.1	BAI	95B	BES	e^+e^-	
59 ±24	BALDINI	75	FRAG	e^+e^-	
59 ±14	BOYARSKI	75	MRK1	e^+e^-	
50 ±25	ESPOSITO	75B	FRAM	e+e-	

VALUE (keV)		DOCUMENT ID		TECN	COMMENT	_
12 ±2		5 BOYARSKI	75		e+ e-	
⁵ Included in Γ(had	rons).					
Γ(e ⁺ e ⁻)						Γ;
VALUE (keV)		DOCUMENT ID		TECN	COMMENT	
5.26±0.37 OUR EVA	LUATION					
• • We do not use	the following	data for average	s, fits	, limits,	etc. • • •	
5.14 ± 0.39		BAI	95B	BES	e^+e^-	
5.36 ^{+ 0.29} - 0.28		6 HSUEH	92	RVUE	See 7 mini-revi	ew
4.72±0.35		ALEXANDER	89	RVUE	See T mini-revi	ew
4.4 ±0.6		6 BRANDELIK		DASP	e+ e-	
4.6 ±0.8		7 BALDINI	75	FRAG	e+ e-	
4.8 ±0.6		BOYARSKI	75	MRK1	e+ e	
4.6 ±1.0		ESPOSITO	75B	FRAM	e^+e^-	
$= \Gamma(\mu^+ \mu^-).$ 7 Assuming equal p	artial widths	for e^+e^- and μ^-	+ μ-			
$\Gamma(\mu^+\mu^-)$						Г
VALUE (keV)		DOCUMENT ID		TECN	COMMENT	
• • • We do not use	the following	g data for average	s, fit:	s, limits,	etc. • • •	
5.13±0.52		BAI	95B	BES	e^+e^-	
4.8 ±0.6		BOYARSKI	75	MRK1	e^+e^-	
5 ±1		ESPOSITO	75B	FRAM	e+ e-	
						Γ ₁₂
Γ/~~\)						
$\Gamma(\gamma\gamma)$	C1 9/	DOCUMENT ID		TECN	COMMENT	• 12
VALUE (eV)	<u>CL%</u>	DOCUMENT ID			COMMENT	• 12
,	90	BRANDELIK	790	DASP		• 12
VALUE (eV) <5.4 This combinand with the	90 J/ψ(1 nation of a p	BRANDELIK S) $\Gamma(i)\Gamma(e^+e^-)$ For artial width with is obtained from the state of	79c	DASP (total) partial v	e^+e^- vidth into e^+e^-	
This combin and with the channel in the finance of the channel in	$J/\psi(1)$ nation of a pertotal width in the e^+e^- and	BRANDELIK S) $\Gamma(i)\Gamma(e^+e^-)$ For artial width with is obtained from to inhibitation.	79c	(total) partial vegrated	e^+e^- width into e^+e^- cross section into	
This combin and with the channel in	$J/\psi(1)$ nation of a pertotal width it the e^+e^- are e^+e^-)/ Γ_{to}	BRANDELIK S) $\Gamma(i)\Gamma(e^+e^-)$ For a statistic width with instance from the instance of the i	790 the	(total) partial vegrated	e^+e^- width into e^+e^- cross section into	
This combin and with the channel in	$J/\psi(1)$ nation of a pertotal width it the e^+e^- are e^+e^-)/ Γ_{to}	BRANDELIK S) \(\(\frac{1}{1}\)\(\frac{1}{6} + \end{e}^{-1}\) For artial width with its obtained from the inhibitation. The image is a second of the image. The image is a second of the image is a second of the image i	79c	(total) partial vegrated	e+e- vidth into e+e- cross section into	
This combinand with the channel in t	$J/\psi(1)$ nation of a pertotal width it the e^+e^- are e^+e^-)/ Γ_{to}	BRANDELIK S) \(\((i) \) \(\((e^+ e^- \) \] Brandial width with sobtained from to the sobtained from the so	790 the he interes, fit	(total) partial vegrated TECN s, limits,	e^+e^- width into e^+e^- cross section into $COMMENT$ etc. • • • e^+e^-	
This combin and with the channel in	$J/\psi(1)$ nation of a pertotal width it the e^+e^- are e^+e^-)/ Γ_{to}	BRANDELIK S) \(\(\frac{1}{1}\)\(\frac{1}{6} + \end{e}^{-1}\) For artial width with its obtained from the inhibitation. The image is a second of the image. The image is a second of the image is a second of the image i	790 the he interes, fit	(total) partial vegrated	e^+e^- width into e^+e^- cross section into $COMMENT$ etc. • • • e^+e^-	
This combinand with the channel in t	$J/\psi(1)$ anation of a pertotal width the e^+e^- are e^+e^-)/ Γ_{to} the following	BRANDELIK S) \(\(\begin{align*} \Gamma(\text{i}) \mathcal{F}(\text{i}) \mathcal{F}(\text{e}) \mathcal{F}(\text{e}) \mathcal{F}(\text{i}) \mathcal{F}(\text{i}) \mathcal{F}(\text{i}) \mathcal{F}(\text{i}) \mathcal{F}(\text{i}) \mathcal{F}(\text{e}) \mathcal{F}(\text{i}) \mathcal{F}(\text{e}) \mathcal{F}(\tex	790 the interest fit 75 75 75 75 75 75 75 7	(total) partial vegrated TECN s, limits, FRAG	e^+e^- width into e^+e^- cross section into $COMMENT$ etc. • • • e^+e^-	Γ ₁ Γ ₃ /
This combin and with the channel $_{\parallel}$ in $_{\parallel}$ F (hadrons) \times F ($_{\parallel}$ F (keV) $_{\parallel}$ \times We do not use $_{\parallel}$ $_{\parallel}$ \pm 0.8 $_{\parallel}$ $_{\parallel}$ $_{\parallel}$ \times 0.8 $_{\parallel}$ \times 0.8 $_{\parallel}$ \times 1.8 $_{\parallel}$ \times	$J/\psi(1)$ Ination of a period to the e+e- are e+e-)/ Γ_{to} The the following the f	BRANDELIK S) \(\(\(\) \) \(\((\) \) \(\) \((\) \) \(\)	790 the ne int	(total) partial vegrated TECN FRAG FRAM	e+e- width into e^+e^- cross section into $\frac{COMMENT}{e^+e^-}$ e^+e^- e^+e^- e^+e^-	Γ ₁ Γ ₃ /
This combin and with the channel $_{1}$ in $_{1}$ $VALUE$ (keV) • • • We do not use $_{1}$ $_{2}$ $_{3}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{4}$	$J/\psi(1)$ Ination of a period to the e+e- are e+e-)/ Γ_{to} The the following the f	BRANDELIK S) \(\(\(\) \) \(\((\) \) \(\) \((\) \) \(\)	790 the he into 75 756	(total) partial vegrated TECN FRAG FRAM	e+e- width into e^+e^- cross section into $\frac{COMMENT}{e^+e^-}$ e^+e^- e^+e^- e^+e^-	Γ ₁ Γ ₃ /
This combin and with the channel in	$J/\psi(1)$ Ination of a period to the e+e- are e+e-)/ Γ_{to} The the following the f	BRANDELIK S) \(\(\(\) \) \(\((\) \) \(\)	790 T)/ The the int 75 75ess, fit 790	(total) partial vegrated TECN s, limits, FRAG FRAM TECN s, limits	e+e- width into e^+e^- cross section into $\frac{COMMENT}{\text{etc.} \bullet \bullet \bullet}$ e^+e^- e^+e^- e^+e^- e^+e^- e^+e^-	Γ ₁ Γ ₃ /
This combinant with the channel in	$J/\psi(1)$ Ination of a period to the e+e- are e+e-)/ Γ_{to} The the following the f	BRANDELIK S) \(\(\(\) \) \(\((\) \) \(\)	790 T)/F the ne int 75 75e 75e 757 750 750	(total) partial vegrated TECN s, limits, FRAG FRAM TECN s, limits	e+e- width into e^+e^- cross section into $\frac{COMMENT}{etc. \bullet \bullet}$ e+e- e+e- $\frac{COMMENT}{etc. \bullet \bullet}$ etc. • • • e^+e^- e+e- e^+e^-	Γ ₁ Γ ₃ /
This combinant with the channel in	$J/\psi(1)$ Ination of a period to the e+e- are e+e-)/ Γ_{to} The the following the f	BRANDELIK S) \(\(\(\) \) \(\) \(\) \(\) \(\) \(\) \(\) \\ \ \ \) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \\ \(\) \\ \\ \\ \) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	790 T)/F the he into 75 75es, fit 790 75 75e	(total) partial vegrated TECN s, limits, FRAG FRAM TECN s, limits	e+e- width into e^+e^- cross section into $\frac{COMMENT}{etc. \bullet \bullet}$ e+e- e+e- $\frac{COMMENT}{etc. \bullet \bullet}$ etc. • • • e^+e^- e+e- e^+e^-	

$J/\psi(1S)$ BRANCHING RATIOS

 $\Gamma_{77}\Gamma_3/\Gamma$

For the first four branching ratios, see also the partial widths, and (partial widths) $\times \Gamma(e^+e^-)/\Gamma_{ ext{total}}$ above.

Γ(hadrons)/Γ _{total}					11/1
VALUE	DOCUMENT ID		TECN	COMMENT	
0.877 ±0.005 OUR AVERAG	E				
0.878 ± 0.005	BAI		BES		
0.86 ±0.02	BOYARSKI	75	MRK1	e+ e-	
$\Gamma(\text{virtual}\gamma \rightarrow \text{hadrons})/$	Γ _{total}				Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.17 ±0.02	¹⁰ BOYARSKI	75	MRK1	e^+e^-	
10 Included in $\Gamma(\text{hadrons})/1$	r _{total} .				

 $J/\psi(1S)$

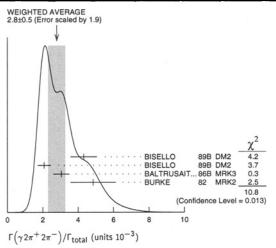
r(e+e-)/r _{total}	F3/F	$\Gamma(\omega t_2(1270))/\Gamma_{\text{total}}$		Γ ₁₀ /
0.0593±0.0010 OUR AVERAGE	DOCUMENT ID TECN COMMENT	<u>VALUE (units 10⁻³) </u>	DOCUMENT ID TECN	COMMENT
$0.0590 \pm 0.0005 \pm 0.0010$	BAI 98D BES $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$	4.3±0.2±0.6 5860	AUGUSTIN 89 DM2	e+ e-
0.0609 ± 0.0033	BAI 95B BES e ⁺ e ⁻	4.0 ± 1.6 70	BURMESTER 770 PLUT	e+ e-
0.0592±0.0015±0.0020	COFFMAN 92 MRK3 $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$	 We do not use the following 	g data for averages, fits, limits	s, etc. • • •
0.069 ±0.009	BOYARSKI 75 MRK1 e ⁺ e ⁻	1.9±0.8 B1	VANNUCCI 77 MRK1	$e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0$
-(μ ⁺ μ ⁻)/Γ _{total}	Γ ₄ /Γ	$\Gamma(K^+\overline{K}^{\bullet}(892)^- + \text{c.c.})/\Gamma_{\text{tot}}$	al	Γ ₁₃ /
0.0588 ± 0.0010 OUR AVERAGE	DOCUMENT ID TECN COMMENT	VALUE (units 10 ⁻³) EVTS	DOCUMENT ID TECN	COMMENT
$.0584 \pm 0.0006 \pm 0.0010$	BAI 98D BES $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$	5.0 ±0.4 OUR AVERAGE	10110000	
.0608±0.0033	BAI 95B BES e ⁺ e ⁻	4.57±0.17±0.70 2285	JOUSSET 90 DM2 COFFMAN 88 MRK3	$J/\psi \rightarrow \text{hadrons}$ 3 $J/\psi \rightarrow K^{\pm} K_{\text{C}}^{0} \pi^{\mp}$,
.0590±0.0015±0.0019 .069 ±0.009	COFFMAN 92 MRK3 $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ BOYARSKI 75 MRK1 $e^+ e^-$	5.26±0.13±0.53		$\kappa^+ \kappa^- \pi^0$
(a+a-) (F(u+u-)	F. /F	• • We do not use the following	•	
$\Gamma(e^+e^-)/\Gamma(\mu^+\mu^-)$	F3/F4	2.6 ±0.6 24 3.2 ±0.6 48		$2 J/\psi \rightarrow K^{+}K^{-}\pi^{0}$ L $J/\psi \rightarrow K^{\pm}K^{0}_{S}\pi^{\mp}$
We do not use the following	g data for averages, fits, limits, etc. • • •	3.2 ±0.6 46 4.1 ±1.2 39	BRAUNSCH 76 DASP	
00 ± 0.07	BAI 958 BES e ⁺ e ⁻			J/₩ → X-X
.00±0.07	BOYARSKI 75 MRK1 e ⁺ e ⁻	$\Gamma(K^0\overline{K}^*(892)^0 + c.c.)/\Gamma_{total}$		Γ ₁₄ /
.91±0.15	ESPOSITO 75B FRAM e+e-	VALUE (units 10 ⁻³) EVTS	DOCUMENT ID TECN	COMMENT
.93±0.10	FORD 75 SPEC e ⁺ e	4.2 ±0.4 OUR AVERAGE		-
		$3.96 \pm 0.15 \pm 0.60$ 1192	JOUSSET 90 DM2	$J/\psi ightarrow hadrons$
	ADRONIC DECAYS ———	$4.33 \pm 0.12 \pm 0.45$		$3 J/\psi \rightarrow K^{\pm}K_S^0\pi^{\mp}$
(ρπ)/Γ _{total}	Г ₅ /Г	 We do not use the following 	-	
ALUE EVTS	DOCUMENT ID TECN COMMENT	2.7 ±0.6 45	VANNUCCI 77 MRK	$I J/\psi \to K^{\pm} K_{S}^{0} \pi^{\mp}$
.0127±0.0009 OUR AVERAGE .0121±0.0020	BAI 96D BES $e^+e^- \rightarrow \rho \pi$	$\Gamma(K^0\overline{K}^{\bullet}(892)^0 + \text{c.c.})/\Gamma(K^{-1})$	+ K *(892) + c.c.)	Γ ₁₄ /Γ
$.0142 \pm 0.0020$ $.0142 \pm 0.0001 \pm 0.0019$	COFFMAN 88 MRK3 e+e-	VALUE	DOCUMENT ID TECN	
.013 ±0.003 150	FRANKLIN 83 MRK2 e+e-	0.82±0.05±0.09	COFFMAN 88 MRK	
.016 ±0.004 183	ALEXANDER 78 PLUT e^+e^-			K K*(892) +c.c.
$.0133 \pm 0.0021$	BRANDELIK 788 DASP e+e-	F(V (1400)± V∓\/F		F
.010 ± 0.002 543	BARTEL 76 CNTR e ⁺ e ⁻	$\Gamma(K_1(1400)^{\pm}K^{\mp})/\Gamma_{\text{total}}$		Γ ₁₅ /
013 ± 0.003 153	JEAN-MARIE 76 MRK1 e ⁺ e ⁻	VALUE (units 10 ⁻³)	DOCUMENT ID TECN	COMMENT
$(ho^0 \pi^0) / \Gamma(ho \pi)$	Γ ₆ /Γ ₅	3.8±0.8±1.2	12 BAI 99¢ BES	e+ e-
ALUE	DOCUMENT ID TECN COMMENT	¹² Assuming B($K_1(1400) \rightarrow K^4$	π)=0.94 ± 0.06	
.328±0.005±0.027	COFFMAN 88 MRK3 e ⁺ e ⁻	$\Gamma(\omega\pi^0\pi^0)/\Gamma_{ m total}$		Γ ₁₆ ,
	g data for averages, fits, limits, etc. • • •	• • • • • • • • • • • • • • • • • • • •		
.35 ±0.08	ALEXANDER 78 PLUT e ⁺ e ⁻	VALUE (units 10 ⁻³) EVTS	DOCUMENT ID TECN	
.32 ±0.08	BRANDELIK 788 DASP e+e-	3.4±0.3±0.7 509	AUGUSTIN 89 DM2	$J/\psi \to \pi^+\pi^-3\pi^0$
.39 ±0.11	BARTEL 76 CNTR e ⁺ e ⁻	$\Gamma(b_1(1235)^{\pm}\pi^{\mp})/\Gamma_{\text{total}}$		r ₁₇ ,
37 ±0.09	JEAN-MARIE 76 MRK1 e ⁺ e ⁻	VALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID TECN	COMMENT
$(a_2(1320)\rho)/\Gamma_{\text{total}}$	F_ /F	30±5 OUR AVERAGE	DOCOMENT ID TECH	COMMENT
•	Γ ₇ /Γ	31±6 4600	AUGUSTIN 89 DM2	$J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$
ALUE (units 10 ⁻³) EVTS 0.9±2.2 OUR AVERAGE	DOCUMENT ID TECN COMMENT	29±7 87	BURMESTER 770 PLUT	
1.7±0.7±2.5 7584	AUGUSTIN 89 DM2 $J/\psi \rightarrow \rho^0 \rho^{\pm} \pi^{\mp}$	=(bc0 =\ -=		_
8.4±4.5 36	VANNUCCI 77 MRK1 $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0$	$\Gamma(\omega K^{\pm} K_S^0 \pi^{\mp})/\Gamma_{\text{total}}$		Г ₁₈ /
	7 minute e e 2 2 (x m y m	VALUE (units 10 ⁻⁴) EVTS		COMMENT
$(\omega \pi^+ \pi^+ \pi^- \pi^-)/\Gamma_{\text{total}}$	Г ₈ /Г	29.5±1.4±7.0 879± 41	BECKER 87 MRK	$3 e^+e^- \rightarrow hadrons$
ALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID TECN COMMENT			
5±34 140	VANNUCCI 77 MRK1 $e^+e^- \rightarrow 3(\pi^+\pi^-)\pi^0$	$\Gamma(b_1(1235)^0\pi^0)/\Gamma_{\text{total}}$		Г19/
		VALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID TECN	COMMENT
$(\omega \pi^+ \pi^-)/\Gamma_{\text{total}}$	٦/و٦	23±3±5 229	AUGUSTIN 89 DM2	e+ e-
ALUE (units 10 ⁻³) EVTS	DOCUMENT ID TECN COMMENT			-
.2±1.0 OUR AVERAGE	ALICUSTIN OF THE 11. THE T. O.	$\Gamma(\phi K^*(892)\overline{K} + c.c.)/\Gamma_{total}$		Γ ₂₀ /
.0±1.6 18058	AUGUSTIN 89 DM2 $J/\psi \rightarrow 2(\pi^{+}\pi^{-})\pi^{0}$	VALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID TECN	COMMENT
.8±1.6 215 .8±1.9 348	BURMESTER 77D PLUT e^+e^- VANNUCCI 77 MRK1 $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0$	20.4±2.8 OUR AVERAGE	F111100 F111	.,,
U4.7 345	TRANSPORCE IN WIREL C. $e \rightarrow 2(\pi \cdot \pi)\pi^{\circ}$	20.7 ± 2.4 ± 3.0	FALVARD 88 DM2	$J/\psi \rightarrow \text{hadrons}$
		20 ±3 ±3 155± 20	BECKER 87 MRK	3 e ⁺ e [−] → hadrons
$(\omega \pi^+ \pi^-) / \Gamma(2(\pi^+ \pi^-) \pi^0)$	Го/Газ			
$(\omega \pi^+ \pi^-)/\Gamma(2(\pi^+ \pi^-) \pi^0)$	Γ9/Γ ₆₃			-
ALUE		$\Gamma(\omega K \overline{K})/\Gamma_{ ext{total}}$		
We do not use the following	DOCUMENT ID TECN COMMENT	$\Gamma(\omega K K)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) EVTS	DOCUMENT ID TECN	COMMENT
ALUE • • We do not use the followin 3	DOCUMENT ID TECN COMMENT g data for averages, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 e ⁺ e ⁻	Γ(ω Κ Κ)/Γ _{total} <u>VALUE (units 10⁻⁴) EVTS</u> 19 ± 4 OUR AVERAGE	12	COMMENT
$4 UE$ • We do not use the followin 3 11 Final state $(\pi^+\pi^-)\pi^0$ under	DOCUMENT ID TECN COMMENT g data for averages, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 e^+e^- the assumption that $\pi\pi$ is isospin 0.	$\Gamma(\omega K K)/\Gamma_{\text{total}}$ $\frac{VALUE \text{ (units } 10^{-4}\text{)}}{19.8 \pm 2.1 \pm 3.9}$ $\frac{EVTS}{19.8 \pm 2.1 \pm 3.9}$	13 FALVARD 88 DM2	$COMMENT$ $J/\psi \rightarrow hadrons$
ALUE • • We do not use the followin 3 11 Final state $(\pi^+\pi^-)\pi^0$ under	DOCUMENT ID TECN COMMENT g data for averages, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 e^+e^- the assumption that $\pi\pi$ is isospin 0.	$\Gamma(\omega K K)/\Gamma_{\text{total}}$ **YALUE (units 10^{-4}) **19	13 FALVARD 88 DM2 FELDMAN 77 MRK1	$COMMENT$ $J/\psi \rightarrow hadrons$
ALUE • • We do not use the followin .3 11 Final state $(\pi^+\pi^-)\pi^0$ under $(K^*(892)^0 \overline{K}_2^*(1430)^0 + c.c.$	DOCUMENT ID TECN COMMENT g data for averages, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 e^+e^- the assumption that $\pi\pi$ is isospin 0.	$\Gamma(\omega KK)/\Gamma_{\text{total}}$ **MALUE (units 10^{-4}) EVTS 19 ± 4 OUR AVERAGE 19.8 ± 2.1 ± 3.9 16 ± 10 22 13 Addition of ωK^+K^- and ωM	13 FALVARD 88 DM2 FELDMAN 77 MRKI	$COMMENT$ $J/\psi \rightarrow hadrons$
ALUE • • We do not use the followin .3 11 Final state $(\pi^+\pi^-)\pi^0$ under $(K^*(892)^0 \overline{K}_2^*(1430)^0 + c.c$ ALUE (units 10^{-4}) EVTS	pocument id tech comment g data for averages, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 e^+e^- the assumption that $\pi\pi$ is isospin 0.)/\[\begin{array}{c c c c c c c c c c c c c c c c c c c	$\Gamma(\omega K K)/\Gamma_{\text{total}}$ **YALUE (units 10^{-4}) **19	13 FALVARD 88 DM2 FELDMAN 77 MRKI	$\frac{COMMENT}{J/\psi \rightarrow \text{hadrons}}$ e^+e^-
ALUE • • We do not use the followin .3 11 Final state $(\pi^+\pi^-)\pi^0$ under $(K^*(892)^0\overline{K}_2^*(1430)^0 + C.C.$ ALUE (units 10^{-4}) $= EVTS$ 40	pocument id tech comment g data for averages, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 $^{+}$ e $^{-}$ the assumption that $_{\pi\pi}$ is isospin 0.)/ Γ_{total} pocument id tech comment	$\Gamma(\omega K \overline{K}) / \Gamma_{\text{total}}$ $\frac{VALUE (\text{units } 10^{-4}) \qquad EVTS}{19 \pm 4 \qquad \text{OUR AVERAGE}}$ $19.8 \pm 2.1 \pm 3.9$ $16 \pm 10 \qquad 22$ $13 \text{Addition of } \omega K^+ K^- \text{ and } \omega K$ $\Gamma(\omega f_0(1710) \rightarrow \omega K \overline{K}) / \Gamma_{\text{total}}$	13 FALVARD 88 DM2 FELDMAN 77 MRKI	$\begin{array}{c} \underline{COMMENT} \\ J/\psi \rightarrow \text{ hadrons} \\ e^+e^- \end{array}$
ALUE • • We do not use the followin .3 11 Final state $(\pi^+\pi^-)\pi^0$ under $(K^*(892)^0\overline{K}_2^*(1430)^0 + C.C.$ ALUE (units 10^{-4}) $= EVTS$ 40	pocument id tech comment g data for averages, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 e^+e^- the assumption that $\pi\pi$ is isospin 0.)/\(\text{Total}\) \[\text{DOCUMENT ID}\) \text{TECN}\] \[\text{COMMENT}\] \[\text{VANNUCCI}\] \[77 \text{MRK1}\) \[\text{e^+e^-}\rightarrow \\ \pi^+\pi^-\text{K^-}\\ \end{array}	$\Gamma(\omega K \overline{K})/\Gamma_{\text{total}}$ $\frac{VALUE (\text{units } 10^{-4})}{19 \pm 4} \frac{EVTS}{0}$ $19 \pm 4 \text{OUR AVERAGE}$ $19.8 \pm 2.1 \pm 3.9$ $16 \pm 10 \qquad 22$ $13 \text{ Addition of } \omega K^+ K^- \text{ and } \omega M$ $\Gamma(\omega f_0(1710) \rightarrow \omega K \overline{K})/\Gamma_{\text{total}}$ $VALUE (\text{units } 10^{-4})$	13 FALVARD 88 DM2 FELDMAN 77 MRK1 ${}^{0}\overline{K}{}^{0}$ branching ratios.	COMMENT $J/\psi \rightarrow \text{hadrons}$ e^+e^-
ALUE • • We do not use the followin 3 11 Final state $(\pi^+\pi^-)\pi^0$ under $(K^*(892)^0\overline{K}_2^*(1430)^0 + c.c.$ ALUE (units 10^{-4}) 7 ± 26 $(\omega K^*(892)\overline{K} + c.c.)/\Gamma_{total}$	pocument id techniques, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 e^+e^- the assumption that $\pi\pi$ is isospin 0.)// total	$\Gamma(\omega K \overline{K})/\Gamma_{\text{total}}$ $\frac{VALUE (\text{units } 10^{-4})}{19 \pm 4} \text{OUR AVERAGE}$ $19.8 \pm 2.1 \pm 3.9$ $16 \pm 10 \qquad 22$ $13 \text{ Addition of } \omega K^+ K^- \text{ and } \omega K^-$ $\Gamma(\omega f_0(1710) \rightarrow \omega K \overline{K})/\Gamma_{\text{total}}$ $\frac{VALUE (\text{units } 10^{-4})}{4.8 \pm 1.1 \pm 0.3}$	13 FALVARD 88 DM2 FELDMAN 77 MRK1	COMMENT J/ ψ — hadrons e^+e^- F22/
alue • • We do not use the followin 3 11 Final state $(\pi^+\pi^-)\pi^0$ under • $(K^*(892)^0\overline{K}_2^*(1430)^0 + c.c.$ ALUE (units 10^{-4}) • $EVTS$ 40 • $(\omega K^*(892)\overline{K} + c.c.)/\Gamma_{total}$ ALUE (units 10^{-4}) • $EVTS$	g data for averages, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 e^+e^- the assumption that $\pi\pi$ is isospin 0.)// Ftotal DOCUMENT ID VANNUCCI 77 MRK1 $e^+e^ \pi^+\pi^ K^+K^-$ DOCUMENT ID TECN COMMENT TECN COMMENT F12/ I	$\Gamma(\omega K \overline{K})/\Gamma_{\text{total}}$ NALUE (units 10^{-4}) EVTS 19 ± 4 OUR AVERAGE 19.8± 2.1±3.9 16 ±10 22 13 Addition of $\omega K^+ K^-$ and $\omega K^ \Gamma(\omega f_0(1710) \rightarrow \omega K \overline{K})/\Gamma_{\text{tot}}$ NALUE (units 10^{-4}) 4.8±1.1±0.3 14 Includes unknown branching fi	13 FALVARD 88 DM2 FELDMAN 77 MRK1 40 \overline{K}^{0} branching ratios. 20 \overline{K}^{0} branching ratios. 21 DOCUMENT ID TECN 7.15 FALVARD 88 DM2 raction $f_{0}(1710) \rightarrow K\overline{K}$.	$J/\psi \rightarrow \text{hadrons}$ $e^+e^ COMMENT$ $J/\psi \rightarrow \text{hadrons}$
alue • • We do not use the followin 3 11 Final state $(\pi^+\pi^-)\pi^0$ under • $(K^*(892)^0\overline{K}_2^*(1430)^0 + c.c.$ ALUE (units 10^{-4}) • $EVTS$ 40 • $(\omega K^*(892)\overline{K} + c.c.)/\Gamma_{total}$ ALUE (units 10^{-4}) • $EVTS$	pocument id techniques, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 e^+e^- the assumption that $\pi\pi$ is isospin 0.)// total	$\Gamma(\omega K \overline{K})/\Gamma_{\text{total}}$ $\frac{VALUE (\text{units } 10^{-4})}{19 \pm 4} \text{OUR AVERAGE}$ $19.8 \pm 2.1 \pm 3.9$ $16 \pm 10 \qquad 22$ $13 \text{ Addition of } \omega K^+ K^- \text{ and } \omega K^-$ $\Gamma(\omega f_0(1710) \rightarrow \omega K \overline{K})/\Gamma_{\text{total}}$ $\frac{VALUE (\text{units } 10^{-4})}{4.8 \pm 1.1 \pm 0.3}$	13 FALVARD 88 DM2 FELDMAN 77 MRK1 40 \overline{K}^{0} branching ratios. 20 \overline{K}^{0} branching ratios. 21 DOCUMENT ID TECN 7.15 FALVARD 88 DM2 raction $f_{0}(1710) \rightarrow K\overline{K}$.	$J/\psi \rightarrow \text{hadrons}$ $e^+e^ COMMENT$ $J/\psi \rightarrow \text{hadrons}$
ALUE • • We do not use the followin .3 11 Final state $(\pi^+\pi^-)\pi^0$ under $(K^*(892)^0\overline{K}_2^*(1430)^0 + c.c.$ ALUE (units 10^{-4}) $(K^*(892)\overline{K} + c.c.)/\Gamma_{total}$ ALUE (units 10^{-4}) $(K^*(892)\overline{K} + c.c.)/\Gamma_{total}$	g data for averages, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 e^+e^- the assumption that $\pi\pi$ is isospin 0.)// Ftotal DOCUMENT ID VANNUCCI 77 MRK1 $e^+e^ \pi^+\pi^ K^+K^-$ DOCUMENT ID TECN COMMENT TECN COMMENT F12/ I	$\Gamma(\omega KK)/\Gamma_{\text{total}}$ $\frac{NALUE (\text{units }10^{-4})}{19 \pm 4} \text{OUR AVERAGE}$ $19.8 \pm 2.1 \pm 3.9$ $16 \pm 10 \qquad 22$ $13 \text{ Addition of } \omega K^+ K^- \text{ and } \omega K^-$ $\Gamma(\omega f_0(1710) \rightarrow \omega KK)/\Gamma_{\text{tot}}$ $\frac{NALUE (\text{units }10^{-4})}{4.8 \pm 1.1 \pm 0.3}$ $14 \text{ Includes unknown branching for } 15 \text{ Addition of } f_0(1710) \rightarrow K^+$	13 FALVARD 88 DM2 FELDMAN 77 MRK1 40 \overline{K}^{0} branching ratios. 20 \overline{K}^{0} branching ratios. 21 DOCUMENT ID TECN 7.15 FALVARD 88 DM2 raction $f_{0}(1710) \rightarrow K\overline{K}$.	COMMENT $J/\psi \rightarrow \text{hadrons}$ $e^+e^ COMMENT$ $J/\psi \rightarrow \text{hadrons}$ branching ratios.
.3 11 Final state $(\pi^+\pi^-)\pi^0$ under $ (K^*(892)^0 \overline{K}_2^*(1430)^0 + C.C. $ ALUE (units 10^{-4}) $ 77\pm 26 $ $ (WK^*(892) \overline{K} + C.C.) / \Gamma_{total} $ ALUE (units 10^{-4}) $ EVTS $ $ 40$ $ (WK^*(892) \overline{K} + S.C.) / \Gamma_{total} $ $ 530\pm 14\pm 14 $ $ 530\pm 530\pm 530\pm 54$	g data for averages, fits, limits, etc. • • • 11 JEAN-MARIE 76 MRK1 e^+e^- the assumption that $\pi\pi$ is isospin 0.)// Ftotal DOCUMENT ID VANNUCCI 77 MRK1 $e^+e^ \pi^+\pi^ K^+K^-$ DOCUMENT ID TECN COMMENT TECN COMMENT F12/ I	$\Gamma(\omega K \overline{K})/\Gamma_{\text{total}}$ NALUE (units 10^{-4}) EVTS 19 ± 4 OUR AVERAGE 19.8± 2.1±3.9 16 ±10 22 13 Addition of $\omega K^+ K^-$ and $\omega K^ \Gamma(\omega f_0(1710) \rightarrow \omega K \overline{K})/\Gamma_{\text{tot}}$ NALUE (units 10^{-4}) 4.8±1.1±0.3 14 Includes unknown branching fi	13 FALVARD 88 DM2 FELDMAN 77 MRK1 40 \overline{K}^{0} branching ratios. 20 \overline{K}^{0} branching ratios. 21 DOCUMENT ID TECN 7.15 FALVARD 88 DM2 raction $f_{0}(1710) \rightarrow K\overline{K}$.	$J/\psi \rightarrow \text{hadrons}$ $e^+e^ F_{22}/COMMENT$ $J/\psi \rightarrow \text{hadrons}$

 $J/\psi(1S)$

Γ(Δ(1232)++ 雨π	-				Γ ₂₄ /Γ	Γ(Ξ(1530)-Ξ+)/						Γ ₃₇ /Γ
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN	COMMENT		VALUE (units 10 ⁻³)	EVT5	DOCUMENT ID		TECN	COMMENT	
1.58±0.23±0.40	332	EATON	84 MRK	2 e ⁺ e ⁻		$0.59 \pm 0.09 \pm 0.12$	75 ± 11	HENRARD	87	DM2	e+ e-	
$\Gamma(\omega\eta)/\Gamma_{\text{total}}$					Γ ₂₅ /Γ	Γ(ρ <i>K</i> ⁻ <u>Σ</u> (1385) ⁰)						- /-
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN	COMMENT		VALUE (units 10 ⁻³)	/ total EVTS	BOSHMENT ID		TECN	COLUMENT	Г ₃₈ /Г
1.58±0.16 OUR AVE 1.43±0.10±0.21	RAGE 378	JOUSSET	90 DM2	$J/\psi ightarrow hadro$		0.51 ± 0.26 ± 0.18		DOCUMENT ID	84	TECN MRK2	COMMENT	
$1.71 \pm 0.08 \pm 0.20$	318	COFFMAN		$J/\psi \rightarrow nadro$ 3 $e^+e^- \rightarrow 3\pi$			0,	EATON	04	WITCH		
_					·	$\Gamma(\omega \pi^0)/\Gamma_{\text{total}}$						Г39/Г
Γ(φKK)/Γ _{total}					Γ ₂₆ /Γ	VALUE (units 10 ⁻³) 0.42 ±0.06 OUR AV	EVTS	DOCUMENT ID Error includes scale	a fact	TECN		
VALUE (units 10 ⁻⁴) 14.8 ± 2.2 OUR AVER	AGE	DOCUMENT ID	TECN	COMMENT		0.360 ± 0.028 ± 0.054	222	JOUSSET		DM2	$J/\psi ightarrow had$	drons
14.6±0.8±2.1		¹⁶ FALVARD	88 DM2		ons	$0.482 \pm 0.019 \pm 0.064$		COFFMAN	88	MRK3	$e^+e^- \rightarrow$	$\pi^0\pi^+\pi^-\pi^0$
18 ±8	14	FELDMAN	77 MRK	1 e ⁺ e ⁻		Γ(φη [*] (958))/Γ _{total}	ı					Γ ₄₀ /Γ
16 Addition of ϕK^+	K^- and ϕK	UKU branching ra	itios.			VALUE (units 10 ⁻³)	CL%	EVTS DOCE	JMEN	· ID	TECN CO	MMENT
$\Gamma(\phi f_0(1710) \rightarrow \phi f_0(1710) \rightarrow \phi f_0(1710)$	$(\overline{K})/\Gamma_{\text{tota}}$	1			Γ ₂₇ /Γ	0.33 ±0.04 OUR	AVERAGE	<u> </u>				
VALUE (units 10 ⁻⁴)		DOCUMENT ID	TECN	COMMENT		$0.41 \pm 0.03 \pm 0.08$		167 JOU	SSET	90	DM2 J/	ψ → hadrons
3.6±0.2±0.6		¹⁸ FALVARD	88 DM2	$J/\psi ightarrow hadro$	ons	$0.308 \pm 0.034 \pm 0.03$	6	COF	FMA	V 88	MRK3 e ⁺	$e^- \rightarrow K^+ K^- \eta'$
17 Including interfere						• • • We do not use	the followi	ing data for averag	es, fit	s, limits,	etc. • • •	N N W
¹⁸ Includes unknown	branching fr	action f ₀ (1710) -	→ KK.			<1.3	90	VAN	NUC	CI 77	MRK1 e+	· e -
$\Gamma(p\overline{\rho}\omega)/\Gamma_{\text{total}}$					Γ ₂₈ /Γ	Γ(φf ₀ (980))/Γ _{total}						Г41/Г
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN	COMMENT		VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT	'41/'
1.30±0.25 OUR AVE 1.10±0.17±0.18	RAGE Erro	r includes scale fa EATON	ctor of 1.3. 84 MRK	2 4+4-		3.2±0.9 OUR AVERA		r includes scale fact	tor of	1.9.	49	
1.6 ±0.3	77	PERUZZI	78 MRK			$4.6 \pm 0.4 \pm 0.8$ 2.6 ± 0.6	50	²¹ FALVARD ²¹ GIDAL		DM2	$J/\psi \rightarrow had$ $J/\psi \rightarrow$	drons
F/ 4(1000)++ \ \ \ \ (1	000)) /	-			E /E	2.6±0.6	50	GIDAL	81	MKKZ	J/ψ → K+K-	κ+κ-
$\Gamma(\Delta(1232)^{++}\overline{\Delta}(1232)^{++})$		DOCUMENT ID			Γ ₂₉ /Γ	²¹ Assuming B(f ₀ (98	0) → ππ) = 0.78.				
VALUE (units 10 ⁻³) 1.10±0.09±0.28		EATON	84 MRK			Γ(Ξ(1530) ⁰ Ξ̄ ⁰)/Γ						F /F
			O4 WINK	2 6 6		VALUE (units 10 ⁻³)	total EVTS	DOCUMENT ID		TECN	COMMENT	Γ ₄₂ /Γ
$\Gamma(\Sigma(1385)^{-}\overline{\Sigma}(13$	-				Г ₃₀ /Г	0.32±0.12±0.07	24 ±	HENRARD	87	DM2	e+ e-	
VALUE (units 10 ⁻³) 1.03±0.13 OUR AVE	EVTS	DOCUMENT	ID T	COMMENT			9				•	
1.00 ± 0.04 ± 0.21	631 ±	HENRARD	87 D	M2 e+e ⁻ →	Σ*-	$\Gamma(\Sigma(1385)^{-}\overline{\Sigma}^{+}(0))$	r c.c.))/I	Ttotal ¹				Г ₄₃ /Г
1.19±0.04±0.25	25 754 ±	HENRARD	87 D	M2 a+a	Σ* +	VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT	
*	27		-		_	0.31±0.05 OUR AVE		115115155			4	
$0.86 \pm 0.18 \pm 0.22$ $1.03 \pm 0.24 \pm 0.25$	56 68	EATON EATON		RK2 e ⁺ e [−] → RK2 e ⁺ e [−] →		$0.30 \pm 0.03 \pm 0.07$	74 ± 8	HENRARD		DM2		Σ*
			• • • • • • • • • • • • • • • • • • • •			$0.34 \pm 0.04 \pm 0.07$	77 ± 9	HENRARD		DM2		Σ*+
$\Gamma(\rho \overline{\rho} \eta'(958))/\Gamma_{to}$					Γ ₃₁ /Γ	$0.29 \pm 0.11 \pm 0.10$	26	EATON			e ⁺ e ⁻ →	
VALUE (units 10 ⁻³) 0.9 ±0.4 OUR AVE	<i>EVTS</i> RAGF Frre	OOCUMENT ID or includes scale fa	TECN octor of 1.7	COMMENT	 	$0.31 \pm 0.11 \pm 0.11$	28	EATON	84	MRK2	$e^+e^- \rightarrow$	2**
0.68 ± 0.23 ± 0.17	19	EATON	84 MRK	2 e ⁺ e ⁻		Γ(φf ₁ (1285))/Γ _{tot}	al					Γ44/Γ
1.8 ± 0.6	19	PERUZZI	78 MRK	1 e ⁺ e ⁻		VALUE (units 10-4)	EVTS	DOCUMENT ID		TECN	COMMENT	
$\Gamma(\phi f_2'(1525))/\Gamma_{to}$	tal				Γ ₃₂ /Γ	2.6±0.5 OUR AVERA 3.2±0.6±0.4	GE Erro	r includes scale fac JOUSSET		1.1. DM2	$J/\psi \rightarrow \phi^2$	/-+ -= \
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN	COMMENT	. 32/	$2.1 \pm 0.5 \pm 0.4$	25	22 JOUSSET		DM2	$J/\psi \rightarrow \phi z$ $J/\psi \rightarrow \phi \eta$	
8 ±4 OUR AVER	AGE Error	includes scale fac	tor of 2.7.			• • We do not use	the followi	ing data for averag	es, fit	s, limits,	etc. • • •	
12.3±0.6±2.0 4.8±1.8		²⁰ FALVARD ¹⁹ GIDAL	88 DM2 81 MRK	, ,	ons	$0.6 \pm 0.2 \pm 0.1$	16 ±	BECKER	87	MRK3	$J/\psi \rightarrow \phi F$	$\langle \overline{K} \pi$
4.0 1.0	40	GIDAL	OI WILL	γ+ κ− κ-	+ ĸ	²² We attrribute to t		6) the signal observ	ed in	the π^+	$\pi^- n$ invariar	nt mass distri-
19 Re-evaluated usin	g B(f ₂ (1525	$\rightarrow K\overline{K} = 0.7$	13.			bution at 1297 Me	ev. '`	, ,			•	
²⁰ Including interfere	nce with f_0 (1710).				$\Gamma(\rho\eta)/\Gamma_{\mathrm{total}}$						Γ ₄₅ /Γ
$\Gamma(\phi \pi^+ \pi^-)/\Gamma_{\text{total}}$					Γ ₃₃ /Γ	VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT	
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN	COMMENT	337	0.193±0.023 OUR A		IONESET		D110		4
0.80±0.12 OUR AVE	RAGE					$0.194 \pm 0.017 \pm 0.029$ $0.193 \pm 0.013 \pm 0.029$	299	JOUSSET COFFMAN			$J/\psi \rightarrow \text{ha}$ $e^+e^- \rightarrow$	
0.78±0.03±0.12 2.1 ±0.9	23	FALVARD FELDMAN	88 DM2 77 MRK		ons				•••			
		PELDMAN	// WIRK	1 e · e		Γ(ωη'(958))/Γ _{tota}						Γ ₄₆ /Γ
$\Gamma(\phi K^{\pm} K_S^0 \pi^{\mp})/\Gamma$	total				Г ₃₄ /Г	VALUE (units 10 ⁻³) 0.167 ± 0.025 OUR AV	EVTS	DOCUMENT ID		TECN	COMMENT	
VALUE (units 10 ⁻⁴) 7.2±0.9 OUR AVERA	EVTS	DOCUMENT ID	TECN	COMMENT		0.18 +0.10 ±0.03	EIVAGE 6	JOUSSET	90	DM2	J/ψ $ ightarrow$ ha	drone
7.2+0.9 OUR AVERA	\GE	FALVARD	88 DM2	$J/\psi ightarrow hadro$	ons	0.166±0.017±0.019	v				$e^+e^- \rightarrow$	
	163±	BECKER		$3/\psi \rightarrow \text{hadro}$ $3 e^+e^- \rightarrow \text{hadro}$				COFFMAN	68	IVIRK3	e · e →	•
$7.4 \pm 0.9 \pm 1.1$	15					Γ(ω f ₀ (980))/Γ _{tota}	ı					Γ ₄₇ /Γ
$7.4 \pm 0.9 \pm 1.1$ 7 $\pm 0.6 \pm 1.0$					Γ ₃₅ /Γ	VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT	
$7.4 \pm 0.9 \pm 1.1$ 7 $\pm 0.6 \pm 1.0$:al			COMMENT		1.41±0.27±0.47		²³ AUGUSTIN	89	DM2	$J/\psi \rightarrow 2($	r ⁺ π ⁻)π ^U
7.4 ± 0.9 ± 1.1 7 ± 0.6 ± 1.0 $\Gamma(\omega f_1(1420))/\Gamma_{tot}$ VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN			23 Assuming B(f ₀ (98	$(0) \rightarrow \pi\pi$) = 0.78.				
$7.4 \pm 0.9 \pm 1.1$ 7 $\pm 0.6 \pm 1.0$ $\Gamma(\omega f_1(1420))/\Gamma_{tot}$		DOCUMENT ID BECKER		$3 e^+e^- \rightarrow ha$	drons							
7.4 \pm 0.9 \pm 1.1 7 \pm 0.6 \pm 1.0 $\Gamma(\omega f_1(1420))/\Gamma_{tot}$ VALUE (units 10 ⁻⁴) 6.8 $^{+1.9}_{-1.6}$ \pm 1.7	EVTS			$3 e^+e^- o ha$		$\Gamma(\rho\eta^{\prime}(958))/\Gamma_{\text{total}}$	l					Γ ₄₈ /Γ
7.4 \pm 0.9 \pm 1.1 7 \pm 0.6 \pm 1.0 $\Gamma(\omega f_1(1420))/\Gamma_{tot}$ WALUE (units 10 ⁻⁴) 6.8 $^+$ 1.9 -1.6 \pm 1.7 $\Gamma(\phi \eta)/\Gamma_{total}$	EVTS 111+31 -26	BECKER	87 MRK		drons Γ ₃₆ /Γ	$\Gamma(\rho\eta'(958))/\Gamma_{\text{total}}$ VALUE (units 10^{-3})	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT	Γ ₄₈ /Γ
7.4 \pm 0.9 \pm 1.1 7 \pm 0.6 \pm 1.0 $\Gamma(\omega f_1(1420))/\Gamma_{tot}$ VALUE (units 10 ⁻⁴) 6.8 \pm 1.9 6.8 \pm 1.7 $\Gamma(\phi \eta)/\Gamma_{total}$ VALUE (units 10 ⁻³)	EVTS 111+31 -26 EVTS					$\Gamma(\rho\eta'(958))/\Gamma_{\text{total}}$ VALUE (units 10 ⁻³) 0.105 ± 0.018 OUR AM	EVTS ERAGE					
7.4 \pm 0.9 \pm 1.1 7 \pm 0.6 \pm 1.0 $\Gamma(\omega f_1(1420))/\Gamma_{tot}$ WALUE (units 10 ⁻⁴) 6.8 $^+$ 1.9 -1.6 \pm 1.7 $\Gamma(\phi \eta)/\Gamma_{total}$	EVTS 111+31 -26 EVTS	BECKER	87 MRK TECN 90 DM2	COMMENT	Γ ₃₆ /Γ	$\Gamma(\rho\eta'(958))/\Gamma_{\text{total}}$ VALUE (units 10^{-3})	EVTS	DOCUMENT ID JOUSSET COFFMAN	90	DM2	$\frac{COMMENT}{J/\psi ightarrow ext{ha}}$	drons

Meson Particle Listings $J/\psi(1S)$

$\Gamma(p\overline{p}\phi)/\Gamma_{\text{total}}$						Γ ₄₉ /Γ
VALUE (units 10-4) 0.45 ± 0.13 ± 0.07		DOCUMENT ID	88	TECN DM2	$\frac{COMMENT}{J/\psi \rightarrow \text{hadrons}}$	
$\Gamma(a_2(1320)^{\pm}\pi^{\mp})/\Gamma$						
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT	Γ ₅₀ /Γ
<43	90	BRAUNSCH				
$\Gamma(K\overline{K}_{2}^{*}(1430) + c.c.$	1/1					F /F
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT	Γ ₅₁ /Γ
<40	90	VANNUCCI	77		$e^+e^- \rightarrow K^0\overline{F}$	<u>*0</u>
• • • We do not use t						2
<66	90	BRAUNSCH	76	DASP	$e^+e^- \rightarrow \kappa^{\pm 7}$	۲*∓ 2
$\Gamma(K_1(1270)^{\pm}K^{\mp})/$	Tental					Γ ₅₂ /Γ
VALUE (units 10 ⁻³)		DOCUMENT ID		TECN	COMMENT	32,
<3.0		²⁴ BAI		BES	e+ e-	I
24 Assuming B(K_1 (12	70) → Kρ)=0.42 ± 0.06				I
$\Gamma(K_2^*(1430)^0\overline{K}_2^*(1430$	30) ⁰)/Гtc	tal				Γ ₅₃ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT	
<29	90	VANNUCCI	77	MRK1	$e^+e^{\pi^+\pi^-K^+K}$	
Γ(K*(892) ⁰ K*(892	\0\ /⊏ .				* * * *	
VALUE (units 10 ⁻⁴)	-	DOCUMENT ID		TECN	COMMENT	Γ ₅₄ /Γ
<5	90	VANNUCCI	77		$e^+e^- \rightarrow$	
•					π+π~K+K	-
$\Gamma(\phi f_2(1270))/\Gamma_{\text{tota}}$						Γ ₅₅ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT	
<3.7	90	VANNUCCI	77		$e^+e^- \rightarrow \pi^+\pi^-K^+K$	-
• • We do not use t		-				
<4.5	90	FALVARD	88	DM2	$J/\psi \rightarrow hadrons$	i ·
$\Gamma(p\overline{\rho}\rho)/\Gamma_{\text{total}}$						Г ₅₆ /Г
VALUE (units 10 ⁻³)	<u>CL%</u>	DOCUMENT ID			$\frac{COMMENT}{e^+e^-} \rightarrow \text{ hadr}$	
<0.31	90	EATON	84	MKKZ	e e → naur	onsγ
$\Gamma(\phi\eta(1440)\to\phi\eta\eta$						Γ ₅₇ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID		DM2	$\frac{COMMENT}{J/\psi \rightarrow \text{hadron}}$	
		25 FAIVARD	28			
		²⁵ FALVARD action n(1440) —			$J/\psi \rightarrow \text{madrons}$	5
²⁵ Includes unknown i	oranching fr				J/ψ → Hadron	
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{\text{tot}}$	oranching fr	action η(1440) —	η π	π.		г Г ₅₈ /Г
²⁵ Includes unknown i	oranching fr al <u>CL%</u>		η π	π. <u>TECN</u>	$\frac{COMMENT}{e^+e^- \rightarrow }$	Г ₅₈ /Г
²⁵ Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{\text{tot}}$ $\frac{VALUE \text{ (units } 10^{-4})}{<2.2}$	oranching fr al <u>CL%</u> 90	action η(1440) — <u>DOCUMENT ID</u> 26 VANNUCCI	ηπ 77	π. <u>τεςν</u> MRK1	COMMENT e+e-→ -+0 v	Г ₅₈ /Г
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $\frac{VALUE (units 10^{-4})}{<2.2}$ • • • We do not use to <2.8	oranching fr al CL% 90 the following	DOCUMENT ID 26 VANNUCCI g data for average 26 FALVARD	77 77 es, fit:	π. <u>TECN</u> MRK1 5, limits, DM2	COMMENT e+e-→ -+0 v	Г ₅₈ /Г
$\Gamma(\omega f_2'(1525))/\Gamma_{\text{tot}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <2.2 • • • We do not use to	oranching fr al CL% 90 the following	DOCUMENT ID 26 VANNUCCI g data for average 26 FALVARD	77 77 es, fit:	π. <u>TECN</u> MRK1 5, limits, DM2	$\frac{COMMENT}{e^{+}e^{-} \xrightarrow{\pi^{+}\pi^{-}\pi^{0}} \kappa^{C}}$ etc. • •	Г ₅₈ /Г
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $\frac{VALUE (units 10^{-4})}{<2.2}$ • • • We do not use to <2.8 26 Re-evaluated assum	oranching from $\frac{CL\%}{90}$ the following $\frac{90}{8}$ thing $\frac{B(f_2')}{2}$	DOCUMENT ID 26 VANNUCCI g data for average 26 FALVARD	77 77 es, fit:	π. <u>TECN</u> MRK1 5, limits, DM2	$\frac{COMMENT}{e^{+}e^{-} \xrightarrow{\pi^{+}\pi^{-}\pi^{0}} \kappa^{C}}$ etc. • •	Γ ₅₈ /Γ + κ ⁻
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $\frac{VALUE (units 10^{-4})}{<2.2}$ • • • We do not use to <2.8 $2^6 \text{ Re-evaluated assun}$ $\Gamma(\varSigma(1385)^0 \overline{\Lambda})/\Gamma_{tot}$	oranching from $\frac{CL\%}{90}$ the following $\frac{90}{8}$ thing $\frac{B(f_2')}{2}$	DOCUMENT ID 26 VANNUCCI g data for average 26 FALVARD	77 25, fit: 88 0.71	π. TECN MRK1 MRIs, limits, DM2 3.	$\frac{COMMENT}{e^{+}e^{-} \xrightarrow{\pi^{+}\pi^{-}\pi^{0}} \kappa^{C}}$ etc. • •	Г ₅₈ /Г
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $\frac{VALUE (units 10^{-4})}{<2.2}$ • • • We do not use to <2.8 26 Re-evaluated assun $\Gamma(\mathcal{L}(1385)^{0}\overline{\Lambda})/\Gamma_{tot}$	oranching from $\frac{cL\%}{90}$ the following $\frac{90}{90}$ thing $\frac{B}{2}$	action $\eta(1440)$ — DOCUMENT ID 26 VANNUCCI g data for average 26 FALVARD 525) $\rightarrow K\overline{K}$ =	77 25, fit: 88 0.71	π. TECN MRK1 MRK1 MRK2 MRZ MRZ MRZ MRZ MRZ MRZ MRZ MR	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \\ \pi^+\pi^- \pi^0 K^* \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \to \text{ hadron} \end{array}$	Γ ₅₈ /Γ + κ ⁻
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{\text{tot}}$ $\frac{VALUE \text{ (units }10^{-4})}{<2.2}$ • • • • We do not use II <2.8 $26 \text{ Re-evaluated assun}$ $\Gamma(\mathcal{L}(1385)^{0}\overline{\Lambda})/\Gamma_{\text{tot}}$ $\frac{VALUE \text{ (units }10^{-3})}{<0.2}$	pranching fraction of the following $\frac{CL\%}{90}$ the following $\frac{90}{90}$ thing $\frac{B(f_2')}{90}$	action $\eta(1440)$ — DOCUMENT ID 26 VANNUCCI g data for average 2^6 FALVARD $525) \rightarrow K\overline{K}) =$ DOCUMENT ID	77 es, fit: 88 0.71	π. TECN MRK1 MRK1 MRK2 MRZ MRZ MRZ MRZ MRZ MRZ MRZ MR	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \\ \pi^+\pi^- \pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \to \text{ hadron} \end{array}$	Γ ₅₈ /Γ + κ ⁻
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $\frac{VALUE (units 10^{-4})}{<2.2}$ ••• We do not use the value of the valu	pranching fraction of the following $\frac{CL\%}{90}$ the following $\frac{90}{90}$ thing $\frac{B(f_2')}{90}$	action $\eta(1440)$ — DOCUMENT ID 26 VANNUCCI g data for average 2^6 FALVARD $525) \rightarrow K\overline{K}) =$ DOCUMENT ID	77 77 88 0.71	π. TECN MRK1 MRK1 MRS MRS MRS MRS MRS MRS MRS MR	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \\ \pi^+\pi^-\pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \to \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \end{array}$	Γ ₅₈ /Γ + κ ⁻ s
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{\text{tot}}$ $\frac{VALUE (units 10^{-4})}{<2.2} • • • We do not use II <2.8 ^{26} \text{ Re-evaluated assum} \Gamma(\mathcal{L}(1385)^{0}\overline{\Lambda})/\Gamma_{\text{tot}} \frac{VALUE (units 10^{-3})}{<0.2} \Gamma(\Delta(1232)^{+}\overline{\rho})/\Gamma_{\text{tot}}$	pranching from the following $\frac{\text{CL\%}}{90}$ where following $\frac{90}{90}$ and $\frac{\text{CL\%}}{90}$ $\frac{\text{CL\%}}{90}$	action η(1440) — DOCUMENT ID 26 VANNUCCI g data for average 26 FALVARD 525) → KK) = DOCUMENT ID HENRARD	77 78, fit: 88 0.71	π. TECN MRK1 MRK1 MRS MRS MRS MRS MRS MRS MRS MR	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \\ \pi^+\pi^-\pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \to \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \end{array}$	Γ ₅₈ /Γ + κ ⁻ s
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4}) <2.2 ••• We do not use II <2.8 ^{26} Re-evaluated assum \Gamma(\mathcal{L}(1385)^{0}\overline{\Lambda})/\Gamma_{tot} VALUE (units 10^{-3}) <0.2 \Gamma(\Delta(1232)^{+}\overline{p})/\Gamma_{tot} VALUE (units 10^{-3}) <0.1$	pranching from the property of the property o	action η(1440) — DOCUMENT ID 26 VANNUCCI g data for average 26 FALVARD 525) → KK) = DOCUMENT ID HENRARD	77 78, fit: 88 0.71	π. TECN MRK1 s, limits, DM2 3. TECN DM2	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \pi^+\pi^- \pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \rightarrow \text{ hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \end{array}$	
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4})$ < 2.2 • • • We do not use II < 2.8 $26 \text{ Re-evaluated assum}$ $\Gamma(\Sigma(1385)^{0}\overline{\Lambda})/\Gamma_{tot}$ $VALUE (units 10^{-3})$ < 0.2 $\Gamma(\Delta(1232)^{+}\overline{p})/\Gamma_{tot}$ $VALUE (units 10^{-3})$ $VALUE (units 10^{-3})$	pranching from the property of the property o	action η(1440) — DOCUMENT ID 26 VANNUCCI g data for average 26 FALVARD 525) → KK) = DOCUMENT ID HENRARD	77 78, fit: 88 0.71	π. TECN MRK1 s, limits, DM2 3. TECN DM2	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \pi^+\pi^- \pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \rightarrow \text{ hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \end{array}$	Γ ₅₈ /Γ + κ ⁻ s
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4})$ < 2.2 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	pranching from the following $B(r_2^t)$ that $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$	DOCUMENT ID DOCUMENT ID AND	77 78, fit: 88 0.71	π. TECN MRK1 s, limits, DM2 3. TECN OM2 TECN DM2	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \pi^+\pi^-\pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \rightarrow \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \end{array}$	
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4}) <2.2 <3.8 ^{26} \text{ Re-evaluated assun} \Gamma(\Sigma(1385)^{0} \overline{\Lambda})/\Gamma_{tot} VALUE (units 10^{-3}) <0.2 \Gamma(\Delta(1232)^{+} \overline{p})/\Gamma_{tot} VALUE (units 10^{-3}) <0.1 \Gamma(\Sigma^{0} \overline{\Lambda})/\Gamma_{total} VALUE (units 10^{-4}) <0.9$	pranching from the following $\frac{cL\%}{90}$ which following $\frac{90}{90}$ when $\frac{cL\%}{90}$ and $\frac{cL\%}{90}$	DOCUMENT ID DOCUMENT ID ADDITION DOCUMENT ID	77 77 88 0.71 87	π. TECN MRK1 s, limits, DM2 3. TECN OM2 TECN DM2	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \pi^+\pi^-\pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \rightarrow \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ \end{array}$	F58/F F59/F F60/F F61/F F61/
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4}) <2.2 ••• We do not use II <2.8 ^{26} \text{ Re-evaluated assum} \Gamma(\mathcal{L}(1385)^{0}\overline{\Lambda})/\Gamma_{tot} <0.2 \Gamma(\Delta(1232)^{+}\overline{p})/\Gamma_{tot} VALUE (units 10^{-3}) <0.1 \Gamma(\mathcal{L}^{0}\overline{\Lambda})/\Gamma_{total} VALUE (units 10^{-4})$	pranching from the following $\frac{cL\%}{90}$ which following $\frac{90}{90}$ when $\frac{cL\%}{90}$ and $\frac{cL\%}{90}$	DOCUMENT ID DOCUMENT ID ADDITION DOCUMENT ID	77 77 77 78 88 0.71 87	π. TECN MRK1 s, limits, DM2 3. TECN DM2 TECN DM2 TECN DM2	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \pi^+\pi^- \pi^0 \ K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \rightarrow \text{ hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \\ \\ \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ <2.2 • • • • We do not use to the second	pranching from the following $B(f_2^I)$ that $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$	DOCUMENT ID DOCUMENT ID ADDESSED OF THE PROPERTY ID DOCUMENT ID DOCUMENT ID HENRARD DOCUMENT ID HENRARD DOCUMENT ID HENRARD DOCUMENT ID HENRARD	77 77 77 88 0.71 87	TECN MRK1 MRK1 MRK1 DM2 TECN DM2 TECN DM2 TECN DM2	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \pi^+\pi^- \pi^0 \ K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \rightarrow \text{ hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \\ \\ \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Γ ₅₈ /Γ
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4})$ < 2.2 < 0.8 $^{26} \text{ Re-evaluated assun}$ $\Gamma(\Sigma(1385)^{0}\overline{\Lambda})/\Gamma_{tot}$ $VALUE (units 10^{-3})$ < 0.2 $\Gamma(\Delta(1232)^{+}\overline{p})/\Gamma_{tot}$ $VALUE (units 10^{-3})$ < 0.1 $\Gamma(\Sigma^{0}\overline{\Lambda})/\Gamma_{total}$ $VALUE (units 10^{-4})$ < 0.9 $\Gamma(\phi \pi^{0})/\Gamma_{total}$ $VALUE (units 10^{-4})$	pranching from the following $B(f_2'(1))$ and $B(f_2'(1)$	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID HENRARD DOCUMENT ID HENRARD DOCUMENT ID HENRARD DOCUMENT ID HENRARD	77 77 77 88 0.71 87	TECN MRK1 MRK1 MRK1 DM2 TECN DM2 TECN DM2 TECN DM2	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \to \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ $	Γ ₅₈ /Γ
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4}) < 2.2 • • • We do not use II < 2.8 ^{26} \text{ Re-evaluated assum} \Gamma(\Sigma(1385)^{0}\overline{\Lambda})/\Gamma_{tot} VALUE (units 10^{-3}) < 0.2 \Gamma(\Delta(1232)^{+}\overline{p})/\Gamma_{tot} VALUE (units 10^{-3}) < 0.1 \Gamma(\Sigma^{0}\overline{\Lambda})/\Gamma_{total} VALUE (units 10^{-4}) < 0.9 \Gamma(\phi \pi^{0})/\Gamma_{total} VALUE (units 10^{-4}) < 0.9 \Gamma(\phi \pi^{0})/\Gamma_{total} VALUE (units 10^{-4}) < 0.9 \Gamma(\phi \pi^{0})/\Gamma_{total} VALUE (units 10^{-4}) < 0.068 \Gamma(2(\pi^{+}\pi^{-})\pi^{0})/\Gamma_{total} VALUE$	oranching from the following points of the following p	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID HENRARD DOCUMENT ID HENRARD DOCUMENT ID HENRARD DOCUMENT ID HENRARD	77 77 88 88 0.71 87 87	TECN DM2 TECN DM2 TECN DM2 TECN DM2 TECN DM2	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \pi^+\pi^-\pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \rightarrow \text{ hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \rightarrow K^+ \\ \end{array}$	Γ ₅₈ /Γ
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4})$ <2.2 ••• We do not use the second seco	oranching from the following points of the following p	DOCUMENT ID DOCUMENT ID ADDITION DOCUMENT ID DOCUMENT ID HENRARD	77 77 78, fit: 88 0.71 87 87	TECN DM2 TECN DM2 TECN DM2 TECN DM2 TECN DM2	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \pi^+\pi^-\pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \rightarrow \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \rightarrow K^+ \\ \\ \underline{COMMENT} $	Γ ₅₈ /Γ
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4})$ < 2.8 ••• We do not use the second sec	oranching from the following points of the following p	DOCUMENT ID DOCUMENT ID AUGUSTIN DOCUMENT ID DOCUMENT ID HENRARD DOCUMENT ID AUGUSTIN FRANKLIN	77 77 77 78 88 0.71 87 87 88 88	TECN MRK1 MRK1 MRK1 MRK1 MRK2 MM2 MM2 MM2 MM2 MM2 MM2 MM2 MM2 MM2 M	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \bullet \\ J/\psi \to \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to hadren \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ CO$	Γ ₅₈ /Γ
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4}) <2.2 • • • • We do not use II <2.8 26 Re-evaluated assum \Gamma(\Sigma(1385)^{0}\overline{\Lambda})/\Gamma_{tot} VALUE (units 10^{-3}) <0.2 \Gamma(\Delta(1232)^{+}\overline{p})/\Gamma_{tot} VALUE (units 10^{-3}) <0.1 \Gamma(\Sigma^{0}\overline{\Lambda})/\Gamma_{total} VALUE (units 10^{-4}) <0.9 \Gamma(\phi \pi^{0})/\Gamma_{total} VALUE (units 10^{-4}) <0.068 \Gamma(2(\pi^{+}\pi^{-})\pi^{0})/\Gamma_{tot} VALUE (units 10^{-4}) <0.0337 ±0.0026 OUR I 0.0335 ±0.0049 0.0317 ±0.0042 0.0364 ±0.0052$	oranching from the following points of the following p	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID HENRARD AUGUSTIN FRANKLIN BURMESTER	77 77 77 88 0.71 87 87 88 88 89 83 770	TECN DM2	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \to \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to hadr \\ e^+e^- \to hadr \\ e^+e^- \to hadr \\ e^+e^- \end{array}$	Γ ₅₈ /Γ
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4}) <2.2 <0.8 26 Re-evaluated assum \Gamma(\Sigma(1385)^0 \overline{\Lambda})/\Gamma_{tot} VALUE (units 10^{-3}) <0.2 \Gamma(\Delta(1232)^+ \overline{p})/\Gamma_{tot} VALUE (units 10^{-3}) <0.1 \Gamma(\Sigma^0 \overline{\Lambda})/\Gamma_{total} VALUE (units 10^{-4}) <0.9 \Gamma(\phi \pi^0)/\Gamma_{total} VALUE (units 10^{-4}) <0.9 \Gamma(\phi \pi^0)/\Gamma_{total} VALUE (units 10^{-4}) <0.09 \Gamma(\phi \pi^0)/\Gamma_{total} VALUE (units 10^{-4}) <0.09 \Gamma(2(\pi^+\pi^-)\pi^0)/\Gamma_0 VALUE (units 10^{-4}) <0.0068 \Gamma(2(\pi^+\pi^-)\pi^0)/\Gamma_0 VALUE (units 10^{-4}) <0.0069 0.0325 \pm 0.0026 \text{ OUR } 0.0325 \pm 0.0042 0.0364 \pm 0.0052 0.04 \pm 0.01$	oranching from the following points of the following p	DOCUMENT ID DOCUMENT ID AUGUSTIN DOCUMENT ID DOCUMENT ID HENRARD DOCUMENT ID AUGUSTIN FRANKLIN	77 77 77 88 0.71 87 87 88 88 89 83 770	TECN DM2	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \\ J/\psi \to \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to hadr \\ e^+e^- \to hadr \\ e^+e^- \to hadr \\ e^+e^- \end{array}$	F ₅₈ /Γ F ₅₉ /Γ F ₆₁ /Γ F ₆₂ /Γ F ₆₃ /Γ F ₆
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4})$ < 2.2 < 0.8 $26 \text{ Re-evaluated assum}$ $\Gamma(\Sigma(1385)^0 \overline{\Lambda})/\Gamma_{tot}$ $VALUE (units 10^{-3})$ < 0.2 $\Gamma(\Delta(1232)^+ \overline{p})/\Gamma_{tot}$ $VALUE (units 10^{-3})$ < 0.1 $\Gamma(\Sigma^0 \overline{\Lambda})/\Gamma_{total}$ $VALUE (units 10^{-4})$ < 0.9 $\Gamma(\phi \pi^0)/\Gamma_{total}$ $VALUE (units 10^{-4})$ < 0.9 $\Gamma(\phi \pi^0)/\Gamma_{total}$ $VALUE (units 10^{-4})$ < 0.9 $\Gamma(\phi \pi^0)/\Gamma_{total}$ $VALUE (units 10^{-4})$ < 0.9 $\Gamma(\psi \pi^0)/\Gamma_{total}$ $VALUE (units 10^{-4})$ < 0.068 $\Gamma(2(\pi^+\pi^-)\pi^0)/\Gamma_0$ $VALUE (units 10^{-4})$ < 0.0364 $= 0.0325 \pm 0.0026 \text{ OUR } 0.0325 \pm 0.0042$ $= 0.0364 \pm 0.0052$ $= 0.04 \pm 0.01$ $\Gamma(3(\pi^+\pi^-)\pi^0)/\Gamma_0$	oranching from the following points of the following p	DOCUMENT ID DOCUMENT ID AUGUSTIN DOCUMENT ID DOCUMENT ID DOCUMENT ID HENRARD DOCUMENT ID HENRARD DOCUMENT ID HENRARD DOCUMENT ID AUGUSTIN FRANKLIN BURMESTER JEAN-MARIE	77 77 88, fit: 88 0.71 87 87 88 89 83 776	TECN MRK1 MRK1 MRK1 MRK1 MRX2 MRX2 MRX2 MRX2 MRX2 MRX3 MRX3 MRX3 MRX1 MRX1	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \bullet \\ \hline J/\psi \to \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to hadr \\ e^+e^- \to hadr \\ e^+e^- \\ e^+e^- \\ e^+e^- \end{array}$	Γ ₅₈ /Γ
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4}) <2.2 <0.8 26 Re-evaluated assum \Gamma(\Sigma(1385)^0 \overline{\Lambda})/\Gamma_{tot} VALUE (units 10^{-3}) <0.2 \Gamma(\Delta(1232)^+ \overline{p})/\Gamma_{tot} VALUE (units 10^{-3}) <0.1 \Gamma(\Sigma^0 \overline{\Lambda})/\Gamma_{total} VALUE (units 10^{-4}) <0.9 \Gamma(\phi \pi^0)/\Gamma_{total} VALUE (units 10^{-4}) <0.9 \Gamma(\phi \pi^0)/\Gamma_{total} VALUE (units 10^{-4}) <0.09 \Gamma(\phi \pi^0)/\Gamma_{total} VALUE (units 10^{-4}) <0.09 \Gamma(2(\pi^+\pi^-)\pi^0)/\Gamma_0 VALUE (units 10^{-4}) <0.0068 \Gamma(2(\pi^+\pi^-)\pi^0)/\Gamma_0 VALUE (units 10^{-4}) <0.0069 0.0325 \pm 0.0026 \text{ OUR } 0.0325 \pm 0.0042 0.0364 \pm 0.0052 0.04 \pm 0.01$	oranching from the property of the following points of	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID HENRARD AUGUSTIN FRANKLIN BURMESTER	77 77 88, fit: 88 0.71 87 87 88 89 83 776	TECN MRK1 MRK1 MRK1 MRK1 MRX2 MRX2 MRX2 MRX2 MRX2 MRX3 MRX3 MRX3 MRX1 MRX1	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \bullet \\ \hline J/\psi \to \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to hadr \\ e^+e^- \to hadr \\ e^+e^- \\ e^+e^- \\ e^+e^- \end{array}$	F ₅₈ /Γ F ₅₉ /Γ F ₆₁ /Γ F ₆₂ /Γ F ₆₃ /Γ F ₆
25 Includes unknown II $\Gamma(\omega f_2'(1525))/\Gamma_{tot}$ $VALUE (units 10^{-4}) <2.2 ••• We do not use II <2.8 26 Re-evaluated assum \Gamma(\Sigma(1385)^{0}\overline{\Lambda})/\Gamma_{tot} VALUE (units 10^{-3}) <0.2 \Gamma(\Delta(1232)^{+}\overline{p})/\Gamma_{tot} VALUE (units 10^{-3}) <0.1 \Gamma(\Sigma^{0}\overline{\Lambda})/\Gamma_{total} VALUE (units 10^{-4}) <0.9 \Gamma(\phi \pi^{0})/\Gamma_{total} VALUE (units 10^{-4}) <0.068 \Gamma(2(\pi^{+}\pi^{-})\pi^{0})/\Gamma_{total} VALUE (units 10^{-4}) <0.0325 ± 0.0049 0.0337 \pm 0.0026 \text{ OUR } I 0.0325 \pm 0.0042 0.0364 \pm 0.0052 0.04 \pm 0.01 \Gamma(3(\pi^{+}\pi^{-})\pi^{0})/\Gamma_{total} VALUE$	oranching from the property of the following points of	DOCUMENT ID DOCUMENT ID AUGUSTIN DOCUMENT ID DOCUMENT ID DOCUMENT ID HENRARD DOCUMENT ID HENRARD DOCUMENT ID HENRARD DOCUMENT ID AUGUSTIN FRANKLIN BURMESTER JEAN-MARIE	77 77 88, fit: 88 0.71 87 87 87 88 88 89 83 776 83	TECN MRK1 MRK1 MRK1 MRK2 MRK2 MRC2 MRC2 MRC3 MRC3 MRC3 MRC4 MRC4 MRC4 MRC4 MRC4 MRC4 MRC4 MRC4	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \pi^0 K^- \\ \text{etc.} \bullet \bullet \bullet \bullet \\ \hline J/\psi \to \text{hadron} \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to K^+ \\ \\ \underline{COMMENT} \\ e^+e^- \to hadr \\ e^+e^- \to hadr \\ e^+e^- \\ e^+e^- \\ e^+e^- \end{array}$	Γ ₅₈ /Γ


					J	$/\psi(1S)$
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}}$	ař					Γ ₆₅ /Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.015 ±0.002	168	FRANKLIN	83	MRK2	e^+e^-	
$\Gamma(\pi^+\pi^-\pi^0K^+K^-)$						Γ ₆₆ /Γ
VALUE 0.012 ± 0.003		<u>DOCUMENT ID</u> VANNUCCI		MRK1	COMMENT e+e-	
		Villitocci	•	19111112		
$\Gamma(4(\pi^+\pi^-)\pi^0)/\Gamma$						Γ ₆₇ /Γ
VALUE (units 10 ⁻⁴) 90±30		DOCUMENT ID JEAN-MARIE			COMMENT	
	13	JEAN-MARIE	76	MKVI	e·e	
$\Gamma(\pi^+\pi^-K^+K^-)$	/Γ _{total}					Γ ₆₈ /Γ
VALUE (units 10 ⁻⁴)	EVT5	DOCUMENT ID		TECN	COMMENT	
72±23	205	VANNUCCI	77	MRK1	e^+e^-	
$\Gamma(K\overline{K}\pi)/\Gamma_{\text{total}}$						Γ ₆₉ /Γ
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TEÇN	COMMENT	
61 ±10 OUR AVE	RAGE	•				, ,
55.2±12.0	25	FRANKLIN	83	MRK2	e ⁺ e ⁻ →	$K^{+}K^{-}\pi^{0}$
78.0±21.0	126	VANNUCCI	77	MRK1	e ⁺ e →	κ ₅ κ± π [∓]
$\Gamma(\rho \overline{\rho} \pi^+ \pi^-)/\Gamma_{\text{tot}}$	·al					Γ ₇₀ /Γ
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT	
6.0 ±0.5 OUR AVE	RAGE Erro		ctor			gram below.
$6.46 \pm 0.17 \pm 0.43$	1435	EATON	84			
3.8 ±1.6 5.5 ±0.6	48 533	BESCH PERUZZI	81	BONA MRK1	e+ e-	
		/	ATO ESC ERU	H IZZI	84 MRK 81 BON 78 MRK fidence Leve	1.9 1 0.7 3.6
0 2			3	10		
$\Gamma(p\overline{p}\pi^+)$	π)/Γ _{total}	(units 10 ⁻³)				
$\Gamma(2(\pi^+\pi^-))/\Gamma_{\text{tot}}$	t al EVTS	DOCUMENT ID		TECN	COMMENT	Γ ₇₁ /Γ
0.004 ±0.001	76	JEAN-MARIE				
$\Gamma(3(\pi^+\pi^-))/\Gamma_{tot}$	al					Γ ₇₂ /Γ
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT	- (6.)
40±20	32	JEAN-MARIE				
[/na=+\ /F						Г /Г
$\Gamma(n\overline{n}\pi^+\pi^-)/\Gamma_{\text{tot}}$		000000000000000000000000000000000000000		TE	co	Γ ₇₃ /Γ
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		IECN	COMMENT	

$\Gamma(2(\pi^+\pi^-))/\Gamma_{\text{total}}$				Γ ₇₁ /Γ
VALUE	EVTS	DOCUMENT ID	TECN COMMENT	
0.004 ±0.001	76	JEAN-MARIE 76	MRK1 e+e-	
$\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}$				Γ ₇₂ /Γ
VALUE (units 10-4)	EVTS	DOCUMENT ID	TECN COMMENT	
40±20	32	JEAN-MARIE 76	MRK1 e ⁺ e ⁻	
$\Gamma(n\overline{n}\pi^+\pi^-)/\Gamma_{\text{total}}$				Γ ₇₃ /Γ
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN COMMENT	
3.8 ± 3.6	5	BESCH 81	BONA e+e-	
$\Gamma(\Sigma^0\overline{\Sigma}^0)/\Gamma_{ ext{total}}$				Γ ₇₄ /Γ
VALUE (units 10-3)	EVTS	DOCUMENT ID	TECN COMMENT	
1.27±0.17 OUR AVER	AGE			
$1.06 \pm 0.04 \pm 0.23$	884± 30		87 DM2 $e^+e^- \to$	
$1.58 \pm 0.16 \pm 0.25$	90		84 MRK2 $e^+e^- \rightarrow$	
1.3 ± 0.4	52	PERUZZI	78 MRK1 $e^+e^- \rightarrow$	$\Sigma^0 \overline{\Sigma}^0$
• • • We do not use the	e following	data for averages, fit	s, limits, etc. • • •	
2.4 ±2.6	3	BESCH	81 BONA $e^+e^- \rightarrow$	$\Sigma^+ \overline{\Sigma}^-$
$\Gamma(2(\pi^{+}\pi^{-})K^{+}K^{-})$	/Γ _{total}			Γ ₇₅ /Γ
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN COMMENT	
31±13	30	VANNUCCI 77	MRK1 e ⁺ e ⁻	

$J/\psi(1S)$

$(p\overline{p}\pi^+\pi^-\pi^0)/\Gamma_0$						Γ ₇₆ /Γ		$\Gamma(p\overline{p}\pi^0)/\Gamma_{\text{total}}$					Г ₈₃ /Г
Including ppπ+								VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TEC	N COMMENT	
ALUE (units 10 ⁻³) .3 ±0.9 OUR AVE	EVTS RAGE Free	DOCUMENT ID or includes scale f			COMMENT			1.09±0.09 OUR AVER		FATON	04	K2 e ⁺ e ⁻	
.36±0.65±0.28	364	EATON	B4 M		e+e-			$1.13 \pm 0.09 \pm 0.09$ 1.4 ± 0.4	685	EATON BRANDELIK		K2 e e SP e ⁺ e	
6 ±0.6	39	PERUZZI	78 M					1.4 ± 0.4 1.00 ± 0.15	109	PERUZZI		K1 e ⁺ e ⁻	
(ρ̄̄̄̄̄̄̄̄̄̄)/Γ _{total}						Γ ₇₇ /Γ		$\Gamma(\Lambda \overline{\Sigma}^- \pi^+ \text{(or c.c.)})$	/Ftotal				Г ₈₄ /Г
LUE (units 10 ⁻³)	EVT5	DOCUMENT ID	TE	ECN (COMMENT			VALUE (units 10 ⁻³)	EVTS	DOCUMENT	ID	TECN COMME	
12±0.10 OUR AVE		BALDINI	98 FE	ENI .	e+ e-		1	1.06±0.12 OUR AVER		-			
97±0.22 91±0.04±0.30	99	PALLIN			e+e-			$0.90 \pm 0.06 \pm 0.16$	225 ± 15	HENRARD	87		$\rightarrow \Lambda \overline{\Sigma}^{+} \pi^{-}$
16±0.07±0.15	1420	EATON	84 M					$1.11 \pm 0.06 \pm 0.20$	342±	HENRARD	87	DM2 e ⁺ e ⁻	$\rightarrow \Lambda \overline{\Sigma}^- \pi^+$
5 ±0.4	133.	BRANDELIK	79c D	ASP (e+ e-			1.53 ± 0.17 ± 0.38	18 135	EATON	84	MRK2 e ⁺ e ⁻	$\rightarrow \Lambda \overline{\Sigma}^{+} \pi^{-}$
0 ±0.5		BESCH	78 B					$1.38 \pm 0.21 \pm 0.35$	118	EATON		MRK2 e ⁺ e ⁻	
2 ±0.2 ■ • We do not use :	331	²⁷ PERUZZI n data for averag	78 M					E/ 1/m 70 /E					- "
0 ±0.3	48	ANTONELLI						$\Gamma(pK^-\overline{A})/\Gamma_{\text{total}}$					Γ ₈₅ /Γ
27 Assuming angular			93 SF	rEC (e · e			VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		N COMMENT	
	aistribution	(1+005-0).						$0.89 \pm 0.07 \pm 0.14$	307	EATON	84 MR	K2 e ⁺ e ⁻	
$(p\overline{p}\eta)/\Gamma_{\text{total}}$						Γ ₇₈ /Γ		$\Gamma(2(K^+K^-))/\Gamma_{\text{tota}}$	1				Γ ₈₆ /Γ
LUE (units 10 ⁻³)	EVTS	DOCUMENT ID	<u>TI</u>	ECN	COMMENT			VALUE (units 10 ⁻⁴)	•	DOCUMENT ID	TEC	N COMMENT	
09±0.18 OUR AVE		EATON	84 M	IDK2	a+ a-			7 ±3		VANNUCCI		K1 e ⁺ e ⁻	
.03±0.13±0.15 .5 ±1.2	826	BRANDELIK											
3 ±0.4	197	PERUZZI		IRK1				$\Gamma(\rho K^- \overline{\Sigma}{}^0) / \Gamma_{\text{total}}$					Γ ₈₇ /Γ
/~=\ /F						F /F		VALUE (units 10 ⁻³)	EVT5	DOCUMENT ID	TEC		
(ρϠπ)/Γ _{total}						Γ ₇₉ /Γ		$0.29 \pm 0.06 \pm 0.05$	90	EATON	84 MR	K2 e ⁺ e ⁻	
LUE (units 10 ⁻³) 00±0.10 OUR AVE	RAGE	DOCUMENT ID	<u>T</u> !	ECN	COMMENT			$\Gamma(K^+K^-)/\Gamma_{\text{total}}$					Γ ₈₈ /Ι
02±0.07±0.16	1288	EATON	84 M	RK2	$e^+e^- \rightarrow p\pi^-$			VALUE (units 10 ⁻⁴)	E)/TC	DOCUMENT ID	TE	N COMMENT	. 69/1
93±0.07±0.16	1191	EATON			$e^+e^- \rightarrow \bar{p}\pi^+$	-		2.37±0.31 OUR AVER	AGE	DOCUMENT ID	<u>TEC</u>	COMMENT	
7 ±0.7	32	BESCH	81 B	ONA	$e^+e^- \rightarrow p\pi^-$			2.39 ± 0.24 ± 0.22	107	BALTRUSAIT.	.850 MR	K3 e+e-	
6 ±1.2	5	BESCH			$e^+e^- \rightarrow \bar{p}\pi^+$	•		2.2 ±0.9	6	BRANDELIK	79c DA	SP e^+e^-	
16±0.29	194	PERUZZI			$e^+e^- \rightarrow p\pi^-$	-							F . #
04±0.27	204	PERUZZI	18 M	iKK1	$e^+e^- \rightarrow \bar{p}\pi^+$			Γ(ΛӢπ ⁰)/Γ _{total}					Γ ₈₉ /Ι
(<i>ΞΞ</i>)/Γ _{total}						Γ_{81}/Γ		VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		N COMMENT	
LUE (units 10 ⁻³)	EVTS	DOCUMEN	T ID	TECN	COMMENT	-		0.22±0.06 OUR AVER 0.23±0.07±0.08	AGE 11	BAI	986 BE	s e ⁺ e ⁻	
											700 DC	,	
8 ±0.4 OUR AVE	RAGE Erro	or includes scale f	actor of	1.8. Se	ee the ideogram	below.				HENRARD	87 DM	12 e ⁺ e ⁻	
.8 ±0.4 OUR AVE	132±	HENRAR		1.8. Se	ee the ideogram 2 e ⁺ e ⁻ → 3			$0.22 \pm 0.05 \pm 0.05$	19 ±	HENRARD	87 DM	12 e ⁺ e ⁻	
8 ±0.4 OUR AVE 40±0.12±0.24	132 ± 11	HENRAR	D 87	1.8. Se DM2	ee the ideogram $e^+e^- \rightarrow 3$	=-=+		$0.22 \pm 0.05 \pm 0.05$		HENRARD	87 DM	12 e ⁺ e ⁻	Γω/1
8 ±0.4 OUR AVE 40±0.12±0.24 , 28±0.16±0.40	132±	HENRAR EATON	D 87 84	1.8. Se DM2 MRK	ee the ideogram	=-=+		$0.22 \pm 0.05 \pm 0.05$ $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$	19 ± 4				Γ ₉₀ /Ι
8 ±0.4 OUR AVE 40±0.12±0.24 , .28±0.16±0.40 2 ±0.8	132 ± 11 194 71	HENRAR EATON	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $42 e^+e^- \rightarrow 3$	=-=+		$0.22\pm0.05\pm0.05$ $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10^{-4})	19 ± 4	HENRARD		12 e ⁺ e ⁻	Γ ₉₀ /Γ
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $42 e^+e^- \rightarrow 3$	=-=+		$0.22 \pm 0.05 \pm 0.05$ $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ <u>VALUE (units 10⁻⁴)</u> 1.47 ± 0.23 OUR AVER	19 ± 4	DOCUMENT ID	<u>TEC</u>	COMMENT	Γ ₉₀ /Ι
8 ±0.4 OUR AVE 40±0.12±0.24 , 28±0.16±0.40 2±0.8	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $42 e^+e^- \rightarrow 3$	=-=+		$0.22\pm0.05\pm0.05$ $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ $\frac{VALUE \text{ (units }10^{-4})}{1.47\pm0.23 \text{ OUR AVER}}$ $1.58\pm0.20\pm0.15$	19 ± 4		850 MF	COMMENT RK3 e ⁺ e ⁻	Γ ₉₀ /Ι
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $42 e^+e^- \rightarrow 3$	=-=+		$0.22 \pm 0.05 \pm 0.05$ $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ <u>VALUE (units 10⁻⁴)</u> 1.47 ± 0.23 OUR AVER	19 ± 4 EVTS AGE 84	DOCUMENT ID	85D MF 78B DA	COMMENT RK3 e ⁺ e ⁻	Г ₉₀ /Г
.8 ±0.4 OUR AVEI .40±0.12±0.24 . .28±0.16±0.40 .2 ±0.8	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $42 e^+e^- \rightarrow 3$	=-=+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6	19 ± 4 <u>EVTS</u> 84 5	DOCUMENT ID BALTRUSAIT. BRANDELIK	85D MF 78B DA	COMMENT RK3 e ⁺ e ⁻ SP e ⁺ e ⁻	
.8 ±0.4 OUR AVEI .40±0.12±0.24 . .28±0.16±0.40 .2 ±0.8	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $e^+e^- \rightarrow 3$	=-=+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{5}^{0}K_{L}^{0})/\Gamma_{\text{total}}$	19 ± 4 	DOCUMENT ID BALTRUSAIT. BRANDELIK VANNUCCI	85D MF 78B DA 77 MF	COMMENT RK3 e ⁺ e ⁻ SP e ⁺ e ⁻ RK1 e ⁺ e ⁻	
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $e^+e^- \rightarrow 3$	=-=+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{\text{total}}$ VALUE (units 10^{-4})	19 ± 4 EVTS AGE 84 5 1	DOCUMENT ID BALTRUSAIT. BRANDELIK	85D MF 78B DA	COMMENT RK3 e ⁺ e ⁻ SP e ⁺ e ⁻ RK1 e ⁺ e ⁻	
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $e^+e^- \rightarrow 3$	=-=+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 1.08 \pm 0.14 OUR AVER	19 ± 4 EVTS AGE 84 5 1	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID	.85D MF 78B DA 77 MF	KK3 e ⁺ e ⁻ SP e ⁺ e ⁻ KK1 e ⁺ e ⁻	Г ₉₁ /I
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $e^+e^- \rightarrow 3$	=-=+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18	19 ± 4 EVTS AGE 84 5 1 EVTS AGE	DOCUMENT ID BALTRUSAIT. BRANDELIK VANNUCCI DOCUMENT ID JOUSSET	7E0 .85D MR 78B DA 77 MR	COMMENT $KK3 e^+e^ SP e^+e^ KK1 e^+e^ EN COMMENT$ $EN COMMENT$	Г ₉₁ /I
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $e^+e^- \rightarrow 3$	=-=+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10^{-4}) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{C}^{0})/\Gamma_{total}$ VALUE (units 10^{-4}) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID	7E0 .85D MR 78B DA 77 MR	COMMENT $KK3 e^+e^ SP e^+e^ KK1 e^+e^ EN COMMENT$ $EN COMMENT$	Г91/ I
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $e^+e^- \rightarrow 3$	=-=+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT. BRANDELIK VANNUCCI DOCUMENT ID JOUSSET	7E0 .85D MR 78B DA 77 MR	COMMENT $KK3 e^+e^ SP e^+e^ KK1 e^+e^ EN COMMENT$ $EN COMMENT$	Г91/ I
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $e^+e^- \rightarrow 3$	=-=+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10^{-4}) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{C}^{0})/\Gamma_{total}$ VALUE (units 10^{-4}) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT. BRANDELIK VANNUCCI DOCUMENT ID JOUSSET	7EC85D MF	COMMENT $KK3 e^+e^ SP e^+e^ KK1 e^+e^ EN COMMENT$ $EN COMMENT$	Г91/ I
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRAR EATON PERUZZI	D 87 84	1.8. Se DM2 MRK	ee the ideogram $e^+e^- \rightarrow 3$ $e^+e^- \rightarrow 3$	=-=+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.6 \pm 1.6 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \overline{\Sigma} + \text{c.c.})/\Gamma_{\text{total}}$	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT	7EC85D MF 78B DA 77 MF 7EC90 DM 85D MF	COMMENT IRS e^+e^- SP e^+e^- RK1 e^+e^- CM COMMENT $e^+e^ e^+e^-$ RK3 e^+e^-	Γ ₉₁ /l adrons Γ ₉₂ /l
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRARI EATON PERUZZI	D 87 84 78	1.8. Se DM2 MRH MRH	ee the ideogram 2 e + e − → ∃ (2 e + e − → ∃ (1 e + e −)	===+ ====+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \overline{\Sigma} + \text{C.C.})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻³) <0.15	19 ± 4	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT	7EC85D MF 78B DA 77 MF 7EC90 DM 85D MF	COMMENT $RK3 e^+e^ RK1 e^+e^ RK1 e^+e^ RK1 e^+e^ RK2 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	Γ ₉₁ /ladrons Γ ₉₂ /
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRARI EATON PERUZZI 1.8)	D 87 84 78	1.8. Se DM2 MRM MRM	ee the ideogram 2 e + e - → 3 42 e + e - → 3 41 e + e - → 3 42 e + e - → 3 43 e + e - → 3 44 e + e - → 3 45 e + e - → 3 46 e + e - → 3 47 e + e - → 3 48 e + e - →	===+ ====+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \overline{\Sigma} + \text{c.c.})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{\text{total}}$	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	BALTRUSAIT. BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI	7E0 85D MF 78B DA 77 MF 	COMMENT KK3 e^+e^- KK1 e^+e^- KK1 e^+e^- CN COMMENT RK3 e^+e^- CN COMMENT KK1 e^+e^-	Γ ₉₁ /ladrons Γ ₉₂ /
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRARI EATON PERUZZI 1.8)	D 87 84 78	1.8. Se DM2 MRH MRH MRH	ee the ideogram 2 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻)	===+ ====+		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\sqrt{\Sigma} + \text{c.c.})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴)	19 ± 4	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI DOCUMENT ID	7E0 78 MF 78 DA 77 MF 76 DA 78 MF 78 MF	CN COMMENT AND COMMENT CN COMMENT AND COMMENT CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT	Γ ₉₁ /ladrons Γ ₉₂ /
8 ±0.4 OUR AVEI 10±0.12±0.24 , 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRARI EATON PERUZZI 1.8)	B 87 84 78 HENRAR EATON PERUZZI	I.B. Se DM2 MRK MRK	ee the ideogram 2 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ →	2 <u>3</u> + = - 3 + = - 3 +		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \Sigma + \text{C.C.})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) <0.052	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	BALTRUSAIT. BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI	7E0 78 MF 78 DA 77 MF 76 DA 78 MF 78 MF	CN COMMENT AND COMMENT CN COMMENT AND COMMENT CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT	Γ ₉₁ /ladrons Γ ₉₂ /
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRARI EATON PERUZZI 1.8)	B 87 84 78 HENRAR EATON PERUZZI	I.B. Se DM2 MRK MRK	ee the ideogram 2	2 <u>3</u> + = - 3 + = - 3 +		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\sqrt{\Sigma} + \text{c.c.})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴)	19 ± 4	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI DOCUMENT ID	7E0 78 MF 78 DA 77 MF 76 DA 78 MF 78 MF	CN COMMENT AND COMMENT CN COMMENT AND COMMENT CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT	Γ ₉₁ /l adrons Γ ₉₂ /l
8 ±0.4 OUR AVEI 40±0.12±0.24 , 28±0.16±0.40 2 ±0.8 WEIGHTED	132 ± 11 194 71 AVERAGE	HENRARI EATON PERUZZI 1.8)	B 87 84 78 HENRAR EATON PERUZZI	I.B. Se DM2 MRK MRK	ee the ideogram 2 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ →	2 <u>3</u> + = - 3 + = - 3 +		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \Sigma + \text{C.C.})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) <0.052	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI DOCUMENT ID BALTRUSAIT DOCUMENT ID BALTRUSAIT	7E0	CN COMMENT AND COMMENT CN COMMENT AND COMMENT CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT	Γ ₉₁ /l adrons Γ ₉₂ /l
8 ±0.4 OUR AVEI 40±0.12±0.24 28±0.16±0.40 2 ±0.8 WEIGHTED 1.8±0.4 (Error	132 ± 11 1991 711 AVERAGE or scaled by	HENRARI EATON PERUZZI	B 87 84 78 HENRAR EATON PERUZZI	1.8. Se DM2 MRK MRK	ee the ideogram 2 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ →	2 <u>3</u> + = - 3 + = - 3 +		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.6 \pm 1.6 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP.	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI DOCUMENT ID	7E0	CN COMMENT AND COMMENT CN COMMENT AND COMMENT CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT e^+e^- CN COMMENT	Γ ₉₁ /I adrons Γ ₉₂ /I ΛΧ Γ ₉₃ /I
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 2 ±0.8 WEIGHTED 1.8±0.4 (Erro	132 ± 11 1991 711 AVERAGE or scaled by	HENRARI EATON PERUZZI	B 87 84 78 HENRAR EATON PERUZZI	1.8. Se DM2 MRK MRK	ee the ideogram 2 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ →	2 <u>3</u> + = - 3 + = - 3 +		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 0UR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \overline{\Sigma} + \text{c.c.})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻³) $<$ 0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) $<$ 0.052 28 Forbidden by CP.	19 ± 4 AGE 84 5 1 EVTS AGE 74	BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE	788 DA 77 MF 788 DA 77 MF 90 DN85D MF 78 MF CAYS -	COMMENT $KK3 e^+e^ KK1 e^+e^-$	Γ ₉₁ /I adrons Γ ₉₂ /I ΛΧ Γ ₉₃ /I
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 2 ±0.8 WEIGHTED 1.8±0.4 (Error 0 1 \(\(\begin{array}{c} \begin{array}{c} \limits \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	132 ± 11 1991 711 AVERAGE or scaled by	HENRARI EATON PERUZZI	B 87 84 78 HENRAR EATON PERUZZI	1.8. Se DM2 MRK MRK	ee the ideogram 2 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ →	2 = 3 + = -		0.22±0.05±0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47±0.23 OUR AVER 1.58±0.20±0.15 1.6±1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08±0.14 OUR AVER 1.18±0.12±0.18 1.01±0.16±0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma \eta_{C}(1S))/\Gamma_{total}$ VALUE	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE	7E085D MF 778 DA 77 MF85D MF85D MF85C MF	CN COMMENT $KK3 e^+e^ KK1 e^+e^-$	F ₉₁ /l AX F ₉₃ /l
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 2 ±0.8 WEIGHTED 1.8±0.4 (Error 0 1 「(三三)/「t	132 ± 11 1991 PAVERAGE or scaled by	HENRARI EATON PERUZZI 1.8)	HENRAR EATON PERUZZI	DD (Confid	ee the ideogram 2 e ⁺ e ⁻ → ± (2 e ⁺ e ⁻ → ± (1 e ⁺ e ⁻ → ± (2 e ⁺ e ⁻ → ± (3 e ⁺ e ⁻ → ± (4 e ⁺ e ⁻ → ± (5 e ⁺ e ⁻ → ± (6 e ⁺ e ⁻ → ± (7 e ⁺ e ⁻ → ± (8 e ⁺ e ⁻ → ± (8 e ⁺ e ⁻ → ± (1 e ⁺ e ⁻ → ± (1 e ⁺ e ⁻ → ± (2 e ⁺ e ⁻ → ± (3 e ⁺ e ⁻ → ± (4 e ⁺ e ⁻ → ± (4 e ⁺ e ⁻ → ± (4 e ⁺ e ⁻ → ± (5 e ⁺ e ⁻ → ± (6 e ⁺ e ⁻ → ± (7 e ⁺ e ⁻ → ± (8 e ⁺	2 <u>3</u> + = - 3 + = - 3 +		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma\eta_{c}(1S))/\Gamma_{total}$ VALUE 0.0127 \pm 0.0036	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74 CL% 90 EVTS	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER	85D MF 788 DA 777 MF 780 DA 777 MF 90 DM85D MF 78 MF CAYS -	The Comment of the c	F ₉₁ /l AX F ₉₃ /l
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 2 ±0.8 WEIGHTED 1.8±0.4 (Error 0 1 \(\begin{align*} \text{(\$n\$\pi\$)}/\Gamma_{\text{total}} \\ 4LUE (units 10^{-2}) \end{align*}	132± 11 194 71 AVERAGE or scaled by	HENRARI EATON PERUZZI	HENRAR EATON PERUZZI	DD (Confid	ee the ideogram 2 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ → 3 (9 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (3 e ⁺ e ⁻ → 3 (4 e ⁺ e ⁻ → 3 (5 e ⁺ e ⁻ → 3 (6 e ⁺ e ⁻ → 3 (7 e ⁺ e ⁻ → 3 (8 e ⁺ e ⁻ →	2 = 3 + = -		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma\eta_{c}(1S))/\Gamma_{total}$ VALUE 0.0127 \pm 0.0036 • • • We do not use to	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER IG data for average	85D MF 788 DA 777 MF 788 DA 777 MF 90 DM85D MF 78 MF CAYS -	The Comment of the c	Γ ₉₁ /I AX Γ ₉₃ /I Χ
8 ±0.4 OUR AVEI 40±0.12±0.24 28±0.16±0.40 2 ±0.8 WEIGHTED 1.8±0.4 (Error (n\overline{\pi})/\Gamma_t 4L/\text{UE} (units 10^{-2}) 22 ±0.04 OUR AVEI	132± 11 194 71 AVERAGE or scaled by	HENRARI EATON PERUZZI 1.8)	BENRAR EATON PERUZZI	1.8. Se DM2 MRH MRH	ee the ideogram 2 e ⁺ e ⁻ → ± (2 e ⁺ e ⁻ → ± (1 e ⁺ e ⁻ → ± (2 e ⁺ e ⁻ → ± (3 e ⁺ e ⁻ → ± (4 e ⁺ e ⁻ → ± (5 e ⁺ e ⁻ → ± (6 e ⁺ e ⁻ → ± (7 e ⁺ e ⁻ → ± (8 e ⁺ e ⁻ → ± (8 e ⁺ e ⁻ → ± (1 e ⁺ e ⁻ → ± (1 e ⁺ e ⁻ → ± (2 e ⁺ e ⁻ → ± (3 e ⁺ e ⁻ → ± (4 e ⁺ e ⁻ → ± (4 e ⁺ e ⁻ → ± (4 e ⁺ e ⁻ → ± (5 e ⁺ e ⁻ → ± (6 e ⁺ e ⁻ → ± (7 e ⁺ e ⁻ → ± (8 e ⁺	2 = 3 + = -		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{0}^{0}K_{0}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma\eta_{c}(1S))/\Gamma_{total}$ VALUE 0.0127 \pm 0.0036	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74 CL% 90 EVTS	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER IG data for average	85D MF 788 DA 777 MF 788 DA 777 MF 90 DM85D MF 78 MF CAYS -	The Comment of the c	Γ ₉₁ /l adrons Γ ₉₂ /l Λ× Γ ₉₃ /l
8 ±0.4 OUR AVEI 40±0.12±0.24 .28±0.16±0.40 2 ±0.8 WEIGHTED 1.8±0.4 (Erro (n\overline{\pi})/\Gamma_total 4LUE (units 10^2) .22 ±0.04 OUR AV .231±0.049	132 ± 11 194 71 AVERAGE or scaled by 2 total (units	HENRARI EATON PERUZZI 1.8) 1.8) DOCUMENT IC	HENRAR EATON PERUZZI	1.8. Se DM2 MRH MRH	ee the ideogram 2	2 = 3 + = -	I	0.22±0.05±0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47±0.23 OUR AVER 1.58±0.20±0.15 1.6±1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08±0.14 OUR AVER 1.18±0.12±0.18 1.01±0.16±0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma \eta_{c}(1S))/\Gamma_{total}$ VALUE 0.0127±0.0036 • • • We do not use the seen	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER IG data for average	85D MF 788 DA 777 MF 788 DA 777 MF 90 DM85D MF 78 MF CAYS -	The Comment of the c	Γ ₉₁ /l adrons Γ ₉₂ /l ΑΧ Γ ₉₃ /l
8 ±0.4 OUR AVEI 40±0.12±0.24 .28±0.16±0.40 .2±0.8 WEIGHTED 1.8±0.4 (Erro (n\vec{n})/\Gamma_{total} 22±0.04 OUR AV .231±0.04 .18±0.09	132 ± 11 1949 71 AVERAGE or scaled by	HENRARI EATON PERUZZI 1.8) 1.8) DOCUMENT IS BALDINI BESCH	HENRAR FATON PERUZZI	DD GOOD CONTROL OF THE CONTROL OF TH	ee the ideogram 2 e ⁺ e ⁻ → 3 (2 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ → 3 (1 e ⁺ e ⁻ ← 6 (1 e ⁺ e ⁻ ← 6 (2 e ⁺ e ⁻ ← 6 (3 e ⁺ e ⁻ ← 6 (4 e ⁺ e ⁻ ← 6 (5 e ⁺ e ⁻ ← 6 (6 e ⁺ e ⁻ ← 6 (7 e ⁺ e ⁻ ← 6 (8 e ⁺ e ⁻ ← 6 (9 e ⁺ e ⁻ ← 6 (9 e ⁺ e ⁻ ← 6 (1 e ⁺	2 = 3 + = -	•	0.22±0.05±0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ $VALUE (units 10^{-4})$ 1.47±0.23 OUR AVER 1.58±0.20±0.15 1.0 ±0.5 1.6 ±1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{total}$ $VALUE (units 10^{-4})$ 1.08±0.14 OUR AVER 1.18±0.12±0.18 1.01±0.16±0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ $VALUE (units 10^{-3})$ <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ $VALUE (units 10^{-4})$ <0.052 28 Forbidden by CP. $\Gamma(\gamma \eta_{c}(1S))/\Gamma_{total}$ $VALUE$ 0.0127±0.0036 • • We do not use to seen $\Gamma(\gamma \pi^{+}\pi^{-}2\pi^{0})/\Gamma_{total}$	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER IS data for average BALTRUSAIT	788 DA 77 MF 788 DA 77 MF 78 MF	COMMENT $KK3 e^+e^ KK1 e^+e^-$	Γ ₉₁ /I adrons Γ ₉₂ /I ΑΧ Γ ₉₃ /I ×
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 . 2 ±0.8 WEIGHTED 1.8±0.4 (Erro (nħ)/Γ _{total} ALUE (units 10 ⁻²) .22 ±0.04 OUR AV. 231±0.049 .18 ±0.09 • • We do not use	132 ± 11 1949 71 AVERAGE or scaled by	HENRARI EATON PERUZZI 1.8) 1.8) DOCUMENT IS BALDINI BESCH	HENRAR EATON PERUZZI 5	1.8. Se DM2 MRH MRH (Confid	ee the ideogram 2 e + e - → 3 (2 e + e - → 3 (1 e + e - → 3 (1 e + e - → 3 (1 e + e - → 4 (1 e + e - ← 6 (1 e + e - ←	2 = 3 + = -		0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\sqrt{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma\eta_{c}(1S))/\Gamma_{total}$ VALUE 0.0127 \pm 0.0036 • • • We do not use to seen $\Gamma(\gamma\pi^{+}\pi^{-}2\pi^{0})/\Gamma_{total}$ VALUE (units 10 ⁻³)	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER g data for average BALTRUSAIT DOCUMENT ID	780 MF 788 DA 777 MF 788 DA 777 MF 780 MF 780 MF 780 MF 780 MF CAYS 860 CB 86 CB	COMMENT $RK3 = e^+e^ RK1 = e^+e^ RK2 = e^+e^ RK3 = e^+e$	Γ ₉₁ /l adrons Γ ₉₂ /l ΛΧ Γ ₉₃ /l Χ Γ ₉₄ /l Χ
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 2 ±0.8 WEIGHTED 1.8±0.4 (Erro (n\overline{T})/\Gamma_total 4LUE (units 10^{-2}) 22 ±0.04 OUR AV. 231±0.049 18 ±0.09 • • We do not use .190±0.055	132± 11 194 71 AVERAGE or scaled by 2 total (units VERAGE 79 the followin	HENRARI EATON PERUZZI 1.8) 3 4 10 ⁻³) DOCUMENT IC BALDINI BESCH Ig data for average	HENRAR EATON PERUZZI 5	1.8. Se DM2 MRH MRH (Confid	ee the ideogram 2 e + e - → 3 (2 e + e - → 3 (1 e + e - → 3 (1 e + e - → 3 (1 e + e - → 4 (1 e + e - ← 6 (1 e + e - ←	2 8 8 8 4 .2 .5 039)	I	0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma \eta_{c}(1S))/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.0127 \pm 0.0036 • • • We do not use to seen $\Gamma(\gamma \pi^{+}\pi^{-}2\pi^{0})/\Gamma_{total}$ VALUE (units 10 ⁻³) 8.3 \pm 0.2 \pm 3.1	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER IS data for average BALTRUSAIT	780 MF 788 DA 777 MF 788 DA 777 MF 780 MF 780 MF 780 MF 780 MF CAYS 860 CB 86 CB	COMMENT $RK3 = e^+e^ RK1 = e^+e^ RK2 = e^+e^ RK3 = e^+e$	Γ ₉₁ /l adrons Γ ₉₂ /l ΛΧ Γ ₉₃ /l Χ Γ ₉₄ /l Χ
8 ±0.4 OUR AVEI 40±0.12±0.24 .28±0.16±0.40 2 ±0.8 WEIGHTED 1.8±0.4 (Erro (n\overline{n})/\Gamma_{total} 44.UE (units 10 ⁻²) .231±0.049 .18 ±0.09 • We do not use .190±0.055	132± 11 194 71 AVERAGE or scaled by 2 total (units VERAGE 79 the followin 40	HENRARI EATON PERUZZI 1.8) 1.8) DOCUMENT IC BALDINI BESCH and a for average ANTONELLI	HENRAR EATON PERUZZI 5 98 F 78 B ges, fits, I 93 S	DD CONTROL (Confidence of the control of the contro	87 DM2 1. 87 PM2 1. 88 MRK1 3. 64 dence Level = 0.0 COMMENT e+e- e+e- e+e- e+e- e+e- e+e-	2 = 3 + = -	I	0.22±0.05±0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47±0.23 OUR AVER 1.58±0.20±0.15 1.6±1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08±0.14 OUR AVER 1.18±0.12±0.18 1.01±0.16±0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma \eta_{c}(1S))/\Gamma_{total}$ VALUE 0.0127±0.0036 • • We do not use to seen $\Gamma(\gamma \pi^{+}\pi^{-}2\pi^{0})/\Gamma_{total}$ VALUE (units 10 ⁻³) 8.3±0.2±3.1 29 4π mass less than 10^{-3}	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER g data for average BALTRUSAIT DOCUMENT ID	780 MF 788 DA 777 MF 788 DA 777 MF 780 MF 780 MF 780 MF 780 MF CAYS 860 CB 86 CB	COMMENT $RK3 = e^+e^ RK1 = e^+e^ RK2 = e^+e^ RK3 = e^+e$	Γ ₉₁ /I AX Γ ₉₃ /I × Γ ₉₅ /I
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 . 2 ±0.8 WEIGHTED 1.8±0.4 (Error (\$\bar{n}\$) /\Gamma_{\text{total}}\$ 22±0.04 OUR AV .231±0.049231±0.04990±0.055 (\$\bar{n}\$) /\Gamma_{\text{total}}\$ 42.0E (units 10^{-3})	132± 111 194 71 AVERAGE or scaled by 2 total (units VERAGE 79 the followin 40	HENRARI EATON PERUZZI 1.8) 3 4 10 ⁻³) DOCUMENT IC BALDINI BESCH IN data for average ANTONELLI DOCUMENT IC	HENRAR EATON PERUZZI 98 F 78 B ges, fits, I 93 S	1.8. Se DM2 MRH MRH MRH ISONA Ilimits, v.PEC	ee the ideogram 2 e + e - → 3 (2 e + e - → 3 (1 e + e - → 3 (1 e + e - → 3 (1 e + e - → 4 (1 e + e - ← 6 (1 e + e - ←	2 8 8 8 4 .2 .5 039)	I	0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.0 \pm 0.5 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma \eta_{c}(1S))/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.0127 \pm 0.0036 • • • We do not use to seen $\Gamma(\gamma \pi^{+}\pi^{-}2\pi^{0})/\Gamma_{total}$ VALUE (units 10 ⁻³) 8.3 \pm 0.2 \pm 3.1	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER g data for average BALTRUSAIT DOCUMENT ID	780 MF 788 DA 777 MF 788 DA 777 MF 780 MF 780 MF 780 MF 780 MF CAYS 860 CB 86 CB	COMMENT $RK3 = e^+e^ RK1 = e^+e^ RK2 = e^+e^ RK3 = e^+e$	Γ ₉₁ /l adrons Γ ₉₂ /l ΛΧ Γ ₉₃ /l × Γ ₉₄ /l ×
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 . 2 ±0.8 WEIGHTED 1.8±0.4 (Error (n\overline{\pi})/\Gamma_total ALUE (units 10^2) .231±0.049 • • We do not use .190±0.055 (\lambda\lambda)/\Gamma_total ALUE (units 10^3) .30±0.12 OUR AVE	132 ± 11 194 71 AVERAGE or scaled by 2 total (units VERAGE 79 the followin 40 EVTS EVTS ERAGE Err	HENRARI EATON PERUZZI 1.8) 1.8) DOCUMENT IC BALDINI BESCH adata for average ANTONELLI DOCUMENT IC or includes scale	HENRAR FATON 98 F 78 B ges, fits, I 93 S	DD (Confidence of the confidence of the confiden	87 DM2 1. 84 MRK2 1. 78 MRK1 3. 6 dence Level = 0.0 COMMENT e+e- e+e- etc. • • • e+e- COMMENT	2 8 8 8 4 .2 .5 039)	I	0.22±0.05±0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47±0.23 OUR AVER 1.58±0.20±0.15 1.6±1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08±0.14 OUR AVER 1.18±0.12±0.18 1.01±0.16±0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma \eta_{c}(1S))/\Gamma_{total}$ VALUE 0.0127±0.0036 • • We do not use to seen $\Gamma(\gamma \pi^{+}\pi^{-}2\pi^{0})/\Gamma_{total}$ VALUE (units 10 ⁻³) 8.3±0.2±3.1 29 4π mass less than 10^{-3}	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER g data for average BALTRUSAIT DOCUMENT ID	7E085D MF 78B DA 77 MF85D MF85D MF85D MF85C MF85C MF85C MF866 MF	COMMENT $RK3 = e^+e^ RK1 = e^+e^ RK2 = e^+e^ RK3 = e^+e$	Γ ₉₂ /Ι ΛΧ Γ ₉₃ /Ι Χ Γ ₉₄ /Ι Χ
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 . 2±0.8 WEIGHTED 1.8±0.4 (Erro (n\overline{T}) / \Gamma_tatal (\overline{T}) / \Overline{T}) / \Gamma_tatal (\overline{T}) / \Overline{T}) / \Gamma_tatal (\overline{T}) / \Overline{T}) / \Overline{T} / \Overli	132± 111 194 71 AVERAGE or scaled by 2 total (units VERAGE 79 the followin 40	HENRARI EATON PERUZZI 1.8) 1.8) DOCUMENT IS BALDINI BESCH IN GATA FOR ANTONELLI DOCUMENT IS OF INCIDIOS SCALE BAI	HENRAR FATON PERUZZI 98 F 78 B ges, fits, I 93 S	1.8. Se DM2 MRRH MRRH (Conflict)	87 DM2 1. 87 PM2 1. 88 MRK1 3. 64 dence Level = 0.0 COMMENT e+e- e+e- e+e- e+e- e+e- e+e-	2 8 8 8 4 .2 .5 039)	I	0.22 \pm 0.05 \pm 0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47 \pm 0.23 OUR AVER 1.58 \pm 0.20 \pm 0.15 1.6 \pm 1.6 $\Gamma(K_{S}^{0}K_{L}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08 \pm 0.14 OUR AVER 1.18 \pm 0.12 \pm 0.18 1.01 \pm 0.16 \pm 0.09 $\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma \eta_{c}(1S))/\Gamma_{total}$ VALUE 0.0127 \pm 0.0036 • • We do not use to seen $\Gamma(\gamma \pi^{+}\pi^{-}2\pi^{0})/\Gamma_{total}$ VALUE (units 10 ⁻³) 8.3 \pm 0.2 \pm 3.1 29 \pm 4 π mass less than \pm 1 \pm 29 \pm 4 π mass less than \pm 1 \pm 29 \pm 4 π mass less than \pm 1 \pm 27 \pm 4 π mass less than \pm 1 \pm 29 \pm 4 π mass less than \pm 1 \pm 29 \pm 4 π mass less than \pm 1 \pm 4	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID PERUZZI 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER IS data for average BALTRUSAIT DOCUMENT ID 29 BALTRUSAIT DOCUMENT ID 29 BALTRUSAIT	788 DA 777 MF 788 DA 777 MF 90 DM85D MF 78 MF 78 MF CAYS - 86 CB s, fits, lir84 MF	COMMENT RK3 e^+e^- SP e^+e^- RK1 e^+e^- RK1 e^+e^- CM COMMENT RK3 e^+e^-	Γ ₉₁ /I AX Γ ₉₃ /I × Γ ₉₅ /I
8 ±0.4 OUR AVEI 40±0.12±0.24 . 28±0.16±0.40 2 ±0.8 WEIGHTED 1.8±0.4 (Erro (n\overline{n})/\Gamma_{total} 4\text{LUE (units 10^-2)} 22 ±0.04 OUR AV 2.31±0.049 • • We do not use .190±0.055 (\overline{n})/\Gamma_{total} 4\text{LUE (units 10^-3)} 30±0.12 OUR AVE	132 ± 11 194 71 AVERAGE or scaled by 2 total (units VERAGE 79 the followin 40 EVTS RAGE Err 631	HENRARI EATON PERUZZI 1.8) 1.8) DOCUMENT IC BALDINI BESCH adata for average ANTONELLI DOCUMENT IC or includes scale	HENRAR FATON PERUZZI 5 98 F 78 B ges, fits, I 93 S	1.8. Se DM2 MRRH MRRH (Conflict)	2 e+e- → 3 (2 e+e- → 3 (2 e+e- → 3 (1 e+e- → 3 (1 e+e- → 3 (1 e+e- → 4 (1 e+e	2 8 8 8 4 .2 .5 039)	I	0.22±0.05±0.05 $\Gamma(\pi^{+}\pi^{-})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.47±0.23 OUR AVER 1.58±0.20±0.15 1.0±0.5 1.6±1.6 $\Gamma(K_{S}^{*}K_{L}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) 1.08±0.14 OUR AVER 1.18±0.12±0.18 1.01±0.16±0.09 $\Gamma(\Lambda \Sigma + c.c.)/\Gamma_{total}$ VALUE (units 10 ⁻³) <0.15 $\Gamma(K_{S}^{*}K_{S}^{0})/\Gamma_{total}$ VALUE (units 10 ⁻⁴) <0.052 28 Forbidden by CP. $\Gamma(\gamma \eta_{c}(1S))/\Gamma_{total}$ VALUE (units 10 ⁻³) $\Gamma(\gamma \pi^{+}\pi^{-}2\pi^{0})/\Gamma_{total}$ VALUE (units 10 ⁻³) 8.3±0.2±3.1 29 $^{4}\pi$ mass less than $^{1}\Gamma(\gamma \eta \pi \pi)/\Gamma_{total}$ VALUE (units 10 ⁻³)	19 ± 4 EVTS AGE 84 5 1 EVTS AGE 74	DOCUMENT ID BALTRUSAIT BRANDELIK VANNUCCI DOCUMENT ID JOUSSET BALTRUSAIT DOCUMENT ID 28 BALTRUSAIT RADIATIVE DE DOCUMENT ID GAISER IS data for average BALTRUSAIT DOCUMENT ID 29 BALTRUSAIT	786 DMF 777 MF 788 DAM 777 MF 90 DM85D MF 78 MF 78 MF 85C MF CAYS - 86 CB s, fits, li84 MF868 MF	COMMENT IRS e^+e^- SP e^+e^- RK1 e^+e^- IN COMMENT RK3 e^+e^- IN COMMENT RK1 $e^+e^- \rightarrow$ CN COMMENT RK3 e^+e^-	Γ ₉₁ /l adrons Γ ₉₂ /l AX Γ ₉₃ /l × Γ ₉₄ /l × Γ ₉₅ / πγ Γ ₉₆ /

$(\gamma \eta(1440) \rightarrow \gamma K \overline{K} \pi$	-			Γ ₉₇ /Γ
ALUE (units 10 ⁻³) .91 ± 0.18 OUR AVERAG	DOCUMENT ID		CN COMMEN	Τ
.83±0.13±0.18	31,32 AUGUSTIN	92 DI	M2 $J/\psi \rightarrow$	$\gamma K \overline{K} \pi$
$.03 + 0.21 + 0.26 \\ -0.18 - 0.19$	31,33 BAI	90c MI	RK3 $J/\psi \rightarrow$	•
• • We do not use the f				7.13.1
.78±0.21±0.33	31,34 AUGUSTIN		•	• vV-
.8 ±0.3 ±0.6	31 AUGUSTIN	92 DI		$\gamma K K \pi$
$.66 + 0.17 + 0.24 \\ -0.16 - 0.15$	31,35 BAI		RK3 $J/\psi \rightarrow$	
.0 ±0.7 ±1.0 .3 ±1.7	³¹ EDWARDS ^{31,36} SCHARRE		BAL $J/\psi \rightarrow$ RK2 e^+e^-	$K^+K^-\pi^0\gamma$
31 includes unknown bran 32 From fit to the K^* (89: 33 From K^* (890) K final 34 From fit to the a_0 (980) π final si 36 Corrected for spin-zero	ching fraction $\eta(1440)$ - 2) K 0 $^-$ + partial wave. state.) π 0 $^-$ + partial wave. tate.	→ KKπ.		
$(\gamma\eta(1440)\to\gamma\gamma\rho^0)$				Г98/Г
ALUE (units 10 ⁻⁵)			CN COMMEN	
.4±1.2±0.7	37 COFFMAN		RK3 $J/\psi \rightarrow$	$\gamma\gamma\pi^+\pi^-$
³⁷ Includes unknown bran	ching fraction $\eta(1440)$ -	$\rightarrow \gamma \rho^0$.		
$(\gamma\eta(1440) \rightarrow \gamma\eta\pi^{+})$	- -\/Γ•			٦/وو٦
• • • • • • • • • • • • • • • • • • • •	,		'CN COMMEN	
.0 ±0.5 OUR AVERAGE	VTS DOCUMENT ID	ı ıE	CN COMMEN	1
.6 ±0.7 ±0.4	BAI	99 BE	$= 5 J/\psi \rightarrow$	$\gamma \eta \pi^+ \pi^-$
$.38 \pm 0.33 \pm 0.64$	38 BOLTON	92B MI	RK3 $J/\psi \rightarrow$	
• • We do not use the t	following data for averag	es, fits, lii	mits, etc. • •	•
.0 ±0.6 ±1.1	261 ³⁹ AUGUSTIN	90 DN	$V12 J/\psi \rightarrow$	$\gamma \eta \pi^+ \pi^-$
³⁸ Via <i>a</i> ₀ (980) π.				
³⁹ Includes unknown bran	ching fraction to $\eta \pi^+ \pi$	-,		
	•			F /F
$(\gamma \rho \rho)/\Gamma_{\text{total}}$				
				Γ ₁₀₀ /Γ
			CN COMMEN	
4.5 ±0.8 OUR AVERA	NGE			T
4.5 ±0.8 OUR AVERA 4.7 ±0.3 ±0.9	MGE 40 BALTRUSAIT	Г86в М	RK3 $J/\psi \rightarrow$	τ 4πγ
4.5 ±0.8 OUR AVERA	AGE 40 BALTRUSAI ⁻ 41 BURKE	Г 8 6в МI 82 МI	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$	Τ 4πγ 4πγ
4.5 ±0.8 OUR AVERA 4.7 ±0.3 ±0.9 3.75±1.05±1.20 • • We do not use the f	AGE 40 BALTRUSAI ⁻ 41 BURKE	Г 8 6в МI 82 МI	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • •	7 4πγ 4πγ
4.5 ±0.8 OUR AVERA 4.7 ±0.3 ±0.9 3.75±1.05±1.20 • • We do not use the following the	40 BALTRUSAIT 41 BURKE following data for averag 42 BISELLO	F868 MI 82 MI es, fits, lin	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$	7 4πγ 4πγ
4.5 ±0.8 OUR AVERA 4.7 ±0.3 ±0.9 3.75±1.05±1.20 • • We do not use the 4 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0	40 BALTRUSAI 41 BURKE following data for averag 90 42 BISELLO GeV. GeV, $2\rho^0$ corrected to 2	F868 MI 82 MI es, fits, lii 898	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • •	7 4πγ 4πγ
4.5 ±0.8 OUR AVERA 4.7 ±0.3 ±0.9 3.75±1.05±1.20 • • We do not use the 4 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0	40 BALTRUSAI 41 BURKE following data for averag 90 42 BISELLO GeV. GeV, $2\rho^0$ corrected to 2	F868 MI 82 MI es, fits, lii 898	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • •	7 4πγ 4πγ
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the fixed of the second of the secon	40 BALTRUSAI 41 BURKE Following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 0.0–25 GeV.	F868 MI 82 MI es, fits, lii 898	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • •	7 4πγ 4πγ • 4πγ
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $(\gamma_{12}(1870) \rightarrow \gamma_{12}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0-25 GeV.	Γ868 MI 82 MI es, fits, lii 898 ρ by facto	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ wr of 3.	7 4πγ 4πγ • 4πγ
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $(\gamma \eta_2(1870) \rightarrow \gamma \pi^+ \pi^+ \pi^-)$ ALUE (units 10^{-4})	40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0-25 GeV. T)/\(\begin{align*} \text{Total} \\ \text{DOCUMENT ID} \end{align*}	Γ868 MI 82 MI es, fits, lin 898 ρ by facto	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ or of 3.	7 4π γ • • 4π γ Γ101/Γ
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 0 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $(\gamma \eta_2(1870) \rightarrow \gamma \pi^{+} \tau_{ALUE(units 10^{-4})})$ -2. \pm 2.2 \pm 0.9	40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0-25 GeV.	Γ868 MI 82 MI es, fits, lii 898 ρ by facto	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ or of 3.	7 4πγ 4πγ 4πγ 7 7ηπ ⁺ π 7
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 0 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 ($\gamma \eta_2(1870) \rightarrow \gamma \pi^+ \tau$ ALUE (units 10 ⁻⁴) .2 \pm 2.2 \pm 0.9	40 BALTRUSAI 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0–25 GeV. TO)// total DOCUMENT ID BAI	7868 Mi 82 Mi es, fits, lin 898 ρ by facto	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ $V/\psi \rightarrow$	7 4πγ 4πγ 4πγ 7 101/Γ 7 7ηπ+π-
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $(\gamma \eta_2(1870) \rightarrow \gamma \pi^{+} \pi^{-})$ ALUE (units 10 ⁻⁴) .2 \pm 2.2 \pm 0.9 $(\gamma \eta'(958))/\Gamma_{total}$ ALUE (units 10 ⁻³)	40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0–25 GeV. T)/Ftotal DOCUMENT IC BAI	7868 Mi 82 Mi es, fits, lin 898 ρ by facto	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ or of 3.	7 4πγ 4πγ 4πγ 7 101/Γ 7 7ηπ+π-
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $(\gamma \eta_2(1870) \rightarrow \gamma \pi^{+} \pi^{-} \pi^{-$	40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 .0-25 GeV. T)/Total BAI	7868 MI 82 MI es, fits, lin 898 ρ by facto	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ or of 3.	7 4π γ 4π γ • 4π γ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • • We do not use the 1 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $-(\gamma \eta_2(1870) \rightarrow \gamma \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{-} $	40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 .0-25 GeV. T)/Total BAI	7868 MI 82 MI es, fits, lin 898 ρ by facto	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ or of 3. CON COMMENT $J/\psi \rightarrow$ COMMENT RK3 $J/\psi \rightarrow$	7 4πγ 4πγ 4πγ 7 101/Γ 7 7ηπ+π-
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $(\gamma \eta_2(1870) \rightarrow \gamma \pi^{+} \pi^{-}	40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 .0-25 GeV. T)/Total BAI	7	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ or of 3. CON COMMEN $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$ $J/\psi $	7 4π γ 4π γ • 4π γ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $\frac{7}{4} \frac{7}{4} \frac{7}$	AGE 40 BALTRUSAL 41 BURKE following data for average 30 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0-25 GeV. T)/Total DOCUMENT ID BAI E BOLTON BOLTON	7868 MI 82 MI es, fits, lii 898 ρ by facto 99 BE 928 MI	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ A of 3. CON COMMENT ES $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$ $\gamma \gamma$ RK3 $J/\psi \rightarrow$ $\chi \gamma \gamma$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • • We do not use the fixed form of the second of the	40 BALTRUSAI 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0-25 GeV. T)//total DOCUMENT IO BAI BOLTON BOLTON 622 AUGUSTIN	1868 MI 82 MI 82 MI 89 β 9 by facto 99 BE 928 MI 928 MI 90 DN	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 c0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 ($\gamma \gamma_2(1870) \rightarrow \gamma \pi^{+} \tau_3$ ALUE (units 10 ⁻⁴) .2 \pm 2.2 \pm 0.9 ($\gamma \gamma'(958)$)/ Γ total ALUE (units 10 ⁻³) .31 \pm 0.30 OUR AVERAG .50 \pm 0.14 \pm 0.53 .30 \pm 0.31 \pm 0.71 .04 \pm 0.16 \pm 0.85 .39 \pm 0.09 \pm 0.66	AGE 40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0–25 GeV. F)/Ftotal DOCUMENT IC BAI SUTS BOLTON BOLTON 622 AUGUSTIN 420 AUGUSTIN	7868 MI 82 MI es, fits, lii 898 ρ by facto 99 BE 928 MI 928 MI 90 DF	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • • $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$	7 4π γ 4π γ • 4π γ 7101/Γ 7 γπ + π - 7 π + π - η, η → γη + π - η, η → γη + π - γη + π - γη π + π -
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 c0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 ($\gamma \gamma_2(1870) \rightarrow \gamma \pi^{+} \tau_3$ ALUE (units 10 ⁻⁴) .2 \pm 2.2 \pm 0.9 ($\gamma \gamma'(958)$)/ Γ total ALUE (units 10 ⁻³) .31 \pm 0.30 OUR AVERAG .50 \pm 0.14 \pm 0.53 .30 \pm 0.31 \pm 0.71 .04 \pm 0.16 \pm 0.85 .39 \pm 0.09 \pm 0.66	40 BALTRUSAI 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0-25 GeV. T)//total DOCUMENT IO BAI BOLTON BOLTON 622 AUGUSTIN	7868 MI 82 MI es, fits, lii 898 ρ by facto 99 BE 928 MI 928 MI 90 DF	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • • We do not use the following set than 2.0 of 40 4 π mass less than 2.0 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 4 π mass in the range 2 of 42 5 π of	AGE 40 BALTRUSAI 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0-25 GeV. T)// total DOCUMENT IC BAI BOLTON BOLTON 622 AUGUSTIN BLOOM	1868 MI 82 MI 82 MI 89 β by facto 99 BE 928 MI 90 DI 83 CE	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • • We do not use the following sets than 2.0 of 40 4 π mass less than 2.0 of 42 4 π mass in the range 2 $ (\gamma \eta_2(1870) \rightarrow \gamma \pi^{+} \tau^{-}	AGE 40 BALTRUSAI 41 BURKE following data for average 42 BISELLO GEV. GEV. 2p ⁰ corrected to 2 2.0-25 GEV. T)// total DOCUMENT IC BAI BOLTON BOLTON 622 AUGUSTIN BLOOM following data for average	1868 MI 82 MI 82 MI 89 β by facto 99 BE 928 MI 90 DI 90 DI 83 CE ses, fits, lii	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ $X \text{ of 3.}$ $X $	7 $4πγ$ $4πγ$ $4πγ$ $4πγ$ 7 7 7 7 7 7 7 7 7 7
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $(\gamma \eta_2(1870) \rightarrow \gamma \pi^{+} \pi^{-}	AGE 40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV. 2p ⁰ corrected to 2 2.0-25 GeV. T)/Total DOCUMENT ID BAI BOLTON BOLTON 622 AUGUSTIN 420 AUGUSTIN BLOOM following data for average 6 BRANDELIK	7868 MI 82 MI es, fits, lii 898 ρ by facto 99 BE 928 MI 90 DI 90 DI 83 CE es, fits, lii	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • • $J/\psi \rightarrow$ or of 3. CON COMMEN RK3 $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$ $J/\psi \rightarrow$ M2 $J/\psi \rightarrow$ Hadromits, etc. • • ASP e^+e^-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • • We do not use the following sets than 2.0 of 40 4 π mass less than 2.0 of 42 4 π mass in the range 2 ($\gamma \eta_2(1870) \rightarrow \gamma \pi^{+} \tau^{-}$ 4.1.02 (units 10 ⁻⁴) .2. \pm 2.2. \pm 0.9 ($\gamma \eta'(958)$)/ Γ_{total} 4.1.04 (units 10 ⁻³) .31 \pm 0.30 OUR AVERAG .50 \pm 0.14 \pm 0.53 .30 \pm 0.31 \pm 0.71 .04 \pm 0.16 \pm 0.85 .39 \pm 0.09 \pm 0.66 .1 \pm 0.3 \pm 0.6 .• • We do not use the following sets and the followi	AGE 40 BALTRUSAI 41 BURKE following data for average 42 BISELLO GeV. GeV. 2p ⁰ corrected to 2 2.0-25 GeV. T)/Total DOCUMENT ID BAI BOLTON BOLTON 622 AUGUSTIN 420 AUGUSTIN BLOOM following data for average 6 BRANDELIK	7868 MI 82 MI es, fits, lii 898 ρ by facto 99 BE 928 MI 90 DI 90 DI 83 CE es, fits, lii	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ $X \text{ of 3.}$ $X $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $(\gamma \eta_2(1870) \rightarrow \gamma \pi^{+} \pi^{-}	AGE 40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV. 2p ⁰ corrected to 2 2.0-25 GeV. T)/Total DOCUMENT ID BAI BOLTON BOLTON 622 AUGUSTIN 420 AUGUSTIN BLOOM following data for average 6 BRANDELIK	7868 MI 82 MI es, fits, lii 898 ρ by facto 99 BE 928 MI 90 DI 90 DI 83 CE es, fits, lii	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • • $J/\psi \rightarrow$ or of 3. CON COMMEN RK3 $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$ $J/\psi \rightarrow$ M2 $J/\psi \rightarrow$ Hadromits, etc. • • ASP e^+e^-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the fixed part of the second sec	AGE 40 BALTRUSAI 41 BURKE following data for average 42 BISELLO GeV. GeV. 2p ⁰ corrected to 2 2.0-25 GeV. T)/Total DOCUMENT ID BOLTON BOLTON 622 AUGUSTIN 420 AUGUSTIN BLOOM following data for average 6 BRANDELIK 57 BARTEL	7868 MI 82 MI 82 MI 89 MI 99 DI 90 DI 83 CE 195 DI 76 CM	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • • We do not use the following sets than 2.0 of 40 4 π mass less than 2.0 of 42 4 π mass in the range 2 $ (\gamma \eta_2(1870) \rightarrow \gamma \pi^{+} \tau^{-} \pi^{-}	AGE 40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0–25 GeV. T)/Ftotal DOCUMENT ID BAI BOLTON BOLTON 622 AUGUSTIN BLOOM following data for average 6 BRANDELIK 57 BARTEL DOCUMENT ID BAI EE Error includes scale	7868 MI 82 MI 82 MI 82 MI 89 MI 99 BE MI 90 DI 83 CE (se, fits, lin 79c D/76 Ch	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • • $J/\psi \rightarrow$ J/ψ	$ \frac{7}{4\pi\gamma} $ $ 4\pi\gamma $ $ 4\pi\gamma $ $ \frac{7}{101} / \Gamma $ $ \frac{7}{7\eta\pi^{+}\pi^{-}} $ $ \frac{3}{7} $ $ \frac{3}{2}\gamma $ $ \frac{2}{7}\rho $ $ \frac{17}{2}$ eogram below.
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 <0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $(\gamma \eta_2(1870) \rightarrow \gamma \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^-$	40 BALTRUSAI 41 BURKE following data for average 30 42 BISELLO GeV. GeV, 2p ⁰ corrected to 2 2.0-25 GeV. T)/Ftotal BAI DOCUMENT IC BOLTON BOLTON BOLTON 622 AUGUSTIN AUGUSTIN BLOOM following data for average 6 BRANDELIK 57 BARTEL E Error includes scale 143 BISELLO	1868 Mi 82 Mi 89 Mi 99 BE 928 Mi 90 Di 90 Di 83 CE (es, fits, lin 79c Di 76 Ch 27c 6actor of 1 89β Di	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • • We do not use the following less than 2.0 of 40 4 π mass less than 2.0 of 42 4 π mass less than 2.0 of 42 4 π mass in the range 2 of ($\gamma \eta_2(1870) \rightarrow \gamma \pi^{+} \tau^{-}$ ALUE (units 10 ⁻⁴) .2 \pm 2.2 \pm 0.9 ($\gamma \eta'(958)$)/ Γ_{total} ALUE (units 10 ⁻³) .31 \pm 0.30 OUR AVERAG .50 \pm 0.14 \pm 0.53 .30 \pm 0.31 \pm 0.71 .04 \pm 0.16 \pm 0.85 .39 \pm 0.09 \pm 0.66 2 .1 \pm 0.3 \pm 0.6 • • We do not use the following less than 2.0 ($\gamma \eta'(\pi + \tau)(\pi +$	AGE 40 BALTRUSAI 41 BURKE following data for average 42 BISELLO GeV. GeV. 2p ⁰ corrected to 2 2.0-25 GeV. T)/Total DOCUMENT ID BAI BOLTON BOLTON 622 AUGUSTIN BLOOM following data for average 6 BRANDELIK 57 BARTEL DOCUMENT ID 80 BOLTON 61 BOLTON 62 BOLTON 62 BOLTON 63 BOLTON 64 BISELLO 64 BISELLO 64 BISELLO 64 BISELLO	7868 MI 82 MI 82 MI 82 MI 89 MI 99 BE 928 MI 90 DI 83 CE 64 CM 76 CM 76 CM 76 CM 89 DI 80 DI	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$	7 $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ 7 7 7 7 7 7 7 7 7 7
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 6.0.09 40 4π mass less than 2.0 of 41 4π mass less than 2.0 of 42 4π mass in the range 2 ($772(1870) \rightarrow 7\pi^{+7}$ 44.02 (units 10 ⁻⁴) .2 \pm 2.2 \pm 0.9 ($77/(958)$)/ Γ total 44.05 0UR AVERAG .30 \pm 0.31 \pm 0.71 .04 \pm 0.16 \pm 0.85 .39 \pm 0.09 \pm 0.66 • We do not use the 6 9 \pm 1.1 4 \pm 0.7 ($72\pi^{+}2\pi^{-}$)/ Γ total 44.05 0UR AVERAG .32 \pm 0.14 \pm 0.73 .8 \pm 0.5 OUR AVERAG .32 \pm 0.14 \pm 0.73 .08 \pm 0.13 \pm 0.35 .08 \pm 0.13 \pm 0.35	AGE 40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV. 2p ⁰ corrected to 2 2.0-25 GeV. F)/Fotal BAI DOCUMENT ID BRANDELIK 57 BARTEL DOCUMENT ID BRANDELIK 58 BRANDELIK 59 BARTEL DOCUMENT ID BRANDELIK 59 BARTEL DOCUMENT ID BRANDELIK 59 BARTEL DOCUMENT ID BRANDELIK 50 BARTEL DOCUMENT ID BRANDELIK 51 BARTEL DOCUMENT ID BRANDELIK 52 BARTEL DOCUMENT ID BRANDELIK 54 BARTEL DOCUMENT ID BRANDELIK 56 BARTEL DOCUMENT ID BRANDELIK 57 BARTEL DOCUMENT ID BRANDELIK 58 BARTEL DOCUMENT ID BRANDELIK 59 BARTEL DOCUMENT ID BRANDELIK 50 BARTEL DOCUMENT ID BRANDELIK 51 BARTEL DOCUMENT ID BRANDELIK 52 BARTEL DOCUMENT ID BRANDELIK 53 BARTEL DOCUMENT ID BRANDELIK 54 BARTEL DOCUMENT ID BRANDELIK 56 BARTEL DOCUMENT ID BRANDELIK 57 BARTEL DOCUMENT ID BRANDELIK 58 BARTEL DOCUMENT ID BRANDELIK BR	7868 MI 82 MI 82 MI 89 MI 99 DI 83 CE 185, fits, lii 79 DI 76 CM 189 DI 89 DI 80	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$	7 $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ 7 7 7 7 7 7 7 7 7 7
4.5 \pm 0.8 OUR AVERA 4.7 \pm 0.3 \pm 0.9 3.75 \pm 1.05 \pm 1.20 • We do not use the 6 c0.09 40 4π mass less than 2.0 41 4π mass less than 2.0 42 4π mass in the range 2 $(\gamma \eta_2(1870) \rightarrow \gamma \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^-$	AGE 40 BALTRUSAL 41 BURKE following data for average 42 BISELLO GeV. GeV. 2p ⁰ corrected to 2 2.0-25 GeV. F)/F total BAI BOLTON BOLTON 622 AUGUSTIN 420 AUGUSTIN BLOOM following data for average 6 BRANDELIK 57 BARTEL DOCUMENT IC BAI E Error includes scale 143 BISELLO 44 BISELLO 44 BISELLO 44 BALTRUSAL 455 BURKE	7868 MI 82 MI 82 MI 89 MI 99 DI 83 CE 185, fits, lii 79 DI 76 CM 189 DI 89 DI 80	RK3 $J/\psi \rightarrow$ RK2 $J/\psi \rightarrow$ mits, etc. • • $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ $J/\psi \rightarrow$ RK3 $J/\psi \rightarrow$	7 $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ $4\pi\gamma$ 7 7 7 7 7 7 7 7 7 7

$\Gamma(\gamma K^+ K^- \pi^+ \pi^-$)/F _{total}			Γ ₁₀₄ /Γ
VALUE (units 10-3)	EVTS	DOCUMENT ID	TECN	COMMENT
$2.1 \pm 0.1 \pm 0.6$	1516	BAI	00B BES	$J/\psi \rightarrow$
				$\sim K + K^{0} + \pi^{-}$

$\Gamma(\gamma f_4(2050))/\Gamma_{\text{total}}$			Γ ₁₀₅ /Γ
VALUE (units 10 ⁻³)	DOCUMENT ID	TECN	COMMENT
2.7±0.5±0.5	46 BALTRUSAIT87	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^-$

⁴⁶ Assuming branching fraction $f_4(2050) \rightarrow \pi \pi / \text{total} = 0.167$.

i (γωω)/i total					106/
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
1.59±0.33 OUR AVERAGE	•				•
$1.41 \pm 0.2 \pm 0.42$	120±	BISELLO	87	SPEC	e^+e^- , hadrons γ
$1.76 \pm 0.09 \pm 0.45$	17	BALTRUSAIT.	. 85 C	MRK3	$e^+e^- ightarrow hadrons \gamma$

$\Gamma(\gamma\eta(1440) o \gamma ho^0 ho^0)/\Gamma_{\text{total}}$							
VALUE (units 10 ⁻³)	DOCUMENT IL	COMMENT					
1.7 ±0.4 OUR AVERAGE	Error includes scale	factor of 1.3.					
2.1 ±0.4	BUGG	95 MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$				
1.36 ± 0.38	47,48 BISELLO	89B DM2	$J/\psi \rightarrow 4\pi\gamma$				

47 Estimated by us from various fits.

⁴⁸ Includes unknown branching fraction to $\rho^0 \rho^0$.

$\Gamma(\gamma f_2(1270))/\Gamma_{tot}$	tal .			Γ ₁₀₈ /Γ
VALUE (units 10-3)	EVTS	DOCUMENT ID	TECN CHG	COMMENT
1.38 ±0.14 OUR AVE	RAGE			
$1.33 \pm 0.05 \pm 0.20$		⁴⁹ AUGUSTIN 87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
$1.36 \pm 0.09 \pm 0.23$		49 BALTRUSAIT87	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
$1.48 \pm 0.25 \pm 0.30$	178	EDWARDS 82B	CBAL	$e^+e^- \rightarrow 2\pi^0\gamma$
2.0 ± 0.7	35	ALEXANDER 78	PLUT 0	e+e-
1.2 ±0.6	30	⁵⁰ BRANDELIK 78B	DASP	$e^+e^{\pi^+\pi^-\gamma}$

 49 Estimated using B($f_2(1270) \rightarrow \pi\pi$)=0.843 \pm 0.012. The errors do not contain the uncertainty in the $f_2(1270)$ decay. 50 Restated by us to take account of spread of E1, M2, E3 transitions.

ALUE (units 10 ⁻⁴)	CL%	росим	ENT ID	TECN	COMMENT	
8.5 ^{+1.2} _{-0.9} OUR AV	ERAGE	Error includes	scale factor	of 1.2.		
$5.0 \pm 0.8 ^{+1.8}_{-0.4}$		51,52 _{BAI}	96c	BES	$J/\psi \rightarrow \gamma K^+$	κ-
9.2±1.4±1.4		⁵² AUGUS	STIN 88	DM2	$J/\psi \rightarrow \gamma K^+$	κ-
$10.4 \pm 1.2 \pm 1.6$		⁵² AUGUS	TIN 88	DM2	$J/\psi \rightarrow \gamma K_5^0$	κç
$9.6 \pm 1.2 \pm 1.8$		52 BALTR	USAIT87	MRK3	$J/\psi \rightarrow \gamma K^{+}$	κ <u>-</u>
• • We do not use	the follo	wing data for a	averages, fits	i, limits,	etc. • • •	
$1.6 \pm 0.2 ^{+0.6}_{-0.2}$		52,53 BAI	96 c	BES	$J/\psi \rightarrow \gamma K^+$	κ ⁻
< 0.8	90	54 BISELL	О 89в		$J/\psi \rightarrow 4\pi\gamma$	
$1.6 \pm 0.4 \pm 0.3$		55 BALTR	USAIT87	MRK3	$J/\psi \rightarrow \gamma \pi^+$	π-
3.8 ± 1.6		56 EDWAR	RDS 820		$e^+e^- \rightarrow \eta \eta$	

¹ Assuming $J^P = 2^+$ for $f_0(1710)$.

Assuming $J^P = 2^+$ for $f_0(1/10)$.

52 Includes unknown branching fraction to K^+K^- or $K^0_S K^0_S$. We have multiplied K^+K^- measurement by 2, and $K^0_S K^0_S$ by 4 to obtain $K \overline{K}$ result.

53 Assuming $J^P = 0^+$ for $f_0(1/10)$.

⁵⁴ Includes unknown branching fraction to $\rho^0 \rho^0$. 55 Includes unknown branching fraction to $\pi^+\pi^-$. 56 Includes unknown branching fraction to $\eta\eta$.

$J/\psi(1\mathcal{S})$

Γ ₁₁₀ /Γ		$\Gamma(\gamma\phi\phi)/\Gamma_{\text{total}}$					Г118/
. 110/		VALUE (units 10 ⁻⁴)	EVT\$	DOCUMENT ID	TECN	<u>COM</u> MENT	- 110/
							below.
0,0	1	7.5±0.6±1.2	168	BAI 65 BISELLO			
Г111/Г			7			7K+K-H	(K L
		$3.1 \pm 0.7 \pm 0.4$		65 BISELLO	86B DM2		(+ K-
		65 dd mass less than	2.9 GeV. n.	excluded.		,	
			•	chelacal			
				2.1)			
		. ↓					
1112/1		۸					
KKπ							
$\kappa_S^0 \kappa^{\pm} \pi^{\mp}$							
·							
F/F							
113/1							
							χ^2
$\eta \pi^+ \pi^-$	ı		-			90B MRK3	6.9
f ₁ (1285)		+	1.			90 DM2 86B DM2	0.3 1.2
π ⁺ π ⁻			V /			-	8.4
			,	1	(Conf	fidence Level = (0.015)
0-4;		0 !	5	10 15	20		
$0.42 \pm 0.87) \times$		[(~dd)/[(unite	10-4)			
166 + 0.26 +		1 (144)11	total (dilics	10)			
.00 1 0.20 1		[(a n西) /[Γ119
4.		• • • • • • • • • • • • • • • • • • • •	CIN	EVTS DOC	UMENT ID	TECH COM	
thing ratio for			<u> </u>				
			the following				
Γ114/Γ							_
							_
$\eta \pi^+ \pi^-$	1	•	al				Γ ₁₂₀ ,
Γ/Γ			RAGE	DOCUMENT ID	TECN	COMMENT	
		0.33±0.08±0.05		66 _{BAI}	90B MRK3	$J/\psi \rightarrow$	
JMMEN I				66		7K+K-1	K+ K-
		$0.27 \pm 0.06 \pm 0.06$		oo BAI	90B MRK3		c0 <u>c</u> 0
$/\psi \rightarrow$		0.04+0.15	67.	68 piceu o	00n DM0		`5 '`L
7K+K-					69B DIVIZ	$J/\psi \rightarrow 4\pi\gamma$	
		66 Includes unknown 67 Estimated by us fr	branching fr	raction to $\phi\phi$.			
$/\psi \rightarrow$							
7K8K8			-				г.
$\psi \rightarrow \psi + \psi - \psi$		•	r P)/I tota				Γ ₁₂₁
30.V			69.	70 BISELLA			
+ e ⁻ →					070 DIVIZ	$J/\psi \rightarrow 4\pi\gamma$	
$_{\perp}^{\pi^{+}\pi^{-}\gamma}$		70 Includes unknown	branching fr	raction to ${\it a}^{0}{\it a}^{0}$.			
Γe ⁻ → K+K-γ							_
		•					Γ ₁₂₂
			EVTS VERAGE	DOCUMENT ID	TECN	COMMENT	
			LIVINGE	BLOOM	83 CBAI	e+e-	
Г ₁₁₆ /Г		0.073 ± 0.047	10				
							Г
0_+	I			B05***		CO1 **	Γ ₁₂₃
						_	
Γ ₁₁₇ /Γ		<0.79	90	EATUN	84 MRK2	: e · e	
		$\Gamma(\gamma\gamma)/\Gamma_{ ext{total}}$					Г
			C1.0/				124
	1	VALUE (units 10 ⁻³)	(,2%	DOCUMENT ID	TECN	COMMENT	124
0 π+π-	ı	VALUE (units 10 ⁻³)	<u>CL%</u> 90	BARTEL	77 CNTR		124
0 +	1	<0.5					
0 π+ π-	1	<0.5 Γ(γΛϠ)/Γ _{total}	90	BARTEL	77 CNTR	e+e	Γ _{124,}
0 π+ π-	1	<0.5 $\Gamma(\gamma \Lambda \overline{\Lambda})/\Gamma_{\text{total}}$ VALUE (units 10^{-3})	90	BARTEL	77 CNTR	e ⁺ e ⁻	
0 _π + _π -	1	<0.5 Γ(γΛΛ)/Γ _{total} VALUE (units 10 ⁻³) <0.13	90 60 90	BARTEL DOCUMENT ID HENRARD	77 CNTR TECN 87 DM2	e+e− <u>COMMENT</u> e+e−	
0 _π + _π -	1	<0.5 $\Gamma(\gamma \Lambda \overline{\Lambda})/\Gamma_{\text{total}}$ VALUE (units 10^{-3})	90 60 90	BARTEL DOCUMENT ID HENRARD	77 CNTR TECN 87 DM2	e+e− <u>COMMENT</u> e+e−	
	Γ112/Γ Γ112/Γ $\overline{K}\pi$ $\overline{K}\pi$ $\overline{K}\pi$ $\overline{K}^{0}_{3}K^{\pm}\pi^{\mp}$ Γ113/Γ $\overline{K}^{0}_{3}K^{\pm}\pi^{\mp}$ Γ114/Γ $\overline{K}^{0}_{3}K^{\pm}\pi^{-}$ 1.66 ± 0.26 ± 4. thing ratio for Γ114/Γ $\overline{K}^{0}_{3}K^{\pm}\pi^{-}$ Γ115/Γ $\overline{K}^{0}_{3}K^{0}_{3$	Γ112/Γ Γ112/Γ $ \overline{K}_{\pi} \pi^{+} \pi^{-} $ Γ113/Γ $ \overline{G}_{\pi^{+} \pi^{-}} $ Γ114/Γ Γ115/Γ Γ115/Γ Γ116/Γ Γ116/Γ		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

 $\Gamma(3\gamma)/\Gamma_{\text{total}}$

<0.055

VALUE (units 10⁻³)

CL%

 Γ_{126}/Γ

 $\begin{array}{cccc} \underline{\textit{DOCUMENT ID}} & \underline{\textit{TECN}} & \underline{\textit{COMMENT}} \\ \text{PARTRIDGE} & 80 & \text{CBAL} & e^+e^- \end{array}$

$\Gamma(\gamma f_0(2200))/\Gamma_{\text{total}}$					
•		Γ ₁₂₇ /Γ	AUGUSTIN 87 ZPHY C36 369 BAGLIN 87 NP B286 592	J.E. Augustin <i>et al.</i> C. Baglin <i>et al.</i> (L	(LALO, CLER, FRAS+) APP, CERN, GENO, LYON+)
VALUE (units 10 ⁻⁴)	DOCUMENT ID TECN COMMENT		BALTRUSAIT 87 PR D35 2077 BECKER 87 PRL 59 186	R.M. Baltrusaitis et al. J.J. Becker et al.	(Mark III Collab.) (Mark III Collab.)
	data for averages, fits, limits, etc. • • •	•	BISELLO 87 PL B192 239	D. Bisello et al.	(PADO, CLER, FRAS+)
	71 AUGUSTIN 88 DM2 $J/\psi ightarrow \gamma \kappa_{ { m S}}^{0} K$	í's	COHEN 87 RMP 59 1121 HENRARD 87 NP B292 670	E.R. Cohen, B.N. Taylor P. Henrard et al.	(RISC, NBS) (CLER, FRAS, LALO+)
71 Includes unknown branching fra	ection to $K_S^0 K_S^0$.		PALLIN 87 NP B292 653 BALTRUSAIT 86B PR D33 1222	D. Pallin et al. R.M. Baltrusaitis et al.	(CLER, FRAS, LALO, PADO) (Mark III Collab.)
	5 5	E 45	BALTRUSAIT 86D PRL 56 107	R.M. Baltrusaitis	(CIT, UCSC, ILL, SLAC+)
$\Gamma(\gamma f_{J}(2220))/\Gamma_{\text{total}}$		Г ₁₂₈ /Г	BISELLO 86B PL B179 294 GAISER 86 PR D34 711	 D. Bisello et al. J. Gaiser et al. 	(DM2 Collab.) (Crystal Ball Collab.)
VALUE (units 10 ⁻⁵) CL% E			BALTRUSAIT 85C PRL 55 1723	R.M. Baltrusaitis et al.	(CIT, UCSC+) (CIT, UCSC+)
>250 99.9	72 HASAN 96 SPEC ₱p →	$\pi^+\pi^-$	BALTRUSAIT 85D PR D32 566 KURAEV 85 SJNP 41 466	R.M. Baltrusaitis <i>et al.</i> E.A. Kuraev, V.S. Fadin	(CIT, UCSC+) (NOVO)
	data for averages, fits, limits, etc. • • •		Translated from YA BALTRUSAIT 84 PRL 52 2126	AF 41 733. R.M. Baltrusaitis et al.	(CIT, UCSC+)
>300	73 BAI 96B BES e+e-	p, K K	EATON B4 PR D29 804 BLOOM 83 ARNS 33 143	M.W. Eaton et al. E.D. Bloom, C. Peck	(LBL, SLAC) (SLAC, CIT)
< 2.3 95	⁷⁴ AUGUSTIN 88 DM2 J/ψ \rightarrow		EDWARDS 83B PRL 51 859	C. Edwards et al.	(CIT, HARV, PRIN+)
		+ K-	FRANKLIN 83 PRL 51 963 BURKE 82 PRL 49 632	M.E.B. Franklin <i>et al.</i> D.L. Burke <i>et al.</i>	(LBL, SLAC) (LBL, SLAC)
< 1.6 95	⁷⁴ AUGUSTIN BB DM2 J/ψ	→ -00	EDWARDS 82B PR D25 3065 EDWARDS 82D PRL 48 458	C. Edwards et al. C. Edwards et al.	(CIT, HARV, PRIN+) (CIT, HARV, PRIN+)
	γκ	SKS	Also 83 ARNS 33 143	E.D. Bloom, C. Peck	(SLAC, CIT)
$12.4^{+6.4}_{-5.2}\pm 2.8$	23 74 BALTRUSAIT86D MRK3 J/ψ	*	EDWARDS 82E PRL 49 259 LEMOIGNE 82 PL 113B 509	C. Edwards et al. Y. Lemoigne et al.	(CIT, HARV, PRIN+) (SACL, LOIC, SHMP+)
	γK'	ις κ _ε	BESCH 81 ZPHY C8 1 GIDAL 81 PL 107B 153	H.J. Besch <i>et al.</i> G. Gidal <i>et al.</i>	(BONN, DESY, MANZ) (SLAC, LBL)
$8.4^{+3.4}_{-2.8}\pm1.6$	93 ⁷⁴ BALTRUSAIT86D MRK3 J/ψ	+	PARTRIDGE 80 PRL 44 712	R. Partridge et al.	(CIT, HARV, PRIN+)
2.0	γ Κ	r+ K-	SCHARRE 80 PL 97B 329 ZHOLENTZ 80 PL 96B 214	D.L. Scharre <i>et al.</i> A.A. Zholents <i>et al.</i>	(SLAC, LBL) (NOVO)
72 Using BAI 96B.			Also 81 SJNP 34 814 Translated from YA	A.A. Zholents et al.	(NOVO)
73 Using BARNES 93.			BRANDELIK 79C ZPHY C1 233	R. Brandelik et al.	(DASP Collab.) (DESY, HAMB, SIEG+)
74 Includes unknown branching fra	iction to A . A . Or A 5 K 5.		ALEXANDER 78 PL 72B 493 BESCH 78 PL 78B 347	G. Alexander et al. H.J. Besch et al.	(BDNN, DESY, MANZ)
$\Gamma(\gamma f_J(2220) \rightarrow \gamma \pi \pi)/\Gamma_{\text{total}}$		Γ ₁₂₉ /Γ	BRANDELIK 78B PL 74B 292 PERUZZI 78 PR D17 2901	R. Brandelik <i>et al.</i> 1. Peruzzi et <i>al.</i>	(DASP Collab.) (SLAC, LBL)
VALUE (units 10 ⁻⁴)	DOCUMENT ID TECN COMMENT	•	BARTEL 77 PL 66B 489	W. Bartel et al.	(DESY, HEIDP) (DESY, HAMB, SIEG+)
0.84±0.26±0.30	BAI 968 BES $e^+e^- \rightarrow J/\psi$, 1	BURMESTER 77D PL 72B 135 FELDMAN 77 PRPL 33C 285	J. Burmester et al. G.J. Feldman, M.L. Perl	(LBL, SLAC)
	$\gamma \pi^+ \pi^-$	•	VANNUCCI 77 PR D15 1814 BARTEL 76 PL 64B 483	F. Vannucci et al. W. Bartel et al.	(SLAC, LBL) (DESY, HEIDP)
• • We do not use the following	data for averages, fits, limits, etc. • • •	_	BRAUNSCH 76 PL 63B 487	W. Braunschweig et al.	(DASP Collab.) (SLAC, LBL) IG
1.4 ±0.8 ±0.4	BAI 98H BES $J/\psi \rightarrow \gamma \pi^0 \pi^0$	0	BALDINI 75 PL 58B 471	B. Jean-Marie <i>et al.</i> R. Baldini-Celio <i>et al.</i>	(FRAS, ROMA)
$\Gamma(\gamma f_j(2220) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}$		Γ ₁₃₀ /Γ	BOYARSKI 75 PRL 34 1357 DASP 75 PL 56B 491	A.M. Boyarski et al. W. Braunschweig et al.	` (SLAC, LBL) JPC (DASP Collab.)
(, z, , , ,, ,,, ,,,,,,,,,,,,,,,,,,,,,,		130/	ESPOSITO 75B LNC 14 73	B. Esposito et al.	(FRAS, NAPL, PADO+)
VALUE (units 10 ⁻⁵) 8.1±3.0 OUR AVERAGE	DOCUMENT ID TECN COMMENT		FORD 75 PRL 34 604	R.L. Ford et al.	(SLAC, PENN)
6.6±2.9±2.4	BAI 968 BES $e^+e^- \rightarrow J/\psi$) →	отн	HER RELATED PAPERS	
0.012,712	γK+K-	•	BUGG 99 PL B458 511	D.V. Bugg et al.	
$10.8 \pm 4.0 \pm 3.2$	BAI 96B BES $e^+e^- ightarrow J/\psi$, → I	CHEN 98 PRL 80 5060	Y.Q. Chen, E. Braaten	
	$\gamma \kappa_S^0 \kappa_S^0$		SUZUKI 98 PR D57 5717 HOU 97 PR D55 6952	M. Suzuki Wei-Shu Hou	
$\Gamma(\gamma f_J(2220) \rightarrow \gamma \rho \overline{\rho})/\Gamma_{\text{total}}$		Face /F	BARATE 83 PL 121B 449	R. Barate et al. G.S. Abrams et al.	(SACL, LOIC, SHMP, IND) (LBL, SLAC)
		Γ ₁₃₁ /Γ	ASH 74 LNC 11 705	W.W. Ash et al.	FRAS, UMD, NAPL, PADO+)
VALUE (units 10 ⁻⁵)	DOCUMENT ID TECN COMMENT		AUBERT 74 PRL 33 1404 AUGUSTIN 74 PRL 33 1406	J.J. Aubert et al. J.E. Augustin et al.	(MIT, BNL) (SLAC, LBL)
1.5±0.6±0.5	BAI 96B BES $e^+e^- \rightarrow J/\psi$	· → γPP	BACCI 74 PRL 33 1408	C. Bacci <i>et al.</i> C. Bacci	(ŠLAC, LBL) (FRAS)
$\Gamma(\gamma f_0(1500))/\Gamma_{\text{total}}$		Γ ₁₃₂ /Γ	BALDINI 74 LNC 11 711	R. Baldini-Celio et al.	(FRAS, ROMA)
VALUE (units 10 ⁻⁴)	DOCUMENT ID TECN COMMENT	•	BARBIELLINI 74 LNC 11 718 BRAUNSCH 74 PL 53B 393	G. Barbiellini et al. W. Braunschweig et al.	(FRAS, NAPL, PISA+) (DASP Collab.)
>5.7±0.8 75,7	76 BUGG 95 MRK3 $J/\psi \rightarrow \gamma \pi^+ \pi$	- π+ π-	CHRISTENS 70 PRL 25 1523	J.C. Christenson et al.	(COLU, BNL, CERN)
	ratio for $f_0(1500) \to \pi^+\pi^-\pi^+\pi^-$.				
76 Assuming that f ₀ (1500) decays	s only to two S-wave dipions.		(1.0)	$I^{G}(J^{PC}) =$	0+(0++)
			$\chi_{c0}(1P)$, (3) =	0 (0)
		Γ ₁₃₃ /Γ			
$\Gamma(\gamma e^+ e^-)/\Gamma_{\text{total}}$		1007			
VALUE (units 10 ⁻³)	DOCUMENT ID TECN COMMENT			(1D) MACC	
VALUE (units 10 ⁻³) 8.8±1.3±0.4	$\frac{DOCUMENT ID}{77} \text{ ARMSTRONG 96} \frac{TECN}{E760} \frac{COMMENT}{pp \rightarrow e^+e^-}$			χ _{c0} (1 <i>P</i>) MASS	
VALUE (units 10 ⁻³) 8.8±1.3±0.4			VALUE (MeV)	,	N COMMENT
VALUE (units 10 ⁻³)			VALUE (MeV) 3415.0± 0.8 OUR AVERAGE	,	N COMMENT
$VALUE \text{ (units } 10^{-3}\text{)}$ 8.8±1.3±0.4 77 For $E_{\gamma} > 100 \text{ MeV}$.			3415.0 ± 0.8 OUR AVERAGE	,	
$VALUE \ (units \ 10^{-3})$ 8.8±1.3±0.4 77 For $E_{\gamma} > 100 \ { m MeV}.$	77 ARMSTRONG 96 E760 $\overline{p}p \rightarrow e^+e^ \psi$ (15) REFERENCES		3415.0± 0.8 OUR AVERAGE 3417.4 ⁺ 1.8 ± 0.2	DOCUMENT ID TEC	$\overline{p} p \rightarrow e^+ e^- \gamma$
VALUE (units 10^{-3}) 8.8 ± 1.3 ± 0.4 77 For $E_{\gamma} > 100$ MeV. ARTAMONOV 00 PL B474 427 BAI 00B PL B472 200	77 ARMSTRONG 96 E760 $\overline{p}p \rightarrow e^+e^-$ $\psi(1S) \text{ REFERENCES}$ A.S. Artamonov et al. J.Z. Bai et al. (BES	γ Collab.}	3415.0 ± 0.8 OUR AVERAGE	AMBROGIANI 998 E83 BAI 998 BES ¹ GAISER 86 CBA	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(25) \rightarrow \gamma X$ $\lambda L \psi(25) \rightarrow \gamma X$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77 ARMSTRONG 96 E760 $p \rightarrow e^+e^-\gamma$ ψ (1S) REFERENCES A.S. Artamonov et al. J.Z. Bai et al. (BES. J.Z. Bai et al. (BES.	γ Collab.) Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 \pm 0.2 3414.1 \pm 0.6 \pm 0.8	AMBROGIANI 998 E83 BAI 998 BES ¹ GAISER 86 CBA	$ \overline{p}p \to e^+e^-\gamma \psi(25) \to \gamma X $
$VALUE$ (units 10 ⁻³) 8.8±1.3±0.4 77 For $E_{\gamma} > 100$ MeV. ARTAMONOV 00 PL B474 427 BAI 00B PL B472 200 BAI 99 PL B446 356 BAI 99C PRL 83 1918 BAI 99C PRL 83 1918 BAI 99C PRL 83 1918	777 ARMSTRONG 96 E760	γ Collab.) Collab.) Collab.) Collab.)	3415.0± 0.8 OUR AVERAGE 3417.4 ⁺ 1.8 ± 0.2 3414.1± 0.6 ± 0.8 3417.8± 0.4 ± 4	AMBROGIANI 998 E83 BAI 998 BE5 1 GAISER 96 CB/ 2 BARTEL 788 CNT 2 TANENBAUM 78 MR	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ $\psi(2S) \rightarrow \gamma X$ $\mathbb{R} e^+e^- \rightarrow J/\psi 2\gamma$ $\langle 1 e^+e^- \rangle$
$VALUE$ (units 10 ⁻³) 8.8±1.3±0.4 77 For E_{γ} > 100 MeV. ARTAMONOV 00 PL B474 427 BAI 00B PL B472 200 BAI 99 PL B446 356 BAI 99C PRL 83 1918 BAI 98D PR D58 092006 BAI 98D PR D58 092006 BAI 98C PL B424 213	77 ARMSTRONG 96 E760	γ Collab.) Collab.) Collab.)	3415.0± 0.8 OUR AVERAGE 3417.4 ⁺ 1.8 ± 0.2 3414.1± 0.6 ± 0.8 3417.8± 0.4 ± 4 3422 ± 10	AMBROGIANI 99B E83 BAI 99B BE5 1 GAISER 66 CB/2 2 BARTEL 78B CNT 2 TANENBAUM 78 MR	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(25) \rightarrow \gamma X$ $\text{AL} \ \psi(25) \rightarrow \gamma X$ $\text{TR} \ e^+e^- \rightarrow J/\psi 2\gamma$
	77 ARMSTRONG 96 E760	γ Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 \pm 1.8 \pm 0.2 3414.1 \pm 0.6 \pm 0.8 3417.8 \pm 0.4 \pm 4 3422 \pm 10 3416 \pm 3 \pm 4 3415 \pm 9 ¹ Using mass of ψ (25) = 3686	DOCUMENT ID TEC AMBROGIANI 998 E83 BAI 998 B65 1 GAISER 86 CB/ 2 BARTEL 788 CNT 2 TANENBAUM 78 MRI 2 BIDDICK 77 CNT	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(25) \rightarrow \gamma X$ $\chi \downarrow \psi(25) \rightarrow \chi X$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	77 ARMSTRONG 96 E760	γ Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 \pm 0.2 3414.1 \pm 0.6 \pm 0.8 3417.8 \pm 0.4 \pm 4 3422 \pm 10 3416 \pm 3 \pm 4 3415 \pm 9 1 Using mass of ψ (25) = 3686 2 Mass value shifted by us by	DOCUMENT ID TEC AMBROGIANI 998 E83 BAI 998 B65 1 GAISER 86 CB/ 2 BARTEL 788 CNT 2 TANENBAUM 78 MRI 2 BIDDICK 77 CNT	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(25) \rightarrow \gamma X$ $\chi \downarrow \psi(25) \rightarrow \chi X$
	77 ARMSTRONG 96 E760	7 Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 \pm 1.8 \pm 0.2 3414.1 \pm 0.6 \pm 0.8 3417.8 \pm 0.4 \pm 4 3422 \pm 10 3416 \pm 3 \pm 4 3415 \pm 9 ¹ Using mass of ψ (25) = 3686	DOCUMENT ID TEC AMBROGIANI 998 E83 BAI 998 B65 1 GAISER 86 CB/ 2 BARTEL 788 CNT 2 TANENBAUM 78 MRI 2 BIDDICK 77 CNT	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(25) \rightarrow \gamma X$ $\chi \downarrow \psi(25) \rightarrow \chi X$
	77 ARMSTRONG 96 E760	Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 \pm 0.2 3414.1 \pm 0.6 \pm 0.8 3417.8 \pm 0.4 \pm 4 3422 \pm 10 3416 \pm 3 \pm 4 3415 \pm 9 1 Using mass of ψ (25) = 3686 2 Mass value shifted by us by	AMBROGIANI 99B E83 BAI 99B BES 1 GAISER 86 CB/ 2 BARTEL 78B CNT 2 TANENBAUM 78 MRI 2 BIDDICK 77 CNT 0 MeV. amount appropriate for $\psi($	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(25) \rightarrow \gamma X$ $\chi \downarrow \psi(25) \rightarrow \chi X$
	## ARMSTRONG 96 E760	7 Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 \pm 0.2 3414.1 \pm 0.6 \pm 0.8 3417.8 \pm 0.4 \pm 4 3422 \pm 10 3416 \pm 3 \pm 4 3415 \pm 9 1 Using mass of ψ (25) = 3686 2 Mass value shifted by us by	DOCUMENT ID TEC AMBROGIANI 998 E83 BAI 998 B65 1 GAISER 86 CB/ 2 BARTEL 788 CNT 2 TANENBAUM 78 MRI 2 BIDDICK 77 CNT	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(25) \rightarrow \gamma X$ $\chi \downarrow \psi(25) \rightarrow \chi X$
	777 ARMSTRONG 96 E760	Collab.) LOQM) Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 \pm 1.8 \pm 0.2 3414.1 \pm 0.6 \pm 0.8 3417.8 \pm 0.4 \pm 4 3422 \pm 10 3416 \pm 3 \pm 4 3415 \pm 9 1 Using mass of ψ (25) = 3686 2 Mass value shifted by us by J/ψ (15) mass = 3097 MeV.	AMBROGIANI 99B E83 BAI 99B BES 1 GAISER 86 CB/ 2 BARTEL 78B CNT 2 TANENBAUM 78 MRI 2 BIDDICK 77 CNT 0 MeV. amount appropriate for $\psi($	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ AL $\psi(2S) \rightarrow \gamma X$ $R e^+e^- \rightarrow J/\psi 2\gamma$ $(1 e^+e^-)$ $R e^+e^- \rightarrow \gamma X$ 2S) mass = 3686 MeV and
NALUE (units 10 ⁻³)	777 ARMSTRONG 96 E760	Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 \pm 1.8 \pm 0.2 3414.1 \pm 0.6 \pm 0.8 3417.8 \pm 0.4 \pm 4 3422 \pm 10 3416 \pm 3 \pm 4 3415 \pm 9 1 Using mass of ψ (25) = 3686 2 Mass value shifted by us by J/ψ (15) mass = 3097 MeV.	AMBROGIANI 998 E83 BAI 998 BE5 GAISER 66 CBA 2 BARTEL 788 CNT 2 TANENBAUM 78 MRI 2 BIDDICK 77 CNT 0 MeV. amount appropriate for $\psi($	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ AL $\psi(2S) \rightarrow \gamma X$ $R e^+e^- \rightarrow J/\psi 2\gamma$ $C e^+e^-$ $C R e^+e^- \rightarrow \gamma X$ $C P e^+e^- \rightarrow \gamma X$ $C P e^+e^- \rightarrow \gamma X$
NALUE (units 10 ⁻³)	777 ARMSTRONG 96 E760	Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 \pm 1.8 \pm 0.2 3414.1 \pm 0.6 \pm 0.8 3417.8 \pm 0.4 \pm 4 3422 \pm 10 3416 \pm 3 \pm 4 3415 \pm 9 1 Using mass of ψ (25) = 3686 2 Mass value shifted by us by J/ψ (15) mass = 3097 MeV.	AMBROGIANI 998 E83 BAI 998 BE5 GAISER 66 CBA 2 BARTEL 788 CNT 2 TANENBAUM 78 MRI 2 BIDDICK 77 CNT 0 MeV. amount appropriate for $\psi($	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ AL $\psi(2S) \rightarrow \gamma X$ $R e^+e^- \rightarrow J/\psi 2\gamma$ $C e^+e^-$ $C R e^+e^- \rightarrow \gamma X$ $C P e^+e^- \rightarrow \gamma X$ $C P e^+e^- \rightarrow \gamma X$
ARTAMONOV 00 PL B474 427	## (15) REFERENCES A.S. Artamonov et al. J.Z. Bai et al. J.Z	Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 $^+$ 0.2 3414.1 \pm 0.6 \pm 0.8 3417.8 \pm 0.4 \pm 4 3422 \pm 10 3416 \pm 3 \pm 4 3415 \pm 9 1 Using mass of $\psi(2S) = 3686$ 2 Mass value shifted by us by $J/\psi(1S)$ mass $= 3097$ MeV.	AMBROGIANI 998 E83 BAI 998 BE5 GAISER 66 CBA 2 BARTEL 788 CNT 2 TANENBAUM 78 MRI 2 BIDDICK 77 CNT 0 MeV. amount appropriate for $\psi($	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ $\mathbb{R} \ e^+e^- \rightarrow J/\psi 2\gamma$ $(1 \ e^+e^-)$ $\mathbb{R} \ e^+e^- \rightarrow \gamma X$ 25) mass = 3686 MeV and
ARTAMONOV 00	## (15) REFERENCES A.S. Artamonov et al. J.Z. Bai et al. D.Y. Bugg et al. CES D.Y. Bugg et al. D.Y. Bugg et al. COM, FNPL, A. Antonelli et al. T.A. Armstrong et al. J.Z. Bai et al. J.Z. Bai et al. J.Z. Bai et al. D.Y. Bugg et al. J.Z. Bai et al. D.Y. Bugg et al. J.Z. Bai et al. J.Z.	Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 $^+$ 0.2 3414.1 \pm 0.6 \pm 0.8 3417.8 \pm 0.4 \pm 4 3422 \pm 10 3416 \pm 3 \pm 4 3415 \pm 9 1 Using mass of ψ (25) = 3686 2 Mass value shifted by us by J/ψ (15) mass = 3097 MeV.	AMBROGIANI 99 E83 BAI 99B BES 1 GAISER 66 CB/ 2 BARTEL 78B CNT 2 TANENBAUM 78 MR: 2 BIDDICK 77 CNT 0 MeV. 1 amount appropriate for \$\psi(\frac{1}{2}P)\$ WIDTH DOCUMENT ID TECT AMBROGIANI 99B E83	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ $\chi \downarrow \psi(2S) \rightarrow \gamma X$ $\uparrow R e^+e^- \rightarrow J/\psi 2\gamma$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$
ARTAMONOV 00 PL B474 427 BAI 00B PL B474 220 BAI 99 PL B446 356 BAI 990 PL B463 356 BAI 990 PL B48 356 BAI 980 PR D58 092006 BAI 980 PR D58 092006 BAI 980 PR D54 7067 BAI 986 PR D54 7067 BAI 960 PR D54 1221 GRIBUSHIN 96 PR D54 1221 GRIBUSHIN 96 PR D53 378 BAI 980 PR D59 378 BAI 980 PR D54 772 BARNES 93 PR D39 469 BOLTON 92 PR D64 1951 BOLTON 92 PR D68 282 COFFMAN 92 PR E68 282	77 ARMSTRONG 96 E760 pp → e+e− √√(15) REFERENCES A.S. Artamonov et al. J.Z. Bai et al. A. Hosban, D.V. Bugg J.Z. Bai et al. A. Hosban, D.V. Bugg J.Z. Bai et al. A. Hosban, D.V. Bugg J.Z. Bai et al. D.Y. Bugg et al. T.A. Armstrong et al. T.A. Armstrong et al. T.B. Dotton et al. J.E. Augustin, G. Cosme T. Bolton et al. D.M. COffman et al. J.E. Augustin et al. J.E. Augustin et al. J.E. Mugustin et al. J.E. Mugustin et al. J.E. Mugustin et al. J.E. Mugustin et al. J.E. Augustin et al.	Collab.)	3415.0 ± 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 ± 0.2 3414.1 ± 0.6 ± 0.8 3417.8 ± 0.4 ± 4 3422 ± 10 3416 ± 3 ± 4 3415 ± 9 1 Using mass of $\psi(2S) = 3686$ 2 Mass value shifted by us by $J/\psi(1S)$ mass = 3097 MeV. VALUE (MeV) 14.9 $^+$ 2.6 OUR AVERAGE 16.6 $^+$ 5.2 $^+$ 0.1 14.3 ± 2.0 ± 3.0	AMBROGIANI 99 E83 BAI 99B BES 1 GAISER 66 CB/ 2 BARTEL 78B CNT 2 TANENBAUM 78 MR: 2 BIDDICK 77 CNT 0 MeV. 1 amount appropriate for \$\psi(\frac{1}{2}P)\$ WIDTH DOCUMENT ID TECT AMBROGIANI 99B E83	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ $\chi \downarrow \psi(2S) \rightarrow \gamma X$ $\uparrow R e^+e^- \rightarrow J/\psi 2\gamma$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$
NALUE (units 10 ⁻³)	## (15) REFERENCES A.S. Artamonov et al. J.Z. Bai et al. J.Z	Collab.)	3415.0 \pm 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 $^+$ 0.2 3414.1 \pm 0.6 \pm 0.8 3417.8 \pm 0.4 \pm 4 3422 \pm 10 3416 \pm 3 \pm 4 3415 \pm 9 1 Using mass of ψ (25) = 3686 2 Mass value shifted by us by J/ψ (15) mass = 3097 MeV.	AMBROGIANI 99 E83 BAI 99B BES 1 GAISER 66 CB/ 2 BARTEL 78B CNT 2 TANENBAUM 78 MR: 2 BIDDICK 77 CNT 0 MeV. 1 amount appropriate for \$\psi(\frac{1}{2}P)\$ WIDTH DOCUMENT ID TECT AMBROGIANI 99B E83	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ $\mathbb{R} \ e^+e^- \rightarrow J/\psi 2\gamma$ $(1 \ e^+e^-)$ $\mathbb{R} \ e^+e^- \rightarrow \gamma X$ 25) mass = 3686 MeV and
ARTAMONOV ODE PL B474 427	## (15) REFERENCES A.S. Artamonov et al. J.Z. Bai et al. J. Boltion et al. J.Z. Bai et al. J. Boltion et al. J. Bai et al. J.	Collab.)	3415.0 ± 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 ± 0.2 3414.1 ± 0.6 ± 0.8 3417.8 ± 0.4 ± 4 3422 ± 10 3416 ± 3 ± 4 3415 ± 9 1 Using mass of $\psi(2S) = 3686$ 2 Mass value shifted by us by $J/\psi(1S)$ mass = 3097 MeV. VALUE (MeV) 14.9 $^+$ 2.6 OUR AVERAGE 16.6 $^+$ 5.2 $^+$ 0.1 14.3 ± 2.0 ± 3.0	AMBROGIANI 99 E83 BAI 99B BES 1 GAISER 66 CB/ 2 BARTEL 78B CNT 2 TANENBAUM 78 MR: 2 BIDDICK 77 CNT 0 MeV. 1 amount appropriate for \$\psi(\frac{1}{2}P)\$ WIDTH DOCUMENT ID TECT AMBROGIANI 99B E83	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ $\chi \downarrow \psi(2S) \rightarrow \gamma X$ $\uparrow R e^+e^- \rightarrow J/\psi 2\gamma$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$
## ARTAMONOV 00 PL B474 427 BAI 99 PL B472 200 BAI 99 PL B446 356 BAI 990 PL B46 356 BAI 990 PL B46 356 BAI 990 PR D58 092006 BAI 980 PR D54 7067 BAI 980 PR D54 723 BAI 980 PR D53 4723 BAI 980 PR D53 4723 BAI 980 PR D53 373 BAI 990 PR D53 4723 BAI 990 PR D54 1510 BAI 990 PR D55 5507 BAI 990 PR D54 1510 BAI 990 PR D55 5507 BAI 1170 BAI 990 PR D54 1110	## (15) REFERENCES A.S. Artamonov et al. J.Z. Bai et al. J.Z	Collab.)	3415.0 ± 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 ± 0.2 3414.1 ± 0.6 ± 0.8 3417.8 ± 0.4 ± 4 3422 ± 10 3416 ± 3 ± 4 3415 ± 9 1 Using mass of $\psi(2S) = 3686$ 2 Mass value shifted by us by $J/\psi(1S)$ mass = 3097 MeV. VALUE (MeV) 14.9 $^+$ 2.6 OUR AVERAGE 16.6 $^+$ 5.2 $^+$ 0.1 14.3 ± 2.0 ± 3.0	AMBROGIANI 99 E83 BAI 99B BES 1 GAISER 66 CB/ 2 BARTEL 78B CNT 2 TANENBAUM 78 MR: 2 BIDDICK 77 CNT 0 MeV. 1 amount appropriate for \$\psi(\frac{1}{2}P)\$ WIDTH DOCUMENT ID TECT AMBROGIANI 99B E83	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ $\chi \downarrow \psi(2S) \rightarrow \gamma X$ $\uparrow R e^+e^- \rightarrow J/\psi 2\gamma$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$
Nation Nation	77 ARMSTRONG 96 E760	Collab.) Collab.] Collab.] Collab.] Collab.]	3415.0 ± 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 ± 0.2 3414.1 ± 0.6 ± 0.8 3417.8 ± 0.4 ± 4 3422 ± 10 3416 ± 3 ± 4 3415 ± 9 1 Using mass of $\psi(2S) = 3686$ 2 Mass value shifted by us by $J/\psi(1S)$ mass = 3097 MeV. VALUE (MeV) 14.9 $^+$ 2.6 OUR AVERAGE 16.6 $^+$ 5.2 $^+$ 0.1 14.3 ± 2.0 ± 3.0	AMBROGIANI 99 E83 BAI 99B BES 1 GAISER 66 CB/ 2 BARTEL 78B CNT 2 TANENBAUM 78 MR: 2 BIDDICK 77 CNT 0 MeV. 1 amount appropriate for \$\psi(\frac{1}{2}P)\$ WIDTH DOCUMENT ID TECT AMBROGIANI 99B E83	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ $\chi \downarrow \psi(2S) \rightarrow \gamma X$ $\uparrow R e^+e^- \rightarrow J/\psi 2\gamma$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$
Nation Nation	777 ARMSTRONG 96 E760	Collab.)	3415.0 ± 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 ± 0.2 3414.1 ± 0.6 ± 0.8 3417.8 ± 0.4 ± 4 3422 ± 10 3416 ± 3 ± 4 3415 ± 9 1 Using mass of $\psi(2S) = 3686$ 2 Mass value shifted by us by $J/\psi(1S)$ mass = 3097 MeV. VALUE (MeV) 14.9 $^+$ 2.6 OUR AVERAGE 16.6 $^+$ 5.2 $^+$ 0.1 14.3 ± 2.0 ± 3.0	AMBROGIANI 99 E83 BAI 99B BES 1 GAISER 66 CB/ 2 BARTEL 78B CNT 2 TANENBAUM 78 MR: 2 BIDDICK 77 CNT 0 MeV. 1 amount appropriate for \$\psi(\frac{1}{2}P)\$ WIDTH DOCUMENT ID TECT AMBROGIANI 99B E83	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ $\chi \downarrow \psi(2S) \rightarrow \gamma X$ $\uparrow R e^+e^- \rightarrow J/\psi 2\gamma$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$
NATIONEL 10 10 10 10 10 10 10 1	77 ARMSTRONG 96 E760	Collab.)	3415.0 ± 0.8 OUR AVERAGE 3417.4 $^+$ 1.8 ± 0.2 3414.1 ± 0.6 ± 0.8 3417.8 ± 0.4 ± 4 3422 ± 10 3416 ± 3 ± 4 3415 ± 9 1 Using mass of $\psi(2S) = 3686$ 2 Mass value shifted by us by $J/\psi(1S)$ mass = 3097 MeV. VALUE (MeV) 14.9 $^+$ 2.6 OUR AVERAGE 16.6 $^+$ 5.2 $^+$ 0.1 14.3 ± 2.0 ± 3.0	AMBROGIANI 99 E83 BAI 99B BES 1 GAISER 66 CB/ 2 BARTEL 78B CNT 2 TANENBAUM 78 MR: 2 BIDDICK 77 CNT 0 MeV. 1 amount appropriate for \$\psi(\frac{1}{2}P)\$ WIDTH DOCUMENT ID TECT AMBROGIANI 99B E83	5 $\overline{p}p \rightarrow e^+e^-\gamma$ $\psi(2S) \rightarrow \gamma X$ $\chi \downarrow \psi(2S) \rightarrow \gamma X$ $\uparrow R e^+e^- \rightarrow J/\psi 2\gamma$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$ $\chi \downarrow \uparrow R e^+e^- \rightarrow \gamma X$

$\chi_{c0}(1P)$

	Χc	(1P) DECAY MODES		$\Gamma(\pi^+\pi^-\rho\overline{\rho})/\Gamma_{\text{total}}$			
	Mode	Scale Fraction (Γ_i/Γ) Confidence	factor/ re level	VALUE (units 10 ⁻³) 1.8 ±0.9 OUR AVERAGE Err	DOCUMENT ID TECN ror includes scale factor of 1.6.	COMMENT	
		(, ,, , , , , , , , , , , , , , , , , ,		1.57 ± 0.21 ± 0.54	³ BAI 998 BES	$\psi(25) \rightarrow \gamma \chi_{c0}$	
	*/ ± ->	Hadronic decays		5 ±2	⁴ TANENBAUM 78 MRK1	$\psi(25) \rightarrow \gamma \chi_{c0}$	
l	$2(\pi^{+}\pi^{-})$ $\pi^{+}\pi^{-}K^{+}K^{-}$	(2.0 ±0.9)%	5=2.7	$\Gamma(K^+K^-K^+K^-)/\Gamma_{\text{total}}$			/و۲
2	$\rho^0\pi^+\pi^-$	(1.8 ± 0.6) %	S=1.9	VALUE (units 10 ⁻³)	DOCUMENT ID TECN	COMMENT	. 21
4	$3(\pi^{+}\pi^{-})$	(1.6 ±0.5) % (1.24±0.22) %		2.14±0.26±0.40	3 BAI 998 BES	$\psi(25) \rightarrow \gamma \chi_{c0}$	
." 5	$K^{+}\overline{K}^{*}(892)^{0}\pi^{-} + c.6$			-4.40 .40 /-			
6	$\pi^+\pi^-$	$(5.0 \pm 0.7) \times 10^{-3}$		$\Gamma(K_S^0 K_S^0)/\Gamma_{\text{total}}$		Г	10/
7	K+ K-	$(5.9 \pm 0.9) \times 10^{-3}$		VALUE (units 10 ⁻³)	DOCUMENT ID TECN	COMMENT	
8	$\pi^+\pi^-p\overline{p}$	$(1.8 \pm 0.9) \times 10^{-3}$	S=1.6	1.96±0.28±0.52	³ BAI 998 BE\$	$\psi(25) \rightarrow \gamma \chi_{C0}$	
9	K+ K- K+ K-	$(2.1 \pm 0.5) \times 10^{-3}$		$\Gamma(\phi\phi)/\Gamma_{\text{total}}$		Г	11/
10	K & K &	$(2.0 \pm 0.6) \times 10^{-3}$		VALUE (units 10 ⁻³)	DOCUMENT ID TECN	COMMENT	
11 12	$\phi \phi \\ \pi^0 \pi^0$	$(9 \pm 5) \times 10^{-4}$		$0.92 \pm 0.34 \pm 0.38$	³ BAI 998 BES	$\psi(25) \to \gamma \chi_{c0}$	
	ηη			$\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$		r	12/
14	$K_{S}^{0}K^{+}\pi^{-}$ + c.c.	< 7.1 × 10 ⁻⁴ Cl	.=90%	VALUE (units 10 ⁻³)	DOCUMENT ID TECN		12/
15	pp	$(2.2 \pm 1.3) \times 10^{-4}$	S=2.1	• • • We do not use the following		COMMENT	
		•		3.1 ± 0.4 ± 0.5		$\psi' \rightarrow \text{photons}$	
	$\gamma J/\psi(1S)$	Radiative decays			CEL 03 CDAL	φ → photons	
16 17		$(6.6 \pm 1.8) \times 10^{-3}$ $(2.7 \pm 1.9) \times 10^{-4}$		$\Gamma(\eta\eta)/\Gamma_{\text{total}}$		Γ	13/
	, ,	(2., 11.,) \ 10		VALUE (units 10 ⁻³)		COMMENT	
	Yen	(1P) PARTIAL WIDTHS		• • We do not use the following			
./		•	_	$2.5 \pm 0.8 \pm 0.8$	³ LEE 85 CBAL	$\psi' o ext{ photons}$	
(YY) ALUE		DOCUMENT ID TECN COMMENT	Γ ₁₇	$\Gamma(K_S^0K^+\pi^-+c.c.)/\Gamma_{total}$		г	14/
)±2.8	LEE 85 CBAL $\psi^I \rightarrow$ photons		VALUE (units 10 ⁻³) CL%	DOCUMENT ID TECN	COMMENT	141
	•	ng data for averages, fits, limits, etc. • • •		<0.71 90	3 BAI 99B BES	$\psi(25) \rightarrow \gamma \chi_{c0}$	
5.5	95	ACCIARRI 99⊤ L3 γγ	- 1	F(-=\ /F			. ,
6.2	95	CHEN 90B CLEO $e^+e^- \rightarrow e^+e^-$		Γ(ρ p)/Γ _{total}		ſ	15/
(17	95	AIHARA 88D TPC $e^+e^- \rightarrow e^+e^-$	X	VALUE (units 10 ⁻³) CL%	DOCUMENT ID TECN Error includes scale factor of 2	COMMENT	
		D) DDANGUING DATIOS			5 AMBROGIANI 99B E835		
	χ _{c0} (1	P) BRANCHING RATIOS		$\begin{array}{cccc} 0.48 & +0.09 & +0.21 \\ -0.08 & -0.11 \end{array}$	•	$\overline{p}p \rightarrow e^+e^-\gamma$	
		HADRONIC DECAYS		0.159±0.043±0.053 • • • We do not use the following	³ BAI 981 BES	$\psi(2S) \rightarrow \gamma \chi_{c0}$	
/0/-	-+\\ /F			<0.9 90	BRANDELIK 798 DASP		
(2(X	r ⁺ π ⁻))/Γ _{total}	DOCUMENT ID TECH COMMENT	Γ_1/Γ			$\psi(23) \rightarrow \gamma \chi_{c0}$	
.020	±0.009 OUR AVERAGE	Error includes scale factor of 2.7.		Calculated using B(ψ(25) →	$\gamma \chi_{C0}(1P)$) = 0.093 ± 0.008. $\gamma \chi_{C0}(1P)$) = 0.094; the errors	do not contain the	unco
	$\pm 0.0005 \pm 0.0037$	³ BAI 99B BES $\psi(2S) \rightarrow \gamma \chi_{c0}$	ı	tainty in the $\psi(2S)$ decay.			
.037	± 0.007	⁴ TANENBAUM 78 MRK1 $\psi(25) \rightarrow \gamma \chi_{c0}$			$\gamma J/\psi$)= (6.0 ± 1.8) × 10 ⁻³ a	and B($J/\psi \rightarrow e^+$	e"):
$(\pi^+$	$\pi^- K^+ K^-)/\Gamma_{total}$		Γ_2/Γ	$(6.02 \pm 0.19) \times 10^{-2}$.			
ALUE	,,	DOCUMENT ID TECN COMMENT			RADIATIVE DECAYS		
	±0.006 OUR AVERAGE '±0.0007 ±0.0038	Error includes scale factor of 1.9. ³ BAI 99B BES $\psi(2S) \rightarrow \gamma \chi_{c0}$		$\Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}}$		r	/
	±0.007 ±0.0038	3 BAI 998 BES $\psi(2S) \rightarrow \gamma \chi_{c0}$ 4 TANENBAUM 78 MRK1 $\psi(2S) \rightarrow \gamma \chi_{c0}$	ı	VALUE (units 10 ⁻⁴)	DOCUMENT ID TECN		16/
		11112112110111 10 1111111		66± 18 OUR AVERAGE	DOCUMENT ID TECN	COMMENT	
	$\pi^+\pi^-)/\Gamma_{\text{total}}$		Г3/Г	60± 18	GAISER 86 CBAL	$\psi(2S) \rightarrow \gamma \chi_{c0}$	
ALUE		DOCUMENT ID TECN COMMENT		320±210	BRANDELIK 79B DASP	$\psi(25) \rightarrow \gamma \chi_{c0}$	
.0163	± 0.005	4 TANENBAUM 78 MRK1 $\psi(25) ightarrow \gamma \chi_{c0}$		150±100 210±210	⁶ BARTEL 78B CNTR ⁶ TANENBAUM 78 MRK1	$\psi(25) \to \gamma \chi_{c0}$	
(3(1	r ⁺ π ⁻))/Γ _{total}		Γ_4/Γ	210 ± 210	- IANENDAONI 10 INIKKI	$\psi(23) \rightarrow \gamma \chi_{c0}$	
ALUE		DOCUMENT ID TECN COMMENT		$\Gamma(\gamma\gamma)/\Gamma_{ m total}$		Γ	17/
	±0.0022 OUR AVERAGE ±0.0010±0.0023	³ BAI 998 BES $\psi(2S) \rightarrow \gamma \chi_{CO}$		VALUE (units 10 ⁻⁴)	DOCUMENT ID TECN	COMMENT	
	±0.0010±0.0023	³ BAI 998 BES $\psi(2S) \rightarrow \gamma \chi_{CO}$ ⁴ TANENBAUM 78 MRK1 $\psi(2S) \rightarrow \gamma \chi_{CO}$	ı	• • We do not use the following	ig data for averages, fits, limits,	etc. • • •	
				$4.0 \pm 2.0 \pm 1.1$	³ LEE 85 CBAL	ψ' $ o$ photons	
	$\overline{K}^*(892)^0\pi^- + \text{c.c.})/\Gamma$		Г5/Г	⁶ Calculated using B($\psi(25)$ \rightarrow	$\gamma \chi_{c0}(1P)) = 0.094$; the errors	do not contain the	unce
ALUE		DOCUMENT ID TECN COMMENT		tainty in the $\psi(25)$ decay.			
.0123	±0.004	⁴ TANENBAUM 78 MRK1 $\psi(2S) \rightarrow \gamma \chi_{C0}$			(10) DEEEDENCES		
(1 +	π ⁻)/Γ _{total}		Γ ₆ /Γ	x	c0(1P) REFERENCES		
	(units 10 ⁻³) EVTS	DOCUMENT ID TECN COMMENT		ACCIARRI 99T PL B461 155	M. Acciarri et al.	(L3 Colla	b.)
	0.7 OUR AVERAGE	3		AMBROGIANI 99B PRL 83 2902 BAI 99B PR D60 072001	M. Ambrogiani et al. J.Z. Bai et al.	(FNAL E835 Colla (BES Colla	ıb.)
0 ±	0.26 ± 0.65 720 ± 32	³ BAI 98I BES $\psi(2S) \rightarrow \gamma \chi_{C0}$	ı	BAI 981 PRL 81 3091 CHEN 90B PL B243 169	J.Z. Bai et al. W.Y. Chen et al.	(BES Colla (CLEO Colla	b.)
0 ±		⁴ BRANDELIK 798 DASP $\psi(25) \rightarrow \gamma \chi_{c0}$		AIHARA 88D PRL 60 2355 GAISER 86 PR D34 711	H. Aihara <i>et al.</i> J. Gaiser <i>et al.</i>	(TPC Colla (Crystal Ball Colla	ıb.)
0 ± 68± ±	3			LEE 85 SŁAC 282	R.A. Lee	(SLA (DASP Colla	AC)
± 0. ± 68. ±	3	⁴ TANENBAUM 78 MRK1 $\psi(25) \rightarrow \gamma \chi_{c0}$		BARTEL 78B PL 79B 492	R. Brandelik <i>et al.</i> W. Bartel <i>et al.</i>	(DASP CORA (DESY, HEID	P)
.0 ± .68± ±	3	TANENBAUM 78 MRK1 $\psi(25) \rightarrow \gamma \chi_{c0}$	Γ-/Γ	TANÉNBAUM 78 PR D17 1731			a 1 \
68± ± ±	3 3 ⁻ K−)/Γ _{total}		Γ ₇ /Γ	Also 82 Private Comm.	W.M. Tanenbaum <i>et al.</i> G. Trilling	(SLAC, LE (LBL, UC	:B)
.68± ± ± (K +	3	TANENBAUM 78 MRK1 $\psi(25) \rightarrow \gamma \chi_{c0}$	Γ ₇ /Γ		W.M. Tanenbaum et al.	` (SLAC, LE	:B)
± .68± ± (K+	3 3 -K-)/\(\Gamma_{\text{total}}\) (units 10^{-3})		Γ ₇ /Γ 	Also 82 Private Comm. BIDDICK 77 PRL 38 1324	W.M. Tanenbaum <i>et al.</i> G. Trilling	(SLAC, LE (LBL, UC	:B)
± ± (K+ *** *** *** *** *** *** *** *	3 -K-)/\(\Gamma_{\text{total}}\) (units 10^{-3}) 0.9 OUR AVERAGE 0.35 \pm 0.85 774 \pm 38	DOCUMENT ID TECN COMMENT 3 BAI 98I BES $\psi(2S) \rightarrow \gamma \chi_{c0}$ 4 BRANDELIK 79B DASP $\psi(2S) \rightarrow \gamma \chi_{c0}$	Γ ₇ /Γ 	Also 82 Private Comm. PRL 38 1324 ———— OTI	W.M. Tanenbaum et al. G. Trilling C.J. Biddick et al. HER RELATED PAPERS —	(SLAC, LE (LBL, UC (UCSD, UMD, PAVI	IB) +)
± ± (K + (ALUE) 5.68±	3 3 (wnits 10 ⁻³) EVTS 0.9 OUR AVERAGE 0.35±0.85 774± 38	DOCUMENT ID TECN COMMENT	Γ ₇ /Γ Ι	Also 82 Private Comm. BIDDICK 77 PRL 38 1324 OTH OREGLIA 82 PR D252 5259 FELDMAN 758 PRL 35 821	W.M. Tanenbaum et al. G. Trilling G. J. Biddick et al. HER RELATED PAPERS — M.J. Öreglia et al. G.J. Feldman et al.	(SLAC, LE (LBL, UC	(B) +) (+)
5.0 ± 1.68± 7 ± 3 ± 7 (K+ VALUE 5.9 ± 6.68±	3 3 (wnits 10 ⁻³) EVTS 0.9 OUR AVERAGE 0.35±0.85 774± 38	DOCUMENT ID TECN COMMENT 3 BAI 98I BES $\psi(2S) \rightarrow \gamma \chi_{c0}$ 4 BRANDELIK 79B DASP $\psi(2S) \rightarrow \gamma \chi_{c0}$	Γ ₇ /Γ Ι	Also 82 Private Comm. BIDDICK 77 PRL 38 1324	W.M. Tanenbaum et al. G. Trilling C.J. Biddick et al. HER RELATED PAPERS — M.J. Öreglia et al.	(SLAC, LE (LBL, UC (UCSD, UMD, PAVI	(+) (+) (+)

•••	CICIC	Fiatilies
		$\chi_{c1}(1P)$

company on pr	
$\chi_{c1}(1P)$	$I^{G}(J^{PC}) = 0^{+}(1^{++})$
	Xc1(1P) MASS
VALUE (MeV) 3510.51 ± 0.12 OUR AV	EVTS DOCUMENT ID TECN COMMENT
3509.4 ± 0.9	BAI 998 BES $\psi(2S) \rightarrow \gamma X$
3510.53± 0.04±0.12	513 ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$
3511.3 ± 0.4 ± 0.4 3512.3 ± 0.3 ± 4.0	30 BAGLIN 86B SPEC $\overline{p}p \rightarrow e^+e^-X$ 1 GAISER 86 CBAL $\psi(2S) \rightarrow \gamma X$
3507.4 ± 1.7	91 ² LEMOIGNE 82 GOLI 190 π^- Be $\rightarrow \gamma 2\mu$
510.4 ± 0.6	OREGLIA 82 CBAL $e^+e^- \rightarrow J/\psi 2\gamma$
1510.1 ± 1.1 1509 ±11	254 3 HIMEL 80 MRK2 $e^+e^- \rightarrow J/\psi 2\gamma$ 21 BRANDELIK 798 DASP $e^+e^- \rightarrow J/\psi 2\gamma$
1507 ± 3	³ BARTEL 78B CNTR $e^+e^- \rightarrow J/\psi 2\gamma$
3505.0 ± 4 ± 4	3,4 TANENBAUM 78 MRK1 e+e-
1513 ± 7	367 ³ BIDDICK 77 CNTR $\psi(2S) \rightarrow \gamma X$
	e following data for averages, fits, limits, etc. • • •
3500 ±10	40 TANENBAUM 75 MRK1 Hadrons γ
¹ Using mass of $\psi(2S)$ ² $J/\psi(1S)$ mass const	
	by us by amount appropriate for $\psi(2S)$ mass = 3686 MeV and
$J/\psi(1S)$ mass = 30°	97 MeV.
⁴ From a simultaneous	ifit to radiative and hadronic decay channels.
	$\chi_{c1}(1P)$ WIDTH
ALUE (MeV)	CL% EVTS DOCUMENT ID TECN COMMENT
0.88 ± 0.11 ± 0.08	513 ARMSTRONG 92 E760 $\widetilde{p}p \rightarrow e^+e^-\gamma$
• • We do not use th	e following data for averages, fits, limits, etc. • • •
<1.3	95 BAGLIN 86B SPEC $\bar{p}p \rightarrow e^+e^-X$
<3.8	90 GAISER 86 CBAL $\psi(2S) \rightarrow \gamma X$
	χ _{c1} (1P) DECAY MODES
Mode	Fraction $(\Gamma_{\tilde{I}}/\Gamma)$ Scale factor
	Hadronic decays
$\Gamma_1 = 3(\pi^+\pi^-)$	(6.3 ± 1.4) × 10^{-3}
$\Gamma_2 = 2(\pi^+\pi^-)$	$(5.6\pm2.6)\times10^{-3}$ 2.2
$\Gamma_3 = \pi^+\pi^-K^+K^-$	$(4.9\pm1.2)\times10^{-3}$ 1.1
$\rho^0 \pi^+ \pi^-$	$(3.9\pm3.5)\times10^{-3}$
$\Gamma_5 = K^+ \overline{K}^* (892)^0$	
$\Gamma_6 K_5^0 K^+ \pi^-$	$(2.5\pm0.8)\times10^{-3}$
$\Gamma_7 \pi^+\pi^-p\bar{p}$	$(5.4\pm2.1)\times10^{-4}$
8 K+K-K+K	
「 ₉ ρ ρ 「 ₁₀ π ⁺ π ⁻ + K ⁺	$ (8.2\pm1.3)\times10^{-5} $ $< 2.1 \times 10^{-3} $
$\Gamma_{10} = \pi^+ \pi^- + K^+$	
	Radiative decays
$egin{array}{ll} egin{array}{ll} \gamma J/\psi(1S) \ egin{array}{ll} \Gamma_{12} & \gamma \gamma \end{array} \end{array}$	(27.3±1.6) %
12 γγ	(4 D) DADTIAL MEDTIC
-($\chi_{c1}(1P)$ PARTIAL WIDTHS
Γ (ρ̄̄̄̄) VALUE (eV)	EVTS DOCUMENT ID TECN COMMENT
74± 9 OUR AVERAGE	
76±10±5	
$76 \pm 10 \pm 5$ $69 + 16 \pm 4$ 5 Restated by us usin	513 SARMSTRONG 92 E760 $\overline{\rho}\rho \rightarrow e^+e^-\gamma$
$76 \pm 10 \pm 5$ $69 + \frac{16}{13} \pm 4$	513
76±10±5 69 ⁺¹⁶ ₋₁₃ ±4 ⁵ Restated by us usin	513 5 ARMSTRONG 92 E760 $\overline{\rho}p \rightarrow e^+e^-\gamma$ 5 BAGLIN 86B SPEC $\overline{\rho}p \rightarrow e^+e^-X$ and $B(\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma)B(J/\psi(1S) \rightarrow e^+e^-) = 0.0171 \pm 2$ $\chi_{c1}(1P)$ BRANCHING RATIOS
76±10±5 69 ⁺¹⁶ =13±4 ⁵ Restated by us usin 0.0011.	513 5 ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$ 5 BAGLIN 86B SPEC $\overline{p}p \rightarrow e^+e^-X$ and $B(\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma)B(J/\psi(1S) \rightarrow e^+e^-) = 0.0171 \pm \frac{\chi_{c1}(1P)}{4}$ HADRONIC DECAYS
$76\pm10\pm5$ $69^{+16}_{-13}\pm4$ ⁵ Restated by us usin 0.0011.	513 5 ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$ 5 BAGLIN 86B SPEC $\overline{p}p \rightarrow e^+e^-X$ og B($\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma$)B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0171 ± $\chi_{c1}(1P)$ BRANCHING RATIOS HADRONIC DECAYS
0.0011.	513 5 ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$ 5 BAGLIN 86B SPEC $\overline{p}p \rightarrow e^+e^-\chi$ Ng B($\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma$)B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0171 ± $\frac{\chi_{c1}(1P) \text{ BRANCHING RATIOS}}{\text{HADRONIC DECAYS}}$ $\frac{DOCUMENT\ ID}{\text{GGE}}$ $\frac{DOCUMENT\ ID}{\text{TECN}}$ $\frac{COMMENT}{COMMENT}$
$76 \pm 10 \pm 5$ $69 ^{+1}_{-13} \pm 4$ 5 Restated by us usin 0.0011. $\Gamma(3(\pi^{+}\pi^{-}))/\Gamma_{\text{total}}$ WALUE (units 10^{-3}) 6.3 ± 1.4 OUR AVERA $5.8 \pm 0.7 \pm 1.2$	5 13 5 ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$ 5 BAGLIN 86B SPEC $\overline{p}p \rightarrow e^+e^-\chi$ 10g B($\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma$)B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0171 ± $\frac{\chi_{c1}(1P) \text{ BRANCHING RATIOS}}{\text{HADRONIC DECAYS}}$ $\frac{DOCUMENT \ ID}{6 \text{ BAI}} \qquad \frac{TECN}{998 \text{ BES}} \qquad \frac{COMMENT}{\psi(2S) \rightarrow \gamma \chi_{c1}}$
76±10±5 69±16±4 5 Restated by us usin 0.0011. F(3(\pi+\pi-))/\(\text{total}\) WALUE (units 10 ⁻³) 6.3±1.4 OUR AVERA	513 5 ARMSTRONG 92 E760 $\overline{\rho}p \rightarrow e^+e^-\gamma$ 5 BAGLIN 86B SPEC $\overline{\rho}p \rightarrow e^+e^-\chi$ Ng B($\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma$)B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0171 ± $\frac{\chi_{c1}(1P) \text{ BRANCHING RATIOS}}{\text{HADRONIC DECAYS}}$ $\frac{DOCUMENT, D}{\text{GE}}$ $\frac{DOCUMENT, D}{\text{TECN}}$ $\frac{COMMENT}{COMMENT}$
76 \pm 10 \pm 5 69 $^{+}$ 16 \pm 4 5 Restated by us usin 0.0011. $\Gamma(3(\pi^{+}\pi^{-}))/\Gamma_{\text{total}}$ WALUE (units 10 ⁻³) 6.3 \pm 1.4 OUR AVERA 5.8 \pm 0.7 \pm 1.2 22 \pm 8	513 5 ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$ 5 BAGLIN 86B SPEC $\overline{p}p \rightarrow e^+e^-\chi$ 10g B($\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma$)B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0171 ± $\frac{\chi_{c1}(1P) \text{ BRANCHING RATIOS}}{\text{HADRONIC DECAYS}}$ $\frac{DOCUMENT ID}{7 \text{ TANENBAUM 78 MRK1}} \frac{\text{TECN}}{\psi(2S) \rightarrow \gamma \chi_{c1}}$
$76\pm10\pm5$ $69^{+16}_{-13}\pm4$ 5 Restated by us usin 0.0011.	5 13 5 ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$ 5 BAGLIN 86B SPEC $\overline{p}p \rightarrow e^+e^-\chi$ 10 B $(X_{c1}(1P) \rightarrow J/\psi(1S)\gamma)$ B $(J/\psi(1S) \rightarrow e^+e^-) = 0.0171 \pm 10$
$76\pm10\pm5$ $69^{+1}_{-13}\pm4$ 5 Restated by us usin 0.0011. $\Gamma(3(\pi^{+}\pi^{-}))/\Gamma_{\text{total}}$ $\frac{\text{MALUE (units }10^{-3})}{6.3\pm1.4 \text{ OUR AVERA}}$ $5.8\pm0.7\pm1.2$ 22 ± 8 $\Gamma(2(\pi^{+}\pi^{-}))/\Gamma_{\text{total}}$ $\frac{\text{VALUE (units }10^{-3})}{5.6\pm2.6 \text{ OUR AVERA}}$	5 13 5 ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$ 5 BAGLIN 86B SPEC $\overline{p}p \rightarrow e^+e^-\chi$ 10g B($\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma$)B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0171 ± $\frac{\chi_{c1}(1P) \text{ BRANCHING RATIOS}}{\text{HADRONIC DECAYS}}$ $\frac{DOCUMENT ID}{7 \text{ TANENBAUM 78 MRK1}} \frac{TECN}{\psi(2S) \rightarrow \gamma \chi_{c1}}$ $\frac{DOCUMENT ID}{7 \text{ TANENBAUM 78 MRK1}} \frac{TECN}{\psi(2S) \rightarrow \gamma \chi_{c1}}$ $\frac{DOCUMENT ID}{7 \text{ TECN COMMENT}} \frac{TCN}{\sqrt{2S}} \frac{COMMENT}{\sqrt{2S}}$ WIGE Error includes scale factor of 2.2.
76±10±5 69 [±] 16±4 ⁵ Restated by us usin 0.0011. \[\begin{align*} alig	5 ARMSTRONG 92 E760 $\overline{p}P \rightarrow e^+e^-\gamma$ 5 BAGLIN 86B SPEC $\overline{p}P \rightarrow e^+e^-\chi$ 10g B($\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma$)B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0171 ± $\begin{array}{c ccccccccccccccccccccccccccccccccccc$

		χ _{c1} (1Γ)
$\Gamma(\pi^+\pi^-K^+K^-)/\Gamma_{\text{total}}$		Г3/Г
VALUE (units 10 ⁻⁴)	DOCUMENT ID TECN	COMMENT
49±12 OUR AVERAGE Error inc	ludes scale factor of 1.1.	
45 ± 4 ± 11 90 ± 40	⁵ BAI 998 BES ⁷ TANENBAUM 78 MRK1	$\psi(2S) \to \gamma \chi_{c1}$ $\psi(2S) \to \gamma \chi_{c1}$
$\Gamma(\rho^0\pi^+\pi^-)/\Gamma_{\text{total}}$		Γ4/Γ
VALUE (units 10 ⁻⁴) 39±35	7 TANENBAUM 78 MRK1	COMMENT_
$\Gamma(K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+c.c.)/\Gamma_{0}$		Γ ₅ /Γ
VALUE (units 10 ⁻⁴) 32±21	7 TANENBAUM 78 MRK1	COMMENT
	TANENBAOM 16 MIKKI	- -
$\Gamma(K_5^0K^+\pi^-)/\Gamma_{\text{total}}$		Γ ₆ /Γ
VALUE (units 10 ⁻³)	6 BAI 99B BES	COMMENT
2.46±0.44±0.65	* DAI 998 DE3	$\psi(2S) \to \gamma \chi_{c1}$
$\Gamma(\pi^+\pi^-p\overline{p})/\Gamma_{\text{total}}$		Γ ₇ /Γ
VALUE (units 10 ⁻⁴) 5.4±2.1 OUR AVERAGE	DOCUMENT ID TECN	COMMENT
4.9±1.3±1.7	6 BAI 998 BES	$\psi(2S) \rightarrow \gamma \chi_{c1}$
14 ±9	⁷ TANENBAUM 78 MRK1	$\psi(25) \rightarrow \gamma \chi_{c1}$
$\Gamma(K^+K^-K^+K^-)/\Gamma_{\text{total}}$		Г ₈ /Г
VALUE (units 10 ⁻³)	DOCUMENT ID TECN	COMMENT
0.42±0.15±0.12	⁶ BAI 998 BES	$\psi(25) \rightarrow \gamma \chi_{c1}$
$\Gamma(p\overline{p})/\Gamma_{\text{total}}$		Г9/Г
VALUE (units 10-4) CL% EVTS		ECN COMMENT
0.82±0.13 OUR AVERAGE	rror includes scale factor of 1. ⁶ BAI 98i BI	
0.42±0.22±0.28 4.2± 2.2		/(/
0.86±0.12 513 • • • We do not use the following		
> 0.54 95	BAGLIN 868 SF	1
<12.0 90	7 BRANDELIK 798 D	ASP $\psi(2S) \rightarrow \gamma \chi_{C1}$
$\left[\Gamma(\pi^{+}\pi^{-}) + \Gamma(K^{+}K^{-})\right]/\Gamma_{t}$	wal	Γ ₁₀ /Γ
VALUE (units 10 ⁻⁴) CL%		COMMENT
		$\psi(2S) \rightarrow \gamma \chi_{c1}$
<21		
• • We do not use the following	data for averages, fits, limits	, etc. • • •
• • • We do not use the following <38 90	data for averages, fits, limits 7 BRANDELIK 798 DASP	
• • • We do not use the following $<$ 38 90 6 Using B($\psi(2S) \rightarrow \gamma \chi_{C1}(1P)$	data for averages, fits, limits 7 BRANDELIK 7 PB DASP $= 0.087 \pm 0.008$.	$\psi(25) \rightarrow \gamma \chi_{c1}$
• • • We do not use the following <38 90 6 Using B($\psi(25) \rightarrow \gamma \chi_{c1}(1P)$) 7 Estimated using B($\psi(25) \rightarrow 0$) uncertainty in the $\psi(25)$ decay	data for averages, fits, limits RANDELIK 798 DASP $= 0.087 \pm 0.008$. $\gamma \chi_{c1}(1P)) = 0.087$. The	, etc. \bullet \bullet \bullet $\psi(2S) \rightarrow \gamma \chi_{c1}$ errors do not contain the
• • • We do not use the following <38 90 ⁶ Using B($\psi(2S) \rightarrow \chi_{c1}(1P)$ ⁷ Estimated using B($\psi(2S) \rightarrow$	data for averages, fits, limits RANDELIK 798 DASP $= 0.087 \pm 0.008$. $\gamma \chi_{c1}(1P)) = 0.087$. The	, etc. \bullet \bullet \bullet $\psi(2S) \rightarrow \gamma \chi_{c1}$ errors do not contain the
• • • We do not use the following <38 90 6 Using $B(\psi(25) \rightarrow \gamma \chi_{c1}(1P))$ 7 Estimated using $B(\psi(25) \rightarrow uncertainty in the \psi(25) decay 8 Restated by us using B(\chi_{c1}(10.0011))$	data for averages, fits, limits 7 BRANDELIK 79B DASP 0.087 ± 0.008 . 0.087 ± 0.008 . The 0.087 ± 0.087 .	, etc. \bullet \bullet \bullet $\psi(2S) \rightarrow \gamma \chi_{c1}$ errors do not contain the
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \to \gamma\chi_{c1}(1P)$ 7 Estimated using $B(\psi(2S) \to uncertainty$ in the $\psi(2S)$ decay 8 Restated by us using $B(\chi_{c1}(1000011))$ Restated by $B(\chi_{c1}(1000011))$ Restated by $B(\chi_{c2}(1000011))$ Restated by $B(\chi_{c3}(1000011))$	data for averages, fits, limits RANDELIK 798 DASP $= 0.087 \pm 0.008$. $\gamma \chi_{c1}(1P)) = 0.087$. The	, etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C1}$ errors do not contain the $0 \rightarrow e^+e^-) = 0.0171 \pm 0$
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma\chi_{C1}(1P))$ 7 Estimated using $B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay 8 Restated by us using B(\chi_{C1}(10.0011)) R$	data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma \chi_{c1}(1P)) = 0.087$. The ρ $\rightarrow J/\psi(1S)\gamma)$ B($J/\psi(1S)$ ADIATIVE DECAYS	, etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C1}$ errors do not contain the $) \rightarrow e^+e^-) = 0.0171 \pm$
• • • We do not use the following <38 90 ⁶ Using $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))$ ⁷ Estimated using $B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay 8 Restated by us using B(\chi_{c1}(100011)) R \Gamma(\gamma J/\psi(1S))/\Gamma_{total} \frac{VALUE}{0.273\pm0.016} OUR AVERAGE$	data for averages, fits, limits TBRANDELIK 79B DASP 0.087 ± 0.008 . 0.087 ± 0.008 . The 0.087 ± 0.087 ADIATIVE DECAYS 0.087 ± 0.087 DOCUMENT ID 0.087 ± 0.087	, etc. • • • $\psi(25) \rightarrow \gamma \chi_{C1}$ errors do not contain the $0 \rightarrow e^+e^-) = 0.0171 \pm \frac{\Gamma_{11}}{\Gamma_{COMMENT}}$
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma\chi_{C1}(1P))$ 7 Estimated using $B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay 8 Restated by us using B(\chi_{C1}(10.0011.)) R \frac{\Gamma(\gamma J/\psi(1S))/\Gamma_{total}}{VALUE} \frac{EVTS}{0.273 \pm 0.016 \ OUR \ AVERAGE} 0.284 \pm 0.021$	data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma \chi_{c1}(1P)) = 0.087$. The ρ $\rightarrow J/\psi(15)\gamma)$ B($J/\psi(15)$ ADIATIVE DECAYS \rightarrow $DOCUMENT ID TECN$ GAISER 86 CBAL	, etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C1}$ errors do not contain the $1 \rightarrow e^+e^-) = 0.0171 \pm \frac{\Gamma_{11}/\Gamma}{2COMMENT}$ $\psi(2S) \rightarrow \gamma X$
• • • We do not use the following <38 90 ⁶ Using $B(\psi(2S) \rightarrow \gamma \chi_{C1}(1P))$ ⁷ Estimated using $B(\psi(2S) \rightarrow 0)$ uncertainty in the $\psi(2S)$ decay ⁸ Restated by us using $B(\chi_{C1}(1D))$ R $\Gamma(\gamma J/\psi(1S))/\Gamma_{total}$ VALUE 0.273 ± 0.016 OUR AVERAGE 0.284 ± 0.021 0.274 ± 0.046 943	(data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma \chi_{C1}(1P)) = 0.087$. The $\langle P \rangle \rightarrow J/\psi(1S) \gamma \rangle B(J/\psi(1S) \gamma) B(J/\psi(1S) $	errors do not contain the errors do not contain the $0 \rightarrow e^+e^-) = 0.0171 \pm \frac{\Gamma_{11}/\Gamma}{COMMENT}$ $\psi(2S) \rightarrow \gamma X$ $\psi(2S) \rightarrow \gamma X_{c1}$ $\psi(2S) \rightarrow \gamma X_{c1}$ $\psi(2S) \rightarrow \gamma X_{c1}$
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma_{XC1}(1P))$ 7 Estimated using $B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay 8 Restated by us using B(\chi_{C1}(10.0011.)) R F(\gamma J/\psi(1S))/\Gamma_{total} = \frac{EVTS}{0.273 \pm 0.016} \frac{EVTS}{0.274 \pm 0.046} 943 0.28 \pm 0.07 0.19 \pm 0.05$	data for averages, fits, limits 7 BRANDELIK 798 DASP $= 0.087 \pm 0.008$. $\gamma \chi_{c1}(1P)) = 0.087$. The $\gamma \chi_{c1}(1P) = 0.087$.	errors do not contain the $ \psi(2S) \rightarrow \gamma \chi_{C1}$ errors do not contain the $ \rightarrow e^+e^- \rangle = 0.0171 \pm$ $ \Gamma_{11}/\Gamma$ $ COMMENT \rangle$ $ \psi(2S) \rightarrow \gamma \chi$ $ \psi(2S) \rightarrow \gamma \chi_{C1}$
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma_{C_1}(1P))$ 7 Estimated using $B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay 8 Restated by us using B(\chi_{C_1}(10.0011.)) R F(\gamma J/\psi(1S))/\Gamma_{total} \frac{VALUE}{0.213} \pm 0.016 \ OUR \ AVERAGE 0.284 \pm 0.021 0.274 \pm 0.046 943 0.28 \pm 0.07 0.19 \pm 0.05 0.29 \pm 0.05$	(data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma_{X_{C1}}(1P)) = 0.087$. The $\gamma_{X_{C1}}(1P) = 0.087$.	errors do not contain the $(2S) \rightarrow \gamma \chi_{C1}$ errors do not contain the $(2S) \rightarrow \gamma \chi_{C1}$ $\psi(2S) \rightarrow \gamma \chi_{C1}$
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma_{XC1}(1P))$ 7 Estimated using $B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay 8 Restated by us using B(\chi_{C1}(10.0011.)) R F(\gamma J/\psi(1S))/\Gamma_{total} = \frac{EVTS}{0.273 \pm 0.016} \frac{EVTS}{0.274 \pm 0.046} 943 0.28 \pm 0.07 0.19 \pm 0.05$	data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma \chi_{C1}(1P)) = 0.087$. The $f_{c}(P) \rightarrow J/\psi(1S) \gamma) B(J/\psi(1S) $	errors do not contain the errors do not contain the $1 \rightarrow e^+e^- = 0.0171 \pm \frac{\Gamma_{11}/\Gamma}{2}$ $\frac{COMMENT}{\psi(2S) \rightarrow \gamma \chi_{c1}}$ $\frac{\psi(2S) \rightarrow \gamma \chi_{c1}}{\psi(2S) \rightarrow \gamma \chi_{c1}}$
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma \chi_{C1}(1P))$ 7 Estimated using $B(\psi(2S) \rightarrow \gamma \chi_{C1}(1P))$ 8 Restated by us using $B(\chi_{C1}(10))$ R $\Gamma(\gamma J/\psi(1S))/\Gamma_{total}$ EYTS 0.273 \pm 0.016 OUR AVERAGE 0.284 \pm 0.021 0.294 \pm 0.046 943 0.28 \pm 0.07 0.19 \pm 0.05 0.29 \pm 0.05 0.29 \pm 0.05 0.29 \pm 0.05 0.28 \pm 0.09	data for averages, fits, limits 7 BRANDELIK 79B DASP $(P) = 0.087 \pm 0.008$. The $(P) \rightarrow J/\psi(15)\gamma)B($	errors do not contain the $(2S) \rightarrow \gamma \chi_{c1}$ errors do not contain the $(2S) \rightarrow \gamma \chi_{c1}$
• • • We do not use the following <38 90 6 Using B($\psi(25) \rightarrow \gamma \chi_{c1}(1P)$) 7 Estimated using B($\psi(25) \rightarrow \gamma \chi_{c1}(1P)$) 8 Restated by us using B($\chi_{c1}(10.0011)$. R F($\gamma J/\psi(1S)$)/Ftotal VALUE EVTS 0.273 ±0.016 OUR AVERAGE 0.284 ±0.021 0.274 ±0.046 943 0.28 ±0.07 0.19 ±0.05 0.29 ±0.05 0.28 ±0.09 • • • We do not use the following	data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma \chi_{C1}(1P)) = 0.087$. The $f_{c}(P) \rightarrow J/\psi(1S)\gamma)B(J/\psi(1S)$	errors do not contain the errors do not contain the $1 \rightarrow e^+e^- = 0.0171 \pm \frac{\Gamma_{11}/\Gamma}{2}$ $\frac{COMMENT}{\psi(2S) \rightarrow \gamma \chi_{c1}}$ $\frac{\psi(2S) \rightarrow \gamma \chi_{c1}}{\psi(2S) \rightarrow \gamma \chi_{c1}}$
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))^T$ Estimated using $B(\psi(2S) \rightarrow 0)^T$ enumertainty in the $\psi(2S)$ decay 8 Restated by us using $B(\chi_{c1}(10.0011.))^T$ R $F(\gamma J/\psi(1S))/F_{total} = EVTS \\ 0.273 \pm 0.016 OUR AVERAGE \\ 0.284 \pm 0.021 \\ 0.274 \pm 0.046 943 \\ 0.28 \pm 0.07 \\ 0.19 \pm 0.05 \\ 0.29 \pm 0.05 \\ 0.29 \pm 0.05 \\ 0.28 \pm 0.09 \\ \bullet \bullet We do not use the following 0.57 \pm 0.17 F(\gamma \gamma)/F_{total} = \frac{CLX}{VLUE}$	data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma_{X_{C1}}(1P)) = 0.087$. The $(P) \rightarrow J/\psi(1S)\gamma)B(J/\psi(1S)\gamma)B$	errors do not contain the $ \rightarrow e^+e^- \rangle = 0.0171 \pm$ $ \rightarrow e^+e^- \rangle = 0.0171 \pm$ $ \leftarrow \frac{\Gamma_{11}/\Gamma}{COMMENT}$ $ \psi(25) \rightarrow \gamma \chi$ $ \psi(25) \rightarrow \gamma \chi_{c1}$ $ \psi(25) \rightarrow \gamma \chi$ $ \Gamma_{12}/\Gamma$ $ COMMENT$
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))^T$ Estimated using $B(\psi(2S) \rightarrow 0)^T$ estimated using $B(\chi_{c1}(1P))^T$ estimated using $B(\chi_{c1}(1P))^T$ ending the $\psi(2S)$ decay and $\psi(2S)$ estimated by us using $B(\chi_{c1}(1P))^T$ expression of E expression E e	data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma \chi_{c1}(1P)) = 0.087$. The $\gamma \chi_{c1}(1P) = 0.087$. The $\gamma \chi_{c1}(1P$	errors do not contain the
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma_{XC1}(1P))$ 7 Estimated using $B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay 8 Restated by us using B(\chi_{C1}(10.0011.)) R \Gamma(\gamma J/\psi(1S))/\Gamma_{total} VALUE 0.273 ±0.016 OUR AVERAGE 0.284 ±0.021 0.274 ±0.046 943 0.28 ±0.07 0.19 ±0.05 0.29 ±0.05 0.29 ±0.05 0.29 ±0.05 0.29 ±0.05 0.29 ±0.07 0.57 ±0.17 \Gamma(\gamma \gamma)/\Gamma_{total} VALUE 1.54 • • We do not use the following \chi_{CL}(y) • • We do not use the following \chi_{CL}(y) • • We do not use the following \chi_{CL}(y) • • We do not use the following \chi_{CL}(y) • • • We do not use the following \chi_{CL}(y) • • • We do not use the following \chi_{CL}(y)$	data for averages, fits, limits 7 BRANDELIK 79B DASP $(P) = 0.087 \pm 0.008$. The $(P) \rightarrow J/\psi(15)\gamma)B($	errors do not contain the $(25) \rightarrow \gamma \chi_{C1}$ errors do not contain the $(3) \rightarrow e^+e^-) = 0.0171 \pm \frac{\Gamma_{11}/\Gamma}{\Gamma_{12}/\Gamma_{13}}$ $(25) \rightarrow \gamma \chi_{C1}$ $(25) \rightarrow \gamma \chi_{$
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))^T$ Estimated using $B(\psi(2S) \rightarrow 0)^T$ estimated using $B(\chi_{c1}(1P))^T$ estimated using $B(\chi_{c1}(1P))^T$ ending the $\psi(2S)$ decay and $\psi(2S)$ estimated by us using $B(\chi_{c1}(1P))^T$ expression of E expression E e	data for averages, fits, limits 7 BRANDELIK 79B DASP $(P) = 0.087 \pm 0.008$. The $(P) \rightarrow J/\psi(15)\gamma)B($	errors do not contain the $(25) \rightarrow \gamma \chi_{C1}$ errors do not contain the $(3) \rightarrow e^+e^-) = 0.0171 \pm \frac{\Gamma_{11}/\Gamma}{\Gamma_{12}/\Gamma_{13}}$ $(25) \rightarrow \gamma \chi_{C1}$ $(25) \rightarrow \gamma \chi_{$
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma_{XC1}(1P))$ 7 Estimated using $B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay 8 Restated by us using B(\chi_{C1}(10.0011.)) R F(\gamma J/\psi(1S))/\Gamma_{total} \frac{EVTS}{0.273 \pm 0.016} \frac{EVTS}{0.274 \pm 0.046} 0.28 \pm 0.021 0.274 \pm 0.046 943 0.28 \pm 0.07 0.19 \pm 0.05 0.29 \pm 0.05 0.20 \pm 0.09 • • We do not use the following 0.57 \pm 0.17 F(\gamma \gamma)/\Gamma_{total} \frac{VALUE}{VALUE} • • We do not use the following <0.0015 9 Estimated using B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay)$	data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma \chi_{c1}(1P)) = 0.087$. The $\gamma \chi_{c1}(1P) = 0.087$. The	errors do not contain the $(25) \rightarrow \gamma \chi_{C1}$ errors do not contain the $(3) \rightarrow e^+e^-) = 0.0171 \pm \frac{\Gamma_{11}/\Gamma}{\Gamma_{12}/\Gamma_{13}}$ $(25) \rightarrow \gamma \chi_{C1}$ $(25) \rightarrow \gamma \chi_{$
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma_{XC1}(1P))$ 7 Estimated using $B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay 8 Restated by us using B(\chi_{C1}(10.0011.)) R F(\gamma J/\psi(1S))/\Gamma_{total} \frac{EVTS}{0.273 \pm 0.016} \frac{EVTS}{0.274 \pm 0.046} 0.28 \pm 0.021 0.274 \pm 0.046 943 0.28 \pm 0.07 0.19 \pm 0.05 0.29 \pm 0.05 0.20 \pm 0.09 • • We do not use the following 0.57 \pm 0.17 F(\gamma \gamma)/\Gamma_{total} \frac{VALUE}{VALUE} • • We do not use the following <0.0015 9 Estimated using B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay)$	data for averages, fits, limits 7 BRANDELIK 79B DASP $(P) = 0.087 \pm 0.008$. The $(P) \rightarrow J/\psi(15)\gamma)B($	errors do not contain the $\psi(2S) \rightarrow \gamma \chi_{C1}$ errors do not contain the $) \rightarrow e^+e^-) = 0.0171 \pm$ $\frac{\Gamma_{11}/\Gamma}{COMMENT}$ $\psi(2S) \rightarrow \gamma \chi_{C1}$ $\psi(2S) $
• • • We do not use the following <38 90 6 Using $B(\psi(2S) \rightarrow \gamma_{XC1}(1P))$ 7 Estimated using $B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay 8 Restated by us using B(\chi_{C1}(10.0011.)) F(\gamma J/\psi(1S))/Ftotal VALUE 0.273 ±0.016 OUR AVERAGE 0.284 ±0.021 0.274 ±0.046 943 0.28 ±0.07 0.19 ±0.05 0.29 ±0.05 0.28 ±0.09 • • We do not use the following 0.57 ±0.17 F(\gamma \gamma)/Ftotal VALUE • • We do not use the following <0.0015 90 9 Estimated using B(\psi(2S) \rightarrow uncertainty in the \psi(2S) decay$	the data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma \chi_{c1}(1P) = 0.087$. The $\gamma \chi_{c1}(1P) = 0.087$.	, etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C1}$ errors do not contain the $) \rightarrow e^+e^-) = 0.0171 \pm$ Γ_{11}/Γ $COMMENT$ $\psi(2S) \rightarrow \gamma \chi$ $\psi(2S) \rightarrow \gamma \chi_{C1}$ $\psi(2S) \rightarrow$
• • • • We do not use the following <38 90 6 Using B(ψ(2S) → γχ _{C1} (1P) 7 Estimated using B(ψ(2S) → uncertainty in the ψ(2S) decay 8 Restated by us using B(χ _{C1} (1 0.0011. F(γJ/ψ(1S))/Γtotal VALUE 0.274 ± 0.046 943 0.28 ± 0.07 0.19 ± 0.05 0.29 ± 0.05 0.28 ± 0.07 0.19 ± 0.05 0.28 ± 0.07 F(γγ)/Γtotal VALUE 0. • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE 0.0015 90 9 Estimated using B(ψ(2S) → uncertainty in the ψ(2S) decay XC BAI 99B PR D60 072001	(data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma_{\chi_{c1}(1P)} = 0.087$. The $\gamma_{\chi_{c1}(1P)} = 0.087$.	, etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C1}$ errors do not contain the $) \rightarrow e^+e^-) = 0.0171 \pm$ Γ_{11}/Γ $COMMENT$ $\psi(2S) \rightarrow \gamma \chi$ $\psi(2S) \rightarrow \gamma \chi_{C1}$ $\psi(2S) \rightarrow$
• • • • We do not use the following <38 6 Using B(ψ(2S) → γχ _{C1} (1P)) 7 Estimated using B(ψ(2S) → uncertainty in the ψ(2S) decay 8 Restated by us using B(χ _{C1} (1 0.0011. F(γJ/ψ(1S))/Γtotal VALUE 0.273±0.016 OUR AVERAGE 0.284±0.021 0.274±0.046 943 0.28±0.07 0.19±0.05 0.29±0.05 0.28±0.09 • • We do not use the following 0.57±0.17 F(γγ)/Γtotal VALUE • • • We do not use the following 0.57±0.17 F(γγ)/Γtotal VALUE • • • We do not use the following 0.57±0.17 Signal 1	(data for averages, fits, limits 7 BRANDELIK 79B DASP $\chi_{C1}(1P) = 0.087$. The $\chi_{C2}(1P) = 0.087$. The $\chi_{C1}(1P) = 0.087$. The $\chi_{C2}(1P) = 0.087$. The $\chi_{C1}(1P) = 0.087$. The $\chi_{C1}(1P) = 0.087$. The $\chi_{C2}(1P) = 0.087$. The $\chi_{C1}(1P) = 0.087$. The $\chi_{C2}(1P) = 0.087$. The $\chi_{C2}(1P) = 0.087$. The $\chi_{C1}(1P) = 0.087$. The $\chi_{C2}(1P) = 0.087$.	errors do not contain the $\psi(2S) \rightarrow \gamma \chi_{C1}$ errors do not contain the $) \rightarrow e^+e^-) = 0.0171 \pm$ Γ_{11}/Γ $COMMENT$ $\psi(2S) \rightarrow \gamma \chi$ $\psi(2S) \rightarrow \gamma \chi_{C1}$ $\psi(2S) \rightarrow \gamma \chi_{$
• • • • We do not use the following <38 6 Using B(ψ(2S) → γχ _{C1} (1P)) 7 Estimated using B(ψ(2S) → uncertainty in the ψ(2S) decay 8 Restated by us using B(χ _{C1} (1 0.0011. F(γJ/ψ(1S))/Γtotal VALUE 0.273±0.016 OUR AVERAGE 0.284±0.021 0.274±0.046 943 0.28±0.07 0.19±0.05 0.29±0.05 0.28±0.09 • • We do not use the following condition of the following condition condition of the following condition of the following condition condition of the following condition of the following condition condition of the following condition of the following condition condition of the following condition conditio	(data for averages, fits, limits 7 BRANDELIK 79B DASP $)=0.087\pm0.008$. $\gamma \chi_{c1}(1P))=0.087$. The $\gamma \chi_{c1}(1P))=0.087$. The $\gamma \chi_{c1}(1P)$ $)=0.087$.	errors do not contain the $\psi(2S) \rightarrow \gamma \chi_{C1}$ errors do not contain the $) \rightarrow e^+e^-) = 0.0171 \pm$ Γ_{11}/Γ $COMMENT$ $\psi(2S) \rightarrow \gamma \chi$ $\psi(2S) \rightarrow \gamma \chi_{C1}$ $\psi(2S) \rightarrow \gamma \chi_{$
• • • • We do not use the following <38 6 Using B(ψ(2S) → γχ _{C1} (1P)' 7 Estimated using B(ψ(2S) → uncertainty in the ψ(2S) decay 8 Restated by us using B(χ _{C1} (1 0.0011. F(γJ/ψ(1S))/Γtotal VALUE 0.273±0.016 OUR AVERAGE 0.284±0.021 0.274±0.046 943 0.28±0.07 0.19±0.05 0.29±0.05 0.28±0.07 0.19±0.05 0.28±0.07 F(γγ)/Γtotal VALUE • • • We do not use the following condition of the foll	(data for averages, fits, limits 7 BRANDELIK 79B DASP $)=0.087\pm0.008$. $\gamma \chi_{c1}(1P))=0.087$. The $\gamma \chi_{c1}(1P))=0.087$. The $\gamma \chi_{c1}(1P)$ $)=0.087$. The	errors do not contain the
• • • • We do not use the following <38 6 Using B(ψ(2S) → γχ _{C1} (1P)) 7 Estimated using B(ψ(2S) → uncertainty in the ψ(2S) decay 8 Restated by us using B(χ _{C1} (1 0.0011. F(γJ/ψ(1S))/Γtotal VALUE 0.273±0.016 OUR AVERAGE 0.284±0.021 0.274±0.046 943 0.28±0.07 0.19±0.05 0.29±0.05 0.28±0.07 0.19±0.05 0.29±0.05 0.28±0.09 • • We do not use the following condition of the following condit	(data for averages, fits, limits 7 BRANDELIK 79B DASP $)=0.087\pm0.008$. $\gamma \chi_{c1}(1P))=0.087$. The $\gamma \chi_{c1}(1P))=0.087$. The $\gamma \chi_{c1}(1P)$ $)=0.087$ $)=0.087$. The $\gamma \chi_{c1}(1P)$ $)=0.087$ $)=0.087$ $)=0.087$ $)=0$	errors do not contain the $(25) \rightarrow \gamma \chi_{C1}$ errors do not contain the $(3) \rightarrow e^+e^-) = 0.0171 \pm \frac{1}{2}$ $\frac{\Gamma_{11}/\Gamma}{COMMENT}$ $\psi(25) \rightarrow \gamma \chi_{C1}$
• • • • We do not use the following <38 6 Using B(ψ(2S) → γχ _{C1} (1P)' 7 Estimated using B(ψ(2S) → uncertainty in the ψ(2S) decay 8 Restated by us using B(χ _{C1} (1 0.0011. F(γJ/ψ(1S))/Γtotal VALUE 0.273±0.016 OUR AVERAGE 0.284±0.021 0.274±0.046 943 0.28±0.07 0.19±0.05 0.29±0.05 0.28±0.07 0.19±0.05 0.28±0.07 F(γγ)/Γtotal VALUE • • • We do not use the following condition of the foll	(data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma_{X_{C1}}(1P)) = 0.087$. The $\gamma_{X_{C1}}(1P) = 0.087$.	errors do not contain the
• • • We do not use the following <38 6 Using B(ψ(2S) → γχ _{C1} (1P)) 7 Estimated using B(ψ(2S) → uncertainty in the ψ(2S) decay 8 Restated by us using B(χ _{C1} (1 0.0011.	(data for averages, fits, limits 7 BRANDELIK 79B DASP $)=0.087\pm0.008$. $\gamma \chi_{c1}(1P))=0.087$. The $\gamma \chi_{c1}(1P))=0.087$. The $\gamma \chi_{c1}(1P)$ $)=0.087$. The	errors do not contain the
• • • • We do not use the following <38 6 Using B(ψ(2S) → γχ _{C1} (1P)' 7 Estimated using B(ψ(2S) → uncertainty in the ψ(2S) decay 8 Restated by us using B(χ _{C1} (1 0.0011. F(γJ/ψ(1S))/Γtotal VALUE 0.273±0.016 OUR AVERAGE 0.284±0.021 0.274±0.046 943 0.28±0.07 0.19±0.05 0.29±0.05 0.28±0.07 0.19±0.05 0.28±0.07 1.9 ±0.05 0.28±0.09 • • We do not use the following condition of the follo	(data for averages, fits, limits 7 BRANDELIK 79B DASP $\times T_{XC1}(1P) = 0.087$. The $\times T_{XC1}(1P) = 0.087$.	errors do not contain the
• • • We do not use the following <38 6 Using B(ψ(2S) → γχ _{C1} (1P) 7 Estimated using B(ψ(2S) → uncertainty in the ψ(2S) decay 8 Restated by us using B(χ _{C1} (1 0.0011. F(γJ/ψ(1S))/Γtotal VALUE 0.273 ± 0.016 OUR AVERAGE 0.284 ± 0.021 0.274 ± 0.046 0.28 ± 0.07 0.19 ± 0.05 0.29 ± 0.05 0.29 ± 0.05 0.29 ± 0.05 0.29 ± 0.07 0.17 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE 1.5 ΔΕ • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 C15/2 • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE • • We do not use the following 0.57 ± 0.17 F(γγ)/Γtotal VALUE 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	the data for averages, fits, limits 7 BRANDELIK 79B DASP $= 0.087 \pm 0.008$. $\gamma \chi_{c1}(1P)) = 0.087$. The $\gamma \chi_{c1}(1P) = 0.087$.	, etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C1}$ errors do not contain the $1 \rightarrow e^+e^-) = 0.0171 \pm \frac{\Gamma_{11}/\Gamma}{COMMENT}$ $\psi(2S) \rightarrow \gamma \chi_{C1}$ ψ

 $\chi_{c1}(1P), h_c(1P), \chi_{c2}(1P)$

	OTHER	RELATED	PAPERS	
--	-------	---------	---------------	--

BARATE 83 PL 121B 449 BRAUNSCH... 75B PL 57B 407 SIMPSON 75 PRL 35 699

(SACL, LOIC, SHMP, IND) (DASP Collab.) (STAN, PENN)

$h_c(1P)$

$$I^G(J^{PC}) = ??(???)$$

OMITTED FROM SUMMARY TABLE Needs confirmation.

$h_c(1P)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
3526.14±0.24 OUR A	/ERAGE			
$3526.20 \pm 0.15 \pm 0.20$	59	ARMSTRONG 92	D E760	$\overline{\rho} \rho \rightarrow J/\psi \pi^0$
$3525.4 \pm 0.8 \pm 0.4$	5	BAGLIN 86	SPEC	$\overline{\rho} \rho \rightarrow J/\psi X$
• • • We do not use t	he following	data for averages, fi	ts, limits	, etc. • • •
3527 ±8	42	ANTONIAZZI 94	E705	300 π^{\pm} , ρ Li \rightarrow $J/\psi \pi^0 X$
				$J/\psi \pi^{U} X$

$h_c(1P)$ WIDTH

VALUE (MeV)	CL%	EVTS
<1.1	90	59

DOCUMENT ID TECN COMMENT ARMSTRONG 920 E760 $\bar{p}p \rightarrow J/\psi \pi^0$

$h_c(1P)$ DECAY MODES

	Mode	Fraction (Γ _i /Γ)
Γ ₁	$J/\psi(1S)\pi^0$	seen
Γ_2	$J/\psi(1S)\pi\pi$	not seen
Гз	p̄̄̄̄̄̄	

$\Gamma(J/\psi(1S)\pi\pi)/\Gamma(J/\psi(1S)\pi^0)$

 Γ_2/Γ_1

. (3) 4(23) 4 4) 1 (3)	W(10)"	,			•
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<0.18	90	ARMSTRONG 920	E760	$\bar{p} \rho \rightarrow J/\psi \pi^0$	

hc(1P) REFERENCES

ANTONIAZZI 94 PR D50 4258 ARMSTRONG 92D PRL 69 2337 BAGLIN 86 PL B171 135

L. Antoniazzi et al. T.A. Armstrong et al. C. Baglin et al.

(E705 Collab.) (FNAL, FERR, GENO+) (LAPP, CERN, TORI, STRB+)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

$\chi_{c2}(1P)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
3556.18± 0.13 OUR AV	/ERAGE			
3556.4 ± 0.7		BAI	99B BES	$\psi(25) \rightarrow \gamma X$
$3556.15 \pm 0.07 \pm 0.12$	585	ARMSTRONG	92 E760	$\overline{p}p \rightarrow e^+e^-\gamma$
$3556.9 \pm 0.4 \pm 0.5$	50	BAGLIN	86B SPEC	$\overline{p}p \rightarrow e^+e^-X$
$3557.8 \pm 0.2 \pm 4$		¹ GAISER	86 CBAL	$\psi(2S) \rightarrow \gamma X$
3553.4 ± 2.2	66	² LEMOIGNE	82 GOLI	190 π^- Be $\rightarrow \gamma 2\mu$
3555.9 ± 0.7		³ ORÈGLIA	82 CBAL	$e^+e^- \rightarrow J/\psi 2\gamma$
3557 ± 1.5	69	⁴ HIMEL	80 MRK2	$e^+e^- \rightarrow J/\psi 2\gamma$
3551 ±11	15	BRANDELIK	79B DASP	$e^+e^- \rightarrow J/\psi 2\gamma$
3553 ± 4		⁴ BARTEL	78B CNTR	$e^+e^- \rightarrow J/\psi 2\gamma$
3553 ± 4 ±4		^{4,5} TANENBAUM	78 MRK1	e+e-
3563 ± 7	360	⁴ BIDDICK	77 CNTR	$e^+e^- \rightarrow \gamma X$
• • • We do not use th	e followir	ng data for averages	s, fits, limits,	etc. • • •
3543 ±10	. 4	WHITAKER	76 MRK1	$e^+e^- \rightarrow J/\psi 2\gamma$

- 1 Using mass of $\psi(2S)=3686.0$ MeV.
- 2 $J/\psi(15)$ mass constrained to 3097 MeV.
- ³ Assuming $\psi(2S)$ mass = 3686 MeV and $J/\psi(1S)$ mass = 3097 MeV.
- A Mass value shifted by us by amount appropriate for $\psi(25)$ mass = 3686 MeV and $J/\psi(15)$ mass = 3097 MeV.

From a simultaneous fit to radiative and hadronic decay channels.

$\chi_{c2}(1P)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
2.00 ± 0.18 OUR AVE	RAGE				
$1.98 \pm 0.17 \pm 0.07$	585	ARMSTRONG	92	E760	$\overline{\rho} \rho \rightarrow e^+ e^- \gamma$
$2.6 \begin{array}{c} +1.4 \\ -1.0 \end{array}$	50	BAGLIN	86B	SPEC	$\overline{p}p \rightarrow e^+e^-X$
2.8 +2.1 -2.0		⁶ GAISER	86	CBAL	$\psi(2S) \rightarrow \gamma X$

⁶ Errors correspond to 90% confidence level; authors give only width range.

$\chi_{c2}(1P)$ DECAY MODES

Scale factor/

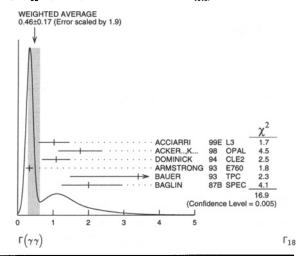
	Mode	Fraction (Γ_j/Γ)	Confidence level
		Hadronic decays	
Γ_1	$2(\pi^{+}\pi^{-})$	(1.2 ±0.5)%	S=2.2
Γ_2	$\pi^+\pi^-K^+K^-$	(10 ±4)×10	
Гз	$3(\pi^{+}\pi^{-})$	(9.2 ± 2.2) × 10	
	$\rho^0 \pi^+ \pi^-$	(7 ±4)×10	
	$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}$ + c.c.	$(4.8 \pm 2.8) \times 10$	
Γ ₆	$\pi^+\pi^-p\overline{p}$	$(1.4 \pm 0.6) \times 10$	
Γ7	$\phi \phi \atop \pi^+ \pi^-$	$(2.0 \pm 0.8) \times 10$	
Г8	$\pi^+\pi^-$	$(1.52\pm0.25)\times10$	
Γ ₉	K+ K-	(8.1 ±1.9)×10	
Γ ₁₀	K+K-K+K-	$(1.5 \pm 0.4) \times 10$	
	K ⁰ ₅ K ⁰ ₅	(6.1 ±2.3)×10	
Γ ₁₃	$\frac{p\overline{p}}{\pi^0\pi^0}$	(9.8 ±1.0)×10	₎ –5
Г ₁₄ Г ₁₅	$J/\psi(1S)\pi^{+}\pi^{-}\pi^{0}$	< 1.5 %	CL=90%
Γ_{16}	$K_{S}^{0}K^{+}\pi^{-}+\text{c.c.}$	< 1.06 × 10)-3 CL=90%
		Radiative decays	
Γ ₁₇	$\gamma J/\psi(1S)$	(13.5 ± 1.1) %	
Γ ₁₈	77	(1.6 ±0.5)×10	₀ -4

$\chi_{c2}(1P)$ PARTIAL WIDTHS

Γ(ρ <u>ρ</u>)					Γ ₁₂
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT	
206±22 OUR AV	ERAGE				
$197 \pm 18 \pm 16$	585	⁷ ARMSTRONG	92 E760	$\overline{p}p \rightarrow e^+e^-\gamma$	
$252^{+55}_{-48}\pm21$		⁷ BAGLIN	86B SPEC	$\overline{\rho} \rho \rightarrow e^+ e^- X$	

⁷Restated by us using B($\chi_{C2}(1P) \rightarrow J/\psi(1S)\gamma$)B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0085 ±

 $\Gamma(\gamma\gamma)$ Γ18 DOCUMENT ID TECN COMMENT


0.46 ±0.17 OUR AVERAGE	E Error includes scal below.	e factor of 1	.9. See the ideogram
$1.02 \pm 0.40 \pm 0.17$			$e^+e^- \rightarrow e^+e^-\chi_{c2}$
$1.76 \pm 0.47 \pm 0.40$			$e^+e^- \rightarrow e^+e^- \chi_{c2}$
$1.08 \pm 0.30 \pm 0.26$			$e^+e^- \rightarrow e^+e^-\chi_{c2}$
$0.326 \pm 0.080 \pm 0.055$	¹⁰ ARMSTRONG		
$3.4 \pm 1.7 \pm 0.9$	BAUER	93 TPC	$e^+e^- \rightarrow e^+e^-\chi_{c2}$
$2.0 \begin{array}{c} +0.9 \\ -0.7 \end{array} \pm 0.3$	¹⁰ BAGLIN	87B SPEC	$\overline{p} p \rightarrow \gamma \gamma$

• • We do not use the following data for averages, fits, limits, etc.

<4.2 95 AIHARA 88D TPC $e^+e^- ightarrow e^+e^-$	95 ACCIARRI 99T L3 $\gamma\gamma$ 95 UEHARA 91 VNS $e^+e^- \rightarrow e^+e^-\chi_c$ 95 CHEN 90B CLEO $e^+e^- \rightarrow e^+e^-\chi_c$ 95 AIHARA 88D TPC $e^+e^- \rightarrow e^+e^-\chi$	$e^- \chi_{C2}$:2
---	--	-----------------	----

⁸ Systematic error includes, added in quadrature, error due to B($\chi_{\rm C2}
ightarrow J/\psi \gamma$) and $B(J/\psi \rightarrow \ell^+\ell^-)$ uncertainties.

⁹ Using B($\chi_{c2} \rightarrow J/\psi \gamma$) = 13.5 ± 1.1% and B($J/\psi \rightarrow \ell^+\ell^-$) = 12.03 ± 0.27%. ¹⁰ Using B($\chi_{c2}(1P) \rightarrow p\bar{p}$) = (0.98 ± 0.10) × 10⁻⁴ and Γ_{total} = 2.00 ± 0.18 MeV.

 $\chi_{c2}(1P)$

Figure F	OCUMENT ID TECH	COMMENT
The property is a composition of the property is a composition		etc. • • •
0.003 ± 0.005 OUR AVERAGE 0.002 ± 0.005 ± 0.	-	$\psi' o ext{ photons}$
1986 1986 1987 1987 1988 1988 1987		
022 ± 0.009 12 TANENBAUM 78 MRK1 ψ(25) → 7x/2		COMMENT
Comment December		
DOCUMENT ID TECN. COMMENT DOTS + DODO OUT AVERAGE 1007 ± DODO ± DODO ± DOD ± DODO 11 BAI 990 BES \$ (25) → 7x_C2 12 TANENBAUM 78 MRKI \$ (25) → 7x_C2 DODO ± DOD ± DODO 12 TANENBAUM 78 MRKI \$ (25) → 7x_C2 13 TANENBAUM 78 MRKI \$ (25) → 7x_C2 14 TANENBAUM 78 MRKI \$ (25) → 7x_C2 15 TANENBAUM 78 MRKI \$ (25) → 7x_C2 16 A ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	-	$\psi' o ext{photons}$
0009 ± 0.0005 12 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} (3(π+π−1))/Γtotal 0000 ± 0.0002 12 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 13 BAN 0000 ± 0.0002 12 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 13 BAN 0000 ± 0.0002 12 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 13 CAN 000 ± 0.0002 12 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 13 CAN 000 ± 0.0001 ± 0.0002 12 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 13 CAN 000 ± 0.0003 12 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 14 CAN 000 ± 0.0003 12 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 13 CAN 000 ± 0.0003 13 E-0.0003 14 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 14 CAN 000 ± 0.0003 15 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 16 CAN 000 ± 0.0003 15 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 16 CAN 000 ± 0.0003 16 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 17 CAN 000 ± 0.0003 18 E-0.0003 19 TANNENBAUM 78 MRKI (±(25) − 7x _{C2} 10 TANNENBAUM 78 MRKI (±(25) − 7x		
1019 ± 0.0005 11 TANKENBAUM 78 MRKL $\psi(25) - 7x_{C2}$ (3($\pi^+\pi^-$))/ Γ_{total} 2009 ± 0.002 11 BAI 998 BES $\psi(25) - 7x_{C2}$ 12 TANKENBAUM 78 MRKL $\psi(25) - 7x_{C2}$ 12 TANKENBAUM 78 MRKL $\psi(25) - 7x_{C2}$ 12 TANKENBAUM 78 MRKL $\psi(25) - 7x_{C2}$ 13 CANKEROLUS 19 $\pm 0.009 \pm 0.002$ 11 TANKENBAUM 78 MRKL $\psi(25) - 7x_{C2}$ 12 TANKENBAUM 78 MRKL $\psi(25) - 7x_{C2}$ 12 TANKENBAUM 78 MRKL $\psi(25) - 7x_{C2}$ 13 Reparted using $\mathbb{B}(\psi(25) - 7x_{C2}$ 15 Reparted using $\mathbb{B}(\psi(25) - 7x_{C2})$ 15 Reparted using $\mathbb{B}(\psi(25)$	OCUMENT ID TECN	COMMENT
3(π + π -)) / Γ total		190 GeV π Be —
DOCUMENT ID TECH COMMENT 1009 ± 0.002 UIR AVERAGE 0009 ± 0.001 ± 0.002 11 BAI 998 BES Ψ(25) ¬ τχc2 12 TANENBAUM 78 MRK1 Ψ(25) ¬ τχc2 12 TANENBAUM 78 MRK1 Ψ(25) ¬ τχc2 12 TANENBAUM 78 MRK1 Ψ(25) ¬ τχc2 (κ'+κ'+(γ'+(892) ⁰ π'+-c.c.)/Γ total 12 TANENBAUM 78 MRK1 Ψ(25) ¬ τχc2 (κ'+κ'+(γ'+(892) ⁰ π'+-c.c.)/Γ total 12 TANENBAUM 78 MRK1 Ψ(25) ¬ τχc2 (κ'+κ'+(γ'+(892) ⁰ π'+-c.c.)/Γ total 12 TANENBAUM 78 MRK1 Ψ(25) ¬ τχc2 (κ'+π'+(γ'+(892) ⁰ π'+-c.c.)/Γ total 12 TANENBAUM 78 MRK1 Ψ(25) ¬ τχc2 (π'+π'+(γ'+(892) ⁰ π'+-c.c.)/Γ total 13 Extraction 101 14 Extraction 101 15 TANENBAUM 78 MRK1 Ψ(25) ¬ τχc2 (π'+π'+(γ'+(892) ⁰ π'+-c.c.)/Γ total 13 Extraction 101 14 Extraction 101 15 TANENBAUM 78 MRK1 Ψ(25) ¬ τχc2 (π'+π'+(γ'+(892) ⁰ π'+-c.c.)/Γ total 13 Extraction 101 14 Extraction 101 15 TANENBAUM 78 MRK1 Ψ(25) ¬ τχc2 16 ± ± 6 OUR AVERAGE 17 TANENBAUM 78 MRK1 Ψ(25) ¬ τχc2 18 Extraction 101 18 BAI 998 BES Ψ(25) ¬ τχc2 19 ± 10 4 12 BAI 988 BES Ψ(25) ¬ τχc2 10 ± 10 ± 10 ± 10 ± 10 ± 10 ± 10 ± 10		2π2μ
1009 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.001 ± 0.000 ± 0.000 ± 0.001 ± 0.000		
1012 ±0.0088 12 TANENBAUM 78 MRKI $\psi(25) \rightarrow 7X_{C2}$ 13 Calculated using $B(\psi(25) \rightarrow 7X_{C2})$ 12 Estimated using $B(\psi(25) \rightarrow 7X_{C2})$ 12 Estimated using $B(\psi(25) \rightarrow 7X_{C2})$ 13 Estimated using $B(\psi(25) \rightarrow 7X_{C2})$ 14 Assuming into $\psi(25) \rightarrow 7X_{C2}$ 15 Estimated using $B(\psi(25) \rightarrow 7X_{C2})$ 15 Estimated using $B(\psi(25) \rightarrow 7X_{C2})$ 16 Estimated using $B(\psi(25) \rightarrow 7X_{C2})$ 17 ANENDAUM 78 MRKI $\psi(25) \rightarrow 7X_{C2}$ 17 ANENDAUM 78 MRKI $\psi(25) \rightarrow 7X_{C2}$ 18 Estimated using $B(\psi(25) \rightarrow 7X_{C2})$ 18 Estimated using $B(\psi(25) \rightarrow 7X_{C2})$ 19 Assuming into $\psi(25) \rightarrow 7X_{C2}$ 19 Assuming into	OCUMENT ID TECN	COMMENT
		$\psi(25) \rightarrow \gamma \chi_{C2}$
Tanking in the $\psi(25)$ decay. Let (raths) 10 ⁻¹ Et 40 12 Tankinahum 78 MRKI $\psi(25) \rightarrow 7X_{C2}$ 13 Tanking in the $\psi(25)$ decay. 13 Tanking in the $\psi(25)$ decay. 13 Tanking in the $\psi(25)$ decay. 14 A 50 OUR AVERAGE 12 Tankinahum 78 MRKI $\psi(25) \rightarrow 7X_{C2}$ 13 Tanking in the $\psi(25)$ decay. 14 A 50 OUR AVERAGE 15 Tanking in the $\psi(25)$ decay. 15 Tanking in the $\psi(25)$ decay. 16 Tanking in the $\psi(25)$ decay. 17 Tanking in the $\psi(25)$ decay. 18 Tanking in the $\psi(25)$ decay. 18 Tanking in the $\psi(25)$ decay. 19 Tanking in the $\psi(25)$ decay. 19 Tanking in the $\psi(25)$ decay. 19 Tanking in the $\psi(25)$ decay. 10 Output 10 10 Output 10 10 Output 10 11 Tanking in the $\psi(25)$ decay. 13 Tanking in the $\psi(25)$ decay. 13 Tanking in the $\psi(25)$ decay. 14 A 50 OUR AVERAGE 15 Tanking in the $\psi(25)$ decay. 15 Tanking in the $\psi(25)$ decay. 16 Output 10 17 Tanking in the $\psi(25)$ decay. 18 Tanking in the $\psi(25)$ decay. 18 Tanking in the $\psi(25)$ decay. 19 Tanking in the $\psi(25)$ decay. 19 Tanking in the $\psi(25)$ decay. 19 Tanking in the $\psi(25)$ decay. 10 Output 10 10 Output 10 11 Tanking in the $\psi(25)$ decay. 11 Tanking in the $\psi(25)$ decay. 12 Tanking in the $\psi(25)$ decay. 13 Tanking in the $\psi(25)$ decay. 14 A 50 Output 10 15 Tanking in the $\psi(25)$ decay. 15 Tanking in the $\psi(25)$ decay. 16 Output 10 17 Tanking in the $\psi(25)$ decay. 17 Tanking in the $\psi(25)$ decay. 18 Tanking in the $\psi(25)$ decay. 19 Tanking in the $\psi(25)$ decay. 19 Tanking in the $\psi(25)$ decay. 19 Tanking in the $\psi(25)$ decay. 10 Output 10 10 Tanking in the $\psi(25)$ decay. 10 Output 10 11 Tanking in the $\psi(25)$ decay. 11 Tanking in the $\psi(25)$ decay. 11 Tanking into $\psi(25)$ decay. 12 Tanking into $\psi(25)$ decay. 13 Tanking into $\psi(25)$ decay. 13 Tanking into $\psi(25)$ decay. 14 Tanking into $\psi(25)$ decay. 15 Tanking in	$_2(1P)) = 0.078 \pm 0.008.$	
ALUE (units 10^-1) DOCUMENT 10 TECN COMMENT** ALUE (units 10^-4)* DOCUMENT 10 TECN COMMENT** ($K^+K^-(992)^0\pi^-+c.c.$) // Total	(1P)) = 0.078; the errors	s do not contain the
12 TANENBAUM 78 MRK1 $\psi(25) \to 7\chi_{C2}$ 13 TANENBAUM 78 MRK1 $\psi(25) \to 7\chi_{C2}$ 14 Assuming isotropic $\chi_{C2}(1P) \to \gamma \gamma d$ 15 $\psi(E) = 10^{-6}$ 15 TANENBAUM 78 MRK1 $\psi(25) \to 7\chi_{C2}$ 16 $\psi(E) = 10^{-6}$ 17 TANENBAUM 78 MRK1 $\psi(25) \to 7\chi_{C2}$ 18 $\psi(E) = 10^{-6}$ 18 $\psi(E) = 10^{-6}$ 19 TECN COMMENT 19 DOCUMENT ID TECN COMMENT 10 DOCUMENT ID TECN COMMENT 11 BAI 998 BES $\psi(25) \to 7\chi_{C2}$ 10 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 11 BAI 998 BES $\psi(25) \to 7\chi_{C2}$ 10 $\psi(E) \to 10^{-6}$ 11 BAI 998 BES $\psi(25) \to 7\chi_{C2}$ 11 BAI 998 BES $\psi(25) \to 7\chi_{C2}$ 12 TANENBAUM 78 MRK1 $\psi(25) \to 7\chi_{C2}$ 13 $\psi(E) \to 10^{-6}$ 14 $\psi(E) \to 10^{-6}$ 15 $\psi(E) \to 10^{-6}$ 16 $\psi(E) \to 10^{-6}$ 17 $\psi(E) \to 10^{-6}$ 18 $\psi(E) \to 10^{-6}$ 19 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 11 BAI 998 BES $\psi(E) \to 7\chi_{C2}$ 10 $\psi(E) \to 10^{-6}$ 11 BAI 98 BES $\psi(E) \to 7\chi_{C2}$ 12 TANENBAUM 78 MRK1 $\psi(E) \to 7\chi_{C2}$ 13 $\psi(E) \to 10^{-6}$ 14 $\psi(E) \to 10^{-6}$ 15 $\psi(E) \to 10^{-6}$ 16 $\psi(E) \to 10^{-6}$ 17 $\psi(E) \to 10^{-6}$ 18 $\psi(E) \to 10^{-6}$ 19 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 11 BAI 98 BES $\psi(E) \to 7\chi_{C2}$ 16 $\psi(E) \to 10^{-6}$ 17 $\psi(E) \to 10^{-6}$ 18 $\psi(E) \to 10^{-6}$ 19 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 11 BAI 98 BES $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 11 BAI 98 BES $\psi(E) \to 10^{-6}$ 11 BAI 99 BES $\psi(E) \to 10^{-6}$ 11 BAI 99 BES $\psi(E) \to 10^{-6}$ 11 BAI 99 BES $\psi(E) \to 10^{-6}$ 12 BRANDELIK 79 DOCUMENT ID TECN COMMENT 11 BAI 99 BES $\psi(E) \to 10^{-6}$ 12 BRANDELIK $\psi(E) \to 10^{-6}$ 13 $\psi(E) \to 10^{-6}$ 14 $\psi(E) \to 10^{-6}$ 15 $\psi(E) \to 10^{-6}$ 16 $\psi(E) \to 10^{-6}$ 17 $\psi(E) \to 10^{-6}$ 18 $\psi(E) \to 10^{-6}$ 19 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 11 BAI 99 BES $\psi(E) \to 10^{-6}$ 11 BAI 99 BES $\psi(E) \to 10^{-6}$ 12 BRANDELIK $\psi(E) \to 10^{-6}$ 13 $\psi(E) \to 10^{-6}$ 14 $\psi(E) \to 10^{-6}$ 15 $\psi(E) \to 10^{-6}$ 16 $\psi(E) \to 10^{-6}$ 17 $\psi(E) \to 10^{-6}$ 18 $\psi(E) \to 10^{-6}$ 19 $\psi(E) \to 10^{-6}$ 10 $\psi(E) \to 10^{-6}$ 10	$\rightarrow J/\psi(15)\gamma)B(J/\psi(15)$	$) \rightarrow e^+e^-) = 0.6$
### ADDITION OF THE PROPERTY ID POCUMENT ID TECN COMMENT ### A \$\(\frac{1}{2}\) DOCUMENT ID TECN COMMENT ### A \$\(\frac{1}{2}\) DOCU		
	ATIVE DECAYS	
LULE (UNITS 10 ⁻¹) DOCUMENT ID TECN COMMENT TECN	OCUMENT ID TECN	COMMENT
2.3 ± 2.0 ± 3.5 11 BAI 998 BES $\psi(25) \rightarrow 7\chi_{C2}$ (6.4 ψ)/Γtotal 12 TANENBAUM 78 MRK1 $\psi(25) \rightarrow 7\chi_{C2}$ (7.7/Γtotal 18.6 ψ)/Γtotal 998 BES ψ (2.5) ψ 7.7/C2 (7.7/Γtotal 19.0 ψ)/Γtotal 19.0 ψ 10.1 BAI 998 BES ψ (2.5) ψ 7.7/C2 (7.7/Γtotal 19.0 ψ)/Γtotal 19.0 ψ 10.1 BAI 998 BES ψ (2.5) ψ 7.7/C2 (7.7/Γtotal 19.0 ψ)/Γtotal 19.0 ψ /10.1 BAI 998 BES ψ /10.2 ψ /10.2 ψ /10.1 BAI 998 BES ψ /10.2	AISER 86 CBAL	$\psi(25) \rightarrow \gamma X$
12 TANENBAUM 78 MKK1 $\psi(2S) \rightarrow \tau \chi_{C2}$ (\$\phi\$)/\text{Total} (\$\phi\$)/\text{Total} \[\phi(\phi)/\text{Total} \] \[\p		$\psi(25) \rightarrow \gamma \chi_{C2}$
(φφ)/Γtotal	RANDELIK 798 DASP	$\psi(25) \to \gamma \chi_{C2}$ $\psi(25) \to \gamma \chi_{C2}$
1 BAI 99B BES $ψ(25) → τχ_{C2}$ (π ⁺ π ⁻)/Γtotal LUE (units 10 ⁻³) EVTS Σξ±0.25 OUR AVERAGE 49 ± 1.0 16 4 12 BRANDELIK 79C DASP $ψ(25) → τχ_{C2}$ 11 BAI 98I BES $ψ(25) → τχ_{C2}$ 12 BRANDELIK 79C DASP $ψ(25) → τχ_{C2}$ 14 LUE (units 10 ⁻⁴) DOCUMENT ID TECN COMMENT LUE (units 10 ⁻⁴) EVTS 3 ± 0.1 BAI 98I BES $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) DOCUMENT ID TECN COMMENT 12 TANENBAUM 78 MRK1 $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) EVTS 3 ± 0.1 BAI 98I BES $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) EVTS 3 ± 0.1 BAI 98I BES $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) EVTS 3 ± 0.1 BAI 98I BES $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) EVTS 3 ± 0.1 BAI 98I BES $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) EVTS 3 ± 0.1 BAI 98I BES $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) EVTS 3 ± 0.1 BAI 98I BES $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) EVTS 3 ± 0.1 BAI 98I BES $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) EVTS 3 ± 1.1 BAI 98I BES $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) EVTS 3 ± 1.1 BAI 98I BES $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) EVTS 48±0.26±0.32 11 BAI 99B BES $ψ(25) → τχ_{C2}$ ((κ ⁺ κ ⁻)/Γtotal LUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT F11/Γ 1 BAI 99B BES $ψ(25) → τχ_{C2}$ ((κ ⁺ γγ)/Γtotal LUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT F11/Γ 1 BAI 98I BES $ψ(25) → τχ_{C2}$ LUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT F11/Γ 1 BAI 98I BES $ψ(25) → τχ_{C2}$ LUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT F10/Γ 1 BAI 99B BES $ψ(25) → τχ_{C2}$ LUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT F11/Γ 1 BAI 99B BES $ψ(25) → τχ_{C2}$ LUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT F11/Γ 1 BAI 99B BES $ψ(25) → τχ_{C2}$ LUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT F11/Γ 1 BAI 99B BES $ψ(25) → τχ_{C2}$ LUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT F11/Γ 1 BAI 99B BES	ARTEL 78B CNTR	$\psi(25) \rightarrow \gamma \chi_{C2}$
000±0.55±0.51 11 BAI 99B BES $ψ(2S) → τχ_{C2}$ [$(π^+π^-)/\Gamma_{total}$ 12 BAI 99B BES $ψ(2S) → τχ_{C2}$ 13 BAI 99B BES $ψ(2S) → τχ_{C2}$ 14 BAI 99B BES $ψ(2S) → τχ_{C2}$ 15 BIDITISES INTERCED USING INTERCED INTER	ANENBAUM 78 MRK1	
The contract of the property of the propert	-	ψ(25) → γX
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
52±0.25 OUR AVERAGE 49±0.14±0.22 185± 11 BAI 98i BES $\psi(2S) \rightarrow \tau x_{C2}$ 12 BRANDELIK 79¢ DASP $\psi(2S) \rightarrow \tau x_{C2}$ 15 $(F_8+F_9)/F$ 12 BRANDELIK 79¢ DASP $\psi(2S) \rightarrow \tau x_{C2}$ 16 $(F_8+F_9)/F$ 17 $(F_8+F_9)/F$ 18±0.10 12 TANENBAUM 78 MRK1 $\psi(2S) \rightarrow \tau x_{C2}$ 18±10 10 12 TANENBAUM 78 MRK1 $\psi(2S) \rightarrow \tau x_{C2}$ 18±10.19 OUR AVERAGE 11 BAI 98i BES $\psi(2S) \rightarrow \tau x_{C2}$ 11 BAI 99i BES $\psi(2S) \rightarrow \tau x_{C2}$ 12 BRANDELIK 79¢ DASP $\psi(2S) \rightarrow \tau x_{C2}$ 13 ARMSTRONG 92 E760 $p_P \rightarrow e^+e^-\tau$ 14 BAILUE (units 10 ⁻¹) 15 BARTEL 79i PI BIS 119i G. G. BAILUE 79i PI BIS 119i G. G. BAILUE 79i BIS 119	$\underline{S}(1P)) = 0.076$, the error	S do not contain the
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
16 Using $B(x_{c2}(P) \rightarrow p\bar{p}) = (1.00 \pm 16 \text{ ARM})$ 17 EVALUE (units 10^{-4}) - $(K^+K^-)/\Gamma_{\text{total}}$ 18 DOCUMENT ID TECN COMMENT 19 ± 1.0 10 ± 1.0 12 TANENBAUM 78 MRK1 ± 1.0 15 ± 1.0 15 ± 1.0 15 ± 1.0 15 ± 1.0 16 Using $B(x_{c2}(P) \rightarrow p\bar{p}) = (1.00 \pm 16 \text{ ARM})$ 18 ACCIARRI ± 1.0 18 ± 1.0 18 BES ± 1.0 18 BES ± 1.0 18 BES ± 1.0 19 BES ± 1.0 11 BAI 998 PAI 998 PAI 998 PAI 998 PA	OCUMENT ID TECN	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RMSTRONG 93 E760	$\bar{p}p \rightarrow \gamma\gamma$
Second		
12 TANENBAUM 78 MRK1 $ψ(25) → γχ_{C2}$ (K+K-)/Γtotal ALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT 5 ± 1.1 2 12 BRANDELIK 79c DASP $ψ(25) → γχ_{C2}$ (K+K-K+K-)/Γtotal ALUE (units 10 ⁻³) 13 115± 11 BAI 98i BES $ψ(25) → γχ_{C2}$ (K+K-K+K-)/Γtotal ALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻³) DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻⁴) CLX EVTS DOCUMENT ID TECN COMMENT ALUE (units 10 ⁻		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P) REFERENCES	
Section Companies Compa	M. Acciarri et al.	(L3 Col
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M. Acciarri et al. J.Z. Bai et al.	(L3 Coli (BES Coli
Section Sec	K. Ackerstaff et al. J.Z. Bai et al.	(OPAL Coll (BES Coll
1.79 ± 0.14 ± 0.13 1.15 ± 11 BAI 98I BES $\psi(2S) \rightarrow \gamma \chi_{C2}$ 1.1 BAI 98I BES $\psi(2S) \rightarrow \gamma \chi_{C2}$ 1.2 BRANDELIK 79c DASP $\psi(2S) \rightarrow \gamma \chi_{C2}$ 1.3 ABMSTRONG 92 NP B373 35 1.4 LUE (units 10 ⁻³) 1.4 BAI 99B BES $\psi(2S) \rightarrow \gamma \chi_{C2}$ 1.5 ± 1.1 DOCUMENT ID TECN COMMENT 1.6 (K° S) / Γ total 1.6 ALUE (units 10 ⁻³) 1.6 BAILU (units 10 ⁻³) 1.6 BAILU (units 10 ⁻³) 1.6 BAILU (units 10 ⁻³) 1.7 BAI 99B BES $\psi(2S) \rightarrow \gamma \chi_{C2}$ 1.6 BAILU (units 10 ⁻³) 1.6 BAILU (units 10 ⁻³) 1.6 BAILU (units 10 ⁻⁴) 1.6 BAILU (units 10 ⁻⁴) 1.7 BAI 99B BES $\psi(2S) \rightarrow \gamma \chi_{C2}$ 1.7 BAILU (units 10 ⁻⁴) 1.8 BAILU (units 10 ⁻⁴) 1.9 BAILU (units 10 ⁻⁴) 1.9 BAILU (units 10 ⁻⁴) 1.1 BAI 98I BES $\psi(2S) \rightarrow \gamma \chi_{C2}$ 1.00 ± 0.11 1.5 BAILU (units 10 ⁻⁴)	J. Dominick et al. T.A. Armstrong et al.	(CLEO Call (FNAL E760 Call
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D.A. Bauer et al. T.A. Armstrong et al.	(TPC Coll (FNAL, FERR, GEN
	T.A. Armstrong et al. S. Uehara et al.	(FNAL, FERR, GEN (VENUS Coll
DOCUMENT ID TECN COMMENT SAGLIN S7B PL 8187 191 C. SAGLIN S8B PL 817 195	W.Y. Chen et al. H. Aihara et al.	(CLEO Coll (TPC Coll
	C. Baglin et al.	(R704 Coll RN, GENO, LYON, OSL
	J. Gaiser et al. R.A. Lee	(Crystal Ball Coll
$\frac{ALUE \ (units 10^{-3})}{61 \pm 0.17 \pm 0.16} \qquad \frac{DOCUMENT \ ID}{BAI} \qquad \frac{TECN}{99B} \ BES \qquad \psi(25) \rightarrow \gamma \chi_{C2}$ $\frac{(\rho \overline{p})/\Gamma_{total}}{(\rho \overline{p})/\Gamma_{total}} \qquad \frac{\Gamma_{12}/\Gamma}{ALUE \ (units 10^{-4})} \qquad \frac{CL\%}{EVTS} \qquad \frac{EVTS}{DOCUMENT \ ID} \qquad \frac{TECN}{TECN} \qquad \frac{COMMENT}{COMMENT}$ $\frac{ALUE \ (units 10^{-4})}{0.98 \pm 0.10} \qquad \frac{CL\%}{2.5} \qquad \frac{EVTS}{DOCUMENT \ ID} \qquad \frac{TECN}{TECN} \qquad \frac{COMMENT}{COMMENT}$ $\frac{ALUE \ (units 10^{-4})}{0.98 \pm 0.31 \pm 0.32} \qquad \frac{4.7 \pm 11}{2.5} \ BAI} \ BAI \qquad 98I \ BES \qquad \psi(25) \rightarrow \gamma \chi_{C2}$ $\frac{1.00 \pm 0.11}{1.00 \pm 0.11} \qquad \frac{585}{585} \qquad \frac{13}{13} \ ARMSTRONG \ 92 \qquad E760 \qquad \overline{p}p \rightarrow e^+e^- \gamma$ $0.97 + \frac{0.44}{0.028} \pm 0.08 \qquad BAGLIN \qquad 86B \ SPEC \qquad \overline{p}p \rightarrow e^+e^- \chi$ $0.97 + \frac{0.44}{0.028} \pm 0.08 \qquad BAGLIN \qquad 86B \ SPEC \qquad \overline{p}p \rightarrow e^+e^- \chi$ $0.95. \qquad 90 \qquad \frac{12}{12} \ BRANDELIK \qquad 79B \ DASP \qquad \psi(25) \rightarrow \gamma \chi_{C2}$ $\frac{1}{17} \Gamma_{12} \Gamma_{13} \Gamma_{12} \Gamma_{13} \Gamma_{13} \Gamma_{13} \Gamma_{13} \Gamma_{14} \Gamma_{15}	Y. Lemoigne et al. M.J. Oreglia et al.	(SACL, LOIC, SHMI (SLAC, CIT, HAR
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M.J. Oreglia	(I) ACL, LOIC, SHMP, CERI
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T. Himel et al. G. Trilling	(LBL, SL (LBL, U
Region of the following data for averages, fits, limits, etc. 0.98 ± 0.10	R. Brandelik et al.	(DASP Coll
0.98±0.10 OUR AVERAGE 0.58±0.31±0.32 4.7 ± 11 BAI 981 BES $\psi(25) \rightarrow \gamma \chi_{C2}$ 1.00±0.11 585 13 ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$ 0.97 ^{+0.44} −0.08 BAGLIN 868 SPEC $\overline{p}p \rightarrow e^+e^-\chi$ • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	R. Brandelik et al. W. Bartel et al.	(DASP Coll (DASP Coll (DESY, HEI
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W.M. Tanenbaum et al. G. Trilling	(SLAC, L (LBL, U
1.00 ± 0.11 2.5 13 ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$ OTHER RE 0.97 + 0.48 ± 0.08 BAGLIN 86B SPEC $\overline{p}p \rightarrow e^+e^-\chi$ • We do not use the following data for averages, fits, limits, etc. • • • BARANDELIK 79B DASP $\psi(25) \rightarrow \gamma \chi_{C2}$ 1.00 ± 0.11 585 13 ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$ • We do not use the following data for averages, fits, limits, etc. • • • FELDMAN 75B PRI 35 821 G.J. Also 75C PRI 35 1189 G.J. Firatum. TANENBAUM 75 PRI 35 1323 W.J. Γ_1/Γ_{10}^2	C.J. Biddick et al. J.S. Whitaker et al.	(UCSD, UMD, PAV (SLAC, L
$0.97^{+0.44}_{-0.28} \pm 0.08$ BAGLIN 86B SPEC $p \rightarrow e^+e^-X$ • We do not use the following data for averages, fits, limits, etc. • • • $p \rightarrow e^+e^-X$ $p \rightarrow e^+e^-X$ • We do not use the following data for averages, fits, limits, etc. • • • $p \rightarrow e^+e^-X$ $p \rightarrow e^+e^-X$ • We do not use the following data for averages, fits, limits, etc. • • • $p \rightarrow e^+e^-X$ $p \rightarrow e^$	RELATED PAPERS -	
• • We do not use the following data for averages, fits, limits, etc. • • • • FELDMAN 75B PRL 35 221 G.J. 9.5 90 12 BRANDELIK 79B DASP $\psi(2S) \rightarrow \gamma \chi_{C2}$ 12 FRANDELIK 79B DASP $\psi(2S) \rightarrow \gamma \chi_{C2}$ 13 FRL 35 1323 W.J. 17		(c.c.)
19.5 90 12 BRANDELIK 79B DASP $\psi(2S) \rightarrow \gamma \chi_{C2}$ 12 BRANDELIK 79B DASP $\psi(2S) \rightarrow \gamma \chi_{C2}$ 15 PRL 35 1189 G.J. TANENBAUM 75 PRL 35 1323 W.J. Tr/ Γ_{10} 17 Tanenbaum 75 PRL 35 1323 W.J. Tr/ Γ_{10} 18	G.J. Feldman et al.	(SACL, LOIC, SHMP, I (LBL, SL
$_1\Gamma_1/\Gamma_{\text{total}}^2$ in $_P\overline{p} \to \chi_{c2}(1P) \to \gamma\gamma$ $\Gamma_{12}\Gamma_{18}/\Gamma^2$	G.J. Feldman	•
· · · · · · · · · · · · · · · · · · ·	W.M. Tanenbaum et al.	(LBL, SL
NUMBER OF THE PARTY OF THE PART		
• • We do not use the following data for averages, fits, limits, etc. • • •		
• • vve do not use the following data for averages, fits, limits, etc. • • • • 160 \pm 0.039 \pm 0.016 ARMSTRONG 93 E760 $\overline{p}p \rightarrow \gamma\gamma$		

 $n_{s}(2S), \psi(2S)$

Needs confirmation. $\eta_{c}(2S)$ MASS $\eta_{c}(2S)$ MASS $\eta_{c}(2S)$ MASS 1 EDWARDS 82C CBAL $e^{+}e^{-} \rightarrow \gamma X$ 1 Assuming mass of $\psi(2S) = 3686$ MeV. $\eta_{c}(2S)$ WIDTH $\eta_{c}(2S)$ WIDTH ALUE (MeV) 1 DOCUMENT 10 FECN COMMENT 1 ** We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	$\eta_c(2S), \ \psi(2S)$
Needs confirmation. $\eta_{c}(2S)$ MASS $\eta_{c}(2S)$ MASS $\eta_{c}(2S)$ MASS 1 EDWARDS 82C CBAL $e^{+}e^{-} \rightarrow \gamma X$ 1 Assuming mass of $\psi(2S) = 3686$ MeV. $\eta_{c}(2S)$ WIDTH $\eta_{c}(2S)$ WIDTH ALUE (MeV) 1 DOCUMENT 10 FECN COMMENT 1 ** We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	$\eta_c(2S)$ $I^{G}(J^{PC}) = ?^{?}(?^{?+})$
ALUE (MeV) DOCUMENT ID TECN 1 EDWARDS 82C CBAL $e^+e^- \rightarrow \gamma X$ 1 Assuming mass of $\psi(2S) = 3686$ MeV. Ref(2S) WIDTH ALUE (MeV) CLN DOCUMENT ID TECN COMMENT TECN	OMITTED FROM SUMMARY TABLE Needs confirmation.
1 Assuming mass of $\psi(2S) = 3686$ MeV. 7 $\pi_c(2S)$ WIDTH 7 $\pi_c(2S)$ WIDTH 8 $\pi_c(2S)$ MIDTH 8 $\pi_c(2S)$ DECAY MODES 9 $\pi_c(2S)$ BRANCHING RATIOS 1 hadrons 1 $\pi_c(2S)$ BRANCHING RATIOS 1 hadrons 2 $\pi_c(2S)$ BRANCHING RATIOS 2 $\pi_c(2S)$ BRANCHING RATIOS 2 $\pi_c(2S)$ BRANCHING RATIOS 3 $\pi_c(2S)$ BRANCHING RATIOS 4 $\pi_c(2S)$ BRANCHING RATIOS 5 $\pi_c(2S)$ BRANCHING RATIOS 5 $\pi_c(2S)$ BRANCHING RATIOS 1 $\pi_c(2S)$ BRANCHING RATIOS 2 $\pi_c(2S)$ BRANCHING RATIOS 3 $\pi_c(2S)$ BRANCHING RATIOS 3 $\pi_c(2S)$ BRANCHING RATIOS 3 $\pi_c(2S)$ BRANCHING RATIOS 4 $\pi_c(2S)$ B	η _c (2 <i>S</i>) MASS
Tacker (See Fig. 1) and the following data for averages, fits, limits, etc. • • • • • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	VALUE (MeV) DOCUMENT ID TECN COMMENT
ALUE (MeV) CEN DOCUMENT ID TECN COMMENT TO WE do not use the following data for averages, fits, limits, etc. • • • CEN 0 95 EDWARDS 82C CBAL $e^+e^- \rightarrow \gamma X$ To C(2S) DECAY MODES Mode Fraction (Γ_I/Γ) 1 hadrons Seen 7 γ_C To DOCUMENT ID TECN COMMENT TECN COMMENT TO DOCUMENT ID TECN COMMENT TO DOCUMENT ID TECN COMMENT TO DOCUMENT ID TECN COMMENT TO SEED THE PROPERS OF SEEN ABREU 980 DLPH $e^+e^- \rightarrow e^+e^- + hadrons$ To We do not use the following data for averages, fits, limits, etc. • • • TO SEE 85 CBAL $\psi' \rightarrow \text{photons}$ TO THER RELATED PAPERS TO THER RELATED PAPERS TO THE PAPERS PAPERS TO T	
The second control of the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	η _c (25) WIDTH
The composition of the control of t	
Mode Fraction (Γ_{I}/Γ) 1 hadrons seen 7 Γ_{I} 1 hadrons 2 $\gamma\gamma\gamma$ 7 Γ_{I} 8 Γ_{I} 9	
The properties of the propert	η _c (2S) DECAY MODES
The following data for averages, fits, limits, etc. The following data for averages	Mode Fraction (Γ_j/Γ)
The interpolation of the property of the prop	-
DOCUMENT ID TECN COMMENT EVALUE ENDORSON B2C CBAL $e^+e^- \rightarrow 7X$ $e^+e^- \rightarrow 7X$ ABREU 980 DLPH $e^+e^- \rightarrow e^+e^- + hadrons$ F2/F ALUE 6. We do not use the following data for averages, fits, limits, etc. • • • ABREU 980 DLPH $e^+e^- \rightarrow e^+e^- + hadrons$ F2/F ALUE 6. We do not use the following data for averages, fits, limits, etc. • • • CO.01 90 LEE 85 CBAL $\psi' \rightarrow photons$ 7c(25) REFERENCES ABREU 980 PL B441 479 P. Abreu et al. EE 85 SLAC 282 R.A. Lee C. Edwards et al. (CIT, HARV, PRIN+) OTHER RELATED PAPERS OPEGGIA OPERGIA OPERGIA SPR D25 2259 M.J. Oregis et al. (CIT, HARV, PRIN+) OTHER RELATED PAPERS OPERGIA OPERGIA OPERGIA SPR D25 2259 M.J. Oregis et al. (CIT, HARV, PRIN+) (CIT, HARV, PRIN+) (DESY, HEIDP) #(25) MASS ALUE (MeV) EVTS DOCUMENT ID TECN COMMENT (DESY, HEIDP) #(25) MASS ALUE (MeV) EVTS G685.95±0.10 413 ARTATAMONOV 00 OLYA $e^+e^- \rightarrow hadrons$ ARMSTRONG 930 E760 $p_p \rightarrow e^+e^ p_p \rightarrow e^+e^-$	η _c (25) BRANCHING RATIOS
EDWARDS 82C CBAL $e^+e^- \rightarrow \gamma X$ • • We do not use the following data for averages, fits, limits, etc. • • • ot seen ABREU 980 DLPH $e^+e^- \rightarrow e^+e^-$ +hadrons F2/F ABREU 980 DLPH $e^+e^- \rightarrow e^+e^-$ +hadrons F2/F ABREU 980 DLPH $e^+e^- \rightarrow e^+e^-$ +hadrons F2/F ABREU 980 DLPH $e^+e^- \rightarrow e^+e^-$ • • We do not use the following data for averages, fits, limits, etc. • • • CO.01 90 LEE 85 CBAL $\psi^1 \rightarrow$ photons F2/C DOWARDS 82C PR L841 479 P. Abreu et al. (DELPHI Collab.) EE 85 SLAC 282 R.A. Lee (SLAC.) DOWARDS 82C PR L8 70 C. Edwards et al. (CIT. HARV. PRIN+) OTHER RELATED PAPERS OTHER RELATED PAPERS ORIECUIA 82 PR D25 259 ORIECUIA 82 PR	· //
The seen of the s	
Total Tech	• • We do not use the following data for averages, fits, limits, etc. • • •
TECH ODCUMENT ID TECH COMMENT • • We do not use the following data for averages, fits, limits, etc. • • • <0.01 90 LEE 85 CBAL ψ' → photons $\eta_c(2S)$ REFERENCES BIREU 980 PL B441 479 EE 85 SLAC 282 DWARDS 82 PR L 48 70 C Edwards et al. OTHER RELATED PAPERS DREGLIA 81 SLAC Summer Inst. 355 F.C. Porter et al. W. Bartel et al. (CIT, HARV, PRIN+) (DESY, HEIDP) $\psi(2S)$ MASS	
**We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	
The properties of the propert	
BREU 980 PL B441 479 P. Abreu et al. (DELPHI Collab.) EE 85 SLAC 282 P. R.A. Lee (C. Edwards et al. (CIT. HARV.) PRIN+) OTHER RELATED PAPERS ORTER 81 SLAC Summer Inst. 355 F.C. Porter et al. (CIT. HARV.) PRIN+) W(25) MASS ARTELUE (MeV) EVTS DOCUMENT ID TECN COMMENT (685, 95 ± 0.10 413 ARTAMONOV 00 OLYA e^+e^- hadrons ARMSTRONG 938 E760 $\overline{p}p \rightarrow e^+e^-$ 1686, 02 ± 0.09 ± 0.27 ARMSTRONG 938 E760 $\overline{p}p \rightarrow e^+e^-$ 1686, 02 ± 0.09 ± 0.27 ARMSTRONG 938 E760 $\overline{p}p \rightarrow e^+e^-$ 1686, 02 ± 0.09 ± 0.27 ARMSTRONG 938 E760 $\overline{p}p \rightarrow e^+e^-$ 1686, 02 ± 0.09 ± 0.27 ARMSTRONG 938 E760 $\overline{p}p \rightarrow e^+e^-$ 1686, 02 ± 0.09 ± 0.27 ARMSTRONG 938 E760 $\overline{p}p \rightarrow e^+e^-$ 1686, 02 ± 0.09 ± 0.27 ARMSTRONG 938 E760 $\overline{p}p \rightarrow e^+e^-$ 1686, 02 ± 0.09 ± 0.27 ARMSTRONG 938 E760 $\overline{p}p \rightarrow e^+e^-$ 1687 ± 2 GRIBUSHIN 96 FMPS 515 π^- Be $\rightarrow 2\mu X$ 1688 ± 5 77 ANTONIAZZI 94 E705 300 π^\pm , p Li \rightarrow $J/\psi \pi^+\pi^- X$ 17 Reanalysis of ZHOLENTZ 80 using new electron mass (COHEN 87) and radiative corrections (KURAEV 85). 2 Superseded by ARTAMONOV 00. $m\psi(25) - mJ/\psi(15)$ DOCUMENT ID TECN COMMENT 1889.07 ± 0.13 OUR AVERAGE 1899.07 ± 0.13 AVERAGE 1899.07 ± 0.15 AVERAG	<0.01 90 LEE 85 CBAL ψ' $ ightarrow$ photons
EE DWARDS 82 PRL 48 70 C. Edwards et al. (CIT. HARV, PRIN+) OTHER RELATED PAPERS OREGLIA 82 PR D25 2259 M.J. Oregia et al. (CIT. HARV, PRIN+) ORTER 81 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) ORTER 81 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) ORTER 81 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) ORTER 81 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) ORTER 81 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) ORTER 81 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) ORTER 81 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) ORTER 91 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) (DESY, HEIDP) ORTER 81 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) (DESY, HEIDP) ORTER 81 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) (DESY, HEIDP) ORTER 81 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) (DESY, HEIDP) ORTER 82 PR D25 2259 S.M.J. (CIT. HARV, PRIN+) (DESY, HEIDP) ORTER 82 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) (DESY, HEIDP) ORTER 82 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) (DESY, HEIDP) ORTER 82 SLAC Summer Inst. 355 F.C. Porefia et al. (CIT. HARV, PRIN+) (DESY, HEIDP) ORTER 82 SLAC SUMMER F.C. POREFIA SIMPLE SUMER F.C. POREFIA SI	η _c (2S) REFERENCES
PREGLIA 82 PR D25 2259 ORTER 81 SLAC Summer lost. 355 F.C. Porter et al. (CIT, HARV+) (CIT, HARV, PRIN+) (ARTEL 76B PL 79B 492 PL 7	LEE 85 SLAC 282 R.A. Lee (SLAC)
ORTER 81 SLAC Summer Inst. 355 F.C. Porter et al. (CIT, HARV, PRIN+) (DESY, HEIDP) $\psi(2S) I^G(J^{PC}) = 0^-(1^{})$ $\psi(2S) MASS$ $\frac{ALUE(MeV)}{b685.96 \pm 0.09} \frac{EVTS}{0.09 \pm $	OTHER RELATED PAPERS
ψ(25) MASS ψ(25) MASS ψ(25) MASS ψ(25) MASS ψ(25)	PORTER 81 SLAC Summer Inst. 355 F.C. Porter et al. (CIT. HARV. PRIN+)
### ALUE (MeV) PUTS DOCUMENT ID TECN COMMENT #### ACUE (MeV) PUTS DOCUMENT ID TECN COMMENT #### ARTAMONOV 00 OLYA $e^+e^- \rightarrow \text{hadrons}$ #### ARTAMONOV 00 FMPS 515 π^- Be $\rightarrow 2\mu X$ #### ARTONIAZZI 94 E705 300 π^\pm , $pLi \rightarrow J/\psi \pi^+ \pi^- X$ #### ARTONIAZZI 94 E705 300 π^\pm , $pLi \rightarrow J/\psi \pi^+ \pi^- X$ #### ARTONIAZZI 94 E705 300 π^\pm , $pLi \rightarrow J/\psi \pi^+ \pi^- X$ #### ARTONIAZZI 94 E705 300 π^\pm , $pLi \rightarrow J/\psi \pi^+ \pi^- X$ #### ARTONIAZZI 94 E705 300 π^\pm , $pLi \rightarrow J/\psi \pi^+ \pi^- X$ #### ARTONIAZZI 94 E705 300 π^\pm , $pLi \rightarrow J/\psi \pi^+ \pi^- X$ #### ARTONIAZZI 94 E705 300 π^\pm , $pLi \rightarrow J/\psi \pi^+ \pi^- X$ #### ARTONIAZZI 95 COHEN 87) and radiative corrections (KURAEV 85). #### PUTS OF THE PUTS OF TH	$\psi(2S)$ $I^{G}(J^{PC}) = 0^{-}(1^{-})$
1 ARTAMONOV 00 OLYA $e^+e^- \rightarrow \text{hadrons}$ 1 ARMSTRONG 938 E760 $pp \rightarrow e^+e^-$ 1 • We do not use the following data for averages, fits, limits, etc. • • • 1 ARMSTRONG 938 E760 $pp \rightarrow e^+e^-$ 2 ANTONIAZZI 94 E705 300 $pp \rightarrow e^+e^-$ 2 ANTONIAZZI 94 E705 300 $pp \rightarrow e^+e^-$ 3 CHOLENTZ 80 OLYA e^+e^- 1 Reanalysis of ZHOLENTZ 80 using new electron mass (COHEN 87) and radiative corrections (KURAEV 85). 2 Superseded by ARTAMONOV 00. 2 Superseded by ARTAMONOV 00. 3 Phytosolume 1 Precedent 1 Precedent 1 Properties 2 Properties 1 Properties 2 Properties	ψ(2S) MASS
1685.95±0.10 413 1 ARTAMONOV 00 OLYA e^+e^- → hadrons ARMSTRONG 938 E760 $\bar{p}p \rightarrow e^+e^-$ • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	
GRIBUSHIN 96 FMPS 515 π^- Be $\rightarrow 2\mu X$ 1683 ± 5 77 ANTONIAZZI 94 E705 $300 \pi^{\pm}$, p Li \rightarrow $J/\psi \pi^+ \pi^- X$ 1686.00 \pm 0.10 413 ² ZHOLENTZ 80 OLYA e^+e^- 1 Reanalysis of ZHOLENTZ 80 using new electron mass (COHEN 87) and radiative corrections (KURAEV 85). 2 Superseded by ARTAMONOV 00. $m_{\psi(25)} - m_{J/\psi(15)}$ 2 Superseded by ARTAMONOV 00. $m_{\psi(25)} - m_{J/\psi(15)}$ 2 Superseded by ARTAMONOV 00. $m_{\psi(25)} - m_{J/\psi(15)}$ 3 COMMENT 1D TECN COMMENT 3 SB9.07 \pm 0.13 OUR AVERAGE 3 ZHOLENTZ 80 OLYA e^+e^- 1 LUTH 75 MRK1 3 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet \bullet 3 BBS. \pm 1 4 BAI 98E BES e^+e^-	3685.95±0.10 413 1 ARTAMONOV 00 OLYA $e^{+}e^{-}$ → hadrons 3686.02±0.09±0.27 ARMSTRONG 93B E760 $\bar{p}p$ → $e^{+}e^{-}$
$J/\psi \pi^+ \pi^- X$ $1686.00 \pm 0.10 \qquad 413 \qquad ^2 \text{ ZHOLENTZ} \qquad 80 \text{OLYA} \qquad e^+ e^-$ $1 \text{ Reanalysis of ZHOLENTZ } 80 \text{ using new electron mass (COHEN 87) and radiative corrections (KURAEV 85).}$ $2 \text{ Superseded by ARTAMONOV } 00.$ $m_{\phi(2S)} - m_{J/\phi(1S)}$ $\frac{DOCUMENT ID}{} \qquad \underline{TECN} \qquad \underline{COMMENT}$ $1 \text{ S89.07} \pm 0.13 \underline{OLYA} \qquad e^+ e^-$ $1 \text{ S89.07} \pm 0.13 \qquad 3 \text{ ZHOLENTZ } \qquad 80 \underline{OLYA} \qquad e^+ e^-$ $1 \text{ S89.07} \pm 0.18 \qquad \underline{UTH} \qquad 75 \underline{MRK1}$ $1 • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •$	3684 ± 2 GRIBUSHIN 96 FMPS 515 π^- Be $\rightarrow 2\mu X$
rections (KURAEV 85). 2 Superseded by ARTAMONOV 00. $m_{\phi(25)} - m_{J/\phi(15)}$ $M_{\phi(25)} - m_{J/$	$J/\psi\pi^+\pi^-X$
\$\frac{ALUE (MeV)}{S69.07 \pm 0.13} \text{ OUR AVERAGE}\$ \$\frac{B9.07 \pm 0.13}{589.07 \pm 0.13} \text{ OUR AVERAGE}\$ \$\frac{B9.07 \pm 0.13}{3} \text{ EMOIGNE} \text{ 82} \text{ GOLI } \text{ 190 } \pi^- \text{ Be} \rightarrow 2\mu \text{ B80.07} \pm 0.13 \text{ 3 ZHOLENTZ} \text{ 80} \text{ OLYA } \text{ \$e^+e^-\$} \text{ LUTH} \text{ 75} \text{ MRK1}\$ \$ \cdot \c	rections (KURAEV 85).
\$89.07 \pm 0.13 OUR AVERAGE \$89.07 \pm 0.13 LEMOIGNE 82 GOLI $190 \pi^-$ Be $\rightarrow 2\mu$ \$89.07 \pm 0.13 3 ZHOLENTZ 80 OLYA e^+e^- \$88.7 \pm 0.8 LUTH 75 MRK1 \$\ilde{\text{1}}\$ \cdot We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	$m_{\psi(2S)}-m_{J/\psi(1S)}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
588.7 \pm 0.8 LUTH 75 MRK1 ••• We do not use the following data for averages, fits, limits, etc. ••• 588 \pm 1 4 BAI 98E BES e^+e^-	589.7 ± 1.2 LEMOIGNE 82 GOLI 190 π^- Be $\to 2\mu$
ullet $ullet$ $$	
	• • We do not use the following data for averages, fits, limits, etc. • •
	588 ± 1 4 BAI 98E BES e^+e^- 3 Redundant with data in mass above.
⁴ Systematic errors not evaluated.	⁴ Systematic errors not evaluated.

ψ(2*S*) WIDTH

VALUE (keV)	DOCUMENT ID	TECN	COMMENT
277±31 OUR AVERAGE	Error includes scale factor of	1.1.	
$306 \pm 36 \pm 16$	_ ARMSTRONG 93B	E760	$\overline{p}p \rightarrow e^+e^-$
243 ± 43	⁵ PDG 92	RVUE	
⁵ Uses Γ(<i>e e</i>) from ALEX	SANDER 89 and $B(ee) = (88 \pm 1)$	± 13) ×	10 ⁻⁴ from FELDMAN 77.

$\psi(2S)$ DECAY MODES

	\$(23) BE	SALL MODES	
	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	Scale factor/ Confidence level
Γ ₁	hadrons	(98.10±0.30) %	
Γ_2	virtual $\gamma \rightarrow hadrons$	(2.9 ±0.4) %	
Γ3	e+e-	(8.8 ±1.3)×	
Γ4	$\mu^+ \mu^-$	(1.03±0.35) %	
•			
Гҕ	$J/\psi(1S)$ anything	$\psi(1S)$ and anything (55 ± 5) %	
	$J/\psi(1S)$ neutrals	(23.1 ±2.3) %	
6	$J/\psi(1S)\pi^+\pi^-$	(31.0 ±2.8) %	
- 7 -8	$J/\psi(1S)\pi^0\pi^0$	(18.2 ±2.3) %	
-	$J/\psi(1S)\eta$		
9		(2.7 ±0.4)%	
10	$J/\psi(1S)\pi^0$	(9.7 ±2.1)×	10 - 4
		ic decays	_
Г11	$3(\pi^{+}\pi^{-})\pi^{0}$	(3.5 ±1.6)×	
12	$2(\pi^{+}\pi^{-})\pi^{0}$	(3.0 ± 0.8) \times	
13	$\omega f_2(1270)$		10 ⁻⁴ CL=90%
T ₁₄	$\rho a_2(1320)$		10 ⁻⁴ CL=90%
15	$\pi^{+}\pi^{-}K^{+}K^{-}$	(1.6 \pm 0.4) \times	
16	$K^*(892)\overline{K}_2^*(1430)^0$	< 1.2 ×	10 ⁻⁴ CL=90%
Γ ₁₇	$K_1(1270)^{\pm}K^{\mp}$	(1.00±0.28) ×	10^{-3}
18	$\pi^+\pi^- ho\overline{ ho}$	(8.0 ± 2.0) \times	10-4
19	$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}$ + c.c.	(6.7 ±2.5)×	10-4
T ₂₀	$b_1^{\pm} \pi^{\mp}$	(5.2 ±1.3) ×	
21	$2(\pi^{+}\pi^{-})$	(4.5 ±1.0)×	10-4
22	$\rho^0 \pi^+ \pi^-$	(4.2 ±1.5)×	
23	ρ̈́ρ	(1.9 ±0.5)×	10-4
24	$3(\pi^{+}\pi^{-})$	(1.5 ±1.0)×	
25	$\overline{\rho} \rho \pi^0$	(1.4 ±0.5)×	
Γ ₂₆	K+K-	(1.0 ±0.7)×	
Γ ₂₇	$\pi^{+}\pi^{-}\pi^{0}$	(8 ±5)×	
28	$ ho\pi$	< 8.3 ×	10 ⁻⁵ CL=90%
29	$\pi^{+}\pi^{-}$		10-5
30	$\Lambda \overline{\Lambda}$		10 ⁻⁴ CL=90%
Г31	$K_1(1400)^{\pm} K^{\mp}$		10-4 CL=90%
Γ ₃₂	<u>∌</u> ~` <u>=</u> +°′		10 ⁻⁴ CL=90%
T ₃₃	$K^+K^-\pi^0$		10 ⁻⁵ CL=90%
34	$K^{+}\overline{K}^{*}(892)^{-}+\text{c.c.}$		10 ⁻⁵ CL=90%
35	$\phi f_2'(1525)$		10 ⁻⁵ CL=90%
••	=	ve decays	
T36	$\gamma \chi_{c0}(1P)$	ve uccays (9.3 ±0.9)%	
T ₃₇	$\gamma \chi_{c1}(1P)$	(8.7 ±0.8) %	
Γ ₃₈	$\gamma \chi_{c2}(1P)$	(7.8 ±0.8) %	
138 139		(2.8 ±0.6) ×	
39 - 40	$\gamma \eta_c(15)$	(2.0 ±0.0) X	10
	$\gamma \eta_c(2S) \\ \gamma \pi^0$		
41 42		(1.5 ±0.4)×	10-4
	$\gamma \eta'(958)$		10 ⁻⁵ CL=90%
43	$\gamma \eta$		10 CL=90%
Г44 Г	$\gamma\gamma$		
Γ ₄₅	$\gamma \eta(1440) \rightarrow \gamma K \overline{K} \pi$	< 1.2 ×	10 ⁻⁴ CL=90%
	Mode needed for	or fitting purposes	
_			

Γ46	 other fit modes 	(21 ±5	1%

 $\psi(2S)$

CONSTRAINED FIT INFORMATION

An overall fit to 10 branching ratios uses 17 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2=9.0$ for 10 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	1						
×7	27						
x_{B}	17	63					
<i>x</i> 9	2	9	3				
<i>X</i> 36	0	0	0	0			
<i>X</i> 37	0	-1	-5	0	0		
<i>X</i> 38	0	0	-2	0	0	0	
×46	-30	-89	-83	-15	-17	-13	-15
	<i>x</i> ₄	X7	XB	Χq	X36	X37	X38

ψ(2S) PARTIAL WIDTHS

Γ(hadrons)						Γ_1
VALUE (keV)		DOCUMENT IL	DOCUMENT ID		COMMENT	
• • • We do not u	ise the following	data for avera	ges, fits	, limits,	etc. • • •	
224 ± 56		LUTH	75	MRK1	e^+e^-	
Γ(e ⁺ e ⁻)						Гз
VALUE (keV)		DOCUMENT IL	D	TECN	COMMENT	
2.12±0.18 OUR A	VERAGE					
2.07 ± 0.32		⁶ BAI	98E	BES	e^+e^-	
2.14 ± 0.21		ALEXANDE	R 89	RVUE	See 7 mini-rev	riew
• • • We do not u	ise the following	g data for avera	ges, fits	i, limits,	etc. • • •	
2.0 ±0.3		BRANDELIK	(79c	DASP	e^+e^-	
2.1 ±0.3		⁷ LUTH	75	MRK1	e^+e^-	
⁶ Value includes ⁷ From a simulta = $\Gamma(\mu^+ \mu^+)$.						Γ(e ⁺ e ⁻)
$\Gamma(\gamma\dot{\gamma})$						Γ44
VALUE (eV)	<u>CL%</u>	DOCUMENT I	<u>D</u>	TECN	COMMENT	
<43	90	BRANDELIA	< 79c	DASP	e+e-	

$\psi(2S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

This combination of a partial width with the partial width into e^+e^- and with the total width is obtained from the integrated cross section into channel, in the $e^+\,e^-$ annihilation. We list only data that have not been used to determine the partial width $\Gamma(\mathbf{l})$ or the branching ratio $\Gamma(\mathbf{l})/\text{total}.$

1/3/F

ψ(2S) BRANCHING RATIOS

Γ(hadrons)/Γ _{total}					Γ1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.981 ±0.003	⁸ LUTH	75	MRK1	e+e-	
$\Gamma(\text{virtual}\gamma \rightarrow \text{hadrons})$	/Γ _{total}				Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.029 ± 0.004	9 LUTH	75	MRK1	e+ e-	
$\Gamma(e^+e^-)/\Gamma_{\text{total}}$					Гз/Г
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
86±13	10 FELDMAN	77	RVUE	e+e-	
• • • We do not use the f	following data for averag	es, fit	s, limits	etc. • • •	
83± 5±7	¹¹ ARMSTRON	G 97	E760	$\overline{p} p \rightarrow \psi(2S)X$	
$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$					Γ4/Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
77±17	12 HILGER	75	SPEC	e+e-	

$\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$	DOCUMENT ID TEST	Γ ₄ /Γ ₃
• • • We do not use the following	DOCUMENT ID TECH data for averages, fits, limi	
0.89±0.16		K1 e ⁺ e
8 includes cascade decay into J/ψ 9 included in $\Gamma({ m hadrons})/\Gamma_{{ m total}}$.	(15).	
10 From an overall fit assuming ed surement of the ratio see the e HILGER 75, BURMESTER 77. 11 Using B(J/ψ → e ⁺ e ⁻) = 0. 0.57 ± 0.04. Not an independer	ntry $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$ 0599 \pm 0.0025 and $\mathrm{B}(\psi(2))$	below. Includes LUTH 75, $I(S) \rightarrow J/\psi(1S)$ anything) =
12 Restated by us using B($\psi(2S)$ -	$J/\psi(1S)$ anything) = 0	.55.
DECAYS INT	O J/ψ(15) AND ANY	THING
$\Gamma(J/\psi(1S))$ anything $\Gamma(J/\psi(1S))$	$\Gamma_5/\Gamma = (\Gamma_7 + \Gamma_8 + \Gamma_9)$ DOCUMENT ID TECH	+0.273Γ ₃₇ +0.135Γ ₃₈)/Γ <u>N COMMENT</u>
0.55±0.05 OUR FIT 0.55±0.07 OUR AVERAGE		
0.51 ± 0.12		SP $e^+e^- \rightarrow \mu^+\mu^- X$
0.57 ± 0.08	ABRAMS 758 MRI	K1 $e^+e^- \rightarrow \mu^+\mu^-X$
	•	+0.273Γ ₃₇ +0.135Γ ₃₈)/Γ
0.231±0.023 OUR FIT	DOCUMENT ID	
$\Gamma(J/\psi(1S))$ neutrals		$\Gamma_6/\Gamma_5 = (0.9761\Gamma_8 + 1.0001761\Gamma_8)$
VALUE 0.418±0.019 OUR FIT	DOCUMENT ID TEC	
• • • We do not use the following	data for averages, fits, lim	its, etc. • • •
0.44 ±0.03	³ ABRAMS 75B MR	$K1 e^+e^- \rightarrow J/\psi X$
$\Gamma(J/\psi(1S))$ neutrals $\Gamma(J/\psi(1S))$	S)π ⁺ π ⁻) = (0.9761Γ ₈ +0.715Γ ₉ -	+0.273Г ₃₇ +0.135Г ₃₈)/Г ₇
VALUE	DOCUMENT ID TEC	
0.75±0.06 OUR FIT 0.73±0.09	³ TANENBAUM 76 MR	K1 e ⁺ e ⁻
$\Gamma(J/\psi(1S)\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ $VALUE$ 0.310±0.028 OUR FIT	DOCUMENT ID TEC	Γ ₇ /Γ <u>N COMMENT</u>
0.32 ±0.04	ABRAMS 758 MR	K1 $e^+e^- \rightarrow J/\psi \pi^+\pi^-$
• • We do not use the following		
	⁴ ARMSTRONG 97 E76	
$\Gamma(J/\psi(1S)\pi^0\pi^0)/\Gamma_{\text{total}}$ VALUE 0.182±0.023 OUR FIT	DOCUMENT ID TEC	Γ ₈ /Γ <u>N COMMENT</u>
• • • We do not use the following	data for averages, fits, lim	nits, etc. • • •
$0.184 \pm 0.019 \pm 0.013$ 157 ¹	⁴ ARMSTRONG 97 E76	$0 \overline{\rho} \rho \to \ \psi(2S)X$
$\Gamma(J/\psi(1S)\pi^0\pi^0)/\Gamma(J/\psi(1S)$	$\pi^+\pi^-$)	$\Gamma_{\theta}/\Gamma_{7}$
VALUE 0.59 ±0.06 OUR FIT	DOCUMENT ID TEC	N COMMENT
0.609±0.079 1	⁵ GU 99 RVI	•
• • • We do not use the following 0.53 ±0.06	data for averages, fits, lim 6 TANENBAUM 76 MR	
	7 HILGER 75 SPE	
$\Gamma(J/\psi(1S)\pi^+\pi^-)/\Gamma(\mu^+\mu^-)$ VALUE	DOCUMENT ID TEC	Γ ₇ /Γ ₄
30 ±10 OUR FIT	.8 GRIBUSHIN 96 FMI	
$\Gamma(J/\psi(1S)\eta)/\Gamma_{\text{total}}$		٦/و٦
VALUE EV	icludes scale factor of 1.6.	TECN COMMENT
	below.	0 MRK2 e ⁺ e ⁻
	86 OREGLIA 8	0 CBAL $e^+e^- \rightarrow J/\psi 2\gamma$
0.036 ±0.005 10 • • • We do not use the following		BB CNTR e ⁺ e [−] its. etc. • • •
0.032 ±0.010 ±0.002	36 ¹⁹ ARMSTRONG 9	7 E760 $\overline{p}p \rightarrow \psi(2S)X$ 9B DASP $e^+e^- \rightarrow$
0.043 ±0.008	14 19 TANENBAUM 7	J/ψ2γ 6 MRK1 e ⁺ e ⁻

 $\psi(25)$

Meson Particle Listings $\psi(2S), \psi(3770)$

		RAI	DIATIVE DE	CAY	s —			
$(\gamma \chi_{c0}(1P))/\Gamma_{\text{total}}$								Γ ₃₆ /Γ
ALUE (units 10 ⁻²) .3±0.9 OUR FIT			DOCUMENT ID		TECN	COMMENT		
.3±0.9 OUR AVERAG	Ε							
$.9 \pm 0.5 \pm 0.8$			GAISER			e^+e^-		
.2±2.3 .5±2.6			BIDDICK WHITAKER	77 76		e+e- → e+e-	γX	
			WIIIIANEK	70	MINIT			
$(\gamma \chi_{c1}(1P))/\Gamma_{total}$								Γ ₃₇ /Γ
4LUE (units 10 ⁻²) .7±0.8 OUR FIT			DOCUMENT ID		TECN	COMMENT		
7±0.8 OUR AVERAG	E							
$0 \pm 0.5 \pm 0.7$			GAISER	86		$e^+e^- \rightarrow$		
1±1.9		21	BIDDICK	77	CNTR	e+e- →	γX	
$(\gamma \chi_{c2}(1P))/\Gamma_{total}$								Γ ₃₈ /Γ
NLUE (units 10 ⁻²)			DOCUMENT ID		TECN	COMMENT		
8±0.8 OUR FIT 8±0.8 OUR AVERAG	F							
$0 \pm 0.5 \pm 0.7$	-		GAISER	86	CBAL	$e^+e^- \rightarrow$	γX	
0 ± 2.0		27	BIDDICK	77	CNTR	$e^+e^- \rightarrow$	γX	
$(\gamma \eta_c(1S))/\Gamma_{\text{total}}$								Г39/Г
LUE (units 10 ⁻²)			DOCUMENT ID		TECN	COMMENT		
28±0.06			GAISER	86				
$(\gamma \eta_c(2S))/\Gamma_{\text{total}}$								Γ ₄₀ /Γ
(<i>77c</i> (23))/1 total LUE (units 10 ⁻²)	CL %		DOCUMENT ID		TECN	COMMENT		• 40/ •
• We do not use the second secon		ng d						
2 to 1.3	95	•	EDWARDS			e+ e− →		
(0) /F								- /-
$(\gamma \pi^0)/\Gamma_{\text{total}}$	a/		000000000000000000000000000000000000000		TEC.	COMMENT		Γ ₄₁ /Γ
*LUE (units 10 ⁻⁴) • • We do not use the second s	<u>CL%</u> he followii	na d	DOCUMENT ID					
54	95	_	LIBERMAN		SPEC			
100	90		WIIK		DASP			
(~#/(958)) /F								Γ42/Γ
	CL% EV	TS.	DOCUMEN	T ID	TE	CN COM	1ENT	Γ ₄₂ /Γ
	<u>CL%</u> <u>EV</u> ∼ '		DOCUMEN BAI	T ID	<u>TE</u> 98F BE	S ψ(25) →	
LUE (units 10 ⁻⁴)				T ID		S ψ(2 <i>S</i>) → + π ⁻²	γ.
MLUE (units 10 ⁻⁴) 1.54±0.31±0.20	~ •	43	BAI		98F BE	5 ψ(2 <i>S</i> π') →	γ.
1.54±0.31±0.20 • • We do not use to	~ •	43	BAI data for average ³⁰ BRAUNS	es, fit	98F BE s, limits, 77 D/	etc. • • • ASP e^+e^-	$\begin{array}{c} \rightarrow \\ + \pi^{-} 2^{n} \\ + \pi^{-} 3^{n} \end{array}$	γ.
1.54±0.31±0.20 • • We do not use to	\sim the followi	43	BAI data for average	es, fit	98F BE s, limits, 77 D/	etc. • •	$\begin{array}{c} \rightarrow \\ + \pi^{-} 2^{n} \\ + \pi^{-} 3^{n} \end{array}$	γ,
1.54±0.31±0.20 • • We do not use to 660	~ ' he followi 90	43	BAI data for average ³⁰ BRAUNS	es, fit	98F BE s, limits, 77 D/	etc. • • • ASP e^+e^-	$\begin{array}{c} \rightarrow \\ + \pi^{-} 2^{n} \\ + \pi^{-} 3^{n} \end{array}$	γ,
1.54 \pm 0.31 \pm 0.20 • • We do not use to 66 1.11 $(\gamma \eta)/\Gamma_{\text{total}}$	~ ' he followi 90	43	BAI data for average ³⁰ BRAUNS	es, fits CH	98F BE s, limits, 77 D/ 76 CM	etc. • • • ASP e^+e^-	$\begin{array}{c}) \rightarrow \\ +\pi^{-}2^{0} \\ +\pi^{-}3^{0} \\ -\end{array}$	γ,
1.54±0.31±0.20 • • We do not use to 60 11 (\gamma\eta)/\Gamma\text{total} (\gamma\eta)/\Gamma\text{total} (1.05 (units 10^{-4}) (0.9)	~	43	BAI data for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI	es, fite CH	98F BE s, limits, 77 DA 76 CF	etc. • • • ASP e^+e^- TR $e^+e^ \frac{comment}{\psi(25)} \rightarrow$	$\begin{array}{c}) \rightarrow \\ +\pi^{-}2 \rightarrow \\ +\pi^{-}3 \rightarrow \\ -\\ -\\ \pi^{+}\pi \end{array}$	ү, Ү
1.54±0.91±0.20 • • We do not use to 60 11 (77)/\(\Gamma_{\text{total}}\) (0.9) • • We do not use to 50 (10)/\(\Gamma_{\text{total}}\)	~ 'c.t% 90 90 CL% 90 he followi	43	BAI Jata for average BAI BARTEL DOCUMENT ID BAI Jata for average	es, fits CH 98F es, fit	98F BE s, limits, 77 DA 76 CN TECN BES s, limits,	etc. • • • ASP e^+e^- NTR $e^+e^ \frac{COMMENT}{\psi(25)} \rightarrow \text{etc.} \bullet \bullet \bullet$	$\begin{array}{c} \rightarrow \\ +\pi^{-}2 \\ +\pi^{-}3 \end{array}$	ү, Ү
1.54 ± 0.31 ± 0.20 • • We do not use to 660 11 (\gamma\eta)/\Gamma\text{total} (\gamma\eta)/\Gamma\text{total} 1.60	~	43	BAI data for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI	es, fite CH	98F BE s, limits, 77 DA 76 CM TECN BES s, limits,	etc. • • • ASP e^+e^- NTR $e^+e^ \psi(2S) \rightarrow e^+$ etc. • • •	$\begin{array}{c} \rightarrow \\ +\pi^{-}2 \\ +\pi^{-}3 \end{array}$	ү, Ү
1.54 \pm 0.31 \pm 0.20 • • We do not use to 1.56 (77)/ Γ total ALUE (units 10 ⁻⁴) 1.9 • • We do not use to 1.56	the following points of the f	43 ing c	BAI Jata for average BAI BARTEL DOCUMENT ID BAI Jata for average	es, fits CH 98F es, fit	98F BE s, limits, 77 DA 76 CN TECN BES s, limits,	etc. • • • ASP e^+e^- NTR $e^+e^ \frac{COMMENT}{\psi(25)} \rightarrow \text{etc.} \bullet \bullet \bullet$	$\begin{array}{c} \rightarrow \\ +\pi^{-}2 \\ +\pi^{-}3 \end{array}$	ү, Ү
1.54 \pm 0.31 \pm 0.20 • • We do not use to 660 (11 $(\gamma \eta)/\Gamma_{\text{total}}$ 4.UE (units 10^{-4}) (0.9 • • We do not use to 62 $(\gamma \eta(1440) \rightarrow \gamma K)$	the following points of the f	43 ing c	BAI 30 BRAUNS 31 BARTEL DOCUMENT ID BAI lata for average YAMADA	98F 98F 77	98F BE s, limits, 77 DA 76 CN TECN BES s, limits,	etc. • • • • • • • • • • • • • • • • • • •	$\begin{array}{c}) \rightarrow \\ +\pi^{-}2 \\ +\pi^{-}3 \end{array}$ $\pi^{+}\pi$ 3γ	γ, γ Γ 43/Γ
1.54 \pm 0.31 \pm 0.20 • • We do not use to 1.660 (11 ($\gamma\eta$)/ Γ total (λUE (units 10^{-4}) (0.9 • • We do not use to 2.2 ($\gamma\eta$ (1440) $\rightarrow \gamma K$ (3.4 UE (units 10^{-3}) (5.12	the following points of the f	43 ing cotal 32	BAI 30 BRAUNS 31 BARTEL DOCUMENT ID BAI lata for average YAMADA DOCUMENT ID SCHARRE	98F 98F 77	98F BE s, limits, 77 DA 76 CN TECN BES s, limits, DASP	etc. • • • • • • • • • • • • • • • • • • •	$\begin{array}{c}) \rightarrow \\ +\pi^{-}2 \\ +\pi^{-}3 \end{array}$ $\pi^{+}\pi$ 3γ	γ, γ Γ 43/Γ
1.54 \pm 0.31 \pm 0.20 • • We do not use to 60 (11 ($\gamma\eta$)/\(\triangle \text{total}\) 4.00 (12 ($\gamma\eta$)/\(\triangle \text{total}\) 4.00 (13 • • We do not use to 62 ($\gamma\eta$ (1440) $\rightarrow \gamma$ K 64.00 (10) (12 25 Angular distribution	the following points of the f	43 ing cotal 32θ) a	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARRE JAMADA	98F 77	98F BE s, limits, 77 D/ 76 CP TECN BES s, limits, DASP	etc. • • • • • • • • • • • • • • • • • • •	$\begin{array}{c}) \rightarrow \\ +\pi^{-}2 \\ +\pi^{-}3 \end{array}$ $\pi^{+}\pi$ 3γ	γ, γ Γ 43/Γ
1.54 \pm 0.31 \pm 0.20 • • We do not use to the following state of	the following points of the f	43 ding of ording of ording of $32^2\theta$) at 39 co.	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARRE JAMADA DOCUMENT ID SCHARRE JAMADA	98F 77	98F BE s, limits, 77 D/ 76 CP TECN BES s, limits, DASP	etc. • • • • • • • • • • • • • • • • • • •	$\begin{array}{c}) \rightarrow \\ +\pi^{-}2 \\ +\pi^{-}3 \end{array}$ $\pi^{+}\pi$ 3γ	γ, γ Γ 43/Γ
1.54 \pm 0.31 \pm 0.20 • • We do not use to 60 (11 ($\gamma\eta$)/ Γ total 4.UE (units 10^{-4}) (0.9 • • We do not use to 62 ($\gamma\eta$ (1440) $\rightarrow \gamma K$ 4.UE (units 10^{-3}) (0.12 25 Angular distribution 27 Valid for isotropic of 63	the following points of the f	43 ing coing ($\frac{32}{2}\theta$) at $\frac{32}{2}\theta$ coing	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI JATA AND A DOCUMENT ID SCHARRE assumed. the photon.	98F 77	98F BE s, limits, 77 D/ 76 CP TECN BES s, limits, DASP	etc. • • • • • • • • • • • • • • • • • • •	$\begin{array}{c}) \rightarrow \\ +\pi^{-}2 \\ +\pi^{-}3 \end{array}$ $\pi^{+}\pi$ 3γ	γ, γ Γ 43/Γ
1.54 \pm 0.31 \pm 0.20 • • We do not use to the following state of	the following points of the f	43 sing α cotal 32 θ) a a con of a cotal 32 co con of a cotal 52 co	BAI data for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI data for average YAMADA DOCUMENT ID SCHARRE assumed. $(s^2 e)$ assumed. the photon. $(s^2 e)$ assumed.	98Fes, fit: 77 80	98F BE s, limits, 77 D/ 76 CP TECN BES s, limits, DASP TECN MRK1	etc. • • • • • • • • • • • • • • • • • • •	$\begin{array}{c}) \rightarrow \\ +\pi^{-}2 \\ +\pi^{-}3 \end{array}$ $\pi^{+}\pi$ 3γ	γ, γ Γ 43/Γ
1.54 \pm 0.31 \pm 0.20 • • We do not use to 1.50 • • • We do not use to 1.50 • • • We do not use to 1.50 • • We do not use t	the following polynomials and the following polynomials are considered by the following polynomials are consi	43 ing cotal 32 θ) a associated associ	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARRE JAMADA DOCUMENT ID SCHARRE JAMADA Line photon. $S^2\theta$) assumed. $S^2\theta$) assumed. $S^2\theta$) assumed. $S^2\theta$) assumed. width 228 keV	98Fes, fit: 77 80	98F BE s, limits, 77 D/ 76 CN TECN BES s, limits, DASP TECN MRK1	etc. • • • • e COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$ COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$	$\begin{array}{c}) \longrightarrow \\ +\pi^{-}2 \cdot \\ +\pi^{-}3 \cdot \\ \hline \pi^{+}\pi \end{array}$	γ, γ Γ 43/Γ
1.54 \pm (units 10 ⁻⁴) 1.54 \pm 0.31 \pm 0.20 • • We do not use to 60 11 (77)/\(\Gamma_{\text{total}}\) 1.54 \pm 0.04 • • We do not use to 2 (77(1440) \rightarrow γ K) 1.54 \rightarrow 7 (1440) 1.55 Angular distribution 64 Angular distribution 77 1.76 Valid for isotropic con 84 Angular distribution 197 1.97 Restated by us usin 107 Restated by us usin 107 Restated by us usin 117 The value is normal	the following polynomials and the following polynomials are considered by the following polynomials are considered by the following B($\frac{CL\%}{4}$) and $\frac{CL\%}{4}$ polynomials are considered by the following B($\frac{CL\%}{4}$) and the following B($\frac{CL\%}{4}$) are considered by the following B($\frac{CL\%}{4}$) and the following by the following B($\frac{CL\%}{4}$) are considered by the following by the following B($\frac{CL\%}{4}$) and the following by the following B($\frac{CL\%}{4}$) are considered by the following	43 ing coing coin	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARE SSCHARE assumed. the photon. $5^2\theta$) assumed. $4^+\mu^-$) = 0 width 228 keV ranching ratio in	98Fess, fit: 77 80	98F BE s, limits, 77 DA 76 CN TECN DASP TECN MRK1	etc. • • • • e COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$ COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$	$\begin{array}{c}) \longrightarrow \\ +\pi^{-}2 \cdot \\ +\pi^{-}3 \cdot \\ \hline \pi^{+}\pi \end{array}$	γ, γ Γ 43/Γ
1.54 \pm 0.31 \pm 0.20 • • We do not use to 60 11 ($\gamma \eta$)/ Γ total 1.0.9 • • We do not use to 60 2 ($\gamma \eta$ (1440) $\rightarrow \gamma K$ 2 ($\gamma \eta$ (1440) $\rightarrow \gamma K$ 2 3 3 4 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8	the following polynomials and the following polynomials are considered by the following polynomials are considered by the following B($\frac{5}{4}$) (1–0.18 distribution (1–0.05) gr B($\frac{5}{4}$) (2.5) gr B($\frac{5}{4}$) (3.5) (3.5)	43 ing coing coin	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARE SSCHARE assumed. the photon. $5^2\theta$) assumed. $4^+\mu^-$) = 0 width 228 keV ranching ratio in	98Fess, fit: 77 80	98F BE s, limits, 77 DA 76 CN TECN DASP TECN MRK1	etc. • • • • e COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$ COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$	$\begin{array}{c}) \longrightarrow \\ +\pi^{-}2 \cdot \\ +\pi^{-}3 \cdot \\ \hline \pi^{+}\pi \end{array}$	γ, γ Γ 43/Γ
1.54 \pm 0.31 \pm 0.20 • • We do not use to 60 11 ($\gamma \eta$)/ Γ total 1.0.9 • • We do not use to 60 2 ($\gamma \eta$ (1440) $\rightarrow \gamma K$ 2 ($\gamma \eta$ (1440) $\rightarrow \gamma K$ 2 3 3 4 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8	the following polynomials and the following polynomials are considered by the following polynomials are considered by the following B($\frac{5}{4}$) (1–0.18 distribution (1–0.05) gr B($\frac{5}{4}$) (2.5) gr B($\frac{5}{4}$) (3.5) (3.5)	43 ing α cotal 32 θ) a cotal 32 cotal 652 cotal 652 cotal 652 cotal 653 cot	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARE SSCHARE assumed. the photon. $5^2\theta$) assumed. $4^+\mu^-$) = 0 width 228 keV ranching ratio in	98F 98F 77 80 .0077	98F BE S S, limits, TFCN DASP $\frac{TECN}{MRK1}$ MRK1	etc. • • • • e COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$ COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$	$\begin{array}{c}) \longrightarrow \\ +\pi^{-}2 \cdot \\ +\pi^{-}3 \cdot \\ \hline \pi^{+}\pi \end{array}$	γ, γ Γ 43/Γ
1.54 \pm 0.31 \pm 0.20 • • We do not use to the following state of	the following polynomials and the following polynomials are supported by the following polynomials are support	43 ing α cotal 32 θ) a cotal 32 cotal 652 cotal 652 cotal 652 cotal 653 cot	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARRE assumed. the photon. $105^2\theta$) assumed. the photon. $105^2\theta$) assumed. $105^2\theta$) assumed. $105^2\theta$) assumed. the photon. $105^2\theta$) assumed.	98F 98F 98F 98F 98F 77 80 80 For F(6 K)	98F BE 98F BE 98F BE 77 DA 76 CP TECN BES 5, limits, DASP TECN MRK1 J/ψ(1S K π.	etc. • • • • e COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$ COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$	$) \rightarrow +\pi^{-2}$ $+\pi^{-3}$ $-\pi^{+}\pi$ 3γ	Γ 43 /Γ - 3γ Γ 45 /Γ
1.54 ± 0.31 ± 0.20 • • We do not use to the second secon	the following polynomial $\frac{CL\%}{90}$ the following polynomial $\frac{CL\%}{90}$ the following polynomial $\frac{CL\%}{90}$ to $\frac{CL\%}{1-0.18}$ distribution $\frac{(1-0.05)}{1-0.05}$ g total de lized to the tranching $\frac{474}{83}$ 1918	43 ing α cotal 32 θ) a cotal 32 cotal 652 cotal 652 cotal 652 cotal 653 cot	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARRE SSUMEd. $(55^2\theta)$ assumed. $(55^2\theta)$	98F 98F 98F 98F 98F 77 80 80 80 80 80 80 80	98F BE 98F BE 98F BE 77 DA 76 CP TECN BES 5, limits, DASP TECN MRK1 J/ψ(1S K π.	etc. • • • • e COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$ COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$	$\begin{array}{c}) \longrightarrow \\ +\pi^{-}2 \cdot \\ +\pi^{-}3 \cdot \\ \hline \pi^{+}\pi \end{array}$	Γ 43 /Γ - 3γ Γ 45 /Γ
• • We do not use to the second sec	he followi 90 90 90 $\frac{CL\%}{90}$ he followi 90 $K\pi)/\Gamma_{\rm b}$ $\frac{CL\%}{90}$ h (1-cos ² h (1-0.18 distribution of (1-0.05 gg H $\psi(2.5)$ gg total de lized to til pranching	43 ing α cotal 32 θ) a cotal 32 cotal 652 cotal 652 cotal 652 cotal 653 cot	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARRE SSUMED. SCHARRE SSUMED. $\mu^{\mu} \mu^{-} = 0$ width 228 keV ranching ratio 1 titon $\eta(1440)$ — 25) REFERE A.S. Artamonn J.Z. Bai et al Y.F. Gu, X.H. J.Z. Bai et al 1.J. Bai et al 1.J.Z.	98Fes, fit: 98Fes, fit: 77 80 .00777 For F(98F BE 98F BE 98F BE 77 DA 76 CP TECN BES 5, limits, DASP TECN MRK1 J/ψ(1S K π.	etc. • • • • e COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$ COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$) → + π - 2 · 2 · 4 · 7 · 3 · 3 · 7 · 3 · 7 · 7 · 7 · 7 · 7	Γ43/Γ - 3γ Γ45/Γ (collab.)
1.54±0.31±0.20 • • We do not use to the control of the control o	he following 90 90 $\frac{CL\%}{90}$ he following 90 $\frac{CL\%}{90}$ in $(1-0.18)$ distribution in $(1-0.05)$ graph total delized to the parameter of the parameter $(1-0.18)$ distribution in $(1-0.05)$ graph total delized to the parameter $(1-0.05)$ graph $(1-0.05)$ g	43 ing α cotal 32 θ) a cotal 32 cotal 652 cotal 652 cotal 652 cotal 653 cot	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARRE assumed. $35^2\theta$) assumed.	98F 98F 98F 98F 98F 77 80 80 80 Wet 2	98F BE s, limits, 77 DJ 76 CP TECN BES s, limits, DASP TECN MRK1	etc. • • • • e COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$ COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$) → + π - 2 · 2 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 ·	Γ43/Γ - 3γ Γ45/Γ (ollab.) (ollab.) (ollab.)
■ We do not use to 1.54±0.31±0.20 ■ • We do not use to 1.56 ((7η)/Γtotal ALUE (units 10 ⁻⁴) CO.9 ■ • We do not use to 1.56 ((γη(1440) → γΚ) ALUE (units 10 ⁻³) CO.12 25 Angular distribution 26 Angular distribution 27 Valid for isotropic of 28 Angular distribution 29 Restated by us usin 30 Restated by us usin 30 Restated by us usin 31 The value is norma 32 includes unknown to 1.50 ARTAMONOV 00 PL BIAI 99 PL BIAI 98 PR DIAI 98 PR DIAI 98 PR DIAI 198 PR DIAI 1	he following 90 90 $\frac{CL\%}{90}$ he following 90 $\frac{CL\%}{90}$ he following 90 $\frac{CL\%}{90}$ he following 1 (1-0.05) at (1-0.05) at (1-0.05) at (1-0.18) distribution in (1-0.05) at (1-0.5) at (1-0.05)	43 ing α cotal 32 θ) a cotal 32 cotal 652 cotal 652 cotal 652 cotal 653 cot	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARRE assumed. $35^2\theta$) assumed. 35	98FF. 98FF. 77 80 .00777 NCE	98F BE s, limits, 77 DJ 76 CP TECN BES s, limits, DASP TECN MRK1	etc. • • • • e COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$ COMMENT $\psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^ \psi(2S) \rightarrow e^+e^-$) → + π - 2 · 2 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 ·	Γ43/Γ - 3γ - 3γ - (oilab.) (oilab.) (oilab.) (oilab.) (oilab.)
1.54±0.31±0.20 • • We do not use to the state of the st	he followi 90 90 90 $\frac{CL\%}{90}$ he followi 90 $\frac{K\pi}{J}/\Gamma_{\rm b}$ $\frac{CL\%}{90}$ 1 (1-0.18 distribution 1 (1-0.05) 1 (1-0.05) 1 (1-0.05) 1 (1-0.18) distribution 1 (1-0.5) 1 (1-0.5) 2 (1-0.5) 2 (1-0.5) 3 (1-0.5) 4 (1-0.5) 3 (1-0.5)	ing cotal 32 2θ) a 39 652 cc 550 — ecay the b frac	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARRE assumed. $35^2\theta$) assumed. $4^2 + \mu^2 + \mu^2 = 0$ width 228 keV ranching ratio to titon $\eta(1440) = 0$ A.S. Artamonn J.Z. Bai et al J.Z	98Fess, fitter 98Fess, fitter 77 80 .00777 for \(\Gamma \) NCE Li Eget al. et al. et al. et al. et al. et al.	98F BE 98F BE 177 DA 176 CP 1	etc. • • • • • • • • • • • • • • • • • • •	$) \rightarrow - + \pi - 2$ $+ \pi - 3$ $+ \pi - 3$ $ $	Γ43/Γ - 3γ Γ45/Γ (ollab.) (ollab.) (ollab.) (ollab.) (ollab.) (ollab.) (ollab.)
• • We do not use to 1.54±0.31±0.20 • • We do not use to 1.56±0.31±0.20 • • We do not use to 1.56±0.31±0.20 • • We do not use to 1.56±0.31±0.20 • • We do not use to 1.56±0.31±0.31 • • We do not use to 1.56±0.31±0.31 • • We do not use to 1.56±0.31±0.31 • • We do not use to 1.56±0.31 • • • We do not use to 1.5	21% 90 90 90	ing cotal 32 2θ) a 39 652 cc 550 — ecay the b frac	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARRE SSSUMEd. SS $^2\theta$) assumed. It he photon. A ramonomial in the photon. J.Z. Bai et al	98F5, fit: 98F65, fit: 77 80 .00777 For \(\subset (i) = 1 \) Li g et al. g et et al.	98F BE S, limits, 77 DASP $\frac{TECN}{N}$ DASP $\frac{TECN}{N}$ MRK1	etc. • • • · · · · · · · · · · · · · · · ·) → + π - 2· + π - 3· 	Γ43/Γ - 3γ Γ45/Γ (ollab.) (ollab.) (ollab.) (ollab.) (ollab.)
■ We do not use to 1.54±0.31±0.20 ■ • We do not use to 1.56±0.31±0.20 ■ • We do not use to 1.56±0.31±0.20 ■ • We do not use to 1.56±0.31±0.20 ■ • We do not use to 1.56±0.31±0.31±0.31±0.31±0.31±0.31±0.31±0.31	he followi 90 90 90 $\frac{CL\%}{90}$ he followi 90 $\frac{K\pi}{J}/\Gamma_{\rm b}$ $\frac{CL\%}{90}$ 1 (1-0.18 distribution 1 (1-0.05) 1 (1-0.05) 1 (1-0.05) 1 (1-0.18) distribution 1 (1-0.5) 1 (1-0.5) 2 (1-0.5) 2 (1-0.5) 3 (1-0.5) 4 (1-0.5) 3 (1-0.5)	ing cotal 32 2θ) a 39 652 cc 550 — ecay the b frac	BAI Jata for average 30 BRAUNS 31 BARTEL DOCUMENT ID BAI Jata for average YAMADA DOCUMENT ID SCHARRE assumed. $35^2\theta$) assumed. $4^2 + \mu^2 + \mu^2 = 0$ width 228 keV ranching ratio to titon $\eta(1440) = 0$ A.S. Artamonn J.Z. Bai et al J.Z	98F5, fit: 98F65, fit: 77 80 NCE Li g et al. g et et al. et al et al	98F BE 98F BE 5, limits, 77 DJ 76 CP 8E5 5, limits, DASP 1ECN MRK1 1. 1. 1. 1. 1. 1. 1. 1. 1.	etc. • • • · · · · · · · · · · · · · · · ·	$) \rightarrow - + \pi - 2$ $+ \pi - 3$ $+ \pi - 3$ $ $	Γ43/Γ - 3γ Γ45/Γ (ollab.)

FRANKLIN	83	PRL 51 963	M.E.B. Franklin et al.	(LBL, SLAC)
EDWARDS	82C	PRL 48 70	C. Edwards et al.	(CIT, HARV, PRIN+)
LEMOIGNE	82	PL 113B 509	Y. Lemoigne et al.	(SACL, LOIC, SHMP+)
HIMEL	80	PRL 44 920	T. Himel et al.	(LBL, SLAC)
OREGLIA	80	PRL 45 959	M.J. Oreglia et al.	(SLAC, CIT, HARV+)
SCHARRE	80	PL 97B 329	D.L. Scharre et al.	(SLAC, LBL)
ZHOLENTZ	80	PL 96B 214	A.A. Zholents et al.	(NOVO)
Also	81	SJNP 34 814	A.A. Zholents et al.	(NOVO)
		Translated from YAF 34		
BRANDELIK	79B	NP B160 426	R. Brandelik et al.	(DASP Collab.)
BRANDELIK	79C	ZPHY C1 233	R. Brandelik et al.	(DASP Collab.)
BARTEL	78B	PL 79B 492	W. Bartel et al.	(DESY, HEIDP)
TANENBAUM	78	PR D17 1731	W.M. Tanenbaum et al.	(SLAC, LBL)
BIDDICK	77	PRL 38 1324	C.J. Biddick et al.	(UCSD, UMD, PAVI+)
BRAUNSCH	77	PL 67B 249	W. Braunschweig et al.	(DASP Collab.)
BURMESTER	77	PL 66B 395	J. Burmester et al.	(DESY, HAMB, SIEG+)
FELDMAN	77	PRPL 33C 285	G.J. Feldman, M.L. Perl	(LBL, SLAC)
YAMADA	77	Hamburg Conf. 69	5. Yamada	(DASP Collab.)
BARTEL	76	PL 64B 483	W. Bartel et al.	(DESY, HEIDP)
TANENBAUM	76	PRL 36 402	W.M. Tanenbaum et al.	(SLAC, LBL) IG
WHITAKER	76	PRL 37 1596	J.S. Whitaker et al.	(SLAC, LBL)
ABRAMS	75	Stanford Symp. 25	G.S. Abrams	(LBL)
ABRAM5	75B	PRL 34 1181	G.S. Abrams et al.	(LBL, SLAC)
BOYARSKI	75C	Paiermo Conf. 54	A.M. Boyarski et al.	(SLAC, LBL)
HILGER	75	PRL 35 625	E. Hilger et al.	(SŤAN, PENN)
LIBERMAN	75	Stanford Symp. 55	A.D. Liberman	` (STAN)
LUTH	75	PRL 35 1124	V. Luth et al.	(SLAČ, LBL) JPC
WIIK	75	Stanford Symp. 69	B.H. Wiik	(DESY)
		OTHER	RELATED PAPERS	
CHEN	98	PRL 80 5060	Y.Q. Chen, E. Braaten	
SUZUKI	98	PR D57 5717	M. Suzuki	
HOU	97	PR D55 6952	Wei-Shu Hou	
BARATE	83	PL 121B 449	R. Barate et al.	(SACL, LOIC, SHMP, IND)
AUBERT	75B	PRL 33 1624	J.J. Aubert et al.	(MIT, BNL)
	75B	PL 57B 407	W. Braunschweig et al.	(DASP Collab.)
BRAUNSCH				
BRAUNSCH CAMERINI	75	PRL 35 483	U. Camerini et al.	`(WISC, SLAC)
CAMERINI FELDMAN	75 75B	PRL 35 483 PRL 35 821	U. Camerini et al. G.J. Feldman et al.	`(LBL, SLAC)
CAMERINI FELDMAN GRECO	75 75B 75	PRL 35 483 PRL 35 821 PL 56B 367	U. Camerini et al. G.J. Feldman et al. M. Greco, G. Pancheri-Sriva	`(LBL, SLAC) Istava, Y. Srivastava
CAMERINI FELDMAN GRECO JACKSON	75 75B 75 75	PRL 35 483 PRL 35 821 PL 56B 367 NIM 128 13	U. Camerini et al. G.J. Feldman et al. M. Greco, G. Pancheri-Sriva J.D. Jackson, D.L. Scharre	`(LBL, SLAC) Istava, Y. Srivastava (LBL)
CAMERINI FELDMAN GRECO	75 75B 75	PRL 35 483 PRL 35 821 PL 56B 367	U. Camerini et al. G.J. Feldman et al. M. Greco, G. Pancheri-Sriva	`(LBL, SLAC) Istava, Y. Srivastava

 ψ (3770)

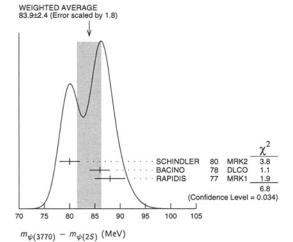
$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ψ(3770) MASS

VALUE (MeV)DOCUMENT IDTECNCOMMENT3769.9 \pm 2.5 OUR EVALUATIONError includes scale factor of 1.8. From $m_{\psi(25)}$ and mass difference below.• • • We do not use the following data for averages, fits, limits, etc. • • •

$m_{\psi(3770)} - m_{\psi(25)}$

 RALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT


 83.9 \pm 2.4 OUR AVERAGE
 Error includes scale factor of 1.8. See the ideogram below.

 80
 \pm 2
 SCHINDLER 80 MRK2 e^+e^-

 86
 \pm 2
 BACINO 78 DLCO e^+e^-

 88
 \pm 3
 RAPIDIS 77 MRK1 e^+e^-

 2 SPEAR $\psi(2S)$ mass subtracted (see SCHINDLER 80).

¹ Errors include systematic common to all experiments.

 ψ (3770), ψ (3836), ψ (4040)

	ψ(3770) WIDTH		ψ (4040)
VALUE (MeV)		COMMENT	$\varphi(1010)$
23.6±2.7 OUR FIT Error inc 25.3±2.9 OUR AVERAGE	cludes scale factor of 1.1.		
24 ±5	SCHINDLER 80 MRK		
24 ±5	BACINO 78 DLCG RAPIDIS 77 MRK		VALUE (MeV)
28 ±5	RAPIDIS // MRK	1 e e	4040±10
	ψ(3770) DECAY MODES		
Mode	Fraction (F	j/Γ) Scale factor	VALUE (MeV)
$I_1 D\overline{D}$	dominant		52±10
- ₂ e ⁺ e ⁻	(1.12±0.1	7) × 10 ⁻⁵ 1.2	
¥	(3770) PARTIAL WIDTHS		à é a da
Γ(e ⁺ e ⁻)		Γ ₂	Mode Γ ₁ e ⁺ e ⁻
VALUE (keV)	DOCUMENT ID TECN	_	$egin{array}{lll} \Gamma_1 & e^+e^- \ \Gamma_2 & D^0\overline{D}{}^0 \end{array}$
0.26 ±0.04 OUR FIT Erro		•	$\Gamma_3^2 D^*(2007)^0 \overline{D}{}^0 +$
1.24 ±0.05 OUR AVERAGE 1.276±0.050	Error includes scale factor of 1 SCHINDLER 80 MRK		$\Gamma_4 D^*(2007)^0 \overline{D}^*(2007)^0 = 0$
0.18 ±0.06	BACINO 78 DLC		$\Gamma_5 = J/\psi(1S)$ hadron
	wing data for averages, fits, limit		$\Gamma_6 \mu^+ \mu^-$
0.37 ±0.09	³ RAPIDIS 77 MRK	1 e ⁺ e ⁻	
³ See also $\Gamma(e^+e^-)/\Gamma_{\text{total}}$	below.		
44/	3770) BRANCHING RATIO	e	$\Gamma(e^+e^-)$
.,	STTU) BRANCHING RATIO		<u>VALUE</u> (keV) 0.75±0.15
-(DD)/Γ _{total}		Γ ₁ /Γ	V.13 I V.13
/ALUE ominant		$\begin{array}{ccc} & \underline{COMMENT} \\ 1 & e^+e^- \rightarrow D\overline{D} \end{array}$	
			Γ(e ⁺ e ⁻)/Γ _{total}
(e+e-)/F _{total}	DOCUMENT ID TECH	Γ ₂ /Γ	VALUE (units 10 ⁻⁵)
VALUE (units 10 ⁻⁵) 1.12±0.17 OUR FIT		COMMENT	• • We do not use the
.3 ±0.2	RAPIDIS 77 MRK	(1 e ⁺ e ⁻	~ 1.0
		····	$\Gamma(D^0\widetilde{D}^0)/\Gamma(D^*(2007))$
SCHINDLER BO PR D21 2716	R.H. Schindler et al.	(Mark II Collab.)	VALUE
BACINO 78 PRL 40 671	W.J. Bacino et al.	(SLAC, UCLA, UCI)	0.05 ±0.03
PERUZZI 77 PRL 39 1301 RAPIDIS 77 PRL 39 526	I. Peruzzi <i>et al.</i> P.A. Rapidis <i>et al.</i>	(Mark I Collab.) (Mark I Collab.)	Γ(<i>D</i> *(2007) ⁰ D *(2007
····			VALUE
1/(2026)	$I^G(J^{PC}) =$	0-(2)	32.0±12.0
ψ (3836)	. (3) –	- (-)	¹ Phase-space factor (p
OMITTED FROM SUM	MARY TABLE are not established.		
		an a month to the	BRANDELIK 78C PL 76B Also 79C ZPHY C
	ractions by ANTONIAZZI 94 the $J/\psi(1S)\pi^+\pi^-$ system.		FELDMAN 77 PRPL 33
	the $J/\psi(15)\pi^+\pi^-$ system. . Interpretation as a 3D_2 (2		GOLDHABER 77 PL 69B
	. =		
state favored. Not confirmation.	seen by BAI 98E in e^+e^- in	teractions. Needs	HEIKKILA 84 PR D29
	ψ(3836) MASS		ONO 84 ZPHY C SIEGRIST 82 PR D26 AUGUSTIN 75 PRL 34
VALUE (May)	., ,	COMMENT	BACCI 75 PL 588 BOYARSKI 75B PRL 34
<u>VALUE (MeV)</u> <u>EVTS</u> 3836±13 58 ±		$\frac{I}{\pi^{\pm}\text{Li} \rightarrow J/\psi \pi^{+} \pi^{-} X}$	ESPOSITO 75 PL 58B
3836±13 58 ±		π - Ει → 3/ψπ · π /	
	ψ(3836) DECAY MODES		
Mode	Fraction (I	Γ ₁ /Γ)	
$\Gamma_1 = J/\psi(1S)\pi^+\pi^-$	seen		
	ψ(3836) REFERENCES		
BAI 98E PR D57 3854	J.Z. Bai et al.	(BES Collab.)	
ANTONIAZZI 94 PR D50 4258	L. Antoniazzi et al.	(E705 Collab.)	

		_				ψ(4	040)	MAS	SS					
						•	•							
<i>VALUE</i> 1040 ±							NDE		780	TECN_ DASP				
										0,10.				
					1	ψ(40	40) V	WID.	ТН					
VALUE							UMEN			TECN		_		
52±10	o					BRA	ANDE	LIK	78 C	DASP	e+ e-		_	
				1	þ(40	40)	DEC/	AY N	4OD	ES				
	Mode								Fract	ion (Γ <u>;</u>	/Г)			_
Γ1	e+ e-								(1.4:	±0.4) ×	10-5			
Γ ₂	$D^0\overline{D}{}^0$	->0	=0						seen					
Γ ₃	D*(200 D*(200								seen					
Γ₄ Γҕ	$J/\psi(1S)$)-				seen					
ι <u>5</u> Γ ₆	$\mu^+\mu^-$) II a	iui oi	113										
				ψ	(404	0) P	ARTI	AL \	WID	THS				
-/ ₋	e-)			•	•									г
I (E'											C0141	IFNT		
I (C' VALUE	•					DOC	UMEN	T ID		TECN	COMM			
<u>value</u> 0.75 ±	(keV) :0.15			ψ(4	1040	BR	ANDE	LIK		DASP ATIOS				
value 0.75± Γ(e+	(keV) 0.15 (units 10 ⁻⁵) BR	ANC	LIK HIN (G R	ATIOS	е+ е- <u>сомм</u>	IENT		Γ1/
VALUE 0.75 ± \(\(e^+ \) VALUE	(keV) :0.15 e ⁻)/\(\Gamma_{to}\)		se the			BRA) BR DOC data	ANC	HINO TID erage	G R	ATIOS TECN s, limits	e+ e-	IENT		Γ1/
VALUE 0.75 ± Γ(e ⁺ VALUE ~ 1.0	(keV):0.15 e-)/\(\Gamma_{\text{to}}\) (units 10^{-5} We do no	ot us		e follo	wing) BR DOC data FEL	ANC	HINO TID erage	G R	ATIOS TECN s, limits	е+ е- <u>сомм</u>	IENT		Γ1/
VALUE 0.75 ± Γ(e ⁺ VALUE ~ 1.0	(keV) 0.15 (units 10 ⁻⁵	ot us		e follo	wing) BR DOC data FEL	ANC	HINO TID erage	G R	ATIOS TECN s, limits MRK1	e+e- <u>COMM</u> , etc. • e+e-	IENT		Γ ₁ /
VALUE 0.75 ± Γ(e+ VALUE ~ 1.0 Γ(D ⁰ VALUE	(keV) :0.15 (units 10 ⁻⁵ We do no	ot us		e follo	wing 10+	DOC data FEL	ANC CUMEN for ave DMA	HING T ID erage N	G R/s, fite	TECN TECN TECN	e+ e- <u>COMM</u> , etc. • e+ e-	IENT • •		
VALUE 0.75 ± Γ(e+ VALUE ~ 1.0 Γ(D ⁰ VALUE 0.05 :	(keV) :0.15 e-)/\(\Gamma_{\text{to}}\) (units 10^{-5} We do not 2\(\overline{D}^0\)/\(\Gamma_{\text{to}}\)	D*((200	e follo	wing 10+	DOC data FEL C.C.) 1 GO	ANC CUMEN for ave DMA	HING TID erage N TID BER	5, fit:	TECN MRK1	e+ e- <u>COMM</u> , etc. • e+ e-	IENT • •		Γ ₂ /Γ
VALUE 0.75 ± Γ(e ⁺ VALUE ~ 1.0 Γ(D ⁰ VALUE 0.05 : Γ(D*	(keV) :0.15 e ⁻)/\(\Gamma_{\text{to}}\) (units 10 ⁻⁵ We do not \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) (2007) ⁰	D*((200	e follo	wing 10+	DOC data FEL c.c.) DOC 1 GO 1	ANC CUMENT for ave DMA CUMEN LDHA 207)	HING TID erage N TID BER	5, fits 77 77	TECN MRK1	e+ e- <u>COMM</u> , etc. • e+ e- <u>COMM</u> e+ e-	• •		
$\Gamma(e^+)$ ~ 1.0 $\Gamma(D^0)$ $VALUE$ $\Gamma(D^0)$ $VALUE$ $VALUE$	(vev) 0.15 e-)/\(\Gamma_{\text{to old}}\) (units 10^{-5} We do not \(\frac{2}{3}\) \(\frac{1}{3}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(D*((200	e follo	wing 10 + 1	DOO data FEL C.C.) DOO 1 GO	ANC CUMENT for ave DMA CUMEN LDHA 207) ⁰	HINI TID erage N TID BER	G R. 5, fit: 77 77	TECN MRK1	e+ e- COMM e+ e- COMM e+ e-	• • •		Γ ₂ /Γ
$\Gamma(e^+)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$	(vev) 0.15 e-)/\(\Gamma_{\text{to old}}\) (units 10^{-5} We do not \(\frac{2}{3}\) \(\frac{1}{3}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(D*((200	7) ⁰	wing 10 + 1	DOC data FEL C.C.) DOC 1 DO	ANDE LOMEN LOMEN LOMEN LOMEN LOMEN LOMEN	HIN TID erage N TID BER TID BER	G R. 5, fit: 77 77	TECN MRK1	e+ e- COMM e+ e- COMM e+ e-	• • •		Γ ₂ /Γ
$\Gamma(e^+)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$	(keV) (0.15) $(\text{ce}^{-})/\Gamma_{\text{to}}$ $(\text{units } 10^{-5})$ (we do not) $(\text{coor})^{0}$ $(\text{coor})^{0}$	D*((200	7) ⁰	wing + ' ''(C	DOC data FEL C.C.) DOC	ANDE CUMEN For avi DMA CUMEN CUMEN CUMEN LDHA CUMEN LDHA LDHA Anoved.	HING TID erage N TID BER TID BER	77	TECN MRK1 TECN MRK1 MRK1	e+ e- COMM e+ e- COMM e+ e-	• • •		Γ ₂ /Γ
$\Gamma(e^+)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$ $\Gamma(D^0)$	(keV) -0.15 e ⁻)/Γ _{to} (units 10 ⁻⁵ We do not ±0.03 -(2007) ⁰ -12.0 hase-space	D*((200 (200 tor ()	7)° \(\overline{D} \) 361	wing + ' ''(C	DOC data FEL C.C.) DOC	ANC CUMEN for avi DMA CUMEN LDHA O07) CUMEN LDHA noved.	HING TID erage N TID BER TID BER	G R. 5, fitt 77 77 77 F C.C	TECN MRK1 TECN MRK1 MRK1	e+ e- COMM e+ e- COMM e+ e-	#ENT	DASP	Γ ₂ /Γ Γ ₄ /Γ
$\Gamma(e^+)$ ~ 1.0 $\Gamma(D^0)$	(keV) -0.15 e-)/Γ _{to} (units 10 ⁻⁵ We do not ±0.03 -(2007) ⁰ -12.0 hase-space	D*((200 (200 ttor ()	e follow 7)0 \(\overline{D} \) 7)0)/ 7)0)/ p^3) ex	wing + 100 + 110	DOC	ANC CUMEN for avi DMA CUMEN LDHA DO7) CUMEN LDHA DO7) CUMEN LDHA Brand Brand Brand	HINI TID erage N TID BER TID BER ERE	G R. 5, fit: 77 77 77 77 F C.C	DASP TECN TECN MRK1 TECN MRK1 TECN MRK1 TECN MRK1	e+ e- COMM e+ e- COMM e+ e-	#ENT	DASP	Γ ₂ /Γ Γ ₄ /Γ Collab.)
$\Gamma(e^+)$ ~ 1.0 $\Gamma(D^0)$ ~ 1.0 $\Gamma(D^0)$ ~ 1.0 $\Gamma(D^0)$ ~ 1.0	(keV) -0.15 (units 10 ⁻⁵) We do not 2007) -12.0 hase-space	D*((200 (200 ttor ()	7)° D 77)°)/ 77)°)/ 77)°)/ 7361 23331 265	wing + 100 + 110	DOO data FEL DOO 1 GO POO 1 GO POO 1 GO POO 1 GO R R R G	ANC CUMEN for avi DMA CUMEN LDHA O07) CUMEN LDHA noved.	HIN TID BER TID BER TID BER TID BER	G R. 5, fit: 77 77 + C.C	DASP TECN TECN MRK1 TECN MRK1 TECN MRK1 TECN MRK1	e+ e- COMM e+ e- COMM e+ e-	• • • • • • • • • • • • • • • • • • •	DASP (LBL,	Γ ₂ /Γ Γ ₄ /Γ
$\Gamma(e^+)$ ~ 1.0 $\Gamma(D^0)$ ~ 1.0 $\Gamma(D^0)$ ~ 1.0 $\Gamma(D^0)$ ~ 1.0	(keV) -0.15 (units 10 ⁻⁵) We do not 2007) -12.0 hase-space	D*(76BPHY (78PL 3	7)° \(\overline{D} \) 80° \(\overline{D} \)	νing 	DOC data FEL C.C.) DOC	ANC. GUMEN for avo. DMA CUMEN LDHA noved. Brand J. Feld Goldh Goldh	HING TID erage N TID BER TID BER TID BER aber e	G R. 5, fitt 77 77 77 77 77 4 a.l. 1 a.l. 1 a.l. 1 t. a.l.	DASP TECN TECN MRK1 TECN MRK1 TECN MRK1 TECN MRK1	e+ e- COMM e+ e- COMM e+ e-	• • • • • • • • • • • • • • • • • • •	DASP (LBL,	Γ ₂ /Γ Γ ₄ /Γ Collab.) Collab.) SLAC)
VALUE 0.75± \(\begin{align*} \begin{align*} \precede{\text{C}} \\ \precede{\text{C}}	(keV) -0.15 -(e-)/Γ _{to} -(units 10 ⁻⁵) We do no -(2007) -(D*(76B PHY C 3 69B	7)° \(\overline{D}\) 7)° \(\overline{D}\) 7)° \(\overline{D}\) 7)° \(\overline{D}\) 7)° \(\overline{D}\) 2361 61 233 33C 285 503 61 110	wing + 1 THE	DOC data FEL C.C.) DOC 1 GO P(20 POST 1 GO RR R G G G G G G G G G G G G G G G G G	ANC. CUMEN for avv DMA LDHA LDHA NOT) Brand Brand J. Feld Goldh Heikki	HING TID erage N TID BER TID BER ERE	G RA	DASP TECN MRK1 TECN MRK1 TECN MRK1 TECN MRK1 PECN MRK1	COMM etc. • e+ e* COMM e+ e*	MENT (I	DASP (LBL, lark I	Γ ₂ /Γ Γ ₄ /Γ Collab.) Collab.) SLAC) Collab.)
VALUE T (P VALUE 1 P VALUE 1 P BRANCE BRANCE BRANCE HEIKKI ONO NO NO NO NO NO NO NO NO	(keV) :0.15 (e-)/Γτο (units 10 ⁻⁵ We do no 2007)/Γ(±0.03 (2007) :12.0 hase-space DELIK 780 (2007) 14.0 15.0 16.	D*(76B PHY (76B PHY (76B PHY (76B) PHY (76B)	7)° D	wing + 1 THE	DOC data FEL C.C.) DOC 1 GO P(20 POS 1 GO RR R G G G G G G G G G G G G G G G G G	ANC. GOMA For avid LDHA LDHA LDHA Brand J. Feld J. Feld Godh Heikki Cono	HING TID erage N TID BER TID TID TID TID TID TID TID TI	G RASS, fitter 577 77 77 77 F C.C. 77 PAF A. To al.	DASP ATIOS TECN S, limits MRK1 TECN MRK1 TECN MRK1 ES	COMM etc. • e+ e* COMM e+ e*	MENT (I	DASP (LBL, lark I ELS, A (SLA)	Γ ₂ /Γ Collab.) Collab.) SLAC) Collab.) AACHT) DRSAY) C, LBL)
T(P* VALUE 1.0 T(D* VALUE 1.0 T(D* VALUE 1.0 T(D* VALUE 1.0 THE INTERPOLATION SIEGRIF ONO SIEGRIF	(keV) :0.15 (e-)/Γτο (units 10 ⁻⁵ We do no 2007)/Γ(±0.03 (2007) :12.0 hase-space DELIK 780 (2007) 14.0 15.0 16.	D*((200 (200 tor ()	p ³) ex 361 21233 205 503 0110 026 307 764	wing + 1 THE	DOC data FEL C.C.) DOC 1 GOO 1 GOO 1 RR R R R R R R R R R R R R R R R R R	ANC. CUMEN for ave LDHA CUMEN LDHA DOT) Brand Brand J. Feld J. Feld Goldh CHA CHA CHA CHA CHA CHA CHA CH	HING TID erage N TID BER TID BER FERE	G RASS, fitter 577 77 77 77 F C.C. 77 PAF A. To al.	DASP ATIOS TECN S, limits MRK1 TECN MRK1 TECN MRK1 ES	COMM etc. • e+ e* COMM e+ e*	(II)	DASP (LBL, lark I ELS, A (SLAC (SLAC	Γ ₂ /Γ Γ ₄ /Γ Collab.) Collab.) SLAC) Collab.) AACHT) DRSAY)
VALUE T (P VALUE 1 P VALUE 1 P BRANCE BRANCE BRANCE HEIKKI ONO NO NO NO NO NO NO NO NO	(keV) -0.15 e-)/Γ _{to} (units 10 ⁻⁵ We do no -0.03 -	D*(fact	76B PHY (200 PH	p ³) ex 361 21233 212 253 202 263 203 264 264 264 27 264 27 264 27 267 267 267 267 267 267 267 267 267	wing + 1 THE	DOC data FEL C.C.) DOC 1 GOO 1	ANC. GOMA For avid LDHA LDHA LDHA Brand J. Feld J. Feld Godh Heikki Cono	HING TID erage N TID BER TID BER TID BER TID BER TID TID BER TID TID TID TID TID TID TID TI	G RJ 5, fitt 77 77 77 77 77 77 PC.C 77 77 77 A. To al. et al. et al.	DASP ATIOS TECN S, limits MRK1 TECN MRK1 TECN MRK1 ES	COMM etc. • e+e* COMM e+e* COMM e+e*	(II)	OASP (LBL, lark I (SLAC (SLAC (SLAC (SLAC (SLAC	Γ ₂ /Γ Collab.) Collab.) SLAC) Collab.) DRSAY) LACHT) DRSAY) LBL) LBL)

Г2

 Γ_1/Γ

(DASP Collab.) (LBL, SLAC)

(DESY, HAMB, SIEG+) (LBL, SLAC)

ψ(4415) REFERENCES

- OTHER RELATED PAPERS -

J. Burmester et al. V. Luth et al.

BRANDELIK 78C PL 76B 361 SIEGRIST 76 PRL 36 700

BURMESTER 77 PL 66B 395 LUTH 77 PL 70B 120

Meson Particle Listings ψ (4160), ψ (4415)

	ψ(4160) MASS		ψ(4415) MASS
VALUE (MeV)	DOCUMENT ID TECN COMMENT	VALUE (MeV)	DOCUMENT ID TECN COMMENT
6159±20	BRANDELIK 78C DASP e^+e^-	4415± 6 OUR AVERAGE 4417±10	BRANDELIK 78C DASP e+e-
	ψ(4160) WIDTH	4414± 7	SIEGRIST 76 MRK1 e+e-
ALUE (MeV)	DOCUMENT ID TECN COMMENT	<u> </u>	ψ(4415) WIDTH
78±20	BRANDELIK 78c DASP e+e-	VALUE (MeV)	DOCUMENT ID TECN COMMENT
	ALCA) DECAY MODEC		includes scale factor of 1.8.
₩(4160) DECAY MODES	66±15	BRANDELIK 78C DASP e ⁺ e ⁻
Mode	Fraction (Γ_I/Γ)	33±10	SIEGRIST 76 MRK1 e ⁺ e ⁻
-1 e ⁺ e ⁻	$(10\pm4)\times10^{-6}$	•	(4415) DECAY MODES
ψ(4	160) PARTIAL WIDTHS	Mode	Fraction (Γ_i/Γ)
(e+e-)	Γ ₁	Γ_1 hadrons Γ_2 e^+e^-	dominant $(1.1 \pm 0.4) \times 10^{-5}$
ALUE (keV)	DOCUMENT ID TECN COMMENT		(1.110.1) × 10
).77 ± 0.23	BRANDELIK 78C DASP e+e-	ψ ((4415) PARTIAL WIDTHS
¥	(4160) REFERENCES	$\Gamma(e^+e^-)$	
RANDELIK 78C PL 76B 361	R. Brandelik et al. (DASP Collab.)	VALUE (keV) 0.47±0.10 OUR AVERAGE	DOCUMENT ID TECN COMMENT
—— от	HER RELATED PAPERS ———	0.49±0.13	BRANDELIK 78c DASP e+e-
		0.44 ± 0.14	SIEGRIST 76 MRK1 e^+e^-
DDIR 98 PL B433 125 INO 84 ZPHY C26 307 IURMESTER 77 PL 66B 395	F. Iddir et al. S. Ono (ORSAY) J. Burmester et al. (DESY, HAMB, SIEG+)	ψ(4	415) BRANCHING RATIOS
		Γ(hadrons)/Γ _{total}	•
		VALUE	DOCUMENT ID TECN COMMENT
		VALUE	DOCUMENT ID TECH COMMENT

Bottomonium

bb MESONS

WIDTH DETERMINATIONS OF THE Υ STATES

As is the case for the $J/\psi(1S)$ and $\psi(2S)$, the full widths of the $b\bar{b}$ states $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ are not directly measurable, since they are much narrower than the energy resolution of the e^+e^- storage rings where these states are produced. The common indirect method to determine Γ starts from

$$\Gamma = \Gamma_{\ell\ell}/B_{\ell\ell} \;, \tag{1}$$

where $\Gamma_{\ell\ell}$ is one leptonic partial width and $B_{\ell\ell}$ is the corresponding branching fraction ($\ell=e, \mu, \text{ or } \tau$). One then assumes $e^{-\mu-\tau}$ universality and uses

 $J^{PC} =$

$$\Gamma_{\ell\ell} = \Gamma_{ee}$$

$$B_{\ell\ell} = \text{average of } B_{ee}, \ B_{\mu\mu}, \ \text{and } B_{\tau\tau} \ .$$
 (2)

The electronic partial width Γ_{ee} is also not directly measurable at e^+e^- storage rings, only in the combination $\Gamma_{ee}\Gamma_{\rm had}/\Gamma$, where $\Gamma_{\rm had}$ is the hadronic partial width and

$$\Gamma_{\text{had}} + 3\Gamma_{ee} = \Gamma . \tag{3}$$

This combination is obtained experimentally from the energyintegrated hadronic cross section

$$\int \sigma(e^+e^- o \Upsilon o {
m hadrons}) dE$$

resonance

$$=\frac{6\pi^2}{M^2}\frac{\Gamma_{ee}\Gamma_{\rm had}}{\Gamma}C_r = \frac{6\pi^2}{M^2}\frac{\Gamma_{ee}^{(0)}\Gamma_{\rm had}}{\Gamma}C_r^{(0)}, \qquad (4)$$

where M is the Υ mass, and C_r and $C_r^{(0)}$ are radiative correction factors. C_r is used for obtaining Γ_{ee} as defined in Eq. (1), and contains corrections from all orders of QED for describing $(b\bar{b}) \to e^+e^-$. The lowest order QED value $\Gamma_{ee}^{(0)}$, relevant for comparison with potential-model calculations, is defined by the lowest order QED graph (Born term) alone, and is about 7% lower than Γ_{ee} .

THE BOTTOMONIUM SYSTEM

Υ (11020)

Υ (10860)

1--

 $\begin{array}{c|c} & B\overline{B} \text{ threshold} \\ \hline & \eta_b(3S) \\ & hadrons \\ \hline & \eta_b(2S) \\ \hline & \eta_b(1S) \\ \hline \end{array}$

0++

The level scheme of the $b\bar{b}$ states showing experimentally established states with solid lines. Singlet states are called η_b and h_b , triplet states Υ and χ_{bJ} . In parentheses it is sufficient to give the radial quantum number and the orbital angular momentum to specify the states with all their quantum numbers. E.g., $h_b(2P)$ means 2^1P_1 with n=2, L=1, S=0, J=1, PC=+-. If found, D-wave states would be called $\eta_b(nD)$ and $\Upsilon_J(nD)$, with J=1,2,3 and $n=1,2,3,4,\cdots$ For the χ_b states, the spins of only the $\chi_{b2}(1P)$ and $\chi_{b1}(1P)$ have been experimentally established. The spins of the other χ_b are given as the preferred values, based on the quarkonium models. The figure also shows the observed hadronic and radiative transitions.

1+-

 Γ_1/Γ

The Listings give experimental results on B_{ee} , $B_{\mu\mu}$, $B_{\tau\tau}$, and $\Gamma_{ee}\Gamma_{had}/\Gamma$. The entries of the last quantity have been re-evaluated consistently using the correction procedure of KURAEV 85. The partial width Γ_{ee} is obtained from the average values for $\Gamma_{ee}\Gamma_{had}/\Gamma$ and $B_{\ell\ell}$ using

$$\Gamma_{ee} = \frac{\Gamma_{ee}\Gamma_{had}}{\Gamma(1 - 3B_{\ell\ell})} \ . \tag{5}$$

The total width Γ is then obtained from Eq. (1). We do not list Γ_{ee} and Γ values of individual experiments. The Γ_{ee} values in the Meson Summary Table are also those defined in Eq. (1).

 $\Upsilon(1S)$

 $I^{G}(J^{PC}) = 0^{-}(1^{-})$

IASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
9460.30±0.26 OUR AVERAGE	Error includes scale	fact	tor of 3.	3.	
$9460.51 \pm 0.09 \pm 0.05$	1 ARTAMONOV	00	MD1	$e^+e^- \rightarrow hadrons$	ı
$9459.97 \pm 0.11 \pm 0.07$	MACKAY	84	REDE	$e^+e^- \rightarrow hadrons$	-
• • We do not use the followi	ng data for averages	, fits	, limits,	etc. • • •	
$9460.60 \pm 0.09 \pm 0.05$	2,3 BARU	92B	REDE	$e^+e^- \rightarrow hadrons$	
9460.59 ± 0.12	BARU	86	REDE	$e^+e^- \rightarrow hadrons$	
9460.6 ± 0.4	3,4 ARTAMONOV	84	REDE	$e^+e^- \rightarrow hadrons$	
¹ Reanalysis of BARU 92B and ² Superseding BARU 86.	ARTAMONOV 84	using	g new el	ectron mass (COHEN 87).	I
³ Superseded by ARTAMONO ⁴ Value includes data of ARTA					ı

T(1S) WIDTH

VALUE	(keV)		DOCUM
FO F 1	1 D'OUD	FACE LIATION	C N - N-

Mode

IENT ID See the Note on Width Determinations of the au states.

T(15) DECAY MODES

Fraction (Γ_i/Γ)

 (2.38 ± 0.11) %

Confidence level

90% 90% 90% 90% $\Gamma(\tau^+\tau^-)/\Gamma_{\text{total}}$

13	$\mu \cdot \mu$	(2.48 ± 0.06) %
		Hadronic decays
Γ_4	$J/\psi(1S)$ anything	$(1.1 \pm 0.4) \times 10^{-3}$
Γ ₅	$ ho\pi$	< 2 × 10 ⁻⁴
Γ6	$\pi^+\pi^-$	< 5 × 10 ⁻⁴
Γ_7	K+K-	$< 5 \times 10^{-4}$
Гв	ρ p	$< 5 \times 10^{-4}$
Г9	$\pi^0\pi^+\pi^-$	$< 1.84 \times 10^{-5}$
Γ ₁₀	$D^*(2010)^{\pm}$ anything	
		Radiative decays
Γ_{11}	$\gamma \pi^+ \pi^-$	$(6.3 \pm 1.8) \times 10^{-5}$
Γ12	$\gamma \pi^0 \pi^0$	$(1.7 \pm 0.7) \times 10^{-5}$
Γ ₁₃	$\gamma 2h^+2h^-$	$(7.0 \pm 1.5) \times 10^{-4}$
Γ_{14}	$\gamma 3h^+3h^-$	$(5.4 \pm 2.0) \times 10^{-4}$
Γ ₁₅	γ 4 h^+ 4 h^-	$(7.4 \pm 3.5) \times 10^{-4}$
Γ ₁₆	$\gamma \pi^+ \pi^- K^+ K^-$	$(2.9 \pm 0.9) \times 10^{-4}$
Γ_{17}	$\gamma 2\pi^+ 2\pi^-$	$(2.5 \pm 0.9) \times 10^{-4}$
Γ ₁₈	$\gamma 3\pi^+ 3\pi^-$	$(2.5 \pm 1.2) \times 10^{-4}$
Γ_{19}	$\gamma 2\pi^{+} 2\pi^{-} K^{+} K^{-}$	$(2.4 \pm 1.2) \times 10^{-4}$
Γ ₂₀	$\gamma \pi^+ \pi^- ho \overline{ ho}$	$(1.5 \pm 0.6) \times 10^{-4}$
Γ ₂₁	$\gamma 2\pi^+ 2\pi^- p \overline{p}$	$(4 \pm 6) \times 10^{-5}$

Γ22	$\gamma 2K^+2K^-$	(2.0 ±2.0) × 10 ⁻⁵	
	$\gamma \eta'(958)$	< 1.3	× 10 ⁻³	90%
Γ24	$\gamma\eta$	< 3.5	× 10 ⁻⁴	90%
Γ_{25}	$\gamma f_2'(1525)$	< 1.4	× 10 ⁻⁴	90%
Γ ₂₆	$\gamma f_2(1270)$	(8 ±4	$) \times 10^{-5}$	
Γ27	$\gamma \eta (1440)$	< 8.2	\times 10 ⁻⁵	90%
Γ ₂₈	$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	< 2.6	× 10 ⁻⁴	90%
Γ_{29}	$\gamma f_0(2200) \rightarrow \gamma K^+ K^-$	< 2	\times 10 ⁻⁴	90%
Γ ₃₀	$\gamma f_J(2220) \rightarrow \gamma K^+ K^-$	< 1.5	\times 10 ⁻⁵	90%
Γ31	$\gamma \eta(2225) \rightarrow \gamma \phi \phi$	< 3	$\times 10^{-3}$	90%
Γ ₃₂	γX	< 3	× 10 ⁻⁵	90%
	$X = \underline{p}$ seudoscalar with $m < 7.2 \text{ GeV}$)		_	
Γ ₃₃	$\gamma X X$	< 1	\times 10 ⁻³	90%
	$X\overline{X} = \text{vectors with } m < 3.1 \text{ GeV})$			

$T(15) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(e^+e^-) \times \Gamma(\mu^+\mu^-)/\Gamma_{\text{tota}}$	d				$\Gamma_2\Gamma_3/\Gamma$
VALUE (eV)	DOCUMENT ID		TECN	COMMENT	
31.2±1.6±1.7	KOBEL	92	CBAL	$e^+e^- \rightarrow$	$\mu^+\mu^-$
$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma_{to}$	tal				$\Gamma_0\Gamma_2/\Gamma$
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
1.216±0.027 OUR AVERAGE					
$1.187 \pm 0.023 \pm 0.031$				$e^+e^- \rightarrow$	
$1.23 \pm 0.02 \pm 0.05$	5 JAKUBOWSKI	88	CBAL	$e^+e^- \rightarrow$	hadrons
1.37 ±0.06 ±0.09	⁶ GILES	84B	CLEO	$e^+e^- \rightarrow$	hadrons
$1.23 \pm 0.08 \pm 0.04$	6 ALBRECHT	82	DASP	$e^+e^- \rightarrow$	hadrons
1.13 ±0.07 ±0.11	6 NICZYPORUK	82	LENA	$e^+e^- \rightarrow$	hadrons
1.09 ±0.25	⁶ BOCK			$e^+e^- \rightarrow$	
1.35 ± 0.14	⁷ BERGER	79	PLUT	$e^+e^- \rightarrow$	hadrons
 Radiative corrections evaluated Radiative corrections reevaluat Radiative corrections reevaluat 	ed by BUCHMUE	LLEF	88 foli		

T(15) PARTIAL WIDTHS

Γ(e ⁺ e ⁻)				Γ2
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
1.32±0.04±0.03	8 ALBRECHT	95E ARG	$e^+e^- \rightarrow hadrons$	
9				

T(15) BRANCHING RATIOS

DOCUMENT ID TECN COMMENT

. 0 0014				
0.0267 + 0.0014 OUR AVERAG	E			
$0.0261 \pm 0.0012 ^{+0.0009}_{-0.0013}$	25k	CINABRO 94	ŧв CLE2 e	$+_{e^-} \rightarrow \tau^+\tau^-$
0.027 ±0.004 ±0.002	9	ALBRECHT 85	oc ARG 1	^(25) → + - + -
0.034 ±0.004 ±0.004		GILES 83	CLEO e	$+\frac{\pi}{e} - \frac{\pi}{\rightarrow} \frac{\tau}{\tau} + \frac{\tau}{\tau} -$
⁹ Using B($T(15) \rightarrow ee$) =	B($\Upsilon(15)$	$\rightarrow \mu\mu) = 0.0256$; not used fo	or width evaluations.
$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$				Г3/Г
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.0248±0.0006 OUR AVERAG	iΕ			
$0.0249 \pm 0.0008 \pm 0.0013$		ALEXANDER	98 CLE2	T(25) →
				$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$
$0.0212 \pm 0.0020 \pm 0.0010$		¹⁰ BARU	92 MD1	e+e- µ+ µ-
$0.0231 \pm 0.0012 \pm 0.0010$		¹⁰ KOBEL	92 CBAL	e+e→
$0.0252 \pm 0.0007 \pm 0.0007$		CHEN	89B CLEO	$e^+e^\perp \xrightarrow{\mu}$
$0.0261 \pm 0.0009 \pm 0.0011$		KAARSBERG	89 - CSB2	$e^+e^- \rightarrow$
$0.0230 \pm 0.0025 \pm 0.0013$	86	ALBRECHT	87 ARG	$\mu^+\mu^ \Upsilon(25) \rightarrow$
0.029 ±0.003 ±0.002	864	BESSON	84 CLEO	$\pi^+\pi^-\mu^+\mu^ T(25) \rightarrow$
0.025 ±0.005		D200011	0. 0220	$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$
$0.027 \pm 0.003 \pm 0.003$		ANDREWS	83 CLEO	e+e- → "+"-
$0.032 \pm 0.013 \pm 0.003$		ALBRECHT	82 DASP	e+e
$0.038 \pm 0.015 \pm 0.002$		NICZYPORUK	82 LENA	e+e− → μ+μ−
$0.014 \begin{array}{l} +0.034 \\ -0.014 \end{array}$		воск	80 CNTR	e+e- → +
0.022 ±0.020		BERGER	79 PLUT	e+ e− → u+ u−

 $^{^{\}rm 10}\,{\rm Taking}$ into account interference between the resonance and continuum.

$\Upsilon(1S)$

$\Gamma(e^+e^-)/\Gamma_{\text{total}}$	EVTS	DOCUMEN	NT ID	TECN CO	Γ ₂ _{ΜΜΕΝΤ}	/F	$\Gamma(\gamma 3\pi^+ 3\pi^-)/\Gamma_1$					Γ ₁₈ /Γ
0.0238 ± 0.0011 OUR AVE							VALUE (units 10 ⁻⁴) 2.5±0.9±0.8	17 ±	DOCUMENT ID		$e^+e^- \rightarrow$	hadrons
$0.0229 \pm 0.0008 \pm 0.0011$		ALEXAN	IDER 98	CLE2 T($(25) \rightarrow \pi^+\pi^-e^+e^-$,- I		5	102101	700 0020		
$0.0242 \pm 0.0014 \pm 0.0014$	307	ALBREC	:HT 87	ARG ↑(25) → -+	.–	$\Gamma(\gamma 2\pi^+ 2\pi^- K^+)$	-				Γ ₁₉ /Γ
0.028 ±0.003 ±0.002	826	BESSON	1 84	CLEO Y($(25) \rightarrow (\pi^+\pi^-e^+e^+)$. -	VALUE (units 10 ⁻⁴) 2.4±0.9±0.8	<u>EVTS</u> 18 ±	DOCUMENT ID	90B CLEO	$e^+e^- \rightarrow$	hadrons
0.051 ±0.030		BERGER	80c	PLUT e+	π'π e'e 'e' → _+-	;		7				
$\Gamma(J/\psi(1S))$ anything)/[Г4	/ Γ	$\Gamma(\gamma 2\pi^+ 2\pi^- \rho \overline{\rho})$ VALUE (units 10^{-4})	/「total EVTS	DOCUMENT ID	TECN	COMMENT	Γ ₂₁ /Γ
• • • • • • • • • • • • • • • • • • • •		CUMENT ID	TECN	COMMENT			0.4±0.4±0.4	7 ± 6	FULTON		e+e- →	hadrons
< 0.68 9	0 AL	BRECHT	92J ARG	e+ e- →	e^+e^-X , $\rightarrow \mu^+\mu^-$	•	$\Gamma(\gamma 2h^+2h^-)/\Gamma_b$	otal				Γ ₁₃ /Γ
1.1 ±0.4±0.2			89 CLEO	e+e- →	$\mu^{+}\mu^{-}X$	^	VALUE (units 10-4)	EVTS	DOCUMENT ID	TECN	COMMENT	
 • • We do not use the f < 1.7 	-	i for averages, ASCHMANN			badunne		$7.0\pm1.1\pm1.0$	80 ± 12	FULTON	90B CLEO	e ⁺ e ⁻ →	hadrons
<20 9	0 NI	CZYPORUK		e · c →	nautons		$\Gamma(\gamma 3h^+ 3h^-)/\Gamma_{\rm t}$	otal				Γ ₁₄ /Γ
¹¹ Using B((J/ψ) $\rightarrow \mu^+$	$\mu^{-}) = (6.9)$	± 0.9)%.					VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN	COMMENT	
$\Gamma(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$					Γ ₆	/ Γ	5.4±1.5±1.3	39 ± 11	FULTON	90B CLEO	e ⁺ e ⁻ →	hadrons
		OCUMENT ID	TECN	COMMENT			$\Gamma(\gamma 4h^+ 4h^-)/\Gamma_t$	ntal				Γ ₁₅ /Γ
•	00 BA	ARU	92 MD1	T(15) →			VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN	COMMENT	
$\Gamma(K^+K^-)/\Gamma_{\text{total}}$					Г	·/Γ	7.4±2.5±2.5	36 ±	FULTON	90B CLEO	e+ e- →	hadrons
		ARU	92 MD1	$\Upsilon(1S) \rightarrow$		_	$\Gamma(\rho\pi)/\Gamma_{\text{total}}$	••				Γ ₅ /Γ
				. (,		, /Г	VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID	TECN	COMMENT	
$\Gamma(p\overline{p})/\Gamma_{\text{total}}$ VALUE (units 10^{-4})	:L% DC	OCUMENT ID	TECN	COMMENT	-	371	< 2 • • • We do not us	90 e the following	FULTON	90B	γ(15) →	$\rho^0 \pi^0$
<5 9	12 BA		96 MD1	<u>γ(15)</u> →	ρŢ		<10	90	BLINOV	90 MD1	T(15) →	
¹² Supersedes BARU 92 in	n this node.						<21	90	NICZYPORUI	K 83 LENA	γ(15) →	$\rho^0 \pi^0$
$\Gamma(\pi^0\pi^+\pi^-)/\Gamma_{\text{total}}$					Г9	/ Γ	$\Gamma(D^*(2010)^{\pm} an)$	$ au$ thing)/ $\Gamma_{ ext{tota}}$	ı			Γ ₁₀ /Γ
		OCUMENT ID	<u>TECN</u>	COMMENT		— ,	VALUE (units 10 ⁻³)	CL%	DOCUMENT ID	TECN	$\frac{COMMENT}{e^+e^-} \rightarrow$	50 ±v
	1A 06	NASTASSOV	99 CLE2	e ' e →		t	$^{<19}$ For $x_p > 0.2$.	90	17 ALBRECHT	92J ARG	e e →	D - π + X
$\Gamma(\gamma X)/\Gamma_{\text{total}}$ (X = pseudoscalar w	with m < 72 (Ca\/\			Γ ₃₂	<u>·</u> /Γ						F /F
· · ·		OCUMENT ID	TECN	COMMENT			$\Gamma(\gamma\eta(1440))/\Gamma_{to}$ VALUE (units 10 ⁻⁵)	cl%	DOCUMENT ID	TECN	COMMENT	Γ ₂₇ /Γ
	_		95 CLEO	$e^+e^- \rightarrow$	$\gamma + X$		<8.2		18 FULTON			γK+ π ∓ K0
¹³ For a noninteracting ps	seudoscalar X	with mass <	: 7.2 GeV.				¹⁸ Includes unknow	n branching ra	tio of η(1440) —			J
$\Gamma(\gamma X \overline{X})/\Gamma_{\text{total}}$	2.1 (-)				Г33	, /Γ	$\Gamma(\gamma\eta'(958))/\Gamma_{to}$	le!				Г ₂₃ /Г
$(X\overline{X} = \text{vectors with}$ VALUE (units 10^{-3})		() OCUMENT ID	TECN	COMMENT			VALUE (units 10 ⁻³)	CL%	DOCUMENT ID	TECN	COMMENT	
<1	90 14 B	ALEST	95 CLEO	e+ e- →	$\gamma + X\overline{X}$		<1.3	90	SCHMITT	88 CBAL	γ (15) →	γX
¹⁴ For a noninteracting ve	ctor X with	mass < 3.1 G	ieV.				$\lceil(\gamma\eta)/\lceil_{total}$					Γ ₂₄ /Γ
$\lceil (\gamma \pi^+ \pi^-) / \lceil_{\text{total}} \rceil$					Γ ₁₁	<u>.</u> /Γ	VALUE (units 10 ⁻⁴)	90 <u>CL%</u>	DOCUMENT ID	88 CBAL	$\Upsilon(15) \rightarrow$	~Y
VALUE (units 10 ⁻⁵)		OCUMENT ID	TECN	COMMENT		— ,			SCHWITT	00 CDAL	7(13) →	
6.3 \pm 1.2 \pm 1.3 ¹⁵ For $m_{\pi\pi} > 1$ GeV.	AI	NASTASSOV	99 CLE2	e'e →	nadrons		$\Gamma(\gamma f_2'(1525))/\Gamma$ VALUE (units 10^{-5})	total CL%_	DOCUMENT ID	TECN	COMMENT	Γ ₂₅ /Γ
					-	/F	<14		19 FULTON	90B CLEO		γK+K-
$\Gamma(\gamma \pi^0 \pi^0)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁵)	D	OCUMENT ID	TECN	COMMENT	Γ ₁₂	2/1	• • • We do not u					v+ v-
1.7±0.6±0.3		NASTASSOV				I	$<$ 19.4 19 Assuming B(f_2^t)		19 ALBRECHT	89 ARG	7(13) →	γK ⁺ K ⁻
¹⁶ For $m_{\pi\pi} > 1$ GeV.						ı	-					F. //
$\Gamma(\gamma 2\pi^+ 2\pi^-)/\Gamma_{\text{total}}$					Γ ₁₇	, /Γ	$\Gamma(\gamma f_0(1710) \rightarrow 0)$ VALUE (units 10^{-4})	7ヘヘ)/「total CL%	DOCUMENT ID	TECN	COMMENT	Γ ₂₈ /Ι
• • • • • • • • • • • • • • • • • • • •	VTS DO	OCUMENT ID	TECN	COMMENT	-		< 2.6		20 ALBRECHT	89 ARG		γK+K-
2.5±0.7±0.5	6 ± FI 7	ULTON	90B CLEO	e+e- →	• hadrons		• • • We do not u		g data for averag ²⁰ FULTON			
$\Gamma(\gamma \pi^+ \pi^- K^+ K^-)/\Gamma_t$	ntal				Г ₁₆	./ Г	< 6.3 <19		²⁰ FULTON ²⁰ FULTON	90B CLEO	$\Upsilon(15) \rightarrow \Upsilon(15) \rightarrow$	7 K C K C
•		OCUMENT ID	TECN	COMMENT			< 8	90	21 ALBRECHT	89 ARG	r(15) →	$\gamma \pi^{+} \pi^{-}$
	9 ± FI	ULTON	90B CLEO	e+ e- →	hadrons		<24 ²⁰ Assuming B(f ₀ (²² SCHMITT) = 0.38.	RR CRAL	Y (15) →	γX
[[+]	U				F	. / =	²¹ Assuming B(f ₀ ($1710) \rightarrow \pi\pi$	= 0.04.			
$\Gamma(\gamma \pi^+ \pi^- p \overline{p})/\Gamma_{\text{total}}$ VALUE (units 10^{-4})	EVTS DE	OCUMENT ID	TECN	COMMENT		₀ /Γ	²² Assuming B(f ₀ (= 0.18.			
	2 ± F		90B CLEO				Γ(γ f ₂ (1270))/Γ ₁			_		Γ ₂₆ /Ι
	6				_		VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID		<u>COMMENT</u>	
=(aud-11-1						2/Γ	8.1 ± 2.3 + 2.9 • • • We do not u		²³ ANASTASSO r data for averag			
$\Gamma(\gamma 2K^+2K^-)/\Gamma_{\text{total}}$	TUTE -	OCHMENT IN	TECH									
VALUE (units 10 ⁻⁴)		OCUMENT ID	90B CLEO				<21		²³ FULTON		γ(15) →	
VALUE (units 10 ⁻⁴)								90		90B CLEO 89 ARG	T(15) →	$\gamma \pi^+ \pi^-$ $\gamma \pi^+ \pi^-$

Γ(<i>γf</i> ၂(222	20) -	→ γK+K-)/	Γ _{total}	Γ ₃₀ /Γ
•		CL%	DOCUMENT ID T	
< 1.5		90	24 FULTON 90B C	
	o no		ng data for averages, fits, I	
			0.4	
< 2.9		90		
<20		90		$\gamma D1 \gamma (15) \rightarrow \gamma \kappa^+ \kappa^-$
24 Including	g uni	cnown branching	ratio of $f_J(2220) \rightarrow K^+$	κ
-/ /	- \			=
	ا (د	· γφφ)/Γ _{total}		Г ₃₁ /Г
VALUE		<u> </u>		ECN COMMENT
<0.003		90	²⁵ BARU 89 N	4D1 Υ(15) →
				7 K+ K- K+ K-
²⁵ Assumin	g tha	it the η(2225) d	lecays only into φφ.	
-/ -/	<u>م</u>	,, L ,, _, \	-	
	U) –	+γK+K-)/		Γ ₂₉ /Γ
VALUE		<u>CL%</u>	DOCUMENT ID T	
<0.0002		90	²⁶ BARU 89 N	$MD1 \Upsilon(15) \rightarrow \gamma K^+ K^-$
²⁶ Assumin	g tha	t the f ₀ (2200)	decays only into K^+K^- .	
			τ (15) REFERENCES	
			,,	
ARTAMONOV	00	PL B474 427	A.S. Artamonov et al.	
ANASTASSOV ALEXANDER		PRL 82 286 PR D58 052004	A. Anastassov <i>et al.</i> J.P. Alexander <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
BARU	96	PRPL 267 71	S.E. Baru et al.	(NOVO)
LBRECHT	95E	ZPHY C65 619	H. Albrecht et al.	(ARGUS Collab.)
BALEST INABRO	95 94B	PR D51 2053 PL B340 129	R. Balest et al. D. Cinabro et al.	(CLEO Collab.) (CLEO Collab.)
ALBRECHT	92J	ZPHY C55 25	H. Albrecht et al.	(ARGUS Collab.)
BARU	92	ZPHY C54 229	S.E. Baru et al.	(NOVO)
BARU KOBEL	92B 92	ZPHY C56 547 ZPHY C53 193	S.E. Baru <i>et al.</i> M. Kobel <i>et al.</i>	(NOVO) (Crystal Ball Collab.)
BLINOV	90	PL B245 311	A.E. Blinov et al.	(NOVO)
ULTON	90B	PR D41 1401	R. Fulton et al.	(CLEO Collab.)
MASCHMANN ALBRECH <i>T</i>	89	ZPHY C46 555 ZPHY C42 349	W.S. Maschmann et al. H. Albrecht et al.	(Crystal Ball Collab.) (ARGUS Collab.)
LEXANDER	89	NP B320 45	J.P. Alexander et al.	(LBL, MICH, SLAC)
BARU CHEN	89 89B	ZPHY C42 505	S.E. Baru <i>et al.</i> W.Y. Chen <i>et al</i> .	(NOVO)
ULTON	89	PR D39 3528 PL B224 445	R. Fulton et al.	(CLEO Collab.) (CLEO Collab.)
CAARSBERG	89	PRL 62 2077	T.M. Kaarsberg et al.	(CUSB Collab.)
BUCHMUEL	88	HE e+e- Physic	s 412 W. Buchmueller, S. Coo orld Scientific, Singapore	per (HANN, DESY, MIT)
AKUBOWSKI	. All .	ZPHY C40 49	Z. Jakubowski <i>et al</i> .	(Crystal Ball Collab.) IGJP0
CHMITT	88	ZPHY C40 199	P. Schmitt et al.	(Crystal Ball Collab.)
ALBRECHT COHEN ,	87 87	ZPHY C35 283 RMP 59 1121	H. Albrecht et al. E.R. Cohen, B.N. Taylor	(ARGUS Collab.) (RISC, NBS)
BARU	86	ZPHY C30 551	S.E. Baru et al.	(NOVO)
LBRECHT	85C	PL 154B 452	H. Albrecht et al.	(ARGUS Collab.)
(URAEV	85	SJNP 41 466 Translated from Y	E.A. Kuraev, V.S. Fadin	(NOVO)
ARTAMONOV		PL 137B 272	A.S. Artamonov et al.	(NOVO) (CLEO Collab.)
BESSON BILES	84 84B	PR D30 1433 PR D29 1285	D. Besson et al. R. Giles et al.	(CLEO Collab.) (CLEO Collab.)
MACKAY	84	PR D29 2483	W.W. MacKay et al.	(CUSB Collab.)
NDREW\$	83	PRL 50 807	D.E. Andrews et al.	(CLEO Collab.)
SILES NICZYPORUK	83 83	PRL 50 877 ZPHY C17 197	R. Giles <i>et al.</i> B. Niczyporuk <i>et al.</i>	(HARV, OSU, RÒCH, RUTG+) (LENA CONAD.)
ALBRECHT	82	PL 116B 383	H. Albrecht et al.	(DESY, DORT, HEIDH+)
RTAMONOV		PL 118B 225	A.S. Artamonov et al.	(NOVO)
NCZYPORUK BERGER	82 80C	ZPHY C15 299 PL 93B 497	B. Niczyporuk et al. C. Berger et al.	(LENA Collab.) (PLUTO Collab.)
OCK -	80	ZPHY C6 125	P. Bock et al.	(HEIDP, MPIM, DESY, HAMB)
BERGER	79	ZPHY C1 343	C. Berger et al.	(PLUTO Collab.)
		—— от	HER RELATED PAPE	RS ——
OENIGS ALBRECHT	86	DE5Y 86/136	K. Koenigsmann	(OESY)
ARTAMONOV	84 84	PL 134B 137 PL 137B 272	H. Albrecht et al. A.S. Artamonov et al.	(ARGUS Čollab.) (NOVO)
ARTAMONOV	82	PL 118B 225	A.S. Artamonov et al.	(NOVO)
BERGER BIENLEIN	78 78	PL 76B 243 PL 78B 360	C. Berger <i>et al.</i> J.K. Bienlein <i>et al.</i>	(PLUTO Collab.) (DESY, HAMB, HEIDP+)
DARDEN	78 78	PL 76B 246	C.W. Darden et al.	(DESY, HAMB, HEIDP+) (DESY, DORT, HEIDH+)
SARELICK	78	PR D18 945	D.A. Garelick et al.	(NEAS, WASH, TUFT5)
(APLAN (OH	78 78	PRL 40 435 PRL 41 684	D.M. Kaplan <i>et al.</i> J.K. Yoh <i>et al.</i>	(STON, FNAL, COLU) (COLU, FNAL, STON)
ОВВ	77	PL 72B 273	J.H. Cobb et al.	(BNL, CERN, SYRA, YALE)
HERB	77	PRL 39 252 PRL 39 1240	S.W. Herb et al. W.R. Innes et al.	(BNL, CERN, SYRA, YALE) (COLU, FNAL, STON)
NNES	77			(COLU, FNAL, STON)

$\chi_{b0}(1P)$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Observed in radiative decay of the $\Upsilon(2S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore $P=\pm$

χ_{b0}(1P) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
9859.9±1.0 OUR AVERAG	E				
$9860.0 \pm 0.8 \pm 1.2$	¹ EDWARDS	99	CLE2	T(25) →	$\gamma \chi(1P)$
9859.9±0.5±1.4	1 ALBRECHT		ARG	T(25) →	conv.γX
9858.1 ± 1.6 ± 2.7	¹ NERNST	85	CBAL	r(25) →	γX
9864.0±7 ±1	¹ HAAS	84	CLEO	T(25) →	conv.γX
• • We do not use the fe	ollowing data for average	s, fits	, limits,	etc. • • •	
9872.8±0.7±5.0	1 KLOPFEN	83	CUSB	T(25) →	γX
1 From γ energy below, a	ssuming T(25) mass =	1002	3.3 MeV	<i>i</i> .	

γ ENERGY IN T(2S) DECAY

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
162.1 ± 1.0 OUR AVERAGE				
$162.0 \pm 0.8 \pm 1.2$	EDWARDS	99	CLE2	$\Upsilon(25) \rightarrow \gamma \chi(1P)$
$162.1 \pm 0.5 \pm 1.4$	ALBRECHT	85E	ARG	$\Upsilon(25) \rightarrow \text{conv.} \gamma X$
163.8 ± 1.6 ± 2.7	NERNST	85	CBAL	Υ(25) → γX
158.0 ±7 ±1	HAAS	84	CLEO	$\Upsilon(25) \rightarrow \text{conv.} \gamma X$
• • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
149.4 ±0.7 ±5.0	KLOPFEN	83	CUSB	$\Upsilon(25) \rightarrow \gamma X$

Xb0(1P) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ ₁	$\gamma \Upsilon(1S)$	<6 %	90%

X10(1P) BRANCHING RATIOS

$\Gamma(\gamma \Upsilon(1S))/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
< 0.06	90	WALK	86	CBAL	$\Upsilon(25) \rightarrow$	$\gamma \gamma \ell^+ \ell^-$
• • • We do not use the	following o	data for averages	, fits	s, limits,	etc. • • •	
<0.11	90	PAUSS	83	CUSB	$\Upsilon(25) \rightarrow$	$\gamma\gamma\ell^+\ell^-$

χ_{b0}(1P) REFERENCES

EDWARDS	99	PR D59 032003	K.W. Edwards et al.	(CLEO Collab.)
WALK	86	PR D34 2611	W.S. Walk et al.	(Crystal Ball Collab.)
ALBRECHT	85E	PL 160B 331	H. Albrecht et al.	(ARGUS Collab.)
NERNST	85	PRL 54 2195	R. Nernst et al.	(Crystal Ball Collab.)
HAAS	84	PRL 52 799	J. Haas et al.	(CLEO Collab.)
KLOPFEN	83	PRL 51 160	C. Klopfenstein et al.	(CUSB Collab.)
PAUSS	83	PL 130B 439	F. Pauss et al.	(MPIM, COLU, CORN, LSU+)

$$I^G(J^{PC}) = 0^+(1^{++})$$

 J needs confirmation.

Observed in radiative decay of the $\Upsilon(2S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P=+. J=1 from SKWARNICKI 87.

$\chi_{b1}(1P)$ MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
9892.7±0.6 OUR AVERAGE	Error includes scale	factor	of 1.1.		
9893.7±0.4±0.6	¹ EDWARDS	99	CLE2	$\Upsilon(2S) \rightarrow \gamma \chi(1P)$	
9890.7±0.9±1.3	1 WALK	86	CBAL	$\Upsilon(25) \rightarrow \gamma \gamma \ell^+ \ell^-$	
9890.7±0.3±1.1	1 ALBRECHT	85E	ARG	$\Upsilon(25) \rightarrow \text{conv.} \gamma X$	
9891.8±0.8±2.4	¹ NERNST	85	CBAL	$\Upsilon(25) \rightarrow \gamma X$	
9893.5±0.8±1.0	1 HAAS	84	CLEO	$\Upsilon(25) \rightarrow \text{conv.} \gamma X$	
9894.4±0.4±3.0	1 KLOPFEN	83	CUSB	$\Upsilon(2S) \rightarrow \gamma X$	
9892 ±3	1 PAUSS	63	ÇUSB	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$	

¹ From γ energy below, assuming $\Upsilon(25)$ mass = 10023.3 MeV.

γ ENERGY IN T(25) DECAY

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	_
129.8±0.5 OUR AVERAGE	Error includes scale fa	ctor of 1.1.		Ξ.
128.8±0.4±0.6	EDWARDS	99 CLE2	$\Upsilon(2S) \rightarrow \gamma \chi(1P)$	
131.7±0.9±1.3	WALK	86 CBAL	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$	
131.7±0.3±1.1	ALBRECHT	85E ARG	$\Upsilon(2S) \rightarrow \text{conv.} \gamma X$	
130.6±0.8±2.4	NERNST	85 CBAL	$\Upsilon(25) \rightarrow \gamma X$	
129 ±0.8±1	HAAS	84 CLEO	$\Upsilon(25) \rightarrow \text{conv.} \gamma X$	
128.1 ± 0.4 ± 3.0	KLOPFEN	83 CUSB	$\Upsilon(2S) \rightarrow \gamma X$	
130.6 ± 3.0	PAUSS	83 CUSB	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$	

Meson Particle Listings

 $\chi_{b1}(1P), \chi_{b2}(1P), \Upsilon(2S)$

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	γ T(15)	(35 ± 8) %

Xb1(1P) BRANCHING RATIOS

Γ(<i>γ T</i> (15))/F _{total}
VALUE	

 Γ_1/Γ DOCUMENT IO TECN COMMENT 0.35±0.08 OUR AVERAGE 86 CBAL $\Upsilon(25) \rightarrow \gamma \gamma \ell^+ \ell^-$ 83 CUSB $\Upsilon(25) \rightarrow \gamma \gamma \ell^+ \ell^ 0.32 \pm 0.06 \pm 0.07$ 0.47 ± 0.18 KLOPFEN...

$\chi_{b1}(1P)$ REFERENCES

EDWARD\$	99	PR D59 032003
SKWARNICKI	87	PRL 58 972
WALK	86	PR D34 2611
ALBRECHT	85E	PL 160B 331
NERNST	85	PRL 54 2195
HAAS	84	PRL 52 799
KLOPFEN	83	PRL 51 160
PAUSS	83	PL 130B 439

K.W. Edwards et al. T. Skwarnicki et al. W.S. Walk et al. H. Albrecht et al. R. Henst et al. J. Haas et al. C. Klopfenstein et al. F. Pauss et al. (CLEO Collab.)
(Crystal Ball Collab.) J
(Crystal Ball Collab.) J
(ARGUS Collab.)
(Crystal Ball Collab.)
(CLEO Collab.)
(CUSB Collab.)
(MPIM, COLU, CORN, LSU+)

$\chi_{b2}(1P)$

 $I^{G}(J^{PC}) = 0^{+}(2^{+})$ J needs confirmation.

Observed in radiative decay of the $\Upsilon(2S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore $P=+,\ J=2$ from SKWARNICKI 87.

$\chi_{b2}(1P)$ MASS

VALUE (MeV)	DOCUMENT	ID TECN	COMMENT
9912.6±0.5 OUR AVERAGE	Error includes sca	le factor of 1.1.	
$9911.9 \pm 0.3 \pm 0.6$	¹ EDWARDS	99 CLE2	$\Upsilon(25) \rightarrow \gamma \chi(1P)$
$9915.7 \pm 1.1 \pm 1.3$	1 WALK	86 CBAL	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$
$9912.1 \pm 0.3 \pm 0.9$	1 ALBRECHT	85E ARG	$\Upsilon(2S) \rightarrow \text{conv.} \gamma X$
$9912.3 \pm 0.8 \pm 2.2$	1 NERNST	85 CBAL	$\Upsilon(25) \rightarrow \gamma X$
$9913.2 \pm 0.7 \pm 1.0$	1 HAAS	84 CLEO	$\Upsilon(25) \rightarrow \text{conv.} \gamma X$
$9914.5 \pm 0.3 \pm 2.0$	1 KLOPFEN.	83 CUSB	$\Upsilon(25) \rightarrow \gamma X$
9914 ±4	1 PAUSS	83 CUSB	$\Upsilon(25) \rightarrow \gamma \gamma \ell^+ \ell^-$
1			

¹ From γ energy below, assuming $\Upsilon(25)$ mass = 10023.3 MeV.

7 ENERGY IN T(25) DECAY

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
110.1±0.5 OUR AVERAGE	Error includes scale fac	tor of 1.1.	
$110.8 \pm 0.3 \pm 0.6$	EDWARDS	99 CLE2	$\Upsilon(25) \rightarrow \gamma \chi(1P)$
$107.0 \pm 1.1 \pm 1.3$	WALK	86 CBAL	$\Upsilon(25) \rightarrow \gamma \gamma \ell^+ \ell^-$
$110.6 \pm 0.3 \pm 0.9$	ALBRECHT	85E ARG	$\Upsilon(25) \rightarrow \text{conv.} \gamma X$
$110.4 \pm 0.8 \pm 2.2$	NERNST	85 CBAL	$\Upsilon(25) \rightarrow \gamma X$
$109.5 \pm 0.7 \pm 1.0$	HAAS	84 CLEO	$\Upsilon(25) \rightarrow \text{conv.} \gamma X$
$108.2 \pm 0.3 \pm 2.0$	KLOPFEN	83 CUSB	$\Upsilon(25) \rightarrow \gamma X$
108.8 ± 4.0	PAUSS	83 CUSB	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

Xb2(1P) DECAY MODES

	Mode	Fraction (Γ_i/Γ)		
Γ_1	γ Υ (15)	(22±4) %		

X12(1P) BRANCHING RATIOS

$\Gamma(\gamma T(1S))/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT 10		TECN	COMMENT	
0.22 ± 0.04 OUR AVERAGE					
$0.27 \pm 0.06 \pm 0.06$	WALK	86	CBAL	T(25) →	771+1-
0.20 ± 0.05	KLOPFEN	83	CUSB	T(25) →	771+1-

χ_№(1P) REFERENCES

EDWARDS	99	PR D59 032003	K.W. Edwards et al.	(CLEO Collab.)
SKWARNICKI	87	PRL 58 972	T. Skwarnicki et al.	(Crystal Ball Collab.) J
WALK	86	PR D34 2611	W.S. Walk et al.	(Crystal Ball Collab.)
ALBRECHT	85E	PL 160B 331	H. Albrecht et al.	(ARGUS Collab.)
NERNST	85	PRL 54 2195	R. Nernst et al.	(Crystal Ball Collab.)
HAAS	84	PRL 52 799	J. Haas et al.	(CLEO Collab.)
KLOPFEN	83	PRL 51 160	C. Klopfenstein et al.	(CUSB Collab.)
PAUSS	83	PL 130B 439	F. Pauss et al.	(MPIM, COLU, CORN, LSU+)

 $\Upsilon(2S)$

 $I^{G}(J^{PC}) = 0^{-}(1^{-})$

7(25) MASS

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT		
10.02326±0.00031 OUR AV					
10.0235 ±0.0005			$e^+e^- \rightarrow \text{hadrons}$		
10.0231 ± 0.0004	BARBER 84	4 REDE	$e^+e^- \rightarrow hadrons$		
• • • We do not use the fo	llowing data for averages, f	its, limits,	etc. • • •		
10.0236 ± 0.0005	2,3 BARU 86	6B REDE	$e^+e^- \rightarrow \text{hadrons}$		
¹ Reanalysis of BARU 868	using new electron mass (COHEN 6	37).		
² Reanalysis of ARTAMONOV 84.					
³ Superseded by ARTAMO	ONOV 00.				

$\Upsilon(2S)$ WIDTH

44±7 OUR EVALUATION See the Note on Width Determinations of the Υ states

T(25) DECAY MODES

	Mode	Fraction (Γ_i/Γ) Confidence	level
$\overline{\Gamma_1}$	$\Upsilon(1S)\pi^+\pi^-$	(18.8 ±0.6)%	
Γ_2	$\Upsilon(15)\pi^0\pi^0$	(9.0 ± 0.8) %	
Γ ₂ Γ ₃	$\tau^+\tau^-$	(1.7 ± 1.6) %	
Γ_4	$\mu^+\mu^-$	(1.31±0.21) %	
Γ_5	e+ e-	(1.18 ± 0.20) %	
Γ_6	$\Upsilon(1S)\pi^0$	$< 1.1 \times 10^{-3}$	90%
	$\Upsilon(1S)\eta$	$< 2 \times 10^{-3}$	90%
Γ8	$J/\psi(1S)$ anything	$< 6 \times 10^{-3}$	90%
		Radiative decays	
و۱	$\gamma \chi_{b1}(1P)$	$(6.8 \pm 0.7)\%$	
Γ_{10}	$\gamma \chi_{b2}(1P)$	(7.0 ±0.6)%	
Γ_{11}	$\gamma \chi_{b0}(1P)$	$(3.8 \pm 0.6)\%$	
Γ ₁₂	$\gamma f_0(1710)$	$< 5.9 \times 10^{-4}$	90%
Γ ₁₃	$\gamma f_2'(1525)$	$< 5.3 \times 10^{-4}$	90%
	$\gamma f_2(1270)$	$< 2.41 \times 10^{-4}$	90%
	$\gamma f_J(2220)$		

$\Upsilon(2S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(e^+e^-) \times \Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$					Г5Г4/Г
VALUE (eV)	DOCUMENT ID		TECN	COMMENT	
6.5±1.5±1.0	KOBEL	92	CBAL	$e^+e^- \rightarrow$	$\mu^+\mu^-$
$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma_{\text{tot}}$	ai				$\Gamma_0\Gamma_5/\Gamma$
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
0.553±0.023 OUR AVERAGE					
$0.552 \pm 0.031 \pm 0.017$				$e^+e^- \rightarrow$	
0.54 ±0.04 ±0.02	4 JAKUBOWSKI	88	CBAL	$e^+e^- \rightarrow$	hadrons
0.58 ±0.03 ±0.04	⁵ GILES	84B	CLEO	$e^+e^- \rightarrow$	hadrons
0.60 ±0.12 ±0.07	5 ALBRECHT	82	DASP	$e^+e^- \rightarrow$	hadrons
$0.54 \pm 0.07 \begin{array}{l} +0.09 \\ -0.05 \end{array}$	⁵ NICZYPORUK	81 C	LENA	$e^+e^-\to$	hadrons
0.41 ± 0.18	⁵ воск	80	CNTR	$e^+e^- \rightarrow$	hadrons
⁴ Radiative corrections evaluated	following KURAE	V 8	5.		

⁵ Radiative corrections reevaluated by BUCHMUELLER 88 following KURAEV 85.

T(2S) PARTIAL WIDTHS

Γ(e ⁺ e ⁻)				Γ ₅
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
0.52 ±0.03 ±0.01	6 ALBRECHT	95E ARG	$e^+e^- \rightarrow hadrons$	5
6 Applying the formula of	Kuraev and Fadin.			

au(2S) BRANCHING RATIOS

$\Gamma(J/\psi(1S)$ any	thing)/F _{total}				Γ ₈ /Ι
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<0.006	90	MASCHMANN 90	CBAL	$e^+e^- \rightarrow$	hadrons

(Crystal Ball Collab.) IGJPC (ARGUS Collab.) (RISC, NBS) (RISC, NBS) (Crystal Ball Collab.) (NOVO) (ARGUS Collab.) (ARGUS Collab.) (Crystal Ball Collab.) (NOVO)

 0.035 ± 0.014

Meson Particle Listings

		. ()
$\Gamma(T(1S)\pi^{+}\pi^{-})/\Gamma_{\text{total}}$	Γ1/Γ	$\Gamma(\gamma f_0(1710))/\Gamma_{\text{total}}$ Γ_{12}/Γ
LUE EVT	S DOCUMENT ID TECN COMMENT	- VALUE (units 10 ⁻⁵) CL% DOCUMENT ID TECN COMMENT
188±0.006 OUR AVERAGE 192±0.002±0.010 52.68	7 ALEXANDER 98 CLE2 $\pi^{+}\pi^{-}\ell^{+}\ell^{-}$.	$ \begin{array}{ccccccccccccccccccccccccccc$
	$\pi^+\pi^-$ MM	 ● • We do not use the following data for averages, fits, limits, etc.
.181 ± 0.005 ± 0.010 11.6	ALBRECHT 87 ARG $e^+e^- ightarrow \pi^+\pi^-$ MM	< 5.9 90 12 ALBRECHT 89 ARG $\Upsilon(2S) \rightarrow \gamma \pi^+ \pi^-$
0.169±0.040	GELPHMAN 85 CBAL $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$	¹¹ Re-evaluated assuming B($f_0(1710) \rightarrow K^+K^-$) = 0.19. ¹² Includes unknown branching ratio of $f_0(1710) \rightarrow \pi^+\pi^-$.
0.191±0.012±0.006 0.189±0.026	BESSON 84 CLEO $\pi^+\pi^-$ MM FONSECA 84 CUSB $e^+e^ \rightarrow$	$\Gamma(\gamma f_2^i(1525))/\Gamma_{\text{total}}$ Γ_{13}/Γ
0.21 ±0.07	7 NICZYPORUK 818 LENA $e^+e^- \rightarrow$	VALUE (units 10 ⁻⁵) CL% DOCUMENT ID TECN COMMENT
7 Using B($\Upsilon(15) \rightarrow e^+e^-$) 0.07)%.	$\ell^+\ell^-\pi^+\pi^-$ = (2.52 ± 0.17)% and B(Υ (15) $\rightarrow \mu^+\mu^-$) = (2.48 ±	
$\Gamma(\Upsilon(1S)\pi^0\pi^0)/\Gamma_{\text{total}}$	Γ ₂ /Γ	
VALUE EVTS	DOCUMENT ID TECN COMMENT	- VALUE (units 10 ⁻⁵) CL% DOCUMENT ID TECN COMMENT
0.090 ± 0.008 OUR AVERAGE		<24.1 90 ¹⁴ ALBRECHT 89 ARG $\Upsilon(25) \rightarrow \gamma \pi^+ \pi^-$
0.092±0.006±0.008 275	⁸ ALEXANDER 98 CLE2 $e^+e^- \rightarrow \ell^+\ell^-\pi^0\pi^0$ ALBRECHT 87 ARG $e^+e^- \rightarrow \pi^0\pi^0\ell^+\ell^-$	14 Using B($f_2(1270) \rightarrow \pi\pi$) = 0.84.
0.095±0.019±0.019 25 0.080±0.015	ALBRECHT 87 ARG $e^+e^- \rightarrow \pi^0\pi^0\ell^+\ell^-$ GELPHMAN 85 CBAL $e^+e^- \rightarrow \ell^+\ell^-\pi^0\pi^0$	
0.103±0.023	FONSECA 84 CUSB $e^+e^- \rightarrow \ell^+\ell^-\pi^0\pi^0$	$\Gamma(\gamma f_J(2220))/\Gamma_{\text{total}}$ Γ_{15}/Γ
⁸ Using B($\Upsilon(15) \rightarrow e^+e^-$)	= $(2.52 \pm 0.17)\%$ and B($\Upsilon(15) \rightarrow \mu^{+}\mu^{-}$) = $(2.48 \pm$	VALUE (units 10 ⁻⁵) CL% DOCUMENT ID TECN COMMENT
0.07)%.		• • • We do not use the following data for averages, fits, limits, etc. • •
$\Gamma(\tau^+\tau^-)/\Gamma_{\text{total}}$	Г ₃ /Г	- <6.8 90 15 ALBRECHT 89 ARG $\Upsilon(25) \rightarrow \gamma K^+ K^-$
VALUE	DOCUMENT ID TECN COMMENT	¹⁵ Includes unknown branching ratio of $f_f(2220) \rightarrow K^+ K^-$.
0.017±0.015±0.006	HAAS 84B CLEO $e^+e^- \rightarrow \tau^+\tau^-$	T(2S) REFERENCES
Γ(μ ⁺ μ ⁻)/Γ _{total} _{VALUE} c	Γ ₄ /Γ	ARTAMONOV 00 PL B474 427 A.S. Artamonov et al.
0.0131±0.0021 OUR AVERAG		 EDWARDS 99 PR D59 032003 K.W. Edwards et al. (CLEO Collab.) ALEXANDER 98 PR D58 052004 J.P. Alexander et al. (CLEO Collab.)
$0.0122 \pm 0.0028 \pm 0.0019$	⁹ KOBEL 92 CBAL $e^+e^- \rightarrow \mu^+\mu^-$	BARU 96 PRPL 267 71 S.E. Baru et al. (NOVO)
$0.0138 \pm 0.0025 \pm 0.0015$	KAARSBERG 89 CSB2 $e^+e^- \rightarrow \mu^+\mu^-$	ALBRECHT 95E ZPHY C65 619 H. Albrecht et al. (ARGUS Collab.) KOBEL 92 ZPHY C53 193 M. Kobel et al. (Crystal Ball Collab.)
$0.009 \pm 0.006 \pm 0.006$	10 ALBRECHT 85 ARG $e^+e^- ightarrow \mu^+\mu^-$	MASCHMANN 90 ZPHY C46 555 W.S. Maschmann et al. (Crystal Ball Collab.)
0.018 ±0.008 ±0.005	HAAS 84B CLEO $e^+e^- \rightarrow \mu^+\mu^-$	ALBRECHT 89 ZPHY C42 349 H. Albrecht et al. (ARGUS Collab.) KAARSBERG 89 PRL 62 2077 T.M. Kaarsberg et al. (CUSB Collab.)
 We do not use the following 	ng data for averages, fits, limits, etc. • • •	BUCHMUEL 88 HE e^+e^- Physics 412 W. Buchmueller, S. Cooper (HANN, DESY, MIT)
< 0.038 9	0 NICZYPORUK 81C LENA $e^+e^- \rightarrow \mu^+\mu^-$	JAKUBOWSKI 88 ZPHY C40 49 Z. Jakubowski et al. (Crystal Ball Collab.) IGJF
⁹ Taking into account interferer	nce between the resonance and continuum.	ALBRECHT 87 ZPHY C35 283 H. Albrecht <i>et al.</i> (ARGUS Collab.) COHEN 87 RMP 59 1121 E.R. Cohen, B.N. Taylor (RISC, NBS)
10 Re-evaluated using B($\Upsilon(1S)$	$\rightarrow \mu^{+}\mu^{-}$) = 0.026.	LURZ 87 ZPHY C36 383 B. Lurz et al. (Crystal Ball Collab.)
$\Gamma(\Upsilon(1S)\pi^0)/\Gamma_{\text{total}}$	Г ₆ /Г	BARU 86B ZPHY C32 622 S.E. Baru <i>et al.</i> (NOVO) ALBRECHT 85 ZPHY C28 45 H. Albrecht <i>et al.</i> (ARGUS Collab.)
VALUE CL%	DOCUMENT ID TECN COMMENT	ALBRECHT 85E PL 160B 331 H. Albrecht et al. (ARGUS Collab.) GELPHMAN 85 PR D11 2893 D. Gelphman et al. (Crystal Ball Collab.)
<0.0011 90	ALEXANDER 98 CLE2 $e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$	KURAEV 85 SJNP 41 466 E.A. Kuraev, V.S. Fadin (NOVO)
	ng data for averages, fits, limits, etc. • •	Translated from YAF 41 733. NERNST 85 PRL S4 2195 R. Nernst et al. (Crystal Ball Collab.)
< 0.008 90	LURZ 87 CBAL $e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$	ARTAMONOV 84 PL 137B 272 A.S. Artamonov et al. (NOVO) BARBER 84 PL 135B 498 D.P. Barber et al.
E(m(1C) \) (E	- 4-	BESSON 84 PR D30 1433 D. Besson et al. (CLEO Collab.) - FONSECA 84 NP B242 31 V. Fonseca et al. (CUSB Collab.)
$\Gamma(T(15)\eta)/\Gamma_{\text{total}}$	Γ ₇ /Γ	GILES 84B PR D29 1285 R. Giles et al. (CLEO Collab.)
VALUE CL%	DOCUMENT ID TECN COMMENT	HAAS 84 PRL 52 799 J. Haas et al. (CLEO Collab.) HAAS 84B PR D30 1996 J. Haas et al. (CLEO Collab.)
<0.002 90	FONSECA 84 CUSB ng data for averages, fits, limits, etc. • • •	KLOPFEN 83 PRL 51 160 C. Klopfenstein et al. (CUSB Collab.) ALBRECHT 82 PL 116B 383 H. Albrecht et al. (DESY, DORT, HEIDH+)
		NICZYPORUK 81B PL 100B 95 B. Niczyporuk et al. (LENA Collab.)
<0.0028 90 <0.005 90	ALEXANDER 98 CLE2 $e^+e^- \rightarrow \ell^+\ell^-\eta$	NICZYPORUK 81C PL 99B 169 B. Niczyporuk et al. (LENA Collab.) BOCK 80 ZPHY C6 125 P. Bock et al. (HEIDP, MPIM, DESY, HAMB)
	ALBRECHT 87 ARG $e^+e^- \rightarrow \pi^+\pi^-\ell^+\ell^-$ MM	
<0.007 90	LURZ 87 CBAL $e^+ \hat{e}^- \rightarrow \ell^+ \ell^- (\gamma \gamma)$, $3\pi^0$	OTHER RELATED PAPERS
<0.010 90	3π°) BESSON 84 CLEO	ALEXANDER 89 NP B320 45 J.P. Alexander et al. (LBL, MICH, SLAC) WALK 86 PR D34 2611 W.S. Walk et al. (Crystal Ball Collab.)
$\Gamma(\gamma \chi_{b1}(1P))/\Gamma_{total}$	٦/و٦	ALBRECHT 84 PL 134B 137 H. Albrecht et al. (ARGUS Collab.) ARTAMONOV 84 PL 137B 272 A.S. Artamonov et al. (NOVO)
VALUE	DOCUMENT ID TECN COMMENT	ANDREWS 83 PRL 50 807 D.E. Andrews et al. (CLEO Collab.) GREEN 82 PRL 49 617 J. Green et al. (CLEO Collab.)
0.068±0.007 OUR AVERAGE		BIENLEIN 78 PL 78B 360 J.K. Bienlein <i>et al.</i> (DESY, HAMB, HEIDP+) DARDEN 78 PL 76B 246 C.W. Darden <i>et al.</i> (DESY, DORT, HEIDH+)
$0.069 \pm 0.005 \pm 0.009$	EDWARDS 99 CLE2 $\Upsilon(25) \rightarrow \gamma \chi(1P)$	KAPLAN 78 PRL 40 435 D.M. Kaplan et al. (STON, FNAL, COLÚ)
$0.091 \pm 0.018 \pm 0.022$	ALBRECHT 85E ARG $e^+e^- \rightarrow \gamma conv. X$	YOH 78 PRL 41 684 J.K. Yoh et al. (COLU, FNAL, STON) COBB 77 PL 72B 273 J.H. Cobb et al. (BNL, CERN, SYRA, YALE)
0.065 ± 0.007 ± 0.012	NERNST 85 CBAL $e^+e^- \rightarrow \gamma X$	HERB 77 PRL 39 252 S.W. Herb et al. (COLU, FNAL, STON)
0.080±0.017±0.016 0.059±0.014	HAAS 84 CLEO $e^+e^- \rightarrow \gamma \text{conv. X}$ KLOPFEN 83 CUSB $e^+e^- \rightarrow \gamma \text{X}$	INNES 77 PRL 39 1240 W.R. Innes et al. (COLU, FNAL, STON)
$\Gamma(\gamma \chi_{b2}(1P))/\Gamma_{total}$	Γ ₁₀ /Γ	
VALUE	DOCUMENT ID TECH COMMENT	
0.070±0.006 OUR AVERAGE		territoria de la companya de la com La companya de la co
$0.074 \pm 0.005 \pm 0.008$	EDWARDS 99 CLE2 $\Upsilon(25) \rightarrow \gamma \chi(1P)$	
$0.098 \pm 0.021 \pm 0.024$	ALBRECHT 85E ARG $e^+e^- \rightarrow \gamma conv. X$	
0.058 ± 0.007 ± 0.010	NERNST 85 CBAL $e^+e^- \rightarrow \gamma X$	
0.102±0.018±0.021 0.061±0.014	HAAS 84 CLEO $e^+e^- \rightarrow \gamma \text{conv. X}$ KLOPFEN 83 CUSB $e^+e^- \rightarrow \gamma \text{X}$	
	·	·
Γ(γχ _{b0} (1P))/Γ _{total}	Γ ₁₁ /Γ <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	
0.038±0.006 OUR AVERAGE	EDIMADDS AS TITLE	1
0.034±0.005±0.006	EDWARDS 99 CLE2 $\Upsilon(25) \rightarrow \gamma \chi(1P)$	·
$0.064 \pm 0.014 \pm 0.016$ $0.036 \pm 0.008 \pm 0.009$	ALBRECHT 85E ARG $e^+e^- \rightarrow \gamma conv. X$ NERNST 85 CBAL $e^+e^- \rightarrow \gamma X$	
0.044±0.023±0.009	HAAS 84 CLEO $e^+e^- \rightarrow \gamma x$	
	ng data for averages, fits, limits, etc. • • •	
#50 6/10 10/10/11	O	

KLOPFEN... 83 CUSB $e^+e^- \rightarrow \gamma X$

Meson Particle Listings

 $\chi_{b0}(2P)$, $\chi_{b1}(2P)$

 $\chi_{b0}(\overline{2P})$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Observed in radiative decay of the $\Upsilon(3S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore

XM(2P) MASS

VALUE (GeV) 10.2321 ± 0.0006 OUR AVERAGE	DOCUMENT ID	 TECN	COMMENT
$10.2312 \pm 0.0008 \pm 0.0012$ 10.2323 ± 0.0007	¹ HEINTZ ² MORRISON		$e^+e^- \rightarrow \gamma X, \ell^+\ell^- \gamma \gamma$ $e^+e^- \rightarrow \gamma X$

γ ENERGY IN T(3S) DECAY

VALUE (MeV)	EVT5	DOCUMENT ID		TECN	COMMENT
122.8±0.5 OUR AV	ERAGE Erro	r includes scale f	actor	of 1.1.	
123.0 ± 0.8	4959	³ HEINTZ	92	CSB2	$e^+e^- \rightarrow \gamma X$
124.6 ± 1.4	17	4 HEINTZ	92	CSB2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$
$122.3 \pm 0.3 \pm 0.6$	9903	MORRISON	91	CLE2	$e^+e^- \rightarrow \gamma X$

$\chi_{MO}(2P)$ DECAY MODES

	Mode	Fraction (Γ_j/Γ)			
Γ_1	γ T(2S)	(4.6 ± 2.1) %			
Γ_2	$\gamma T(1S)$	$(9 \pm 6) \times 10^{-3}$			

Xb0(2P) BRANCHING RATIOS

				Γ_1/Γ
CL%	DOCUMENT ID	<u>TECN</u>	COMMENT	
90	⁵ CRAWFORD ⁶ HEINTZ			
10 ⁻⁴ , an	$d B(\Upsilon(3S) \rightarrow \chi_{b0}$	$_0(2P)\gamma)=0$.049.	
	90 μ+μ-): 10 ⁻⁴ , an	90 $\frac{5}{6}$ CRAWFORD $\frac{6}{6}$ HEINTZ $\mu^{+}\mu^{-}$) = $\{1.37 \pm 0.26\}\%$, I 1.0^{-4} , and B $(\Upsilon(3S) \rightarrow \chi_{bl})$	$\begin{array}{c} 90 & 5 \\ \hline 6 \\ \text{HEINTZ} \\ \end{array} \begin{array}{c} 928 \\ \text{CLE2} \\ 92 \\ \text{CSB2} \\ \end{array} \\ \mu^{+}\mu^{-}) = (1.37 \pm 0.26)\%, \ \mathbb{B}(\varUpsilon(35) \rightarrow 0.06), \ \mathbb$	90 ⁵ CRAWFORD 92B CLE2 e ⁺ e ⁻ →

0.4 ± 0.6)% and ass	suming e _k	universality. Sup-	ersede	s HEIN	ITZ 91.	(***
$\Gamma(\gamma \Upsilon(1S))/\Gamma_{\text{total}}$						Γ ₂ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<0.025	90	⁷ CRAWFORD	92B	CLE2	$e^+e^- \rightarrow \ell^+$	<i>t</i> -γγ
$0.009\pm0.006\pm0.001$		8 HEINTZ	92	CSB2	$e^+e^- \rightarrow \ell^+$	$\ell^-\gamma\gamma$
⁷ Using B(Υ (15) → μ μ ⁺ μ ⁻) < 0.63 × 1 ⁸ Using B(Υ (15) → 0.4 ± 0.6)% and as:	0^{-4} , and $\mu^+\mu^-$)	$B(\Upsilon(35) \rightarrow \chi_{b0})$ = (2.57 ± 0.07) %	₀ (2 <i>P</i>) 4. B(γ) = 0 Υ (35)).049. → γχω(2P))	

Xb0(2P) REFERENCES

CRAWFORD HEINTZ HEINTZ MORRISON NARAIN	92B 92 91 91	PL B294 139 PR D46 1928 PRL 66 1563 PRL 67 1696 PRL 66 3113	G. Crawford, R. Fulton U. Heintz et al. U. Heintz et al. R.J. Morrison et al. M. Narain et al.	(CLEO COHab.) (CUSB II Collab.) (CUSB Collab.) (CLEO Collab.) (CUSB Collab.)
EIGEN HAN	82 82	PRL 49 1616 PRL 49 1612	IER RELATED PAPERS G. Eigen et al. K. Han et al.	(CUSB Collab.)

 $\chi_{b1}(\overline{2P})$

$$J^{G}(J^{PC}) = 0^{+}(1^{++})$$

J needs confirmation.

Observed in radiative decay of the $\Upsilon(3S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore

$\chi_{b1}(2P)$ MASS

VALUE (GeV) 10.2552±0.0005 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT	
$10.2547 \pm 0.0004 \pm 0.0010$ 10.2553 ± 0.0005	¹ HEINTZ ² MORRISON			$e^+e^- \rightarrow e^+e^- \rightarrow$	γX,l ⁺ l ⁻ γγ γX

$m_{\chi_{b1}(2P)} - m_{\chi_{b0}(2P)}$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
23.5±0.7±0.7	³ HEINTZ 92	CSB2	$e^+e^- \rightarrow \gamma X, \ell^+\ell^- \gamma \gamma$

³ From the average photon energy for inclusive and exclusive events. Supersedes

γ ENERGY IN $\Upsilon(3S)$ DECAY

VALUE	(MeV)		EVT5	DOCUMENT ID		TECN	COMMENT
99.90	± 0.26	OUR AVERA	GE	·			
99	±1		169	CRAWFORD	92B	CLE2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$
100.1	± 0.4		11147	4 HEINTZ	92	CSB2	$e^+e^- \rightarrow \gamma X$
100.2	± 0.5		223	5 HEINTZ	92	CSB2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$
99.5	± 0.1	±0.5	25759	MORRISON	91	CLE2	$e^+e^- \rightarrow \gamma X$
-							

⁴A systematic uncertainty on the energy scale of 0.9% not included. Supersedes

$\chi_{b1}(2P)$ DECAY MODES

	Mode	Fraction (Γ_j/Γ)	Scale factor
$\overline{\Gamma_1}$	γ T(2S)	(21 ±4)%	1.5
Γ_2	$\gamma \Upsilon(1S)$	$(8.5\pm1.3)\%$	1.3

Xb1 (2P) BRANCHING RATIOS

$\Gamma(\gamma \Upsilon(2S))/\Gamma_{\text{total}}$				Г1/Г
VALUE	DOCUMENT ID	TECN	COMMENT	
0.21 ±0.04 OUR AVERAGE	Error includes scale facto	or of 1.5		
$0.356 \pm 0.042 \pm 0.092$	⁶ CRAWFORD 92B	CLE2	$e^+e^- \rightarrow$	$\ell^+\ell^-\gamma\gamma$
$0.199 \pm 0.020 \pm 0.022$	⁷ HEINTZ 92	CSB2	e^+e^-	$\ell^+\ell^-\gamma\gamma$

⁶ Using B($\Upsilon(2S) \to \mu^+ \mu^-$) = (1.37 ± 0.26)%, B($\Upsilon(3S) \to \gamma \gamma \Upsilon(2S)$)×2 B($\Upsilon(2S) \to \gamma \gamma \Upsilon(2S)$)×3 B($\Upsilon(2S) \to \gamma \gamma \Upsilon(2S)$ $\mu^{+} \mu^{-}) = (10.23 \pm 1.20 \pm 1.26) \times 10^{-4}$, and B($\Upsilon(35) \rightarrow \gamma \chi_{b1}(2P)$) = $0.105 \stackrel{+}{-} 0.003 \pm 1.20 \pm 1$ 0.013. 7 Using B($\Upsilon(25) \rightarrow \mu^+\mu^-$) = (1.44 ± 0.10)%, B($\Upsilon(35) \rightarrow \gamma \chi_{b1}(2P)$) = (11.5 ± 0.5 ± 0.5)% and assuming $e\mu$ universality. Supersedes HEINTZ 91.

$\Gamma(\gamma \Upsilon(1S))/\Gamma_{\text{total}}$

DOCUMENT ID TECN COMMENT 0.085 ± 0.013 OUR AVERAGE Error includes scale factor of 1.3.

 Γ_2/Γ

8 CRAWFORD 928 CLE2 $e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$ $0.120 \pm 0.021 \pm 0.021$ 9 HEINTZ 92 CSB2 $e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$ $0.080 \pm 0.009 \pm 0.007$

⁸ Using B($\Upsilon(1S) \to \mu^+ \mu^-$) = (2.57 ± 0.07)%, B($\Upsilon(3S) \to \gamma \gamma \Upsilon(1S)$)×2 B($\Upsilon(1S)$ $\mu^{+} \, \mu^{-}) = (6.47 \pm 1.12 \pm 0.82) \times 10^{-4} \text{ and B} (\Upsilon(3S) \to \gamma \chi_{b1}(2P)) = 0.105 + 0.003 \pm 0.002 \pm 0$ 0.013. 9 Using B($\Upsilon(1S) \to \mu^+\mu^-$)=(2.57 ± 0.07)%, B($\Upsilon(3S) \to \gamma \chi_{b1}(2P)$) = (11.5 ± 0.5 ± 0.5)% and assuming $e\mu$ universality. Supersedes HEINTZ 91.

χ_{b1}(2P) REFERENCES

CRAWFORD	92B	PL 8294 139	G. Crawford, R. Fulton	(CLEO Collab.)
HEINTZ	92	PR D46 1928	U. Heintz et al.	(CUSB II Collab.)
HEINTZ	91	PRL 66 1563	U. Heintz et al.	(CUSB Collab.)
MORRISON	91	PRL 67 1696	R.J. Morrison et al.	(CLEO Collab.)
NARAIN	91	PRL 66 3113	M. Narain et al.	(CUSB Collab.)
			THER RELATED PAPERS	
EIGEN	82	PRL 49 1616	G. Eigen et al.	(CUSB Collab.)
HAN	82	PRL 49 1612	K. Han et al.	(CUSB Collab.)

 $^{^1}$ From the average photon energy for inclusive and exclusive events and assuming $\varUpsilon(35)$ mass $=10355.3\pm0.5$ MeV. Supersedes HEINTZ 91 and NARAIN 91. 2 From γ energy below assuming $\varUpsilon(35)$ mass $=10355.3\pm0.5$ MeV. The error on the $\varUpsilon(35)$ mass is not included in the individual measurements. It is included in the final average.

 ³ A systematic uncertainty on the energy scale of 0.9% not included. Supersedes NARAIN 91.
 4 A systematic uncertainty on the energy scale of 0.9% not included. Supersedes HEINTZ 91.

 $^{^1}$ From the average photon energy for inclusive and exclusive events and assuming $\,\varUpsilon(35)$ mass = 10355.3 \pm 0.5 MeV. Supersedes HEINTZ 91 and NARAIN 91. 2 From γ energy below assuming $\,\varUpsilon(35)$ mass = 10355.3 \pm 0.5 MeV. The error on the $\,\varUpsilon(35)$ mass is not included in the individual measurements. It is included in the final exclusion. evaluation.

systematic uncertainty on the energy scale of 0.9% not included. Supersedes HEINTZ 91.

 $\chi_{b2}(\overline{2P})$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Observed in radiative decay of the $\Upsilon(35)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore

$\chi_{b2}(2P)$ MASS	XIO	(2P)	MASS
----------------------	-----	------	------

VALUE (GeV) 10.2685±0.0004 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT
$10.2681 \pm 0.0004 \pm 0.0010$	1 HEINTZ		-	$e^+e^- \rightarrow \gamma X, \ell^+\ell^-\gamma\gamma$
10.2685 ± 0.0004	² MORRISON	91	CLE2	e ⁺ e ⁻ → γX

 1 From the average photon energy for inclusive and exclusive events and assuming $\tau(35)$ mass = 10355.3 \pm 0.5 MeV. Supersedes HEINTZ 91 and NARAIN 91. 2 From γ energy below, assuming $\tau(35)$ mass = 10355.3 \pm 0.5 MeV. The error on the $\tau(35)$ mass is not included in the individual measurements. It is included in the final average.

$m_{\chi_{b2}(2P)} - m_{\chi_{b1}(2P)}$

10145 (11-1)	DOCUMENT ID	TECN	COMMENT
VALUE (MeV)			
13.5±0.4±0.5	³ HEINTZ 92	CSB2	$e^+e^- \rightarrow \gamma X, \ell^+\ell^- \gamma \gamma$

 $^{3}\,\mbox{From the average photon energy for inclusive and exclusive events. Supersedes NARAIN 91.$

γ ENERGY IN $\Upsilon(35)$ DECAY

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
86.64 ± 0.23 OUR AVE	RAGE			
86 ±1	101	CRAWFORD	92B CLE2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$
86.7 ±0.4	10319	4 HEINTZ	92 CSB2	$e^+e^- \rightarrow \gamma X$
86.9 ±0.4	157	⁵ HEINTZ	92 CSB2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$
$86.4 \pm 0.1 \pm 0.4$	30741	MORRISON	91 CLE2	$e^+e^- \rightarrow \gamma X$

⁴ A systematic uncertainty on the energy scale of 0.9% not included. Supersedes NARAIN 91.
⁵ A systematic uncertainty on the energy scale of 0.9% not included. Supersedes HEINTZ 91.

χ_{b2}(2P) DECAY MODES

	' Mode	Fraction (Γ_i/Γ)
Γ ₁	γ T(2S)	(16.2±2.4) %
Γ_2	$\gamma T(1S)$	$(7.1 \pm 1.0) \%$

X12(2P) BRANCHING RATIOS

$\Gamma(\gamma \Upsilon(2S))/\Gamma_{\text{total}}$				Г1/Г
VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT	
0.162 ± 0.024 OUR AVERAGE				
$0.135 \pm 0.025 \pm 0.035$	⁶ CRAWFORD			
$0.173 \pm 0.021 \pm 0.019$	⁷ HEINTZ	92 CSB2	$e^+e^- \rightarrow$	$\ell^+\ell^-\gamma\gamma$
6 Using B($\Upsilon(25) \rightarrow \mu^+\mu^-$) $\mu^+\mu^-$) = (4.98 ± 0.94 ± 0.6 0.017. 7 Using B($\Upsilon(25) \rightarrow \mu^+\mu^-$ 0.5 ± 0.4)% and assuming 6	$(2) \times 10^{-4}$, and B(7	$(35) \to \gamma \chi$	b2(2P))=0	$0.135 \pm 0.003 \pm$

$\Gamma(\gamma \Upsilon(1S))/\Gamma_{\text{total}}$	ing the amountainty. Supe		J 172111		Г2/Г
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT	. 27.
0.071 ±0.010 OUR AVERAGE	E				
$0.072 \pm 0.014 \pm 0.013$	⁸ CRAWFORD	92B	CLE2	$e^+e^- \rightarrow \ell$	+ 1- 77
$0.070 \pm 0.010 \pm 0.006$	9 HEINTZ	92	CSB2	$e^+e^- \rightarrow \ell$	+1-77
⁸ Using B($\Upsilon(15) \rightarrow \mu^{+}\mu^{-}$	$(-) = (2.57 \pm 0.07)\%$, E	3(T(3	35) →	γγ T(25))×2	$B(\Upsilon(15) \rightarrow$
$\mu^{+}\mu^{-}) = (5.03 \pm 0.94 \pm$					
0.017.					
⁹ Using B($\Upsilon(1S) \rightarrow \mu^+$ 0.5 ± 0.4)% and assumi	μ^{-}) = (2.57 ± 0.07)%	, B(1	r(35) -	$\rightarrow \gamma \chi_{h2}(2P)$	$) = (11.1 \pm$
0.5 ± 0.4)% and assumi	ng e universality. Supe	ersede	S HEIN	TZ 91.	

χ _{ID} (2P) REFERENCES						
CRAWFORD	92B	PL B294 139	G. Crawford, R. Fulton	(CLEO Collab.)		
HEINTZ	92	PR D46 1928	U. Heintz et al.	(CUSB II Collab.)		
HEINTZ	91	PRL 66 1563	U. Heintz et al.	(CUSB Collab.)		
MORRISON	91	PRL 67 1696	R.J. Morrison et al.	(CLEO Collab.)		
NARAIN	91	PRL 66 3113	M. Narain et al.	(CUSB Collab.)		
OTHER RELATED PAPERS						
EIGEN	82	PRL 49 1616	G. Eigen <i>et al.</i>	(CUSB Collab.)		
HAN	82	PRL 49 1612	K. Han <i>et al.</i>	(CUSB Collab.)		

 $\Upsilon(35)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

T(35) MASS

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT		
10.3552±0.0005	¹ ARTAMONOV	00 MD1	$e^+e^- ightarrow$ hadrons		
• • • We do not use the follow	wing data for averages	, fits, limits,	etc. • • •		
10.3553 ± 0.0005	2,3 BARU	868 REDE	$e^+e^- \rightarrow hadrons$		
¹ Reanalysis of BARU 86B using new electron mass (COHEN 87). ² Reanalysis of ARTAMONOV 84. ³ Superseded by ARTAMONOV 00.					

au(3S) WIDTH

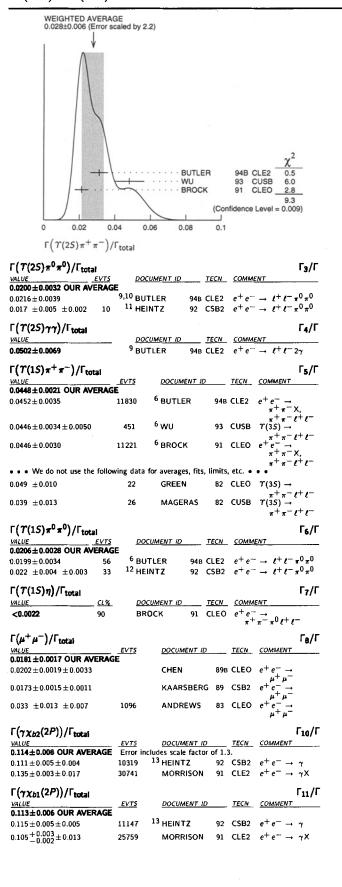
26.3\pm3.5 OUR EVALUATION See the Note on Width Determinations of the Υ states

T(35) DECAY MODES

	Mode		Scale factor/ nfidence level
$\overline{\Gamma_1}$	$r_{(2S)}$ anything	(10.6 ±0.8)%	
Γ_2	$\Upsilon(2S)\pi^+\pi^-$	$(2.8 \pm 0.6)\%$	5=2.2
Γ3	$\Upsilon(2S)\pi^0\pi^0$	(2.00±0.32) %	
Γ4	$\gamma(2S)\gamma\gamma$	$(5.0 \pm 0.7)\%$	
Γ ₅	$\Upsilon(1S)\pi^+\pi^-$	(4.48±0.21) %	
Γ_6	$\Upsilon(1S)\pi^0\pi^0$	$(2.06 \pm 0.28)\%$	
Γ7	$\Upsilon(1S)\eta$	$< 2.2 \times 10^{-3}$	CL=90%
Γ_{B}	$\mu^+\mu^-$	$(1.81 \pm 0.17)\%$	
و٦	e+ e-	seen	
		Radiative decays	
Γ ₁₀	$\gamma \chi_{b2}(2P)$	(11.4 ±0.8)%	5=1.3
	$\gamma \chi_{b1}(2P)$	(11.3 ±0.6)%	
Γ ₁₂	$\gamma \chi_{b0}(2P)$	(5.4 ±0.6) %	S=1.1

$\Upsilon(3S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)$	/F _{total}			٦/و٦٥٦
VALUE (keV)	DOCUMENT IL	TECN	COMMENT	
$0.45 \pm 0.03 \pm 0.03$	⁴ GILES	84B CLEO	$e^+e^- ightarrow hade$	rons
⁴ Radiative corrections reev	aluated by BUCHMU	JELLER 88 foll	lowing KURAEV	85.


$\Upsilon(3S)$ BRANCHING RATIOS

$\Gamma(\Upsilon(2S))$ anythi	ng)/F _{total}					Γ1/Γ
VALUE	EVTS	DOCUMENT ID_		TECN	COMMENT	
0.106 ±0.008 O	UR AVERAGE	-				
0.1023 ± 0.0105	4625 5	,6,7 BUTLER	94B	CLE2	$e^+e^- \rightarrow$	ℓ+ℓ-×
0.111 ±0.012	4891 6	, ^{7,8} BROCK	91	CLEO	$e^+e^- \rightarrow \pi^+\pi^-\ell$	

$\Gamma(\Upsilon(2S)\pi^+\pi^-)/\Gamma_{\text{total}}$				Γ ₂ /Γ
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.028 ±0.006 OUR AVERAG	E Erro	r includes scale fac below.		•
0.0312 ± 0.0049	980	^{5,9} BUTLER	94B CLE2	$ \begin{array}{c} e^+ e^- \rightarrow \\ \pi^+ \pi^- \ell^+ \ell^- \\ \Upsilon(35) \rightarrow \end{array} $
$0.0482 \pm 0.0065 \pm 0.0053$	138	8 WU	93 CUSB	τ(35) → ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
0.0213 ± 0.0038	974	⁸ BROCK	91 CLEO	$ \begin{array}{c} \pi^{+}\pi^{-}\ell^{+}\ell^{-} \\ e^{+}e^{-} \rightarrow \\ \pi^{+}\pi^{-}\chi, \\ \pi^{+}\pi^{-}\ell^{+}\ell^{-} \end{array} $
• • • We do not use the follow	ving dat	a for averages, fits,	limits, etc. •	4 4
0.031 ±0.020	5	MAGERAS	82 CUSB	$\Upsilon(3S) \rightarrow$

Meson Particle Listings

 $\Upsilon(3S)$, $\Upsilon(4S)$

$\Gamma(\gamma \chi_{b0}(2P))/\Gamma_{total}$						Γ_{12}/Γ
VALUE	EVTS	DOCUMENT ID			COMME	NT
0.054±0.006 OUR AVERAGE	Error i	ncludes scale factor				
$0.060 \pm 0.004 \pm 0.006$	4959	13 HEINTZ	92	C\$B2	e+ e-	$\rightarrow \gamma$
$0.049^{+0.003}_{-0.004} \pm 0.006$	9903	MORRISON	91	CLE2	e^+e^-	→ γX
⁵ Using B($\dot{\tau}(2S) \rightarrow \tau(1S)$		0.038 ± 0.007)%, ar	nd B(T(25)	→ T(15	$(\pi^0\pi^0) =$
$(1/2)B(\Upsilon(2S) \rightarrow \Upsilon(1S)\pi$						
⁶ Using B($\Upsilon(1S) \rightarrow \mu^+\mu^-$			he as	sumptio	n of $e\mu$ u	ıniversality.
⁷ Using B($\Upsilon(2S) \rightarrow \Upsilon(1S)$	$\pi^+\pi^-$	$= (18.5 \pm 0.8)\%.$				
⁸ Using B($\Upsilon(25) \rightarrow \mu^+\mu^-$) = (1.3)	1 ± 0.21)%, B(Υ (25	5) →	T(15)	$\gamma \gamma) \times 2B$	$(\Upsilon(15) \rightarrow$
$\mu^+\mu^-) = (0.188 \pm 0.035)$	%, and	$B(\Upsilon(25) \rightarrow \Upsilon(15)$) л Ол	· ⁰)×2B($\tau(1s)$ -	$+ \mu^+ \mu^-$
$= (0.436 \pm 0.056)\%$. With	the ass	umption of $e\mu$ unive	ersali	ty.		
⁹ From the exclusive mode. ¹⁰ B($\Upsilon(2S) \rightarrow \mu^+\mu^-$) = (1						
$^{10}B(T(25) \rightarrow \mu^{+}\mu^{-}) = (1$	$.31 \pm 0$.21)% and assuming	еμ	universa	ility.	
$^{11}B(I(25) \rightarrow \mu'\mu') = 1$	(1.44 ±	0.10)% and assum	ing 6	μ unive	ersality.	5 upersedes
12 Using B($\Upsilon(1S) \rightarrow \mu^+\mu^-$)	· (2 E	7 1 0 07\9/ and accur		aah	orcality.	Eugereador
HEINTZ 91.) = (2.5	1 ± 0.01)% and assu	ming	eμ uinv	ersanty.	Juperseucs
13 Supersedes NARAIN 91.						
	T(35) REFERENCES				

ARTAMONOV	00	PL B474 427	A.S. Artamonov et al.				
BUTLER	94B	PR D49 40	F. Butler et al.	(CLEO Collab.)			
WU	93	PL B301 307	Q.W. Wu et al.	(CUSB Collab.)			
HEINTZ	92	PR D46 1928	U. Heintz et al.	(CÙSB II Collab.)			
BROCK	91	PR D43 1448	I.C. Brock et al.	` (CLEO Collab.)			
HEINTZ	10	PRL 66 1563	U. Heintz et al.	(CUSB Collab.)			
MORRISON	91	PRL 67 1696	R.J. Morrison et al.	(CLEO Collab.)			
NARAIN	91	PRL 66 3113	M. Narain et al.	(CUSB Collab.)			
CHEN	89B	PR D39 3528	W.Y. Chen et al.	(CLEO Collab.)			
KAARSBERG	69	PRL 62 2077	T.M. Kaarsberg et al.	(CUSB Collab.)			
BUCHMUEL Editors: A.	88 Ali a	HE e ⁺ e ⁻ Physics 412 and P. Soeding, World Sci	W. Buchmueller, S. Cooper entific, Singapore	(HANN, DESY, MIT)			
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	(RISC, NBS)			
BARU	86B	ZPHY C32 622	S.E. Baru et al.	` (NOVO)			
KURAEV	85	SJNP 41 466 Translated from YAF 41		(NOVO)			
ARTAMONOV	84	PL 137B 272	A.S. Artamonov et al.	(NOVO)			
GILES	84B	PR D29 1285	R. Giles et al.	(CLEO Collab.)			
ANDREWS	83	PRL 50 807	D.E. Andrews et al.	(CLEO Collab.)			
GREEN	82	PRL 49 617	J. Green et al.	(CLEO Collab.)			
MAGERAS	82	PL 118B 453	G. Mageras et al.	(COLU, CORN, LSU+)			
	OTHER RELATED PAPERS						
ALEXANDER	89	NP B320 45	J.P. Alexander et al.	(LBL, MICH, SLAC)			
ARTAMONOV	84	PL 137B 272	A.S. Artamonov et al.	(NOVO)			
GILES	84B	PR D29 1285	R. Giles et al.	(CLEO Collab.)			
HAN	82	PRL 49 1612	K. Han et al.	(CUSB Collab.)			
PETERSON	82	PL 114B 277	D. Peterson et al.	(CUSB Collab.)			
KAPLAN	78	PRL 40 435	D.M. Kaplan et al.	(STDN, FNAL, COLU)			
YOH	78	PRL 41 584	J.K. Yoh et al.	(COLU, FNAL, STON)			
COBB	77	PL 72B 273	J.H. Cobb et al.	(BNL, CERN, SYRA, YALE)			
HERB	77	PRL 39 252	S.W. Herb et al.	(COLU, FNAL, STON)			
INNES	77	PRL 39 1240	W.R. Innes et al.	(COLU, FNAL, STON)			

 $\Upsilon(4S)$ or $\Upsilon(10580)$

$$I^G(J^{PC}) = 0^-(1^{--})$$

7(45) MASS

 VALUE (GeV)
 DOCUMENT ID
 TECN
 COMMENT

 10.5800 ± 0.0035
 1 BEBEK
 87 CLEO
 $e^+e^- \rightarrow$ hadrons

 • • We do not use the following data for averages, fits, limits, etc. • • •

 10.5774 ± 0.0010
 2 LOVELOCK
 85 CUSB
 $e^+e^- \rightarrow$ hadrons

 1 Reanalysis of BESSON 85.

 2 No systematic error given.

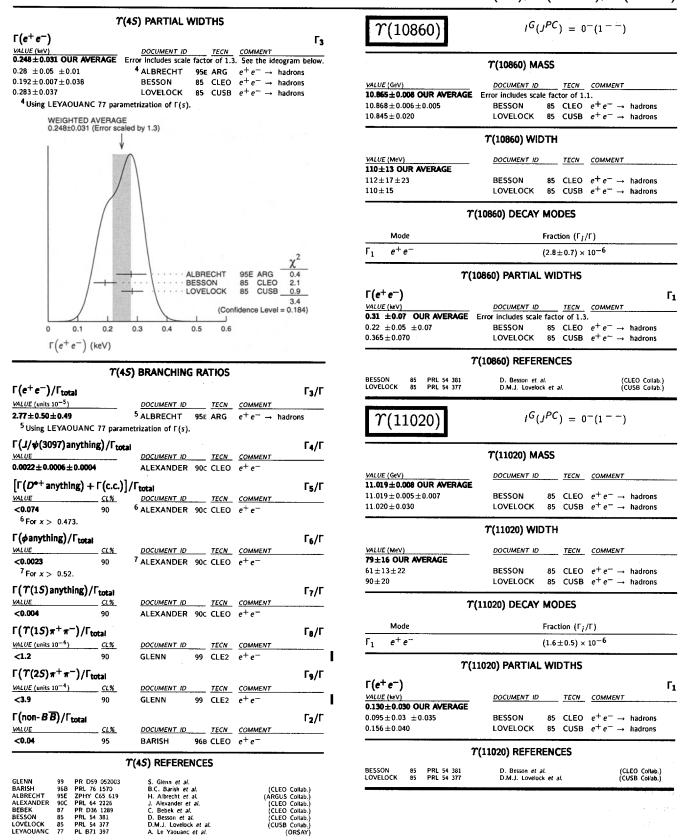
T(45) WIDTH

 VALUE (MeV)
 DOCUMENT 1D
 TECN
 COMMENT

 14 ± 5 OUR AVERAGE
 Error includes scale factor of 1.7.

 10.0 $\pm 2.8 \pm 2.7$ 3 ALBRECHT
 95E ARG
 $e^+e^- \rightarrow$ hadrons

 20 ± 2 ± 4 BESSON
 85 CLEO
 $e^+e^- \rightarrow$ hadrons


 • • We do not use the following data for averages, fits, limits, etc.
 • •

 25 ± 2.5 LOVELOCK
 85 CUSB
 $e^+e^- \rightarrow$ hadrons

 3 Using LEYAOUANC
 77 parametrization of Γ (s).

T(45) DECAY MODES

	Mode	Fraction (F	· _į /Γ)	Confidence level
Γ ₁	BB	> 96	%	95%
$\bar{\Gamma_2}$	non- <i>B</i> \overline{B}	< 4	%	95%
Γ3	e ⁺ e ⁻	(2.8±0	0.7) × 10 ⁻⁵	5
Γ4	J/ψ (3097)anything	(2.2±0	$0.7) \times 10^{-3}$	3
Γ ₅	D^{*+} anything $+$ c.c.	< 7.4	%	90%
Γ ₆	ϕ anything	< 2.3	× 10 ³	90%
Γ ₇	$\Upsilon(1S)$ anything	< 4	$\times 10^{-3}$	90%
Γ8	$\Upsilon(1S)\pi^+\pi^-$	< 1.2	× 10 ⁻⁴	90%
و ۲	$\Upsilon(2S)\pi^{+}\pi^{-}$	< 3.9	× 10 ⁻⁴	90%

OTHER RELATED PAPERS

S. Henderson et al. D. Andrews et al. G. Finocchiaro et al.

HENDERSON 92 PR D45 2212 ANDREWS 80B PRL 45 219 FINOCCHI... 80 PRL 45 222

Meson Particle Listings

Non- $q\bar{q}$ Candidates

NON-qq CANDIDATES

We include here mini-reviews and reference lists on gluonium and other non- $q\overline{q}$ candidates. See also $N\overline{N}(1100\text{--}3600)$ for possible bound states.

$NON-q\overline{q}$ MESONS

Written March 2000 by C. Amsler (University of Zürich)

See also $N\overline{N}(1100-3600)$ for possible multiquark states.

The constituent quark model describes the observed meson spectrum as bound $q\bar{q}$ states grouped into SU(3) flavor nonets. The self-coupling of gluons in QCD suggests that additional mesons made of bound gluons (glueballs) or $q\bar{q}$ -pairs with an excited gluon (hybrids) may exist. Multiquark color singlet states like $qq\bar{q}q$ or $qqqq\bar{q}q$ have also been predicted (JAFFE 77). Among the signatures naively expected for glueballs are (i) no place in $q\bar{q}$ nonets, (ii) enhanced production in gluon rich channels such as central production and radiative $J/\psi(1S)$ decay, (iii) decay branching fractions incompatible with SU(3) predictions for $q\bar{q}$ states, and (iv) reduced $\gamma\gamma$ couplings. However, mixing effects with isoscalar $q\bar{q}$ mesons (AMSLER 96, ANISOVICH 97, WEINGARTEN 97, CLOSE 97B) and decay form factors (BARNES 97) may obscure these simple signatures.

Lattice calculations (BALI 93, SEXTON 95, MORN-INGSTAR 99), QCD sum rules, flux tube and constituent glue models agree that the lightest glueballs have quantum numbers $J^{PC}=0^{++}$ and 2^{++} (for a review see SWANSON 97). On the lattice, the scale parameter (estimated from the string tension in heavy quark mesons) gives by extrapolation to zero lattice spacing a mass of 1611 ± 163 MeV for the ground state (0^{++}) glueball, while the first excited state (2^{++}) has a mass of 2232 ± 310 MeV (MICHAEL 97). Hence the low mass glueballs lie in the same mass region as ordinary isoscalar $q\bar{q}$ states, that is in the mass range of the $1^3P_0(0^{++})$, 2^3P_2 , 3^3P_2 , and $1^3F_2(2^{++})$ $q\bar{q}$ states. The 0^{-+} state and exotic glueballs (with non- $q\bar{q}$ quantum numbers like 0^{--} , 0^{+-} , 1^{-+} , 2^{+-} , etc.) are expected above 2 GeV (BALI 93).

The lattice calculations assume that the quark masses are infinite and therefore neglect $q\overline{q}$ loops. However, one expects that glueballs will mix with nearby $q\overline{q}$ states of the same quantum numbers. The effect of $q\overline{q}$ loops on the glueball mass is not clear and the size of the $q\overline{q}$ admixture in the glueball wavefunction is not predicted by lattice calculations. However, the presence of a glueball mixed with $q\overline{q}$ would still lead to a supernumerary isoscalar in the SU(3) classification of $q\overline{q}$ mesons.

For earlier experimental searches we refer to the Notes in the 1996 and 1998 issues of this Review. See also the review on exotic mesons by LANDSBERG 99.

We first deal with non- $q\bar{q}$ candidates in the scalar sector. Five isoscalar resonances are well established: the very broad $f_0(400-1200)$ (or σ), the $f_0(980)$, the broad $f_0(1370)$, and the comparatively narrow $f_0(1500)$ and $f_0(1710)$ (see the Note on "Scalar Mesons" and also AMSLER 98). The $f_0(1500)$ was

observed in many experiments, e.g., in pion induced reactions $\pi^- p$ (BINON 83, AMELIN 96B), in $\bar{p}p$ annihilations (AMSLER 95B, 95C, BERTIN 97C), in central collisions (REYES 98, BARBERIS 99, BELLAZZINI 99), in J/ψ radiative decays (BUGG 95) and in D_s decays (FRABETTI 97D). The $f_0(1710)$, with controversial spin (0 or 2), was recently shown to have spin 0 (DUNWOODIE 97, BARBERIS 99, FRENCH 99) and to decay mainly into $K\overline{K}$ (BARBERIS 99, 99B, 99D). This points to a mostly $s\bar{s}$ structure, although no signal was reported in $K^-p \to K_S K_S \Lambda$ interactions, but the data sample was rather small (ASTON 88D). In $\gamma\gamma$ collisions leading to K_SK_S (BRACCINI 99) a signal is observed at the $f_0(1710)$ mass (although its spin cannot be determined) but $f_0(1500)$ is absent, while in $\gamma\gamma$ collisions leading to $\pi^+\pi^-$ neither $f_0(1710)$ nor $f_0(1500)$ are observed (BARATE 00E). The production rate for $f_0(1710)$ and the absence of $f_0(1500)$ in both $K\overline{K}$ and $\pi\pi$ favor the former to be mainly $s\overline{s}$ and the latter to have a small coupling to $\gamma\gamma$ at most compatible with an $s\bar{s}$ state (AMSLER 99).

On the other hand, the $K\overline{K}$ decay branching ratio of $f_0(1500)$ is small compared to $\pi\pi$ (ABELE 96B, 98, BARBERIS 99D) indicating that this state cannot be dominantly $s\bar{s}$. Since $f_0(1370)$ does not couple strongly to $s\bar{s}$ either (BARBERIS 99D), $f_0(1370)$ or $f_0(1500)$ appear to be supernumerary. Note that $f_0(1370)$ and $f_0(1500)$ have rather different decay patterns. The former decays to $\sigma\sigma$ and $\rho\rho$, while the latter does not decay to $\rho\rho$ (BUGG 95, THOMA 99). The narrow width of $f_0(1500)$ and its enhanced production at low transverse momentum transfer in central collisions (CLOSE 97, 98B) favor $f_0(1500)$ to be non- $q\bar{q}$. In AMSLER 96 the ground state scalar nonet is made of $a_0(1450)$, $f_0(1370)$, $K_0^*(1430)$ and the at the time missing $s\bar{s}$ state which could now be identified as $f_0(1710)$. The isoscalars $f_0(1370)$ and $f_0(1710)$ contain a small fraction of glue while $f_0(1500)$ is mostly gluonic. Alternative, less straightforward, mixing schemes have been proposed (TORNQVIST 96, ANISOVICH 97, BOGLIONE 97, WEINGARTEN 97, MINKOWSKI 99).

The $a_0(980)$ and $f_0(980)$ could be four-quark states (JAFFE 77) or $K\overline{K}$ molecular states (WEINSTEIN 90, LOCHER 98) due to their strong affinity for $K\overline{K}$, in spite of their masses being very close to threshold. For $q\overline{q}$ states the expected $\gamma\gamma$ widths (OLLER 97B, DELBOURGO 99) are not significantly larger than for molecular states (BARNES 85). A better filter might be radiative $\phi(1020)$ decay to $a_0(980)$ and $f_0(980)$. Recent data (ACHASOV 98B, 98I, AKHMETSHIN 99C) favor these mesons to be four-quark states (ACHASOV 97C), although not everybody agrees (MALTMAN 99B, DELBOURGO 99). Also, the $f_0(980)$ is strongly produced in D_s^+ decay (FRABETTI 97), suggesting a large $s\overline{s}$ component, while hadronic Z^0 decay favors in contrast a large $u\overline{u}+d\overline{d}$ component (ACKERSTAFF 98Q).

We now turn to the 2^{++} sector. The isoscalar $1^3P_2(2^{++})$ $q\bar{q}$ mesons, $f_2(1270)$, and $f_2'(1525)$, are well known. Above the $f_2'(1525)$ none of the reported isoscalars can be definitely

assigned to the 2^3P_2 , 3^3P_2 , or 1^3F_2 nonets and therefore the identification of the 2^{++} glueball is premature. Three states appear to be solid. The $f_2(1565)$ observed in $\overline{p}p$ annihilation at rest (MAY 90, BERTIN 98) is perhaps the same state as $f_2(1640)$ reported to decay into $\omega\omega$ (ALDE 90, BAKER 99) and 4π (ADAMO 92). This could be one of the 2^3P_2 isoscalars or a nucleon-antinucleon resonance. The rather broad $f_2(1950)$ is observed by several experiments, e.g., in central production (BARBERIS 97B) and in $\overline{p}p$ annihilation in flight (ABELE 99B). Finally, a broad structure (of perhaps several states) decaying to $\phi\phi$ was reported around 2300 MeV in π^-N reactions (BOOTH 86, ETKIN 88) in $\overline{p}p$ annihilation in flight (EVANGELISTA 98) and in central collisions (BARBERIS 98).

The evidence for a narrow meson, $f_J(2220)$ (possibly a tensor), is fading with new formation data in $\bar{p}p$ annihilation (KISIEL 99, see the Note under the $f_J(2220)$ section). The measured partial width to $\bar{p}p$ in radiative J/ψ decay (BAI 96B) is too large and inconsistent with the upper limit from $\bar{p}p$ annihilation into $\pi\pi$ (AMSLER 99). However, the suprisingly large $\phi\phi$ cross section in $\bar{p}p$ just above threshold (EVANGELISTA 98) could be due to the production of the 2^{++} glueball. In fact, the broad enhancement was reanalyzed by PALANO 99. The dominating contribution was found to be 2^{++} , resonating at a mass of 2231 MeV with a width of 70 MeV, in accord with earlier observations in π^-N reactions (BOOTH 86, ETKIN 88).

Let us now deal with hybrid states. Hybrids may be viewed as $q\bar{q}$ mesons with a vibrating gluon flux tube. In contrast to glueballs, they can have isospin 0 and 1. The mass spectrum of hybrids with exotic (non- $q\bar{q}$) quantum numbers was predicted by ISGUR 85 while CLOSE 95 also deals with non-exotic quantum numbers. The ground state hybrids with quantum numbers (0⁻⁺, 1⁻⁺, 1⁻⁻, and 2⁻⁺) are expected around 1.7 to 1.9 GeV. Lattice calculations predict that the hybrid with exotic quantum numbers 1⁻⁺ lies at a mass of 1.9 \pm 0.2 GeV (LACOCK 97, BERNARD 97). Most hybrids are rather broad but some can be as narrow as 100 MeV (PAGE 99). They prefer to decay into a pair of S- and P-wave mesons.

A $J^{PC}=1^{-+}$ exotic meson with a mass of 1370 MeV and a width of 385 MeV was reported in $\pi^-p \to \eta \pi^-p$ (THOMPSON 97, CHUNG 99). This state, called $\hat{\rho}(1405)$ in our previous edition, has now been renamed $\pi_1(1400)$. It was observed as an interference between the angular momentum L=1 and L=2 $\eta\pi$ amplitudes, leading to a forward/backward asymmetry in the $\eta\pi$ angular distribution. This state was reported earlier in π^-p reactions (ALDE 88B) but ambiguous solutions in the partial wave analysis were pointed out by PROKOSHKIN 95B, 95C. A resonating 1^{-+} contribution to the $\eta\pi$ P-wave is also required in the Dalitz plot analysis of $\bar{p}n$ annihilation into $\pi^-\pi^0\eta$ (ABELE 98B) and in $\bar{p}p$ annihilation into $\pi^0\pi^0\eta$ (ABELE 99). The mass of 1400 MeV and the width of 310 MeV (ABELE 98B) are consistent with THOMPSON 97.

Another 1⁻⁺ state at 1593 MeV with a width of 168 MeV, $\pi_1(1600)$, decaying into $\rho\pi$ was reported in the reaction $\pi^-p \to \pi^-\rho^0 n$ (ADAMS 98B). It was observed earlier in the

decay modes $\rho\pi$, $\eta'\pi$, and $b_1(1235)\pi$, but not $\eta\pi$ (GOUZ 92). A strong enhancement in the 1^{-+} $\eta'\pi$ wave, compared to $\eta\pi$, was reported at this mass by BELADIDZE 93. DONNACHIE 98 suggest that a Deck generated $\eta\pi$ background from final state rescattering in $\pi_1(1600)$ decay could mimick $\pi_1(1400)$. However, this mechanism is absent in $\overline{p}p$ annihilation. The $\eta\pi\pi$ data require $\pi_1(1400)$ and cannot accommodate a state at 1600 MeV (DUENNWEBER 99).

Hence we now have evidence for two 1⁻⁺ exotics, $\pi_1(1400)$ and $\pi_1(1600)$, while the flux tube model and the lattice concur to predict a mass of about 1.9 GeV, where a signal had been reported earlier (LEE 94). As isovectors, $\pi_1(1400)$ and $\pi_1(1600)$ cannot be glueballs. The coupling to $\eta\pi$ of the former points to a four-quark state while the strong $\eta'\pi$ coupling of the latter is favored for hybrid states (CLOSE 87B). Its mass is not far below the lattice prediction.

Finally, 0⁻⁺, 1⁻⁻, and 2⁻⁺ hybrids were also reported. The $\pi(1800)$ decays mostly to a pair of S- and P-wave mesons (AMELIN 95B), in line with expectations for a 0⁻⁺ hybrid meson, although recent data contradict this, indicating a strong $\rho\omega$ decay mode (ZAITSEV 97). This meson is also rather narrow if interpreted as the second radial excitation of the the pion. The evidence for 1^{--} hybrids required in e^+e^- annihilation and in τ decays has been discussed by DONNACHIE 99. A candidate for the 2^{-+} hybrid, the $\eta_2(1870)$, was reported in $\gamma\gamma$ interactions (KARCH 92), in $\bar{p}p$ annihilation (ADOMEIT 96) and in central production (BARBERIS 97B). The near degeneracy of $\eta_2(1645)$ and $\pi_2(1670)$ suggests ideal mixing in the 2⁻⁺ $q\overline{q}$ nonet and hence the second isoscalar should be mainly $s\overline{s}$. However, $\eta_2(1870)$ decays mainly to $a_2(1320)\pi$ and $f_2(1270)\pi$ (ADOMEIT 96) with a relative rate compatible with a hybrid state (CLOSE 95).

Meson Particle Listings

Non- $q\overline{q}$ Candidates,

Non- $q\overline{q}$ Candidates

OMITTED FROM SUMMARY TABLE

CANDIDATES	

	NUN-qq CAN	IDIDATES REFERENC	E5
BARATE 00E	PL B472 189	R. Barate et al.	(ALEPH Collab.)
ABELE 99 ABELE 99R	PL B446 349 EPJ C8 67	A. Abele et al.	(ALEPH Collab.) (Crystal Barrel Collab.) (Crystal Barrel Collab.)
AKHMETSHIN 99C	PL B462 380	A. Abele et al. R.R. Akhmetshin et al.	(CMD-2 Collab.)
AMSLER 99			,
BAKER 99	Particle and Nucle Int. C PL B449 114	Ont., Uppsala C.A. Baker et al.	
BARBERIS 99	PL B453 305	D. Barberis et al.	(Omega expt.)
BARBERIS 99B BARBERIS 99D	PL B453 316 PL B462 462	D. Barberis et al. D. Barberis et al.	(Omega expt.) (Omega expt.)
BELLAZZINI 99	PL B467 296	R. Bellazzini et al.	(Olliega expt.)
BRACCINI 99	Hadron Spectroscopy 53	S. Braccini	
BUGG 99	PL B458 511	ceedings Workshop on Hadron Sp D.V. Bugg et al.	ectroscopy
	PR D60 092001	S.U. Chung et al.	(BNL E852 Collab.)
DELBOURGO 99 DONNACHIE 99	PL B446 332 PR D60 114011	R. Delbourgo, D. Liu, M. Scadr A. Donnachie, Yu.S. Katashnikov	on Pa
DUENNWEBER 99	NP A 663 + 664, 592C cles and Nuclei Int. Conf.,	W. Duennweber	•
Proc. XV Parti FRENCH 99	cles and Nuclei Int. Conf., PL B214 213	Uppsala B. French <i>et al</i> .	(WA76 Collab.)
GODFREY 99	RMP 71 1411	S. Godfrey, J. Napolitano	(VVA/O CONSO.)
KISIEL 99	Proc. Workshop on Had Series XV 357	ron Spectroscopy	
LANDSBERG 99	SPU 42 871	L.G. Landsberg	
MALTMAN 99B	Translated from UFN 42 PL B462 14	961.	
MINKOWSKI 99	EPJ C9 283	P. Minkowski, W. Ochs	
MORNINGSTAR99	PR D60 034509		
PAGE 99 PALANO 99	PR D59 034016 Hadron Spectroscopy 363	3 A Palano	
Frascati Physics	Series XV 363, Proceeding	3 A. Palano gs Workshop on Hadron Spectros U. Thoma Workshop on Hadron Spectrosco	ору
THOMA 99 Fracati Physics	Hadron Spectroscopy 45 Series XV 45 Proceedings	U. Thoma Workshop on Hadron Spectrosco	N/
I OKING VIST 77			
ABELE 98 ABELE 98B	PR D57 3860 PL B423 175	A. Abele et al. A. Abele et al.	(Crystal Barrel Collab.)
ACHASOV 98B	PL B423 175 PL B438 441	M.N. Achasov et al.	(Crystal Barrel Collab.) (Novosibirsk SND Collab.)
ACHASOV 98I	PL B440 442	M.N. Achasov et al.	
ACKERSTAFF 98Q ADAMS 98B	EPJ C4 19	K. Ackerstaff et al. G.S. Adams et al.	(OPAL Collab.)
AMSLER 98	PRL 81 5760 RMP 70 1293 PR D57 55	C. Amsler	(MPS Collab.)
BERTIN 98 CLOSE 98B	PR D57 55	A. Bertin et al.	(OBELIX Collab.)
DONNACHIE 98	PL B419 387 PR D58 114012	A. Donnachie et al.	
EVANGELISTA 98	PR D57 5370	C. Evangelista et al.	
LOCHER 98 REYES 98	EPJ C4 317 PRL 81 4079	M.P. Locher et al. M.A. Reyes et al.	(PSI)
ACHASOV 97C	PR D56 4084	N.N. Achasov et ai.	
ACHASOV 97D ACHASOV 97E	PR D56 203 IJMP A12 5019	N.N. Achasov et ai.	
ANISOVICH 97	PL B395 123	N.N. Achasov et al. A.V. Anisovich, A.V. Sarantsev	(PNPI)
ANISOVICH 97B	ZPHY A357 123	A.V. Anisovich, A.V. Sarantsev A.V. Anisovich et al.	(PNPI)
ANISOVICH 97C ANISOVICH 97E	PL B413 137 PAN 60 1892	A.V. Anisovich et al.	(PNPI)
	Translated from VAE 60	2065.	` '
BARBERIS 97 BARBERIS 97B	PL B397 339 PL B413 217	D. Barberis et al. D. Barberis et al.	(WA102 Collab.) (WA102 Collab.)
BARBERIS 97C	PL B413 225	D. Barberis et al.	(WA102 Collab.)
BARNES 97 BERNARD 97	PR D55 4157 PR D56 7039	T. Barnes et al. Bernard et al.	(ORNÌ, RAL, MCHS)
BERTIN 97	PL B400 226 PL B408 476	A. Bertin et al.	(OBELIX Collab.)
BERTIN 97C	PL B408 476	A. Bertin <i>et al</i> .	(OBELIX Collab.)
BOGLIONE 97 BUGG 97	PRL 79 1998 PL B396 295	M. Boglione et al. D.V. Bugg et al.	
CLOSE 97	PL B396 295 PL B397 333	F. Close <i>et al</i> .	(RAL, BIRM)
CLOSE 97B DUNWOODIE 97	PR D55 5749 Hadron 97 Conf.	F. Close <i>et al.</i> W. Dunwoodie	(RAL, RÙTG, BEIJT) (SLAC)
FRABETTI 97D	PL B407 79	P.L. Frabetti et al.	(FNAL E687 Collab.)
GERASYUTA 97 HOU 97	ZPHY C74 325	S.M. Gerasyuta <i>et al.</i>	
KISSLINGER 97	PR D55 6952 PL B410 1	Wei-Shu Hou L.S. Kisslinger et al.	
LACOCK 97	PL B401 308	P. Lacock et al. C. Michael	(EDIN, LIVP)
MICHAEL 97 AIP Conf. Proc	Hadron 97 Conf. : 432 657	C. Michael	
OLLER 97B	Hadron 97 Conf.	J.A. Oller, E. Oset	
AIP Conf. Proc PAGE 97	:. 432 413 PL B402 183	P.R. Page	
PAGE 97B	NPB 495 268	P.R. Page	
PAGE 97C SWANSON 97	PL B415 205	P.R. Page	(CEBAF)
SWANSON 97 AIP Conf. Proc	Hadron 97 Conf. . 432 471	E.S. Swanson	
THOMPSON 97	PRL 79 1630	D.R. Thompson et al.	(E852 Collab.)
WEINGARTEN 97 YAN 97	NPPS 53 232 JP G23 L33	D. Weingarten	
ZAITSEV 97	Hadron 97 Conf.	Y. Yan et al. A. Zaitsev	
AIP Conf. Proc ABELE 96	. 432 461 DI R380 453	A. Abele et al.	(Crestal Barrel Collab.)
ABELE 96B	PL B380 453 PL B385 425	A. Abele et al.	(Crystal Barrel Collab.) (Crystal Barrel Collab.)
ADOMEIT 96	ZPHY C71 227	J. Adomeit et al.	(Crystal Barrel Collab.)

AMELIN	96B	PAN 59 976 Translated from YAF 59	D.V. Amelin et al. (SERP, TBIL)
AMSLER	96	PR D53 295	C. Amsler, F.E. Close (ZURI, RAL)
AMSLER	96B	ZPHY C70 219	C. Amsler et al. (Crystal Barrel Collab.)
AMSLER BAI	96C 96B	Third Paper PRL 76 3502	C. Amsler et al. (Crystal Barrel Collab.) J.Z. Bai et al. (BES Collab.)
BAI	96C	PRL 77 3959	J.Z. Bai et al. (BES Collab.)
BAJC	96	ZPHY A356 187	B. Bajc et al.
CLOSE SZCZEPANIAK	96	PL B366 323 PRL 76 2011	F.E. Close, P.R. Page (RAL) A. Szczepaniak et al. (NCARO)
TORNOVIST	96	PRL 76 1575	N.A. Torngvist, M. Roos (HELS)
AMELIN	95B	PL B356 595	N.A. Tornqvist, M. Roos (HELS) D.V. Amelin et al. (SERP, TBIL)
AMSLER AMSLER	95B 95C	PL B342 433 PL B353 571	C. Amsler et al. (Crystal Barrel Collab.) C. Amsler et al. (Crystal Barrel Collab.)
AMSLER	95D	PL B355 425	C. Amsler et al. (Crystal Barrel Collab.)
AMSLER	95E	PL B353 385	C. Amsler, F.E. Close (ZURI, RAL)
AMSLER BERTIN	95F 95	PL B358 389 PL B361 187	C. Amsler et al. (Crystal Barrel Collab.) A. Bertin et al. (OBELIX Collab.)
BUGG	95	PL B353 378	D.V. Bugg et al. (LOQM, PNPI, WASH)
CLOSE	95	NP B443 233	F.E. Close, P.R. Page (RAL)
PROKOSHKIN	95 B	PAN 58 606 Translated from YAF 58	Y.D. Prokoshkin, S.A. Sadovsky (SERP)
PROKOSHKIN	95C	PAN 58 853	Y.D. Prokoshkin, S.A. Sadovsky (SERP)
SEXTON	95	Translated from YAF 58 PRL 75 4563	921. J. Sexton et al. (IBM)
ALBRECHT	94Z	PL B332 451	H. Albrecht et al. (ARGUS Collab.)
AMSLER	94D	PL B333 277	C. Amsler et al. (Crystal Barrel Collab.)
ANISOVICH BERDNIKOV	94 94	PL B323 233 PL B337 219	V.V. Anisovich et al. E.B. Berdnikov et al. (SERP, TBIL)
LEE	94	PL B323 227	J.H. Lee et al. (BNL, IND, KYÙN, MASD+)
TORNQVIST	94	ZPHY C61 525	N.A. Tornqvist (HELS)
ALEEV	93	PAN 56 1358 Translated from YAF 56	A.N. Aleev et al. (BIS-2 Collab.)
AOYAGI	93	PL B314 246	H. Aoyagi et al. (BKEI Collab.)
BALI BARNES	93	PL B309 378 PL B309 469	G.S. Bali et al. (LIVP)
BELADIDZE	93 93	PL B309 469 PL 313 276	P.D. Barnes, P. Birien, W.H. Breunlich G.M. Beladidze et al. (VES Collab.)
DONNACHIE	93	ZP C60 187	A. Donnachie, Yu.S. Kalashnikova, A.B. Clegg (BNL)
ERICSON	93	PL B309 426 NP B399 17	T.E.O. Ericson, G. Karl (CERN)
MANOHAR ADAMO	93 92	PL B287 368	A.V. Manohar, M.B. Wise (MIT) A. Adamo et al. (OBELIX Collab.)
AMSLER	92	PL B291 347	C. Amsler et al. (Crystal Barrel Collab.)
BARNES	92	PR D46 131	T. Barnes, E.S. Swanson (ORNL)
DOOLEY GOUZ	92 92	PL B275 478 Dallas HEP 92, p. 572	K. Dooley, E.S. Swanson, T. Barnes (ORNL) Yu.P. Gouz et al. (VES Collab.)
Proceeding	ξs XX\	/I int. Conf. on High En	ergy Physics
KARCH	92	ZPHY C54 33	K. Karch et al. (Crystal Ball Collab.)
ALBRECHT DOVER	91F 91	ZPHY C50 1 PR C43 379	H. Albrecht et al. (ARGUS Collab.) C.B. Dover, T. Gutsche, A. Faessler (BNL) S. Fukui et al. (SUGI, NAGO, KEK, KYOT+)
FUKUI	91	PL B257 241	S. Fukui et al. (SUGI, NAGO, KEK, KYOT+)
TORNQVIST	91	PRL 67 556	N.A. Tornqvist (HELS)
ACHASOV ALDE	90 90	TF 20 (178) PL B241 600	N.N. Achasov, G.N. Shestakov (NOVM) D.M. Alde et al. (SERP, BELG, LANL, LAPP+) A.M. Breakstone et al. (ISU, BGNA, CFRN+)
BREAKSTONE	90	ZPHY C48 569	A.M. Breakstone et al. (ISU, BGNA, CERN+)
BURNETT	90	ARNPS 46 332	T.H. Burnett, S.R. Sharpe (RAL)
LONGACRE MAY	90 90	PR D42 874 ZPHY C46 203	R.S. Longacre (BNL) B. May et al. (ASTERIX Collab.)
WEINSTEIN	90	PR D41 2236	J. Weinstein, N. Isgur (TNTO)
ALDE	89	PL B216 447	D.M. Aide et ai. (SERP, BELG, LANL, LAPP)
ARMSTRONG ARMSTRONG	89B 89D	PL B221 221 PL B227 186	T.A. Armstrong et al. (CERN, CDEF, BIRM+) T.A. Armstrong, M. Benayoun (ATHU, BARI, BIRM+)
MAY	89	PL B225 450	B. May et al. (ASTERIX Collab.)
ACHASOV	88	PL B207 199	N.N. Achasov, A.A. Kozhevnikov (NOVM)
AIHARA ALDE	88 88	PR D37 28 PL B201 160	H. Aihara et al. (TPC- 2γ Collab.) D.M. Aide et al. (SERP, BELG, LANL, LAPP+)
ALDE	88B	PL B205 397	D.M. Alde et al. (SERP, BELG, LANL, LAPP)
ASTON	88D	NP B301 525	D. Aston et al. (SLAC, NAGO, CINC, INUS)
BERGER BIRMAN	88B 88	ZPHY C38 521 PRL 61 1557	C. Berger et al. (PLUTO Collab.) A. Birman et al. (BNL, FSU, IND, MASD)
CLEGG	88	ZPHY C40 313	AR Clear A Donaschie (MCUS LANC)
ETKIN	88	PL B201 568	A. Etkin et al. (BNL, CUNY)
IDDIR ACHASOV	88 87	PL B205 564 ZPHY C36 161	A. Etkin et al. (BNL, CUNY) F. Iddir et al. (ORSAY, TOKY) N.N. Achasov, V.A. Karnakov, G.N. Shesikov (NOVM) D. Aston et al. (SLAC, NAGO, CINC, INUS) S.I. Bityukov et al. (SERP)
ASTON	87	NP B292 693	D. Aston et al. (SLAC, NAGO, CINC, INUS)
BITYUKOV CLOSE	87 87	PL B188 383	
ANDO	86	RPP 51 833 PRL 57 1296	(RHEL) A. Ando et al. (KEK, KYOT, NIRS, SAGA+)
воотн	86	NP B273 677	P.S.L. Booth et al. (LIVP, GLAS, CERN)
BOURQUIN	86	PL B172 113	M.H. Bourquin et al. (GÈVA, RAL, HEIDP+)
LONGACRE BARNES	86 85	PL B177 223 PL B165 434	R.S. Longacre et al. (BNL, BRAN, CUNY+)
CHUNG	85	PRL 55 779	S.U. Chung <i>et al.</i> (BNL, FLOR, tND+) N. Isgur, R. Kokoski, J. Paton (TNTO)
ISGUR	85 85	PRL 54 869	N. Isgur, R. Kokoski, J. Paton (TNTO)
LEYAQUANC BEHREND	85 84E	ZPHY C28 309 ZPHY C21 205	A. Le Yaouanc et al. (ORSAY) H.J. Behrend et al. (CELLO Collab.)
BARNES	83	NP B224 241	T. Barnes et al. (RAL, LOUV)
BINON WEINSTEIN	83 83B	NC 78A 313 PR D27 588	F.G. Binon et al. (BELG, LAPP, SERP+) J. Weinstein, N. Isgur (TNTO)
AIHARA	82	PR D37 28	J. Weinstein, N. Isgur (TNTO) H. Aihara et al. (TPC Collab.)
ALTHOFF	82	ZPHY C16 13	M. Altholf et al. (TASSO Collab.)
BARNES BURKE	82	PL B116 365 PL B103 153	T. Barnes, F.E. Close (RHEL) D.L. Burke et al. (Mark II Collab.)
	91	L F OT02 122	D.L. Durke et al. IMark II Collab.1
	81 80B		
BRANDELIK GUTBROD	80B 79	PL B97 448 ZP C1 391	R. Brandelik et al. (TASSO Collab.) F. Gutbrod, G. Kramer, C. Rumpf (DESY)
BRANDELIK GUTBROD JAFFE	80B 79 77	PL B97 448 ZP C1 391 PR D15 267,281	R. Brandelik et al. (TASSO Collab.) F. Gutbrod, G. Kramer, C. Rumpf (DESY) R. Jaffe (MIT)
BRANDELIK GUTBROD JAFFE VOLOSHIN	80B 79 77 76	PL 897 448 ZP C1 391 PR D15 267,281 JETPL 23 333 Translated from ZETFP	R. Brandelik et al. (TASSO Collab.) F. Gutbrod, G. Kramer, C. Rumpf (DESY) R. Jaffe (MIT) M.B. Voloshin, L.B. Okun (ITEP) 23 369.
BRANDELIK GUTBROD JAFFE	80B 79 77	PL 897 448 ZP C1 391 PR D15 267,281 JETPL 23 333	R. Brandelik et al. (TASSO Collab.) F. Gutbrod, G. Kramer, C. Rumpf R. Jaffe (MIT) M.B. Voloshin, L.B. Okun (ITEP)

N BARYONS (S=0, I=1/2)

p, $N^+ = uud$; n, $N^0 = udd$

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Status: ****

I

p MASS

The mass is known much more precisely in u (atomic mass units) than in MeV; see the footnote. The conversion from u to MeV, 1 u = 931.494013 \pm 0.000037 MeV/ c^2 (MOHR 99, the 1998 CODATA value), involves the relatively poorly known electronic charge.

DOCUMENT ID		TECN	COMMENT
¹ MOHR	99	RVUE	1998 CODATA value
g data for average	s, fit	s, limits,	etc. • • •
² COHEN	87	RVUE	1986 CODATA value
COHEN	73	RVUE	1973 CODATA value
e precisely in u: n	1 = 1	.0072764	16688 ± 0.00000000013 u.
	g data for average 2 COHEN COHEN e precisely in u: n	g data for averages, fit: 2 COHEN 87 COHEN 73 e precisely in u: $m=1$	g data for averages, fits, limits, ² COHEN 87 RVUE

$m_p - m_{\overline{p}} / m_p$

A test of CPT invariance. Note that the \overline{p}/p charge-to-mass ratio, given

VALUE	DOCUMENT ID		TECN	COMMENT	
<5 × 10 ⁻⁷	³ TORII	99	SPEC	₱e [—] He atom	

 3 TORII 99 uses the more-precisely-known constraint on the $\overline{\rho}$ charge-to-mass ratio of GABRIELSE 95 (see below) to get this result. This is not independent of the TORII 99 value for $|q_p+q_{\overline{p}}|/e$, below.

\bar{p}/p CHARGE-TO-MASS RATIO, $\left|\frac{q_p}{m_p}\right|/\left(\frac{q_p}{m_p}\right)$

A test of CPT invariance. Listed here are measurements involving the inertial masses. For a discussion of what may be inferred about the ratio of \bar{p} and p gravitational masses, see ERICSON 90; they obtain an upper bound of 10^{-6} – 10^{-7} for violation of the equivalence principle for \bar{p} 's.

VALUE	DOCUMENT ID		TECN	COMMENT
$0.9999999991 \pm 0.000000000009$	GABRIELSE	99	TRAP	Penning trap
• • We do not use the following	g data for average	es, fit	ts, limits	, etc. • • •
1.0000000015 ±0.0000000011 1.000000023 ±0.000000042	⁴ GABRIELSE ⁵ GABRIELSE			
⁴ Equation (2) of GABRIELSI (G. Gabrielse, private communi ⁵ GABRIELSE 90, also measure	ication).			$p) = 0.9999999985(11)$ + 0.000083 and m_{-}/m_{-}

= 1836.152680 \pm 0.000088. Both are completely consistent with the 1986 CODATA (COHEN 87) value for m_p/m_{e^-} of 1836.152701 \pm 0.000037.

$(\left|\frac{q_p}{m_p}\right| - \frac{q_p}{m_p}) / \frac{q_p}{m_p}$

A test of CPT invariance. Taken from the \overline{p}/p charge-to-mass ratio, above

VALUE DOCUMENT ID $(-9\pm9)\times10^{-11}$ OUR EVALUATION

A test of CPT invariance. Note that the \overline{p}/p charge-to-mass ratio, given above, is much better determined. See also a similar test involving the

VALUE	DOCUMENT II	0	TECN	COMMENT	
<5 × 10 ⁻⁷	6 TORII	99	SPEC	pe−He atom	_ 1
• • • We do not use th	e following data for avera	ges, fits	s, limits,	etc. • • •	
$< 2 \times 10^{-5}$	7 HUGHES	92	RVUE		
⁶ TORII 99 uses the GABRIELSE 95 (see value for $ m_p - m_{\overline{p}} $)	more-precisely-known con above) to get this result. m_D , above.	straint This i	on the s not inc	$ar{p}$ charge-to-mass ratio dependent of the TORII	of 99
⁷ HUGHES 92 uses re	cent measurements of Ry	dberg-	energy a	nd cyclotron-frequency	ra-

$|q_p + q_e|/e$

See DYLLA 73 for a summary of experiments on the neutrality of matter. See also "n CHARGE" in the neutron Listings.

VALUE	DOCUMENT ID		COMMENT	
<1.0 × 10 ⁻²¹	8 DYLLA		Neutrality of SF ₆	
• • We do not use the following	g data for average	es, fit	s, limits, etc. • • •	
$<0.8 \times 10^{-21}$	MARINELLI	84	Magnetic levitation	
⁸ Assumes that $q_n = q_p + q_e$.				

p MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" in the A Listings.

VALUE (µN)	DOCUMENT	ID	TECN COMMENT					
2.792847337±0.000000029	MOHR			VUE 1998 CODATA value				
• • We do not use the follow	ing data for avera	iges, no	s, nmits,	etc. • • •				
$2.792847386 \pm 0.000000063$	COHEN	87	RVUE	1986 CODATA value				
2.7928456 ±0.0000011	COHEN	73	RVUE	1973 CODATA value				

P MAGNETIC MOMENT

A few early results have been omitted.

VALUE (µN)	DOCUMENT ID		TECN	COMMENT		
-2.800 ±0.008 OUR AVERAGE						
-2.8005 ± 0.0090	KREISSL	88	CNTR	\overline{p}^{208} Pb 11 \rightarrow 10 X-ray		
-2.817 ±0.048	ROBERTS	78	CNTR			
-2.791 ± 0.021	HU	75	CNTR	Exotic atoms		
-2.817 ± 0.048	ROBERTS	78	CNTR	•		

$(\mu_p + \mu_{\overline{p}}) / \mu_p$

A test of CPT invariance. Calculated from the p and \vec{p} magnetic moments,

VALUE DOCUMENT ID $(-2.6\pm2.9)\times10^{-3}$ OUR EVALUATION

p ELECTRIC DIPOLE MOMENT

A nonzero value is forbidden by both T invariance and P invariance.

VALUE (10 ⁻²³ ecm)	EVTS	DOCUMENT ID		TECN	COMMENT
- 3.7± 6.3		CHO	89	NMR	TI F molecules
• • • We do not use	the following	ng data for average	s, fits	s, limits,	etc. • • •
< 400		DZUBA	85	THEO	Uses 129 Xe moment
130 ± 200		9 WILKENING	84		
900 ±1400		10 WILKENING	84		
700 ± 900	1 G	HARRISON	69	MBR	Molecular beam
9 THE WILKENING	04 value i	scludor a finita ciza	offer	+	magnetic effect

P ELECTRIC POLARIZABILITY TO

VALUE (10 ⁻⁴ fm ³)	DOCUMENT ID		TECN	COMMENT
12.1 ±0.8 ±0.5	11 MACGIBBON			
• • We do not use the fol	llowing data for averages	s, fit	s, limits,	etc. • • •
12.5 ±0.6 ±0.9	MACGIBBON	95	CNTR	γp Compton scattering
$9.8 \pm 0.4 \pm 1.1$	HALLIN	93	CNTR	γp Compton scattering
10.62 + 1.25 + 1.07 - 1.19 - 1.03	ZIEGER	92	CNTR	γp Compton scattering
10.9 ±2.2 ±1.3	12 FEDERSPIEL	91	CNTR	γ p Compton scattering

¹¹ MACGIBBON 95 combine the results of ZIEGER 92, FEDERSPIEL 91, and their own experiment to get a "global average" in which model errors and systematic errors are treated in a consistent way. See MACGIBBON 95 for a discussion. 12 FEDERSPIEL 91 obtains for the (static) electric polarizability α_p , defined in terms of the

induced electric dipole moment by ${\bf D}=4\pi\epsilon_0\alpha_p{\bf E}$, the value $(7.0\pm2.2\pm1.3)\times10^{-4}~{\rm fm}^3$.

p MAGNETIC POLARIZABILITY $\overline{\beta}_p$

The electric and magnetic polarizabilities are subject to a dispersion sumrule constraint $\overline{\alpha}+\overline{\beta}=(14.2\pm0.5)\times10^{-4}~{\rm fm}^3$. Errors here are anticorrelated with those on $\overline{\alpha}_p$ due to this constraint.

VALUE (10 ⁻⁴ fm ³)	DOCUMENT ID		TECN	COMMENT		
2.1 ±0.8 ±0.5	13 MACGIBBON					
• • We do not use the form	llowing data for average:	, fit	s, limits,	etc. • • •		
$1.7 \pm 0.6 \pm 0.9$	MACGIBBON	95	CNTR	γp Compton scattering		
$4.4 \pm 0.4 \pm 1.1$	HALLIN	93	CNTR	γp Compton scattering		
$3.58^{+1.19}_{-1.25}^{+1.03}_{-1.07}$	ZIEGER	92	CNTR	γp Compton scattering		
$3.3 \pm 2.2 \pm 1.3$	FEDERSPIEL	91	CNTR	γp Compton scattering		

13 MACGIBBON 95 combine the results of ZIEGER 92, FEDERSPIEL 91, and their own experiment to get a "global average" in which model errors and systematic errors are treated in a consistent way. See MACGIBBON 95 for a discussion.

This WILKENING 84 value includes a finite-size effect and a magnetic effect.
10 This WILKENING 84 value is more cautious than the other and excludes the finite-size effect, which relies on uncertain nuclear integrals.

Baryon Particle Listings

p							
	F	MEAN LIFE				Lepton + mesons	
	A test of baryon conservation. S	ee the "p Partial Mean Lives" section below	for limits	$ au_{35}$	$p \rightarrow e^- \pi^+ \pi^-$	> 30	90%
	that depend on decay modes. p			τ_{36}	$n \rightarrow e^- \pi^+ \pi^0$	> 29	90%
LIMIT (years)	PARTICLE	DOCUMENT ID TECN		$ au_{37}$	$\rho \rightarrow \mu^- \pi^+ \pi^-$	> 17	90%
	× 10 ²⁵ p. s 14.	.15 EVANS 77		$ au_{38}$	$n \rightarrow \mu^- \pi^+ \pi^0$		90%
		ta for averages, fits, limits, etc. • • •		$ au_{39}$	$p \rightarrow e^- \pi^+ K$	·	90%
>3	× 10 ²³ p	15 DIX 70 CNTR		τ_{40}	$\rho \rightarrow \mu^- \pi^+ K$	> 245	90%
>3	$\times 10^{23}$ p, n 15,	¹⁶ FLEROV 58				Antilepton + photon(s)	
14 M	ean lifetime of nucleons in ¹³⁰ T	e nuclei.		$ au_{41}$	$ ho ightarrow e^+ \gamma$	> 670	90%
15 C	onverted to mean life by dividing	half-life by $ln(2) = 0.693$.		T42	$\rho \rightarrow \mu^+ \gamma$	> 478	90%
10 M	ean lifetime of nucleons in ²³² T	h nuclei.		τ_{43}	$n \rightarrow \nu \gamma$	> 28	90%
	7	MEAN LIFE		T44	$ ho ightarrow e^+ \gamma \gamma$	> 100	90%
	•		_	$ au_{45}$	$n \rightarrow \nu \gamma \gamma$	> 219	909
		GOLDEN 79, relies, however, on a number on the other limits come from direct observation				Three (or more) leptons	
		Iso "p Partial Mean Lives" after "p Partia		$ au_{46}$	$p \rightarrow e^+ e^+ e^-$, , ,	909
	Mean Lives," below.	·		747	$p \rightarrow e^+ \mu^+ \mu^-$		909
				T48	$p \rightarrow e^+ \nu \nu$	> 17	909
IMIT years)	CL% EVTS	DOCUMENT ID TECN COMMENT		τ_{49}	$n \rightarrow e^+e^-\nu$	> 257	90%
		ta for averages, fits, limits, etc. • • •		$ au_{50}$	$n \rightarrow \mu^+ e^- \nu$	> 83	90%
>0.28	-	GABRIELSE 90 TRAP Penning traj)	τ_{51}	$n \rightarrow \mu^+ \mu^- \nu$	> 79	90%
>0.08	90 1	BELL 79 CNTR Storage ring		τ ₅₂	$ ho ightarrow \mu^+ e^+ e^-$		90%
>1	× 10 ⁷	GOLDEN 79 SPEC \overline{p}/p , cosmic	rays	τ_{53}	$p \rightarrow \mu^+ \mu^+ \mu$	-	90%
>3.7	× 10 ⁻³	BREGMAN 78 CNTR Storage ring		τ_{54}	$ ho ightarrow \ \mu^+ u u$	> 21	90%
				$ au_{55}$	$p \rightarrow e^- \mu^+ \mu^-$	+ > 6	90%
	PL	DECAY MODES		$ au_{56}$	$n \rightarrow 3\nu$	> 0.0005	90%
	Below, for N decays, p and i	distinguish proton and neutron partial life	<u>-</u>	$ au_{57}$	$n \rightarrow 5\nu$		
		Nucleon Decay" in our 1994 edition (Phys	5.			Inclusive modes	
	Rev. D50 , 1673) for a short	review.		τ_{58}	$N \rightarrow e^+$ anytl		90%
		tabulated here are the limits on $ au/B_I$, wher		τ_{59}	$N \rightarrow \mu^+$ anyth		90%
	 τ is the total mean life and l question. 	B_i is the branching fraction for the mode i	n	$ au_{60}$	$N \rightarrow \nu$ anything		
	question.			τ_{61}	$N ightarrow e^+ \pi^0$ an	ything > 0.6 (n, p)	90%
		Partial mean life		$ au_{62}$	$N \rightarrow 2$ bodies	s, ν -free	
	Mode		dence level			$\Delta B = 2$ dinucleon modes	
	Ant	ilepton + meson			The following a	re lifetime limits per iron nucleus.	
1	$N \rightarrow e^+\pi$	> 158 (n), > 1600 (p)	90%	$ au_{63}$	$pp \rightarrow \pi^+\pi^+$	> 0.7	90%
2	$N \rightarrow \mu^+ \pi$	> 100 (n), > 473 (p)	90%	τ_{64}	$pn \rightarrow \pi^+\pi^0$	> 2	90%
3	$N \rightarrow \nu \pi$	> 112 (n), > 25 (p)	90%	τ_{65}	$nn \rightarrow \pi^+\pi^-$	> 0.7	909
4	$p \rightarrow e^+ \eta$	> 313	90%	T ₆₆	$nn \rightarrow \pi^0 \pi^0$	> 3.4	90%
5	$p \rightarrow \mu^+ \eta$	> 126	90%	$ au_{67}$	$pp \rightarrow e^+e^+$	> 5.8	90%
6	$n \rightarrow \nu \eta$	> 158	90%	τ_{68}	$ ho ho ightarrow e^+\mu^+$	> 3.6	90%
7	$N \rightarrow e^+ \rho$	> 217 (n), > 75 (p)	90%	$ au_{69}$	$pp \rightarrow \mu^+ \mu^+$	> 1.7	90%
8	$N \rightarrow \mu^+ \rho$	> 228 (n), > 110 (p)	90%	$ au_{70}$	$pn \rightarrow e^+ \overline{\nu}$	> 2.8	90%
9	$N \rightarrow \nu \rho$	> 19 (n), > 162 (p)	90%	$ au_{71}$	$p n ightarrow \mu^+ \overline{ u}$	> 1.6	90%
10	$p \rightarrow e^+ \omega$ $p \rightarrow u^+ \omega$	> 107	90%	T72	$nn \rightarrow \nu_e \overline{\nu}_e$	> 0.000012	90%
11	•	> 117 > 108	90% 90%	$ au_{73}$	$nn \rightarrow u_{\mu} \widehat{ u}_{\mu}$	> 0.000006	90%
12	$N \rightarrow \nu \omega$ $N \rightarrow e^+ K$		90%			DECAY MODES	
13	$\rho \rightarrow e^+ K_s^0$	> 17 (n), > 150 (p) > 76	- 90%				
14	$p \rightarrow e^+ K_L^0$	> 44	90%		Mode	Partial mean life	Confidence leve
15	$N \rightarrow \mu^+ K$	> 44 $>$ 26 (n) , $>$ 120 (p)	90%	_	WIOGC	(years)	Communice levi
16	$p \rightarrow \mu^+ K_s^0$	> 26 (n), > 120 (p) > 64	90%	$ au_{74}$	$\overline{p} \rightarrow e^- \gamma$	> 7 × 10 ⁵	90%
17	$\begin{array}{ccc} \rho \to & \mu & \kappa_S \\ \rho \to & \mu^+ \kappa_L^0 \end{array}$	> 64 > 44	90%	$ au_{75}$	$\overline{p} \rightarrow \mu^- \gamma_0$	> 5 × 10 ⁴	90%
718	$\begin{array}{ccc} \rho \to \mu & \kappa_L \\ N \to \nu & K \end{array}$		90%	T76	$\overline{\rho} \rightarrow e^- \pi^0$	$> 4 \times 10^5$	90%
19	$p \rightarrow e^+ K^*(892)^0$	> 86 (n), > 670 (p) > 84	90% 90%	τ_{77}	$\overline{p} \rightarrow \mu^- \pi^0$	> 5 × 10 ⁴	90%
20	$N \rightarrow \nu K^*(892)$	> 04 > 78 (n), > 51 (p)	90%	$ au_{78}$	$\overline{p} \rightarrow e^- \eta$	$> 2 \times 10^4$	90%
21	(032)	> 10 (11), > 31 (p)	2076	$ au_{79}$	$\overline{p} \rightarrow \mu^- \eta$	> 8 × 10 ³	90%
		ilepton + mesons		$ au_{80}$	$\overline{p} \rightarrow e^- K_S^0$	> 900	90%
22	$\rho \rightarrow e^+\pi^+\pi^-$	> 82	90%	$ au_{81}$	$\overline{p} \rightarrow \mu^- K_S^0$	$> 4 \times 10^3$	90%
23	$\rho \rightarrow e^+\pi^0\pi^0$	> 147	90%	$ au_{82}$	$\overline{p} \rightarrow e^- K_L^0$	$> 9 \times 10^3$	909
24	$n \rightarrow e^+\pi^-\pi^0$	> 52	90%	$ au_{83}$	$\overline{p} \rightarrow \mu^- K_L^0$	$> 7 \times 10^3$	90%
25	$p \to \mu^+ \pi^+ \pi^-$	> 133	90%	$ au_{84}$	$\overline{p} \rightarrow e^- \gamma \gamma$	$> 2 \times 10^4$	90%
26	$p \rightarrow \mu^+ \pi^0 \pi^0$	> 101	90%	$ au_{85}$	$\overline{p} \rightarrow \mu^- \gamma \gamma$	> 2 × 10 ⁴	90%
27	$\begin{array}{ccc} n \rightarrow & \mu^+ \pi^- \pi^0 \\ n \rightarrow & e^+ K^0 \pi^- \end{array}$	> 74	90%	τ ₈₆	$\overline{p} \rightarrow e^- \rho$	> 200	90%
28		> 18	90%	787	$\overline{p} \rightarrow e^{-}\omega$ $\overline{p} \rightarrow e^{-}K^{*}(8)$	> 200 $> 1 \times 10^3$	90% 90%
		epton + meson		τ ₈₈	μ → τ Λ (0	>1 × 10-	907
29	$n \rightarrow e^- \pi^+$	> 65	90%				
30	$n \rightarrow \mu^- \pi^+$	> 49	90%				
31	$n \rightarrow e^{-} \rho^{+}$	> 62	90%				
732	$\begin{array}{ccc} n \to & \mu^- \rho^+ \\ n \to & e^- K^+ \end{array}$	> 7	90%				
⁷ 33	$n \rightarrow e K^+$ $n \rightarrow \mu^- K^+$	> 32	90%				
<i>T</i> 34	<i>π - γ μ</i> τι	> 57	90%				

 $\tau(N \rightarrow e^+\pi)$

 $\tau(N \rightarrow \mu^+\pi)$

p PARTIAL MEAN LIVES

The "partial mean life" limits tabulated here are the limits on τ/B_j , where τ is the total mean life for the proton and B_j is the branching fraction for the mode in question.

Decaying particle: p= proton, n= bound neutron. The same event may appear under more than one partial decay mode. Background estimates may be accurate to a factor of two.

— Antilepton + meson —

τ ($N \rightarrow e^{-1}$	[⊢] π)							$ au_1$
(10	1/T 30 years)	PARTICLE	CL%	EVTS	BKGD EST		DOCUMENT ID		TECN
>	158 1600	n P	90 90	3 0	5 0.1		MCGREW SHIOZAWA	99 98	IMB3 SKAM
•	 We d 	o not use the	followin	ng data	a for averages, f	its, lin	nits, etc. • • •		
>	540	P	90	0	0.2		MCGREW	99	IMB3
>	70	P	90	0	0.5		BERGER	91	FREJ
>	70	n	90	0	≤ 0.1		BERGER	91	FREJ
>	550	p	90	0	0.7	17	BECKER-SZ	90	IMB3
>	260	p	90	0	< 0.04		HIRATA	89c	KAMI
>	130	n	90	0	< 0.2		HIRATA	89c	KAMI
>	310	p	90	0	0.6		SEIDEL	88	IMB
>	100	n	90	0	1.6		SEIDEL	88	IMB
>	1.3	n	90	0			BARTELT	87	SOUD
>	1.3	p	90	0			BARTELT	87	SOUD
>	250	P	90	0	0.3		HAINES	86	IMB
>	31	n	90	8	9		HAINES	86	IMB
>	64	P	90	0	< 0.4		ARISAKA	85	KAMI
>	26	n	90	0	< 0.7		ARISAKA	85	KAMI
>	82	p (free)	90	0	0.2		BLEWITT	85	IMB
>	250	P	90	0	0.2		BLEWITT	85	IMB
>	25	n	90	4	4		PARK	85	IMB
>	15	p, n	90	0			BATTISTONI	84	NUSX
>	0.5	p	90	1	0.3	18	BARTELT	83	SOUD
>	0.5	n ·	90	1	0.3	18	BARTELT	83	SOUD
>	5.8	P	90	2		19		82	KOLR
>	5.8	n	90	2		19	KRISHNA	82	KOLR
>	0.1	п	90			20	GURR	67	CNTR

¹⁷ This BECKER-SZENDY 90 result includes data from SEIDEL 88.
18 Limit based on zero events.
19 We have calculated 90% CL limit from 1 confined event.
20 We have converted half-life to 90% CL mean life.

r (π → μ LIMIT (10 ³⁰ years)	7)						72	
	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN	
>473	P	90	0	0.6	MCGREW	99	IMB3	-
>100	n do not uso the	90 . follow		<0.2	HIRATA	890	KAMI	
			-	_				
> 90	n	90	1	1.9	MCGREW	99	IMB3	i
> 81	Р	90	0	0.2	BERGER	91	FREJ	
> 35	п	90	1	1.0	BERGER	91	FREJ	
>230	p	90	0	< 0.07	HIRATA		KAMI	
>270	P	90 90	0	0.5 0.5	SEIDEL	88	IMB	
> 63 > 76	п	90	-	0.5 1	SEIDEL	88	IMB	
> 76	p n	90	2 8	7	HAINES	86	IMB	
> 23 > 46		90	0	<0.7	HAINES ARISAKA	86	IMB KAMI	
> 40	p n	90	0	< 0.4		85 85		
> 20 > 59	p (free)	90	0	0.2	ARISAKA BLEWITT		KAMI IMB	
> 59	p (nee)	90	1	0.4	BLEWITT	85 85	IMB	
> 38	n n	90	1	4	PARK	85	IMB	
> 10		90	0	*	BATTISTONI	63 84	NUSX	
> 1.3	р, п р, п	90	0		ALEKSEEV	64 B1	BAKS	
/ I.J	ρ, π	30	U		ALEKSELV	01	DANS	
т (N → v ыміт	π)						73	
(10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN	
>112	n	90	6	6.6	MCGREW	99	IMB3	
> 25	P	90	32	32.8	HIRATA	B9 C	KAMI	
• • We	do not use th	e follow	ing dat	a for averages, f	its, limits, etc. • • •			
> 10	P	90	15	20.3	MCGREW	99	IMB3	
> 13	п	90	1	1.2	BERGER	89	FREJ	
> 10	P	90	11	14	BERGER	89	FREJ	
>100	п	90	1	3	HIRATA	89c	KAMI	
> 6	п	90	73	60	HAINES	86	IMB	
> 2	P	90	16	13	KAJITA	86	KAMI	
> 40	n	90	0	1	KAJITA	86	KAMI	
> 7	n	90	28	19	PARK	85	IMB	
> 7	n	90	0		BATTISTONI	84	NUSX	
> 2	ρ	90	≤ 3		BATTISTONI	84	NUSX	
> 5.8	P	90	1		²¹ KRISHNA	82	KOLR	
> 0.3	P	90	2		22 CHERRY	81	HOME	
> 0.1	₽	90			²³ GURR	67	CNTR	
> 0.1 21 We hav 22 We hav	p re calculated re re converted 2	90 90% CL 2 possib	_ limit f	rom 1 confined of ts to 90% CL lin CL mean life.	²³ GURR		-	

•	$\tau(p \rightarrow e^+$	'η)						7	4
9	LIMIT (10 ³⁰ years)	PARTICLE	CL% EV	_	BKGD EST	DOCUMENT ID		TECN	
	>313	p In not use the	90 following o	_	0.2 a for averages, fits, li		99	IMB3	
	· · · · · · · ·	o not use the	TOHOWING C	,,,,,,,	ioi averages, mes, m	ilits, etc. • • •			
	> 44	p ·	90	0	0.1	BERGER	91	FREJ	
	>140	P	90	0	< 0.04	HIRATA	89C	KAMI	
	>100	p	90	0	0.6	SEIDEL	88	IMB	
	>200	p	90	5	3.3	HAINES	86	IMB	
	> 64	p	90	0	< 0.8	ARISAKA	85	KAMI	
	> 64	p (free)	90	5	6.5	BLEWITT	85	IMB	
	>200	D	90	5	4.7	BLEWITT	85	IMB	
	> 1.2	P	90	2	24	1 CHERRY	81	HOME	

²⁴We have converted 2 possible events to 90% CL limit.

$\tau(\rho \to \mu^-$	⁻ η)							75
LIMIT (10 ³⁰ years)	PARTICLE	CL% EV	rs	BKGD EST	DOCUMENT ID		TECN	_
>126	P	90	3	2.8	MCGREW	99	IMB3	
• • • We d	do not use the	following d	at	a for averages, fits, lin	nits, etc. • • •			
> 26	P	90	1	0.8	BERGER	91	FREJ	
> 69	p	90	1	< 0.08	HIRATA	89C	KAM	1
> 1.3	P	90	0	0.7	PHILLIPS	89	HPW	
> 34	p	90	1	1.5	SEIDEL	88	IMB	
> 46	p	90	7	6	HAINES	86	IMB	
> 26	P	90	1	< 0.8	ARISAKA	85	KAMI	1
> 17	p (free)	90	6	6	BLEWITT	85	IMB	
> 46	p	90	7	8	BLEWITT	85	IMB	
$\tau(n \rightarrow \nu)$	1)							76

٧	, –	וועי	,					76
<i>IМ</i> 10 ³	1 <i>T</i> 10 ye	ars)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
			n	90	-		MCGREW 99	IMB3
•	• '	we d	o not use the	e follow	ing data	a for averages	s, fits, limits, etc. • • •	
>	29		n	90	0	0.9	BERGER 89	FREJ
>	54		n	90	2	0.9	HIRATA 89	C KAM!
>	16		n	90	3	2.1	SEIDEL 88	IMB
>	25		n	90	7	6	HAINES 86	IMB
>	30		n	90	0	0.4	KAJITA 86	KAMI
>	18		n	90	4	3	PARK 85	IMB
>	0.6	;	n	90	2		²⁵ CHERRY 81	HOME
	10 ³ >1 >1 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	MIT 10 ³⁰ ye > 158	10 ³⁰ years) >158 • • We d > 29 > 54 > 16 > 25 > 30 > 18	10 ³⁰ years) PARTICLE >158 n • • We do not use the year of year of the year of the year of year of year of year of year of y	MAIT 10-30 years PARTICLE CL% PROPERTY PARTICLE CL% PROPERTY PROPERTY	Military PARTICLE CL% EVTS	Military Particle Cl\(\) EVTS BKGD EST	Military Particle CL% EVTS BKGD EST DOCUMENT ID

 $^{\rm 25}\,\rm We$ have converted 2 possible events to 90% CL limit.

72

$\tau(N \rightarrow e^{-}$	+ ρ)						77
<i>LIMIT</i> (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>217	л	90	4	4.8	MCGREW	99	IMB3
> 75	P	90	2	2.7	HIRATA	89C	KAMI
• • • We d	lo not use the	followi	ng data	a for averages, fits	i, limits, etc. • • •		
> 29	p	90	0	2.2	BERGER	91	FREJ
> 41	n	90	0	1.4	BERGER	91	FREJ
> 58	n	90	0	1.9	HIRATA	89C	KAMI
> 38	n	90	2	4.1	SEIDEL	88	IMB
> 1.2	P	90	0		BARTELT	87	SOUD
> 1.5	n	90	0		BARTELT	87	SOUD
> 17	P	90	7	7	HAINES	86	IMB
> 14	n	90	9	4	HAINES	86	IMB
> 12	p	90	0	<1.2	ARISAKA	85	KAMI
> 6	n	90	2	<1	ARISAKA	85	KAMI
> 6.7	p (free)	90	6	6	BLEWITT	85	IMB
> 17	p	90	7	7	BLEWITT	85	IMB
> 12	n	90	4	2	PARK	85	IMB
> 0.6	п	90	1	0.3	26 BARTELT	83	SOUD
> 0.5	p	90	1	0.3	26 BARTELT	83	SOUD
> 9.8	p	90	1		27 KRISHNA	82	KOLR
> 0.8	p	90	2		²⁸ CHERRY	81	HOME

26 Limit based on zero events. 27 We have calculated 90% CL limit from 0 confined events. 28 We have converted 2 possible events to 90% CL limit.

τ(N → μ ⁴	· ρ)						ПВ
(10	30 years)	PARTICLE	CL% EV	TS	BKGD EST	DOCUMENT ID		TECN
>2	228	n	90	3	9.5	MCGREW	99	IMB3
>1	L10	P	90	0	1.7	HIRATA	89c	KAMI
• •	• We d	o not use the	following -	data	a for averages, fits, lin	nits, etc. • • •		
>	12	P	90	0	0.5	BERGER	91	FREJ
>	22	n	90	0	1.1	BERGER	91	FREJ
>	23	n	90	1	1.8	HIRATA	89C	KAMI
>	4.3	P	90	0	0.7	PHILLIPS	89	HPW
>	30	p	90	0	0.5	SEIDEL	88	IMB
>	11	л	90	1	1.1	SEIDEL	88	IMB
>	16	p	90	4	4.5	HAINES	86	IMB
>	7	n	90	6	5	HAINES	86	IMB
>	12	p	90	0	< 0.7	ARISAKA	85	KAMI
>	5	n	90	1	<1.2	ARISAKA	85	KAMI
>	5.5	p (free)	90	4	5	BLEWITT	85	IMB
>	16	p	90	4	5	BLEWITT	85	IMB
>	9	n	90	1	2	PARK	85	IMB

Baryon Particle Listings

p

$\tau(N \to \nu$	ρ)						79		$\tau(p \to e$	+,	K ⁰ _S)						714	ļ
LIMIT (10 ³⁰ years)	PARTICLE	CL%	EVT <u>S</u>	BKGD EST	DOCUMENT ID		TECN		LIMIT (10 ³⁰ years)	,	PARTICLE	CL%	EVTS	BKGD EST	DOÇUMENT ID		TECN	
>162	P	90		21.7	MCGREW		IMB3	1	>76		P	90	0	0.5	BERGER	91	FREJ	
> 19	n In not use the	90 followin		0.5	SEIDEL limits, etc. • • •	88	IMB		$\tau(\rho \rightarrow e$	+	K ⁰)						$ au_{15}$	
> 9	л	90	4	=	BERGER	89	FREJ		LIMIT		-							,
> 24	p	90		0.9	BERGER		FREJ		(10 ³⁰ years)		PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN	
> 27 > 13	P	90 90		1.5	HIRATA		KAMI		>44		P	90	0	≤ 0.1	BERGER	91	FREJ	
> 13	n p	90	1	3.6 1.1	HIRATA SEIDEL		KAMI IMB		$\tau(N \rightarrow \mu$	μ+	'K)						716	,
> 8	P	90	6		HAINES	86	IMB		LIMIT (10 ³⁰ years)	,	PARTICLE	CL%	EVTS	BKGD_EST	DOCUMENT ID		TECN	
> 2 > 11	n P	90 90	15 2		HAINES KAJITA	86 86	IMB KAMI		>120	_	p	90	4	7.2	MCGREW	99	IMB3	ı
> 4	'n	90		2	KAJITA	86	KAMI		> 26		7	90	20	28.4	MCGREW		IMB3	ı
> 4.1	p (free)	90		7	BLEWITT	85	IMB		>120		p not use the	90 followi	1 ing data	0.4 a for averages, fits,	HIRATA	89C	KAMI	
> 8.4 > 2	p n	90 90	6 7		BLEWITT PARK	85 85	IMB IMB		> 54		p	90	0	a for Bretages, tres	BERGER	91	FREJ	
> 0.9	p	90	2		²⁹ CHERRY	81	HOME		> 3.0		P	90	0	0.7	PHILLIPS	89	HPW	
> 0.6	n	90	2		²⁹ CHERRY	81	HOME		> 19 > 1.5		P	90 90	3	2.5	SEIDEL ³⁴ BARTELT	88 87	IMB SOUD	
²⁹ We hav	e converted 2	possible	event	s to 90% CL limit.					> 1.5 > 1.1		p n	90	0		BARTELT		SOUD	
$\tau(p \rightarrow e^+$	[⊢] ω)						<i>7</i> 10		> 40		p	90	7	6	HAINES		IMB	
LIMIT (10 ³⁰ years)	PARTICLE	CL%	FVTS	BKGD EST	DOCUMENT ID		TECN		> 19 > 6.7		p p (free)	90 90	1 11	<1.1 13	ARISAKA BLEWITT	85 85	KAMI IMB	
>107	P	90		10.8	MCGREW	99	IMB3	1	> 40		p (nee)	90	7	8	BLEWITT		IMB	
• • • We d		followin			, fimits, etc. • • •		-	•	> 6		P	90	1		BATTISTONI	84	NUSX	
> 17	p	90		1.1	BERGER		FREJ		> 0.6 > 0.4		p n	90 90	0		35 BARTELT 35 BARTELT	83 83	SOUD	
> 45 > 26	P	90 90		1.45	HIRATA		KAMI		> 5.8		 P	90	2		36 KRISHNA		KOLR	
> 20 > 1.5	P P	90	0	1.0	SEIDEL BARTELT	87	IMB SOUD		> 2.0		p	90	0		CHERRY	81	HOME	
> 37	ρ	90		5.3	HAINES	86	IMB		> 0.2		n 	90		+0	³⁷ GURR	67	CNTR	
> 25 > 12	p p (free)	90 90		<1.4 7.5	ARISAKA BLEWITT	85 85	KAMI IMB				T 87 limit ap sed on zero e		o <i>p</i> →	$\mu^+ K_{\mathcal{S}}^{\bullet}$.				
> 12	p (nee)	90		5.7	BLEWITT	85	IMB		36 We ha	ave	calculated 90	0% CL	limit fo	rom 1 confined eve	nt.			
> 0.6	p	90		0.3	30 BARTELT	83	SOUD		37 We ha	ave	converted ha	lf-life	to 90%	CL mean life.				
> 9.8 > 2.8	Р Р	90 90	1 2		31 KRISHNA 32 CHERRY		KOLR HOME		$\tau(p \rightarrow \mu$	+	Kg)						τ_{17}	,
	ased on zero e		-		CHERRY	01	HOME		LIMIT		•	C. N						
31 We hav	e calculated 90	0% CL Ii	mit fr	om 0 confined eve	nts.				(10 ³⁰ years)	_	PARTICLE P	<u>CL%</u>	EVTS 0	BKGD EST 1.2	DOCUMENT ID BERGER	91	<u>TECN</u> FREJ	
	2	possible	event	s to 90% CL limit.	•						-				02.1102.11			
$\tau(p \to \mu^-$	+ω)						η_1		$\tau(p \to \mu$	u [—]	KY)						710	,
LIMIT (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN		(10 ³⁰ years)	<u>)</u>	PARTICLE	CL%	EVTS	BKGD_EST	DOCUMENT ID		TECN	
>117	P	90		12.1	MCGREW	99	IMB3	1	>44		P	90	0	≤ 0.1	BERGER	91	FREJ	
• • • We	do not use the	followin	g data	for averages, fits	, limits, etc. • • •				$\tau(N \rightarrow i$	υŀ	()						η_1	۵
> 11 > 57	P	90 90		1.0	BERGER		FREJ		LIMIT		•							,
> 51 > 4.4	P P	90		1.9 0.7	HIRATA PHILLIPS		HPW		(10 ³⁰ years)	_	PARTICLE	<u>CL%</u>	EVTS	BKGD EST	OOCUMENT ID		TECN	
> 10	p	90	2	1.3	SEIDEL	88	IMB		>670 > 86		p n	90 90	0	2.4	HAYATO HIRATA	99 89c	SKAM KAMI	'
> 23 > 6.5	p p (free)	90 90	2	1 8.7	HAINES BLEWITT	86 85	IMB IMB					follow		a for averages, fits,				
> 23	p (nee)	90	8		BLEWITT	85	IMB		>151		ρ	90		21.4	MCGREW	99	IMB3	- 1
1.	`								> 30		n	90 90	34	34.1 1.54	MCGREW ³⁸ ALLISON	99 98	IMB3 SOU2	١
T(N→ V	ω)						712		> 43 > 15		p n	90		1.8	BERGER	89	FREJ	•
(10 ³⁰ years)	PARTICLE	CL%	<u>EVTS</u>	BKGD EST	DOCUMENT ID		TECN	_	> 15		P	90		1.8	BERGER		FREJ	
>108	<i>n</i>	90		22.5	MCGREW	99	IMB3	ı	>100 > 0.28		р р	90 90	9	7.3 0.7	HIRATA PHILLIPS		KAMI HPW	
			-	-	, limits, etc. • • •		EDEL		> 0.3		P	90	ō	0.1	BARTELT	87	SOUD	
> 17 > 43	n n	90 90		0.7 2.7	BERGER HIRATA		FREJ KAMI		> 0.75		n	90	0	_	39 BARTELT	87	SOUD	
> 6	n	90	2	1.3	SEIDEL	88	IMB		> 10 > 15		p n	90 90	6 3	5 5	HAINES HAINES	86 86	IMB IMB	
> 12	n	90	6		HAINES	86	IMB		> 28		p	90		3	KAJITA	86	KAMI	
> 18 > 16	n n	90 90	2 1		KAJITA PARK	86 85	KAMI IMB		> 32		n - (f)	90		1.4	KAJITA	86	KAMI	
> 2.0	n	90	2		33 CHERRY	81	HOME		> 1.8 > 9.6		ρ (free) ρ	90 90	6 6		BLEWITT	85 85	IMB IMB	
³³ We hav	ve converted 2	possible	event	s to 90% CL limit					> 10		n	90	2	2	PARK	85	IMB	
$\tau(N \rightarrow e$	+K)						713		> 5		п	90	0		BATTISTONI BATTISTONI	84 84	NUSX NUSX	
LIMIT	•								> 2 > 0.3		p n	90 90	0		⁴⁰ BARTELT		SOUD	
(10 ³⁰ years)				BKGD EST	DOCUMENT ID		TECN		> 0.1		ρ	90	0		⁴⁰ BARTELT		SOUD	
> 17 >150	n p	90 90		29.4 <0.27	MCGREW HIRATA		IMB3 : KAMI	•	> 5.8 > 0.3		p n	90 90	1 2		⁴¹ KRISHNA ⁴² CHERRY		KOLR HOME	
	-				, limits, etc. • • •					ΔI				background subtr	action; with subtra			ir I
> 31	p	90		25.2	MCGREW		IMB3	1	becon	nes	$> 46 \times 10^{30}$) years			accion, with 300t12	,	, the mili	٠ ١
> 60	P	90	0	1.0	BERGER		FREJ		39 BART	ΓΕΙ	T 87 limit a _l	pplies t	o n →	ν K ₅ 0.				
> 70 > 77	P P	90 90		1.8 4.5	SEIDEL HAINES	88 86	IMB IMB		40 Limit	ba	sed on zero e	vents.	Day 14 C	rom 1 coeff-ed	ant.			
> 38	P	90	0	<0.8	ARISAKA	85	KAMI		42 We ha	ave	calculated 9	possib	le even	rom 1 confined eve ts to 90% CL limit				
> 24	p (free)	90		8.5	BLEWITT		IMB											
> 77 > 1.3	P P	90 90	5 0	4	BLEWITT ALEKSEEV	85 81	IMB BAKS											
> 1.3	n	90	0		ALEKSEEV		BAKS											

	+ K*(892) ⁰)						720		$\tau(n \to \mu)$	-π ⁺)						
.IMIT 10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN		<i>LIMIT</i> (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>84	P	90		52.0	MCGREW	99	IMB3	1	>49	n	90		0.5	SEIDEL	88	IMB
	do not use the				ts, limits, etc. • • •				• • • We	do not use th	e followi	ng dat	a for averages, fit:	s, limíts, etc. • • •		
10	p	90		0.8	BERGER		FREJ		>33	n	90	0	1.40	BERGER	91 B	FREJ
52 10	р p	90 90		1.55 <1	HIRATA ARISAKA		KAMI		> 2.7	п	90		0.7	PHILLIPS		HPW
	•		-	~-	71110711111	00	1 CAIVII		>25 >27	n n	90 90	7 2	6	HAINES PARK		IMB IMB
	K*(892))						<i>T</i> 21					•	•	TAKK	0.5	11012
MIT (³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN		$\tau(n \to e^{-})$							
·51	P	90		9.1	MCGREW	99	IMB3	1	LIMIT (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>78	n	90		50	MCGREW		IMB3	1	>62	n	90	2	4.1	SEIDEL	88	IMB
				_	ts, limits, etc. • • •									i, limits, etc. • • •		IIII
·22 ·17	n P	90 90		2.1 2.4	BERGER BERGER		FREJ FREJ		>12	п	90	13	6	HAINES		IMB
20	p	90		2.1	HIRATA		KAMI		>12	n	90	5	3	PARK		IMB
>21	n	90		2.4	HIRATA		KAMI		-(n	+\						
-10	p	90		6	HAINES	86	IMB		$\tau(n \rightarrow \mu)$	P')						
> 5 > 8	n p	90 90	8		HAINES ATILAN	86 86	IMB KAMI		(10 ³⁰ years)	PARTICLE	CL%	EVT5	BKGD EST	DOCUMENT ID		TECN
. 6	n	90		1.6	KAJITA	86	KAMI		>7	n	90		1.1	SEIDEL		IMB
> 5.8	p (free)	90	10		BLEWITT	85	IMB		• • • We	do not use th	e followi	ing dat	a for averages, fit	s, limits, etc. • • •		
9.6	P	90	7		BLEWITT	85	IMB		>2.6	п	90		0.7	PHILLIPS	89	HPW
· 7 · 2.1	n D	90 90	1 1	4	PARK ⁴³ BATTISTONI	85	IMB NUSX		>9	n	90 90	7	5	HAINES	86	IMB
				to 90% CL limit		82	NOSX		>9	n	90	2	2	PARK	85	IMB
VVC IIav	e converted 1								$\tau(n \rightarrow e^{-}$	-K+)						
			Antik	epton + mesor	15				LIMIT (10 ³⁰ years)							
$(\rho \rightarrow e^+)$	⁺ π ⁺ π ⁻)						722		>32		<u>CL%</u>	EVTS 3	8KGD EST	DOCUMENT ID	010	TECN
AIT	•						_			<i>n</i> do not use th				BERGER s, limits, etc. • • •		FREJ
	PARTICLE			BKGD EST	DOCUMENT ID		TECN		> 0.23	n	90		0.7	PHILLIPS		HPW
82 • • We d	p do not use the	90 followi		23.1	MCGREW s, limits, etc. • • •	99	IMB3				,,,	U	0.1	FHILLIFS	07	TIP VV
21	p	90	_	2.2	BERGER	91	FREJ		$\tau(n \to \mu)$	- <i>K</i> +)						
	-	,,	·	2.2	BENGEN	,1	rico		LIMIT (10 ³⁰ years)	DADTICL C	CIN	E) (TC	DUCD 55T	000000000000000000000000000000000000000		
$p \rightarrow e^{-}$	$(\pi^{U}\pi^{U})$						T23		>57	PARTICLE N	<u>CL%</u> 90	EVTS 0	2.18	DOCUMENT ID BERGER	010	TECN FREJ
AIT 30 _{years)}	PARTICLE	CL%	EVT5	BKGD EST	DOCUMENT ID		TECN					_		s, limits, etc. • • •		FKEJ
147	P	90		0.8	MCGREW	99	IMB3	1	> 4.7	n	90		0.7	PHILLIPS		HPW
					s, limits, etc. • • •	•	1	•	<i>></i>	,	,0	·	0.7	TTHEE	09	1117 00
- 38	p [']	90	1	0.5	BERGER	91	FREJ			•		- Lep	ton + mesons			
$(n \rightarrow e^{+}$	0)								$\tau(ho ightarrow e^{-}$	-π+π+)						
MIT	~ ")						T24		LIMIT	•						
	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN		(10 ³⁰ years)		CL%		BKGD EST	DOCUMENT ID		TECN
-52		90		34.2	MCGREW	99	IMB3	1	>30 • • • We	p do est use th	90 • fallowi	1	2.50	BERGER		FREJ
			-	-	s, limits, etc. • • •		-D							s, limits, etc. • • •		
-32	п	90	1	0.8	BERGER	91	FREJ		> 2.0	P	90	U	0.7	PHILLIPS	89	HPW
(p → μ ⁻	⁺ π ⁺ π ⁻)						T25		$\tau(n \rightarrow e^{-})$	$-\pi^{+}\pi^{0}$)						
MIT 0 ³⁰ years)	PARTICLE	CL%_	CUTC	BYCD FET	DOCUMENT ID		T5641		LIMIT (10 ³⁰ years)							
133	D	90		38.0	DOCUMENT ID MCGREW	99	TECN IMB3	1	(10 ³⁰ years)	PARTICLE	<u>CL%</u> 90		D.78	DOCUMENT ID		TECN FREJ
					is, limits, etc. • • •	"	IIVIDS	•	>29	"	70		U.18	BERGER	918	FKEJ
17	ρ	90		2.6	BERGER	91	FREJ		$\tau(p \rightarrow \mu)$	$^{-}\pi^{+}\pi^{+})$						
3.3	P	90		0.7	PHILLIPS	89	HPW		LIMIT	•		-	5445 FC-			
(p → μ ⁻	+ -0 -0)						70.0		(10 ³⁰ years)				BKGD EST	DOCUMENT ID		TECN
AIT.	•						⁷ 26		>17	ρ do not use the	90 followi		1.72 a for averages, fits	BERGER s, limits, etc. • • •	91B	FREJ
	PARTICLE			BKGD EST	DOCUMENT ID		TECN		> 7.8	D D	90		0.7	PHILLIPS	80	HPW
101	p	90 followi		1.6	MCGREW	99	IMB3	I			,,,	U	J.,	THELIFS	0,7	
					s, limits, etc. • • •	0.	EDC.		$\tau(n \to \mu)$,						1
33	P	90	1	0.9	BERGER	91	FREJ		(10 ³⁰ years)	PARTICIE	CIN	FUTC	RKCD EST	DOCUMENT IS		TECH
$n \rightarrow \mu$	[⊢] π [−] π ⁰)						727		>34	n	<u>cı%</u> 90		BKGD EST 0.78	DOCUMENT ID BERGER		TECN FREJ
ulT 30 years)	DADTICLE	CI W		BYCD FOT							,,	U	U.10	BERGER	AIR	FREJ
74	PARTICLE	<u>CL%</u> 90		20.8	DOCUMENT ID		TECN IMP2		$\tau(p \rightarrow e^{-})$	-π+K+)						1
	n do not use the				MCGREW s, limits, etc. • • •	99	IMB3		LIMIT (10 ³⁰ years)		e. e.		BUCO FEE			
33	n	90	-	1.1	BERGER	91	FREJ		(10 ³⁰ years) > 75				BKGD EST	DOCUMENT ID		TECN
			•			,,				p do notuse th	90 followi		127.2 a for averages, fits	MCGREW , limits, etc. • • •	99	IMB3
•	- K ⁰ π-)						728		>20	D HOE USE TH	90	-	2.50	BERGER	010	EDE.
AIT (30 years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN		>20	P	90	3	2.30	BERUEK	718	FREJ
1B	n	90		0.2	BERGER	91	FREJ		$\tau(p \rightarrow \mu)$	$-\pi^{+}K^{+}$)						1
						,-			LIMIT (10 ³⁰ years)							
	-		– Lep	oton + meson									BKGD EST	DOCUMENT ID	_	TECN
(n → e-	·π ⁺)						729		>245	p do not use the	90 followi		4.0	MCGREW , limits, etc. • • •	99	IMB3
	PARTICLE	٠		Burd								-	-		01-	coc.
				BKGD EST	DOCUMENT ID		TECN		> 5	P	90	2	0.78	BERGER	яIВ	FREJ
	, ,	90 followi		1.6 a for averages fit	SEIDEL s, limits, etc. • • •	88	IMB									
	do not use the			o. naciaRcs' III	o, mines, etc. • • •											
				1.09	REDCED	010	EDEI									
	do not use the n n	90 90		1.09 7	BERGER HAINES		FREJ IMB									

Baryon Particle Listings

p

		— '	Antilep	ton + photo	on(s)				$\tau(n \rightarrow \mu^+)$	e-ν)					7
$(p \rightarrow e^{+}$	⁺ γ)						T41		(10 ³⁰ years)	-	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
MIT 0 ³⁰ years)	PARTICLE	CL%	FVTS	BKGD EST	DOCUMENT ID		TECN		>83	7 	90 followi		29.4	MCGREW 99 ts, limits, etc. • • •	IMB3
670	D	90		0.1	MCGREW	99	IMB3	1			90	_	_		s FREJ
-	•				fits, limits, etc. • • •	,		•	>47	n	90	U	< 0.1	BEKGEK 911	S LKEJ
133	p	90	0	0.3	BERGER	91	FREJ		$\tau(n \rightarrow \mu^{+}$	-μ-ν)					7
460	p	90	0	0.6	SEIDEL	88	IMB		LIMIT		e. 0.1		04400 505	005/44547 10	TECN
360	p	90		0.3	HAINES		IMB			PARTICLE	<u>CL%</u>		BKGD EST	DOCUMENT ID	TECN
87	p (free)	90		0.2	BLEWITT		IMB		>79 • • • We d	n lo not use the	90 followi	100		MCGREW 99 ts, limits, etc. • • •	IMB3
360 0.1	p p	90 90	U	0.2	BLEWITT ⁴⁴ GURR		IMB CNTR					-	=		3 FREJ
	re converted h		o 009/	Cl. maan life	GONIN	0,	CIVII		>42 > 5.1	n n	90 90		1.4 0.7		HPW
· we nav	e converted n	all-ine	0 90%	CL mean life.					>16	n	90	14		HAINES 86	IMB
$(p \rightarrow \mu^{+})$	⁺ γ)						T42		>19	п	90	4		PARK 85	IMB
MIT	•								, ,						
	PARTICLE	CL%		BKGD EST	DOCUMENT ID		TECN		$\tau(\rho \to \mu^+$	e = e =)					7
478	P	90 - fallow		0.1	MCGREW	99	IMB3	1	LIMIT (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
					fits, limits, etc. • • •	٠			>529	P	90		1.0	MCGREW 99	
155 380	p	90 90		0.1 0.5	BERGER SEIDEL	88	FREJ IMB		• • • We d		followi	ng dat	a for averages, fi	ts, limits, etc. • • •	
97	Р Р	90	3		HAINES		IMB		> 91	p	90	0	≤ 0.1	BERGER 91	FREJ
61	p (free)	90		0.2	BLEWITT	85	IMB								
280	p	90	0	0.6	BLEWITT	85	IMB		$\tau(ho ightarrow \mu^+$	$(\mu^+\mu^-)$					7
0.3	P	90			⁴⁵ GURR	67	CNTR		(10 ³⁰ years)	PARTICLE	CIN	EVTS	PKCD EST	DOCUMENT ID	TECN
⁵ We hav	re converted h	alf-life	o 90%	CL mean life.					>675		<u>CL%</u> 90		BKGD EST	MCGREW 99	
	_						_			p Io not use the				ts, limits, etc. • • •	
n → ν	7)						743		>119	p	90	-	0.2		FREJ
dT 30 years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN		> 10.5	P	90		0.7	PHILLIPS 89	HPW
28	П	90		144.7	MCGREW	99	IMB3	ı	>190	p	90		0.1	HAINES 86	IMB
					fits, limits, etc. • • •			•	> 44	p (free)	90		0.7	BLEWITT 85	
.4	n	90	-	6.86	BERGER		FREJ		>190	p	90		0.9	BLEWITT 85	IMB
9	n	90	73		HAINES		IMB		> 2.1	р	90	1			NUS
1	п	90	28		PARK	85	IMB		46 We hav	e converted 1	possibl	e event	t to 90% CL limi	t.	
د.	L \								$\tau(ho ightarrow \mu^+$	الإسا					
p → e ⁻¹	' <i>γγ</i>)						T44								
IT W vears)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN		(10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
100	P	90		0.8	BERGER	91	FREJ		>21	p	90	7	11.23	BERGER 91	в FREJ
	, •	,,	•	0.0	DENGEN										
(n → v·	77)						T45		$\tau(p \rightarrow e^{-}$	$\mu^+\mu^+)$					
NT									(10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
		CL%		BKGD EST	DOCUMENT ID		TECN		>6.0	P	90		0.7		HPW
219	n	90	5	7.5	MCGREW	99	IMB3	ı	_			_	***		
			Three	(or more) lej	ptons				τ(n → 3ν	·)					•
				. , .	•				LIMIT (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
	+ e+ e ⁻)						T46		>0.00049	n	90		2		B KAM
41 <i>T</i> 30 _{years)}	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN							ts, limits, etc. • • •	
793	P	90		0.5	MCGREW	99	IMB3	1	>0.0023	п	90	•	•	48 GLICENSTEIN 97	KAM
	•				, fits, limits, etc. • •		114103	•	>0.00003	n	90	11	6.1	49 BERGER 91	в FREJ
147		90	-	0.1	BERGER		FREJ		>0.00012	п	90	7	11.2	⁴⁹ BERGER 91	B FREJ
510	p P	90		0.1	HAINES	86	IMB		>0.0005	n	90	0		LEARNED 79	RVU
89	p (free)	90		0.5	BLEWITT		IMB		⁴⁷ The SU	ZUKI 93B lim	it appli	es to a	ny of $v_e v_e \overline{v}_e$, ν	$\nu_{\mu}\nu_{\mu}\overline{\nu}_{\mu}$, or $\nu_{\tau}\nu_{\tau}\overline{\nu}_{\tau}$.	
510	P	90		0.7	BLEWITT	85	IMB		48 GLICEN	ISTEIN 97 us	es Karr	ioka d	ata and the idea	that the disappearance	of the
310									tron's n	nagnetic mom	ient sho	uld pro	oduce radiation.		
	T "T "-1						T47		49 The firs	t BERGER 9	lB limit	is for	$n \rightarrow \nu_e \nu_e \overline{\nu}_e$, t	he second is for $n ightarrow u_{\mu}$	$^{\nu}\mu^{\overline{\nu}}\mu$
p → e ⁺	<i>~ ~ ,</i>		EVTS	BKGD EST	DOCUMENT ID		TECN		-(n . E.	۸.					
IT	•	CI %		0.9				ı	$\tau(n \to 5\nu)$	7					
IT 30 _{years)}	PARTICLE	<u>CL%</u>			MCGREW	QQ	IMR3		LIMIT		C19/	EVTS	BKGD EST	DOCUMENT ID	TECN
117 30 _{years)} 3 59	PARTICLE	90	1		MCGREW . fits. limits. etc. • • •		IMB3		(10° years)	PARTICLE	CL76				
IT 10 _{years)} 1 59	PARTICLE	90 e follow	1 ing dat	a for averages,	, fits, limits, etc. • • •	•				PARTICLE do not use the		ing dat	a for averages, if	its, limits, etc. • • •	
0 _{years}} 59 ■ We	PARTICLE p do not use th	90 e follow 90	1 ing data	a for averages, 0.16	, fits, limits, etc. • • • BERGER	91	FREJ		• • • We	do not use the	follow	ing dat	a for averages, in		KAN
17 30 years) 159 • We • 81 5.0	PARTICLE P do not use th P P	90 e follow	1 ing data	a for averages,	, fits, limits, etc. • • •	91			• • • We • >0.0017	do not use the	follow 90	_	•	⁵⁰ GLICENSTEIN 97	
17 10 years) 1 59 • We • 81 5.0	PARTICLE P do not use th P P	90 e follow 90	1 ing data	a for averages, 0.16	, fits, limits, etc. • • • BERGER	91	FREJ	ı	• • • We • >0.0017 ⁵⁰ GLICEN	do not use the n NSTEIN 97 us	follow 90 ses Kan	nioka d	•		
77 0 years) 59 • We 6 81 5.0 p → e	PARTICLE p do not use th p p	90 e follow 90 90	ing data 0 0	a for averages, 0.16 0.7	, fits, limits, etc. • • • BERGER PHILLIPS	91 89	FREJ HPW 748	ı	• • • We • >0.0017 ⁵⁰ GLICEN	do not use the n NSTEIN 97 us	follow 90 ses Kan	nioka d ould pro	lata and the idea oduce radiation.	⁵⁰ GLICENSTEIN 97	
77 10 years) 159 • We • 81 5.0 p → e ⁻ 17 10 years)	PARTICLE p do not use th p p P PARTICLE	90 e follow 90 90	ing data 0 0	a for averages, 0.16 0.7 BKGD EST	, fits, limits, etc. • • • • BERGER PHILLIPS	91 89	FREJ HPW 748		• • • We • >0.0017 ⁵⁰ GLICEN	do not use the n NSTEIN 97 us	follow 90 ses Kan	nioka d ould pro	ata and the idea	⁵⁰ GLICENSTEIN 97	
17 years) 159 • We 6 81 5.0 p → e ⁻¹⁷⁷ 100 years) 17	PARTICLE P do not use th P P P P PARTICLE P	90 e follow 90 90	1 ing data 0 0 0 0 EVTS 152	a for averages, 0.16 0.7 BKGD EST 153.7	, fits, limits, etc. • • • • BERGER PHILLIPS DOCUMENT ID MCGREW	91 89 99	FREJ HPW 748	1	>0.0017 >0.0017 50 GLICEN tron's r	do not use the n NSTEIN 97 us nagnetic mon	follow 90 ses Kan	nioka d ould pro	lata and the idea oduce radiation.	⁵⁰ GLICENSTEIN 97	
0 years) 59 • We • 81 5.0 p → e ⁻⁷⁷ 10 years) 77 • We	PARTICLE P p p + + + + + + +	90 e follow 90 90 90	1 ing data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a for averages, 0.16 0.7 BKGD EST 153.7 a for averages,	, fits, limits, etc. • • • • BERGER PHILLIPS DOCUMENT ID MCGREW , fits, limits, etc. • • •	91 89	FREJ HPW T48 TECN IMB3	I	• • • We • >0.0017 50 GLICEN tron's r	do not use the n NSTEIN 97 us nagnetic mon + anything)	follow 90 ses Kan	nioka d ould pro	lata and the idea oduce radiation.	⁵⁰ GLICENSTEIN 97	
10 years) 159 • We • 81 5.0 p → e ⁻ 177 10 years) 17 • We	PARTICLE P do not use th P P P P PARTICLE P	90 e follow 90 90	1 ing data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a for averages, 0.16 0.7 BKGD EST 153.7	, fits, limits, etc. • • • • BERGER PHILLIPS DOCUMENT ID MCGREW	91 89	FREJ HPW 748	l	>0.0017 >0.0017 50 GLICEN tron's r	do not use the n NSTEIN 97 us nagnetic mon + anything)	e follow 90 ses Kan nent sho	nioka d puld pro	lata and the idea oduce radiation.	50 GLICENSTEIN 97 that the disappearance	of the
10 years) 159 • We • 81 5.0 p → e ⁻¹⁷ 10 years) 17 • We	PARTICLE P do not use the p p P PARTICLE P do not use the p	90 e follow 90 90 90	1 ing data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a for averages, 0.16 0.7 BKGD EST 153.7 a for averages,	, fits, limits, etc. • • • • BERGER PHILLIPS DOCUMENT ID MCGREW , fits, limits, etc. • • •	91 89	FREJ HPW T48 TECN IMB3	ı	• • • We • >0.0017 50 GLICEN tron's r	do not use the n NSTEIN 97 us nagnetic mon + anything)	e follow 90 ses Kan nent sho	nioka d puld pro	lata and the idea oduce radiation. clusive modes	50 GLICENSTEIN 97 that the disappearance	of the
10 years) 159 • We • 81 5.0 $p \rightarrow e^{-}$ 17 • We 11 $n \rightarrow e^{-}$	PARTICLE P do not use the p p P PARTICLE P do not use the p p + e-v)	90 e follow 90 90 90	1 ing data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a for averages, 0.16 0.7 BKGD EST 153.7 a for averages,	, fits, limits, etc. • • • • BERGER PHILLIPS DOCUMENT ID MCGREW , fits, limits, etc. • • •	91 89	FREJ HPW T48 TECN IMB3	ı	••• We solution >0.0017 50 GLICEN tron's r T(N → e LIMIT (10 ³⁰ years) >0.6	n NSTEIN 97 us nagnetic mon anything) PARTICLE p, n	90 ses Kannent sho	nioka d buld pro — In	lata and the idea oduce radiation. clusive modes	50 GLICENSTEIN 97 that the disappearance	of the
30 years) 359 • We • 81 5.0 $p \rightarrow e^{-}$ 17 • • We 11 $(n \rightarrow e^{-})$	PARTICLE P do not use the p p P PARTICLE P do not use the p p + e-v)	90 e follow 90 90 90	1 ing data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a for averages, 0.16 0.7 BKGD EST 153.7 a for averages,	, fits, limits, etc. • • • • BERGER PHILLIPS DOCUMENT ID MCGREW , fits, limits, etc. • • •	91 89	FREJ HPW T48 TECN IMB3	ı	>0.0017 50 GLICEN tron's r T(N → e LIMIT (10 ³⁰ years) >0.6 51 The elec	n NSTEIN 97 us nagnetic mon + anything) PARTICLE p, n ctron may be	e follow 90 ses Kannent sho ent sho CL% 90 primar	nioka d buld pro — In	lata and the idea oduce radiation. clusive modes	50 GLICENSTEIN 97 that the disappearance	of the
17 years) 159	PARTICLE P do not use the p p P PARTICLE P do not use the p	90 e follow 90 90 90 	1 ing dat: 0 0 0 EVTS 152 ing dat 11 EVTS	BKGD EST 153.7 a for averages, 0.16 0.7	, fits, limits, etc. • • • BERGER PHILLIPS DOCUMENT ID MCGREW , fits, limits, etc. • • BERGER	91 89 99 •	FREJ HPW T48 TECN IMB3 FREJ T49	ı	50 GLICEN tron's r τ(N → e LIMIT (10 ³⁰ years) >0.6 51 The ele τ(N → μ	n NSTEIN 97 us nagnetic mon anything) PARTICLE p, n	e follow 90 ses Kannent sho ent sho CL% 90 primar	nioka d buld pro — In	lata and the idea oduce radiation. clusive modes	50 GLICENSTEIN 97 that the disappearance	of the
70 years) 59 • We 6 81 5.0 p → e 77 • We 11 n → e 77 10 years) 77 10 years) 77 257	PARTICLE P do not use the p p P PARTICLE P do not use the p p PARTICLE P P P P P P P P P P P P P P P P P P	90 e follow 90 90	1 ing dat: 0 0 0 EVTS 152 ing dat 11 EVTS 5	BKGD EST 5.8 BKGD EST 7.5	, fits, limits, etc. • • • BERGER PHILLIPS DOCUMENT ID MCGREW , fits, limits, etc. • • • BERGER	91 89 99 91E	FREJ HPW 748 <u>TECN</u> IMB3 FREJ <u>749</u>	ı	50 GLICEN tron's r τ(N → e LIMIT (10 ³⁰ years) >0.6 51 The ele τ(N → μ	not use the notation of the state of the sta	e follow 90 ses Kannent sho ent sho 20% 90 primar	inioka d buld pro In EVTS	lata and the idea oduce radiation. clusive modes BKGD EST condary.	50 GLICENSTEIN 97 that the disappearance	of the
77 years) 59 • We 81 5.0 p → e ⁻ 77 • We 11 77 10 10 17 10 17 10 17 10 17 10 17 10 10	p do not use the p p p p p p p p p	90 e follow 90 90 CL% 90 e follow 90 CL% 90 e follow 90 CL% 90 e follow	1 ing dat: 0 0 0 EVTS 152 ing dat 11 EVTS 5	a for averages, 0.16 0.7 BKGD EST 153.7 a for averages, 6.08 BKGD EST 7.5 a for averages, 6.07 a for averages, 6.08 BKGD EST 7.5 a for averages,	fits, limits, etc. • • • • • BERGER PHILLIPS DOCUMENT ID MCGREW fits, limits, etc. • • • • • • • • • • • • • • • • • • •	91 89 99 91E	748 748 748 748 748 748 749 749	ı	••• We solution >0.0017 50 GLICEN tron's r T(N → e LIMIT (10 ³⁰ years) >0.6 51 The ele T(N → µ LIMIT (10 ³⁰ years)	nsTEIN 97 us anything) PARTICLE anything) PARTICLE anything) PARTICLE PARTICLE PARTICLE PARTICLE PARTICLE	e follow 90 ses Kannent sho CL% 90 primar	EVTS	lata and the idea oduce radiation. clusive modes <i>BKGD EST</i> condary. <i>BKGD EST</i>	that the disappearance DOCUMENT ID DOCUMENT ID DOCUMENT ID	TECN
17 100 years) 159 • We • 81 5.0 • We 11 • We 11 • We 11 • We 11 • We 12 • We 74	PARTICLE P do not use the p p PARTICLE P do not use the p + e-v PARTICLE R do not use the n	90 e follow 90 90	1 ing dat: 0 0 0 EVTS 152 11 EVTS 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7	### a for averages, 0.16 0.7 ### 0.7	, fits, limits, etc. • • • BERGER PHILLIPS DOCUMENT ID MCGREW , fits, limits, etc. • • • BERGER DOCUMENT ID MCGREW , fits, limits, etc. • • • • BERGER	91 89 99 916	FREJ HPW T48 TECN IMB3 FREJ TECN IMB3	ı	• • • We >0.0017 50 GLICEN tron's r T(N → e LIMIT (10.00 years) >0.6 51 The ele T(N → µ LIMIT (10.00 years) >12 10.00 years) >12	# anything) PARTICLE # anything) PARTICLE # anything) PARTICLE # anything)	e follow 90 ses Kannent sho CL% 90 primar	EVTS EVTS EVTS	lata and the idea oduce radiation. clusive modes <i>BKGD EST</i> condary. <i>BKGD EST</i>	50 GLICENSTEIN 97 that the disappearance DOCUMENT ID 51 DOCUMENT ID 52,53 CHERRY 81	TECA RVU
17 (10 years) 159 • We • 81 5.0 p → e ⁻¹⁷⁷ 17 • We 11 17 m → e ⁻¹⁷⁷ 17 m → e	p do not use the p p p p p p p p p	90 e follow 90 90 CL% 90 e follow 90 CL% 90 e follow 90 CL% 90 e follow	1 ing dat: 0 0 0 EVTS 152 ing dat 11 EVTS 5 ing dat 0 5	a for averages, 0.16 0.7 BKGD EST 153.7 a for averages, 6.08 BKGD EST 7.5 a for averages, 6.07 a for averages, 6.08 BKGD EST 7.5 a for averages,	fits, limits, etc. • • • • • BERGER PHILLIPS DOCUMENT ID MCGREW fits, limits, etc. • • • • • • • • • • • • • • • • • • •	91 89 99 916 916	748 748 748 748 748 748 749 749	ı	>0.0017 50 GLICEN tron's r T(N → e LIMIT (10 ³⁰ years) >0.6 51 The ele T(N → μ LIMIT (10 ³⁰ years) >12 ••• We	# anything # particle # anything # p, n # anything # perform may be # anything # an	e follow 90 ses Kannent sho CL% 90 primar CL% 90 e follow	EVTS EVTS EVTS	lata and the idea oduce radiation. clusive modes <i>BKGD EST</i> condary. <i>BKGD EST</i>	50 GLICENSTEIN 97 that the disappearance DOCUMENT ID 51 LEARNED 79 DOCUMENT ID 52,53 CHERRY 81 its, limits, etc. • • •	TECN TECN TECN HOM
177 (10 years) 159 (159 we	PARTICLE P do not use the P P P P P PARTICLE P do not use the P PARTICLE A do not use the n	90 e follow 90 90 e follow 90 90 e follow 90 e follow 90 e follow 90 90 90	1 ing dat: 0 0 0 EVTS 152 ing dat 11 EVTS 5 ing dat 0 5	### BKGD EST 153.7 a for averages, 6.08 #### BKGD EST 7.5 a for averages, 6.08 #### BKGD EST 7.5 a for averages, 6.01 5	, fits, limits, etc. • • • BERGER PHILLIPS DOCUMENT ID MCGREW , fits, limits, etc. • • • BERGER DOCUMENT ID MCGREW , fits, limits, etc. • • • • BERGER	91 89 99 916 916	FREJ HPW T48 TECN IMB3 FREJ TECN IMB3	ı	** • • We > >0.0017 50 GLICEN tron's r **T(N → e **LMMT** (10 ³⁰ years) >0.6 51 The ele **T(N → \mu **LMMT** (10 ³⁰ years) >12 • • • We > 1.8	AND AND TO A STEEL AND	ct% 90 primar Ct% 90 primar	EVTS EVTS EVTS	lata and the idea oduce radiation. clusive modes <i>BKGD EST</i> condary. <i>BKGD EST</i>	50 GLICENSTEIN 97 that the disappearance DOCUMENT ID 51 LEARNED 79 DOCUMENT ID 52,53 CHERRY 81 its, limits, etc. • • 53 COWSIK 80	TECN RVU
17 (10 years) 159 • We • 81 5.0 p → e ⁻¹⁷⁷ 17 • We 11 17 m → e ⁻¹⁷⁷ 17 m → e	PARTICLE P do not use the P P P P P P ARTICLE P do not use the P P PARTICLE A do not use the P	90 e follow 90 90 e follow 90 90 e follow 90 e follow 90 e follow 90 90 90	1 ing dat: 0 0 0 EVTS 152 ing dat 11 EVTS 5 ing dat 0 5	### BKGD EST 153.7 a for averages, 6.08 #### BKGD EST 7.5 a for averages, 6.08 #### BKGD EST 7.5 a for averages, 6.01 5	, fits, limits, etc. • • • BERGER PHILLIPS DOCUMENT ID MCGREW , fits, limits, etc. • • • BERGER DOCUMENT ID MCGREW , fits, limits, etc. • • • • BERGER	91 89 99 916 916	FREJ HPW T48 TECN IMB3 FREJ TECN IMB3	ı	• • • We >0.0017 50 GLICEN tron's r T(N→ e LIMIT (10 ³⁰ years) >0.6 51 The ele T(N→ μ LIMIT (10 ³⁰ years) >12 • • • We > 1.8 > 6	Asymptotic more than the second of the secon	cl% 90 primar cl% 90 primar generation	EVTS EVTS 2 ing date	lata and the idea oduce radiation. clusive modes <i>BKGD EST</i> condary. <i>BKGD EST</i>	50 GLICENSTEIN 97 that the disappearance DOCUMENT ID 51 LEARNED 79 DOCUMENT ID 52,53 CHERRY 81 its, limits, etc. • • 53 COWSIK 80 53 LEARNED 79	TECN HOM

$N \rightarrow \nu$ anything) Anything $= \pi$, ρ , K , etc.	7 ₆₀	$ au(\overline{p} o \mu^- \gamma)$ VALUE (years)	CL%	DOCUMENT ID	TECN	COMMENT	T
HT 30 years) PARTICLE CL% EVTS	BKGD EST DOCUMENT ID TECN	>5 × 10 ⁴ • • • We do not use	90	GEER	00 APEX	X 8.9 GeV/ <i>c p̄</i> beam	
• • We do not use the following dat $0.0002 p_i n \qquad 90 \qquad 0$	a for averages, fits, limits, etc. • • • LEARNED 79 RVUE	>5.0 × 10 ⁴	90	HU AVERAGE		X 8.9 GeV/c p̄ beam	
$N \rightarrow e^+ \pi^0$ anything)	77-1	$\tau(\overline{\rho}\to e^-\pi^0)$					τ_i
	<i>7</i> 61	VALUE (years)	CL%_	DOCUMENT ID		COMMENT	
	BKGD EST DOCUMENT ID TECN	> 4 × 10 ⁵ • • • We do not use	90	GEER		X 8.9 GeV/c p beam	
.6 p, n 90 0	LEARNED 79 RVUE	>554	95	GEER		3.9 GeV/ <i>c</i> p beam	
N → 2 bodies, ⊬-free)	762	_	,,,	GEEK	JI CAL	, 0., Qc v / c p Dcum	
IT	DVCD FCT DOCUMENT ID TECH	$ au(\overline{p} o \mu^- \pi^0)$					τ_{i}
years) PARTICLE CL% EVTS	BKGD EST DOCUMENT ID TECN a for averages, fits, limits, etc. • •	VALUE (years) >5 × 10⁴	<u>CL%</u>	DOCUMENT ID	TECN		
.3 p, n 90 0	ALEKSEEV 81 BAKS	>5 × 10 .	90 the following	GEER data for average		X 8.9 GeV/ <i>c</i> p beam ts. etc. • • •	
.5 ,,,,,		>4.8 × 10 ⁴	90	HU		X 8.9 GeV/ <i>c p</i> beam	
	2 dinucleon modes ———	$\tau(\overline{\rho} \to e^- \eta)$					τ
$pp \rightarrow \pi^+\pi^+$	<i>T</i> 63	VALUE (years)	CL%	DOCUMENT ID	TECN	COMMENT	
IT ^{IO} years) CL% EVTS BKGD EST	DOCUMENT ID TECN COMMENT	> 2 × 10 ⁴	90	GEER	00 APE	X 8.9 GeV/c p̄ beam	
.7 90 4 2.34	BERGER 91B FREJ τ per iron nucleus	• • • We do not use		-			
na+_O\	_	>171	95	GEER	94 CALC	O 8.9 GeV/ $c \bar{p}$ beam	
$pn o \pi^+ \pi^0$)	⁷ 64	$\tau(\overline{p} \to \mu^- \eta)$					T
O years) CL% EVTS BKGD EST	DOCUMENT ID TECN COMMENT	VALUE (years)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
.0 90 0 0.31	BERGER 918 FREJ $ au$ per iron nucleus	>8 × 10 ³	90	GEER		X 8.9 GeV/c \overline{p} beam	
$nn \rightarrow \pi^+\pi^-$	765	• • • We do not use	-				
т	′65	>7.9 × 10 ³	90	HU	98B APE	X 8.9 GeV/c ₱ beam	ı
years) CL% EVTS BKGD EST	DOCUMENT ID TECN COMMENT	$\tau(\overline{\rho} \rightarrow e^- K_S^0)$					7
.7 90 4 2.18	BERGER 91B FREJ τ per iron nucleus	VALUE (years)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
$\pi\pi \to \pi^0\pi^0$)	766	>900	90	GEER		X 8.9 GeV/c p̄ beam	
·		• • • We do not use		-			
years) CL% EVTS BKGD EST	DOCUMENT ID TECN COMMENT	> 29	95	GEER	94 CAL	O 8.9 GeV/c p beam	l
.4 90 0 0.78	BERGER 91B FREJ τ per iron nucleus	$\tau(\overline{p} \rightarrow \mu^- K_S^0)$					7
$p \rightarrow e^+ e^+)$	767	VALUE (years)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
7 O years) CL% EVTS BKGD EST	DOCUMENT ID TECN COMMENT	>4 × 10 ³	90	GEER		X 8.9 GeV/ $c \bar{p}$ beam	ı
.8 90 0 <0.1	BERGER 91B FREJ τ per iron nucleus	• • • We do not use $>4.3 \times 10^3$	the following 90	g data for average HU		ts, etc. • • • X 8.9 GeV/ <i>c</i> p beam	1
$pp \rightarrow e^+ \mu^+)$	<i>7</i> 68	$\tau(\overline{\rho} \rightarrow e^- K_I^0)$					7
T SUTE BYEN SET	DOCUMENT ID TECH COMMENT	VALUE (years)	CL%	DOCUMENT ID	TECN	COMMENT	
6 years) CL% EVTS BKGD EST 0.6 90 0 <0.1	BERGER 91B FREJ 7 per iron nucleus	>9 × 10 ³	90	GEER	00 APE	X 8.9 GeV/c p beam	
	DENGER 748 FRES 7 per non nucleus	• • • We do not use	the following	g data for average			
$pp \rightarrow \mu^+ \mu^+$	$ au_{69}$	>9	95	GEER	94 CAL	O 8.9 GeV/ $c \overline{p}$ beam	ı
7 O years) <u>CL% EVTS BKGD EST</u>	DOCUMENT ID TECN COMMENT	$\tau(\overline{p} \rightarrow \mu^- K_I^0)$					7
.7 90 0 0.62	BERGER 91B FREJ $ au$ per iron nucleus	VALUE (years)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
-+-		>7 × 10 ³	90	GEER		X 8.9 GeV/c p̄ beam	
on → e ⁺ ⊽)	⁷ 70	• • • We do not use					
years) CL% EVTS BKGD EST	DOCUMENT ID TECN COMMENT	$>6.5 \times 10^3$	90	HU	98B APE	X 8.9 GeV/c p̄ beam	
.8 90 5 9.67	BERGER 91B FREJ $ au$ per iron nucleus	$ au(\overline{p} ightarrow e^- \gamma \gamma)$					7
$pn \rightarrow \mu^+ \overline{\nu}$)	₽ ₩	VALUE (years)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
т.	771	>2 × 10 ⁴	90	GEER	00 APE	X 8.9 GeV/ <i>c</i> $\overline{ ho}$ beam	
O years) CL% EVTS BKGD EST	DOCUMENT ID TECN COMMENT	$ au(\overline{p} o \mu^- \gamma \gamma)$					7
.6 90 4 4.37	BERGER 91B FREJ τ per iron nucleus	VALUE (years)		DOCUMENT ID	TECN	COMMENT	
$n \rightarrow \nu_e \overline{\nu}_e$	772	>2 × 10 ⁴	90	GEER		X 8.9 GeV/c p̄ beam	
т,		• • • We do not use					
0 years) CL% EVTS BKGD EST	DOCUMENT ID TECN COMMENT	$>2.3 \times 10^4$	90	HU	98B APE	X 8.9 GeV/ <i>c p̄</i> beam	
.000012 90 5 9.7	BERGER 91B FREJ τ per iron nucleus	$ au(\overline{ ho} ightarrow e^- ho)$					7
$n n \rightarrow \nu_{\mu} \overline{\nu}_{\mu}$	773	VALUE (years)	CL%	DOCUMENT ID	TECN	COMMENT	_
π		• • We do not use					
U years) CL% EVTS BKGD EST .000006 90 4 4.4	DOCUMENT ID TECN COMMENT BERGER 91B FREJ τ per iron nucleus	>200		⁵⁴ GEER		X 8.9 GeV/c ₱ beam	
	Services / per non nocicus		easurement h	as been withdraw	n (APEX Co	ollaboration, private co	mm
₽ PAR	TIAL MEAN LIVES	nication).					
•	tabulated here are the limits on $\overline{\tau}/B_I$, where	$ au(\overline{ ho} ightarrow e^-\omega)$					7
	e antiproton and B _j is the branching fraction	VALUE (years)	<u>CL%</u> 90	DOCUMENT ID	00 APEX	COMMENT X 8.9 GeV/c p beam	
					00 711 L7	. S.V Cc. / C P Bedin	
$\delta \rightarrow e^- \gamma$)	T74	$\tau(\vec{p} \rightarrow e^{-}K^{+}(892))$ VALUE (years)	(1°) (1%	DOCUMENT ID	TECN	COMMENT	7
	DOCUMENT ID TECN COMMENT			g data for average			
UE (years) CL% L)						
UE (years) CL% E 7 x 10 ⁵ 90 C	GEER 00 APEX 8.9 GeV/c p beam	_		-		₹ 8.9 GeV/c π beam	
	GEER 00 APEX 8.9 GeV/c p beam ta for averages, fits, limits, etc. • • • GEER 94 CALO 8.9 GeV/c p beam	>1 × 10 ³	90	55 GEER	00 APE	X 8.9 GeV/ $c \bar{p}$ beam ollaboration, private co	

p REFERENCES

GEER	00	PRL 84 590	S. Geer et al.	(FNAL APEX Collab.)
GABRIELSE	99	PRL 82 3198	G. Gabrielse et al.	
HAYATO	99	PRL 83 1529	Y. Hayato et al.	(Super-Kamiokande Collab.)
MCGREW	99	PR D59 052004	C. McGrew et al.	(IMB-3 Collab.)
MOHR	99	JPCRD 28 1713	P.J. Mohr, B.N. Taylor	(NIST)
Also	00	RMP 72 351	P.J. Mohr, B.N. Taylor	(NIST)
TORII	99	PR A59 223	H.A. Torii et al.	(CERN-PS-205 Collab.)
ALLISON	98	PL B427 217	W.W.M. Allison et al.	(Soudan-2 Collab.)
HU	98B	PR D58 111101	M. Hu et al.	(FNAL APEX Collab.)
SHIOZAWA	98	PRL 81 3319	M. Shiozawa et al.	
GLICENSTEIN		PL B411 326	J.F. Glicenstein	(SACL)
GABRIELSE	95	PRL 74 3544	G. Gabrielse et al.	(HARV, MANZ, SEOUL)
MACGIBBON	95	PR C52 2097	B.E. MacGibbon et al.	(ILL, SASK, INRM)
GEER	94	PRL 72 1596	S. Geer et al.	(FNAL, UCLA, PSU) (SASK, BOST, ILL)
HALLIN	93	PR C48 1497	E.L. Hallin et al.	(SASK, BOST, ILL)
SUZUKI	93B	PL B311 357	Y. Suzuki et al.	(KAMIOKANDE Collab.)
HUGHES	92	PRL 69 578	R.J. Hughes, B.I. Deutch	(LANL, AARH)
ZIEGER	92	PL B278 34		(MPCM)
Also BERGER	92B	PL B281 417 (erratum)	A. Zieger et al.	(MPCM)
BERGER	91 91B	ZPHY C50 385	C. Berger et al.	(FREJUS Collab.)
FEDERSPIEL	910	PL B269 227	C. Berger et al.	(FREJUS Collab.)
BECKER-SZ		PRL 67 1511 PR D42 2974	A. Zieger et al. C. Berger et al. C. Berger et al. F.J. Federspiel et al. R.A. Becker-Szendy et al.	(ILL)
ERICSON	90	EPL 11 295	T.F.O. Frieson, A. Dinhan	(fMB-3 Collab.)
GABRIELSE	90	PRL 65 1317	T.E.O. Ericson, A. Richter G. Gabrielse et al.	(CERN, DARM)
BERGER	89	NP B313 509	C. Berger et al.	(HARV, MANZ, WASH+)
CHO	89	PRL 63 2559	D. Cho, K. Sangster, E.A. Hin	(FREJUS Collab.)
HIRATA	89C	PL B220 308	K.S. Hirata et al.	ds (YALE) (Kamiokande Collab.)
PHILLIPS	89	PL B224 348	T.J. Phillips et al.	(HPW Collab.)
KREISSL	88	ZPHY C37 557	A. Kreissl et al.	(CERN PS176 Collab.)
SEIDEL	88	PRL 61 2522	S. Seidel et al.	(IMB Collab.)
BARTELT	87	PR D36 1990	IF Rartelt et al.	(Soudan Collab.)
Also	89	PR D40 1701 erratum	J.E. Bartelt et al. J.E. Bartelt et al. E.R. Cohen, B.N. Taylor	(Soudan Collab.)
COHEN	87	DMD 50 1121	E.R. Cohen, B.N. Taylor	(RISC, NBS)
HAINES	86	PRL 57 1986	T.J. Haines et al.	(IMB Collab.)
KAJITA	86	JPSJ 55 711	T.J. Haines et al. T. Kajita et al. T. Kajita et al. G.B. Blewitt et al. G.B. Blewitt et al. H.S. Park et al. G. Battistoni et al. M. Marinelli G. Morpurgo Wilkening, Ramsey, Larson J.E. Bartelt et al. G. Battistoni et al. M.R. Krishnaswamy et al. E.N. Alekseev et al.	(Kamiokande Collab.)
ARISAKA	85	JPSJ 54 3213	K. Arisaka et al.	(Kamiokande Collab.)
ARISAKA BLEWITT	85	PRL 55 2114	G.B. Blewitt et al.	(IMB Collab.)
DZUBA	85	PL 154B 93	V.A. Dzuba, V.V. Flambaum, I	P.G. Silvestrov (NOVO)
PARK	85	PRL 54 22	H.S. Park et al.	(IMB Collab.)
BATTISTONI	84	PL 133B 454	G. Battistoni et al.	(NÚSEX Collab.)
MARINELLI	84	PL 137B 439	M. Marinelli, G. Morpurgo	` (GENO)
WILKENING	B4	PR A29 425	Wilkening, Ramsey, Larson	(HARV, VIRG)
BARTELT	63	PRL 50 651	J.E. Bartelt et al.	(MINN, ANL)
BATTISTONI	82	PL 118B 461	G. Battistoni et al.	(NÚSEX Collab.)
KRISHNA	82	PL 115B 349	M.R. Krishnaswamy et al.	(TATA, OSKC+)
ALEKSEEV	81	JETPL 33 651	E.N. Alekseev et al.	(PNPI)
CHERRY		Translated from ZETFP	33 664. M.L. Cherry et al. R. Cowsik, V.S. Narasimham M. Beli et al. R.L. Golden et al. J.G. Learned, F. Reines, A. So M. Bregman et al.	
CHERRY	81	PRL 47 1507	M.L. Cherry et al.	(PENN, BNL)
COWSIK	80	PR D22 2204	R. Cowsik, V.S. Narasimham	(TATA)
BELL	79	PL 86B 215	M. Beli et al.	(CERN)
GOLDEN	79	PRL 43 1196	R.L. Golden et al.	(NASA, PSLL)
LEARNED	79	PRL 43 907	J.G. Learned, F. Reines, A. So	ni (UCI)
BREGMAN	78	PL 78B 174	M. Bregman et al.	(CERN)
ROBERTS	78	PR D17 358	B.L. Roberts	(WILL, RHEL)
EVAN\$ HU	77 75	Science 197 989 NP A254 403	J.C. Evans Jr., R.I. Steinberg	(BNL, PENN)
COHEN	73	JPCRD 2 663	E. Hill et al.	(COLU, YALE)
COHEN DYLLA	73	PR A7 1224	J.C. Evans Jr., R.I. Steinberg E. Hu et al. E.R. Cohen, B.N. Taylor H.F. Dylla, J.G. King F.W. Dix	(RISC, NBS)
DIX	70	Thesis Case	FW Div	(MIT) (CASE)
HARRISON	69	PRL 22 1263	GE Harrison DGH Candar	5.J. Wright (OXF)
GURR	67	PR 158 1321	HS Guer et al	(CASE, WITW)
FLEROV	58	DOKL 3 79	H.F. Dylla, J.G. King F.W. Dix G.E. Harrison, P.G.H. Sandars, H.S. Gurr et al. Flerov et al.	(ASCI)
				(//30)

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

We have omitted some results that have been superseded by later experiments. See our earlier editions.

n MASS

The mass is known much more precisely in u (atomic mass units) than in MeV; see the footnotes. The conversion from u to MeV, 1 u = 931.494013 \pm 0.000037 MeV/ c^2 (MOHR 99, the 1998 CODATA value), involves the relatively poorly known electronic charge.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
939.565330±0.000038	¹ MOHR	99	RVUE	1998 CODATA value
• • • We do not use the fol	lowing data for averag	es, fits	, limits,	etc. • • •
939.565331 ± 0.000037	² KESSLER	99	SPEC	$np \rightarrow d\gamma$
939.56565 ±0.00028	3,4 DIFILIPPO	94	TRAP	Penning trap
939.56563 ±0.00028	⁵ COHEN	87	RVUE	1986 CODATA value
939.56564 ±0.00028	^{4,6} GREENE	86	SPEC	$np \rightarrow d\gamma$
939.5731 ±0.0027	4 COHEN	73	RVUE	1973 CODATA value

- The mass is known much more precisely in u: $m=1.00866491578\pm0.00000000055\,u$.

 We use the 1998 CODATA u-to-MeV conversion factor (see the heading above) to get this mass in MeV from the much more precisely measured KESSLER 99 value of $1.00866491637\pm0.0000000082\,u$.

 The mass is known much more precisely in u: $m=1.0086649235\pm0.00000000023\,u$. We use the 1986 CODATA conversion factor to get the mass in MeV.

 These determinations are not independent of the m_p-m_p measurements below.

- ⁵ The mass is known much more precisely in u: $m = 1.008664904 \pm 0.000000014$ u. 6 The mass is known much more precisely in u: $m=1.008664919\pm0.000000014$ u.

77 MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
939.485±0.051	59	7 CRESTI 86	нвс	DD → ND

 $^{^{7}\,\}mathrm{This}$ is a corrected result (see the erratum). The error is statistical. The maximum

$(m_n - m_{\overline{n}})/m_n$

A test of CPT invariance. Calculated from the n and \overline{n} masses, above.

VALUE DOCUMENT ID $(9\pm5)\times10^{-5}$ OUR EVALUATION

$m_n - m_D$

		P		
VALUE (MeV)	DOCUMENT I	D	TECN	COMMENT
1.2933318±0.000005	8 MOHR	99	RVUE	1998 CODATA value
• • • We do not use the foll	owing data for avera	ges, fit	s, limits,	etc. • • •
1.293318 ±0.000009	9 COHEN	87	RVUE	1986 CODATA value
1.2933328 ± 0.0000072	GREENE	86	SPEC	$np \rightarrow d\gamma$
1.293429 ±0.000036	COHEN	73	RVUE	1973 CODATA value
⁸ Calculated by us from the	MOHR 99 ratio m _n	/m _p =	1.00137	7841887 ± 0.00000000058
In u, $m_D - m_D = (1.388)$	4489 ± 0.0000006)	$\times 10^{-3}$	u.	
⁹ Calculated by us from the	COHEN 87 ratio m	$n/m_{\rm p}$	= 1.001	378404 ± 0.000000009, 1
$u, m_D - m_D = 0.001388$	434 ± 0.000000009	ű.		

n MEAN LIFE

We now compile only direct measurements of the lifetime, not those inferred from decay correlation measurements. (Limits on lifetimes for bound neutrons are given in the section "p PARTIAL MEAN LIVES.")

For a review, see EROZOLIMSKII 89 and papers that follow it in an issue of NIM devoted to the "Proceedings of the International Workshop on Fundamental Physics with Slow Neutrons" (Grenoble 1989). For later reviews and/or commentary, see FREEDMAN 90, SCHRECKENBACH 92, and PENDLEBURY 93.

VALUE (s)	DOCUMENT ID		TECN	COMMENT
886.7± 1.9 OUR AV	ERAGE Error in	clude	s scale t	factor of 1.2.
889.2± 3.0± 3.8	BYRNE	96	CNTR	Penning trap
882.6 ± 2.7	¹⁰ MAMPE	93	CNTR	Gravitational trap
888.4 ± 3.1 ± 1.1	NESVIZHEV	92	CNTR	Gravitational trap
$878 \pm 27 \pm 14$	KOSSAKOW	89	TPC	Pulsed beam
887.6 ± 3.0	MAMPE	89	CNTR	Gravitational trap
877 ±10	PAUL	89	CNTR	Storage ring
876 ±10 ±19	LAST	88	SPEC	Pulsed beam
891 ± 9	SPIVAK	88	CNTR	Beam
903 ±13	KOSVINTSEV	86	CNTR	Gravitational trap
918 ±14	CHRISTENSEN	172	CNTR	
• • • We do not use	the following data	a for	average	s, fits, limits, etc. • • •
888.4 ± 2.9	ALFIMENKOV	90	CNTR	See NESVIZHEVSKII 92
893.6± 3.8± 3.7	BYRNE	90	CNTR	See BYRNE 96
937 ±18	¹¹ BYRNE	80	CNTR	
875 ±95	KOSVINTSEV	80	CNTR	
881 ± 8	BONDAREN	78	CNTR	See SPIVAK 88
10 IGNATOVICH 95	calls into questio	n sor	ne of th	e corrections and averaging procedures

used by MAMPE 93. The response, BONDARENKO 96, denies the validity of the criticisms.
11 This measurement has been withdrawn (J. Byrne, private communication, 1990).

n MAGNETIC MOMENT

DOCUMENT ID

TECN COMMENT

See the "Note on Baryon Magnetic Moments" in the Λ Listings.

VALUE (UM)

-1.91304272 ± 0.00000045	MOHR			1998 CODATA value
• • • We do not use the follow	ing data for averag	ges, fits	i, limits,	etc. • • •
-1.91304275 ± 0.00000045	COHEN	87	RVUE	1986 CODATA value
$-1.91304277 \pm 0.00000048$	¹² GREENE	82	MRS	
¹² GREENE 82 measures the magnetons. The value above 0.000037 (the 1986 CODAT	is obtained by mul	itiplyin	g this by	$(0.00000026) \times 10^{-3}$ Bohr $m_p/m_e = 1836.152701 \pm$

n ELECTRIC DIPOLE MOMENT dn

A nonzero value is forbidden by both T invariance and P invariance. A number of early results have been omitted. See RAMSEY 90 and GOLUB 94 for reviews.

VALUE (10 ⁻²⁵ ecm) <u>CL%</u>	DOCUMENT ID		TECN	COMMENT
< 0.63	90	13 HARRIS	99	MRS	$d = (-0.1 \pm 0.36) \times 10^{-25}$
• • • We do no	t use the fo	ollowing data for av	erag	es, fits,	limits, etc. • • •
< 0.97	90	ALTAREV	96	MRS	$(+0.26 \pm 0.40 \pm 0.16) \times 10^{-25}$
< 1.1	95	ALTAREV	92	MRS	See ALTAREV 96
< 1.2	95	\$MITH	90	MRS	See HARRIS 99
< 2.6	95	ALTAREV	86	MRS	$d = (-1.4 \pm 0.6) \times 10^{-25}$
0.3 ± 4.8		PENDLEBURY	84	MRS	Ultracold neutrons
< 6	90	ALTAREV	81	MRS	$d = (2.1 \pm 2.4) \times 10^{-25}$
<16	90	ALTAREV	79	MRS	$d = (4.0 \pm 7.5) \times 10^{-25}$

 13 This HARRIS 99 result includes the result of SMITH 90. However, the averaging of the results of these two experiments has been criticized by LAMOREAUX 00.

n ELECTRIC POLARIZABILITY an

Following is the electric polarizability α_n defined in terms of the induced electric dipole moment by ${\bf D}=4\pi\epsilon_0\alpha_n{\bf E}$. For a review, see SCHMIED-MAYER 89

VALUE (10 ⁻³ fm ³)	DOCUMENT ID	TECN	COMMENT
0.98 + 0.19 OUR AVERAGE	Error includes scale fac	ctor of 1.1.	
0.0 ±0.5	14 KOESTER	95 CNTR	n Pb, n Bi transmission
$1.20 \pm 0.15 \pm 0.20$			n Pb transmission
$1.07 + 0.33 \\ -1.07$	ROSE	90B CNTR	$\gamma d \rightarrow \gamma np$
0.8 ±1.0	KOESTER	88 CNTR	n Pb, n Bi transmission
1.2 ±1.0	SCHMIEDM	88 CNTR	n Pb, n C transmission
• • • We do not use the fol	llowing data for averages	, fits, limits	etc. • • •
1.17 + 0.43	ROSE	90 CNTR	See ROSE 90B

 $^{^{14}}$ KOESTER 95 uses natural Pb and the isotopes 208, 207, and 206. See this paper for a discussion of methods used by various groups to extract α_n from data.

n CHARGE

See also " $|q_p+q_e|/e$ " in the proton Listings.

VALUE (10 ⁻²¹ e)	DOCUMENT ID		TECN	COMMENT
- 0.4± 1.1	15 BAUMANN	88		Cold n deflection
• • • We do not use the follow	wing data for average	s, fit	s, limits,	etc. • • •
-15 ±22	¹⁶ GAEHLER	82	CNTR	Reactor neutrons
15 The BAUMANN 88 error				
¹⁶ The GAEHLER 82 error ±	22 gives the 90% CL	limit	ts about	the the value -15 .

LIMIT ON AT OSCILLATIONS

Mean Time for nħ Transition in Vacuum

A test of $\Delta B=2$ baryon number nonconservation. MOHAPATRA 80 and MOHAPATRA 89 discuss the theoretical motivations for looking for $n\bar{n}$ oscillations. DOVER 83 and DOVER 85 give phenomenological analyses. In the best limits come from looking for the decay of neutrons bound in nuclei. However, these analyses require model-dependent corrections for nuclear effects. See KABIR 83, DOVER 89, and ALBERICO 91 for discussions. Direct searches for $n\to \bar{n}$ transitions using reactor neutrons are cleaner but give somewhat poorer limits. We include limits for both free and bound neutrons in the Summary Table.

VALUE (5)	CL%	DOCUMENT ID		TECN	COMMENT
>8.6 × 10 ⁷	90	BALDO	94	CNTR	Reactor (free) neutrons
>1.2 × 10 ⁸	90	BERGER	90	FREJ	n bound in iron
>1.2 × 10 ⁸	90	TAKITA	86	CNTR	Kamiokande
• • • We do not use the	e following	data for average:	s, fits	, limits,	etc. • • •
>1 × 10 ⁷	90	BALDO	90	CNTR	See BALDO-CEOLIN 94
$>4.9 \times 10^{5}$	90	BRESSI	90	CNTR	Reactor neutrons
$>4.7 \times 10^5$	90	BRESSI	89	CNTR	See BRESSI 90
$>1 \times 10^6$	90	FIDECARO	85	CNTR	Reactor neutrons
$> 8.8 \times 10^{7}$	90	PARK	85B	CNTR	
$>3 \times 10^7$		BATTISTONI	84	NUSX	
$> 2.7 \times 10^{7} - 1.1 \times 10^{8}$		JONES	84	CNTR	
$>2 \times 10^{7}$		CHERRY .	83	CNTR	

n DECAY MODES

	Mode	Fraction (Γ_j/Γ)	Confidence level
$\overline{r_{1}}$	pe− _{νe}	100 %	
Γ_2	hydrogen-atom $ar{ u}_e$		
	Charge conser	vation (Q) violating mode	
Γ_3	$\rho \nu_e \overline{\nu}_e$	$Q < 8 \times 10^{-27}$	68%

π BRANCHING RATIOS

		DIVARCIIII	100103	
Γ(hydrogen-ator	$n \nu_e) / \Gamma_{tota}$	ı		Γ ₂ /Γ
VALUE	<u>CL%</u>	DOCUMENT	ID TECN	
• • • We do not ı	se the follow	ing data for aver	ages, fits, limits, etc. • •	•
$< 3 \times 10^{-2}$	95	¹⁷ GREEN	90 RVUE	

 $^{^{17}}$ GREEN 90 infers that $\tau(\text{hydrogen-atom}_{P_e})>3\times10^4\,\text{s}$ by comparing neutron lifetime measurements made in storage experiments with those made in $\beta\text{-decay}$ experiments. However, the result depends sensitively on the lifetime measurements, and does not of course take into account more recent measurements of same.

Γ(ρν _ε	ν _e)/Γ _{total} orbidden by char	ge conserva	tion.			Γ ₃ /Γ
VALUE		CL%	DOCUMENT ID		TECN	COMMENT
<8 ×	10-27	68 ¹	⁸ NORMAN	96	RVUE	71 Ga \rightarrow 71 Ge neutrals
• • • '	We do not use the	e following	data for averages	, fit	s, limits,	etc. • • •
<9.7 ×	10-18	90	ROY			$^{113}\text{Cd} \rightarrow ^{113}m$ In neut.
<7.9 ×	: 10 ⁻²¹		VAIDYA	83	CNTR	$87 \text{Rb} \rightarrow 87 m \text{Srneut}$.
<9 ×	: 10 ⁻²⁴	90	BARABANOV			71 Ga \rightarrow 71 GeX
<3 ×	10 ⁻¹⁹		NORMAN	79	CNTR	$^{87}\text{Rb} \rightarrow ^{87m}\text{Srneut}$.
						EX counting rates to the ther than to solar-neutrino

BARYON DECAY PARAMETERS

Written 1996 by E.D. Commins (University of California, Berkeley).

Baryon semileptonic decays

The typical spin-1/2 baryon semileptonic decay is described by a matrix element, the hadronic part of which may be written as:

$$\overline{B}_f \left[f_1(q^2) \gamma_{\lambda} + i f_2(q^2) \sigma_{\lambda\mu} q^{\mu} + g_1(q^2) \gamma_{\lambda} \gamma_5 + g_3(q^2) \gamma_5 q_{\lambda} \right] B_i .$$
(1)

Here B_i and \overline{B}_f are spinors describing the initial and final baryons, and $q=p_i-p_f$, while the terms in f_1 , f_2 , g_1 , and g_3 account for vector, induced tensor ("weak magnetism"), axial vector, and induced pseudoscalar contributions [1]. Second-class current contributions are ignored here. In the limit of zero momentum transfer, f_1 reduces to the vector coupling constant g_V , and g_1 reduces to the axial-vector coupling constant g_A . The latter coefficients are related by Cabibbo's theory [2], generalized to six quarks (and three mixing angles) by Kobayashi and Maskawa [3]. The g_3 term is negligible for transitions in which an e^\pm is emitted, and gives a very small correction, which can be estimated by PCAC [4], for μ^\pm modes. Recoil effects include weak magnetism, and are taken into account adequately by considering terms of first order in

$$\delta = \frac{m_i - m_f}{m_i + m_f} \,, \tag{2}$$

where m_i and m_f are the masses of the initial and final baryons.

The experimental quantities of interest are the total decay rate, the lepton-neutrino angular correlation, the asymmetry coefficients in the decay of a polarized initial baryon, and the polarization of the decay baryon in its own rest frame for an unpolarized initial baryon. Formulae for these quantities are derived by standard means [5] and are analogous to formulae for nuclear beta decay [6]. We use the notation of Ref. 6 in the Listings for neutron beta decay. For comparison with experiments at higher q^2 , it is necessary to modify the form factors at $q^2 = 0$ by a "dipole" q^2 dependence, and for high-precision comparisons to apply appropriate radiative corrections [7].

The ratio g_A/g_V may be written as

$$g_A/g_V = |g_A/g_V| e^{i\phi_{AV}}. (3)$$

The presence of a "triple correlation" term in the transition probability, proportional to $\text{Im}(g_A/g_V)$ and of the form

$$\sigma_{i} \cdot (\mathbf{p}_{\ell} \times \mathbf{p}_{\nu})$$
 (4)

Baryon Particle Listings

n

for initial baryon polarization or

$$\boldsymbol{\sigma}_{f} \cdot (\mathbf{p}_{\ell} \times \mathbf{p}_{\nu}) \tag{5}$$

for final baryon polarization, would indicate failure of time-reversal invariance. The phase angle ϕ has been measured precisely only in neutron decay (and in ¹⁹Ne nuclear beta decay), and the results are consistent with T invariance.

Hyperon nonleptonic decays

The amplitude for a spin-1/2 hyperon decaying into a spin-1/2 baryon and a spin-0 meson may be written in the form

$$M = G_F m_\pi^2 \cdot \overline{B}_f (A - B\gamma_5) B_i , \qquad (6)$$

where A and B are constants [1]. The transition rate is proportional to

$$R = 1 + \gamma \widehat{\omega}_{f} \cdot \widehat{\omega}_{i} + (1 - \gamma)(\widehat{\omega}_{f} \cdot \widehat{\mathbf{n}})(\widehat{\omega}_{i} \cdot \widehat{\mathbf{n}}) + \alpha(\widehat{\omega}_{f} \cdot \widehat{\mathbf{n}} + \widehat{\omega}_{i} \cdot \widehat{\mathbf{n}}) + \beta \widehat{\mathbf{n}} \cdot (\widehat{\omega}_{f} \times \widehat{\omega}_{i}) ,$$
 (7)

where $\hat{\mathbf{n}}$ is a unit vector in the direction of the final baryon momentum, and $\hat{\omega}_i$ and $\hat{\omega}_f$ are unit vectors in the directions of the initial and final baryon spins. (The sign of the last term in the above equation was incorrect in our 1988 and 1990 editions.) The parameters α , β , and γ are defined as

$$\alpha = 2 \operatorname{Re}(s^* p) / (|s|^2 + |p|^2) ,$$

$$\beta = 2 \operatorname{Im}(s^* p) / (|s|^2 + |p|^2) ,$$

$$\gamma = (|s|^2 - |p|^2) / (|s|^2 + |p|^2) ,$$
(8)

where s = A and $p = |\mathbf{p}_f| B/(E_f + m_f)$; here E_f and \mathbf{p}_f are the energy and momentum of the final baryon. The parameters α , β , and γ satisfy

$$\alpha^2 + \beta^2 + \gamma^2 = 1 . \tag{9}$$

If the hyperon polarization is \mathbf{P}_Y , the polarization \mathbf{P}_B of the decay baryons is

$$\mathbf{P}_{B} = \frac{(\alpha + \mathbf{P}_{Y} \cdot \widehat{\mathbf{n}})\widehat{\mathbf{n}} + \beta(\mathbf{P}_{Y} \times \widehat{\mathbf{n}}) + \gamma\widehat{\mathbf{n}} \times (\mathbf{P}_{Y} \times \widehat{\mathbf{n}})}{1 + \alpha\mathbf{P}_{Y} \cdot \widehat{\mathbf{n}}} \ . \tag{10}$$

Here \mathbf{P}_B is defined in the rest system of the baryon, obtained by a Lorentz transformation along $\hat{\mathbf{n}}$ from the hyperon rest frame, in which $\hat{\mathbf{n}}$ and \mathbf{P}_V are defined.

An additional useful parameter ϕ is defined by

$$\beta = (1 - \alpha^2)^{1/2} \sin \phi \ . \tag{11}$$

In the Listings, we compile α and ϕ for each decay, since these quantities are most closely related to experiment and are essentially uncorrelated. When necessary, we have changed the signs of reported values to agree with our sign conventions. In the Baryon Summary Table, we give α , ϕ , and Δ (defined below) with errors, and also give the value of γ without error.

Time-reversal invariance requires, in the absence of finalstate interactions, that s and p be relatively real, and therefore that $\beta = 0$. However, for the decays discussed here, the final-state interaction is strong. Thus

$$s = |s| e^{i\delta_s} \text{ and } p = |p| e^{i\delta_p}, \qquad (12)$$

where δ_s and δ_p are the pion-baryon s- and p-wave strong interaction phase shifts. We then have

$$\beta = \frac{-2|s||p|}{|s|^2 + |p|^2} \sin(\delta_s - \delta_p) . \tag{13}$$

One also defines $\Delta = -\tan^{-1}(\beta/\alpha)$. If T invariance holds, $\Delta = \delta_s - \delta_p$. For $\Lambda \to p\pi^-$ decay, the value of Δ may be compared with the s- and p-wave phase shifts in low-energy π^-p scattering, and the results are consistent with T invariance.

Radiative hyperon decays

For the radiative decay of a polarized spin-1/2 hyperon, $B_i \to B_f \gamma$, the angular distribution of the direction \widehat{p} of the final spin-1/2 baryon in the hyperon rest frame is

$$\frac{d\Gamma_{\gamma}}{d\Omega} = \frac{\Gamma_{\gamma}}{4\pi} \left(1 + \alpha_{\gamma} \hat{p} \cdot \mathbf{P}_{i} \right) , \qquad (14)$$

where \mathbf{P}_i is the hyperon polarization and the asymmetry parameter α_{γ} is

$$\alpha_{\gamma} = \frac{2\text{Re}\left[g_1'(0)f_M^{\star}(0)\right]}{|g_1'(0)|^2 + |f_M(0)|^2} \ . \tag{15}$$

Here $f_M=\frac{(m_i-m_f)}{(m_i+m_f)}\left[(m_i+m_f)f_2'-f_1'\right]$, where $f_1'(q^2)$, $f_2'(q^2)$, and $g_1'(q^2)$ are the $\Delta Q=0$ analogs of the $|\Delta Q|=1$ form factors defined above.

References

- E.D. Commins and P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, England, 1983).
- 2. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
- M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- M.L. Goldberger and S.B. Treiman, Phys. Rev. 111, 354 (1958).
- P.H. Frampton and W.K. Tung, Phys. Rev. D3, 1114 (1971).
- J.D. Jackson, S.B. Treiman, and H.W. Wyld, Jr., Phys. Rev. 106, 517 (1957), and Nucl. Phys. 4, 206 (1957).
- Y. Yokoo, S. Suzuki, and M. Morita, Prog. Theor. Phys. 50, 1894 (1973).

Baryon Particle Listings

n, N's and Δ 's

KOESTER		DD 651 3343	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
KUZNETSOV	95 95	PR C51 3363 PRL 75 794	L. Koester et al. I.A. Kuznetsov et al.	(MUNT, JINR, LATV) (PNPI, KIAE, HARV+)
SCHRECK	95	PL B349 427	K. Schreckenbach et al.	(MUNT, ILLG, LAPP)
BALDO	94	ZPHY C63 409	M. Baldo-Ceolin et al.	(HEID, ILLG, PADO+)
DIFILIPPO Also	94 93	PRL 73 1481 PRL 71 1998	F. DiFilippo <i>et al.</i> V. Natarajan <i>et al.</i>	(MIT) (MIT)
GOLUB	94	PRPL 237C 1	R. Golub, K. Lamoreaux	(HAHN, WASH)
MAMPE	93	JETPL 57 82 Translated from ZETFP 5	B. Mampe et al.	(KIAE)
PENDLEBURY	93	ARNPS 43 687	J.M. Pendlebury	(ILLG)
ALTAREV	92	PL B276 242	I.S. Altarev et al.	(PNPI)
NESVIZHEV	92	JETP 75 405 Translated from ZETF 10	V.V. Nesvizhevsky et al.	(PNPI, JINR)
SCHRECK	92	JPG 18 1	K. Schreckenbach, W. Mampe	(ILLG)
ALBERICO	91	NP A523 488	W.M. Alberico, A. de Pace, M. Pigr	none (ŤORI)
DUBBERS Also	91 90	NP A527 239c EPL 11 195	D. Dubbers D. Dubbers, W. Mampe, J. Oohner	(ILLG) (ILLG, HEID)
EROZOLIM	91	PL B263 33	B.G. Erozolimsky et al.	(PNPI, KIAE)
Also	90	SJNP 52 999	B.G. Erozolimsky et al.	(PNPI, KIAE)
EROZOLIM	918	Translated from YAF 52 1 SJNP 53 260	B.G. Erozolimsky, Y.A. Mostovoy	(KIAE)
		Translated from YAF 53	418.	, ,
SCHMIEDM WOOLCOCK	91 91	PRL 66 1015 MPL A6 2579	J. Schmiedmayer et al. W.S. Woolcock	(TUW, ORNL) (CANB)
ALFIMENKOV	90	JETPL 52 373	V.P. Alfimenkov et at.	(PNPI, JINR)
BALDO	90	Translated from ZETFP 5		, ,
BALDO BERGER	90	PL B236 95 PL B240 237	M. Baldo-Ceolin et al. C. Berger et al.	(PADO, PAVI, HEIOP+) (FREJUS Collab.)
BRESSI	90	NC 103A 731	G. Bressi et al.	(PAVI, ROMA, MILA)
BYRNE	90	PRL 65 289		SS, NBS, SCOT, CBNM)
FREEDMAN GREEN	90 90	CNPP 19 209 JPG 16 L75	S.J. Freedman M.G. Green, Thompson	(ANL) (RAL)
RAMSEY	90	ARNPS 40 1	N.F. Ramsey	(HARV)
ROSE	90	PL B234 460	K.W. Rose et al.	(GOET, MPCM, MANZ)
ROSE SMITH	90B 90	NP A514 621 PL B234 191	K.W. Rose et al. K.F. Smith et al.	(GOET, MPCM) (SUSS, RAL, HARV+)
BRESSI	89	ZPHY C43 175	G. Bressi et al. (INI	FN, MILA, PAVI, ROMA)
DOVER	89	NIM A284 13	C.B. Dover, A. Gal, J.M. Richard	(BNL, HEBR+)
EROZOLIM.,, KOSSAKOW,	89 89	NIM A284 89 NP A503 473	B.G. Erozolimsky	(PNPI) (LAPP, SAVO, ISNG+)
MAMPE	89	PRL 63 593	R. Kossakowski et al. W. Mampe et al.	(ILLG, RISL, SUSS, URI)
MOHAPATRA	89	NIM A284 1	R.N. Mohapatra	(UMD)
PAUL	89 89	ZPHY C45 25		IN, WUPP, MPIH, ILLG)
SCHMIEDM BAUMANN	88	NIM A284 137 PR D37 3107	 Schmiedmayer, H. Rauch, P. Riet Baumann et al. 	is (WIEN) (BAYR, MUNI, ILLG)
KOESTER	88	ZPHY A329 229	L. Koester, W. Waschkowski, Meier	
LAST	88	PRL 60 995	l. Last et al.	(HEIDP, ILLG, ANL)
SCHMIEOM	88 88B	PRL 61 1065 PRL 61 2509 erratum	J. Schmiedmayer, H. Rauch, P. Riet	
SPIVAK	88	JETP 67 1735	J. Schmiedmayer, H. Rauch, P. Riel P.E. Spivak	is (TUW) (KIAE)
		Translated from ZETF 94	1.	
COHEN ALTAREV	87 86	RMP 59 1121 JETPL 44 460	E.R. Cohen, B.N. Taylor I.S. Altarev et al.	(RISC, NBS) (PNPI)
		Translated from ZETFP	44 36O.	
BOPP	86 88	PRL 56 919	P. Bopp et al.	(HEIDP, ANL, ILLG)
Also CRESTI	86	ZPHY C37 179 PL B177 206	E. Klempt et al. M. Cresti et al.	(HEIDP, ANL, ILLG) (PADO)
Also				
	88	PL B200 587 erratum	M. Cresti et al.	(PADO)
GREENE	86	PRL 56 819	M. Cresti et al. G.L. Greene et al.	(PADO) (NBS, ILLG)
		PRL 56 819 JETPL 44 571	M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I.	(PADO) (NBS, ILLG)
GREENE KOSVINTSEV TAKITA	86 86 86	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR D34 902	M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 44 444. M. Takita et al.	(PADO) (NBS, ILLG) Terekhov (KIAE) (KEK, TOKY+)
GREENE KOSVINTSEV TAKITA DOVER	86 86 86 85	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR D34 902 PR C31 1423	M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 44 444. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard	(PADO) (NBS, ILLG) Terekhov (KIAE) (KEK, TOKY+) (BNL)
GREENE KOSVINTSEV TAKITA	86 86 86	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR D34 902 PR C31 1423 PL 156B 122	M. Cresti et al. J. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. A4444. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al.	(PADO) (NBS, ILLG) Terekhov (KIAE) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+)
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI	86 86 85 85 85 85B	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR C31 1423 PL 156B 122 NP B252 261 PL 133B 454	M. Cresti et al. G.L. Green et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 44.44, 444. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al.	(PADO) (NBS, ILLG) Terekhov (KIAE) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (IMB Collab.) (NUSEX Collab.)
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES	86 86 85 85 85 85 84 84	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PL 155B 122 NP B252 261 PL 133B 454 PRL 52 720	M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 44.44. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al. T.W. Jones et al.	(PADO) Terekhov (KIAE) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (IMB Collab.) (NUSEX Collab.) (IMB Collab.)
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY	86 86 85 85 85 85 84 84	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR C31 4902 PR C31 1423 PL 156B 122 PP B252 261 PL 133B 454 PRL 52 720 PL 136B 327	M. Cresti et al. G.L. Green et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. G. B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Paik et al. T.W. Jones et al. J.M. Pendlebury et al.	(PADO) (NBS, ILLG) Terekhov (KIAE) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (IMB Collab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (SUSS, HARV, RAL+)
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DOVER	86 86 85 85 85 85 84 84	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PL 155B 122 NP B252 261 PL 133B 454 PRL 52 720	M. Cresti et al. G.L. Green et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C. B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard	(PADO) Terekhov (KIAE) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (IMB Collab.) (NUSEX Collab.) (IMB Collab.)
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DOVER KABIIR	86 86 85 85 85 84 84 84 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PL 155B 122 NP B252 261 PL 133B 454 PRL 52 720 PL 156B 327 PRL 50 1354 PR D27 1090 PRL 51 231	M. Cresti et al. G.L. Green et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir	(PADO) (NBS, ILLG) (KEK, TOKY+) (KEK, TOKY+) (KEK, TOKY+) (IMB Collab.) (NUSEX Collab.) (IMB Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (BNL) (HARV)
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DOVER	86 86 85 85 85 85 84 84 84 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PL 156B 122 NP B252 261 PL 133B 454 PRL 52 720 PL 156B 327 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196	M. Cresti et al. G.L. Green et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C. B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. T. W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy	(PADO) (NBS, ILLG) (KEK, TOKY+) (KKEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (IMB Collab.) (NUSEX Collab.) (IMB Collab.) (SUSS, HARY, RAL+) (PENN, BNL) (BNL)
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DOVER KABIR MOSTOVOY ROY	86 86 85 85 85 84 84 84 83 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR C31 1423 PL 156B 122 PR 131 1423 PL 156B 122 PRL 1313B 454 PRL 52 720 PL 136B 327 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP: PR 028 176 PR 028 PR 028 PR 028 PR 028 PR 038	M. Cresti et al. G.L. Green et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C. B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Pak et al. G. Battistoni et al. T. W. Jones et al. J.M. Pendiebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 162. A. Roy et al.	(PADO) (NBS, ILLG) (KEK, TOKY+) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (NUSEX COllab.) (NUSEX COllab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (KIAE)
GRENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DOVER KABIR MOSTOVOY ROY	86 86 85 85 85 84 84 84 83 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PL 156B 122 NP B252 261 PL 133B 454 PRL 52 720 PL 136B 327 PRL 50 1554 PR D27 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP : PR D27 1076	M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 44.44, M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 162. A. Roy et al. S.C. Vaidya et al.	(PADO) (NES, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (NUSEX Collab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA)
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DOVER KABIR MOSTOVOY ROY	86 86 86 85 85 85 84 84 83 83 83 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 R 034 902 PR C31 1423 PL 156B 122 NP B252 261 PL 133B 454 PRL 52 720 PL 156B 327 PRL 50 1554 PR D27 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 R 028 1770 PR 027 466 PR 025 2887	M. Cresti et al. G.L. Green et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444, M. Takita et al. G. Bidecaro et al. H.S. Pak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. G.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 152. A. Roy et al. S.C. Vaidya et al. S.C. Vaidya et al. S.G. Sahler, J. Kalus, W. Mampe	(PADO) (NBS, ILLG) (KEK, TOKY+) (KIAE) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (NUSEX COIlab.) (NUSEX COIlab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (TATA) (BAYR, ILLG)
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DOVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GREENE ALTAREV	86 86 85 85 85 85 84 84 83 83 83 83 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 R D34 902 R C31 1423 PL 156B 122 NP B252 261 PL 133B 454 PRL 52 720 PL 156B 327 PRL 50 1354 PR D27 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 9 R D28 1770 PR D27 496 PR D25 2887 Metrologia 18 93 PL 102B 13	M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444, M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Pak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 162. A. Roy et al. S.C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Altarev et al.	(PADO) (NBS, ILLG) (RBS, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (NUSEX Collab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (BAYR, ILLG) (YALE, HARV, ILLG+) (PANP, ILLG+) (PAPR)
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DOVER KABIR MOSTOVOY VAIDYA GAEHLER GREENE	86 86 85 85 85 85 84 84 83 83 83 83 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 158 122 NP B252 261 PL 1338 454 PRL 52 720 PL 1368 327 PRL 50 1354 PRL 52 720 PRL 51 137 96 Translated from ZETFP : PR 027 1090 PR 027 466 PR 025 2887 Metrologia 18 93 PL 1028 13 JETPL 32 359	M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 44.44. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 162. A. Roy et al. S. C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Altarev et al. I.S. Altarev et al.	(PADO) (NBS, ILLG) (KEK, TOKY+) (KAE) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (IMB Collab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (PANN, BNL) (HARV) (KIAE) (TATA) (BAYR, ILLG) (YALE, HARV, ILLG)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DÖVER KABIR MÖSTÖVÖY ROY AUJDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE	86 86 85 85 85 85 84 84 83 83 83 83 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 R D34 902 R C31 1423 PL 156B 122 NP B252 261 PL 133B 454 PRL 52 720 PL 156B 327 PRL 50 1354 PR D27 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 9 R D28 1770 PR D27 496 PR D25 2887 Metrologia 18 93 PL 102B 13	M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 162. A. Roy et al. S. C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Altarev et al. H. Barabanov et al. 32 384.	(PADO) (NBS, ILLG) (RBS, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (NUSEX Collab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (BAYR, ILLG) (YALE, HARV, ILLG+) (PANP, ILLG+) (PAPR)
GRENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DOVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GRENE ALTAREV BARABANOV	86 86 86 85 85 85 84 84 84 83 83 83 83 83 83 83 83 83 83 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 135 154 PRL 52 720 PR 136 827 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 029 1770 PR 027 406 PR 025 2887 Metrologia 18 93 PL 1028 13 JETPL 37 596 Translated from ZETFP 5 PR 029 277 PR 398 274 JETPL 32 359 Translated from ZETFP 5 PL 928 274 JETPL 31 2359	M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444, M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Pak et al. G. Battistoni et al. J.M. Pendlebury et al. J.M. Pendlebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 192. A. Roy et al. S.C. Vaidya et al. S.C. Vaidya et al. I.S. Altarev et al. I.S. Altarev et al. I.S. Altarev et al. I.S. Barabanov et al. 32 384. J. Byrne et al. J. Byrne et al. J. Byrne et al. J. Syrne et al. J. Syrne et al. J. Syrne et al.	(PADO) (NBS, ILLG) (RBS, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (NUSEX Collab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (SATA) (YALE, HARV, ILLG+) (PNPI)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV	86 86 85 85 85 85 84 84 83 83 83 83 83 83 83 83 83 83 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 158 122 NP B252 261 PL 1338 454 PRL 52 729 PRL 30 1354 PRL 52 729 PRL 50 1354 PRL 52 1359 PRL 50 2157 PRL 37 196 Translated from ZETFP 5 PR 027 466 PR 027 2887 Metrologia 18 93 PL 1028 13 JETPL 32 359 Translated from ZETFP 5 PL 928 274 JETPL 31 235 Translated from ZETFP 5 PL 928 274 JETPL 31 235	M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Paik et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 162. A. Roy et al. S.C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Altarev et al. H.R. Barabanov et al. J. Byrne et al. Y.Y. Kosvintsev et al.	(PADO) (NPS, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (NUSEX COII3b.) (NUSEX COII3b.) (NUSEX COII3b.) (SUSS, HARV, RAL+) (PENL) (HARV) (KIAE) (TATA) (TATA) (GAYR, ILLG) (YALE, HARV, ILLG) (PNPI) (PNPI) (SUSS, RLI)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DÖVER KABIR MÖSTÖVÖY ROY AUJDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE	86 86 86 85 85 85 84 84 84 83 83 83 83 83 83 83 83 83 83 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 135 154 PRL 52 720 PR 136 827 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 029 1770 PR 027 406 PR 025 2887 Metrologia 18 93 PL 1028 13 JETPL 37 596 Translated from ZETFP 5 PR 029 277 PR 398 274 JETPL 32 359 Translated from ZETFP 5 PL 928 274 JETPL 31 2359	M. Cresti et al. M. Cresti et al. C.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C. B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Paak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 162. A. Roy et al. S.C. Vaidya et al. S.C. Vaidya et al. S.C. Vaidya et al. I.S. Altarev et al. I.S. Altarev et al. I.R. Barabanov et al. 32 334. J. Byrne et al. J. Byrne et al. Y.Y. Kosvintsev et al. 31 237. Y.Y. Kosvintsev et al.	(PADO) (NBS, ILLG) (RBS, ILLG) (KEK, TOKY+) (BNL) (BNL) (IMB Collab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (TATA) (BAYR, ILLG) (YALE, HARV, ILLG+) (PNPI) (SUSS, RL) (LIIRG) (SUSS, RL) (LIIRG) (YALE, HARV, ILLG)
GRENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GRENE ALTANEV BARABANOV BYNE KOSVINTSEV MOHAPATRA ALTAREV	86 86 86 85 85 85 85 84 84 84 84 83 83 83 83 83 83 83 83 83 83 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 135 1424 PR 152 720 PR 136 827 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 029 1770 PR 027 466 PR 025 2887 Metrologia 18 93 PL 1028 13 JETPL 32 359 PR 132 32 JETPL 32 359 PR 133 JETPL 32 357 PR 134 32 357 PR 135 1236 Franslated from ZETFP 5 PL 92 874 JETPL 31 236 Translated from ZETFP 5 PRL 44 1316 JETPL 32 136 Translated from ZETFP 7 PRL 44 1316 JETPL 39 TABA JETPL 31 1236 Translated from ZETFP 5 PRL 44 1316 JETPL 39 TABA JETPL 37 TABA JETPL 31 TABA JETPL	M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444, M. Takita et al. G. Bidecaro et al. H.S. Pak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 192. A. Roy et al. S.C. Vaidya et al. S.C. Vaidya et al. I.S. Altarev et al. J. Barabanov et al. J. Byrne et al. J. R. Roahler, J. R. Barabanov et al. 32 334. J. Byrne et al. I.R. Barabanov et al. 31 237. R.N. Mohapatra, R.E. Marshak L.S. Altarev et al.	(PADO) (NBS, ILLG) (KEK, TOKY+) (RNL) (ERN, ILLG, PADO+) (IMB Collab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (TATA) (BAYR, ILLG) (YALE, HARV, ILLG+) (PNPI) (SUSS, RL) (LJINR) (CUNY, VPI) (PNPI)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY WAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM	86 86 85 85 85 85 84 84 84 83 83 83 83 83 83 83 83 83 83 83 83 83	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 031 1423 PR 032 261 PL 1368 122 PR 032 709 PRL 30 154 PRL 52 720 PRL 30 1554 PRL 52 720 PRL 156 327 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 027 486 PR 027 2887 Metrologia 18 93 PL 1028 137 JETPL 32 359 Translated from ZETFP 5 PL 928 274 JETPL 31 236 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 JIMP 30 355	M. Cresti et al. M. Cresti et al. C.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C. B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Pak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 192. A. Roy et al. S.C. Vaidya et al. S.C. Vaidya et al. I.S. Altarev et al. I.S. Altarev et al. J. Byrne et al. J. Y.Y. Kosvintsev et al. 12 324. J. Byrne et al. Y.Y. Kosvintsev et al. 13 257. R.N. Mohapatra, R.E. Marshak L.S. Altarev et al. 15 794. B.G. Erozolimsky et al. 59 794.	(PADO) (NBS, ILLG) (RBS, ILLG) (KEK, TOKY+) (BNL) (BNL) (IMB Collab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (TATA) (BAYR, ILLG) (YALE, HARV, ILLG+) (PNPI) (SUSS, RL) (LIIRG) (SUSS, RL) (LIIRG) (YALE, HARV, ILLG)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM NORMAN	86 86 86 85 85 85 84 84 84 83 83 83 83 83 83 82 82 82 81 80 80 80 79	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 11 1428 PRL 52 720 PL 136B 122 PRL 53 720 PL 136B 327 PRL 50 1354 PRL 52 720 PRL 50 1354 PRL 52 730 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 027 486 PR 027 2887 Metrologia 18 93 PL 102B 13 JETPL 12 3 359 Translated from ZETFP 5 PL 92B 274 JETPL 31 236 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 43 1236 Translated from YETFP 5 Translated from YETFP 5 PRL 43 1236 Translated from YETFP 5	M. Cresti et al. M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37, 162. A. Roy et al. S. C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Altarev et al. J. Byrne et al. Y.Y. Kosvintsev et al. 13, 234. Y.Y. Kosvintsev et al. 15, Altarev et al. 18, B. G. Erozolimsky et al. 1921. 1974. 1986. B. G. Erozolimsky et al. 1981. 1981. 1981. 1981. 1982. 1983. 1983. 1984. 1986.	(PADO) (NES, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (NUSEX COII3b.) (NUSEX COII3b.) (NUSEX COII3b.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (TATA) (SAYR, ILLG) (YALE, HARV, ILLG) (YALE, HARV, ILLG) (YUNY, VILG+) (PNPI) (SUSS, RL) (SUSS, RL) (SUSS, RL) (WASH)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY WAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM	86 86 86 85 85 85 84 84 84 83 83 83 83 83 83 83 83 82 81 80 80 80 79	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 135 1544 PRL 52 720 PR 131 854 PRL 52 720 PR 136 327 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 028 1770 PR 027 466 PR 025 2887 Metrologia 18 93 PL 1028 13 JETPL 37 359 Translated from ZETFP 5 PL 1928 274 JETPL 37 359 Translated from ZETFP 5 PR 44 1316 JETPL 29 730 Translated from ZETFP 5 SIMP 30 355 Translated from TETFP 7 SIMP 30 355 Translated from YAF 30 1 PRL 43 1225 JETPL 28 303	M. Cresti et al. M. Cresti et al. C.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C. B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Pak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 192. A. Roy et al. S.C. Vaidya et al. S.C. Vaidya et al. I.S. Altarev et al. I.S. Altarev et al. J. Byrne et al. J. Byrne et al. J. Byrne et al. J. R. Barabanov et al. 32 384. J. Byrne et al. LS. Altarev et al. B. G. Erozolimsky et al. B. G. Fozolimsky et al. B. G. Fozolimsky et al. B. G. Fozolimsky et al.	(PADO) (NBS, ILLG) (KEK, TOKY+) (RBIL) (ERN, ILLG, PADO+) (IMB COIlab.) (NUSEX COIlab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (SATA) (YALE, HARV, ILLG+) (PNPI) (SUSS, RL) (LJINR) (CUNY, VPI) (CUNY, VPI) (KIAE)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY WAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM NORMAN BONDAREN AÍSO	86 86 86 85 85 85 84 84 83 83 83 83 83 83 80 80 80 80 79 79 79 78 82	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 135 1544 PRL 52 720 PR 131 854 PRL 52 720 PR 136 1374 PR 150 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 028 1770 PR 027 466 PR 025 2887 Metrologia 18 93 PL 1028 13 JETPL 37 359 Translated from ZETFP 5 PL 192 8274 JETPL 31 236 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 7 SIMP 30 355 Translated from YAF 30 1 PRL 43 1226 PRL 43 1226 PRL 43 1226 PRL 43 1226 JETPL 28 303 Translated from YAF 30 1 PRL 43 1226 PRL 43 1226 PRL 43 303 Translated from YAF 30 1 PRL 43 1226 PRL 43 303 Translated from YAF 30 1 PRL 41 216 23 303 Translated from YAF 30 1 PRL 42 33 303 Translated from TETFP 5 Moderate Conf.	M. Cresti et al. M. Cresti et al. C.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Paak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 152. A. Roy et al. S.C. Vaidya et al. S.C. Vaidya et al. S.C. Vaidya et al. I.S. Barabanov et al. 32 334. J. Byrne et al. J. Byrne et al. J. R. Marshal J. S. Altarev et al. B. G. Erozolimsky et al. B. G. Fozolimsky et al. B. Norman, A. G. Seamster L. N. Bondarenko	(PADO) (NBS, ILLG) (RBS, ILLG) (KEK, TOKY+) (BNL) (BNL) (IMB Collab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (TATA) (BAYR, ILLG) (YALE, HARV, ILLG+) (PNPI) (SUSS, RL) (LJINR) (CUNY, VPI) (CUNY, VPI) (KIAE) (WASH) (KIAE)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DÖVER KABIR MÖSTÖVÖY ROY AUJDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KÖSVINTSEV MÖHAPATRA ALTAREV ERÖZÖLIM NORMAN BÖNDAREN	86 86 86 85 85 85 85 84 84 83 83 83 83 83 83 82 82 81 80 80 80 79 79 79	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 11 1428 PRL 156B 122 NP B252 261 PL 1318 454 PRL 52 720 PL 136B 327 PRL 50 1354 PRL 52 720 PRL 151 231 JETPL 37 196 Translated from ZETFP 5 PR 027 486 PR 027 2887 Metrologia 18 93 PL 102B 1370 PR 027 486 PR 025 2887 Metrologia 18 93 PL 102B 13 JETPL 12 359 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from YETFP 5 PRL 44 1316 JETPL 29 730 Translated from YAF 30 1 PRL 43 1255 JETPL 29 730 Translated from YAF 30 1 PRL 43 1255 JETPL 28 303 Translated from YAF 30 1 PRL 43 1255 JETPL 28 303 Translated from ZETFP 5 Translated from YAF 30 1 PRL 43 1255 JETPL 28 303 Translated from ZETFP 5 Translated from YAF 30 1 PRL 43 1255 JETPL 28 303 Translated from ZETFP 5 SINP 30 486	M. Cresti et al. M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444, M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Paak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37, 162 A. Roy et al. S.C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. J. W. Greene et al. J. S. Altarev et al. J. S. Altarev et al. J. S. Altarev et al. S. Altarev et al. S. Altarev et al. B. G. Erozolimsky et al. B. B. G. Erozolimsky et al. B. B. G. Erozolimsky et al. B. B. G. Bondarenko B. G. Erozolimsky et al.	(PADO) (NPS, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (IMB Collab.) (IMB Collab.) (IMB Collab.) (IMB Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (TATA) (TATA) (YALE, HARV, ILLG) (YALE, HARV, ILLG) (YULE, HARV, ILLG) (YUL
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY WAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM NORMAN BONDAREN AÍSO	86 86 86 85 85 85 84 84 83 83 83 83 83 83 80 80 80 80 79 79 79 78 82	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR D34 902 PR C31 1423 PR C31 1423 PR 135 261 PL 1358 B122 NP B252 261 PL 1358 B124 PRL 52 720 PRL 136 B327 PRL 50 1354 PR D22 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR D28 1770 PR D27 466 PR D28 2387 Metrologia 18 93 PL 1026 13 JETPL 37 369 Translated from ZETFP 5 PR D38 1703 FR 13 1436 Translated from ZETFP 5 JNP 30 356 Translated from YETFP 5 JNP 30 356 Translated from YAF 30 1 PRL 44 1316 JETPL 29 730 Translated from YAF 30 1 PRL 43 1225 PRL 42 303 Translated from YAF 30 1 PRL 49 28 40 Translated from YAF 30 1 PRL 49 28 40 Translated from YAF 30 1 PRL 49 28 40 Translated from YAF 28 1	M. Cresti et al. M. Cresti et al. C.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C. B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Pak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 192. A. Roy et al. S.C. Vaidya et al. S.C. Vaidya et al. I.S. Altarev et al. I.S. Altarev et al. J. Byrne et al. J. Byrne et al. J. R. Barabanov et al. 32 384. J. Byrne et al. L.S. Altarev et al. B. G. Erozolimsky et al. B. G. Boordarenko B. G. Erozolimsky et al.	(PADO) (NBS, ILLG) (KEK, TOKY+) (RBIL) (ERN, ILLG, PADO+) (IMB COIlab.) (NUSEX COIlab.) (NUSEX COIlab.) (SUSS, HARV, RAL+) (FAN) (FATA)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY WAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM NORMAN BONDAREN AÍSO EROZOLIM	86 86 85 85 85 85 84 84 84 84 83 83 83 82 82 82 82 80 80 80 79 79 79 78 82 78	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 135 154 PRL 156B 122 NP B252 261 PR 133B 654 PRL 52 720 PRL 136B 327 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 028 1707 PR 027 466 PR 028 2887 Metrologis 18 93 PL 1028 13 JETPL 37 136 Translated from ZETFP 5 PR 028 170 PR 027 466 PR 028 2887 Metrologis 18 93 PL 1028 13 JETPL 37 356 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from YAF 30 I PRL 48 1326 JETPL 28 303 Translated from YAF 30 I PRL 123 303 Translated from YAF 30 I PRL 12 303 Translated from YAF 30 I PRL 12 303 Translated from YAF 30 I PRL 12 303 Translated from YAF 30 I PRL 19 12 303 Translated from YAF 30 I PRL 19 12 303 Translated from YAF 30 I PRL 19 136 363	M. Cresti et al. M. Cresti et al. C.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C. B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Pak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. M.L. Cherry et al. C. B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 192. A. Roy et al. S.C. Vaidya et al. S.C. Vaidya et al. I.S. Altarev et al. I.S. Altarev et al. J. Byrne et al. J. Byrne et al. J. Byrne et al. J. Statarev et al. B. G. Erozolimsky et al.	(PADO) (NBS, ILLG) (KEK, TOKY+) (RBIL) (ERN, ILLG, PADO+) (IMB COIlab.) (NUSEX COIlab.) (NUSEX COIlab.) (SUSS, HARV, RAL+) (FAN) (FATA)
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DOVER KABIR MOSTOVOY ROY AUJDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM STRATOWA EROZOLIM STRATOWA	86 86 86 88 85 85 85 84 84 83 83 83 83 83 83 82 82 82 82 80 80 79 79 79 78 82 78	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 158 122 NP B252 261 PL 1318 454 PRL 52 720 PRL 30 1354 PRL 50 1505 PRL 31 156 PR 027 486 PR 025 2887 Metrologia 18 93 PL 1028 13 JETPL 32 359 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 43 1255 JETPL 29 730 Translated from ZETFP 5 Translated from ZETFP 5 SIMP 30 455 JETPL 29 730 Translated from ZETFP 5 SIMP 30 455 JETPL 29 303 Translated from ZETFP 5 Smolenice Conf. SIMP 28 48 Translated from ZETFP 5 Smolenice Conf. SIMP 28 49 JETPL 23 3970 JETPL 23 639 JETPL 23 639 JETPL 23 673 JETPL 24 673 JETPL 25 673 JE	M. Cresti et al. M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444, M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37, 162. A. Roy et al. S. C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. L.S. Altarev et al. Y.Y. Kosvintsev et al. 3, 344. Y.Y. Kosvintsev et al. S. Altarev et al. S. Altarev et al. S. Altarev et al. B.G. Ercoolimsky et al. B.G. Ercoolimsky et al. B.G. Bondarenko B.G. Ercoolimsky et al.	(PADO) (NES, ILLG) (KEK, TOKY+) (BNL) (ERN, ILLG, PADO+) (IMB Collab.) (
GREENE KOSVINTSEV TAKITA DOVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DOVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM NORMAN BONDAREN AÍSO EROZOLIM STRATOWA	86 86 86 85 85 85 84 84 84 83 83 83 82 81 80 80 879 79 78 82 78 77	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 135 154 PRL 156B 122 NP B252 261 PR 133B 654 PRL 52 720 PRL 136B 327 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 028 1707 PR 027 466 PR 028 2887 Metrologis 18 93 PL 1028 13 JETPL 37 136 Translated from ZETFP 5 PR 028 170 PR 027 466 PR 028 2887 Metrologis 18 93 PL 1028 13 JETPL 37 356 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from YAF 30 I PRL 48 1326 JETPL 28 303 Translated from YAF 30 I PRL 123 303 Translated from YAF 30 I PRL 12 303 Translated from YAF 30 I PRL 12 303 Translated from YAF 30 I PRL 12 303 Translated from YAF 30 I PRL 19 12 303 Translated from YAF 30 I PRL 19 12 303 Translated from YAF 30 I PRL 19 136 363	M. Cresti et al. M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444, M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37, 162. A. Roy et al. S. C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. J.S. Altarev et al. Y.Y. Kosvintsev et al. J. S. Altarev et al. B. G. Erozolimsky et al. B.G. Erozolimsky et al. R. C. Stratowa, R. Dobrozemsky, P. W B.G. Erozolimsky et al. R. Dobrozemsky et al.	(PADO) (NBS, ILLG) (RBS, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (IMB COllab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (YALE, HARV, ILLG+) (PNPI) (SUSS, RL) (JINR) (CUNY, VPI) (KIAE) (WASH) (KIAE) (WASH) (KIAE)
GRENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY WAIDYA GAEHLER GRENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM STRATOWA STRATOWA STRATOWA STEINBERG DOBROZE KROHN	86 86 86 85 85 85 84 84 84 83 83 83 83 83 83 82 82 82 82 87 79 79 77 76 77 77 77 77 77 77 77 77	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 135 154 PRL 156B 122 NP B252 261 PR 133B 654 PRL 52 720 PRL 136B 327 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 028 1707 PR 027 466 PR 028 2887 Metrologia 18 93 PL 1028 13 JETPL 37 136 JETPL 37 36 Translated from ZETFP 5 PR 128 127 JETPL 30 355 Translated from ZETFP 5 JNP 30 356 Translated from YAF 30 I PRL 44 1316 JETPL 29 730 Translated from YAF 30 I PRL 31 1225 SIMP 30 356 Translated from YAF 30 I PRL 31 1225 Translated from YAF 30 I PRL 49 1316 JETPL 28 303 Translated from YAF 30 I PRL 19 126 303 Translated from YAF 30 I PRL 19 136 363 Translated from YAF 30 I PRL 19 136 363 Translated from YAF 28 5 PR D18 3970 JETPL 23 663 Translated from YAF 28 5 PR D18 1510 PR D11 510 PL 155B 175	M. Cresti et al. M. Cresti et al. C.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Pak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 162. A. Roy et al. S.C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Altarev et al. J. Byrne et al. J. Byrne et al. J. Byrne et al. J. Stratowa, R. Marshak I.S. Altarev et al. B. G. Erozolimsky et al. B. G. Erozolimsky et al. B. G. Erozolimsky et al. B.G. Erozolimsky et al. R. Dobrozemsky, P. W B.G. Erozolimsky et al. R. J. Steinberg et al. R. Dobrozemsky, P. W B.G. Erozolimsky et al. R. J. Steinberg et al. R. Dobrozemsky et al. V.E. Krohn, G.R. Ringo	(PADO) (NES, ILLG) (KEK, TOKY+) (BNL) (ERN, ILLG, PADO+) (IMB Collab.) (
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JONES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM STRATOWA EROZOLIM STRATOWA ESTEINBERG DOBROZE	86 86 86 85 85 85 84 84 84 83 83 83 83 83 83 82 82 81 80 80 79 79 79 78 82 78 77 76 75	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 158 122 NP B252 261 PL 1318 454 PRL 52 720 PRL 130 1354 PRL 52 720 PRL 30 1354 PRL 92 1370 PRL 30 1354 PR 027 1090 PRL 31 231 JETPL 37 196 Translated from ZETFP 5 PR 027 486 PR 025 2887 Metrologia 18 93 PL 1028 137 JETPL 32 359 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 43 1255 JETPL 29 730 Translated from ZETFP 5 Translated from ZETFP 5 SIMP 30 455 JETPL 29 303 Translated from ZETFP 5 Translated from ZETFP 5 Translated from ZETFP 5 Translated from ZETFP 5 JETPL 29 303 Translated from ZETFP 5 MPC 34 316 JETPL 29 730 Translated from ZETFP 5 MPC 34 316 JETPL 29 3970 JETPL 23 663 Translated from ZETFP 5 PR D18 3970 JETPL 23 663 Translated from ZETFP 5 PR D11 31469 PR D11 510 PL 558 175 JETPL 20 345	M. Cresti et al. M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444, M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Paak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37, 162. A. Roy et al. S.C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. J.S. Altarev et al. J. S. Attarev et al. J. S. Attarev et al. J. S. Attarev et al. B. Greenister et al. J. S. R. Mohapatra, R.E. Marshak L.S. Attarev et al. S. Attarev et al. B. G. Erozolimsky et al. B.G. Erozolimsky et al. C. Stratowa, R. Oobrozemsky, P. W B.G. Erozolimsky et al. Z. 770, R.I. Steinberg et al. V.E. Krohn, G.R. Ringo B.G. Erozolimsky et al. D. G. Crosnimsky et al. D. R. Dobrozemsky et al. V.E. Krohn, G.R. Ringo B.G. Erozolimsky et al.	(PADO) (NES, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (INB Collab.)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATHSTONI JONES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATA LTAREV EROZOLIM STRATOWA EROZOLIM STERIBERG DOBROZE KROHN EROZOLIM KROPF	866 86 86 85 85 85 85 84 84 83 83 83 83 82 82 81 80 80 80 79 79 79 78 82 78 77 76 75 77 74 74	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR D34 902 PR C31 1423 PR C31 1423 PR 152 261 PL 138 845 PRL 52 720 PRL 50 1354 PRL 52 720 PRL 50 1354 PRL 52 720 PRL 50 1354 PRL 52 730 PRL 50 1354 PR D27 1090 PRL 51 2156 PR D27 486 PR D25 2887 Metrologia 18 93 PL 1028 13 JETPL 32 359 Translated from ZETFP 5 PR D28 1470 JETPL 32 359 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 43 1235 JETPL 26 730 Translated from ZETFP 5 PR D18 3970 JETPL 23 663 Translated from ZETFP 5 PR D18 3970 JETPL 23 663 Translated from ZETFP 5 PR D11 510 PL 558 175 JETPL 20 345 Translated from ZETFP 5 PR D11 510 PL 558 175 JETPL 20 345 Translated from ZETFP 5 Translated from ZETFP 5 PR D11 510 PL 558 175 JETPL 20 345 Translated from ZETFP 5	M. Cresti et al. M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444, M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37, 162. A. Roy et al. S. C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Altarev et al. Y.Y. Kosvintsev et al. 33, 344. Y.Y. Kosvintsev et al. S. Altarev et al. S. Altarev et al. S. Altarev et al. S. Altarev et al. B.G. Erozolimsky et al. 892. B.G. Erozolimsky et al. 80. G. Striatowa, R. Dobrozemsky, P. W. B.G. Erozolimsky et al. 81. R. Dobrozemsky et al. 81. R. Dobrozemsky et al. 82. R.D. Steinberg et al. R. Dobrozemsky, P. W. B.G. Erozolimsky et al. 81. R. Dobrozemsky et al. 82. R.D. Dobrozemsky et al. 82. R.D. Dobrozemsky et al. 83. R.D. Dobrozemsky et al. 84. R. Dobrozemsky et al. 85. Erozolimsky et al. 86. Erozolimsky et al. 87. 87. 88. G. Erozolimsky et al. 89. 80. Erozolimsky et al. 80. 81. Erozolimsky et al. 81. 82. 83. 84. 85. 86. Erozolimsky et al. 86. Erozolimsky et al. 87. 87. 88. 89. 80. Borozemsky et al. 80. 80. Erozolimsky et al. 80. 81. 81. 82. 84. 85. 86. Erozolimsky et al. 86. Erozolimsky et al. 87. 88. 89. 89. 80. 80. 80. 80. 81. 81. 81. 81. 82. 84. 84. 86. 86. 86. 87. 87. 88. 88. 88. 88. 88. 88. 88. 88	(PADO) (NPS, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (INB Collab.)
GRENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY WAIDYA GAEHLER GRENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM STRATOWA STRATOWA STRATOWA STEINBERG DOBROZE KROPF Also	86 86 86 85 85 85 88 84 88 83 83 83 83 82 81 80 80 80 79 79 79 79 77 76 77 77 77 77 77 77 77	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 135 154 PRL 156B 122 NP B252 261 PR 133B 654 PRL 52 720 PRL 136B 327 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 028 1270 PR 028 1270 PR 029 1270 PR 027 466 PR 028 2887 Metrologia 18 93 PL 1028 13 JETPL 37 196 Translated from ZETFP 5 PR 028 1270 PR 029 1270 PR 027 466 PR 028 2887 Metrologia 18 93 PL 1028 13 JETPL 32 359 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from YAF 30 I PRL 44 1316 JETPL 28 303 Translated from YAF 30 I PRL 31 1225 SIMP 30 356 Translated from YAF 30 I PRL 49 1326 JETPL 23 303 Translated from YAF 30 I PRL 19 12 303 Translated from YAF 30 I PRL 19 12 363 Translated from YAF 28 37 PR 1013 1969 PR 1013 197 DETPL 23 663 Translated from YAF 28 37 Translated from YAF 28 37 PR 1013 1969 PR 101 510 JETPL 23 663 Translated from ZETFP 5 JETPL 10 345 JETPL 23 663 Translated from ZETFP 5 JETPL 10 1510 JETPL 23 1663 Translated from ZETFP 7 JETPL 10 1517 JETPL 20 475	M. Cresti et al. M. Cresti et al. C.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C. B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Paak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 162. A. Roy et al. S.C. Valdya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Altarev et al. 12. Sarabanov et al. 32 334. J. Byrne et al. I.S. Attarev et al. B. G. Erozolimsky et al. C. Stratowa, R. Dobrozemsky, P. W B. G. Erozolimsky et al. R. S. Stratowa, R. Dobrozemsky, P. W B. G. Erozolimsky et al. R. S. Stratowa, R. Dobrozemsky, P. W B. G. Erozolimsky et al. R. S. Stratowa, R. Dobrozemsky, P. W B. G. Erozolimsky et al. R. Dobrozemsky et al. V. E. Krohn, G. R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G. R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G. R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G. R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G. R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G. R. Ringo	(PADO) (PADO) (NBS, ILLG) (KEK, TOKY+) (BNL) (BNL) (BNL) (NUSEX Collab.) (NUSEX Collab.) (SUSS, HARV, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (YALE, HARV, ILLG+) (PNPI) (SUSS, RL) (LINR) (CUNY, VPI) (PNPI) (KIAE) (WASH) (KIAE) (WASH) (KIAE) (YALE, ISNG) (SEIB) (ANL) (CUNY, VPI) (CUN
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATA LTAREV EROZOLIM STENBERG ASSOLIM STENBERG OGROZE KROPF AISO STEINBERG STEINBERG STEINBERG STEINBERG	866 86 86 85 85 85 85 84 84 83 83 83 83 82 81 80 80 79 79 79 77 78 82 77 77 74	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 135 186 122 NP 8252 261 PL 138 8454 PRL 52 720 PRL 138 327 PRL 50 1354 PRL 50 1354 PR 027 1090 PRL 51 21 31 JETPL 37 196 Translated from ZETFP 5 PR 027 486 PR 027 2887 Metrologia 18 93 PL 1028 137 JETPL 32 359 Translated from ZETFP 5 Translated from ZETFP 5 PR 128 26 JETPL 29 273 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from ZETFP 5 PRL 43 125 JETPL 28 303 Translated from ZETFP 5 PR 013 2459 JETPL 23 603 JETPL 23 603 JETPL 20 345 Translated from ZETFP 5 PR 011 510 PL 558 175 JETPL 20 345 Translated from ZETFP 5 PR 011 510 PL 558 175 JETPL 20 345 Translated from ZETFP 5 PR 011 510 PL 515 175 JETPL 20 345 Translated from ZETFP 5 PR 011 510 PL 558 175 JETPL 20 345 Translated from ZETFP 5 PR 013 1416	M. Cresti et al. M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444, M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. A. Ch. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37, 162. A. Roy et al. S. C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Altarev et al. Y.Y. Kosvintsev et al. 33, 344. Y.Y. Kosvintsev et al. S. Altarev et al. S. Altarev et al. S. Altarev et al. S. Altarev et al. B. G. Erozolimsky et al. 892. B.G. Erozolimsky et al. 80. G. Striatowa, R. Dobrozemsky, P. W. B.G. Erozolimsky et al. 81. R. Dobrozemsky et al. 81. R. Dobrozemsky et al. 82. R.D. Steinberg et al. R. Dobrozemsky et al. 20, 743. R.N. Dobrozemsky et al. 92. R.D. Steinberg et al. R. Dobrozemsky et al. 92. R.D. Steinberg et al. R. Steinberg et al. R. S. Stinber et al. R. Steinberg et al. R. Steinberg et al. R. Steinberg et al.	(PADO) (NPS, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (INB Collab.)
GRENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY WAIDYA GAEHLER GRENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM STRATOWA STRATOWA STRATOWA STEINBERG DOBROZE KROPF Also	86 86 86 85 85 84 84 83 83 83 83 82 81 80 80 80 79 79 778 82 78 77 75 75 75 77 74 77 77 74 77 77 77 77 77 77 77 77	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 135 154 PRL 156B 122 NP B252 261 PR 133B 654 PRL 52 720 PRL 136B 327 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 028 1270 PR 028 1270 PR 029 1270 PR 027 466 PR 028 2887 Metrologia 18 93 PL 1028 13 JETPL 37 196 Translated from ZETFP 5 PR 028 1270 PR 029 1270 PR 027 466 PR 028 2887 Metrologia 18 93 PL 1028 13 JETPL 32 359 Translated from ZETFP 5 PRL 44 1316 JETPL 29 730 Translated from YAF 30 I PRL 44 1316 JETPL 28 303 Translated from YAF 30 I PRL 31 1225 SIMP 30 356 Translated from YAF 30 I PRL 49 1326 JETPL 23 303 Translated from YAF 30 I PRL 19 12 303 Translated from YAF 30 I PRL 19 12 363 Translated from YAF 28 37 PR 1013 1969 PR 1013 197 DETPL 23 663 Translated from YAF 28 37 Translated from YAF 28 37 PR 1013 1969 PR 101 510 JETPL 23 663 Translated from ZETFP 5 JETPL 10 345 JETPL 23 663 Translated from ZETFP 5 JETPL 10 1510 JETPL 23 1663 Translated from ZETFP 7 JETPL 10 1517 JETPL 20 475	M. Cresti et al. M. Cresti et al. C. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C. B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Pak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. M.L. Cherry et al. C.B. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37 162. A. Roy et al. S.C. Valdya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Altarev et al. I.R. Barabanov et al. 32 334. J. Byrne et al. I.S. Attarev et al. B. G. Erozolimsky et al. C. Stratowa, R. Dobrozemsky, P. W B. G. Erozolimsky et al. R. S. Stratowa, R. Dobrozemsky, P. W B. G. Erozolimsky et al. R. S. Stratowa, R. Dobrozemsky, P. W B. G. Erozolimsky et al. R. S. Stratowa, R. Dobrozemsky, P. W B. G. Erozolimsky et al. V. E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V. E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V. E. R. Cohen, B. N. Tavlor	(PADO) (PADO) (NBS, ILLG) (KEK, TOKY+) (BNL) (BNL) (IMB Collab.) (IMB Collab.) (IMB Collab.) (IMB Collab.) (SUSS, HARY, RAL+) (PENN, BNL) (HARY) (KIAE) (TATA) (TATA) (BAYR, ILLG) (YALE, HARY, ILLG+) (PNPI) (SUSS, RL) (JINR) (CUNY, VPI) (PNPI) (KIAE) (WASH) (KIAE) (WASH) (KIAE) (WASH) (KIAE) (YALE, ISNG) (SEIB) (ANG) (SEIB) (ANG) (SEIB) (ALE, ISNG) (YALE, ISNG) (YALE, ISNG) (SEIB) (ANG) (YALE, ISNG)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM STRATOWA STRATOWA STRATOWA EROZOLIM STEINBERG DOBROZE KROHN EROZOLIM KROPF Also STEINBERG COHEN CHRISTENSEN	86 86 86 85 85 85 88 84 84 83 83 83 83 82 81 80 80 80 80 80 79 77 77 77 77 77 77 77 77 77 77 77 77	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 132 156 PR 133 654 PRL 1328 157 PRL 50 1354 PR 027 1090 PRL 51 231 JETPL 37 196 Translated from ZETFP 5 PR 028 1770 PR 027 466 PR 025 2887 Metrologia 18 93 PL 1028 13 JETPL 37 359 Translated from ZETFP 5 PL 1928 274 JETPL 37 359 Translated from ZETFP 5 PR 028 177 JETPL 37 359 Translated from ZETFP 7 PR 028 177 JETPL 37 359 Translated from ZETFP 7 SIMP 30 356 Translated from YAF 30 1 PRL 43 1226 JETPL 28 303 Translated from YAF 30 1 PRL 43 1226 JETPL 28 303 Translated from YAF 30 1 PRL 43 1226 JETPL 28 303 Translated from YAF 30 1 JETPL 28 303 Translated from YAF 30 1 JETPL 28 303 Translated from YAF 30 1 JETPL 29 730 Translated from YAF 30 1 JETPL 23 663 Translated from YAF 28 5 JETPL 23 663 Translated from ZETFP 5 JETPL 20 345 Translated from ZETFP 5 JETPL 20 365	M. Cresti et al. M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. G. Bidecaro et al. I.S. Pak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. M.L. Cherry et al. M.L. Cherry et al. A. Roy et al. S.C. Valdya et al. R. Cahler, J. Kalus, W. Mampe G.L. Greene et al. I.R. Barabanov et al. 32 334. J. Byrne et al. I.S. Altarev et al. B. Galler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Attarev et al. B. G. Erozolimsky et al. R. B. G. Erozolimsky et al. R. S. Stratowa, R. Dobrozemsky, P. W. B. G. Erozolimsky et al. R. Dobrozemsky et al. R. Dobrozemsky et al. V.E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V.E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V.E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V.E. Krohn, G.R. Ringo B. G. Erozolimsky et al. R. Stratowa, R. Dobrozemsky, P. W. B. G. Erozolimsky et al. V.E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V.E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V.E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V.E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V.E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V.E. Krohn, G.R. Ringo B. G. Erozolimsky et al. V.E. Krohn, G.R. Krohn, G.R. C.J. Christensen et al. C.J. Christensen et al.	(PADO) (NBS, ILLG) (KEK, TOKY+) (RNL) (ERN, ILLG, PADO+) (IMB Collab.) (IMB Collab.) (IMB Collab.) (IMB Collab.) (SUSS, HARY, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (SATA) (YALE, HARV, ILLG+) (PNPI) (SUSS, RL) (JJIRR) (CUNY, VPI) (PNPI) (KIAE) (KIAE) (KIAE) (WASH) (KIAE) (WASH) (KIAE) (YALE, ISNG) (SEIB) (ALIC) (SEIB) (ALIC) (SEIB) (SEIB) (SEIB) (SEIC) (SEIC) (RISC, MBS) (RISC, MBS) (RISC) (RISC) (RISC) (RISC) (RISC) (RISC) (RISC)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPARA ALTAREV EROZOLIM STENBER EROZOLIM STENBER GOBROZE KROHN EROZOLIM KROPF Also STEINBERG COHEN CHRISTENSER CHRIST	86 86 85 85 88 84 84 84 83 83 83 82 82 82 82 82 82 87 7 76 77 77 77 77 77 77 77 77 77 77 77	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 135 156 PR 135 156 PR 135 156 PR 137 157 PR 137 137 PR 13	M. Cresti et al. M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. C.B. Dover, A. Gal, J.M. Richard G. Fidecaro et al. H.S. Park et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. A. Ch. Dover, A. Gal, J.M. Richard P.K. Kabir Y.A. Mostovoy 37, 162. A. Roy et al. S. C. Vaidya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. I.S. Altarev et al. J.B. Proene et al. J. Byrne et al. Y.Y. Kosvintsev et al. S. Altarev et al. S. Horoman, A.G. Seamster L.N. Bondarenko et al. S. Altarev e	(PADO) (NES, ILLG) (KEK, TOKY+) (BNL) (CERN, ILLG, PADO+) (NUSEX COII3-) (NUSEX COII3-) (NUSEX COII3-) (FORN, BNL) (HARV) (HARV) (KIAE) (TATA) (TATA) (TATA) (SAYR, ILLG) (YALE, HARV, ILLG) (YALE, HARV, ILLG) (WASH) (KIAE)
GREENE KOSVINTSEV TAKITA DÖVER FIDECARO PARK BATTISTONI JÖNES PENDLEBURY CHERRY DÖVER KABIR MOSTOVOY ROY VAIDYA GAEHLER GREENE ALTAREV BARABANOV BYRNE KOSVINTSEV MOHAPATRA ALTAREV EROZOLIM STRATOWA STRATOWA STRATOWA EROZOLIM STEINBERG DOBROZE KROHN EROZOLIM KROPF Also STEINBERG COHEN CHRISTENSEN	86 86 86 85 85 85 88 84 84 83 83 83 83 82 81 80 80 80 80 80 79 77 77 77 77 77 77 77 77 77 77 77 77	PRL 56 819 JETPL 44 571 Translated from ZETFP 4 PR 034 902 PR 031 1423 PR 031 1423 PR 131 1423 PR 135 1544 PRL 52 720 PR 131 854 PRL 52 720 PR 131 854 PR 152 720 PR 131 854 PR 152 720 PR 151 97 PR 152 720 PR 151 97 PR 152 720 PR 152 720 PR 152 720 PR 152 720 PR 152 74 PR 152 73 PR 152 74 PR 152 74 PR 152 74 PR 152 75 PR 153	M. Cresti et al. M. Cresti et al. G.L. Greene et al. Y.Y. Kosvintsev, V.I. Morozov, G.I. 4444. M. Takita et al. G. Bidecaro et al. H.S. Pak et al. G. Battistoni et al. T.W. Jones et al. J.M. Pendlebury et al. M.L. Cherry et al. A. Roy et al. S.C. Valdya et al. R. Gahler, J. Kalus, W. Mampe G.L. Greene et al. J. Byrne et al. J. Byrne et al. J. Byrne et al. J. Byrne et al. J. Statarev et al. B. Garbanov et al. B. Garbanov et al. B. Garbanov et al. B. Garbanov et al. C. Stratowa, R. E. Marshak L.S. Altarev et al. B. G. Erozolimsky et al. C. Stratowa, R. Oobrozemsky, P. W B. G. Erozolimsky et al. R. Sobrozemsky et al. R. Steinberg et al. R. Lobrozemsky et al. D. H. Kropf, E. Paul H. Rusteinberg et al. E. C. Christensen et al. C. J. Christensen, V.E. Krohn, G.R. B. G. Erozolimsky et al. V.K. Grigoriev et al. V.K. Grigoriev et al.	(PADO) (NBS, ILLG) (KEK, TOKY+) (RNL) (ERN, ILLG, PADO+) (IMB Collab.) (IMB Collab.) (IMB Collab.) (IMB Collab.) (SUSS, HARY, RAL+) (PENN, BNL) (HARV) (KIAE) (TATA) (SATA) (YALE, HARV, ILLG+) (PNPI) (SUSS, RL) (JJIRR) (CUNY, VPI) (PNPI) (KIAE) (KIAE) (KIAE) (WASH) (KIAE) (WASH) (KIAE) (YALE, ISNG) (SEIB) (ALIC) (SEIB) (ALIC) (SEIB) (SEIB) (SEIB) (SEIC) (SEIC) (RISC, MBS) (RISC, MBS) (RISC) (RISC) (RISC) (RISC) (RISC) (RISC) (RISC)

N AND A RESONANCES

Revised January 2000 by R.L. Workman (George Washington University, Virginia Campus).

I. Introduction

The excited states of the nucleon have been studied in a large number of formation and production experiments. The conventional (i.e., Breit-Wigner) masses, pole positions, widths, and elasticities of the N and Δ resonances in the Baryon Summary Table come largely from partial-wave analyses of πN total, elastic, and charge-exchange scattering data. Partial-wave analyses have also been performed on much smaller data sets to get $N\eta$, ΛK , and ΣK branching fractions. Other branching fractions come from isobar-model analyses of $\pi N \to N\pi\pi$ data. Finally, many $N\gamma$ branching fractions have been determined from photoproduction experiments (see Sec. III).

Table 1 lists all the N and Δ entries in the Baryon Listings and gives our evaluation of the status of each, both overall and channel by channel. Only the "established" resonances (overall status 3 or 4 stars) appear in the Baryon Summary Table. We generally consider a resonance to be established only if it has been seen in at least two independent analyses of elastic scattering and if the relevant partial-wave amplitudes do not behave erratically or have large errors.

No new elastic partial-wave analyses have been published since our last edition. Preliminary new results from the Virginia Tech group were reported at MENU 99 [1]; this reference also reports recent studies of the πN sigma term, scattering lengths, and possible isospin-breaking effects. Two extensions of an earlier [2] multi-channel analysis have appeared since our last edition. The first [3] extracted pole positions and residues for the N(1535) and N(1650). The second [4] added $\gamma N \to N\pi$ multipoles to the previous set of $\pi N \to N\pi$, $\pi N \to N\eta$ and $\gamma N \to N\eta$ data and amplitudes.

The interested reader will find further discussions in the proceedings of three recent conferences [1,5,6], and in two older reviews [7,8].

II. Against Breit-Wigner parameters — a pole-emic

Written December 1997 by G. Höhler (University of Karlsruhe).

(1) All theoretical approaches to the resonance phenomenon have in common that the variation of a partial-wave amplitude T(W), where W is the total c.m. energy, is related to a nearly bound state of the projectile-target system (see e.g., Refs. [9–13]). In πN scattering, this state is an excited state of the nucleon (= isobar). The nearly bound state is described in the framework of S-matrix theory by a pole of the S-matrix element at $W_p = M - i\Gamma/2$ in the lower half of the complex W-plane, close to the real axis; M and Γ are called the mass and width of the resonance. The location of the resonance pole is the same for all reactions to which the resonance couples.

Table 1. The status of the N and Δ resonances. Only those with an overall status of *** or **** are included in the main Baryon Summary Table.

		Overall			Statu	s as se	en in –		
Particle	$L_{2I\cdot 2J}$	status	$N\pi$	$N\eta$	ΛK	ΣK	$\Delta\pi$	$N\rho$	$N\gamma$
N(939)	P_{11}	****							
N(1440)	P_{11}	****	****	*			***	*	***
N(1520)	D_{13}	****	****	*			****	****	***
N(1535)	S_{11}	****	****	****			*	**	***
N(1650)	S_{11}	****	****	*	***	**	***	**	***
N(1675)	D_{15}	****	****	*	*		****	*	***
N(1680)	F_{15}	****	****				****	****	****
V(1700)	D_{13}	***	***	*	**	*	**	*	**
N(1710)	P_{11}	***	***	**	**	*	**	*	***
N(1720)	P_{13}	****	****	*	**	*	*	**	**
V(1900)	P_{13}	**	**					*	
N(1990)	F_{17}	**	**	*	*	*			*
N(2000)	F_{15}	**	**	*	*	*	*	**	
N(2080)	D_{13}	**	**	*	*				*
N(2090)	S_{11}	*	*						
N(2100)	P_{11}	*	*	*					
V(2190)	G_{17}	****	****	*	*	*		*	*
V(2200)	D_{15}	**	**	*	*				
V(2220)	H_{19}	****	****	*					
V(2250)	G_{19}	****	****	*					
N(2600)	I_{111}	***	***						
N(2700)	K_{113}	**	**						
4(4000)									
$\Delta(1232)$	P_{33}	****	****	F					****
∆(1600)	$P_{33} P_{33}$	****	****	F o			***	*	****
∆(1600)				_			***	*	
$\Delta(1600)$ $\Delta(1620)$	P_{33}	***	***	o r b		*		* **** **	**
$\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1750)$	$P_{33} \\ S_{31}$	***	***	o r b		*	****	* **** **	**
$\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1750)$	$P_{33} \\ S_{31} \\ D_{33}$	***	*** ****	o r b i	i	*	****	* *** ** **	**
$\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1750)$ $\Delta(1900)$	P_{33} S_{31} D_{33} P_{31} S_{31} S_{31}	*** *** ***	*** **** ****	o r b i	i d		**** ***		** *** ***
Δ(1600) Δ(1620) Δ(1700) Δ(1750) Δ(1900) Δ(1905)	P_{33} S_{31} D_{33} P_{31} S_{31}	*** *** * ***	*** *** *** *	o r b i		*	****	**	** *** ***
$\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1750)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$	P_{33} S_{31} D_{33} P_{31} S_{31} S_{31}	*** *** ***	*** *** * ** * ** * * * * *	o r b i	d	*	**** *** *	**	** *** ***
$\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1750)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1920)$	P_{33} S_{31} D_{33} P_{31} S_{31} S_{31} S_{31} S_{31} S_{31}	*** *** ** ** ** ** ** ** **	*** *** *** ***	o r b i	d e	* *	**** ** * * *	**	** *** * * * * * * * * * *
$\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1750)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1920)$ $\Delta(1930)$	P_{33} S_{31} D_{33} P_{31} S_{31} F_{35} P_{31} P_{33}	*** *** * ** * ** ** ** *** ***	*** *** *	o r b i	d e	* * *	**** ** * * *	**	** *** * * * * * * * * * *
Δ (1600) Δ (1620) Δ (1700) Δ (1750) Δ (1900) Δ (1905) Δ (1910) Δ (1920) Δ (1930) Δ (1940) Δ (1950)	P ₃₃ S ₃₁ D ₃₃ P ₃₁ S ₃₁ F ₃₅ P ₃₁ P ₃₃ P ₃₃ D ₃₅	*** *** * * * * * * * * * *	*** *** *	o r b i	d e	* * *	**** ** * * *	**	** *** * * * * * * * * * *
$\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1750)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1920)$ $\Delta(1930)$ $\Delta(1940)$ $\Delta(1950)$ $\Delta(2000)$	P_{33} S_{31} D_{33} P_{31} S_{31} F_{35} P_{31} P_{33} P_{33} P_{33}	*** *** * * * * * * * * * *	*** *** * * * * * * * * * *	o r b i	d e	* * *	**** * * * * *	**	** *** * * * * * * * * * *
\(\Delta(1600)\) \(\Delta(1600)\) \(\Delta(1620)\) \(\Delta(1700)\) \(\Delta(1750)\) \(\Delta(1900)\) \(\Delta(1905)\) \(\Delta(1910)\) \(\Delta(1920)\) \(\Delta(1930)\) \(\Delta(1940)\) \(\Delta(1950)\) \(\Delta(2000)\)	P ₃₃ S ₃₁ D ₃₃ P ₃₁ S ₃₁ F ₃₅ P ₃₁ P ₃₃ D ₃₅ D ₃₃ F ₃₇	*** *** * ** ** ** ** *** *** ***	*** *** * * * * * * * * * *	o r b i	d e	* * *	**** * * * * *	**	** *** * * * * * * * * * *
$\Delta (1600)$ $\Delta (1620)$ $\Delta (1620)$ $\Delta (1700)$ $\Delta (1750)$ $\Delta (1900)$ $\Delta (1905)$ $\Delta (1910)$ $\Delta (1920)$ $\Delta (1930)$ $\Delta (1940)$ $\Delta (1950)$ $\Delta (2000)$ $\Delta (2010)$	P_{33} S_{31} D_{33} P_{31} S_{31} F_{35} P_{31} P_{33} P_{33} P_{33} P_{33} P_{35} P_{33} P_{35} P_{35}	*** *** * ** ** ** ** *** *** *** *** ***	*** *** * ** ** ** ** ** ** *	o r b i c	d e	* * *	**** * * * * *	**	** *** * * * * * * * * * *
$\Delta(1600)$ $\Delta(1620)$ $\Delta(1620)$ $\Delta(1750)$ $\Delta(1750)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1930)$ $\Delta(1930)$ $\Delta(1940)$ $\Delta(1950)$ $\Delta(1950)$ $\Delta(1950)$ $\Delta(2000)$ $\Delta(2300)$	P_{33} S_{31} P_{33} P_{31} S_{31} F_{35} P_{31} P_{33} P_{33} P_{33} P_{35} P_{35} P_{35} P_{35} P_{35} P_{35} P_{35} P_{35} P_{35}	*** *** * ** ** ** ** ** ** *	*** *** * * * * * * * * * *	o r b i	d e	* * *	**** * * * * *	**	** *** * * * * * * * * * *
$\Delta(1232)$ $\Delta(1600)$ $\Delta(1600)$ $\Delta(1600)$ $\Delta(1700)$ $\Delta(1700)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1930)$ $\Delta(1940)$ $\Delta(1950)$ $\Delta(1950)$ $\Delta(2000)$ $\Delta(2150)$ $\Delta(2300)$ $\Delta(2350)$	P ₃₃ S ₃₁ D ₃₃ P ₃₁ S ₃₁ F ₃₅ P ₃₁ P ₃₃ D ₃₅ D ₃₃ F ₃₇ F ₃₅ S ₃₁ F ₃₅	*** *** *** ** ** ** ** ** **	*** *** * * * * * * * * * *	o r b i	d e n	* * *	**** * * * * *	**	** *** * * * * * * * * * *
Δ(1600) Δ(1620) Δ(1700) Δ(1770) Δ(1900) Δ(1900) Δ(1910) Δ(1910) Δ(1930) Δ(1940) Δ(1950) Δ(2000) Δ(2150) Δ(2200) Δ(2300) Δ(2350)	P_{33} S_{31} D_{33} P_{31} S_{31} F_{35} P_{31} P_{33} P_{33} P_{33} P_{35} P_{35} P_{35} P_{37} P_{35} P_{37} P_{35} P_{37} P_{39}	*** *** *** * ** ** ** ** **	*** *** * * * * * * * * * *	o r b i	d e n	* * *	**** * * * * *	**	** *** * * * * * * * * * *
Δ(1600) Δ(1620) Δ(1750) Δ(1750) Δ(1950) Δ(1900) Δ(1910) Δ(1910) Δ(1940) Δ(1940) Δ(1950) Δ(2000) Δ(2150) Δ(2300) Δ(2350) Δ(2390)	P ₃₃ S ₃₁ D ₃₃ P ₃₁ S ₃₁ F ₃₅ P ₃₁ P ₃₃ D ₃₅ D ₃₃ F ₃₇ F ₃₆ S ₃₁ G ₃₇ H ₃₉ D ₃₅	*** *** *** ** ** ** ** ** **	*** *** * * * * * * * * * *	o r b i	d e n	* * *	**** * * * * *	**	** *** * * * * * * * * * *
$\Delta(1600)$ $\Delta(1620)$ $\Delta(1620)$ $\Delta(1620)$ $\Delta(1620)$ $\Delta(1620)$ $\Delta(1620)$ $\Delta(195)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1920)$ $\Delta(1930)$ $\Delta(1930)$ $\Delta(1950)$ $\Delta(2000)$ $\Delta(2300)$ $\Delta(2390)$ $\Delta(2390)$ $\Delta(2400)$	$\begin{array}{c} P_{33} \\ S_{31} \\ D_{33} \\ P_{31} \\ S_{31} \\ F_{35} \\ P_{31} \\ P_{33} \\ D_{35} \\ D_{33} \\ F_{37} \\ F_{35} \\ S_{31} \\ G_{37} \\ H_{39} \\ D_{35} \\ F_{37} \end{array}$	*** *** *** *** *** *** *** **	*** *** ** ** ** ** ** ** **	o r b i	d e n	* * *	**** * * * * *	**	*** * * * * * * * * * * * *
Δ(1600) Δ(1620) Δ(1750) Δ(1750) Δ(1950) Δ(1900) Δ(1910) Δ(1910) Δ(1940) Δ(1940) Δ(1950) Δ(2000) Δ(2150) Δ(2300) Δ(2350) Δ(2390)	P ₃₃ S ₃₁ D ₃₃ P ₃₁ S ₃₁ F ₃₅ P ₃₁ P ₃₃ D ₃₅ D ₃₃ F ₃₇ F ₃₅ S ₃₁ G ₃₇ H ₃₉ D ₃₅ F ₃₇	*** *** *** *** *** *** *** *** * **	*** *** ** ** ** ** ** ** * *	o r b i	d e n	* * *	**** * * * * *	**	** *** * * * * * * * * * *

- Existence is certain, and properties are at least fairly well explored. Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined. Evidence of existence is only fair.
- Evidence of existence is poor

In the inelastic region, a resonance is associated with a cluster of poles on different Riemann sheets. If one of these poles is located near the real axis and sufficiently far from branch points, it will be strongly dominant. If one of the finalstate particles itself has a strong decay, one also has to consider branch points in the lower half plane that belong to thresholds for two-particle final states (see e.g., Refs. [14,15]).

(2) If the formation of an unstable intermediate particle occurs in a scattering process, one expects a time-delay between the arrival of the incident wave packet and its departure from the collision region. Goldberger and Watson [16], starting from earlier work by Wigner, derived for elastic scattering the timedelay Q. Expressed in terms of the amplitude T(W), it is Q = 2 Sp(W), where Sp(W) = |dT/dW| is the speed with which the complex vector T traverses the Argand diagram. If the background can be neglected, a resonance pole leads to a peak of Sp(W) at W = M (see the cited books and Refs. [17-19]).

- (3) It is an old tradition that authors of partial-wave analyses determine conventional resonance parameters from fits to generalized Breit-Wigner formulas. Each group has its own prescription for the treatment of analyticity, the choice of the background, and other details, so the model-dependence is much larger than in the determination of pole parameters. A serious shortcoming is the poor or missing information on inelastic channels. The conventional parameters are the "mass" m, the "width" $\Gamma(W)$ at W=m, and the branching ratios. Following are some problems with these parametrizations.
- (a) The conventional $\Delta(1232)$ parameters come from a fit to the P33 partial wave. It is well known from the Chew-Low plot and dispersion relations [20] that this partial wave has a large background from the nucleon pole term. The pole position, 1210 - 50 i MeV, belongs to the Δ -resonance, whereas the conventional parameters, m = 1232 MeV and $\Gamma(m) = 120$ MeV, belong to the Δ together with the large background in πN scattering.
- (b) The N(1535) S_{11} is the only 4-star resonance that does not show a signal in the speed plot. The signal is probably part of the large peak due to the threshold for η production [21]. In this case, poles in other Riemann sheets are expected to give contributions of comparable magnitude. One of these poles produces the threshold cusp [14]. In the 1960's, this problem was treated in many papers (see Ref. 21). In calculations that rely on the conventional mass of 1535 MeV, one cannot see that one has to study a combined resonance plus threshold-cusp

A similar situation of poles in different sheets arises in $\pi\pi$ scattering near the $K\overline{K}$ threshold. See remarks in footnotes to our $f_0(980)$ Listing.

(c) Around 1440 MeV, the VPI group found two poles in the P₁₁ amplitude in different Riemann sheets [22]. This was interpreted, by other authors, as evidence for the existence of two nearly degenerate P_{11} resonances, in conflict with the constituent quark model. Cutkosky pointed out that the branch point for $\Delta \pi$ decay is located near the poles, so the poles belong to the same resonance. This was confirmed by a new calculation [23], which also led to conventional parameters of m = 1471 MeV and $\Gamma(m) = 545 \text{ MeV}$, which are much different from the pole parameters, 1370 - 114i and 1360 - 120i MeV. The speed plot confirms that the formation of the unstable particle N(1440) P_{11} occurs at a considerably lower energy than expected from the conventional parameters.

Conclusion: In contrast to the conventional parameters, the pole positions and speed plots have a well-defined relation

Baryon Particle Listings N's and Δ 's

to S-matrix theory. They also give more information on the resonances and thresholds and can be used for predictions on other reactions that couple to the excited states.

III. Electromagnetic interactions

Revised January 2000 by R.L. Workman (George Washington University, Virginia Campus).

Nearly all the entries in the Listings concerning electromagnetic properties of the N and Δ resonances are $N\gamma$ couplings. These couplings, the helicity amplitudes $A_{1/2}$ and $A_{3/2}$, have been obtained in partial-wave analyses of single-pion photoproduction, η photoproduction, and Compton scattering. Most photoproduction analyses have taken the existence, masses, and widths of the resonances from the $\pi N \to \pi N$ analyses, and have only determined the $N\gamma$ couplings. This approach is only applicable to resonances with a significant $N\pi$ coupling. A brief description of the various methods of analysis of photoproduction data may be found in our 1992 edition [24].

Our Listings omit a number of analyses that are now obsolete. Most of the older results may be found in our 1982 edition [25]. The errors quoted for the couplings in the Listings are calculated in different ways in different analyses and therefore should be used with care. In general, the systematic differences between the analyses caused by using different parameterization schemes are probably more indicative of the true uncertainties than are the quoted errors.

Probably the most reliable analyses, for most resonances, are ARAI 80, CRAWFORD 80, AWAJI 81, FUJII 81, CRAWFORD 83, and ARNDT 96. Several special cases are discussed separately below. The errors we give are a combination of the stated statistical errors on the analyses and the systematic differences between them. The analyses are given equal weight, except ARNDT 96 is weighted, rather arbitrarily, by a factor of two because its data set is at least 50% larger than those of the other analyses and contains many new high-quality measurements. The $\Delta(1232)$ and N(1535) are special cases, discussed below.

The Baryon Summary Table gives $N\gamma$ branching fractions for those resonances whose couplings are considered to be reasonably well established. The $N\gamma$ partial width Γ_{γ} is given in terms of the helicity amplitudes $A_{1/2}$ and $A_{3/2}$ by

$$\Gamma_{\gamma} = \frac{k^2}{\pi} \frac{2M_N}{(2J+1)M_R} \left[|A_{1/2}|^2 + |A_{3/2}|^2 \right] \quad . \tag{1}$$

Here M_N and M_R are the nucleon and resonance masses, J is the resonance spin, and k is the photon c.m. decay momentum.

New results for $\Delta(1232) \to p\gamma$: Recent studies of the $\Delta(1232)$ have focussed on the problem of separating background from resonance, and on the E2/M1 ratio at nonzero values of Q^2 . The electric quadrupole (E2) and magnetic dipole (M1) amplitudes are related to our helicity amplitudes by

$$A_{1/2} = -\frac{1}{2}(M1 + 3E2) \quad \text{and} \quad A_{3/2} = -\frac{\sqrt{3}}{2}(M1 - E2) \ . \ (2)$$

Problems associated with the E2/M1 ratio at $Q^2 = 0$ [26] were discussed in our 1998 Review [27].

The E2/M1 ratio has been given at $Q^2 = 2.8$ and 4.0 (GeV/c)², based on analyses of Jefferson Lab $p(e,e'p)\pi^0$ data [28], and at 3.2 (GeV/c)², based on a re-analysis of older DESY measurements [29]. Results are not yet stable, and depend upon the method employed. This is particularly evident in analyses of the DESY measurements, which have resulted in E2/M1 ratios differing in both sign and magnitude [28,30,31].

Results for the E2/M1 ratio at $Q^2=2.8$ and $4.0~({\rm GeV/c})^2$ are 0.039 ± 0.029 and 0.04 ± 0.031 from Ref. 30, compared to $-0.020\pm0.012\pm0.005$ and $-0.031\pm0.012\pm0.005$ from Ref. 28. Notice the difference in sign. There is general agreement that the ratio remains small relative to the perturbative QCD expectation that E2/M1 should approach unity.

The method [32] used in Ref. 30 gives values for the $Q^2 = 0$ $N\gamma$ amplitudes, $A_{1/2}$ and $A_{3/2}$, that are about 30% smaller (in magnitude) than our previous estimates. While this shift improves agreement with quark models, there is no consensus on its validity [26].

The ratio of scalar quadrupole and magnetic dipole amplitudes (S_{1+}/M_{1+}) is also problematic. A previous fit [33] to the DESY measurements gave $0.07\pm0.02\pm0.03$ at $Q^2=3.2$ $(GeV/c)^2$. This disagrees with a recent fit [28] to the Jefferson Lab data, $-0.112\pm0.013\pm0.01$ and $-0.148\pm0.013\pm0.01$ at $Q^2=2.8$ and 4.0 $(GeV/c)^2$, and with a fit [30] to both DESY and Jefferson Lab data sets, -0.049 ± 0.029 , -0.099 ± 0.041 , and -0.085 ± 0.021 at $Q^2=2.8$, 3.2, and 4.0 $(GeV/c)^2$.

New results for $p\eta$: Fits to η -photoproduction data have given $N\gamma$ amplitudes for the N(1535) that are substantially larger than those extracted from fits to π -photoproduction data (see the 1998 Review [27] for details). More recent analyses [34,35] have considered the sensitivity of this reaction to contributions from the N(1520). The ratio of $N(1520) \to N\gamma$ amplitudes, $A_{3/2}/A_{1/2}$, was found to be $-2.5 \pm 0.5 \pm 0.4$ in Ref. 34 and -2.1 ± 0.2 in Ref. 35. Results inferred from π -photoproduction are about a factor of three larger in magnitude (see the Particle Listings). The η -photoproduction result is particularly surprising, as the N(1520) has a very clean resonance signature in π photoproduction.

Recent $p(e,e'p)\eta$ cross-section measurements [36] have been fitted to extract the N(1535) transition amplitude. Values for $A_{1/2}$ are $0.050\pm0.007~{\rm GeV^{-1/2}}$ at $2.4~({\rm GeV/c})^2$ and $0.035\pm0.005~{\rm GeV^{-1/2}}$ at $3.6~({\rm GeV/c})^2$. These are in qualitative agreement with the results of Ref. 37.

New results for $p\eta'$: A fit to SAPHIR total and differential cross sections has been made [38], assuming resonance dominance and taking only S- and P-wave multipoles. The extracted resonance parameters are $S_{11}(M,\Gamma)=(1897\pm50^{+30}_{-2},396\pm115^{+35}_{-45})$ MeV and $P_{11}(M,\Gamma)=(1986\pm26^{+10}_{-30},296\pm100^{+60}_{-10})$ MeV. Other reaction mechanisms have been proposed [39], and more definitive statements will require the measurement of polarization observables.

Baryon Particle Listings N's and Δ 's

New results for ΛK^+ : Recent measurements of $\gamma p \to \Lambda K^+$ total cross sections from SAPHIR [40] suggest a broad structure around 1900 MeV. An analysis [41] of these and associated differential cross-section and recoil-polarization data suggests the influence of a broad D_{13} state. The fitted resonance parameters are $D_{13}(M,\Gamma)=(1895,372)$ MeV. The choice of a D_{13} state was based on agreement with quark-model predictions, and further polarization measurements are needed to support this claim.

IV. Non-qqq baryon candidates

Revised January 2000 by R.L. Workman (George Washington University, Virginia Campus).

The standard quark-model assignments for baryons are outlined in Sec. 13.3, "Baryons: qqq states." Just as with mesons (see the "Note on Non- $q\bar{q}$ mesons"), there have been suggestions that non-qqq baryons might exist, such as hybrid (qqqq) baryons and unstable meson-nucleon bound states [42] (see the "Note on the $\Lambda(1405)$ ").

If non-qqq states exist, they will be more difficult to verify than hybrid mesons: Hybrid baryons would not have the clean signature of exotic quantum numbers. They should also mix with ordinary qqq states. Their identification will be based on (a) characteristics of their formation and decay, and (b) an over-population of expected qqq states.

Most investigations have focused on the properties of the lightest predicted hybrids. If the first hybrid state lies below 2 GeV, as is suggested by bag-model calculations [43,44,45], it may already exist in our Listings. (However, some estimates put the lightest state well above 2 GeV [46].) At present, there are actually not enough known resonances to fill the known multiplets. If an existing resonance is identified as a hybrid, yet another ordinary qqq state must be found.

The Roper resonance, the N(1440) P_{11} , has been a hybrid candidate based upon its quantum numbers [43,47] and difficulties with its mass and electromagnetic couplings. If so, this would alter our interpretation of the low-lying P_{11} , P_{13} , P_{31} , and P_{33} resonances [43,48]. In Ref. 48, both the N(1440) P_{11} and $\Delta(1600)$ P_{33} are hybrid candidates, and N(1540) P_{13} and $\Delta(1550)$ P_{31} states are predicted. One-star P_{13} and P_{31} states were listed in our 1990 Review [49] but were then removed.

Both photoproduction [48,50,51] and electroproduction [51,52] have been considered in the search for a unique hybrid signature. In Ref. 53, QCD counting rules were used to reveal a characteristic of hybrid electroproduction at high Q^2 . If the N(1440) is a hybrid, its transverse form factor is expected to fall asymptotically $O(1/Q^2)$ faster than for a pure qqq state. However, mixing between qqq and qqqg states will make this identification difficult.

A number of recent experiments have searched for pentaquark $(qqqq\bar{q})$ resonances and H dibaryons $(uuddss\ states)$. Narrow structures found in proton-nucleus scattering [54] have been attributed to $qqqs\bar{s}$ states, an association based on anomalously large branching fractions to strange-particle channels.

The H-dibaryon experiments, while finding possible candidates [55], have generally quoted upper limits [56] for exotic resonance production. Searches for narrow dibaryons in the nucleon-nucleon interactions are also continuing [57].

Finally, there has been a report [58] of resonances lying below the $\Delta(1232)$. A very weak signal was found using the reaction $pp \to \pi^+ p X^0$. An earlier search [59] for isospin-3/2 states, using $pp \to n X^{++}$, found a null result in the mass range between M_N and $M_N + M_\pi$. At present, there appears to be no evidence for such low-mass states from other reactions.

References

- Proceedings of the 8th International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 99), (Zuoz, August 1999), πN Newsletter No. 15 (1999).
- A.M. Green and S. Wycech, Phys. Rev. C55, R2167 (1997).
- R.A. Arndt, A.M. Green, R.L. Workman, and S. Wycech, Phys. Rev. C58, 3636 (1998).
- A.M. Green and S. Wycech, Phys. Rev. C60, 035208 (1999).
- Proceedings of the 8th International Conference on the Structure of Baryons (Baryons '98), ed. D.W. Menze and B.Ch. Metsch, World Scientific (1999).
- Proceedings of the Joint ECT*/JLAB Workshop, ed. S. Simula, B. Saghai, N.C. Mukhopadhyay, and V.D. Burkert, Few Body Systems Suppl. 11 (1999).
- G. Höhler, Pion-Nucleon Scattering, Landolt-Börnstein Vol. I/b2 (1983), ed. H. Schopper (Springer Verlag).
- 8. A.J.G. Hey and R.L. Kelly, Phys. Reports 96, 71 (1983).
- R.J. Eden, P.V. Landshoff, D.I. Olive, J.C. Polkinghorne, The Analytic S-Matrix (Cambridge Univ. Press, 1966).
- R.G. Newton, Scattering Theory of Waves and Particles (McGraw Hill, 1966).
- A.D. Martin, T.D. Spearman, Elementary Particle Theory (North Holland, 1970).
- 12. J.R. Taylor, Scattering Theory (John Wiley, 1972).
- B.H. Bransden, R.G. Moorhouse, The Pion-Nucleon System (Princeton Univ. Press, 1973).
- 14. W.R. Frazer, A.W. Hendry, Phys. Rev. 134, B1307 (1964).
- 15. R.E. Cutkosky, Phys. Rev. **D20**, 2839 (1979).
- M.L. Goldberger, K.M. Watson, Collision Theory (John Wiley, 1964).
- R.H. Dalitz, R.G. Moorhouse, Proc. Roy. Soc. London A318 279 (1970).
- A. Bohm, Quantum Mechanics, 3rd ed. (Springer Verlag, 1993).
- 19. G. Höhler, πN Newsletter 9, 1 (1993).
- J. Hamilton, Pion-Nucleon Scattering in High Energy Physics, Vol. I, p. 193, ed. E. Burhop, (Academic Press, 1967).
- G. Höhler, contribution to the 4th Workshop on N*
 Physics, held at George Washington University, Oct. 30 –
 Nov. 1 (1997), πN Newsletter 14 (1998).
- R.A. Arndt et al., Phys. Rev. D43, 2131 (1991); C52, 2120 (1995).
- 23. R.E. Cutkosky, S. Wang, Phys. Rev. **D42**, 235 (1990).
- 24. K. Hikasa et al., Phys. Rev. **D45**, S1 (1992).

Baryon Particle Listings

N's and Δ 's, N(1440)

- 25. Particle Data Group, Phys. Lett. B111 (1982).
- 26. This topic is well reviewed in Baryons '98, Ref. 5 above.
- 27. C. Caso et al., Eur. Phys. J. C3, 1 (1998).
- 28. V.V. Frolov et al., Phys. Rev. Lett. 82, 45 (1999).
- R. Haiden, Report No. DESY-F21-79-03 (1979, unpublished).
- I.G. Aznauryan and S.G. Stepanyan, Phys. Rev. D59, 054009 (1999).
- G.A. Warren and C.E. Carlson, Phys. Rev. **D42**, 3020 (1990).
- I.G. Aznauryan, Phys. Rev. **D57**, 2727 (1998);
 see also A. Jurewicz, Phys. Rev. **D26**, 1171 (1982).
- V.D. Burkert and L. Elouadrhiri, Phys. Rev. Lett. 75, 3614 (1995).
- N.C. Mukhopadhyay and N. Mathur, Phys. Lett. **B444**, 7 (1998).
- L. Tiator, D. Drechsel, G. Knöchlein, and C. Bennhold, Phys. Rev. C60, 035210 (1999).
- 36. C.S. Armstrong et al., Phys. Rev. D60, 052004 (1999).
- 37. F. Brasse et al., Z. Phys. C22, 33 (1984).
- 38. R. Plötzke et al., Phys. Lett. B444, 555 (1998).
- N.C. Mukhopadhyay et al., Phys. Lett. B410, 73 (1997);
 Z. Li, J. Phys. G23, 1127 (1997).
- 40. M.Q. Tran et al., Phys. Lett. B445, 20 (1998).
- 41. T. Mart and C. Bennhold, Phys. Rev. C61, 012201 (1999).
- S. Pakvasa and S.F. Tuan, Phys. Lett. B459, 301 (1999);
 N. Kaiser, T. Waas, and W. Weise, Nucl. Phys. A612, 297 (1997);
 N. Kaiser, P.R. Singel, and W. Weise, Phys. Lett. B262.
 - N. Kaiser, P.B. Siegel, and W. Weise, Phys. Lett. **B362**, 23 (1995).
- 43. T. Barnes and F.E. Close, Phys. Lett. 123B, 89 (1983).
- E. Golowich, E. Haqq, and G. Karl, Phys. Rev. **D28**, 160 (1983).
- 45. I. Duck and E. Umland, Phys. Lett. 128B, 221 (1983).
- 46. N. Isgur and J. Paton, Phys. Rev. **D31**, 2910 (1985).
- 47. There also have been suggestions that the observed Roper "resonance" is a purely dynamical effect, or possibly a combination of two different structures. See, for example, H.P. Morsch and P. Zupranski, Phys. Rev. C61, 024002 (1999) and C. Schütz, J. Haidenbauer, J. Speth, and J.W. Durso, Phys. Rev. C57, 1464 (1998).
- 48. Z. Li, Phys. Rev. **D44**, 2841 (1991).
- 49. Review of Particle Properties, Phys. Lett. B239, 1 (1990).
- 50. T. Barnes and F.E. Close, Phys. Lett. 128B, 277 (1983).
- S. Capstick and B.D. Keister, Phys. Rev. **D51**, 3598 (1995).
- Zhenping Li, V. Burkert, and Zhujun Li, Phys. Rev. **D46**, 70 (1992).
- C.E. Carlson and N.C. Mukhopadhyay, Phys. Rev. Lett. 67, 3745 (1991).
- S.V. Golovkin et al., Eur. Phys. J. A5, 409 (1999);
 V.A. Bezzubov et al., PAN 59, 2117 (1996);
 S.V. Golovkin et al., Z. Phys. C68, 585 (1995).
- B.A. Shahbazian, T.A. Volokhovskaya, V.N. Yemelyanenko, and A.S. Martynov, JINRRC 1, 61 (1995).
- 56. E.M. Aitala et al., Phys. Lett. B448, 303 (1999); Phys. Rev. Lett. 81, 44 (1998);
 R.W. Stotzer et al., Phys. Rev. Lett. 78, 3646 (1997);
 B. Bassalleck et al., πN Newsletter No. 11, p. 59 (1995).

- 57. B. Tatischeff et al., Phys. Rev. C59, 1878 (1999);
 L.S. Vorobyev et al., Phys. Atomic Nuclei 61, 771 (1998);
 H. Calén et al., Phys. Lett. B427, 248 (1998);
 A. Deloff and T. Siemiarczuk, Z. Phys. A353, 121 (1995);
 R. Bilger, M. Schepkin et al., A.J. Buchmann et al., and A.S. Khrykin, πN Newsletter No. 10, p. 47 (1995).
- B. Tatischeff et al., Phys. Rev. Lett. 79, 601 (1997);
 see also A.I. L'vov and R.L. Workman, Phys. Rev. Lett. 81, 1346 (1998);
 - B. Tatischeff et al., Phys. Rev. Lett. 81, 1347 (1998).
- S. Ram et al., Phys. Rev. **D49**, 3120 (1994).

$N(1440) P_{11}$

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

N(1440) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1430 to 1470 (≈ 1440)	OUR ESTIMATE			
1462±10	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
1440 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1410±12	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use to	he following data for average	s, fit	s, limits,	etc. • • •
1463± 7	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1467	ARNDT	95	DPWA	$\pi N \rightarrow N\pi$
1421 ± 18	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$
1465	LI	93	IPWA	$\gamma N \rightarrow \pi N$
1471	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
1411	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1472	¹ BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
1417	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1460	BERENDS	77	IPWA	$\gamma N \rightarrow \pi N$
1380	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1390	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1440) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
250 to 450 (≈ 350) Ol	JR ESTIMATE			
391 ± 34	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
545 ± 170	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
340± 70	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
135± 10	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use t	he following data for average	s, fit	s, limits,	etc. • • •
360 ± 20	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
440	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
250 ± 63	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
315	ti	93	IPWA	$\gamma N \rightarrow \pi N$
334	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
113	¹ BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
331	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
279	BERENDS	77	IPWA	$\gamma N \rightarrow \pi N$
200	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
200	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1440) POLE POSITION

REAL PART					
VALUE (MeV)	DOCUMENT ID		TECN	COMME	VT
1345 to 1385 (≈ 1365) (OUR ESTIMATE				
1346	⁴ ARNDT	95	DPWA	$\pi N \rightarrow$	Nπ
1385	⁵ HOEHLER	93	SPED	$\pi N \rightarrow$	πN
1370	CUTKOSKY	90	IPWA	$\pi N \rightarrow$	π N
1375 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow$	πN
• • We do not use the	e following data for average	es, fit	s, limits,	etc. • •	•
1360	⁶ ARNDT	91	DPWA	$\pi N \rightarrow$	π N Soln 5M90
1381 or 1379	⁷ LONGACRE				
1360 or 1333	² LONGACRE	77	IPWA	$\pi N \rightarrow$	Νππ

VALUE (MeV)	DOCUMENT ID		TECN	COMME	NT
160 to 260 (≈ 210) O	UR ESTIMATE				
176	⁴ ARNDT		DPWA		
164	⁵ HOEHLER	93	SPED	$\pi N \rightarrow$	πN
228	CUTKOSKY	90	IPWA	$\pi N \rightarrow$	πN
180 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow$	πN
• • We do not use	the following data for average	s, fit	s, limits,	etc. • •	• •
252	6 ARNDT	91	DPWA	$\pi N \rightarrow$	π N Soln SM90
209 or 210	⁷ LONGACRE	78	IPWA	$\pi N \rightarrow$	Νππ
167 or 234	² LONGACRE				

N(1440) ELASTIC POLE RESIDUE

MODULUS |r|

- 84

 -100 ± 35

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
42	4 ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
40	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
74	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
52±5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follow	wing data for average	s, fit:	s, limits,	etc. • • •
109	⁶ ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
PHASE θ				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
-101	4 ARNDT	95	DPWA	$\pi N \rightarrow N \pi$

CUTKOSKY

CUTKOSKY

90 IPWA $\pi N \rightarrow \pi N$

80 1PWA $\pi N \rightarrow \pi N$

⁶ ARNDT - 93 91 DPWA $\pi N \rightarrow \pi N$ Soln SM90

N(1440) DECAY MODES The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
Г	Νπ	60-70 %	
Γ_2	$N\eta$		
Гз	Νππ	30-40 %	
Γ4	$\Delta\pi$	20-30 %	
Γ_5	$\Delta(1232)\pi$, <i>P</i> -wave		
Γ_6	Nρ	<8 %	
Γ_7	$N\rho$, $S=1/2$, P -wave		
Γ8	$N\rho$, $S=3/2$, P -wave		
Г9	$N(\pi\pi)_{S\text{-wave}}^{I=0}$	5-10 %	
Γ_{10}	Pγ	0.035-0.048 %	
Γ_{11}	$p\gamma$, helicity= $1/2$	0.035~0.048 %	
Γ_{12}	$n\gamma$	0.009-0.032 %	
Γ_{13}	$n\gamma$, helicity=1/2	0.009-0.032 %	

N(1440) BRANCHING RATIOS

Γ(Nπ)/Γ _{total}					Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMEN	/T
0.6 to 0.7 OUR ESTI	MATE				
0.69 ± 0.03	MANLEY	92	IPWA	$\pi N \rightarrow$	πΝ & Νππ
0.68 ± 0.04	CUTKOSKY	80	IPWA	$\pi N \rightarrow$	πN
0.51 ± 0.05	HOEHLER	79	IPWA	$\pi N \rightarrow$	πN
• • • We do not use t	he following data for average	s, fit	s, limits,	etc. • •	•
0.68	ARNDT	95	DPWA	$\pi N \rightarrow$	Nπ
0.56 ± 0.08	BATINIC	95	DPWA	$\pi N \rightarrow$	Νπ, Νη
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in N	$\pi \to N(1440) \to N\eta$				(Γ₁Γ₂) ^⅓ /Γ
VALUE	DOCUMENT ID		TECN	COMME	
• • • We do not use t	he following data for average	s, fit	s, limits,	etc. • •	•
seen	1 BAKER	79	DPWA	π-ρ-	• πη
+0.328	⁸ FELTESSE	75	DPWA	1488-17	745 MeV

Note: Signs of couplings from $\pi N \rightarrow N \pi \pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N$	$\pi \to N(1440) \to \Delta(1232)$	2)π, <i>P</i> -v	vave (Γ ₁ Γ ₅) ^{1/2} /Γ
VALUE	DOCUMENT ID	TEC	NCOMMENT
+0.37 to +0.41 OUR 1	STIMATE		
$+0.39\pm0.02$			/ Α π <i>N</i> → π <i>N</i> & <i>N</i> π π
+0.41	^{2,9} LONGACRE	77 IPV	$VA \pi N \rightarrow N \pi \pi$
+0.37			/A π N → Nππ

VALUE	DOÇUMENT ID		TECN	COMMEN	IT
±0.07 to ±0.25	OUR ESTIMATE				
-0.11	^{2,9} LONGACRE ³ LONGACRE	77	1PWA	$\pi N \rightarrow$	Νππ
+0.23	³ LONGACRE	75	IPWA	$\pi N \rightarrow$	Νππ
(「パイン・) 1½ / C _{total} in <i>N</i>	$\pi \rightarrow N(1440) \rightarrow N\rho, S$	=3/:	2, <i>P</i> -wa	ve	(Г₁Га) ¹ ⁄2/(
VALUE					
+0.18	2,9 LONGACRE	77	IPWA	$\pi N \rightarrow$	$N\pi\pi$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in N	$\pi \to N(1440) \to N(\pi\pi$)/=0 S-w	rave		(Г ₁ Г ₉) ^{1/2} /
VALUE	DOCUMENT ID		TECN	COMME	NT
±0.17 to ±0.25	OUR ESTIMATE				
$+0.24 \pm 0.03$	MANLEY	92	IPWA	$\pi N \rightarrow$	πΝ&Νππ
-0.18	MANLEY ^{2,9} LONGACRE	77	IPWA	$\pi N \rightarrow$	Νππ
	³ LONGACRE		101474		B4

$N(1440) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID	TECN	COMMENT
-0.065 ±0.004 OUR ESTIMATE			
-0.063 ± 0.005	ARNDT 9	6 IPWA	$\gamma N \rightarrow \pi N$
-0.069 ± 0.018	CRAWFORD 8	3 IPWA	$\gamma N \rightarrow \pi N$
-0.063 ± 0.008	AWA JI	B1 DPWA	$\gamma N \rightarrow \pi N$
-0.069 ± 0.004	ARAI 8	0 DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.066 ± 0.004	ARAI 8	30 DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.079 ± 0.009	BRATASHEV8		
-0.068 ± 0.015	CRAWFORD 8	30 DPWA	$\gamma N \rightarrow \pi N$
-0.0584 ± 0.0148	ISHII 8	30 DPWA	Compton scattering
• • We do not use the following of	lata for averages,	fits, limits,	etc. • • •
-0.085 ±0.003		3 IPWA	$\gamma N \rightarrow \pi N$
-0.129	WADA 8	34 DPWA	Compton scattering
-0.075 ±0.015		78 DPWA	$\gamma N \rightarrow \pi N$
-0.125	NOELLE 7	78	$\gamma N \rightarrow \pi N$
- 0.076	BERENDS 7	77 IPWA	$\gamma N \rightarrow \pi N$
-0.087 ± 0.006	FELLER 7	76 DPWA	$\gamma N \rightarrow \pi N$

$N(1440) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

re(1440) r r, nencity 1/2 unipheado 71/2					
VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT	
+0.040 ±0.010 OUR ESTIMATE					
0.045 ± 0.015	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$	
0.037 ± 0.010	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$	
0.030 ± 0.003	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$	
0.023 ± 0.009	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$	
0.019 ± 0.012	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$	
0.056 ± 0.015	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$	
-0.029 ± 0.035	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$	
0.085 ± 0.006	LI	93	IPWA	$\gamma N \rightarrow \pi N$	
$+0.059\pm0.016$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$	
0.062	11 NOELLE	78		$\gamma N \rightarrow \pi N$	

N(1440) FOOTNOTES

- 1 BAKER 79 finds a coupling of the N(1440) to the N η channel near (but slightly below)
- Threshold. 2 coupling of the W(1440) to the W η chalmer hear (our singlify below) threshold. 2 LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \rightarrow N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ³ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix
- amplitudes.

 ARNDT 95 also finds a second-sheet pole with real part = $1383 \, \text{MeV}$, $-2 \times \text{imaginary}$ part = $210 \, \text{MeV}$, and residue with modulus 92 MeV and phase = -54° . See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.
- ARNDT 91 (Soln SM90) also finds a second-sheet pole with real part = 1413 MeV, $-2 \times \text{imaginary part} = 256 \text{ MeV}$, and residue = (78-153I) MeV.

 LONGACRET 87 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ⁸ An alternative which cannot be distinguished from this is to have a P_{13} resonance with $M \simeq 1530$ MeV, $\Gamma = 79$ MeV, and elasticity = +0.271. ⁹ LONGACRE 77 considers this coupling to be well determined.
- 10 WADA 84 is inconsistent with other analyses; see the Note on N and Δ Resonances.
- 11 Converted to our conventions using M = 1486 MeV, $\Gamma = 613$ MeV from NOELLE 78.

Baryon Particle Listings *N*(1440), *N*(1520)

N(1440) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workm.	an (VPI)
ARNOT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BRCO)
BATINIC	95	PR C51 2310	M. Batinic et al.	(BOSK, UCLA)
Also	98	PR C57 1004 (erratum)	M. Batinic et al.	(BOSK, OCEA)
HOEHLER	93	or N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li et al.	(VPI)
MANLEY	92		D.M. Manley, E.M. Saleski	(KENT) IJP
		PR D45 4002		(VPI)
Also	84	PR D30 904	D.M. Manley et al.	
ARNOT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
CUTKOSKY	90	PR D42 235	R.E. Cutkosky, S. Wang	(CMU)
WADA	84	NP B247 313	Y. Wada et al.	(INUS)
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
ILAWA	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
FUJII	81	NP B187 53	K. Fujii et al.	(NAGO, OSAK)
ARAI	80	Toronto Conf. 93	I. Arai	(INUS)
Also	82	NP B194 251	l. Arai, H. Fujii	(INUS)
BRATASHEV		NP B166 525	A.S. Bratashevsky et al.	(KFTI)
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
ISHII	80	NP B165 189	T. Ishii et al.	(KYOT, INUS)
TAKEDA	80	NP B168 17	H. Takeda <i>et al</i> .	(TOKY, INUS)
BAKER	79	NP B156 93	R.D. Baker et al.	(RHEL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Aiso	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Pars	
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
NOELLE	78	PTP 60 778	P. Noelle	(NAGO)
BEREND5	77	NP B136 317	F.A. Berends, A. Donnachie	(LEID, MCHS) IJP
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau	(SACL) IJP
Also	76	NP B108 365	J. Dolbeau et al.	(SACL) IJP
FELLER	76	NP B104 219	P. Feller et al.	(NAGO, OSAK) IJP
FELTESSE	75	NP B93 242	J. Feltesse et al.	(SACL) IJP
LONGACRE	75	PL 558 415	R.S. Longacre et al.	(LBL, SLAC) IJP

$N(1520) D_{13}$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

N(1520) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1515 to 1530 (≈ 1520) OUR ESTI			720.	<u> </u>
1524 ± 4	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1525 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1519± 4	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
1516 ± 10	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1515	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1526 ± 18	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
1510	LI	93	IPWA	$\gamma N \rightarrow \pi N$
1504	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1503	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1510	BERENDS	77	IPWA	$\gamma N \rightarrow \pi N$
1510	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1520	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1520) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
110 to 135 (≈ 120) OUR ESTIMA	TE			
124± 8	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
120 ± 15	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
114± 7	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
106 ± 4	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
106	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
143±32	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
120	LI	93	IPWA	$\gamma N \rightarrow \pi N$
124	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
183	BAKER	79	DPWA	$\pi^- \rho \rightarrow n\eta$
135	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
105	BERENDS	77	IPWA	$\gamma N \rightarrow \pi N$
110		77	IPWA	$\pi N \rightarrow N \pi \pi$
150	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1520) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1505 to 1515 (≈ 1510) C	OUR ESTIMATE			
1515	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1510	³ HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
1510±5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
 • • We do not use the 	following data for averages	, fits	s, limits,	etc. • • •
1511	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
1514 or 1511	⁴ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1508 or 1505	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY PA	\RT			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
110 to 120 (≈ 115) OUR	ESTIMATE			
110	ARNDT			
120	³ HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
114 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	following data for averages	s, fit	s, limits,	etc. • • •
108	ARNOT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
146 or 137	⁴ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
109 or 107	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

N(1520) ELASTIC POLE RESIDUE

MODULUS r					
VALUE (MeV)	DOCUMENT ID		TECN	COMME	NT
34	ARNDT	95	DPWA	πN	$N\pi$
32	HOEHLER	93	ARGD	$\pi N \rightarrow$	πN
35 ± 2	CUTKOSKY	80	IPWA	$\pi N \rightarrow$	πN
• • • We do not use the following	data for average	es, fit	s, limits,	etc. • •	• •
33	ARNDT	91	DPWA	$\pi N \rightarrow$	πN Soln SM90
PHASE 0					

PHASE 6	DOCUMENT ID		TECN	COMMENT
7	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
- 8	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
-12±5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
-10	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90

N(1520) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
Γ_1	Νπ	50-60 %	
Γ_2^-	Nη		
Γ3	$N\pi\pi$	40-50 %	
Γ4	$\Delta\pi$	15-25 %	
۲5	$\Delta(1232)\pi$, S-wave	5-12 %	
۲6	$\Delta(1232)\pi$, <i>D</i> -wave	10-14 %	
۲,	$N\rho$	15-25 %	
Γa	$N\rho$, $S=1/2$, D -wave		
آو	$N\rho$, $S=3/2$, S-wave		
Γ_{10}	$N\rho$, $S=3/2$, D-wave		
Γ11	$N(\pi\pi)_{S-\text{wave}}^{I=0}$	<8 %	
Γ_{12}	$p\gamma$	0.46-0.56 %	
۲13	$p\gamma$, helicity=1/2	0.001-0.034 %	
Γ14	$p\gamma$, helicity=3/2	0.44-0.53 %	
۲ ₁₅	$n\gamma$	0.30-0.53 %	
Γ ₁₆	$n\gamma$, helicity=1/2	0.04-0.10 %	
Γ ₁₇	$n\gamma$, helicity=3/2	0.25-0.45 %	

N(1520) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.5 to 0.6 OUR ESTIMATE				
0.59 ± 0.03	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.58 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.54 ± 0.03	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
 • • We do not use the following 	ng data for average	es, fit	s, limits,	etc. • • •
0.61	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
0.46 ± 0.06	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$
$\Gamma(N\eta)/\Gamma_{\text{total}}$				Γ ₂ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the followi	ng data for averag	es, fit	s, limits,	etc. • • •
0.0008 ± 0.0001	TIATOR	99	DPWA	$\gamma p \rightarrow p \eta$
0.001 +0.002	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\pi$

(Γ,Γ _f) ^{1/2} /Γ _{total} in Νπ VALUE	$\rightarrow N(1520) \rightarrow N\eta$ DOCUMENT ID		TECN	(F ₁ F ₂) ¹ / ₂ /F
	following data for averag			
0.02	BAKER	79	DPWA	$\pi^- \rho \rightarrow n \eta$
-0.011	FELTESSE	75	DPWA	Soln A; see BAKER 79
1986 edition to	couplings from $\pi N \rightarrow N \pi$ agree with the baryon-firs solved by choosing a nega	t con	vention;	the overall phase
coupling to △(1				, , ,,
14		_	_	14 .
$(\Gamma_I \Gamma_f)^{72} / \Gamma_{\text{total}} \text{ in } N_{\pi}$	$\rightarrow N(1520) \rightarrow \Delta(123)$	i2)π	, S-wav	e (Γ ₁ Γ ₅) ^{1/2} /Ι
ALUE -0.26 to -0.20 OUR ES	DOCUMENT ID		<u>TECN</u>	COMMENT
-0.18 ± 0.05	MANLEY		IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
- 0.26	1,5 LONGACRE	77		$\pi N \rightarrow N \pi \pi$
-0.24	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
FF\\\\\	$\rightarrow N(1520) \rightarrow \Delta(123)$	n) -	D	re (Γ ₁ Γ ₆) ^{1/2} /Ι
f) ~ / total III /¥ 7 ALUE	$ \rightarrow N(1520) \rightarrow Z(123) $ $ DOCUMENT ID $			
-0.28 to -0.24 OUR ES	TIMATE		ILCN	COMMENT
-0.29±0.03	MANLEY		IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
- 0.21	1,5 LONGACRE		IPWA	
- 0.30	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
C.C.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\rightarrow N(1520) \rightarrow N\rho, S$	_2"		ve (Γ ₁ Γ ₉) ¹ /2/I
l;lf)'*/ltotalin Nπ ¤LUE	$\rightarrow N(1520) \rightarrow N \rho, S$ DOCUMENT ID	=3/2	z, 5-Wa'	ve (1 9)'*/
-0.35 to -0.31 OUR ES	TIMATE		TECH	COMMENT
-0.35±0.03	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
- 0.35	1,5 LONGACRE			
- 0.24	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
	11/4 ===> 11/	n		·- · ¼ ··
I [I f) "/I total In Nπ	$\rightarrow N(1520) \rightarrow N(\pi\pi$			(F ₁ F ₁₁) ^{1/2} /I
-0.22 to -0.06 OUR ES	DOCUMENT ID		<u>TECN</u>	COMMENT
	1,5 LONGACRE	77	!PWA	$\pi N \rightarrow N \pi \pi$
- 0.13	^{1,5} LONGACRE ² LONGACRE	77 75	IPWA IPWA	$\pi N \rightarrow N \pi \pi$ $\pi N \rightarrow N \pi \pi$
- 0.13 - 0.17	1,5 LONGACRE			
- 0.13 - 0.17	1,5 LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
-0.13 -0.17	1,5 LONGACRE 2 LONGACRE 520) PHOTON DECA	75 Y AN	IPWA	$\pi N \rightarrow N \pi \pi$
$N(1520) ightarrow p\gamma$, heli	^{1,5} LONGACRE ² LONGACRE	75 Y AN	IPWA	$\pi N \rightarrow N \pi \pi$
-0.13 -0.17 $N(1!$ $V(1520) \rightarrow p\gamma$, heli $ALUE (Gev^{-1/2})$	1.5 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID	75 Y AN /2	IPWA IPLITU	JDES Nππ
0.13 0.17 N(1! N(1520) → ργ, heli ALUE (GeV ^{-1/2}) 0.024 ±0.009 OUR E	1.5 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID	75 Y AN /2	IPWA IPLITO	πN → Nππ JDES COMMENT
-0.13 -0.17 N (1: N (1520) → ργ, heli <u>ΛΑLUE</u> (Gev ^{-1/2}) -0.024 ±0.009 OUR E -0.020 ±0.007	1,5 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ARNDT	75 Y AN /2	IPWA IPWA IPWA	$\pi N \to N \pi \pi$ JDES <u>COMMENT</u> $\gamma N \to \pi N$
-0.13 -0.17 $N(1520) \rightarrow p\gamma$, heli $ALUE (GeV^{-1/2})$ -0.024 ±0.009 OUR E -0.020 ±0.007 -0.028 ±0.001	1.5 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID	75 Y AN /2	IPWA TECN IPWA IPWA	$\pi N \to N \pi \pi$ JDES $ \begin{array}{c} COMMENT \\ \gamma N \to \pi N \\ \gamma N \to \pi N \end{array} $
0.13 0.17 N(1: N(1520) → $pγ$, heli ALUE (GeV ^{-1/2}) 0.024 ± 0.009 OUR E 0.020 ± 0.007 0.028 ± 0.014 0.007 ± 0.004	1.5 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ARNDT CRAWFORD	75 Y AN /2 96 83	IPWA TECN IPWA IPWA DPWA	$\pi N \to N \pi \pi$ JDES <u>COMMENT</u> $\gamma N \to \pi N$
-0.13 -0.17 $N(1520) \rightarrow p\gamma$, hell $ALUE (Gev^{-1/2})$ -0.024 ±0.009 OUR E -0.020 ±0.007 -0.028 ±0.014 -0.007 ±0.004 -0.032 ±0.005 -0.032 ±0.005	1.5 LONGACRE 2 LONGACRE 5520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ARNDT CRAWFORD AWAJI ARAI ARAI	75 Y AN /2 96 83 81 80 80	TECN IPWA IPWA IPWA DPWA DPWA	$\pi N \to N \pi \pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$
$N(1520) \rightarrow p\gamma$, heli $N(1520) \rightarrow N(1520)$ $N(1520) \rightarrow N(1520)$ N	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID CRAWFORD AWAJI ARAI ARAI BRATASHEV	75 Y AN /2 96 83 81 80 80 80	TECN IPWA IPWA IPWA DPWA DPWA DPWA DPWA	$\pi N \to N \pi \pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N$
0.13 0.17 N(1: N(1520) → $p\gamma$, heli 0.024 ± 0.009 0.024 ± 0.009 0.026 ± 0.014 0.007 ± 0.004 0.032 ± 0.004 0.031 ± 0.009 0.031 ± 0.009 0.031 ± 0.009 0.0019 ± 0.007	1.5 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID CRAWFORD AWAJI ARAI ARAI BRATASHEV CRAWFORD	75 Y AN /2 96 83 81 80 80 80 80	TECN IPWA IPWA DPWA DPWA DPWA DPWA DPWA	$TN \rightarrow N\pi\pi$ JDES $COMMENT$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N$
$ \begin{array}{c cccc} -0.13 & & & & & & \\ -0.17 & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & &$	1.5 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII	75 Y AN /2 96 83 81 80 80 80 80 80	TECN IPWA IPWA DPWA DPWA DPWA DPWA DPWA DPWA	$TN \rightarrow N\pi\pi$ JDES $COMMENT$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $Compton scattering$
-0.13 -0.17 N (1: V (1520) → ργ , heli M (10€ (GeV - 1/2)) -0.024 ±0.009 OUR E -0.020 ±0.007 -0.028 ±0.014 -0.032 ±0.004 -0.032 ±0.005 -0.032 ±0.004 -0.031 ±0.009 -0.019 ±0.007 -0.0430±0.0063 • • We do not use the	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII e following data for average	75 Y AN /2 96 83 81 80 80 80 80 80 80 80 80	TECN IPWA IPWA DPWA DPWA DPWA DPWA DPWA DPWA	$TN \rightarrow N\pi\pi$ JDES $COMMENT$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $Compton scattering etc. • • •$
-0.13 -0.17 N(1520) → ργ, heli MLUE (GeV ^{-1/2}) -0.024 ±0.009 OUR E -0.020 ±0.007 -0.028 ±0.004 -0.032 ±0.005 -0.032 ±0.004 -0.031 ±0.009 -0.019 ±0.007 -0.0430±0.0063 • • We do not use the -0.052 ±0.010 ±0.007	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII following data for averag 6 MUKHOPAD	75 Y AN /2 96 83 81 80 80 80 80 80 80 80 80 80 80	TECN IPWA IPWA IPWA DPWA DPWA DPWA DPWA DPWA DPWA DPWA S, limits,	$\pi N \to N \pi \pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $compton scattering etc. • • • • • • • • • • • • • • • • • • •$
-0.13 -0.17 N(1:20) → ργ , heli MLUE (GeV ^{-1/2}) -0.024 ±0.009 OUR E -0.020 ±0.007 -0.028 ±0.014 -0.007 ±0.004 -0.032 ±0.005 -0.032 ±0.004 -0.031 ±0.009 -0.019 ±0.007 -0.0430±0.0063 • • We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII e following data for average	75 Y AN /2 96 83 81 80 80 80 80 80 80 80 80	IPWA IPWA IPWA DPWA DPWA DPWA DPWA DPWA S, limits,	$TN \rightarrow N\pi\pi$ JDES $COMMENT$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $Compton scattering etc. • • •$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 5520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII following data for averag 6 MUKHOPAD LI WADA BARBOUR	75 Y AN 96 83 81 80 80 80 80 80 80 80 80 93	IPWA IPWA IPWA DPWA DPWA DPWA DPWA S, limits, IPWA	$\pi N \rightarrow N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \rightarrow \pi N}$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ Compton scattering etc. • • • $\gamma p \rightarrow \eta p$ $\gamma N \rightarrow \pi N$
-0.13 -0.17 N(1520) → $p\gamma$, heli $MLUE$ ($GeV^{-1/2}$) -0.024 ±0.009 OUR E -0.020 ±0.007 -0.028 ±0.004 -0.032 ±0.005 -0.032 ±0.004 -0.032 ±0.004 -0.031 ±0.009 -0.019 ±0.007 -0.0430±0.0063 • • • We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002 -0.012 ±0.002 -0.012 ±0.002 -0.012 ±0.008 -0.008	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII following data for averag 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE	75 Y AN /2 96 83 81 80 80 80 80 80 80 80 80 87 87 87	IPWA IPWA IPWA IPWA DPWA DPWA DPWA DPWA S, limits, IPWA DPWA	$\pi N \to N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ Compton scattering etc. • • • $\gamma P \to \eta P$ $\gamma N \to \pi N$ Compton scattering $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N$
-0.13 −0.17 N(1: V(1520) → p γ, heli MLUE ($Gev^{-1/2}$) −0.024 ±0.009 −0.020 ±0.007 −0.028 ±0.014 −0.007 ±0.004 −0.032 ±0.005 −0.032 ±0.004 −0.031 ±0.009 −0.019 ±0.007 −0.0430±0.0063 • • We do not use the −0.052 ±0.010 ±0.007 −0.020 ±0.002 −0.012 −0.012 −0.016 −0.008 −0.008 −0.008	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ARNDT CRAWFORD AWAJI ARAI ARAI BRATASHEV CRAWFORD ISHII following data for average 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS	75 Y AN /2 96 83 81 80 80 80 80 80 80 87 78 77	IPWA IPWA IPWA IPWA DPWA DPWA DPWA S, limits, IPWA DPWA IPWA	$TN \rightarrow N\pi\pi$ JDES $COMMENT$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $Compton scattering etc. • • • • • • • • • • • • • • • • • • •$
-0.13 −0.17 N(1: V(1520) → p γ, heli MLUE ($Gev^{-1/2}$) −0.024 ±0.009 −0.020 ±0.007 −0.028 ±0.014 −0.007 ±0.004 −0.032 ±0.005 −0.032 ±0.004 −0.031 ±0.009 −0.019 ±0.007 −0.0430±0.0063 • • We do not use the −0.052 ±0.010 ±0.007 −0.020 ±0.002 −0.012 −0.012 −0.016 −0.008 −0.008 −0.008	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII following data for averag 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE	75 Y AN /2 96 83 81 80 80 80 80 80 80 80 80 87 87 87	IPWA IPWA IPWA IPWA DPWA DPWA DPWA S, limits, IPWA DPWA IPWA	$\pi N \to N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ Compton scattering etc. • • • $\gamma P \to \eta P$ $\gamma N \to \pi N$ Compton scattering $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N$
-0.13 -0.17 N(1:20) $\rightarrow p\gamma$, heli **ALUE (GeV - 1/2) -0.024 ±0.009 -0.020 ±0.007 -0.028 ±0.014 -0.007 ±0.004 -0.032 ±0.005 -0.032 ±0.004 -0.031 ±0.009 -0.019 ±0.007 -0.0430±0.0063 ••• We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002 -0.012 -0.016 ±0.008 -0.008 -0.021 -0.005 ±0.005	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII following data for average 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER	75 Y AN 96 83 81 80 80 80 80 80 80 80 87 77 76	IPWA IPWA IPWA IPWA DPWA DPWA DPWA S, limits, IPWA DPWA IPWA	$TN \rightarrow N\pi\pi$ JDES $COMMENT$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $Compton scattering etc. • • • • • • • • • • • • • • • • • • •$
-0.13 -0.17 N(1520) → $p\gamma$, heli $MLUE (GeV^{-1/2})$ -0.024 ± 0.009 OUR E -0.020 ± 0.007 -0.028 ± 0.014 -0.007 ± 0.004 -0.032 ± 0.004 -0.031 ± 0.009 -0.019 ± 0.007 -0.0430 ± 0.0063 • • • We do not use the $-0.052 \pm 0.010 \pm 0.007$ -0.020 ± 0.002 -0.012 -0.012 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.017 -0.018 -0.019	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII Following data for average 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER city-3/2 amplitude A ₃	75 Y AN /2 96 83 81 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\pi N \to N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ Compton scattering}$ etc. •• $\gamma P \to \eta P$ $\gamma N \to \pi N \text{ Compton scattering}$ $\gamma N \to \pi N \text{ Compton scattering}$ $\gamma N \to \pi N \text{ N}$
-0.13 -0.17 N(1:20) → $p\gamma$, heli $ALUE (GeV^{-1/2})$ -0.024 ±0.009 OUR E -0.020 ±0.007 -0.028 ±0.014 -0.007 ±0.004 -0.032 ±0.005 -0.032 ±0.004 -0.031 ±0.009 -0.019 ±0.007 -0.0430±0.0063 • • We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002 -0.012 -0.016 ±0.008 -0.008 -0.001 -0.005 ±0.005 -0.005 ±0.005 -0.016 ±0.008 -0.009 -0.010 ±0.009 -0.010 ±0.009 -0.010 ±0.009 -0.010 ±0.009 -0.010 ±0.009 -0.010 ±0.009 -0.010 ±0.009	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISTIMATE 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER city-3/2 amplitude A ₃	75 Y AN /2 96 83 81 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\pi N \to N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ Compton scattering}$ etc. •• $\gamma P \to \eta P$ $\gamma N \to \pi N \text{ Compton scattering}$ $\gamma N \to \pi N \text{ Compton scattering}$ $\gamma N \to \pi N \text{ N}$
-0.13 -0.17 N(1:	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISTIMATE 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER city-3/2 amplitude A ₃	75 Y AN //2 96 83 81 80 80 80 80 80 85 86 87 77 76	IPWA IPWA IPWA DPWA DPWA DPWA DPWA DPWA DPWA DPWA D	$\pi N \to N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ Compton scattering}$ etc. •• $\gamma P \to \eta P$ $\gamma N \to \pi N \text{ Compton scattering}$ $\gamma N \to \pi N \text{ Compton scattering}$ $\gamma N \to \pi N \text{ N}$
-0.13 -0.17 N(1: V(1520) → ργ, heli ALUE (Gev-1/2) -0.024 ±0.009 OUR E -0.024 ±0.009 OUR E -0.032 ±0.005 -0.032 ±0.005 -0.032 ±0.004 -0.031 ±0.009 -0.019 ±0.007 -0.0430±0.0063 • We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002 -0.012 -0.016 ±0.008 -0.080 -0.095 ±0.005 V(1520) → ργ, heli MLUE (Gev-1/2) +0.166 ±0.008 OUR E	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII following data for averag 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER city-3/2 amplitude A ₃ DOCUMENT ID	75 Y AN /2 96 83 81 80 80 80 80 80 80 87 77 76 77 76	IPWA TECN IPWA IPWA IPWA DPWA DPWA DPWA DPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA I	$TN \rightarrow N\pi\pi$ JDES $COMMENT$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N \text{ Compton scattering}$ etc. • • $\gamma p \rightarrow \eta p$ $\gamma N \rightarrow \pi N \text{ Compton scattering}$
$N(13$ -0.17 N(1520) → $p\gamma$, heli $ALUE (GeV^{-1/2})$ -0.024 ±0.009 -0.020 ±0.007 -0.028 ±0.014 -0.032 ±0.005 -0.032 ±0.005 -0.032 ±0.005 -0.031 ±0.009 -0.019 ±0.007 -0.0430±0.0063 • • We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002 -0.012 -0.016 ±0.008 -0.08 -0.091 -0.005 ±0.005 N(1520) → $p\gamma$, heli $ALUE (GeV^{-1/2})$ +0.166 ±0.005 -0.156 ±0.005 -0.156 ±0.002 -0.156 ±0.002 -0.168 ±0.013	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII 1 following data for average 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER city-3/2 amplitude A ₃ DOCUMENT ID	75 Y AN 96 83 81 80 80 80 80 80 80 80 80 87 77 76 78	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\pi N \rightarrow N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \rightarrow \pi N}$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $Compton scattering etc. • • • • • • • • • • • • • • • • • • •$
$N(13$ -0.13 -0.17 N(1520) → $p\gamma$, heli $MUE(Gev^{-1/2})$ -0.024 ±0.009 OUR E -0.020 ±0.007 -0.028 ±0.014 -0.007 ±0.004 -0.032 ±0.005 -0.032 ±0.004 -0.031 ±0.009 -0.019 ±0.007 -0.0430±0.0063 • • We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002 -0.012 -0.016 ±0.008 -0.008 -0.009 -0.001 ±0.005 -0.001 ±0.001	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII 1 following data for average 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER city-3/2 amplitude A ₃ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI	75 Y AN /2 96 83 81 80 80 80 80 80 80 87 76 /2 96 83 84 88 87 76 /2	IPWA IPWA DPWA DPWA DPWA DPWA IPWA DPWA DPWA DPWA DPWA DPWA DPWA DPWA D	$\pi N \to N \pi \pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N} \qquad \gamma N \to \pi N \qquad \gamma N \to \pi$
0.13 0.17 N(1: N(1:20) → ργ, heli ALUE (GeV-1/2) 0.024 ±0.009 OUR E 0.020 ±0.007 0.028 ±0.014 0.007 ±0.005 0.032 ±0.005 0.032 ±0.005 0.032 ±0.005 0.032 ±0.006 0.032 ±0.006 0.019 ±0.007 0.0430 ±0.0063 • We do not use the 0.052 ±0.010 ±0.007 0.020 ±0.002 0.016 ±0.008 0.001 0.010 0.01	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 2 LONGACRE 5520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII Following data for average 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER city-3/2 amplitude A ₃ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI ARAI	75 Y AN /2 96 83 81 80 80 80 80 80 80 87 77 76 /2 96 83 81 80 80 80	IPWA IPWA IPWA IPWA DPWA DPWA DPWA DPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA I	$\pi N \to N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ Compton scattering etc. • • • $\gamma P \to \eta P$ $\gamma N \to \pi N$ Compton scattering $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$
$N(13$ -0.13 -0.17 N(1520) → $p\gamma$, heli $N(1520)$ → $p\gamma$, heli	1.5 LONGACRE 2 LONGACRE 3 LONGACRE 3 LONGACRE 4 LONGACRE 4 LONGACRE 5 LONGACRE 5 LONGACRE 6 LONGACRE 6 LONGACRE 6 LONGACRE 7 LONGACRE 7 LONGACRE 8 LONGACRE 6 LONGACRE 7 LONGACRE 8 LONGACRE 7 LONGACRE 8 LONGACRE 9 LONGACRE 10 LONGAC	75 Y AN /2 96 83 81 80 80 80 80 80 85, fitt 77 76 /2 96 83 81 80 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA DPWA DPWA DPWA DPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA I	$\pi N \rightarrow N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \rightarrow \pi N} \qquad \gamma N \rightarrow \pi N \qquad \gamma N \rightarrow \pi N \qquad \gamma N \rightarrow \pi N \qquad (fit 1) \qquad \gamma N \rightarrow \pi N \qquad (fit 2) \qquad \gamma N \rightarrow \pi N \qquad (fit 2) \qquad \gamma N \rightarrow \pi N \qquad (fit 2) \qquad \gamma N \rightarrow \pi N \qquad (fit 2) \qquad \gamma N \rightarrow \pi N \qquad (fit 2) \qquad \gamma N \rightarrow \pi N \qquad (fit 2) \qquad \gamma N \rightarrow \pi N \qquad (fit 1) \qquad \gamma N \rightarrow \pi N \qquad (fit 1) \qquad \gamma N \rightarrow \pi N \qquad (fit 1) \qquad \gamma N \rightarrow \pi N \qquad (fit 2)
-0.13 -0.17 N(1:20) → ργ, heli ALUE (GeV-1/2) -0.024 ±0.009 OUR E -0.025 ±0.001 -0.032 ±0.005 -0.032 ±0.004 -0.032 ±0.005 -0.032 ±0.005 -0.032 ±0.007 -0.0430±0.0063 • We do not use the -0.052 ±0.010 ±0.007 -0.010 ±0.002 -0.012 -0.016 ±0.008 -0.008 -0.008 -0.008 -0.009 -0.019 ±0.005 -0.010 ±0.005 -0.010 ±0.007 -0.010 ±0.007 -0.010 ±0.008 -0.010 ±0.008 -0.011 ±0.008 -0.011 ±0.008 -0.011 ±0.008 -0.011 ±0.008 -0.011 ±0.008 -0.011 ±0.008 -0.011 ±0.008 -0.011 ±0.008 -0.011 ±0.008 -0.011 ±0.008 -0.011 ±0.008 -0.011 ±0.008 -0.011 ±0.003 -0.162 ±0.003 -0.162 ±0.003 -0.166 ±0.005 -0.167 ±0.010	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD 1SHII 1 Following data for average 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER City-3/2 amplitude A ₃ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI ARAI BRATASHEV CRAWFORD	75 Y AN /2 96 83 81 80 80 80 80 80 80 80 87 76 /2 96 83 81 80 80 80 80 80 80	IPWA IPWA IPWA DPWA DPWA DPWA DPWA DPWA IPWA IPWA DPWA DPWA DPWA DPWA DPWA DPWA DPWA D	$\pi N \rightarrow N \pi \pi$ JDES $\frac{COMMENT}{\gamma N \rightarrow \pi N} \qquad \gamma N \rightarrow \pi N \qquad \gamma N \rightarrow \pi N \qquad \gamma N \rightarrow \pi N \qquad \text{(fit 1)} \qquad \gamma N \rightarrow \pi N \qquad \text{(fit 2)} \qquad \gamma N \rightarrow \pi N \rightarrow \pi N \rightarrow \pi N \qquad \gamma N \rightarrow \pi N \rightarrow$
$N(1520)$ → $p\gamma$, hell $\frac{ALUE (GeV^{-1/2})}{0.024 \pm 0.009}$ OUR E $\frac{ALUE (GeV^{-1/2})}{0.024 \pm 0.009}$ OUR E $\frac{ALUE (GeV^{-1/2})}{0.024 \pm 0.009}$ OUR E $\frac{ALUE (GeV^{-1/2})}{0.002 \pm 0.004}$ $\frac{ALUE (GeV^{-1/2})}{0.003 \pm 0.004}$ $\frac{ALUE (GeV^{-1/2})}{0.009}$ $\frac{ALUE (GeV^{-1/2})}{0.009}$ $\frac{ALUE (GeV^{-1/2})}{0.009}$ OUR E $\frac{ALUE (GeV^{-1/2})}{0.009}$ OUR E $\frac{ALUE (GeV^{-1/2})}{0.164 \pm 0.009}$ OUR E $\frac{ALUE (GeV^{-1/2})}{0.166 \pm 0.009}$ OUR E $\frac{ALUE (GeV^{-1/2})}{0.166 \pm 0.009}$ O.166 $\frac{ALUE (GeV^{-1/2})}{0.166 \pm 0.009}$ O.167 $\frac{ALUE (GeV^{-1/2})}{0.1695 \pm 0.0014}$	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 2 LONGACRE 520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII following data for averag 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER city-3/2 amplitude A ₃ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII	75 Y AN /2 96 83 80 80 80 80 80 80 87 76 /2 96 83 81 60 80 80 80 80	IPWA IPWA IPWA IPWA DPWA S, limits, IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\pi N \to N \pi \pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (fit 3)}$ $\gamma N \to \pi N \text{ (fit 4)}$ $\gamma N \to \pi N \text{ (compton scattering)}$ $\gamma N \to \pi N \text{ (compton scattering)}$ $\gamma N \to \pi N \text{ (compton scattering)}$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (compton scattering)}$
-0.13 -0.17 N(1: N(1:20) → ργ, hell ALUE (Gev-1/2) -0.024 ±0.009 OUR E -0.020 ±0.007 -0.028 ±0.014 -0.007 ±0.004 -0.032 ±0.005 -0.032 ±0.004 -0.031 ±0.009 -0.019 ±0.007 -0.040 ±0.0063 • • We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002 -0.012 -0.016 ±0.008 -0.009 -0.019 ±0.005 -0.010 ±0.006 -0.010 ±0.007 -0.010 ±0.007 -0.010 ±0.007 -0.010 ±0.008 -0.010 ±0.008 -0.010 ±0.008 -0.010 ±0.008 -0.010 ±0.005 -0.016 ±	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 2 LONGACRE 5520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER city-3/2 amplitude A ₃ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII 1 BRATASHEV CRAWFORD ISHII 1 BRATASHEV CRAWFORD ISHII 1 COLINIONING data for average	75 Y AN /2 96 83 80 80 80 80 80 80 87 76 /2 96 83 81 80 80 80 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA DPWA S, limits, IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\pi N \rightarrow N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \rightarrow \pi N}$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N \text{ (compton scattering etc. } \bullet \bullet \bullet$ $\gamma P \rightarrow \gamma P \gamma P \gamma N \rightarrow \pi N N$ $\gamma N \rightarrow \pi N \gamma N \rightarrow \pi N \gamma N \rightarrow \pi N N$ $\gamma N \rightarrow \pi N \gamma N \rightarrow \pi$
-0.13 -0.17 N(1:20) → ργ, heli ALUE (GeV-1/2) -0.024 ±0.009 OUR E -0.024 ±0.009 OUR E -0.032 ±0.005 -0.032 ±0.005 -0.032 ±0.005 -0.032 ±0.0063 • • We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002 -0.012 -0.016 ±0.008 -0.021 -0.016 ±0.008 -0.021 -0.016 ±0.005 -	1.5 LONGACRE 2 LONGACRE 3 LONGACRE 4 LONGACRE 5 LONGACRE 5 LONGACRE 5 LONGACRE 5 LONGACRE 6 MUKHOPAD 6 LI 7 NOELLE 8 BERENDS 7 NOELLE 8 BERENDS 7 NOELLE 8 BERENDS 7 LOUGHERT ID 8 LOCUMENT	75 Y AN //2 96 83 81 80 80 80 80 85, fitt 77 76 //2 96 83 81 80 80 80 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA DPWA DPWA DPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA I	$\pi N \to N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N$ Compton scattering etc. • • • $\gamma P \to \gamma P$ $\gamma N \to \pi N$ Compton scattering $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$
V(1520) → ργ, hell	1.5 LONGACRE 2 LONGACRE 2 LONGACRE 2 LONGACRE 5520) PHOTON DECA city-1/2 amplitude A ₁ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER city-3/2 amplitude A ₃ DOCUMENT ID ESTIMATE ARNDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII 1 BRATASHEV CRAWFORD ISHII 1 BRATASHEV CRAWFORD ISHII 1 COLINIONING data for average	75 Y AN /2 96 83 80 80 80 80 80 80 87 76 /2 96 83 81 80 80 80 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\pi N \rightarrow N \pi \pi$ JDES $\frac{COMMENT}{\gamma N \rightarrow \pi N} \qquad \gamma N \rightarrow \pi N \qquad \gamma N \rightarrow \pi N \qquad \gamma N \rightarrow \pi N \qquad \text{(fit 1)} \qquad \gamma N \rightarrow \pi N \qquad \text{(fit 2)} \qquad \gamma N \rightarrow \pi N \qquad \text{(compton scattering etc. } \bullet \bullet \bullet \qquad \gamma N \rightarrow \pi N \rightarrow \pi N \qquad \gamma N \rightarrow \pi N $
-0.13 -0.17 N(1520) → $p\gamma$, heli ALUE (GeV ^{-1/2}) -0.024 ±0.009 OUR E -0.020 ±0.007 -0.028 ±0.014 -0.032 ±0.005 -0.032 ±0.004 -0.031 ±0.009 -0.019 ±0.007 -0.0430±0.0063 • We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002 -0.016 ±0.008 -0.009 -0.009 ±0.005 -0.016 ±0.008 -0.005 ±0.005 -0.016 ±0.003 -0.016 ±0.003	1.5 LONGACRE 2 LONGACRE 3 LONGACRE 4 LONGACRE 5 LONGACRE 5 LONGACRE 5 LONGACRE 5 LONGACRE 6 LONGACRE 6 LONGACRE 7 LONGACRE 7 LONGACRE 7 LONGACRE 8 LONGACRE 8 LONGACRE 8 LONGACRE 9 LONGACRE 1 LONGACR	75 Y AN /2 96 83 81 80 80 80 80 80 80 87 76 /2 96 83 81 80 80 80 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA DPWA DPWA S, limits, IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\pi N \to N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N$ Compton scattering etc. • • • $\gamma P \to \gamma P$ $\gamma N \to \pi N$ Compton scattering $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$
-0.13 -0.17 N(1:520) → ργ, heli ALUE (GeV-1/2) -0.024 ±0.009 OUR E -0.026 ±0.007 -0.028 ±0.014 -0.007 ±0.004 -0.032 ±0.005 -0.032 ±0.005 -0.032 ±0.007 -0.0430±0.0063 • • We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002 -0.012 -0.016 ±0.008 -0.021 -0.005 ±0.005 -0.005 ±0.005 -0.005 ±0.005 -0.006 ±0.005 -0.006 ±0.005 -0.006 ±0.005 -0.006 ±0.005 -0.006 ±0.005 -0.006 ±0.005 -0.006 ±0.005 -0.006 ±0.005 -0.006 ±0.005 -0.006 ±0.005 -0.006 ±0.005 -0.006 ±0.005 -0.167 ±0.005 -0.167 ±0.001 -0.1695±0.0014 • • We do not use the -0.130 ±0.020 ±0.015 -0.167 ±0.002 -0.168 -0.157 ±0.002 -0.169	1.5 LONGACRE 2 LONGACRE 3 LOCUMENT ID 3 LOCUMENT ID 4 RANDA BARBOUR 5 NOELLE BERENDS FELLER 6 MUKHOPAD LI WADA BARBOUR 7 NOELLE BERENDS FELLER 2 LOCUMENT ID 2 LOCUMENT ID 3 LOCUMENT ID 4 RANDT CRAWFORD AWAJI ARAI BRATASHEV CRAWFORD ISHII SHII SHII SHII SHII SHII WADA BARBOUR 5 GMUKHOPAD LI WADA BARBOUR 7 NOELLE	75 Y AN /2 96 83 81 80 80 80 80 80 80 87 76 /2 96 83 81 60 80 80 80 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\pi N \rightarrow N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \rightarrow \pi N} \qquad \gamma N \rightarrow \pi N \rightarrow \pi N \qquad \gamma N \rightarrow \pi N$
-0.13 -0.17 N(1: V(1520) → ργ, hell ALUE (Gev -1/2) -0.024 ±0.009 OUR E -0.024 ±0.009 OUR E -0.032 ±0.004 -0.032 ±0.005 -0.032 ±0.005 -0.032 ±0.004 -0.031 ±0.009 -0.019 ±0.007 -0.0430±0.0063 • We do not use the -0.052 ±0.010 ±0.007 -0.020 ±0.002 -0.012 -0.016 ±0.008 -0.021 -0.016 ±0.008 -0.021 -0.016 ±0.005 OUR E -0.167 ±0.005 OUR E -0.168 ±0.003 -0.168 ±0.003 -0.169 ±0.003 -0.169 ±0.003 -0.169 ±0.003 -0.160 ±0.003 -0.160 ±0.003 -0.160 ±0.005 -0.167 ±0.005 -0.167 ±0.005 -0.167 ±0.005 -0.167 ±0.005 -0.167 ±0.005 -0.167 ±0.003 -0.169 ±0.003	1.5 LONGACRE 2 LONGACRE 3 LONGACRE 4 LONGACRE 5 LONGACRE 5 LONGACRE 5 LONGACRE 5 LONGACRE 6 LONGACRE 6 LONGACRE 7 LONGACRE 7 LONGACRE 7 LONGACRE 8 LONGACRE 8 LONGACRE 8 LONGACRE 9 LONGACRE 1 LONGACR	75 Y AN /2 96 83 81 80 80 80 80 80 80 87 77 6 /2 96 83 81 80 80 80 80 80 80 80 80 80 87 77 76	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\pi N \to N\pi\pi$ JDES $\frac{COMMENT}{\gamma N \to \pi N}$ $\gamma N \to \pi N$ $\gamma N \to \pi N$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (compton scattering etc. } \bullet \bullet \bullet$ $\gamma P \to \eta P$ $\gamma N \to \pi N \text{ (compton scattering } \gamma N \to \pi N$ $\gamma N \to \pi N \text{ (compton scattering } \gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 1)}$ $\gamma N \to \pi N \text{ (fit 2)}$ $\gamma N \to \pi N \text{ (compton scattering etc. } \bullet \bullet \bullet$ $\gamma P \to \eta P$ $\gamma N \to \pi N \text{ (compton scattering etc. } \bullet \bullet \bullet$ $\gamma P \to \eta P$ $\gamma N \to \pi N \text{ (compton scattering etc. } \bullet \bullet \bullet$

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.059 ±0.009 OUR EST	IMATE			
-0.048 ± 0.008	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
-0.066 ± 0.013	IL AWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.067 ± 0.004	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
-0.076 ± 0.006	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.071 ± 0.011	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.056 ± 0.011	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.050 ± 0.014	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
-0.058 ± 0.003	LI	93	IPWA	$\gamma N \rightarrow \pi N$
-0.055 ± 0.014	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
-0.060	⁷ NOELLE	78		$\gamma N \rightarrow \pi N$
$N(1520) \rightarrow n \alpha$, helic	ity-3/2 amplitude As	'		
	ity-3/2 amplitude A _{3/}	′ 2	TECN	COMMENT
VALUE (GeV ^{-1/2})	DOCUMENT ID	'2	TECN	COMMENT
VALUE (GeV ^{-1/2}) -0.139±0.011 OUR EST	DOCUMENT ID			$\frac{COMMENT}{\gamma N \to \pi N}$
$VALUE (GeV^{-1/2})$ - 0.139 ± 0.011 OUR EST - 0.140 ± 0.010	DOCUMENT ID	96 81	IPWA DPWA	$ \gamma N \to \pi N \gamma N \to \pi N $
VALUE (GeV ^{-1/2}) -0.139±0.011 OUR EST -0.140±0.010 -0.124±0.009	DOCUMENT ID ARNDT AWA JI FUJII	96 81 81	IPWA DPWA DPWA	$ \gamma N \to \pi N \gamma N \to \pi N \gamma N \to \pi N $
$N(1520) \rightarrow n\gamma$, helic $VALUE (GeV^{-1/2})$ -0.139 ± 0.011 OUR EST -0.140 ± 0.010 -0.124 ± 0.009 -0.158 ± 0.003 -0.147 ± 0.008	DOCUMENT ID IMATE ARNDT AWAJI FUJII ARAI	96 81 81 80	IPWA DPWA DPWA DPWA	$ \begin{array}{ccc} \gamma N \to & \pi N \\ \gamma N \to & \pi N \\ \gamma N \to & \pi N \\ \gamma N \to & \pi N \end{array} $ (fit 1)
VALUE (GeV ^{-1/2}) -0.139±0.011 OUR EST -0.140±0.010 -0.124±0.009 -0.158±0.003	DOCUMENT ID ARNDT AWAJI FUJII ARAI ARAI	96 81 81 80 80	IPWA DPWA DPWA DPWA DPWA	$ \gamma N \to \pi N fit 1) \gamma N \to \pi N (fit 2) $
$VALUE$ (GeV $^{-1/2}$) -0.139 ± 0.011 OUR EST -0.140 ± 0.010 -0.124 ± 0.009 -0.158 ± 0.003 -0.147 ± 0.008 -0.148 ± 0.009	DOCUMENT ID ARNDT AWAJI FUJII ARAI ARAI CRAWFORD	96 81 81 80 80	IPWA DPWA DPWA DPWA DPWA	$ \begin{array}{ccc} \gamma N \to & \pi N \\ \gamma N \to & \pi N \end{array} $
VALUE (GeV $^{-1/2}$) -0.139 \pm 0.011 OUR EST -0.140 \pm 0.010 -0.124 \pm 0.009 -0.158 \pm 0.003 -0.147 \pm 0.008 -0.148 \pm 0.009 -0.148 \pm 0.015 -0.118 \pm 0.011	DOCUMENT ID ARNDT AWAJI FUJII ARAI ARAI CRAWFORD TAKEDA	96 81 81 80 80 80	IPWA DPWA DPWA DPWA DPWA DPWA	$\begin{array}{cccc} \gamma N \to \pi N \\ \gamma N \to \pi N \\ \gamma N \to \pi N \\ \gamma N \to \pi N & (\text{fit 1}) \\ \gamma N \to \pi N & (\text{fit 2}) \\ \gamma N \to \pi N \\ \gamma N \to \pi N & \end{array}$
VALUE (GeV $^{-1/2}$) -0.139 \pm 0.011 OUR EST -0.140 \pm 0.010 -0.124 \pm 0.009 -0.158 \pm 0.003 -0.147 \pm 0.008 -0.148 \pm 0.009 -0.148 \pm 0.015 -0.118 \pm 0.011	DOCUMENT ID ARNDT AWAJI FUJII ARAI ARAI CRAWFORD TAKEDA	96 81 81 80 80 80	IPWA DPWA DPWA DPWA DPWA DPWA	$\begin{array}{cccc} \gamma N \to \pi N \\ \gamma N \to \pi N \\ \gamma N \to \pi N \\ \gamma N \to \pi N & (\text{fit 1}) \\ \gamma N \to \pi N & (\text{fit 2}) \\ \gamma N \to \pi N \\ \gamma N \to \pi N & \end{array}$
VALUE (GeV ^{-1/2}) -0.139±0.011 OUR EST -0.140±0.010 -0.124±0.009 -0.158±0.003 -0.147±0.008 -0.148±0.009 -0.148±0.015 -0.118±0.011 • • We do not use the	DOCUMENT ID ARNDT AWAJI FUJII ARAI ARAI CRAWFORD TAKEDA	96 81 80 80 80 80 80	IPWA DPWA DPWA DPWA DPWA DPWA DPWA s, limits,	$\begin{array}{cccc} \gamma N \to \pi N \\ \gamma N \to \pi N \\ \gamma N \to \pi N \\ \gamma N \to \pi N & (\text{fit 1}) \\ \gamma N \to \pi N & (\text{fit 2}) \\ \gamma N \to \pi N \\ \gamma N \to \pi N & \end{array}$
$\begin{array}{l} \text{VALUE} (\text{GeV}^{-1/2}) \\ \textbf{-0.139 \pm 0.011} \text{OUR EST} \\ -0.140 \pm 0.010 \\ -0.124 \pm 0.009 \\ -0.158 \pm 0.003 \\ -0.147 \pm 0.008 \\ -0.148 \pm 0.009 \\ -0.148 \pm 0.009 \\ -0.144 \pm 0.015 \end{array}$	DOCUMENT ID ARNDT AWAJI FUJII ARAI ARAI CRAWFORD TAKEDA following data for average	96 81 80 80 80 80 80 80	IPWA DPWA DPWA DPWA DPWA DPWA DPWA S, limits,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

N(1520) FOOTNOTES

- ¹LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ² From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix
- amplitudes. ³ See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

- amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams. ⁴ LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. ⁵ LONGACRE 77 considers this coupling to be well determined. ⁶ MUKHOPADHYAY 98 uses an effective Lagrangian approach to analyze η photoproduction data. The *ratio* of the $A_{3/2}$ and $A_{1/2}$ amplitudes is determined, with less model dependence than the amplitudes themselves, to be $A_{3/2}/A_{1/2} = -2.5 \pm 0.5 \pm 0.4$.
- ⁷ Converted to our conventions using M=1528 MeV, $\Gamma=187$ MeV from NOELLE 78.

N(1520) REFERENCES

For early references, see Physics Letters 111B 70 (1982). For very early references, see Reviews of Modern Physics 37 633 (1965).

TIATOR	99	PR C60 035210	L. Tiator et al.	
MUKHQPAD	98	PL 8444 7	N.C. Mukhopadhyay, N. Mathur	
ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workma	in (VPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BŘCO)
BATINIC	95	PR C51 2310	M. Batinic et al.	(BOSK, UCLA)
Aiso	98	PR C57 1004 (erratum)	M. Batinic et al.	, , ,
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
L!	93	PR C47 2759	Z.J. Li et al.	` (VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KÈNT) IJP
Also	84	PR D30 904	D.M. Manley et al.	` (VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
WADA	84	NP B247 313	Y. Wada et al.	(INUS)
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
PDG	82	PL 111B	M. Roos et al.	HELS, CIT, CERN)
AWAJI .	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
FUJII	81	NP B187 53	K. Fujii et al.	(NAGO, OSAK)
ARAI	80	Toronto Conf. 93	I. Arai	` (INUS)
Also	82	NP B194 251	I. Arai, H. Fujii	(INUS)
BRATASHEV	. 80	NP B166 525	A.S. Bratashevsky et al.	(KFTI)
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMŮ, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
ISHII	60	NP B165 189	T. Ishii et al.	(KÝOT, INUS)
TAKEDA	80	NP B168 17	H. Takeda et al.	(TOKY, INUS)
BAKER	79	NP B156 93	R.D. Baker et al.	(RHEL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Parson	is (GLAS)
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
NOELLE	78	PTP 60 778	P. Noelle	(NAGO)
BERENDS	77	NP B136 317	F.A. Berends, A. Donnachie	(LEID, MCHS) IJP
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau	` (SACL) IJP
Also	76	NP B108 365	J. Dolbeau et al.	(SACL) IJP
FELLER	76	NP B104 219	P. Feller et al.	(NAGO, ÒSAK) IJP
FELTESSE	75	NP B93 242	J. Feltesse et al.	` (SACL) IJP
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	(LBL, SLAC) IJP

Baryon Particle Listings N(1535)

$N(1535) S_{11}$

 $I(J^P) = \frac{1}{2}(\frac{1}{2})$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics

N(1535) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID TECN COMMENT
1520 to 1555 (≈ 1535)	OUR ESTIMATE
1534 ± 7	MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$
1550 ± 40	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$
1526± 7	HOEHLER 79 IPWA $\pi N \rightarrow \pi N$
• • • We do not use th	ne following data for averages, fits, limits, etc. • • •
1532± 5	ARMSTRONG 998 DPWA $\gamma^* p \rightarrow p \eta$
1549± 2	ABAEV 96 DPWA $\pi^- p \rightarrow \eta n$
1525±10	ARNDT 96 IPWA $\gamma N \rightarrow \pi N$
1535	ARNDT 95 DPWA $\pi N \rightarrow N \pi$
1542± 6	BATINIC 95 DPWA $\pi N \rightarrow N \pi$, $N \eta$
1537	BATINIC 95B DPWA $\pi N \rightarrow N \pi$, $N \eta$
1544±13	KRUSCHE 95 DPWA $\gamma p \rightarrow p \eta$
1518	LI 93 IPWA $\gamma N \rightarrow \pi N$
1513	CRAWFORD 80 DPWA $\gamma N \rightarrow \pi N$
1511	BARBOUR 78 DPWA $\gamma N \rightarrow \pi N$
1500	BERENDS 77 IPWA $\gamma N \rightarrow \pi N$
L547± 6	BHANDARI 77 DPWA Uses Nn cusp
1520	¹ LONGACRE 77 IPWA $\pi N \rightarrow N \pi \pi$
510	² LONGACRE 75 IPWA $\pi N \rightarrow N \pi \pi$

N(1535) BREIT-WIGNER WIDTH

	E (MeV)	DOCUMENT ID		TECN	COMMENT
100	to 250 (≈ 150) OUR ESTIM	IATE			
148.2	2± 8.1	GREEN	97	DPWA	$\pi N \rightarrow \pi N, \eta N$
151	±27	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
240	±80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
120	± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• •	 We do not use the following 	data for averages	i, fits	, limits,	etc. • • •
154	±20	ARMSTRONG	998	DPWA	$\gamma^* p \rightarrow pn$
212	±20	³ KRUSCHE	97	DPWA	$\gamma N \rightarrow \eta N$
169	±12	ABAEV	96	DPWA	$\pi^- \rho \rightarrow \eta \rho$
103	± 5	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
66		ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
150	±15	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$
145		BATINIC	95B	DPWA	$\pi N \rightarrow N \pi, N \eta$
200	±40	KRUSCHE	95	DPWA	$\gamma \rho \rightarrow \rho \eta$
84		LI	93	IPWA	$\gamma N \rightarrow \pi N$
136		CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
180		BAKER	79	DPWA	$\pi^- \rho \rightarrow n\eta$
132		BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
57		BERENDS	77	IPWA	$\gamma N \rightarrow \pi N$
139	±33	BHANDARI	77	DPWA	Uses N η cusp
135		1 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
100		² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1535) POLE POSITION

REAL PART	
VALUE (MeV)	

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1495 to 1515 (≈ 1505) OUR	ESTIMATE			
1510±10	⁴ ARNDT	98	DPWA	$\pi N \rightarrow \pi N, \eta N$
1501	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1487	⁵ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1510 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the fol	lowing data for average	s, fit	s, limits,	etc. • • •
1499	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
1496 or 1499	⁶ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1519± 4	BHANDARI	77	DPWA	Uses N η cusp
1525 or 1527	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY PART	•			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
90 to 250 (≈ 170) OUR ES	TIMATE			
170±30	⁴ ARNDT	98	DPWA	$\pi N \rightarrow \pi N, \eta N$

20 20 200 (10 21 0) 01	711 LO 1 11717 11 L		
170±30	⁴ ARNDT	98	DPWA $\pi N \rightarrow \pi N, \eta N$
124	ARNDT	95	DPWA $\pi N \rightarrow N \pi$
260 ± 80	CUTKOSKY	80	IPWA $\pi N \rightarrow \pi N$
• • We do not use to	he following data for average	s, fit	s, limits, etc. • • •
110			DPWA $\pi N \rightarrow \pi N$ Soln SM90
103 or 105	⁶ LONGACRE	78	IPWA $\pi N \rightarrow N \pi \pi$
140±32	BHANDARI	77	DPWA Uses Nn cusp
135 or 123	¹ LONGACRE	77	IPWA $\pi N \rightarrow N \pi \pi$

N(1535) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
31	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
120±40	CUTKOSKY	80	1PWA	$\pi N \rightarrow \pi N$
• • • We do not use the fo	ollowing data for averages,	, fit	s, limits,	etc. • • •
23	ARNDT	91	DPWA	$\pi{\it N}\rightarrow\pi{\it N}$ Soin SM90
PHASE €				
VALUE (°)	DOCUMENT ID		TECN	COMMENT

PHASE #				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
-12	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
+15±45	CUTKO5KY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
-13	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90

N(1535) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

Nπ	35-55 %	
Νη	30-55 %	
Νππ	1-10 %	
$\Delta\pi$	<1 %	
Δ (1232) π , <i>D</i> -wave		
Nρ	<4 %	
$N\rho$, $S=1/2$, S -wave		
$N\rho$, $S=3/2$, D -wave		
$N(\pi\pi)_{S-\text{wave}}^{I=0}$	<3 %	
$N(1440)\pi$	<7 %	
Ργ	0.15-0.35 %	
$p\gamma$, helicity=1/2	0.15-0.35 %	
ηγ	0.004-0.29 %	
$n\gamma$, helicity=1/2	0.004-0.29 %	
	$N\eta$ $N\pi\pi$ $\Delta\pi$ $\Delta(1232)\pi$, D -wave $N\rho$ $N\rho$, $S=1/2$, S -wave $N\rho$, $S=3/2$, D -wave $N(\pi\pi)_{S\text{-wave}}^{t=0}$ $N(1440)\pi$ $P\gamma$ $p\gamma$, helicity= $1/2$	$N\eta$ 30–55 % $N\pi\pi$ 1–10 % $\Delta\pi$ <1 % $\Delta(1232)\pi$, D -wave $N\rho$ <4 % $N\rho$, $S=1/2$, S -wave $N\rho$, $S=3/2$, D -wave $N(\pi\pi)_{S-\text{wave}}^{I=0}$ <3 % $N(1440)\pi$ <7 % $P\gamma$ 0.15–0.35 % $P\gamma$, helicity=1/2 0.15–0.35 % $P\gamma$ 0.004–0.29 %

N(1535) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ ₁ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT
0.35 to 0.55 OUR E	STIMATE				
0.394 ± 0.009		GREEN	97	DPWA	$\pi N \rightarrow \pi N, \eta N$
0.51 ±0.05		MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.50 ±0.10		CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.38 ±0.04		HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not us	e the followin	g data for average	s, fit	s, límits,	etc. • • •
0.31		ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
0.34 ±0.09		BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$
0.297 ± 0.026		BHANDARI	77	DPWA	Uses Nη cusp
$\Gamma(N\eta)/\Gamma_{\text{total}}$					Γ ₂ /Γ
VALUE	C1 2/	DOCUMENT ID		TECH	COMMENT

VALUE CL% DOCUMENT ID TECN COMMENT +0.30 to 0.55 OUR ESTIMATE • • • We do not use the following data for averages, fits, limits, etc. • • •

		-	-			
>	0.45	95 7	ARMSTRONG	99B	DPWA	$p(e,e'p)\eta$
	0.568 ± 0.011		GREEN	97	DPWA	$\pi N \rightarrow \pi N, \eta N$
	0.59 ± 0.02		ABAEV	96	DPWA	$\pi^- p \rightarrow \eta n$
	0.63 ± 0.07		BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N_{\pi}$	DOCUMENT IE	,	TECN	$(\Gamma_1\Gamma_2)^{\frac{1}{2}}$
+0.44 to +0.50 OUR ES			72574	COMMENT
$+0.47\pm0.02$	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
• • • We do not use the	following data for averag	es, fit	s, limits,	etc. • • •
+0.33	BAKER	79	DPWA	$\pi^- p \rightarrow \pi \eta$
+0.48	FELTESSE	75	DPWA	1488-1745 MeV

Note: Signs of couplings from $\pi N \to N \pi \pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)~5_{31}$ coupling to $\Delta(1232)\pi$.

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(1)$.535) → ⊿(123	2) π	, D-wav	<i>r</i> e	(Г₁Г₅) ^⅓ /Г
VALUE	DOCUMENT ID		TEÇN	COMME	VT
-0.04 to +0.06 OUR ESTIMATE	: -				
$+0.00\pm0.04$					πΝ&Νππ
0.00	¹ LONGACRE	77	IPWA	$\pi N \rightarrow$	$N\pi\pi$
+0.06	² LONGACRE	75	IPWA	$\pi N \rightarrow$	Νππ

-0.14 to -0.06 OUR EST	DOCUMENT ID		/LCIV	COMMENT
-0.10±0.03	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
-0.10	1 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
- 0.09	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_I \Gamma_f)^{1/2}/\Gamma_{ ext{total}}$ in $N\pi$ –	DOCUMENT ID)/=0 5-w	ave TECN	$(\Gamma_1\Gamma_9)^{\frac{1}{12}}$
+0.03 to +0.13 OUR EST	IMATE			
$+0.07\pm0.04$	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
+0.08	1 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
+ 0.09	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}}/\Gamma_{ ext{total}}$ in $N\pi$ —	→ N(1535) → N(144 DOCUMENT ID	0)π	TECN	$(\Gamma_1\Gamma_{10})^{\frac{1}{12}}$
+0.10±0.05	MANLEY	92		$\pi N \rightarrow \pi N \& N \pi \pi$
,	5) PHOTON DECA		APLITU	JDES
$N(1535) ightarrow p \gamma$, helicit $_{ m VALUE(GeV^{-1/2})}$	ty-1/2 amplitude A _{1/}	_	TECN	COMMENT
+0.090 ±0.030 OUR ES	TIMATE		12017	mineri
$0.120 \pm 0.011 \pm 0.015$	³ KRUSCHE	97	DPWA	$\gamma N \rightarrow \eta N$
0.060 ± 0.015	ARNDT	96		
0.097 ±0.006	BENMERROL		DPWA	$\gamma N \rightarrow N \eta$
0.095 ± 0.011	⁸ BENMERROL	J91		$\gamma p \rightarrow p \eta$
0.053 ±0.015	CRAWFORD			$\gamma N \rightarrow \pi N$
0.077 ±0.021	ILAWA	81		$\gamma N \rightarrow \pi N$
0.083 ±0.007	ARAI	80		$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.080 ±0.007 0.029 ±0.007	ARAI BRATASHEV.	80		$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.065 ±0.007	CRAWFORD			$\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$
0.0704±0.0091	ISHII	80		Compton scattering
• • We do not use the form				
0.110 to 0.140	KRUSCHE	95		$\gamma p \rightarrow p \eta$
0.125 ±0.025	KRUSCHE		IPWA	$\gamma d \rightarrow \eta N(N)$
0.061 ±0.003	LI	93	IPWA	
0.055	WADA	84		Compton scattering
+0.082 ±0.019	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
0.046	9 NOELLE	78		$\gamma N \rightarrow \pi N$
+0.034 '	BERENDS	77		$\gamma N \rightarrow \pi N$
+0.070 ±0.004	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
$N(1535) \rightarrow n\gamma$, helicit	-•	_		
VALUE (GeV ^{-1/2}) -0.046±0.027 OUR ESTI				
-0.020 ± 0.035	ARNDT	96		$\gamma N \rightarrow \pi N$
0.035 ±0.014 -0.062 ±0.003	ILAWA IIUF	81		$\gamma N \rightarrow \pi N$
-0.062±0.003 -0.075±0.019	ARAI	81 80		$\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.075±0.019 -0.075±0.018	ARAI	80		$\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.013±0.016 -0.098±0.026	CRAWFORD	80		$\gamma N \rightarrow \pi N \text{ (iii. 2)}$ $\gamma N \rightarrow \pi N$
-0.011 ± 0.017	TAKEDA	80		$\gamma N \rightarrow \pi N$
• • We do not use the form			s, limits,	etc. • • •
-0.100 ± 0.030	KRUSCHE		IPWA	$\gamma d \rightarrow \eta N(N)$
-0.046 ± 0.005	LI			$\gamma N \rightarrow \pi N$
-0.112 ± 0.034	BARBOUR	78		$\gamma N \rightarrow \pi N$
-0.048	9 NOELLE	78		$\gamma N \rightarrow \pi N$
$N(1535) \rightarrow N\gamma$, ratio				

N(1535) FOOTNOTES

MUKHOPAD... 958 IPWA

- ¹LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ² From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix

 -0.84 ± 0.15

- ² From method II of LONGACRE 75: eyebali fits with Dien-Vignor amplitudes. Signature of the mass fixed at 1544 MeV. ⁴ ARNDT 98 also lists pole residues, which display more model dependence than do the associated pole positions. ⁵ See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams. ⁶ LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. ⁷ The best value ARMSTRONG 998 obtains is \simeq 0.55; this assumes S_{11} dominance in the reaction $\sigma(e, e^{\ell}p)$ η at $Q^2 = 4$ (GeV/c)².
- 8 BENMERROUCHE 91 uses an effective Lagrangian approach to analyze η photoproduc-

tion data. 9 Converted to our conventions using M=1548 MeV, $\Gamma=73$ MeV from NOELLE 78.

N(1535) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

ARMSTRONG			C.S. Armstrong et al.	
ARNDT	98	PR C58 3636	R.A. Arndt et al.	
GREEN	97	PR C55 R2167	A.M. Green, S. Wycech	(HELS, WINR)
KRUSCHE	97	PL B397 171		GIES, RPI, SASK)
ABAEV	96	PR C53 385	V.V. Abaev, B.M.K. Nefkens	(UCLA)
ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workman	(VPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BRCO)
BATINIC	95	PR C51 2310	M. Batinic et al.	(BOSK, UCLA)
Also	98	PR C57 1004 (erratum)	M. Batinic et al.	
BATINIC	95B	PR C52 2188	M. Batinic, I. Slaus, A. Svarc	(BOSK)
BENMERROU.	95	PR D51 3237	M. Benmerrouche, N.C. Mukhopadhyay, J.	F. Zhang
KRUSCHE	95	PRL 74 3736	B. Krusche et al. (GIES	, MANZ, GLAS+)
KRUSCHE	95C	PL B358 40		MANZ, GLAS+)
MUKHOPAD	95B	PL B364 1	N.C. Mukhopadhyay, J.F. Zhang, M. Benn	
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li et al.	(VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
BENMERROU.		PRL 67 1070	M. Benmerrouche, N.C. Mukhapadhyay	(RPI)
WADA	84	NP B247 313	Y. Wada et al.	(INUS)
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
PDG	82	PL 111B		IELS, CIT, CERN)
ILAWA	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365		
FUJII	81		K. Fujii et al.	(NAGO)
ARAI		NP B187 53	K. Fujii et al.	(NAGO, OSAK)
	80	Toronto Conf. 93	I. Araí	(INUS)
Also	82	NP B194 251	I. Arai, H. Fujii	(INUS)
BRATASHEV		NP B166 525	A.S. Bratashevsky et al.	(KFTI)
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
ISHII	80	NP B165 189	T. Ishii et al.	(KYOT, INUS)
TAKEDA	80	NP B168 17	H. Takeda et al.	(TOKY, INUS)
BAKER	79	NP B156 93	R.D. Baker et al.	(RHEL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Parsons	
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
NOELLE	78	PTP 60 778	P. Noelle	(NAGO)
BERENDS	77	NP B136 317	F.A. Berends, A. Donnachie	(LEID, MCHS) IJP
BHANDARI	77	PR D15 192	R. Bhandari, Y.A. Chao	(CMU) IJP
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau	(SACL) IJP
Also	76	NP B108 365	J. Dolbeau et al.	(SACL) IJP
FELLER	76	NP B104 219	P. Feller et al.	(NAGO, OSAK) IJP
FELTESSE	75	NP B93 242	J. Feltesse et al.	(SACL) IJP
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	(LBL, SLAC) IJP
			•	, ,

$N(1650) S_{11}$

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

N(1650) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1640 to 1680 (≈ 1650)	OUR ESTIMATE			
1659± 9	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1650 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1670± 8	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
 • • We do not use t 	he following data for average	s, fit	s, limits,	etc. • • •
1677 ± 8	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1667	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1712	¹ ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1669±17	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
1713±27	² BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$
1674	LI	93	IPWA	$\gamma N \rightarrow \pi N$
1688	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1672	MUSETTE	80	IPWA	$\pi^- p \rightarrow \Lambda K^0$
1680	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1680	BAKER	78	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1694	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1700 ± 5	3 BAKER	77	IPWA	$\pi^- p \rightarrow \Lambda K^0$
1680	3 BAKER	77	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1700	⁴ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1675	KNASEL	75	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1660	⁵ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1650) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMEN	IT
145 t	0 190 (≈ 150) OUR ESTIMA	TE				
167.9±	9.4	GREEN	97	DPWA	$\pi N \rightarrow$	π N, η N
173 ±	:12	MANLEY	92	IPWA	$\pi N \rightarrow$	πΝ & Νππ
150 ±	:40	CUTKOSKY	80	IPWA	$\pi N \rightarrow$	πN
180 ±	: 20	HOEHLER	79	IPWA	$\pi N \rightarrow$	πN

Baryon Particle Listings N(1650)

160 ±12	ARNDT	96	IPWA $\gamma N \rightarrow \pi N$
90	ARNDT	95	DPWA $\pi N \rightarrow N \pi$
184	¹ ARNDT	95	DPWA $\pi N \rightarrow N \pi$
215 ± 32	BATINIC	95	DPWA $\pi N \rightarrow N\pi$, $N\eta$
279 ± 54	² BATINIC	95	DPWA $\pi N \rightarrow N\pi$, $N\eta$
225	LI	93	IPWA $\gamma N \rightarrow \pi N$
183	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$
179	MUSETTE	80	IPWA $\pi^- p \rightarrow \Lambda K^0$
120	SAXON	80	DPWA $\pi^- p \rightarrow \Lambda K^0$
90	BAKER	78	DPWA $\pi^- p \rightarrow \Lambda K^0$
193	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$
130 ±10	³ BAKER	77	IPWA $\pi^- \rho \rightarrow \Lambda K^0$
90	³ BAKER	77	DPWA $\pi^- \rho \rightarrow \Lambda K^0$
170	⁴ LONGACRE	77	IPWA $\pi N \rightarrow N \pi \pi$
170	KNASEL	75	DPWA $\pi^- p \rightarrow \Lambda K^0$
130	⁵ LONGACRE	75	IPWA $\pi N \rightarrow N \pi \pi$

N(1650) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1640 to 1680 (≈ 1660) (OUR ESTIMATE			
1660±10	⁶ ARNDT	98	DPWA	$\pi N \rightarrow \pi N, \eta N$
1673	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1689	¹ ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1670	⁷ HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
1640 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	e following data for average	es, fit	s, limits,	etc. • • •
1657	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
1648 or 1651	^B LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1699 or 1698	⁴ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY PA	ART			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
150 to 170 (≈ 160) OUF	RESTIMATE			
140 ± 20	⁶ ARNDT	98	DPWA	$\pi N \rightarrow \pi N, \eta N$
82	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
192	¹ ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
163	⁷ HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
150 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
	e following data for average	es, fit	s, limits,	etc. • • •
• • • We do not use the				
• • • We do not use the	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
*	= = =			$\pi N \rightarrow \pi N \text{ Soln SM90}$ $\pi N \rightarrow N \pi \pi$

N(1650) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMME	VT
22	ARNDT	95	DPWA	$\pi N \rightarrow$	Νπ
72	¹ ARNDT	95	DPWA	$\pi N \rightarrow$	Nπ
39	HOEHLER	93	ARGD	$\pi N \rightarrow$	πN
60 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow$	πN
• • • We do not use the follow	ing data for average	s, fit	s, limits,	etc. • •	•
54	ARNDT	91	DPWA	$\pi N \rightarrow$	πN Soln SM90
DUACE A					

PHASE

VALUE (°)	DOCUMENT ID		TECN	COMMENT
29	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
- 85	¹ ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
- 37	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
-75 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
38	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90

N(1650) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
Γ1	Νπ	55-90 %	
Γ_2	$N\eta$	3~10 %	
Гз	ΛK	3-11 %	
Г ₃ Г ₄	ΣΚ		
Γ ₅	Νππ	10-20 %	
Γ_6	$\Delta\pi$	1-7 %	
Γ7	$\Delta(1232)\pi$, <i>D</i> -wave		
Γ8	Nρ	4-12 %	
و٦	$N\rho$, $S=1/2$, S-wave		
Γ ₁₀	$N\rho$, $S=3/2$, D-wave		
Γ11	$N(\pi\pi)_{S-\text{wave}}^{I=0}$	<4 %	
Γ ₁₂	$N(1440)\pi$	<5 %	

Γ13	p.v.	0.04-0.18 %	
Γ ₁₄	$p\gamma$, helicity=1/2	0.04-0.18 %	
Γ ₁₅	ηγ	0.003-0.17 %	
Γ ₁₆	$n\gamma$, helicity=1/2	0.003-0.17 %	

N(1650) BRANCHING RATIOS

Γ(Nπ)/Γ _{total}	DOCUMENT ID		TECN	COMMENT	Γ_1/Γ
0.55 to 0.90 OUR ESTIMATE	<u> </u>	_			
0.735±0.011	GREEN	97	DPWA	$\pi N \rightarrow \pi N, \eta I$	v
0.89 ±0.07	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \&$	Νππ
0.65 ±0.10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
0.61 ± 0.04	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following	data for average	s, fit:	s, limits,	etc. • • •	
0.99	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$	
0.27	1 ARNDT	95	DPWA	$\pi N \rightarrow N \pi$	
0.94 ±0.07	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N$	η
0.49 ±0.21	² BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N$	η
$\Gamma(N\eta)/\Gamma_{\text{total}}$					Г2/Г
VALUE	DOCUMENT ID		TECN	COMMENT	
• • We do not use the following					
0.06 ± 0.05	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N$	11
0.02±0.03				$\pi N \rightarrow N\pi, N$	
0.02 ± 0.03	BATIME	,,	D. 1171	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(1)$	650) → Nη DOCUMENT ID		TECN	(F ₁	Γ ₂) ¹ //Γ
VALUE			TECIV	COMMENT	
	data for average	. 612	c limite	otc	
• • We do not use the following		-			
• • We do not use the following -0.09	data for average 9 BAKER	-			
0.09	9 BAKER 650) → <i>AK</i>	79	DPWA	π ⁻ ρ → nη (Γ ₁	.Γ₃) ^½ /Γ
-0.09 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(1)$ VALUE	9 BAKER	79	DPWA	π ⁻ ρ → nη (Γ ₁	Γ ₃) ^½ /Γ
-0.09 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{12}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(1)$	9 BAKER 650) → AK DOCUMENT ID	79	DPWA	$π^-p \rightarrow n\eta$ (Γ ₁	Γ ₃)½/Γ
$ \frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(1) }{\frac{VALUE}{-0.27} \text{ to } -0.17 \text{ OUR ESTIMATE} } $	9 BAKER 650) → <i>AK</i>	79 83	DPWA TECN DPWA	$\pi^- p \to n\eta$ $\frac{(\Gamma_1)^n}{COMMENT}$ $\pi^- p \to \Lambda K^0$.F ₃) ¹ //
-0.09 $ (\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(1) $ $ \frac{VALUE}{-0.27 \text{ to } -0.17 \text{ OUR ESTIMATE}} $ -0.22	9 BAKER 650) → AK DOCUMENT ID BELL SAXON	79 83 80	DPWA TECN DPWA DPWA	$\pi^{-} \rho \to n \eta$ $\frac{(\Gamma_{1})^{2}}{COMMENT}$ $\pi^{-} \rho \to \Lambda K^{0}$ $\pi^{-} \rho \to \Lambda K^{0}$.F ₃) ¹ //
-0.09 $ (\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1) $ $ \frac{VALUE}{-0.27 \text{ to } -0.17 \text{ OUR ESTIMATE}} $ $ -0.22 $ $ -0.22 $ $ \cdot \cdot \cdot \text{ We do not use the following} $	9 BAKER 650) → ΛΚ DOCUMENT ID BELL SAXON data for average	79 83 80	DPWA TECN DPWA DPWA	$\pi^{-} \rho \to n \eta$ $\frac{(\Gamma_{1})^{2}}{COMMENT}$ $\pi^{-} \rho \to \Lambda K^{0}$ $\pi^{-} \rho \to \Lambda K^{0}$	Γ ₃) ^½ /Γ
-0.09 $ (\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1) $ $ \frac{VALUE}{-0.27 \text{ to } -0.17 \text{ OUR ESTIMATE}} $ $ -0.22 $ $ -0.22 $ $ \cdot \cdot \cdot \text{ We do not use the following} $	9 BAKER 650) → ΛΚ DOCUMENT ID BELL SAXON data for average 10 BAKER	83 80 es, fit	DPWA DPWA DPWA s, limits,	$\pi^{-} p \rightarrow n \eta$ $\begin{array}{c} (\Gamma_{1} \\ \underline{COMMENT} \\ \pi^{-} p \rightarrow \Lambda K^{0} \\ \pi^{-} p \rightarrow \Lambda K^{0} \\ \text{etc.} \bullet \bullet \bullet \\ \text{See SAXON 80} \end{array}$	
-0.09 $ (\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(1) $ $ \frac{VALUE}{-0.27 \text{ to } -0.17 \text{ OUR ESTIMATE}} $ -0.22 -0.22 • • • We do not use the following	9 BAKER 650) → AK DOCUMENT ID BELL SAXON data for average 10 BAKER 3 BAKER	83 80 es, fit •78	DPWA DPWA s, limits, DPWA IPWA	$\begin{array}{c} \pi^- p \rightarrow n \eta \\ \hline & \{\Gamma_1 \\ \hline COMMENT \\ \hline \pi^- p \rightarrow \Lambda K^0 \\ \pi^- p \rightarrow \Lambda K^0 \\ \text{etc.} \bullet \bullet \\ \hline \text{See SAXON 80} \\ \pi^- p \rightarrow \Lambda K^0 \\ \end{array}$	
-0.09 $ \frac{\left(\Gamma_{i}\Gamma_{f}\right)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1) }{N\pi + N(1)} $ $ \frac{VALUE}{-0.27 \text{ to } -0.17 \text{ OUR ESTIMATE}}{-0.22} $ -0.22 -0.25	9 BAKER 650) → ΛΚ DOCUMENT ID BELL SAXON data for average 10 BAKER	83 80 es, fit •78	DPWA DPWA s, limits, DPWA IPWA	$\pi^{-} p \rightarrow n \eta$ $\begin{array}{c} (\Gamma_{1} \\ \underline{COMMENT} \\ \pi^{-} p \rightarrow \Lambda K^{0} \\ \pi^{-} p \rightarrow \Lambda K^{0} \\ \text{etc.} \bullet \bullet \bullet \\ \text{See SAXON 80} \end{array}$	
-0.09	9 BAKER 650) → AK DOCUMENT ID BELL SAXON data for average 10 BAKER 3 BAKER	79 83 80 es, fit •78 77	DPWA TECN DPWA DPWA s, limits, DPWA IPWA DPWA	$\begin{array}{c} \pi^- p \rightarrow n \eta \\ \hline & \{\Gamma_1 \\ \hline COMMENT \\ \hline \pi^- p \rightarrow \Lambda K^0 \\ \pi^- p \rightarrow \Lambda K^0 \\ \text{etc.} \bullet \bullet \\ \hline \text{See SAXON 80} \\ \pi^- p \rightarrow \Lambda K^0 \\ \end{array}$	
-0.09 $(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$ $\frac{VALUE}{-0.27 \text{ to } -0.17 \text{ OUR ESTIMATE}}$ -0.22 -0.22 ••• We do not use the following -0.25 -0.23 ± 0.01 -0.25 0.12 $(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$	9 BAKER 650) → AK DOCUMENT ID. BELL SAXON data for average 10 BAKER 3 BAKER 3 BAKER KNASEL 650) → ∑K	83 80 es, fit •78 77 77	DPWA DPWA s, limits, DPWA IPWA DPWA	$\pi^{-} p \rightarrow n\eta$ $\frac{(\Gamma_{1}}{COMMENT}$ $\pi^{-} p \rightarrow \Lambda K^{0}$ $\pi^{-} p \rightarrow \Lambda K^{0}$ etc. • • • See SAXON 80 $\pi^{-} p \rightarrow \Lambda K^{0}$ $(\Gamma_{1}$	
-0.09 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{12}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$ $\frac{VALUE}{-0.27 \text{ to } -0.17 \text{ OUR ESTIMATE}}{-0.22}$ -0.22 -0.22 -0.22 -0.25 -0.25 -0.25 -0.12 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{12}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$ $\frac{VALUE}{VALUE}$	9 BAKER 650) → ΛΚ DOCUMENT ID BELL SAXON (data for average) 10 BAKER 3 BAKER 3 BAKER KNASEL 650) → ΣΚ DOCUMENT ID	83 80 •78 77 77 75	DPWA TECN DPWA DPWA s, limits, DPWA IPWA DPWA	$\pi^{-} p \rightarrow n\eta$ $\frac{(\Gamma_{1}}{COMMENT}$ $\pi^{-} p \rightarrow \Lambda K^{0}$ $\pi^{-} p \rightarrow \Lambda K^{0}$ etc. • • See SAXON 80 $\pi^{-} p \rightarrow \Lambda K^{0}$ (Γ_{1}) $COMMENT$	
-0.09 $ (\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1) $ $ \frac{VALUE}{-0.27 \text{ to } -0.17 \text{ OUR ESTIMATE}} $ -0.22 -0.22 -0.22 -0.25 -0.23 ± 0.01 -0.25 -0.12 $ (\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1) $ $ \frac{VALUE}{VALUE} $ • • • We do not use the following	9 BAKER 650) → ΛΚ DOCUMENT ID BELL SAXON (data for average 10 BAKER 3 BAKER 3 BAKER KNASEL 650) → ΣΚ DOCUMENT ID (data for average)	83 80 es, fit •78 77 77 75	DPWA TECN DPWA DPWA IPWA DPWA DPWA DPWA S, limits,	$\pi^{-} p \rightarrow n\eta$ $\frac{(\Gamma_{1}}{COMMENT}$ $\pi^{-} p \rightarrow \Lambda K^{0}$ $\pi^{-} p \rightarrow \Lambda K^{0}$ etc. • • See SAXON 80 $\pi^{-} p \rightarrow \Lambda K^{0}$ (Γ_{1}) $\frac{COMMENT}{COMMENT}$ etc. • •	
-0.09 $(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$ $\frac{VALUE}{-0.27 \text{ to } -0.17 \text{ OUR ESTIMATE}}$ -0.22 -0.22 • • • We do not use the following -0.25 -0.23 ± 0.01 -0.25 0.12 $(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$ $\frac{VALUE}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$ $\frac{VALUE}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$	9 BAKER 650) → ΛΚ DOCUMENT ID BELL SAXON data for average 10 BAKER 3 BAKER KNASEL 650) → ΣΚ DOCUMENT ID data for average LIVANOS	83 80 es, fit 77 77 75	DPWA TECN DPWA DPWA s, limits, DPWA DPWA TECN s, limits,	$\pi^{-} p \rightarrow n\eta$ $\frac{(\Gamma_{1})^{-}}{COMMENT}$ $\pi^{-} p \rightarrow \Lambda K^{0}$ $\pi^{-} p \rightarrow \Lambda K^{0}$ etc. • • • See SAXON 80 $\pi^{-} p \rightarrow \Lambda K^{0}$	
-0.09 $(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$ $\frac{VALUE}{-0.27 \text{ to } -0.17 \text{ OUR ESTIMATE}}$ -0.22 -0.22 • • • We do not use the following -0.25 -0.23 ± 0.01 -0.25 0.12 $(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$ $\frac{VALUE}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$ $\frac{VALUE}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1)$	9 BAKER 650) → ΛΚ DOCUMENT ID BELL SAXON (data for average 10 BAKER 3 BAKER 3 BAKER KNASEL 650) → ΣΚ DOCUMENT ID (data for average)	83 80 95, fitt 77 77 75 80 75	DPWA TECN DPWA DPWA s, limits, DPWA DPWA TECN s, limits,	$\pi^{-} p \rightarrow n\eta$ $\frac{(\Gamma_{1})^{-}}{\pi^{-} p \rightarrow \Lambda K^{0}}$ $\pi^{-} p \rightarrow \Lambda K^{0}$ etc. • • • See SAXON 80 $\pi^{-} p \rightarrow \Lambda K^{0}$	

Note: Signs of couplings from $\pi\,N \to N\pi\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)~S_{31}$ coupling to $\Delta(1232)\pi$.

ALUE	$\pi \rightarrow N(1650) \rightarrow \Delta(123)$		TECN	COMMENT
+0.15 to 0.23 OUR ES				
+0.12±0.04	MANLEY			$\pi N \rightarrow \pi N \& N \pi \pi$
+0.29	4,12 LONGACRE			
+0.15	⁵ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

$(\Gamma_{I}\Gamma_{I})^{\frac{1}{12}}/\Gamma_{\text{total}} \text{ in } N_{\pi} \rightarrow \Lambda$	$I(1650) \rightarrow N \rho, S=$	=1/:	2, <i>S</i> -wa	ve	$(\Gamma_1\Gamma_9)^{\gamma_2}$	/Γ
VALUE	DOCUMENT ID				VT	_
±0.03 to ±0.19 OUR E	STIMATE					
-0.01 ± 0.09	MANLEY					
+0.17	^{4,12} LONGACRE	77	IPWA	$\pi N \rightarrow$	Νππ	
-0.16	⁵ LONGACRE	75	IPWA	$\pi N \rightarrow$	Νππ	

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1650) \rightarrow N\rho, S=$	=3/2, <i>D</i> -wa	ive (Γ ₁ Γ ₁₀) ^{1/2} /Γ
VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT
+0.17 to +0.29 OUR ESTIN	IATE		
$+0.16 \pm 0.06$	MANLEY		$\pi N \rightarrow \pi N \& N \pi \pi$
+0.29	^{4,12} LONGACRE	77 IPWA	$\pi N \rightarrow N \pi \pi$

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in N	$\pi \to N(1650) \to N(\pi\pi$)/=0 /S-w	ave		$(\Gamma_1\Gamma_{11})^{\frac{1}{2}}$
VALUE .	DOCUMENT ID			COMMENT	
+0.04 to +0.18 OUR	ESTIMATE				
$+0.12 \pm 0.08$	MANLEY	92	IPWA	$\pi N \rightarrow \pi$	Ν & Νππ
0.00	4,12 LONGACRE	77	IPWA	$\pi N \rightarrow \Lambda$	ίπ π
+0.25	⁵ LONGACRE	75	IPWA	$\pi N \rightarrow \Lambda$	$I \pi \pi$

	→ N(1650) → N(144 <u>DOCUMENT ID</u>			(\(\Gamma_1 \Gamma_{12}\) \(\frac{1}{2}\)
+0.11 ± 0.06	MANLEY	92	IPWA	πN → πN & Nππ
N(16	50) PHOTON DECA	Y AI	MPLITU	JDES
$N(1650) ightarrow ho \gamma$, helici	ty-1/2 amplitude A _{1,}	/2		
VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
+0.053±0.016 OUR ESTI	MATE			
0.069 ± 0.005	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
0.033 ± 0.015	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.050 ± 0.010	IL AWA	81	DPWA	$\gamma N \rightarrow \pi N$
0.065 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.061 ± 0.005	ARAI	80		$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.031 ± 0.017	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
 We do not use the f 	ollowing data for average	s, fit	s, limits,	etc. • • •
0.068 ± 0.003	LI	93	IPWA	$\gamma N \rightarrow \pi N$
0.091	WADA	84		Compton scattering
+0.048±0.017	BARBOUR			$\gamma N \rightarrow \pi N$
+ 0.068 ± 0.009	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
$N(1650) \rightarrow n\gamma$, helici	tv-1/2 amplitude A.	/		
$N(1650) ightarrow n \gamma$, helici $VALUE (GeV^{-1/2})$ -0.015 ± 0.021 OUR ESTI	DOCUMENT ID		TECN	COMMENT
VALUE (GeV ^{-1/2})	DOCUMENT ID			$\frac{COMMENT}{\gamma N \rightarrow \pi N}$
VALUE (GeV ^{-1/2}) -0.015±0.021 OUR ESTI	DOCUMENT ID	96	IPWA	
VALUE (GeV ^{-1/2}) -0.015±0.021 OUR ESTI -0.015±0.005	MATE ARNDT	96 81	IPWA DPWA	$\gamma N \rightarrow \pi N$
VALUE (GeV ^{-1/2}) -0.015±0.021 OUR ESTI -0.015±0.005 -0.008±0.004	MATE ARNDT AWAJI	96 81 81	IPWA DPWA DPWA	$ \begin{array}{ccc} \gamma N \to & \pi N \\ \gamma N \to & \pi N \end{array} $
VALUE (GeV-1/2) -0.015±0.021 OUR ESTI -0.015±0.005 -0.008±0.004 0.004±0.004	MATE ARNDT AWAJI FUJII	96 81 81 80	IPWA DPWA DPWA DPWA	$ \gamma N \to \pi N
VALUE (GeV ^{-1/2}) -0.015 ±0.021 OUR ESTI -0.015 ±0.005 -0.008 ±0.004 0.004 ±0.004 0.010 ±0.020	MATE ARNDT AWA JI FUJII ARAI	96 81 81 80 80	IPWA DPWA DPWA DPWA DPWA	$ \gamma N \to \pi N fit 1) $
WALUE (GeV $^{-1/2}$) -0.015 ±0.021 OUR ESTI -0.015 ±0.005 -0.008 ±0.004 0.004 ±0.004 0.010 ±0.020 0.008 ±0.019	MATE ARNDT AWAJI FUJII ARAI ARAI	96 81 81 80 80	IPWA DPWA DPWA DPWA DPWA DPWA	$ \gamma N \to \pi N fit 1) \gamma N \to \pi N (fit 2) $
$\begin{array}{l} \text{VALUE} (\text{GeV}^{-1/2}) \\ = 0.015 \pm 0.021 \text{OUR ESTI} \\ - 0.015 \pm 0.005 \\ - 0.008 \pm 0.004 \\ 0.004 \pm 0.004 \\ 0.010 \pm 0.020 \\ 0.008 \pm 0.019 \\ - 0.068 \pm 0.040 \end{array}$	MATE ARNDT AWAJI FUJII ARAI ARAI CRAWFORD TAKEDA	96 81 81 80 80 80	IPWA DPWA DPWA DPWA DPWA DPWA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
WALUE (GeV $^{-1/2}$) -0.015 ± 0.021 OUR ESTI -0.015 ± 0.005 -0.008 ± 0.004 0.004 ± 0.004 0.010 ± 0.020 0.008 ± 0.019 -0.068 ± 0.040 -0.061 ± 0.041	MATE ARNDT AWAJI FUJII ARAI ARAI CRAWFORD TAKEDA	96 81 80 80 80 80 80	IPWA DPWA DPWA DPWA DPWA DPWA s, limits,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
WALUE (GeV ^{-1/2}) -0.015±0.001 OUR ESTI -0.015±0.005 -0.008±0.004 0.004±0.004 0.010±0.020 0.008±0.019 -0.068±0.040 -0.011±0.011 • • • • We do not use the f	MATE ARNDT AWAJI FUJII ARAI ARAI CRAWFORD TAKEDA following data for average	96 81 80 80 80 80 80	IPWA DPWA DPWA DPWA DPWA DPWA s, limits,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
WALUE (GeV- $1/2$) -0.015 ±0.021 OUR ESTI -0.015 ±0.005 -0.008 ±0.004 0.004 ±0.004 0.010 ±0.020 0.008 ±0.019 -0.068 ±0.040 -0.011 ±0.011 ••• We do not use the f -0.002 ±0.002 -0.045 ±0.024	MATE ARNDT AWAJI FUJII ARAI ARAI CRAWFORD TAKEDA following data for average	96 81 80 80 80 80 es, fit 93 78	IPWA DPWA DPWA DPWA DPWA DPWA S, limits, IPWA DPWA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
WALUE (GeV- $1/2$) -0.015 ±0.021 OUR ESTI -0.015 ±0.005 -0.008 ±0.004 0.004 ±0.004 0.010 ±0.020 0.008 ±0.019 -0.068 ±0.040 -0.011 ±0.011 ••• We do not use the f -0.002 ±0.002 -0.045 ±0.024	MATE ARNDT AWAJI FUJII ARAI ARAI CRAWFORD TAKEDA following data for average	96 81 80 80 80 80 es, fit 93 78	IPWA DPWA DPWA DPWA DPWA DPWA S, limits, IPWA DPWA	$\begin{array}{c} \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \text{ (fit 1)} \\ \gamma N \rightarrow \pi N \text{ (fit 2)} \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \\ \text{etc.} \bullet \bullet \bullet \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \end{array}$
WALUE (GeV- $1/2$) -0.015 ±0.021 OUR ESTI -0.015 ±0.005 -0.008 ±0.004 0.004 ±0.004 0.010 ±0.020 0.008 ±0.019 -0.068 ±0.040 -0.011 ±0.011 ••• We do not use the f -0.002 ±0.002 -0.045 ±0.024	ARNDT AWAJI FUJII ARAI CRAWFORD TAKEDA following data for average LI BARBOUR 7P - AK+	96 81 81 80 80 80 80 80 es, fit	IPWA DPWA DPWA DPWA DPWA DPWA S, limits, IPWA DPWA	$\begin{array}{c} \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \text{ (fit 1)} \\ \gamma N \rightarrow \pi N \text{ (fit 2)} \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \\ \text{etc.} \bullet \bullet \bullet \bullet \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \end{array}$

VALUE (units 10 ⁻³)	DOCUMENT ID		TECN	
• • • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
7.8 ±0.3	WORKMAN	90	DPWA	
8.13	TANABE	89	DPWA	
$p\gamma \rightarrow N(1650) \rightarrow N$	K^+ phase angle $ heta$			(E ₀₊ amplitude)
VALUE (degrees)	DOCUMENT ID		TECN	
\bullet \bullet \bullet We do not use the	following data for average	s, fit	s, limits,	etc. • • •
-107 +3	WORKMAN	90	DPWA	

N(1650) FOOTNOTES

89 DPWA

TANABE

-107.8

 1 ARNDT 95 finds two distinct states. 2 BATINIC 95 finds two distinct states. This second resonance was associated with the $\it N(2090)~5_{11}.$

³ The two BAKER 77 entries are from an IPWA using the Barrelet-zero method and from

- The two BAKER 77 entries are from an IPWA using the Barrelet-zero method and from a conventional energy-dependent analysis. LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

 From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ARNDT 98 also lists pole residues, which display more model dependence than do the associated pole positions.
- associated pole positions. 7 See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of πN elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams. BLONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ⁹BAKER 79 fixed this coupling during fitting, but the negative sign relative to the N(1535)
- is well determined.

 10 The overall phase of BAKER 78 couplings has been changed to agree with previous conventions. Superseded by SAXON 80.
- 11 The range given for DEANS 75 is from the four best solutions.
- 12 LONGACRE 77 considers this coupling to be well determined.

N(1650) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

ARNDT	98	PR C58 3636	R.A. Arndt et al.	
GREEN	97	PR C55 R2167	A.M. Green, S. Wycech	(HELS, WINR)
ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workma	
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BRCO)
BATINIC	95	PR C51 2310	M. Batinic et al.	(BOSK, UCLA)
Also	98	PR C57 1004 (erratum)	M. Batinic et al.	(2001, 0021)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li et al.	(VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
WORKMAN	90	PR C42 781	R.L. Workman	(VPI)
TANABE	89	PR C39 741	H. Tanabe, M. Kohno, C. Bennhold	(MANZ)
Aiso	89	NC 102A 193	M. Kohno, H. Tanabe, C. Bennhold	(MANZ)
WADA	84	NP B247 313	Y. Wada et al.	(INUS)
BELL	83	NP B222 389	K.W. Bell et al.	(RL) IJP
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GĽAS)
PDG	82	PL 1118	M. Roos et al.	(HELS, CIT, CERN)
AWA JI	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
FUJII	81	NP B187 53	K. Fujii et al.	(MAGO, OSAK)
ARAI	80	Toronto Conf. 93	I. Arai	(INUS)
Also	82	NP B194 251	I. Arai, H. Fujii	(INUS)
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMŮ, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	P. Livanos et al.	(SACL) IJP
_MUSETTE	80	NC 57A 37	M. Musette	(BRUX) IJP
SAXON	BQ	NP B162 522	D.H. Saxon et al.	(RHEL, BRIS) IJP
TAKEDA	80	NP B168 17	H. Takeda et al.	(ŤOKY, INUS)
BAKER	79	NP B156 93	R.D. Baker et al.	(RHEL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BAKER	78	NP B141 29	R.D. Baker et al.	(RL, CAVE) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Parso	ns (GLAS)
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
BAKER	77	NP B126 365	R.D. Baker et al.	(RHEL) IJP
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau	(SACL) IJP
Also	76	NP B108 365	J. Dolbeau <i>et al.</i>	(SACL) IJP
FELLER	76	NP B104 219	P. Feller et al.	(NAGO, OSAK) IJP
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
KNASEL	75	PR D11 1		HIC, WUSL, OSU+)IJP
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	(LBL, SLAC) IJP

$N(1675) D_{15}$

 $I(J^P) = \frac{1}{2}(\frac{5}{2})$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

N(1675) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1670 to 1685 (≈ 1675) OUR	ESTIMATE			
1676± 2	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1675±10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1679± 8	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
 ● ● We do not use the foll 	owing data for average	s, fit	s, limits,	etc. • • •
1673 ± 5	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1673	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1683 ± 19	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
1666	L!	93	IPWA	$\gamma N \rightarrow \pi N$
1685	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1670	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1680	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1650	1 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1660	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1675) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
140 to 180 (≈ 150) Ol	JR ESTIMATE			
159± 7	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
160 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
120±15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use t	he following data for average	s, fit	s, limits,	etc. • • •
154 ± 7	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
154	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
142 ± 23	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
136	LI	93	IPWA	$\gamma N \rightarrow \pi N$
191	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
40	SAXON	80	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
88	BAKER	79	DPWA	$\pi^- \rho \rightarrow n\eta$
192	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
130	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
150	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

Baryon Particle Listings *N*(1675)

	N(1675) POLE POS	SITION	
L PART			
(MeV)	DOCUMENT ID	TECN	COMMENT
to 1665 (≈ 1660) OUF			
	ARNDT ³ HOEHLER		$\pi N \rightarrow N \pi$ $\pi N \rightarrow \pi N$
±10	CUTKOSKY		$\pi N \rightarrow \pi N$ $\pi N \rightarrow \pi N$
	llowing data for averages		
	ARNDT		$\pi N \rightarrow \pi N \text{ Soln SM90}$
or 1668	4 LONGACRE	78 IPWA	$\pi N \rightarrow N \pi \pi$
or 1650	1 LONGACRE	77 IPWA	$\pi N \rightarrow N \pi \pi$
ILAACINIA DV. DA DO	-		
(IMAGINARY PAR] E(MeV)	DOCUMENT ID	TECN	COMMENT
0 155 (≈ 140) OUR ES			
•	ARNDT	95 DPWA	$\pi N \rightarrow N \pi$
	3 HOEHLER	93 ARGD	$\pi N \rightarrow \pi N$
10	CUTKOSKY		$\pi N \rightarrow \pi N$
We do not use the fol	lowing data for averages		
	ARNDT		$\pi N \rightarrow \pi N$ Soln SM90
r 171 r 127	⁴ LONGACRE ¹ LONGACRE		$\pi N \rightarrow N \pi \pi$
r 127	LONGACKE	77 IPWA	$\pi N \rightarrow N \pi \pi$
N/1	1675) ELASTIC POL	E DECIDII	IE
•	wisj ELASTIC POL	L KLSIDU	-
DULUS r			
(MeV)	DOCUMENT ID	TECN	COMMENT
	ARNDT		$\pi N \rightarrow N \pi$
	HOEHLER		$\pi N \rightarrow \pi N$
. Ma do not uso the fol			$\pi N \rightarrow \pi N$
we do not use the lo	llowing data for averages		
	ARNDT	91 DPWA	$\pi N \rightarrow \pi N$ Soln SM90
SE €			
(°)	DOCUMENT ID		COMMENT
	ARNDT		$\pi N \rightarrow N \pi$
±10	HOEHLER CUTKOSKY		$\pi N \rightarrow \pi N$
	llowing data for averages		$\pi N \rightarrow \pi N$
The do not use the to	ARNDT		$\pi N \rightarrow \pi N$ Soln SM90
	ARREI	71 DI **A	1 1/14 - 1/14 SOIII SIVI 50
•	N(1675) DECAY M	ODES	
The following branc	thing fractions are our es		fits or averages.
Mode	F	Fraction (Γ _i ,	/r)
Nπ	4	10-50 %	
Νη			
ΛŘ		<1 %	
ΣΚ			
Νππ	5	50-60 %	
$\Delta\pi$	5	50-60 %	
Δ (1232) π , L			
Δ (1232) π , (5-wave		
Νρ	•	< 1-3 %	
$N\rho$, $S=1/2$,			
$N\rho$, $S=3/2$,			
$N\rho$, $S=3/2$,	G-wave		
$N(\pi\pi)_{S-\text{wave}}^{I=0}$			
$p\gamma$	C	0.004-0.023	%
PI		0.0-0.015 %	
$p\gamma$, helicity=1/		0.0-0.011 %	
	2		
$p\gamma$, helicity=1/ $p\gamma$, helicity=3/		0.02-0.12 %	
$p\gamma$, helicity=1/	0	0.02-0.12 % 0.006-0.046	%
$p\gamma$, helicity=1/ $p\gamma$, helicity=3/ $n\gamma$ $n\gamma$, helicity=1/	(2 (2	0.006~0.046	%
$p\gamma$, helicity=1/ $p\gamma$, helicity=3/ $n\gamma$	(2 (2		%

Γ_{10} $N\rho$, $S=1/2$, $D-$	-wave		$N(1675) \rightarrow p\gamma$, hel
Γ_{11} Np, S=3/2, D-	-wave		VALUE (GeV-1/2)
Γ_{12} N ρ , S=3/2, G-	wave		+0.019±0.008 OUR ES
Γ_{13} $N(\pi\pi)_{S-\text{wave}}^{I=0}$			0.015 ± 0.010
Γ_{14} $p\gamma$		0.004-0.023 %	0.021 ± 0.011
		0.0-0.015 %	0.034 ± 0.005
			0.006 ± 0.005
Γ_{16} $p\gamma$, helicity=3/2		0.0-0.011 %	0.006 ± 0.004
Γ_{17} $n\gamma$		0.02-0.12 %	0.023±0.015
Γ_{18} $n\gamma$, helicity=1/2		0.006~0.046 %	 • • We do not use th
Γ_{19} $n\gamma$, helicity=3/2		0.01-0.08 %	0.012 ± 0.002
			$+0.022\pm0.010$
N(1	675) BRANCHIN	G RATIOS	$+0.034\pm0.004$
			$N(1675) \rightarrow p\gamma$, hel
$\Gamma(N\pi)/\Gamma_{\text{total}}$		Г1/Г	VALUE (GeV-1/2)
VALUE	DOCUMENT ID	TECN COMMENT	+0.015±0.009 OUR ES
0.4 to 0.5 OUR ESTIMATE			0.010 ± 0.007
0.47 ± 0.02	MANLEY	92 IPWA πN → πN & Nππ	0.015 / 0.000
			0.015 ± 0.009
$\boldsymbol{0.38 \pm 0.05}$	CUTKOSKY	80 IPWA $\pi N \rightarrow \pi N$	0.015 ± 0.009 0.024 ± 0.008
0.38 ± 0.03	CUTKOSKY HOEHLER	80 IPWA $\pi N \rightarrow \pi N$ 79 IPWA $\pi N \rightarrow \pi N$	
	CUTKOSKY HOEHLER	80 IPWA $\pi N \rightarrow \pi N$ 79 IPWA $\pi N \rightarrow \pi N$	0.024 ± 0.008
0.38 ± 0.03	CUTKOSKY HOEHLER	80 IPWA $\pi N \rightarrow \pi N$ 79 IPWA $\pi N \rightarrow \pi N$	$\begin{array}{c} 0.024 \pm 0.008 \\ 0.030 \pm 0.004 \end{array}$
0.38 ± 0.03 • • • We do not use the follow	CUTKOSKY HOEHLER wing data for average	80 IPWA $\pi N \rightarrow \pi N$ 79 IPWA $\pi N \rightarrow \pi N$ es, fits, limits, etc. • • •	$\begin{array}{c} 0.024 \pm 0.008 \\ 0.030 \pm 0.004 \\ 0.029 \pm 0.004 \end{array}$
0.38 ± 0.03 • • • We do not use the follow 0.38	CUTKOSKY HOEHLER wing data for average ARNDT	80 IPWA $\pi N \rightarrow \pi N$ 79 IPWA $\pi N \rightarrow \pi N$ s, fits, limits, etc. • • • 95 DPWA $\pi N \rightarrow N \pi$	$\begin{array}{c} 0.024 \pm 0.008 \\ 0.030 \pm 0.004 \\ 0.029 \pm 0.004 \\ 0.003 \pm 0.012 \end{array}$
0.38 ± 0.03 • • • We do not use the follow 0.38	CUTKOSKY HOEHLER wing data for average ARNDT	80 IPWA $\pi N \rightarrow \pi N$ 79 IPWA $\pi N \rightarrow \pi N$ s, fits, limits, etc. • • • 95 DPWA $\pi N \rightarrow N \pi$	0.024 ± 0.008 0.030 ± 0.004 0.029 ± 0.004 0.003 ± 0.012 • • • We do not use th

Γ(Νη)/Γ _{total}	DOCUMENT ID		TECN	COMMENT	Γ2/
• • We do not use the					
0.001 ± 0.001	BATINIC			$\pi N \rightarrow N \pi$, I	V n
				•	
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N_{\pi}$	→ N(1675) → Nn			(1	₁ Γ ₂) ^{1/2} /
VALUE			TECN	COMMENT	1.2/ /
• • • We do not use the	following data for average				
- 0.07	BAKER			$\pi^- p \rightarrow n\eta$	
+ 0.009	FELTESSE			Soln A; see B	AKER 79
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in N_{π}	$\rightarrow N(1675) \rightarrow \Lambda K$			(۲	₁ Γ ₃) ^{1/2} /
±0.04 to ±0.08	DOCUMENT ID		TECN	COMMENT	
					,
- 0.01 + 0.036	BELL ⁵ SAXON			$\pi^- p \rightarrow \Lambda K^0$ $\pi^- p \rightarrow \Lambda K^0$	
• • • We do not use the				•	
-0.034±0.006	DEVENISH	74E		Fixed-t dispers	ion rel
-0.034±0.000	DEVENISH	140	,	rixed-t dispers	aon rei.
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in $N\pi$	→ N(1675) → ΣK			(1	1 [4) 1/2/
VALUE	DOCUMENT ID		TECN	COMMENT	1'4) /
• • • We do not use the	following data for average				
< 0.003	6 DEANS			$\pi N \rightarrow \Sigma K$	
V0.000	DEMIS	,,	D	*** /	
Note: Signs of co	ouplings from $\pi N \rightarrow N \pi$	πana	alyses we	re changed in th	ne
	gree with the baryon-first				
	olved by choosing a nega	tive s	ign for	the $\Delta(1620)$ S_3	31
coupling to $\Delta(12$?32)π.				
14			_		14
$(\Gamma_I \Gamma_I)^{1/2} / \Gamma_{\text{total}} \text{ in } N_{\pi}$	$\rightarrow N(1675) \rightarrow \Delta(123)$	32)π	, D-wav	<i>r</i> е (Г	1Γ7) ^{1/2} /
VALUE +0.46 to +0.50 OUR ES	DOCUMENT ID		TECN	COMMENT	
+0.496 ±0.003	MANLEY	92	IPWA	$\pi N \rightarrow \pi N &$	Ner
+0.46	1,7 LONGACRE		IPWA		7 V N N
+0.50	² LONGACRE		IPWA		
• • • We do not use the	following data for average	es, fit	s, limits,	etc. • • •	
+0.5	8 NOVOSELLE	R 78	IPWA	$\pi N \rightarrow N \pi \pi$	
-1					
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in N_{π}	$\rightarrow N(1675) \rightarrow N\rho, S$	=1/	2, <i>D</i> -wa	ıve (Γ ₁	Γ ₁₀) ¹ /2/
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT	
VALUE	→ N(1675) → N p, S DOCUMENT ID MANLEY		<u>TECN</u>	ive $(\Gamma_1 \xrightarrow{COMMENT} \pi N \rightarrow \pi N &$	
+ 0.04 ± 0.02	MANLEY	92	IPWA	$\frac{COMMENT}{\pi N \rightarrow \pi N \&}$	Νππ
ναυε +0.04±0.02 (Γ _Ι Γ _Γ) ^{1/2} /Γ _{total} in Νπ	$ \frac{DOCUMENT ID}{MANLEY} $ $ \rightarrow N(1675) \rightarrow N\rho, S $	92 = 3/	1 <u>FECN</u> IPWA 2 . D-wa	$ \frac{COMMENT}{\pi N \rightarrow \pi N \&} $ ive (Γ_1	Νππ
VALUE +0.04±0.02 (F _I F _I) ^{1/2} /F _{total} in N π -	$ \frac{DOCUMENT ID}{MANLEY} $ $ \rightarrow N(1675) \rightarrow N\rho, S $ $ \frac{DOCUMENT ID}{DOCUMENT ID} $	92 = 3/	1 <u>FECN</u> IPWA 2 . D-wa	$ \frac{COMMENT}{\pi N \rightarrow \pi N \&} $ ive (Γ_1	Γ ₁₀) ^{1/2} / · Νππ Γ ₁₁) ^{1/2} /
$\frac{VALUE}{+0.04 \pm 0.02}$ $\frac{(\Gamma_I \Gamma_f)^{\frac{1}{2}}}{\Gamma_{\text{total}} \text{ in } N\pi}$ $\frac{VALUE}{-0.12 \text{ to } -0.06 \text{ OUR ES}}$	DOCUMENT ID MANLEY → N(1675) → N p, S DOCUMENT ID TIMATE MANLEY	92 = 3/ :	IPWA 1PWA 1PWA 1PWA	$rac{COMMENT}{\pi N o \pi N \&}$ $rac{COMMENT}{\pi N o \pi N \&}$	νππ Γ ₁₁) ¹ / ₂ /
VALUE $+0.04 \pm 0.02$ $(\Gamma_{1}\Gamma_{1})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi$ VALUE -0.12 to -0.06 OUR ES' -0.03 ± 0.02	DOCUMENT ID MANLEY → N(1675) → Np, S DOCUMENT ID TIMATE	92 = 3/ :	IPWA 1PWA 1PWA 1PWA	$rac{COMMENT}{\pi N o \pi N \&}$ IVE (Γ_1)	νππ Γ ₁₁) ¹ / ₂ /
VALUE +0.04±0.02 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total}$ in $N\pi$ - $VALUE$ -0.12 to -0.06 OUR ES -0.03±0.02 -0.15	DOCUMENT ID MANLEY → N(1675) → N p, S DOCUMENT ID TIMATE MANLEY 1,7 LONGACRE	92 = 3/ : 92 77	IPWA 1PWA 1PWA 1PWA 1PWA	$ \begin{array}{c} COMMENT \\ \pi N \to \pi N \& \\ \text{OVE} \qquad (\Gamma_1 \\ COMMENT \\ \pi N \to \pi N \& \\ \pi N \to N \pi \pi \end{array} $	Nππ Γ ₁₁) ^{1/2} /
VALUE $+0.04\pm0.02$ $(\Gamma_I\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ VALUE -0.12 to -0.06 OUR ES' -0.03 ± 0.02 -0.15 $(\Gamma_I\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$	$\begin{array}{c} DOCUMENT ID \\ MANLEY \\ \rightarrow N(1675) \rightarrow N \rho, S \\ \hline DOCUMENT ID \\ \hline TIMATE \\ 1.7 LONGACRE \\ \rightarrow N(1675) \rightarrow N(\pi\pi) \end{array}$	92 =3/: 92 77	IPWA IPWA IPWA IPWA IPWA IPWA	$\frac{COMMENT}{\pi N \to \pi N \&}$ $\frac{COMMENT}{\pi N \to \pi N \&}$ $\pi N \to \pi N \&$ $\pi N \to N \pi \pi$ $(\Gamma_1$	νππ Γ ₁₁) ¹ / ₂ /
$(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ $VALUE$ $+0.04\pm0.02$ $(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ $VALUE$ -0.12 to -0.06 OUR ES -0.03 ± 0.02 -0.15 $(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ $VALUE$	$\begin{array}{c} DOCUMENT ID \\ MANLEY \\ \rightarrow N(1675) \rightarrow N \rho, S \\ \hline DOCUMENT ID \\ \hline TIMATE \\ 1.7 LONGACRE \\ \rightarrow N(1675) \rightarrow N(\pi\pi) \end{array}$	92 =3/: 92 77	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \to \pi N \& \\ \\ \underline{COMMENT} \\ \pi N \to \pi N \& \\ \pi N \to N \pi \pi \\ \\ \underline{COMMENT} \\ \\ \underline{(\Gamma_1)} \\ \underline{COMMENT} \\ \\ \underline{(\Gamma_2)} \\ \underline{COMMENT} \\ \\ \underline{(\Gamma_3)} \\ \underline{(\Gamma_3)} \\ \underline{(\Gamma_3)} \\ \underline{(\Gamma_4)} \\ \underline{(\Gamma_4)} \\ \underline{(\Gamma_5)} \\ ($	Nππ Γ ₁₁) ^{1/2} /
VALUE $+0.04\pm0.02$ $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ VALUE -0.12 to -0.06 OUR ES' -0.03 ± 0.02 -0.15 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ VALUE	DOCUMENT ID MANLEY → N(1675) → N p, S DOCUMENT ID TIMATE MANLEY 1,7 LONGACRE	92 =3/: 92 77	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\frac{COMMENT}{\pi N \to \pi N \&}$ $\frac{COMMENT}{\pi N \to \pi N \&}$ $\pi N \to \pi N \&$ $\pi N \to N \pi \pi$ $(\Gamma_1$	Nππ Γ ₁₁) ^{1/2} /
$VALUE + 0.04 \pm 0.02$ $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi$ $VALUE = -0.06 \text{ OUR ES}^{-0.03} \pm 0.02$ -0.15 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi$ $VALUE = +0.03$	DOCUMENT ID MANLEY → N(1675) → N p, S DOCUMENT ID MANLEY 1,7 LONGACRE → N(1675) → N (ππ DOCUMENT ID 1,7 LONGACRE	92 92 77 92 77	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	COMMENT $\pi N \to \pi N \&$ $\text{EVE} \qquad (\Gamma_1)$ $\pi N \to \pi N \&$ $\pi N \to \pi N \&$ $\pi N \to N \pi \pi$ (Γ_1) $COMMENT$ $\pi N \to N \pi \pi$	Nππ Γ ₁₁) ^{1/2} /
$VALUE$ + 0.04 ± 0.02 ($\Gamma_{I}\Gamma_{I}$) $\frac{1}{2}$ / Γ_{total} in $N\pi$ + $VALUE$ = -0.12 to -0.06 OUR ES -0.03 ± 0.02 -0.15 ($\Gamma_{I}\Gamma_{I}$) $\frac{1}{2}$ / Γ_{total} in $N\pi$ + $VALUE$ + 0.03	DOCUMENT ID MANLEY → N(1675) → Nρ, S DOCUMENT ID TIMATE MANLEY 1,7 LONGACRE → N(1675) → N(ππ DOCUMENT ID 1,7 LONGACRE	92 92 77)'=0 77 Y Al	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	COMMENT $\pi N \to \pi N \&$ $\text{EVE} \qquad (\Gamma_1)$ $\pi N \to \pi N \&$ $\pi N \to \pi N \&$ $\pi N \to N \pi \pi$ (Γ_1) $COMMENT$ $\pi N \to N \pi \pi$	Nππ Γ ₁₁) ^{1/2} /
VALUE $+0.04\pm0.02$ $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ - VALUE -0.12 to -0.06 OUR ES: -0.03 ± 0.02 -0.15 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ - VALUE +0.03	DOCUMENT ID MANLEY → N(1675) → Nρ, S DOCUMENT ID TIMATE MANLEY 1,7 LONGACRE → N(1675) → N(ππ DOCUMENT ID 1,7 LONGACRE	92 92 77)'=0 77 Y Al	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	COMMENT $\pi N \to \pi N \&$ $\text{EVE} \qquad (\Gamma_1)$ $\pi N \to \pi N \&$ $\pi N \to \pi N \&$ $\pi N \to N \pi \pi$ (Γ_1) $COMMENT$ $\pi N \to N \pi \pi$	Nππ Γ ₁₁) ^{1/2} /
WALUE $+0.04\pm0.02$ $(\Gamma_I\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ walue -0.12 to -0.06 OUR ES -0.03 ± 0.02 -0.15 $(\Gamma_I\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ walue +0.03 $N(1675) \rightarrow p\gamma$, helic	DOCUMENT ID MANLEY → N(1675) → Nρ, S DOCUMENT ID TIMATE MANLEY 1,7 LONGACRE → N(1675) → N(ππ DOCUMENT ID 1,7 LONGACRE	92 77 92 77)/=0 77 77 Y AI	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{UDES} \\ \end{array}$	Nππ Γ ₁₁) ^{1/2} /
VALUE $+0.04 \pm 0.02$ $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi$ VALUE $-0.12 \text{ to } -0.06 \text{ OUR ES'}$ -0.03 ± 0.02 -0.15 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi$ VALUE $+0.03$ $N(1675) \rightarrow p\gamma$, helicovalue (GeV ^{-1/2})	DOCUMENT ID MANLEY → N(1675) → Nρ, S DOCUMENT ID TIMATE MANLEY 1,7 LONGACRE → N(1675) → N(ππ DOCUMENT ID 1,7 LONGACRE 775) PHOTON DECA city-1/2 amplitude A ₁ , DOCUMENT ID	92 =3/3 77)/=0 77 77 Y AI	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	COMMENT $\pi N \rightarrow \pi N \&$ $NN \leftarrow K N \leftarrow K N \leftarrow K N \rightarrow K$	Nππ Γ ₁₁) ^{1/2} /
$VALUE + 0.04 \pm 0.02$ $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi + \frac{VALUE}{2}$ $-0.12 \text{ to } -0.06 \text{ OUR ES'}$ -0.03 ± 0.02 -0.15 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi + \frac{VALUE}{2}$ $+0.03$ $N(1675) \rightarrow p\gamma$, helic $VALUE (GeV^{-1/2})$ $+0.019 \pm 0.008 \text{ OUR EST}$ -0.015 ± 0.010	DOCUMENT ID MANLEY → N(1675) → N p, S DOCUMENT ID 1,7 LONGACRE → N(1675) → N (ππ DOCUMENT ID 1,7 LONGACRE 175) PHOTON DECA City-1/2 amplitude A ₁ DOCUMENT ID ARNDT	92 =3/3 77)/=0 77 77 Y AI	IPWA PECN IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPW	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \\ \underline{UDES} \\ \\ \underline{COMMENT} \\ \\ \gamma N \rightarrow \pi N \\ \end{array}$	Nππ Γ ₁₁) ^{1/2} /
$VALUE + 0.04 \pm 0.02$ $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total}$ in $N\pi$ $+ 0.02$ -0.03 ± 0.02 -0.05 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total}$ in $N\pi$ $+ 0.03$ $VALUE + 0.03$ $N(1675) \rightarrow p\gamma$, helic $VALUE (GeV^{-1/2})$ $+ 0.019 \pm 0.008$ OUR EST -0.015 ± 0.010 -0.021 ± 0.011	DOCUMENT ID MANLEY → N(1675) → N ρ, S DOCUMENT ID 1,7 LONGACRE 1,	92 77 92 77 77 77 Y AI	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{JDES} \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \end{array}$	Nππ Γ ₁₁) ^{1/2} /
VALUE + 0.04 ± 0.02 ($\Gamma_{I}\Gamma_{I}$) $^{1/2}$ / Γ_{total} in $N\pi$ - $VALUE$ - 0.12 to - 0.06 OUR ES' - 0.03 ± 0.02 - 0.15 ($\Gamma_{I}\Gamma_{I}$) $^{1/2}$ / Γ_{total} in $N\pi$ - $VALUE$ + 0.03 $N(1675) \rightarrow p\gamma$, helic VALUE (GeV ^{-1/2}) + 0.019 ± 0.006 OUR EST 0.015 ± 0.010 0.021 ± 0.011 0.034 ± 0.005	DOCUMENT ID MANLEY → N(1675) → Nρ, S DOCUMENT ID 1,7 LONGACRE → N(1675) → N (ππ DOCUMENT ID 1,7 LONGACRE	92 77 92 77 77 77 Y AI	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{UDES} \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \end{array}$	Nππ Γ ₁₁) ^{1/2} / Nππ Γ ₁₃) ^{1/2} /
VALUE $+0.04\pm0.02$ $(\Gamma_{I}\Gamma_{I})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ - VALUE -0.12 to -0.06 OUR ES' -0.03 ± 0.02 -0.15 $(\Gamma_{I}\Gamma_{I})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ - VALUE +0.03 $N(1675) \rightarrow p\gamma$, helic VALUE (GeV ^{-1/2}) $+0.03\pm0.006$ OUR EST 0.015 ± 0.010 0.021 ± 0.011 0.034 ± 0.005 0.006 ± 0.005	DOCUMENT ID MANLEY → N(1675) → N ρ, S DOCUMENT ID 1,7 LONGACRE → N(1675) → N (ππ DOCUMENT ID 1,7 LONGACRE 1,7 LONGACRE 1,7 LONGACRE 2,75) PHOTON DECA City-1/2 amplitude A ₁ DOCUMENT ID TIMATE ARNDT CRAWFORD AWA JI ARAI	92 77 92 77 77 77 Y AI 96 83 81 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \\ \underline{COMMENT} \\ \\ \gamma N \rightarrow \pi N \\ \end{array}$	Nππ Γ ₁₁) ¹ / ₂ / Νππ Γ ₁₃) ¹ / ₂ /
VALUE + 0.04 ± 0.02 ($\Gamma_{I}\Gamma_{I}$) $^{1/2}$ / Γ_{total} in $N\pi$ - $VALUE$ - 0.12 to - 0.06 OUR ES' - 0.03 ± 0.02 - 0.15 ($\Gamma_{I}\Gamma_{I}$) $^{1/2}$ / Γ_{total} in $N\pi$ - $VALUE$ + 0.03 $N(1675) \rightarrow p\gamma$, helic VALUE (GeV ^{-1/2}) + 0.019 ± 0.006 OUR EST 0.015 ± 0.010 0.021 ± 0.011 0.034 ± 0.005	DOCUMENT ID MANLEY → N(1675) → Nρ, S DOCUMENT ID 1,7 LONGACRE → N(1675) → N (ππ DOCUMENT ID 1,7 LONGACRE	92 77 92 77 77 77 Y AI	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{UDES} \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \end{array}$	Nππ Γ ₁₁) ¹ / ₂ / Νππ Γ ₁₃) ¹ / ₂ /
VALUE + 0.04 ± 0.02 ($\Gamma_{I}\Gamma_{f}$) $^{\frac{1}{2}}/\Gamma_{total}$ in $N\pi$ + $VALUE$ = 0.12 to -0.06 OUR ES' -0.03 ± 0.02 -0.15 ($\Gamma_{I}\Gamma_{f}$) $^{\frac{1}{2}}/\Gamma_{total}$ in $N\pi$ + $VALUE$ + 0.03 $N(1675) \rightarrow p\gamma$, helic VALUE (GeV ^{-1/2}) + 0.019 ± 0.006 OUR EST 0.015 ± 0.010 0.021 ± 0.011 0.034 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.004 0.023 ± 0.015	DOCUMENT ID MANLEY N(1675) → N ρ, S DOCUMENT ID 1,7 LONGACRE 1,7 L	92 92 77 92 77 77 Y AI 96 83 81 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{UDES} \\ \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \\ \end{array}$	Nππ Γ ₁₁) ^{1/2} / Νππ Γ ₁₃) ^{1/2} /
VALUE + 0.04 ± 0.02 ($\Gamma_{I}\Gamma_{f}$) $^{\frac{1}{2}}/\Gamma_{total}$ in $N\pi$ + $VALUE$ = 0.12 to -0.06 OUR ES' -0.03 ± 0.02 -0.15 ($\Gamma_{I}\Gamma_{f}$) $^{\frac{1}{2}}/\Gamma_{total}$ in $N\pi$ + $VALUE$ + 0.03 $N(1675) \rightarrow p\gamma$, helic VALUE (GeV ^{-1/2}) + 0.019 ± 0.006 OUR EST 0.015 ± 0.010 0.021 ± 0.011 0.034 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.004 0.023 ± 0.015	DOCUMENT ID MANLEY N(1675) → N ρ, S DOCUMENT ID 1,7 LONGACRE 1,7 L	92 92 77 92 77 77 Y AI 96 83 81 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{UDES} \\ \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \\ \end{array}$	Nππ Γ ₁₁) ¹ / ₂ / Νππ Γ ₁₃) ¹ / ₂ /
VALUE $+0.04\pm0.02$ $(\Gamma_{I}\Gamma_{I})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ VALUE -0.12 to -0.06 OUR ES -0.05 ±0.02 -0.15 $(\Gamma_{I}\Gamma_{I})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ VALUE $+0.03$ $N(1675) \rightarrow p\gamma$, helic $VALUE$ (GeV $^{-1/2}$) $+0.019\pm0.008$ OUR EST -0.010 -0.021 ± 0.011 -0.034 ± 0.005 -0.006 ± 0.005	DOCUMENT ID MANLEY N(1675) → N ρ, S DOCUMENT ID 1,7 LONGACRE N(1675) → N (ππ DOCUMENT ID 1,7 LONGACRE 1,7	92 77 92 77 77 Y AI 96 83 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N & \pi \pi \\ \hline \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{JDES} \\ \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \\ \text{etc.} \bullet \bullet \bullet \\ \end{array}$	Nππ Γ ₁₁) ¹ / ₂ / Νππ Γ ₁₃) ¹ / ₂ /
VALUE	DOCUMENT ID MANLEY → N(1675) → Nρ, S DOCUMENT ID 1,7 LONGACRE → N(1675) → N(ππ DOCUMENT ID 1,7 LONGACRE	92 92 77 92 77 77 Y AI 96 83 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	COMMENT $\pi N \to \pi N \&$ $\pi N \to N \pi \pi$ $\frac{COMMENT}{\pi N \to N \pi \pi}$ JDES $\frac{COMMENT}{\gamma N \to \pi N} \times \pi N \to \pi N \Leftrightarrow \pi N \to \pi N \to \pi N \Leftrightarrow \pi N \to \pi N \to \pi N \Leftrightarrow \pi N \to \pi N \to \pi N \Leftrightarrow \pi N \to \pi N \to \pi N \Leftrightarrow \pi N \to \pi N \to \pi N \Leftrightarrow \pi N \to \pi $	Nππ Γ ₁₁) ¹ / ₂ / Νππ Γ ₁₃) ¹ / ₂ /
$VALUE$ $+0.04\pm0.02$ $(\Gamma_{I}\Gamma_{I})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ $VALUE$ -0.12 to -0.06 OUR ES' -0.03 ± 0.02 -0.15 $(\Gamma_{I}\Gamma_{I})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$ $VALUE$ $+0.03$	DOCUMENT ID MANLEY → N(1675) → N ρ, S DOCUMENT ID 1,7 LONGACRE 1,8 LONGACRE 1,8 LONGACRE 1,9 LONGACRE 1,9 LONGACRE 1,0	92 92 77 92 77 77 Y AI 96 83 81 80 80 80 80 80 80 80 80 87 78 76	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \\ \text{etc.} \bullet \bullet \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \\ \text{etc.} \bullet \bullet \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \\ \end{array}$	Nππ Γ ₁₁) ¹ / ₂ / Νππ Γ ₁₃) ¹ / ₂ /
$VALUE$ + 0.04 ± 0.02 ($\Gamma_{I}\Gamma_{I}$) $\frac{1}{2}$ / Γ_{total} in $N\pi$ + $VALUE$ = -0.05 OUR ES -0.03 ± 0.02 -0.15 ($\Gamma_{I}\Gamma_{I}$) $\frac{1}{2}$ / Γ_{total} in $N\pi$ + $VALUE$ + 0.03 $N(1675) \rightarrow p\gamma$, helic $VALUE$ (GeV ^{-1/2}) + 0.019 ± 0.006 OUR EST 0.015 ± 0.010 0.021 ± 0.011 0.034 ± 0.005 0.006 ± 0.004 0.023 ± 0.015 • • • We do not use the 0.012 ± 0.002 + 0.022 ± 0.010 + 0.034 ± 0.004 $N(1675) \rightarrow p\gamma$, helic	DOCUMENT ID MANLEY N(1675) → Nρ, S DOCUMENT ID 1,7 LONGACRE N(1675) → N(ππ DOCUMENT ID 1,7 LONGACRE TIMATE ARAI ARA	92 77 92 77 77 Y Al 80 80 80 80 80, fit 93 76 72	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	COMMENT $\pi N \to \pi N \&$ $NN \to \pi N \&$ $\pi N \to \pi N \&$ $\pi N \to \pi N \&$ $\pi N \to N \pi \pi$ $N \to \pi N \pi \pi$	Nππ Γ ₁₁) ¹ / ₂ / Νππ Γ ₁₃) ¹ / ₂ /
$VALUE$ + 0.04 ± 0.02 ($\Gamma_{1}\Gamma_{1}$) $\frac{1}{2}$ / Γ_{total} in $N\pi$ + $\frac{VALUE}{2}$ = 0.03 ± 0.02 - 0.15 ($\Gamma_{1}\Gamma_{1}$) $\frac{1}{2}$ / Γ_{total} in $N\pi$ + $\frac{VALUE}{2}$ + 0.03 $N(1675) \rightarrow p\gamma$, helic $\frac{VALUE}{2}$ (GeV ^{-1/2}) + 0.015 ± 0.010 0.021 ± 0.011 0.034 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.002 ± 0.012 ± 0.012 + 0.012 ± 0.002 + 0.012 ± 0.002 + 0.012 ± 0.004 $N(1675) \rightarrow p\gamma$, helic $\frac{VALUE}{2}$ (GeV ^{-1/2})	DOCUMENT ID MANLEY → N(1675) → Nρ, S DOCUMENT ID 1,7 LONGACRE → N(1675) → N (ππ DOCUMENT ID 1,7 LONGACRE 75) PHOTON DECA City-1/2 amplitude A₁ DOCUMENT ID ARAI CRAWFORD AWA JI ARAI CRAWFORD following data for average LI BARBOUR FELLER City-3/2 amplitude A₃ DOCUMENT ID	92 77 92 77 77 Y Al 80 80 80 80 80, fit 93 76 72	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \\ \text{etc.} \bullet \bullet \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \\ \text{etc.} \bullet \bullet \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi N \\ \end{array}$	Nππ Γ ₁₁) ¹ / ₂ / Νππ Γ ₁₃) ¹ / ₂ /
$VALUE$ + 0.04 ± 0.02 ($\Gamma_{I}\Gamma_{I}$) $\frac{1}{2}$ / Γ_{total} in $N\pi$ + $VALUE$ = 0.03 ± 0.02 - 0.05 OUR ES - 0.03 ± 0.02 - 0.15 ($\Gamma_{I}\Gamma_{I}$) $\frac{1}{2}$ / Γ_{total} in $N\pi$ + $VALUE$ + 0.03 $N(1675) \rightarrow p\gamma$, helic $VALUE$ ($GeV^{-1/2}$) + 0.019 ± 0.006 OUR EST 0.015 ± 0.010 0.021 ± 0.011 0.034 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.004 0.023 ± 0.015 • • • • We do not use the 0.012 ± 0.010 + 0.034 ± 0.004 $N(1675) \rightarrow p\gamma$, helic $VALUE$ ($GeV^{-1/2}$) + 0.015 ± 0.009 OUR EST	DOCUMENT ID MANLEY → N(1675) → N ρ, S DOCUMENT ID 1,7 LONGACRE → N(1675) → N (ππ DOCUMENT ID 1,7 LONGACRE ARNDT CRAWFORD AWAJI ARAI CRAWFORD AWAJI ARAI CRAWFORD ID ARAI ARAI CRAWFORD BARBOUR FELLER City-3/2 amplitude A3 DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID	92 92 77 92 77 77 Y AI 96 83 81 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \\ \underline{COMMENT} \\ \\ \underline{COMMENT}	Nππ Γ ₁₁) ¹ / ₂ / Νππ Γ ₁₃) ¹ / ₂ /
$VALUE$ + 0.04 ± 0.02 ($\Gamma_{I}\Gamma_{I}$) $\frac{1}{2}$ / Γ_{total} in $N\pi$ · $VALUE$ = -0.05 OUR ES -0.05 ± 0.02 -0.15 ($(\Gamma_{I}\Gamma_{I})^{\frac{1}{2}}$ / Γ_{total} in $N\pi$ · $VALUE$ + 0.03 $N(1675) \rightarrow p\gamma$, helic $VALUE$ (GeV -1/2) + 0.019 ± 0.008 OUR EST 0.015 ± 0.010 0.021 ± 0.011 0.034 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.004 0.023 ± 0.015 • • • We do not use the 0.012 ± 0.002 + 0.022 ± 0.010 + 0.034 ± 0.004 $N(1675) \rightarrow p\gamma$, helic $VALUE$ (GeV -1/2) + 0.015 ± 0.009 OUR EST 0.010 ± 0.007	DOCUMENT ID MANLEY → N(1675) → Nρ, S DOCUMENT ID 1,7 LONGACRE → N(1675) → N (ππ DOCUMENT ID 1,7 LONGACRE 1,7 LONGACRE TIMATE ARNDT CRAWFORD AWA JI ARAI CRAWFORD ARAI CRAWFORD following data for average LI BARBOUR FELLER City-3/2 amplitude A3, DOCUMENT ID ARAI ARAI CRAWFORD ARAI CRAWFORD FELLER CITY-3/2 amplitude A3, DOCUMENT ID DOCUMENT ID ARNDT	92 92 77 92 77 77 Y Al 81 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi $	Nππ Γ ₁₁) ¹ / ₂ / Νππ Γ ₁₃) ¹ / ₂ /
$VALUE$ + 0.04 ± 0.02 ($\Gamma_{I}\Gamma_{I}$) $\frac{1}{2}$ / Γ_{total} in $N\pi$ + $VALUE$ = 0.03 ± 0.02 - 0.05 OUR ES - 0.03 ± 0.02 - 0.15 ($\Gamma_{I}\Gamma_{I}$) $\frac{1}{2}$ / Γ_{total} in $N\pi$ + $VALUE$ + 0.03 $N(1675) \rightarrow p\gamma$, helic $VALUE$ ($GeV^{-1/2}$) + 0.019 ± 0.006 OUR EST 0.015 ± 0.010 0.021 ± 0.011 0.034 ± 0.005 0.006 ± 0.005 0.006 ± 0.005 0.006 ± 0.004 0.023 ± 0.015 • • • • We do not use the 0.012 ± 0.010 + 0.034 ± 0.004 $N(1675) \rightarrow p\gamma$, helic $VALUE$ ($GeV^{-1/2}$) + 0.015 ± 0.009 OUR EST	DOCUMENT ID MANLEY → N(1675) → N ρ, S DOCUMENT ID 1,7 LONGACRE → N(1675) → N (ππ DOCUMENT ID 1,7 LONGACRE ARNDT CRAWFORD AWAJI ARAI CRAWFORD AWAJI ARAI CRAWFORD ID ARAI ARAI CRAWFORD BARBOUR FELLER City-3/2 amplitude A3 DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID	92 92 77 92 77 77 Y Al 81 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	COMMENT $\pi N \to \pi N & *$ TOP STATE OF THE S	Nππ Γ ₁₁) ¹ / ₂ / Νππ Γ ₁₃) ¹ / ₂ /
$VALUE$ + 0.04 ± 0.02 ($\Gamma_I\Gamma_f$) $\frac{1}{2}/\Gamma_{\text{total}}$ in $N\pi$ + $\frac{VALUE}{2}$ = 0.03 ± 0.02 - 0.05 OUR ES - 0.03 ± 0.02 - 0.15 ($\Gamma_I\Gamma_f$) $\frac{1}{2}/\Gamma_{\text{total}}$ in $N\pi$ + $\frac{VALUE}{2}$ + 0.03 $N(1675) \rightarrow p\gamma$, helic $\frac{VALUE}{2}$ (GeV ^{-1/2}) + 0.015 ± 0.010 OUR EST 0.015 ± 0.010 0.021 ± 0.011 0.034 ± 0.005 0.006 ± 0.004 0.023 ± 0.015 • • • We do not use the 0.012 ± 0.002 + 0.022 ± 0.010 + 0.034 ± 0.004 $N(1675) \rightarrow p\gamma$, helic $\frac{VALUE}{2}$ (GeV ^{-1/2}) + 0.015 ± 0.009 OUR EST 0.010 ± 0.007 0.015 ± 0.009	DOCUMENT ID MANLEY → N(1675) → Nρ, S DOCUMENT ID 1,7 LONGACRE 1,8 LONGACRE 1,8 LONGACRE 1,9 LONGACRE 1,10 LONGACRE 1,10 LONGACRE 1,10 LONGACRE 1,11 LONGACRE 1,12 LONGACRE 1,13 LONGACRE 1,14 LONGACRE 1,15 LONGACRE 1,16 LONGACRE 1,17 LONGACRE 1,18 LONG	92 92 92 77 77 Y AN 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow \pi $	Nππ Γ ₁₁) ^{1/2} / Nππ Γ ₁₃) ^{1/2} / it 1) it 2)
$VALUE$ $+ 0.04 \pm 0.02$ $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total}$ in $N\pi$ $VALUE$ -0.12 to -0.06 OUR ES' -0.03 ± 0.02 -0.15 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total}$ in $N\pi$ $VALUE$ $+ 0.03$ N(1675) $\rightarrow p\gamma$, helic $VALUE$ (GeV ^{-1/2}) $+ 0.015 \pm 0.010$ 0.021 ± 0.011 0.034 ± 0.005 $0.006	DOCUMENT ID MANLEY → N(1675) → Nρ, S DOCUMENT ID 1,7 LONGACRE → N(1675) → N (ππ DOCUMENT ID 1,7 LONGACRE 175) PHOTON DECA City-1/2 amplitude A₁ DOCUMENT ID ARNDT CRAWFORD AWAJI ARAI CRAWFORD following data for average LI BARBOUR FELLER City-3/2 amplitude A₃ DOCUMENT ID ARAI CRAWFORD AWAJI ARAI CRAWFORD AWAJI ARAI CRAWFORD CRAWFORD CITY-3/2 amplitude A₃ DOCUMENT ID ARNDT CRAWFORD AWAJI	92 92 77 92 77 Y AI 77 Y AI 80 80 80 80 80 80 80 80 80 80	IPWA IPWA IPWA IPWA IPWA IPWA IPWA IPWA	$\begin{array}{c} \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \text{IVE} \\ \underline{COMMENT} \\ \pi N \rightarrow \pi N \& \\ \pi N \rightarrow N \pi \pi \\ \hline \\ \underline{COMMENT} \\ \pi N \rightarrow N \pi \pi \\ \\ \underline{COMMENT} \\ \gamma N \rightarrow \pi N \\ \text{etc.} \bullet \bullet \\ \gamma N \rightarrow \pi N \\ \gamma N \rightarrow $	Nππ Γ ₁₁) ^{1/2} / Nππ Γ ₁₃) ^{1/2} / it 1)

LI 93 IPWA $\gamma N \rightarrow \pi N$ BARBOUR 78 DPWA $\gamma N \rightarrow \pi N$ FELLER 76 DPWA $\gamma N \rightarrow \pi N$

$N(1675) \rightarrow n\gamma$, helicity-1/2	amplitude A _{1/2}
VALUE (GeV-1/2)	DOCUMENT ID
-0.043 ± 0.012 OUR ESTIMATE	

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.043±0.012 OUR ESTIMATE				
-0.049 ± 0.010	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
-0.057 ± 0.024	IL AWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.033 ± 0.004	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
-0.039 ± 0.017	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.025 ± 0.027	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.059 ± 0.015	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.021 ± 0.011	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
-0.060 ± 0.003	LI	93	IPWA	$\gamma N \rightarrow \pi N$
-0.066 ± 0.020	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

$N(1675) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.058±0.013 OUR ESTIMATE				
-0.051 ± 0.010	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
-0.077 ± 0.018	IL AWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.069 ± 0.004	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
-0.066 ± 0.026	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.071 ± 0.022	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.059 ± 0.020	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.030 ± 0.012	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
-0.074 ± 0.003	LI	93	IPWA	$\gamma N \rightarrow \pi N$
-0.073 ± 0.014	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

N(1675) FOOTNOTES

- ¹ LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ² From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix
- amplitudes.
 3 See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of πN elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.
 4 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- SAXON 80 finds the coupling phase is near 90°.
- The range given is from the four best solutions. DEANS 75 disagrees with $\pi^+ \rho \to \Sigma^+ K^+$ data of WINNIK 77 around 1920 MeV. 7 LONGACRE 77 considers this coupling to be well determined.
- ⁸ A Breit-Wigner fit to the HERNDON 75 IPWA.

N(1675) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workm.	an (VPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BŘCO)
BATINIC	95	PR C51 2310	M. Batinic et al.	(BOSK, UCLA)
Also	98	PR C57 1004 (erratum)	M. Batinic et al.	
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li et al.	` (VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KÈNT) IJP
Also	84	PR D30 904	D.M. Manley et al.	` (VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
BELL	83	NP B222 389	K.W. Bell et al.	` (RL) IJP
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
AWA JI	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
FUJII	81	NP B187 53	K. Fujii et al.	(NAGO, OSAK)
ARAI	80	Toronto Conf. 93	I. Arai	(INUS)
Also	82	NP B194 251	I. Arai, H. Fujii	(inus)
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMŮ, LBLÍ IJP
Also	79	PR D20 2839	R.E. Cutkoský et al.	(CMU, LBL) IJP
SAXON	80	NP B162 522	D.H. Saxon et al.	(RHEL, BRIS) IJP
TAKEOA	80	NP B168 17	H. Takeda et al.	(TOKY, INUS)
BAKER	79	NP B156 93	R.D. Baker et al.	(RHEL) IJP
HOEHLER	79	PDAT 12-I	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Parso	
LONGACRE	7B	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
NOVOSELLER	78	NP B137 509	D.E. Novoseller	(CIT) IJP
Also	78B	NP B137 445	D.E. Novoseller	(CIT) IJP
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau	(SÀCL) IJP
Also	76	NP B10B 365	J. Dolbeau et al.	(SACL) IJP
WINNIK	77	NP B128 66	M. Winnik et al.	(HAIF) I
FELLER	76	NP B104 219	P. Feller et al.	(NAGO, ÒSAK) IJP
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
FELTESSE	75	NP B93 242	J. Feltesse et al.	(SACL) IJP
HERNDON	75	PR D11 3183	D. Herndon et al.	(LBL, SLAC)
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	(LBL, SLAC) IJP
DEVENISH	74B	NP B81 330	R.C.E. Devenish, C.D. Froggatt, B.R. M	

$N(1680) F_{15}$

 $I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

N(1680) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1675 to 1690 (≈ 1680)	OUR ESTIMATE			
1684± 4	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
1680±10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1684± 3	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use th	e following data for average	s, fit	s, limits,	etc. • • •
1679± 5	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1678	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1674±12	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$
1682	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1680	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1660	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1685	KNASEL	75	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1670	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1680) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
120 to 140 (≈ 130) OUR ESTIMA	ATE			
139± 8	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
120 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
128± 8	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
124± 4	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
126	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
126 ± 20	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$
121	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
119	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
150	¹ LONGAÇRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
155	KNASEL	75	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
130	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1680) POLE POSITION

R	EAL	. PA	RT

DOCUMENT ID		TECN	COMMENT
R ESTIMATE			
	95	DPWA	$\pi N \rightarrow N \pi$
3 HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
CUTKOSKY	80	JPWA	$\pi N \rightarrow \pi N$
ollowing data for average	s, fit	s, limits,	etc. • • •
ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
4 LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
т			
DOCUMENT ID		TECN	COMMENT
STIMATE			
ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
3 HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ollowing data for average	s, fits	, limits,	etc. • • •
ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
⁴ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
¹ LONGACRE	77	IDIA/A	$\pi N \rightarrow N \pi \pi$
	ARNDT ARNDT ARNDT HOEHLER CUTKOSKY CUTKOSKY ARNDT LONGACRE LONGACRE T COCUMENT ID STIMATE ARNDT ARNDT HOEHLER CUTKOSKY ARNDT ARNDT LONGACRE LONGACRE ARNDT ARNDT ARNDT ARNDT ARNDT ARNDT LONGACRE	RESTIMATE ARNDT 95 3 HOEHLER 93 CUTKOSKY 80 collowing data for averages, fit: ARNDT 91 4 LONGACRE 78 1 LONGACRE 77 TO COLUMENT ID STIMATE ARNDT 95 3 HOEHLER 93 CUTKOSKY 80 collowing data for averages, fits ARNDT 91 4 LONGACRE 78	RESTIMATE ARNDT 95 DPWA 3 HOEHLER 93 ARGD CUTKOSKY 80 IPWA billowing data for averages, fits, limits, ARNDT 91 DPWA 4 LONGACRE 78 IPWA 1 LONGACRE 77 IPWA TOUTH 10 TECN STIMATE ARNDT 95 DPWA 3 HOEHLER 93 ARGD CUTKOSKY 80 IPWA billowing data for averages, fits, limits, ARNDT 91 DPWA 4 LONGACRE 78 IPWA

N(1680) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
40	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
44	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
34±2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the f	ollowing data for average	s, fit	s, limits,	etc. • • •
37	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soin SM90
PHASE €				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
± 1	APNOT	95	DD\A/A	-N . N-

93 ARGD $\pi N \rightarrow \pi N$ 80 IPWA $\pi N \rightarrow \pi N$ - 17 HOEHLER -25 ± 5 CUTKOSKY \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet 91 DPWA $\pi N \rightarrow \pi N$ \$oln \$M90 -14 ARNDT

Baryon Particle Listings *N*(1680)

		N(1680) DECAY				
	The following branchi	ng fractions are our	estima	ates, not	fits or avera	ges.
	Mode		Fract	ion (Γ_i	'F)	
Γ_1	$N\pi$		60-7	0 %		
2	Nη					
3	ΛK					
4	ΣΚ			- 4/		
5	$N\pi\pi$ $\Delta\pi$		30-4			
「6 「7	Δ^{π} $\Delta(1232)\pi, P-v$	vave	5-15 6-14			
r ₈	$\Delta(1232)\pi$, F-w		<2%			
٦٩	Nρ		3-15			
Γ ₁₀	$N\rho$, $S=1/2$, $F-$	wave				
11	$N\rho$, $S=3/2$, $P=3/2$		<12	%		
12	$N\rho$, $S=3/2$, $F-1$	wave	1-5 9			
13	$N(\pi\pi)_{S-\text{wave}}^{I=0}$		5-20			
14	$p\gamma$ $p\gamma$, helicity=1/2			-0.32 %	1 /	
15 16	$p\gamma$, helicity=1/2 $p\gamma$, helicity=3/2			l−0.011 ° -0.32 %	70	
17	$n\gamma$			-0.046	%	
18	$n\gamma$, helicity=1/2			-0.029		
19	$n\gamma$, helicity=3/2		0.01-	-0.024 %		
	N(1	.680) BRANCHIN	IG R	ATIOS		
(N:	π)/Γ _{total}					Γ ₁ ,
ALUE	,,	DOCUMENT ID		<u>TECN</u>	COMMENT	
	0.03 OUR ESTIMATE	MANLEY	92	IPWA	$\pi N \rightarrow \pi N$	i & N = =
	0.05	CUTKOSKY	80	IPWA		
	: 0.02	HOEHLER	79		$\pi N \rightarrow \pi N$	ı
.68	We do not use the follow	ARNDT	es, 1715 95		$\pi N \rightarrow N \pi$	
	0.04	BATINIC			$\pi N \rightarrow N \pi$	
ALUE	$(r)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to \Lambda$ We do not use the follower	DOCUMENT ID		s, limits,		(Γ ₁ Γ ₂) ^{1/2} /
(N1	η)/Γ _{total}	DOCUMENT ID		TECH	COLUMENT	Γ2,
	We do not use the follow					
.001!	5+0.0035 -0.0010	TIATOR	99	DPWA	$\gamma p \rightarrow p \eta$	
0.01	± 0.0010	BATINIC			$\pi N \rightarrow N \pi$	Na
	5 or 0.001	⁵ CARRERAS			t pole + re	
.0004		5 BOTKE	69		t pole + re	
.003	± 0.002	⁵ DEANS	69	MPWA	t pole + re	sonance
-(N1	η) /Γ(Nπ)					Γ ₂ /Ι
ALUE		DOCUMENT ID		TECN	COMMENT	
<0.02	We do not use the follow	ving data for averag HEUSCH			π^0 , η photo	production
(0.0.						
	$(r)^{\frac{1}{12}}/\Gamma_{\text{total}} \text{ in } N\pi \to \Lambda$	/(1680) → AK	of DA	KER 77	, SAXON 80	(Г1Г3) ¹ / ₂ . or BELL 8
Γ _I Γ _I	$f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to \Lambda$ Coupling to ΛK not requ	DOCUMENT ID	OI BA	TECN	COMMENT	
LUL	Coupling to AK not required. We do not use the follow	DOCUMENTIO		TECIV	COMMENT	
0.01	We do not use the follow	ving data for averag	es, fit: 75	, limits, DPWA	etc. • • • $\pi^- p \rightarrow \Lambda$	κ ⁰
0.01	We do not use the follow L D9 ± 0.009	ving data for averag KNASEL DEVENISH	es, fits	, limits, DPWA	etc. • • •	K ⁰ persion ret.
0.01 - 0.00	We do not use the following $_{0}^{1}$, $_{0}^{1}$, $_{0}^{1}$, $_{0}^{1}$ / $_{0}$ / $_{$	wing data for averag KNASEL DEVENISH /(1680) → ∑K DOCUMENT ID	es, fits 75 748	TECN	etc. • • • $\pi^- p \rightarrow \Lambda$ Fixed- t disp	κ ⁰
0.01 -0.00 (Г_ІГ_І	We do not use the following ± 0.009 $f^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \to \Lambda$ We do not use the follow	ving data for averag KNASEL DEVENISH /(1680) → ∑ K DOCUMENT ID ving data for averag	es, fits 75 74B	DPWA TECN 5, limits,	etc. • • • $\pi^- p \rightarrow \Lambda$ Fixed- t disp COMMENT etc. • • •	_K 0 persion ret. (Γ ₁ Γ ₄) ¹ ⁄ ₂
0.01 -0.00	We do not use the following ± 0.009 $f^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \to \Lambda$ We do not use the follow	wing data for average KNASEL DEVENISH V(1680) $\rightarrow \Sigma K$ DOCUMENT ID wing data for average 6 DEANS gs from $\pi N \rightarrow N\pi$ with the baryon-firs by choosing a negal	es, fits 74B es, fits 75 π ana	TECN S, limits, DPWA TECN S, limits, DPWA Allyses we vention;	etc. • • • $\pi^- p \rightarrow \Lambda$ Fixed- t disp $\frac{COMMENT}{\text{etc.} \bullet \bullet}$ etc. • • • $\pi N \rightarrow \Sigma I$ re changed in the overall p	κ^0 persion ret. $(\Gamma_1\Gamma_4)^{\frac{1}{2}}$ κ In the phase
0.01 -0.00 (F ₁ F ₁ \<0.00	We do not use the following $^{1/2}/\Gamma_{\text{total}}$ in $N\pi \to \Lambda$ We do not use the following $^{1/2}/\Gamma_{\text{total}}$ in $^{1/2}/\Gamma_{\text{total}}$	wing data for average KNASEL DEVENISH $V(1680) \rightarrow \Sigma K$ DEVENISH $V(1680) \rightarrow \Sigma K$ DEVENISH $V(1680) \rightarrow \Sigma K$ DEANS $V(1680) \rightarrow V(1680) \rightarrow V(1680) \rightarrow V(1680) \rightarrow V(1680) \rightarrow V(1680)$ $V(1680) \rightarrow V(1680) \rightarrow V(1680) \rightarrow V(1680) \rightarrow V(1680)$	es, fits 75 74B es, fits 75 π ana t conv	TECN s, limits, DPWA TECN s, limits, DPWA llyses we rention; ign for t	etc. • • • • $\pi^- p \rightarrow \Lambda$ Fixed- t disp COMMENT etc. • • • $\pi N \rightarrow \Sigma I$ re changed in the overall p the $\Delta(1620)$	κ^0 persion ret. $(\Gamma_1\Gamma_4)^{\frac{1}{2}}$ κ In the phase
0.01 - 0.00 ([[]] VALUE < 0.00 ([]] VALUE - 0.3	We do not use the follows: $(1)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(2)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(3)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ We do not use the follows: $(4)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$	wing data for average KNASEL DEVENISH $V(1680) \rightarrow \Sigma K$ DEVENISH $V(1680) \rightarrow \Sigma K$ DEVENISH $V(1680) \rightarrow \Sigma K$ DEANS $V(1680) \rightarrow V(1680) \rightarrow V(1680) \rightarrow V(1680) \rightarrow V(1680) \rightarrow V(1680)$ $V(1680) \rightarrow V(1680) \rightarrow V(1680) \rightarrow V(1680) \rightarrow V(1680)$	es, fits 75 748 es, fits 75 π ana t conv titive s	TECN s, limits, DPWA TECN s, limits, DPWA llyses we rention; ign for t	EXAMPLE 1. COMMENT etc. • • • $\pi^- p \to \Lambda$ Fixed- t dispersion of the overall p the $\Delta(1620)$	κ^0 version rel. $(\Gamma_1\Gamma_4)^{\frac{1}{12}}$ κ In the oblase S_{31} $(\Gamma_1\Gamma_7)^{\frac{1}{12}}$

1,7 LONGACRE 77 IPWA $\pi N \rightarrow N \pi \pi$

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

²LONGACRE 75 IPWA $\pi N \rightarrow N \pi \pi$

 8 NOVOSELLER 78 IPWA $\pi\,N\, o\,N\,\pi\,\pi$

-0.27

-0.25

```
(Г₁Г<sub>В</sub>)<sup>1</sup>//Г
(\Gamma_i \Gamma_f)^{\frac{1}{12}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(1680) \to \Delta(1232)\pi, F-wave
                                          DOCUMENT ID TECN COMMENT
+0.03 to +0.11 OUR ESTIMATE
                                                            92 IPWA πN → πN & Nππ
MANI FY
                                      1,7 LONGACRE 77 IPWA \pi N \rightarrow N \pi \pi
2 LONGACRE 75 IPWA \pi N \rightarrow N \pi \pi
+0.07
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                        <sup>8</sup> NOVOSELLER 78 IPWA \pi N \rightarrow N \pi \pi
(\Gamma_I \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} in N\pi \to N(1680) \to N\rho, S=3/2, P-wave
                                          DOCUMENT ID TECN COMMENT
<u>VALUE</u>
−0.30 to −0.10 OUR ESTIMATE
-0.20 \pm 0.05
                                                           92 IPWA πN → πN & Nππ
                                      1,7 LONGACRE 77 IPWA \pi N \rightarrow N \pi \pi
2 LONGACRE 75 IPWA \pi N \rightarrow N \pi \pi
-0.30
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                        <sup>8</sup> NOVOSELLER 78 IPWA \pi N \rightarrow N \pi \pi
(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1680) \rightarrow N\rho, S=3/2, F-\text{wave}
                                          DOCUMENT ID TECN COMMENT
-0.18 to -0.10 OUR ESTIMATE
                                          MANI FY
                                                            92 IPWA \pi N \rightarrow \pi N \& N \pi \pi
                                      1,7 LONGACRE 77 IPWA \pi N \rightarrow N \pi \pi
-0.15
(\Gamma_I \Gamma_f)^{\frac{1}{12}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(1680) \to N(\pi\pi)^{I=0}_{S-\text{wave}}

VALUE

DOCUMENT ID

TECH COMMENT
+0.25 to +0.35 OUR ESTIMATE
                                                            92 IPWA \pi N \rightarrow \pi N \& N \pi \pi
+0.29 \pm 0.04
                                          MANLEY
+0.31
                                      1,7 LONGACRE
                                                           77 IPWA \pi N \rightarrow N \pi \pi
+0.30
                                        <sup>2</sup>LONGACRE 75 IPWA \pi N \rightarrow N \pi \pi
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                        <sup>8</sup> NOVOSELLER 78 IPWA \pi N \rightarrow N \pi \pi
+0.42
                       N(1680) PHOTON DECAY AMPLITUDES
N(1680) \rightarrow p\gamma, helicity-1/2 amplitude A<sub>1/2</sub>
VALUE (GeV^{-1/2})
                                          DOCUMENT ID
                                                                TECN COMMENT
-0.015±0.006 OUR ESTIMATE
                                                            96 IPWA \gamma N \rightarrow \pi N
-0.010 \pm 0.004
                                          ARNDT
                                                           83 IPWA \gamma N \rightarrow \pi N
                                          CRAWFORD
-0.017 \pm 0.018
-0.009 \pm 0.006
                                          ILAWA
                                                                 DPWA \gamma N \rightarrow \pi N
-0.028 \pm 0.003
                                          ARAI
                                                            80 DPWA \gamma N \rightarrow \pi N (fit 1)
-0.026 \pm 0.003
                                          ARAI
                                                            80 DPWA \gamma N \rightarrow \pi N (fit 2)
                                          CRAWFORD
                                                          80 DPWA γN -→ πN
-0.018 \pm 0.014
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                            93 IPWA \gamma N \rightarrow \pi N
-0.006 \pm 0.002
-0.005 \pm 0.015
                                          BARBOUR
                                                            78 DPWA \gamma N \rightarrow \pi N
-0.009 \pm 0.002
                                          FELLER
                                                            76 DPWA \gamma N \rightarrow \pi N
N(1680) \rightarrow p\gamma, helicity-3/2 amplitude A<sub>3/2</sub>
VALUE (GeV~1/2)
                                          DOCUMENT ID
                                                                TECN COMMENT
+0.133±0.012 OUR ESTIMATE
  0.145 \pm 0.005
                                          ARNDT
                                                            96 IPWA \gamma N \rightarrow \pi N
  0.132 \pm 0.010
                                          CRAWFORD
                                                           83 IPWA \gamma N \rightarrow \pi N
                                                            81 DPWA \gamma N \rightarrow \pi N
                                          II AWA
  0.115 \pm 0.008
                                                                 DPWA \gamma N \rightarrow \pi N (fit 1)
  0.115 \pm 0.003
                                          ARAI
                                                            80
  0.122 \pm 0.003
                                          ARAI
                                                                DPWA \gamma N \rightarrow \pi N (fit 2)
                                          CRAWFORD 80 DPWA \gamma N \rightarrow \pi N
  0.141 \pm 0.014
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                            93 IPWA \gamma N \rightarrow \pi N
  0.154 \pm 0.002
+0.138 \pm 0.021
                                          BARBOUR
                                                            78 DPWA \gamma N \rightarrow \pi N
                                                            76 DPWA \gamma N \rightarrow \pi N
+0.121 \pm 0.010
                                          FFILER
N(1680) \rightarrow n\gamma, helicity-1/2 amplitude A_{1/2}
VALUE (GeV-1/2)
                                          DOCUMENT ID
                                                                TECN COMMENT
+0.029±0.010 OUR ESTIMATE
  0.030 \pm 0.005
                                          ARNDT
                                                            96 IPWA \gamma N \rightarrow \pi N
  0.017 \pm 0.014
                                          AWA JI
                                                                DPWA \gamma N \rightarrow \pi N
  0.032 \pm 0.003
                                          FUJIL
                                                            81
                                                                 DPWA \gamma N \rightarrow \pi N
                                                                 DPWA \gamma N \rightarrow \pi N (fit 1)
  0.026 \pm 0.005
                                          ARAI
                                                            80
                                                                 DPWA \gamma N \rightarrow \pi N (fit 2)
  0.028 \pm 0.014
                                          ARAI
                                                            80
  0.044 \pm 0.012
                                          CRAWFORD
                                                            80
                                                                 DPWA \gamma N \rightarrow \pi N
  0.025 \pm 0.010
                                          TAKEDA
                                                            80 DPWA \gamma N \rightarrow \pi N
• • • We do not use the following data for averages, fits, limits, etc. • • •
  0.022 \pm 0.002
                                                            93 IPWA \gamma N \rightarrow \pi N
+0.037 \pm 0.010
                                          BARBOUR
                                                            78 DPWA γN → πN
```

 -0.038 ± 0.018

ALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.033 ± 0.009 OUR EST	MATE			
-0.040 ± 0.015	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
-0.033 ± 0.013	IL AWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.023 ± 0.005	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
-0.024 ± 0.009	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.029 ± 0.017	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.033 ± 0.015	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.035 ± 0.012	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$

N(1680) FOOTNOTES

BARBOUR

78 DPWA $\gamma N \rightarrow \pi N$

- $^{
 m 1}$ LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ² From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix
- amplitudes.

 3 See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters. of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.
- ⁴LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- The parametrization used may be double counting.

 The range given is from 3 of 4 best solutions; not present in solution 1. DEANS 75 disagrees with $\pi^+ \rho \to \Sigma^+ K^+$ data of WINNIK 77 around 1920 MeV.
- 7 LONGACRE 77 considers this coupling to be well determined.
- ⁸ A Breit-Wigner fit to the HERNDON 75 IPWA.

N(1680) REFERENCES

For early references, see Physics Letters 111B 70 (1982). For very early references, see Reviews of Modern Physics 37 633 (1965).

TIATOR	99	PR C60 035210	L. Tiator et al.	
ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workman (VPI)	
ARNDT	95	PR C52 2120	R.A. Arndt et al. (VPI, BRCO)	
BATINIC	95	PR C51 2310	M. Batinic et al. (BOSK, UCLA)	
Also	98	PR C57 1004 (erratum)	M. Batinic et al.	
HOEHLER	93	π N Newsletter 9 1	G. Hohler (KARL)	
LI	93	PR C47 2759	Z.J. Li et al. (VPI)	
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski (KENT)	
Also	84	PR D30 904	D.M. Manley et al. (VPI)	
ARNDT	91	PR D43 2131	R.A. Arndt et al. (VPI, TELE)	
BELL	83	NP B222 389	K.W. Bell et al. (RL)	
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton (GLAS)	
PDG	82	PL 111B	M. Roos et al. (HELS, CIT, CERN)	
ILAWA.II	81	Bonn Conf. 352	N. Awaji, R. Kajikawa (NAGO)	
Also	82	NP B197 365	K. Fujii et al. (NAGO)	
FUJII	81	NP B187 53	K. Fujii et al. (NAGO, OSAK)	
ARAI	80	Toronto Conf. 93	(INUS)	
Also	82	NP B194 251	I. Arai, H. Fujii (INUS)	
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford (GLAS)	
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al. (CMU, LBL)	IJP
Also	79	PR D20 2839	R.E. Cutkosky et al. (CMU, LBL)	
SAXON	80	NP B162 522	D.H. Saxon et al. (RHEL, BRIS)	
TAKEDA	80	NP B168 17	H. Takeda et al. (TOKY, INUS)	
BAKER	79	NP B156 93	R.D. Baker et al. (RHEL)	
HOEHLER	79	PDAT 12-1	G. Hohler et al. (KARLT)	
Aiso	80	Toronto Conf. 3	R. Koch (KARLT)	
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Parsons (GLAS)	
LONGACRE	78	PR D17 1795	R.S. Longacre et al. (LBL, SLAC)	
NOVOSELLER		NP B137 509	D.E. Novoseller (CIT)	
Also	78B	NP B137 445	D.E. Novoseller (CIT)	
BAKER	77	NP B126 365	R.D. Baker et al. (RHEL)	
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau (SACL)	IJP
Aiso	76	NP B108 365	J. Dolbeau et al. (SACL)	
WINNIK	77	NP B128 66	M. Winnik et al. (HAIF)	1
FELLER	76	NP B104 219	P. Feller et al. (NAGO, ÒSAK)	IJP
DEANS	75	NP B96 90	S.R. Deans et ai. (SFLA, ALAH)	IJP
HERNDON	75	PR D11 3183	D. Herndon et al. (LBL, SLAC)	
KNASEL	75	PR D11 1	T.M. Knasel et al. (CHIC, WUSL, OSU+)	IJP
LONGACRE	75	PL 55B 415	R.S. Longacre et al. (LBL, SLAC)	IJP
DEVENISH	74B	NP B81 330	R.C.E. Devenish, C.D. Froggatt, B.R. Martin (DESY+)	
CARRERAS	70	NP B16 35	B. Carreras, A. Donnachie (DARE, MCHS)	
BOTKE	69	PR 180 1417	J.C. Botke (UCSB)	
DEANS	69	PR 185 1797	S.R. Deans, J.W. Wooten (SFLA)	
HEUSCH	66	PRL 17 1019	C.A. Heusch, C.Y. Prescott, R.F. Dashen (CIT)	

$\overline{N(1700)} D_{13}$

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

The various partial-wave analyses do not agree very well.

N(1700) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1650 to 1750 (≈ 1700)	OUR ESTIMATE			
1737 ± 44	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1675 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1731 ± 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
 • • We do not use the 	he following data for average	s, fit	s, limits,	etc. • • •
1791 ± 46	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
1709	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1650	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1690 to 1710	BAKER	78	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1719	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1670±10	¹ BAKER	77	IPWA	$\pi^- p \rightarrow \Lambda K^0$
1690	¹ BAKER	77	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1660	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1710	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1700) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
50 to 150 (≈ 100) OUR EST	MATE			
250 ± 220	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
90 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
110 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follow	wing data for average	s, fit	s, limits,	etc. • • •
215± 60	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
166	CRAWFORD	80		$\gamma N \rightarrow \pi N$
70	SAXON	80	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
70 to 100	BAKER	78	DPWA	$\pi^- p \rightarrow \Lambda K^0$
126	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
90± 25	¹ BAKER	77	IPWA	$\pi^- p \rightarrow \Lambda \kappa^0$
100	1 BAKER	77	DPWA	$\pi^- p \rightarrow \Lambda K^0$
600	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
300	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1700) POLE POSITION

	W(1700) FOLE FC	/311	ION	
REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1630 to 1730 (≈ 1680) OL	JR ESTIMATE			
1700	4 HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1660±30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the f	following data for average	s, fit	s, limits,	etc. • • •
not seen	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
1710 or 1678	⁵ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1616 or 1613	² LONGACRE			$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY PAR	₹T			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
50 to 150 (≈ 100) OUR	ESTIMATE			
120	⁴ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
90 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the t	following data for average	s, fit	s, limits,	etc. • • •
not seen	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
607 or 567	5 LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
577 or 575	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

N(1700) ELASTIC POLE RESIDUE

MODULUS |r

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
5	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
6±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
PHASE θ				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
0 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Baryon Particle Listings *N*(1700)

N	1700	DECAY	MODES
741	1100	DECAL	MICOF

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
Γ ₁	Νπ	5-15 %
Γ_2^-	$N\eta$	
Γ_3	ΛK	<3 %
Γ_4	ΣΚ	
Γ_5	$N\pi\pi$	85-95 %
Γ_6	$\Delta\pi$	
Γ7	Δ (1232) π , S -wave	
Γ8	Δ (1232) π , D -wave	
و۱	Nρ	<35 %
Γ_{10}	$N\rho$, $S=1/2$, D-wave	
Γ_{11}	$N\rho$, $S=3/2$, S -wave	
Γ_{12}	$N\rho$, $S=3/2$, D-wave	
Γ ₁₃	$N(\pi\pi)_{S-\text{wave}}^{I=0}$	
Γ_{14}	Pγ	0.010.05 %
Γ_{15}	$p\gamma$, helicity=1/2	0.0-0.024 %
Γ ₁₆	$p\gamma$, helicity=3/2	0.002-0.026 %
Γ_{17}	$n\gamma$	0.01-0.13 %
Γ ₁₈	$n\gamma$, helicity=1/2	0.0-0.09 %
Γ ₁₉	$n\gamma$, helicity=3/2	0.01-0.05 %

N(1700) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$ VALUE 0.05 to 0.15 OUR ESTIMATE	DOCUMENT ID		TECN	Γ ₁ /Γ
0.01 ± 0.02	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.11±0.05	CUTKOSKY			$\pi N \rightarrow \pi N$
0.08 ± 0.03	HOEHLER		IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fits	, limits,	etc. • • •
0.04±0.05	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
$\Gamma(N\eta)/\Gamma_{\text{total}}$				Γ ₂ /Γ
VALUE	DOCUMENT ID			
• • We do not use the following	data for average	s, fits	s, limits,	etc. • • •
0.10 ± 0.06	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \ln N\pi \rightarrow N(17)^{\frac{VALUE}{2}}$ -0.06 to +0.04 OUR ESTIMATE	DOCUMENT ID		TECN	(Γ ₁ Γ ₃) ^{1/2} /Γ
-0.012	BELL			$\pi^- p \rightarrow \Lambda K^0$
-0.012	SAXON			$\pi^- p \rightarrow \Lambda K^0$
• • • We do not use the following		s, fits	s, limits,	etc. • • •
-0.04	⁶ BAKER			See SAXON 80
-0.03 ± 0.004	1 BAKER			
-0.03	1 BAKER	77	DPWA	$\pi^- p \rightarrow \Lambda K^0$
$+0.026\pm0.019$	DEVENISH	74B		Fixed-t dispersion rel.
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(17)$	OO) → ΣK		<u>TECN</u>	$(\Gamma_1\Gamma_4)^{\frac{1}{12}}/\Gamma$
• • • We do not use the following	data for average	s, fits	i, limits,	etc. • • •
not seen	LIVANOS			$\pi D \rightarrow \Sigma K$
<0.017	7 DEANS			

Note: Signs of couplings from $\pi\,N \to N\,\pi\,\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)\,\,S_{31}$ coupling to $\Delta(1232)\,\pi$.

VALUE	DOCUMENT ID		TECN	СОММЕ	NT
0.00 to ±0.08 OUR	ESTIMATE				
$+0.02 \pm 0.03$	MANLEY				
0.00	² LONGACRE				
-0.16	³ LONGACRE	75	IPWA	$\pi N \rightarrow$	Νππ
1/					
	$\pi \to N(1700) \to \Delta(123)$				(Γ₁Γ ₈) ^⅓ 2/Γ
VALUE	$\pi \rightarrow N(1700) \rightarrow \Delta(123$ DOCUMENT ID OUR ESTIMATE			COMME	
VALUE	DOCUMENT ID		TECN	COMME	
±0.04 to ±0.20	OUR ESTIMATE	92 77	TECN IPWA	$\pi N \rightarrow$	NT π N & N π π

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N_{\pi} \rightarrow$	$N(1700) \rightarrow N\rho$, S	≔3/ 2	2, 5 w av	/e	(Γ ₁ Γ ₁₁) ^½
<u>VALUE</u> ±0.01 to ±0.13 OUR	DOCUMENT ID ESTIMATE	—	<u>TEÇŅ</u>	COMME	VT
-0.04±0.06	MANLEY		IPWA		π N & N π π
-0.07	² LONGACRE		IPWA		
+0.07	³ LONGACRE	75	IPWA	$\pi N \rightarrow$	Νππ
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to$	$N(1700) \rightarrow N(\pi\pi$)/=0 5-w			(Г ₁ Г ₁₃) ^{1/2}
±0.02 to ±0.28 OUR	DOCUMENT ID		TECN	COMME	<u>VT</u>
$+0.02\pm0.02$	MANLEY		IPWA		πΝ & Νππ
0.00	² LONGACRE		IPWA		
+ 0.2	3 LONGACRE	75	IPWA	πN →	Νππ
N(1700) PHOTON DECA	Y AN	4PLITU	JDES	
$N(1700) \rightarrow p\gamma$, helicity	-1/2 amplitude A ₁	/2			,
VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	СОММЕ	VT
-0.018±0.013 OUR ESTIM					
-0.016 ± 0.014	CRAWFORD			$\gamma N \rightarrow$	
-0.002 ± 0.013	AWA JI			$\gamma N \rightarrow$	
-0.028 ± 0.007	ARAI				π N (fit 1)
-0.029 ± 0.006	ARAI				π N (fit 2)
-0.024 ± 0.019	CRAWFORD			$\gamma N \to$	
• • We do not use the foll	lowing data for averagi	es, fits	s, limits,	etc. • •	•
-0.033 ± 0.021	BARBOUR	78	DPWA	$\gamma N \rightarrow$	πN
-0.014 ± 0.025	FELLER	76	DPWA	$\gamma N \rightarrow$	πN
$N(1700) ightarrow p\gamma$, helicity	-3/2 amplitude A _{3,}	/2			
VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMME	VT
-0.002±0.024 OUR ESTIM					
-0.009 ± 0.012	CRAWFORD	83		$\gamma N \rightarrow$	
0.029 ± 0.014	IL AWA	81		$\gamma N \rightarrow$	
-0.002 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow$	π N (fit 1)
0.014 ± 0.005	ARAI	80			π N (fit 2)
-0.017 ± 0.014	CRAWFORD			$\gamma N \rightarrow$	
 • • We do not use the following 	lowing data for average	es, fits	s, limits,	etc. • •	•
-0.014 ± 0.025	BARBOUR	78	DPWA	$\gamma N \rightarrow$	πN
0.0 ± 0.014	FELLER			$\gamma N \rightarrow$	
$N(1700) \rightarrow n\gamma$, helicity	⊾1/2 amplitude A.	-			
VALUE (GeV ^{-1/2})	DOCUMENT ID	•	TECN	COMME	uT
0.000 ± 0.050 OUR ESTIM			7207	COMME	**
0.006 ± 0.024	ILAWA	R1	DPWA	$\gamma N \rightarrow$	- Ni
-0.002 ± 0.013	FUJII			$\gamma N \rightarrow$	
-0.052 ± 0.030	ARAI				π N (fit 1)
-0.055±0.030	ARAI				π N (fit 2)
0.052 ± 0.035	CRAWFORD			$\gamma N \rightarrow$	
• • We do not use the foll					
+0.050±0.042	BARBOUR			γN →	
$N(1700) \rightarrow n\gamma$, helicity	-3/2 amplitude A ₃	/2			
VALUE (GeV-1/2)	DOCUMENT ID		TECN	СОММЕ	v <i>T</i>
-0.003±0.044 OUR ESTIM	ATE				
-0.033 ± 0.017	IL AWA	81	DPWA	$\gamma N \rightarrow$	πN
0.018 ± 0.018	FUJII	81	DPWA	$\gamma N \rightarrow$	πN
-0.037 ± 0.036	ARAI				π N (fit 1)
-0.035 ± 0.024	ARAI	80	DPWA	$\gamma N \rightarrow$	π N (fit 2)
0.041 ± 0.030	CRAWFORD	80	DPWA	$\gamma N \rightarrow$	πN
• • We do not use the following	lowing data for average	es, fits	s, limits,	etc. • •	•
+0.035±0.030	BARBOUR	78	DPWA	$\gamma N \rightarrow$	πN
N(170	$0) \gamma p \to \Lambda K^+$	АМ	PLITU	DES	
	N(1700) → AK		TECN	(4	E _{2—} amplitud
					_
VALUE (units 10 ⁻³)	DOCUMENT ID		s, limits,	etc. • •	
VALUE (units 10 ⁻³) ■ ● • We do not use the following t	DOCUMENT ID lowing data for average		DPWA		•
VALUE (units 10 ⁻³) • • • We do not use the fol 4.09 (Γ _I Γ _f) $^{1/2}$ /Γ _{total} in $p\gamma$ →	DOCUMENT ID lowing data for average TANABE	89		(A	
VALUE (units 10 ⁻³) • • • We do not use the fol 4.09 (Γ _I Γ _f) $^{1/2}$ /Γ _{total} in $p\gamma$ →	DOCUMENT ID lowing data for average TANABE	89 +	DPWA	(A	
VALUE (units 10^{-3}) • • • We do not use the fold 4.09 ($\Gamma_I \Gamma_f$) $\frac{1}{2} / \Gamma_{\text{total}}$ in $p\gamma \rightarrow VALUE$ (units 10^{-3})	DOCUMENT ID Iowing data for average TANABE N(1700) → ΛK DOCUMENT ID	89 +	DPWA		∕⁄ _{2—} amplitud
VALUE (units 10^{-3}) • • • We do not use the fol 4.09 ($\Gamma_I \Gamma_f$) $^{1/2}_{f}$ / Γ_{total} in $p\gamma$ → VALUE (units 10^{-3}) • • • We do not use the fol	DOCUMENT ID Iowing data for average TANABE N(1700) DOCUMENT ID Iowing data for average	89 + es, fit:	DPWA		∕⁄ _{2—} amplitud
$VALUE$ (units 10 ⁻³) • • • We do not use the fol 4.09 (Γ _I Γ _Γ) $\frac{1}{2}$ /Γ _{total} in $p\gamma$ → $VALUE$ (units 10 ⁻³) • • • We do not use the fol -7.09 $p\gamma$ → $N(1700)$ → ΛK	DOCUMENT ID Iowing data for average TANABE N(1700) → ΛΚ DOCUMENT ID Iowing data for average TANABE + phase angle θ	89 + 	DPWA TECN 5, limits, DPWA	etc. • •	∕⁄ _{2—} amplitud
VALUE (units 10 ⁻³) • • • We do not use the fol 4.09 (Γ _I Γ _I) ^{1/2} /Γ _{total} in $pγ →$ $VALUE$ (units 10 ⁻³) • • • We do not use the fol -7.09 $pγ → N(1700) → ΛK$ $VALUE$ (degrees)	DOCUMENT ID Iowing data for average N(1700) DOCUMENT ID Iowing data for average TANABE + phase angle θ DOCUMENT ID	89 + es, fit: 89	TECN 5, limits, DPWA	etc. • •	∕1 _{2—} amplitud . • . • . amplitud
$(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $p\gamma \rightarrow \frac{VALUE \text{ (units }10^{-3)}}{\bullet \bullet \bullet}$ We do not use the fold 4.09 $(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $p\gamma \rightarrow \frac{VALUE \text{ (units }10^{-3)}}{\bullet \bullet \bullet}$ We do not use the fold -7.09 $p\gamma \rightarrow N(1700) \rightarrow AK$ $\frac{VALUE \text{ (degrees)}}{\bullet \bullet \bullet}$ We do not use the fold $+1000$ when $+1000$ $+$	DOCUMENT ID Iowing data for average N(1700) DOCUMENT ID Iowing data for average TANABE + phase angle θ DOCUMENT ID	89 + es, fit: 89	TECN 5, limits, DPWA	etc. • •	∕1 _{2—} amplitud . • . • . amplitud

N(1700) FOOTNOTES

- ¹ The two BAKER 77 entries are from an IPWA using the Barrelet-zero method and from a conventional energy-dependent analysis.
- 2 LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ³ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix
- amplitudes. See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.
- ⁵LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ⁶ The overall phase of BAKER 78 couplings has been changed to agree with previous conventions.

 7 The range given is from the four best solutions.

N(1700) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

BATINIC	95	PR C51 2310	M. Batinic et al.	(BOSK, UCLA)
Also	98	PR C57 1004 (erratum)	M. Batinic et al.	, , ,
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
Also	84	PR D30 904	D.M. Manley et al.	` (VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
TANABE	89	PR C39 741	H. Tanabe, M. Kohno, C. Bennhold	(MANZ)
Also	89	NC 102A 193	M. Kohno, H. Tanabe, C. Bennhold	(MANZ)
BELL	83	NP B222 389	K.W. Bell et al.	` (RL) IJP
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
AWAJI	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujli et al.	(NAGD)
FUJII	81	NP B187 53	K. Fujii et al.	(NAGO, OSAK)
ARAI	80	Toronto Conf. 93	I. Arai	` (INUS)
A/50	82	NP B194 251	I. Arai, H. Fujii	(INUS)
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMŮ, LBL) IJP
Also	79	PR O20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	P. Livanos et al.	(SACL) IJP
SAXON	80	NP B162 522	D.H. Saxon et al.	(RHEL, BRIS) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BAKER	78	NP B141 29	R.O. Baker et al.	(RL, CAVE) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Parsi	ons (GLAS)
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
BAKER	77	NP B126 365	R.D. Baker et al.	(RHEL) IJP
LONGACRE	77 -	NP B122 493	R.S. Longacre, J. Dolbeau	(SACL) IJP
Also	76	NP B108 365	J. Oolbeau et al.	(SACL) IJP
FELLER	76	NP B104 219	P. Feller et al.	(NAGO, ÒSAK) IJP
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	(LBL, SLAC) IJP
DEVENISH	74B	NP B81 330	R.C.E. Devenish, C.D. Froggatt, B.R. M	

$N(1710) P_{11}$

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

The various partial-wave analyses do not agree very well.

N(1710) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1680 to 1740 (≈ 1710) (OUR ESTIMATE			
1717 ± 28	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1700 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1723 ± 9	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	e following data for averages	, fit	s, limits,	etc. • • •
1720 ± 10	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1766 ± 34	¹ BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
1706	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
1692	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1730	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1690	BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
1650 to 1680	BAKER	78	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1721	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1625 ± 10	² BAKER	77	IPWA	$\pi^- p \rightarrow \Lambda K^0$
1650	² BAKER	77	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1720	³ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1670	KNASEL	75	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
1710	⁴ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1710) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
50 to 250 (≈ 100) OUI	RESTIMATE			
480 ± 230	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
93± 30	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
90± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
120 + 15	HOEHLER	79	IPWΔ	$\pi N \rightarrow \pi N$

• • • We do not use the following	ng data for average	s, fit	s, limits, etc. • • •
105± 10	ARNDT	96	IPWA $\gamma N \rightarrow \pi N$
185 ± 61	BATINIC		DPWA $\pi N \rightarrow N\pi$, $N\eta$
540	BELL	83	DPWA $\pi^- p \rightarrow \Lambda K^0$
200	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$
550	SAXON	80	DPWA $\pi^- p \rightarrow \Lambda K^0$
97	BAKER	79	DPWA $\pi^- p \rightarrow n\eta$
90 to 150	BAKER	78	DPWA $\pi^- p \rightarrow \Lambda K^0$
167	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$
160± 6	² BAKER	77	IPWA $\pi^- p \rightarrow \Lambda K^0$
95	² BAKER	77	DPWA $\pi^- p \rightarrow \Lambda K^0$
120	³ LONGACRE	77	IPWA $\pi N \rightarrow N \pi \pi$
174	KNASEL	75	DPWA $\pi^- p \rightarrow \Lambda K^0$
75	⁴ LONGACRE	75	IPWA $\pi N \rightarrow N \pi \pi$

N(1710) POLE POSITION

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1670 to 1770 (≈ 1720) O	UR ESTIMATE		
1770			$\pi N \rightarrow N \pi$
1690	⁵ HOEHLER	93 SPED	$\pi N \rightarrow \pi N$
1698	CUTKOSKY		
1690 ± 20	CUTKOSKY	AWPL 08	$\pi N \rightarrow \pi N$
• • • We do not use the	following data for averages,	, fits, limits,	etc. • • •
1636	ARNDT	91 DPWA	$\pi N \rightarrow \pi N$ Soln SM90
1708 or 1712	⁶ LONGACRE	78 IPWA	$\pi N \rightarrow N \pi \pi$
1720 or 1711	3 LONGACRE	77 IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY PA	RT		
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
80 to 380 (≈ 230) OUR	ESTIMATE		
378	ARNDT	95 DPWA	$\pi N \rightarrow N \pi$
200	⁵ HOEHLER	93 SPED	$\pi N \rightarrow \pi N$
88	CUTKOSKY	90 IPWA	$\pi N \rightarrow \pi N$
80 ± 20	CUTKOSKY	80 IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	following data for averages	, fits, limits,	etc. • • •
544	ARNDT	91 DPWA	$\pi N \rightarrow \pi N$ Soln SM90
17 or 22		78 IPWA	$\pi N \rightarrow N \pi \pi$
123 or 115	3 LONGACRE	77 IPWA	$\pi N \rightarrow N \pi \pi$

N(1710) ELASTIC POLE RESIDUE

DOCUMENT ID

TECN COMMENT

MOD	ULUS	7
VALUE		

REAL PART

ARNDT	95	DPWA	$\pi N \rightarrow N\pi$
HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
data for average	s, fit	s, limits,	etc. • • •
ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
DDCUMENT ID		TECN	COMMENT
ARNDT	95	DPWA	$\pi N \rightarrow N\pi$
	HOEHLER CUTKOSKY CUTKOSKY data for average ARNDT	HOEHLER 93 CUTKOSKY 90 CUTKOSKY 80 data for averages, fit: ARNDT 91	HOEHLER 93 SPED CUTKOSKY 90 IPWA CUTKOSKY 80 IPWA data for averages, fits, limits, ARNDT 91 DPWA DOCUMENT ID TECN

CUTKOSKY 90 IPWA $\pi N \rightarrow \pi N$ 175 ± 35 CUTKOSKY 80 IPWA $\pi N \to \pi N$ • • • We do not use the following data for averages, fits, limits, etc. • • • ARNDT 91 DPWA $\pi N \rightarrow \pi N Soln SM90$ 149

N(1710) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
$\overline{\Gamma_1}$	Nπ	10-20 %	
Γ_2	$N\eta$		
Γ3	ΛK	5-25 %	
Γ4	ΣΚ		
Γ_5	Νππ	40-90 %	
Γ ₆	$\Delta\pi$	15-40 %	
Γ_7	$\Delta(1232)\pi$, P -wave		
Γ8	$N\rho$	5-25 %	
و٦	$N\rho$, $S=1/2$, P -wave		
Γ10	$N\rho$, $S=3/2$, P -wave		
Γ ₁₁	$N(\pi\pi)_{S-\text{wave}}^{I=0}$	10-40 %	
Γ_{12}	$p\gamma$	0.002-0.05%	
Γ13	$p\gamma$, helicity=1/2	0.002-0.05%	
Γ ₁₄	$n\gamma$	0.0~0.02%	
Γ ₁₅	$n\gamma$, helicity=1/2	0.0-0.02%	

Baryon Particle Listings N(1710)

10(1110)				
N (1	.710) BRANCHIN	IG RAT	IOS	
$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ ₁ /Γ
D.10 to 0.20 OUR ESTIMATE	DOCUMENT ID	<u>T</u>	CN COM	MENT
0.09±0.04	MANLEY	92 IP	WA πN-	→ πΝ & Νππ
0.20 ± 0.04	CUTKOSKY	80 IP	WA πN -	→ πN
0.12±0.04	HOEHLER			→ π <i>N</i>
• • We do not use the follow				
0.08 ± 0.14	BATINIC	95 D	PVVA π N -	→ Nπ, Nη
$\Gamma(N\eta)/\Gamma_{\text{total}}$				Γ ₂ /Γ
ALUE	DOCUMENT ID			
• We do not use the follow	-			
0.16 ± 0.10	BATINIC	95 DI	PWA πN -	→ Nπ, Nη
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N_{\pi} \to N$	I(1710) → Nη <u>DOCUMENT ID</u>		- COLUM	(Γ ₁ Γ ₂) ^{1/2} /Γ
We do not use the follow				
0.22	BAKER		WA π - p	
-0.383	FELTESSE			A; see BAKER 79
$\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N_{\pi} \rightarrow N$	(1710) → AK			(Г₁Г₃) ^⅓ /Г
ALUE -0.18 OUR ESTIMA	DOCUMENT ID		CN COM	
-0.12 to +0.18 OUR ESTIMA -0.16	ITE BELL	83 0	PWA π ⁻ p	0
-0.14	SAXON		PWAπ P PWAπ "p	
• • We do not use the follow				
0.12	7 BAKER	78 D	WA See S	AXON 80
0.05 ± 0.03	² BAKER		WA π ⁻ p	
-0.10	² BAKER		PWA π ⁻ p	
0.10	KNASEL	75 D	PWA π ⁻ p	→ AKO
$\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N_{\pi} \to N_{\pi}$	(1710) → ΣK DOCUMENT ID	т.	CN COM	(Γ ₁ Γ ₄) ¹ //Γ
• We do not use the follow	ving data for averag	es, fits, li	mits, etc.	
	LIVANOS	80 D	PWA πp-	→ Σ Κ
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree	LIVANOS 8 DEANS 9 From $\pi N \rightarrow N \pi$ with the baryon-firs	75 Di π analysi t conven	PWA πN - es were challon; the over	→ ΣΚ nged in the verall phase
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved coupling to $\Delta(1232)\pi$	LIVANOS 8 DEANS gs from $\pi N \rightarrow N \pi$ with the baryon-firs by choosing a negative $(1710) \rightarrow \Delta(123)$	75 Diamanalysist conventive sign	PWA πN - es were chasion; the over for the Δt	$\rightarrow \Sigma K$ Inged in the erall phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}}/\Gamma$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved coupling to Δ(1232) π [ΓΓ] 1/2/Γtotal in Nπ → N ALUE	LIVANOS 8 DEANS gs from $\pi N \rightarrow N \pi$ with the baryon-firs by choosing a nega $((1710) \rightarrow \Delta(123)$ $DOCUMENT_D$	75 Diamanalysist conventive sign	PWA πN - es were chasion; the over for the Δt	$\rightarrow \Sigma K$ Inged in the erall phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}}/\Gamma$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved coupling to $\Delta(1232)\pi$ $T_{1}T_{7}^{1/2}/T_{\text{total}} \text{ in } N\pi \rightarrow N$ ALUE $\pm 0.16 \text{ to } \pm 0.22 \text{ OUR E}$	LIVANOS 8 DEANS gs from $\pi N \rightarrow N\pi$ with the baryon-firs by choosing a negative $M(1710) \rightarrow \Delta(123) \rightarrow M(1710) \rightarrow M(1710$	75 Di π analysis it conventive sign	PWA πN - is were challed ion; the over the ΔN	$ ightarrow \Sigma K$ Inged in the verall phase (1620) S_{31} $ ho \frac{(\Gamma_1 \Gamma_7)^{\frac{1}{12}}/\Gamma}{MENT}$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved coupling to $\Delta(1232)\pi$ $T_{1}\Gamma_{1}^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ $\pm 0.16 \text{ to } \pm 0.22 \text{ OUR E}$ 0.21 ± 0.04	LIVANOS 8 DEANS gs from $\pi N \rightarrow N\pi$ with the baryon-firs by choosing a nega $I(1710) \rightarrow \Delta(123)$ STIMATE MANLEY 3 LONGACRE	75 Diamanalysis to convenitive sign 32) T. P. 11	PWA πN - es were characteristic the or for the Δt wave $\frac{\partial t}{\partial t} = \frac{\partial t}{\partial t} = \frac{\partial t}{\partial t}$	$\rightarrow \Sigma K$ Inged in the erall phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}}/\Gamma$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved coupling to $\Delta(1232)\pi$ $\Gamma_1\Gamma_1^{-1/2}/\Gamma_{\text{total}} \ln N\pi \rightarrow N$ ALUE ± 0.16 to ± 0.22 OUR ESTATED TO ± 0.04	LIVANOS 8 DEANS gs from $\pi N \rightarrow N \pi$ with the baryon-firs by choosing a nega ((1710) $\rightarrow \Delta$ (123 <u>DOCUMENT ID</u> STIMATE MANLEY	75 D π analysis t conventive sign 32) π , P 71 92 IP 77 IP	PWA πN - es were characteristic the or for the Δt wave $\frac{\partial t}{\partial t} = \frac{\partial t}{\partial t} = \frac{\partial t}{\partial t}$	$ ightarrow \Sigma K$ Inged in the retail phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}}/\Gamma$ $ ightarrow \pi N \& N \pi \pi$ $ ightarrow N \pi \pi$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved a coupling to $\Delta(1232)\pi$ $\frac{\Gamma_{i}\Gamma_{r}}{L}/\Gamma_{total} \text{ in } N\pi \rightarrow N$ $\frac{LUE}{\pm 0.16 \text{ to } \pm 0.22 \text{ OUR E}}$ 0.21 ± 0.04 0.17 0.20	LIVANOS 8 DEANS gs from $\pi N \rightarrow N\pi$ with the baryon-firs by choosing a nega $I(1710) \rightarrow \Delta(123)$ $DOCUMENT D$ STIMATE MANLEY 3 LONGACRE 4 LONGACRE $I(1710) \rightarrow N\rho$, S	75 Di π analysis t convenitive sign 32) π. P. 92 IP 77 IP 75 IP	es were chain; the order the Δt wave $t = t + t + t + t + t + t + t + t + t + $	$\rightarrow \Sigma K$ In seed in the recall phase (1620) S_{31} $(Γ_1Γ_7)^{\frac{1}{12}}/Γ$ $\rightarrow \pi N \& N \pi \pi$ $\rightarrow N \pi \pi$ $\rightarrow N \pi \pi$ $(Γ_1Γ_9)^{\frac{1}{12}}/Γ$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved a coupling to $\Delta(1232)\pi$ $\frac{\Gamma_{i}\Gamma_{r}}{L}/\Gamma_{total} \text{ in } N\pi \rightarrow N$ $\frac{LUE}{\pm 0.16 \text{ to } \pm 0.22 \text{ OUR E}}$ 0.21 ± 0.04 0.17 0.20	LIVANOS 8 DEANS gs from $\pi N \rightarrow N\pi$ with the baryon-firs by choosing a nega $I(1710) \rightarrow \Delta(123)$ STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE $I(1710) \rightarrow N\rho$, S DOCUMENT ID DOCUMENT ID DOCUMENT ID	75 Di π analysis t convenitive sign 32) π. P. 92 IP 77 IP 75 IP	es were chain; the order the Δt wave $t = t + t + t + t + t + t + t + t + t + $	$\rightarrow \Sigma K$ In seed in the recall phase (1620) S_{31} $(Γ_1Γ_7)^{\frac{1}{12}}/Γ$ $\rightarrow \pi N \& N \pi \pi$ $\rightarrow N \pi \pi$ $\rightarrow N \pi \pi$ $(Γ_1Γ_9)^{\frac{1}{12}}/Γ$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved coupling to Δ(1232) π [ΓΓ _f) 1/2/Γ _{total} in Nπ → N ΔLUE ±0.16 to ±0.22 OUR ES 0.21 ±0.04 0.17 0.20 ΓΓΓ _f) 1/2/Γ _{total} in Nπ → N ΔLUE ±0.09 to ±0.19 OUR ES	LIVANOS 8 DEANS gs from $\pi N \rightarrow N\pi$ with the baryon-firs by choosing a nega $I(1710) \rightarrow \Delta(123)$ $DOCUMENT ID$ STIMATE MANLEY 3 LONGACRE 4 LONGACRE $I(1710) \rightarrow N\rho$, S $DOCUMENT ID$ STIMATE MANLEY MANLEY	75 Di π analysis t conventive sign 32)π. Pi 92 IP 77 IP 75 IP 112, II 92 IP	Sewere chains were chains, the output of the Δi on the	$\rightarrow \Sigma K$ In seed in the recall phase (1620) S_{31} $(Γ_1Γ_7)^{\frac{1}{12}}/Γ$ $\rightarrow \pi N \& N \pi \pi$ $\rightarrow N \pi \pi$ $\rightarrow N \pi \pi$ $(Γ_1Γ_9)^{\frac{1}{12}}/Γ$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved 1 coupling to Δ(1232) π Γ ₁ Γ ₂) Γ ₂ /Γ _{total} in Nπ → N Δευε ±0.16 to ±0.22 OUR Ed. 0.21 ±0.04 0.17 0.20 Γ ₁ Γ ₂) Γ ₁ /Γ _{total} in Nπ → N Δευε ±0.09 to ±0.19 OUR Ed. 0.05 ± 0.06 0.19	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 <u>DOCUMENT ID</u> STIMATE MANLEY 3 LONGACRE 4 LONGACRE ((1710) → N ρ, S <u>DOCUMENT ID</u> STIMATE MANLEY 3 LONGACRE	75 Di π analysis t conventive sign 32) π, P 92 IP 77 IP 75 IP 1/2, J 92 IP 77 IP 77 IP 77 IP	Swere chains, the out for the Δ(Wave CN COMM WA π N	→ Σ K In section of the second of the se
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved 1 coupling to Δ(1232) π [Γ _Γ] 1/2/Γ _{total} in Nπ → N ALUE ±0.04 0.17 1 Γ _Γ 1/2/Γ _{total} in Nπ → N ALUE ±0.09 to ±0.19 OUR E	LIVANOS 8 DEANS gs from $\pi N \rightarrow N\pi$ with the baryon-firs by choosing a nega $I(1710) \rightarrow \Delta(123)$ $DOCUMENT ID$ STIMATE MANLEY 3 LONGACRE 4 LONGACRE $I(1710) \rightarrow N\rho$, S $DOCUMENT ID$ STIMATE MANLEY MANLEY	75 Di π analysis t conventive sign 32) π, P 92 IP 77 IP 75 IP 1/2, J 92 IP 77 IP 77 IP 77 IP	Swere chaicon; the ox for the Δl WAVE COM WA THE TO SHOW THE	$ → ΣK $ Inged in the retail phase (1620) $S_{31} $ $ (Γ_1Γ_7)^{\frac{1}{2}}/Γ$ $ → πN&Nππ $ $ → Nππ $ $ (Γ_1Γ_9)^{\frac{1}{2}}/Γ$ $ → πN&Nππ $ $ (Γ_1Γ_9)^{\frac{1}{2}}/Γ$ $ → πN&Nππ $
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved coupling to Δ(1232) π Γ.Γ.Γ.) 1/2/Γ total in Nπ → N Δ.UE ±0.16 to ±0.22 OUR Est 0.21 ±0.04 0.17 0.20 Γ.Γ.Γ.) 1/2/Γ total in Nπ → N Δ.UE ±0.09 to ±0.19 OUR Est 0.05 ±0.06 0.19 0.20 Γ.Γ.Γ.Γ.) 1/2/Γ total in Nπ → N	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 DOCUMENT ID STIMATE MANLEY 3 LONGACRE 4 LONGACRE ((1710) → N ρ, S DOCUMENT ID STIMATE MANLEY 3 LONGACRE 4 LONGACRE ((1710) → N P, S LONGACRE 4 LONGACRE ((1710) → N P, S	π analysis. π analysis. t convenitive sign 32)π. P. 92 IP 77 IP 75 IP 92 IP 77 IP 77 IP 77 IP 77 IP 77 IP	Swere chains were chains, the ost for the \(\Delta \) in the \(\	
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved coupling to Δ(1232) π Γ ₁ Γ ₁) Γ ₂ /Γ _{total} in Nπ → N ALUE ±0.04 0.17 ±0.05 ±0.06 0.19 0.20 Γ ₁ Γ ₁ Γ ₂ /Γ _{total} in Nπ → N ALUE ±0.09 to ±0.19 OUR E 0.05±0.06 0.19 0.20 Γ ₁ Γ ₁ Γ ₂ /Γ _{total} in Nπ → N ALUE	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 DOCUMENT ID STIMATE MANLEY 3 LONGACRE 4 LONGACRE ((1710) → N ρ, S DOCUMENT ID STIMATE MANLEY 3 LONGACRE 4 LONGACRE ((1710) → N P, S LONGACRE 4 LONGACRE ((1710) → N P, S	π analysis. π analysis. t convenitive sign 32)π. P. 92 IP 77 IP 75 IP 92 IP 77 IP 77 IP 77 IP 77 IP 77 IP	Swere chains were chains, the ost for the \(\Delta \) in the \(\	
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved coupling to Δ(1232) π Γ,Γ,Γ,1 1/2/Γ total in Nπ → N ALUE ±0.16 to ±0.22 OUR Ed. 0.17 0.20 Γ,Γ,Γ,1 1/2/Γ total in Nπ → N ALUE ±0.09 to ±0.19 OUR Ed. 0.05 ±0.06 0.19 0.20 Γ,Γ,Γ,1 1/2/Γ total in Nπ → N ALUE ±0.09 to ±0.19 OUR Ed. 0.19 0.20	STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 5 LONGACRE 4 LONGACRE 4 LONGACRE 6 LONGACRE 7 LONGACRE 8 LONGACRE 9 LONGACRE 1 LONGACRE 1 LONGACRE 1 LONGACRE 1 LONGACRE 1 LONGACRE 2 LONGACRE 4 LONGACRE 5 LONGACRE 7 LONGACRE 8 LONGACRE 8 LONGACRE 9 LONGACRE 1 LONGACRE 1 LONGACRE 1 LONGACRE	75 Di π analysis t convenitive sign 32)π. P 92 IP 77 IP 92 IP 75 IP 92 IP 75 IP 92 IP 77 IP 77 IP	Swere chains were chains the ost for the \(\Delta \) in t	→ Σ K Inged in the retail phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{12}} / \Gamma$ $\rightarrow \pi N \& N \pi \pi$ $\rightarrow N \pi \pi$ $(\Gamma_1 \Gamma_9)^{\frac{1}{12}} / \Gamma$ $\rightarrow \pi N \& N \pi \pi$ $\rightarrow N \pi \pi$ $\rightarrow N \pi \pi$ $(\Gamma_1 \Gamma_{10})^{\frac{1}{12}} / \Gamma$ $MENT$ $(\Gamma_1 \Gamma_{10})^{\frac{1}{12}} / \Gamma$ $MENT$ $N \pi \pi$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved 1 coupling to Δ(1232) π Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ALUE ±0.04 0.17 0.20 Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ALUE ±0.05 ±0.06 0.19 0.20 Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ALUE ±0.05 ±0.06 0.19 0.20 Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ALUE ±0.031	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 <u>DOCUMENT ID</u> STIMATE MANLEY 3 LONGACRE 4 LONGACRE ((1710) → N p, S <u>DOCUMENT ID</u> STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE ((1710) → N p, S <u>DOCUMENT ID</u> 3 LONGACRE ((1710) → N p, S <u>DOCUMENT ID</u> 3 LONGACRE	75 D π analysis t convenitive sign 32) π. P 92 IP 77 IP 75 IP 92 IP 77 IP 77 IP 77 IP 77 IP 77 IP 77 IP 78 IP 77 IP	Swere chaining the output of the All wave CN COMM WA N N N N N N N N N N N N N N N N N N N	or ΣK In regard in the retail phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}}/\Gamma$ OF $N \otimes N \pi \pi$ OF $N \otimes N \pi \pi$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved 1 coupling to Δ(1232) π Γ ₁ Γ ₁ ¹ / ₂ /Γ _{total} in Nπ → N ΔLUE ±0.16 to ±0.22 OUR E 0.21 ±0.04 0.17 0.20 Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.09 to ±0.19 OUR E 0.05 ±0.06 0.19 0.20 Γ ₁ Γ ₁ γ) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.31 Γ ₁ Γ ₁ γ) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.14 to ±0.22 OUR E	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 <u>DOCUMENT ID</u> STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 7 (1710) → N ρ, S <u>DOCUMENT ID</u> 3 LONGACRE 7 (1710) → N ρ, S <u>DOCUMENT ID</u> 3 LONGACRE 7 (1710) → N ρ, S <u>DOCUMENT ID</u> 3 LONGACRE 7 (1710) → N (π π <u>DOCUMENT ID</u> STIMATE	75 D π analysis t convent tive sign 32) π. Ρ. 92 IP 77 IP 75 IP 92 IP 77 IP 78 IP 78 IP 78 IP 79 IP 77 IP 78 IP 78 IP 78 IP 79 IP 79 IP 79 IP 77 IP	Swere chains, the output of the \(\Delta \) (on th	maged in the retail phase (1620) S_{31} $(\Gamma_1\Gamma_7)^{\frac{1}{2}}/\Gamma$ $\rightarrow \pi N \& N\pi\pi$ $\rightarrow N\pi\pi$ $\rightarrow N\pi\pi$ $(\Gamma_1\Gamma_9)^{\frac{1}{2}}/\Gamma$ $\rightarrow \pi N \& N\pi\pi$ $\rightarrow N\pi\pi$ $\rightarrow N\pi\pi$ $(\Gamma_1\Gamma_{10})^{\frac{1}{2}}/\Gamma$ $(\Gamma_1\Gamma_{11})^{\frac{1}{2}}/\Gamma$ MENT $(\Gamma_1\Gamma_{11})^{\frac{1}{2}}/\Gamma$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved a coupling to $\Delta(1232)\pi$ $\Gamma_{I}\Gamma_{I}^{1/2}/\Gamma_{total}$ in $N\pi \rightarrow N$ ALUE ± 0.16 to ± 0.22 OUR Estimates ± 0.09 to ± 0.19 OUR Estimates ± 0.19 Total in $N\pi \rightarrow N$ ALUE ± 0.09 to ± 0.19 OUR Estimates ± 0.19 Total in $N\pi \rightarrow N$ ± 0.19 Total in $N\pi \rightarrow N$ ± 0.19 Total in $\Delta N\pi \rightarrow N$ $\Delta N\pi \rightarrow N\pi$	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(12:	75 Di π analysis t convenitive sign 32)π. P 92 IP 77 IP 75 IP 92 IP 77 IP 78 IP 79 IP	wave CN COMM WA N COMM WA R COMM WA	or ΣK In regard in the retail phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}}/\Gamma$ OF $N \otimes N \pi \pi$ OF $N \otimes N \pi \pi$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved a coupling to $\Delta(1232)\pi$ $\Gamma_{1}\Gamma_{7}\Gamma_{7}^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ $\Delta LUE \pm 0.04$ 0.17 0.20 $\Gamma_{1}\Gamma_{7}\Gamma_{7}^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ $\Delta LUE \pm 0.09$ ± 0.09 to ± 0.19 OUR Estimates ± 0.14 to ± 0.22 OUR Estimates ± 0.14 to ± 0.24 t	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 <u>DOCUMENT ID</u> STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 7 (1710) → N ρ, S <u>DOCUMENT ID</u> 3 LONGACRE 7 (1710) → N ρ, S <u>DOCUMENT ID</u> 3 LONGACRE 7 (1710) → N ρ, S <u>DOCUMENT ID</u> 3 LONGACRE 7 (1710) → N (π π <u>DOCUMENT ID</u> STIMATE	π analysis to convenitive sign 32)π. P 92 IP 77 IP 92 IP 75 IP 92 IP 77 IP 97 IP 77 IP 77 IP 77 IP 77 IP 77 IP 77 IP 92 IP 77 IP	wave CN COMM WA N WA N COMM WA N WA WA N WA WA WA WA WA WA WA WA WA W	or ΣK Inged in the retail phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}}/\Gamma$ OF THE PROPERT OF
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved coupling to Δ(1232) π Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ALUE ±0.16 to ±0.22 OUR E 0.21 ±0.04 0.17 0.20 Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ALUE ±0.05 ±0.06 0.19 0.20 Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ALUE ±0.19 OUR E 0.019 0.20 Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ALUE ±0.14 to ±0.22 OUR E ±0.14 to ±0.22 OUR E 0.04 ±0.05 0.26 0.26	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 DOCUMENT ID STIMATE MANLEY 3 LONGACRE 4 LONGACRE ((1710) → N ρ, S DOCUMENT ID STIMATE MANLEY 3 LONGACRE ((1710) → N ρ, S DOCUMENT ID 3 LONGACRE ((1710) → N ρ, S DOCUMENT ID 3 LONGACRE ((1710) → N ρ, S DOCUMENT ID 3 LONGACRE ((1710) → N (ππ DOCUMENT ID STIMATE MANLEY 3 LONGACRE ((1710) → N (ππ DOCUMENT ID STIMATE MANLEY 3 LONGACRE	π analysis π analysis t convent tive sign 32) π, P 77	Swere chains, the output of the All th	or ΣK Inged in the retail phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}}/\Gamma$ OF THE REST IN & NATE IN A
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved 1 coupling to Δ(1232) π Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.16 to ±0.22 OUR E ±0.05 ±0.06 0.19 0.20 Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.05 ±0.06 0.19 0.20 Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.14 to ±0.19 OUR E ±0.15 ±0.06 0.19 0.20 Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.14 to ±0.19 OUR E ±0.16 to ±0.19 OUR E ±0.17 (Γ ₁) (Γ ₁) (Γ ₁) (Γ ₁) (Γ ₂) (Γ ₂) (Γ ₂) (Γ ₂) (Γ ₃) (Γ	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 <u>DOCUMENT ID</u> STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE ((1710) → N ρ, S <u>DOCUMENT ID</u> 3 LONGACRE 4 LONGACRE ((1710) → N ρ, S <u>DOCUMENT ID</u> 3 LONGACRE ((1710) → N ρ, S <u>DOCUMENT ID</u> 3 LONGACRE ((1710) → N (ππ <u>DOCUMENT ID</u> STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE	π analysis to convenitive sign 1/2, /π 1/2, /π 1/2, /π 1/2, /π 1/2, /π 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	Swere chains, the output of the All th	or ΣK Inged in the retail phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}}/\Gamma$ OF THE REST IN & NATE IN A
Note: Signs of coupling 1986 edition to agree ambiguity is resolved 1 coupling to $\Delta(1232)\pi$ $\Gamma_{1}\Gamma_{1})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ ALUE ± 0.04 0.17 0.20 $\Gamma_{1}\Gamma_{1}^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ ALUE ± 0.09 to ± 0.19 OUR Estimates ± 0.09 to ± 0.19 OUR Estimates ± 0.09 to ± 0.19 OUR Estimates ± 0.09 0.20 $\Gamma_{1}\Gamma_{1}^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ ALUE ± 0.09 to ± 0.19 OUR Estimates ± 0.19 0.20 $\Gamma_{1}\Gamma_{1}^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N$ ALUE ± 0.19 0.21 ± 0.14 to ± 0.22 OUR Estimates ± 0.14 to	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 DOCUMENT ID STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE ((1710) → N ρ, S DOCUMENT ID 3 LONGACRE ((1710) → N ρ, S DOCUMENT ID 3 LONGACRE ((1710) → N ρ, S DOCUMENT ID 3 LONGACRE ((1710) → N γ, S DOCUMENT ID 3 LONGACRE ((1710) → N (ππ DOCUMENT ID STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE PHOTON DECA (/2 amplitude A ₁	π analysis to convenitive sign 32)π. P 92 IP 77 IP 75 IP 92 IP 75 IP 92 IP 77 IP	Swere chains, the output of the All th	
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved if coupling to Δ(1232) π $\Gamma_1\Gamma_f^{1/2}/\Gamma_{\text{total}}$ in $N\pi \rightarrow N$ ALUE ±0.16 to ±0.22 OUR E ±0.02 t±0.04 0.17 0.20 $\Gamma_1\Gamma_f^{1/2}/\Gamma_{\text{total}}$ in $N\pi \rightarrow N$ ALUE ±0.09 to ±0.19 OUR E ±0.05 ±0.06 0.19 0.20 $\Gamma_1\Gamma_f^{1/2}/\Gamma_{\text{total}}$ in $N\pi \rightarrow N$ ALUE ±0.19 0.20 $\Gamma_1\Gamma_f^{1/2}/\Gamma_{\text{total}}$ in $N\pi \rightarrow N$ ALUE ±0.19 0.20 $\Gamma_1\Gamma_f^{1/2}/\Gamma_{\text{total}}$ in $N\pi \rightarrow N$ ALUE ±0.19 0.20 $\Gamma_1\Gamma_f^{1/2}/\Gamma_{\text{total}}$ in $N\pi \rightarrow N$ ALUE ±0.19 0.21 ±0.19	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 <u>DOCUMENT ID</u> STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 7 LONGACRE 7 LONGACRE 8 LONGACRE 9 LONGACRE 7 LONGACRE 7 LONGACRE 7 LONGACRE 7 LONGACRE 7 LONGACRE 7 LONGACRE 8 LONGACRE 8 LONGACRE 9 LONGAC	π analysis to convenitive sign 32)π. P 92 IP 77 IP 75 IP 92 IP 75 IP 92 IP 77 IP	Swere chains, the output of the All th	
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved a coupling to Δ(1232) π $\Gamma_{I}\Gamma_{I}^{1/2}/\Gamma_{total} \text{ in } N\pi \rightarrow N$ ALUE ±0.16 to ±0.22 OUR Estimates 0.21 ±0.04 0.17 0.20 $\Gamma_{I}\Gamma_{I}^{1/2}/\Gamma_{total} \text{ in } N\pi \rightarrow N$ ALUE ±0.09 to ±0.19 OUR Estimates 0.05 ±0.06 0.19 0.20 $\Gamma_{I}\Gamma_{I}^{1/2}/\Gamma_{total} \text{ in } N\pi \rightarrow N$ ALUE ±0.14 to ±0.22 OUR Estimates 0.04 ±0.05 0.26 0.28 $N(1710) \rightarrow p\gamma, \text{ helicity-1}$ ALUE (GeV-1/2) 0.009±0.022 OUR ESTIMATestimates 0.007±0.015	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(12:	75 D π analysis t conventive sign 32) π . P 92 IP 77 IP 75 IP 92 IP 77 IP 77 IP 93 IP 77 IP 78 IP 79 IP 79 IP 79 IP 77 IP 78 IP 79 IP	Swere chaining the output of the All wave CN COMM TO N T	→ Σ K Inged in the retail phase (1620) S_{31} $(\Gamma_1\Gamma_7)^{\frac{1}{12}}/\Gamma$ → $\pi N \& N \pi \pi$ → $N \pi \pi$ $(\Gamma_1\Gamma_9)^{\frac{1}{12}}/\Gamma$ → $\pi N \& N \pi \pi$ → $N \pi \pi$ $(\Gamma_1\Gamma_{10})^{\frac{1}{12}}/\Gamma$ → $N \pi \pi$ $(\Gamma_1\Gamma_{11})^{\frac{1}{12}}/\Gamma$ → $\pi N \& N \pi \pi$ → $N \pi \pi$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved in coupling to Δ(1232) π Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.16 to ±0.22 OUR E: ±0.05 ±0.06 0.19 0.20 Γ ₁ Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.09 to ±0.19 OUR E: 0.015 ±0.06 0.19 0.20 Γ ₁ Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.14 to ±0.22 OUR E: 0.04 ±0.05 0.26 0.28 N(1710) → ργ, helicity-1 ΔLUE (GeV-1/2) 0.007 ±0.015 0.007 ±0.015 0.006 ±0.018	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 DOCUMENT ID STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 1(1710) → N p, S DOCUMENT ID 3 LONGACRE 1(1710) → N p, S DOCUMENT ID 3 LONGACRE 1(1710) → N (ππ DOCUMENT ID 3 LONGACRE 1(1710) → N (ππ DOCUMENT ID STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE PHOTON DECA 1/2 amplitude A ₁ DOCUMENT ID CRAWFORD	75 D π analysis t conventive sign 32) π, P 92 IP 77 IP 75 IP 177 IP 77 IP 78 IP 77 IP 78 IP 77 IP 78 IP 77 IP 78 IP 78 IP 77 IP 78 IP 78 IP 79 IP 79 IP 70 IP 71 IP 71 IP 72 IP 73 IP 74 AMP 76 IP 77 IP 78 IP 78 IP 78 IP 79 IP 79 IP 70 IP 71 IP 71 IP 72 IP 73 IP 74 IP 75 IP 76 IP 77 IP 78 IP 78 IP 79 IP 79 IP 70 IP 71 IP 71 IP 72 IP 73 IP 74 IP 75 IP 76 IP 77 IP 78 IP 78 IP 79 IP 70 IP 71 IP 71 IP 72 IP 73 IP 74 IP 75 IP 76 IP 77 IP 78 IP 78 IP 79 IP 70 IP 71 IP 71 IP 72 IP 73 IP 74 IP 75 IP 76 IP 77 IP 78 IP 79 IP 70 IP 71 IP 71 IP 71 IP 72 IP 73 IP 74 IP 75 IP 76 IP 77 IP 78 IP 78 IP 79 IP 70 IP 70 IP 71 IP 71 IP 71 IP 71 IP 71 IP 72 IP 73 IP 74 IP 75 IP 76 IP 77 IP 77 IP 78 IP 78 IP 79 IP 70 IP 70 IP 71 IP 71 IP 71 IP 71 IP 71 IP 72 IP 73 IP 74 IP 75 IP 76 IP 77 IP 77 IP 78 I	Swere chains, the out for the \(\Delta \) (In the out for the \(\	or ΣK Inged in the retail phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}} / \Gamma$ OF $\pi N \& N \pi \pi$ OF $\pi N \& N \pi \pi$ $N \pi \pi$ $N \pi \pi$ $N \pi \pi$ $N \pi \pi$ $(\Gamma_1 \Gamma_0)^{\frac{1}{2}} / \Gamma$ OF $\pi N \& N \pi \pi$ $N \pi \pi$ $(\Gamma_1 \Gamma_1)^{\frac{1}{2}} / \Gamma$ OF $\pi N \& N \pi \pi$ $N \pi \pi$ $(\Gamma_1 \Gamma_1)^{\frac{1}{2}} / \Gamma$ OF $\pi N \& N \pi \pi$ $N \pi \pi$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved 1 coupling to Δ(1232) π Γ ₁ Γ ₁ ¹ / ₂ /Γ _{total} in Nπ → N ΔΕUE ±0.16 to ±0.22 OUR E 0.21±0.04 0.17 0.20 Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔΕUE ±0.05±0.06 0.19 0.20 Γ ₁ Γ ₁ γ) ^{1/2} /Γ _{total} in Nπ → N ΔΕUE ±0.14 to ±0.19 OUR E ±0.14 to ±0.22 OUR E 0.21 ±0.05 ±0.06 0.19 0.20 Γ ₁ Γ ₁ γ) ^{1/2} /Γ _{total} in Nπ → N ΔΕUE ±0.14 to ±0.19 OUR E 40.14 ±0.05 0.26 0.28 N(1710) → ργ, helicity-1 ΔΕUE (GeV-1/2) 0.006±0.018 0.006±0.018 0.008±0.009	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123	75 D π analysis t conventive sign 32) π. P. 92 IPP 75 IP 92 IPP 75 IP 92 IPP 75 IP 92 IPP 77 IPP 77 IPP 75 IP 91 IPP 77 IPP 78 IPP 79	Swere chains, the out for the \(\Delta \) in the	→ Σ K Inged in the retail phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}} / \Gamma$ $MENT$ → $\pi N \& N \pi \pi$ → $N \pi \pi$ $(\Gamma_1 \Gamma_9)^{\frac{1}{2}} / \Gamma$ → $\pi N \& N \pi \pi$ → $N \pi \pi$ $(\Gamma_1 \Gamma_{10})^{\frac{1}{2}} / \Gamma$ $(\Gamma_1 \Gamma_{11})^{\frac{1}{2}} / \Gamma$ $MENT$ → $\pi N \& N \pi \pi$ → $N \pi \pi$ $(\Gamma_1 \Gamma_{11})^{\frac{1}{2}} / \Gamma$ $MENT$ → $\pi N \& N \pi \pi$ → $N \pi \pi$ → $N \pi \pi$ $MENT$ → $\pi N \& N \pi \pi$ → $\pi N \pi \pi$
0.034 0.075 to 0.203 Note: Signs of coupling 1986 edition to agree ambiguity is resolved in coupling to Δ(1232) π Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.16 to ±0.22 OUR E: ±0.05 ±0.06 0.19 0.20 Γ ₁ Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.09 to ±0.19 OUR E: 0.015 ±0.06 0.19 0.20 Γ ₁ Γ ₁ Γ ₁) ^{1/2} /Γ _{total} in Nπ → N ΔLUE ±0.14 to ±0.22 OUR E: 0.04 ±0.05 0.26 0.28 N(1710) → ργ, helicity-1 ΔLUE (GeV-1/2) 0.007 ±0.015 0.007 ±0.015 0.006 ±0.018	LIVANOS 8 DEANS gs from π N → N π with the baryon-firs by choosing a nega ((1710) → Δ(123 DOCUMENT ID STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 1(1710) → N p, S DOCUMENT ID 3 LONGACRE 1(1710) → N p, S DOCUMENT ID 3 LONGACRE 1(1710) → N (ππ DOCUMENT ID 3 LONGACRE 1(1710) → N (ππ DOCUMENT ID STIMATE MANLEY 3 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE 4 LONGACRE PHOTON DECA 1/2 amplitude A ₁ DOCUMENT ID CRAWFORD	π analysis to convenit to convenit to convenit to convenit tive sign 32) π . P. 77 IP 77 IP 75 IP 192 IP 77 IP 7	Swere chaining the output of the All swave CN COMM TO NOT THE OUTPUT OF THE OUTPUT OF THE OUTPUT OF THE OUTPUT OF THE OUTPUT OUTPUT OF THE OUTPUT OF THE OUTPUT OF THE OUTPUT OUT	or ΣK Inged in the retail phase (1620) S_{31} $(\Gamma_1 \Gamma_7)^{\frac{1}{2}} / \Gamma$ OF $\pi N \& N \pi \pi$ OF $\pi N \& N \pi \pi$ $N \pi \pi$ $N \pi \pi$ $N \pi \pi$ $N \pi \pi$ $(\Gamma_1 \Gamma_0)^{\frac{1}{2}} / \Gamma$ OF $\pi N \& N \pi \pi$ $N \pi \pi$ $(\Gamma_1 \Gamma_1)^{\frac{1}{2}} / \Gamma$ OF $\pi N \& N \pi \pi$ $N \pi \pi$ $(\Gamma_1 \Gamma_1)^{\frac{1}{2}} / \Gamma$ OF $\pi N \& N \pi \pi$ $N \pi \pi$

 -0.037 ± 0.002 $+0.001\pm0.039 \\ +0.053\pm0.019$

$N(1710) \rightarrow n\gamma$, helicity	-1/2 amplitude A _{1/}	/2		
VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.002±0.014 OUR ESTIM	ATE			
-0.002 ± 0.015	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
0.000 ± 0.018	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.001 ± 0.003	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
0.005 ± 0.013	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.011 ± 0.021	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.017 ± 0.020	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the fol	lowing data for average	es, fit	s, limits,	etc. • • •
0.052 ± 0.003	LI	93	IPWA	$\gamma N \rightarrow \pi N$
-0.028 ± 0.045	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
N(171	0) $\gamma p \rightarrow \Lambda K^+$	АМ	PLITU	DES
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}}$ in $p \gamma \rightarrow$	N(1710) → AK	+		(M ₁₋ amplitude)
VALUE (units 10-3)	DOCUMENT ID		TECN	

- 7.21	TANABE	89	DPWA	
$p\gamma \rightarrow N(1710) \rightarrow \Lambda K^{+}$	hase angle θ			(M ₁₋ amplitude)
VALUE (degrees)	DOCUMENT ID		TECN	
• • • We do not use the following	ng data for average	s, fit	s, limits, etc	. • • •
215 ±3	WORKMAN	90	DPWA	
176.3	TANABE	89	DPWA	

WORKMAN 90 DPWA

• • • We do not use the following data for averages, fits, limits, etc. • • •

N(1710) FOOTNOTES

1 BATINIC 95 finds a second state with a 6 MeV mass difference.
2 The two BAKER 77 entries are from an IPWA using the Barrelet-zero method and from a conventional energy-dependent analysis.
3 LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to π N → Nππ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

From method II of JONGACRE 75 useball 66 with Baris Wigner circles to the T-matrix amplitudes.

⁴ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

 -10.6 ± 0.4

ampirtudes. See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

6 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to π $N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

⁷The overall phase of BAKER 78 couplings has been changed to agree with previous

conventions.

8 The range given for DEANS 75 is from the four best solutions.

N(1710) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Work	man (VPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BRCO)
BATINIC	95	PR C51 2310	M. Batinic et al.	(BOSK, UCLA)
Also	98	PR C57 1004 (erratum)	M. Batinic et al.	(BOSIL, OCEA)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li et al.	(VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
CUTKOSKY	90	PR D42 235	R.E. Cutkosky, S. Wang	(CMU)
WORKMAN	90	PR C42 781	R.L. Workman	(VPI)
TANABE	89	PR C39 741	H. Tanabe, M. Kohno, C. Bennhold	(MANZ)
Also	89	NC 102A 193	M. Kohno, H. Tanabe, C. Bennhold	(MANZ)
BELL	83	NP B222 389	K.W. Bell et al.	
CRAWFORD	83	NP B222 309 NP B211 1	R.L. Crawford, W.T. Morton	(RL) IJP
PDG	82	PL 111B	M. Roos et al.	(GLAS)
ILAWA	81	Bonn Conf. 352		(HELS, CIT, CERN)
			N. Awaji, R. Kajikawa	(NAGO)
Also FUJII	82 81	NP B197 365 NP B187 53	K. Fujii et al.	(NAGO)
ARAI	80		K. Fujii et al.	(NAGO, OSAK)
		Toronto Conf. 93	I. Arai	(INUS)
Also	82	NP B194 251	I. Arai, H. Fujii	(INUS)
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	P. Livanos et al.	(SACL) IJP
SAXON	80	NP B162 522	D.H. Saxon et al.	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	R.D. Baker et al.	(RHEL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BAKER	78	NP B141 29	R.D. Baker et al.	(RL, CAVE) UP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Par	
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
BAKER	77	NP B126 365	R.D. Baker et al.	(RHEL) IJP
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau	(SACL) IJP
Also	76	NP B108 365	J. Dolbeau et al.	(SACL) IJP
FELLER	76	NP B104 219	P. Feller et al.	(NAGO, OSAK) IJP
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
FELTESSE	75	NP B93 242	J. Feltesse et al.	(SACL) IJP
KNASEL	75	PR D11 1		(CHIC, WUSL, OSU+) IJP
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	(LBL, SLAC) IJP

 $N(1720) P_{13}$

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters **111B** (1982).

N(1720) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1650 to 1750 (≈ 1720) C	UR ESTIMATE			-
1717 ± 31	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
1700 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1710 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
 • • We do not use the 	following data for average	s, fit	s, limits,	etc. • • •
1713±10	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1820	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1711 ± 26	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
1720	LI	93	IPWA	$\gamma N \rightarrow \pi N$
1785	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1690	SAXON	80	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
1710 to 1790	BAKER	78	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1809	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1640±10	¹ BAKER	77	IPWA	$\pi^- p \rightarrow \Lambda K^0$
1710	¹ BAKER	77	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
1750	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1850	KNASEL	75	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1720	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1720) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
100 to 200 (≈ 150) OUR ESTIMAT	ΠE			
380 ± 180	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
125± 70	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
190 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fit	s, limits,	etc. • • •
153± 15	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
354	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
235 ± 51	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$
200 '	LI	93	IPWA	$\gamma N \rightarrow \pi N$
308	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
120	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
447	BAKER	79	DPWA	$\pi^- \rho \rightarrow n\eta$
300 to 400	BAKER	78	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
285	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
200 ± 50	¹ BAKER	77	IPWA	$\pi^- p \rightarrow \Lambda K^0$
500	1 BAKER	77	DPWA	$\pi^- p \rightarrow \Lambda K^0$
130	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
327	KNASEL	75	DPWA	$\pi^- p \rightarrow \Lambda K^0$
150	3 LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1720) POLE POSITION

REAL PAR	F
1/4/// (14-10)	

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1650 to 1750 (≈ 1700) OUR EST	MATE			
1717	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1686	4 HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1680 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	data for averages	s, fit	s, limits,	etc. • • •
1675	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM}90$
1716 or 1716	⁵ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1745 or 1748	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
110 as 200 / 200\ OHD FETIMA				
110 to 390 (≈ 250) OUR ESTIMA	TE			
388 (≈ 250) OUR ESTIMA		95	DPWA	$\pi N \rightarrow N \pi$
				$ \begin{array}{ccc} \pi N \to & N \pi \\ \pi N \to & \pi N \end{array} $
388	ARNDT	93	SPED	
388 187	ARNDT 4 HOEHLER CUTKOSKY	93 80	SPED IPWA	$ \pi N \to \pi N \pi N \to \pi N $
388 187 120 ± 40	ARNDT 4 HOEHLER CUTKOSKY	93 80	SPED IPWA s, limits,	$ \pi N \to \pi N \pi N \to \pi N $
388 187 120±40 ••• We do not use the following	ARNDT 4 HOEHLER CUTKOSKY data for averages	93 80 5, fit: 91	SPED IPWA s, limits, DPWA	$\pi N \rightarrow \pi N$ $\pi N \rightarrow \pi N$ etc. • •
388 187 120±40 • • • We do not use the following 114	ARNDT 4 HOEHLER CUTKOSKY g data for averages ARNDT	93 80 5, fit: 91	SPED IPWA s, limits, DPWA IPWA	$\begin{array}{lll} \pi N \longrightarrow & \pi N \\ \pi N \longrightarrow & \pi N \\ \text{etc.} & \bullet & \bullet \\ \pi N \longrightarrow & \pi N \text{Soin SM90} \end{array}$

N(1720) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
39	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
15	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
8 ± 2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits	, limits,	etc. • • •
11	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ SoIn SM90}$

PHASE #	DOCUMENT ID		TECN	СОММЕ	NT
- 70	ARNDT		DPWA	- A/	N-
• •					
-160 ± 30	CUTKOSKY				
• • We do not use the following	data for average	s, fit	s, limits,	etc. • •	• •
130	ARNDT	91	DPWA	$\pi N \rightarrow$	π N Soln SM90

N(1720) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_I/Γ)	
$\overline{\Gamma_1}$	Νπ	10–20 %	
Γ2	Νη		
Γ_3	ΛK	1–15 %	
Γ_4	ΣΚ		
Γ_5	Νππ	>70 %	
Γ_6	$\Delta\pi$		
Γ_7	Δ (1232) π , $ extit{P}$ -wave		
Γ8	Nρ	70-85 %	
Γ9	$N\rho$, $S=1/2$, P -wave		
Γ_{10}	$N\rho$, S=3/2, P-wave		
Γ_{11}	$N(\pi\pi)_{S-\text{wave}}^{I=0}$		
Γ_{12}	$p\gamma$	0.003-0.10 %	
Γ_{13}	$p\gamma$, helicity= $1/2$	0.003-0.08 %	
Γ_{14}	$p\gamma$, helicity=3/2	0.001-0.03 %	
Γ_{15}	$n\gamma$	0.002-0.39 %	
Γ_{16}	$n\gamma$, helicity=1/2	0.0-0.002 %	
Γ ₁₇	$n\gamma$, helicity=3/2	0.001-0.39 %	

N(1720) BRANCHING RATIOS

Γ(Nπ)/Γ _{total}						Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	Г	
0.10 to 0.20 OUR ESTIMA	ATE					
0.13 ± 0.05	MANLEY	92	IPWA	$\pi N \rightarrow 1$	πN&N1	τπ
0.10 ± 0.04	CUTKOSKY	80	IPWA	$\pi N \rightarrow 2$	τN	
0.14 ± 0.03	HOEHLER	79	IPWA	$\pi N \rightarrow 3$	πN	
• • We do not use the	following data for averag	es, fit	s, limits,	etc. • •	•	
0.16	ARNDT	95	DPWA	$\pi N \rightarrow$	Nπ	
0.18 ± 0.04	BATINIC	95	DPWA	$\pi N \rightarrow$	Nπ, Nη	
$\Gamma(N\eta)/\Gamma_{\text{total}}$						Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMEN	T	
• • • We do not use the	following data for average	es, fit	s, limits,	etc. • •	•	
0.002 ± 0.01	BATINIC	95	DPWA	$\pi N \rightarrow$	Νπ, Νη	
(C.C.) 1/2 / C in N = .	. A/(1790) . A/=				/C. C.	.142/⊏

 $(\Gamma_1\Gamma_f)^{\prime\prime}/\Gamma_{\text{total}}$ in $N\pi \to N(1720) \to N\eta$ $(\Gamma_1\Gamma_2)^{\frac{1}{1}}/\Gamma_{\text{total}}$ in $N\pi \to N(1720) \to N\eta$ $(\Gamma_1\Gamma_2)^{\frac{1}{1}}/\Gamma_{\text{total}}$ in $N\pi \to N(1720) \to N\eta$ $N\eta \to N\eta$ $(\Gamma_1\Gamma_2)^{\frac{1}{1}}/\Gamma_{\text{total}}$ in $N\pi \to N(1720) \to N\eta$ $N\eta \to N\eta$ $N\eta \to N\eta$ $N\eta \to N\eta$

- 0.00	DAILER	,,	DI VIA A P -	1111
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(17)$	720) → <i>ΛK</i>			(Γ ₁ Γ ₃) ^{1/2} /Γ
VALUE	DOCUMENT ID		TECN COMMENT	
-0.14 to -0.06 OUR ESTIMATE				
-0.09	BELL	83	DPWA $\pi^- p \rightarrow$	ΛK ⁰
-0.11	SAXON	80	DPWA $\pi^- \rho \rightarrow$	ΛΚ ⁰
• • • We do not use the following	data for average	, fit	s, limits, etc. 🔹 🕶 🔹	
-0.09	6 BAKER	78	DPWA See SAXO	N 80
-0.06 ± 0.02	¹ BAKER	77	IPWA $\pi^- p \rightarrow$	ΛK ⁰
-0.09	¹ BAKER	77	DPWA $\pi^- p \rightarrow$	ΛK ⁰

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	N(1720) → ΣK		(Γ ₁ Γ ₄) ¹	½/г
VALUE	DOCUMENT II	TECN	COMMENT	
• • • We do not use the fol	lowing data for avera	ges, fits, limit	s, etc. • • •	
0.051 to 0.087	7 DEANS	75 DPW	$A \pi N \rightarrow \Sigma K$	

Note: Signs of couplings from $\pi\,N\to N\pi\,\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)\,S_{31}$ coupling to $\Delta(1232)\,\pi$.

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi$	$r \rightarrow N(1720) \rightarrow \Delta(1232)\pi$, P-wave	(Г₁Г ₇) ^½ /Г
VALUE_	DOCUMENT ID TECH COMMEN	IT
±0.27 to ±0.37 (
-0.17	² LONGACRE 77 IPWA $\pi N \rightarrow$	Νππ

N(1720), N(1900)

$\Gamma_i \Gamma_f)^{1/2} / \Gamma_{ ext{total}}$ in $N\pi o N(17)$	20) → Nρ, S=	=1/2	2, P-wa	ve (Γ ₁ Γ ₉) ^{1/2} /Γ
0.34±0.05	MANLEY	92		$\pi N \rightarrow \pi N \& N \pi \pi$
	LONGACRE			$\pi N \rightarrow N \pi \pi$
0.40	3 LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(17)$	$(20) \rightarrow N \rho, S=$	=3/2	2, P-wa	ve (Γ ₁ Γ ₁₀) ^{1/2} /Γ
.15	DOCUMENT ID LONGACRE			$\pi N \rightarrow N \pi \pi$
.15	LONGACKE	• • •	IF YYA	
$(\Gamma_f)^{\frac{1}{12}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(17)$	$20) \rightarrow N(\pi\pi)$			(Γ₁Γ₁₁) ^⅓ /Γ
0.19	DOCUMENT ID LONGACRE			$\frac{COMMENT}{\pi N \rightarrow N\pi \pi}$
	LONGACRE		IPVVA	π N → N π π
N(1720) PHC			APLITU	JDES
$(1720) \rightarrow p\gamma$, helicity-1/2 a	•		TECH	COLMENT
LUE (GeV-1/2) 0.018±0.030 OUR ESTIMATE	DOCUMENT ID		TECN	COMMENT
0.015 ± 0.015	ARNDT			$\gamma N \rightarrow \pi N$
0.044 ± 0.066	CRAWFORD			$\gamma N \rightarrow \pi N$
.004 ± 0.007	AWAJI			$\gamma N \rightarrow \pi N$
0.051 ± 0.009 0.071 ± 0.010	ARAI ARAI			$\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.038 ± 0.050	CRAWFORD			$\gamma N \rightarrow \pi N \text{ (iii 2)}$
We do not use the following				•
0.012±0.003	LI			$\gamma N \rightarrow \pi N$
0.111 ± 0.047	BARBOUR			$\gamma N \rightarrow \pi N$
1720) $\rightarrow p\gamma$, helicity-3/2 a	amplitude A.			
UE (GeV $^{-1/2}$)	DOCUMENT ID	_	TECN	COMMENT
019±0.020 OUR ESTIMATE				
0.007 ± 0.010	ARNDT			$\gamma N \rightarrow \pi N$
.024±0.006	CRAWFORD			$\gamma N \rightarrow \pi N$
40±0.016	AWAJ!			$ \gamma N \to \pi N \gamma N \to \pi N \text{ (fit 1)} $
058±0.010 011±0.011	ARAI ARAI			$\gamma N \rightarrow \pi N \text{ (fit 1)}$ $\gamma N \rightarrow \pi N \text{ (fit 2)}$
014±0.040	CRAWFORD			$\gamma N \rightarrow \pi N$
• We do not use the following	data for average			
$.022 \pm 0.003$	LI	93	IPWA	$\gamma N \rightarrow \pi N$
063±0.032	BARBOUR			$\gamma N \rightarrow \pi N$
(720) $\rightarrow n\gamma$, helicity-1/2	amplitude A _{1/}	2		
UE (GeV ^{-1/2}) .001±0.015 OUR ESTIMATE	DOCUMENT ID		TECN	COMMENT
.007 ± 0.015	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
.002 ± 0.005	IL AWA			$\gamma N \rightarrow \pi N$
019±0.033	ARAI			$\gamma N \rightarrow \pi N \text{ (fit 1)}$
$.001 \pm 0.038$	ARAI			$\gamma N \rightarrow \pi N \text{ (fit 2)}$
.003 ± 0.034	CRAWFORD			$\gamma N \rightarrow \pi N$
We do not use the following	_			
0.050±0.004 0.007±0.020	LI BARBOUR	93 78		$\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$
			DITTA	, , , , — , , , , , , , , , , , , , , ,
1720) $\rightarrow n\gamma$, helicity-3/2 : $UE(GeV^{-1/2})$	amplitude A _{3/}		TECN	COMMENT
0.029±0.061 OUR ESTIMATE	DOCUMENT ID			- 3
0.005 ± 0.025	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
0.015 ± 0.019	ILAWA			$\gamma N \rightarrow \pi N$
.139±0.039	ARAI			$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.134±0.044	ARAI			$\gamma N \rightarrow \pi N \text{ (fit 2)}$ $\gamma N \rightarrow \pi N$
018 ± 0.028 • We do not use the following	CRAWFORD			
.017±0.004	LI			$\gamma N \rightarrow \pi N$
	BARBOUR			$\gamma N \rightarrow \pi N$ $\gamma N \rightarrow \pi N$
	Brutbook			. , , , , , , , , , , , , , , , , , , ,
			PI ITU	DES
.051±0.051	$\gamma p \rightarrow \Lambda K^+$	AM		
0.051 ± 0.051 N(1720)	,-			
$N(1720)$ $\Gamma_{\Gamma} \Gamma_{\Gamma}^{1/2} / \Gamma_{\text{total}} \text{ in } p \gamma \rightarrow N(1$,-	+	TECN	
0.051 ± 0.051	720) → AK+	+	<u>TECN</u>	(E ₁₊ amplitude)
$N(1720)$ $I(\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } p\gamma \rightarrow N(1$ $UE(\text{units } 10^{-3})$ • We do not use the following	720) → AK+	⊦ es, fit	<u>TECN</u>	(<i>E</i> ₁₊ amplitude)
$N(1720)$ $I(\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } p\gamma \rightarrow N(1$ $UE(\text{units } 10^{-3})$ • • We do not use the following 10^{-3} 10^{-3}	720) → ΛK ⁻¹ DOCUMENT ID data for average	+ es, fit	TECN	(<i>E</i> ₁₊ amplitude)
$N(1720)$ $N(1720)$ $I/\Gamma_f)^{\frac{1}{12}}/\Gamma_{\text{total}} \text{ in } p\gamma \rightarrow N(1$ $\frac{LUE \text{ (units } 10^{-3})}{\bullet} \bullet \text{ We do not use the following }$ $.2 \pm 0.2$ $.52$	720) → ΛK ⁻¹ <u>DOCUMENT ID</u> data for average WORKMAN TANABE	+ es, fit	TECN s, limits	(<i>E</i> ₁₊ amplitude)
$N(1720)$ $(\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } p\gamma \rightarrow N(1)$ $VE \text{ (units } 10^{-3})$ • We do not use the following 2 ± 0.2	720) → ΛK ⁻¹ <u>DOCUMENT ID</u> data for average WORKMAN TANABE	es, fit 90 89	TECN Is, limits DPWA	$(E_{1+} ext{ amplitude})$, etc. • • • $(E_{1+} ext{ amplitude})$
$N(1720)$ $N(1720)$ $F_{f}^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } p\gamma \rightarrow N(1$ $E(\text{units } 10^{-3})$ • We do not use the following ± 0.2 2 $\rightarrow N(1720) \rightarrow \Lambda K^{+} \text{ phi}$	720) → AK ⁺ DOCUMENT ID data for average WORKMAN TANABE ase angle θ DOCUMENT ID	es, fit 90 89	TECN S, limits DPWA DPWA	$(E_{1+} ext{ amplitude})$, etc. • • • $(E_{1+} ext{ amplitude})$
$N(1720)$ $N(1720)$ $F_{\gamma})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } p_{\gamma} \rightarrow N(1$ $E_{\text{(units }10^{-3})}$ • We do not use the following ± 0.2 $\rightarrow N(1720) \rightarrow \Lambda K^{+} \text{ phote } E_{\text{(degrees)}}$	720) → AK ⁺ DOCUMENT ID data for average WORKMAN TANABE ase angle θ DOCUMENT ID	es, fit 90 89	TECN DPWA DPWA TECN TECN	$(E_{1+} \text{ amplitude})$, etc. • • • $(E_{1+} \text{ amplitude})$, etc. • • •

$(\Gamma_l\Gamma_f)^{72}/\Gamma_{ ext{total}}$ in $p\gamma$.	$\rightarrow N(1720) \rightarrow \Lambda K^+$			(M ₁₊ amplitude)
VALUE (units 10 ⁻³)	DOCUMENT ID		TECN	
• • • We do not use the	following data for averages	, fit	s, limits, etc	. • • •
-4.5 ±0.2	WORKMAN	90	DPWA	
3.18	TANABE	89	DPWA	

N(1720) FOOTNOTES

N(1720) REFERENCES

For early references, see Physics Letters $\mathbf{111B}$ 70 (1982).

ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Work	mari (VPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BŘCO)
BATINIC	95	PR C51 2310	M. Batinic et al.	(BOSK, UCLA)
Also	98	PR C57 1004 (erratum)	M. Batinic et al.	,
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li et al.	(VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KĒNT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
WORKMAN	90	PR C42 781	R.L. Workman	` (VPI)
TANABE	89	PR C39 741	H. Tanabe, M. Kohno, C. Bennhold	(MÁNZ)
Also	89	NC 102A 193	M. Kohno, H. Tanabe, C. Bennhold	(MANZ)
BELL	83	NP B222 389	K.W. Bell et al.	(RL) IJP
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
AWAJI	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	` (NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
ARAI	80	Toronto Conf. 93	I, Arai	(INUS)
Also	82	NP B194 251	I. Arai, H. Fujii	(INUS)
CRAWFORD	60	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
SAXON	80	NP B162 522	D.H. Saxon et al.	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	R.D. Baker et al.	(RHEL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BAKER	78	NP B141 29	R.D. Baker et al.	(RL, CAVE) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Pa	
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
BAKER	77	NP B126 365	R.D. Baker et al.	(RHEL) IJP
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau	(SACL) IJP
Also	76	NP B108 365	J. Dolbeau et al.	(SACL) IJP
WINNIK	77	NP B128 66	M. Winnik et al.	(HAIF) I
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
KNASEL	75	PR D11 1	T.M. Knasel et al.	(CHIC, WUSL, OSU+)IJP
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	(LBL, SLAC) IJP

 $N(1900) P_{13}$

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$ Status: **

MITTED FROM SUMMARY TABLE

N(1900) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
≈ 1900 OUR ESTIMATE	MANLEY 92	ID\A/A	$\pi N \rightarrow \pi N \& N \pi \pi$
1879±17	MANLEY 92	IPVVA	$\pi N \rightarrow \pi N \propto N \pi \pi$

N(1900) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
498 ± 78	MANLEY 92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$

N(1900) DECAY MODES

	Mode	
$\overline{\Gamma_1}$	Νπ	
Γ_2	$N\pi\pi$	
Γ_3	$N\rho$, $S=1/2$, P -wave	

The two BAKER 77 entries are from an IPWA using the Barrelet-zero method and from a conventional energy-dependent analysis.

a Conventional energy-dependent analysis. L'ONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix

amplitudes. 4 See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams. 3 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to π $N \to N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. 5 The overall phase of BAKER 78 copulings has been changed to agree with previous conventions.

conventions. The range given is from the four best solutions. DEANS 75 disagrees with $\pi^+ \rho \to$ $\Sigma^+ K^+$ data of WINNIK 77 around 1920 MeV.

Г

 $n\gamma$, helicity=3/2

,	00) BRANCHING RATIOS	•	990) BRANCHING RATIOS
Γ(Nπ)/Γ _{total}	Γ ₁ /Γ	$\Gamma(N\pi)/\Gamma_{\text{total}}$	Γ ₁ /
VALUE 0.26 ± 0.06	DOCUMENT ID TECN COMMENT MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$	VALUE 0.06 ± 0.02	DOCUMENT ID TECN COMMENT MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$
		0.06 ± 0.02	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$
$\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N_\pi \to N(1)$	$1900) \rightarrow N\rho, S = 1/2, P\text{-wave} \qquad (\Gamma_1 \Gamma_3)^{\frac{1}{2}}/\Gamma$ $OCCUMENT ID \qquad TECN COMMENT \qquad TO THE PROPERTY OF THE$	0.04 ± 0.02	HOEHLER 79 IPWA $\pi N \rightarrow \pi N$
0.34±0.03	MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$	$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N_{\pi} \to N$	$(1990) \rightarrow N\eta \qquad (\Gamma_1 \Gamma_2)^{\frac{1}{12}} / \rho$ DOCUMENT ID TECH COMMENT
N	(1900) REFERENCES	0.043	BAKER 79 DPWA $\pi^- p \rightarrow n\eta$
MANLEY 92 PR D45 4002 Also B4 PR D30 904	D.M. Manley, E.M. Saleski (KENT) D.M. Manley et al. (VPI)	$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N_{\pi} \to N$	(1990) $\rightarrow \Lambda K$ $(\Gamma_1 \Gamma_3)^{\frac{1}{2}}$
		+0.01	BELL 83 DPWA $\pi^- p \rightarrow \Lambda K_0^0$
$N(1990) F_{17}$	$I(J^P) = \frac{1}{2}(\frac{7}{2}^+)$ Status: **	not seen -0.021 ± 0.033	SAXON 80 DPWA $\pi^- p \rightarrow \Lambda K^0$ DEVENISH 74B Fixed- t dispersion rel.
OMITTED FROM SUMMA		$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N$	
	olished before 1975 are now obsolete and have may be found in our 1982 edition, Physics	VALUE 0.010 to 0.023	DOCUMENT ID TECN COMMENT 1 DEANS 75 DPWA $\pi N \rightarrow \Sigma K$
Letters 111B (1982).	may be found in our 1762 careon, 1 hysics	0.06	LANGBEIN 73 IPWA $\pi N \rightarrow \Sigma K$ (sol. 1)
The various analyses d	o not agree very well with one another.	$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N_{\pi} \to N$	$(1990) \rightarrow N\pi\pi$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$
N(199	0) BREIT-WIGNER MASS	not seen	LONGACRE 75 IPWA $\pi N \rightarrow N \pi \pi$
VALUE (MeV) ≈ 1990 OUR ESTIMATE	DOCUMENT ID TECN COMMENT	N(1990) F	PHOTON DECAY AMPLITUDES
2086 ± 28	MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$	$N(1990) \rightarrow p\gamma$, helicity-1	/2 amplitude A. /a
2018 1970± 50	CRAWFORD 80 DPWA $\gamma N \rightarrow \pi N$ CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$		• -
2005±150	HOEHLER 79 IPWA $\pi N \rightarrow \pi N$	VALUE (GeV ^{-1/2}) 0.030 ± 0.029	DOCUMENT ID TECN COMMENT AWAJI 81 DPWA $\gamma N \rightarrow \pi N$
1999	BARBOUR 78 DPWA $\gamma N \rightarrow \pi N$	0.030 ± 0.029 0.001 ± 0.040	CRAWFORD 80 DPWA $\gamma N \rightarrow \pi N$
			ring data for averages, fits, limits, etc. • • •
N(1990) BREIT-WIGNER WIDTH	0.040	BARBOUR 78 DPWA $\gamma N ightarrow \pi N$
ALUE (MeV)	DOCUMENT ID TECN COMMENT	$N(1990) \rightarrow p\gamma$, helicity-3	/2 amplitude A _{2/2}
35 ± 120	MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$	VALUE (GeV ^{-1/2})	DOCUMENT ID TECN COMMENT
195	CRAWFORD 80 DPWA $\gamma N \rightarrow \pi N$	0.086±0.060	AWAJI 81 DPWA $\gamma N \rightarrow \pi N$
350±120 350±100	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ HOEHLER 79 IPWA $\pi N \rightarrow \pi N$	0.004 ± 0.025	CRAWFORD 80 DPWA $\gamma N \rightarrow \pi N$
216	BARBOUR 78 DPWA $\gamma N \rightarrow \pi N$		ring data for averages, fits, limits, etc. • •
N(:	1990) POLE POSITION	$+0.004$ $N(1990) \rightarrow n\gamma$, helicity-1	BARBOUR 78 DPWA $\gamma N \rightarrow \pi N$
DEAL DADT	•		•
REAL PART VALUE (MeV)	DOCUMENT ID TECN COMMENT	VALUE (GeV ^{-1/2}) -0.001	AWAJI 81 DPWA $\gamma N \rightarrow \pi N$
900 ± 30	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	-0.001 -0.078 ± 0.030	CRAWFORD 80 DPWA $\gamma N \rightarrow \pi N$
 We do not use the following 	g data for averages, fits, limits, etc. • • •	• • • We do not use the follow	ring data for averages, fits, limits, etc. • • •
not seen	ARNDT 91 DPWA $\pi N \rightarrow \pi N$ Soln SM90	- 0.069	BARBOUR 78 DPWA $\gamma N \rightarrow \pi N$
-2×IMAGINARY PART //ALUE (MeV)	DOCUMENT ID TECN COMMENT	$N(1990) \rightarrow n\gamma$, helicity-3	/2 amplitude A _{3/2}
260±60	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	VALUE (GeV ^{-1/2})	DOCUMENT ID TECN COMMENT
	ng data for averages, fits, limits, etc. • • •	-0.178	AWAJI 81 DPWA $\gamma N \rightarrow \pi N$
not seen	ARNDT 91 DPWA $\pi N \rightarrow \pi N$ Soln SM90	~ 0.116 ± 0.045	CRAWFORD 80 DPWA $\gamma N \rightarrow \pi N$ ving data for averages, fits, limits, etc. • • •
\$//1000) ELACTIC DOLE DECIDIE	- 0.072	BARBOUR 78 DPWA $\gamma N \rightarrow \pi N$
MODULUS r) ELASTIC POLE RESIDUE		N(1990) FOOTNOTES
VALUE (MeV)	DOCUMENT ID TECN COMMENT		75 is from the four best solutions.
9±3	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$		
PHASE 0	DOCUMENT ID TECH COMMENT		N(1990) REFERENCES
VALUE (°) -60 ± 30	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	For early references, se	e Physics Letters 111B 70 (1982).
		MANLEY 92 PR D45 4002 Also 84 PR D30 904	D.M. Manley, E.M. Saleski (KENT) I D.M. Manley <i>et al.</i> (VPI)
N(1990) DECAY MODES	ARNDT 91 PR D43 2131	R.A. Arndt et al. (VPI, TELE) I. K.W. Bell et al. (RL) I
		PDG 82 PL 111B	M. Roos et al. (HELS, CIT, CERN)
Mode		AWAJI 81 Bonn Conf. 352 Also 82 NP B197 365	N. Awaji, R. Kajikawa (NAGO) K. Fujii <i>et al.</i> (NAGO)
$\Gamma_1 N\pi$		CRAWFORD 80 Toronto Conf. 10 CUTKOSKY 80 Toronto Conf. 19	7 R.L. Crawford (GLAS)
$\frac{1}{2}$ $N\eta$		Also 79 PR D20 2839 SAXDN B0 NP B162 522	R.E. Cutkosky et al. (CMU, LBL) D.H. Saxon et al. (RHEL, BRIS)
-3 ΛK		BAKER 79 NP B156 93	R.D. Baker et al. (RHEL)
- ₄ ΣΚ - N		HOEHLER 79 PDAT 12-1 Also 80 Toronto Conf. 3	G. Hohler et al. (KARLT) R. Koch (KARLT)
$\int_5 N\pi\pi$ $\int_6 p\gamma$, helicity=1/2		BARBOUR 78 NP B141 253 OEANS 75 NP B96 90	I.M. Barbour, R.L. Crawford, N.H. Parsons (GLAS) S.R. Deans et al. (SFLA, ALAH)
$p\gamma$, helicity=1/2 $p\gamma$, helicity=3/2		LONGACRE 75 PL 55B 415 DEVENISH 74B NP B81 330	R.S. Longacre et al. (LBL, SLAC) R.C.E. Devenish, C.D. Froggatt, B.R. Martín (DESY+)
, , , ,		LANGBEIN 73 NP B53 251	W. Langbein, F. Wagner (MUNI)

N(2000), N(2080)

 $\overline{N(2000)} \ F_{15}$

 $I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$ Status: **

OMITTED FROM SUMMARY TABLE

Older results have been retained simply because there is little information at all about this possible state.

N(2000) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 2000 OUR ESTIMATE				
1903 ± 87	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1882 ± 10	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
2025	AYED	76	IPWA	$\pi N \rightarrow \pi N$
1970	¹ LANGBEIN	73	IPWA	$\pi N \rightarrow \Sigma K \text{ (sol. 2)}$
2175	ALMEHED	72	IPWA	$\pi N \rightarrow \pi N$
1930	DEANS	72	MPWA	$\gamma p \rightarrow \Lambda K \text{ (sol. D)}$
• • We do not use the	following data for averag	es, fit:	s, limits,	etc. • • •
1814	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$

N(2000) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
490 ± 310	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
95 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
157	AYED	76	IPWA	$\pi N \rightarrow \pi N$
170	¹ LANGBEIN	73	IPWA	$\pi N \rightarrow \Sigma K \text{ (sol. 2)}$
150	ALMEHED	72	IPWA	$\pi N \rightarrow \pi N$
112	DEANS	72	MPWA	$\gamma \rho \rightarrow \Lambda K \text{ (sol. D)}$
• • We do not use the following	g data for averag	es, fits	s, limits,	etc. • • •
176	ARNDT	95	DPWA	$\pi N \rightarrow N\pi$

N(2000) DECAY MODES

	Mode
Γ ₁	$N\pi$
Γ_2	$N\eta$
Γ_3	ΛK
Γ4	ΣK
Γ_5	$N\pi\pi$
Γ ₆	Δ (1232) π , P -wave
Γ ₇	$N\rho$, $S=3/2$, P -wave
Γ8	$N\rho$, $S=3/2$, F -wave
Г9	$p\gamma$

N(2000) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.08 ± 0.05	MANLEY			$\pi N \rightarrow \pi N \& N \pi \pi$
0.04 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
0.08	AYED	76	IPWA	$\pi N \rightarrow \pi N$
).25	ALMEHED	72	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	e following data for averages	s, fit	s, limits,	etc. • • •
0.10	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
(Γ _Ι Γ _ε) ^{1/2} /Γ _{total} in Nπ	$\rightarrow N(2000) \rightarrow N\eta$			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	
+0.03	BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
(「「「f」) 1/2 / 「total in Na	T → N(2000) → AK		TECN	(Γ ₁ Γ ₃) ^{1/2} /Γ
	<u> </u>		TECIV.	$\pi^- p \rightarrow \Lambda K^0$
not seen	SAXON	80	DPWA	$\pi p \rightarrow \Lambda K^{\circ}$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N_{\pi}$	$r \to N(2000) \to \Sigma K$			(Γ₁Γ₄) ^⅓ /Γ
VALUE	DOCUMENT ID 2 DEANS		TECN	COMMENT
0.022				
0.05	1 LANGBEIN	73	IPWA	$\pi N \rightarrow \Sigma K \text{ (sol. 2)}$
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}}$ in N_{π}	$r \rightarrow N(2000) \rightarrow \Delta(123)$	2) π	, <i>P</i> -wav	e (Γ ₁ Γ ₆) ^{1/2} /Γ
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
$+0.10 \pm 0.06$	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \ln N_7$	$r \to N(2000) \to N \rho, S=$			
VALUE	DOCUMENT ID			
-0.22 ± 0.08	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$

7ECN COMMENT
92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$

 $(\Gamma_I \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2000) \to N\rho$, S=3/2, F-wave

+0.11±0.06

DOCUMENT ID

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \ln p \gamma \rightarrow N(200)$	0) → AK					(Г ₉ Г ₃)	₩ /г
VALUE	DOCUMENT ID		TECN	COMME	NT_		
0.0022	DEANS	72	MPWA	$\gamma p \to$	ΛK	(sol. D)	

N(2000) FOOTNOTES

N(2000) REFERENCES

ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BRCO)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
A 50	84	PR D30 904	D.M. Manley et al.	(VPI)
SAXON	80	NP B162 522	D.H. Saxon et al.	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	R.D. Baker et al.	` (RHEL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) UP
Also	BO	Toronto Conf. 3	R. Koch	(KARLT) IJP
AYED	76	Thesis CEA-N-1921	R. Ayed	` (SACL) IJP
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
LANGBEIN	73	NP B53 251	W. Langbein, F. Wagner	(MUNI) IJP
ALMEHED	72	NP B40 157	S. Almehed, C. Lovelace	(LUND, RUTG) IJP
DEANS	72	PR D6 1906	S.R. Deans et al.	(SFLA) IJP

 $N(2080) D_{13}$

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$ Status: **

OMITTED FROM SUMMARY TABLE

There is some evidence for two resonances in this wave between 1800 and 2200 MeV (see CUTKOSKY 80). However, the solution of HOEHLER 79 is quite different.

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

N(2080) BREIT-WIGNER MASS

VALUE (MeV) DOCUMENT ID TECN COMMENT	
≈ 2080 OUR ESTIMATE	
1804 \pm 55 MANLEY 92 IPWA π N \rightarrow π N 8	
1920 BELL 83 DPWA $\pi^- p \rightarrow \Lambda K$	0
1880 ± 100 1 CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	
2060 ± 80 ¹ CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	
1900 SAXON 80 DPWA $\pi^- \rho \rightarrow \Lambda K$	0
2081 ± 20 HOEHLER 79 IPWA $\pi N \rightarrow \pi N$	
1986 \pm 75 BATINIC 95 DPWA π $N \rightarrow N\pi$,	Νη
1880 BAKER 79 DPWA $\pi^- p \rightarrow n\eta$	

N(2080) BREIT-WIGNER WIDTH

PWA $\pi N \rightarrow \pi N \& N \pi \pi$ DPWA $\pi^- p \rightarrow \Lambda K^0$ PWA $\pi N \rightarrow \pi N$ (lower m)
•
PWA $\pi N \rightarrow \pi N \text{ (lower } m\text{)}$
PWA $\pi N \rightarrow \pi N$ (higher m)
DPWA $\pi^- p \rightarrow \Lambda K^0$
PWA $\pi N \rightarrow \pi N$
limits, etc. • • •
DPWA $\pi N \rightarrow N \pi$, $N \eta$
DPWA $\pi^- \rho \rightarrow n \eta$
P li

N(2080) POLE POSITION

RE	ΑL	P/	۱R'	Ī

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1880 ± 100				$\pi N \rightarrow \pi N \text{ (lower } m)$
2050± 70	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N \text{ (higher } m)$
• • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
not seen	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90

2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
160 ± 80	1 CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N \text{ (lower } m)$
200 ± 80	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N \text{ (higher } m\text{)}$
 • • We do not use the following 	ng data for average	s, fit	s, limits,	etc. • • •
not seen	ARNDT	91	DPWA	$\pi{\it N}\rightarrow\pi{\it N}$ Soln SM90

N(2080) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	 DOCUMENT ID	TECN	СОММЕ	NT.
10 ± 5 30 ± 20	¹ CUTKOSKY ¹ CUTKOSKY			πN (lower m) πN (higher m)

 $^{^1}$ Not seen in solution 1 of LANGBEIN 73. 2 Value given is from solution 1 of DEANS 75; not present in solutions 2, 3, or 4.

I

PHASE 6	DOCUMENT ID TEST COLUMN	$N(2080) \rightarrow p\gamma$, helicity-3/2 amplitude $A_{3/2}$
<u>VALUE</u> (°) 100 ± 80	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VALUE (GeV ^{-1/2}) DOCUMENT ID TECN COMMENT
	¹ CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ (higher m)	0.017 \pm 0.011 AWAJI 81 DPWA $\gamma N \rightarrow \pi N$ • • • We do not use the following data for averages, fits, limits, etc. • • •
1/0	OOO) DECAY HODES	0.128 \pm 0.057 DEVENISH 74 DPWA $\gamma N \rightarrow \pi N$
N(2	080) DECAY MODES	'
Mode		$N(2080) \rightarrow n\gamma$, helicity-1/2 amplitude $A_{1/2}$
- ₁ Νπ	7.00	$VALUE (GeV^{-1/2})$ DOCUMENT ID TECN COMMENT 0.007 ± 0.013 AWAJI 81 DPWA $\gamma N \rightarrow \pi N$
- Nη		• • • We do not use the following data for averages, fits, limits, etc. • •
Γ ₃ ΛΚ		0.053 \pm 0.083 DEVENISH 74 DPWA $\gamma N \rightarrow \pi N$
$\Gamma_4 \Sigma K$		$N(2080) \rightarrow n\gamma$, helicity-3/2 amplitude $A_{3/2}$
$\Gamma_5 = N \pi \pi$ $\Gamma_6 = \Delta(1232) \pi$, S-wave		VALUE (GeV ^{-1/2}) DOCUMENT ID TECN COMMENT
Γ_7 $\Delta(1232)\pi$, D-wave		-0.053 ± 0.034 AWAJI 81 DPWA $\gamma N \rightarrow \pi N$
$N \rho$, $S=3/2$, S-wave		• • We do not use the following data for averages, fits, limits, etc. • • •
9 $N(\pi\pi)_{S\text{-wave}}^{I=0}$		0.100 ± 0.141 DEVENISH 74 DPWA $\gamma N \rightarrow \pi N$
$p\gamma$, helicity=1/2		$N(2080) \gamma p \rightarrow \Lambda K^+ \text{ AMPLITUDES}$
$\Gamma_{11} = \rho \gamma$, helicity=3/2 $\Gamma_{12} = n \gamma$, helicity=1/2		. , , , , , , , , , , , , , , , , , , ,
$\Gamma_{13} = n\gamma$, helicity=3/2		$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } p \gamma \rightarrow N(2080) \rightarrow \Lambda K^+$ (E ₂ amplitu
14 Ργ		VALUE (units 10 ⁻³) DOCUMENT ID TECN
\$1/000	A) PRANCHING PATIOS	• • • We do not use the following data for averages, fits, limits, etc. • • • • 5.5 ±0.3 WORKMAN 90 DPWA
•) BRANCHING RATIOS	4.09 TANABE 89 DPWA
$\Gamma(N\pi)/\Gamma_{\text{total}}$	Γ ₁ /Γ	$p\gamma \to N(2080) \to \Lambda K^+$ phase angle θ (E ₂ _ amplitu
VALUE 0.23 ± 0.03	DOCUMENT ID TECN COMMENT MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$	VALUE (degrees) DOCUMENT ID TECN
	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ (lower m)	
0.14 ± 0.07 0.06 ± 0.02	¹ CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ (higher m) HOEHLER 79 IPWA $\pi N \rightarrow \pi N$	-48 ±5 WORKMAN 90 DPWA
	data for averages, fits, limits, etc. • •	-35.9 TANABE 89 DPWA
0.09 ± 0.02	BATINIC 95 DPWA $\pi N \rightarrow N \pi$, $N \eta$	$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } p \gamma \rightarrow N(2080) \rightarrow \Lambda K^+$ (M_{2-} amplitu
Γ(Nη)/Γ _{total}	Γ ₂ /Γ	VALUE (units 10 ⁻³) DOCUMENT ID TECN
ALUE	DOCUMENT ID TECN COMMENT	• • We do not use the following data for averages, fits, limits, etc. • • •
144 1 1 1 6 11 1	the desired and the second	−6.7 ±0.2 WORKMAN 90 DPWA
• • • vve do not use the following	data for averages, fits, limits, etc. • • •	
	data for averages, fits, limits, etc. $\bullet \bullet \bullet$ BATINIC 95 DPWA $\pi N \rightarrow N \pi$, $N \eta$	-4.09 TANABE 89 DPWA
0.07±0.04	BATINIC 95 DPWA $\pi N \rightarrow N \pi, N \eta$	
	BATINIC 95 DPWA $\pi N \rightarrow N \pi, N \eta$	-4.09 TANABE 89 DPWA **M(2080) FOOTNOTES** 1 CUTKOSKY 80 finds a lower mass D_{13} resonance, as well as one in this region. E
0.07 ± 0.04 $(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}^i \text{ in } N\pi \to N(20)$ VALUE	BATINIC 95 DPWA $\pi N \rightarrow N \pi$, $N \eta$ $(\Gamma_1 \Gamma_2)^{\frac{1}{2}} / \Gamma$	-4.09 TANABE 89 DPWA $N(2080)$ FOOTNOTES 1 CUTKOSKY 80 finds a lower mass D_{13} resonance, as well as one in this region. Earlisted here. 2 The range given for DEANS 75 is from the four best solutions. Disagrees with $\pi^+\mu$
0.07 ± 0.04 $(\Gamma_j \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)$ 0.065	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ 180) $\rightarrow N\eta$ COUMENT ID BAKER 79 DPWA $\pi^- \rho \rightarrow n\eta$	-4.09 TANABE 89 DPWA $N(2080)$ FOOTNOTES 1 CUTKOSKY 80 finds a lower mass D_{13} resonance, as well as one in this region. Earl listed here
0.07 ± 0.04 $(\Gamma_j \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)$ 0.065 $(\Gamma_j \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ 180) $\rightarrow N\eta$ COCUMENT ID BAKER 79 DPWA $\pi^- \rho \rightarrow n\eta$	-4.09 TANABE 89 DPWA $N(2080)$ FOOTNOTES 1 CUTKOSKY 80 finds a lower mass D_{13} resonance, as well as one in this region. Earlisted here. 2 The range given for DEANS 75 is from the four best solutions. Disagrees with $\pi^+\mu$
$\begin{array}{l} 0.07 \pm 0.04 \\ (\Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(20) \\ \frac{\partial LUE}{\partial LUE} \\ (\Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(20) \\ \frac{\partial LUE}{\partial LUE} \\ + 0.04 \end{array}$	BATINIC 95 DPWA $\pi N \rightarrow N \pi$, $N \eta$ 180) $\rightarrow N \eta$ DOCUMENT ID BAKER 79 DPWA $\pi^- \rho \rightarrow n \eta$ 180) $\rightarrow \Lambda K$ DOCUMENT ID BELL 83 DPWA $\pi^- \rho \rightarrow \Lambda K^0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{l} 0.07 \pm 0.04 \\ (\Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(20) \\ \frac{\partial LUE}{\partial LUE} \\ (\Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(20) \\ \frac{\partial LUE}{\partial LUE} \\ + 0.04 \end{array}$	BATINIC 95 DPWA $\pi N \rightarrow N \pi$, $N \eta$ 180) $\rightarrow N \eta$ DOCUMENT ID BAKER 79 DPWA $\pi^- \rho \rightarrow n \eta$ 180) $\rightarrow A K$ DOCUMENT ID 1ECN COMMENT ($\Gamma_1 \Gamma_3$) $\frac{1}{2}$ / Γ	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{l} 0.07 \pm 0.04 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ 0.065 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ \frac{NALUE}{+0.04} \\ +0.03 \end{array}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ 180) $\rightarrow N\eta$ DOCUMENT ID BAKER 79 DPWA $\pi^-\rho \rightarrow n\eta$ 180) $\rightarrow \Lambda K$ DOCUMENT ID BELL 83 DPWA $\pi^-\rho \rightarrow \Lambda K^0$ SAXON 80 DPWA $\pi^-\rho \rightarrow \Lambda K^0$	TANABE 89 DPWA N(2080) FOOTNOTES 1 CUTKOSKY 80 finds a lower mass D_{13} resonance, as well as one in this region. E are listed here. 2 The range given for DEANS 75 is from the four best solutions. Disagrees with $\pi^+\mu$ $\Sigma^+ K^+$ data of WINNIK 77 around 1920 MeV. N(2080) REFERENCES For early references, see Physics Letters 111B 70 (1982). BATINIC 95 PR C51 2310 M. Batinic et al. (BOSK, UCLA) Also 98 PR C57 1004 (erratum) M. Batinic et al.
$\begin{array}{l} 0.07 \pm 0.04 \\ (\Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(20) \\ 0.065 \\ (\Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(20) \\ \frac{NLUE}{1 + 0.04} \\ + 0.03 \\ (\Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(20) \\ \frac{NLUE}{NLUE} \end{array}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ 180) $\rightarrow N\eta$ DOCUMENT ID BAKER 79 DPWA $\pi^- \rho \rightarrow n\eta$ 180) $\rightarrow \Lambda K$ DOCUMENT ID BELL BS DPWA $\pi^- \rho \rightarrow \Lambda K^0$ SAXON 180) $\rightarrow \Sigma K$ DOCUMENT ID TECN COMMENT ($\Gamma_1 \Gamma_3$) $\frac{1}{2}$ / Γ ($\Gamma_1 \Gamma_4$) $\frac{1}{2}$ / Γ TECN COMMENT ($\Gamma_1 \Gamma_4$) $\frac{1}{2}$ / Γ TECN COMMENT ($\Gamma_1 \Gamma_4$) $\frac{1}{2}$ / Γ	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{l} 0.07 \pm 0.04 \\ \Gamma_1 \Gamma_f \rangle^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(20) \\ 0.065 \\ \Gamma_1 \Gamma_f \rangle^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(20) \\ 0.04 \\ 0.03 \\ \Gamma_1 \Gamma_f \rangle^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(20) \\ 0.03 \\ \Gamma_1 \Gamma_f \rangle^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(20) \end{array}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ 180) $\rightarrow N\eta$ DOCUMENT ID BAKER 79 DPWA $\pi^-\rho \rightarrow n\eta$ 180) $\rightarrow \Lambda K$ DOCUMENT ID BELL 83 DPWA $\pi^-\rho \rightarrow \Lambda K^0$ SAXON 80 DPWA $\pi^-\rho \rightarrow \Lambda K^0$ 180) $\rightarrow \Sigma K$ $(\Gamma_1 \Gamma_4)^{\frac{1}{2}}/\Gamma$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ 180) $\rightarrow N\eta$ DOCUMENT ID BAKER 79 DPWA $\pi^- \rho \rightarrow n\eta$ 180) $\rightarrow \Lambda K$ DOCUMENT ID BELL BELL BELL BODEWA	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \Gamma_{J}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \frac{NLUE}{0.065} $ $ \Gamma_{J}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \frac{NLUE}{0.04} $ $ -0.04 $ $ -0.03 $ $ \Gamma_{J}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \frac{NLUE}{0.014} $ $\frac{NLUE}{0.014} $ $\frac{NLUE}{0$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ 180) $\rightarrow N\eta$ DOCUMENT ID BAKER 79 DPWA $\pi^- \rho \rightarrow n\eta$ 180) $\rightarrow \Lambda K$ DOCUMENT ID BELL 83 DPWA $\pi^- \rho \rightarrow \Lambda K^0$ SAXON 80 DPWA $\pi^- \rho \rightarrow \Lambda K^0$ 180) $\rightarrow \Sigma K$ DOCUMENT ID 2 DEANS 75 DPWA $\pi N \rightarrow \Sigma K$ $(\Gamma_1 \Gamma_2)^{\frac{1}{2}} / \Gamma$ $(\Gamma_1 \Gamma_4)^{\frac{1}{2}} / \Gamma$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{l} 0.07 \pm 0.04 \\ \Gamma_{\Gamma} \Gamma_{f} \Gamma_{f})^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ 0.065 \\ \Gamma_{\Gamma} \Gamma_{f})^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ 0.04 \\ 0.03 \\ \Gamma_{\Gamma} \Gamma_{f})^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ 0.014 \text{ to } 0.037 \\ \Gamma_{\Gamma} \Gamma_{f})^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ 0.014 \text{ to } 0.037 \end{array}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ 180) $\rightarrow N\eta$ DOCUMENT ID BAKER 79 DPWA $\pi^- p \rightarrow n\eta$ 180) $\rightarrow KK$ DOCUMENT ID BELL 83 DPWA $\pi^- p \rightarrow \Lambda K^0$ SAXON 80 DPWA $\pi^- p \rightarrow \Lambda K^0$ 180) $\rightarrow \mathcal{L}K$ DOCUMENT ID 1ECN COMMENT (\Gamma_1\Gamma_1\frac{1}{2}\cdot\Gamma_1\frac{1}\Gamma_1\frac{1}{2}\cdot\Gamma_1\frac{1}{2}\cdo	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 0.07 \pm 0.04 \\ \Gamma_{\parallel} \Gamma_{\parallel} \Gamma_{\parallel} \Gamma_{\parallel}^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NLUE \\ 0.065 \\ \Gamma_{\parallel} \Gamma_{\parallel} \Gamma_{\parallel}^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NLUE \\ 0.04 \\ 0.037 \\ NLUE \\ 0.014 \text{ to } 0.037 \\ \Gamma_{\parallel} \Gamma_{\parallel} \Gamma_{\parallel}^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NLUE \\ 0.09 \pm 0.09 \end{array}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ 180) $\rightarrow N\eta$ DOCUMENT ID BAKER 79 DPWA $\pi^- p \rightarrow n\eta$ 180) $\rightarrow K$ DOCUMENT ID BELL 83 DPWA $\pi^- p \rightarrow \Lambda K^0$ SAXON 80 DPWA $\pi^- p \rightarrow \Lambda K^0$ 180) $\rightarrow K$ DOCUMENT ID 2 DEANS 75 DPWA $\pi N \rightarrow E K$ 160) $\rightarrow \Delta (1232)\pi$, S-wave DOCUMENT ID MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N\pi\pi$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{l} 0.07 \pm 0.04 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ N(1) = 0.065 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ N(1) = 0.04 \\ +0.03 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ N(1) = 0.014 \text{ to } 0.037 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ N(1) = 0.09 \pm 0.09 \\ \end{array}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ 180) $\rightarrow N\eta$ DOCUMENT ID BAKER 79 DPWA $\pi^- p \rightarrow n\eta$ 180) $\rightarrow K$ DOCUMENT ID BELL 83 DPWA $\pi^- p \rightarrow \Lambda K^0$ SAXON 80 DPWA $\pi^- p \rightarrow \Lambda K^0$ 180) $\rightarrow K$ DOCUMENT ID 2 DEANS 75 DPWA $\pi N \rightarrow E K$ 160) $\rightarrow \Delta (1232)\pi$, S-wave DOCUMENT ID MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N\pi\pi$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{l} 0.07 \pm 0.04 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ 0.065 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ + 0.04 \\ + 0.03 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ 0.014 \text{ to } 0.037 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ - 0.09 \pm 0.09 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ NALUE \\ \end{array}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ 180) $\rightarrow N\eta$ DOCUMENT ID BELL B3 DPWA $\pi^- \rho \rightarrow N\pi^0$ 180) $\rightarrow KK$ DOCUMENT ID EBLL B3 DPWA $\pi^- \rho \rightarrow NK^0$ SAXON B0 DPWA $\pi^- \rho \rightarrow NK^0$ 180) $\rightarrow KK$ DOCUMENT ID TECN COMMENT TECN TECN COMMENT TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TECN TECN COMMENT TECN TECN TECN TECN TECN TECN TECN	N(2080) FOOTNOTES
$\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	N(2080) FOOTNOTES
$\begin{array}{l} 0.07 \pm 0.04 \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ 0.065 \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ + 0.04 \\ + 0.03 \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ 0.014 \text{ to } 0.037 \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ - 0.09 \pm 0.09 \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NAUUE \\ (\Gamma_{ }\Gamma_{f}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{l} 0.07\pm0.04 \\ (\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ 0.065 \\ (\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ +0.04 \\ +0.03 \\ (\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ 0.014 \text{ to } 0.037 \\ (\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ -0.09\pm0.09 \\ (\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ +0.22\pm0.07 \\ (\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ NALUE	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total}}{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total}}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ R_{I}UE $ $ 0.065 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ R_{I}UE $ $ 0.04 $ $ 0.03 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ R_{I}UE $ $ 0.014 \text{ to } 0.037 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ R_{I}UE $ $ 0.09 \pm 0.09 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ R_{I}UE $ $ 0.02 \pm 0.07 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ R_{I}UE $ $ 0.02 \pm 0.06 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ R_{I}UE $ $ 0.24 \pm 0.06 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ R_{I}UE $	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -4.09 & \text{TANABE} & 89 \text{ DPWA} \\ \hline & \textit{N(2080)} \text{ FOOTNOTES} \\ \hline ^1 \text{ CUTKOSKY 80 finds a lower mass } D_{13} \text{ resonance, as well as one in this region. E} \\ \hline ^2 \text{ The range given for DEANS 75 is from the four best solutions. Disagrees with } \pi^+\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu$
$\begin{array}{l} 0.7 \pm 0.04 \\ \Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ 0.065 \\ \Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ \frac{ALUE}{0.04} \\ 0.03 \\ \Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ \frac{ALUE}{0.014} \text{ to } 0.037 \\ \Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ \frac{ALUE}{0.09 \pm 0.09} \\ \Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ \frac{ALUE}{0.022 \pm 0.07} \\ \Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ \frac{ALUE}{0.024 \pm 0.06} \\ \Gamma_1 \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) \\ \frac{ALUE}{0.025 \pm 0.06} \\ \end{array}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(2000000000000000000000000000000000000$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $\begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -4.09 & \text{TANABE} & 89 \text{ DPWA} \\ \hline & \textit{N(2080)} \text{ FOOTNOTES} \\ \hline ^1 \text{ CUTKOSKY 80 finds a lower mass } D_{13} \text{ resonance, as well as one in this region. E} \\ \hline ^2 \text{ The range given for DEANS 75 is from the four best solutions. Disagrees with } \pi^+\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu$
$\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{ALUE}$ 0.065 $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{0.04}$ 0.04 0.03 $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{0.09 \pm 0.09}$ $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{0.02 \pm 0.07}$ $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{0.02 \pm 0.06}$ $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{0.02 \pm 0.06}$ $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{0.02 \pm 0.06}$ $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{0.02 \pm 0.06}$ $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{0.02 \pm 0.06}$ $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{0.02 \pm 0.06}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{ALUE}$ -0.065 $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{ALUE}$ -0.04 -0.03 $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{ALUE}$ -0.09 ± 0.09 $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{ALUE}$ -0.22 ± 0.07 $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{ALUE}$ -0.24 ± 0.06 $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{ALUE}$ -0.25 ± 0.06 $\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)$ $\frac{ALUE}{ALUE}$ -0.25 ± 0.06	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $\begin{array}{ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \textbf{N(2080) FOOTNOTES} \\ \textbf{1} \ \textbf{CUTKOSKY 80} \ \textbf{6inds} \ \textbf{a} \ \textbf{lower mass} \ \textbf{D}_{13} \ \textbf{resonance}, \ \textbf{as well as one in this region.} \ \textbf{E} \\ \textbf{are listed here.} \\ \textbf{2} \ \textbf{The range given for DEANS 75} \ \textbf{is from the four best solutions.} \ \textbf{Disagrees with} \ \pi^+ f \ \Sigma^+ K^+ \ \textbf{data of WINNIK 77 around 1920 MeV.} \\ \hline \textbf{N(2080) REFERENCES} \\ \textbf{For early references, see Physics Letters 111B 70 (1982).} \\ \textbf{BATINIC} \ \textbf{95} \ \textbf{PR C51 2310} \ \textbf{M. Batinic et al.} \ \textbf{(BOSK. UCLA)} \\ \textbf{Also} \ \textbf{98} \ \textbf{PR C57 1004 (erratum)} \ \textbf{M. Batinic et al.} \ \textbf{(BOSK. UCLA)} \\ \textbf{Also} \ \textbf{98} \ \textbf{PR C57 1004 (erratum)} \ \textbf{M. Batinic et al.} \ \textbf{(KENT)} \\ \textbf{Also} \ \textbf{99} \ \textbf{PR C59 4002} \ \textbf{D.M. Manley E.M. Saleski} \ \textbf{(KENT)} \\ \textbf{AND 191 PR D43 2131} \ \textbf{R.A. And te al.} \ \textbf{(VPI)} \\ \textbf{ARND 191 PR D43 2131} \ \textbf{R.A. And te al.} \ \textbf{(VPI)} \\ \textbf{AND 290 NCRMAN 90} \ \textbf{PR C42 781} \ \textbf{R.L. Workman} \ \textbf{M. Kohno, C. Bennhold} \ \textbf{(MANZ)} \\ \textbf{Also} \ \textbf{89} \ \textbf{NC 102A 193} \ \textbf{M. Kohno, H. Tanabe, C. Bennhold} \ \textbf{(MANZ)} \\ \textbf{BELL} \ \textbf{31} \ \textbf{NP B222 389} \ \textbf{K.W. Bell et al.} \ \textbf{(RICL)} \\ \textbf{Also} \ \textbf{89} \ \textbf{NC 102A 193} \ \textbf{M. Kohno, H. Tanabe, C. Bennhold} \ \textbf{(MANZ)} \\ \textbf{Also} \ \textbf{80} \ \textbf{ND F0102A 193} \ \textbf{M. Kohno, H. Tanabe, C. Bennhold} \ \textbf{(MANZ)} \\ \textbf{Also} \ \textbf{80} \ \textbf{ND F0102A 193} \ \textbf{N. Awaji, R. Kajikawa} \ \textbf{(NAGO)} \\ \textbf{Also} \ \textbf{80} \ \textbf{Toronto Conf. 19} \ \textbf{R.E. Cubosky et al.} \ \textbf{(CMU, LBL)} \\ \textbf{Also} \ \textbf{79} \ \textbf{PB 1020 2839} \ \textbf{R.E. Cubosky et al.} \ \textbf{(CMU, LBL)} \\ \textbf{Also} \ \textbf{80} \ \textbf{Toronto Conf. 13} \ \textbf{R. Noch} \ \textbf{(KARLT)} \\ \textbf{Also} \ \textbf{80} \ \textbf{Toronto Conf. 13} \ \textbf{R. Noch} \ \textbf{(KARLT)} \\ \textbf{Also} \ \textbf{80} \ \textbf{Toronto Conf. 32} \ \textbf{R. Ose and al.} \ \textbf{(RHEL, BRS)} \\ \textbf{Also} \ \textbf{80} \ \textbf{Toronto Conf. 13} \ \textbf{R. Noch} \ \textbf{(KARLT)} \\ \textbf{Also} \ \textbf{80} \ \textbf{Toronto Conf. 13} \ \textbf{R. Noch} \ \textbf{(KARLT)} \\ \textbf{Also} \ \textbf{80} \ \textbf{Toronto Conf. 13} \ \textbf{R. Noch} \ \textbf{(KARLT)} \\ \textbf{Also} \ \textbf{80} \ \textbf{Toronto Conf. 13} \ \textbf{R. Noch} \ \textbf{(KARLT)} \\ \textbf{Also} \ \textbf{80} \ \textbf{50} \ \textbf{70} \ \textbf{80} \ \textbf{80} \ $
$ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) $ $ \frac{NLUE}{NLUE} $ $ -0.04 $ $ -0.04 $ $ -0.03 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) $ $ \frac{NLUE}{NLUE} $ $ -0.09 \pm 0.09 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) $ $ \frac{NLUE}{NLUE} $ $ -0.22 \pm 0.07 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) $ $ \frac{NLUE}{NLUE} $ $ -0.22 \pm 0.07 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) $ $ \frac{NLUE}{NLUE} $ $ -0.24 \pm 0.06 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) $ $ \frac{NLUE}{NLUE} $ $ -0.25 \pm 0.06 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) $ $ \frac{NLUE}{NLUE} $ $ -0.25 \pm 0.06 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20) $ $ \frac{NLUE}{NLUE} $ $ -0.037 $	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -4.09 & \text{TANABE} & 89 \text{ DPWA} \\ \hline & \textit{N(2080) FOOTNOTES} \\ \hline & \text{CUTKOSKY 80 finds a lower mass } D_{13} \text{ resonance, as well as one in this region. E} \\ \hline & \text{are listed here.} \\ \hline & \text{2 The range given for DEANS 75 is from the four best solutions. Disagrees with } \pi^{+}\mu^{-} \\ \hline & \text{End of WINNIK 77 around 1920 MeV.} \\ \hline & \textit{N(2080) REFERENCES} \\ \hline & \textit{For early references, see Physics Letters 111B 70 (1982).} \\ \hline & \textit{BATINIC} & 95 & \text{PR C51 2310} \\ \hline & \textit{Also} & 98 & \text{PR C57 1004 (erratum)} \\ \hline & \textit{Also} & 98 & \text{PR C57 1004 (erratum)} \\ \hline & \textit{Also} & 98 & \text{PR C57 1004 (erratum)} \\ \hline & \textit{Also} & 98 & \text{PR C57 1004 (erratum)} \\ \hline & \textit{Also} & 84 & \text{PR D30 904} \\ \hline & \textit{ANNICY} & 92 & \text{PR D45 4002} \\ \hline & \textit{ANNICY} & 92 & \text{PR D45 4002} \\ \hline & \textit{ANNICY} & 92 & \text{PR C42 761} \\ \hline & \textit{R.L. Workman} & (\text{VPI)} \\ \hline & \textit{ARNOT 191} & \text{PR D43 2131} \\ \hline & \textit{ANNOT 291} & \text{PR C42 761} \\ \hline & \textit{R.L. Workman} & (\text{VPI)} \\ \hline & \textit{TANABE} & 89 & \text{PR C39 741} \\ \hline & \textit{Also} & 89 & \text{PR C102 133} \\ \hline & \textit{Also} & 89 & \text{PR C102 133} \\ \hline & \textit{Also} & 89 & \text{PR C102 133} \\ \hline & \textit{ANNOI B106 622} \\ \hline & \textit{Also} & 82 & \text{NP B197 365} \\ \hline & \textit{Also} & 82 & \text{NP B197 365} \\ \hline & \textit{Also} & 82 & \text{NP B197 365} \\ \hline & \textit{Also} & 82 & \text{NP B197 365} \\ \hline & \textit{Also} & 99 & \text{PR D20 2839} \\ \hline & \textit{R.E. Culsosky et al.} \\ \hline & \textit{Also} & 99 & \text{PR D20 2839} \\ \hline & \textit{R.E. Culsosky et al.} \\ \hline & \textit{Also} & 99 & \text{PR D40 2639} \\ \hline & \textit{R.R. Culsosky et al.} \\ \hline & \textit{CUTKOSKY 80} & \text{Toronto Conf. 19} \\ \hline & \textit{R.E. Culsosky et al.} \\ \hline & \textit{CMU, IBL} \\ \hline & \textit{ASO} & 90 & \text{Toronto Conf. 32} \\ \hline & \text{R.R. Culsosky et al.} \\ \hline & \textit{CMU, IBL} \\ \hline & \textit{ASO} & 90 & \text{Toronto Conf. 33} \\ \hline & \text{R.R. Eulsosky et al.} \\ \hline & \textit{CMU, IBL} \\ \hline & \textit{ASO} & 90 & \text{Toronto Conf. 37} \\ \hline & \text{R.R. Culsosky et al.} \\ \hline & \textit{CMU, IBL} \\ \hline & \textit{ASO} & 90 & \text{Toronto Conf. 37} \\ \hline & \text{R.R. Danor et al.} \\ \hline & \textit{CMU, IBL} \\ \hline & \textit{ANNOTO Conf. 32} \\ \hline & \text{R.R. Danor et al.} \\ \hline & \textit{CMU, IBL} \\ \hline & \textit{ASO} & 90 & \text{Toronto Conf. 35} \\ \hline & \text{R.R. Danor et al.} \\ \hline & \textit{CMU, IBL} \\ \hline & $
$ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Lambda_{LUE} = 0.065 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Lambda_{LUE} = 0.04 $ $ 0.04 $ $ 0.04 $ $ 0.014 \text{ to } 0.037 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Lambda_{LUE} = 0.09 \pm 0.09 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Lambda_{LUE} = 0.022 \pm 0.07 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Lambda_{LUE} = 0.22 \pm 0.06 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Lambda_{LUE} = 0.25 \pm 0.06 $ $ \Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20) $ $ \Lambda_{LUE} = 0.037 $ $ N(2080) PHO $	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $\begin{array}{ccccccccccccccccccccccccccccccccccc$	N(2080) FOOTNOTES 1 CUTKOSKY 80 finds a lower mass D ₁₃ resonance, as well as one in this region. E are listed here. 2 The range given for DEANS 75 is from the four best solutions. Disagrees with π ⁺ μ Σ + K + data of WINNIK 77 around 1920 MeV. N(2080) REFERENCES For early references, see Physics Letters 111B 70 (1982). BATINIC 95 PR C51 2310 M. Batinic et al. (BOSK, UCLA) Also 98 PR C57 1004 (eratum) M. Batinic et al. (KENT) Also 98 PR C57 1004 (eratum) M. Batinic et al. (VPI) ARNDT 91 PR D30 904 D.M. Maniey et al. (VPI) ARNDT 91 PR D31 2131 R.A. Arndt et al. (VPI) TANABE 89 PR C19 741 H. Tanabe, M. Kohno, C. Bennhold (MANZ) Also 89 NC 102A 193 M. Kohno, H. Tanabe, C. Bennhold (MANZ) BELL 83 NP B222 389 K.W. Bell et al. (RIL) PDG 82 PL 111B M. Roos et al. (RIL) Also 89 NC 102A 193 M. Kohno, H. Tanabe, C. Bennhold (MANZ) Also 80 NC 102A 193 M. Kohno, H. Tanabe, C. Bennhold (MANZ) Also 80 NC 102A 193 M. Kohno, H. Tanabe, C. Bennhold (MANZ) BELL 81 NP B222 389 K.W. Bell et al. (RIL) Also 80 TO TOO TOO CONT. 19 R.E. Cubosky et al. (CMU, LBL) Also 79 PR D20 2839 R.E. Cubosky et al. (CMU, LBL) SAXON 80 TOO TOO CONT. 13 R. Koch (KARLT) Also 80 TOO TOO CONT. 3 R. Koch (KARLT) Also 80 TOO TOO CONT. 3 R. Koch (KARLT) Also 80 TOO TOO CONT. 3 R. Koch (KARLT) Also 80 TOO TOO CONT. 3 R. Koch (KARLT) Also 80 TOO TOO SOO S.R. Deans et al. (CMU, LBL) CEVENISH 74 PL 52B 227 R.C.E. Devenish, D.H. Lyth, W.A. Rankin (DESY+) HICKS 73 PR D7 2614 H.R. Hicks et al. (CMU, ORNL, SFLA) N(2090) BREIT-WIGNER MASS NALUE (MeV) ≈ 2090 OUR ESTIMATE 1928±59 MANLEY 92 IPWA πN → πN & Nππ
$\begin{array}{l} 0.07\pm0.04 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ 0.065 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ +0.03 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ 0.014 \text{ to } 0.037 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ -0.09\pm0.09 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ +0.22\pm0.07 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ +0.25\pm0.06 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow N(20) \\ NALUE \\ +0.25\pm0.06 \\ (\Gamma_{j}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } P\gamma \rightarrow N(20) \\ N(2080) \rightarrow P\gamma, \text{ helicity-} 1/2 \\ \end{array}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$	TANABE 89 DPWA N(2080) FOOTNOTES ¹ CUTKOSKY 80 finds a lower mass D₁3 resonance, as well as one in this region. Earlisted here. ² The range given for DEANS 75 is from the four best solutions. Disagrees with π+μ Σ+ K+ data of WINNIK 77 around 1920 MeV. N(2080) REFERENCES For early references, see Physics Letters 111B 70 (1982). BATINC 95 PR C51 2310 M. Batinic et al. (BOSK, UCLA) Also 98 PR C57 1004 (erratum) M. Batinic et al. (BANDT) (BOSK, UCLA) Also 98 PR C57 1004 (erratum) M. Batinic et al. (KENT) (KENT) Also 98 PR C57 1004 (erratum) M. Batinic et al. (KENT) (VPI) Also 98 PR C57 1004 (erratum) M. Batinic et al. (KENT) (VPI) Also 98 PR C57 1004 (erratum) M. Batinic et al. (KENT) (VPI) Also 98 PR C57 2010 (erratum) M. Batinic et al. (VPI) (VPI) Also 89 PR C57 2010 (erratum) M. Batinic et al. (VPI) (VPI) Also 89 PR C39 741 R.L Workman (VPI) Also 89 PR C39 741 R.L Workman (VPI) Also 89 PR C39 741 R.L Workman (RIA) (RIA) Also
$\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to N(20)}$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}} \text{ in } N\pi \to N(20)$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}} \text{ in } N\pi \to N(20)$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}} \text{ in } N\pi \to N(20)$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}} \text{ in } N\pi \to N(20)$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}} \text{ in } N\pi \to N(20)$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}} \text{ in } N\pi \to N(20)$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}} \text{ in } N\pi \to N(20)$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}} \text{ in } N\pi \to N(20)$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}} \text{ in } N\pi \to N(20)$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}} \text{ in } N\pi \to N(20)$ $\frac{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_1 \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}} \text{ in } N\pi \to N(20)$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $\begin{array}{ccccccccccccccccccccccccccccccccccc$	TANABE 89 DPWA N(2080) FOOTNOTES 1 CUTKOSKY 80 finds a lower mass D13 resonance, as well as one in this region. E are listed here. 2 The range given for DEANS 75 is from the four best solutions. Disagrees with π+ μ Σ+ K+ data of WINNIK 77 around 1920 MeV. N(2080) REFERENCES For early references, see Physics Letters 111B 70 (1982). BATINK 95 PR C51 2310 M. Batinic et al. (BOSK, UCLA) Also 98 PR C57 1004 (erratum) M. Batinic et al. (BOSK, UCLA) Also 98 PR C57 1004 (erratum) M. Batinic et al. (KENT) Also 98 PR C39 761 M. Manley, E.M. Saleski (KENT) (VPI) Also 84 PR D30 904 D.M. Manley et al. (VPI) Also 89 PK C39 761 H. Tanabe, M. Kohno, C. Bennhold (MANZ) (MANZ) Also 89 NC 102A 193 M. Kohno, H. Tanabe, C. Bennhold (MANZ) (MANZ) Also 89 PK C39 761 H. Tanabe, M. Kohno, C. Bennhold (MANZ) (MANZ) Also 89 NC 102A 193 M. Kohno, H. Tanabe, C. Bennhold (MANZ) (MANZ) Also 82 PL 111B M. Roos et al. (RLES, CIT, CERN) Also 82 PB B197 365 M. Fujii et al. (NAGO) <tr< td=""></tr<>
$\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$ $\frac{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}}{(\Gamma_{1}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(20)}$	BATINIC 95 DPWA $\pi N \rightarrow N\pi$, $N\eta$ $(\Gamma_1 \Gamma_2)^{\frac{1}{2}}/\Gamma$ $(\Gamma_1 \Gamma_3)^{\frac{1}{2}}/\Gamma$ $(\Gamma_1 \Gamma_4)^{\frac{1}{2}}/\Gamma$ $(\Gamma_1 \Gamma_4)^$	N(2080) FOOTNOTES

Baryon Particle Listings N(2090), N(2100)

•	•	•	,	

414±157 MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N\pi$ 350±100 CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ 95± 30 HOEHLER 79 IPWA $\pi N \rightarrow \pi N$ • • • We do not use the following data for averages, fits, limits, etc. • • • 396±155+35 PLOETZKE 98 SPEC $\gamma p \rightarrow p \eta'$ (958)	VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
95 \pm 30 HOEHLER 79 IPWA $\pi N \to \pi N$ • • • We do not use the following data for averages, fits, limits, etc. • • •	414 ± 157	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
• • • We do not use the following data for averages, fits, limits, etc. • • •	350 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
	95 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
206 LIEE + 35 DIOETZVE 00 CDEC	• • We do not use the form	ollowing data for average	es, fit	s, limits,	etc. • • •
-45 FLOETZNE 36 3FEC $7p \rightarrow p\eta$ (336)	396±155+35 -45	PLOETZKE	98	SPEC	$\gamma p \rightarrow p \eta'(958)$

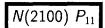
REAL PART	DOCUMENT ID		TECN	COMMENT
2150 ± 70	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1937 or 1949	¹ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
350 ± 100	CUTKOSKY			$\pi N \rightarrow \pi N$
139 or 131	¹ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$

N(2090) ELASTIC POLE RESIDUE

MODULUS r	DOCUMENT ID	TECN	COMMENT	
40 ± 20	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$	
PHASE 6 VALUE (°)	DOCUMENT ID	TECN	COMMENT	
0 ± 90	CUTKOSKY 80	IPWΔ	~ N -> ~ N	

N(2090) DECAY MODES

	Mode		
Γ_1	Nπ	 	
Γ_2			
Γ ₃	Νππ		


N(2090) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.10 ± 0.10	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.18 ± 0.08	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.09 ± 0.05	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$				(Γ₁Γ₂) ^⅓ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
not seen	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda \kappa^0$

N(2090) FOOTNOTES

N(2090) REFERENCES

98	PL B444 555	R. Ploetzke et al.	(Bonn SAPHIR Collab.)
92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
84	PR D30 904	D.M. Manley et al.	(VPI)
80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL)
80	NP B162 522	D.H. Saxon et al.	(RHEL, BRIS) IJP
79	PDAT 12-1	G. Hohler et al.	` (KARLT) IJP
80	Toronto Conf. 3	R. Koch	(KARLT) IJP
78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
	92 84 80 79 80 79 80	92 PR D45 4002 84 PR D30 904 80 Toronto Conf. 19 79 PR D20 2839 80 NP B162 522 79 PDAT 12-1 80 Toronto Conf. 3	92 PR D45 4002 D.M. Manley E.M. Saleski B4 PR D20 904 D.M. Manley et al. B5 Toronto Conf. 19 R.E. Cuktosky et al. B79 PR D20 2839 R.E. Cuktosky et al. B79 PDAT 12-1 G. Hohler et al. B70 Toronto Conf. 3 R. Koch

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Status: *

OMITTED FROM SUMMARY TABLE

N(2100) BREIT-WIGNER MASS

ALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2100 OUR ESTIMATE				
1885 ± 30	MANLEY	92	IPWA	πΝ → πΝ & Νππ
2125±75	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2050 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• We do not use the to	following data for average	s, fit	s, limits,	, etc. • • •
$1986 \pm 26 + 10$	PLOETZKE	98	SPEC	$\gamma p \rightarrow p \eta'(958)$
2203 + 70	BATINIC	95	DPWA	$\pi N \rightarrow N\pi$, Nn

N(2100) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
113 ± 44	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
260 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
200± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
$296 \pm 100 {+60 \atop -10}$	PLOETZKE	98	SPEC	$\gamma \rho \rightarrow \rho \eta'(958)$
418±171	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$

N(2100) POLE POSITION

REAL PART

Ī

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2120±40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	ig data for average	s, fit	s, limits,	etc. • • •
not seen	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
240 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	ng data for average	s, fit	s, limits,	etc. • • •
not seen	ARNDT	91	DPWΔ	$\pi N \rightarrow \pi N \text{ Soln SM90}$

N(2100) ELASTIC POLE RESIDUE

MODULUS r			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
14±7	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
PHASE θ	DOCUMENT ID	TECN	COMMENT
35 ± 25	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

N(2100) DECAY MODES

	Mode	 	
Γ ₁	Nπ	 	
Γ_2^-	$N\eta$		
Γą	Νππ		
Γď	$\Delta(1232)\pi$, <i>P</i> -wave		

N(2100) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.15 ± 0.06	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.12 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.10 ± 0.04	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	g data for average	s, fit	s, limits,	, etc. • • •
0.11 ± 0.07	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$

$\Gamma(N\eta)/\Gamma_{\text{total}}$				Γ2/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the following	ng data for averages, f	its, limits	etc. • • •	
0.86 ± 0.07	BATINIC 95	DPWA	$\pi N \rightarrow N\pi, N\eta$	

$(\Gamma_{l}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \rightarrow$	$N(2100) \rightarrow \Delta(1232)\pi$, <i>P</i> -wav	e (Γ ₁ Γ ₄) ^{1/2} /Γ
VALUE	DOCUMENT ID	TECN_	COMMENT
-0.19 ± 0.08		IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$

N(2100) REFERENCES

PLOETZKE	98	PL B444 555	R. Ploetzke et al.	(Bonn SAPHIR Collab.)
BATINIC	95	PR C51 2310	M. Batinic et al.	(BOSK, UCLA)
Also	98	PR C57 1004 (erratum)	M. Batinic et al.	
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
Aiso	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Aiso	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL)
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP

 $^{^1}$ LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi\,N\,\to\,\,N\,\pi\,\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

 $N(2190) G_{17}$

 $I(J^P) = \frac{1}{2}(\frac{7}{2})$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

N(2190) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN COMMENT	
2100 to 2200 (≈ 2190) (DUR ESTIMATE			
2127 ± 9	MANLEY	92	IPWA $\pi N \rightarrow \pi N 8$. Νππ
2200 ± 70	CUTKOSKY	80	IPWA $\pi N \rightarrow \pi N$	
2140 ± 12	HOEHLER	79	IPWA $\pi N \rightarrow \pi N$	
2140±40	HENDRY	78	MPWA $\pi N \rightarrow \pi N$	
• • • We do not use the	e following data for average	s, fit	s, limits, etc. • • •	
2131	ARNDT	95	DPWA $\pi N \rightarrow N \pi$	
2198 ± 68	BATINIC	95	DPWA $\pi N \rightarrow N \pi$,	Nη
2098	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$	
2180	SAXON	80	DPWA $\pi^- p \rightarrow \Lambda K$	0
2140	BAKER	79	DPWA $\pi^- p \rightarrow \pi \pi$	
2117	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$	

N(2190) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
350 to 550 (≈ 450) OUR ESTIMAT	E			
550 ± 50	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
500 ± 150	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
390 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
270 ± 50	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fit:	s, limits,	etc. • • •
476	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
805 ± 140	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
238	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
80	SAXON	80	DPWA	$\pi^- \rho \rightarrow \Lambda \kappa^0$
319	BAKER	79	DPWA	$\pi^- \rho \rightarrow \rho \eta$
220	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

N(2190) POLE POSITION

REAL PART	DOCUMENT ID		TECN	COMMENT
1950 to 2150 (≈ 2050)			/LCN	COMMENT
2030	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
2042	¹ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
2100 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use th	e following data for average	es, fit	s, limits,	etc. • • •
2060	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
-2×IMAGINARY P	ART			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
350 to 550 (≈ 450) OU	R ESTIMATE			
460	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
482	¹ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
400 ± 160	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	e following data for average	es, fit	s, limits,	etc. • • •
464	ADMIDT		DDIAM	44 6-1- 61400

N(2190) ELASTIC POLE RESIDUE

MODU	HIC	1-1
MUDU	LUS	171

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
46	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
45	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
25 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
54	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
PHASE 0	DOCUMENT ID		TECH	COLUMNIT
VALUE (°)	DOCUMENT ID		TECN	COMMENT
	DOCUMENT ID	95		$\frac{COMMENT}{\pi N \to N\pi}$
VALUE (°)			DPWA	
VALUE (°) -23	ARNDT CUTKOSKY	80	DPWA IPWA	$ \begin{array}{cccc} \pi N \to N \pi \\ \pi N \to \pi N \end{array} $

N(2190) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)			
$\overline{\Gamma_1}$	Νπ	10-20 %			
Γ_2	Nη				
Гз	ΛK				
Γ4	ΣΚ				
Γ_5	Νππ				
Γ ₆	$N\rho$				
Γ ₇	$N\rho$, $S=3/2$, D -wave				
Гв	$p\gamma$, helicity=1/2				
Г9	$p\gamma$, helicity=3/2				
Γ ₁₀	$n\gamma$, helicity=1/2				
Γ11	$n\gamma$, helicity=3/2				
	N(2190) BRANCHING RATIOS				

Γ(Nπ)/Γ _{total}				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.1 to 0.2 OUR ESTIMAT	ΓE			
0.22 ± 0.01	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
0.12 ± 0.06	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.14 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
0.16 ± 0.04	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
• • • We do not use the f	following data for average	s, fit	s, limits,	etc. • • •
0.23	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
0.19 ± 0.05	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
$\Gamma(N\eta)/\Gamma_{\text{total}}$				Γ ₂ /Γ
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT

• • • We do not use the following 0.001 ± 0.003	BATINIC	s, limits, etc. • DPWA $\pi N \rightarrow$	
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N(2)$	190) → Nη		$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$

VALUE	DOCUMENT ID		TECN	CON	<i>MEN</i>	T
• • • We do not use the following of	lata for averages,	fits	, limits,	etc.	• •	•
+0.052	BAKER	79	DPWA	π	<i>p</i> →	n

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in N	$/\pi \to N(2190) \to \Lambda K$	(Γ ₁ Γ ₃) ^{1/2} /Γ
VALUE	DOCUMENT ID	TECN COMMENT
-0.02	BELL 83	DPWA $\pi^- p \rightarrow \Lambda K^0$
-0.02	SAXON 80	DPWA $\pi^- n \rightarrow AK^0$

$(\Gamma_I \Gamma_f)^{\frac{1}{12}} / \Gamma_{\text{total}} \text{ in } N\pi$	→ N(2190) → ΣK		·	(Г₁Г₄) ^⅓ /Г
VALUE	DOCUMENT I	D TECN		, ,
• • • We do not use the	following data for avera	ges, fits, limits,	, etc. • • •	
0.014 to 0.019	² DEANS	75 DPWA	$\pi N \rightarrow \Sigma I$	(

$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \pi \to N$	$V(2190) \rightarrow N \rho, S=3/$	2, <i>D</i> -wa	ve	(Γ ₁ Γ ₇) ^{1/2} /Γ
VALUE	DOCUMENT ID			
-0.25 ± 0.03	MANLEY 92	IPWA	$\pi N \rightarrow \pi N$	V & Nππ

N(2190) PHOTON DECAY AMPLITUDES

$N(2190) ightarrow ho \gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV ^{-1/2})	DOCUMENT ID		ECN	COMMENT
• • • We do not use the following	data for average	s, fits, I	imits,	etc. • • •
-0.055	CRAWFORD	80 D	PWA	$\gamma N \rightarrow \pi N$
-0.030	BARBOUR	78 D	PWA	$\gamma N \rightarrow \pi N$

$N(2190) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
0.081	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
+0.180	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

$N(2190) ightarrow n\gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV-1/2)	DOCUMENT ID	TEC	COMMENT	
• • • We do not use the follow	ving data for average	s, fits, limi	ts, etc. • • •	
-0.042	CRAWFORD	80 DPV	$VA \gamma N \rightarrow \pi N$	
- 0.085	BARBOUR	78 DPV	$VA \gamma N \rightarrow \pi N$	

$N(2190) \rightarrow n\gamma$, helicity-3/2 amplitude $A_{3/2}$

VALUE (GeV-1/2)	DOCUMENT ID	TECN	COMMENT
• • We do not use the following	ig data for average	s, fits, limits	, etc. • • •
-0.126	CRAWFORD	80 DPWA	$\gamma N \rightarrow \pi N$
+0.007	BARBOUR	78 DPWA	$\gamma N \rightarrow \pi N$

N(2190), N(2200), N(2220)

$N(2190) \gamma p \rightarrow$	AK+ AMPLITUDES
--------------------------------	----------------

$(\Gamma_I \Gamma_f)^{72}/\Gamma_{\text{total}} \text{ in } p\gamma$	$\rightarrow~N(2190)\rightarrow~\Lambda K^{+}$		$(E_{4-} \text{ amplitude})$
VALUE (units 10 ⁻³)	DOCUMENT ID		TECN
• • • We do not use the	following data for averages	, fit:	s, limits, etc. • • •
2.5 ±1.0	WORKMAN	90	DPWA
2.04	TANABE	89	DPWA
$p\gamma \rightarrow N(2190) \rightarrow I$	$^{1}K^{+}$ phase angle $ heta$		(E ₄ _ amplitude)
VALUE (degrees)	DOCUMENT ID		TECN
• • • We do not use the	following data for averages	, fit	s, limits, etc. • • •
- 4 ±9	WORKMAN	90	DPWA
- 27.5	TANABE	89	DPWA
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{ ext{total}}$ in $p\gamma$	$\rightarrow N(2190) \rightarrow \Lambda K^{+}$		(M ₄ _ amplitude)
VALUE (units 10 ⁻³)	DOCUMENT ID		TECN
	following data for averages	, fit	s, limits, etc. • • •
• • • We do not use the	tomerring data for discasses		
• • • We do not use the -7.0 ± 0.7	-	90	DPWA

N(2190) FOOTNOTES

N(2190) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BRCO)
BATINIC	95	PR C51 2310	M. Batinic et al.	(BOSK, UCLA)
Also	98	PR C57 1004 (erratum)	M. Batinic et al.	
HDEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNOT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
WORKMAN	90	PR C42 781	R.L. Workman	(VPI)
TANABE	89	PR C39 741	H. Tanabe, M. Kohno, C. Bennhold	(MÁNZ)
Aiso	89	NC 102A 193	M. Kohno, H. Tanabe, C. Bennhold	(MANZ)
BELL	83	NP B222 389	K.W. Bell et al.	(RL) IJP
PDG	82	PL-111B	M. Roos et al.	(HELS, CIT, CERN)
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Aiso	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
SAXON	80	NP B162 522	D.H. Saxon et al.	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	R.D. Baker et al.	(RHEL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Par	
HENDRY	78	PRL 41 222	A.W. Hendry	(IND, LBL) IJP
Also	81	ANP 136 1	A.W. Hendry	(IND)
WINNIK	77	NP B128 66	M. Winnik et al.	(HAIF) I
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP

 $N(2200) D_{15}$

 $I(J^P) = \frac{1}{2}(\frac{5}{2})$ Status: **

OMITTED FROM SUMMARY TABLE

The mass is not well determined. A few early results have been omitted. $\,$

N(2200) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 2200 OUR ESTIMATE				
1900	BELL	83	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
2180 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1920	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
2228 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the fol	lowing data for average	s, fit	s, limits,	etc. • • •
2240 ± 65	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$

N(2200) BREIT-WIGNER WIDTH

1/4/1/5 (N-1/2)	DOCUMENT ID		TECN	COMMENT
VALUE (MeV)	DOCUMENTID			
130	BELL	83	DPWA	$\pi^- p \rightarrow \Lambda K^0$
400 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
220	SAXON	80	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
310 ± 50	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use t	he following data for average	s, fit	s, limits,	etc. • • •
761 + 139	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\eta$

N(2200) POLE POSITION

R	EAL	. P/	AR	Т

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2100±60	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

-2×IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT

N(2200) ELASTIC POLE RESIDUE

CUTKOSKY 80 IPWA $\pi N \to \pi N$

MODULUS |r

 360 ± 80

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
20±10	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
PHASE θ			
VALUE (°)	DOCUMENT ID	TECN	COMMENT
_ 90 ± 50	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

N(2200) DECAY MODES

	Mode		
$\overline{\Gamma_1}$	Nπ		
Γ_2	Nη		
L³	ΛK		

N(2200) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.10 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
0.07 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •	
0.08 ± 0.04	BATINIC	95	DPWA	$\pi N \rightarrow N\pi, N\tau$,

$\Gamma(N\eta)/\Gamma_{\text{total}}$				Γ_2/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the following	data for averages, f	its, limits,	etc. • • •	
0.001 ± 0.01	BATINIC 95	DPWA	$\pi N \rightarrow N\pi, N\pi$	7

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	N(2200) → AK		(Γ₁Γ₃) ¹ /2/Γ
VALUE	DOCUMENT ID	TECN	COMMENT
- 0.03			$\pi^- p \rightarrow \Lambda K^0$
-0.05	SAXON 8	0 DPWA	$\pi^- p \rightarrow \Lambda K^0$

N(2200) REFERENCES

95	PR C51 2310	M. Batinic et al.	(BOSK, UCLA)
98	PR C57 1004 (erratum)	M. Batinic et al.	
83	NP B222 389	K.W. Bell et al.	(RL) UP
BO	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
79	PR D20 2839	R.E. Cutkoský et al.	(CMU, LBL)
80	NP B162 522	D.H. Saxon et al.	(RHEL, BRIS) IJP
79	NP B156 93	R.D. Baker et al.	(RHEL) IJP
79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
80	Toronto Conf. 3	R. Koch	(KARLT) IJP
	98 83 80 79 80 79 79	98 PR C57 1004 (erratum) 83 NP B222 389 80 Toronto Conf. 19 79 PR D20 2839 80 NP B162 522 79 NP B156 93 79 PDAT 12-1	98 PR C57 1004 (erratum) M. Batinic et al. 3 NP B222 389 K.W. Bell et al. 80 Toronto Conf. 19 R.E. Cutkosky et al. 79 PR D20 2839 R.E. Cutkosky et al. 80 NP B162 522 D.H. Saxon et al. 79 NP B156 93 R.D. Baker et al. 79 PDAT 12-1 G. Hohler et al.

 $N(2220) H_{19}$

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^+)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

N(2220) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2180 to 2310 (≈ 2220)	OUR ESTIMATE			
2230 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2205± 10	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
2300±100	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
• • We do not use the	ne following data for average	es, fit	s, limits,	etc. • • •
2258	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
2050	BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$

N(2220) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID	_	TECN	COMMENT
320 to 550 (≈ 400) OUR ESTIMAT	E			
500 ± 150	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
365± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
450±150	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	, fits	, limits,	etc. • • •
334	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$

 $^{^1}$ See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams. 2 The range given for DEANS 75 is from the four best solutions. Disagrees with $\pi^+\rho \to \Sigma^+ K^+$ data of WINNIK 77 around 1920 MeV.

1	$N(2250) G_1$		(2220) POLE POSITION	
J	(- / - 1	COMMENT	DOCUMENT ID TEC	REAL PART VALUE (MeV)
(2224) DD517 14		COMMENT		2100 to 2240 (≈ 2170) OUR EST
(2250) BREIT-W		$(A \pi N \rightarrow N\pi)$		2203
DOCUMENT	VALUE (MeV)	$D \pi N \rightarrow \pi N$ $A \pi N \rightarrow \pi N$		2135 2160 ± 80
	2170 to 2310 (≈ 2250) C			• • We do not use the following
CUTKOSK HOEHLER	2250± 80 2268± 15	'A π N → π N Soln SM90	ARNDT 91 DP	2253
HENDRY	2200 ± 100			-2×IMAGINARY PART
Howing data for ave	• • • We do not use the	COMMENT	MATE TEC	VALUE (MeV) 370 to 570 (≈ 470) OUR ESTIM
ARNDT	2291	$A \pi N \rightarrow N \pi$	ARNDT 95 DP	536
2250) BREIT-W		$D \pi N \rightarrow \pi N$		400 480 ± 100
2230) BILLI1-44		$K \pi N \rightarrow \pi N$ s, etc. • • •		• • • We do not use the followin
DOCUMENT	VALUE (MeV)	$A \pi N \rightarrow \pi N \text{ Soln SM90}$	ARNDT 91 DP	640
CUTKOSK	290 to 470 (≈ 400) OUR 480±120	lie -	ON ELASTIC DOLE DESI	M/2220
HOEHLER	300± 40	UE	20) ELASTIC POLE RESI	
HENDRY	350±100	CO. H. ITHE	DOCUMENT ID	MODULUS r
-	• • We do not use the	$COMMENT$ $A \pi N \rightarrow N \pi$		VALUE (MeV)
ARNDT	772	$D \pi N \rightarrow \pi N$	HOEHLER 93 AR	40
N(2250) POLE		$\pi N \rightarrow \pi N$		45±20
,	DEAL DART	s, etc. • • • $\pi N = -\pi N $ Sol $\pi = -\pi N = -\pi N $	•	 We do not use the following
DOCUMENT	REAL PART VALUE (MeV)		71 0F	PHASE 6
ESTIMATE	2080 to 2200 (≈ 2140) C	COMMENT	DOCUMENT ID TEC	VALUE (°)
ARNDT ¹ HOEHLER	2087 2187	$A \rightarrow N\pi$	ARNDT 95 DP	-43
CUTKOSK	2187 2150 ± 50	$D \pi N \rightarrow \pi N$ $\Lambda \pi N \rightarrow \pi N$		50 45±25
Howing data for ave	• • • We do not use the			• • • We do not use the followin
ARNDT	2243	$A \pi N \rightarrow \pi N \text{ Soln SM90}$	ARNDT 91 DP	-62
Г	-2×IMAGINARY PA		V(2220) DECAY MODES	A1/
DOCUMENT	VALUE (MeV)			
ARNDT	280 to 680 (≈ 480) OUR 680	ot fits or averages.	ng fractions are our estimates,	The following branching
1 HOEHLER	388	t/Γ)	Fraction	Mode
CUTKOSK	360±100		10-20 %	Γ ₁ Νπ
			24 20 /0	$\Gamma_2 = N\eta$
llowing data for ave				
ARNDT	650			Γ ₃ ΛΚ
=	650	c	1000) DRANCHING DATE	
ARNDT	650		220) BRANCHING RATI	N(222
ARNDT 2250) ELASTIC I	MODULUS r	Γ ₁ /Γ	ŕ	N(222 Γ(Nπ)/Γ _{total}
ARNDT	650	Γ ₁ /Γ	DOCUMENT ID TEC	$N(22)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.1 to 0.2 OUR ESTIMATE
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER	MODULUS r VALUE (MeV) 24 21	$\frac{\Gamma_1/\Gamma}{COMMENT}$ $\Lambda \pi N \to \pi N$	DOCUMENT ID TEC CUTKOSKY 80 IPV	$N(222)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.1 to 0.2 OUR ESTIMATE 0.15 \pm 0.03
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK	MODULUS r VALUE (MeV) 24 21 20±6	Γ ₁ /Γ	DOCUMENT ID TEC CUTKOSKY 80 IPV HOEHLER 79 IPV	$N(222)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.1 to 0.2 OUR ESTIMATE 0.15 ± 0.03 0.18 ± 0.015
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK	MODULUS r VALUE (MeV) 24 21	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DOCUMENT ID TEXT CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF ving data for averages, fits, lin	$N(22^2)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.1 to 0.2 OUR ESTIMATE 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the following
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSH Illowing data for ave	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DOCUMENT ID TEXT CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP	$N(222)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ V_{ALUE} 0.1 to 0.2 OUR ESTIMATE 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the following 0.26
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSH Illowing data for ave ARNDT	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • • We do not use the	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DOCUMENT ID TEXT CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP	N(222 Γ(Nπ)/Γ _{total} VALUE 0.1 to 0.2 OUR ESTIMATE 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the followin 0.26
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK Glowing data for ave ARNDT DOCUMENT ARNDT	MODULUS r VALUE (MeV) 24 21 20±6 • • • We do not use the 47 PHASE Ø VALUE (°) -44	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP ((2220) → N \(\text{T} \)	$N(222)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.1 to 0.2 OUR ESTIMATE 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the following 0.26 $(\Gamma_1\Gamma_1)^{\frac{1}{12}}/\Gamma_{\text{total}}$ in $N\pi \rightarrow N(2)$ $VALUE$
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK ARNDT DOCUMENT ARNDT CUTKOSK CUTKOSK	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) -44 -50 ± 20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP ((2220) — N DOCUMENT ID TEC ving data for averages, fits, lin	$N(222)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ V_{ALUE} 0.15 to 0.2 OUR ESTIMATE 0.15 \pm 0.03 0.18 \pm 0.015 0.12 \pm 0.04 • • • We do not use the following 0.26 $(\Gamma_{\text{I}}\Gamma_{\text{f}})^{\frac{1}{12}}/\Gamma_{\text{total}}$ in $N\pi \rightarrow N(2)$ V_{ALUE} • • • We do not use the following
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK ARNDT DOCUMENT ARNDT CUTKOSK Illowing data for ave	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) -44 -50 ± 20 • • • We do not use the	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP ((2220) — N DOCUMENT ID TEC ving data for averages, fits, lin	$N(222)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.1 to 0.2 OUR ESTIMATE 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the following 0.26 $(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2)$ $VALUE$ • • • We do not use the following
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK ARNDT DOCUMENT ARNDT CUTKOSK CUTKOSK	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) -44 -50 ± 20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DOCUMENT ID CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP ((2220) — N \(\text{T} \) DOCUMENT ID EACH BAKER 79 DP	$N(22^2)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.1 to 0.2 OUR ESTIMATE 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the followin 0.26 $(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2^2)$ $VALUE$ • • We do not use the followin 0.034
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK ARNDT DOCUMENT ARNDT CUTKOSK Illowing data for ave	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) -44 -50 ± 20 • • • We do not use the	Γ_{1}/Γ $COMMENT$ $A \pi N \rightarrow \pi N$ $A \pi N \rightarrow \pi N$ $A \pi N \rightarrow \pi N$ $S, etc. \bullet \bullet \bullet$ $A \pi N \rightarrow N \pi$ $(\Gamma_{1}\Gamma_{2})^{\frac{1}{2}}/\Gamma$ $COMMENT$ $S, etc. \bullet \bullet \bullet$ $A \pi^{-} p \rightarrow n \eta$ $(\Gamma_{1}\Gamma_{3})^{\frac{1}{2}}/\Gamma$ $COMMENT$	DOCUMENT ID CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF Wing data for averages, fits, lin ARNDT 95 DP J(2220) — N DOCUMENT ID BAKER 79 DP J(2220) — A K DOCUMENT ID J(2220) — TES	$N(22^2\Gamma(N\pi)/\Gamma_{\text{total}})$ $VALUE$ 0.1 to 0.2 OUR ESTIMATE 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the followin 0.26 $(\Gamma_I\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi \to N(2^2)$ $VALUE$ • • We do not use the followin 0.034 $(\Gamma_I\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ In $N\pi \to N(2^2)$ $VALUE$
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK ARNDT DOCUMENT ARNDT CUTKOSK ARNDT CUTKOSK ARNDT N(2250) DECA	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE € VALUE (°) -44 -50 ± 20 • • • We do not use the	Γ_{1}/Γ $COMMENT$ $A \pi N \rightarrow \pi N$ $A \pi N \rightarrow \pi N$ $A \pi N \rightarrow \pi N$ $A \pi N \rightarrow N\pi$ $A \pi N \rightarrow N\pi$ $(\Gamma_{1}\Gamma_{2})^{\frac{1}{2}}/\Gamma$ $COMMENT$ $A \pi^{-}\rho \rightarrow n\eta$ $(\Gamma_{1}\Gamma_{3})^{\frac{1}{2}}/\Gamma$ $COMMENT$ $A \pi^{-}\rho \rightarrow \Lambda K^{0}$	CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP (2220) — NT DOCUMENT ID BAKER 79 DP (2220) — AK DOCUMENT ID BELL 83 DP	$N(222)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.1 to 0.2 OUR ESTIMATE 0.15 \pm 0.03 0.18 \pm 0.015 0.12 \pm 0.04 • • • We do not use the following 0.26 $(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi \to N(2)$ $VALUE$ 0.034 $(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi \to N(2)$ $VALUE$ not required
DOCUMENT ARNDT ARNDT ARNDT HOEHLER CUTKOSK Illowing data for ave ARNDT DOCUMENT ARNDT CUTKOSK Illowing data for ave ARNDT ARNDT ARNDT ARNDT ARNDT ARNDT	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE € VALUE (°) -44 -50 ± 20 • • • We do not use the	Γ_{1}/Γ $COMMENT$ $A \pi N \rightarrow \pi N$ $A \pi N \rightarrow \pi N$ $A \pi N \rightarrow \pi N$ $S, etc. \bullet \bullet \bullet$ $A \pi N \rightarrow N \pi$ $(\Gamma_{1}\Gamma_{2})^{\frac{1}{2}}/\Gamma$ $COMMENT$ $S, etc. \bullet \bullet \bullet$ $A \pi^{-} p \rightarrow n \eta$ $(\Gamma_{1}\Gamma_{3})^{\frac{1}{2}}/\Gamma$ $COMMENT$	CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP (2220) — NT DOCUMENT ID BAKER 79 DP (2220) — AK DOCUMENT ID BELL 83 DP	$N(222)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.15 to 0.2 OUR ESTIMATE 0.15 \pm 0.03 0.18 \pm 0.015 0.12 \pm 0.04 • • • We do not use the following 0.26 $(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2)$ $VALUE$ • • • We do not use the following 0.034 $(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2)$ $VALUE$ not required
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK ARNDT DOCUMENT ARNDT CUTKOSK ARNDT CUTKOSK ARNDT N(2250) DECA	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE € VALUE (°) -44 -50 ± 20 • • • We do not use the	Γ_{1}/Γ $COMMENT$ $A \pi N \rightarrow \pi N$ $A \pi N \rightarrow \pi N$ $A \pi N \rightarrow \pi N$ $A \pi N \rightarrow N\pi$ $A \pi N \rightarrow N\pi$ $(\Gamma_{1}\Gamma_{2})^{\frac{1}{2}}/\Gamma$ $COMMENT$ $A \pi^{-}\rho \rightarrow n\eta$ $(\Gamma_{1}\Gamma_{3})^{\frac{1}{2}}/\Gamma$ $COMMENT$ $A \pi^{-}\rho \rightarrow \Lambda K^{0}$	CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP (2220) — NT DOCUMENT ID BAKER 79 DP (2220) — AK DOCUMENT ID BELL 83 DP	$N(22^2\Gamma(N\pi)/\Gamma_{\text{total}})$ $VALUE$ 0.1 to 0.2 OUR ESTIMATE 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • We do not use the followin 0.26 $(\Gamma_I\Gamma_F)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2^{\frac{1}{2}})$ $VALUE$ • • We do not use the followin 0.034 $(\Gamma_I\Gamma_F)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2^{\frac{1}{2}})$ $VALUE$ not required not seen
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK ARNDT DOCUMENT ARNDT CUTKOSK ARNDT CUTKOSK ARNDT N(2250) DECA	MODULUS r VALUE (MeV) 24 21 20±6 • • • We do not use the 47 PHASE 6 VALUE (°) -44 -50±20 • • We do not use the -37 The following by	Γ ₁ /Γ COMMENT $ (N \pi N \rightarrow \pi N) $ $ (N \pi N \rightarrow N \pi) $ (Γ ₁ Γ ₂) ^{1/2} /Γ COMMENT $ (N \pi^- p \rightarrow n \eta) $ (Γ ₁ Γ ₃) ^{1/2} /Γ COMMENT $ (\Gamma_1 \Gamma_3)^{1/2}/\Gamma $ COMMENT $ (\Gamma_1 \Gamma_3)^{1/2}/\Gamma $ To and the pole parameters	DOCUMENT ID CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF Wing data for averages, fits, lin ARNDT 95 DP I(2220) → Nη DOCUMENT ID BAKER 79 DP I(2220) → ΛΚ DOCUMENT ID BELL 83 DP SAXON 80 DP I(2220) FOOTNOTES tailed discussion of the evident	$N(222)$ $\Gamma(N\pi)/\Gamma_{total}$ $VALUE$ 0.15 ±0.03 0.18 ±0.015 0.12 ±0.04 • • • We do not use the following 0.26 $(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{total}$ in $N\pi \to N(2)$ $VALUE$ • • • We do not use the following 0.034 $(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{total}$ in $N\pi \to N(2)$ $VALUE$ not required not seen
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK ARNDT DOCUMENT ARNDT CUTKOSK ARNDT CUTKOSK ARNDT N(2250) DECA	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) - 44 - 50 \pm 20 • • • We do not use the - 37 The following be Mode Γ_1 $N\pi$ Γ_2 $N\eta$	Γ ₁ /Γ COMMENT $ (πN → πN) $ $ (πN → Nπ) $ $ (πN → N$	DOCUMENT ID CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF Wing data for averages, fits, lin ARNDT 95 DP MOCUMENT ID BAKER 79 DP MOCUMENT ID BAKER 79 DP MOCUMENT ID BELL 83 DP SAXON 80 DP MOCUMENT ID SAXON 60 DP MOCUMENT ID TECT STATEMENT ID SAXON 60 DP MOCUMENT ID SAXON 60 DP	$N(22^2)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ V_{ALUE} 0.15 to 0.2 OUR ESTIMATE 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the following 0.26 $(\Gamma_{I}\Gamma_{I})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(2^{\frac{1}{2}})$ V_{ALUE} • • • We do not use the following 0.034 $(\Gamma_{I}\Gamma_{I})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(2^{\frac{1}{2}})$ V_{ALUE} not required not seen
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK ARNDT DOCUMENT ARNDT CUTKOSK ARNDT CUTKOSK ARNDT N(2250) DECA	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) -44 -50 ± 20 • • We do not use the -37 The following by Mode Γ_1 $N\pi$	Γ ₁ /Γ COMMENT $ (πN → πN) $ $ (πN → Nπ) $ $ (πN → N$	DOCUMENT ID CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF Wing data for averages, fits, lin ARNDT 95 DP (2220) — N7 DOCUMENT ID BAKER 79 DP (2220) — AK DOCUMENT ID BELL 83 DP SAXON 80 DP (2220) FOOTNOTES tailed discussion of the evident determined from Argand diagraf of the speeds with which the arm	$N(222)$ $\Gamma(N\pi)/\Gamma_{total}$ $VALUE$ 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the following 0.26 $(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{total}$ in $N\pi \to N(2)$ $VALUE$ 0.03 1 See HOEHLER 93 for a detail of N and Δ resonances as detain d and Δ resonances as detained Δ resonances as detained Δ resonances as detained Δ resonances as detained Δ resonances and Δ resonances as detained Δ resonances and Δ resonances as detained Δ resonances and Δ resonances are detained to Δ resonances and Δ resonances and Δ resonances and Δ resonances are detained to Δ resonances and Δ resonances are detained to Δ resonances are detained to Δ resonances and Δ resonances are detained to Δ resonances are detaine
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK Illowing data for ave ARNDT ARNDT CUTKOSK Illowing data for ave ARNDT N(2250) DECA ching fractions are o	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) - 44 - 50 \pm 20 • • • We do not use the - 37 The following be Mode Γ_1 $N\pi$ Γ_2 $N\eta$	Γ_1/Γ COMMENT $\Lambda \pi N \to \pi N$ $\Lambda \pi N \to \pi N$ $\Lambda \pi N \to \pi N$ S, etc. • • • $\Lambda \pi N \to N\pi$ (Γ ₁ Γ ₂) ^{1/2} /Γ COMMENT S, etc. • • • $\Lambda \pi = \rho \to n\eta$ (Γ ₁ Γ ₃) ^{1/2} /Γ COMMENT $\Lambda \pi = \rho \to \Lambda K^0$ for and the pole parameters as of πN elastic partial-wave itudes traverse the diagrams.	CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF Wing data for averages, fits, lin ARNDT 95 DP ### ARNDT 95 DP	$N(222)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ V_{ALUE} 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 ••• We do not use the following 0.26 $(\Gamma_{\Gamma}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2)$ V_{ALUE} ••• We do not use the following 0.034 $(\Gamma_{\Gamma}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2)$ V_{ALUE} not required not seen 1 See HOEHLER 93 for a detail of N and Δ resonances as detail amplitudes and from plots of the series
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK ARNDT DOCUMENT ARNDT CUTKOSK ARNDT CUTKOSK ARNDT N(2250) DECA	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) - 44 - 50 \pm 20 • • • We do not use the - 37 The following by Mode Γ_1 Γ_2 $N\pi$ Γ_2 $N\eta$ Γ_3 ΛK	Γ_1/Γ COMMENT $\Lambda \pi N \to \pi N$ $\Lambda \pi N \to \pi N$ $\Lambda \pi N \to \pi N$ S, etc. • • • $\Lambda \pi N \to N\pi$ (Γ ₁ Γ ₂) ^{1/2} /Γ COMMENT S, etc. • • • $\Lambda \pi = \rho \to n\eta$ (Γ ₁ Γ ₃) ^{1/2} /Γ COMMENT $\Lambda \pi = \rho \to \Lambda K^0$ for and the pole parameters as of πN elastic partial-wave itudes traverse the diagrams.	DOCUMENT ID CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF Wing data for averages, fits, lin ARNDT 95 DP (2220) — N7 DOCUMENT ID BAKER 79 DP (2220) — AK DOCUMENT ID BELL 83 DP SAXON 80 DP (2220) FOOTNOTES tailed discussion of the evident determined from Argand diagraf of the speeds with which the arm	$N(222)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ V_{ALUE} 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 ••• We do not use the following 0.26 $(\Gamma_{\Gamma}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2)$ V_{ALUE} ••• We do not use the following 0.034 $(\Gamma_{\Gamma}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2)$ V_{ALUE} not required not seen 1 See HOEHLER 93 for a detail of N and Δ resonances as detail amplitudes and from plots of the series
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSH Illowing data for ave ARNDT ARNDT CUTKOSH Illowing data for ave ARNDT N(2250) DECA ching fractions are o	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) - 44 - 50 \pm 20 • • We do not use the - 37 The following be Mode Γ_1 $N\pi$ Γ_2 $N\eta$ Γ_3 ΛK $\Gamma(N\pi)/\Gamma_{total}$	Γ_1/Γ $COMMENT$ $\Lambda \pi N \to \pi N$ for and the pole parameters is of πN elastic partial-wave litudes traverse the diagrams.	CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF Wing data for averages, fits, lin ARNDT 95 DP ### ARNDT 95 DP ### ARNDT 95 DP ### ARNDT 10 TEV Wing data for averages, fits, lin BAKER 79 DP ### ARNDT 10 TEV WING DOCUMENT ID TEV BELL 83 DP SAXON 80 DP ### ARNDT 10 TEV BELL 83 DP SAXON 80 DP ### ARNDT 10 TEV ### BELL 83 DP SAXON 80 DP ### ARNDT 10 TEV ### ARNDT	$N(222)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ V_{ALUE} 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 ••• We do not use the following 0.26 $(\Gamma_{\Gamma}\Gamma_{\Gamma})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2)$ V_{ALUE} ••• We do not use the following 0.034 $(\Gamma_{\Gamma}\Gamma_{\Gamma})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to N(2)$ V_{ALUE} not required not seen 1 See HOEHLER 93 for a detail of N and Δ resonances as detail of N and N resonances as detail of N resonances and N resonances are detailed to N resonances and N resonances are detailed to N resonances and N resonances are detaile
ARNDT 2250) ELASTIC I DOCUMENT ARNDT ARNDT LUTKOSK ARNDT CUTKOSK ARNDT ARNDT ARNDT CUTKOSK ARNDT ARNDT ARNDT ARNDT CUTKOSK ARNDT N(2250) DECA Ching fractions are o	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) -44 -50 ± 20 • • • We do not use the -37 The following be Mode $\Gamma_1 N\pi$ $\Gamma_2 N\eta$ $\Gamma_3 AK$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ VALUE	Γ_1/Γ $COMMENT$ $(TN \rightarrow \pi N)$ $(TN \rightarrow $	CUTKOSKY 80 IPV HOEHLER 79 IPV HENDRY 78 MF Wing data for averages, fits, lin ARNDT 95 DP ### ARNDT 95 DP ### ARNDT 95 DP ### ARNDT 10 TEV Wing data for averages, fits, lin BAKER 79 DP ### ARNDT 10 TEV WING DOCUMENT ID TEV BELL 83 DP SAXON 80 DP ### ARNDT 10 TEV BELL 83 DP SAXON 80 DP ### ARNDT 10 TEV ### BELL 83 DP SAXON 80 DP ### ARNDT 10 TEV ### ARNDT	$N(222)$ $\Gamma(N\pi)/\Gamma_{total}$ $VALUE$ 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the following 0.26 $(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{total}$ in $N\pi \to N(2)$ $VALUE$ • • • We do not use the following 0.034 $(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{total}$ in $N\pi \to N(2)$ $VALUE$ not required not seen 1 See HOEHLER 93 for a detail of N and Δ resonances as detain of N and Δ resonances as detain of N and Δ resonances as detained not seen 1 See HOEHLER 93 for a detail of N and Δ resonances as detained not seen
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSH Illowing data for ave ARNDT ARNDT ARNDT ARNDT ARNDT N(2250) DECA ching fractions are o	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) -44 -50 ± 20 • • We do not use the 37 The following be Mode Γ_1 $N\pi$ Γ_2 $N\eta$ Γ_3 ΛK $\Gamma(N\pi)/\Gamma_{\text{total}}$ VALUE 0.05 to 0.15 OUR ESTIM 0.10 \pm 0.02	Γ ₁ /Γ COMMENT $ (πN → πN) $ $ (πN → πN → πN) $ $ (πN → πN → πN) $ $ (πN → πN → πN) $ $ (πN → πN$	CUTKOSKY 80 IPV HOEHLER 79 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP MOCUMENT ID TEX MOCUMENT ID TEX DOCUMENT ID TEX DOCUMENT ID TEX DOCUMENT ID TEX DOCUMENT ID TEX BELL 83 DP SAXON 80 DP M(2220) FOOTNOTES tailed discussion of the evident determined from Argand diagraf the speeds with which the arr M(2220) REFERENCES BE Physics Letters 111B 70 (1) R.A. Arnott et al. K.W. Bell et al. K.W. Bell et al.	$N(222)$ $\Gamma(N\pi)/\Gamma_{total}$ $VALUE$ 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the following one of
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK ARNDT ARNDT ARNDT CUTKOSK Illowing data for ave ARNDT N(2250) DECA Ching fractions are o	MODULUS r VALUE (MeV) 24 21 20±6 • • • We do not use the 47 PHASE θ VALUE (*) -44 -50±20 • • • We do not use the 7 The following by Mode Γ1	Γ ₁ /Γ COMMENT $ (πN → πN) $ $ (π ∈ π) $	CUTKOSKY 80 IPV HOEHLER 79 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP MOCUMENT ID TEX MOCUMENT ID TEX DOCUMENT ID TEX DOCUMENT ID TEX DOCUMENT ID TEX DOCUMENT ID TEX BELL 83 DP SAXON 80 DP M(2220) FOOTNOTES tailed discussion of the evident determined from Argand diagraf f the speeds with which the arr M(2220) REFERENCES BE Physics Letters 111B 70 (11 R.A. Arnott et al. K.W. Bell et al. M. Roos et al. R. Cutkosky et al.	$N(222)$ $\Gamma(N\pi)/\Gamma_{total}$ $VALUE$ 0.15 ± 0.03 0.18 ± 0.015 0.12 ± 0.04 • • • We do not use the following one of
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK Illowing data for ave ARNDT CUTKOSK Illowing data for ave ARNDT N(2250) DECA Ching fractions are of (2250) BRANCH CUTKOSK HOEHLER HENDRY	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) - 44 - 50 ± 20 • • • We do not use the - 37 The following be Mode Γ1	Γ ₁ /Γ COMMENT $ (πN → πN) $ $ (πN → πN) $ $ (πN → πN) $ $ (π) $	CUTKOSKY 80 IPV HOEHLER 79 IPV HOEHLER 79 IPV HENDRY 78 MF wing data for averages, fits, lin ARNDT 95 DP I(2220) — NIT BOCUMENT ID I(2220) — AK OCUMENT ID SAXON 80 DP I(2220) FOOTNOTES tailed discussion of the evident determined from Argand diagr. ff the speeds with which the arr I(2220) REFERENCES BE Physics Letters 111B 70 (1' R.A. Arndt et al. K.W. Bell et al. M. Roos et al. P. R.E. Cutkosky et al. R.E. Cutkosky et al. D.H. Saxon et al. D.H. Saxon et al.	N(222 \[\left(\text{N} \pi \right) \right\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK Illowing data for ave ARNDT CUTKOSK Illowing data for ave ARNDT N(2250) DECA Ching fractions are of (2250) BRANCH CUTKOSK HOEHLER HENDRY	MODULUS r VALUE (MeV) 24 21 20±6 • • • We do not use the 47 PHASE θ VALUE (*) -44 -50±20 • • • We do not use the 7 The following by Mode Γ1	Γ ₁ /Γ COMMENT $ (πN → πN) $ $ (πN → πN) $ $ (πN → πN) $ S, etc. • • • $ (π ∈ π) $ S, etc. • • • $ (π ∈ π) $ $ (π ∈ π) $ (Γ ∈ π) (CUTKOSKY 80 IPV HOEHLER 79 IPV HOEHLER 79 IPV HENDRY 78 MF Wing data for averages, fits, lin ARNDT 95 DP I(2220) — NIT BOCUMENT ID I(2220) — AK DOCUMENT ID SAKER 79 DP I(2220) — AK DOCUMENT ID SAKON 80 DP I(2220) FOOTNOTES tailed discussion of the evident determined from Argand diagr. If the speeds with which the arr I(2220) REFERENCES BE Physics Letters 111B 70 (1' R.A. Arndt et al. K.W. Bell et al. M. Roos et al. R.E. Cutkosky et al. R.E. Cutkosky et al. R.E. Cutkosky et al. R.D. Baker et al. G. Hohler et al.	N(222 \[\lambda \lambda \rangle \lambda \rangle \lambda \rangle \lambda \rangle \rangle \lambda \rangle \ra
ARNDT 2250) ELASTIC I DOCUMENT ARNDT HOEHLER CUTKOSK Illowing data for ave ARNDT CUTKOSK Illowing data for ave ARNDT N(2250) DECA Ching fractions are o	MODULUS r VALUE (MeV) 24 21 20 ± 6 • • • We do not use the 47 PHASE θ VALUE (°) - 44 - 50 ± 20 • • • We do not use the - 37 The following be Mode Γ1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CUTKOSKY 80 IPV HOEHLER 79 IPV HOEHLER 79 IPV HENDRY 78 MF Wing data for averages, fits, lin ARNDT 95 DP I(2220) — NIT BOCUMENT ID I(2220) — AK DOCUMENT ID SAKER 79 DP I(2220) — AK DOCUMENT ID SAKON 80 DP I(2220) FOOTNOTES tailed discussion of the evident determined from Argand diagr. If the speeds with which the arr I(2220) REFERENCES BE Physics Letters 111B 70 (1' R.A. Arndt et al. K.W. Bell et al. M. Roos et al. R.E. Cutkosky et al. R.E. Cutkosky et al. R.E. Cutkosky et al. R.D. Baker et al. G. Hohler et al.	N(222 \[\(\lambda \tau \) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

$N(2250) G_{19}$	$I(J^P)$	$) = \frac{1}{2}(\frac{9}{2})$; ⁻) Status: **
N(225	D) BREIT-WIGN	IER MAS	ss
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2170 to 2310 (≈ 2250) OUR EST			
2250± 80		80 IPWA	
2268 ± 15 2200 ± 100			$A \pi N \rightarrow \pi N$ $A \pi N \rightarrow \pi N$
• • We do not use the followin			
2291	ARNDT		$A \pi N \rightarrow N \pi$
N(2250) BREIT-WIGNI	ER WIDT	гн
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
290 to 470 (≈ 400) OUR ESTIMA			
480±120		80 IPWA	
300 ± 40 350 ± 100	HOEHLER HENDRY	79 IPWA	$(\pi N \rightarrow \pi N)$ $(A \pi N \rightarrow \pi N)$
• • We do not use the followin			
772	ARNDT		$A \pi N \rightarrow N \pi$
	ARNUT	95 DPW	$A \pi N \rightarrow N \pi$
•	250) POLE PO:	SITION	
REAL PART VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2080 to 2200 (≈ 2140) OUR EST			
2087			$A \pi N \rightarrow N \pi$
2187	1 HOEHLER CUTKOSKY	93 SPEC	
2150 ± 50		80 JPW/	
• • We do not use the followin	-		
2243	ARNDT	91 DPW	$'A \pi N \rightarrow \pi N \text{ Soln S}$
-2×IMAGINARY PART	DOCUMENT ID	TECN	COMMENT
280 to 680 (≈ 480) OUR ESTIMA		OE DD:-	/A = 8/ . A/
680 388	•	93 SPE	$(A \pi N \rightarrow N \pi)$ $(A \pi N \rightarrow \pi N)$
360±100		80 IPW	
• • We do not use the followin			
650	ARNDT		/A πN → πN Soln S
	ARRET	J1 D1 W	A WW SOILS
N(2250)	ELASTIC POL	E RESID	VE
MODULUS r			
VALUE (MeV)	DOCUMENT ID		COMMENT
24	ARNDT		$/A \pi N \rightarrow N \pi$
21	HOEHLER	93 SPEC	
20±6 • • • We do not use the followin	CUTKOSKY	80 IPW	
47	ARNDT	91 DPW	$^{\prime}A \pi N \rightarrow \pi N \text{ SoIn S}$
PHASE 6	DOCUMENT ID	TECN	COLMENT
<u>VALUE (°)</u> -44		95 DPW	$COMMENT$ $A \pi N \rightarrow N \pi$
-44 -50 ± 20	ARNDT CUTKOSKY		$A \pi N \rightarrow N \pi$ $A \pi N \rightarrow \pi N$
• • We do not use the following			
- 37	ARNDT		$A \pi N \rightarrow \pi N \text{ Soln S}$
N(2250) DECAY M	ODES	
The following branching	fractions are our es	timates, no	ot fits or averages.
Mode	F	raction (F	₁ /Γ)
$\Gamma_1 = N\pi$	5	−15 %	
$\Gamma_2 = N\eta$			
Γ ₃ ΛΚ			
N(225	0) BRANCHING	RATIOS	3
$\Gamma(N\pi)/\Gamma_{\text{total}}$			
O OF to O IF OUR ECTIMATE	DOCUMENT ID	TECN	COMMENT
0.05 to 0.15 OUR ESTIMATE 0.10 ± 0.02	CUTKOSKY	80 IPWA	$\pi N \rightarrow \pi N$
0.10±0.02		79 IPWA	
0.09 ± 0.02			$A \pi N \rightarrow \pi N$
• • • We do not use the following			

95 DPWA $\pi N \rightarrow N \pi$

N(2250), N(2600), N(2700), $N(\sim 3000)$

VALUE	DOCUMENT IL		TECN	COMMENT.	r `
• • We do not use t	he following data for averag	ges, fit	s, limits,	etc. • •	•
-0.043	BAKER	79	DPWA	$\pi^- \rho \to$	пη
(「「「「」」 MALUE In N	$\pi \rightarrow N(2250) \rightarrow \Lambda K$	D	TECN	COMMENT	(Γ₁Γ₃) ¹ /2/I
		83	DPWA	$ \begin{array}{c} COMMENT \\ \pi^- p \to \\ \pi^- p \to \end{array} $	ΛK ⁰

N(2250) FOOTNOTES

 1 See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

N(2250) REFERENCES

ARNOT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BRCO)
HOEHLER	93	π N Newsletter 9 1	G. Hofiter	(KARL)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
BELL	83	NP B222 389	K.W. Bell et al.	(RL) UP
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) UP
Also	79	PR D20 2839	R.E. Cutkosky et al.	CMU, LBL) IJP
SAXON	80	NP B162 522	D.H. Saxon et al.	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	R.D. Baker et al.	(RHEL) UP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) UP
HENDRY	78	PRL 41 222	A.W. Hendry	(IND, LBL) IJP
Also	81	ANP 136 1	A.W. Hendry	(IND)

 $N(2600) I_{1,11}$

$$I(J^P) = \frac{1}{2}(\frac{11}{2})$$
 Status: ***

N(2600) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2550 to 2750 (≈ 2600) OUR ESTIN	MATE		
2577 ± 50	HOEHLER 7	9 IPWA	$\pi N \rightarrow \pi N$
2700 ± 100	HENDRY 7	8 MPW	$\Lambda \pi N \rightarrow \pi N$

N(2600) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
500 to 800 (≈ 650) OUR ESTIMAT	E		
400 ± 100	HOEHLER 79	IPWA	$\pi N \rightarrow \pi N$
900 ± 100	HENDRY 78	MPWA	$\pi N \rightarrow \pi N$

N(2600) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	Νπ	5-10 %

N(2600) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT	
0.05 to 0.1 OUR ESTIMATE					
0.05 ± 0.01	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
0.08 ± 0.02	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	

N(2600) REFERENCES

HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJE
Also	80	Toronto Conf. 3	R. Koch	(KARLT) UF
HENDRY	78	PRL 41 222		(IND, LBL) IJF
			A.W. Hendry	
Also	81	ANP 136 1	A.W. Hendry	(INO)

 $N(2700) K_{1,13}$

$$I(J^P) = \frac{1}{2}(\frac{13}{7}^+)$$
 Status: **

OMITTED FROM SUMMARY TABLE

N(2700) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
≈ 2700 OUR ESTIMATE			
2612 ± 45	HOEHLER 7	PWA	$\pi N \rightarrow \pi N$
3000 ± 100	HENDRY 7	B MPW	$\lambda \pi N \rightarrow \pi N$

N(2700) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TEÇN	COMMENT
350 ± 50				$\pi N \rightarrow \pi N$
900 ± 150	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$

N(2700) DECAY MODES

	Mode	 	 	
$\overline{\Gamma_1}$	Nπ			

N(2700) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.04 ± 0.01	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
0.07 ± 0.02	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	

N(2700) REFERENCES

HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
HENDRY	78	PRL 41 222	A.W. Hendry	(IND, LBL) IJP
Also	81	ANP 136 1	A.W. Hendry	(IND)

$N(\sim 3000 \, { m Region})$ Partial-Wave Analyses

OMITTED FROM SUMMARY TABLE

We list here miscellaneous high-mass candidates for isospin-1/2 resonances found in partial-wave analyses.

Our 1982 edition had an N(3245), an N(3690), and an N(3755), each a narrow peak seen in a production experiment. Since nothing has been heard from them since the 1960's, we declare them to be dead. There was also an N(3030), deduced from total cross-section and 180° elastic cross-section measurements; it is the KOCH 80 $L_{1.15}$ state below.

N(~ 3000) BREIT-WIGNER MASS

VALUE (MeV) ≈ 3000 OUR ESTIMATE	DOCUMENT ID		TECN	СОММЕ	VT
2600	KOCH	80	IPWA	$\pi N \rightarrow$	$\pi N D_{13}$
3100	косн	80	IPWA	$\pi N \rightarrow$	$\pi N L_{1.15}$ wave
3500	косн	80	IPWA-	$\pi N \rightarrow$	$\pi N M_{1.17}$ wave
3500 to 4000	косн	80	IPWA	$\pi N \rightarrow$	π N N _{1.19} wave
3500 ± 200	HENDRY	78	MPWA	$\pi N \rightarrow$	π N L _{1.15} wave
3800 ± 200	HENDRY	78	MPWA	$\pi N \rightarrow$	$\pi N M_{1.17}$ wave
4100 ± 200	HENDRY				π N N _{1,19} wave

N(~ 3000) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMME	VT
1300 ± 200	HENDRY	78	MPWA	$\pi N \rightarrow$	$\pi N L_{1,15}$ wave
1600 ± 200	HENDRY	78	MPWA	$\pi N \rightarrow$	$\pi N M_{1,17}$ wave
1900 ± 300	HENDRY	78	MPWA	$\pi N \rightarrow$	π N N _{1,19} wave

N(~ 3000) DECAY MODES

	Mode		
Γ ₁	Nπ		

N(~ 3000) BRANCHING RATIOS

Γ. /Γ

E(N=)/E. . .

'1/'
N L _{1,15} wave
N M _{1,17} wave
N N _{1,19} wave

N(~ 3000) REFERENCES

KOCH	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
HENDRY	78	PRL 41 222	A.W. Hendry	(IND, LBL) IJP
Also	81	ANP 136 1	A.W. Hendry	(IND) IJP

△ BARYONS (S=0, I=3/2)

 $\Delta^{++} = uuu$, $\Delta^{+} = uud$, $\Delta^{0} = udd$, $\Delta^{-} = ddd$

 Δ (1232) P_{33}

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$ Status: ***

Most of the results published before 1977 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

△(1232) BREIT-WIGNER MASSES

MIXED	CHARGES

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1230 to 1234 (≈ 1232) OUR ES	TIMATE			
1231 ± 1	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1232 ± 3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1233 ± 2	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	ng data for average	es, fit	s, limits,	etc. • • •
1233	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$

△(1232)++ MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1230.5 ± 0.2	ABAEV	95 IPWA	$\pi N \rightarrow \pi N$
1230.9 ± 0.3	KOCH	80B IPWA	$\pi N \rightarrow \pi N$
1231.1 ± 0.2	PEDRONI	78	$\pi N \rightarrow \pi N 70-370$
			Mal/

△(1232)+ MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
\bullet \bullet We do not use the	following data for averages, fit	s, limits,	etc. • • •
1231.6	CRAWFORD 80	DPWA	$\gamma N \rightarrow \pi N$
1234.9 ± 1.4	MIROSHNIC 79		Fit photoproduction
1231.2	BARBOUR 78	DPWA	$\gamma N \rightarrow \pi N$
1231.8	BERENDS 75	IPWA	$\gamma \rho \rightarrow \pi N$

$\Delta(1232)^0$ MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1233.1 ± 0.3	ABAEV	95	IPWA	$\pi N \rightarrow \pi N$
1233.6 ± 0.5	косн	80B	IPWA	$\pi N \rightarrow \pi N$
1233.8 ± 0.2	PEDRONI	78		$\pi N \rightarrow \pi N 70-370$
				MeV

$m_{\Delta^0} - m_{\Delta^{++}}$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	data for averages,	fits, limits,	etc. • • •
2.25 ± 0.68 2.6 ± 0.4	ABAEV		Fit to PEDRON ₹ 78 π N → π N
2.7 ±0.3	¹ PEDRONI	78	See the masses

△(1232) BREIT-WIGNER WIDTHS

MIXED CHARGES

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
115 to 125 (≈ 120) OUR ESTIM	ATE			
118 ± 4	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
120 ± 5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
116 ± 5	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	ng data for average	s, fit	s, limits,	etc. • • •
114	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$

△(1232)++ WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
111.0±1.0	косн	80B IPWA	$\pi N \rightarrow \pi N$
111.3 ± 0.5	PEDRONI	78	$\pi N \rightarrow \pi N 70-370$
			Mass

△(1232)+ WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • We do not use the following	data for averages, fi	ts, limits,	etc. • • •
111.2	CRAWFORD 80	DPWA	$\gamma N \rightarrow \pi N$
131.1 ± 2.4	MIROSHNIC 79		Fit photoproduction
111.0	BARBOUR 78	DPWA	$\gamma N \rightarrow \pi N$

∆ (1232) ⁰ WIDTH			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
113.0 ± 1.5	косн	80B IPWA	$\pi N \rightarrow \pi N$
117.9 ± 0.9	PEDRONI	78	π N → π N 70-370 MeV

△º-△++ WIDTH DIFFERENCE

VALUE (MeV)	DOCUMENT ID	TEC	N COMMENT
• • • We do not use the following	data for averag	es, fits, lim	its, etc. • • •
8.45 ± 1.11	BERNICHA	96	Fit to PEDRONI 78
5.1 ± 1.0	ABAEV	95 IPW	$/A \pi N \rightarrow \pi N$
6.6 ±1.0	PEDRONI	78	See the widths

Δ(1232) POLE POSITIONS

REAL PART, MIXED CHARGES

VALUE (MeV)	DOCUMENT ID		TECN	COMME	NT
1209 to 1211 (≈ 1210) O	UR ESTIMATE				
1211	ARNDT	95	DPWA	$\pi N \rightarrow$	Νπ
1209	² HOEHLER	93	ARGD	$\pi N \rightarrow$	πN
1210±1	CUTKOSKY	80	IPWA	$\pi N \rightarrow$	πN
• • We do not use the	following data for average	s, fit	s, limits,	etc. • •	•
1210	ARNDT	91	DPWA	$\pi N \rightarrow$	πN Soln SM90

-2×IMAGINARY PART, MIXED CHARGES

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
98 to 102 (≈ 100) OUR ESTI	MATE			
100	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
100	² HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
100±2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follow	ing data for average	es, fit	s, limits,	etc. • • •
100	ARNDT	91	DPWΔ	- N N Soln SM90

REAL PART, △(1232)++

VALUE (MeV)	DOCUMENT I	COMMENT		
1209.6 ± 0.5	3 VASAN	76B Fit to CART	ER 73	_
• • We do not use the follo	wing data for avera	ges, fits, limits, etc.	• • •	
1210 5 to 1210 9	4 VASAN	760 Eit to CADT	TED 72	

-2×IMAGINARY PART, △(1232)++

VALUE (MeV)	DOCUMENT	ID COMMENT
100.8 ± 1.0	³ VASAN	76B Fit to CARTER 73
• • • We do not use the follow	wing data for avera	ages, fits, limits, etc. • • •
99.8 to 100	4 VASAN	76B Fit to CARTER 73

REAL PART, △(1232)+

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1208.0 ± 2.0	CAMPBELL	76	Fit photoproduction
• • • We do not use the following	data for average	s, fits, limits,	, etc. • • •
1211 ±1 to 1212 ± 1	HANSTEIN	96 DPWA	$\gamma N \rightarrow \pi N$
1206 9 ± 0 9 to 1210 5 ± 1 8	MIROSHNIC	79	Fit photoproduction

-2×IMAGINARY PART, △(1232)+

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
106 ±4	CAMPBELL 76	5	Fit photoproduction
• • • We do not use the following	ing data for averages, f	its, limits,	etc. • • •
102 ±2 to 99 ± 2	HANSTEIN 96	6 DPWA	$\gamma N \rightarrow \pi N$
111.2 ± 2.0 to 116.6 ± 2.2	MIROSHNIC 79	9	Fit photoproduction

REAL PART, △(1232)0

	<i>,</i>			
VALUE (MeV)	DOCUMENT I	'D	COMMENT	
1210.75 ± 0.6	³ VASAN	76в	Fit to CARTER 73	
• • We do not use the	ne following data for avera	ges, fits	, limits, etc. • • •	
1210.2	4 VASAN	76B	Fit to CARTER 73	

-2×IMAGINARY PART, △(1232)0

VALUE (MeV)	DOCUMENT	COMM	ENT	
105.6 ± 1.2	3 VASAN	76B Fit to	CARTER 73	
• • We do not use the following the fol	wing data for avera	ges, fits, limits	s, etc. • • •	
105.8 to 106.2	4 VASAN	76B Fit to	CARTER 73	

△(1232) ELASTIC POLE RESIDUES

ABSOLUTE VALUE, MIXED CHARGES

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
38	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
50	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
53±2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following d	ata for averages	, fits	, limits,	etc. • • •
52	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90

DHASE MIYED CHARGES

VALUE (°)	DOCUMENT ID		TECN	COMMENT
-22	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
-48	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
-47 ± 1	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	es, fit	s, limits,	etc. • • •
31	ARNDT	91	DPWΔ	-N → -N Soln SM90

Baryon Particle Listings $\Delta(1232)$

VALUE (MeV)	DOCUMENT	ID	COMMENT
• • • We do not use the	following data for avera	ges, fits	, limits, etc. • • •
52.4 to 53.2	3 VASAN	76B	Fit to CARTER 73
52.1 to 52.4	4 VASAN	76B	Fit to CARTER 73
PHASE, Δ(1232)++			
VALUE (rad)	DOCUMENT	ID	COMMENT
• • • We do not use the	following data for avera	iges, fits	, limits, etc. • • •
-0.822 to -0.833	3 VASAN	76B	Fit to CARTER 73
-0.823 to -0.830	⁴ VASAN	76B	Fit to CARTER 73
ABSOLUTE VALUE,	∆(12 3 2) ⁰		
	∆(1232) ⁰ <u>DOCUMENT</u>	ID	COMMENT
VALUE (MeV)	DOCUMENT		
VALUE (MeV) • • • We do not use the	DOCUMENT	ges, fits	
<u>VALUE (MeV)</u> ■ ■ We do not use the 54.8 to 55.0	DOCUMENT following data for avera	iges, fits, 76B	limits, etc. • • •
ABSOLUTE VALUE, . MALUE (MeV) • • • We do not use the 54.8 to 55.0 55.2 to 55.3 PHASE, △(1232) ⁰	following data for avera	iges, fits, 76B	limits, etc. • • • Fit to CARTER 73
WALUE (MeV) ■ ■ ■ We do not use the 54.8 to 55.0 55.2 to 55.3 PHASE, △(1232) ⁰	following data for avera	rges, fits 76B 76B	limits, etc. • • • Fit to CARTER 73
• • • We do not use the 54.8 to 55.0 55.2 to 55.3 PHASE, △(1232) ⁰ VALUE (rad)	DOCUMENT following data for avera 3 VASAN 4 VASAN	76B 76B 76B	, limits, etc. • • • Fit to CARTER 73 Fit to CARTER 73
VALUE (MeV) • • • We do not use the 54.8 to 55.0 55.2 to 55.3	DOCUMENT following data for avera 3 VASAN 4 VASAN	76B 76B 76B	, limits, etc. • • • Fit to CARTER 73 Fit to CARTER 73

△(1232) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ _į /Γ)
Γ_1	Νπ	>99 %
Γ_2	$N\gamma$	0.52-0.60 %
Γ_3	$N\gamma$, helicity=1/2	0.11-0.13 %
Γ_4	$N\gamma$, helicity=3/2	0.41-0.47 %

△(1232) BRANCHING RATIOS

Γ(Nπ)/Γ _{total}				Г ₁ /Г
VALUE	DOCUMENT ID		TECN	COMMENT
0.993 to 0.995 OUR ESTIMATE				
1.0	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1.0	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1.0	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	data for average	es, fit	s, limits,	etc. • • •
1.0	ARNDT	95	DPWA	$\pi N \rightarrow N\pi$

△(1232) PHOTON DECAY AMPLITUDES

Δ (1232) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.135 ±0.006 OUR ESTIMATE				
-0.1294 ± 0.0013	HANSTEIN	98	IPWA	$\gamma N \rightarrow \pi N$
-0.135 ± 0.005	ARNDT	97	IPWA	$\gamma N \rightarrow \pi N$
-0.1278 ± 0.0012	DAVIDSON	97	DPWA	$\gamma N \rightarrow \pi N$
-0.141 ± 0.005	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
-0.135 ± 0.016	DAVIDSON	91B	FIT	$\gamma N \rightarrow \pi N$
0.145 ±0.015	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
-0.138 ± 0.004	IL AWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.147 ± 0.001	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.145 ± 0.001	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.136 ± 0.006	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following of	data for averages	, fits	s, limits,	etc. • • •
-0.1312	HANSTEIN	98	DPWA	$\gamma N \rightarrow \pi N$
-0.143 ± 0.004	LI	93	IPWA	$\gamma N \rightarrow \pi N$
-0.140 ± 0.007	DAVIDSON	90	FIT	See DAVIDSON 918
-0.142 ± 0.007	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
-0.140	NOELLE	78		$\gamma N \rightarrow \pi N$
-0.141 ± 0.004	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$

Δ (1232) $\rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	СОММЕ	NT.
-0.255 ±0.008 OUR ESTIMATE					
-0.2466 ± 0.0013	HANSTEIN	98	IPWA	$\gamma N \rightarrow$	πN
-0.250 ± 0.008	ARNDT	97	IPWA	$\gamma N \rightarrow$	πN
-0.2524 ± 0.0013	DAVIDSON	97	DPWA	$\gamma N \rightarrow$	πN
-0.261 ± 0.005	ARNDT	96	IPWA	$\gamma N \rightarrow$	πN
-0.251 ± 0.033	DAVIDSON	91B	FiT	$\gamma N \rightarrow$	πN
-0.263 ± 0.026	CRAWFORD	83	IPWA	$\gamma N \rightarrow$	πN
-0.259 ± 0.006	AWA JI	81	DPWA	$\gamma N \rightarrow$	πN
-0.264 ± 0.002	ARAI	80	DPWA	$\gamma N \rightarrow$	π N (fit 1)
-0.261 ± 0.002	ARAI	80	DPWA	$\gamma N \rightarrow$	π N (fit 2)
-0.247 ± 0.010	CRAWFORD	80	DPWA	$\gamma N \rightarrow$	πN

0.262 ±0.004 0.254 ±0.011				$\gamma N \rightarrow \pi N$
-0.254 +0.011	L1	93	IPWA	$\gamma N \rightarrow \pi N$
	DAVIDSON	90	FIT	See DAVIDSON 918
-0.271 ±0.010	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
- 0.247	⁵ NOELLE	78		$\gamma N \rightarrow \pi N$
-0.256 ± 0.003	FELLER			$\gamma N \rightarrow \pi N$
$\Delta(1232) \rightarrow N\gamma, E_2/M_2$	ratio			
/ALUE	DOCUMENT ID		TECN	COMMENT
-0.025 ±0.005 OUR ESTI				
-0.0254 ± 0.0010	HANSTEIN	98	DPWA	$\gamma N \rightarrow \pi N$
-0.015 ±0.005	⁶ ARNDT	97	IPWA	$\gamma N \rightarrow \pi N$
$-0.025 \pm 0.002 \pm 0.002$	BECK			$\gamma N \rightarrow \pi N$
$-0.030 \pm 0.003 \pm 0.002$				$\gamma N \rightarrow \pi N, \gamma N$
-0.0319 ± 0.0024	DAVIDSON			
-0.015 ±0.005	WORKMAN			,
-0.0157 ± 0.0072	DAVIDSON			
• • We do not use the foll	lowing data for average	s, fit	s, limits,	etc. • • •
-0.0233 ± 0.0017	HANSTEIN	98	IPWA	$\gamma N \rightarrow \pi N$
$-0.027 \pm 0.003 \pm 0.001$	KHANDAKER			
-0.0107 ± 0.0037	DAVIDSON	90	FIT	$\gamma N \rightarrow \pi N$
-0.015 ±0.002	DAVIDSON	86	FIT	$\gamma N \rightarrow \pi N$
$+0.037 \pm 0.004$	TANABE	85	FIT	$\gamma N \rightarrow \pi N$
$\Delta(1232) \rightarrow N\gamma$, absolu	te value of E_2/M_1	ratio	at pole	•
ALUE	DOCUMENT ID			
 We do not use the following 	lowing data for average	s, fit	s, limits,	etc. • • •
0.065 ± 0.007	ARNDT	97	DPWA	$\gamma N \rightarrow \pi N$
0.058	HANSTEIN	96	DPWA	$\gamma N \rightarrow \pi N$
$\Delta(1232) \rightarrow N\gamma$, phase	of E_2/M_1 ratio at	oole		
/ALUE	DOCUMENT ID		TECN	COMMENT
• • We do not use the foll	lowing data for average	s, fit	s, limits,	etc. • • •
-122 ±5	ARNDT	97	DPWA	$\gamma N \rightarrow \pi N$
- 127.2	HANSTEIN			,

ı

The values are extracted from UCLA and SIN data on $\pi^+ \, \rho$ bremsstrahlung using a variety of different theoretical approximations and methods. Our estimate is only a rough guess of the range we expect the moment to lie within.

$VALUE(\mu_N)$	DOCUMENT ID	COMMENT
3.7 to 7.5 OUR EST		
• • We do not use	the following data	a for averages, fits, limits, etc. • • •
$4.52 \pm 0.50 \pm 0.45$	BOSSHARD	91 $\pi^+ \rho \rightarrow \pi^+ \rho \gamma$ (SIN data)
3.7 to 4.2	LIN	918 $\pi^+ \rho \rightarrow \pi^+ \rho \gamma$ (from UCLA data)
4.6 to 4.9	LIN	91B $\pi^+ \rho \rightarrow \pi^+ \rho \gamma$ (from SIN data)
5.6 to 7.5	WITTMAN	88 $\pi^+ \rho \rightarrow \pi^+ \rho \gamma$ (from UCLA data)
6.9 to 9.8	HELLER	87 $\pi^+ \rho \rightarrow \pi^+ \rho \gamma$ (from UCLA data)
4.7 to 6.7	NEFKENS	78 $\pi^+ \rho \rightarrow \pi^+ \rho \gamma$ (UCLA data)

△(1232) FOOTNOTES

- 1 Using $\pi^{\pm}d$ as well, PEDRONI 78 determine $(M^{-}-M^{++}) + (M^{0}-M^{+})/3 = 4.6 \pm 0.2$ MeV.
 2 See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.
 3 This VASAN 76B value is from fits to the coulomb-barrier-corrected CARTER 73 phase shift.
 4 This VASAN 76B value is from fits to the CARTER 73 nuclear phase shift without coulomb barrier corrections.

- This VASAN 768 value is from rist to the CARTER 73 nuclear phase smitt without coulomb barrier corrections.

 5 Converted to our conventions using M = 1232 MeV, $\Gamma = 110$ MeV from NOELLE 78.

 6 This ARNDT 97 value is very sensitive to the database being fitted. The result is from a fit to the full pion photoproduction database, apart from the BLANPIED 97 cross-section measurements.

△(1232) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

HANSTEIN	98	NP A632 561	O. Hanstein, D. Drechsel, L. Tiator	
ARNDT	97	PR C56 577	R.A. Arndt, I.I. Strakovsky, R.L. Workm	an (VPI)
BECK	97	PRL 78 606	R. Beck et al. (MANZ,	SACL, PAVI, GLAS)
Also	97B	PRL 79 4510	R.L. Beck, H.P. Krahn	(MANZ)
Also	97C	PRL 79 4512	R.L. Beck, H.P. Krahn	(MANZ)
Also	97D	PRL 79 4515 (erratum)	R.L. Beck et al. (MANZ,	SACL, PAVÍ, GLASÍ
BLANPIED	97	PRL 79 4337 `	G.S. Blanpied et al.	(LEGS Collab.)
DAVIDSON	97	PRL 79 4509	R.M. Davidson, N.C.A. Mukhopadhyay	(RPI)
ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workm	
BERNICHA	96	NP A597 623	A. Bernicha, G. Lopez Castro, J. Pestiea	au (LOÙV+ĺ
HANSTEIN	96	PL B385 45	O. Hanstein, D. Drechsel, L. Tiator	(MANZ)
ABAEV	95	ZPHY A352 85	V.V. Abaev, S.P. Kruglov	`(PNPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BRCO)
KHANDAKER	95	PR D51 3966	M. Khandaker, A.M. Sandorfi	(BNL, VPI)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li et al.	` (VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KÈNT) IJP
Also	B4	PR D30 904	D.M. Manley et al.	(VPI)
WORKMAN	92	PR C46 1546	R.L. Workman, R.A. Arndt, Z.J. Li	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
BOSSHARD	91	PR D44 1962	A. Bosshard et al.	(ZURI, LBL, VILL+)
Also	90	PRL 64 2619		ATH, LAUS, LBL+)
DAVIDSON	91B	PR D43 71	R.M. Davidson, N.C. Mukhopadhyay, R.	

LIN	91B	PR C44 1819	D.H. Lin, M.K. Liou, Z.M. Ding	(CUNY, CSOK)
Also	91	PR C43 R930	D. Lin, M.K. Liou	` (CUNY)
DAVIDSON	90	PR D42 20	R.M. Davidson, N.C. Mukhopadhyay	(RPI)
WITTMAN	88	PR C37 2075	R. Wittman	(ŤRIU)
HELLER	87	PR C35 718	L. Heller et al.	(LANL, MIŤ, ILL)
DAVIDSON	86	PRL 56 804	R.M. Davidson, N.C. Mukhopadhyay, R	. Wittman (RPI)
TANABE	85	PR C31 1876	H. Tanabe, K. Ohta	(KOMAB)
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	` (GLAS)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
AWA Ji	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
ARAI	80	Toronto Conf. 93	I. Arai	`(INUSÍ
Also	82	NP B194 251	l. Arai, H. Fujii	(INUS)
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMŮ, LBLÍ IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL)
KOCH	80B	NP A336 331	R. Koch, E. Pietarinen	(KARLT) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) UP
MIROSHNIC	79	5JNP 29 94	I.I. Miroshnichenko et al.	` (KFTI) IJP
		Translated from YAF 29 1	.88.	· · · · · · · · · · · · · · · · · · ·
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Pars	
NEFKENS	78	PR D18 3911	B.M.K. Nefkens et al.	(UCLA, CATH) IJP
NOELLE	78	PTP 60 778	P. Noelle	(NAGO)
PEDRON	78	NP A300 321	E. Pedroni et al. (5	SIN, ISNG, KARLE+) IJP
CAMPBELL	76	PR D14 2431	R.R. Campbell, G.L. Shaw, J.S. Ball	(BOIS, UCI+) IJP
FELLER	76	NP B104 219	P. Feller et al.	(NAGO, OSAK) IJP
VASAN	76B	NP B106 535	S.S. Vasan	(CMU) IJP
Also	76	NP B106 526	S.S Vasan	(CMU) IJP
BERENDS	75	NP B84 342	F.A. Berends, A. Donnachie	(LEID, MCHS)
CARTER	73	NP B58 378	J.R. Carter, D.V. Bugg, J.R. Carter	(ČAVE, LOQM) IJP

$\Delta(1600) P_{33}$

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters **111B** (1982).

The various analyses are not in good agreement.

△(1600) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1550 to 1700 (≈ 1600) OUR EST	IMATE			
1706 ± 10	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1600 ±50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1522 ± 13	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
1672±15 /	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1706	LI	93	IPWA	$\gamma N \rightarrow \pi N$
1690	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$
1560	1 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1640	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

△(1600) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
250 to 450 (≈ 350) OUR ESTIMA	TE			
430 ± 73	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
300 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
220 ± 40	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit!	s, limits,	etc. • • •
315± 20	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
215	LI	93	IPWA	$\gamma N \rightarrow \pi N$
250	BARNHAM	80	IPWA .	$\pi N \rightarrow N \pi \pi$
180	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
300	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

△(1600) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1500 to 1700 (≈ 1600) O	UR ESTIMATE			
1675	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1550	³ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1550 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
1612	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
1609 or 1610	⁴ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1541 or 1542	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY PA	RT			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 400 (≈ 300) OUR	ESTIMATE			

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 400 (≈ 300) OU	R ESTIMATE			
386	ARNDT	95	DPWA	$\pi N \rightarrow N\pi$
200±60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	ne following data for average	es, fit	s, limits,	etc. • • •
230	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
323 or 325	⁴ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
178 or 178	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

△(1600) ELASTIC POLE RESIDUE

MODULUS [r]				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
52	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
17±4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
16	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$

PHASE 0 VALUE (°)	DOCUMENT ID		TECN	COMME	ΝT
+ 14	ARNDT	95	DPWA	$\pi N \rightarrow$	Nπ
-150 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow$	πN
• • • We do not use the following of	data for averages	s, fit	s, limits,	etc. • •	• •
- 73	ARNDT	91	DPWA	$\pi N \rightarrow$	πN Soln SM90

△(1600) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ _i /Γ)	
$\overline{\Gamma_1}$	Nπ	10-25 %	
Γ2	ΣΚ		
Γ_3	$N\pi\pi$	7590 %	
Γ4	$\Delta\pi$	40-70 %	
Γ_5	Δ (1232) π , P -wave		
Γ ₆	$\Delta(1232)\pi$, F-wave		
Γ7	$N\rho$	<25 %	
Γ8	$N\rho$, $S=1/2$, P -wave		
Γ٩	$N\rho$, $S=3/2$, P -wave		
Γ_{10}	$N\rho$, $S=3/2$, F -wave		
Γ_{11}	$N(1440)\pi$	10-35 %	
Γ_{12}	$N(1440)\pi$, P -wave		
Γ_{13}	$N\gamma$	0.001-0.02 %	
Γ ₁₄	$N\gamma$, helicity=1/2	0.0-0.02 %	
Γ ₁₅	$N\gamma$, helicity=3/2	0.001-0.005 %	

△(1600) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Г ₁	/r
VALUE	DOCUMENT ID		TECN	COMMENT	
0.10 to 0.25 OUR ESTIMAT	Έ				
0.12 ± 0.02	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$	
0.18 ± 0.04	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
0.21 ± 0.06	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$				(Γ ₁ Γ ₂) ^{1/2}	/г
VALUE	DOCUMENT ID		TECN	COMMENT	

VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.006 to 0.042 5 DEANS 75 DPWA $\pi N \rightarrow \Sigma K$

Note: Signs of couplings from $\pi\,N\to N\pi\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

	$\pi \to \Delta(1600) \to \Delta(123)$			
VALUE	DOCUMENT ID	<u>TE</u>	CN COMME	ENT
+0.27 to +0.33 OUR E				
$+0.29\pm0.02$	MANLEY	92 IP	WA πN →	πΝ& Νππ
$+0.24\pm0.05$	BARNHAM		$WA \pi N \rightarrow$	Νππ
+0.34	^{1,6} LONGACRE	77 IP	$WA \pi N \rightarrow$	Νππ
+0.30	² LONGACRE	75 IP	WA π N →	Νππ
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N$:	$\pi \to \Delta(1600) \to \Delta(123)$	32) π , <i>F</i> -	wave	(Γ₁Γ ₆) ¹ /2/Γ
VALUE	DOCUMENT ID	TE	CN COMME	NT
-0.15 to -0.03 OUR E	STIMATE			
- 0 .07	1,6 LONGACRE	77 IP	WA π N →	Νππ
(F _I F _F) ^{1/2} /F _{total} in N	$\pi \to \Delta(1600) \to N \rho$, S			
VALUE	DOCUMENT ID		CN COMM	ENT
+0.10	1,6 LONGACRE	77 IP	WA π N -	Nππ
	******	2 2 /0 /	D	/F. F.\\\\
(F _I F _f) ^{1/2} /F _{total} in N	$\pi \rightarrow \Delta(1600) \rightarrow N \rho$, S $\frac{DOCUMENT\ ID}{1.6}$ 1.6 LONGACRE	<u>TE</u>	COMMI	ENT

Baryon Particle Listings $\Delta(1600), \Delta(1620)$

$(\Gamma_I \Gamma_f)^{\frac{1}{12}} / \Gamma_{\text{total}} \text{ in } N_\pi \to \Delta(16)$	00) → N(1440)π,	, P-wav	e (Γ ₁ Γ ₁₂) ^{1/2} /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
+0.15 to +0.23 OUR ESTIMATE				
$+0.16\pm0.02$	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
$+0.23 \pm 0.04$	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$

△(1600) PHOTON DECAY AMPLITUDES

Δ (1600) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN COMMENT	
-0.023±0.020 OUR ESTIMATE				
-0.018 ± 0.015	ARNDT	96	IPWA $\gamma N \rightarrow \pi N$	
-0.039 ± 0.030	CRAWFORD	83	IPWA $\gamma N \rightarrow \pi N$	
-0.046 ± 0.013	IL AWA	81	DPWA $\gamma N \rightarrow \pi N$	
0.005 ± 0.020	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$	
• • We do not use the following	data for average	s, fit	s, limits, etc. • • •	
-0.026 ± 0.002	Lł	93	IPWA $\gamma N \rightarrow \pi N$	
-0.200	⁷ WADA	84	DPWA Compton scattering	g
0.000 ± 0.030	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$	
0.0 ±0.020	FELLER	76	DPWA $\gamma N \rightarrow \pi N$	

$\Delta(1600) \rightarrow N\alpha$, helicity-3/2 amplitude A_{2/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.009 ± 0.021 OUR EST	MATE			
-0.025 ± 0.015	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
-0.013 ± 0.014	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.025 ± 0.031	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.009 ± 0.020	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
-0.016 ± 0.002	LI	93	IPWA	$\gamma N \rightarrow \pi N$
0.023	WADA	84	DPWA	Compton scattering
0.000 ± 0.045	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
0.0 ±0.015	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$

△(1600) FOOTNOTES

- 1 LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- amplitudes. 3 See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.
- 4 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- 5 The range given is from the four best solutions. DEANS 75 disagrees with $\pi^+ p
 ightharpoonup$
- Σ^+K^+ data of WINNIK 77 around 1920 MeV. 6LONGACRE 77 considers this coupling to be well determined. 7 WADA 84 is inconsistent with other analyses see the Note on N and Δ Resonances.

△(1600) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workman	(VPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BRCO)
HOEHLER	93	# N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li et al.	(VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
WADA	84	NP B247 313	Y. Wada et al.	(INUS)
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
PDG	82	PL 111B		HELS, CIT, CERN)
ILAWA	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
BARNHAM	80	NP B168 243	K.W.J. Barnham et al.	(LOIC)
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Parson	
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau	(SACL) IJP
		NP B108 365	J. Dolbeau et al.	
Also	76			(SACL) IJP
WINNIK	77	NP B128 66	M. Winnik et al.	(HAIF) I
FELLER	76	NP B104 219	P. Feller et al.	(NAGO, OSAK) IJP
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	(LBL, SLAC) IJP

 $\Delta(1620) S_{31}$

 $I(J^P) = \frac{3}{2}(\frac{1}{2})$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

△(1620) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1615 to 1675 (≈ 1620)	OUR ESTIMATE			
1672 ± 7	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1620 ±20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1610 ± 7	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
1672 ± 5	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1617	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1669	Lf	93	IPWA	$\gamma N \rightarrow \pi N$
1620	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$
1712.8 ± 6.0	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
1786.7± 2.0	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
1657	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1662	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1580	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1600	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

△(1620) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
120 to 180 (≈ 150) OUR ESTIM	IATE			
154 ±37	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
140 ±20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
139 ±18	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	g data for average	s, fits	s, limits,	etc. • • •
147 ± 8	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
108	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
184	LI	93	IPWA	$\gamma N \rightarrow \pi N$
120	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$
228.3 ± 18.0	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$ (lower mass)
30.0 ± 6.4	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$ (higher mass)
161	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
180	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
120	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
150	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1620) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1580 to 1620 (≈ 1600)	OUR ESTIMATE			
1585	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1608	4 HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1600 ± 15	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	e following data for average	, fit	s, limits,	etc. • • •
1587	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ SoIn SM} 90$
1583 or 1583	⁵ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1575 or 1572	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2×1MAGINARY P	ART			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
100 to 130 (≈ 115) OU	R ESTIMATE			
104	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
116	⁴ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
120 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use th	e following data for average	s, fit	s, limits,	etc. • • •
120	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
143 or 149	⁵ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
119 or 128	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

△(1620) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
14	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
19	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
15 ± 2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
 We do not use the following 	data for averages	, fits	i, limits,	etc. • • •
15	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90

PHASE 0 VALUE (°)	DOCUMENT ID		TECN	COMMENT
-121	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
– 95	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
-110 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
-125	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90

△(1620) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
Г	Νπ	20-30 %	
Γ_2	$N\pi\pi$	70-80 %	
Γ3	$\Delta\pi$	30-60 %	
Γ_4	$\Delta(1232)\pi$, <i>D</i> -wave		
Γ_5	Nρ	7-25 %	
Γ_6	$N\rho$, $S=1/2$, S -wave		
Γ_7	$N\rho$, $S=3/2$, D -wave		
Γ_{B}	$N(1440)\pi$		
Γ۹	Nγ	0.004-0.044 %	
Γ ₁₀	$N\gamma$, helicity=1/2	0.004-0.044 %	

△(1620) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.2 to 0.3 OUR ESTIN	MATE			
0.09 ± 0.02	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.25 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.35 ± 0.06	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use th	ne following data for averag	es, fit	s, limits,	etc. • • •
0.29	ARNDT	95		$\pi N \rightarrow N \pi$
0.60	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$ (lower
0.36	¹ CHEW	80	BPWA	mass) $\pi^+ p \rightarrow \pi^+ p$ (higher mass)

Note: Signs of couplings from $\pi\,N\to N\,\pi\,\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)\,S_{31}$ coupling to $\Delta(1232)\,\pi$.

$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \to 1$	$\Delta(1620) \rightarrow \Delta(123)$	2) 🛪 .	D-wav	/e (Γ ₁ Γ ₄) ¹ /⁄2/Γ
VALUE	DOCUMENT ID			
-0.36 to -0.28 OUR ESTIM	ATE			
-0.24 ± 0.03	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
-0.33 ± 0.06	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$
-0.39	^{2,6} LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-0.40	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to 1$	A(1620) → Na S	-1/	Cwa	ve (Γ ₁ Γ ₆) ^{1/2} /Γ
		/	TECN	COMMENT
+0.12 to +0.22 OUR ESTIM	ATF		1201	COMMENT
+0.15±0.02		92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
$+0.40\pm0.10$	BARNHAM		1PWA	
+0.08	2,6 LONGACRE			
+0.28	3 LONGACRE	75	IPWA	
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(1620) \rightarrow N\rho$, S	=3/2	2, <i>D</i> -wa	ive (Γ ₁ Γ ₇) ^{1/2} /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
-0.15 to -0.03 OUR ESTIM	ATE			
-0.06 ± 0.02	MANLEY			$\pi N \rightarrow \pi N \& N \pi \pi$
-0.13	^{2,6} LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_I \Gamma_I)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$				(Γ₁Γ ₈) ^½ /Γ
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
0.11 ± 0.05	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$

△(1620) PHOTON DECAY AMPLITUDES

$\Delta(1620) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT	
+0.027 ±0.011 OUR ESTIMATE					
0.035 ± 0.020	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$	
0.035 ± 0.010	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$	
0.010 ± 0.015	AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$	
-0.022 ± 0.007	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$	
-0.026 ± 0.008	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$	
0.021 ± 0.020	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$	
0.126 ± 0.021	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$	

٠	٠	We do not	use the	following	data fo	r averages	. fits.	limits, etc.	٠	٠	٠

0.042 ± 0.003	LI	93	IPWA	$\gamma N \rightarrow \pi N$
0.066	WADA	84	DPWA	Compton scattering
$+0.034 \pm 0.028$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
-0.005 ± 0.016	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$

△(1620) FOOTNOTES

¹ CHEW 80 reports two S₃₁ resonances at somewhat higher masses than other analyses. Problems with this analysis are discussed in section 2.1.11 of HOEHLER 83.

Problems with this analysis are discussed in section 2.1.11 or INDEFILEN 03.

LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \rightarrow N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

³ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

⁴ See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

5 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

⁶LONGACRE 77 considers this coupling to be well determined.

△(1620) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workma	an (VPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BRCO)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	` (KARL)
LI	93	PR C47 2759	Z.J. Li et al.	(VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KĖNT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
WADA	84	NP B247 313	Y. Wada et al.	(INUS)
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
HOEHLER	83	Landolt-Boernstein 1/9B2	G. Hohler	(KARLT)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
AWAJI	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
ARAI	80	Toronto Conf. 93	1. Arai	(INUS)
Also	82	NP B194 251	I. Arai, H. Fujii	(INUS)
BARNHAM	80	NP B168 243	K.W.J. Barnham et al.	(LOIC)
CHEW	80	Toronto Conf. 123	D.M. Chew	(LBL) IJP
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMŮ, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
TAKEDA	80	NP B168 17	H. Takeda et al.	(TÖKY, INUS)
HOEHLER	79	PDAT 12-1	G. Hohler et al.	` (KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Parso	ins (GLAS)
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau	(SACL) IJP
Also	76	NP B108 365	J. Dolbeau et ai.	(SACL) IJP
FELLER	76	NP B104 219	P. Feller et al.	(NAGO, OSAK) IJP
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	(LBL, SLAC) IJP

$\Delta(1700) D_{33}$

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^-)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters **111B** (1982).

△(1700) BREIT-WIGNER MASS

/ALUE (MeV)	DOCUMENT ID		TECN	COMMENT
670 to 1770 (≈ 1700)	OUR ESTIMATE			
1762 ±44	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1710 ±30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1680 ±70	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• We do not use the	following data for average	s, fit	s, limits,	etc. • • •
1690 ±15	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
680	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
655	LI	93	IPWA	$\gamma N \rightarrow \pi N$
1650	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$
$1718.4 + 13.1 \\ -13.0$	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
1622	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1629	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1600	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
680	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

△(1700) BREIT-WIGNER WIDTH

	E (MeV) to 400 (≈ 300) OUR ESTIMA	DOCUMENT ID		TECN	COMMENT
	±250	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
280	± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
230	± 80	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

Baryon Particle Listings $\Delta(1700)$

• • • We do not use the follow	ing data for average	s, fit	s, limits, etc. • • •
285 ± 20	ARNDT	96	IPWA $\gamma N \rightarrow \pi N$
272	ARNDT	95	DPWA $\pi N \rightarrow N \pi$
348	LI	93	IPWA $\gamma N \rightarrow \pi N$
160	BARNHAM	80	IPWA $\pi N \rightarrow N \pi \pi$
193.3 ± 26.0	¹ CHEW	80	BPWA $\pi^+ p \rightarrow \pi^+ p$
209	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$
216	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$
200	² LONGACRE	77	IPWA $\pi N \rightarrow N \pi \pi$
240	³ LONGACRE	75	IPWA $\pi N \rightarrow N \pi \pi$

△(1700) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1620 to 1700 (≈ 1660) O	UR ESTIMATE			
1655	ARNDT		DPWA	$\pi N \rightarrow N \pi$
1651	⁴ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1675 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
1646	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
1681 or 1672	⁵ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1600 or 1594	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY PA	RT			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
150 to 250 (≈ 200) OUR	ESTIMATE			
242	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
159	⁴ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
220 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
208	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
245 or 241	⁵ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
208 or 201	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

△(1700) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
16	ARNDT	95	DPWA	$\pi N \rightarrow N\pi$		
10	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$		
13±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
13	ARNDT	91	DPWA	$\pi{\it N} ightarrow \pi{\it N}{\rm Soln}{\rm SM90}$		

PHASE 0 VALUE (°)	DOCUMENT ID		TECN	COMMENT		
-12	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$		
-20 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
• • We do not use the following data for averages, fits, limits, etc. • •						
-22	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90		

△(1700) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	Νπ	10-20 %	
Γ_2	ΣΚ		
Γ_3	Νππ	80-90 %	
Γ_4	$\Delta\pi$	30-60 %	
Γ_5	$\Delta(1232)\pi$, S-wave	25-50 %	
Γ_6	$\Delta(1232)\pi$, $\emph{D} ext{-}$ wave	1-7 %	
Γ_7	Nρ	30-55 %	
Γ8	$N\rho$, $S=1/2$, D-wave		
Г9	$N\rho$, $S=3/2$, S-wave	5-20 %	
Γ_{10}	$N\rho$, $S=3/2$, D -wave		
Γ_{11}	Nγ	0.12-0.26 %	
Γ_{12}	$N\gamma$, helicity=1/2	0.08-0.16 %	
Γ ₁₃	Nγ, helicity=3/2	0.025-0.12 %	

△(1700) BRANCHING RATIOS

Γ(Nπ)/Γ _{total}				Γ ₁ /
VALUE	DOCUMENT ID	•	TECN	COMMENT
0.10 to 0.20 OUR ESTIN	MATE			
0.14 ± 0.06	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
0.12 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.20 ± 0.03	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	e following data for averag	es, fit	s, limits,	etc. • • •
0.16	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
0.16	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$

VALUE	DOCUMENT IL	·	TECN	COMMEN	T
• • • We do not use th	ne following data for averag	ges, fit	s, limits,	etc. • •	•
0.002	LIVANOS	80	DPWA	$\pi \rho \rightarrow$	ΣΚ
0.001 to 0.011	⁶ DEANS	75	DPWA	$\pi N \rightarrow$	ΣΚ

1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

 $(\Gamma_I \Gamma_f)^{\frac{1}{12}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(1700) \to \Delta(1232)\pi$, S-wave

VALUE	DOCUMENT ID		TEÇN	COMMENT
+0.21 to +0.29 OUR ESTIMA	ATE			
$+0.32 \pm 0.06$	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
$+0.18\pm0.04$				$\pi N \rightarrow N \pi \pi$
+0.30	^{2,7} LONGACRE			
+0.24	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to \Delta$	∆(1700) → ∆(123 <u>DOCUMENT ID</u>		D-wav	/e (Γ ₁ Γ ₆) ¹ //

VALUE	DOCUMENT ID	TEC	N COM	MENT	
+0.05 to +0.11 OUR ESTI	MATE				
$+0.08 \pm 0.03$	MANLEY	92 IPV	VA πN -	→ πN & Nππ	
0.14 ± 0.04	BARNHAM				
+0.05	^{2,7} LONGACRE	77 IPV	VA πN -	$\rightarrow N\pi\pi$	
+0.10	³ LONGACRE	75 IPV	VA πN -	$\rightarrow N\pi\pi$	

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(1)$	ve (Γ₁Γ ₈) ¹ ⁄2/Γ			
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.17\pm0.05$	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$

$(\Gamma_{l}\Gamma_{f})^{72}/\Gamma_{\text{total}} \text{ in } N\pi \to \Delta(1700) \to N\rho, S=3/2, S\text{-wave}$ ($\Gamma_{l}\Gamma_{f}$)						1
VALUE	DOCUMENT ID		TECN	COMMEN	IT.	_
±0.11 to ±0.19 (OUR ESTIMATE					
$+0.10\pm0.03$	MANLEY				πΝ&Νππ	
+0.04	^{2,7} LONGACRE	77	IPWA	$\pi N \rightarrow$	Νππ	
0.20	3 LONGACDE	76	LDIA/A	- A4	M	

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(1700) \rightarrow N\rho$, S=	3/:	2, <i>D</i> -wa	ve	$(\Gamma_1\Gamma_{10})^{\frac{1}{12}}/\Gamma$
VALUE	DOCUMENT ID	_	TECN	COMMEN:	
0.18 ± 0.07	BARNHAM	80	IPWA	$\pi N \rightarrow i$	V π π

△(1700) PHOTON DECAY AMPLITUDES

$\Delta(1700) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
+0.104±0.015 OUR ESTIMATE				
0.090 ± 0.025	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
0.111 ± 0.017	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.089 ± 0.033	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
0.112 ± 0.006	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.130 ± 0.006	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.123 ± 0.022	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
0.121 ± 0.004	LI	93	IPWA	$\gamma N \rightarrow \pi N$
$+0.130 \pm 0.037$	BARBOUR	78	DPWA	$\sim N \rightarrow \pi N$

FELLER

76 DPWA $\gamma N \rightarrow \pi N$

 $+0.072\pm0.033$

$\Delta(1700) \rightarrow N\gamma$, helicity-3/2 amplitude A _{3/2}						
VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT		
+0.085±0.022 OUR ESTIMATE						
0.097 ± 0.020	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$		
0.107 ± 0.015	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$		
0.060 ± 0.015	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$		
0.047 ± 0.007	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$		
0.050 ± 0.007	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$		
0.102 ± 0.015	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$		
• • We do not use the following	data for average	s, fit	s, limits,	etc. • • •		
0.115 ± 0.004	LI	93	IPWA	$\gamma N \rightarrow \pi N$		
$+0.098\pm0.036$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$		
$+0.087\pm0.023$	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$		

△(1700) FOOTNOTES

 1 Problems with CHEW 80 are discussed in section 2.1.11 of HOEHLER 83. 2 LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi\,N\,\rightarrow\,N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

³ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix

As See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

⁵ LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

⁶ The range given is from the four best solutions. DEANS 75 disagrees with $\pi^+ p \rightarrow \Sigma^+ K^+$ data of WINNIK 77 around 1920 MeV.

 $^7E^+K^+$ data of WINNIK 77 around 1920 MeV. 7 LONGACRE 77 considers this coupling to be well determined.

△(1700) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workman	(VPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BŘCO)
HOEHLER	93	★ N Newsletter 9 1	G. Hohler	(KARL)
Li	93	PR C47 2759	Z.J. Li et al.	(VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KĖNT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
HOEHLER	83	Landolt-Boernstein 1/9B2	G. Hohler	(KARLT)
PDG	82	PL 111B	M. Roos et al. (1	HELS, CIT, CERN)
AWA Ji	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
ARAI	80	Toronto Conf. 93	I. Arai	(INUS)
Also	82	NP B194 251	l. Arai, H. Fujii	(INUS)
BARNHAM	80	NP B168 243	K.W.J. Barnham et al.	(LOIC)
CHEW	80	Toronto Conf. 123	D.M. Chew	`(LBL) IJP
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(ĜLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMŮ, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	P. Livanos et al.	(SACL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Parson:	s (GLAS)
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau	` (\$ACŁ) IJP
Also	76	NP B108 365	J. Dolbeau et al.	(SACL) IJP
WINNIK	77	NP B128 66	M. Winnik et al.	(HAIF) I
FELLER	76	NP B104 219	P. Feller et al.	(NAGO, ÒSAK) IJP
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	(LBL, SLAC) IJP

 $\Delta(1750) P_{31}$

 $I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$ Status: *

OMITTED FROM SUMMARY TABLE

△(1750) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 1750 OUR ESTIMATE				
1744 ±36	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
• • • We do not use the fol	lowing data for average	s, fits	, limits,	etc. • • •
1715.2 ± 21.0	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
1778.4 ± 9.0	¹ CHEW	80	BPWA	$\pi^+ D \rightarrow \pi^+ D$

△(1750) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
300 ±120	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
• • • We do not use the	e following data for average	s, fit:	s, limits,	etc. • • •
93.3± 55.0	¹ CHEW			$\pi^+ p \rightarrow \pi^+ p$
23.0 ± 29.0	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$

△(1750) DECAY MODES

Mode	
$ Γ_1 $	
$\Gamma(N\pi)/\Gamma_{\text{total}}$	Γ ₁ /ι

(/¥ X) / total				' 1,
VALUE	DOCUMENT ID		TECN	COMMENT
0.08 ± 0.03	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
• • • We do not use the	ne following data for averag	es, fits	, limits,	etc. • • •
0.18	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
0.20	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$

△(1750) FOOTNOTES

 1 CHEW 80 reports four resonances in the P_{31} wave — see also the $\Delta(1910).$ Problems with this analysis are discussed in section 2.1.11 of HOEHLER 83.

△(1750) REFERENCES

MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT)
Also	84	PR D30 904	D.M. Manley et al.	` (VPI)
HOEHLER	83	Landolt-Boernstein 1/98	B2 G. Hohler	(KARLT)
CHEW	80	Toronto Conf. 123	D.M. Chew	` (LBL)

 $\Delta(1900) S_{31}$

 $I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$ Status: **

OMITTED FROM SUMMARY TABLE

△(1900) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1850 to 1950 (≈ 1900) Ol	JR ESTIMATE			
1920 ±24	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1890 ±50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1908 ±30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following the fol	llowing data for average	s, fit	s, limits,	etc. • • •
1918.5 ± 23.0	CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
1803	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$

△(1900) BREIT-WIGNER WIDTH

DOCUMENT ID		TECN	COMMENT
ESTIMATE			
MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
ollowing data for average	s, fit	s, limits,	etc. • • •
CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
	ESTIMATE MANLEY CUTKOSKY HOEHLER Allowing data for average CHEW	ESTIMATE MANLEY 92 CUTKOSKY 80 HOEHLER 79 Mowing data for averages, fit CHEW 80	ESTIMATE MANLEY 92 IPWA CUTKOSKY 80 IPWA HOEHLER 79 IPWA sollowing data for averages, fits, limits,

△(1900) POLE POSITION

DOCUMENT ID TECN COMMENT

REAL PART

1780	¹ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1870 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the followi	ng data for average	s, fit	s, limits,	etc. • • •
not seen				$\pi N \rightarrow \pi N$ Soln SM90
2029 or 2025	² LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
	DOCUMENT ID			
VALUE (MeV)	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
<u>VALUE (MeV)</u> 180±50	CUTKOSKY ng data for average ARNDT	80 s, fit 91	IPWA s, limits, DPWA	$\pi N \rightarrow \pi N$

△(1900) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
10±3	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
PHASE 6	DOCUMENT ID	TECN	COMMENT
+ 20 ± 40	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

△(1900) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ _/ /Γ)	
Γ ₁	Νπ	10-30 %	
Γ_2	ΣΚ		
Γ_3	Νππ		
Γ_4	$\Delta\pi$		
Γ_5	Δ (1232) π , D -wave		
Γ ₆	$N\rho$		
Γ_7	$N\rho$, $S=1/2$, S -wave		
Γ8	$N\rho$, $S=3/2$, D -wave		
Γ9	$N(1440)\pi$, S-wave		
Γ_{10}	$N\gamma$, helicity=1/2		

△(1900) BRANCHING RATIOS

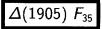
$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.1 to 0.3 OUR ESTIMATE				
0.41 ± 0.04	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.10 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.08 ± 0.04	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
0.28	CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$

$\Delta(1900)$,	$\Delta(1905)$
------------------	----------------

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in $N\pi$				(۲ ₁ ۲ ₂) ^{1/2} /۱
VALUE	DOCUMENT ID		TECN	COMMENT
< 0.03				$\pi^+ p \rightarrow \Sigma^+ K^+$
• We do not use the	following data for averag	es, fit	s, limits,	etc. • • •
0.076	³ DEANS			
0.11	LANGBEIN	73	IPWA	$\pi N \rightarrow \Sigma K \text{ (sol. 1)}$
0.12	LANGBEIN	73	IPWA	$\pi N \rightarrow \Sigma K \text{ (sol. 1)}$ $\pi N \rightarrow \Sigma K \text{ (sol. 2)}$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi$	→ ∆(1900) → ∆(123	32)π	, D-wav	/e (Γ ₁ Γ ₅) ¹ //
				COMMENT
	DOCUMENT ID			
+0.25±0.07	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
μ_{LUE} $+0.25\pm0.07$ $(\Gamma_I\Gamma_f)^{1/2}/\Gamma_{ ext{total}}$ in $N\pi$	MANLEY $ ightarrow \Delta(1900) ightarrow N ho_* S$	92 =1/2	IPWA 2 , <i>S</i>-wa	$\pi N \rightarrow \pi N \& N \pi \pi$ ve $(\Gamma_1 \Gamma_7)^{\frac{1}{2}} / \Gamma_7$
ALUE + 0.25 ± 0.07 $\Gamma_I \Gamma_f$) $\frac{1/2}{2} / \Gamma_{\text{total}}$ in $N\pi$	MANLEY $ ightharpoonup \Delta(1900) ightharpoonup N ho$, S $ ightharpoonup DOCUMENT ID$	92 =1/	IPWA 2, S-wa <u>TECN</u>	$\pi N \rightarrow \pi N \& N \pi \pi$
(ALUE $+0.25\pm0.07$ $(\Gamma_{\rm I}\Gamma_{\rm f})^{\frac{1}{2}}/\Gamma_{\rm total}$ in $N\pi$ ($\Gamma_{\rm I}\Gamma_{\rm f})^{\frac{1}{2}}/\Gamma_{\rm total}$ in $N\pi$	MANLEY $ \rightarrow \Delta(1900) \rightarrow N \rho_* S$ $ DOCUMENT ID$ MANLEY $ \rightarrow \Delta(1900) \rightarrow N \rho_* S$	92 =1/2 	IPWA 2, S-wa TECN IPWA 2, D-wa	$\pi N \rightarrow \pi N \& N \pi \pi$ VE $(\Gamma_1 \Gamma_7)^{\frac{1}{12}} / I$ $\pi N \rightarrow \pi N \& N \pi \pi$
ALUE + 0.25 ± 0.07 (Γ _I Γ _f) ^{1/2} /Γ _{total} in Nπ ALUE - 0.14 ± 0.11	MANLEY $ \rightarrow \Delta(1900) \rightarrow N \rho, S $ DOCUMENT ID MANLEY $ \rightarrow \Delta(1900) \rightarrow N \rho, S$ DOCUMENT ID	92 =1/2 92 =3/2	IPWA 2, S-wa TECN IPWA 2, D-wa TECN	$\pi N \rightarrow \pi N \& N \pi \pi$ Ve $(\Gamma_1 \Gamma_7)^{\frac{1}{2}} / \Gamma$ $\pi N \rightarrow \pi N \& N \pi \pi$ IVE $(\Gamma_1 \Gamma_8)^{\frac{1}{2}} / \Gamma$
$\frac{VALUE}{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi}$ $\frac{ALUE}{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi}$ $\frac{V_1\Gamma_f}{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi}$ $\frac{ALUE}{(\Gamma_1\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi}$	MANLEY $ \rightarrow \Delta(1900) \rightarrow N \rho, S$ DOCUMENT ID MANLEY $ \rightarrow \Delta(1900) \rightarrow N \rho, S$ DOCUMENT ID MANLEY	92 =1/2 -92 =3/2 -92 +0)π	1PWA 2, S-wa TECN 1PWA 2, D-wa TECN 1PWA 1PWA	$\pi N \rightarrow \pi N \& N \pi \pi$ ve $(\Gamma_1 \Gamma_7)^{\frac{1}{2}} / \Gamma$ $\pi N \rightarrow \pi N \& N \pi \pi$ ive $(\Gamma_1 \Gamma_8)^{\frac{1}{2}} / \Gamma$ $\pi N \rightarrow \pi N \& N \pi \pi$ e $(\Gamma_1 \Gamma_9)^{\frac{1}{2}} / \Gamma$

△(1900) PHOTON DECAY AMPLITUDES

$\it \Delta (1900) ightarrow \it N\gamma$, helicity-1/2 amplitude $\it A_{1/2}$


VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.004 ± 0.016	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.029 ± 0.008	AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	data for averages	, fits	, limits,	etc. • • •
-0.006 to -0.025	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$

Δ (1900) FOOTNOTES

△(1900) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPÍ)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
CANDLIN	84	NP B238 477	D.J. Candlin et al.	(EDIN, RAL, LOWC)
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
AWAJI	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
CHEW	80	Toronto Conf. 123	D.M. Chew	` (LBL) IJP
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMŮ, LBLÍ IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
LANGBEIN	73	NP B53 251	W. Langbein, F. Wagner	(MUNI) IJP

 $I(J^P) = \frac{3}{2}(\frac{5}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

△(1905) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1870 to 1920 (≈ 1905)	OUR ESTIMATE			
1881 ±18	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1910 ±30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1905 ±20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
 We do not use the 	following data for average	s, fit	s, limits,	etc. • • •
1895 ± 8	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1850	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1960 ±40	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$
1787.0 + 6.0 - 5.7	CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
1880	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1892	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1830	¹ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

△(1905) BRE!T-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
280 to 440 (≈ 350) OUF	ESTIMATE			
327 ± 51	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
100 ±100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
260 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the i	ollowing data for average	s, fit	s, limits,	etc. • • •
354 ± 10	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
294	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
270 ± 40	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$
66.0 + 24.0 - 16.0	CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
193	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
159	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
220	¹ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

Δ (1905) POLE POSITION

REAL PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1800 to 1860 (≈ 1830)				
1832	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1829	² HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1830 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use th	e following data for average	s, fit	s, limits,	etc. • • •
1794	ARNDT		DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
1813 or 1808	³ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY P	ART			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
230 to 330 (≈ 280) OUI	RESTIMATE			111111111111111111111111111111111111111
254				$\pi N \rightarrow N \pi$
303	² HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
280 ± 60	CUTKOSKY			$\pi N \rightarrow \pi N$
• • We do not use the	e following data for average	s, fit	s, limits,	etc. • • •
230	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
193 or 187	³ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$

Δ (1905) ELASTIC POLE RESIDUE

MODULUS |r|

VALUF (MeV)	DOCUMENT ID		TECN	COMMENT
12	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
25	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
25±8	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	, fits	s, limits,	etc. • • •
14	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
PHASE #				
PHASE 6 VALUE (°)	DOCUMENT ID		TECN	COMMENT
	DOCUMENT ID	95		$\frac{COMMENT}{\pi N \rightarrow N\pi}$
VALUE (°)			DPWA	$\pi N \rightarrow N \pi$
VALUE (°) - 4	ARNDT CUTKOSKY	80	DPWA IPWA	$ \begin{array}{ccc} \pi N \to & N \pi \\ \pi N \to & \pi N \end{array} $

 $^{^1}$ See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

Amplitudes and non-process the species with which the amplitudes during the species of European 2 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

³The value given is from solution 1; the resonance is not present in solutions 2, 3, or 4.

△(1905) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
Γ_1	Νπ	5-15 %	
Γ_2^-	ΣΚ		
Γ_3^-	Νππ	85-95 %	
Γ4	$\Delta\pi$	<25 %	
Γ_5	$\Delta(1232)\pi$, P -wave		
Γ_6	$\Delta(1232)\pi$, F-wave		
Γ ₇	Nρ	>60 %	
ΓB	$N\rho$, $S=3/2$, P -wave		
و ۲	$N\rho$, $S=3/2$, F-wave		
Γ10	$N\rho$, $S=1/2$, F-wave		
Γ11	Nγ	0.01-0.03 %	
Γ ₁₂	$N\gamma$, helicity=1/2	0.0-0.1 %	
Γ ₁₃	Nγ, helicity=3/2	0.004-0.03 %	

△(1905) BRANCHING RATIOS

VALUE	DOCUMENT ID		TECN	COMMENT
0.05 to 0.15 OUR ESTIM	ATE			
0.12 ± 0.03	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.08 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.15 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
0.12	ARNDT	95	DPWA	$\pi N \rightarrow N\pi$
0.11	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
$(\Gamma_{\ell}\Gamma_{\ell})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi$	$\rightarrow \Delta(1905) \rightarrow \Sigma K$			(Γ₁Γ₂) ¹ ⁄2/I
VALUE	DOCUMENT ID		TECN	COMMENT
-0.015 ±0.003	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$
- U.U15 ± U.UU3	following data for average	s, fit	s, limits,	etc. • • •
	tonouning onto tot nationals		DD14/4	$\pi p \rightarrow \Sigma K$
	LIVANOS 4 DEANS	80	DPWA	$x p \rightarrow L n$

Note: Signs of couplings from $\pi\,N\,\to\,N\,\pi\,\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(1)$	905) → △ (1232	2)π,	P-wav	e (Г ₁ Г ₅) ^{1/2} /Г
VALUE	DOCUMENT ID		TECN	COMMENT
-0.04 ± 0.05	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$

$(\Gamma_{I}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}}$ in N	$\pi \rightarrow \Delta(1905) \rightarrow \Delta(123)$	2)π	, F-wav	e	$(\Gamma_1\Gamma_6)^{\frac{1}{12}}$
VALUE	DOCUMENT ID		TECN	COMME	VT
$+0.02\pm0.03$	MANLEY	92	IPWA	$\pi N \rightarrow$	πΝ&Νππ
+0.20	¹ LONGACRE	75	IPWA	$\pi N \rightarrow$	Νππ
• • • We do not use t	he following data for average	s, fit	s, limits,	etc. • •	•
+0.17	⁵ NOVOSELLER	78	IPWA	$\pi N \rightarrow$	Νππ
0.06	6 NOVOCELLED	. 70	ID)A/A	- A1	A1

+ 0.00	NOVOSEELEN 10 11 TO 11 TO 17 TO 17 TO				
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(1^{\circ})$	905) → <i>Nρ, S</i> =	=3/:	2, <i>P</i> -wa	ve	(Г₁Г ₈) ^{1/2} /Г
VALUE	DOCUMENT ID		TECN	COMME	VT
+0.030 to +0.36 OUR ESTIMATI	E				
+0.33 ±0.03	MANLEY				
+0.33	¹ LONGACRE	75	1PWA	$\pi N \rightarrow$	Νππ
• • • We do not use the following	data for average:	s, fit	s, limits,	etc. • •	•
+0.26	⁵ NOVOSELLER	78	IPWA	$\pi N \rightarrow$	Νππ
+0.11 to +0.33	7 NOVOSELLER	78	IPWA	$\pi N \rightarrow$	$N\pi\pi$

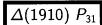
△(1905) PHOTON DECAY AMPLITUDES

$\Delta(1905) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

•		-	, -			
$VALUE (GeV^{-1/2})$		DOCUMENT ID		TECN	COMMENT	
+0.026±0.011	OUR ESTIMATE					
0.022 ± 0.005		ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$	
0.021 ± 0.010		CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$	
0.043 ± 0.020		AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$	
0.022 ± 0.010		ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$	
0.031 ± 0.009		ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$	
0.024 ± 0.014		CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$	
• • • We do no	t use the following	data for average	s, fit	s, limits,	etc. • • •	
0.055 ± 0.004		LI	93	IPWA	$\gamma N \rightarrow \pi N$	
$\pm 0.033 \pm 0.018$		BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$	

$\Delta(1905) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.045±0.020 OUR ESTIMATE				
-0.045 ± 0.005	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
-0.056 ± 0.028	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
-0.025 ± 0.023	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.029 ± 0.007	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.045 ± 0.006	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.072 ± 0.035	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	data for average	es, fit	s, limits,	etc. • • •
0.002 ± 0.003	LI	93	IPWA	$\gamma N \rightarrow \pi N$
-0.055 ± 0.019	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$


△(1905) FOOTNOTES

- $^{
 m 1}$ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix
- From method II of LONGACRE 75: eyeball hits with Breit-Wigner circles to the 1-matrix amplitudes. See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams. 3 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first
- (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ⁴The range given for DEANS 75 is from the four best solutions.
- ⁵A Breit-Wigner fit to the HERNDON 75 IPWA.
- 6 A Breit-Wigner fit to the NOVOSELLER 788 IPWA.
 7 A Breit-Wigner fit to the NOVOSELLER 788 IPWA; the phase is near 90°.

△(1905) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

ARNDT	96	PR C53 430	R.A. Arndt, I.i. Strakovsky, R.L. Workm	an (VPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BŘCO)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li et al.	(VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
CANDLIN	84	NP B238 477	D.J. Candlin et al.	(EDIN, RAL, LOWC)
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
AWA JI	B1	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
ARAI	80	Toronto Conf. 93	I. Arai	(INUS)
Also	82	NP B194 251	I. Arai, H. Fujii	(INUS)
CHEW	80	Toronto Conf. 123	D.M. Chew	(LBL) IJP
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	P. Livanos et al.	(SACL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Pars	
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)
NOVOSELLER	78	NP B137 509	D.E. Novoseller	(CIT) IJP
NOVOSELLER	78B	NP B137 445	D.E. Novoseller	(CIT) IJP
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
HERNDON	75	PR D11 3183	D. Herndon et al.	(LBL, SLAC)
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	(LBL, SLAC) IJP

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics

△(1910) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1870 to 1920 (≈ 1910)	OUR ESTIMATE			
1882 ±10	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1910 ±40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1888 ±20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
2152	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1960.1 ± 21.0	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
$2121.4 + 13.0 \\ -14.3$	1 CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
1921	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1899	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1790	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

△(1910) BREIT-WIGNER WIDTH

VALU	E (MeV)	DOCUMENT ID		TECN	COMMEN	IT
190	to 270 (≈ 250) OUR ESTIM	ATE				
239	±25	MANLEY	92	IPWA	$\pi N \rightarrow$	πΝ&Νππ
225	±50	CUTKOSKY	80	IPWA	$\pi N \rightarrow$	π N
280	±50	HOEHLER	79	IPWA	$\pi N \rightarrow$	πN

Baryon Particle Listings $\Delta(1910)$

• • • We do not use the follow	ing data for average	s, fits	s, limits, etc. • • •
760	ARNDT	95	DPWA $\pi N \rightarrow N \pi$
152.9 ± 60.0	¹ CHEW		BPWA $\pi^+ p \rightarrow \pi^+ p$
172.2 ± 37.0	¹ CHEW	80	BPWA $\pi^+ p \rightarrow \pi^+ p$
351	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$
230	BARBOUR		DPWA $\gamma N \rightarrow \pi N$
170	² LONGACRE	77	IPWA $\pi N \rightarrow N \pi \pi$

	△(1910) POLE PO	SIT	ION	
REAL PART	0051115117-10			CO. 11. 15. 15.
VALUE (MeV) 1830 to 1880 (≈ 1855)	DOCUMENT ID		TECN	COMMENT
1810	ARNDT			
1874	³ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1880 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use th	e following data for average	s, fit	s, limits,	etc. • • •
1950	ARNDT			$\pi N \rightarrow \pi N$ Soln SM90
1792 or 1801	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY P	ART			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 500 (≈ 350) OUI	RESTIMATE			
494	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
283	³ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
200 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use th	e following data for average	es, fit	s, limits,	etc. • • •
398	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
172 or 165	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

△(1910) ELASTIC POLE RESIDUE

MODULUS		ĺ
	ı. I	

- 91

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
53	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
38	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
20±4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
37	ARNDT	91	DPWA	$\pi \ N \rightarrow \ \pi \ N \ {\rm Soln} \ {\rm SM90}$
PHASE 0				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
-176	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
- 90±30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

△(1910) DECAY MODES

91 DPWA $\pi N \rightarrow \pi N$ Soln SM90

• • • We do not use the following data for averages, fits, limits, etc. • • •

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_j/Γ)	
Γ_1	Νπ	15-30 %	
Γ_2	ΣΚ		
Гз	Νππ		
Γ_4	$\Delta\pi$		
Γ_5	$\Delta(1232)\pi$, P -wave		
Γ_6	Νρ		
Γ_7	$N\rho$, $S=3/2$, P -wave		
Γ8	$N(1440)\pi$		
Г9	$N(1440)\pi$, P -wave		
Γ_{10}	$N\gamma$	0.0-0.2 %	
Γ_{11}	$N\gamma$, helicity=1/2	0.0-0.2 %	

△(1910) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Г1/Г
VALUE	DOCUMENT ID		TEÇN	COMMENT
0.15 to 0.3 OUR ESTI	MATE			
0.23 ± 0.08	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.19 ± 0.03	CUTKOSKY	60	IPWA	$\pi N \rightarrow \pi N$
0.24 ± 0.06	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use	the following data for average	es, fit	s, limits	, etc. • • •
0.26	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
0.17	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
0.40	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}}$ in N_{π} -	→ Δ(1910) → ΣK			(Γ ₁ Γ ₂) ¹ //Γ
VALUE	DOCUMENT ID		TECN	COMMENT
< 0.03	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$
• • • We do not use the f	following data for averages	, fit	s, limits,	etc. • • •
-0.019		80	DPWA	$\pi \rho \rightarrow \Sigma K$
0.082 to 0.184	⁴ DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$

Note: Signs of couplings from $\pi\,N\,\to\,\,N\,\pi\,\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31}

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(1)$				
VALUE	DOCUMENT ID	TECN	COMMENT	
+0.06	² LONGACRE 77	IPWA	$\pi N \rightarrow N_2$	ι π
$(\Gamma_{l}\Gamma_{l})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to \Delta(1)$				(Г₁Г⁊) ¹ ⁄2/Г
VALUE	DOCUMENT ID	1 ECIV	COMMENT	
+0.29	² LONGACRE 77	IPWA	$\pi N \rightarrow N_1$	τ π
• • • We do not use the following	data for averages, fit	s, limits,	etc. • • •	
+ 0.17	⁵ NOVOSELLER 78	IPWA	$\pi N \rightarrow N$	τ π
$(\Gamma_I \Gamma_f)^{\frac{1}{1/2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(1)$				(Г₁Г9) ^½ /Г
VALUE	DOCUMENT ID		COMMENT	
-0.39 ± 0.04	MANLEY 92	IPWA	$\pi N \rightarrow \pi I$	Ι& Νππ

△(1910) PHOTON DECAY AMPLITUDES

$\Delta(1910) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
+0.003±0.014 OUR ESTIMATE				
-0.002 ± 0.008	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
0.014 ± 0.030	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.025 ± 0.011	AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$
-0.012 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.031 ± 0.004	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.005 ± 0.030	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
0.032 ± 0.003	LI	93	IPWA	$\gamma N \rightarrow \pi N$
-0.035 ± 0.021	BARBOUR	76	DPWA	$\gamma N \rightarrow \pi N$

△(1910) FOOTNOTES

- ¹ CHEW 80 reports four resonances in the P_{31} wave see also the Δ (1750). Problems with this analysis are discussed in section 2.1.11 of HOEHLER 83. ² LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes. ³ See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameter of N and A resconance as detailed discussion of the vidence for and the pole parameter of N and A resconance as detailed discussion of the vidence for and the pole parameter of N and A resconance as detailed discussion of the vidence for and the pole parameter of N and A resconance as detailed discussion of the vidence for and the pole parameter of N and A resconance as detailed discussion of the vidence for and the pole parameter of N and A resconance as detailed discussion of the vidence for and the pole parameter of N and A resconance as detailed discussion of the vidence for and the pole parameter of N and A resconance as detailed discussion of the vidence for and the pole parameter of N and A resconance as detailed discussion of the vidence for any seconal parameter of N and A resconance as detailed discussion of the vidence for any seconal parameter of N and A resconance as detailed discussion of the vidence for any seconal parameter of N and A resconance as detailed discussion of the vidence for any seconal parameter of N and A resconance as detailed discussion of the vidence for any seconal parameter of N and A resconance as detailed discussion of the vidence for any seconal parameter of N and A resconance as detailed discussion of the vidence for any seconal parameter of N and A resconance as detailed discussion of the vidence for any seconal parameter of N and A resconance as detailed discussion of the vidence for any seconal parameter of
- of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

 The range given for DEANS 75 is from the four best solutions.

 Evidence for this coupling is weak; see NOVOSELLER 78. This coupling assumes the mass is near 1820 MeV.

△(1910) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

		DD 640 +00	8 4 4 4 11 Starte at 81 Walan	(A(D))
ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workma	
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BRCO)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li et al.	(VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
CANDLIN	84	NP B238 477		(EDIN, RAL, LOWC)
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
HOEHLER	83	Landolt-Boernstein 1/9B2	G. Hohler	(KARLT)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
AWA JI	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
ARAI	80	Toronto Conf. 93	J. Arai	(INUS)
Also	82	NP B194 251	l. Arai, H. Fujii	(INUS)
CHEW	80	Toronto Conf. 123	D.M. Chew	(LBL) IJP
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÚ, LBL) IJP
Also	79	PR Q20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	P. Livanos et al.	(SACL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Parso	ons (GLAS)
NOVOSELLER	78	NP B137 509	D.E. Novoseller	(CIT) IJP
Also	78B	NP B137 445	D.E. Novoseller	(CIT) IJP
LONGACRE	77	NP B122 493	R.S. Longacre, J. Dolbeau	(SACL) IJP
Also	76	NP B108 365	J. Dolbeau et al.	(SACL) IJP
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP

 Δ (1920) P_{33}

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

△(1920) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1900 to 1970 (≈ 1920) OUR EST	TIMATE			
2014 ±16	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1920 ±80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1868 ±10	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	data for averages	, fits	s, limits,	etc. • • •
1840 ±40				$\pi^+ p \rightarrow \Sigma^+ K^+$
1955.0 ± 13.0	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
$2065.0^{+13.6}_{-12.9}$	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$

△(1920) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID	TE	CN	COMMENT
150 to 300 (≈ 200) OUR ESTIM	MATE			
152 ± 55	MANLEY	92 IP	WA	$\pi N \rightarrow \pi N \& N \pi \pi$
300 ±100	CUTKOSKY	80 IP	WA	$\pi N \rightarrow \pi N$
220 ± 80	HOEHLER	79 IP	WA	$\pi N \rightarrow \pi N$
• • • We do not use the following	g data for average	s, fits, li	mits,	etc. • • •
200 ± 40	CANDLIN	84 DI	PWA	$\pi^+ p \rightarrow \Sigma^+ K^+$
88.3± 35.0	¹ CHEW	80 BF	PWA	$\pi^+ p \rightarrow \pi^+ p$
62.0 ± 44.0	¹ CHEW	80 BF	PWA	$\pi^+ p \rightarrow \pi^+ p$

△(1920) POLE POSITION

REAL PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1850 to 1950 (≈ 1900) OUR ES	TIMATE			
1900	² HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1900 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follow	ing data for average	es, fit	s, limits,	etc. • • •
not seen '	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soin SM90
O. JAMA CINIA DV. DA DT				

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
200 to 400 (≈ 300) OUR ESTIMA	TE		
300 ± 100	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages, fit	ts, limits,	, etc. • • •
not seen	ARNDT 91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90

△(1920) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
24 ± 4	CUTKOSKY 8	IPWA	$\pi N \rightarrow \pi N$
PHASE 0 VALUE (°)	DOCUMENT ID	TECN	COMMENT
-150 ± 30	CUTKOSKY 8	IPWA	$\pi N \rightarrow \pi N$

△(1920) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
$\overline{\Gamma_1}$	Νπ	5-20 %	
Γ_2	ΣΚ		
Гз	Νππ		
Γ_4	$\Delta(1232)\pi$, P -wave		
Γ_5	$N(1440)\pi$, P -wave		
Γ_6	$N\gamma$, helicity=1/2		
Γ7	$N\gamma$, helicity=3/2		

△(1920) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.05 to 0.2 OUR ESTIM	IATE			
0.02 ± 0.02	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.20 ± 0.05	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.14 ± 0.04	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	e following data for averag	es, fit	s, limits,	etc. • • •
0.24	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
0.18	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$

VALUE	DOCUMENT ID		TEÇN	COMMENT
-0.052 ± 0.015	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$
• • • We do not use the	following data for averages	, fit	s, limits,	etc. • • •
-0.049	LIVANOS	80	DPWA	$\pi p \rightarrow \Sigma K$
0.048 to 0.120	³ DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$
(F _J F _f) ^{1/2} /F _{total} in N _#	DOCUMENT ID		<u>TECN</u>	COMMENT
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
	DOCUMENT ID MANLEY	92	TECN IPWA	$\frac{COMMENT}{\pi N \rightarrow \pi N \& N}$
VALUE - 0.13 ± 0.04 0.3	MANLEY 4 NOVOSELLER	92 78	TECN IPWA IPWA	$ \frac{COMMENT}{\pi N \rightarrow \pi N \& N} $ $ \pi N \rightarrow N \pi \pi $
<u>VALUE</u> -0.13 ± 0.04 0.3 0.27	DOCUMENT ID MANLEY	92 78 78	TECN IPWA IPWA IPWA	$ \begin{array}{ccc} COMMENT \\ \pi N \to & \pi N & \Lambda \\ \pi N \to & N \pi \pi \\ \pi N \to & N \pi \pi \end{array} $

△(1920) PHOTON DECAY AMPLITUDES

Δ (1920) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

	-,	_			
VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMME	VT
0.040 ± 0.014	IL AWA	81	DPWA	$\gamma N \rightarrow$	π N
$\Delta(1920) \rightarrow N\gamma$, helicity-3/2	amplitude A _{3/}	2			

VALUE ($GeV^{-1/2}$) DOCUMENT ID TECN COMMENT 0.023 ± 0.017 IL AWA 81 DPWA $\gamma N \rightarrow \pi N$

△(1920) FOOTNOTES

¹ CHEW 80 reports two P_{33} resonances in this mass region. Problems with this analysis are discussed in section 2.1.11 of HOEHLER 83.

² See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of *N* and Δ resonances as determined from Argand diagrams of π *N* elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

³ The range given for DEANS 75 is from the four best solutions.

⁴ A Breit-Wigner fit to the HERNDON 75 IPWA; the phase is near −90°.

⁵ A Breit-Wigner fit to the NOVOSELLER 78B IPWA; the phase is near -90°.

△(1920) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

HOEHLER	93	πN Newsletter 9 1	G. Hohler	(KARL)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) IJP
Also	84	PR D30 904	D.M. Manley et al.	` (VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
CANDLIN	84	NP B238 477	D.J. Candlin et al.	(EDIN, RAL, LOWC)
HOEHLER	83	Landolt-Boernstein 1/982	G. Hohler	(KARLT)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
AWA JI	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K, Fujii et al.	(NAGO)
CHEW	80	Toronto Conf. 123	D.M. Chew	` (LBL) IJP
CUTKO5KY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	P. Livanos et al.	(SACL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Aiso	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
NOVOSELLER	78	NP B137 509	D.E. Novoseller	(CIT)
NOVOSELLER	78B	NP B137 445	D.E. Novoseller	(CIT)
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
HERNDON	75	PR D11 3183	D. Herndon et al.	(LBL, SLAC)

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^-)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics

The various analyses are not in good agreement.

△(1930) BREIT-WIGNER MASS

VALUE	(MeV)	DOCUMENT ID		TECN	COMMENT
1920	to 1970 (≈ 1930) OUR ES	TIMATE			
1956	±22	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
1940	±30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1901	±15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • •	We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
1955	±15	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
2056		ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1963		LI	93	IPWA	$\gamma N \rightarrow \pi N$
1910.0)+15.0 -17.2	CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
2000		CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
2024		BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

Baryon Particle Listings $\Delta(1930)$, $\Delta(1940)$

Δ (1930) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
250 to 450 (≈ 350) OU	R ESTIMATE			
530 ±140	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
320 ± 60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
195 ± 60	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
350 ± 20	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
590	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
260	LI	93	IPWA	$\gamma N \rightarrow \pi N$
74.8 + 17.0 - 16.0	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
142	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
162	BARBOUR	78		$\gamma N \rightarrow \pi N$

△(1930) POLE POSITION

REAL PART	DOCUMENT ID		TECH	CO1414E	
VALUE (MeV)	DOCUMENT ID		TECN	COMME	V /
1840 to 1940 (≈ 1890) (OUR ESTIMATE				
1913	ARNDT		DPWA	$\pi N \rightarrow$	Nπ
1850	¹ HOEHLER	93	SPED	$\pi N \rightarrow$	πN
1890 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow$	πN
• • We do not use the	following data for average	s, fit	s, limits,	etc. • •	•
2018	ARNDT	91	DPWA	$\pi N \rightarrow$	π N Soln SM90
-2×IMAGINARY PA	ART				
VALUE (MeV)	DOCUMENT ID		TECN	COMME	VT.
200 to 300 (≈ 250) OUF	ESTIMATE				
246	ARNDT	95	DPWA	$\pi N \rightarrow$	Nπ
180	¹ HOEHLER	93	SPED	$\pi N \rightarrow$	πN
260 ± 60	CUTKOSKY	80	IPWA	$\pi N \rightarrow$	πN
• • • We do not use the	following data for average	s, fit	s, lim i ts,	etc. • •	•
398	ARNDT	91	DPWA	$\pi N \rightarrow$	π N Soln SM90

△(1930) ELASTIC POLE RESIDUE

MODULUS	r	l
---------	---	---

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
8	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
20	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
18 ± 6	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	data for averages	s, fits	s, limits,	etc. • • •
15	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln SM90}$
PHASE €				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
			12074	COMMENT
47	ARNDT	95		$\pi N \rightarrow N \pi$
47 20 ± 40			DPWA	
· · · · · · · · · · · · · · · · · · ·	ARNDT CUTKOSKY	80	DPWA IPWA	$ \begin{array}{ccc} \pi N \to & N \pi \\ \pi N \to & \pi N \end{array} $

△(1930) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
$\overline{\Gamma_1}$	Νπ	10-20 %	
Γ_2	ΣΚ		
Гз	Νππ		
Γ_4	$N\gamma$	0.0-0.02 %	
Γ_5	$N\gamma$, helicity=1/2	0.0-0.01 %	
Γ ₆	$N\gamma$, helicity=3/2	0.0-0.01 %	

△(1930) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Г1/Г
VALUE	DOCUMENT ID		TECN	COMMENT
0.1 to 0.2 OUR ESTIMAT	ΓE			
0.18 ± 0.02	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
0.14 ± 0.04	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.04 ± 0.03	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the f	ollowing data for average	es, fit	s, limits,	etc. • • •
0.11	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
0.11	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \ln N \pi$ -				(Γ ₁ Γ ₂) ^{1/2} /Γ
VALUE	DOCUMENT ID		TEÇN	COMMENT
< 0.015	CANDLIN	84	DPWA	$\pi^+ \rho \rightarrow \Sigma^+ K^+$
• • • We do not use the	following data for average	es, fit	s, limits,	etc. • • •
-0.031	LIVANOS	80	DPWA	$\pi \rho \rightarrow \Sigma K$
0.018 to 0.035	² DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$

VALUE	$\pi \to \Delta(1930) \to N\pi\pi$	TECN	COMMENT
not seen	LONGACRE 75	IPWA	$\pi N \rightarrow N \pi \pi$

△(1930) PHOTON DECAY AMPLITUDES

$\Delta(1930) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.009±0.028 OUR ESTIMATE				
-0.007 ± 0.010	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
0.009 ± 0.009	IL AWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.030 ± 0.047	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	data for averages	, fit	, limits,	etc. • • •
-0.019 ± 0.001	LI	93	IPWA	$\gamma N \rightarrow \pi N$
-0.062 ± 0.064	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

$\Delta(1930) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

_(1300) · 17 / / / / / / / / /	.y 0/1 umpiicude rig	/2		
VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.018±0.028 OUR ESTIM	ATE			
0.005 ± 0.010	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
-0.025 ± 0.011	IL AWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.033 ± 0.060	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the fol	llowing data for average	s, fits	, limits,	etc. • • •
0.009 ± 0.001	LI	93	IPWA	$\gamma N \rightarrow \pi N$
$+0.019\pm0.054$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
				·

△(1930) FOOTNOTES

△(1930) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L.	Workman (VPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.	(VPI, BŘCO)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li et al.	(VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KÈNT) IJP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.	(VPI, TELE) IJP
CANDLIN	84	NP B238 477	D.J. Candlin et al.	(EDIN, RAL, LOWC)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
IL AWA	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
CHEW	80	Toronto Conf. 123	D.M. Chew	` (LBL) IJP
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÚ, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	P. Livanos et al.	` (SACL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.)	I. Parsons (GLAS)
DEANS	75	NP B96 90	S.R. Deans et al.	(SFLA, ALAH) IJP
LONGACRE	75	PL 55B 415	R.S. Longacre et al.	` (LBL, SLAC) IJP

 $\Delta(1940) D_{33}$

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^-)$ Status: *

OMITTED FROM SUMMARY TABLE

△(1940) BREIT-WIGNER MASS

VALUE (MeV) ≈ 1940 OUR ESTIMATE	DOCUMENT ID		TECN	COMMENT
2057 ±110 2058.1± 34.5 1940 ±100	CHEW	80	BPWA	$ \pi N \rightarrow \pi N & N \pi \pi \pi^+ \rho \rightarrow \pi^+ \rho \pi N \rightarrow \pi N $

△(1940) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
460 ± 320	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
198.4 ± 45.5	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
200 ±100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

△(1940) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1900 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
.915 or 1926	¹ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY PART				
ALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200±60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
190 or 186	1 LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$

¹ See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams. ² The range given for DEANS 75 is from the four best solutions.

∆ (1940)	ELASTIC POL	E F	ESIDU	E
MODULUS r				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
B±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
PHASE 0				
VALUE (°)	DOCUMENT ID			
.35 ± 45	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
∆ (1	1940) DECAY N	101	DES	
Mode				
$\Gamma_1 = N\pi$				
Γ ₂ ΣΚ				
$N\pi\pi$				
$\Gamma_4 \qquad \Delta(1232)\pi$, S-wave				
Γ_5 $\Delta(1232)\pi$, D-wave				
$N\rho$, $S=3/2$, S -wave				
Γ_7 $N\gamma$, helicity=1/2 Γ_8 $N\gamma$, helicity=3/2				
_β N γ , helicity=3/2				
△(194	0) BRANCHIN	G R	ATIOS	
$(N\pi)/\Gamma_{\text{total}}$				Γ1/
/ALUE	DOCUMENT ID		TECN_	COMMENT
0.18 ± 0.12				$\pi N \rightarrow \pi N \& N \pi \pi$
0.18 0.05 ± 0.02	CHEW CUTKOSKY			$\pi^+ \rho \rightarrow \pi^+ \rho$
.03±0.02	COTROSKT	00	IFWA	
$\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{ ext{total}}$ in $N\pi o \Delta(1)$	940) → Σ <i>K</i>			(Γ ₁ Γ ₂) ¹ ⁄⁄⁄⁄
<0.015	DOCUMENT ID			$ \frac{COMMENT}{\pi^+ \rho \to \Sigma^+ K^+} $
. 0.015	CANDLIN	04	DPWA	$\pi \cdot \rho \rightarrow Z \cdot K$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in $N\pi o \Delta(1)$	940) → ⊿(123	2) x	, S-wav	e (Γ₁Γ₄) ^⅓ /
ALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
$+0.11 \pm 0.10$	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(1)$.940) → ∆(123	2) x	, D-wav	/e (Γ ₁ Γ ₅) ^{1/2} /
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.27\pm0.16$	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(1)$	940) → Na. Sa	=3/	2. S-wa	ve (Γ ₁ Γ ₆) ^{1/2} /
VALUE	DOCUMENT ID	-7	TECN	COMMENT
$+0.25\pm0.10$	MANLEY			$\pi N \rightarrow \pi N \& N \pi \pi$
` ,	IOTON DECAY		MPLIT	JDES
Δ (1940) $\rightarrow N\gamma$, helicity-1/2				
VALUE (GeV ^{-1/2})	DOCUMENT ID			
-0.036 ± 0.058			DPWA	$\gamma N \rightarrow \pi N$
	A aboutioned A			
$\Delta(1940) \rightarrow N\gamma$, helicity-3/2		_		
Δ (1940) $\rightarrow N\gamma$, helicity-3/2	DOCUMENT ID			$\frac{COMMENT}{\gamma N \to \pi N}$

 $^1\text{LONGACRE}$ 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi\,N\,\to\,N\,\pi\,\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KENT) UP
Also	84	PR D30 904	D.M. Manley et al.	(VPI)
CANDLIN	84	NP B238 477	D.J. Candlin et al.	(EDIN, RAL, LÒWC)
ILAWA	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also	82	NP B197 365	K. Fujii et al.	(NAGO)
CHEW	80	Toronto Conf. 123	D.M. Chew	(LBL) IJP
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL)
LONGACRE	78	PR D17 1795	R.S. Longacre et al.	(LBL, SLAC)

$\Delta(1950) F_{37}$

 $I(J^P) = \frac{3}{2}(\frac{7}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters **111B** (1982).

△(1950) BREIT-WIGNER MASS

ALUE (MeV)	DOCUMENT ID		TECN	COMMENT
.940 to 1960 (≈ 1950)	OUR ESTIMATE		-	
1945 ± 2	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
950 ±15	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
913 ± 8	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	following data for average	s, fit	s, limits,	etc. • • •
947 ± 9	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
921	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
940	٤I			$\gamma N \rightarrow \pi N$
925 ±20	CANDLIN	84	DPWA	$\pi^+ \rho \rightarrow \Sigma^+ K^+$
1855.0 + 11.0 - 10.0	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
902	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
912	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
925	¹ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

Δ (1950) BREIT-WIGNER WIDTH

/ALUE (MeV)	DOCUMENT ID		TECN	COMMENT
90 to 350 (≈ 300) OUR I	ESTIMATE			
300 ± 7	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
340 ±50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
24 ±10	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the fol	llowing data for average	s, fit	s, limits,	etc. • • •
302 ± 9	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
232	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
806	LI	93	IPWA	$\gamma N \rightarrow \pi N$
30 ±40	CANDLIN	84	DPWA	$\pi^+ \rho \rightarrow \Sigma^+ K^+$
.57.2 ^{+22.0} -19.0	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
25	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
198	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
240	1 LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

△(1950) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1880 to 1890 (≈ 1885)			7 L CIV	COMMENT
1880		۵E	DD\A/A	$\pi N \rightarrow N \pi$
1878	2 HOEHLER			
1890±15	CUTKOSKY			
	e following data for averages			
1884	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
1924 or 1924	³ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
-2×IMAGINARY P	ART			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
210 to 270 (≈ 240) OU	R ESTIMATE			
236	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
230	² HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
260±40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use th	e following data for averages	, fit	s, limits,	etc. • • •
238	ARNDT	91	DPWA	$\pi N \rightarrow \pi N \text{ Soln $M90}$
	³ LONGACRE			$\pi N \rightarrow N \pi \pi$

△(1950) ELASTIC POLE RESIDUE

MODULUS	r	
---------	---	--

VALUE (MEV)	DOCUMENT ID		JECH	COMMENT
54	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
47	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
50 ± 7	CUTKOSKY	60	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average:	, fits	, limits,	etc. • • •
61	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
PHASE <i>θ</i>				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
-17	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
-32	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
-33 ± 8				
- 33 ± 0	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following •	• • • • • • • • • • • • • • • • • • • •			
	• • • • • • • • • • • • • • • • • • • •		s, limits,	

$\Delta(1950), \Delta(2000)$

△(1950) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
Γ_1	Nπ	35-40 %	
Γ_2	ΣΚ		
Γ_3	Νππ		
Γ4	$\Delta\pi$	20-30 %	
Γ_5	Δ (1232) π , F -wave		
Γ_6	Δ (1232) π , H -wave		
Γ7	Nρ	<10 %	
Γ8	$N\rho$, $S=1/2$, F -wave		
Γ٩	$N\rho$, $S=3/2$, F -wave		
Γ_{10}	$N\gamma$	0.08-0.13 %	
Γ_{11}	$N\gamma$, helicity=1/2	0.03-0.055 %	
Γ ₁₂	Nγ, helicity=3/2	0.05-0.075 %	

△(1950) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Г1/Г
VALUE	DOCUMENT ID		TECN	COMMENT
0.35 to 0.4 OUR ESTIMATE				
0.38 ± 0.01	MANLEY	92	IPWA	$\pi N \rightarrow \pi N & N \pi \pi$
0.39 ± 0.04	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.38 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
0.49	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
0.44	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(19)$	950) → ΣK		TECN	$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
-0.053 ± 0.005		84		$\pi^+ D \rightarrow \Sigma^+ K^+$
• • • We do not use the following				
0.022 to 0.040	4 DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$

Note: Signs of couplings from $\pi\,N\,\to\,N\,\pi\,\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)~S_{31}$ coupling to $\Delta(1232)\pi$.

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N$	$\pi \to \Delta(1950) \to \Delta(1232)$	π, F-wav	re (Г₁Г₅) ^⅓ /Г
VALUE	DOCUMENT ID		
+0.28 to +0.32 OUR	ESTIMATE		
$+0.27 \pm 0.02$			$\pi N \rightarrow \pi N & N \pi \pi$
+0.32	¹ LONGACRE 7	75 IPWA	$\pi N \rightarrow N \pi \pi$
• • • We do not use t	he following data for averages,	fits, limits	, etc. • • •
0.21	⁵ NOVOSELLER 7	78 IPWA	$\pi N \rightarrow N \pi \pi$
0.38	⁶ NOVOSELLER 7	78 IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in N	$\pi \rightarrow \Delta(1950) \rightarrow N \rho, S=3$	3/2, <i>F</i> -wa	ve (Γ ₁ Γ ₉) ¹ //Γ
VALUE	DOCUMENT ID	TECN	
+0.24	1 LONGACRE 7	75 IPWA	$\pi N \rightarrow N \pi \pi$
• • • We do not use t	he following data for averages,	fits, limits,	, etc. • • •
0.24	7 NOVOSELLER 7	8 IPWA	$\pi N \rightarrow N \pi \pi$
0.43	⁸ NOVOSELLER 7	78 IPWA	$\pi N \rightarrow N \pi \pi$

△(1950) PHOTON DECAY AMPLITUDES

Δ (1950) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

1		•		
VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.076±0.012 OUR ESTIMATE				
-0.079 ± 0.006	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
-0.068 ± 0.007	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.091 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.083 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.067 ± 0.014	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the following	data for average	es, fit	s, limits,	etc. • • •
-0.102 ± 0.003	LI	93	IPWA	$\gamma N \rightarrow \pi N$
-0.058 ± 0.013	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

Δ (1950) $\rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.097±0.010 OUR ESTIMATE				
-0.103 ± 0.006	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
-0.094 ± 0.016	IL AWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.101 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.100 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.082 ± 0.017	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
-0.115 ± 0.003	LI	93	IPWA	$\gamma N \rightarrow \pi N$
-0.075 ± 0.020	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

△(1950) FOOTNOTES

- $^{\mathrm{1}}$ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

 2 See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters
- of N and Δ resonances as determined from Argand diagrams of π N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams. ³LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- 4 The range given is from the four best solutions. DEANS 75 disagrees with $\pi^+p \rightarrow \Sigma^+K^+$ data of WINNIK 77 around 1920 MeV.
 5 A Breit-Wigner fit to the HERNDON 75 IPWA; the phase is near -60° .
 6 A Breit-Wigner fit to the NOVOSELLER 78B IPWA; the phase is rear -60° .

- ⁷ A Breit-Wigner fit to the HERNDON 75 IPWA; the phase is near 120°.
- ⁸ A Breit-Wigner fit to the NOVOSELLER 78B IPWA; the phase is near 120°.

△(1950) REFERENCES

ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Worke	man	(VPI)
ARNDT	95	PR C52 2120	R.A. Arndt et al.		(VPI, BŘCO)
HOEHLER	93	πN Newsletter 9 1	G. Hohler		(KARL)
LI	93	PR C47 2759	Z.J. Li et al.		` (VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski		(KÈNT) IJP
Also	84	PR D30 904	D.M. Manley et al.		` (VPI)
ARNDT	91	PR D43 2131	R.A. Arndt et al.		(VPI, TELE) IJP
CANDLIN	84	NP B238 477	D.J. Candlin et al. (E	EDIN, I	RAL, LOWC)
PDG	82	PL 111B	M. Roos et al. (HELS,	CIT, CERN)
IL AWA	81	Bonn Conf. 352	N. Awaji, R. Kajikawa		(NAGO)
Also	82	NP B197 365	K. Fujii et al.		(NAGO)
ARAI	80	Toronto Conf. 93	I. Arai		(INUS)
Also	82	NP B194 251	l. Arai, H. Fujii		(INUS)
CHEW	80	Toronto Conf. 123	D.M. Chew		(LBL) IJP
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford		(GLA5)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.		(CMU, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.		(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.		(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch		(KARLT) IJP
BARBOUR	78	NP B141 253	I.M. Barbour, R.L. Crawford, N.H. Par-	sons	(GLAS)
LONGACRE	78	PR D17 1795	R.S. Longacre et al.		(LBL, SLAC)
NOVOSELLER	78	NP B137 509	D.E. Novoseller		(CIT) IJP
NOVOSELLER	78B	NP B137 445	D.E. Novoseller		(CIT) IJP
WINNIK	77	NP B128 66	M. Winnik et al.		(HAIF) I
DEANS	75	NP B96 90	S.R. Deans et al.	(5	FLA, ALAH) IJP
HERNDON	75	PR D11 3183	D. Herndon et al.		(LBL, SLAC)
LONGACRE	75	PL 55B 415	R.S. Longacre et al.		(LBL, SLAC) IJP

 $\Delta(2000) F_{35}$

 $I(J^P) = \frac{3}{2}(\frac{5}{2}^+)$ Status: **

OMITTED FROM SUMMARY TABLE

△(2000) BREIT-WIGNER MASS

VALUE (MeV) ≈ 2000 OUR ESTIMATE	DOCUMENT ID	 TECN	COMME	ντ
1752± 32 2200±125	MANLEY CUTKOSKY		$\pi N \rightarrow \pi N \rightarrow$	πΝ&Νππ πΝ

△(2000) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
251 ± 93	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
400 ± 125	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

△(2000) POLE POSITION

DOCUMENT ID

REAL	. Part
VALUE	(MeV)

TECN COMMENT 2150 ± 100 80 IPWA $\pi N \rightarrow \pi N$ CUTKOSKY

-2×IMAGINARY PART

VALUE (MeV) TECN COMMENT CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$

△(2000) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV) DOCUMENT ID TECN COMMENT 16 ± 5 CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ PHASE & DOCUMENT ID TECN COMMENT 150 ± 90 80 IPWA $\pi N \rightarrow \pi N$ CUTKOSKY

△(2000) DECAY MODES

	Mode
Γ_1	Νπ
Γ_2	Νππ
Гз	$\Delta(1232)\pi$, <i>P</i> -wave
Γ4	$\Delta(1232)\pi$, F-wave
Γ ₅	$N\rho$, $S=3/2$, P -wave

	(2000) BRANCHING RATIOS		Δ(2150) FOOTNOTES
Γ(Nπ)/Γ _{total}	Γ ₁ /Γ 	are discussed in section 2.1.1	resonances in this mass region. Problems with this analys 11 of HOEHLER 83.
0.02 ± 0.01 0.07 ± 0.04	MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$ CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	4	Δ(2150) REFERENCES
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	Δ (2000) $\rightarrow \Delta$ (1232) π , P -wave $(\Gamma_1\Gamma_3)^{\frac{1}{12}}/\Gamma$	CANDLIN 84 NP B238 477 HOEHLER 83 Landolt-Boernstei CHEW 80 Toronto Conf. 15 CUTKOSKY 80 Toronto Conf. 15	
$+0.07 \pm 0.03$	MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$	Also 79 PR D20 2839	R.E. Cutkosky et al. (CMU, LBL)
$(\Gamma_I \Gamma_f)^{\frac{1}{12}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow VALUE}$	$\Delta(2000) \rightarrow \Delta(1232)\pi$, F-wave $(\Gamma_1\Gamma_4)^{1/2}/\Gamma$	$\Delta(2200) G_{37}$	$I(J^P) = \frac{3}{2}(\frac{7}{2}^-)$ Status: *
$+0.09\pm0.04$	MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$	` , , , , ,	1.D. (T.D
$(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \to VALUE}$	Δ (2000) $\rightarrow N\rho$, S=3/2, P-wave DOCUMENT ID TECH COMMENT ($\Gamma_1\Gamma_5$) $\frac{1}{2}$ / Γ	OMITTED FROM SUMM The various analyses	ARY TABLE are not in good agreement.
-0.06 ± 0.01	MANLEY 92 IPWA $\pi N \rightarrow \pi N \& N \pi \pi$	△(22	00) BREIT-WIGNER MASS
	Δ(2000) REFERENCES	VALUE (MeV) ≈ 2200 OUR ESTIMATE	DOCUMENT ID TECN COMMENT
MANLEY 92 PR D45 400 Also 84 PR D30 904		2200 ± 80	CUTKOSKY 80 IPWA $\pi N \to \pi N$
CUTKOSKY 80 Toronto Con	f. 19 R.E. Cutkosky et al. (CMU, LBL)	2215±60 2280±80	HOEHLER 79 IPWA $\pi N \rightarrow \pi N$ HENDRY 78 MPWA $\pi N \rightarrow \pi N$
Also 79 PR D20 283	9 R.E. Cutkoský <i>et al.</i> (CMU, LBL)	_	ing data for averages, fits, limits, etc. • • •
4(01F0) C	$I(J^P) = \frac{3}{2}(\frac{1}{2})$ Status: *	2280 ± 40	CANDLIN 84 DPWA $\pi^+ p \rightarrow \Sigma^+ K^+$
$\Delta(2150) S_{31}$		Δ(220	00) BREIT-WIGNER WIDTH
OMITTED FROM SUN	MMARY TABLE	VALUE (MeV)	DOCUMENT ID TECN COMMENT
Δ /	(2150) BREIT-WIGNER MASS	450 ± 100	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$
VALUE (MeV)	DOCUMENT ID TECN COMMENT	400 ± 100 400 ± 150	HOEHLER 79 IPWA $\pi N \rightarrow \pi N$ HENDRY 78 MPWA $\pi N \rightarrow \pi N$
≈ 2150 OUR ESTIMATE			ing data for averages, fits, limits, etc. • •
2047.4± 27.0	1 CHEW 80 BPWA $\pi^+ \rho \rightarrow \pi^+ \rho$	400± 50	CANDLIN 84 DPWA $\pi^+ p \rightarrow \Sigma^+ K^+$
2203.2± 8.4 2150 ±100	¹ CHEW 80 BPWA $\pi^+ \rho \rightarrow \pi^+ \rho$ CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$		(coco) DOLE BOSITION
		Δ	(2200) POLE POSITION
Δ(2150) BREIT-WIGNER WIDTH	REAL PART VALUE (MeV)	DOCUMENT ID TECN COMMENT
VALUE (MeV)	DOCUMENT ID TECN COMMENT	2100±50	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$
121.6± 62.0	1 CHEW 80 BPWA $\pi^+ \rho \rightarrow \pi^+ \rho$	-2×IMAGINARY PART	
120.5 ± 45.0 200 ± 100	¹ CHEW 80 BPWA $\pi^+ \rho \rightarrow \pi^+ \rho$ CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	VALUE (MeV)	DOCUMENT ID TECN COMMENT
100 1100	COTROSKT OF HAND AND AND	340±80	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$
	△(2150) POLE POSITION	Δ(220	0) ELASTIC POLE RESIDUE
REAL PART VALUE (MeV)	DOCUMENT ID TECN COMMENT	•	,
2140±80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MODULUS r VALUE (MeV)	DOCUMENT ID TECN COMMENT
		8±3	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$
-2×IMAGINARY PART VALUE (MeV)	DOCUMENT ID TECN COMMENT		
200 ± 80	CUTKOSKY 80 IPWA πN → πN	PHASE 6 VALUE (°)	DOCUMENT ID TECN COMMENT
	MEAN ELACTIC DOLE DECIDIE	-70 ± 40	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$
	2150) ELASTIC POLE RESIDUE	Λ	(2200) DECAY MODES
MODULUS r		4	(2200) DECAT MODES
<u>VALUE (MeV)</u> 7±2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mode	
	CUTROSKT OU IFVVM NIN - NIN	Γ ₁ Νπ	
PHASE 0 VALUE (°)	DOCUMENT ID TECN COMMENT	$\Gamma_2 \Sigma K$	
-60±90	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	Λ(2)	200) BRANCHING RATIOS
	Δ(2150) DECAY MODES	$\Gamma(N\pi)/\Gamma_{\text{total}}$	•
		VALUE total	Γ ₁ /
Mode		0.06 ± 0.02	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$
$\Gamma_1 N\pi$ $\Gamma_2 \Sigma K$		$\begin{array}{c} 0.05 \pm 0.02 \\ 0.09 \pm 0.02 \end{array}$	HOEHLER 79 IPWA $\pi N \rightarrow \pi N$ HENDRY 78 MPWA $\pi N \rightarrow \pi N$
	(2150) BRANCHING RATIOS	$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta$	
$\Gamma(N\pi)/\Gamma_{\text{total}}$	Г1/Г	<i>VALUE</i> - 0.014 ± 0.005	CANDLIN 84 DPWA $\pi^+ p \rightarrow \Sigma^+ K^+$
' \'*"//' total	DOCUMENT ID TECN COMMENT		A(2000) REEEDENICES
VALUE	1 CHEN 90 DDN44 +- +-		
VALUE 0.41	¹ CHEW 80 BPWA $\pi^+ p \rightarrow \pi^+ p$ ¹ CHEW 80 BPWA $\pi^+ p \rightarrow \pi^+ p$	2	∆(2200) REFERENCES
VALUE	1 CHEW 80 BPWA $\pi^{+}\rho \rightarrow \pi^{+}\rho$ 1 CHEW 80 BPWA $\pi^{+}\rho \rightarrow \pi^{+}\rho$ CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	CANDLIN 84 NP B238 477	D.J. Candlin et al. (EDIN, RAL, LOWC)
VALUE 0.41 0.37 0.08±0.02	¹ CHEW 80 BPWA $\pi^+ \rho \rightarrow \pi^+ \rho$ CUTKOSKY 80 IPWA $\pi^- N \rightarrow \pi^- N$	CANDLIN 84 NP B238 477 CUTKOSKY 80 Toronto Conf. 19 Also 79 PR D20 2839	D.J. Candlin et al. (EDIN, RAL, LOWC) R.E. Cutkosky et al. (CMU, LBL) IJ R.E. Cutkosky et al. (CMU, LBL) II
<u>VALUE</u> 0.41 0.37	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CANDLIN 84 NP B238 477 CUTKOSKY 80 Toronto Conf. 19	D.J. Candlin et al. (EDIN, RAL, LOWC) R.E. Cutkosky et al. (CMU, LBL) iJ

 $\Delta(2300), \Delta(2350)$

Δ (2300)	H ₃₉
-----------------	-----------------

 $I(J^P) = \frac{3}{2}(\frac{9}{2}^+)$ Status: **

OMITTED FROM SUMMARY TABLE

$\Delta(2300)$	BREIT-WIGNER	MASS
----------------	---------------------	------

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 2300 OUR ESTIMATE				
2204.5 ± 3.4	CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
2400 ±125	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2217 ± 80	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
2450 ±100	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
2400	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$

△(2300) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
32.3 ± 1.0	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
425 ±150	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
300 ±100	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
500 ± 200	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	, fits	, limits,	etc. • • •
200	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$

Δ(2300) POLE POSITION

REAL	PART
VALUE (MeV)

VALUE (MeV)	DOCUMENT ID		TEÇN	COMMENT
2370 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
420±160	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

△(2300) ELASTIC POLE RESIDUE

MODULUS |r

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
10±4	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
PHASE θ			
VALUE (°)	DOCUMENT ID	TECN	COMMENT
-20 ± 30	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

△(2300) DECAY MODES

	Mode				
Γ_1	Nπ				
Γ_2	ΣΚ				

△(2300) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.05	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$	
0.06 ± 0.02	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
0.03 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
0.08 ± 0.02	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(23)$	300) → ΣK			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
-0.017	CANDLIN	84	DPWA	$\pi^+ \rho \rightarrow \Sigma^+ K^+$

△(2300) REFERENCES

CANDLIN	0.4	NP B238 477	D. I. Carallia at al	(EDIN DAL LOWS)
	84	NP B238 477	D.J. Candlin et al.	(EDIN, RAL, LOWC)
CHEW	80	Toronto Conf. 123	D.M. Chew	(LBL) IJP
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL)
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) UF
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJF
HENDRY	78	PRL 41 222	A.W. Hendry	(IND, LBL) IJP
Also	81	ANP 136 1	A.W. Hendry	(IND)

 $\Delta(2350) D_{35}$

 $I(J^P) = \frac{3}{2}(\frac{5}{2}^-)$ Status: *

OMITTED FROM SUMMARY TABLE

△(2350) BREIT-WIGNER MASS

VALUE (MeV) ≈ 2350 OUR ESTIMATE	DOCUMENT ID		TECN	COMMENT
2171 ± 18	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
2400±125	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2305± 26	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

△(2350) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
264± 51	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
400 ± 150	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
300± 70	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

△(2350) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
2400 ± 125	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
-2×IMAGINARY PART					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
400 + 150	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	

△(2350) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
15±8	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
PHASE 6	DOCUMENT ID	TECN	COMMENT
- 70 + 70	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

△(2350) DECAY MODES

	Mode		
Γ_1	Nπ		
Γ_2	ΣΚ		

△(2350) BRANCHING RATIOS

Γ(Nπ)/Γ _{total}			Γ ₁ /Γ
VALUE	DOCUMENT ID	TECN	COMMENT
0.020 ± 0.003	MANLEY	92 IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.20 ±0.10	CUTKOSKY	80 IPWA	$\pi N \rightarrow \pi N$
0.04 ±0.02	HOEHLER	79 IPWA	$\pi N \rightarrow \pi N$

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(23)$	50) → Σ <i>K</i>				$(\Gamma_{1}\Gamma_{2})^{\frac{1}{12}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT	<u> </u>
< 0.015	CANDLIN	84	DPWA	$\pi^+ \rho \to$	$\Sigma^+ K^+$

△(2350) REFERENCES

92	PR D45 4002		D.M. Manley, E.M. Saleski	(KENT) IJP
84	PR D30 904		D.M. Manley et al.	(VPI)
84	NP B238 477		D.J. Candlin et al.	(EDIN, RAL, LÓWC)
80	Toronto Conf. 1	19	R.E. Cutkosky et al.	(CMU, LBL) IJP
79	PR D20 2839		R.E. Cutkosky et al.	(CMU, LBL)
79	PDAT 12-1		G. Hohler et al.	(KARLT) IJP
80	Toronto Conf. 3	3	R. Koch	(KARLT) IJP
	84 84 80 79 79	84 PR D30 904 84 NP B238 477 80 Toronto Conf. 1 79 PR D20 2839 79 PDAT 12-1	84 PR D30 904 84 NP 8238 477 80 Toronto Conf. 19 79 PR D20 2839 79 PDAT 12-1	84 NP B239 904 D.M. Manley et al. 84 NP B238 477 D.J. Candlin et al. 80 Toronto Conf. 19 R.E. Cutkosky et al. 79 PR D20 2899 R.E. Cutkosky et al. 79 PDAT 12-1 G. Hohler et al.

$\Delta(2390) F_{37}$	$I(J^{F})$	') =	$=\frac{3}{2}(\frac{7}{2})$	⁺) Status: *
OMITTED FROM SUMA	MARY TABLE			
△(2:	390) BREIT-WIGI	NER	MASS	;
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 2390 OUR ESTIMATE 2350±100	CUTKOSKY	RΛ	IPWA	$\pi N \rightarrow \pi N$
2425 ± 60	HOEHLER	79		$\pi N \rightarrow \pi N$
△(23	90) BREIT-WIGN	IER	WIDTI	1
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
300 ± 100	CUTKOSKY		IPWA	
300± 80	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
4	1(2390) POLE PO	SIT	ION	
REAL PART	0.000		TF61/	
VALUE (MeV) 2350 ± 100	DOCUMENT ID			$\pi N \rightarrow \pi N$
	CUTROSKT	ου	IPVVA	$\pi i V \rightarrow \pi i V$
-2×IMAGINARY PART	DOCUMENT ID		TECN	COMMENT
260±100	CUTKOSKY		IPWA	
∆ (239	90) ELASTIC POI	LE F	RESIDU	E
MODULUS r				
VALUE (MeV)	DOCUMENT ID			
12±6	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
PHASE 6				
<u>VALUE</u> (°) −90 ± 60	DOCUMENT ID			$\pi N \rightarrow \pi N$
				*** - ****
2	∆(2390) DECAY I	MOE	DES	
Mode			•	
Γ ₁ Νπ Γ ₂ ΣΚ				
Δ(2	390) BRANCHIN	G R	ATIOS	
$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ1/Γ
VALUE	DOCUMENT ID			COMMENT
0.08 ± 0.04 0.07 ± 0.04	CUTKOSKY HOEHLER		IPWA IPWA	
			, , , ,	
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta$				(Г₁Г₂) /2/Г
VALUE	DOCUMENT ID			COMMENT
< 0.015	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$
			~~~	

△(2390) REFERENCES

D.J. Candlin et al. R.E. Cutkosky et al. R.E. Cutkosky et al. G. Hohler et al. R. Koch

(EDIN, RAL, LOWC) (CMU, LBL) IJP (CMU, LBL) (KARLT) IJP (KARLT) IJP

CANDLIN CUTKOSKY Also HOEHLER Also

NP B238 477 Toronto Conf. 19 PR D20 2839 PDAT 12-1 Toronto Conf. 3

OMITTED FROM SUMN	MARY TABLE	
Δ(24	400) BREIT-WIGNER MASS	
VALUE (MeV)	DOCUMENT ID TECN COMMENT	
≈ 2400 OUR ESTIMATE		
2300±100	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	
2468 ± 50 2200 ± 100	HOEHLER 79 IPWA $\pi N \rightarrow \pi N$ HENDRY 78 MPWA $\pi N \rightarrow \pi N$	
	00) BREIT-WIGNER WIDTH	_
VALUE (MeV)	DOCUMENT ID TECN COMMENT	
330±100	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	
480±100	HOEHLER 79 IPWA $\pi N \rightarrow \pi N$	
450 ± 200	HENDRY 78 MPWA $\pi N \rightarrow \pi N$	
	1(2400) POLE POSITION	_
REAL PART		
VALUE (MeV)	DOCUMENT ID TECN COMMENT	_
2260 ± 60	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	
-2×IMAGINARY PART	DOCUMENT ID TECH CONSIDER	
VALUE (MeV) 320 ± 160	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
320 ± 100	COTROSKI BU IFYYA XIV XIV	
△(240	00) ELASTIC POLE RESIDUE	
MODULUS  r		
VALUE (MeV)	DOCUMENT ID TECN COMMENT	
8 ± 4	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	
PHASE θ		
VALUE (°)	DOCUMENT ID TECN COMMENT	
$-25\pm15$	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	
	∆(2400) DECAY MODES	
Mode		
$\Gamma_1 N\pi$ $\Gamma_2 \Sigma K$		
Γ ₁	2400) BRANCHING RATIOS	
$ \frac{\Gamma_1  N\pi}{\Gamma_2  \Sigma K} $ $ \Delta(2) $ $ \Gamma(N\pi)/\Gamma_{\text{total}} $	2400) BRANCHING RATIOS	
$\Gamma_1 N\pi$ $\Gamma_2 \Sigma K$ $\Delta (2)$ $\Gamma(N\pi)/\Gamma_{\text{total}}$ VALUE	DOCUMENT ID TECN COMMENT	
$ \Gamma_{1}  N\pi \\ \Gamma_{2}  \Sigma K $ $ \Delta(2) $ $ \Gamma(N\pi)/\Gamma_{\text{total}} $ $ \frac{VALUE}{0.05 \pm 0.02} $	DOCUMENT ID TECN COMMENT  CUTKOSKY 80 IPWA $\pi N \to \pi N$	
Γ ₁ Nπ Γ ₂ Σ Κ Δ(2 Γ(Nπ)/Γ _{total} VALUE 0.05±0.02 0.06±0.03	DOCUMENT ID TECN COMMENT  CUTKOSKY 80 IPWA $\pi N \to \pi N$ HOEHLER 79 IPWA $\pi N \to \pi N$	
Γ ₁ Nπ Γ ₂ Σ Κ  Δ(2  Γ(Nπ)/Γtotal  νΔLUE  0.05±0.02  0.06±0.03  0.10±0.03	DOCUMENT IDTECNCOMMENTCUTKOSKY80IPWA $\pi N \rightarrow \pi N$ HOEHLER79IPWA $\pi N \rightarrow \pi N$ HENDRY78MPWA $\pi N \rightarrow \pi N$	
$ \begin{array}{c c} \Gamma_1 & N\pi \\ \Gamma_2 & \Sigma K \end{array} $ $ \Delta(2) $ $ \Gamma(N\pi)/\Gamma_{\text{total}} $ $ \frac{NAUUE}{0.05 \pm 0.02} $ $0.05 \pm 0.03 $ $0.10 \pm 0.03 $ $ (\Gamma_I \Gamma_I)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \Delta $	DOCUMENT ID TECN COMMENT  CUTKOSKY 80 IPWA $\pi N \to \pi N$ HOEHLER 79 IPWA $\pi N \to \pi N$ HENDRY 78 MPWA $\pi N \to \pi N$	
	DOCUMENT ID  TECN COMMENT  CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ HOEHLER 79 IPWA $\pi N \rightarrow \pi N$ HENDRY 78 MPWA $\pi N \rightarrow \pi N$ $\Lambda(2400) \rightarrow \Sigma K$ DOCUMENT ID JECN COMMENT	2)
$ \begin{array}{c c} \Gamma_1 & N\pi \\ \Gamma_2 & \Sigma K \end{array} $ $ \Delta(2) $ $ \Gamma(N\pi)/\Gamma_{\text{total}} $ $ \frac{NAUUE}{0.05 \pm 0.02} $ $0.05 \pm 0.03 $ $0.10 \pm 0.03 $ $ (\Gamma_I \Gamma_I)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \Delta $	DOCUMENT ID TECN COMMENT  CUTKOSKY 80 IPWA $\pi N \to \pi N$ HOEHLER 79 IPWA $\pi N \to \pi N$ HENDRY 78 MPWA $\pi N \to \pi N$	2)
$ \Gamma_{1}  N\pi \\ \Gamma_{2}  \Sigma K $ $ \Delta(2) $ $ \Gamma(N\pi)/\Gamma_{\text{total}} $ $ \frac{VALUE}{0.05 \pm 0.02} $ $0.06 \pm 0.03$ $0.10 \pm 0.03$ $(\Gamma_{1}\Gamma_{1})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \Delta $ $ \frac{VALUE}{< 0.015} $	DOCUMENT ID  TECN COMMENT  CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ HOEHLER 79 IPWA $\pi N \rightarrow \pi N$ HENDRY 78 MPWA $\pi N \rightarrow \pi N$ $\Lambda(2400) \rightarrow \Sigma K$ DOCUMENT ID JECN COMMENT	2)
	DOCUMENT ID  TECN COMMENT  CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ HOEHLER 79 IPWA $\pi N \rightarrow \pi N$ HENDRY 78 MPWA $\pi N \rightarrow \pi N$ CA(2400) $\rightarrow \Sigma K$ DOCUMENT ID CANDLIN 84 DPWA $\pi^+ p \rightarrow \Sigma^+ K^+$ A(2400) REFERENCES  D.J. Candlin et al. (EDIN, RAL, LC	2)
$\Gamma_1$ $N\pi$ $\Gamma_2$ $\Sigma K$ Δ(2 $\Gamma(N\pi)/\Gamma_{total}$ $VALUE$ 0.05±0.02 0.06±0.03 0.10±0.03  ( $\Gamma_i\Gamma_f$ ) $\frac{1}{2}$ / $\Gamma_{total}$ in $N\pi \to \Delta$ $VALUE$ <0.015  CANDLIN 84 NP 8238 477 CUTKOSKY 80 Toronto Conf. 1	DOCUMENT ID  TECN COMMENT  CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ HOEHLER 79 IPWA $\pi N \rightarrow \pi N$ HENDRY 78 MPWA $\pi N \rightarrow \pi N$ M(2400) $\rightarrow \Sigma K$ DOCUMENT ID CANDLIN 84 DPWA $\pi^+ p \rightarrow \Sigma^+ K^+$ A(2400) REFERENCES  D.J. Candlin et al. (EDIN, RAL, LC) 19 R.E. Cutbosky et al. (CMU,	2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DOCUMENT ID  TECN  CUTKOSKY 80 IPWA $\pi N \to \pi N$ HOEHLER 79 IPWA $\pi N \to \pi N$ HENDRY 78 MPWA $\pi N \to \pi N$ M(2400) $\to \Sigma K$ DOCUMENT ID  CANDLIN 84 DPWA $\pi^+ p \to \Sigma^+ K^+$ A(2400) REFERENCES  D.J. Candlin et al.  R.E. Cutkosky et al.  G. Hohler et al.  (CMU,  R.E. Cutkosky et al.  G. Hohler et al.  (CMU,  (CM	LBI

# Baryon Particle Listings $\Delta(2420)$ , $\Delta(2750)$ , $\Delta(2950)$

 $\Delta(2420) H_{3,11}$ 

MODULUE I-I

 $I(J^P) = \frac{3}{2}(\frac{11}{2}^+)$  Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters 111B (1982).

#### △(2420) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN COMMENT
2300 to 2500 (≈ 2420) OUR EST	IMATE		-
2400 ±125	CUTKOSKY	80	IPWA $\pi N \rightarrow \pi N$
2416 ± 17	HOEHLER	79	IPWA $\pi N \rightarrow \pi N$
2400 ± 60	HENDRY	78	MPWA $\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fits	i, limits, etc. • • •
2400	CANDLIN	84	DPWA $\pi^+ \rho \rightarrow \Sigma^+ K^+$
2358.0± 9.0	CHEW	80	BPWA $\pi^+ p \rightarrow \pi^+ p$

#### △(2420) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN COMMEN	r
300 to 500 (≈ 400) OUR ES	TIMATE			
450 ±150	CUTKOSKY	80	IPWA πN → :	τ N
340 ± 28	HOEHLER	79	IPWA $\pi N \rightarrow :$	τN
460 ±100	HENDRY	78	MPWA $\pi N \rightarrow :$	₹ N
• • We do not use the follow	wing data for average	s, fit:	, limits, etc. • •	•
400	CANDLIN	84	DPWA $\pi^+ \rho \rightarrow$	$\Sigma^+ K^+$
202.2± 45.0	CHEW	80	BPWA $\pi^+p \rightarrow$	$\pi^+ p$

#### △(2420) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2260 to 2400 (≈ 2330) OUR EST	IMATE			
2300	¹ HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
2360±100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
350 to 750 (≈ 550) OUR ESTIMA	TE			
620	¹ HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
$420 \pm 100$	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

#### △(2420) ELASTIC POLE RESIDUE

MODULUS [r]	0.000.000.00		
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
39	HOEHLER 93	3 ARGD	$\pi N \rightarrow \pi N$
18±6	CUTKOSKY 8	) IPWA	$\pi N \rightarrow \pi N$
PHASE 0	DOCUMENT ID	TECN	COMMENT
- 60	HOEHLER 93	3 ARGD	$\pi N \rightarrow \pi N$
$-30 \pm 40$	CUTKOSKY 8	IPWA	$\pi N \rightarrow \pi N$

#### △(2420) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

Mode	Fraction $(\Gamma_i/\Gamma)$
Γ ₁ Νπ Γ ₂ ΣΚ	5-15 %

#### △(2420) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.05 to 0.15 OUR ESTIMATE			_	
$0.08 \pm 0.03$	CUTKOSKY	80	<b>IPWA</b>	$\pi N \rightarrow \pi N$
$0.08 \pm 0.015$	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$0.11 \pm 0.02$	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	g data for average	es, fit	s, limits,	etc. • • •
0.22	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(2)$	420) → ΣK			(Γ₁Γ₂) ^½ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
~0.016	CANDLIN	84	DPWA	$\pi^+ \rho \rightarrow \Sigma^+ K^+$

### △(2420) FOOTNOTES

#### △(2420) REFERENCES

HOEHLER	93	π N Newsletter 9	1 G. Hohler	(KARL)
CANDLIN	84	NP B238 477	D.J. Candlin et al.	(EDIN, RAL, LOWC)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
CHEW	80	Toronto Conf. 12	3 D.M. Chew	(LBL) IJP
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also	79	PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL)
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
HENDRY	78	PRL 41 222	A.W. Hendry	(IND, LBL) IJP
Also	81	ANP 136 I	A.W. Hendry	(IND)

 $\Delta(2750) I_{3,13}$ 

 $I(J^P) = \frac{3}{2}(\frac{13}{2})$  Status: **

OMITTED FROM SUMMARY TABLE

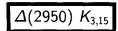
#### Δ(2750) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 2750 OUR ESTIMATE				
2794 ± 80	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
2650 ±100	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$

#### △(2750) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID	TEC	N COMME	NT
350±100	HOEHLER	79 IPV	VA πN →	πN
500 ± 100	HENDRY	78 MP	WA πN →	π <b>N</b>

#### △(2750) DECAY MODES


	Mode					
Γ ₁	Νπ		 			_

#### △(2750) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					$\Gamma_1/\Gamma$
VALUE	DOCUMENT ID	1	TECN	COMMENT	
$0.04 \pm 0.015$	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
$0.05 \pm 0.01$	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	

#### △(2750) REFERENCES

HOEHLER Also	79 80	PDAT 12-1 Toronto Conf. 3	G. Hohler <i>et al.</i> R. Koch	(KARLT) IJP (KARLT) IJP
HENDRY	78	PRL 41 222	A.W. Hendry	(IND, LBL) IJP
Also	81	ANP 136 1	A.W. Hendry	(IND)



 $I(J^P) = \frac{3}{2}(\frac{15}{2}^+)$  Status: **

OMITTED FROM SUMMARY TABLE

#### Δ(2950) BREIT-WIGNER MASS

VALUE (MeV) ≈ 2950 OUR ESTIMATE	DOCUMENT ID		TECN	COMMENT
2990±100	HOEHLER 7	79	IPWA	$\pi N \rightarrow \pi N$
$2850 \pm 100$	HENDRY 7	78	MPWA	$\pi N \rightarrow \pi N$

#### △(2950) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
330±100	HOEHLER 79	IPWA	$\pi N \rightarrow \pi N$
$700 \pm 200$	HENDRY 78	MPWA	$\pi N \rightarrow \pi N$

#### △(2950) DECAY MODES

	Mode		 	_	 	 	
$\Gamma_1$	Nπ						-

#### △(2950) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				$\Gamma_1/\Gamma$
VALUE	DOCUMENT ID	TECN_	COMMENT	
$0.04 \pm 0.02$	HOEHLER 79	IPWA	$\pi N \rightarrow \pi N$	
$0.03 \pm 0.01$	HENDRY 78	MPWA	$\pi N \rightarrow \pi N$	

#### △(2950) REFERENCES

HENDRY 78 PRL 41 222 A.W. Hendry (IND, LB					(KARLT) (KARLT) (IND, LBL) (IND)
-------------------------------------------	--	--	--	--	-------------------------------------------

¹ See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and  $\Delta$  resonances as determined from Argand diagrams of  $\pi$  N elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

### $\Delta (\sim$ 3000 Region) Partial-Wave Analyses

#### OMITTED FROM SUMMARY TABLE

We list here miscellaneous high-mass candidates for isospin-3/2 resonances found in partial-wave analyses.

Our 1982 edition also had a  $\Delta$ (2850) and a  $\Delta$ (3230). The evidence for them was deduced from total cross-section and 180° elastic cross-section measurements. The  $\Delta$ (2850) has been resolved into the  $\Delta$ (2750)  $I_{3,13}$  and  $\Delta$ (2950)  $K_{3,15}$ . The  $\Delta$ (3230) is perhaps related to the  $K_{3,13}$  of HENDRY 78 and to the  $L_{3,17}$  of KOCH 80.

#### △(~ 3000) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 3000 OUR ESTIMATE				
3300	¹ косн	80	IPWA	$\pi N \rightarrow \pi N L_{3.17}$ wave
3500	¹ KOCH	80	IPWA	$\pi N \rightarrow \pi N M_{3.19}$ wave
$2850 \pm 150$	HENDRY	78	MPWA	$\pi N \rightarrow \pi N I_{3.11}$ wave
$3200 \pm 200$	HENDRY	78	MPWA	$\pi N \rightarrow \pi N K_{3,13}$ wave
$3300 \pm 200$	HENDRY	78	MPWA	$\pi N \rightarrow \pi N L_{3.17}$ wave
$3700 \pm 200$	HENDRY	78	MPWA	$\pi N \rightarrow \pi N M_{3.19}$ wave
$4100\pm300$	HENDRY	78	MPWA	$\pi N \rightarrow \pi N N_{3,21}$ wave

#### △(~ 3000) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN COMMENT
$700\pm200$	HENDRY	78	MPWA $\pi N \rightarrow \pi N I_{3,11}$ wave
$1000 \pm 300$	HENDRY	78	MPWA $\pi N \rightarrow \pi N K_{3,13}$ wave
$1100 \pm 300$	HENDRY	78	MPWA $\pi N \rightarrow \pi N L_{3,17}$ wave
$1300 \pm 400$	HENDRY	78	MPWA $\pi N \rightarrow \pi N M_{3,19}$ wave
$1600 \pm 500$	HENDRY	78	MPWA $\pi N \rightarrow \pi N N_{3,21}$ wave

#### △(~ 3000) DECAY MODES

	Mode							
Γ ₁	Νπ							
		△(~ 300	0) BRANCHI	NG	RATIOS	;		
Γ(N ₂	r)/F _{total}							Γ1/Γ
VALUE			DOCUMENT ID		TECN	COMME	VT	
0.06	±0.02		HENDRY	78	MPWA	$\pi N \rightarrow$	πN	13.11 wave
0.045	±0.02		HENDRY	78	MPWA	$\pi N \rightarrow$	πN	K _{3.13} wave
0.03	$\pm 0.01$		HENDRY	78	MPWA	$\pi N \rightarrow$	πN	L _{3.17} wave
0.025	±0.01		HENDRY	78	MPWA	$\pi N \rightarrow$	πN	M _{3.19} wave
0.018	±0.01		HENDRY	78	MPWA	π N →	π N	N _{3,21} wave

#### $\Delta$ ( $\sim$ 3000) FOOTNOTES

 $^1\,\mathrm{In}$  addition, KOCH 80 reports some evidence for an  $S_{31}$   $\Delta(2700)$  and a  $P_{33}$   $\Delta(2800).$ 

#### △(~ 3000) REFERENCES

KOCH	80	Toronto Conf. 3	R. Koch	(KARLT) IJP
HENDRY	78	PRL 41 222	A.W. Hendry	(IND, LBL) IJP
Also	81	ANP 136 1	A.W. Hendry	(IND)

#### Λ

# $\Lambda$ BARYONS (S = -1, I = 0)

 $\Lambda^0 = uds$ 

Λ

$$I(J^P) = O(\frac{1}{2}^+)$$
 Status: ***

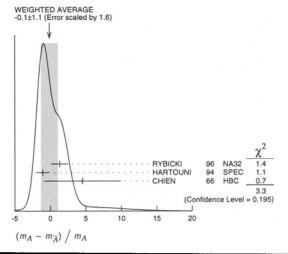
We have omitted some results that have been superseded by later experiments. See our earlier editions.

#### A MASS

The fit uses 1.  $\Sigma^+$ ,  $\Sigma^0$ ,  $\Sigma^-$  mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1115.683±0.006 OUR	FIT				
1115.683±0.006 OUR	AVERAGE				
1115.678 ± 0.006 ± 0.00	06 20k	HARTOUNI	94	SPEC	pp 27.5 GeV/c
$1115.690 \pm 0.008 \pm 0.00$	06 18k	¹ HARTOUNI	94	SPEC	pp 27.5 GeV/c
<ul> <li>• • We do not use</li> </ul>	the followir	ig data for average	s, fits	, limits,	etc. • • •
1115.59 ±0.08	935	HYMAN	72	HEBC	
1115.39 ±0.12	195	MAYEUR	67	<b>EMUL</b>	
1115.6 ±0.4		LONDON	66	HBC	
1115.65 ±0.07	488	² SCHMIDT	65	HBC	
1115.44 ±0.12		³ BHOWMIK	63	RVUE	
-					

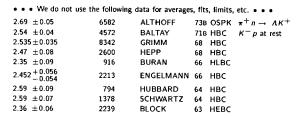
 1  We assume  $\it CPT$  invariance: this is the  $\overline{\it A}$  mass as measured by HARTOUNI 94. See below for the fractional mass difference, testing  $\it CPT$ .

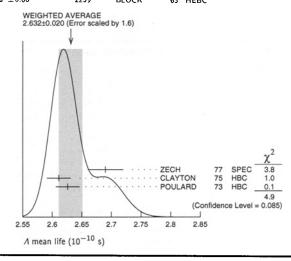

The SCHMIDT 65 masses have been reevaluated using our April 1973 proton and  $K^{\pm}$  and  $\pi^{\pm}$  masses. P. Schmidt, private communication (1974).

³ The mass has been raised 35 keV to take into account a 46 keV increase in the proton mass and an 11 keV decrease in the  $\pi^{\pm}$  mass (note added Reviews of Modern Physics **39** 1 (1967)).

$$(m_A - m_{\overline{A}}) / m_A$$

A test of CPT invariance.


VALUE (units 10 ⁻⁵ )	EVTS	DOCUMENT ID		TECN	COMMENT
- 0.1 ± 1.1 OUR A	VERAGE	Error includes sca below.	ale fa	ctor of 1	1.6. See the ideogram
$+ 1.3 \pm 1.2$	31k	⁴ RYBICKI	96	NA32	$\pi^-$ Cu, 230 GeV
$-1.08 \pm 0.90$		HARTOUNI	94	SPEC	pp 27.5 GeV/c
$4.5 \pm 5.4$		CHIEN			6.9 GeV/c <del>p</del> p
• • We do not use to	he following	data for average	s, fit	s, limits,	etc. • • •
$-26 \pm 13$		BADIER	67	HBC	2.4 GeV/c pp
⁴ RYBICKI 96 is an a	nalysis of o	ld ACCMOR (NA	(32)	data.	




#### **∧ MEAN LIFE**

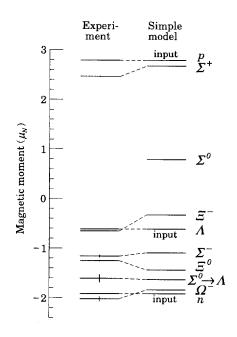
Measurements with an error  $\geq 0.1\times 10^{-10}$  s have been omitted altogether, and only the latest high-statistics measurements are used for the average.

VALUE (10-10 s)	EVTS	DOCUMENT ID		TECN	COMMENT
2.632±0.020 OUR	AVERAGE	Error includes scale	fact	or of 1.6	. See the ideogram below.
2.69 ±0.03	53k	ZECH	77	SPEC	Neutral hyperon beam
$2.611 \pm 0.020$	34k	CLAYTON	75	HBC	0.96-1.4 GeV/c K-p
$2.626 \pm 0.020$	36k	POULARD	73	HBC -	0.4-2.3 GeV/c K-p





 $(\tau_A - \tau_{\overline{A}}) / \tau_A$ 


A test of CPT invariance.

VALUE	DOCUMENT ID		TECN	COMMENT
0.044±0.085	BADIER	67	нвс	2.4 GeV/c pp

#### BARYON MAGNETIC MOMENTS

Written 1994 by C.G. Wohl (LBNL).

The figure shows the measured magnetic moments of the stable baryons. It also shows the predictions of the simplest quark model, using the measured p, n, and  $\Lambda$  moments as input. In this model, the moments are [1]



$$\begin{array}{ll} \mu_p = (4\mu_u - \mu_d)/3 & \mu_n = (4\mu_d - \mu_u)/3 \\ \mu_{\varSigma^+} = (4\mu_u - \mu_s)/3 & \mu_{\varSigma^-} = (4\mu_d - \mu_s)/3 \\ \mu_{\varXi^0} = (4\mu_s - \mu_u)/3 & \mu_{\varXi^-} = (4\mu_s - \mu_d)/3 \\ \mu_{\varLambda} = \mu_s & \mu_{\varSigma^0} = (2\mu_u + 2\mu_d - \mu_s)/3 \\ \mu_{\varOmega^-} = 3\mu_s \end{array}$$

and the  $\Sigma^0 \to \Lambda$  transition moment is

$$\mu_{\Sigma^0\Lambda} = (\mu_d - \mu_u)/\sqrt{3} .$$

The quark moments that result from this model are  $\mu_u=+1.852\,\mu_N,\ \mu_d=-0.972\,\mu_N,\$ and  $\mu_s=-0.613\,\mu_N.$  The corresponding effective quark masses, taking the quarks to be Dirac point particles, where  $\mu=q\hbar/2m,$  are 338, 322, and 510 MeV. As the figure shows, the model gives a good first approximation to the experimental moments. For efforts to make a better model, we refer to the literature [2].

#### References

- See, for example, D.H. Perkins, Introduction to High Energy Physics (Addison-Wesley, Reading, MA, 1987), or D. Griffiths, Introduction to Elementary Particles (Harper & Row, New York, 1987).
- See, for example, J. Franklin, Phys. Rev. **D29**, 2648 (1984);
   H.J. Lipkin, Nucl. Phys. **B241**, 477 (1984);
   K. Suzuki, H. Kumagai, and Y. Tanaka, Europhys. Lett. 2,

109 (1986); S.K. Gupta and S.B. Khadkikar, Phys. Rev. **D36**, 307

(1987);

M.I. Krivoruchenko, Sov. J. Nucl. Phys. **45**, 109 (1987); L. Brekke and J.L. Rosner, Comm. Nucl. Part. Phys. **18**, 83 (1988).

K.-T. Chao, Phys. Rev. **D41**, 920 (1990) and references cited therein Also, see references cited in discussions of results in the experimental papers..

#### A MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" above. Measurements with an error  $~\geq 0.15~\mu_{N}$  have been omitted.

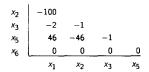
VALUE $(\mu_N)$	EVTS	DOCUMENT ID		TECN	COMMENT
$-0.613 \pm 0.004$	OUR AVERAGE				
$-0.606 \pm 0.015$	200k	COX	81	SPEC	
$-0.6138 \pm 0.0047$	3M	SCHACHIN	78	SPEC	
$-0.59 \pm 0.07$	350k	HELLER	77	SPEC	
$-0.57 \pm 0.05$	1.2M	BUNCE	76	SPEC	
$-0.66 \pm 0.07$	1300	DAHL-JENSE!	V 71	<b>EMUL</b>	200 kG field

#### A ELECTRIC DIPOLE MOMENT

A nonzero value is forbidden by both  ${\cal T}$  invariance and  ${\cal P}$  invariance.

VALUE (10 ⁻¹⁶ ecm)	CL%	DOCUMENT I	<u> </u>	TECN	
< 1.5	95	5 PONDROM	81	SPEC	
• • • We do not	use the following	ng data for avera	ges, fit	s, limits, etc. 🔹 🔹	•
<100	95	⁶ BARONI	71	EMUL	
< 500	95	GIBSON	66	EMUL	
5 PONDROM 8	B1 measures (-	$3.0 \pm 7.4) \times 10^{-1}$	-17 _{e-0}	m.	
6 BARONI 71 r	neasures (-5.9	$3.0 \pm 7.4) \times 10^{-1} \pm 2.9) \times 10^{-15}$	e-cm.		

#### A DECAY MODES


	Mode	Fraction $(\Gamma_i/\Gamma)$
$\Gamma_1$	ρπ-	(63.9 ±0.5 ) %
$\Gamma_2$	$n\pi^0$	$(35.8 \pm 0.5)\%$
$\Gamma_3$	$n\gamma$	$(1.75\pm0.15)\times10^{-3}$
$\Gamma_4$	$p\pi^-\gamma$	[a] ( 8.4 $\pm 1.4$ ) $\times 10^{-4}$
$\Gamma_5$	$pe^-\overline{\nu}_e$	$(8.32\pm0.14)\times10^{-4}$
$\Gamma_6$	$\rho \mu^- \overline{\nu}_{\mu}$	$(1.57\pm0.35)\times10^{-4}$

[a] See the Listings below for the pion momentum range used in this measurement.

#### **CONSTRAINED FIT INFORMATION**

An overall fit to 5 branching ratios uses 20 measurements and one constraint to determine 5 parameters. The overall fit has a  $\chi^2=$  10.5 for 16 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients  $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$ , in percent, from the fit to the branching fractions,  $x_i \equiv \Gamma_i / \Gamma_{\rm total}$ . The fit constrains the  $x_i$  whose labels appear in this array to sum to one.



#### A BRANCHING RATIOS

$\Gamma(p\pi^-)/\Gamma(N\pi)$	FUTE	DOCUMENT ID		TECN	$\Gamma_1/(\Gamma_1+\Gamma_2)$
0.641 ± 0.005 OUR FIT	EVTS	DOCUMENT ID		TECN	COMMENT
0.640 ± 0.005 OUR AVE	PAGE				
0.646 ± 0.008	4572	BALTAY	710	нвс	K [™] p at rest
0.635 ± 0.007	6736	DOYLE		HBC	$\pi^- p \rightarrow \Lambda K^0$
0.643 ± 0.016	903	HUMPHREY		HBC	$\pi^- \rho \rightarrow \Lambda K^-$
$0.624 \pm 0.030$	903	CRAWFORD		HBC	$\pi^- p \rightarrow \Lambda \kappa^0$
0.024 ± 0.030		CRAWFORD	398	пвс	$\pi  p \rightarrow \Lambda K$
$\Gamma(n\pi^0)/\Gamma(N\pi)$					$\Gamma_2/(\Gamma_1+\Gamma_2)$
VALUE	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	
0.359 ± 0.005 OUR FIT					
0.310 ±0.028 OUR AVE	RAGE				
$0.35 \pm 0.05$		BROWN	63	HLBC	
$0.291 \pm 0.034$	75	CHRETIEN	63	HLBC	
$\Gamma(n\gamma)/\Gamma_{\text{total}}$					Г ₃ /Г
VALUE (units 10 ⁻³ ) 1.75±0.15 OUR FIT	EVTS	DOCUMENT ID		TECN	COMMENT
1.75±0.15	1816	LARSON	93	SPEC	K−p at rest
• • • We do not use the					•
$1.78 \pm 0.24 ^{+0.14}_{-0.16}$	287	NOBLE	92	SPEC	See LARSON 93
$\Gamma(n\gamma)/\Gamma(n\pi^0)$					Γ ₃ /Γ ₂
VALUE (units 10 ⁻³ )	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use th					
2.86 ± 0.74 ± 0.57	24	BIAGI	86	SPEC	SPS hyperon beam
$\Gamma(\rho\pi^-\gamma)/\Gamma(\rho\pi^-)$					$\Gamma_4/\Gamma_1$
VALUE (units 10-3)	EVTS	DOCUMENT ID		TECN	COMMENT
1.32±0.22	72	BAGGETT	720	нвс	$\pi^- < 95 \text{ MeV}/c$
					•
$\Gamma(pe^-\overline{\nu}_e)/\Gamma(p\pi^-)$					Γ ₅ /Γ ₁
VALUE (units 10 ⁻³ )	EVTS	DOCUMENT ID		TECN	COMMENT
1.301 ±0.019 OUR FIT					
1.301 ±0.019 OUR AVE	RAGE				
$1.335 \pm 0.056$	7111	BOURQUIN	83	<b>SPEC</b>	SP5 hyperon beam
$1.313 \pm 0.024$	10k	WISE	80	5PEC	**
1.23 ±0.11	544	LINDQUIST	77	SPEC	$\pi^- p \rightarrow \kappa^0 \Lambda$
1.27 ±0.07	1089	KATZ	73	нвс	•
1.31 ±0.06	1078	ALTHOFF	71	OSPK	
1.17 ±0.13	86	CANTER	71	HBC	K [−] p at rest
$1.20 \pm 0.12$	143	MALONEY	69	нвс	
$1.17 \pm 0.18$	120	BAGLIN	64	FBC	K freon 1.45 GeV/c
1.23 ±0.20	150	ELY	63	FBC	, .
• • • We do not use th		data for averages	. fits	. limits.	etc. • • •
1.32 ±0.15		LINDQUIST			See LINDQUIST 77

$\Gamma(\rho\mu^-\overline{\nu}_{\mu})/\Gamma(N_1)$	т)			$\Gamma_6/(\Gamma_1+\Gamma_2)$
VALUE (units 10-4)	EVTS	DOCUMENT ID	TECN	COMMENT
1.57±0.35 OUR FIT 1.57±0.35 OUR AV				
1.4 ±0.5	14	BAGGETT	72в НВС	K⁻p at rest
$2.4 \pm 0.8$	9	CANTER	718 HBC	K [™] p at rest
$1.3 \pm 0.7$	3	LIND	64 RVUE	
1.5 ±1.2	2	RONNE	64 FBC	

⁸ Changed by us from  $\Gamma(pe^-\overline{\nu}_e)/\Gamma(N\pi)$  because  $\Gamma(pe^-\nu)/\Gamma(p\pi^-)$  is the directly mea-

sured quantity.

#### **A DECAY PARAMETERS**

See the "Note on Baryon Decay Parameters" in the neutron Listings, Some early results have been omitted.

#### $\alpha_-$ FOR $\Lambda \to p\pi^-$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.642±0.013 OUR AV	ERAGE					
$0.584 \pm 0.046$	8500	ASTBURY	75	SPEC		
$0.649 \pm 0.023$	10325	CLELAND	72	OSPK		
$0.67 \pm 0.06$	3520	DAUBER	69	HBC	From <b>=</b> decay	
$0.645 \pm 0.017$	10130	OVERSETH	67	OSPK	Λ from $π$ ⁻ $p$	
$0.62 \pm 0.07$	1156	CRONIN	63	CNTR	$\Lambda$ from $\pi^- p$	

# $\phi$ ANGLE FOR $\Lambda \rightarrow \rho \pi^-$

VALUE (°)	EVTS	DOCUMENT ID		TECN	COMMENT	
- 6.5± 3.5 OUR	AVERAGE					
$-7.0\pm4.5$	10325	CLELAND	72	OSPK	$\Lambda$ from $\pi^- p$	
$-8.0 \pm 6.0$	10130	OVERSETH	67	OSPK	A from $\pi^- p$	
$13.0 \pm 17.0$	1156	CRONIN	63	OSPK	A from $\pi^- \rho$	

 $(\tan\phi=\beta\ /\ \gamma)$ 

### $\alpha_0 / \alpha_- = \alpha(\Lambda \rightarrow \pi \pi^0) / \alpha(\Lambda \rightarrow \pi \pi^-)$

~0 / <del>~</del> = -	~(·· · · · · / /	~(· • • • •				
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.01 \pm 0.07$	OUR AVERAGE					
$1.000 \pm 0.068$	4760	9 OLSEN	70	OSPK	$\pi^+ n \rightarrow \Lambda K^+$	
$1.10 \pm 0.27$		CORK	60	CNTR		

 $^{9}\,\text{OLSEN}$  70 compares proton and neutron distributions from  $\Lambda$  decay.

### $\left[\alpha_{-}(\Lambda) + \alpha_{+}(\overline{\Lambda})\right] / \left[\alpha_{-}(\Lambda) - \alpha_{+}(\overline{\Lambda})\right]$

Zero if CP is conserved;  $\alpha_-$  and  $\alpha_+$  are the asymmetry parameters for  $\Lambda \to p\pi^-$ 

una /ı	p n accus.				
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.03±0.06 OU	IR AVERAGE				
$+0.01 \pm 0.10$	770	TIXIER	88	DM2	$J/\psi \rightarrow \Lambda \overline{\Lambda}$
$-0.07 \pm 0.09$	4063	BARNES	87	CNTR	pρ → ΛΛ LEAR
$-0.02 \pm 0.14$	10k	¹⁰ CHAUVAT	85	CNTR	pp, pp ISR

 $^{10}\, {\rm CHAUVAT}$  85 actually gives  $\alpha_+(\overline{\varLambda})/\alpha_-(\varLambda) \approx -1.04 \pm 0.29.$  Assumes polarization is same in  $\overline{p}p\to \overline{\Lambda}X$  and  $pp\to \overline{\Lambda}X$ . Tests of this assumption, based on C-invariance and fragmentation, are satisfied by the data.

 $g_A$  /  $g_V$  FOR  $\Lambda \to pe^-\overline{\nu}_e$  Measurements with fewer than 500 events have been omitted. Where necessary, signs have been changed to agree with our conventions, which are given in the "Note on Baryon Decay Parameters" in the neutron Listings. The measurements all assume that the form factor  $g_2 \approx 0$ . See also the footnote on DWORKIN 90.

#### <u>VALUE</u> <u>EVTS</u> -0.718±0.015 OUR AVERAGE DOCUMENT ID TECN COMMENT $-0.719\pm0.016\pm0.012$ 37k ¹¹ DWORKIN 90 SPEC $e\nu$ angular corr. 7111 BOURQUIN 83 SPEC $\Xi \rightarrow \Lambda \pi^-$ 10k 12 WISE 81 SPEC $e\nu$ angular 7111 $-0.734 \pm 0.031$ B1 SPEC ev angular correl.

 $\bullet$   $\bullet$   $\bullet$  We do not use the following data for averages, fits, limits, etc.  $\bullet$   $\bullet$ 817 ALTHOFF 73 OSPK Polarized A

12 This experiment measures only the absolute value of  $g_A/g_V$ .

#### **A REFERENCES**

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

RYBICKI	96	APP B27 2155	K. Rybicki	
HARTOUNI	94	PRL 72 1322	E.P. Hartouni et al.	(BNL E766 Collab.)
Also	94B	PRL 72 2821 (erratum)	E.P. Hartouni et al.	(BNL E766 Collab.)
LARSON NOBLE	93 92	PR D47 799 PRL 69 414	K.D. Larson et al. A.J. Noble et al.	(BNL-811 Collab.) (BIRM, BOST, BRCO+)
DWORKIN	90	PR D41 780	J. Dworkin et al.	(MICH, WISC, RUTG+)
TIXIER	88	PL B212 523	M.H. Tixier et al.	(DM2 Collab.)
BARNES	87	PL B199 147	P.D. Barnes et al.	(CMU, SACL, LANL+)
BIAGI	86	ZPHY C30 201	S.F. Biagi et al.	(BRIS, CERN, GEVA+)
CHAUVAT	85	PL 163B 273	P. Chauvat et al.	(CERN, CLER, UCLA+)
BOURQUIN	83	ZPHY C21 1	M.H. Bourquin et al.	(BRIS, GEVA, HEIDP+)
cox	81	PRL 46 877	P.T. Cox et al.	(MICH, WISC, RUTG, MINN+)
PONDROM	81	PR D23 814	L. Pondrom et al.	(WISC, MICH, RUTG+)
WISE WISE	81 80	PL 98B 123	J.E. Wise et al.	(MASA, BNL)
SCHACHIN	78	PL 91B 165 PRL 41 1348	J.E. Wise et al. L. Schachinger et al.	(MASA, BNL) (MICH, RUTG, WISC)
HELLER	77	PL 68B 480	K. Heller et al.	(MICH, WISC, HEIDH)
LINDQUIST	77	PR D16 2104	J. Lindquist et al.	(EFI, OSU, ANL)
Also	76	JPG 2 L211	J. Lindquist et al.	(EF), WUSL, OSU+)
ZECH	77	NP B124 413	G. Zech et al.	(SIEG, CERN, DORT, HEIDH)
BUNCE	76	PRL 36 1113	G.R.M. Bunce et al.	(WISC, MICH, RUTG)
ASTBURY	75	NP B99 30	P. Astbury et al.	(LOIC, CERN, ETH+)
CLAYTON	75	NP B95 130	E.F. Clayton et al.	(LOIC, RHEL)
ALTHOFF	73	PL 43B 237	K.H. Althoff et al.	(CERN, HEID)
ALTHOFF	73B	NP B66 29	K.H. Althoff et al.	(CERN, HEID)
KATZ	73	Thesis MDDP-TR-74-044		(DMD)
POULARD	73	PL 46B 135	G. Poulard, A. Givernaud, A	
BAGGETT BAGGETT	72B 72C	ZPHY 252 362 PL 42B 379	M.J. Baggett et al.	(HEID)
CLELAND	72	NP B40 221	M.J. Baggett et al. W.E. Cleland et al.	(CERN, GEVA, LUND)
HYMAN	72	PR D5 1063	L.G. Hyman et al.	(ANL, CMU)
ALTHOFF	71	PL 37B 531	K.H. Althoff et al.	(CERN, HEID)
BALTAY	71B	PR D4 670	C. Baltay et al.	(COLU, BING)
BARONI	71	LNC 2 1256	G. Baroni, S. Petrera, G. Ro	
CANTER	71	PRL 26 868	J. Canter et al.	(STON, COLU)
CANTER		PRL 27 59	J. Canter et al.	(STON, COLU)
DAHL-JENSEN		NC 3A 1	E. Dahl-Jensen et al.	(CERN, ANKA, LAUS+)
LINDQUIST	71	PRL 27 612	J. Lindouist et al.	(EFI, WUSL, OSU+)
OLSEN	70	PRL 24 843	S.L. Olsen et al.	(WISC, MICH)
DAUBER DOYLE	69 69	PR 179 1262 Thesis UCRL 18139	P.M. Dauber et al. J.C. Doyle	(LRL) (LRL)
MALONEY	69	PRL 23 425	J.E. Maloney, B. Sechi-Zorn	
GRIMM	68	NC 54A 187	H.J. Grimm	(HEID)
HEPP	68	ZPHY 214 71	V. Hepp, H. Schleich	(HEID)
BADIER	67	PL 25B 152	J. Badier et al.	(EPOL)
MAYEUR	67	U.Libr.Brux.Bul. 32	C. Mayeur, E. Tompa, J.H.	Wickens (BELG, LOUC)
OVERSETH	67	PRL 19 391	O.E. Overseth, R.F. Roth	(MICH, PRIN)
PDG	67	RMP 39 1	A.H. Rosenfeld et al.	(LRL, CERN, YALE)
BURAN	66	PL 20 318	T. Buran et al.	(OSLO)
CHIEN	66	PR 152 1171	C.Y. Chien et al.	(YALÉ, BNL)
ENGELMANN	66	NC 45A 103B	R. Engelmann et al.	(HEID, REHO)
GIBSON LONDON	66 66	NC 45A 882 PR 143 1034	W.M. Gibson, K. Green G.W. London et al.	(BRIS)
SCHMIDT	65	PR 140B 132B	P. Schmidt	(BNL, SYRA) (COLU)
BAGLIN	64	NC 35 977	C. Baglin et al.	(EPOL, CERN, LOUC, RHEL+)
HUBBARD	64	PR 135B 183	J.R. Hubbard et al.	(LRL)
LIND	64	PR 135B 1483	V.G. Lind et al.	(WISC)
RONNE	64	PL 11 357	B.E. Ronne et al.	(CERN, EPOL, LÒUC+)
SCHWARTZ	64	Thesis UCRL 11360	Schwartz	(LRL)
BHOWMIK	63	NC 28 1494	B. Bhowmik, D.P. Goyal	(DELH)
BLOCK	63	PR 130 766	M.M. Block et al.	(NWES, BGNA, SYRA+)
BROWN	63	PR 130 769	J.L. Brown et al.	(LRL, MICH)
CHRETIEN CRONIN	63 63	PR 131 2208 PR 129 1795	M. Chretien et al. J.W. Cronin, O.E. Overseth	(BRAN, BROW, HARV+) (PRIN)
ELY	63	PR 129 1795 PR 131 868	R.P. Ely et al.	(LRL)
HUMPHREY	62	PR 127 1305	W.E. Humphrey, R.R. Ross	(LRL)
CORK	60	PR 120 1000	B. Cork et al.	(LRL, PRIN, BNL)
CRAWFDRD	59B	PRL 2 266	F.S. Crawford et al.	(LRL)

 $^{-0.63 \}pm 0.06$ 

¹¹ The tabulated result assumes the weak-magnetism coupling  $w\equiv g_{W}(0)/g_{V}(0)$  to be 0.97, as given by the CVC hypothesis and as assumed by the other listed measurements. However, DWORKIN 90 measures w to be 0.15  $\pm$  0.30, and then  $g_{A}/g_{V}=-0.731$   $\pm$  0.015

#### $\Lambda$ AND $\Sigma$ RESONANCES

Introduction: There are no new results at all on  $\Lambda$  and  $\Sigma$  resonances. The field remains at a standstill and will only be revived if a kaon factory is built. What follows is a much abbreviated version of the note on  $\Lambda$  and  $\Sigma$  Resonances from our 1990 edition. In particular, see that edition for some representative Argand plots from partial-wave analyses.

Table 1 is an attempt to evaluate the status, both overall and channel by channel, of each  $\Lambda$  and  $\Sigma$  resonance in the Particle Listings. The evaluations are of course partly subjective. A blank indicates there is no evidence at all: either the relevant couplings are small or the resonance does not really exist. The main Baryon Summary Table includes only the established resonances (overall status 3 or 4 stars). A number of the 1- and 2-star entries may eventually disappear, but there are certainly many resonances yet to be discovered underlying the established ones.

Sign conventions for resonance couplings: In terms of the isospin-0 and -1 elastic scattering amplitudes  $A_0$  and  $A_1$ , the amplitude for  $K^-p \to \overline{K}^0 n$  scattering is  $\pm (A_1 - A_0)/2$ , where the sign depends on conventions used in conjunction with the Clebsch-Gordan coefficients (such as, is the baryon or the meson the "first" particle). If this reaction is partial-wave analyzed and if the overall phase is chosen so that, say, the  $\Sigma(1775)D_{15}$  amplitude at resonance points along the positive imaginary axis (points "up"), then any  $\Sigma$  at resonance will point "up" and any  $\Lambda$  at resonance will point "down" (along the negative imaginary axis). Thus the phase at resonance determines the isospin. The above ignores background amplitudes in the resonating partial waves.

That is the basic idea. In a similar but somewhat more complicated way, the phases of the  $\overline{K}N \to \Lambda\pi$  and  $\overline{K}N \to \Sigma\pi$  amplitudes for a resonating wave help determine the SU(3) multiplet to which the resonance belongs. Again, a convention

has to be adopted for some overall arbitrary phases: which way is "up"? Our convention is that of Levi-Setti [1] and is shown in Fig. 1, which also compares experimental results with theoretical predictions for the signs of several resonances. In the Listings, a + or - sign in front of a measurement of an inelastic resonance coupling indicates the sign (the absence of a sign means that the sign is not determined, not that it is positive). For more details, see Appendix II of our 1982 edition [2].

Errors on masses and widths: The errors quoted on resonance parameters from partial-wave analyses are often only statistical, and the parameters can change by more than these errors when a different parametrization of the waves is used. Furthermore, the different analyses use more or less the same data, so it is not really appropriate to treat the different determinations of the resonance parameters as independent or to average them together. In any case, the spread of the masses, widths, and branching fractions from the different analyses is certainly a better indication of the uncertainties than are the quoted errors. In the Baryon Summary Table, we usually give a range reflecting the spread of the values rather than a particular value with error.

For three states, the  $\Lambda(1520)$ , the  $\Lambda(1820)$ , and the  $\Sigma(1775)$ , there is enough information to make an overall fit to the various branching fractions. It is then necessary to use the quoted errors, but the errors obtained from the fit should not be taken seriously.

Production experiments: Partial-wave analyses of course separate partial waves, whereas a peak in a cross section or an invariant mass distribution usually cannot be disentangled from background and analyzed for its quantum numbers; and more than one resonance may be contributing to the peak. Results from partial-wave analyses and from production experiments are generally kept separate in the Listings, and in the Baryon Summary Table results from production experiments

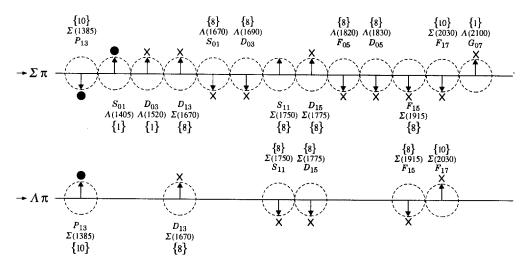



Figure 1. The signs of the imaginary parts of resonating amplitudes in the  $\overline{K}N \to \Lambda\pi$  and  $\Sigma\pi$  channels. The signs of the  $\Sigma(1385)$  and  $\Lambda(1405)$ , marked with a  $\bullet$ , are set by convention, and then the others are determined relative to them. The signs required by the SU(3) assignments of the resonances are shown with an arrow, and the experimentally determined signs are shown with an  $\times$ .

 $\Lambda$ 's and  $\Sigma$ 's,  $\Lambda$ (1405)

Table 1. The status of the  $\varLambda$  and  $\varSigma$  resonances. Only those with an overall status of *** or **** are included in the main Baryon Summary Table.

			Status as seen in —			
Particle	$L_{I\cdot 2J}$	Overall status	$N\overline{K}$	$\Lambda\pi$	$\Sigma\pi$	Other channels
Λ(1116)	$P_{01}$	****		F		Nπ(weakly)
A(1405)	$S_{01}$	****	****	0	****	
$\Lambda(1520)$	$D_{03}$	****	****	r	****	$\Lambda\pi\pi,\Lambda\gamma$
$\Lambda(1600)$	$P_{01}$	***	***	b	**	
A(1670)	$S_{01}$	****	****	i	****	$\Lambda\eta$
$\Lambda(1690)$	$D_{03}$	****	****	d	****	$\Lambda\pi\pi, \Sigma\pi\pi$
A(1800)	$S_{01}$	***	***	d	**	$N\overline{K}^*, \Sigma(1385)\pi$
A(1810)	$P_{01}$	***	***	e	**	$N\overline{K}^*$
A(1820)	$F_{05}$	****	****	n	****	$\Sigma(1385)\pi$
A(1830)	$D_{05}$	***	***	$\mathbf{F}$	****	$\Sigma(1385)\pi$
A(1890)	$P_{03}$	****	****	0	**	$N\overline{K}^*, \Sigma(1385)\pi$
A(2000)	•••	*		г	*	$\Lambda\omega, N\overline{K}^*$
A(2020)	$F_{07}$	*	*	b	*	,
4(2100)	$G_{07}$	****	****	i	***	$\Lambda\omega, N\overline{K}^*$
A(2110)	$F_{05}$	***	**	d	*	$\Lambda\omega, N\overline{K}^*$
A(2315)	$D_{03}$	***	**	d d	*	$\Lambda \omega$ , N K $\Lambda \omega$
A(2350)	$D_{03}$	***	***	e	*	Λω
A(2585)		**	**	n	*	
		**	**			
$\Sigma(1193)$	$P_{11}$	****				$N\pi$ (weakly)
$\Sigma(1385)$	$P_{13}$	****		****	****	
$\Sigma(1480)$		*	*	*	*	
Σ(1560)	-	**		**	**	
Σ(1580)	$D_{13}$	**	*	*		
$\Sigma(1620)$	$S_{11}$	**	**	*	*	
$\Sigma(1660)$	$P_{11}$	***	***	*	**	1 41
$\Sigma(1670)$	$D_{13}$	****	****	****	****	several others
$\Sigma(1690) \ \Sigma(1750)$	c	**	*	**	*	$\Lambda\pi\pi$
	$S_{11} P_{11}$		***	**	*	$\Sigma\eta$
$\Sigma(1770) \ \Sigma(1775)$	$\frac{P_{11}}{D_{15}}$	*	****	****		several others
$\Sigma(1840)$	$P_{13}$	*	****	**	***	several others
. ,			**		•	$N\overline{K}^*$
	$P_{11}$	**		**		
$\Sigma(1915) \ \Sigma(1940)$	$F_{15}$	***	***	****	***	$\Sigma(1385)\pi$ quasi-2-body
٠,	$D_{13}$		*		**	quasi-2-000y
$\Sigma(2000)$	$S_{11}$	*		*		$N\overline{K}^*, \Lambda(1520)\pi$
$\Sigma(2030)$	$F_{17}$	****	****	****	**	several others
$\Sigma(2070)$		*	*	**	*	
$\Sigma(2080) \ \Sigma(2100)$	$P_{13}$			**		
$\Sigma(2100)$ $\Sigma(2250)$	$G_{17}$	*	***	*	*	
$\Sigma(2455)$		***	***	*	*	
$\Sigma(2433)$ $\Sigma(2620)$		**				
$\Sigma(3000)$		**	*	*		
$\Sigma(3000)$		*	*	•		multi-body
2(3110)		т				matti-body

**** Existence is certain, and properties are at least fairly well explored.

Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

- ** Evidence of existence is only fair.
- * Evidence of existence is poor.

are used only for the low-mass states. The  $\Sigma(1385)$  and  $\Lambda(1405)$  of course lie below the  $\overline{K}N$  threshold and nearly everything about them is learned from production experiments; and production and formation experiments agree quite well in the case of  $\Lambda(1520)$  and results have been combined. There is some disagreement between production and formation experiments in the 1600–1700 MeV region; see the note on the  $\Sigma(1670)$ .

#### References

- R. Levi-Setti, in Proceedings of the Lund International Conference on Elementary Particles (Lund, 1969), p. 339.
- Particle Data Group, Phys. Lett. 111B (1982).

 $\Lambda(1405) S_{01}$ 

 $I(J^P) = O(\frac{1}{2})$  Status: ***

THE  $\Lambda(1405)$ 

Revised March 1998 by R.H. Dalitz (Oxford University).

It is generally accepted that the  $\Lambda(1405)$  is a well-established  $J^P = 1/2^-$  resonance. It is assigned to the lowest L = 1supermultiplet of the 3-quark system and paired with the  $J^P = 3/2^- \Lambda(1520)$ . Lying about 30 MeV below the  $N\overline{K}$ threshold, the  $\Lambda(1405)$  can be observed directly only as a resonance bump in the  $(\Sigma\pi)^0$  subsystem in final states of production experiments. It was first reported by ALSTON 61B in the reaction  $K^-p \to \Sigma \pi \pi \pi$  at 1.15 GeV/c and has since been seen in at least eight other experiments. However, only two of them had enough events for a detailed analysis: THOMAS 73, with about 400  $\Sigma^{\pm}\pi^{\mp}$  events from  $\pi^{-}p \to K^{0}(\Sigma\pi)^{0}$  at 1.69  $\mathrm{GeV}/c$ ; and HEMINGWAY 85, with 766  $\Sigma^+\pi^-$  and 1106  $\Sigma^-\pi^+$  events from  $K^-p \to (\Sigma\pi\pi)^+\pi^-$  at 4.2 GeV/c, after the selections  $1600 \le M(\Sigma \pi \pi)^+ \le 1720$  MeV and momentum transfer  $\leq 1.0 \, (\text{GeV}/c)^2$  to purify the  $\Lambda(1405) \to (\Sigma \pi)^0$  sample. These experiments agree on a mass of about 1395-1400 MeV and a width of about 60 MeV. (Hemingway's mass of 1391  $\pm$  1 MeV is from his best, but unacceptably poor, Breit-Wigner fit.)

The Byers-Fenster tests on these data allow any spin and either parity: neither J nor P has yet been determined directly. The early indications for  $J^P=1/2^-$  came from finding Re  $A_{I=0}$  to be large and negative in a constant-scattering-length analysis of low-energy  $N\overline{K}$  reaction data (see KIM 65, SAKITT 65, and earlier references cited therein). The first multichannel energy-dependent K-matrix analysis (KIM 67) strengthened the case for a resonance around 1400–1420 MeV strongly coupled to the I=0 S-wave  $N\overline{K}$  system.

THOMAS 73 and HEMINGWAY 85 both found the  $\Lambda(1405)$  bump to be asymmetric and not well fitted by a Breit-Wigner resonance function with constant parameters. The asymmetry involves a rapid fall in intensity as the  $N\overline{K}$  threshold energy is approached from below. This is readily understood as due to a strong coupling of the  $\Lambda(1405)$  to the S-wave  $N\overline{K}$  channel (see DALITZ 81). This striking S-shaped cusp behavior at a new threshold is characteristic of S-wave coupling; the other below-threshold hyperon, the  $\Sigma(1385)$ , has no such threshold distortion because its  $N\overline{K}$  coupling is P-wave. For the  $\Lambda(1405)$ , this asymmetry is the sole direct evidence that  $J^P=1/2^-$ .

Following the early work cited above, a considerable literature has developed on proper procedures for phenomenological extrapolation below the  $N\overline{K}$  threshold, partly in order to strengthen the evidence for the spin-parity of the  $\Lambda(1405)$ , and partly to provide an estimate for the amplitude  $f(N\overline{K})$  in the unphysical domain below the  $N\overline{K}$  threshold; the latter is needed for the evaluation of the dispersion relation for  $N\overline{K}$  and NK forward scattering amplitudes. For recent reviews, see MILLER 84 and BARRETT 89. In most recent work, the  $(\Sigma\pi)^0$  production spectrum is included in the data fitted (see, e.g., CHAO 73, MARTIN 81).

It is now accepted that the data can be fitted only with an S-wave pole in the reaction amplitudes below  $N\overline{K}$  threshold (see, however, FINK 90), but there is still controversy about the physical origin of this pole (for a review, see DALITZ 81 and DALITZ 82). Two extreme possibilities are: (a) an L=1 SU(3)-singlet uds state coupled with the S-wave meson-baryon systems; or (b) an unstable  $N\overline{K}$  bound state, analogous to the (stable) deuteron in the NN system. The problem with (a) is that the  $\Lambda(1405)$  mass is so much lower than that of its partner, the  $\Lambda(1520)$ . This requires, in the QCD-inspired quark model, rather large spin-orbit couplings, whether or not one uses relativistic kinetic energies. CAPSTICK 86 and CAPSTICK 89 conclude that a proper QCD calculation leads only to small energy splittings, whereas LEINWEBER 90, using QCD sum rules, obtains a good fit to this splitting.

On the other hand, the problem with (b) is that then another  $J^P=1/2^-\Lambda$  is needed to replace the  $\Lambda(1405)$  in the L=1 supermultiplet, and it would have to lie close to the  $\Lambda(1520)$ , a region already well explored by  $N\overline{K}$  experiments without result. Intermediate structures are possible; for example, the cloudy bag model allows the configurations (a) and (b) to mix and finds the intensity of (a) in the  $\Lambda(1405)$  to be only 14% (VEIT 84, VEIT 85, JENNINGS 86). Such models naturally predict a second  $1/2^-\Lambda$  close to the  $\Lambda(1520)$ .

The determination of the mass and width of the resonance from  $(\Sigma\pi)^0$  data is usually based on the "Watson approximation," which states that the production rate  $R(\Sigma\pi)$  of the  $(\Sigma\pi)^0$  state has a mass dependence proportional to  $(\sin^2\delta_{\Sigma\pi})/q$ , q being the  $\Sigma\pi$  c.m. momentum, in a  $\Sigma\pi$  mass range where  $\delta_{\Sigma\pi}$  is not far from  $\pi/2$  and only the  $\Sigma\pi$  channel is open, i.e., between the  $\Sigma\pi$  and the  $N\overline{K}$  thresholds. Then  $q\,R(\Sigma\pi)$  is proportional to  $\sin^2\delta_{\Sigma\pi}$ , and the mass M may be defined as the energy at which  $\sin^2\delta_{\Sigma\pi}=1$ . The width  $\Gamma$  may be determined from the rate at which  $\delta_{\Sigma\pi}$  goes through  $\pi/2$ , or from the FWHM; this is a matter of convention.

This determination of M and  $\Gamma$  from the data suffers from the following defects:

- (i) The determination of  $\sin^2 \delta_{\Sigma\pi}$  requires that  $R(\Sigma\pi)$  be scaled to give  $\sin^2 \delta_{\Sigma\pi} = 1$  at the peak for the best fit to the data; *i.e.*, the bump must be assumed to arise from a resonance. However, this assumption is supported by the analysis of the low-energy  $N\overline{K}$  data and its extrapolation below threshold.
- (ii) Owing to the nearby  $N\overline{K}$  threshold, the shape of the best fit to the  $M(\Sigma\pi)$  bump is uncertain. For energies below this threshold at  $E_{N\overline{K}}$ , the general form for  $\delta_{\Sigma\pi}$  is

$$q \cot \delta_{\Sigma\pi} = \frac{1 + \kappa\alpha}{\gamma + \kappa(\alpha\gamma - \beta^2)} \ . \tag{1}$$

Here  $\alpha, \beta$ , and  $\gamma$  are the (generally energy-dependent) NN,  $N\Sigma$ , and  $\Sigma\Sigma$  elements of the I=0 S-wave K-matrix for the  $(\Sigma\pi, N\overline{K})$  system, and  $\kappa$  is the magnitude of the (imaginary) c.m. momentum  $k_K$  for the  $N\overline{K}$  system below threshold. The elements  $\alpha, \beta, \gamma$  are real functions of E; they have no branch cuts at the  $\Sigma\pi$  and  $N\overline{K}$  thresholds, but they are permitted

to have poles in E along the real E axis. The resonance asymmetry arises from the effect of  $\kappa$  on  $\delta_{\Sigma\pi}$ . We note that  $\delta_{\Sigma\pi}=\pi/2$  when  $\kappa=-1/\alpha$ .

Accepting this close connection of  $\delta_{\Sigma\pi}$  with the low-energy  $N\overline{K}$  data, it is natural to analyze the two sets of data together (e.g., MARTIN 81), and there is now a large body of accurate  $N\overline{K}$  data for laboratory momenta between 100 and 300 MeV/c (see MILLER 84). The two sets of data span c.m. energies from 1370 MeV to 1490 MeV, and the K-matrix elements will not be energy independent over such a broad range. For the I =0 channels, a linear energy dependence for  $K^{-1}$  has been adopted routinely ever since the work of KIM 67, and it is essential when fitting the  $q R(\Sigma \pi)$  and  $N\overline{K}$  data together. However,  $q R(\Sigma \pi)$ is not always well fitted in this procedure; the value obtained for the  $\Lambda(1405)$  mass M varies a good deal with the type of fit, not a surprising result when the  $\Sigma\pi$  mass spectrum below the  $pK^-$  threshold contributes only nine data points in a total of about 200. The value of M obtained from an overall fit is not necessarily much better than from one using only the  $q R(\Sigma \pi)$  data; and M may be a function of the representation— K-matrix,  $K^{-1}$ -matrix, relativistic-separable or nonseparable potentials, etc.— used in fitting over the full energy range. DALITZ 91 fitted the  $qR(\Sigma^+\pi^-)$  Hemingway data with each of the first three representations just mentioned, constrained to the I=0  $N\overline{K}$  threshold scattering length from low-energy  $N\overline{K}$  data. The (nonseparable) meson-exchange potentials of MÜLLER-GROELING 90, fitted to the low-energy  $N\overline{K}$  (and NK) data, predicted an unstable  $N\overline{K}$  bound state with mass and width compatible with the  $\Lambda(1405)$ .

From the measurement of  $2p \to 1s$  x rays from kaonic-hydrogen, the energy-level shift  $\Delta E$  and width  $\Gamma$  of its 1s state can give us two further constraints on the  $(\Sigma\pi, N\overline{K})$  system, at an energy roughly midway between those from the low-energy hydrogen bubble chamber studies and those from  $q R(\Sigma\pi)$  observations below the  $pK^-$  threshold. IWASAKI 97 have reported the first convincing observation of this x ray, with a good initial estimate:

$$\Delta E - i\Gamma/2 = (-323 \pm 63 \pm 11) - i(204 \pm 104 \pm 50) \text{ eV}$$
. (2)

The errors here encompass about half of the predictions made following the various analyses and/or models for the in-flight  $K^-p$  and sub-threshold  $q\,R(\varSigma\pi)$  data. Better measurements will be needed to discriminate between the analyses and predictions. Now that  $\Delta E$  is known with some certainty, we can anticipate much-improved data on kaonic-hydrogen, perhaps from the DAΦNE storage ring at Frascati, information vital for our quantitative understanding of the  $(\varSigma\pi, N\overline{K})$  system in this region. This will lead to better knowledge of kaonic coupling strengths and to more reliable dispersion-theoretic arguments concerning strange-particle processes.

The present status of the  $\Lambda(1405)$  thus depends heavily on theoretical arguments, a somewhat unsatisfactory basis for a four-star rating. Nevertheless, there is no known reason to doubt its existence or quantum numbers. The 3-quark model

## **Baryon Particle Listings** $\Lambda(1405)$

for baryons has been broadly successful in accounting for all of the  $L^P = 1^-$  excited baryonic states (CAPSTICK 89), apart from the relatively large mass separation between the  $\Lambda(1405)$ and  $\Lambda(1520)$ . Quark model builders have no reservations about accepting the  $\Lambda(1405)$  as a 3-quark state. However, calculations with broken-chiral-symmetric models, which combine internal 3-quark configurations with external meson-baryon states (e.g., VEIT 85, KAISER 95) end up with descriptions of the  $\Lambda(1405)$ dominated by the meson-baryon terms in the wavefunctions. Models using meson-baryon potentials readily fit its mass, and give  $\Delta E$  negative, as is found empirically. The problem is not so much one of "either (a) or (b)," but rather how to achieve "both (a) and (b)." Theoreticians have not yet been able to deal with the full coupled-channels system, with qqq and  $qqqq\bar{q}$  configurations (at the least) being treated on the same footing. On the experimental side, better statistics are needed, both above and below the  $pK^-$  threshold. To disentangle the physics, the I = 1 channels also need more attention. For example, low-energy  $pK_L^0$  interactions have not been studied at all in the last 25 years.

#### **Λ(1405) MASS**

<b>PRODUCTION</b>	EXPERIMENTS

VALUE (MeV)	EVTS	DOCUMENT ID		ECN	COMMENT
1406.5 ± 4.0		¹ DALITZ	91	,	M-matrix fit
• • • We do not use	the following	data for averages	, fits, li	imits,	etc. • • •
1391 ± 1	700	¹ HEMINGWAY	85 H	BC	K [™] p 4.2 GeV/c
$\sim 1405$	400	² THOMAS	73 H	BC	$\pi^- p \ 1.69 \ \text{GeV}/c$
1405	120	BARBARO	68B D	BC	K-d 2.1-2.7 GeV/c
$1400 \pm 5$	67	BIRMINGHAM	66 H	BC	K™ p 3.5 GeV/c
$1382 \pm 8$		ENGLER	65 H	DBC	$\pi^- p$ , $\pi^+ d$ 1.68 GeV/c
$1400 \pm 24$		MUSGRAVE	65 H	BC	⋽p 3-4 GeV/c
1410		ALEXANDER	62 H	BC	$\pi^- p$ 2.1 GeV/c
1405		ALSTON	62 H	BC	$K^-p$ 1.2-0.5 GeV/c
1405		ALSTON	61B H	BC	$K^- p$ 1.15 GeV/c

#### EXTRAPOLATIONS BELOW NK THRESHOLD

VALUE	(MeV)		DOCU	MENT ID	TECN	COMMENT	
			 				_

• • We do not use the following	g data for averag	es, fit	s, limits,	etc. • • •
1411	3 MARTIN	81		K-matrix fit
1406	⁴ CHAO	73	DPWA	0-range fit (sol. B)
1421	MARTIN	70	RVUE	Constant K-matrix
1416 ±4	MARTIN	69	HBC	Constant K-matrix
1403 ±3	KIM	67	HBC	K-matrix fit
1407.5 ± 1.2	5 KITTEL	66	HBC	0-effective-range fit
$1410.7 \pm 1.0$	_ KIM	65	нвс	0-effective-range fit
$1409.6 \pm 1.7$	⁵ SAKITT	65	нвс	0-effective-range fit

#### A(1405) WIDTH

#### PRODUCTION EXPERIMENTS

	UE (MeV)	<u>EVT\$</u>	DOCUMENT ID		TECN	COMMENT
50	± 2		1 DALITZ	91		M-matrix fit
• •	• We do	not use the following	data for averages	, fits	, limits,	etc. • • •
32	± 1	700	1 HEMINGWAY	85	нвс	K-p 4.2 GeV/c
45	to 55	400	² THOMAS	73	HBC	$\pi^- p$ 1.69 GeV/c
35		120	BARBARO	68B	DBC	K- d 2.1-2.7 GeV/c
50	$\pm 10$	67	BIRMINGHAM	66	HBC	K-p 3.5 GeV/c
89	$\pm 20$		ENGLER	65	HDBC	
60	$\pm 20$		MUSGRAVE	65	HBC	
35	± 5		ALEXANDER	62	HBC	
50			ALSTON	62	HBC	
20			ALSTON	61B	HBC	

VALUE (MeV)	DOCUMENT I	D	TECN	COMMENT
<ul> <li>• • We do not use t</li> </ul>	he following data for avera	ges, fit	s, limits,	etc. • • •
30	3 MARTIN	81		K-matrix fit
55	4,6 CHAO	73	DPWA	0-range fit (sol. B)
20	MARTIN	70	RVUE	Constant K-matrix
29 ±6	MARTIN	69	HBC	Constant K-matrix
50 ±5	KIM	67	HBC	K-matrix fit
$34.1 \pm 4.1$	⁵ KITTEL	66	HBC	
37.0 ± 3.2	KIM	65	HBC	
28.2±4.1	⁵ SAKITT	65	HBC	
	Λ(1405) DECAY	МОГ	DES	
Mode		Frac	tion $(\Gamma_i/$	'Γ)
 Γ ₁ Σπ		100	%	

#### **Λ(1405) PARTIAL WIDTHS**

$\Gamma(\Lambda_{\gamma})$			Γ ₂
VALUE (keV)	DOCUMENT ID	COMMENT	
• • • We do not use th	ne following data for averages, fits	s, limits, etc. • • •	
27 ± 8	BURKHARDT 91	Isobar model fit	
$\Gamma(\Sigma^0\gamma)$			Гз
VALUE (keV)	DOCUMENT ID	COMMENT	
• • • We do not use th	he following data for averages, fit	s, limits, etc. • • •	
10 ± 4 or 23 ± 7	BURKHARDT 91	Isobar model fit	

#### A(1405) BRANCHING RATIOS

$\Gamma(N\overline{K})/\Gamma(\Sigma_{\pi})$					$\Gamma_4/\Gamma_1$
VALUE	CL%_	DOCUMENT ID	TECN	COMMENT	
• • • We do not	use the following	data for averages	, fits, limits	, etc. • • •	
<3	95	HEMINGWAY	85 HBC	K-p 4.2 GeV/	:

#### A(1405) FOOTNOTES

 $^{1}\,\mathrm{DALITZ}$  91 fits the HEMINGWAY 85 data.  $^{2}\,\mathrm{THOMAS}$  73 data is fit by CHAO 73 (see next section).

#### ⁶ An asymmetric shape, with $\Gamma/2=41$ MeV below resonance, 14 MeV above.

#### A(1405) REFERENCES

BURKHARDT	91	PR C44 607	H. Burkhardt, J. Lowe	(NOTT, UNM, BIRM)
DALITZ	91	JPG 17 289	R.H. Dalitz, A. Deloff	(OXFTP, WINR)
HEMINGWAY	85	NP B253 742	R.J. Hemingway	(CERN) J
MARTIN	81	NP B179 33	A.D. Martin	(DURH)
CHAO	73	NP B56 46	Y.A. Chao et al.	(RHEL, CMU, LOUC)
THOMAS	73	NP B56 15	D.W. Thomas et al.	(CMU) J
MARTIN	70	NP B16 479	A.D. Martin, G.G. Ross	(ĎURH)
MARTIN	69	PR 183 1352	B.R. Martin, M. Sakitt	(LOUČ, BNL)
Also	69B	PR 183 1345	B.R. Martin, M. Sakitt	(LOUC, BNL)
BARBARO	68B	PRL 21 573	A. Barbaro-Galtieri et al.	(LRL, SLAC)
KIM	67	PRL 19 1074	J.K. Kim	(YALE)
BIRMINGHAM	66	PR 152 1148	Birmingham (BIRM,	GLAS, LOIC, OXF, RHEL)
KITTEL	66	PL 21 349	W. Kittel, G. Otter, I. Wacek	(VIEN)
ENGLER	65	PRL 15 224	A. Engler et al.	(CMU, BNL) IJ
KIM	65	PRL 14 29	Kim	(COLU)
MUSGRAVE	65	NC 35 735	B. Musgrave et al.	(BIRM, CERN, EPOL+)
SAKITT	65	PR 139B 719	M. Sakitt et al.	` (UMO, LRL)
ALEXANDER	62	PRL 8 447	G. Alexander et al.	(LRL) I
ALSTON	62	CERN Conf. 311	M.H. Aiston et al.	(LRL) I
ALSTON	61B	PRL 6 698	M.H. Alston et al.	(LRL) I
				, ,

#### OTHER RELATED PAPERS

IWASAKI	97	PRL 78 3067	M. Iwasaki et al.	(KEK-228	Collab.)
FINK	90	PR C41 2720	P.J.Jr. Fink et al.	(IBMÝ, ORST	, ANSM)
LÉINWEBER	90	ANP 198 203	D.B. Leinweber	•	(MCMS)
MUELLER-GR	90	NP A513 557	A. Mueller-Groeting, K. Ho	olinde, J. Speth	(JULI)
BARRETT	89	NC 102A 179	R.C. Barrett		(SURR)
BATTY	89	NC 102A 255	C.J. Batty, A. Gal	(RAI	L, HEBR)
CAPSTICK	89	Excited Baryons 88,	p.32 S. Capstick		(GUEL)
LOWE	89	NC 102A 167	I. Lowe		(BIRM)

 $^{^3}$  The MARTIN 81 fit includes the  $K^\pm p$  forward scattering amplitudes and the dispersion relations they must satisify.

⁴ See also the accompanying paper of THOMAS 73.

⁵ Data of SAKITT 65 are used in the fit by KITTEL 66.

WHITEHOUSE	89	PRL 63 1352	O.A. Whitehouse et al.	(BIRM, BOST, BRCO+)
SIEGEL	88	PR C38 2221	P.B. Siegel, W. Weise	(REGE)
WORKMAN	88	PR D37 3117	R.L. Workman, H.W. Fearing	(TRIU)
SCHNICK	87	PRL 58 1719	J. Schnick, R.H. Landau	(ÒRST)
CAPSTICK	86	PR D34 2809	S. Capstick, N. Isgur	(TNTO)
JENNINGS	86	PL B176 229	B.K. Jennings	(TRIU)
MALTMAN	86	PR D34 1372	K. Maltman, N. Isgur	(LANL, ŤNTO)
ZHONG	86	PL B171 471	Y.S. Zhong et al.	(ADLD, TRIU, SURR)
BURKHARDT	85	NP A440 653	H. Burkhardt, J. Lowe, A.S. Ro	
DAREWYCH	85	PR D32 1765	J.W. Darewych, R. Koniuk, N.	Isgur (YORKĆ, TNTO)
VEIT	85	PR D31 1033	E.A. Veit et al.	(TRIÙ, ADLD, SURR)
KIANG	84	PR C30 1638	D. Kiang et al.	(DALH, MCMS)
MILLER	84		Miller	(LOUC)
	section	ns between Particle and N		, ,
VANDIJK	84		W. van Dijk	(MCMS)
	84	PL 137B 415	E.A. Veit et al.	(TRIU, SURR, CERN)
	82		Dalitz et al.	(OXFTP)
Heidelberg		p. 201		
	81		Dalitz, McGinley	(OXFTP)
		diate Energy Kaon-Nucleo		
		L.I.E. K-N Phys., p. 97		(DURH)
	77	NC 42A 462	G.C. Oades, G. Rasche	(AARH, ZURI)
	73	Purdue Conf. 417		(UCI)
BARBARO		LBL-555	A. Barbaro-Galtieri	(LBL)
DOBSON	72	PR D6 3256	P.N. Dobson, R. McElhaney	(HAWA)
	72	PR D5 610	G. Rajasekaran	(TATA)
		o cited in RAJASEKARAI		
CLINE	71	PRL 26 1194	D. Cline, R. Laumann, J. Mapp	
MARTIN	71	PL 35B 62	A.D. Martin, A.D. Martin, G.G.	
DALITZ	67	PR 153 1617	R.H. Dalitz, T.C. Wong, G. Raj	
	66	PL 22 711	R.A. Donald et al.	(LIVP)
	66	PRL 17 599	J.A. Kadyk et al.	(LRL)
ABRAMS	65	PR 139B 454	G.S. Abrams, B. Sechi-Zorn	(ÚMD)

## $\Lambda(1520) D_{03}$

$$I(J^P) = O(\frac{3}{2}^-)$$
 Status: ***

Discovered by FERRO-LUZZI 62; the elaboration in WATSON 63 is the classic paper on the Breit-Wigner analysis of a multichannel

The measurements of the mass, width, and elasticity published before 1975 are now obsolete and have been omitted. They were last listed in our 1982 edition Physics Letters **111B** (1982).

Production and formation experiments agree quite well, so they are listed together here.

#### ∧(1520) MASS

VALUE (MeV) 1519.5 ±1.0 OUF 1519.50±0.18 OUF		DOCUMENT ID		TECN	COMMENT
1517.3 ±1.5	300	BARBER	<b>80</b> D	SPEC	$\gamma \rho \rightarrow \Lambda(1520) K^+$
1519 ±1		GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1517.8 ±1.2	5k	BARLAG	79	HBC	$K^-p$ 4.2 GeV/c
$1520.0 \pm 0.5$		ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
$1519.7 \pm 0.3$	4k	CAMERON	77	HBC	K ~ p 0.96-1.36 GeV/c
1519 ±1		GOPAL	77	<b>DPWA</b>	K N multichannel
$1519.4 \pm 0.3$	2000	CORDEN	75	DBC	K- d 1.4-1.8 GeV/c

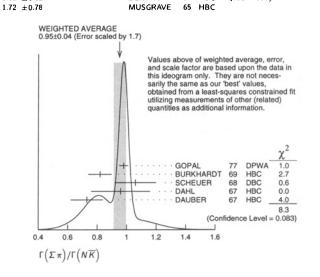
#### Λ(1520) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
15.6 ±1.0 O 15.59±0.27 O	UR ESTIMATE				
		0.10050		co.c.e	
$16.3 \pm 3.3$	300	BARBER			$\gamma \rho \rightarrow \Lambda(1520) K^+$
16 ±1		GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
14 ±3	677	¹ BARLAG			K-p 4.2 GeV/c
$15.4 \pm 0.5$		ALSTON	78	<b>DPWA</b>	$\overline{K}N \rightarrow \overline{K}N$
$16.3 \pm 0.5$	4k	CAMERON			K ~ p 0.96-1.36 GeV/c
$15.0 \pm 0.5$		GOPAL	77	DPWA	K N multichannel
$15.5 \pm 1.6$	2000	CORDEN	75	DBC	$K^- d$ 1.4–1.8 GeV/ $c$

#### A(1520) DECAY MODES

	Mode	Fraction $(\Gamma_i/\Gamma)$	
$\overline{\Gamma_1}$	NK	45 ± 1%	
Γ2	$\Sigma \pi$	42 ± 1%	
Гз	$\Lambda \pi \pi$	$10 \pm 1\%$	
$\Gamma_4$	$\Sigma(1385)\pi$		
$\Gamma_5$	$\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi)$		
$\Gamma_6$	$\Lambda(\pi\pi)_{S\text{-wave}}$		
Γ ₇	$\Sigma \pi \pi$	$0.9 \pm 0.1\%$	
Г	$\Lambda\gamma$	$0.8 \pm 0.2\%$	
Гэ	$\Sigma^0\gamma$		

#### CONSTRAINED FIT INFORMATION


An overall fit to 9 branching ratios uses 24 measurements and one constraint to determine 6 parameters. The overall fit has a  $\chi^2=$  16.5 for 19 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients  $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$ , in percent, from the fit to the branching fractions,  $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$ . The fit constrains the  $x_i$  whose labels appear in this array to sum to one.

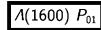
#### A(1520) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on  $\Lambda$  and  $\Sigma$ 

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
$0.45 \pm 0.01$ OUR ESTIN				
	Error includes scale factor	of 1.	2.	
0.455±0.011 OUR AVER	-			
0.47 ±0.02	GOPAL			$\overline{K}N \to \overline{K}N$
0.45 ±0.03	ALSTON			
0.448 ± 0.014	CORDEN			$K^- d 1.4-1.8 \text{ GeV}/c$
• • We do not use the	following data for average	s, fits	, limits,	etc. • • •
0.47 ± 0.01	GOPAL	77	DPWA	See GOPAL 80
0.42	MAST	76	HBC	$K^- \rho \rightarrow \overline{K}^0 n$
$\Gamma(\Sigma\pi)/\Gamma_{total}$				Γ ₂ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.42 ±0.01 OUR ESTIN	MATE			
0.421 ± 0.007 OUR FIT	Error includes scale factor	of 1.	2.	
0.423 ± 0.011 OUR AVER	AGE			
$0.426 \pm 0.014$	CORDEN	75	DBC	K- d 1.4-1.8 GeV/c
$0.418 \pm 0.017$	BARBARO	69B	HBC	K-p 0.28-0.45 GeV/c
	following data for accounts	e fite	. limits.	etc. • • •
• • We do not use the	tollowing data for average	,	,,	
	KIM			K-matrix analysis
0.46				K-matrix analysis
^{0.46} Γ( <i>Σπ</i> )/Γ( <i>NK</i> )	КІМ	71	DPWA	K-matrix analysis $\Gamma_2/\Gamma_1$
• • • We do not use the 0.46 $\Gamma(\Sigma\pi)/\Gamma(N\overline{K})$ VALUE 0.940 $\pm$ 0.026 OUR FIT		71	DPWA	K-matrix analysis $\Gamma_2/\Gamma_1$
0.46 $\Gamma(\Sigma\pi)/\Gamma(N\overline{K})$ VALUE 0.940 $\pm$ 0.026 OUR FIT	KIM <u>DOCUMENT ID</u> Error includes scale factor	71 of 1.	DPWA  TECN  3.	K-matrix analysis $\Gamma_2/\Gamma_1$
0.46 $\Gamma(\Sigma\pi)/\Gamma(N\overline{K})$ VALUE 0.940 $\pm$ 0.026 OUR FIT	KIM <u>DOCUMENT ID</u> Error includes scale factor	71 of 1.	DPWA  TECN  3. or of 1.7	K-matrix analysis
0.46 Γ(Σπ)/Γ(ΝΚ) <u>VALUE</u> 0.940±0.026 OUR FIT 0.95 ±0.04 OUR AVER 0.98 ±0.03	Error includes scale factor  AGE Error includes scale  2 GOPAL	71 of 1. facto	DPWA  TECN  3.  or of 1.7  DPWA	K-matrix analysis
0.46 Γ(Σπ)/Γ(ΝΚ) 0.40±0.026 OUR FIT 0.95 ±0.04 OUR AVER 0.98 ±0.03 0.82 ±0.08	Error includes scale factor  AGE Error includes scale  2 GOPAL BURKHARDT	71 of 1. facto 77 69	DPWA  TECN 3. or of 1.7 DPWA HBC	K-matrix analysis $\Gamma_2/\Gamma_1$ COMMENT
0.46  Γ(Σπ)/Γ(ΝΚ)  VALUE  0.940±0.026 OUR FIT  0.95 ±0.04 OUR AVER  0.98 ±0.03  0.82 ±0.08  1.06 ±0.14	Error includes scale factor  AGE Error includes scale  2 GOPAL  BURKHARDT  SCHEUER	71 of 1. facto 77 69 68	DPWA  TECN 3. or of 1.7 DPWA HBC DBC	K-matrix analysis
0.46  Γ(Σπ)/Γ(ΝΚ)  VALUE  0.940±0.026 OUR FIT  0.95 ±0.04 OUR AVER  0.98 ±0.03  0.82 ±0.08  1.06 ±0.14  0.96 ±0.20	Error includes scale factor  AGE Error includes scale  2 GOPAL  BURKHARDT  SCHEUER	71 of 1. facto 77 69 68 67	DPWA  TECN 3. or of 1.7 DPWA HBC DBC HBC	K-matrix analysis
0.46 Γ(Σπ)/Γ(ΝΚ) 0.940±0.026 OUR FIT 0.95 ±0.04 OUR AVER 0.98 ±0.03 0.82 ±0.08 1.06 ±0.14 0.96 ±0.20 0.73 ±0.11	Error includes scale factor  AGE Error includes scale  2 GOPAL  BURKHARDT  SCHEUER  DAHL  DAUBER	71 of 1. facto 77 69 68 67 67	DPWA  TECN 3. or of 1.7 DPWA HBC DBC HBC HBC	K-matrix analysis
0.46  Γ(Σπ)/Γ(ΝΚ)  VALUE 0.940±0.026 OUR FIT 0.95 ±0.04 OUR AVER 0.98 ±0.03 0.98 ±0.03 0.106 ±0.14 0.96 ±0.20 0.73 ±0.11	KIM  DOCUMENT ID  Error includes scale factor  AGE  Fror includes scale  2 GOPAL  BURKHARDT  SCHEUER  DAHL	of 1. facto 77 69 68 67 67 67	TECN 3. or of 1.7 DPWA HBC DBC HBC HBC HBC i, limits,	K-matrix analysis



## $\Lambda(1520), \Lambda(1600)$


$\Gamma(\Lambda\pi\pi)/\Gamma_{\text{total}}$				Г ₃ /
VALUE 0.10 ±0.01 OUR ESTIMATE	DOCUMENT ID		<u>TECN</u>	COMMENT
0.095 ± 0.005 OUR FIT Error i	includes scale factor	of 1.	2.	
0.096±0.008 OUR AVERAGE				
$0.091 \pm 0.006$	CORDEN	75	DBC	$K^- d 1.4$ -1.8 GeV/c
0.11 ±0.01	³ MAST	73B	IPWA	$K^- \rho \rightarrow \Lambda \pi \pi$
$\Gamma(\Lambda\pi\pi)/\Gamma(N\overline{K})$				Г ₃ /Г
VALUE	DOCUMENT ID			
0.213±0.012 OUR FIT Error i 0.202±0.021 OUR AVERAGE	includes scale factor	of 1.	2.	
0.22 ±0.03	BURKHARDT	- 69	нвс	K-p 0.8-1.2 GeV/c
0.19 ±0.04	SCHEUER	68	DBC	K - N 3 GeV/c
0.17 ±0.05	DAHL	67	нвс	$\pi^- p$ 1.6-4 GeV/c
0.21 ±0.18	DAUBER	67	HBC	K ⁻ ρ 2 GeV/c
• • We do not use the follow	ing data for average	s, fits	, limits,	etc. • • •
0.27 ±0.13 0.2	BERTHON KIM	74 71	HBC DPWA	Quasi-2-body σ K-matrix analysis
$\Gamma(\Sigma\pi)/\Gamma(\Lambda\pi\pi)$				Γ ₂ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
1.42 ± 0.25 QUR FIT Error inc 3.9 ± 0.6 QUR AVERAGE	ludes scale factor of			
3.9 ±1.0	UHLIG	67	нвс	K ⁻ ρ 0.9-1.0 GeV/c
3.3 ±1.1	BIRMINGHAN			$K^- p$ 3.5 GeV/c
4.5 ±1.0	ARMENTERO	S65C	HBC	
$\Gamma(\Sigma(1385)\pi)/\Gamma_{\text{total}}$				Γ ₄ /
				COMMENT
	DOCUMENT ID		1ECN	COMMENT
VALUE  0.041 $\pm$ 0.005 $\Gamma(\mathcal{L}(1385)\pi(\rightarrow \Lambda\pi\pi))/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C	CHAN  ( $\Lambda\pi\pi$ )  due to $\Sigma$ (1385) $\pi$ .  CORDEN 75 are bas	72 Only t	HBC the value real 3-b	$K^- p \rightarrow \Lambda \pi \pi$ F5/F  es of $(\Sigma(1385)\pi) / (\Lambda 2\pi)$ ody partial-wave analyse
NALUE  0.041 $\pm$ 0.005 $\Gamma \left( \sum (1385) \pi ( \rightarrow \Lambda \pi \pi) \right) / \Gamma$ The $\Lambda \pi \pi$ mode is largely given by MAST 73B and C The discrepancy between made concerning the shap	CHAN  ( $\Lambda\pi\pi$ )  due to $\Sigma$ (1385) $\pi$ .  CORDEN 75 are bas the two results is es se of the $(\pi\pi)_{S\text{-way}}$	72 Only ted on sentia	HBC the value real 3-b lly due to	$K^-p \rightarrow \Lambda \pi \pi$ F5/F es of $(\Sigma(1385)\pi)/(\Lambda 2\pi)$ ody partial-wave analyse o the different hypothese
$VALUE$ 0.041 ± 0.005 $\Gamma \left( \sum (1385) \pi ( \rightarrow \Lambda \pi \pi) \right) / \Gamma$ The $\Lambda \pi \pi$ mode is largely given by MAST 73B and C The discrepancy between made concerning the shap $VALUE$	CHAN  ( $(//////////////////////////////////$	72 Only t ed on sentia e stat	HBC the value real 3-b lly due to	$K^-p \rightarrow \Lambda \pi \pi$ \[ \begin{align*} \Gamma_5 / \Gamma \\ \Gamma_5 / \Gamma \\ \Gamma_5 / \Gamma_5 \\ \G
$(\Delta LUE)$ 1.041 ± 0.005 $(\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi))/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and $\Omega$ The discrepancy between made concerning the shap $(\Delta LUE)$ 1.58 ± 0.22	CHAN  ( $\Lambda\pi\pi$ )  due to $\Sigma$ (1385) $\pi$ .  CORDEN 75 are bas the two results is es se of the $(\pi\pi)_{S\text{-way}}$	72 Only ted on sentia e stat	HBC the value real 3-b lly due to	$K^-p \rightarrow \Lambda \pi \pi$ F5/F es of $(\Sigma(1385)\pi)/(\Lambda 2\pi)$ ody partial-wave analyse o the different hypothese
$(\mathcal{L})$ (1385) $\pi$ ( $\rightarrow \Lambda \pi \pi$ ))/ $\Gamma$ The $\Lambda \pi \pi$ mode is largely given by MAST 73B and C The discrepancy between made concerning the shap $(\mathcal{L})$ (158 $\pm$ 0.22 $\pm$ 0.82 $\pm$ 0.10	CHAN  ( $(\Lambda \pi \pi)$ ) due to $\Sigma$ (1385) $\pi$ .  CORDEN 75 are bas the two results is es te of the $(\pi \pi)_{S-wau}$ CORDEN  4 MAST	Only to ded on sential restate 75	HBC the value real 3-b lly due to te. TECN DBC IPWA	$K^-p \rightarrow \Lambda \pi \pi$ F5/F es of $(\Sigma(1385)\pi)/(\Lambda 2\pi)$ ody partial-wave analyse o the different hypothese $\frac{COMMENT}{K^-d} 1.4-1.8 \text{ GeV}/c$ $K^-p \rightarrow \Lambda \pi \pi$
$VALUE$ 0.041 ± 0.005 $\Gamma(\mathcal{L}(1385)\pi(\rightarrow \Lambda\pi\pi))/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C The discrepancy between made concerning the shap $VALUE$ 0.58 ± 0.22 0.82 ± 0.10  • • • We do not use the follow	CHAN  ( $(\Lambda \pi \pi)$ ) due to $\Sigma$ (1385) $\pi$ .  CORDEN 75 are bas the two results is es te of the $(\pi \pi)_{S-wau}$ CORDEN  4 MAST	Only to sed on sentiare state 75 738 es, fits	HBC the value real 3-b lly due to te. TECN DBC IPWA	$K^-p \rightarrow \Lambda \pi \pi$ F5/F es of $(\Sigma(1385)\pi)/(\Lambda 2\pi)$ ody partial-wave analyse o the different hypothese $\frac{COMMENT}{K^-d} 1.4-1.8 \text{ GeV}/c$ $K^-p \rightarrow \Lambda \pi \pi$
WALUE  1.041 ± 0.005 $ \Gamma(\Sigma(1385)\pi(→ Λππ))/\Gamma $ The Λππ mode is largely given by MAST 73B and C The discrepancy between made concerning the shap WALUE  1.58 ± 0.22  1.82 ± 0.10  • • • We do not use the follow 0.39 ± 0.10	CHAN  ((Λππ) due to Σ(1385) π.  CORDEN 75 are bas the two results is es the of the (ππ)ς-way  CORDEN  4 MAST ing data for average	Only to sed on sentiare state 75 738 es, fits	the value real 3-billy due to the	$K^-p \rightarrow \Lambda \pi \pi$ F5/F es of $(\Sigma(1385)\pi)/(\Lambda 2\pi)$ ody partial-wave analyse o the different hypothese $\frac{COMMENT}{K^-d} 1.4-1.8 \text{ GeV}/c$ $K^-p \rightarrow \Lambda \pi \pi$ etc. • • •
$(ALUE)$ 1.041±0.005 $ \Gamma(\Sigma(1385)\pi(→ Λππ))/\Gamma $ The $Λππ$ mode is largely given by MAST 73B and C The discrepancy between made concerning the shap $(ALUE)$ 1.58±0.22 1.82±0.10 1.9 • • We do not use the follow 0.39±0.10 $ \Gamma(Λ(ππ)_{S-WaVe})/\Gamma(Λππ) $	CHAN  ((Λππ) due to Σ(1385) π.  CORDEN 75 are bas the two results is es the of the (ππ)ς-way  CORDEN  4 MAST ing data for average	Only to ded on sential state of the state of	the value real 3-billy due to the	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)$ / $(\Lambda 27)$ ody partial-wave analyse o the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$
VALUE  1.041 $\pm$ 0.005 $\Gamma\left(\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi)\right)/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C The discrepancy between $\tau$ made concerning the shap value  1.58 $\pm$ 0.22  1.58 $\pm$ 0.10  1.00 • • We do not use the follow  1.39 $\pm$ 0.10 $\Gamma\left(\Lambda(\pi\pi)s\text{-wave}\right)/\Gamma(\Lambda\pi\pi)$ VALUE	CHAN  (Λππ)  due to Σ(1385)π.  CORDEN 75 are bas the two results is es te of the (ππ ₁ S _{-Wav} <u>DOCUMENT ID</u> CORDEN  4 MAST ing data for average 5 BURKHARDT	Only to ded on sential state of the state of	the value real 3-b illy due to te. TECN DBC IPWA i, limits, HBC	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)$ / $(\Lambda 27)$ ody partial-wave analyse of the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$
VALUE  1.041 $\pm$ 0.005 $\Gamma\left(\Sigma(1385)\pi(\to \Lambda\pi\pi)\right)/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C  The discrepancy between made concerning the shap VALUE  1.58 $\pm$ 0.22  1.08 $\pm$ 0.10  1.09 $\pm$ 0.40 do not use the follow  1.39 $\pm$ 0.10 $\Gamma\left(\Lambda(\pi\pi)_{S\text{-wave}}\right)/\Gamma\left(\Lambda\pi\pi\right)$ 2.40 $\pm$ 0.20 $\pm$ 0.08 $\Gamma\left(\Sigma\pi\pi\right)/\Gamma_{\text{total}}$	CHAN  ((Λππ)) due to Σ(1385)π. CORDEN 75 are bas the two results is es te of the (ππ) S-wav DOCUMENT ID  CORDEN 4 MAST ing data for average 5 BURKHARDT  DOCUMENT ID  CORDEN	72 Only t ded on sential e stat 75 738 es, fits 71	the value real 3-billy due to the tee.  TECN DBC IPWA i, limits, HBC  TECN DBC	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)/(\Lambda 27)$ ody partial-wave analyse o the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/c $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$
VALUE  1.041 $\pm$ 0.005 $\Gamma(\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi))/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C The discrepancy between $\pi$ made concerning the shap wature  1.058 $\pm$ 0.22  1.082 $\pm$ 0.10  1.094 0.10 $\Gamma(\Lambda(\pi\pi)s\text{-wave})/\Gamma(\Lambda\pi\pi)$ 1.044 UE  1.020 $\pm$ 0.08 $\Gamma(\Sigma\pi\pi)/\Gamma_{\text{total}}$ 1.044 $\pm$ 0.05	CHAN  ((Λππ)) due to Σ(1385) π.  CORDEN 75 are bas the two results is es the of the (ππ) _{5-wav} <u>DOCUMENT ID</u> CORDEN  4 MAST ing data for average 5 BURKHARDT <u>DOCUMENT ID</u> CORDEN	72 Only t ded on sential e stat 75 738 es, fits 71	the value real 3-billy due to the tee.  TECN DBC IPWA i, limits, HBC  TECN DBC	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)$ / $(\Lambda 2\pi)$ ody partial-wave analyse o the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ F6/F  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$
VALUE  1.041 $\pm$ 0.005 $\Gamma\left(\mathcal{L}(1385)\pi(\to \Lambda\pi\pi)\right)/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C  The discrepancy between imade concerning the shap water of the shap	CHAN  ((Λππ)) due to Σ(1385) π.  CORDEN 75 are bas the two results is es the of the (ππ) _{5-wav} <u>DOCUMENT ID</u> CORDEN  4 MAST ing data for average 5 BURKHARDT <u>DOCUMENT ID</u> CORDEN	72 Only t ded on sential e stat 75 738 es, fits 71	the value real 3-billy due to the tee.  TECN DBC IPWA i, limits, HBC  TECN DBC	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)$ / $(\Lambda 27)$ ody partial-wave analyse o the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ F6/F  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-d$ 1.4-1.8 GeV/ $c$
VALUE  1.041 ± 0.005 $\Gamma\left(\mathcal{L}(1385)\pi(\to \Lambda\pi\pi)\right)/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C The discrepancy between made concerning the shap MALUE  1.58 ± 0.22  1.08 ± 0.10  1.09 ± 0.10 $\Gamma(\Lambda(\pi\pi)s\text{-wave})/\Gamma(\Lambda\pi\pi)$ VALUE  1.20± 0.08 $\Gamma(\mathcal{L}\pi\pi)/\Gamma_{\text{total}}$ VALUE  1.20± 0.08 $\Gamma(\mathcal{L}\pi\pi)/\Gamma_{\text{total}}$ 1.20± 0.009 ± 0.001 OUR ESTIMAT 0.0096 ± 0.0005 OUR FIT	CHAN  ((Λππ)) due to Σ(1385)π. CORDEN 75 are bas the two results is es the of the (ππ) S_wav DOCUMENT ID CORDEN 4 MAST ing data for average 5 BURKHARDT  DOCUMENT ID CORDEN	72 Only t ded on sential e stat 75 738 es, fits 71	the value real 3-billy due to the tee.  TECN DBC IPWA i, limits, HBC  TECN DBC	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)$ / $(\Lambda 27)$ ody partial-wave analyse o the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ F6/F  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-d$ 1.4-1.8 GeV/ $c$
WALUE  1.041±0.005 $\Gamma(\Sigma(1385)\pi(\to \Lambda\pi\pi))/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C The discrepancy between made concerning the shap WALUE  1.58±0.22  1.68±0.10  1.69±0.10  1.7(Λ(ππ)S-wave)/Γ(Λππ)  1.7(Λ(ππ)S-	CHAN  ((Λππ)) due to Σ(1385) π.  CORDEN 75 are bas the two results is es te of the (ππ) _{S-wav} <u>DOCUMENT ID</u> CORDEN  4 MAST ing data for average 5 BURKHARDT <u>DOCUMENT ID</u> CORDEN	72 Only t ded on sential e stat 75 738 es, fits 71	the value real 3-billy due to the tee.  TECN DBC IPWA i, limits, HBC  TECN DBC	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)$ / $(\Lambda 27)$ ody partial-wave analyse o the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ F6/F  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-d$ 1.4-1.8 GeV/ $c$
ALUE  1.041 $\pm$ 0.005 $ \Gamma\left(\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi)\right)/\Gamma $ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C  The discrepancy between imade concerning the shap made concerning the shap $\Lambda LUE$ 1.58 $\pm$ 0.22  1.58 $\pm$ 0.10  1.69 $\pm$ 0.20  1.70 $\pm$ 0.00 We do not use the follow $\Delta LUE$ 1.70 $\pm$ 0.008  1.71 $\pm$ 0.008  1.72 $\pm$ 0.009  1.73 $\pm$ 0.001  1.74 $\pm$ 0.009  1.75 $\pm$ 0.002  1.75 $\pm$ 0.002  1.75 $\pm$ 0.005  1.75 $\pm$ 0.002  1.75 $\pm$ 0.005  1.76 $\pm$ 0.002  1.77 $\pm$ 0.002	CHAN  ((A * * * * * * * * * * * * * * * * * *	72 Only t teed on sential research rese	HBC  the value real 3-b  lly due te  TECN  DBC  IPWA  TECN  DBC  TECN  DBC  MPWA	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)$ / $(\Lambda 2\pi)$ ody partial-wave analyse o the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ F6/F COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Sigma\pi\pi$
ALUE  1.041 $\pm$ 0.005 $ \Gamma\left(\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi)\right)/\Gamma $ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C  The discrepancy between imade concerning the shap made concerning the shap $\Lambda LUE$ 1.58 $\pm$ 0.22  1.58 $\pm$ 0.10  1.69 $\pm$ 0.20  1.70 $\pm$ 0.00 We do not use the follow $\Delta LUE$ 1.70 $\pm$ 0.008  1.71 $\pm$ 0.008  1.72 $\pm$ 0.009  1.73 $\pm$ 0.001  1.74 $\pm$ 0.009  1.75 $\pm$ 0.002  1.75 $\pm$ 0.002  1.75 $\pm$ 0.005  1.75 $\pm$ 0.002  1.75 $\pm$ 0.005  1.76 $\pm$ 0.002  1.77 $\pm$ 0.002	CHAN  ((Λππ)) due to Σ(1385) π.  CORDEN 75 are bas the two results is es te of the (ππ) _{S-wav} <u>DOCUMENT ID</u> CORDEN  4 MAST ing data for average 5 BURKHARDT <u>DOCUMENT ID</u> CORDEN	72 Only t teed on sential research rese	HBC  the value real 3-b  lly due te  TECN  DBC  IPWA  TECN  DBC  TECN  DBC  MPWA	$K^-p \rightarrow \Lambda\pi\pi$ \[ \begin{align*} \Gamma_5/\dagger^2 \\ \gamma_1 \\ \text{2.85} \\ \pi \end{align*} \left( (21385) \pi \) \end{align*} \end{align*} \left( (21385) \pi \) \end{align*} \end{align*} \left( (21385) \pi \) \end{align*} \end{align*} \end{align*} \left( (21385) \pi \) \end{align*} \left( (21385) \pi \) \end{align*} \left( \frac{COMMENT}{K^-p \rightarrow (\Lambda\pi \pi)} \frac{\Gamma_1 \pi}{K^-d 1.4-1.8 \text{ GeV/} c} \]  \[ \begin{align*} \Gamma_1 \pi \\ \frac{\Gamma_1 \pi}{K^-d 1.4-1.8 \text{ GeV/} c} \\ \end{align*} \]  \[ \begin{align*} \Gamma_1 \pi \\ \frac{\Gamma_1 \pi}{K^-d 1.4-1.8 \text{ GeV/} c} \\ \end{align*} \]  \[ \begin{align*} \Gamma_1 \pi \\ \frac{\Gamma_1 \pi}{K^-d 1.4-1.8 \text{ GeV/} c} \\ \end{align*} \]
VALUE  1.041 $\pm$ 0.005 $\Gamma\left(\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi)\right)/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 738 and C The discrepancy between $\tau$ made concerning the shap was a substitute of the shap of t	CHAN  (Λππ)  due to Σ(1385)π.  CORDEN 75 are bas the two results is es the of the (ππ) _{S-wav} DOCUMENT 10  CORDEN  4 MAST  ing data for average 5 BURKHARDT  DOCUMENT 10  CORDEN  DOCUMENT 10  CORDEN  DOCUMENT 10  CORDEN	72 Only t ed on sential set of the sential set of the s	HBC  the value real 3-b lly due t term of the value real 3-b lly due t term of the value real 3-b DBC IPWA I, limits, HBC  TECN DBC MPWA HBC  DBC MPWA HBC	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)$ / $(\Lambda 2\pi)$ ody partial-wave analyse o the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ F6/F COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Sigma\pi\pi$
WALUE  1.041 ± 0.005 $\Gamma\left(\mathcal{L}(1385)\pi(\to \Lambda\pi\pi)\right)/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and $C$ The discrepancy between made concerning the shap made concerning the shap made concerning the shap $0.082 \pm 0.10$ 1.082 ± 0.10  1.082 ± 0.10  1.093 ± 0.10  1.004.005  1.005 ± 0.005  1.006 ± 0.005  1.006 ± 0.005  1.006 ± 0.005  1.007 ± 0.002  1.0085 ± 0.006  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015  1.010 ± 0.0015	CHAN  ((A * * * * * * * * * * * * * * * * * *	72 Only t ed on sential set of the sential set of the s	HBC  the value real 3-b  lly due te  TECN  DBC  IPWA  TECN  DBC  TECN  DBC  MPWA	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)/(\Lambda 27)$ ody partial-wave analyse o the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ F6/F  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$
VALUE  1.041 ± 0.005 $\Gamma(\mathcal{L}(1385)\pi(\rightarrow \Lambda\pi\pi))/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C  The discrepancy between made concerning the shap walue  1.058 ± 0.22  1.082 ± 0.10  1.09 ± 0.001 $\Gamma(\Lambda(\pi\pi)s\text{-wave})/\Gamma(\Lambda\pi\pi)$ 1.020 ± 0.08 $\Gamma(\mathcal{L}\pi\pi)/\Gamma_{\text{total}}$ 1.0006 ± 0.0005 OUR FIT  1.00065 ± 0.0006  1.010 ± 0.0015 $\Gamma(\Lambda\gamma)/\Gamma_{\text{total}}$ 1.020 ± 0.001  1.020 ± 0.001  1.020 ± 0.002  1.0305 ± 0.0006  1.040 ± 0.0015 $\Gamma(\Lambda\gamma)/\Gamma_{\text{total}}$ 1.040 ± 0.0015 $\Gamma(\Lambda\gamma)/\Gamma_{\text{total}}$ 1.050 ± 0.002  1.050 ± 0.002  1.050 ± 0.002  1.050 ± 0.003  1.050 ± 0.003	CHAN  ((A * * * * * * * * * * * * * * * * * *	72 Only t ed on sential set of the sential set of the s	HBC  the value real 3-b lly due t term of the value real 3-b lly due t term of the value real 3-b DBC IPWA I, limits, HBC  TECN DBC MPWA HBC  DBC MPWA HBC	$K^-p \rightarrow \Lambda\pi\pi$ $\Gamma 5/\Gamma$ Es of $(\Sigma(1385)\pi)/(\Lambda 27)$ ody partial-wave analyse o the different hypothese $COMMENT$ $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ $COMMENT$ $K^-d$ 1.4-1.8 GeV/ $c$
VALUE  1.041 $\pm$ 0.005 $\Gamma\left(\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi)\right)/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 738 and C The discrepancy between $\tau$ made concerning the shap walue  1.058 $\pm$ 0.22  1.082 $\pm$ 0.10  1.094 $\pm$ 0.000  1.0086 $\pm$ 0.001  1.0086 $\pm$ 0.001  1.0086 $\pm$ 0.002  1.0095 $\pm$ 0.001  1.0096 $\pm$ 0.001  1.0097 $\pm$ 0.001  1.0098 $\pm$ 0.002  1.0098 $\pm$ 0.002  1.0098 $\pm$ 0.002  1.0098 $\pm$ 0.002  1.0099 $\pm$ 0.001  1.0099 $\pm$ 0.001  1.0079 $\pm$ 0.001  1.0098 $\pm$ 0.002  1.0098 $\pm$ 0.002  1.0099 $\pm$ 0.001  1.0099 $\pm$ 0.001  1.0099 $\pm$ 0.001  1.0091	CHAN  ((A * * * * * * * * * * * * * * * * * *	72 Only t ded on sential e stat 75 73B is, fits 71 75 75 76 78	HBC  the value real 3-b lly due t term of the value real 3-b lly due t term of the value real 3-b DBC IPWA I, limits, HBC  TECN DBC MPWA HBC  DBC MPWA HBC	$K^-p \rightarrow \Lambda\pi\pi$ $\Gamma 5/\Gamma$ Es of $(\Sigma(1385)\pi)/(\Lambda 27)$ ody partial-wave analyse o the different hypothese $COMMENT$ $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ $COMMENT$ $K^-d$ 1.4-1.8 GeV/ $c$
WALUE  1.041 $\pm$ 0.005 $\Gamma\left(\Sigma(1385)\pi(\to \Lambda\pi\pi)\right)/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and C The discrepancy between imade concerning the shap made concerning the shap walue  1.058 $\pm$ 0.22  1.82 $\pm$ 0.10  1.068 $\pm$ 0.02  1.07 $\pm$ 0.001  1.0086 $\pm$ 0.005  1.009 $\pm$ 0.001  1.0086 $\pm$ 0.002  1.0086 $\pm$ 0.002  1.0086 $\pm$ 0.004  1.009 $\pm$ 0.001  1.0009 $\pm$ 0.001	CHAN  ((A\pi\pi) due to \(\Sigma(1385)\pi\pi\).  CORDEN 75 are bas the two results is es the of the (\pi\pi\sigma(\pi\pi\pi\pi\pi\pi\pi\pi\pi\pi\pi\pi\pi\	72 Only t ded on sential e stat 75 73B is, fits 71 75 75 76 78	HBC  the value real 3-b lly due t terms  FECN  DBC  IPWA  I, limits,  HBC  TECN  DBC  MPWA  HBC  TECN  DBC  TECN   $K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)$ / $(\Lambda 27)$ ody partial-wave analyse o the different hypothese of the different hypothese of the different hypothese etc. • • • $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ F6/F  COMMENT $K^-d$ 1.4–1.8 GeV/c $K^-p \rightarrow \Sigma\pi\pi$ $K^-d$ 1.4–1.8 GeV/c $K^-p \rightarrow \Sigma\pi\pi$	
VALUE  1.041 ± 0.005 $\Gamma\left(\mathcal{L}(1385)\pi(\to \Lambda\pi\pi)\right)/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 73B and $C$ The discrepancy between made concerning the shap made concerning the shap $\Lambda LUE$ 1.58 ± 0.22  1.58 ± 0.22  1.58 ± 0.22  1.58 ± 0.22  1.58 ± 0.22  1.58 ± 0.22  1.59 ± 0.10 $\Phi = \Phi  We do not use the follow on the fol$	CHAN  ((A\pi\pi) due to \(\Sigma(1385)\pi\pi\).  CORDEN 75 are bas the two results is es the of the (\pi\pi\sigma(\pi\pi\pi\pi\pi\pi\pi\pi\pi\pi\pi\pi\pi\	72 Only t ded on sential research resea	HBC  the value real 3-b lly due tree.  FECN DBC IPWA DBC TECN DBC MPWA HBC  TECN  DBC MPWA HBC  HBC  HBC	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)$ / $(\Lambda 2\pi)$ ody partial-wave analyse o the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ F6/F COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $\Gamma 7/c$ COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Sigma\pi\pi$ $K^-p \rightarrow \Sigma\pi\pi$ $K^-p \rightarrow \Sigma\pi\pi$ $K^-p \rightarrow \Sigma\pi\pi$ $K^-p = 0.28-0.45$ GeV/ $c$ COMMENT
VALUE  0.041 $\pm$ 0.005 $\Gamma(\mathcal{L}(1385)\pi(\rightarrow \Lambda\pi\pi))/\Gamma$ The $\Lambda\pi\pi$ mode is largely given by MAST 738 and C The discrepancy between $\tau$ made concerning the shap value  0.58 $\pm$ 0.22  0.62 $\pm$ 0.10  • • • We do not use the follow 0.39 $\pm$ 0.10 $\Gamma(\Lambda(\pi\pi)_{S\text{-wave}})/\Gamma(\Lambda\pi\pi)$ value  0.20 $\pm$ 0.08 $\Gamma(\mathcal{L}\pi\pi)/\Gamma_{\text{total}}$ value 0.009 $\pm$ 0.001 OUR ESTIMAT 0.0086 $\pm$ 0.0005 OUR AVERAGE 0.007 $\pm$ 0.002  0.0085 $\pm$ 0.0006  0.010 $\pm$ 0.0015 $\Gamma(\Lambda\gamma)/\Gamma_{\text{total}}$ value  Value 0.002 OUR ESTIMAT 0.0008 $\pm$ 0.0010	CHAN  ((A * * * * * * * * * * * * * * * * * *	72 Only t teed on sentia see stat 75 738 ses, fits 71 75 75 73 698	HBC  the value real 3-b lly due tree.  FECN DBC IPWA DBC TECN DBC MPWA HBC  TECN  DBC MPWA HBC  HBC  HBC	$K^-p \rightarrow \Lambda\pi\pi$ F5/F es of $(\Sigma(1385)\pi)$ / $(\Lambda 2\pi)$ ody partial-wave analyse o the different hypothese  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Lambda\pi\pi$ etc. • • • $K^-p \rightarrow (\Lambda\pi\pi)\pi$ F6/F  COMMENT $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Sigma\pi\pi$ $K^-d$ 1.4-1.8 GeV/ $c$ $K^-p \rightarrow \Sigma\pi\pi$

#### **Λ(1520) FOOTNOTES**

- 1 From the best-resolution sample of  $\Lambda\pi\pi$  events only.
  2 The  $\overline{K}N \to \Sigma\pi$  amplitude at resonance is  $+0.46 \pm 0.01$ .
  3 Assumes  $\Gamma(N\overline{K})/\Gamma_{\text{total}} = 0.46 \pm 0.02$ .
  4 Both  $\Sigma(1385)\pi$   $DS_{03}$  and  $\Sigma(\pi\pi)$   $DP_{03}$  contribute.
  5 The central bin (1514–1524 MeV) gives  $0.74 \pm 0.10$ ; other bins are lower by 2-to-5 standard deviations.
  6 Much of the  $\Sigma\pi\pi$  decay proceeds via  $\Sigma(1385)\pi$ .
  7 Assumes  $\Gamma(N\overline{K})/\Gamma_{03} = 0.046$ .
- ⁷ Assumes  $\Gamma(N\overline{K})/\Gamma_{\text{total}} = 0.46$ .
- Resulted from  $\Gamma(\Lambda \gamma)/\Gamma$  total assuming SU(3). Needed to constrain the sum of all the branching ratios to be unity.

#### ∧(1520) REFERENCES

PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
BARBER	80D	ZPHY C7 17	D.P. Barber et al.	(DARE, LANC, SHEF)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP
BARLAG	79	NP B149 220	S.J.M. Barlag et al.	(AMST, CERN, NIJM+)
ALSTON	78	PR D18 182	M. Alston-Garnjost et al.	(LBL, MTHO+)IJP
Also	77	PRL 38 1007	M. Alston-Garnjost et al.	(LBL, MTHO+)IJP
CAMERON	77	NP B131 399	W. Cameron et al.	(RHEL, LOIC) IJP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP
MAST	76	PR D14 13	T.S. Mast et al.	` (LBL)
CORDEN	75	NP B84 306	M.J. Corden et al.	(BÌRM)
BERTHON	74	NC 21A 146	A. Berthon et al.	(CDEF, RHEL, SACL+)
MAST	73	PR D7 3212	T.S. Mast et al.	(LBL) IJP
MAST	73B	PR D7 5	T.S. Mast et al.	(LBL) IJP
CHAN	72	PRL 28 256	S.B. Chan et al.	(MASA, YALE)
BURKHARDT	71	NP B27 64	E. Burkhardt et al.	(HEID, CERN, SACL)
KIM	71	PRL 27 356	J.K. Kim	(HARV) IJP
Also	70	Duke Conf. 161	J.K. Kim	(HARV) IJP
BARBARQ-,	69B	Lund Conf. 352	A. Barbaro-Galtieri et al.	(LRL)
Aiso	70	Duke Conf. 95	Tripp	(LRL)
BURKHARDT	69	NP B14 106	E. Burkhardt et al.	(HEID, EFI, CERN+)
MAST	68B	PRL 21 1715	T.S. Mast et al.	(LRL)
SCHEUER	68	NP B8 503	J.C. Scheuer et al.	(SABRE Collab.)
DAHL	67	PR 163 1377	O.I. Dahl et al.	(LRL)
DAUBER	67	PL 24B 525	P.M. Dauber et al.	(UCLA)
UHLIG	67	PR 155 1448	R.P. Uhlig et al.	(UMD, NRL)
BIRMINGHAM		PR 152 1148		GLAS, LOIC, OXF, RHEL)
ARMENTEROS		PL 19 338	R. Armenteros et al.	(CERN, HEID, SACL)
MUSGRAVE	65	NC 35 735	B. Musgrave et al.	(BIRM, CERN, EPOL+)
WATSON	63	PR 131 2248	M.B. Watson, M. Ferro-Luzzi,	
FERRO-LUZZI	62	PRL 8 28	M. Ferro-Luzzi, R.D. Tripp, M	.B. Watson (LRL) IJP



 $I(J^{P}) = O(\frac{1}{2}^{+})$  Status: ***

See also the  $\Lambda(1810)$   $P_{01}$ . There are quite possibly two  $P_{01}$  states in this region.

#### Λ(1600) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1560 to 1700 (≈ 1600)	OUR ESTIMATE			
1568± 20	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
$1703 \pm 100$	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1573 ± 25	GOPAL	77	DPWA	K N multichannel
1596± 6	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
1620± 10	LANGBEIN	72	IPWA	K N multichannel
• • We do not use the	e following data for average	s, fit	s, limits,	etc. • • •
1572 or 1617	¹ MARTIN	77	DPWA	K N multichannel
1646± 7	² CARROLL	76	<b>DPWA</b>	Isospin-0 total $\sigma$
1570	KIM	71	DPWA	K-matrix analysis

#### **Λ**(1600) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
50 to 250 (≈ 150) OUR ESTIMA	TE			
116± 20	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
593 ± 200	ALSTON	78	DPWA	K̃N → K̃N
147± 50	GOPAL	77	DPWA	K N multichannel
175± 20	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
60± 10	LANGBEIN	72	1PWA	K N multichannel
• • • We do not use the following	data for average	, fits	, limits,	etc. • • •
247 or 271				K N multichannel
20	² CARROLL	76	DPWA	Isospin-0 total $\sigma$
50	KIM	71	DPWA	K-matrix analysis

#### Λ(1600) DECAY MODES

	Mode	Fraction $(\Gamma_i/\Gamma)$
$\Gamma_1$	NK	15-30 %
$\Gamma_2$	Σπ	10-60 %

The above branching fractions are our estimates, not fits or averages.

#### ∧(1600) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on  $\Lambda$  and  $\Sigma$ 

$\Gamma(NK)/\Gamma_{\text{total}}$					$\Gamma_1/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT	
0.15 to 0.30 OUR ESTIMATE					
$0.23 \pm 0.04$	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.14 \pm 0.05$	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.25 \pm 0.15$	LANGBEIN	72	IPWA	K N multichannel	
• • • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •	
$0.24 \pm 0.04$	GOPAL	77	DPWA	See GOPAL 80	
0.30 or 0.29	¹ MARTIN	77	DPWA	K N multichannel	

(F _I F _I ) 1/2 /F _{total} in NK	→ /(1000) → Z *  DOCUMENT ID		TECN	$(\Gamma_1\Gamma_2)^1$
-0.16±0.04	GOPAL	77	DPWA	K N multichannel
-0.33±0.11	KANE	74	DPWA	$K^-p \rightarrow \Sigma \pi$
$0.28 \pm 0.09$	LANGBEIN	72	<b>IPWA</b>	K N multichannel
• • We do not use the	following data for averag	es, fits	s, limits,	etc. • • •
-0.39 or -0.39	¹ MARTIN	77	DPWA	KN multichannel
not seen	HEPP	76B	DPWA	$K^- N \rightarrow \Sigma \pi$

#### A(1600) FOOTNOTES

 1  The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.  2  A total cross-section bump with (J+1/2)  $\Gamma_{el}$  /  $\Gamma_{total}=0.04$ .

#### A(1600) REFERENCES

CARROLL 76 PRL 37 806 A.S. Carroll et al. (BML)1 HEPP 76B PL 65B 487 V. Hepp et al. (CERN, HEIDH, MPIM) L KANE 74 LBL:2452 D.F. Kane (LBL; IJ	GOPAL ALSTON Also GOPAL MARTIN Also	80 78 77 77 77 778	Toronto Conf. 159 PR D18 182 PRL 38 1007 NP B119 362 NP B127 349 NP B126 266	G.P. Gopal M. Alston-Garnjost <i>et al.</i> M. Alston-Garnjost <i>et al.</i> G.P. Gopal <i>et al.</i> B.R. Martin, M.K. Pidcock, R.G B.R. Martin, M.K. Pidcock	(RHEL) IJP (LBL, MTHO+) IJP (LBL, MTHO+) IJP (LOIC, RHEL) IJP (LOUC+) IJP (LOUC)
	Also Also CARROLL HEPP KANE LANGBEIN	77B 77C 76 76B 74 72	NP B126 266 NP B126 285 PRL 37 806 PL 65B 487 LBL-2452 NP B47 477	B.R. Martin, M.K. Pidcock B.R. Martin, M.K. Pidcock A.S. Carroll <i>et al.</i> V. Hepp <i>et al.</i> D.F. Kane W. Langbein, F. Wagner	(LOUC) IJP

 $\Lambda(1670) S_{01}$ 

$$I(J^p) = 0(\frac{1}{2}^-)$$
 Status: ***

The measurements of the mass, width, and elasticity published before 1974 are now obsolete and have been omitted. They were last listed in our 1982 edition Physics Letters 111B (1982).

#### **Λ(1670) MASS**

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1660 to 1680 (≈ 1670	OUR ESTIMATE			
1670.8±1.7	KOISO	85	DPWA	$K^- \rho \rightarrow \Sigma \pi$
1667 ±5	GOPAL	80	DPWA	KN → KN
1671 ±3	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1670 ±5	GOPAL	77	DPWA	R N multichannel
1675 ±2	HEPP	76B	DPWA	$K^-N \rightarrow \Sigma \pi$
1679 ±1	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
1665 ±5	PREVOST	74	<b>DPWA</b>	$K^- N \rightarrow \Sigma(1385) \pi$
• • • We do not use th	e following data for average	s, fits	i, limits,	etc. • • •
1669 ±2	ABAEV	96	DPWA	$\pi^- p \rightarrow \eta n$
1664	¹ MARTIN	77	DPWA	K N multichannel

#### **Λ**(1670) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
25 to 50 (≈ 35) OUR ESTI	MATE			
34.1 ± 3.7	KOISO	85	DPWA	$K^- p \rightarrow \Sigma \pi$
29 ± 5	GOPAL			$\overline{K}N \rightarrow \overline{K}N$
29 ± 5	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
45 ±10	GOPAL	77	DPWA	K N multichannel
46 ± 5	HEPP	76B	DPWA	$K^-N \rightarrow \Sigma \pi$
40 ± 3	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
19 ± 5	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385) \pi$
• • • We do not use the foll	owing data for averag	es, fits	, limits,	etc. • • •
21 ± 4	ABAEV			$\pi^- p \rightarrow \eta n$
12	¹ MARTIN	77	DPWA	KN multichannel

#### A(1670) DECAY MODES

	Mode	Fraction $(\Gamma_j/\Gamma)$	
$\overline{\Gamma_1}$	NK	15-25 %	
$\Gamma_2$	$\Sigma \pi$	20-60 %	
Гз	$\Lambda\eta$	15~35 %	
Γ4	$\Sigma(1385)\pi$		

The above branching fractions are our estimates, not fits or averages.

#### A(1670) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on  $\varLambda$  and  $\varSigma$  Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					$\Gamma_1/\Gamma$
VALUE	DOCUMENT ID	ı	TECN	COMMENT	
0.15 to 0.25 OUR ESTIM	IATE				
$0.18 \pm 0.03$	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.17 \pm 0.03$	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
• • • We do not use the	following data for averag	es, fit	s, limits,	etc. • • •	
$0.20 \pm 0.03$	GOPAL	77	DPWA	See GOPAL BO	
0.15	¹ MARTIN	77	DPWA	K N multichanne	el .

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N^{\frac{1}{2}}$	$\bar{\zeta} \to \Lambda(1670) \to \Sigma \pi$			(Γ₁Γ₂) ^⅓ /Γ
VALUE	DOCUMENT ID		TECN_	COMMENT
0.26 ± 0.02	KOISO	85	DPWA	$K^-p \rightarrow \Sigma \pi$
$-0.31 \pm 0.03$	GOPAL	77	DPWA	K N multichannel
$-0.29 \pm 0.03$	HEPP	76B	DPWA	$K^- N \rightarrow \Sigma \pi$
$-0.23 \pm 0.03$	LONDON	75	HLBC	$K^- p \rightarrow \Sigma^0 \pi^0$
$-0.27 \pm 0.02$	KANE	74	DPWA	$K^-p \rightarrow \Sigma \pi$
• • We do not use the	e following data for average	s, fits	, limits,	etc. • • •
~0.13	¹ MARTIN	77	DPWA	K N multichannel
(F _I F _f ) ^{1/2} /F _{total} in NF VALUE	DOCUMENT ID	_		(Г ₁ Г ₃ ) ¹ //
$+0.20\pm0.05$				$K^- \rho \rightarrow \text{neutrals}$
• • We do not use the	e following data for average	s, fit	, limits,	etc. • • •
0.06	ABAEV	96	DPWA	$\pi^- p \rightarrow \eta n$
0.24				
0.24	KIM	71	DPWA	K-matrix analysis
0.26	KIM ARMENTERO			K-matrix analysis
		5690	нвс	K-matrix analysis
0.26 0.20 or 0.23	ARMENTERO	65 65	нвс	K-matrix analysis ( <b>Γ</b> 1 <b>Γ4</b> ) ^{1/2} /Γ

#### A(1670) FOOTNOTES

PREVOST

 $^{\rm 1}\,{\rm MARTIN}$  77 obtains identical resonance parameters from a T-matrix pole and from a Breit-Wigner fit.

#### A(1670) REFERENCES

ABAEV	96	PR C53 385	V.V. Abaev, B.M.K. Nefkens	(UCLA)
KOISO	85	NP A433 619	H. Koiso et al.	(TOKY, MASA)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP
ALSTON	78	PR D18 182	M. Alston-Garnjost et al.	(LBL, MŤHO+) UP
Also	77	PRL 38 1007	M. Alston-Garnjost et al.	(LBL, MTHO+) IJP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock, R.G	. Moorhouse (LOUC+)IJP
Also	77B	NP B126 266	B.R. Martin, M.K. Pidcock	`(LOUC)
Also	77C	NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP
HEPP	76B	PL 65B 487	V. Hepp et al.	(CERN, HEIDH, MPIM) IJP
LONGON	75	NP B85 289	G.W. London et al.	(BNL, CERN, EPOL+)
KANE	74	LBL-2452	D.F. Kane	(LBL) IJP
PREVOST	74	NP B69 246	J. Prevost et al.	(SACL, CERN, HEIO)
BAXTER	73	NP B67 125	D.F. Baxter et al.	(OXF) IJP
KIM	71	PRL 27 356	J.K. Kim	(HARV) IJP
Also	70	Duke Conf. 161	J.K. Kim	(HARV) IJP
ARMENTERO			R. Armenteros et al.	(CERN, HEIO, SACL) IJP
		ed in LEVI-SETTI 69.		/m
BERLEY	65	PRL 15 641	D. Berley et al.	(BNL) IJP

 $\Lambda(1690) D_{03}$ 

 $-0.18 \pm 0.05$ 

 $I(J^P) = O(\frac{3}{2}^-)$  Status: ****

74 DPWA  $K^-N \rightarrow \Sigma(1385)\pi$ 

The measurements of the mass, width, and elasticity published before 1974 are now obsolete and have been omitted. They were last listed in our 1982 edition Physics Letters 111B (1982).

#### **Λ(1690) MASS**

VALUE	(MeV)	DOCUMENT ID		TECN	COMMENT
1685	to 1695 (≈ 1690) OUR EST	IMATE			
1695.7	± 2.6	KOISO	85	DPWA	$K^- \rho \rightarrow \Sigma \pi$
1690	±5	GOPAL	80	DPWA	KN → KN
1692	±5	ALSTON	78	DPWA	RN → RN
1690	±5	GOPAL	77	<b>DPWA</b>	K N multichannel
1690	±3	HEPP	76B	DPWA	$K^- N \rightarrow \Sigma \pi$
1689	±1	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
	We do not use the following	data for averages	, fits	, limits,	etc. • • •
1687	or 1689	1 MARTIN	77	DPWA	KN multichannel
1692	±4	CARROLL	76	DPWA	Isospin-0 total $\sigma$

#### ∧(1690) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
50 to 70 (≈ 60) OUR	ESTIMATE	_		
67.2± 5.6	KOISO	85	DPWA	$K^{}p \rightarrow \Sigma \pi$
61 ± 5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
64 ±10	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
60 ± 5	GOPAL	77	DPWA	K N multichannel
82 ± B	HEPP	76B	DPWA	$K^- N \rightarrow \Sigma \pi$
60 ± 4	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use th	e following data for average	es, fits	s, limits,	etc. • • •
62 or 62	¹ MARTIN	77	DPWA	K N multichannel
38	CARROLL	76	DPWA	Isospin-0 total $\sigma$

 $\Lambda(1690), \Lambda(1800)$ 

#### A(1690) DECAY MODES

	Mode	Fraction $(\Gamma_i/\Gamma)$
$\overline{\Gamma_1}$	NK	20–30 %
$\Gamma_2$	$\Sigma\pi$	20-40 %
$\Gamma_3$	Λππ	∼ 25 %
Γ4	$\sum \pi \pi$	~ 20 %
$\Gamma_5$	$\Lambda\eta$	
Γ ₆	$\Sigma(1385)\pi$ , S-wave	
	The above branching fractions a	are our estimates not fits or averages

#### A(1690) BRANCHING RATIOS

The sum of all the quoted branching ratios is more than 1.0. The two-body ratios are from partial-wave analyses, and thus probably are more reliable than the three-body ratios, which are determined from bumps in cross sections. Of the latter, the  $\Sigma\pi\pi$  bump looks more significant. (The error given for the  $\Lambda\pi\pi$  ratio looks unreasonably small.) Hardly any of the  $\Sigma\pi\pi$  decay can be via  $\Sigma$ (1385), for then seven times as much  $\Lambda\pi\pi$  decay would be required. See "Sign conventions for resonance couplings" in the Note on  $\Lambda$  and  $\Sigma$  Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.2 to 0.3 OUR ESTIMATE				
$0.23 \pm 0.03$	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
$0.22 \pm 0.03$	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
• • We do not use the following	ng data for average	s, fits	s, limits,	etc. • • •
$0.24 \pm 0.03$	GOPAL	77	DPWA	See GOPAL 80
0.28 or 0.26	¹ MARTIN	77	DPWA	K N multichannel
$(\Gamma_I \Gamma_f)^{\frac{1}{L_2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda($	1690) → Σπ DOCUMENT ID		<u>TEÇN</u>	$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
$-0.34 \pm 0.02$	KOISO	85	DPWA	$K^- \rho \rightarrow \Sigma \pi$
$-0.25 \pm 0.03$	GOPAL	77	DPWA	K N multichannel
$-0.29 \pm 0.03$	HEPP	76B	DPWA	$K^- N \rightarrow \Sigma \pi$
$-0.28 \pm 0.03$	LONDON	75	HLBC	$K^- \rho \rightarrow \Sigma^0 \pi^0$
$-0.28 \pm 0.02$	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
• • • We do not use the following	ng data for average	s, fits	s, limits,	etc. • • •
-0.30  or  -0.28 .	¹ MARTIN	77	DPWA	$\overline{K}$ N multichannel
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda($ VALUE	1690) → Λη <u>DOCUMENT ID</u>		<u>TECN</u>	(Γ ₁ Γ ₅ ) ¹ //

$0.00 \pm 0.03$	BAXTER	73	DPWA $K^-p \rightarrow$	neutrals
$(\Gamma_I\Gamma_f)^{\frac{1}{2}}/\Gamma_{total}$ in $N\overline{K} \rightarrow$	Λ(1690) → Λππ			(Г₁Г₃) ^⅓ /Г

 $(\Gamma_1\Gamma_7)^{72}/\Gamma_{\text{total}}$  in  $NK \to \Lambda(1690) \to \Lambda\pi\pi$   $(\Gamma_1\Gamma_3)^{72}/VALUE$  DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.25\pm0.02$  2 BARTLEY 68 HDBC  $K^-p\to\Lambda\pi\pi$  ( $\Gamma_I\Gamma_f$ ) $^{1/2}/\Gamma_{\text{total}}$  in  $N\overline{K}\to\Lambda(1690)\to\Sigma\pi\pi$  ( $\Gamma_1$ 

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 0.21
 ARMENTEROS68C HDBC
  $K - N \rightarrow \Sigma \pi \pi$ 

#### A(1690) FOOTNOTES

 1  The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. Another  $\mathcal{D}_{03}$   $\Lambda$  at 1966 MeV is also suggested by MARTIN 77, but is very uncertain.  2  BARTLEY 68 uses only cross-section data. The enhancement is not seen by PREVOST 71.

#### ∧(1690) REFERENCES

KOISO	85	NP A433 619	H. Koiso et al.	(TOKY, MASA)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP
ALSTON	78	PR D18 182	M. Alston-Garnjost et al.	(LBL, MŤHO+) IJP
Aiso	77	PRL 38 1007	M. Alston-Garnjost et al.	(LBL, MTHO+) UP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock, R.G.	Moorhouse (LOUC+) IJP
Also	77B	NP B126 266	B.R. Martin, M.K. Pidcock	` (LOUC)
Aiso	77C	NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP
CARROLL	76	PRL 37 806	A.S. Carroll et al.	(BNL) I
HEPP	76B	PL 65B 487	V. Hepp et al.	(CERN, HEIDH, MPIM) IJP
LONDON	75	NP B85 289	G.W. London et al.	(BNL, CERN, EPOL+)
KANE	74	LBL-2452	D.F. Kane	(LBL) IJP
PREVOST	74	NP B69 245	J. Prevost et al.	(SACL, CERN, HEID)
BAXTER	73	NP B67 125	D.F. Baxter et al.	(OXF) IJP
PREVOST	71	Amsterdam Conf.	J. Prevost	(CERN, HEID, SACL)
ARMENTEROS	68C	NP BB 216	R. Armenteros et al.	(CERN, HEID, SACL) I
BARTLEY	68	PRL 21 1111	J.H. Bartley et al.	(TUFTS, FSU, BRAN) I

## $\Lambda(1800) S_{01}$

 $I(J^P) = 0(\frac{1}{2}^-)$  Status: ***

This is the second resonance in the  $S_{01}$  wave, the first being the  $\Lambda(1670)$ .

#### ∧(1800) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1720 to 1850 (≈ 1800) OUR ESTI	MATE			
1841 ± 10	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
$1725 \pm 20$	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
$1825 \pm 20$	GOPAL	77	DPWA	K N multichannel
1830 ± 20	LANGBEIN	72	IPWA	K N multichannel
$\bullet~\bullet~$ We do not use the following	data for averages	, fits	, limits,	etc. • • •
1767 or 1842	¹ MARTIN	77	DPWA	K N multichannel
1780	KIM	71	DPWA	K-matrix analysis
$1872\pm10$	BRICMAN	70B	DPWA	$\overline{K}N \to \overline{K}N$

#### **Λ(1800) WIDTH**

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 400 (≈ 300) OU	R ESTIMATE			
$228 \pm 20$	GOPAL	80	DPWA	$\overline{K} N \rightarrow \overline{K} N$
$185 \pm 20$	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
$230 \pm 20$	GOPAL	77	DPWA	K N multichannel
$70 \pm 15$	LANGBEIN	72	IPWA	K N multichannel
• • • We do not use the	he following data for average	s, fits	s, limits,	etc. • • •
435 or 473	¹ MARTIN	77	DPWA	K N multichannel
40	KIM	71	DPWA	K-matrix analysis
100±20	BRICMAN	70B	DPWA	$\overline{K}N \to \overline{K}N$

#### A(1800) DECAY MODES

	Mode	Fraction $(\Gamma_i/\Gamma)$	
$\overline{\Gamma_1}$	NK	25-40 %	
$\Gamma_2$	$\Sigma \pi$	seen	
Гз	$\Sigma(1385)\pi$	seen	
Γ4	N K*(892)	seen	
Γ ₅	$N\overline{K}^*$ (892), $S=1/2$ , $S$ -wave		
Γ6	$N\overline{K}^*$ (892), $S=3/2$ , $D$ -wave		

The above branching fractions are our estimates, not fits or averages.

#### A(1800) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on  $\varLambda$  and  $\varSigma$  Resonances.

Γ(NK)/Γ _{total}					$\Gamma_1/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT	
0.25 to 0.40 OUR ESTIMA	NTE.				
$0.36 \pm 0.04$	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.28 \pm 0.05$	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.35 \pm 0.15$	LANGBEIN	72	IPWA	K N multichannel	
• • • We do not use the f	ollowing data for average	s, fits	s, limits,	etc. • • •	
$0.37 \pm 0.05$	GOPAL	77	DPWA	See GOPAL 80	
1.21 or 0.70	¹ MARTIN	77	DPWA	K N multichannel	
0.80	KIM	71	DPWA	K-matrix analysis	
$0.18\pm0.02$	BRICMAN	70B	DPWA	$\overline{K}N \rightarrow \overline{K}N$	

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K}$	$\rightarrow \Lambda(1800) \rightarrow \Sigma \pi$				$(\Gamma_{1}\Gamma_{2})^{1}$
VALUE	DOCUMENT ID		TECN	COMMENT	
$-0.08 \pm 0.05$	GOPAL	77	DPWA	K N multic	hannel
• • • We do not use the	following data for average	es, fit	s, limits,	etc. • • •	
-0.74 or -0.43	¹ MARTIN	77	DPWA	KN multic	hannel
0.24	KIM	71	DPWA	K-matrix a	nalysis

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to 1$	$\Lambda(1800) \rightarrow \Sigma(1385)\pi$		(Г₁Г₃) ^½ /Г
VALUE	DOCUMENT ID	TECN	COMMENT
$+0.056\pm0.028$	² CAMERON 78	DPWA	$K^- \rho \rightarrow \Sigma(1385) \pi$

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to N$	$\Lambda(1800) \rightarrow N\overline{K}^*(892)$	), <i>S</i> =1/	2, <i>S</i> -wave	(Г₁Г₅) ^⅓ /Г
VALUE	DOCUMENT ID	TECN	COMMENT	
$-0.17 \pm 0.03$	² CAMERON 78	B DPWA	$K^- \rho \rightarrow$	N <i>K</i> *

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda (18)$	300) → NK*(892	?), <i>S</i> =3/	2, <i>D</i> -wave $(\Gamma_1\Gamma_6)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TECN	COMMENT
$-0.13 \pm 0.04$	CAMERON 78	BB DPWA	$K^- \rho \rightarrow N \overline{K}^*$

#### A(1800) FOOTNOTES

 $\frac{1}{2}$  The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

#### ² The published sign has been changed to be in accord with the baryon-first convention.

#### A(1800) REFERENCES

GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP
ALSTON	78	PR D18 182	M. Alston-Garnjost et al.	(LBL, MŤHO+) IJP
Also	77	PRL 38 1007	M. Alston-Garnjost et al.	(LBL, MTHO+) IJP
CAMERON	78	NP B143 189	W. Cameron et al.	(RHEL, LOIC) IJP
CAMERON	78B	NP B146 327	W. Cameron et al.	(RHEL, LOIC) IJP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock, R.G. I	Moorhouse (LOUC+) IJP
Also	77B	NP B126 266	B.R. Martin, M.K. Pidcock	(LOUC)
Also	77C	NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP
LANGBEIN	72	NP B47 477	W. Langbein, F. Wagner	(MPIM) UP
KIM	71	PRL 27 356	J.K. Kim	(HARV) IJP
Also	70	Duke Conf. 161	J.K. Kim	(HARV) IJP
BRICMAN	70B	PL 33B 511	C. Bricman, M. Ferro-Luzzi, J.P. L	.agnaux (CERN) IJP

# $\Lambda(1810) P_{01}$

$$I(J^P) = O(\frac{1}{2}^+)$$
 Status: ***

Almost all the recent analyses contain a  $P_{01}$  state, and sometimes two of them, but the masses, widths, and branching ratios vary greatly. See also the  $\Lambda(1600)$   $P_{01}$ .

#### Λ(1810) MASS

VALUE (MeV)	DOCUMENT ID	nountraker.	TECN	COMMENT
1750 to 1850 (≈ 1810)	OUR ESTIMATE			
1841 ± 20	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1853 ± 20	GOPAL	77	DPWA	K N multichannel
1735 ± 5	CARROLL	76	DPWA	Isospin-0 total σ
1746 ± 10	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385) \pi$
1780 ± 20	LANGBEIN	72	IPWA	K N multichannel
<ul> <li>We do not use the</li> </ul>	e following data for averages,	fits	, limits,	etc. • • •
1861 or 1953	¹ MARTIN	77	DPWA	K N multichannel
1755	KIM	71	DPWA	K-matrix analysis
1800	ARMENTEROS	70	HBC	KN → KN
1750	ARMENTEROS	70	HBC	$\overline{K}N \rightarrow \Sigma \pi$
1690 ± 10	BARBARO	70	HBC	$\overline{K}N \rightarrow \Sigma \pi$
1740	BAILEY	69	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1745	ARMENTEROS	68B	HBC	$\overline{K}N \rightarrow \overline{K}N$

#### Λ(1810) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
50 to 250 (≈ 150) OUR ESTIMAT	E			
164 ± 20	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
90 ± 20	CAMERON	78B	DPWA	$K^- p \rightarrow N \overline{K}^*$
166±20	GOPAL	77	DPWA	K N multichannel
46±20	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385) \pi$
120±10	LANGBEIN	72	<b>IPWA</b>	K N multichannel
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	s, fits	, limits,	etc. • • •
535 or 585	¹ MARTIN	77	DPWA	K N multichannel
28	CARROLL	76	DPWA	Isospin-0 total $\sigma$
35	KIM	71	DPWA	K-matrix analysis
30	ARMENTERO:	S70	HBC	$\overline{K}N \rightarrow \overline{K}N$
70	ARMENTERO:	S70	HBC	$\overline{K}N \rightarrow \Sigma \pi$
22	BARBARO	70	HBC	$\overline{K}N \rightarrow \Sigma \pi$
300	BAILEY	69	DPWA	$\overline{K}N \rightarrow \overline{K}N$
147	ARMENTERO:	S688	HBC	

#### A(1810) DECAY MODES

	Mode	Fraction $(\Gamma_i/\Gamma)$
$\overline{\Gamma_1}$	NK	20–50 %
$\Gamma_2$	Σπ	10-40 %
Γ3	$\Sigma(1385)\pi$	seen
Γ4	N K*(892)	30-60 %
Γ ₅	$N\overline{K}^*(892), S=1/2, P$ -wave	
Γ ₆	$N\overline{K}^*(892)$ , $S=3/2$ , $P$ -wave	
	The above branching fractions are	our estimates, not fits or averages.

#### A(1810) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on  $\varLambda$  and  $\varSigma$  Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					$\Gamma_1/\Gamma$
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT	
0.2 to 0.5 OUR ESTIMATI					
$0.24 \pm 0.04$	* - · · · · ·			$\overline{K}N \to \overline{K}N$	
$0.36 \pm 0.05$				KN multichanne	1
<ul> <li>We do not use the fo</li> </ul>	llowing data for averag	ges, fits	, limits,	etc. • • •	
$0.21 \pm 0.04$	GOPAL			See GOPAL 80	
0.52 or 0.49	¹ MARTIN	77	<b>DPWA</b>	K N multichanne	l
0.30	KIM	71	DPWA	K-matrix analysis	5
0.15	ARMENTER	O570	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.55	BAILEY	69	DPWA	$\overline{K} N \rightarrow \overline{K} N$	
0.4	ARMENTER	OS68B	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} -$	. Λ(1810) → Σπ			(F ₁ F	2)1/2/1
VALUE	DOCUMENT IE		TECN		2) /
-0.24+0.04	GOPAL			K N multichanne	r
• • • We do not use the fo	*				•
	•				
+0.25 or +0.23	1 MARTIN			$\overline{K}N$ multichanne	
< 0.01	LANGBEIN			KN multichanne	
0.17	KIM			K-matrix analysis	;
+0.20	² ARMENTER				
$-0.13 \pm 0.03$	BARBARÓ	70	DPWA	$\overline{K}N \rightarrow \Sigma \pi$	
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} -$	→ Λ(1810) → Σ(13	85) <del>a</del>		([-1	3) ^{1/2} /
VALUE				COMMENT	3/ /
+0.18±0.10				$K^- N \rightarrow \Sigma (138)$	
				•	
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in $N\overline{K}$ –					5)*2/
VALUE	DOCUMENT ID	<u> </u>	<u>TECN</u>	COMMENT	
$-0.14 \pm 0.03$	² CAMERON	78B	DPWA	$K^-p \rightarrow N\overline{K}^*$	
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} -$	. A/1010\ . N\\	/ona\	C2 /	2 Pursue /F. F	- 1/2/
(     f) -    tota     M.A. — VALUE	DOCUMENT ID				6)' /
				$K^- p \rightarrow N \overline{K}^*$	
$+0.35\pm0.06$	CAMERON	78B	DPWA	$\kappa$ $\rho \rightarrow \kappa \kappa^{\star}$	

#### ∧(1810) FOOTNOTES

 $^1\,\text{The}$  two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.  $^2\,\text{The}$  published sign has been changed to be in accord with the baryon-first convention.

#### A(1810) REFERENCES

GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) UP
CAMERON	78B	NP B146 327	W. Cameron et al.	(RHEL, LOIC) IJP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock, R.G	. Moorhouse (LOUC+) IJP
Also	77B	NP B126 266	B.R. Martin, M.K. Pidcock	(LOUC)
Also	77C	NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP
CARRDLL	76	PRL 37 806	A.S. Carroll et al.	(BNL) I
PREVOST	74	NP B69 246	J. Prevost et al.	(SACL, CERN, HEID)
LANGBEIN	72	NP B47 477	W. Langbein, F. Wagner	(MPIM) IJP
KIM	71	PRL 27 356	J.K. Kim	(HARV) IJP
Also	70	Duke Conf. 161	J.K. Kim	(HARV) IJP
ARMENTEROS	70	Duke Conf. 123	R. Armenteros et al.	(CERN, HEID, SACL) IJP
BARBARO	70	Duke Conf. 173	A. Barbaro-Galtieri	(LRL) IJP
BAILEY	69	Thesis UCRL 50617	J.M. Bailey	(LLL) IJP
ARMENTEROS	68B	NP B8 195	R. Armenteros et al.	(CERN, HEID, SACL) IJP

## $\Lambda(1820) F_{05}$

$$I(J^P) = 0(\frac{5}{2}^+)$$
 Status: ***

This resonance is the cornerstone for all partial-wave analyses in this region. Most of the results published before 1973 are now obsolete and have been omitted. They may be found in our 1982 edition Physics Letters 111B (1982).

Most of the quoted errors are statistical only; the systematic errors due to the particular parametrizations used in the partial-wave analyses are not included. For this reason we do not calculate weighted averages for the mass and width.

#### **Λ(1820) MASS**

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1815 to 1825 (≈ 1820) (	OUR ESTIMATE			
1823±3	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1819±2	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1822±2	GOPAL	77	DPWA	K N multichannel
1821±2	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
• • We do not use the	following data for average	es, fit	s, limits,	etc. • • •
1830	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1817 or 1819	¹ MARTIN	77	DPWA	K N multichannel

## Baryon Particle Listings $\Lambda(1820), \Lambda(1830)$

#### A(1820) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
70 to 90 (≈ 80) OUR ESTIMATE				
77±5	GOPAL			$\overline{K}N \rightarrow \overline{K}N$
72±5	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
81 ± 5	GOPAL	77	DPWA	K N multichannel
87±3	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
82	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
76 or 76	¹ MARTIN	77	DPWA	KN multichannel

#### A(1820) DECAY MODES

	Mode	Fraction $(\Gamma_j/\Gamma)$
Γ ₁	NK	55-65 %
$\Gamma_2$	$\Sigma \pi$	8-14 %
Гз	$\Sigma(1385)\pi$	5–10 %
Γ4	$\Sigma(1385)\pi$ , <i>P</i> -wave	
Γ ₅	$\Sigma(1385)\pi$ , F-wave	
Γ6	$\Lambda\eta$	
Γ7	Σππ	

The above branching fractions are our estimates, not fits or averages.

#### A(1820) BRANCHING RATIOS

Errors quoted do not include uncertainties in the parametrizations used in the partial-wave analyses and are thus too small. See also "Sign conventions for resonance couplings" in the Note on  $\Lambda$  and  $\Sigma$  Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					$\Gamma_1/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT	
0.55 to 0.65 OUR ESTIMATE					
$0.58 \pm 0.02$	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.60 \pm 0.03$	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
• • • We do not use the following	ng data for averag	es, fit	s, limits,	etc. • • •	
0.51	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.57 \pm 0.02$	GOPAL	77	DPWA	See GOPAL 80	
0.59 or 0.58	¹ MARTIN	77	DPWA	K N multichannel	l

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	A(1820) → Σπ			(Γ ₁ Γ ₂ ) ^{1/2} /Ι
VALUE	DOCUMENT ID		TECN	COMMENT
$-0.28 \pm 0.03$	GOPAL	77	DPWA	K N multichannel
$-0.28 \pm 0.01$	KANE	74	DPWA	$K^-p \rightarrow \Sigma \pi$
• • • We do not use the fol	llowing data for average	es, fit:	s, limits,	etc. • • •
-0.25 or -0.25	¹ MARTIN	77	DPWA	K N multichannel

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(1)$	(Г₁Г ₆ ) ^⅓ /Г			
VALUE	DOCUMENT ID		<u>TECN</u>	
$-0.096 ^{+ 0.040}_{- 0.020}$	RADER	73	MPWA	

$\Gamma(\Sigma\pi\pi)/\Gamma_{\text{total}}$				Γ ₇ /Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
no clear signal	2 ARMENTEROS68C	HDBC	$K^-N \rightarrow \Sigma \pi$	T

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda$	$(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$				
VALUE	DOCUMENT ID		TECN	COMMENT	
$-0.167 \pm 0.054$	3 CAMERON	78	DPWA	$K^- p \rightarrow$	$\Sigma(1385)\pi$
10.27 ±0.02	DREVOST	74	DDM/A	K-N	√(1385\~

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \mathbb{R}$	Λ(1820) → <b>Σ</b> (138	5)π	, F-wave	•	(Γ ₁ Γ ₅ ) ^{1/2} /	Г
VALUE	DOÇUMENT ID		TECN	COMMENT		_
+0.065+0.029	3 CAMERON	78	DPWA	$K^- D \rightarrow$	$\Sigma(1385)\pi$	

#### A(1820) FOOTNOTES

 1  The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.  2  There is a suggestion of a bump, enough to be consistent with what is expected from  $\Sigma(1385) \rightarrow \Sigma\pi$  decay.  3  The published sign has been changed to be in accord with the baryon-first convention.

#### A(1820) REFERENCES

PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	` (RHEL) IJP
ALSTON	78	PR D18 182	M. Alston-Garnjost et al.	(LBL, MŤHO+) IJP
Also	77	PRL 38 1007	M. Alston-Garnjost et al.	(LBL, MTHO+) IJP
CAMERON	78	NP B143 189	W. Cameron et al.	(RHEL, LOIC) IJP
DECLAIS	77	CERN 77-16	Y. Declais et al.	(ČAEN, CERN) IJP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock, R.G	. Moorhouse (LOUC+) IJP
Also	77B	NP B126 266	B.R. Martin, M.K. Pidcock	(LOUC)
Also	77C	NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP
KANE	74	LBL-2452	D.F. Kane	` (LBL) IJP
PREVOST	74	NP B69 246	J. Prevost et al.	(SACL, CERN, HEID)
RADER	73	NC 16A 178	R.K. Rader et al.	(SACL, HEID, CERN+)
ARMENTEROS	68C	NP B8 216	R. Armenteros et al.	(CERN, HEID, SACL) I

 $\Lambda(1830) D_{05}$ 

 $I(J^P) = O(\frac{5}{2}^-)$  Status: ****

For results published before 1973 (they are now obsolete), see our 1982 edition Physics Letters 111B (1982).

The best evidence for this resonance is in the  $\Sigma \pi$  channel.

#### **Λ(1830) MASS**

VALUE (MeV) 1810 to 1830 (≈ 1830) OUR ESTI	DOCUMENT ID		TECN	COMMENT		
1831±10	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$		
1825±10	GOPAL	77	DPWA	K N multichannel		
1825± 1	KANE			$K^- p \rightarrow \Sigma \pi$		
1817 or 1818	¹ MARTIN	77	DPWA	K N multichannel		

#### **Λ(1830) WIDTH**

VALUE (MeV) 60 to 110 (≈ 95) OUR EST	DOCUMENT I	D	<u>TECN</u>	COMMENT
100±10	GOPAL	80	DPWA	KN→ KN
94±10	GOPAL	77	DPWA	K N multichannel
119± 3	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • We do not use the following	owing data for avera	ges, fits	, limits,	etc. • • •
56 or 56	¹ MARTIN	77	DPWA	<b>K</b> N multichannel

#### A(1830) DECAY MODES

	Mode	Fraction $(\Gamma_i/\Gamma)$
$\overline{\Gamma_1}$	NK	3–10 %
$\Gamma_2$	$\Sigma \pi$	35-75 %
$\Gamma_3^-$	$\Sigma(1385)\pi$	>15 %
Γ4	$\Sigma(1385)\pi$ , <i>D</i> -wave	
Γ ₅	$\Lambda\eta$	
		and the second s

The above branching fractions are our estimates, not fits or averages.

#### A(1830) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on  $\Lambda$  and  $\Sigma$ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					$\Gamma_1/\Gamma$
VALUE	DOCUMENT ID	1	TECN	COMMENT	
0.03 to 0.10 OUR ESTIMATE					
$0.08 \pm 0.03$	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.02 \pm 0.02$	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
• • • We do not use the follow	ving data for averag	es, fit	s, limits,	etc. • • •	
$0.04 \pm 0.03$	GOPAL	77	DPWA	See GOPAL 80	
0.04 or 0.04	¹ MARTIN	77	DPWA	K N multichanne	ı

$(\Gamma_I \Gamma_f)^{72} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(1830) \to \Sigma \pi$				$(\Gamma_1\Gamma_2)^{72}/\Gamma_2$	
VALUE			TECN	COMMENT	
$-0.17 \pm 0.03$	GOPAL	77	DPWA	K N multichannel	
$-0.15 \pm 0.01$	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$	
• • • We do not use the follo	wing data for averag	es, fits	s, limits,	etc. • • •	
0.17 or 0.17	1 MADTIN	77	DPW/A	K M multichannel	

 $(\Gamma_1\Gamma_5)^{\frac{1}{12}}/\Gamma$  $(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda(1830) \to \Lambda \eta$ DOCUMENT ID TECN -0.044±0.020 73 MPWA RADER

 $(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \Lambda(1830) \rightarrow \Sigma(1385) \pi$ DOCUMENT ID TECN COMMENT ² CAMERON 78 DPWA  $K^- p \to \Sigma(1385) \pi$ 74 DPWA  $K^- N \to \Sigma(1385) \pi$  $+\,0.141\pm0.014$ PREVOST  $+0.13 \pm 0.03$ 

#### A(1830) FOOTNOTES

¹ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
² The CAMERON 78 upper limit on G-wave decay is 0.03. The published sign has been changed to be in accord with the baryon-first convention.

#### **Λ(1830) REFERENCES**

PDG GOPAL ALSTON	82 80 78	PL 111B Toronto Conf. 159 PR D18 182	M. Roos <i>et al.</i> G.P. Gopal M. Alston-Garnjost <i>et al.</i>	(HELS, CIT, CERN) (RHEL) IJP (LBL, MTHO+) IJP
Also	77	PRL 38 1007	M. Alston-Garnjost et al.	(LBL, MTHO+) IJP
CAMERON	78	NP B143 189	W. Cameron et al.	(RHEL, LOIC) IJP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock, R.G	
Also	77B	NP B126 266	B.R. Martin, M.K. Pidcock	(LOUC)
Also	77C	NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP
KANE	74	LBL-2452	D.F. Kane	(LBL) IJP
PREVOST	74	NP B69 246	J. Prevost et al.	(SACL, CERN, HEID)
RADER	73	NC 16A 17B	R.K. Rader et al.	(SACL, HEID, CERN+)

 $\Lambda(1890) P_{03}$ 

 $I(J^P) = O(\frac{3}{2}^+)$  Status: ***

For results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters 111B (1982).

The  $J^P=3/2^+$  assignment is consistent with all available data (including polarization) and recent partial-wave analyses. The dominant inelastic modes remain unknown.

#### A(1890) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1850 to 1910 (≈ 1890) (	OUR ESTIMATE			
1897 ± 5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1908 ± 10	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1900 ± 5	GOPAL	77	DPWA	K N multichannel
1894 ± 10	HEMINGWAY	75	DPWA	$K^- p \rightarrow \overline{K} N$
• • • We do not use the	e following data for averages	, fit:	s, limits,	etc. • • •
1856 or 1868	1 MARTIN	77	DPWA	K N multichannel
1900	² NAKKASYAN	75	DPWA	$K^-p \rightarrow \Lambda \omega$

#### A(1890) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
60 to 200 (≈ 100) OUR ESTIM.	ATE			
$74 \pm 10$	GOPAL	80	DPWA	RN → RN
119 ± 20	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
72 ± 10	GOPAL	77	DPWA	K N multichannel
107±10	HEMINGWAY	75	DPWA	$K^- p \rightarrow \overline{K} N$
• • • We do not use the following	ig data for average:	s, fit	s, limits,	etc. • • •
191 or 193	1 MARTIN	77	DPWA	K N multichannel
100	² NAKKASYAN	75	DPWA	$K^-p \rightarrow \Lambda \omega$

#### A(1890) DECAY MODES

	Mode	Fraction $(\Gamma_j/\Gamma)$
$\overline{\Gamma_1}$	NK	20–35 %
$\Gamma_2$	Σπ	3–10 %
Γ3	$\Sigma(1385)\pi$	seen
Γ4	$\Sigma(1385)\pi$ , P-wave	
$\Gamma_5$	$\Sigma(1385)\pi$ , F-wave	
Γ ₆	NK*(892)	seen
Γ̈́7	$N \dot{\vec{K}}^*$ (892), $S=1/2$ , P-wave	
Γ8	Λω	
٠		

The above branching fractions are our estimates, not fits or averages.

#### Λ(1890) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on  $\varLambda$  and  $\varSigma$ Resonances.

E / N/72\ /E

Γ( <i>N K</i> )/Γ _{total}					$\Gamma_1/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT	
0.20 to 0.35 OUR ESTIMATE					
$0.20 \pm 0.02$	GOPAL				
$0.34 \pm 0.05$	ALSTON				
$0.24 \pm 0.04$	HEMINGWAY	75	DPWA	K  p → KN	
• • We do not use the following	g data for average	s, fit:	s, limits,	etc. • • •	
$0.18 \pm 0.02$	GOPAL	77	DPWA	See GOPAL 80	
0.36 or 0.34	1 MARTIN	77	DPWA	KN multichannel	
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda(1)^{1/2}$	1890) → Σπ  DOCUMENT ID		TECN	(Γ ₁ Γ ₂	) ^½ /୮
$-0.09 \pm 0.03$				K N multichannel	
• • We do not use the following					
+0.15 or +0.14	-			$\overline{\mathcal{K}}$ N multichannel	
$(\Gamma_i \Gamma_f)^{\frac{1}{12}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda(X_{\text{VALUE}})^{\frac{1}{12}}$	1890) → Λω DOCUMENT ID		TECN	$(\Gamma_1\Gamma_8$	) ¹ ⁄⁄/Γ
seen	BACCARI				
0.032	² NAKKASYAN				
	DOCUMENT ID		TECN	COMMENT	
< 0.03	CAMERON	78	DPWA	$K^-p \rightarrow \Sigma(1385)$	π
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda($	DOCUMENT ID		TECN	COMMENT	
$-0.126\pm0.055$	3 CAMERON	78	DPWA	$K^- \rho \rightarrow \Sigma(1385)$	π

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow A$	A(1890) → NK*(89	2)		(Γ ₁ Γ ₆ ) ^{1/2} /Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
$-0.07 \pm 0.03$	3,4 CAMERON 7	'88 DPWA	$K^- p \rightarrow$	NK*

#### A(1890) FOOTNOTES

 $\stackrel{1}{\circ}$  The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

2 Found in one of two best solutions.

3 The published sign has been changed to be in accord with the baryon-first convention.

4 Upper limits on the P₃ and F₃ waves are each 0.03.

#### A(1890) REFERENCES

PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP
ALSTON	78	PR D18 182	M. Alston-Garnjost et al.	(LBL, MŤHO+) IJP
Also	77	PRL 38 1007	M. Alston-Garnjost et al.	(LBL, MTHO+) IJP
CAMERON	78	NP B143 189	W. Cameron et al.	(RHEL, LOIC) IJP
CAMERON	78B	NP B146 327	W. Cameron et al.	(RHEL, LOIC) IJP
BACCARI	77	NC 41A 96	B. Baccari et al.	(SACL, CDEF) IJP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock, R.G	, Moorhouse (LOUC+)IJP
Also	77B	NP B126 266	B.R. Martin, M.K. Pidcock	(LOUC)
Also	77C	NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP
HEMINGWAY	75	NP B91 12	R.J. Hemingway et al.	(CERN, HEIDH, MPIM) IJP
NAKKASYAN	75	NP B93 85	A. Nakkasyan	(CERN) IJP

 $\Lambda(2000)$ 

 $I(J^P) = 0(??)$  Status: *

OMITTED FROM SUMMARY TABLE

We list here all the ambiguous resonance possibilities with a mass around 2 GeV. The proposed quantum numbers are  $D_3$  (BARBARO-GALTIERI 70 in  $\Sigma\pi$ ),  $D_3+F_5$ ,  $P_3+D_5$ , or  $P_1+D_3$  (BRANDSTETTER 72 in  $\Lambda\omega$ ), and  $S_1$  (CAMERON 78B in  $N\overline{K}^*$ ). The first two of the above analyses should now be considered obsolete. See also NAKKASYAN 75.

#### **Λ(2000) MASS**

VALUE (MeV)	DOCUMENT ID TECN COMMENT	
≈ 2000 OUR ESTIMATE		
2030 ± 30	CAMERON 78B DPWA $K^- p \rightarrow N \overline{K}^*$	
1935 to 1971	¹ BRANDSTET72 DPWA $K^-p \rightarrow \Lambda \omega$	
1951 to 2034	¹ BRANDSTET72 DPWA $K^-p \rightarrow \Lambda \omega$	
$2010 \pm 30$	BARBARO 70 DPWA $K^-p \rightarrow \Sigma \pi$	

#### **Λ(2000) WIDTH**

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
125±25	CAMERON 78B	DPWA	$K^- p \rightarrow N \overline{K}^*$
180 to 240	1 BRANDSTET72	DPWA	(lower mass)
73 to 154	¹ BRANDSTET72	<b>DPWA</b>	(higher mass)
130±50	BARBARO 70	DPWA	$K^-p \rightarrow \Sigma \pi$

#### A(2000) DECAY MODES

	Mode
Γ ₁	NK
$\Gamma_2^-$	$\Sigma \pi$
Γ3	$\Lambda \omega$
$\Gamma_4$	$N\overline{K}^*$ (892), $S=1/2$ , S-wave
$\Gamma_5$	$N\overline{K}^*$ (892), $S=3/2$ , $D$ -wave

#### A(2000) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on  $\Lambda$  and  $\Sigma$ 

$( f f)^{\prime\prime}/ total$ in N/K $\rightarrow$	$\Lambda(2000) \rightarrow \Sigma \pi$		(Γ ₁ Γ ₂ ) ^⅓ 2/Γ
VALUE	DOCUMENT ID	TECN	COMMENT
$-0.20 \pm 0.04$	BARBARO 70	DPWA	$K^- p \rightarrow \Sigma \pi$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow VALUE}$	$\Lambda(2000) \rightarrow \Lambda \omega$ DOCUMENT ID	TECN	$(\Gamma_1\Gamma_3)^{\frac{1}{12}}/\Gamma$
0.17 to 0.25	1 BRANDSTET 72	DPWA	(lower mass)
0.04 to 0.15	1 BRANDSTET72	DPWA	(higher mass)
			,
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to VALUE}$	<b>Λ(2000)</b> → <b>N K</b> *(892)	, <b>S</b> =1/	2, 5-wave (Γ ₁ Γ ₄ ) ^{1/2} /Γ
$\frac{\left(\Gamma_{l}\Gamma_{f}\right)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{-0.12 \pm 0.03}$	Λ(2000) → NK*(892)	, <b>S</b> =1/	2, 5-wave (Γ ₁ Γ ₄ ) ^{1/2} /Γ
VALUE	A(2000) → NK*(892)  DOCUMENT ID  2 CAMERON 788	, S=1/ TECN DPWA	2, S-wave $(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$ $COMMENT$ $K^-p \rightarrow N\overline{K}^*$ 2, D-wave $(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$

 $\Lambda(2000), \Lambda(2020), \Lambda(2100)$ 

#### A(2000) FOOTNOTES

 1  The parameters quoted here are ranges from the three best fits; the lower state probably has  $J \leq 3/2$ , and the higher one probably has  $J \leq 5/2$ .  2  The published sign has been changed to be in accord with the baryon-first convention.

## ۸(2000) REFERENCES

CAMERON 78I	B NP B146 327
NAKKASYAN 75	NP B93 85
BRANDSTET 72	NP B39 13
BARBARO 70	Duke Conf. 173

W. Cameron *et al.* A. Nakkasyan A.A. Brandstetter *et al.* A. Barbaro-Galtieri (RHEL, LOIC) UP (CERN) UP (RHEL, CDEF+) (LRL) IJP

## $\Lambda(2020) F_{07}$

$$I(J^P) = O(\frac{7}{2}^+)$$
 Status: *

#### OMITTED FROM SUMMARY TABLE

In LITCHFIELD 71, need for the state rests solely on a possibly inconsistent polarization measurement at 1.784 GeV/c. HEMINGWAY 75 does not require this state. GOPAL 77 does not need it in either  $N\overline{K}$  or  $\Sigma\pi$ . With new  $K^-n$  angular distributions included, DECLAIS 77 sees it. However, this and other new data are included in GOPAL 80 and the state is not required. BACCARI 77 weakly supports it.

#### **Λ(2020) MASS**

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 2020 OUR ESTIMATE				
2140	BACCARI			$K^- p \rightarrow \Lambda \omega$
2117	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2100 ± 30	LITCHFIELD	71	DPWA	$K^- p \rightarrow \overline{K} N$
$2020 \pm 20$	BARBARO	70	DPWA	$K^- p \rightarrow \Sigma \pi$

#### Λ(2020) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
128	BACCARI	77	DPWA	$K^- \rho \rightarrow \Lambda \omega$
167	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
120 ± 30	LITCHFIELD	71	DPWA	$K^-p \rightarrow \overline{K}N$
$160 \pm 30$	BARBARO	70	DPWA	$K^-p \rightarrow \Sigma \pi$

#### A(2020) DECAY MODES

	Mode			
Γ ₁	NK		 	
$\Gamma_2^-$	$\Sigma \pi$			
Гз	$\Lambda \omega$			

#### A(2020) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on  $\Lambda$  and  $\Sigma$ 

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$						$\Gamma_1/\Gamma$
VALUE	_	DOCUMENT ID		TECN	COMMENT	
0.05		DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.05 \pm 0.02$		LITCHFIELD	71	DPWA	$K^-p \rightarrow \overline{K}N$	
14						. 14

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(20)$	20) → Σπ		$(\Gamma_1\Gamma_2)^{72}/$
VALUE	DOCUMENT ID	TECN	COMMENT
$-0.15 \pm 0.02$	BARBARO 70	DPWA	$K^- \rho \rightarrow \Sigma \pi$

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to 1$	Λ(2020) → Λω				(Г₁Г₃) ^⅓ /Г
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT	
< 0.05	BACCARI	77	DPWA	$K^-p \rightarrow$	Λω

#### **Λ(2020) REFERENCES**

DECLAIS GOPAL HEMINGWAY	77 75	CERN 77-16 NP B119 362 NP B91 12	G.P. Gopal B. Baccari et al. Y. Declais et al. G.P. Gopal et al. R.J. Hemingway et al.	(RHEL) (SACL, CDEF) IJP (CAEN, CERN) IJP (LOIC, RHEL) (CERN, HEIDH, MPIM) IJP (PHEL CDEF SACL) IJP
LITCHFIELD	71	NP B91 12 NP B30 125 Duke Conf. 173	R.J. Hemingway <i>et al.</i> P.J. Litchfield <i>et al.</i> A. Barbaro-Galtieri	(CERN, HEIDH, MPIM) IJP (RHEL, CDEF, SACL) IJP (LRL) IJP

## Λ(2100) G₀₇

$$I(J^P) = O(\frac{7}{2})$$
 Status: ***

Discovered by COOL 66 and by WOHL 66. Most of the results published before 1973 are now obsolete and have been omitted. They may be found in our 1982 edition Physics Letters **111B** (1982).

This entry only includes results from partial-wave analyses. Parameters of peaks seen in cross sections and in invariant-mass distributions around 2100 MeV used to be listed in a separate entry immediately following. It may be found in our 1986 edition Physics Letters 170B (1986).

#### Λ(2100) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2090 to 2110 (≈ 2100) OUR EST	MATE			
$2104 \pm 10$	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
$2106 \pm 30$	DEBELLEFON	78	DPWA	$\overline{K}N \to \overline{K}N$
2110±10	GOPAL	77	DPWA	K N multichannel
2105±10	HEMINGWAY	75	DPWA	$K^- \rho \rightarrow \overline{K} N$
2115±10	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
• • • We do not use the following	g data for average:	s, fit	s, limits,	etc. • • •
2094	BACCARI	77	DPWA	$K^{+-}p \rightarrow \Lambda \omega$
2094	DECLAIS			
2110 or 2089	¹ NAKKASYAN	75	DPWA	$K^- p \rightarrow \Lambda \omega$

#### **Λ(2100) WIDTH**

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
100 to 250 (≈ 200) OUR	ESTIMATE			
157 ± 40	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
250 ± 30	GOPAL	77	DPWA	K N multichannel
$241 \pm 30$	HEMINGWAY	75	DPWA	$K^- \rho \rightarrow \overline{K} N$
152 ± 15	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
• • We do not use the	following data for averages	, fit	s, limits,	etc. • • •
98	BACCARI			
250	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
244 or 302	1 NAKKASYAN	75	DPWA	$K^- p \rightarrow \Lambda \omega$

#### A(2100) DECAY MODES

	Mode	Fraction $(\Gamma_i/\Gamma)$	
Γ1	NK	25-35 %	
$\Gamma_2$	$\Sigma \pi$	~ 5 %	
Γ3	$\Lambda\eta$	<3 %	
Γ4	ΞK	<3 %	
Γ ₅	$\Lambda \omega$	<8 %	
Γ6	N K* (892)	10-20 %	
Γ ₇	$N\overline{K}^*(892)$ , $S=1/2$ , G-wave		
Γ8	$N\overline{K}^*(892), S=3/2, D$ -wave		

The above branching fractions are our estimates, not fits or averages.

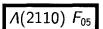
#### A(2100) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on  $\varLambda$  and  $\varSigma$  Resonances.

Γ( <i>NҠ</i> )/Γ _{total}					Γ1
VALUE	DOCUMENT ID		TECN	COMMENT	
0.25 to 0.35 OUR ESTIM	ATE				
$0.34 \pm 0.03$	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.24 \pm 0.06$	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.31 \pm 0.03$	HEMINGWAY	75	DPWA	$K^-p \rightarrow \overline{K}N$	
• • We do not use the	following data for averages	, fit	s, limits,	etc. • • •	
0.29	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$0.30 \pm 0.03$	GOPAL	77	DPWA	See GOPAL 80	

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	Λ(2100) → Σπ			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.12\pm0.04$	GOPAL	77	DPWA	KN multichannel
$+0.11 \pm 0.01$	KANE	74	DPWA	$K^-p \rightarrow \Sigma \pi$

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda(2)$	2100) → <i>Λη</i>				(Г₁Г₃) ^⅓ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	
-0.050 ± 0.020	RADER	73	MPWA	$K^- D \rightarrow$	Λn


VALUE	DOCUMENT ID			
$0.035 \pm 0.018$	LITCHFIELD		_	•
<ul> <li>We do not use the</li> </ul>	following data for averages	s, fits	, limits,	etc. • • •
0.003	MULLER	69B	DPWA	$K^- p \rightarrow \Xi K$
0.05	TRIPP	67	RVUE	$K^-p \rightarrow \Xi K$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K}$	→ Λ(2100) → Λω			(Γ₁Γ₅) ^½ /
VALUE	DOCUMENT ID  2 BACCARI  2 BACCARI  2 BACCARI		TECN	COMMENT
- 0.070	² BACCARI	77	<b>DPWA</b>	GD ₃₇ wave
+0.011	² BACCARI	77	DPWA	GG ₁₇ wave
+ 0.008	² BACCARI	77	DPWA	GG ₃₇ wave
0.122 or 0.154	¹ NAKKASYAN	75	DPWA	$K^-p \rightarrow \Lambda \omega$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{ ext{total}}$ in $N \overline{K}$	$\rightarrow \Lambda(2100) \rightarrow N\overline{K}^{*}(8)$			
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
$+0.21 \pm 0.04$	CAMERON	78 <b>8</b>	DPWA	$K^- p \rightarrow N \overline{K}^*$
	$\rightarrow \Lambda(2100) \rightarrow N\overline{K}^{*}(8)$			
VALUE	DOCUMENT ID		TECN	COMMENT
$-0.04 \pm 0.03$	3.0445000	700	DDIAM	$K^-p \rightarrow N\overline{K}^*$

#### A(2100) FOOTNOTES

- 1  The NAKKASYAN 75 values are from the two best solutions found. Each has the  $\Lambda(2100)$  and one additional resonance ( $P_3$  or  $F_5).$
- 2  Note that the three for BACCARI 77 entries are for three different waves.  3  The published sign has been changed to be in accord with the baryon-first convention. The upper limit on the  $\it G_3$  wave is 0.03.

#### A(2100) REFERENCES

PDG	86	PL 170B	M. Aguilar-Benitez et al.	(CERN, CIT+)
PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP
CAMERON	78B	NP B146 327	W. Cameron et al.	(RHEL, LOIC) IJP
DEBELLEFON	78	NC 42A 403	A. de Bellefon et al.	(CDEF, SACL) IJP
BACCARI	77	NC 41A 96	B. Baccari et al.	(SACL, CDEF) IJP
DECLAIS .	77	CERN 77-16	Y. Declais et al.	(CAEN, CERN) IJP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP
HEMINGWAY	75	NP B91 12	R.J. Hemingway et al.	(CERN, HÈIDH, MPIM) IJP
NAKKASYAN	75	NP B93 85	A. Nakkasyan	(CERN) UP
KANE	74	LBL-2452	D.F. Kane	` (LBL) IJP
RADER	73	NC 16A 178	R.K. Rader et al.	(SACL, HEID, CERN+)
LITCHFIELD	71	NP B30 125	P.J. Litchfield et al.	(RHEL, CDEF, SACL) UP
MULLER	69B	Thesis UCRL 19372	R.A. Muller	(LRL)
TRIPP	67	NP B3 10	R.D. Tripp et al.	(LRL, SLAC, CERN+)
COOL	66	PRL 16 1228	R.L. Cool et al.	(BNL)
WOHL	66	PRL 17 107	C.G. Wohl, F.T. Solmitz, M.L.	Stevenson (LRL) IJP



$$I(J^P) = O(\frac{5}{2}^+)$$
 Status: ***

For results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters 111B (1982). All the references have

This resonance is in the Baryon Summary Table, but the evidence for it could be better.

#### **Λ(2110) MASS**

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2090 to 2140 (≈ 2110)	OUR ESTIMATE			
2092 ± 25	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2125 ± 25	CAMERON	78B	DPWA	$K^- p \rightarrow N \widetilde{K}^*$
2106 ± 50	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2140 ± 20	DEBELLEFON	77	DPWA	$K^- p \rightarrow \Sigma \pi$
$2100 \pm 50$	GOPAL	77	DPWA	K N multichannel
2112± 7	KANE	74	DPWA	$K^-p \rightarrow \Sigma \pi$
<ul> <li>• • We do not use th</li> </ul>	e following data for averages	s, fits	i, limits,	etc. • • •
2137	BACCARI			
2103	¹ NAKKASYAN	75	DPWA	$K^-p \rightarrow \Lambda \omega$

#### **Λ(2110) WIDTH**

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
150 to 250 (≈ 200) OU	IR ESTIMATE			
245 ± 25	GOPAL	80	<b>DPWA</b>	$\overline{K}N \rightarrow \overline{K}N$
$160 \pm 30$	CAMERON	78B	DPWA	$K^- \rho \rightarrow N \overline{K}^*$
$251 \pm 50$	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
$140 \pm 20$	DEBELLEFON	77	DPWA	$K^- \rho \rightarrow \Sigma \pi$
$200 \pm 50$	GOPAL	77	DPWA	K N multichannel
190 ± 30	KANE	74	<b>DPWA</b>	$K^-p \rightarrow \Sigma \pi$
• • • We do not use t	he following data for averages	, fits	i, limits,	etc. • • •
132	BACCARI	77	DPWA	$K^-p \rightarrow \Lambda \omega$
391	¹ NAKKASYAN	75	DPWA	$K^-p \rightarrow \Lambda \omega$

#### A(2110) DECAY MODES

	Mode	Fraction $(\Gamma_i/\Gamma)$
Γ ₁	NK	5-25 %
$\Gamma_2$	Σπ	10-40 %
Гз	$\Lambda \omega$	seen
Γ4	$\Sigma(1385)\pi$	seen
$\Gamma_5$	$\Sigma(1385)\pi$ , $P$ -wave	
$\Gamma_6$	N K*(892)	10-60 %
Γ7	$N\overline{K}^*$ (892), $S=1/2$ , $F$ -wave	
	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

The above branching fractions are our estimates, not fits or averages.

#### 1(2110) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on  $\Lambda$  and  $\Sigma$ 

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				$\Gamma_1/\Gamma$
VALUE	DOCUMENT ID	TECN	COMMENT	
0.05 to 0.25 OUR ESTIMAT	E			
$0.07 \pm 0.03$	GOPAL 8			
$0.27 \pm 0.06$	² DEBELLEFON 7	8 DPWA	$KN \rightarrow KN$	
• • • We do not use the following	lowing data for averages,	fits, limits	, etc. • • •	
$0.07 \pm 0.03$	GOPAL 7	7 DPWA	See GOPAL 80	

$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	<i>Λ</i> (2110) → <i>Σ</i> π		(Γ₁Γ₂) ^⅓ /Γ
VALUE	DOCUMENT ID	TECN	COMMENT
$+0.14 \pm 0.01$	DEBELLEFON 7	77 DPW	$K^-p \rightarrow \Sigma \pi$
$+0.20\pm0.03$	KANE 7	74 DPW	$\lambda K^- \rho \rightarrow \Sigma \pi$
• • • We do not use the for	llowing data for averages,	fits, limits	s, etc. • • •
$+0.10\pm0.03$	GOPAL 7	77 DPW	A KN multichannel

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda$	(Γ₁Γ₃) ^⅓ /Γ		
VALUE	DOCUMENT ID	TECN	COMMENT
< 0.05	BACCARI 7	7 DPW	$K^-p \rightarrow \Lambda \omega$
0.112	¹ NAKKASYAN 7	5 DPW	$K^- p \rightarrow \Lambda \omega$

$$\begin{array}{c|c} \left(\Gamma_{f}\Gamma_{f}\right)^{\frac{1}{12}}/\Gamma_{total} \text{ in } N \overline{K} \rightarrow A(2110) \rightarrow \Sigma(1385) \pi \\ \frac{DOCUMENT ID}{3 \text{ CAMERON}} & \frac{TECN}{78} & \frac{COMMENT}{78} \\ \end{array}$$

$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to N$	$\Lambda(2110) \rightarrow N\overline{K}^*(8)$	392)	( <b>Г</b> 1Г	6) ¹ /2/I
VALUE	DOCUMENT ID	TECN	COMMENT	
$-0.17 \pm 0.04$	4 CAMERON	78B DPWA	$K^- p \rightarrow N \overline{K}^*$	

#### **Λ(2110) FOOTNOTES**

Found in one of two best solutions.

The published error of 0.6 was a misprint. ³ The CAMERON 78 upper limit on F-wave decay is 0.03. The sign here has been changed to be in accord with the baryon-first convention.

The published sign has been changed to be in accord with the baryon-first convention. The CAMERON 78B upper limits on the  $P_3$  and  $F_3$  waves are each 0.03.

#### A(2110) REFERENCES

PDG	82	PL 111B	M. Roos et al.	(HELS, CIT, CERN)
GOPAL	80	Taronto Conf. 159	G.P. Gopal	(RHEL) IJP
CAMERON	78	NP B143 189	W. Carneron et al.	(RHEL, LOIC) IJP
CAMERON	78B	NP B146 327	W. Cameron et al.	(RHEL, LOIC) IJP
DEBELLEFON	78	NC 42A 403	A. de Bellefon et al.	(CDEF, SACL) IJP
BACCARI	77	NC 41A 96	B. Baccari et al.	(SACL, CDEF) IJP
DEBELLEFON	77	NC 37A 175	A. de Bellefon et al.	(CDEF, SACL) IJP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP
NAKKA5YAN	75	NP B93 85	A. Nakkasyan	(CERN) IJP
KANE	74	LBL-2452	D.F. Kane	(LBL) IJP

 $\Lambda(2325) D_{03}$ 

$$I(J^P) = O(\frac{3}{2})$$
 Status: *

#### OMITTED FROM SUMMARY TABLE

BACCARI 77 finds this state with either  $J^P = 3/2^-$  or  $3/2^+$  in a energy-dependent partial-wave analyses of  $K^-p \to \Lambda\omega$  from 2070 to 2436 MeV. A subsequent semi-energy-independent analysis from threshold to 2436 MeV selects 3/2". DEBELLEFON 78 (same group) also sees this state in an energy-dependent partial-wave analysis of  $K^-p \rightarrow \overline{K}N$  data, and finds  $J^P = 3/2^-$  or  $3/2^+$ . They again prefer  $J^P=3/2^-$  , but only on the basis of model-dependent considerations.

## $\Lambda(2325), \Lambda(2350), \Lambda(2585)$ Bumps

	Λ(2325) MASS	A(2350) DECAY MODES
VALUE (MeV)	DOCUMENT ID TECN COMMENT	Mode Fraction $(\Gamma_i/\Gamma)$
≈ 2325 OUR ESTIMATE 2342±30	DEBELLEFON 78 DPWA $\overline{K}N \to \overline{K}N$	Γ ₁ NK ~12 %
$2327\pm20$	BACCARI 77 DPWA $K^- p \rightarrow \Lambda \omega$	$\Gamma_2$ $\Sigma \pi$ ~ 10 %
	Λ(2325) WIDTH	$\Gamma_3$ $\Lambda\omega$ The above branching fractions are our estimates, not fit
VALUE (MeV)	DOCUMENT ID TECN COMMENT	
177 ± 40	DEBELLEFON 78 DPWA $\overline{K}N \to \overline{K}N$	A(2350) BRANCHING RATIOS
160±40	BACCARI 77 IPWA K ⁻ p → Λω	See "Sign conventions for resonance couplings" in the Note or Resonances.
•	A(2325) DECAY MODES	$\Gamma(N\overline{K})/\Gamma_{\text{total}}$
Mode		VALUE DOCUMENT ID TECN COMM  ∼ 0.12 OUR ESTIMATE
$\Gamma_1 = N\overline{K}$		$0.12\pm0.04$ DEBELLEFON 78 DPWA $\overline{K}$ N $\sim$
$\Gamma_2^ \Lambda\omega$		$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(2350) \to \Sigma \pi$
AC	325) BRANCHING RATIOS	VALUE DOCUMENT ID TECN COMM
•	·	-0.11±0.02 DEBELLEFON 77 DPWA K ⁻ p
F(NK)/F _{total}	F ₁ /F	$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(2350) \to \Lambda \omega$
0.19±0.06	DEBELLEFON 78 DPWA $\overrightarrow{K}N \rightarrow \overrightarrow{K}N$	VALUE DOCUMENT ID TECN COMM
(C.E.) 1/2 / C.E. 1/2	4/2205) . 4	<0.05 BACCARI 77 DPWA K ⁻ p
$(\Gamma_I \Gamma_I)^{\frac{1}{12}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to N$	$\Lambda(2325) \rightarrow \Lambda \omega$ $000MENT ID TECN COMMENT$ $(\Gamma_1 \Gamma_2)^{\frac{1}{2}}/\Gamma$	A(2350) REFERENCES
0.06 ± 0.02	¹ BACCARI 77 IPWA DS ₃₃ wave	DEBELLEFON 78 NC 42A 403 A. de Bellefon et al.
0.05 ± 0.02 0.08 ± 0.03	¹ BACCARI 77 DPWA DD ₁₃ wave ¹ BACCARI 77 DPWA DD ₃₃ wave	BACCARI 77 NC 41A 96 B. Baccari et al.  DEBELLEFON 77 NC 37A 175 A. de Bellefon et al.
J.08±0.03	BACCARI 11 DEVVA DD33 WAVE	LASINSKI 71 NP B29 125 T.A. Lasinski BRICMAN 70 PL 31B 152 C. Bricman et al. (CE
	A(2325) FOOTNOTES	COOL 70 PR D1 1887 R.L. Cool et al. Also 66 PRL 16 1228 R.L. Cool et al.
1 Note that the three BACC	ARI 77 entries are for three different waves.	LU 70 PR D2 1846 D.C. Lu et al. BUGG 68 PR 166 1466 D.V. Bugg et al. (RF DAUM 68 NP B7 19 C. Daum et al.
	△(2325) REFERENCES	DAUM 68 NP B7 19 C. Daum et al.
DEBELLEFON 78 NC 42A 403	A. de Bellefon et al. (CDEF, SACL) IJP	$\Lambda(2585)$ Bumps $I(J^P) = 0(?^?)$ St
BACCARI 77 NC 41A 96	B. Baccari et al. (SACL, COEF) (JP	71(2505) Bullips
	D	OMITTED FROM SUMMARY TABLE
$\Lambda(2350) H_{09}$	$I(J^P) = O(\frac{9}{2}^+)$ Status: ***	∧(2585) MASS
DAUM 68 favors IP	$= 7/2^{-}$ or $9/2^{+}$ . BRICMAN 70 favors $9/2^{+}$ .	(BUMPS)
	sts three states in this region using a Pomeron	VALUE (MeV) DOCUMENT ID TECN COMM
	I. There are now also three formation experi-	≈ 2585 OUR ESTIMATE 2585±45 ABRAMS 70 CNTR K ⁻ p
	ege de France-Saclay group, DEBELLEFON 77, DEBELLEFON 78, which find 9/2 ⁺ in energy-	$2530\pm25 \qquad \qquad LU \qquad 70  \text{CNTR}  \gamma_P \rightarrow$
	ave analyses of $\overline{K}N \to \Sigma \pi$ , $\Lambda \omega$ , and $N\overline{K}$ .	MOTOR) MUDITU
<u> </u>	Λ(2350) MASS	Л(2585) WIDTH (BUMPS)
	, ,	VALUE (MeV) DOCUMENT ID TECN COMM
VALUE (MeV) 2340 to 2370 (≈ 2350) OUR E	STIMATE TECN COMMENT	300 ABRAMS 70 CNTR K-p
2370±50	DEBELLEFON 78 DPWA $\overline{K}N \to \overline{K}N$	150 LU 70 CNTR γρ →
2365 ± 20 2358 ± 6	DEBELLEFON 77 DPWA $K^-p \rightarrow \Sigma \pi$ BRICMAN 70 CNTR Total, charge exchange	A(2585) DECAY MODES
	wing data for averages, fits, limits, etc. • •	(BUMPS)
2372	BACCARI 77 DPWA $K^-p \rightarrow \Lambda \omega$	
2344±15	COOL 70 CNTR $K^-p$ , $K^-d$ total	Mode
2360±20 2340± 7	LU 70 CNTR $\gamma p \rightarrow K^+ Y^*$ BUGG 68 CNTR $K^- p$ , $K^- d$ total	Γ ₁ NK
		A(2585) BRANCHING RATIOS
	Λ(2350) WIDTH	(BUMPS)
VALUE (MeV) 100 to 250 (≈ 150) OUR ESTI	DOCUMENT ID TECN COMMENT	$(J+\frac{1}{2})\times\Gamma(N\overline{K})/\Gamma_{\text{total}}$ J is not known, so only $(J+\frac{1}{2})\times\Gamma(N\overline{K})/\Gamma_{\text{total}}$ can be given.
204±50	DEBELLEFON 78 DPWA $\overline{K}N \to \overline{K}N$	VALUE DOCUMENT ID TECN COMM
110 ± 20	DEBELLEFON 77 DPWA $K^-p \rightarrow \Sigma \pi$	1 ABRAMS 70 CNTR K-p
324±30 • • • We do not use the follow	BRICMAN 70 CNTR Total, charge exchange wing data for averages, fits, limits, etc. • • •	0.12±0.12
257	BACCARI 77 DPWA $K^-p \rightarrow \Lambda \omega$	A(2585) FOOTNOTES
190	COOL 70 CNTR $K^-p$ , $K^-d$ total	(BUMPS)
55 140 ± 20	LU 70 CNTR $\gamma p \rightarrow K^+ Y^*$	$^{ m 1}$ The resonance is at the end of the region analyzed — no clear signa
140±20	BUGG 68 CNTR $K^-p$ , $K^-d$ total	A(2585) REFERENCES

•	A(2350) DECAY MODES
Mode	Fraction (Γ _i /Γ)
r, NK	~ 12 %
Γ ₂ Σπ Γ ₃ Λω	$\sim$ 10 %
-	fractions are our estimates, not fits or averages
	2350) BRANCHING RATIOS
•	s for resonance couplings" in the Note on $\Lambda$ and $\Sigma$
Γ(NK)/Γ _{total}	Г
VALUE ~ 0.12 OUR ESTIMATE	DOCUMENT ID TECN COMMENT
$0.12 \pm 0.04$	DEBELLEFON 78 DPWA KN → KN
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to N$ VALUE	
-0.11±0.02	DOCUMENT ID TECN COMMENT  DEBELLEFON 77 DPWA $K^-p \rightarrow \Sigma \pi$
$(\Gamma_I \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to I$	$\Lambda(2350) \rightarrow \Lambda \omega$ $(\Gamma_1 \Gamma_3)^{\frac{1}{7}}$
<u>VALUE</u> <0.05	DOCUMENT ID TECN COMMENT  BACCARI 77 DPWA $K^-p \rightarrow \Lambda ω$
	A(2350) REFERENCES
DEBELLEFON 78 NC 42A 403 BACCARI 77 NC 41A 96	A. de Bellefon <i>et al.</i> (CDEF, SACL) B. Baccari <i>et al.</i> (SACL, CDEF)
DEBELLEFON 77 NC 37A 175 LASINSKI 71 NP B29 125	A. de Bellefon <i>et al.</i> (CDEF, SACL) T.A. Lasinski (EFI)
BRICMAN 70 PL 31B 152 COOL 70 PR D1 1887	C. Bricman et al. (CERN, CAEN, SÀCL) R.L. Cool et al. (BNL)
Also 66 PRL 16 1228 LU 70 PR D2 1846	R.L. Cool et al. (BNL)
Λ(2585) Bump	D.C. Lu et al. D.V. Bugg et al. D.V. Bugg et al. C. Daum et al. $(RHEL, BIRM, CAVE)$ DS $I(J^P) = 0$ (??) Status: **
DAUM 68 NP B7 19	D.C. Lu et al. D.V. Bugg et al. D.V. Bugg et al. C. Daum et al. $(RHEL, BIRM, CAVE)$ DS $I(J^P) = 0$ (??) Status: **
Λ(2585) Bump	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^P) = 0$ ? Status: **  MARY TABLE
A(2585) Bump OMITTED FROM SUMN  VALUE (MeV)	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^P) = 0(??)$ Status: **  MARY TABLE  (RHEL, BIRM, CAVE) (CERN)
A(2585) Bump	D.C. Lu et al. D.V. Bugg et al. D.V. Bugg et al. CERN, CAVE $I(J^P) = 0(?^?) $ Status: **  MARY TABLE  A(2585) MASS (BUMPS)
A(2585) Bump  OMITTED FROM SUMN  VALUE (MeV)  ≈ 2585 OUR ESTIMATE	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^P) = 0(?^?)$ Status: **  MARY TABLE  A(2585) MASS (BUMPS)  DOCUMENT ID TECN COMMENT
A(2585) Bump  OMITTED FROM SUMN  VALUE (MeV)  ≈ 2585 OUR ESTIMATE  2585±45	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^P) = 0(?^?) $ Status: **  MARY TABLE $I(2585) $ MASS $(BUMPS)$ $DOCUMENT ID TECN COMMENT$ ABRAMS 70 CNTR $K^-p$ , $K^-d$ total
A(2585) Bump  OMITTED FROM SUMN  VALUE (MeV)  ≈ 2585 OUR ESTIMATE  2585±45	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^P) = 0(?^?) \text{ Status: } **$ MARY TABLE $A(2585) \text{ MASS} $ $(BUMPS)$ $DOCUMENT ID                                   $
A(2585) Bump  A(2585) Bump  OMITTED FROM SUMN  VALUE (MeV)  ≈ 2585 OUR ESTIMATE  2585 ± 45  2530 ± 25  VALUE (MeV)  300	D.C. Lu et al. D.V. Bugg et al. C. Daum et al.  D.V. Bugg et al. C. Daum et al. $I(J^P) = 0(?^?) \text{ Status: } **$ MARY TABLE $A(2585) \text{ MASS} $ $(BUMPS)$ $DOCUMENT ID                                   $
A(2585) Bump  A(2585) Bump  OMITTED FROM SUMN  VALUE (MeV)  ≈ 2585 OUR ESTIMATE  2585±45  2530±25  VALUE (MeV)  3000  150	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^P) = 0(?^?) \text{ Status: } **$ MARY TABLE $I(2585) \text{ MASS} $ $(BUMPS)$ $DOCUMENT ID                                   $
A(2585) Bump  A(2585) Bump  OMITTED FROM SUMN  VALUE (MeV)  ≈ 2585 OUR ESTIMATE  2585±45  2530±25  VALUE (MeV)  3000  150	D.C. Lu et al. D.V. Bugg et al. C. Daum et al.  D.V. Bugg et al. C. Daum et al. $I(J^P) = 0(?^?) \text{ Status: } **$ MARY TABLE $A(2585) \text{ MASS} $ $(BUMPS)$ $DOCUMENT ID                                   $
A(2585) Bump  A(2585) Bump  OMITTED FROM SUMN  VALUE (MeV)  ≈ 2585 OUR ESTIMATE  2585 ± 45  2530 ± 25   VALUE (MeV)  300  150  Mode	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^P) = 0(?^?) \text{ Status: } **$ MARY TABLE $I(2585) \text{ MASS} $ $(BUMPS)$ $DOCUMENT ID                                   $
A(2585) Bump  A(2585) Bump  OMITTED FROM SUMN  VALUE (MeV)  ≈ 2585 OUR ESTIMATE  2585 ± 45  2530 ± 25  VALUE (MeV)  300  150	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^P) = 0(?^?) \text{ Status: } **$ MARY TABLE $I(2585) \text{ MASS} $ $(BUMPS)$ $DOCUMENT ID                                   $
A(2585) Bump  A(2585) Bump  OMITTED FROM SUMN  VALUE (MeV)  ≈ 2585 OUR ESTIMATE  2585 ± 45  2530 ± 25   VALUE (MeV)  300  150  Mode  F ₁ N K	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^P) = 0(?^?) \text{ Status: } **$ MARY TABLE $I(2585) \text{ MASS} $ $(BUMPS)$ $DOCUMENT ID                                   $
ΔΑΙΜ 68 NP B7 19  Λ(2585) Bump  OMITTED FROM SUMN  VALUE (MeV)  ≈ 2585 OUR ESTIMATE  2585 ± 45  2530 ± 25  VALUE (MeV)  Mode  Γ ₁ N K  Λ(2  (J+½)×Γ(NK)/Γtotal	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^{P}) = 0(?^{?}) \text{ Status: } **$ MARY TABLE $I(2585) \text{ MASS} $ $(BUMPS)$ $DOCUMENT ID                                   $
ΔΑΙΜ 68 NP B7 19  Λ(2585) Bump  OMITTED FROM SUMN  VALUE (MeV)  ≈ 2585 OUR ESTIMATE  2585 ± 45  2530 ± 25  VALUE (MeV)  Mode  Γ ₁ N K  Λ(2  (J+½)×Γ(NK)/Γtotal	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^{P}) = 0(?^{?}) \text{ Status: } **$ MARY TABLE $I(2585) \text{ MASS}$ $(BUMPS)$ $DOCUMENT ID IECN COMMENT$ ABRAMS 70 CNTR $K^{-}P$ , $K^{-}D$ total LU 70 CNTR $\gamma P \rightarrow K^{+}Y^{*}$ $I(2585) \text{ WIDTH}$ $IDDOCUMENT ID IECN COMMENT$ $IDDOCUMENT ID IECN FOR K^{-}P, K^{-}D total LU 70 CNTR K^{-}P, K^{-}D total$
A(2585) Bump  A(2585) Bump  OMITTED FROM SUMN  NALUE (MeV)  ≈ 2585 OUR ESTIMATE  2585 ± 45  2530 ± 25   NALUE (MeV)  Mode  F ₁ N K  A(2  (J+½)×Γ(NK)/Γtotal  J is not known, so only (	D.C. Lu et al. D.V. Bugg et al. C. Daum et al. $I(J^{P}) = 0(?^{?}) \text{ Status: } **$ MARY TABLE $I(2585) \text{ MASS} $ $(BUMPS)$ $DOCUMENT ID                                   $

∧(2585) REFERENCES (BUMPS)

R.J. Abrams et al. R.L. Cool et al. C. Bricman et al. O.C. Lu et al.

(BNL) I (BNL) I (CERN, CAEN, SACL) (YALE)

ABRAMS Also BRICMAN LU

PR D1 1917 PRL 16 1228 PL 31B 152 PR D2 1846

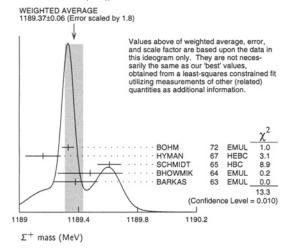
## **Σ** BARYONS (S=-1, I=1)

$$\Sigma^+ = uus$$
,  $\Sigma^0 = uds$ ,  $\Sigma^- = dds$ 



$$I(J^P) = 1(\frac{1}{2}^+)$$
 Status: ***

We have omitted some results that have been superseded by later experiments. See our earlier editions.


#### Σ+ MASS

The fit uses  $\Sigma^+$  ,  $\Sigma^0$  ,  $\Sigma^-$  , and  $\varLambda$  mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1189.37 ± 0.07 OUR	FIT Error in	ncludes scale fact	or of a	2.2.	
1189.37±0.06 OUR	AVERAGE	Error includes sca below.	ile fac	tor of 1.	8. See the ideogram
$1189.33 \pm 0.04$	607	¹ вонм	72	<b>EMUL</b>	
$1189.16 \pm 0.12$		HYMAN	67	HEBC	
$1189.61 \pm 0.08$	4205	SCHMIDT	65	HBC	See note with A mass
$1189.48 \pm 0.22$	58	² BHOWMIK	64	EMUL	
$1189.38 \pm 0.15$	144	² BARKAS	63	<b>EMUL</b>	

 $^{^1}$  BOHM 72 is updated with our 1973  $K^-,~\pi^-$  , and  $\pi^0$  masses (Reviews of Modern Physics 45 No. 2 Pt. II (1973)).

These masses have been raised 30 keV to take into account a 46 keV increase in the proton mass and a 21 keV decrease in the  $\pi^0$  mass (note added 1967 edition, Reviews of Modern Physics **39** 1 (1967)).



#### Σ+ MEAN LIFE

Measurements with fewer than 1000 events have been omitted.

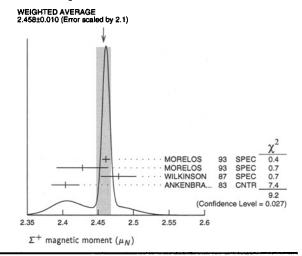
VALUE (10 ⁻¹⁰ s)	EVTS	DOCUMENT ID		TECN	COMMENT
0.8018 ± 0.0026 OUR AV	/ERAGE				
$0.8038 \pm 0.0040 \pm 0.0014$		BARBOSA	00	E761	hyperons, 375 GeV
$0.8043 \pm 0.0080 \pm 0.0014$		³ BARBOSA	00	E761	hyperons, 375 GeV
0.798 ±0.005	30k	MARRAFFING	08 C	нвс	K - p 0.42-0.5 GeV/c
0.807 ±0.013	5719	CONFORTO	76	HBC	K-p 1-1.4 GeV/c
0.795 ±0.010	20k	EISELE	70	HBC	K-p at rest
0.803 ±0.008	10664	BARLOUTAU	D 69	нвс	K - p 0.4-1.2 GeV/c
0.83 ±0.032	1300	⁴ CHANG	66	нвс	, -

 $^{^3}$  This is a measurement of the  $\overline{\Sigma}^-$  lifetime. Here we assume CPT invariance; see below

$$(\tau_{\Sigma^+} - \tau_{\overline{\Sigma}^-}) / \tau_{\Sigma^+}$$

A test of CPT invariance.

VALUE	DOCUMENT ID	TECN	COMMENT
$(-6 \pm 12) \times 10^{-4}$	BARBOSA	00 E761	hyperons, 375 GeV


#### Σ+ MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" in the  $\Lambda$  Listings. Measurements with an error  $\geq$  0.1  $\mu_N$  have been omitted.

VALUE (HN)	EVTS	DOCUMENT ID	TECN	COMMENT
2.458 ±0.010 OUR AVERAG	E Erro	includes scale factor below.	of 2.1. See	the ideogram
$2.4613 \pm 0.0034 \pm 0.0040$	250k		93 SPEC	pCu 800 GeV
2.428 ±0.036 ±0.007	12k	⁵ MORELOS	93 SPEC	pCu 800 GeV
2.479 ±0.012 ±0.022	137k	WILKINSON	87 SPEC	pBe 400 GeV
$2.4040 \pm 0.0198$	44k	⁶ ANKENBRA	83 CNTR	pCu 400 GeV

 5  We assume  $\it CPT$  invariance: this is (minus) the  $\overline{\Sigma}^-$  magnetic moment as measured by MORELOS 93. See below for the moment difference testing  $\it CPT$ .

 6  ANKENBRANDT 83 gives the value 2.38  $\pm$  0.02  $\mu_N$  . MORELOS 93 uses the same hyperon magnet and channel and claims to determine the field integral better, leading to the revised value given here.



#### $(\mu_{\Sigma^+} + \mu_{\overline{\Sigma}^-}) / \mu_{\Sigma^+}$

A test of CPT invariance.					
VALUE	DOCUMENT ID		TECN	COMMENT	
0.014±0.015	7 MORELOS	93	SPEC	<i>p</i> Cu 800 GeV	

 7  This is our calculation from the MORELOS 93 measurements of the  $\Sigma^+$  and  $\overline{\Sigma}^-$  magnetic moments given above. The statistical error on  $\mu_{\overline{\Sigma}^-}$  dominates the error here.

#### Σ+ DECAY MODES

	Mode	Fraction $(\Gamma_i/\Gamma)$ Confidence level
Γ ₁	$\rho\pi^0$	(51.57±0.30) %
$\Gamma_2$	$n\pi^+$	$(48.31\pm0.30)\%$
Гз	pγ	$(1.23\pm0.05)\times10^{-3}$
Γ4	$n\pi^+\gamma$	[a] $(4.5 \pm 0.5) \times 10^{-4}$
Ге	$\Lambda e^+ \nu_a$	$(2.0 \pm 0.5) \times 10^{-5}$

#### $\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 1$ weak neutral current (S1) modes

		 		\ <del></del> ,		
Γ6	ne $^+  u_e$	SQ	<	5	× 10 ⁻⁶	90%
$\Gamma_7$	n $\mu^+ u_{m \mu}$	SQ	<	3.0	× 10 ⁻⁵	90%
r.	ne+e-	51	-	7	× 10 ⁻⁶	

[a] See the Listings below for the pion momentum range used in this measurement.

#### CONSTRAINED FIT INFORMATION

An overall fit to 2 branching ratios uses 14 measurements and one constraint to determine 3 parameters. The overall fit has a  $\chi^2 =$ 7.7 for 12 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients  $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$ , in percent, from the fit to the branching fractions,  $x_i \equiv$  $\Gamma_i/\Gamma_{\text{total}}$ . The fit constrains the  $x_i$  whose labels appear in this array to sum to

for the fractional  $\Sigma^+$ - $\overline{\Sigma}^-$  lifetime difference obtained by BARBOSA 00. We have increased the CHANG 66 error of 0.018; see our 1970 edition, Reviews of Modern Physics 42 No. 1 (1970).

 $\Sigma^+$ 

$\Gamma(n\pi^+)/\Gamma(N\pi$	_	BRANCHING F	WI	103	
VALUE	r) <i>EVTS</i>	DOCUMENT ID		TECN	$\Gamma_2/(\Gamma_1+\Gamma_2)$
0.4836±0.0030 C	OUR FIT		_		
0.4828±0.0036	10k	8 MARRAFFINO	80	нвс	K-p 0.42-0.5 GeV/c
0.488 ±0.008	1861	NOWAK	78	HBC	
0.484 ±0.015	537	TOVEE	71	EMUL	
$0.488 \pm 0.010$	1331	BARLOUTAUD		HBC	$K^- p$ 0.4–1.2 GeV/c
0.46 ±0.02	534	CHANG	66	HBC	
0.490 ±0.024	308	HUMPHREY ves $\Gamma(p\pi^0)/\Gamma(total)$	62	HBC	. 0.0036
		ives i (p * )/i (totai	) = '	0.5172 :	± 0.0036.
$\Gamma(p\gamma)/\Gamma(p\pi^0)$	ļ				Γ ₃ /Γ ₁
VALUE (units 10 ⁻³ ) 2.38±0.10 QUR	EVTS	DOCUMENT ID		TECN	COMMENT
2.38±0.10 OUR 2.38±0.10 OUR					
2.32±0.11±0.10	32k	TIMM	95	E761	Σ+ 375 GeV
$2.81 \pm 0.39 ^{+0.21}_{-0.43}$	408	HESSEY	89	CNTR	$K^- p \rightarrow \Sigma^+ \pi^-$ at
					rest
2.52 ± 0.28	190	⁹ KOBAYASHI	87	CNTR	$\pi^+ p \rightarrow \Sigma^+ K^+$
2.46 ^{+0.30} -0.35	155	BIAGI	85	CNTR	CERN hyperon beam
2.11 ± 0.38	46	MANZ	80	нвс	$K^- \rho \rightarrow \Sigma^+ \pi^-$
2.1 ±0.3	45	ANG	69B	HBC	K-p at rest
2.76±0.51	31	GERSHWIN		HBC	$K-p \rightarrow \Sigma^+\pi^-$
1.7 ±0.8	24	BAZIN		HBC	K-p at rest
⁹ KOBAYASHI	87 actually give	$r = \frac{\Gamma(p\gamma)}{\Gamma(\text{total})} =$	(1.3	0 ± 0.1	$5) \times 10^{-3}$ .
$(n\pi^+\gamma)/\Gamma(n$	<b>-</b> +)				Γ ₄ /Γ:
		liffer to un do not	21/25	ara the	results but simply use the
	omentum cuts o in the Summar		aver.	age the	results out simply use the
ALUE (units 10 ⁻³ )	EVT5	DOCUMENT ID		TECN	COMMENT
0.93±0.10	180	EBENHOH		HBC	$\pi^+$ < 150 MeV/c
		ng data for averages			
$0.27 \pm 0.05$	29	ANG		нвс	$\pi^+ < 110~{ m MeV}/c$
~ 1.8	2,	BAZIN		HBC	$\pi^+$ < 116 MeV/c
-4-   >					
$\Gamma(\Lambda e^+  u_e)/\Gamma_{ m to}$	tal				Γ ₅ /Γ
VALUE (units 10 ⁻⁵ )	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
2.0±0.5 OUR AV					
$1.6 \pm 0.7$	5	BALTAY	69	HBC	K−p at rest
2.9±1.0	10	EISELE	69	HBC	K-p at rest
2.0±0.8	6	BARASH	67	нвс	K [™] p at rest
$\Gamma(ne^+\nu_e)/\Gamma(i$	7π ⁺ )				Γ ₆ /Γ ₂
Test of $\Delta S$	$=\Delta Q$ rule. Ex	periments with an e	ffect	ive deno	ominator less than 100,000
have been of EFFECTIVE DENOM		OCUMENT ID	TECN	COM	MENT
					effective denominator
	IR LIMIT Our				creased to 2.3 for a 90%
	JR LIMIT Our				
		sum). [Number confidence level	.]		
< 1.1 × 10 ^{—5} OU	0 ¹⁰ E	sum). [Number confidence level BENHOH 74	.] нвс	κ-	p at rest
< 1.1 × 10 ⁻⁵ OU 111000 105000	0 10 E	sum). [Number confidence level BENHOH 74   ECHI-ZORN 73	•		p at rest p at rest
< 1.1 × 10 ⁻⁵ OU	0 10 E	sum). [Number confidence level BENHOH 74   ECHI-ZORN 73	нвс		
< 1.1 × 10 ⁻⁵ OU 111000 105000 ¹⁰ Effective deno	0 10 E 0 10 S	sum). [Number confidence level BENHOH 74   ECHI-ZORN 73	нвс		p at rest
$< 1.1 \times 10^{-5}$ OU  111000  105000 10 Effective deno	$0  ext{10 E} $ $0  ext{10 S} $ $0  ext{minator calcula}$ $n\pi^+)$	sum). [Number confidence level BENHOH 74   ECHI-ZORN 73	нвс		
$<$ 1.1 $\times$ 10 ⁻⁵ OU 111000 105000 10 Effective denot $\Gamma(n\mu^{+}\nu_{\mu})/\Gamma(n^{-1})$ Test of $\Delta S$	$0  10_{\rm E}$ $0  10_{\rm S}$ Ominator calcula $n\pi^{+})$ $0 = \Delta Q \text{ rule.}$	sum). [Number confidence level BENHOH 74   ECHI-ZORN 73	нвс нвс	<b>κ</b> -	p at rest
< 1.1 × 10 ⁻⁵ OL 111000 105000 10 Effective deno $\Gamma(n\mu^+\nu_\mu)/\Gamma(\mu^-\nu_\mu)$ Test of $\Delta S$ EFFECTIVE DENOM.	$0  10_{S}$ $0  10_{S}$ Ominator calcula $0  \pi^{+}$ $0  = \Delta Q \text{ rule.}$ $0  EVTS$	sum). [Number confidence level BENHOH 74   BECHI-ZORN 73   ted by us.	HBC HBC	K-	$p$ at rest $\Gamma_7/\Gamma_2$ effective denominator
< 1.1 × 10 ⁻⁵ OL 111000 105000 10 Effective deno $\Gamma(n\mu^+\nu_\mu)/\Gamma(\mu^-\nu_\mu)$ Test of $\Delta S$ EFFECTIVE DENOM.	$0  10_{S}$ $0  10_{S}$ Ominator calcula $0  \pi^{+}$ $0  = \Delta Q \text{ rule.}$ $0  EVTS$	sum). [Number confidence level BENHOH 74   BENHOH 73   BECHI-ZORN 73   BECHI-ZORN 73   BECHI-ZORN 75   BECHI-Z	TECN .7 ev	K-	ρ at rest Γ ₇ /Γ ₂
< 1.1 × 10 ⁻⁵ OL  111000 105000  10 Effective deno $\Gamma(n\mu^{+}\nu_{\mu})/\Gamma(n\mu^{+}\nu_{\mu})/\Gamma(n\mu^{+}\nu_{\mu})$ Test of $\Delta S$ EFFECTIVE DENOM  < 6.2 × 10 ⁻⁵ OL	$0  10_{\rm E}$ $0  10_{\rm S}$ ominator calcula $n\pi^{+})$ $= \Delta Q \text{ rule.}$ $EVTS \qquad \underline{E}$ JR LIMIT Our	sum). [Number confidence level BENHOH 74   BENHOH 74   BECHI-ZORN 73   BECHI-ZORN 73   BECHI-ZORN 75   BECHI-Z	TECN .7 ev	K-	$p$ at rest $\Gamma_7/\Gamma_2$ effective denominator
< 1.1 × 10 ⁻⁵ OU  .11000 .05000  10 Effective denote $(n\mu^{+}\nu_{\mu})/\Gamma(\mu^{-})$ Test of $\Delta S$ EFFECTIVE DENOM.  < 6.2 × 10 ⁻⁵ OU  .03800	0 10 E 0 10 S 10 S 10 S 10 S 10 S 10 S 1	sum). [Number sum]. [Number sum]. [Number sum]. [Number sum]. [Number sum]. [Number confidence level additional sum]. [Number sum]. [Num]. [Number sum]. [Nu	TECN .7 ev of e	K-	$p$ at rest $\Gamma_7/\Gamma_2$ effective denominator
$< 1.1 \times 10^{-5}$ OU 111000 105000 10 Effective deno Test of $\triangle S$ EFFECTIVE DENOM $< 6.2 \times 10^{-5}$ OU 33800 52000	$0  10 \text{ g}$ $0  10 \text{ g}$ $0  10 \text{ g}$ $n\pi^{+})$ $= \Delta Q \text{ rule.}$ $= \frac{EVTS}{DR \text{ LIMIT}}  \text{Out}$ $0  \text{E}$ $2  11 \text{ g}$ $0  12 \text{ g}$	sum). [Number confidence level BENHOH 74   BENHOH 74   BECHI-ZORN 73   BECHI-ZORN 73   BECHI-ZORN 75   BECHI-Z	TECN .7 ev of e	K-	$p$ at rest $\Gamma_7/\Gamma_2$ effective denominator
< 1.1 × 10 ⁻⁵ OL  111000 105000  10 Effective deno $\Gamma(n\mu^+\nu_{\mu})/\Gamma(\frac{1}{10000000000000000000000000000000000$	$\begin{array}{ccc} 0 & 10 \text{ E} \\ 0 & 10 \text{ S} \\ \end{array}$ ominator calcula $\begin{array}{ccc} n\pi^+ \\ = \Delta Q \text{ rule.} \\ \underline{EVTS} & \underline{E} \\ \text{JR LIMIT} & \text{Out} \\ \end{array}$ $\begin{array}{cccc} 0 & \text{E} \\ 2 & 11 \text{ E} \\ 0 & 12 \text{ G} \\ 0 & 12 \text{ G} \\ \end{array}$	sum). [Number confidence level BENHOH 74   18ENHOH 74   18ENHOH 73   18ENHOH 75   1	HBC  TECN .7 ev of e	K- vents)/(vents in	$p$ at rest $\Gamma_7/\Gamma_2$ effective denominator
$< 1.1 \times 10^{-5}$ OU.  11000 .05000  10 Effective denoting for the property of $\Delta S$ EFFECTIVE DENOM $< 6.2 \times 10^{-5}$ OU.  13800 10150 1710 120	$\begin{array}{ccc} 0 & 10 \text{ E} \\ 0 & 10 \text{ S} \\ \end{array}$ ominator calcula $\begin{array}{ccc} n\pi^+ \\ = \Delta Q \text{ rule.} \\ = \underline{\text{evTs}} & \underline{\text{f}} \\ \text{JR LIMIT} & \text{Out} \\ \end{array}$ $\begin{array}{cccc} 0 & \text{E} \\ 2 & 11 \text{ E} \\ 0 & 12 \text{ G} \\ 0 & 12 \text{ M} \\ 1 & \text{C} \end{array}$	sum). [Number confidence level BENHOH 74   BENHOH 74   BENHOH 75	TECN .7 ev of e	K- vents)/(vents in	$p$ at rest $\Gamma_7/\Gamma_2$ effective denominator
$< 1.1 \times 10^{-5}$ OU. 11000 .05000 10 Effective denoting the following term of $\Delta S$ . September 100 .05000 .05000 .0150 1710 .120 11 Effective denoting term of $< 1.1 \times 10^{-5}$ OU. 120 .11 Effective denoting term of $< 1.1 \times 10^{-5}$ OU. 1110 .120 .11 Effective denoting .1110 .120 .11 Effective denoting .11100 .120 .11 Effective denoting .11100 .120 .11 Effective denoting .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .11100 .1	0  10  E $0  10  S$ $0  10  S$ $0  10  S$ $0  10  S$ $0  10  E$ $0  12  C$ $0$	sum). [Number confidence level seemed by us. 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sum]. [Number co	HBC  TECN .7 ev of e	K- vents)/(vents in	$p$ at rest $\Gamma_7/\Gamma_2$ effective denominator
$< 1.1 \times 10^{-5}$ OU.  11000 .05000  10 Effective denoting for the properties of $\Delta S$ EFFECTIVE DENOM. $< 6.2 \times 10^{-5}$ OU.  13800 13800 1350 1710 120 11 Effective denoting for the properties of $\Delta S$	$\begin{array}{ccc} 0 & 10 \text{ E} \\ 0 & 10 \text{ S} \\ \end{array}$ ominator calcula $\begin{array}{cccc} n\pi^+ \\ & = \Delta Q \text{ rule.} \\ & = \underline{evts} & \underline{e} \\ \end{array}$ $\begin{array}{cccc} 2 & 11 \text{ E} \\ 0 & 12 \text{ C} \\ 0 & 12 \text{ M} \\ \end{array}$ ominator calcula	sum). [Number confidence level BENHOH 74   BENHOH 74   BENHOH 75	HBC  TECN .7 ev of e	K- vents)/(vents in	$p$ at rest $\Gamma_7/\Gamma_2$ effective denominator
$< 1.1 \times 10^{-5}$ OU.  11000 .05000  10 Effective denoting for the properties of $\Delta S$ EFFECTIVE DENOM. $< 6.2 \times 10^{-5}$ OU.  13800 13800 1350 1710 120 11 Effective denoting for the properties of $\Delta S$	$\begin{array}{ccc} 0 & 10 \text{ E} \\ 0 & 10 \text{ S} \\ \end{array}$ ominator calcula $\begin{array}{cccc} n\pi^+ \\ & = \Delta Q \text{ rule.} \\ & = \underline{evts} & \underline{e} \\ \end{array}$ $\begin{array}{cccc} 2 & 11 \text{ E} \\ 0 & 12 \text{ C} \\ 0 & 12 \text{ M} \\ \end{array}$ ominator calcula	sum). [Number confidence level seemed by us. 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sum]. [Number co	HBC  TECN .7 ev of e	K- vents)/(vents in	P at rest  Γ7/Γ2  effective denominator creased to 6.7 for a 90%
$< 1.1 \times 10^{-5}$ OU 111000 105000 10 Effective denotes $\Gamma(n\mu^+\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^-\nu_\mu)/\Gamma(\mu^$	$\begin{array}{ccc} 0 & 10 \text{ E} \\ 0 & 10 \text{ S} \\ \end{array}$ ominator calcula $\begin{array}{cccc} n\pi^+ \\ = \Delta Q \text{ rule.} \\ \underline{EVTS} & \underline{E} \\ \text{JR LIMIT} & \text{Out} \\ \end{array}$ $\begin{array}{cccc} 0 & \text{E} \\ 2 & \text{11} \\ \text{E} \\ 0 & 12 \\ \text{O} \\ 1 & \text{C} \\ \end{array}$ ominator calcula ominator taken to	sum). [Number confidence level BENHOH 74   18ECHI-ZORN 73   18ECHI-ZORN 73   18ECHI-ZORN 73   18ECHI-ZORN 74   18ECHI-ZORN 75   18ECHI-ZORN 75	HBC  TECN 7 ev of e	K-  rents)/(i vents in	P at rest  Γ7/Γ2  effective denominator creased to 6.7 for a 90%
$(1.1 \times 10^{-5} \text{ OL})$ .11000 .05000  10 Effective denoting the following term of $\Delta S$ EFFECTIVE DENOM. $(6.2 \times 10^{-5} \text{ OL})$ .13800 .13800 .13800 .1150 .120 .11 Effective denoting the following term of $\Delta S$ .1710 .120 .11 Effective denoting term of $\Delta S$ .12 Effective denoting term of $\Delta S$ .13 Effective denoting term of $\Delta S$ .14 Effective denoting term of $\Delta S$ .15 Effective denoting term of $\Delta S$ .16 Effective denoting term of $\Delta S$ .17 Effective denoting term of $\Delta S$ .18 Ef	$\begin{array}{ccc} 0 & 10 \text{ E} \\ 0 & 10 \text{ S} \\ \end{array}$ ominator calcula $\begin{array}{cccc} n\pi^+ \\ = \Delta Q \text{ rule.} \\ \underline{EVTS} & \underline{E} \\ \text{JR LIMIT} & \text{Out} \\ \end{array}$ $\begin{array}{cccc} 0 & \text{E} \\ 2 & \text{11} \\ \text{E} \\ 0 & 12 \\ \text{O} \\ 1 & \text{C} \\ \end{array}$ ominator calcula ominator taken to	sum). [Number confidence level seemed by us. 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sage 199% CL limit = (6 sum). [Number confidence level sum]. [Number co	TECM .7 ev of e HBC HBC HBC	K-  rents)/(i vents in	P at rest  Γ7/Γ2  effective denominator creased to 6.7 for a 90%  Γ8/Ι
(1.1 × 10 ⁻⁵ OL 111000 105000 10 Effective denot $\Gamma(n\mu^+\nu_\mu)/\Gamma(\Gamma_{0})$ Test of $\Delta S$ EFFECTIVE DENOM (6.2 × 10 ⁻⁵ OL 13800 10150 1710 120 11 Effective denot 12 Effective denot $\Gamma(pe^+e^-)/\Gamma_{12}$ VALUE (units 10 ⁻⁶ ) (7 13 ANG 698 fou	$0  10 \text{ E} \\ 0  10 \text{ S}$ ominator calcula $n\pi^+) = \Delta Q \text{ rule.}$ $= \underline{EVTS}  \underline{E}$ $2  11 \text{ E}$ $0  12 \text{ O}$ $0  12 \text{ N}$ $1  0  12 \text{ N}$ ominator calcula ominator taken in	sum). [Number confidence level sum]. [Number confidence level	TECN TECN .7 ev of e HBC HBC HBC HBC	rents)/(ivents in	$\Gamma_7/\Gamma_2$ effective denominator creased to 6.7 for a 90% $\Gamma_8/\Gamma_2$ $\Gamma_8/\Gamma_3$ $\Gamma_8/\Gamma_4$ $\Gamma_8/\Gamma_4$ $\Gamma_8/\Gamma_5$ $\Gamma_8/\Gamma_5$
(1.1 × 10 ⁻⁵ OL	$0  10 \text{ E} \\ 0  10 \text{ S}$ ominator calcula $n\pi^+) = \Delta Q \text{ rule.}$ $EVTS \qquad D$ $2  11 \text{ E} \\ 0  12 \text{ C} \\ 0  12 \text{ C} \\ 1  \text{C}$ ominator calcula ominator taken to	sum). [Number confidence level seem of the sum). [Number confidence level sum). [Number confidence level sum). [Number confidence level sum). [Number confidence level sum]. [Number confi	TECN TECN .7 ev of e HBC HBC HBC HBC	rents)/(ivents in	$r_{7}/r_{1}$ effective denominator creased to 6.7 for a 90% $r_{8}/r_{1}$ $r_{8}/r_{1}$ $r_{8}/r_{1}$ $r_{8}/r_{2}$ $r_{8}/r_{1}$ $r_{8}/r_{1}$ $r_{8}/r_{2}$
11000 10000 10 Effective denoting the following state of $\Delta S$ 10000 10 Effective denoting the following state of $\Delta S$ 100000 110000 110000 110000 1110000 1120000 1120000 1120000 1120000 11200000 11200000000	$0  10 \text{ E} \\ 0  10 \text{ S}$ ominator calcula $n\pi^+) = \Delta Q \text{ rule.}$ $= \underline{VTS}  \underline{E}$ $2  11 \text{ E}$ $0  12 \text{ G}$ $0  12 \text{ N}$ $1  C$ ominator calcula ominator taken in $\frac{1}{2} \frac{1}{2} 1$	sum). [Number confidence level seen Hoh 74   12   12   13   14   15   15   15   15   15   15   15	TECN .7 ev of e .] HBC HBC HBC EMU	$K-$ HBC with $\gamma$ –	p at rest $\Gamma_7/\Gamma_2$ effective denominator creased to 6.7 for a 90% $\Gamma_8/\Gamma_2$ $COMMENT$ $K^-$ p at rest $\rightarrow e^+e^-$ conversion from
(1.1 × 10 ⁻⁵ OL 111000 105000 10 Effective denote $\Gamma(n\mu^+\nu_\mu)/\Gamma(\frac{1}{2})$ Test of $\Delta S$ EFFECTIVE DENOM (6.2 × 10 ⁻⁵ OL 13800 10150 1710 120 11 Effective denote 12 Effective denote 12 Effective denote 12 Effective denote 13 ANG 69B four $\Sigma^+ \rightarrow p\gamma$ . $\Gamma(\Sigma^+ \rightarrow ne^+)$	$0  10 \text{ E} \\ 0  10 \text{ S}$ ominator calcula $n\pi^+) = \Delta Q \text{ rule.}$ $= \underline{VTS}  \underline{E}$ $2  11 \text{ E}$ $0  12 \text{ G}$ $0  12 \text{ N}$ $1  C$ ominator calcula ominator taken in $\frac{1}{2} \frac{1}{2} 1$	sum). [Number confidence level seem of the sum of the s	TECN .7 ev of e .] HBC HBC HBC EMU	$K-$ HBC with $\gamma$ –	p at rest $\Gamma_7/\Gamma_2$ effective denominator creased to 6.7 for a 90% $\Gamma_8/\Gamma_2$ $COMMENT$ $K^-$ p at rest $\rightarrow e^+e^-$ conversion from
11000 10000 10 Effective denoting the following state of $\Delta S$ 11000 10 Effective denoting the following state of $\Delta S$ 11000 11000 11000 11000 11100 11100 1120 11100 1120 11100 1120 11100 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1	$0  10 \text{ g}$ $0  10 \text{ g}$ $0  10 \text{ g}$ $0  10 \text{ g}$ $\text{portionator calcula}$ $n\pi^+) = \Delta Q \text{ rule}.$ $EVTS \qquad E$ $2  11 \text{ g}$ $0  12 \text{ g}$ $0  12 \text{ g}$ $1  2  2 \text{ g}$ $1  2  2  2 \text{ g}$ $1  2  2  2  2 \text{ g}$ $2  2  2  2  2  2 \text{ g}$ $2  2  2  2  2  2  2  2 \text{ g}$ $2  2  2  2  2  2  2  2  2  2 $	sum). [Number confidence level seen Hoh 74   12   12   13   14   15   15   15   15   15   15   15	TECN TECN 7 ev 1.7 ev 1.7 ev 1.1 HBC	$K-$ wents)/( $i$ HBC with $\gamma$ - $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$	p at rest $\Gamma_7/\Gamma_2$ effective denominator creased to 6.7 for a 90% $\Gamma_8/\Gamma_2$ $COMMENT$ $K^-$ p at rest $\Rightarrow e^+e^-$ conversion from $COMMENT$ $\pi^+$ ) above.
11000 10000 10 Effective denoting the following state of $\Delta S$ 11000 10 Effective denoting the following state of $\Delta S$ 11000 11000 11000 11000 11100 11100 1120 11100 1120 11100 1120 11100 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1	$0  10 \text{ g}$ $0  10 \text{ g}$ $0  10 \text{ g}$ $0  10 \text{ g}$ $\text{portionator calcula}$ $n\pi^+) = \Delta Q \text{ rule}.$ $EVTS \qquad E$ $2  11 \text{ g}$ $0  12 \text{ g}$ $0  12 \text{ g}$ $1  2  2 \text{ g}$ $1  2  2  2 \text{ g}$ $1  2  2  2  2 \text{ g}$ $2  2  2  2  2  2 \text{ g}$ $2  2  2  2  2  2  2  2 \text{ g}$ $2  2  2  2  2  2  2  2  2  2 $	sum). [Number confidence level sum). [Number to be sum). [Number to sum). [Number confidence level sum]. [Number confidence	TECN TECN 7 ev 1.7 ev 1.7 ev 1.1 HBC	$K-$ wents)/( $i$ HBC with $\gamma$ - $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$	p at rest $\Gamma_7/\Gamma_2$ effective denominator creased to 6.7 for a 90% $\Gamma_8/\Gamma_2$ $COMMENT$ $K^-$ p at rest $\Rightarrow e^+e^-$ conversion from $COMMENT$ $\kappa^+$ ) above.  etc. • • •
(1.1 × 10 ⁻⁵ OL 111000 105000 10 Effective denotes $\Gamma(n\mu^+\nu_\mu)/\Gamma(\Gamma_{\rm eff})$ Test of $\Delta S$ 25 EFFECTIVE DENOM (6.2 × 10 ⁻⁵ OL 13800 10150 1710 120 11 Effective denotes 12 Effective denotes 12 Effective denotes 12 Effective denotes 13 ANG 69B four $\Sigma^+ \rightarrow p\gamma$ .  ( $\Sigma^+ \rightarrow p\gamma$ .  ( $\Sigma^+ \rightarrow ne^+$ VALUE (units 10 ⁻⁶ ) VALUE (units 10 ⁻⁶ ) VALUE (0.009 OUR LIM 10.009 OUR L	$0  10 \text{ E} \\ 0  10 \text{ S}$ ominator calcula $n\pi^+) = \Delta Q \text{ rule.}$ $= \underline{EVTS}  \underline{E}$ $2  11 \text{ E}$ $0  12 \text{ O}$ $0  12 \text{ N}$ $1  0  12 \text{ N}$ $12  0  12 \text{ N}$ $13  0  0  12 \text{ N}$ $13  0  0  0  0  0  0$ $13  0  0  0  0  0  0  0$ $13  0  0  0  0  0  0  0$ $13  0  0  0  0  0  0  0  0$ $13  0  0  0  0  0  0  0  0$ $13  0  0  0  0  0  0  0  0  0  $	sum). [Number confidence level sum). [Number sum). [Number sum). [Number confidence level sum). [Number confidence level sum). [Number sum]. [	HBC  TECAN 7 ev of e 1.]  HBC HBC HBC HBC HBC HBC HBC HBC HBC HB	$K=\frac{K-1}{160N}$ HBC with $\gamma=\frac{1}{160N}$	p at rest $\Gamma_7/\Gamma_2$ effective denominator creased to 6.7 for a 90% $\Gamma_8/\Gamma_2$ $COMMENT$ $K^-$ p at rest $\Rightarrow e^+e^-$ conversion from $COMMENT$ $\pi^+$ ) above.
< 1.1 × 10 ⁻⁵ OU  111000 105000 10 Effective denot $\Gamma(n\mu^+\nu_{\mu})/\Gamma($ Test of $\Delta S$ $\epsilon FFECTIVE DENOM$ < 6.2 × 10 ⁻⁵ OU  33800 62000 10150 1710 12 Effective denot 12 Effective denot 12 Effective denot $\Gamma(pe^+e^-)/\Gamma_{tt}$ VALUE (units 10 ⁻⁶ ) < 7 13 ANG 698 fou $\Sigma^+ \rightarrow p\gamma$ $\Gamma(\Sigma^+ \rightarrow ne^+)$ VALUE • • • We do not < 0.019	o 10 E 0 10 S 10 S 10 S 10 S 10 S 10 S 10	sum). [Number confidence level sum). [Number sum). [Number sum). [Number confidence level sum). [Number confidence level sum). [Number sum]. [	HBC  TECAN 7 ev of e 1.]  HBC HBC HBC HBC HBC HBC HBC HBC HBC HB	K=- wents)/( $\cdot$ wents in  HBC with $\gamma$ - tts.  TECN $\cdot$ , limits,	p at rest $\Gamma_7/\Gamma_2$ effective denominator creased to 6.7 for a 90% $\frac{\Gamma_8/\Gamma}{K^-p \text{ at rest}}$ $\rightarrow e^+e^- \text{ conversion from}$ $\frac{COMMENT}{K^+p}$ above.  etc. • • • $K^-p \text{ at rest}$

```
\Gamma(\Sigma^+ \to n \mu^+ \nu_\mu) / \Gamma(\Sigma^- \to n \mu^- \overline{\nu}_\mu)
VALUE

EVTS

DOCUMENT ID
                                                                   TECN COMMENT
 <0.12 OUR LIMIT Our 90% CL limit, using \Gamma(n\mu^+\nu_\mu)/\Gamma(n\pi^+) above.
• • • We do not use the following data for averages, fits, limits, etc. • • •
  0.06 + 0.045
                                             EISELE
                                                                 698 HBC K^-p at rest
\frac{\Gamma(\Sigma^{+} \to n\ell^{+}\nu)/\Gamma(\Sigma^{-} \to n\ell^{-}\nu)}{\text{Test of } \Delta S = \Delta Q \text{ rule.}}
\frac{VALUE}{EVTS}
\frac{EVTS}{EVTS}
                                             DOCUMENT ID TECN
                            EVTS
 <0.043 OUR LIMIT Our 90% CL limit, using \left[\Gamma(ne^+\nu_e) + \Gamma(n\mu^+\nu_\mu)\right]/\Gamma(n\pi^+).
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                              NORTON
 <0.08
                                                                69 HBC
 < 0.034
                                   0
                                              BAGGETT
                                   \Sigma^+ DECAY PARAMETERS
           See the "Note on Baryon Decay Parameters" in the neutron Listings. A
```

few early results have been omitted.

EVTS	DOCUMENT ID		TECN	COMMENT
R FIT				
R AVERAGE				
1259	14 LIPMAN	73	OSPK	$\pi^+ p \rightarrow \Sigma^+$
16k	BELLAMY	72	ASPK	$\pi^+ p \rightarrow \Sigma^+ K^+$
1335	¹⁵ HARRIS	70	OSPK	$\pi^+ p \rightarrow \Sigma^+ K^+$
32k	BANGERTER	69	нвс	K-p 0.4 GeV/c
	1259 16k 1335	R FIT  R AVERAGE  1259 14 LIPMAN  16k BELLAMY  1335 15 HARRIS	R FIT  R AVERAGE  1259	R FIT  R AVERAGE  1259

φ₀ ANGLE FOR	$(\tan\phi_0=\beta/\gamma)$				
VALUE (°)	EVTS	DOCUMENT I	D	TECN	COMMENT
36 ±34 OUR AV	ERAGE				
$38.1^{+35.7}_{-37.1}$	1259	16 LIPMAN	73	OSPK	$\pi^+ p \rightarrow \Sigma^+ K^+$
22 ±90		17 HARRIS	70	OSPK	$\pi^+ \rho \rightarrow \Sigma^+ K^+$
16					

16 Decay proton scattered off aluminum. 17 Decay protons scattered off carbon.

α₊ / α₀
Older results have been omitted.

VALUE

-0.069 ±0.013 OUR FIT DOCUMENT ID TECN COMMENT  $-0.073\pm0.021$ MARRAFFINO 80 HBC K-p 0.42-0.5 GeV/c  $\alpha_+$  FOR  $\Sigma^+ \to n\pi^+$ VALUE 0.068±0.013 OUR FIT DOCUMENT ID TECN COMMENT  $0.066 \pm 0.016$  OUR AVERAGE  $0.037 \pm 0.049$ 4101 BERLEY 708 HBC BANGERTER 69 HBC  $0.069 \pm 0.017$ 35k  $K^- p$  0.4 GeV/c

$\phi_+$ ANGLE FOR $\Sigma^+$	$(\tan\phi_+=\beta/\gamma)$			
VALUE (°)	<b>EVTS</b>	DOCUMENT ID	TECN	COMMENT
167±20 OUR AVERAGE	E Error i	ncludes scale facto	r of 1.1.	
$184 \pm 24$	1054	18 BERLEY	70B HBC	
$143\pm29$	560	BANGERTER	69B HBC	$K^-p$ 0.4 GeV/c

 $^{18}\,\text{Changed}$  from 176 to 184° to agree with our sign convention.

VALUE		EVTS	DOCUMENT ID		TECN	COMMENT
-0.76 ±0.08	OUR A	/ERAGE				
$-0.720 \pm 0.086$	±0.045	35k	¹⁹ FOUCHER			Σ ⁺ 375 GeV
$-0.86 \pm 0.13$	$\pm 0.04$	190	KOBAYASHI	87	CNTR	$\pi^+ p \rightarrow \Sigma^+ K^+$
$-0.53 \begin{array}{l} +0.38 \\ -0.36 \end{array}$		46	MANZ	80	HBC	$K^- \rho \rightarrow \Sigma^+ \pi^-$
$-1.03 \begin{array}{l} +0.52 \\ -0.42 \end{array}$		61	GERSHWIN	69в	нвс	$K^- p \rightarrow \Sigma^+ \pi^-$

#### **Σ**⁺ REFERENCES

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

BARBOSA	00	PR D61 031101R	R.F. Barbosa et al.	(ENAL EZGL Callab.)
TIMM	95	PR D51 4638	S. Timm et al.	(FNAL E761 Collab.)
				(FNAL E761 Collab.)
MORELOS	93	PRL 71 3417	A. Morelos et al.	(FNAL E761 Collab.)
FOUCHER	92	PRL 68 3004	M. Foucher et al.	(FNAL E761 CoNab.)
HESSEY	89	ZPHY C42 175	N.P. Hessey et al.	(BNL-811 Collab.)
KOBAYAŞHI	87	PRL 59 868	M. Kobayashi <i>et al</i> .	(KYOT)
WILKINSON	87	PRL 58 855	C.A. Wilkinson et al.	(WISC, MICH, RUTG+)
BIAGI	85	ZPHY C28 495	S.F. Biagi et al.	(CERN WA62 Collab.)
ANKENBRA	83	PRL 51 863	C.M. Ankenbrandt et al.	(FNAL, IOWA, ISU+)
MANZ	80	PL 96B 217	A. Manz et al.	(MPIM, VAND)
MARRAFFINO	80	PR D21 2501	J. Marraffino et al.	(VAND, MPIM)
NOWAK	78	NP B139 61	R.J. Nowak et al.	(LOUC, BELG, DURH+)
CONFORTO	76	NP B105 189	B. Conforto et al.	
EBENHOH	74	ZPHY 266 367	H. Ebenhoh et al.	(RHEL, LOIC)
				(HEIDT)
EBENHOH	73	ZPHY 264 413	W. Ebenhoh et al.	(HEIDT)
LIPMAN	73	PL 43B 89	N.H. Lipman et al.	(RHEL, SUSS, LOWC)
PDG	73	RMP 45 No. 2 Pt. II	T.A. Lasinski et al.	(LBL, BRAN, CERN+)
SECHI-ZORN	73	PR D8 12	B. Sechi-Zorn, G.A. Snow	(UMD)
BELLAMY	72	PL 39B 299	E.H. Bellamy et al.	(LOWC, RHEL, SUSS)
вонм	72	NP B48 1	G. Bohm et al.	(BERL, KIDR, BRUX, IASD+)
Also	73	IIHE-73.2 Nov	G. Bohm (BERL	, KIDR, BRUX, IASD, DUUC+)
COLE	71	PR D4 631	J. Cole et al.	(STON, COLU)
TOVEE	71	NP B33 493	D.N. Tovee et al.	(LOUC, KIDR, BERL+)
BERLEY	70B	PR D1 2015	D. Berley et al.	(BNL, MASA, YALE)
EISELE	70	ZPHY 238 372	F. Eisele et al.	
HARRIS	70	PRL 24 165	F. Harris et al.	(HEID)
PDG	70			(MICH, WISC)
ANG		RMP 42 No. 1	A. Barbaro-Galtieri et al.	(LRL, BRAN+)
	69B	ZPHY 228 151	G. Ang et al.	(HEID)
BAGGETT	69B	Thesis MDDP-TR-973	N.V. Baggett	(UMD)
BALTAY	69	PRL 22 615	C. Baltay et al.	(COLU, STON)
BANGERTER	69	Thesis UCRL 19244	R.O. Bangerter	(LRL)
BANGERTER	69B	PR 187 1821	R.O. Bangerter et al.	(LRL)
BARLOUTAUD	69	NP B14 153	R. Barloutaud et al.	(SACL, CERN, HEID)
EISELE	69	ZPHY 221 1	F. Eisele et al.	(HEID)
Also	64	PRL 13 291	W. Willis et al.	(BNL, CERN, HEID, UMD)
EISELE	698	ZPHY 221 401	F. Eisele et al.	(HEID)
GERSHWIN	69B	PR 188 2077	L.K. Gershwin et al.	(LRL)
Aiso	69	Thesis UCRL 19246	L.K. Gershwin	(LRL)
NORTON	69	Thesis Nevis 175	H. Norton	(colu)
BAGGETT	67	PRL 19 1458	N. Baggett et ai.	
Also	68	Vienna Abs. 374		(UMD)
Also	68B		N.V. Baggett, B. Kehoe	(UMD)
		Private Comm.	N.V. Baggett	(UMD)
BARASH	67	PRL 19 181	N. Barash et al.	(UMD)
EISELE	67	ZPHY 205 409	F. Eisele et al.	(HEID)
HYMAN	67	PL 25B 376	L.G. Hyman et al.	(ANL, CMU, NWES)
PDG	67	RMP 39 1	A.H. Rosenfeld et al.	(LRL, CERN, YALE)
CHANG	66	PR 151 1081	C.Y. Chang	(COLU)
Also	65	Thesis Nevis 145	Chang	(colu)
BAZIN	65	PRL 14 154	M. Bazin et al.	(PRIN, COLU)
BAZIN	65B		M. Bazin et al.	(PRIN, RUTG, COLU)
SCHMIDT	65	PR 140B 1328	P. Schmidt	(COLU)
BHOWMIK	64	NP 53 22	B. Bhowmik et al.	(DELH)
COURANT	64			
		PR 136B 1791	H. Courant et al.	(CERN, HEID, UMD+)
NAUENBERG	,64	PRL 12 679	U. Nauenberg et al.	(COLU, RUTG, PRIN)
BARKAS	63	PRL 11 26	W.H. Barkas, J.N. Dyer, H.I	
Also	61	Thesis UCRL 9450	J.N. Dyer	(LRL)
GALTIERI	62	PRL 9 26	A. Barbaro-Galtieri et al.	(LRL)
HUMPHREY	62	PR 127 1305	W.E. Humphrey, R.R. Ross	(LRL)

 $I(J^P) = 1(\frac{1}{2}^+)$  Status: ***

COURANT 63 and ALFF-STEINBERGER 65, using  $\Sigma^0 \to \Lambda e^+ e^-$  decays (Dalitz decays), determined the  $\Sigma^0$  parity to be positive, given that J=1/2 and that certain very reasonable assumptions about form factors are true. The results of experiments involving the Primakoff effect, from which the  $\Sigma^0$  mean life and  $\Sigma^0 \to \Lambda$ transition magnetic moment come (see below), strongly support J

#### **Σ**⁰ MASS

The fit uses  $\Sigma^+$ ,  $\Sigma^0$ ,  $\Sigma^-$ , and  $\Lambda$  mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT			
1192.642±0.024 OUR F							
• • We do not use the		•					
1192.65 ±0.020±0.014	3327	¹ WANG	97 SPEC	$\Sigma^0 \to \Lambda \gamma \to$			
				$(p\pi^{-})(e^{+}e^{-})$			
1 This WANG 97 result is redundant with the $\Sigma^0$ -A mass-difference measurement below.							

#### $m_{\Sigma^-} - m_{\Sigma^0}$

VALUE (MeV)	OUR EIT Error	DOCUMENT ID			COMMENT	
		Error includes scale			2.	
$4.87 \pm 0.12$	37	DOSCH	65	HBC		
$5.01 \pm 0.12$	12	SCHMIDT	65	HBC	See note with A mass	
4.75 ± 0.1	18	BURNSTEIN	64	HBC		
$m_{\Sigma^0}-m_{\Lambda}$						

ENT ID TECN COMMENT	
97 SPEC $\Sigma^0 \rightarrow \Lambda \gamma \rightarrow$	
$(p\pi^{-})(e^{+}e^{-})$	
averages, fits, limits, etc. • • •	
5 75 HLBC $\Sigma^0  o \Lambda_{\gamma}$	
IDT 65 HBC See note with A mass	
	97 SPEC $\Sigma^0 \to \Lambda \gamma \to (p\pi^-)(e^+e^-)$ averages, fits, limits, etc. • • • 75 HLBC $\Sigma^0 \to \Lambda \gamma$

#### $\Sigma^0$ MEAN LIFE

These lifetimes are deduced from measurements of the cross sections for the Primakoff process  $\Lambda \to \Sigma^0$  in nuclear Coulomb fields. An alternative expression of the same information is the  $\Sigma^0$ - $\Lambda$  transition magnetic moment given in the following section. The relation is  $(\mu_{\Sigma} \Lambda/\mu_N)^2 \tau =$ 1.92951 × 10⁻¹⁹ s (see DEVLIN 86).

VALUE (10-20 s)	DOCUMENT ID		TECN	COMMENT		
7.4±0.7 OUR EVALUATION	Using $\mu_{\sum \Lambda}$ (see th	e abo	ve note)	ı.		
$6.5^{+1.7}_{-1.1}$	² DEVLIN	86	SPEC	Primakoff effect		
7.6±0.5±0.7	3 PETERSEN	86	SPEC	Primakoff effect		
• • • We do not use the folio	wing data for averag	es, fit	s, limits,	etc. • • •		
$5.8 \pm 1.3$	² DYDAK	77	SPEC	See DEVLIN 86		
² DEVLIN 86 is a recalculation of the results of DYDAK 77 removing a numerical approximation made in that work. ³ An additional uncertainty of the Primakoff formalism is estimated to be < 5%						

## $|\mu(\Sigma^0 o A)|$ Transition magnetic moment

See the note in the  $\Sigma^0$  mean-life section above. Also, see the "Note on Baryon Magnetic Moments" in the  $\varLambda$  Listings.

VALUE (µN)	DOCUMENT ID		TECN	COMMENT
1.61 ± 0.08 OUR AVERAG	iE			
$1.72^{+0.17}_{-0.19}$	4 DEVLIN	86	SPEC	Primakoff effect
1.59 ± 0.05 ± 0.07	⁵ PETERSEN	86	SPEC	Primakoff effect
• • • We do not use the	following data for averag	es, fit	s, limits,	, etc. • • •
$1.82 + 0.25 \\ -0.18$	⁴ DYDAK	77	SPEC	\$ee DEVLIN 86

 $^{^4}$  DEVLIN 86 is a recalculation of the results of DYDAK 77 removing a numerical approximation made in that work.  5  An additional uncertainty of the Primakoff formalism is estimated to be <2.5%.

#### **Σ**⁰ DECAY MODES

	Mode	Fraction $(\Gamma_j/\Gamma)$	Confidence level
Γ1	Λγ	100 %	
$\Gamma_2$	$\Lambda \gamma \gamma$	< 3 %	90%
Γ3	$\Lambda e^+ e^-$	[a] $5 \times 10^{-3}$	

[a] A theoretical value using QED.

#### **Σ**⁰ BRANCHING RATIOS

$\Gamma(\Lambda\gamma\gamma)/\Gamma_{\text{total}}$			Γ2/Γ
VALUE	CL%	DOCUMENT ID TECN	
< 0.03	90	COLAS 75 HLBC	

 $\Gamma(\Lambda e^+e^-)/\Gamma_{total}$  See COURANT 63 and ALFF-STEINBERGER 65 for measurements of the invariant-

mass spectrum of the Dalit	z pairs.		
VALUE	DOCUMENT ID		COMMENT
0.00545	FEINBERG	58	Theoretical QED calculation

#### **∑**⁰ REFERENCES

WANG	97	PR D56 2544	M.H.L.S. Wang et al.	(BNL-E766 Collab.)
DEVLIN	86	PR D34 1626	T. Devlin, P.C. Petersen, A	. Beretvas (RUTG)
PETERSEN	86	PRL 57 949	P.C. Petersen et al.	(RUTG, WISC, MICH+)
DYDAK	77	NP B118 1	F. Dydak et al.	(CERN, DORT, HEIDH)
COLAS	75	NP B91 253	J. Colas et al.	` (ORSAY)
ALFF	65	PR 137B 1105	C. Alff-Steinberger et al.	(COLU, RUTG+)P
DOSCH	65	PL 14 239	H.C. Dosch et al.	(HEID)
SCHMIDT	65	PR 140B 1328	P. Schmidt	(COLU)
BURNSTEIN	64	PRL 13 66	R.A. Burnstein et al.	(UMD)
COURANT	63	PRL 10 409	H. Courant et al.	(CERN, UMD) P
FEINBERG	50	PR 109 1019	G. Feinberg	(BNL)

 $\times 10^{-3}$ 

## **E BARYONS** (S=-2, I=1/2)

 $\Xi^0=uss$ ,  $\Xi^-=dss$ 



$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

The parity has not actually been measured, but + is of course expected.

#### **=**⁰ MASS

The fit uses the  $\Xi^0$ ,  $\Xi^-$ , and  $\overline{\Xi}^+$  mass and mass difference measure-

VALUE (MeV)	EVTS	OOCUMENT ID		TECN	COMMENT
1314.83±0.20 OUR FI	T				
1314.62±0.20 OUR A	/ERAGE				
$1314.82 \pm 0.06 \pm 0.20$	3120	FANTI	00	NA48	p Be, 450 GeV
$1315.2 \pm 0.92$	49	WILQUET	72	HLBC	
1313.4 $\pm 1.8$	1	PALMER	68	HBC	

$$m_{\Xi^-}-m_{\Xi^0}$$

The fit uses the  $\Xi^0$ ,  $\Xi^-$ , and  $\overline{\Xi}^+$  mass and mass difference measure-

VALUE (MeV)	EVTS	DOCUMENT ID	TEC	COMMENT	
6.48±0.24 OUR F	T				
6.3 ±0.7 OUR A	VERAGE				
$6.9 \pm 2.2$	29	LONDON	66 HBC		
$6.1 \pm 0.9$	88	PJERROU	658 HBC		
6.8 ±1.6	23	JAUNEAU	63 FBC		
• • • We do not L	ise the following	g data for averag	es, fits, limi	its, etc. • • •	
$6.1 \ \pm 1.6$	45	CARMONY	64B HBC	See PJERROU 6	55B

#### **≡**⁰ MEAN LIFE

VALUE (10 ⁻¹⁰ s)	EVTS		DOCUMENT ID		TECN	COMMENT		
2.90±0.09 OUR AVERAGE								
$2.83 \pm 0.16$	6300	1	ZECH	77	SPEC	Neutral hyperon beam		
$2.88 ^{+0.21}_{-0.19}$	652		BALTAY	74	HBC	1.75 GeV/c K-p		
$2.90^{+0.32}_{-0.27}$	157	2	MAYEUR	72	HLBC	2.1 GeV/c K-		
$3.07^{+0.22}_{-0.20}$	340		DAUBER	69	нвс			
3.0 ±0.5	80		PJERROU	65B	HBC			
$2.5 \begin{array}{c} +0.4 \\ -0.3 \end{array}$	101		HUBBARD	64	нвс			
$3.9 \begin{array}{c} +1.4 \\ -0.8 \end{array}$	24		JAUNEAU	63	FBC			
$3.5 \begin{array}{c} +1.0 \\ -0.8 \end{array}$	45		CARMONY	64B	нвс	See PJERROU 65B		
¹ The ZECH 77 result	t is τ <u>=</u> 0 =	=	[2.77-(TA-2.69	9)] ×	10-10	s, in which we use $ au_{\mathcal{A}} =$		

 $^{2.63 \}times 10^{-10}$  s.  2  The MAYEUR 72 value is modified by the erratum.

#### **≡**⁰ MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" in the  $\Lambda$  Listings.

VALUE $(\mu_N)$	EVTS	DOCUMENT I	TECN	
-1.250±0.014 OUF				
$-1.253 \pm 0.014$	270k	cox	81	SPEC
$-1.20 \pm 0.06$	42k	BUNCE	79	SPEC

#### **E⁰ DECAY MODES**

	Mode	Fraction $(\Gamma_i/\Gamma)$	Confidence level
$\overline{\Gamma_1}$	$\Lambda \pi^0$	(99.51±0.05) %	S=1.2
$\Gamma_2$	$\Lambda\gamma$	$(1.18\pm0.30)\times10^{-3}$	-3 S=2.0
Гз	$\Sigma^0 \gamma$	$(3.5 \pm 0.4) \times 10^{-3}$	-3
Γ4	$\Sigma^+ e^- \overline{ u}_e$	$(2.7 \pm 0.4) \times 10^{-3}$	-4
$\Gamma_5$	$\Sigma^+ \mu^- \overline{\nu}_{\mu}$	< 1.1 × 10	-3 CL=90%

#### $\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 2$ forbidden (S2) modes SQ $\times$ 10⁻⁴ CL=90% < 9 $\times 10^{-4}$ SO < 9 C1 = 90%× 10⁻⁵ 52 < 4 CL=90% 52 $\times$ 10⁻³ < 1.3

< 1.3

## 52 CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 5 measurements and one constraint to determine 4 parameters. The overall fit has a  $\chi^2=$ 4.2 for 2 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients  $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$ , in percent, from the fit to the branching fractions,  $x_i \equiv$  $\Gamma_i/\Gamma_{\rm total}$ . The fit constrains the  $x_i$  whose labels appear in this array to sum to

90

90

0

<180

< 90 < 500

 $\Sigma^- e^+ \nu_e$ 

 $\Sigma^-\mu^+\nu_\mu$ 

 $p\pi^-$ 

 $pe^-\overline{\nu}_e$ 

 $p\mu^-\overline{\nu}_{\mu}$ 

Γ₇

Г

Γg

Γ₁₀

i

Scale factor/

#### =0 PRANCHING PATIOS

	<i>≡</i> °	BRANCHING	RATI	OS		
$\Gamma(\Lambda_{\gamma})/\Gamma(\Lambda_{\pi}^{0})$						$\Gamma_2/\Gamma_1$
VALUE (units 10 ⁻³ )	EVTS	DOCUMENT ID		TECN	COMMENT	
1.19±0.30 OUR FIT	Error inclu	des scale factor o	f 2.0.			
1.19±0.30 OUR AVE	RAGE Erro	r includes scale f				
$1.91 \pm 0.34 \pm 0.19$	31	³ FANTI	00	NA48	p Be, 450 Ge\	
$1.06 \pm 0.12 \pm 0.11$	116	JAMES		SPEC	FNAL hyperor	
³ FANTI 00 used or $\Gamma(\Xi^0 \to \Lambda \gamma)/\Gamma_{tc}$ what was directly	otal = (1.90 :	e of 99.5% for th ± 0.34 ± 0.19) ×	e <u>≡</u> 0 . 10−3	→ Λπ ⁰ . We a	) branching frac djust slightly to	tion to get go back to
$\Gamma(\Sigma^0\gamma)/\Gamma(\Lambda\pi^0)$						$\Gamma_3/\Gamma_1$
VALUE (units 10 ⁻³ )	EVTS	DOCUMENT ID		TECN	COMMENT	
3.5 ±0.4 OUR FIT						
3.5 ±0.4 OUR AVE	RAGE					
$3.16 \pm 0.76 \pm 0.32$	17	⁴ FANTI			p Be, 450 GeV	
$3.56 \pm 0.42 \pm 0.10$	85	TEIGE			FNAL hyperon	
⁴ FANTI 00 used or $\Gamma(\Xi^0 \to \Sigma^0 \gamma)/1$ to what was direct	total = (3.1	$4 \pm 0.76 \pm 0.32$	e <i>Ξ</i> ^U . I × 10 ⁻	→ Λπ¹ -3. We	branching frace adjust slightly	tion to get to go back
$\Gamma(\Sigma^+e^-\overline{ u}_e)/\Gamma_{ m tota}$	H					Γ4/Γ
VALUE (units 10 ⁻⁴ )	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
2.7 ±0.4 OUR FIT 2.71±0.22±0.31	176	AFFOLDER	99	KTEV	p nucleus 800	GeV
$\Gamma(\Sigma^+\mu^-\overline{\nu}_\mu)/\Gamma(\Lambda$	π ⁰ )					Γ ₅ /Γ ₁
VALUE (units 10 ⁻³ ) CL	% EVTS	DOCUMENT ID	_	TECN	COMMENT	
<b>&lt;1.1</b> 90	0	YEH	74	нвс	Effective deno	m.=2100
• • • We do not use	the following	g data for averag	es, fits	, limits,	etc. • • •	
<1.5		DAUBER	69	нвс		
<7		HUBBARD	66	HBC		
$\Gamma(\Sigma^-e^+\nu_e)/\Gamma(\Lambda)$	π ⁰ )					$\Gamma_6/\Gamma_1$
Test of $\Delta S = Z$						
VALUE (units 10 ⁻³ ) CL	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
<b>&lt;0.9</b> 90	0	YEH	74	HBC	Effective deno	n.=2500
• • We do not use	the following	g data for averag	es, fits	, limits,	etc. • • •	
<1.5		DAUBER	69	HBC		
<6		HUBBARD	66	HBC		
$\Gamma(\Sigma^{-}\mu^{+}\nu_{\mu})/\Gamma(\Lambda)$ Test of $\Delta S = \Delta$	π ⁰ ) Δ <i>Q</i> rule.					Γ ₇ /Γ ₁
VALUE (units 10 ⁻³ ) CL		DOCUMENT ID		TECN	COMMENT	
<b>&lt;0.9</b> 90		YEH		HBC	Effective deno	m.=2500
• • We do not use	the following	g data for average	es, fits,	, limits,		-
<1.5	•	DAUBER		нвс		
<6		HUBBARD		HBC		
~~		. IO DUNIND	00			
$\Gamma(\rho\pi^-)/\Gamma(\Lambda\pi^0)$	an In Such	dan wank lake	ion.			Γ ₈ /Γ ₁
$\Delta S$ =2. Forbidd VALUE (units 10 ⁻⁵ ) _ CL		der weak interact		TECM	COMMENT	
VALUE (units 10-3) CES	EVIS	DOCUMENT ID		TECN SDEC	COMMENT	

GEWENIGER 75 SPEC

74 HBC

69 HBC

66 HBC

Effective denom.=1300

• • • We do not use the following data for averages, fits, limits, etc. • • •

YEH

DAUBER

HUBBARD

# CHARMED BARYONS (C = +1)

 $\begin{array}{lll} \varLambda_c^+ = udc, & \varSigma_c^{++} = uuc, & \varSigma_c^+ = udc, & \varSigma_c^0 = ddc, \\ & \Xi_c^+ = usc, & \Xi_c^0 = dsc, & \varOmega_c^0 = ssc \end{array}$ 

#### CHARMED BARYONS

Revised April 2000 by C.G. Wohl (LBNL).

There are now ten (!) known charmed baryons, each with one c quark. Figure 1(a) shows the mass spectrum, and for comparison Fig. 1(b) shows the spectrum of the lightest strange baryons. The  $\Lambda_c$  and  $\Sigma_c$  spectra ought to look much like the  $\Lambda$  and  $\Sigma$  spectra, since a  $\Lambda_c$  or a  $\Sigma_c$  is obtained from a  $\Lambda$  or a  $\Sigma$  by changing the s quark to a c quark. However, a  $\Xi$  or an  $\Omega$  has more than one s quark, only one of which is changed to a c quark to make a  $\Xi_c$  or an  $\Omega_c$ . Thus the  $\Xi_c$  and  $\Omega_c$  spectra ought to be richer than the  $\Xi$  or  $\Omega$  spectra.

Before discussing the observed spectra, we review the theory of SU(4) multiplets, which tells us what charmed baryons we should expect to find; this is essential, because the spin-parity assignments given in Fig. 1(a) have not been measured but have been assigned in accord with expectations of the theory.

SU(4) multiplets—Baryons made from u,d,s, and c quarks belong to SU(4) multiplets. The multiplet numerology, analogous to  $3\times 3\times 3=10+8_1+8_2+1$  for the subset of baryons made from just u,d, and s quarks, is  $4\times 4\times 4=20+20_1'+20_2'+\bar{4}$ . Figure 2(a) shows the 20'-plet whose bottom level is an SU(3) octet, such as the octet that includes the nucleon. Figure 2(b) shows the 20-plet whose bottom level is an SU(3) decuplet, such as the decuplet that includes the  $\Delta(1232)$ . One level up in each multiplet are the baryons with one c quark. The  $\bar{4}$  multiplet (not shown), an inverted tetrahedron, contains a  $\Lambda$ , a  $\Lambda_c^+$ , a  $\Xi_c^+$ , and a  $\Xi_c^0$  (states at the centers of the four faces of the 20'-plet). All the baryons in a given multiplet have the same spin and parity. Each N or  $\Delta$  or SU(3)-singlet- $\Lambda$  resonance calls for another 20'- or 20- or  $\bar{4}$ -plet, respectively.

The flavor symmetries shown in Fig. 2 are of course very badly broken, but the figure is the simplest way to see what charmed baryons should exist. For example, from Fig. 2(a), we expect to find, in the same  $J^P=1/2^+$  20'-plet as the nucleon, a  $\Lambda_c$ , a  $\Sigma_c$ , two  $\Xi_c$ 's, and an  $\Omega_c$ . Note that this  $\Omega_c$  is not in the same SU(4) multiplet as the famous  $J^P=3/2^+$   $\Omega^-$ .

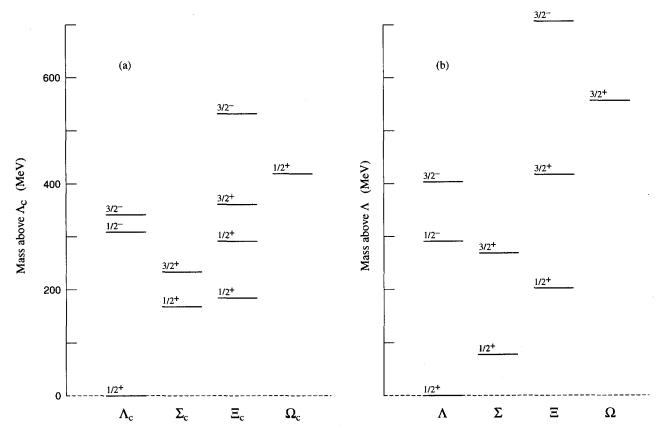



Figure 1. (a) The known charmed baryons, and (b) the lightest strange baryons. The baseline masses are  $m(\Lambda_c) = 2284.9$  MeV and  $m(\Lambda) = 1115.7$  MeV. Isospin splittings are not shown. Note that there are two  $J^P = 1/2^+$   $\Xi_c$  states, and that the  $\Omega_c$  does not have J = 3/2. In fact, none of the  $J^P$  values of the charmed baryons has been measured (except perhaps for the  $1/2^+\Lambda_c$ ), but they are all very likely as shown—see the discussion.

# CHARMED BARYONS (C = +1)

 $\begin{array}{lll} \varLambda_c^+ = udc, & \varSigma_c^{++} = uuc, & \varSigma_c^+ = udc, & \varSigma_c^0 = ddc, \\ & \Xi_c^+ = usc, & \Xi_c^0 = dsc, & \varOmega_c^0 = ssc \end{array}$ 

#### CHARMED BARYONS

Revised April 2000 by C.G. Wohl (LBNL).

There are now ten (!) known charmed baryons, each with one c quark. Figure 1(a) shows the mass spectrum, and for comparison Fig. 1(b) shows the spectrum of the lightest strange baryons. The  $\Lambda_c$  and  $\Sigma_c$  spectra ought to look much like the  $\Lambda$  and  $\Sigma$  spectra, since a  $\Lambda_c$  or a  $\Sigma_c$  is obtained from a  $\Lambda$  or a  $\Sigma$  by changing the s quark to a c quark. However, a  $\Xi$  or an  $\Omega$  has more than one s quark, only one of which is changed to a c quark to make a  $\Xi_c$  or an  $\Omega_c$ . Thus the  $\Xi_c$  and  $\Omega_c$  spectra ought to be richer than the  $\Xi$  or  $\Omega$  spectra.

Before discussing the observed spectra, we review the theory of SU(4) multiplets, which tells us what charmed baryons we should expect to find; this is essential, because the spin-parity assignments given in Fig. 1(a) have not been measured but have been assigned in accord with expectations of the theory.

SU(4) multiplets—Baryons made from u,d,s, and c quarks belong to SU(4) multiplets. The multiplet numerology, analogous to  $3\times 3\times 3=10+8_1+8_2+1$  for the subset of baryons made from just u,d, and s quarks, is  $4\times 4\times 4=20+20_1'+20_2'+\bar{4}$ . Figure 2(a) shows the 20'-plet whose bottom level is an SU(3) octet, such as the octet that includes the nucleon. Figure 2(b) shows the 20-plet whose bottom level is an SU(3) decuplet, such as the decuplet that includes the  $\Delta(1232)$ . One level up in each multiplet are the baryons with one c quark. The  $\bar{4}$  multiplet (not shown), an inverted tetrahedron, contains a  $\Lambda$ , a  $\Lambda_c^+$ , a  $\Xi_c^+$ , and a  $\Xi_c^0$  (states at the centers of the four faces of the 20'-plet). All the baryons in a given multiplet have the same spin and parity. Each N or  $\Delta$  or SU(3)-singlet- $\Lambda$  resonance calls for another 20'- or 20- or  $\bar{4}$ -plet, respectively.

The flavor symmetries shown in Fig. 2 are of course very badly broken, but the figure is the simplest way to see what charmed baryons should exist. For example, from Fig. 2(a), we expect to find, in the same  $J^P=1/2^+$  20'-plet as the nucleon, a  $\Lambda_c$ , a  $\Sigma_c$ , two  $\Xi_c$ 's, and an  $\Omega_c$ . Note that this  $\Omega_c$  is not in the same SU(4) multiplet as the famous  $J^P=3/2^+$   $\Omega^-$ .

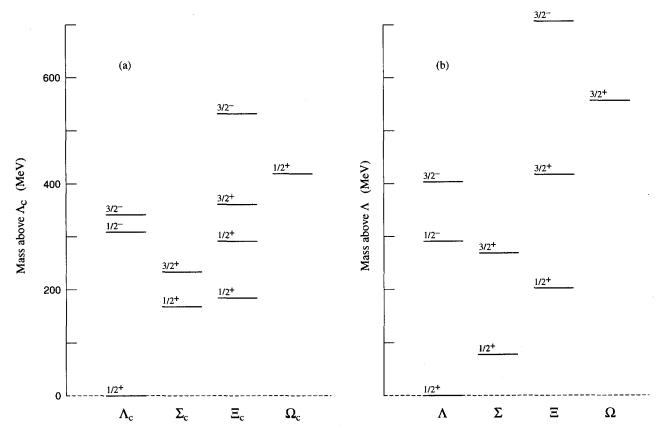



Figure 1. (a) The known charmed baryons, and (b) the lightest strange baryons. The baseline masses are  $m(\Lambda_c) = 2284.9$  MeV and  $m(\Lambda) = 1115.7$  MeV. Isospin splittings are not shown. Note that there are two  $J^P = 1/2^+$   $\Xi_c$  states, and that the  $\Omega_c$  does not have J = 3/2. In fact, none of the  $J^P$  values of the charmed baryons has been measured (except perhaps for the  $1/2^+\Lambda_c$ ), but they are all very likely as shown—see the discussion.

## Charmed Baryons, $\Lambda_c^+$

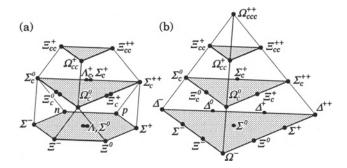



Figure 2: SU(4) multiplets of baryons made of u, d, s, and c quarks. (a) The 20-plet with an SU(3) octet on the lowest level. (b) The 20-plet with an SU(3) decuplet on the lowest level.

Figure 3 shows in more detail the middle level of the 20'-plet of Fig. 2(a); it splits apart into two SU(3) multiplets, a  $\bar{3}$  and a 6. The states of the  $\bar{3}$  are antisymmetric under the interchange of the two light quarks (the u, d, and s quarks), whereas the states of the 6 are symmetric under this interchange. We use a prime to distinguish the  $\Xi_c$  in the 6 from the one in the  $\bar{3}$ .

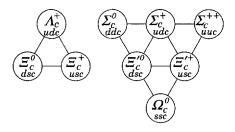



Figure 3: The SU(3) multiplets on the second level of the SU(4) multiplet of Fig. 2(a).

The observed spectra—(1) The parity of the lowest  $A_c$  is defined to be positive (as are the parities of the p, n, and A); and the limited evidence about its spin is consistent with J=1/2. Otherwise, however, none of the  $J^P$  quantum numbers in Fig. 1(a) has been measured. Models using spin-spin and spin-orbit interactions between the quarks, with parameters determined using a few of the masses as input, lead to the  $J^P$  assignments shown. There are no surprises: the  $J^P=1/2^+$  states come first, then the  $J^P=3/2^+$  states ...

(2) There is, however, strong evidence that at least some of the  $J^P$  assignments in Fig. 1(a) are correct. As is well known, the successive mass differences between the  $J^P=3/2^+$   $\Delta(1232)^-$ ,  $\Sigma(1385)^-$ ,  $\Xi(1535)^-$ , and  $\Omega^-$ , those particles along the lower left edge of the 20-plet in Fig. 2(b), should be, according to SU(3), and nearly are equal; see the  $J^P=3/2^+$ 

states in Fig. 1(b). Similarly, the mass differences between the  $J^P=1/2^+$   $\Sigma_c(2455)^0$ ,  $\Xi_c^{\prime0}$ , and  $\Omega_c^{0,\ddagger}$  the particles along the left edge of Fig. 3(b), should be equal—assuming, of course, that they do all have the same  $J^P$ . And the observed differences are  $126.6\pm3.3$  MeV and  $125.2\pm5.1$  MeV—perfect, within errors. In fact, the mass difference between the presumed  $J^P=3/2^+$   $\Sigma_c(2520)^0$  and  $\Xi_c(2645)^0$  is the same,  $127.0\pm2.3$  MeV, which would put the  $3/2^+$   $\Omega_c^0$  at about 2772 MeV (= 487 MeV on Fig. 1(a)).

- (3) Other evidence comes from the decay of the  $\Lambda_c(2593)$ . The only allowed strong decay is  $\Lambda_c(2593)^+ \to \Lambda_c^+ \pi \pi$ , and this appears to be dominated by the submode  $\Sigma_c(2455)\pi$ , despite little available phase space for the latter (the 'Q' is about 2 MeV, the c.m. decay momentum about 20 MeV/c). Thus the decay is almost certainly s-wave, which, assuming that the  $\Sigma_c(2455)$  does indeed have  $J^P=1/2^+$ , makes  $J^P=1/2^-$  for the  $\Lambda_c(2593)$ .
- (4) The heavier c baryons, such as the  $J^P=1/2^-$  and  $3/2^ \Lambda_c$ 's, have much narrower widths than do their strange counterparts, such as the  $\Lambda(1405)$  and  $\Lambda(1520)$ . The clean  $\Lambda_c$  spectrum has in fact been taken to settle the decades-long discussion about the nature of the  $\Lambda(1405)$ —true 3-quark state or mere  $\overline{K}N$  threshold effect?—unambiguously in favor of the first interpretation; which is not to say that the proximity of the  $\overline{K}N$  threshold has no effect on the  $\Lambda(1405)$ .

#### Footnotes:

- † This is not the place to discuss the details of the models, nor to attempt a guide to the literature. See the discovery papers of the various charmed baryons for references to the models that lead to the quantum-number assignments.
- [‡] A reminder about the Particle Data Group naming scheme: A particle that decays strongly has its mass as part of its name; otherwise it doesn't. Thus  $\Sigma(1385)$  and  $\Sigma_c(2455)$  but  $\Omega^-$  and  $\Xi_c'$ .



$$I(J^P) = 0(\frac{1}{2}^+)$$
 Status: ***

The parity of the  $\Lambda_c^+$  is defined to be positive (as are the parities of the proton, neutron, and  $\Lambda$ ). The spin J has not actually been measured yet. Results of an analysis of  $\rho K^-\pi^+$  decays (JEZABEK 92) are consistent with the expected J=1/2. The quark content is udc.

We have omitted some results that have been superseded by later experiments. The omitted results may be found in earlier editions.

#### ハナ MASS

Measurements with an error greater than 5 MeV or that are otherwise obsolete have been omitted.

The fit also includes  $\Sigma_C - \Lambda_C^+$  and  $\Lambda_C^{*+} - \Lambda_C^+$  mass-difference measurements

VALUE (MeV) 2284.9±0.6 OUR FIT	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
2284.9±0.6 OUR AV				
2284.7 ± 0.6 ± 0.7	1134	AVERY	91 CLEO	Six modes
2281.7±2.7±2.6	29	ALVAREZ	90B NA14	$\rho K^- \pi^+$
2285.8 ± 0.6 ± 1.2	101	BARLAG	89 NA32	$\rho K^- \pi^+$
2284.7 ± 2.3 ± 0.5	5	AGUILAR	88B LEBC	$\rho K^- \pi^+$
2283.1 ± 1.7 ± 2.0	628	ALBRECHT	88c ARG	$\rho K^- \pi^+, \rho \overline{K}^0, \Lambda 3\pi$
$2286.2 \pm 1.7 \pm 0.7$	97	ANJOS	88B E691	$\rho K^- \pi^+$
2281 ±3	2	JONES	87 HBC	$\rho K^- \pi^+$
2283 ±3	3	BOSETTI	82 HBC	$\rho K^- \pi^+$
2290 ±3	1	CALICCHIO	80 HYBR	$\rho K^- \pi^+$

#### 1 MEAN LIFE

Measurements with an error  $\geq 0.1 \times 10^{-12}$  s or with fewer than 20

VALUE (10 ⁻¹² s)		DOCUMENT ID	TECN	COMMENT
0.206±0.012 OUR AV	ERAGE			
$0.215 \pm 0.016 \pm 0.008$	1340	FRABETTI	93D E687	$\gamma$ Be, $\Lambda_c^+ \rightarrow p K^- \pi^+$
$0.18 \pm 0.03 \pm 0.03$	29	ALVAREZ	90 NA14	$\gamma, \Lambda_c^+ \rightarrow pK^-\pi^+$
$0.20 \pm 0.03 \pm 0.03$	90	FRABETTI	90 E687	$\gamma \text{Be}, \Lambda_c^+ \rightarrow p K^- \pi^+$
$0.196 + 0.023 \\ -0.020$	101	BARLAG	89 NA32	$pK^-\pi^+$ + c.c.
$0.22 \pm 0.03 \pm 0.02$	97	SOLWA	88B E691	$pK^-\pi^+$ + c.c.

#### A+ DECAY MODES

Nearly all branching fractions of the  $\Lambda_{\mathcal{C}}^+$  are measured relative to the  $pK^-\pi^+$  mode, but there are no model-independent measurements of this branching fraction. We explain how we arrive at our value of  $B(\Lambda_c^+ \to \Lambda_c^+)$  $pK^-\pi^+$ ) in a Note at the beginning of the branching-ratio measurements, below. When this branching fraction is eventually well determined, all the other branching fractions will slide up or down proportionally as the true value differs from the value we use here.

Mode	Fraction $(\Gamma_i/\Gamma)$	Confidence leve
	Hadronic modes with a $p$ and one $\overline{K}$	

```
\Gamma_1
         p\overline{K}^0
                                                                          (2.3 \pm 0.6)\%
         \rho K^- \pi^+
\Gamma_2
                                                                         (5.0 \pm 1.3)\%
             p\overline{K}^*(892)^0
Гз
                                                                          (1.6 \pm 0.5)\%
              \Delta(1232)^{++}K^{-}
                                                                          (8.6 \pm 3.0) \times 10^{-3}
             \varLambda(1520)\pi^+
\Gamma_5
                                                                         (5.9 \pm 2.1) \times 10^{-3}
              pK^-\pi^+ nonresonant
                                                                          (2.8 \pm 0.8)\%
\Gamma_7
                                                                          (3.3 \pm 1.0)\%
         p\overline{K}^0\eta
                                                                          ( 1.2 \pm 0.4 ) %
         p\overline{K}^0\pi^+\pi
                                                                          (2.6 \pm 0.7)\%
\Gamma_{10}
                                                                          (3.4 \pm 1.0)\%
\Gamma_{1\downarrow}
             pK^*(892)^-\pi^+
                                                                         (1.1 \pm 0.5)\%
             p(K^{-}\pi^{+})_{\text{nonresonant}}\pi^{0}
\Delta(1232)\overline{K}^{*}(892)
Γ<sub>12</sub>
                                                                           (3.6 \pm 1.2)\%
\Gamma_{13}
         pK^{-}\pi^{+}\pi^{+}\pi^{-}

pK^{-}\pi^{+}\pi^{0}\pi^{0}
\Gamma_{14}
                                                                          (1.1 \pm 0.8) \times 10^{-3}
                                                                          (8 \pm 4 ) \times 10<sup>-3</sup>
\Gamma_{15}
         \rho K^- \pi^+ \pi^0 \pi^0 \pi^0
                                                                          (5.0 \pm 3.4) \times 10^{-3}
                         Hadronic modes with a p and zero or two K's
         \rho \pi^+ \pi^-
                                                                          ( 3.5~\pm~2.0 ) \times\,10^{-3}
Γ<sub>17</sub>
            p f_0(980)
                                                                          ( 2.8 \pm 1.9 ) \times 10<sup>-3</sup>
\Gamma_{18}
                                                                           ( 1.8 \pm 1.2 ) \times 10^{-3}
         p\pi^{+}\pi^{+}\pi^{-}\pi^{-}
Γ19
         pK+K-
                                                                           (2.3 \pm 0.9) \times 10^{-3}
\Gamma_{20}
                                                                  [b] (1.2 \pm 0.5) \times 10^{-3}
\Gamma_{21}
             \rho\phi
                                     Hadronic modes with a hyperon
         \Lambda \pi^+
                                                                          ( 9.0~\pm~2.8 ) \times\,10^{-3}
\Gamma_{22}
         \Lambda\pi^+\pi^0
\Gamma_{23}
                                                                          ( 3.6~\pm~1.3 ) %
Γ<sub>24</sub>
            \Lambda \rho^+
                                                                        < 5
                                                                                               %
                                                                                                                CL=95%
         \Lambda \pi^+ \pi^+ \pi^-
Γ<sub>25</sub>
                                                                          ( 3.3 \pm 1.0 ) %
         \Lambda \pi^+ \eta
\Gamma_{26}
                                                                          (1.8 \pm 0.6)\%
              \Sigma(1385)^{+}\eta
\Gamma_{27}
                                                                   [b] (8.5 \pm 3.3) \times 10^{-3}
Γ<sub>28</sub>
       ΛK+K0
                                                                           (6.0 \pm 2.1) \times 10^{-3}
        \Sigma^0\pi^+
                                                                          ( 9.9 \pm 3.2 ) \times 10<sup>-3</sup>
\Gamma_{29}
         \Sigma^+\pi^0
\Gamma_{30}
                                                                          ( 1.00\pm~0.34) %
\Gamma_{31} \Sigma^+ \eta
                                                                          ( 5.5 \pm 2.3 ) \times 10<sup>--3</sup>
         \Sigma^+\pi^+
\Gamma_{32}
                                                                          (3.4 \pm 1.0)\%
              \Sigma^+ \rho^0
                                                                                                                CL=95%
Γ33
                                                                         < 1.4
Γ34
                                                                          (1.8 \pm 0.8)\%
                                                                          (1.8 \pm 0.8)\%
\Gamma_{35}
         \Sigma^0 \pi^+ \pi^+ \pi^-
```

(  $1.1 \pm 0.4$  ) %

(  $3.0 \ ^{+}\ ^{4.1}\ ) \times 10^{-3}$ 

(  $3.5~\pm~1.2$  )  $\times\,10^{-3}$ 

 $(7 + \frac{6}{4}) \times 10^{-3}$ 

 $(3.9 \pm 1.4) \times 10^{-3}$ 

 $(4.9 \pm 1.7) \times 10^{-3}$ 

[b] (  $3.5 \pm 1.7$  )  $\times 10^{-3}$ 

[b] ( 2.6  $\pm$  1.0 )  $\times$  10⁻³

[b] (  $2.7 \pm 1.0$  ) %

Γ₃₆

Γ37

Γ₃₈

Γ₃₉

Γ40

 $\Gamma_{42}$  $\Gamma_{43} = \Xi^0 K^+$ 

 $\Sigma^{+}\pi^{+}\pi$ 

 $\Sigma^+\omega$ 

 $\Sigma^+ K^+ K^-$ 

 $\Sigma^+\phi$  $\Sigma^+ K^+ \pi^-$ 

 $\Xi^-K^+\pi^+$ 

 $\Xi(1530)^0 K^+$ 

 $\Sigma^+\pi^+\pi^+\pi^-$ 

		Semileptonic me	odes			
Γ46	$\Lambda \ell^+ \nu_{\ell}$	[c]	( 2.0	± 0.6	) %	
Γ47	$\Lambda e^{+} \nu_{e}$		( 2.1	± 0.6	) %	
	$\Lambda \mu^+ \nu_{\mu}$		( 2.0	± 0.7	) %	
		inclusive mod	es			
$\Gamma_{49}$	e ⁺ anything		{ 4.5	± 1.7	) %	
$\Gamma_{50}$	pe ⁺ anything		( 1.8	± 0.9	) %	
Γ ₅₁	Λe ⁺ anything					
Γ ₅₂	p anything		(50	±16	) %	
Γ ₅₃	p anything (no Λ)		(12	$\pm 19$	) %	
	p hadrons					
Γ ₅₅	n anything		(50	±16	) %	
Γ ₅₆	$n$ anything (no $\Lambda$ )		(29	±17	} %	
Γ ₅₇	∧ anything		(35	$\pm 11$	) %	5=1.4
Γ ₅₈	$\mathcal{\Sigma}^{\pm}$ anything	[d]	(10	± 5	) %	
	$\Delta C = 1$ wea	k neutral curren	t ( <i>C1</i> )	mode	s, or	
	Lepton	number (L) viol	ating r	nodes		
$\Gamma_{59}$	$\rho \mu^+ \mu^-$	CI	< 3.4		× 10 ⁻⁴	CL=90%
Γ ₆₀	$ ho\mu^+\mu^- \ \Sigma^-\mu^+\mu^+$	L	< 7.0		$\times 10^{-4}$	CL=90%

- [a] See the "Note on  $\Lambda_c^+$  Branching Fractions" below.
- [b] This branching fraction includes all the decay modes of the final-state
- [c] An  $\ell$  indicates an e or a  $\mu$  mode, not a sum over these modes.
- [d] The value is for the sum of the charge states or particle/antiparticle states indicated.

#### Λ⁺ BRANCHING FRACTIONS

Revised 2000 by P.R. Burchat (Stanford University).

Most  $\Lambda_c^+$  branching fractions are measured relative to the decay mode  $\Lambda_c^+ \to pK^-\pi^+$ . However, there are no modelindependent measurements of the absolute branching fraction for  $\Lambda_c^+ \to pK^-\pi^+$ . Here we describe the measurements that have been used to extract  $B(\Lambda_c^+ \to pK^-\pi^+)$ , the modeldependence of the results, and the method we have used to average the results.

ARGUS (ALBRECHT 88C) and CLEO (CRAWFORD 92) measure  $B(\overline{B} \to \Lambda_c^+ X) \times B(\Lambda_c^+ \to pK^-\pi^+)$  to be  $(0.30 \pm 0.12 \pm$ 0.06)% and  $(0.273 \pm 0.051 \pm 0.039)$ %. Under the assumptions that decays of  $\overline{B}$  mesons to baryons are dominated by  $\overline{B}$   $\rightarrow$  $\Lambda_c^+ X$  and that  $\Lambda_c^+ X$  final states other than  $\Lambda_c^+ \overline{N} X$  can be neglected, they also measure  $B(\overline{B} \to \Lambda_c^+ X)$  to be  $(6.8 \pm 0.5 \pm$ 0.3% (ALBRECHT 920) and  $(6.4\pm0.8\pm0.8)\%$  (CRAWFORD 92). Combining these results, we get  $B(\Lambda_c^+ \to pK^-\pi^+) =$  $(4.14\pm0.91)\%$ . However, the assumption that  $\overline{B}$  decay modes to baryons other than  $\Lambda_c^+\overline{N}X$  are negligible is not on solid ground experimentally or theoretically [1]. Therefore, the branching fraction for  $\Lambda_c^+ o p K^- \pi^+$  given above may be low by some undetermined amount.

The second type of model-dependent determination of  $B(\Lambda_c^+ \to pK^-\pi^+)$  is based on measurements by AR-GUS (ALBRECHT 91G) and CLEO (BERGFELD 94) of  $\sigma(e^+e^- \to \Lambda_c^+ X) \cdot B(\Lambda_c^+ \to \Lambda \ell^+ \nu_{\ell}) = (4.15 \pm 1.03 \pm 1.18) \text{ pb and}$  $(4.77 \pm 0.25 \pm 0.66)$  pb. ARGUS (ALBRECHT 96E) and CLEO (AVERY 91) have also measured  $\sigma(e^+e^- \to \Lambda_c^+ {\rm X}) \cdot {\rm B}(\Lambda_c^+ \to \Lambda_c^+ {\rm X})$  $pK^-\pi^+$ ). The weighted average is  $(11.2 \pm 1.3)$  pb.

From these measurements, we extract  $R \equiv B(\Lambda_c^+)$  $pK^-\pi^+)/B(\Lambda_c^+ \to \Lambda \ell^+\nu_\ell) = 2.40 \pm 0.43$ . We estimate the  $\Lambda_c^+ \to p K^- \pi^+$  branching fraction from the equation

$$B(\Lambda_c^+ \to pK^-\pi^+) = R f F \frac{\Gamma(D \to X\ell^+\nu_\ell)}{1 + |V_{cd}/V_{cs}|^2} \cdot \tau(\Lambda_c^+) , \quad (1)$$

where  $f = \mathrm{B}(\Lambda_c^+ \to \Lambda \ell^+ \nu_\ell)/\mathrm{B}(\Lambda_c^+ \to X_s \ell^+ \nu_\ell)$  and  $F = \Gamma(\Lambda_c^+ \to X_s \ell^+ \nu_\ell)/\Gamma(D^0 \to X_s \ell^+ \nu_\ell)$ . When we use  $1+|V_{cd}/V_{cs}|^2=1.05$  and the world averages  $\Gamma(D\to X \ell^+ \nu_\ell)=(0.163\pm0.006)\times10^{-12}\,\mathrm{s}^{-1}$  and  $\tau(\Lambda_c^+)=(0.206\pm0.012)\times10^{-12}\,\mathrm{s}$ , we calculate  $\mathrm{B}(\Lambda_c^+ \to pK^-\pi^+)=(7.7\pm1.5)\%\cdot f\,F$ . Theoretical estimates for f and F are near 1.0 with significant uncertainties.

So, we have two results with significant model-dependence:  $\mathrm{B}(\Lambda_c^+ \to p K^- \pi^+) = (4.14 \pm 0.91)\%$  from  $\overline{B}$  decays, and  $\mathrm{B}(\Lambda_c^+ \to p K^- \pi^+) = (7.7 \pm 1.5)\% \cdot f \, F$  from semileptonic  $\Lambda_c^+$  decays. If we set  $f \, F = 1.0$  in the second result, and assign an uncertainty of 30% to each result to account for the unknown model-dependence, we get the consistent results  $\mathrm{B}(\Lambda_c^+ \to p K^- \pi^+) = (4.14 \pm 0.91 \pm 1.24)\%$  and  $\mathrm{B}(\Lambda_c^+ \to p K^- \pi^+) = (7.7 \pm 1.5 \pm 2.3)\%$ . The weighted average of these two results is  $\mathrm{B}(\Lambda_c^+ \to p K^- \pi^+) = (5.0 \pm 1.3)\%$ , where the uncertainty contains both the experimental uncertainty and the 30% estimate of model dependence in each result.

This procedure is clearly rather arbitrary, but so is any other procedure until good measurements of the absolute branching fraction are made. Therefore, we have assigned the value (5.0  $\pm$  1.3)% to the  $\Lambda_c^+ \to p K^- \pi^+$  branching fraction (given as PDG 00 below). As was noted earlier, most of the other modes are measured relative to this mode.

New methods for measuring the  $\Lambda_c^+$  absolute branching fractions have been proposed [1,2].

#### References

 $\Gamma(p\overline{K}^0)/\Gamma(pK^-\pi^+)$ 

- 1. I. Dunietz, Phys. Rev. D58, 094010 (1998).
- 2. P. Migliozzi et al., Phys. Lett. **B462**, 217 (1999).

#### A+ BRANCHING RATIOS

— Hadronic modes with a p and one  $\overline{K}$  ———

 $\Gamma_1/\Gamma_2$ 

 $0.16 \pm 0.07 \pm 0.03$ 

VALUE	EVTS	DOCUME	NT ID		TECN	COMMENT		
0.47 ± 0.04 OUR AVE	RAGE							_
$0.46 \pm 0.02 \pm 0.04$	1025	ALAM		98	CLE2	$e^+e^-\approx \Upsilon(45)$		Į
$0.44 \pm 0.07 \pm 0.05$	133	AVERY		91	CLEO	$e^+e^-$ 10.5 GeV		
$0.55 \pm 0.17 \pm 0.14$	45	ANJO5		90	E691	γBe 70-260 GeV		
$0.62 \pm 0.15 \pm 0.03$	73	ALBREC	HT	<b>88</b> C	ARG	$e^+e^-$ 10 GeV		
							$\Gamma_2/\Gamma$	
$\Gamma(pK^-\pi^+)/\Gamma_{\text{tota}}$							12/1	
See the "Note	on $\Lambda_c^+$ Bran					acait.	12/1	
See the "Note	on 1/ _c Bran	CUMENT ID		above TECN	COMN			I
See the "Note	on 1/ _C Bran - <u>DO</u> PD	CUMENT ID	00	TECN	<u>СОММ</u> See п	ote at top of ratios		I
See the "Note VALUE 0.050±0.013	on $A_C^+$ Bran <u>Doo</u> PD the followi	CUMENT ID	00 averag	<i>TECN</i> es, fit	COMM See n s, limits	ote at top of ratios s, etc. • • •		ı

- ² ALBRECHT 920 measures B( $\overline{B} \rightarrow \Lambda_c^+ X$ ) = (6.8 ± 0.5 ± 0.3)%.
- ³ CRAWFORD 92 measures B( $\overline{B} \rightarrow \Lambda_C^+ X$ ) = (6.4 ± 0.8 ± 0.8)%.


$\Gamma(p\overline{K}^*(892)^0)/\Gamma(p)$ Unseen decay mo	$K^-\pi^+$ )	<b>K</b> *(892) ⁰ are in	ncluded.		$\Gamma_3/\Gamma_2$
VALUE	EVTS	DOCUMENT IL		COMMENT	
0.31±0.04 OUR AVER 0.29±0.04±0.03	AGE	4 AITALA	00 E791	π ⁻ N, 500 GeV	j
$0.35^{+0.06}_{-0.07}\pm0.03$	39	BOZEK	93 NA32	π – Cu 230 GeV	•
0.42 ± 0.24	12	BASILE	81B CNTF	$R pp \rightarrow \Lambda_c^+ e^-$	(
• • • We do not use t	he following			L	
$\boldsymbol{0.35 \pm 0.11}$		BARLAG	90D NA32	See BOZEK 93	
⁴ AITALA 00 makes $\rho K^- \pi^+$ decays.	a coherent	5-dimensional	amplitude an	alysis of 946 $\pm$ 3	8 v ^c →
Γ(Δ(1232)++ K-)	/Γ(ρK ⁻ π	r+)			Γ4/Γ2
VALUE 0.17±0.04 OUR AVER	<i>EVTS</i> AGE Erro	DOCUMENT II r includes scale		COMMENT	
$0.18 \pm 0.03 \pm 0.03$		5 AITALA	00 E791	$\pi^-$ N, 500 GeV	l.
$0.12^{+0.04}_{-0.05}\pm0.05$	14	BOZEK	93 NA32	π  Cu 230 GeV	,
$0.40 \pm 0.17$	17	BASILE	81B CNTF	$R pp \rightarrow \Lambda_c^+ e^-$	<
⁵ AITALA 00 makes $pK^-\pi^+$ decays.	a coherent	5-dimensional	amplitude ar	alysis of 946 $\pm$ 3	8 A _c →
$\Gamma(\Lambda(1520)\pi^+)/\Gamma(\mu$	κ-π ⁺ )				$\Gamma_5/\Gamma_2$
Unseen decay me	odes of the			COMMENT	
0.119 + 0.032 OUR AV	<u>EVTS</u> FRAGE	<u>DOCUMENT II</u>	7200	COMMENT	
0.15 ±0.04 ±0.02		6 AITALA	00 E791	π – N. 500 GeV	
$0.09 \begin{array}{l} +0.04 \\ -0.03 \end{array} \pm 0.02$	12	BOZEK	93 NA32		•
⁶ AITALA 00 makes $\rho K^- \pi^+$ decays.	a coherent	5-dimensional	amplitude ar	halysis of 946 $\pm$ 3	18 A _c → [
$\Gamma(pK^-\pi^+\text{nonreson})$	nant)/Γ(ρ	•			$\Gamma_6/\Gamma_2$
VALUE 0.55±0.06 OUR AVER	<u>EVTS</u> PAGE	DOCUMENT I	D TECN	COMMENT	<del></del>
$0.55 \pm 0.06 \pm 0.04$		⁷ AITALA	00 E791	$\pi^-$ N, 500 GeV	' !
$0.56^{+0.07}_{-0.09}\pm0.05$	71	BOZEK	93 NA32	π Cu 230 Ge\	′
⁷ AITALA 00 makes $\rho K^- \pi^+$ decays.	a coherent	5-dimensional	amplitude a	nalysis of 946 ± 3	$^{38} \Lambda_c^+ \rightarrow \blacksquare$
$\Gamma( ho \overline{K}{}^0 \pi^0) / \Gamma( ho K^-$	π ⁺ )				$\Gamma_7/\Gamma_2$
VALUE	EVTS	DOCUMENT I			<u> </u>
0.66±0.05±0.07	774	ALAM	98 CLE2	$e^+e^-\approx \Upsilon(4)$	3)
$\Gamma(p\overline{K}^0\eta)/\Gamma(pK^{-1})$	г+)				$\Gamma_8/\Gamma_2$
0.25±0.04±0.04	<u>EVTS</u> 57	DOCUMENT I	95 CLE2	$e^+e^- \approx \Upsilon(4)$	C)
·		AMMAK	95 CLE2	e·e ≈ 1(4	3)
$\Gamma(\rho \overline{K}^0 \pi^+ \pi^-)/\Gamma(\rho \overline{K}^0 \pi^+ \pi^-)$	-	DOCUMENT I	) TECN	COLUMNIT	Г9/Г2
VALUE 0.51±0.06 OUR AVE	<u>EVTS</u> RAGE	DOCUMENT IL	/ /EC/V	COMMENT	
$0.52 \pm 0.04 \pm 0.05$	985	ALAM		$e^+e^-\approx \Upsilon(45)$	
$0.43 \pm 0.12 \pm 0.04$ $0.98 \pm 0.36 \pm 0.08$	83 12	AVERY BARLAG		e ⁺ e  10.5 Ge\ π  230 GeV	,
		DAMENO	700 10/102	200 007	
$\Gamma(pK^-\pi^+\pi^0)/\Gamma(pK^-\pi^+\pi^0)$	-	DOGUMENT		COLUMENT	$\Gamma_{10}/\Gamma_2$
VALUE 0.67±0.04±0.11	2606			$e^+e^-\approx \Upsilon(4)$	5)
Γ(p K*(892) - π+), Unseen decay m			included		Γ ₁₁ /Γ ₉
VALUE		DOCUMENT I		COMMENT	
0.44±0.14	17	ALEEV		πN 20-70 GeV	,
$\Gamma(p(K^-\pi^+)_{\text{nonreso}})$	$mant \pi^0)/1$	Γ(pK ⁻ π ⁺ )			$\Gamma_{12}/\Gamma_{2}$
VALUE				<u>COMMENT</u> 2 π Cu 230 Ge ^V	
0.73±0.12±0.05	67	DUZEK	33 NA3	. ж Сu 230 Ge	_
Γ(Δ(1232) <b>Κ*(892</b> VALUE	))/F _{total}	DOCUMENT	ID TECN	COMMENT	Γ ₁₃ /Γ
seen	35		IA 87 SPEC		
$\Gamma(\rho K^-\pi^+\pi^+\pi^-)$	/Γ(pK=3	r+)			$\Gamma_{14}/\Gamma_{2}$
•	,, (p. ,	DOCUMENT		COMMENT	
0.022±0.015				2 π ⁻ 230 GeV	
$\Gamma(\rho K^-\pi^+\pi^0\pi^0)/$	Г(рК-я	+)			$\Gamma_{15}/\Gamma_{2}$
	EVTS	DOCUMENT	ID TECN		
	15	DOZEK	02 NA2	2 ~ T Cu 230 Ge ³	,

**BOZEK** 

93 NA32 π Cu 230 GeV

	$(K^-\pi^+)$	Γ ₁₆ /Γ ₂	Γ(ΛΚ+Κ̄ ⁰ )/Γ(ρΚ¬π+)		Γ ₂₈ /Γ:
VALUE EVTS 0.10±0.06±0.02 8		<u>COMMENT</u> π Cu 230 GeV	VALUE EVTS 0.12 ±0.02 ±0.02 59	DOCUMENT ID TECN AMMAR 95 CLE2	$\frac{COMMENT}{e^+e^-\approx \Upsilon(45)}$
				AMMAN 33 CLE2	, ,
	nic modes with a p and 0 or 2	V 2	$\Gamma(\Sigma^0\pi^+)/\Gamma( ho K^-\pi^+)$	DOCUMENT ID TECN	Г ₂₉ /Г
$\Gamma(p\pi^+\pi^-)/\Gamma(pK^-\pi^+)$		Γ ₁₇ /Γ ₂	0.20±0.04 OUR AVERAGE	DOCUMENT ID TECH	COMMENT
ALUE .069±0.036		COMMENT π 230 GeV	0.21±0.02±0.04 196	AVERY 94 CLE2	
		π 230 GeV	$0.17 \pm 0.06 \pm 0.04$	ALBRECHT 92 ARG	$e^+ e^- \approx 10.4 \text{ GeV}$
$\Gamma(\rho f_0(980))/\Gamma(\rho K^-\pi^+)$		Γ ₁₈ /Γ ₂	$\Gamma(\Sigma^+\pi^0)/\Gamma( ho K^-\pi^+)$		Γ ₃₀ /Γ
ALUE	the f ₀ (980) are included.  DOCUMENT ID TECN	COMMENT	VALUE EVTS		COMMENT
0.055±0.036		π ⁻ 230 GeV	<b>0.20±0.03±0.03</b> 93	KUBOTA 93 CLE2	$e^+e^-\approx \Upsilon(45)$
Γ(ρπ ⁺ π ⁺ π ⁻ π ⁻ )/Γ(ρΚ	/+\	· F /F	$\Gamma(\Sigma^+\eta)/\Gamma( ho K^-\pi^+)$		Γ ₃₁ /Γ
(μπ·π·π π )/I(μΛ	•	Γ ₁₉ /Γ ₂	VALUE EVTS		COMMENT
0.036±0.023		π ⁻ 230 GeV	0.11±0.03±0.02 26	AMMAR 95 CLE2	$e^+e^-\approx \Upsilon(45)$
$\Gamma(\rho K^+ K^-)/\Gamma(\rho K^- \pi^+)$	•	Γ/Γ-	$\Gamma(\Sigma^+\pi^+\pi^-)/\Gamma(pK^-\pi^+)$		Γ ₃₂ /Γ
VALUEEVT		Γ ₂₀ /Γ ₂	0.68±0.09 OUR AVERAGE	DOCUMENT ID TECN	COMMENT
0.046±0.012 OUR AVERAGE	Error includes scale factor of 1.2.		0.74 ± 0.07 ± 0.09 487	KUBOTA 93 CLE2	$e^+e^-\approx \Upsilon(45)$
$0.039 \pm 0.009 \pm 0.007$ 214 $0.096 \pm 0.029 \pm 0.010$ 30		_ ` '	$0.54^{+0.18}_{-0.15}$ 11		π - Cu 230 GeV
0.096±0.029±0.010 30 0.048±0.027		$\gamma$ Be, $E_{\gamma}$ 220 GeV $\pi^{-}$ 230 GeV			
	/\G /00 IVA32		$\Gamma(\Sigma^+\rho^0)/\Gamma(\rho K^-\pi^+)$		Г ₃₃ /Г
$\Gamma( ho\phi)/\Gamma( hoK^-\pi^+)$ Unseen decay modes of	the & are included	Γ ₂₁ /Γ ₂	<u>VALUE</u> <u>CL%</u> <b>&lt;0.27</b> 95	DOCUMENT ID TECN	
ALUE EVTS		COMMENT			$e^+e^-\approx \Upsilon(4S)$
0.024±0.006±0.003 54			$\Gamma(\Sigma^-\pi^+\pi^+)/\Gamma(\Sigma^+\pi^+\pi^-$	,	Г34/Г3
	owing data for averages, fits, limits,		<u>VALUE</u> <u>EVTS</u> <b>0.53±0.15±0.07</b> 56	DOCUMENT ID TECN FRABETTI 94E E687	$\gamma \text{Be, } \overline{E}_{\gamma} \text{ 220 GeV}$
0.040 ± 0.027	BARLAG 90D NA32	π ⁻ 230 GeV		PRADETTI 34E E001	7 Be, Ly 220 GeV
$\Gamma(p\phi)/\Gamma(pK^+K^-)$		$\Gamma_{21}/\Gamma_{20}$	$\Gamma(\Sigma^0\pi^+\pi^0)/\Gamma(pK^-\pi^+)$		Γ ₃₅ /Γ
Unseen decay modes of VALUE CL%	the $\phi$ are included.  DOCUMENT ID TECN CO	OMMENT	VALUE EVTS		COMMENT
	owing data for averages, fits, limits,		0.36±0.09±0.10 117	AVERY 94 CLE2	$e^+e^-\approx \Upsilon(35),\Upsilon(45)$
<0.58 90	FRABETTI 93H E687 γ	Be, Ε, 220 GeV	$\Gamma(\Sigma^0\pi^+\pi^+\pi^-)/\Gamma(pK^-\pi^-)$	+)	Г ₃₆ /Г
		•	LATTE EVEC		COMMENT
—— на	idronic modes with a hyperon :		VALUE EVTS		
—— на	dronic modes with a hyperon	<del></del>	0.21±0.05±0.05 90		
	idronic modes with a hyperon	 Γ ₂₂ /Γ ₂	<b>0.21 ± 0.05 ± 0.05</b> 90		$e^+e^-\approx \Upsilon(35), \Upsilon(45)$
Γ(Λπ ⁺ )/Γ(ρΚ ⁻ π ⁺ ) VALUE CL%	EVTS DOCUMENT ID TEC		0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^+\omega)/\Gamma(pK^-\pi^+)$ Unseen decay modes of the	AVERY 94 CLE2 e $\omega$ are included.	$e^{+}e^{-} \approx \Upsilon(35), \Upsilon(45)$
$\Gamma(\Lambda\pi^+)/\Gamma(pK^-\pi^+)$	EVTS DOCUMENT ID TEC	Γ ₂₂ /Γ ₂	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of th	AVERY 94 CLE2  e \( \omega \) are included.  \( \omega \) OCUMENT ID TECN	$e^+e^-\approx T(35), T(45)$ $\Gamma_{38}/\Gamma_{38}$
Γ(Λπ ⁺ )/Γ(ρK ⁻ π ⁺ ) 0.180±0.032 OUR AVERA 0.18 ±0.03 ±0.04 0.18 ±0.03 ±0.03	EVTS DOCUMENT ID TEG GE ALBRECHT 92 AR 87 AVERY 91 CLI	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT $G e^+e^- \approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of th VALUE EVTS 0.54 $\pm$ 0.13 $\pm$ 0.06 107	AVERY 94 CLE2 e ω are included. DOCUMENT ID TECN KUBOTA 93 CLE2	$e^+e^- \approx T(35), T(45)$ $\Gamma_{38}/\Gamma$ $COMMENT$ $e^+e^- \approx T(45)$
$\Gamma(\Lambda\pi^+)/\Gamma(pK^-\pi^+)$ $VALUE$ 0.180±0.032 OUR AVERA 0.18 ±0.03 ±0.04 0.18 ±0.03 ±0.03 ••• We do not use the folia	EVTS DOCUMENT ID TEC GE  ALBRECHT 92 AR 87 AVERY 91 CLI owing data for averages, fits, limits,	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT $G e^+e^- \approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • •	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of the value $\Sigma^{EVTS}$ 0.54 $\pm$ 0.13 $\pm$ 0.06 107 $\Gamma(\Sigma^+\pi^+\pi^+\pi^-\pi^-)/\Gamma(\rho K^-\pi^+)$	AVERY 94 CLE2  e \( \omega \) are included. \( \frac{DOCUMENT ID}{KUBOTA} \) 93 CLE2	$e^+e^- \approx T(35), T(45)$
$\Gamma(\Lambda\pi^+)/\Gamma(pK^-\pi^+)$ $O.180\pm0.032$ OUR AVERA $0.18\pm0.03\pm0.04$ $0.18\pm0.03\pm0.03$ • • • We do not use the following series of the following series o	EVTS DOCUMENT ID TEG GE ALBRECHT 92 AR 87 AVERY 91 CLI	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT $G e^+e^-\approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • • $\gamma$ Be 70–260 GeV	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of th $\frac{VALUE}{0.54 \pm 0.13 \pm 0.06}$ $\Gamma(\Sigma^+\pi^+\pi^+\pi^-\pi^-)/\Gamma(\rho K)$ VALUE  EVTS	AVERY 94 CLE2  e w are included.  DOCUMENT ID TECN  TECN  TECN  TECN  TECN  TECN	$e^+e^- \approx T(3S), T(4S)$
$\Gamma(\Lambda \pi^{+})/\Gamma(\rho K^{-} \pi^{+})$ $0.180 \pm 0.032$ OUR AVERA $0.18 \pm 0.03 \pm 0.04$ $0.18 \pm 0.03 \pm 0.03$ • • • We do not use the folion of the folio	EVTS DOCUMENT ID TEC GE  ALBRECHT 92 AR 87 AVERY 91 CLI owing data for averages, fits, limits, ANJOS 90 E69	$\Gamma_{22}/\Gamma_2$ CN COMMENT  G $e^+e^-\approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • • 91 $\gamma$ Be 70–260 GeV G $e^+e^- 10 \text{ GeV}$	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of the value $\Sigma^{EVTS}$ 0.54 $\pm$ 0.13 $\pm$ 0.06 107 $\Gamma(\Sigma^+\pi^+\pi^+\pi^-\pi^-)/\Gamma(\rho K^-\pi^+)$	AVERY 94 CLE2  e w are included.  DOCUMENT ID TECN  TECN  TECN  TECN  TECN  TECN	$e^+e^- \approx T(35), T(45)$
$\Gamma(\Lambda \pi^{+})/\Gamma(\rho K^{-} \pi^{+})$ $VALUE$ 0.180±0.032 OUR AVERA 0.18 ±0.03 ±0.04 0.18 ±0.03 ±0.03 ••• We do not use the folio <0.33 90 <0.16 90 $\Gamma(\Lambda \pi^{+} \pi^{0})/\Gamma(\rho K^{-} \pi^{+})$	EVTS DOCUMENT ID TEC GE  ALBRECHT 92 AR  87 AVERY 91 CLI  owing data for averages, fits, limits,  ANJOS 90 E69  ALBRECHT 88c AR	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT $G e^+e^-\approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • •  91 $\gamma$ Be 70–260 GeV $e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_{2}$	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^{+}\omega)/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of th  **\text{NALUE}**  0.54 $\pm$ 0.13 $\pm$ 0.06 $\Gamma(\Sigma^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(\rho K^{-})$ **\text{NALUE}**  0.06 $\pm$ 0.08  1	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  KUBOTA 93 CLE2  - π+)  DOCUMENT ID  BARLAG 92 NA32	$e^+e^- \approx T(3S), T(4S)$
$(\Lambda \pi^{+})/\Gamma(pK^{-}\pi^{+})$ $(\Lambda \pi^{+})/\Gamma(pK^{-}\pi^{+})$ $(\Lambda \pi^{+})/\Gamma(pK^{-}\pi^{+})$ $(\Lambda \pi^{+})/\Gamma(pK^{-}\pi^{+})$ $(\Lambda \pi^{+})/\Gamma(pK^{-}\pi^{+})$ $(\Lambda \pi^{+})/\Gamma(pK^{-}\pi^{+})$ $(\Lambda \pi^{+}\pi^{0})/\Gamma(pK^{-}\pi^{+})$ $(\Lambda \pi^{+}\pi^{0})/\Gamma(pK^{-}\pi^{+})$ $(\Lambda \pi^{+}\pi^{0})/\Gamma(pK^{-}\pi^{+})$	EVTS DOCUMENT ID TEC GE  ALBRECHT 92 AR 87 AVERY 91 CLI owing data for averages, fits, limits, ANJOS 90 E66 ALBRECHT 88C AR	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT $G e^+e^-\approx 10.4 \text{ GeV}$ $EO e^+e^- 10.5 \text{ GeV}$ etc. •• $\gamma$ Be 70–260 GeV $G e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_{2}$ COMMENT	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of th $\frac{VALUE}{0.54 \pm 0.13 \pm 0.06}$ $\Gamma(\Sigma^+\pi^+\pi^+\pi^-\pi^-)/\Gamma(\rho K)$ VALUE  EVTS	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  KUBOTA 93 CLE2  - π+)  DOCUMENT ID  BARLAG 92 NA32	$e^+e^- \approx T(35), T(45)$
$\Gamma(\Lambda\pi^+)/\Gamma(pK^-\pi^+)$ $MLUE$ 0.180±0.032 OUR AVERA  0.18 ±0.03 ±0.04  0.18 ±0.03 ±0.03  • • • We do not use the folion  <0.16 90 $\Gamma(\Lambda\pi^+\pi^0)/\Gamma(pK^-\pi^+)$ $\Gamma(\Lambda\pi^+\pi^0)/\Gamma(pK^-\pi^+)$ 0.73±0.09±0.16  464	EVTS DOCUMENT ID TEC GE  ALBRECHT 92 AR 87 AVERY 91 CLI owing data for averages, fits, limits, ANJOS 90 E66 ALBRECHT 88C AR	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT  GG $e^+e^-\approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • •  91 $\gamma$ Be 70–260 GeV  GG $e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^+e^-\approx \Upsilon(3S), \Upsilon(4S)$	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^{+}\omega)/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of th  VALUE  0.54 $\pm$ 0.13 $\pm$ 0.06 $\Gamma(\Sigma^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(\rho K^{-})$ 0.06 $\pm$ 0.08  1 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  KUBOTA 93 CLE2  - π+  DOCUMENT ID  BARLAG 92 NA32	$e^+e^- \approx T(35), T(45)$
$(\Lambda \pi^{+})/\Gamma(\rho K^{-}\pi^{+})$ $(\Lambda L U E)$ $(0.180 \pm 0.032)$ OUR AVERA $(0.18 \pm 0.03) \pm 0.04$ $(0.18 \pm 0.03) \pm 0.03$	EVTS DOCUMENT ID TEC GE  ALBRECHT 92 AR 87 AVERY 91 CLI owing data for averages, fits, limits, ANJOS 90 E69 ALBRECHT 88C AR  S. DOCUMENT ID TECN 1 AVERY 94 CLE2	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT $G = e^+e^- \approx 10.4 \text{ GeV}$ $EO = e^+e^- 10.5 \text{ GeV}$ $etc. \bullet \bullet \bullet$ $91  \gamma \text{ Be } 70\text{-}260 \text{ GeV}$ $G = e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_{2}$ $COMMENT$ $e^+e^- \approx \Upsilon(3S), \Upsilon(4S)$	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^{+}\omega)/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of th  VALUE  0.54 $\pm$ 0.13 $\pm$ 0.06 $\Gamma(\Sigma^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(\rho K^{-})$ 0.06 $\pm$ 0.08  1 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$ VALUE  EVTS  0.070 $\pm$ 0.011 $\pm$ 0.011	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  KUBOTA 93 CLE2  - π+  DOCUMENT ID  BARLAG 92 NA32	$e^+e^- \approx T(35), T(45)$
$\Gamma(\Lambda\pi^+)/\Gamma(pK^-\pi^+)$ $MLUE$ 0.180±0.032 OUR AVERA  0.18 ±0.03 ±0.03  • • • We do not use the folion of the foli	EVTS DOCUMENT ID TEC GE  ALBRECHT 92 AR 87 AVERY 91 CLI owing data for averages, fits, limits, ANJOS 90 E69 ALBRECHT 88C AR  S. DOCUMENT ID TECN AVERY 94 CLE2	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT $G = e^+e^- \approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. ••  91 $\gamma$ Be 70–260 GeV $G = e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^+e^- \approx \Upsilon(3S), \Upsilon(4S)$ $\Gamma_{24}/\Gamma_{2}$ COMMENT	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^{+}\omega)/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of th  **MLUE**  0.54 $\pm$ 0.13 $\pm$ 0.06 $\Gamma(\Sigma^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(\rho K^{-})$ **MLUE**  0.06 $\pm$ 0.08  1 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$ **MLUE**  0.070 $\pm$ 0.011 $\pm$ 0.011  59 $\Gamma(\Sigma^{+}\phi)/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of th	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  KUBOTA 93 CLE2  - π+  DOCUMENT ID  BARLAG 92 NA32  DOCUMENT ID  AVERY 93 CLE2  e φ are included.	$e^+e^- \approx T(35), T(45)$ $\Gamma_{38}/\Gamma$ $COMMENT$ $e^+e^- \approx T(45)$ $\Gamma_{39}/\Gamma$ $COMMENT$ $\pi^- Cu 230 GeV$ $\Gamma_{40}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5 GeV$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	EVTS DOCUMENT ID TECK  87 AVERY 91 CLI owing data for averages, fits, limits, ANJOS 90 E69 ALBRECHT 88C AR  5 DOCUMENT ID TECK AVERY 94 CLE2  1 DOCUMENT ID TECK AVERY 94 CLE2	$\Gamma_{22}/\Gamma_2$ CN COMMENT  GG $e^+e^- \approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • •  91 γBe 70-260 GeV  GG $e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_2$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{24}/\Gamma_2$ COMMENT $e^+e^- \approx T(3S), T(4S)$	0.21 $\pm$ 0.05 $\pm$ 0.05 $\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of the value EVTS 0.54 $\pm$ 0.13 $\pm$ 0.06 107 $\Gamma(\Sigma^+\pi^+\pi^+\pi^-\pi^-)/\Gamma(\rho K)$ Value EVTS 0.06 $\pm$ 0.08 1 $\Gamma(\Sigma^+K^+K^-)/\Gamma(\rho K^-\pi^+)$ Value EVTS 0.070 $\pm$ 0.011 $\pm$ 0.01 59 $\Gamma(\Sigma^+\phi)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of the value EVTS	AVERY 94 CLE2  e \( \omega \) are included. \( \omega \) DOCUMENT ID \( \omega \) TECN  KUBOTA 93 CLE2  - \( \begin{array}{c} \tau + \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	$e^+e^- \approx T(35), T(45)$
$\begin{array}{c} \Gamma(\Lambda\pi^{+})/\Gamma(\rho K^{-}\pi^{+}) \\ NALUE \\ 0.180\pm0.032 \ \text{OUR} \ \text{AVERA} \\ 0.18 \pm0.03 \pm0.04 \\ 0.18 \pm0.03 \pm0.03 \\ 0.0 \ \text{We do not use the folk} \\ 0.033 \qquad 90 \\ 0.016 \qquad 90 \\ \Gamma(\Lambda\pi^{+}\pi^{0})/\Gamma(\rho K^{-}\pi^{+}) \\ NALUE \qquad EVT. \\ 0.73\pm0.09\pm0.16 \qquad 646 \\ \Gamma(\Lambda\rho^{+})/\Gamma(\rho K^{-}\pi^{+}) \\ VALUE \qquad CLS \\ 0.95 \qquad 95 \\ \Gamma(\Lambda\pi^{+}\pi^{+}\pi^{-})/\Gamma(\rho K^{-}\pi^{-}) \end{array}$	EVTS  GE  ALBRECHT 92 AR  87 AVERY 91 CLI  Dowing data for averages, fits, limits,  ANJOS 90 E65  ALBRECHT 88C AR  S. DOCUMENT ID TECN  AVERY 94 CLE2  T. DOCUMENT ID TECN  AVERY 94 CLE2	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT  GG e ⁺ e ⁻ ≈ 10.4 GeV  EO e ⁺ e ⁻ 10.5 GeV  etc. • • •  91 γBe 70-260 GeV  GG e ⁺ e ⁻ 10 GeV $\Gamma_{23}/\Gamma_{2}$ $COMMENT$ $e^{+}e^{-} ≈ T(3S), T(4S)$ $\Gamma_{24}/\Gamma_{2}$ $COMMENT$ $e^{+}e^{-} ≈ T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of the MALUE EVTS 0.54 $\pm$ 0.13 $\pm$ 0.06 107 $\Gamma(\Sigma^+\pi^+\pi^+\pi^-\pi^-)/\Gamma(\rho K^-\pi^+)$ VALUE EVTS 0.06 $\pm$ 0.08 1 $\Gamma(\Sigma^+K^+K^-)/\Gamma(\rho K^-\pi^+)$ VALUE EVTS 0.070 $\pm$ 0.011 $\pm$ 0.011 59 $\Gamma(\Sigma^+\phi)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of the VALUE EVTS 0.069 $\pm$ 0.023 $\pm$ 0.016 26	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  BARLAG 92 NA32  DOCUMENT ID  AVERY 93 CLE2  e φ are included.  DOCUMENT ID  AVERY 93 CLE2  rech	$e^+e^- \approx T(35), T(45)$
$\begin{array}{c} (\Lambda\pi^{+})/\Gamma(\rho K^{-}\pi^{+}) \\ (\Lambda\pi^{+})/\Gamma(\rho K^{-}\pi^{+}) \\ 0.180\pm0.032 \ \text{OUR AVERA} \\ 0.18\pm0.03\pm0.03 \\ 0.18\pm0.03\pm0.03 \\ 0.18\pm0.03\pm0.03 \\ 0.16 \\ 0.33 \\ 0.16 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0$	EVTS  GE  ALBRECHT 92 AR  87 AVERY 91 CLI owing data for averages, fits, limits,  ANJOS 90 E69 ALBRECHT 88C AR  S DOCUMENT ID TECN AVERY 94 CLE2  C DOCUMENT ID TECN AVERY 94 CLE2	$\Gamma_{22}/\Gamma_2$ CN COMMENT  GG $e^+e^- \approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • •  91 γBe 70-260 GeV  GG $e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_2$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{24}/\Gamma_2$ COMMENT $e^+e^- \approx T(3S), T(4S)$	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of th  VALUE  0.54 $\pm$ 0.13 $\pm$ 0.06 $\Gamma(\Sigma^+\pi^+\pi^+\pi^-\pi^-)/\Gamma(\rho K^-\pi^+)$ 0.06 $\pm$ 0.08  1 $\Gamma(\Sigma^+K^+K^-)/\Gamma(\rho K^-\pi^+)$ VALUE  0.070 $\pm$ 0.011 $\pm$ 0.011  59 $\Gamma(\Sigma^+\phi)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of th  VALUE  0.069 $\pm$ 0.023 $\pm$ 0.016  26 $\Gamma(\Sigma^+K^+\pi^-)/\Gamma(\rho K^-\pi^+)$	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  EACH  BARLAG 92 NA32  DOCUMENT ID  AVERY 93 CLE2  e φ are included.  DOCUMENT ID  AVERY 93 CLE2  rechart included.  DOCUMENT ID  AVERY 93 CLE2	$e^+e^- \approx T(35), T(45)$
$\Gamma(\Lambda \pi^+)/\Gamma(\rho K^- \pi^+)$ $VALUE$ 0.180±0.032 OUR AVERA  0.18 ±0.03 ±0.04  0.18 ±0.03 ±0.03  • • We do not use the folk  <0.33  90  <0.16  90 $\Gamma(\Lambda \pi^+ \pi^0)/\Gamma(\rho K^- \pi^+)$ $VALUE$ 0.73±0.09±0.16 $\Gamma(\Lambda \rho^+)/\Gamma(\rho K^- \pi^+)$ $VALUE$ <0.95  95 $\Gamma(\Lambda \pi^+ \pi^+ \pi^-)/\Gamma(\rho K^- \pi^+)$ $VALUE$ $VALU$	EVTS  GE  ALBRECHT 92 AR  87 AVERY 91 CLI  owing data for averages, fits, limits,  ANJOS 90 E69  ALBRECHT 88C AR  S. DOCUMENT ID TECN  AVERY 94 CLE2  T. DOCUMENT ID TECN  AVERY 94 CLE2  T. DOCUMENT ID TECN  AVERY 94 CLE2  T. DOCUMENT ID TECN  AVERY 91 CLE2	$\Gamma_{22}/\Gamma_2$ CN COMMENT  GG $e^+e^- \approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • •  91 γBe 70–260 GeV  G $e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_2$ COMMENT $e^+e^- \approx T(35), T(45)$ $\Gamma_{24}/\Gamma_2$ COMMENT $e^+e^- \approx T(35), T(45)$ $\Gamma_{25}/\Gamma_2$ COMMENT $e^+e^- \approx T(35), T(45)$ $\Gamma_{25}/\Gamma_2$	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^{+}\omega)/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of the value EVTS 0.54 $\pm$ 0.13 $\pm$ 0.06 $\Gamma(\Sigma^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ 0.06 $\pm$ 0.08  1 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$ Value EVTS 0.070 $\pm$ 0.011 $\pm$ 0.01 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of the value EVTS 0.069 $\pm$ 0.023 $\pm$ 0.016 $\Gamma(\Sigma^{+}K^{+}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ Value EVTS	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  BARLAG 92 NA32  DOCUMENT ID  AVERY 93 CLE2  e φ are included.  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  AVERY 93 CLE2	$e^+e^- \approx T(35), T(45)$ $\Gamma_{38}/\Gamma$ $COMMENT$ $e^+e^- \approx T(45)$ $\Gamma_{39}/\Gamma$ $COMMENT$ $\pi^-$ Cu 230 GeV $\Gamma_{40}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5$ GeV $\Gamma_{41}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5$ GeV $\Gamma_{42}/\Gamma$ $COMMENT$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EVTS DOCUMENT ID TECK  87 AVERY 91 CLI Dowing data for averages, fits, limits, ANJOS 90 E69 ALBRECHT 88C AR  5 DOCUMENT ID TECK AVERY 94 CLE2  1 DOCUMENT ID TECK AVERY 91 CLEO ANJOS 90 E691	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT  G $e^+e^- \approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • •  91 γBe 70-260 GeV  G $e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{24}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of th  VALUE  0.54 $\pm$ 0.13 $\pm$ 0.06 $\Gamma(\Sigma^+\pi^+\pi^+\pi^-\pi^-)/\Gamma(\rho K^-\pi^+)$ 0.06 $\pm$ 0.08  1 $\Gamma(\Sigma^+K^+K^-)/\Gamma(\rho K^-\pi^+)$ VALUE  0.070 $\pm$ 0.011 $\pm$ 0.011  59 $\Gamma(\Sigma^+\phi)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of th  VALUE  0.069 $\pm$ 0.023 $\pm$ 0.016  26 $\Gamma(\Sigma^+K^+\pi^-)/\Gamma(\rho K^-\pi^+)$	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  BARLAG 92 NA32  DOCUMENT ID  AVERY 93 CLE2  e φ are included.  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  AVERY 93 CLE2	$e^+e^- \approx T(35), T(45)$ $\Gamma_{38}/\Gamma$ $COMMENT$ $e^+e^- \approx T(45)$ $\Gamma_{39}/\Gamma$ $T_{39}/\Gamma$ $T_$
$\Gamma(\Lambda \pi^+)/\Gamma(\rho K^- \pi^+)$ $VALUE$ 0.180±0.032 OUR AVERA  0.18 ±0.03 ±0.04  0.18 ±0.03 ±0.03  • • • We do not use the folk  <0.033  <0.16  90 $\Gamma(\Lambda \pi^+ \pi^0)/\Gamma(\rho K^- \pi^+)$ $VALUE$ 0.73±0.09±0.16 $\Gamma(\Lambda \rho^+)/\Gamma(\rho K^- \pi^+)$ $VALUE$ CL%  CL%  CL%  CL%  CL%  CL%  CL%  CL	### AVERY 94 CLE2	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT  G $e^+e^- \approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • •  91 γBe 70-260 GeV  G $e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{24}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of th VALUE EVTS 0.54 $\pm$ 0.13 $\pm$ 0.06 107 $\Gamma(\Sigma^+\pi^+\pi^+\pi^-\pi^-)/\Gamma(\rho K^-\pi^+)$ 0.06 $\pm$ 0.08 1 $\Gamma(\Sigma^+K^+K^-)/\Gamma(\rho K^-\pi^+)$ VALUE EVTS 0.070 $\pm$ 0.011 $\pm$ 0.011 $\Gamma(\Sigma^+\phi)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of th VALUE EVTS 0.069 $\pm$ 0.023 $\pm$ 0.016 26 $\Gamma(\Sigma^+K^+\pi^-)/\Gamma(\rho K^-\pi^+)$ VALUE EVTS 0.13 $\pm$ 0.12 0.13 $\pm$ 0.17 $\pm$ 0.17 $\pm$ 0.18 $\pm$ 0.19 $\pm$ 0.1	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  BARLAG 92 NA32  DOCUMENT ID  AVERY 93 CLE2  e φ are included.  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  AVERY 93 CLE2	$e^+e^- \approx T(35), T(45)$ $\Gamma_{38}/\Gamma$ $COMMENT$ $e^+e^- \approx T(45)$ $\Gamma_{39}/\Gamma$ $COMMENT$ $\pi^-$ Cu 230 GeV $\Gamma_{40}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5$ GeV $\Gamma_{41}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5$ GeV $\Gamma_{42}/\Gamma$ $COMMENT$ $T=0.5$ GeV $\Gamma_{42}/\Gamma$ $T=0.5$ GeV
$\Gamma(\Lambda \pi^{+})/\Gamma(\rho K^{-}\pi^{+})$ $0.180\pm0.032 \text{ OUR AVERA}$ $0.18 \pm0.03 \pm0.04$ $0.18 \pm0.03 \pm0.03$ $0 \bullet \bullet \text{ We do not use the folk}$ $0.033 \qquad 90$ $0.016 \qquad 90$ $\Gamma(\Lambda \pi^{+}\pi^{0})/\Gamma(\rho K^{-}\pi^{+})$ $VALUE \qquad EVT.$ $0.73\pm0.09\pm0.16 \qquad EVT.$ $0.46\pm0.11 \text{ OUR AVERAGE}$ $0.65\pm0.11\pm0.12 \qquad 289$ $0.82\pm0.29\pm0.27 \qquad 44$ $0.94\pm0.41\pm0.13 \qquad 10$ $0.61\pm0.16\pm0.04 \qquad 105$	### AVERY 91 CLEO ### AVERY 94 CLE2 ### AVERY 95 CLE2 ### AVERY 96 CLE2 ### AVERY 97 CLEO ### AVERY 97 CLEO ### AVERY 97 CLEO ### AVERY 98 CLE2 ### AVERY 98 CLE2 ### AVERY 98 CLE2 ### AVERY 99 CLEO ### AVERY 99	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT  GG $e^+e^- \approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • •  91 γBe 70-260 GeV $G e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{24}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^{+}\omega)/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of the value EVTS 0.54 $\pm$ 0.13 $\pm$ 0.06 $\Gamma(\Sigma^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ 0.06 $\pm$ 0.08  1 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$ Value EVTS 0.070 $\pm$ 0.011 $\pm$ 0.01 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of the value EVTS 0.069 $\pm$ 0.023 $\pm$ 0.016 $\Gamma(\Sigma^{+}K^{+}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ Value EVTS	AVERY 94 CLE2  e w are included.  DOCUMENT ID  NUBOTA 93 CLE2  TECN  BARLAG 92 NA32  DOCUMENT ID  AVERY 93 CLE2  e ф are included.  DOCUMENT ID  AVERY 93 CLE2	$e^+e^- \approx T(35), T(45)$ $\Gamma_{38}/\Gamma$ $COMMENT$ $e^+e^- \approx T(45)$ $T_{39}/\Gamma$ $T_{40}/\Gamma$ $T_{40}/\Gamma$ $T_{40}/\Gamma$ $T_{41}/\Gamma$ $T_{42}/\Gamma$ $T_{42}/\Gamma$ $T_{42}/\Gamma$ $T_{42}/\Gamma$ $T_{42}/\Gamma$ $T_{42}/\Gamma$ $T_{43}/\Gamma$ $T_{44}/\Gamma$ $T_{44}/\Gamma$ $T_{45}/\Gamma$ $T_{46}/\Gamma$ $T_$
$\begin{array}{c} \Gamma(\Lambda\pi^+)/\Gamma(\rho K^-\pi^+) \\ \frac{(\Lambda\pi^+)}{(\Lambda \pi^+)} \Gamma(\rho K^-\pi^+) \\ \frac{(\Lambda\pi^+)}{(\Lambda \pi^+)} \frac{(1\%)}{(\Lambda \pi^+\pi^0)} \frac{(1\%)}{(\Lambda \pi^+\pi^0)} \\ \frac{(18)}{(\Lambda \pi^+\pi^0)} \frac{(16)}{(\Lambda \pi^+\pi^+)} \\ \frac{(16)}{(\Lambda \pi^+\pi^0)} \frac{(16)}{(\Lambda \pi^+\pi^+)} \\ \frac{(16)}{(\Lambda \pi^+\pi^+)} \frac{(16)}{(\Lambda \pi^+\pi^+)} \\ \frac{(16)}{(\Lambda \pi^+\pi^+\pi^-)} \frac{(16)}{(\Lambda \pi^+\pi^+\pi^-)} \\ \frac{(16)}{(\Lambda \pi^+\pi^+\pi^-)} \frac{(16)}{(\Lambda \pi^+\pi^-)} \\ \frac{(16)}{(\Lambda \pi^+\pi^-)} \frac{(16)}{(\Lambda \pi^+\pi^-)} \\ \frac{(16)}{(\Lambda \pi^-)} \frac{(16)}{(\Lambda \pi^+\pi^-)} \\ \frac{(16)}{(\Lambda \pi^-)} \frac{(16)}{(\Lambda \pi^-)} \frac{(16)}{(\Lambda \pi^-)} \\ \frac{(16)}{(\Lambda \pi^-)} \frac{(16)}{(\Lambda \pi^-)} \\ \frac{(16)}{(\Lambda \pi^-)} \frac{(16)}{(\Lambda \pi^-)} \frac{(16)}{(\Lambda \pi^-)} \\ (16$	### AVERY 91 CLEO ### AVERY 94 CLE2 ### AVERY 95 CLE2 ### AVERY 96 CLE2 ### AVERY 96 CLE2 ### AVERY 97 CLE2 ### AVERY 98 CLE2 ### AVERY 98 CLE2 ### AVERY 99 CLE2 ### AVERY 91 CLE0 ### AVERY 91	$\Gamma_{22}/\Gamma_{2}$ CN COMMENT  G $e^+e^- \approx 10.4 \text{ GeV}$ EO $e^+e^- 10.5 \text{ GeV}$ etc. • • • 91 γBe 70-260 GeV G $e^+e^- 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{24}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^+e^- \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^+e^- 10.5 \text{ GeV}$ γ Be 70-260 GeV $\pi^- 230 \text{ GeV}$ $e^+e^- 10 \text{ GeV}$	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^{+}\omega)/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of th VALUE 0.54 $\pm$ 0.13 $\pm$ 0.06 $\Gamma(\Sigma^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ 0.06 $\pm$ 0.08 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$ VALUE 0.070 $\pm$ 0.011 $\pm$ 0.011 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of th VALUE 0.069 $\pm$ 0.023 $\pm$ 0.016 $\Gamma(\Sigma^{+}K^{+}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ VALUE 0.13 $\pm$ 0.12 0.13 $\pm$ 0.12 0.13 $\pm$ 0.17 0.17 0.18	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  BARLAG 92 NA32  DOCUMENT ID  AVERY 93 CLE2  e φ are included.  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  BARLAG 92 NA32	$e^+e^- \approx T(35), T(45)$ $\Gamma_{38}/\Gamma$ $COMMENT$ $e^+e^- \approx T(45)$ $\Gamma_{39}/\Gamma$ $COMMENT$ $\pi^-$ Cu 230 GeV $\Gamma_{40}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5$ GeV $\Gamma_{41}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5$ GeV $\Gamma_{42}/\Gamma$ $COMMENT$ $\pi^-$ Cu 230 GeV
$\begin{array}{c} (\Lambda\pi^{+})/\Gamma(\rho K^{-}\pi^{+}) \\ (\Lambda\pi^{+})/\Gamma(\rho K^{-}\pi^{+}) \\ 0.180\pm0.032 \ \text{OUR} \ \text{AVERA} \\ 0.18\pm0.03\pm0.03 \\ 0.18\pm0.03\pm0.03 \\ 0.18\pm0.03\pm0.03 \\ 0.16 \\ 0.18\pm0.03\pm0.03 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ $	EVTS DOCUMENT ID TECN  87 AVERY 91 CLI Dowing data for averages, fits, limits, ANJOS 90 E65 ALBRECHT 88C AR  S. DOCUMENT ID TECN AVERY 94 CLE2  T. DOCUMENT ID TECN AVERY 94 CLE2  T. DOCUMENT ID TECN AVERY 91 CLE2  T. DOCUMENT ID TECN AVERY 91 CLE2  T. DOCUMENT ID TECN AVERY 91 CLE2  T. DOCUMENT ID TECN ANJOS 90 E691 BARLAG 900 NA32 ALBRECHT 88C ARG  T. T. DOCUMENT ID TECN  TO DOCUMENT	$\Gamma_{22}/\Gamma_{2}$ COMMENT  GG e ⁺ e ⁻ ≈ 10.4 GeV  EG e ⁺ e ⁻ 10.5 GeV  etc. • • •  91 γBe 70-260 GeV $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^{+}e^{-}$ ≈ $\Gamma_{35}$ , $\Gamma_{45}$ ) $\Gamma_{24}/\Gamma_{2}$ COMMENT $e^{+}e^{-}$ ≈ $\Gamma_{35}$ , $\Gamma_{45}$ ) $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^{+}e^{-}$ ≈ $\Gamma_{35}$ , $\Gamma_{45}$ ) $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^{+}e^{-}$ 10.5 GeV  γBe 70-260 GeV $\pi^{-}$ 230 GeV $e^{+}e^{-}$ 10 GeV	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^{+}\omega)/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of th VALUE 0.54 $\pm$ 0.13 $\pm$ 0.06 $\Gamma(\Sigma^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ 0.06 $\pm$ 0.08 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$ VALUE 0.070 $\pm$ 0.011 $\pm$ 0.011 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of th VALUE 0.069 $\pm$ 0.023 $\pm$ 0.016 $\Gamma(\Sigma^{+}K^{+}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ VALUE 0.13 $\pm$ 0.12 $\Gamma(\Xi^{-}K^{+})/\Gamma(\rho K^{-}\pi^{+})$ VALUE 0.13 $\pm$ 0.13 $\Gamma(\Xi^{-}K^{+})/\Gamma(\rho K^{-}\pi^{+})$ VALUE 0.17 $\pm$ 0.	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  BARLAG 92 NA32  DOCUMENT ID  AVERY 93 CLE2  e φ are included.  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  BARLAG 92 NA32	$e^+e^- \approx T(35), T(45)$ $\Gamma_{38}/\Gamma$ $COMMENT$ $e^+e^- \approx T(45)$ $T_{39}/\Gamma$ $COMMENT$ $\pi^- \text{Cu } 230 \text{ GeV}$ $T_{40}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5 \text{ GeV}$ $T_{41}/\Gamma$ $COMMENT$ $\pi^- \text{Cu } 230 \text{ GeV}$ $T_{42}/\Gamma$ $COMMENT$ $\pi^- \text{Cu } 230 \text{ GeV}$ $T_{43}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5 \text{ GeV}$
$\Gamma(\Lambda \pi^+)/\Gamma(\rho K^- \pi^+)$ 0.180±0.032 OUR AVERA 0.18 ±0.03 ±0.04 0.18 ±0.03 ±0.03 0.0 • • We do not use the folk <0.33 90 <0.16 90 $\Gamma(\Lambda \pi^+ \pi^0)/\Gamma(\rho K^- \pi^+)$ MALUE  EVT. 0.73±0.09±0.16 464 $\Gamma(\Lambda \rho^+)/\Gamma(\rho K^- \pi^+)$ MALUE  EVT. 0.66±0.11 OUR AVERAGE 0.66±0.11 OUR AVERAGE 0.02±0.29±0.27 0.94±0.41±0.13 0.01±0.16±0.04 105 $\Gamma(\rho K^0 \pi^+ \pi^-)/\Gamma(\Lambda \pi^+ \pi^+)$ MALUE  EVT. 0.96 • • We do not use the folk $\Gamma(\Lambda \pi^+ \pi^-)/\Gamma(\Lambda \pi^+ \pi^-)$ MALUE  EVT. 0.95 0.96±0.11 OUR AVERAGE 0.96±0.11 OUR	EVTS  GE  ALBRECHT 92 AR  87 AVERY 91 CLI  Dowing data for averages, fits, limits,  ANJOS 90 E65  ALBRECHT 88C AR  S. DOCUMENT ID TECN  AVERY 94 CLE2  TH)  DOCUMENT ID TECN  AVERY 91 CLEO  ANJOS 90 E691  ANJOS 90 E691  BARLAG 90D NA32  ALBRECHT 88C ARG  TH)  S. DOCUMENT ID TECN  Owing data for averages, fits, limits,	$\Gamma_{22}/\Gamma_{2}$ COMMENT  GG $e^{+}e^{-} \approx 10.4 \text{ GeV}$ EGO $e^{+}e^{-} = 10.5 \text{ GeV}$ etc. • • •  91 $\gamma$ Be 70-260 GeV  GG $e^{+}e^{-} = 10 \text{ GeV}$ $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^{+}e^{-} \approx \Gamma(3S), \Gamma(4S)$ $\Gamma_{24}/\Gamma_{2}$ COMMENT $e^{+}e^{-} \approx \Gamma(3S), \Gamma(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^{+}e^{-} = 10.5 \text{ GeV}$ $\gamma$ Be 70-260 GeV $\gamma$ Be 70-260 GeV $\gamma$ Be 70-260 GeV $\gamma$ PBe 70-260 GeV	0.21 $\pm$ 0.05 $\pm$ 0.05 90 $\Gamma(\Sigma^{+}\omega)/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of th   VALUE  0.54 $\pm$ 0.13 $\pm$ 0.06  107 $\Gamma(\Sigma^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ 0.06 $\pm$ 0.08  1 $\Gamma(\Sigma^{+}K^{+}K^{-})/\Gamma(\rho K^{-}\pi^{+})$ VALUE  0.070 $\pm$ 0.011 $\pm$ 0.011  59 $\Gamma(\Sigma^{+}\phi)/\Gamma(\rho K^{-}\pi^{+})$ Unseen decay modes of th   VALUE  0.069 $\pm$ 0.023 $\pm$ 0.016  26 $\Gamma(\Sigma^{+}K^{+}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ VALUE  0.13 $\pm$ 0.07  2 $\Gamma(\Xi^{0}K^{+})/\Gamma(\rho K^{-}\pi^{+})$ VALUE  0.14 $\pm$ 0.15  0.15 $\pm$ 0.17  0.17 $\pm$ 0.18  0.18 $\pm$ 0.19  0.19 $\pm$ 0.19  0.1	AVERY 94 CLE2  e w are included.  DOCUMENT ID TECN  KUBOTA 93 CLE2  — # )  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  e ф are included.  DOCUMENT ID TECN  AVERY 93 CLE2  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2	$e^+e^- \approx T(35), T(45)$ $\Gamma_{38}/\Gamma$ $COMMENT$ $e^+e^- \approx T(45)$ $T_{39}/\Gamma$ $COMMENT$ $\pi^- \text{Cu } 230 \text{ GeV}$ $T_{40}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5 \text{ GeV}$ $T_{41}/\Gamma$ $COMMENT$ $\pi^- \text{Cu } 230 \text{ GeV}$ $T_{42}/\Gamma$ $COMMENT$ $\pi^- \text{Cu } 230 \text{ GeV}$ $T_{43}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5 \text{ GeV}$
$\Gamma(\Lambda \pi^+)/\Gamma(\rho K^- \pi^+)$ $VALUE$ 0.180±0.032 OUR AVERA  0.18 ±0.03 ±0.04  0.18 ±0.03 ±0.03  • • We do not use the folk  <0.33  <0.16  90 $\Gamma(\Lambda \pi^+ \pi^0)/\Gamma(\rho K^- \pi^+)$ $VALUE$ 0.73±0.09±0.16 $\Gamma(\Lambda \rho^+)/\Gamma(\rho K^- \pi^+)$ $VALUE$ C1.34  <0.95  95 $\Gamma(\Lambda \pi^+ \pi^+ \pi^-)/\Gamma(\rho K^- \pi^+)$ $VALUE$ EVTS  0.66±0.11 OUR AVERAGE  0.65±0.11±0.12  0.61±0.16±0.04  105 $\Gamma(\rho K^0 \pi^+ \pi^-)/\Gamma(\Lambda \pi^+ \pi^+ \pi^-)/\Gamma(\Lambda \pi^+ \pi^+ \pi^-)/\Gamma(\Lambda \pi^+ \pi^- \pi^-)/\Gamma(\Lambda \pi^- \pi^- \pi^-)/\Gamma(\Lambda \pi^- \pi^- \pi^-)/\Gamma(\Lambda \pi^- \pi^- \pi^- \pi^-)/\Gamma(\Lambda \pi^- \pi^- \pi^- \pi^-)/\Gamma(\Lambda \pi^- \pi^- \pi^- \pi^-)/\Gamma(\Lambda \pi^- \pi^- \pi^- \pi^- \pi^- \pi^-)/\Gamma(\Lambda \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^-$	EVTS  GE  ALBRECHT 92 AR  87 AVERY 91 CLI  wing data for averages, fits, limits,  ANJOS 90 E65  ALBRECHT 88c AR  S. DOCUMENT ID TECN  AVERY 94 CLE2  TH)  DOCUMENT ID TECN  AVERY 94 CLE2  AVERY 94 CLE2  TH)  DOCUMENT ID TECN  AVERY 91 CLE0  ANJOS 90 E691  ANJOS 90 E691  BARLAG 900 NA32  ALBRECHT 88c ARG  TH)  S. DOCUMENT ID TECN  Wing data for averages, fits, limits,  ALEEV 96 SPEC	$\Gamma_{22}/\Gamma_{2}$ COMMENT  GG e ⁺ e ⁻ ≈ 10.4 GeV  EG e ⁺ e ⁻ 10.5 GeV  etc. • • •  91 γBe 70-260 GeV $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^{+}e^{-}$ ≈ $\Gamma_{35}$ , $\Gamma_{45}$ ) $\Gamma_{24}/\Gamma_{2}$ COMMENT $e^{+}e^{-}$ ≈ $\Gamma_{35}$ , $\Gamma_{45}$ ) $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^{+}e^{-}$ ≈ $\Gamma_{35}$ , $\Gamma_{45}$ ) $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^{+}e^{-}$ 10.5 GeV  γBe 70-260 GeV $\pi^{-}$ 230 GeV $e^{+}e^{-}$ 10 GeV	0.21 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.21 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.01 $\pm$ 0.01 $\pm$ 0.01 $\pm$ 0.07 $\pm$ 0.07 $\pm$ 0.01 $\pm$ 0.	AVERY 94 CLE2  e ω are included.  DOCUMENT ID  BARLAG 92 NA32  DOCUMENT ID  AVERY 93 CLE2  e φ are included.  DOCUMENT ID  AVERY 93 CLE2  DOCUMENT ID  BARLAG 92 NA32  DOCUMENT ID  TECN  AVERY 93 CLE2  DOCUMENT ID  TECN  BARLAG 92 NA32  DOCUMENT ID  TECN  AVERY 93 CLE2  DOCUMENT ID  TECN  AVERY 93 CLE2  DOCUMENT ID  TECN  AVERY 93 CLE2	$e^+e^- \approx T(35), T(45)$
$\Gamma(\Lambda\pi^+)/\Gamma(\rho K^-\pi^+)$ $VALUE$ 0.180±0.032 OUR AVERA  0.18 ±0.03 ±0.04  0.18 ±0.03 ±0.03  • • We do not use the folk  <0.33  90  <0.16  90 $\Gamma(\Lambda\pi^+\pi^0)/\Gamma(\rho K^-\pi^+)$ $VALUE$ $EVT$ 0.73±0.09±0.16 $\Gamma(\Lambda\rho^+)/\Gamma(\rho K^-\pi^+)$ $VALUE$ $VALUE$ 0.65±0.11 OUR AVERAGE  0.65±0.11±0.12  0.69 ±0.29±0.27  44  0.94±0.41±0.13  0.61±0.16±0.04  105 $\Gamma(\rho K^0\pi^+\pi^-)/\Gamma(\Lambda\pi^+\pi^+\pi^-)/\Gamma(\Lambda\pi^+\pi^-\pi^-\pi^+)/\Gamma(\Lambda\pi^+\pi^+\pi^-)/\Gamma(\Lambda\pi^+\pi^+\pi^-\pi^-\pi^-\pi^+\pi^-\pi^-\pi^+\pi^-\pi^-\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	EVTS  GE  ALBRECHT 92 AR  87 AVERY 91 CLI  wing data for averages, fits, limits,  ANJOS 90 E65  ALBRECHT 88c AR  S DOCUMENT ID TECN  AVERY 94 CLE2  TH)  DOCUMENT ID TECN  AVERY 94 CLE2  TH)  DOCUMENT ID TECN  AVERY 91 CLE2  TH)  AVERY 91 CLE2  TH)  DOCUMENT ID TECN  AVERY 91 CLE2  TH)  AVERY 91 CLE2  TH)  DOCUMENT ID TECN  ANJOS 90 E691  ANJOS 90 BARLAG 900 NA32  ALBRECHT 88c ARG  TECN  Owing data for averages, fits, limits,  ALEEV 96 SPEC	$\Gamma_{22}/\Gamma_{2}$ COMMENT  GG $e^{+}e^{-}\approx 10.4 \text{ GeV}$ EG $e^{+}e^{-} \approx 10.5 \text{ GeV}$ etc. • • •  91 $\gamma$ Be 70-260 GeV  GG $e^{+}e^{-}$ 10 GeV $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^{+}e^{-}\approx \Gamma(3S), \Upsilon(4S)$ $\Gamma_{24}/\Gamma_{2}$ COMMENT $e^{+}e^{-}\approx \Gamma(3S), \Upsilon(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT  etc. • • • $\Gamma_{20}/\Gamma_{25}$ COMMENT  etc. • • • $\Gamma_{20}/\Gamma_{25}$ COMMENT  etc. • • • $\Gamma_{20}/\Gamma_{25}$ COMMENT  etc. • • • • $\Gamma_{20}/\Gamma_{25}$ COMMENT  etc. • • • • $\Gamma_{20}/\Gamma_{25}$	0.21 $\pm$ 0.05 $\pm$ 0.05  ( $\Gamma(\Sigma^+\omega)/\Gamma(pK^-\pi^+)$ Unseen decay modes of the value EVTS  0.54 $\pm$ 0.13 $\pm$ 0.06  ( $\Gamma(\Sigma^+\pi^+\pi^+\pi^-\pi^-)/\Gamma(pK^-\pi^+)$ 0.06 $\pm$ 0.08  1  ( $\Gamma(\Sigma^+K^+\pi^-)/\Gamma(pK^-\pi^+)$ 0.070 $\pm$ 0.011 $\pm$ 0.01  ( $\Gamma(\Sigma^+K^-)/\Gamma(pK^-\pi^+)$ Unseen decay modes of the value EVTS  0.069 $\pm$ 0.023 $\pm$ 0.016  ( $\Gamma(\Sigma^+K^+\pi^-)/\Gamma(pK^-\pi^+)$ Value EVTS  0.13 $\pm$ 0.12  ( $\Gamma(\Sigma^+K^-\pi^+)/\Gamma(pK^-\pi^+)$ Value EVTS  0.13 $\pm$ 0.12  ( $\Gamma(\Sigma^-K^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)$ Value EVTS  0.070 $\pm$ 0.013 $\pm$ 0.013  ( $\Gamma(\Xi^-K^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^+)/\Gamma(pK^-\pi^-)/\Gamma$	AVERY 94 CLE2  e w are included.  DOCUMENT ID TECN  KUBOTA 93 CLE2  - ***  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  e \( \phi \) are included.  DOCUMENT ID TECN  AVERY 93 CLE2  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  DOCUMENT ID TECN  ETTOT includes scale factor of 1.3  ALBRECHT 958 ARG	$e^+e^- \approx T(35), T(45)$ $\Gamma_{38}/\Gamma$ $e^+e^- \approx T(45)$ $\Gamma_{39}/\Gamma$ $\pi^- \text{CU } 230 \text{ GeV}$ $\Gamma_{40}/\Gamma$ $e^+e^- \approx 10.5 \text{ GeV}$ $\Gamma_{41}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5 \text{ GeV}$ $\Gamma_{42}/\Gamma$ $COMMENT$ $\pi^- \text{Cu } 230 \text{ GeV}$ $\Gamma_{43}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5 \text{ GeV}$ $\Gamma_{44}/\Gamma$ $COMMENT$
$\begin{array}{c} \Gamma(\Lambda\pi^+)/\Gamma(\rho K^-\pi^+) \\ 0.180\pm0.032 \ \text{OUR} \ \text{AVERA} \\ 0.18 \pm0.03 \pm0.04 \\ 0.18 \pm0.03 \pm0.03 \\ 0.8 \pm0.03 \pm0.03 \\ 0.9 \ \text{We do not use the follows} \\ <0.33 & 90 \\ <0.16 & 90 \\ \Gamma(\Lambda\pi^+\pi^0)/\Gamma(\rho K^-\pi^+) \\ 0.73\pm0.09\pm0.16 & 464 \\ \Gamma(\Lambda\rho^+)/\Gamma(\rho K^-\pi^+) \\ 0.73\pm0.09\pm0.16 & 464 \\ <0.95 & 95 \\ \Gamma(\Lambda\pi^+\pi^+\pi^-)/\Gamma(\rho K^-\pi^+) \\ 0.65\pm0.11 \ \text{OUR} \ \text{AVERAGE} \\ 0.65\pm0.11\pm0.12 & 289 \\ 0.65\pm0.11\pm0.12 & 289 \\ 0.65\pm0.11\pm0.13 & 10 \\ 0.61\pm0.16\pm0.04 & 105 \\ \Gamma(\rho \overline{K^0}\pi^+\pi^-)/\Gamma(\Lambda\pi^+\pi^+\pi^+) \\ 0.61\pm0.16\pm0.04 & 105 \\ \Gamma(\rho \overline{K^0}\pi^+\pi^-)/\Gamma(\Lambda\pi^+\pi^+\pi^+\pi^-) \\ 0.61\pm0.16\pm0.04 & 105 \\ \Gamma(\rho \overline{K^0}\pi^+\pi^-)/\Gamma(\Lambda\pi^+\pi^+\pi^-) \\ 0.61\pm0.16\pm0.04 & 105 \\ \Gamma(\rho \overline{K^0}\pi^+\pi^-)/\Gamma(\Lambda\pi^+\pi^-\pi^-) \\ 0.61\pm0.16\pm0.04 & 105 \\ \Gamma(\rho \overline{K^0}\pi^+\pi^-)/\Gamma(\Lambda\pi^+\pi^-\pi^-\pi^-) \\ 0.61\pm0.16\pm0.04 & 105 \\ \Gamma(\rho \overline{K^0}\pi^+\pi^-)/\Gamma(\Lambda\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	EVTS  GE  ALBRECHT 92 AR 87 AVERY 91 CLI Dwing data for averages, fits, limits, ANJOS 90 E69 ALBRECHT 88c AR  S. DOCUMENT ID AVERY 94 CLE2  TECN AVERY 94 CLE2  TH  DOCUMENT ID TECN AVERY 94 CLE2  TH  DOCUMENT ID TECN AVERY 91 CLE0 ANJOS 90 E691 BARLAG 900 NA32 ALBRECHT 88c ARG  TECN AVERY 91 CLEO ANJOS 90 E691 BARLAG 900 NA32 ALBRECHT 88c ARG  TECN Owing data for averages, fits, limits, ALEEV 96 SPEC ALEEV 84 BI52	$\Gamma_{22}/\Gamma_{2}$ COMMENT  GG $e^{+}e^{-}\approx 10.4 \text{ GeV}$ EG $e^{+}e^{-} = 10.5 \text{ GeV}$ etc. • • • • • • • • • • • • • • • • • • •	0.21 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.21 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.13 $\pm$ 0.06 $\pm$ 0.13 $\pm$ 0.06 $\pm$ 0.07 $\pm$ 0.	AVERY 94 CLE2  e w are included.  DOCUMENT ID TECN  KUBOTA 93 CLE2  — # )  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  e d are included.  DOCUMENT ID TECN  AVERY 93 CLE2  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  Error includes scale factor of 1.3  ALBRECHT 958 ARG  AVERY 93 CLE2	$e^+e^- \approx T(35), T(45)$ $rac{COMMENT}{e^+e^-} \approx T(45)$ $rac{COMMENT}{\pi^- \text{Cu } 230 \text{ GeV}}$ $rac{COMMENT}{e^+e^-} \approx 10.5 \text{ GeV}$ $rac{COMMENT}{\pi^- \text{Cu } 230 \text{ GeV}}$ $rac{COMMENT}{e^+e^-} \approx 10.5 \text{ GeV}$
$(Λπ^+)/Γ(ρK^-π^+)$ $(ΛΛπ^+)/Γ(ρK^-π^+)$ $(ΛΛμυε)$ 0.18 ± 0.03 ± 0.04 0.18 ± 0.03 ± 0.03 0.16 90 $(Λπ^+π^0)/Γ(ρK^-π^+)$ $(ΛΛμυε)$ 0.73± 0.09±0.16 464 $(Λρ^+)/Γ(ρK^-π^+)$ $(ΛΛμυε)$ 0.65±0.11 ± 0.12 289 0.65±0.11 ± 0.12 289 0.65±0.11 ± 0.12 10 0.61±0.16±0.04 105 $(Γ(ρK^0π^+π^-)/Γ(Λπ^+π^+)$ $(ΛΛμνε)$ 0.61±0.16±0.04 105 $(Γ(ρK^0π^+π^-)/Γ(Λπ^+π^+)$ $(ΛΛμνε)$ 0.60±0.16±0.16±0.16 105 $(Γ(ρK^0π^+π^-)/Γ(Λπ^+π^+)$ $(ΛΛμνε)$ 0.61±0.16±0.16 105 $(Γ(ρK^0π^+π^-)/Γ(Λπ^+π^+)$ $(ΛΛμνε)$ 0.61±0.16±0.16 105 $(Γ(ρK^0π^+π^-)/Γ(Λπ^+π^+)$ $(ΛΛμνε)$ 1.13 107 1.14 107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15 1107 1.15	### AVERY 94 CLE2  ### ODCUMENT ID   TECN    ### DOCUMENT ID   TECN    ### DOCUMENT ID   TECN    ### AVERY 94 CLE2  ### ODCUMENT ID   TECN    ### AVERY 94 CLE2  ### ODCUMENT ID   TECN    ### AVERY 94 CLE2  ### ODCUMENT ID   TECN    ### AVERY 91 CLE0    #### AVERY 91 CLE0    #### AVERY 91 CLE0    ### AVERY 91 CLE0    #### AVERY 91 CLE0    #### AVERY 91 CLE0    #### AVERY 91 CLE0    ##### AVERY 91 CLE0    ###################################	$\Gamma_{22}/\Gamma_{2}$ COMMENT  GG $e^{+}e^{-}\approx 10.4 \text{ GeV}$ EG $e^{+}e^{-} \approx 10.5 \text{ GeV}$ etc. • • •  91 $\gamma$ Be 70-260 GeV  GG $e^{+}e^{-}$ 10 GeV $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^{+}e^{-}\approx \Gamma(3S), \Upsilon(4S)$ $\Gamma_{24}/\Gamma_{2}$ COMMENT $e^{+}e^{-}\approx \Gamma(3S), \Upsilon(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT  etc. • • • $\Gamma_{20}/\Gamma_{25}$ COMMENT  etc. • • • $\Gamma_{20}/\Gamma_{25}$ COMMENT  etc. • • • $\Gamma_{20}/\Gamma_{25}$ COMMENT  etc. • • • • $\Gamma_{20}/\Gamma_{25}$ COMMENT  etc. • • • • $\Gamma_{20}/\Gamma_{25}$	0.21 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.21 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.13 $\pm$ 0.06 $\pm$ 0.13 $\pm$ 0.06 $\pm$ 0.07 $\pm$ 0.	AVERY 94 CLE2  e w are included.  DOCUMENT ID TECN  KUBOTA 93 CLE2  — # )  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  e d are included.  DOCUMENT ID TECN  AVERY 93 CLE2  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  Error includes scale factor of 1.3  ALBRECHT 958 ARG  AVERY 93 CLE2	$e^+e^- \approx T(35), T(45)$
$(\Lambda \pi^{+})/\Gamma(\rho K^{-}\pi^{+})$ 0.180±0.032 OUR AVERA 0.18 ±0.03 ±0.04 0.18 ±0.03 ±0.03 0.0 • • We do not use the folk 0.0.33 0.0 • (\text{0.7}) \( \text{0.7} \) $(\Lambda \pi^{+}\pi^{0})/\Gamma(\rho K^{-}\pi^{+})$ 0.73±0.09±0.16 $(\Lambda \pi^{+}\pi^{+}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ 0.73±0.09±0.16 $(\Lambda \pi^{+}\pi^{+}\pi^{-})/\Gamma(\rho K^{-}\pi^{+})$ 0.65±0.11 OUR AVERAGE 0.65±0.11 ±0.12 0.65±0.11 ±0.12 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04 0.61±0.16±0.04	### AVERY 91 CLE2  ### AVERY 94 CLE2  ### AVERY 91 CLEO  ### AVERY 92 CLEO  ### AVERY 94 CLE2  ### AVERY 94	$\Gamma_{22}/\Gamma_{2}$ COMMENT  GG e ⁺ e ⁻ ≈ 10.4 GeV  EG e ⁺ e ⁻ 10.5 GeV  etc. • • •  91 γBe 70-260 GeV $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^{+}e^{-} \approx T(3S), T(4S)$ $\Gamma_{24}/\Gamma_{2}$ COMMENT $e^{+}e^{-} \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^{+}e^{-} \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^{+}e^{-} \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $\Gamma_{25}/\Gamma_{2}$ COMMENT $\Gamma_{25}/\Gamma_{2}$ COMMENT  etc. • • • $\Gamma_{26}/\Gamma_{2}$ COMMENT $\Gamma_{26}/\Gamma_{2}$ COMMENT $\Gamma_{26}/\Gamma_{2}$ COMMENT $\Gamma_{26}/\Gamma_{2}$ COMMENT $\Gamma_{26}/\Gamma_{2}$ COMMENT $\Gamma_{26}/\Gamma_{2}$	0.21 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.21 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.13 $\pm$ 0.06 $\pm$ 0.13 $\pm$ 0.06 $\pm$ 0.07 $\pm$ 0.	AVERY 94 CLE2  e w are included.  DOCUMENT ID TECN  KUBOTA 93 CLE2  — # )  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  e d are included.  DOCUMENT ID TECN  AVERY 93 CLE2  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  Error includes scale factor of 1.3  ALBRECHT 958 ARG  AVERY 93 CLE2	$e^+e^- \approx T(35), T(45)$ $\Gamma_{38}/\Gamma$ $COMMENT$ $e^+e^- \approx T(45)$ $T_{39}/\Gamma$ $COMMENT$ $\pi^-$ Cu 230 GeV $\Gamma_{40}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5$ GeV $\Gamma_{41}/\Gamma$ $COMMENT$ $\pi^-$ Cu 230 GeV $\Gamma_{42}/\Gamma$ $COMMENT$ $\pi^-$ Cu 230 GeV $\Gamma_{43}/\Gamma$ $COMMENT$ $e^+e^- \approx 10.5$ GeV $\Gamma_{44}/\Gamma$ 3. See the ideogram below $e^+e^- \approx 10.4$ GeV $e^+e^- \approx 10.5$ GeV
$\frac{(\Lambda \pi^+)/\Gamma(\rho K^-\pi^+)}{0.180\pm0.032} \frac{\text{CL}\%}{0.180\pm0.032} \frac{\text{CL}\%}{0.04}$ $0.18 \pm 0.03 \pm 0.03$ $0.19 + \pi^+)/\Gamma(\rho K^-\pi^+)$ $0.19 \pm 0.19 \pm 0.19$ $0.19 \pm 0.$	### DOCUMENT ID   TECN	$\Gamma_{22}/\Gamma_{2}$ COMMENT $G e^{+}e^{-} \approx 10.4 \text{ GeV}$ $e^{+}e^{-} \approx 10.5 \text{ GeV}$ etc. • • • • • • • • • • • • • • • • • • •	0.21 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.21 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.13 $\pm$ 0.06 $\pm$ 0.13 $\pm$ 0.06 $\pm$ 0.07 $\pm$ 0.	AVERY 94 CLE2  e w are included.  DOCUMENT ID TECN  KUBOTA 93 CLE2  — # )  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  e d are included.  DOCUMENT ID TECN  AVERY 93 CLE2  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  Error includes scale factor of 1.3  ALBRECHT 958 ARG  AVERY 93 CLE2	$e^+e^- \approx T(35), T(45)$ $COMMENT$ $e^+e^- \approx T(45)$ $COMMENT$ $\pi^- Cu 230 \text{ GeV}$ $COMMENT$ $e^+e^- \approx 10.5 \text{ GeV}$ $COMMENT$ $\pi^- Cu 230 \text{ GeV}$ $COMMENT$ $e^+e^- \approx 10.5 \text{ GeV}$ $COMMENT$ $e^+e^- \approx 10.5 \text{ GeV}$ $COMMENT$ $E^+e^- \approx 10.5 \text{ GeV}$
$\frac{(\Lambda \pi^+)/\Gamma(\rho K^-\pi^+)}{0.180\pm0.032} \frac{\text{CL}\%}{0.180\pm0.032} \frac{\text{CL}\%}{0.04}$ $0.18 \pm 0.03 \pm 0.03$ $0.19 + \pi^+)/\Gamma(\rho K^-\pi^+)$ $0.19 \pm 0.19 \pm 0.19$ $0.19 \pm 0.$	EVTS GE  ALBRECHT 92 AR 87 AVERY 91 CLI bwing data for averages, fits, limits, ANJOS 90 E65 ALBRECHT 88c AR  S DOCUMENT ID TECN AVERY 94 CLE2  The DOCUMENT ID TECN AVERY 94 CLE2  AVERY 94 CLE2  The DOCUMENT ID TECN AVERY 91 CLE2  The DOCUMENT ID TECN TECN AVERY 91 CLE2  The DOCUMENT ID TECN TECN TECN TECN TECN TECN TECN TECN	$\Gamma_{22}/\Gamma_{2}$ COMMENT  GG e ⁺ e ⁻ ≈ 10.4 GeV  EG e ⁺ e ⁻ 10.5 GeV  etc. • • •  91 γBe 70-260 GeV $\Gamma_{23}/\Gamma_{2}$ COMMENT $e^{+}e^{-} \approx T(3S), T(4S)$ $\Gamma_{24}/\Gamma_{2}$ COMMENT $e^{+}e^{-} \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^{+}e^{-} \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $e^{+}e^{-} \approx T(3S), T(4S)$ $\Gamma_{25}/\Gamma_{2}$ COMMENT $\Gamma_{25}/\Gamma_{2}$ COMMENT $\Gamma_{25}/\Gamma_{2}$ COMMENT  etc. • • • $\Gamma_{26}/\Gamma_{2}$ COMMENT $\Gamma_{26}/\Gamma_{2}$ COMMENT $\Gamma_{26}/\Gamma_{2}$ COMMENT $\Gamma_{26}/\Gamma_{2}$ COMMENT $\Gamma_{26}/\Gamma_{2}$ COMMENT $\Gamma_{26}/\Gamma_{2}$	0.21 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.21 $\pm$ 0.05 $\pm$ 0.07 $\pm$ 0.13 $\pm$ 0.06 $\pm$ 0.13 $\pm$ 0.06 $\pm$ 0.07 $\pm$ 0.	AVERY 94 CLE2  e w are included.  DOCUMENT ID TECN  KUBOTA 93 CLE2  — # )  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  e d are included.  DOCUMENT ID TECN  AVERY 93 CLE2  DOCUMENT ID TECN  BARLAG 92 NA32  DOCUMENT ID TECN  AVERY 93 CLE2  Error includes scale factor of 1.3  ALBRECHT 958 ARG  AVERY 93 CLE2	$e^+e^- \approx T(3S), T(4.5)$ $COMMENT$ $e^+e^- \approx T(4S)$ $COMMENT$ $\pi^- Cu 230 GeV$ $COMMENT$ $e^+e^- \approx 10.5 GeV$ $COMMENT$ $\pi^- Cu 230 GeV$ $COMMENT$ $e^+e^- \approx 10.5 GeV$

 $\Lambda_c^+$ 



Γ(ρ anything)/Γ _{total}	DOCUMENT ID		TECN	COMMENT	Γ ₅₂ /Ι
0.50±0.08±0.14	16 CRAWFORD	92		e+e- 10.5 GeV	v
16 This CRAWFORD 92 valu but account is taken of th	e includes protons from	Λ de			
$\Gamma(p \text{ anything } (\text{no } \Lambda))/\Gamma_{tc}$	tal				Γ ₅₃ /Ι
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.12 \pm 0.10 \pm 0.16$	CRAWFORD	92	CLEO	$e^{+}e^{-}$ 10.5 GeV	V
Γ(n anything)/Γ _{total}	DOCUMENT ID		TECN	COMMENT	Γ ₅₅ /
0.50±0.08±0.14	17 CRAWFORD			e ⁺ e ⁻ 10.5 Ge ¹	v
17 This CRAWFORD 92 value dent, but account is taken	ue includes neutrons fr	om /	decay.		
$\Gamma(n \text{ anything } (no \Lambda))/\Gamma_{to}$	tal				Γ ₅₆ /
VALUE	DOCUMENT ID			COMMENT	
$0.29 \pm 0.09 \pm 0.15$	CRAWFORD	92	CLEO	e ⁺ e ⁻ 10.5 Ge ¹	٧
Γ(ρ hadrons)/Γ _{total}	DOCUMENT ID			COMMENT	Γ ₅₄ /
<ul> <li>• • We do not use the foll</li> </ul>	owing data for average	s, fit	s, limits,	etc. • • •	
$0.41 \pm 0.24$	ADAMOVICH	87	EMUL	γA 20-70 GeV	/c
Γ(Λ anything)/Γ _{total}	S DOCUMENT ID		<u>TECN</u>	COMMENT	Γ ₅₇ /
0.35±0.11 OUR AVERAGE					
$0.59 \pm 0.10 \pm 0.12$	CRAWFORD	92		e+e- 10.5 Ge	
0.49±0.24 0.23±0.10	ADAMOVICH 8 18 ABE	87 86		γA 20-70 GeV, 20 GeV γp	/c
18 ABE 86 includes A's from WEIGHTED AVERA 0.35±0.11 (Error sca	GE				

$\Gamma(\Sigma^{\pm} \text{ anything})/\Gamma_{to}$	tal					Γ ₅₈ /Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.1 ±0.05	5	ABE	86	HYBR	20 GeV γp	

Rare or forbidden modes -

 $\Gamma(\Lambda \text{ anything})/\Gamma_{\text{total}}$ 

CRAWFORD

ADAMOVICH

86 HYBR

(Confidence Level = 0.126)

#### A+ DECAY PARAMETERS

See the "Note on Baryon Decay Parameters" in the neutron Listings.

$\alpha \text{ FOR } \Lambda_c^+ \to \Lambda_{\pi}$	+			
VALUE	EVT5	DOCUMENT ID	TECN	COMMENT
-0.98±0.19 OUR AV	ERAGE			
$-0.94 \pm 0.21 \pm 0.12$	414	¹⁹ BISHAI	95 CLE2	$e^+e^-pprox \Upsilon(4S)$
$-0.96 \pm 0.42$		ALBRECHT		$e^+e^-pprox$ 10.4 GeV
$-1.1 \pm 0.4$	86	AVERY	90B CLEO	$e^+e^-pprox$ 10.6 GeV

¹⁹ BISHAI 95 actually gives  $\alpha=-0.94^{+0.21}_{-0.06}^{+0.12}_{-0.06}^{+0.21}$ , chopping the errors at the physical limit -1.0. However, for  $\alpha\approx-1.0$ , some experiments should get unphysical values ( $\alpha<-1.0$ ), and for averaging with other measurements such values (or errors that extend below -1.0) should not be chopped.

# $\alpha$ FOR $\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$ VALUE EVTS $-0.45 \pm 0.31 \pm 0.06$ 89 BISHAI 95 CLE2 $e^+ e^- \approx \Upsilon(4S)$ $\alpha$ FOR $\Lambda_c^+ \rightarrow \Lambda \ell^+ \nu_\ell$

The experiments don't cover the complete (or same incomplete)  $M(\Lambda \ell^+)$  range, but we average them together anyway.

|E | EVTS | DDCUMENT |D | TECN | COMMENT |

## -0.82+0.11 OUR AVERAGE

• • • We do not use the following data for averages, fits, limits, etc. • • •

-0.89 + 0.17 + 0.09 350 22 BERGFELD 94 CLE2 See CRAWFORD 95

²⁰ CRAWFORD 95 measures the form-factor ratio  $R \equiv f_2/f_1$  for  $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$  events to be  $-0.25 \pm 0.14 \pm 0.08$  and from this calculates  $\alpha$ , averaged over  $q^2$ , to be the above. ²¹ ALBRECHT 94B uses  $\Lambda e^+$  and  $\Lambda \mu^+$  events in the mass range 1.85  $< M(\Lambda \ell^+) < 2.20$  GeV.

22 BERGFELD 94 uses  $\Lambda e^+$  events.

#### 1 REFERENCES

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1992 edition (Physical Review **D45**, 1 June, Part II) or in earlier editions.

AITALA	00	DI D471 440	F.M. Alteria at at	(FNAL F70. C-0-1.)
PDG	90	PL B471 449 EPJ C15 I	E.M. Aitala et al.	(FNAL E791 Collab.)
ALAM	98	PR D57 4467	M.S. Alam et al.	(CLEO Collab.)
ALBRECHT	96E	PRPL 276 223	H. Albrecht et al.	(ARGUS Collab.)
ALEEV	96	JINRRC 3 31	A.N. Aleev et al.	(Serpukhov EXCHARM Collab.)
ALEXANDER	96C	PR D53 R1013	J.P. Alexander et al.	(CLEO Collab.)
ALBRECHT	958	PL B342 397	H. Albrecht et al.	(ARGUS Collab.)
AMMAR	95	PRL 74 3534	R. Ammar et al.	(CLEO Collab.)
BISHAI	95	PL B350 256	M. Bishai et al.	(CLEO Collab.)
CRAWFORD	95	PRL 75 624	G. Crawford et al.	(CLEO Collab.)
KODAMA	95	PL B345 85	K. Kodama et al.	(FNAL E653 Collab.)
ALBRECHT	94B	PL B326 320	H. Albrecht et al.	(ARGUS Collab.)
ALEEV	94	PAN 57 1370	A.N. Aleev et al.	(Serpukhov BIS-2 Collab.)
		Translated from		(Josephinos Did 2 Company
AVERY	94	PL B325 257	P. Avery et al.	(CLEO Collab.)
BERGFELD	94	PL B323 219	T. Bergfeld et al.	(CLEO Collab.)
FRABETTI	94E	PL B328 193	P.L. Frabetti et al.	(FNAL E687 Collab.)
AVERY	93	PRL 71 2391	P. Avery et al.	(CLEO Collab.)
BOZEK	93	PL B312 247	A. Bozek et al.	(CERN NA32 Collab.)
FRABETTI'	93D	PRL 70 1755	P.L. Frabetti et al.	(FNAL E687 Collab.)
FRABETTI	93H	PL B314 477	P.L. Frabetti et al.	(FNAL E687 Collab.)
KUBOTA	93	PRL 71 3255	Y. Kubota et al.	(CLEO Collab.)
ALBRECHT	92	PL B274 239	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	920	ZPHY C56 1	H. Albrecht et al.	(ARGUS Collab.)
BARLAG	92	PL B283 465	S. Barlag et al.	(ACCMOR Collab.)
CRAWFORD	92	PR D45 752	G. Crawford et al.	(CLEO Collab.)
JEZABEK	92	PL B286 175	M. Jezabek, K. Rybicki, R.	
ALBRECHT	91G	PL B269 234	H. Albrecht et al.	(ARGUS Collab.)
AVERY	91	PR D43 3599	P. Avery et al.	(CLEO Collab.)
ALVAREZ	90	ZPHY C47 539	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ALVAREZ	90B	PL B246 256	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ANJOS	90	PR D41 801	J.C. Anjos et al.	(FNAL E691 Collab.)
AVERY	90B	PRL 65 2842	P. Avery et al.	(CLEO Collab.)
BARLAG	90D	ZPHY C4B 29	S. Barlag et al.	(ACCMOR Collab.)
FRABETTI	90	PL B251 639	P.L. Frabetti et al.	(FNAL E687 Collab.)
BARLAG	89	PL B218 374	S. Barlag et al.	(ACCMOR Collab.)
AGUILAR	88B	ZPHY C40 321	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Also:	87	PL B189 254	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Also	87B	PL B199 462	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Also	88	SJNP 48 833	M. Begalli et al.	(LEBC-EHS Collab.)
		Translated from		(ELDC END COMBD.)
ALBRECHT	88C	PL B207 109	H. Albrecht et al.	(ARGUS Collab.)
ANJOS	88B	PRL 60 1379	J.C. Anjos et al.	(FNAL E691 Collab.)
ADAMOVICH	87	EPL 4 887	M.I. Adamovich et al.	(
Also	87	SJNP 46 447	F. Viaggi et al.	(Photon Emulsion Collab.)
		Translated from		
AMENDOLIA	87	ZPHY C36 513	S.R. Amendolia et al.	(CERN NA1 Collab.)
JONE\$	87	ZPHY C36 593	G.T. Jones et al.	(ČERN WA21 Collab.)
ABE	86	PR D33 1	K. Abe et al.	
ALEEV	84	ZPHY C23 333	A.N. Aleev et al.	(BIS-2 Collab.)
BOSETTI	82	PL 109B 234	P.C. Bosetti et al.	(AACH3, BÒNN, CERN+)
VELLA	82	PRL 48 1515	E. Vella et al.	(\$LAC, LBL, UCB)
BASILE	81B	NC 62A 14	M. Basile et al.	(CERN, BĠNA, PGIA, FRAS)
CALICCHIO	80	PL 93B 521	M. Calicchio et al.	(BARI, BIRM, BRUX+)

#### OTHER RELATED PAPERS

IGLIOZZI 99 PL 8462 217 P. Migliozzi et al. UNIETZ 98 PR D58 094010 I. Dunietz

## $\Lambda_c(2593)^+$

$$I(J^P) = O(\frac{1}{2})$$
 Status: ***

Seen in  $\Lambda_c^+\pi^+\pi^-$  but not in  $\Lambda_c^+\pi^0$ , so this is indeed an excited  $\Lambda_c^+$  rather than a  $\Sigma_c^+$ . The  $\Lambda_c^+\pi^+\pi^-$  mode is largely, and perhaps entirely,  $\Sigma_c\pi$ , which is just at threshold; thus (assuming, as has not yet been proven, that the  $\Sigma_c$  has  $J^P=1/2^+$ ) the  $J^P$  here is almost certainly  $1/2^-$ . This result is in accord with the theoretical expectation that this is the charm counterpart of the strange  $\Lambda(1405)$ .

#### $\Lambda_c(2593)^+$ MASS

The mass is obtained from the  $\Lambda_c(2593)^{+}-\Lambda_c^{+}$  mass-difference measurements below.

VALUE (MeV)
2593.9±0.8 OUR FIT

DOCUMENT ID

#### $\Lambda_c(2593)^+ - \Lambda_c^+$ MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
308.9±0.6 OUR FIT	Error inclu	des scale factor of	f 1.1.		
308.9 ± 0.6 OUR AVE	RAGE Erro	or includes scale fa	ctor	of 1.1.	
$309.7 \pm 0.9 \pm 0.4$	19				$e^+e^-pprox~10~{\rm GeV}$
$309.2 \pm 0.7 \pm 0.3$	14	¹ FRABETTI	96	E687	$\gamma$ Be, $\overline{E}_{m{\gamma}} pprox 220 \;  ext{GeV}$
$307.5 \pm 0.4 \pm 1.0$	112	² EDWARDS	95	CLE2	$e^+e^-\approx 10.5~{\rm GeV}$
¹ FRABETTI 96 cli	aims a signal	of 13.9 ± 4.5 eve	ents.		

## 2 EDWARDS 95 claims a signal of 112.5 $\pm$ 16.5 events in $\varLambda_c^+\pi^+\pi^-$

VALUE (MeV)		DOCUMENT ID		TECN	COMMENT
3.6 + 2.0 OUR AVER	AGE				
$2.9 + 2.9 + 1.8 \\ -2.1 - 1.4$	19	ALBRECHT	97	ARG	$e^+e^-pprox$ 10 GeV
$3.9^{+1.4}_{-1.2}^{+2.0}_{-1.0}$	112	EDWARDS	95	CLE2	$e^+\mathrm{e^-} \approx~10.5~\mathrm{GeV}$

 $\Lambda_{c}(2593)^{+}$  WIDTH

#### Ac(2593)+ DECAY MODES

 $\Lambda_c^+\pi\pi$  and its submode  $\Sigma_c(2455)\pi$  — the latter just barely — are the only strong decays allowed to an excited  $\Lambda_c^+$  having this mass; and the submode seems to dominate.

	Mode	Fraction $(\Gamma_i/\Gamma)$	
Γ ₁	$\Lambda_c^+ \pi^+ \pi^-$	[a] ≈ 67 %	
$\Gamma_2$	$\Sigma_c (2455)^{++} \pi^-  \Sigma_c (2455)^0 \pi^+$	24 ± 7 %	
Γ3		24 ± 7 %	
Γ4	$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 ± 10 %	
$\Gamma_5$	$\Lambda_c^+ \tilde{\pi^0}$	not seen	
$\Gamma_6$	$\Lambda_c^+ \gamma$	not seen	

[a] Assuming isospin conservation, so that the other third is  $\Lambda_c^+ \pi^0 \pi^0$ .

#### $\Lambda_c(2593)^+$ BRANCHING RATIOS

$\Gamma(\Sigma_c(2455)^{++}\pi^{-})$	)/୮(∧ੂ⊤₁	r ⁺ π ⁻ )				Γ2/Γ1
VALUE		DOCUMENT ID		TECN	COMMENT	
0.36±0.10 OUR AVE	RAGE					
$0.37 \pm 0.12 \pm 0.13$		ALBRECHT	97	ARG	$e^+e^-\approx$	10 GeV
$0.36 \pm 0.09 \pm 0.09$		EDWARDS	95	CLE2	$e^+e^-\approx$	10.5 GeV
$\Gamma(\Sigma_c(2455)^0\pi^+)/$	Γ(Λ <del>'</del> π+	π-)				$\Gamma_3/\Gamma_1$
VALUE		DOCUMENT ID		TECN	COMMENT	
0.37 ±0.10 OUR AVE	RAGE					
$0.29 \pm 0.10 \pm 0.11$		ALBRECHT	97	ARG	$e^+e^-\approx$	10 GeV
$0.42 \pm 0.09 \pm 0.09$		EDWARD\$	95	CLE2	$e^+e^-\approx$	10.5 GeV
$\Gamma(\Sigma_c(2455)^{++}\pi^-$	·) + Γ(Σ	$[c(2455)^0\pi^+)]/[$	ر (۸ <u>.</u>	π ⁺ π	<del>-</del> )	$(\Gamma_2+\Gamma_3)/\Gamma_1$
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
• • We do not use	the followi	ng data for average	s, fit	s, limits	, etc. • • •	1
$0.66^{+0.13}_{-0.16}\pm0.07$		ALBRECHT	97	ARG	$e^+e^-\approx$	10 GeV
>0.51	90	3 FRABETTI	96	E687	$\gamma$ Be, $\overline{E}_{\gamma}$	≈ 220 GeV

³ The results of FRABETTI 96 are consistent with this ratio being 100%.

< 0.98

## **Baryon Particle Listings**

 $\Lambda_c(2593)^+$ ,  $\Lambda_c(2625)^+$ ,  $\Sigma_c(2455)$ 

#### 

#### $\Lambda_c$ (2593)+ REFERENCES

EDWARDS

ALBRECHT	97	PL B402 207	H. Albrecht et al.	(ARGUS Collab.)
FRABETTI	96	PL B365 461	P.L. Frabetti et al.	(FNAL E687 Collab.)
EOWARDS	95	PRL 74 3331	K.W. Edwards et al.	(CLEO Collab.)

 $\Lambda_c(2625)^+$ 

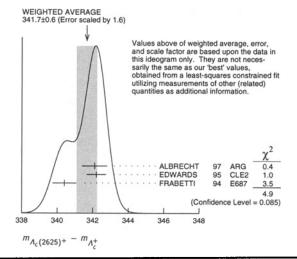
$$I(J^P) = O(\frac{3}{2}^-)$$
 Status: ***

95 CLE2  $e^+e^-\approx 10.5 \text{ GeV}$ 

Seen in  $\Lambda_c^+\pi^+\pi^-$  but not in  $\Lambda_c^+\pi^0$  so this is indeed an excited  $\Lambda_c^+$  rather than a  $\Sigma_c^+$ . The spin-parity has not been measured but is expected to be 3/2 $^-$ : this is presumably the charm counterpart of the strange  $\Lambda(1520)$ .

#### 1/c(2625)+ MASS

The mass is obtained from the  $\Lambda_c(2625)^+ - \Lambda_c^+$  mass-difference measurements below.


VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
2626.6±0.8 OUR FIT	Error inc	ludes scale factor	of 1.2.	
• • • We do not use t	ne followir	ig data for average	s, fits, limits	, etc. • • •
$2626.6 \pm 0.5 \pm 1.5$	42	¹ ALBRECHT	93F ARG	See ALBRECHT 97
1 ALBRECHT 93F claims a signal of 42.4 $\pm$ 8.8 events.				

#### $\Lambda_c(2625)^+ - \Lambda_c^+$ MASS DIFFERENCE

	VALUE (MeV)	EVT5	DOCUMENT ID	7	ECN	COMMENT
1	341.7±0.6 OUR FIT	Error inclu	ides scale factor of	f 1.6.		
:	341.7±0.6 OUR AVE	RAGE Erro	or includes scale fa	actor of	1.6. 5	see the ideogram below.
3	$342.1 \pm 0.5 \pm 0.5$	51	ALBRECHT	97 A	\RG	$e^+e^-pprox~10~{\rm GeV}$
3	$342.2 \pm 0.2 \pm 0.5$	245	² EDWARDS	95 C	LE2	$e^+e^-\approx~10.5~{\rm GeV}$
	340.4 ± 0.6 ± 0.3	40	3 EDARETTI	94 F	687	~ Be F - 220 GeV

 2  EDWARDS 95 claims a signal of 244.6  $\pm$  19.0 events in  $\Lambda_c^+$   $\pi^+$   $\pi^-$ .

 $^{^3}$  FRABETTI 94 claims a signal of 39.7  $\pm$  8.7 events.



#### $A_c(2625)^+$ WIDTH

VALUE (MeV)	CL% EVTS	DOCUMENT ID	TECN	COMMENT
<1.9	90 245	EDWARD\$	95 CLE2	$e^+e^-\approx 10.5 \text{ GeV}$
• • • We do	not use the follo	wing data for average	s, fits, limits	s, etc. • • •
<3.2	90	ALBRECHT	93F ARG	$e^+e^-pprox \Upsilon(45)$

#### $\Lambda_c(2625)^+$ DECAY MODES

 $\Lambda_c^+$   $\pi\pi$  and its submode  $\Sigma(2455)\pi$  are the only strong decays allowed to an excited  $\Lambda_c^+$  having this mass.

	Mode	Fraction $(\Gamma_i/\Gamma)$	Confidence level
$\overline{\Gamma_1}$	$\Lambda_{c}^{+}\pi^{+}\pi^{-}$	[a] ≈ 67%	
$\Gamma_2$	$\Sigma_c (2455)^{++} \pi^-  \Sigma_c (2455)^0 \pi^+$	<5	90%
$\Gamma_3^-$	$\Sigma_c(2455)^0 \pi^+$	<5	90%
Γ4	$\Lambda_c^+ \pi^+ \pi^-$ 3-body	large	
	$\Lambda_c^+ \pi^0$	not seen	
Γ ₅ Γ ₆	$\Lambda_c^{\frac{1}{\gamma}} \gamma$	not seen	

[a] Assuming isospin conservation, so that the other third is  $\Lambda_c^+ \, \pi^0 \, \pi^0$ .

#### Ac(2625)+ BRANCHING RATIOS

1 (ZC(Z433)	'+π ⁻ )/Γ(Λ ⁺ π ⁺	$\pi$			$\Gamma_2/\Gamma_1$
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.08	90	EDWARD\$	95	CLE2	$e^+e^-\approx 10.5 \text{ GeV}$
$\Gamma(\Sigma_c(2455)^0$	$\pi^+)/\Gamma(\Lambda_c^+\pi^+\pi$	·-)			Γ ₃ /Γ ₁
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.07	90	EDWARDS	95	CLE2	$e^+e^-pprox~10.5~{\rm GeV}$
[Γ(Σ _c (2455)	$^{++}\pi^{-})+\Gamma(\Sigma_{c}$	(2455) ⁰ π ⁺ )]/I	(/\tau_c	π ⁺ π ⁻	-) (Γ ₂ +Γ ₃ )/Γ ₁
VALUE	CL% _EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do no	ot use the following	g data for average	s, fits	, limits,	, etc. • • •
< 0.36	90	FRABETTI	94	E687	$\gamma$ Be, $\overline{E}_{\gamma}=220\mathrm{GeV}$
$0.46 \pm 0.14$	21				$e^+e^-\stackrel{\prime}{pprox} \Upsilon(45)$
$\Gamma(\Lambda_c^+ \pi^+ \pi^-)$	3-body) / Γ(Λ+ π	⁺ π ⁻ )			$\Gamma_4/\Gamma_1$
		+ x -) DOCUMENT ID	·	TECN	., -
VALUE		DOCUMENT ID			COMMENT
<i>VALUE</i> • • • We do n	EVTS ot use the following	DOCUMENT ID g data for average	s, fit	s, limits	COMMENT
VALUE  • • • We do not $0.54 \pm 0.14$ $\Gamma(\Lambda_c^+ \pi^0)/\Gamma(0.14)$	ot use the following $ \begin{array}{c} EVTS \\ \text{ot use the following} \\ 16 \\ \Lambda_C^+ \pi^+ \pi^- \end{array} $	DOCUMENT ID g data for average ALBRECHT	93F	ARG	COMMENT $e^+e^-\approx \Upsilon(45)$
VALUE  • • • We do not $0.54 \pm 0.14$ $\Gamma(\Lambda_c^+ \pi^0)/\Gamma(0.14)$	EVTS ot use the following 16	DOCUMENT ID g data for average ALBRECHT	93F	ARG	COMMENT $e^+e^-\approx \Upsilon(45)$
VALUE  • • • We do not $0.54 \pm 0.14$ $\Gamma(\Lambda_c^+ \pi^0)/\Gamma(0.14)$	ot use the following  16 $\Lambda_c^+\pi^+\pi^-$ )  ecay is forbidden by	DOCUMENT ID g data for average ALBRECHT v isospin conservat DOCUMENT ID	93F	ARG  this sta	, etc. • • • • $e^+e^-pprox \varUpsilon(45)$ $\Gamma_5/\Gamma_1$ ate is in fact a $\Lambda_C$ .
VALUE • • • We do not 0.54 $\pm$ 0.14 $\Gamma(\Lambda_c^+ \pi^0)/\Gamma(\Lambda_c^+ \pi^0)$ $\Lambda_c^+ \pi^0 \text{ det}$	ot use the following  16 $\Lambda_c^+\pi^+\pi^-$ )  ecay is forbidden by	DOCUMENT ID g data for average ALBRECHT v isospin conservat DOCUMENT ID	93F	ARG  this sta	COMMENT , etc. • • • • $e^+e^-pprox \varUpsilon(45)$ $\Gamma_5/\Gamma_1$ ate is in fact a $\varLambda_C$ .
VALUE  • • • We do not 0.54 $\pm$ 0.14 $\Gamma(A_c^+ \pi^0)/\Gamma(A_c^+ \pi^0) = 0.00$ VALUE  <0.91	ot use the following  16 $A_c^+\pi^+\pi^-$ )  ecay is forbidden by  90	DOCUMENT ID g data for average ALBRECHT v isospin conservat DOCUMENT ID	93F	ARG  this sta	COMMENT, etc. • • • • $e^+e^- \approx \Upsilon(45)$ $\Gamma_5/\Gamma_1$ ate is in fact a $\Lambda_C$ . $\frac{COMMENT}{e^+e^- \approx 10.5 \text{ GeV}}$
VALUE  • • • We do not 0.54 $\pm$ 0.14 $\Gamma(\Lambda_c^+ \pi^0)/\Gamma(\Lambda_c^+ \pi^0)$ $\Lambda_c^+ \pi^0 \text{ de } VALUE$	ot use the following  16 $A_c^+\pi^+\pi^-$ )  ecay is forbidden by  90	DOCUMENT ID g data for average ALBRECHT v isospin conservat DOCUMENT ID	93F	ARG  this sta	COMMENT, etc. • • • • $e^+e^- \approx \Upsilon(45)$ $\Gamma_5/\Gamma_1$ ate is in fact a $\Lambda_C$ . $\frac{COMMENT}{e^+e^- \approx 10.5 \text{ GeV}}$

#### $\Lambda_c(2625)^+$ REFERENCES

ALBRECHT EDWARDS FRABETTI ALBRECHT	95 94	PL B402 207 PRL 74 3331 PRL 72 961 PL B317 227	H. Albrecht et al. K.W. Edwards et al. P.L. Frabetti et al. H. Albrecht et al.	(ARGUS Collab.) (CLEO Collab.) (FNAL E687 Collab.) (ARGUS Collab.)
ALBRECHT	93F	PL B317 227	H. Albrecht et al.	(ARGUS Collab.)

## $\Sigma_c(2455)$

$$I(J^P) = 1(\frac{1}{2}^+)$$
 Status: ****

Neither J nor P has been measured;  $1/2^+$  is the quark model prediction.

#### $\Sigma_{\rm c}$ (2455) MASSES

The masses are obtained from the mass-difference measurements that follow.

$\Sigma_c$ (2455) ⁺⁺ MASS	
VALUE (MeV)	DOCUMENT ID
2452.8±0.6 OUR FIT	
$\Sigma_c$ (2455)+ MASS	
VALUE (MeV)	DOCUMENT ID
2453.6±0.9 OUR FIT	
$\Sigma_c$ (2455) 0 MASS	
VALUE (MeV)	DOCUMENT ID
2452.2±0.6 OUR FIT	-

#### $\Sigma_c$ (2455) – $A_c^+$ MASS DIFFERENCES

$m_{\Sigma_c^{++}} - m_{\Lambda_c^+}$					
VALUE (MeV)	EVT5	DOCUMENT ID		TECN	COMMENT
167.87± 0.19 OUR FI	T				
167.87± 0.20 OUR A	/ERAGE				
$167.76 \pm 0.29 \pm 0.15$	122	AITALA	96B	E791	$\pi^-$ N, 500 GeV
$167.6 \pm 0.6 \pm 0.6$	56	FRABETTI	96	E687	$\gamma$ Be, $\overline{E}_{\gamma} \approx $ 220 GeV
$168.2 \pm 0.3 \pm 0.2$	126	CRAWFORD	93	CLE2	$e^+e^-\stackrel{.}{\approx} \Upsilon(4S)$
$167.8 \pm 0.4 \pm 0.3$	54	BOWCOCK	89	CLEO	e ⁺ e ⁻ 10 GeV
$168.2 \pm 0.5 \pm 1.6$	92	ALBRECHT	880	ARG	e ⁺ e  10 GeV
$167.4 \pm 0.5 \pm 2.0$	46	DIESBURG	87	SPEC	$nA \sim 600 \text{ GeV}$
167 ± 1	2	JONES	87	HBC	νρ in BEBC
$168 \pm 3$	6	BALTAY	79	HLBC	
• • • We do not use t	he following	g data for average	s, fits	, limits,	etc. • • •
166 ± 1	1	BOSETTI	82	HBC	See JONES 87
166 ±15	1	CAZZOLI	75	HBC	νρ in BNL 7-ft
$m_{\Sigma_c^+} - m_{\Lambda_c^+}$					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
168.7±0.6 OUR FIT					
168 ±3	1	CALICCHIO		HBC	
• • • We do not use t	he following	data for average	s, fits	, limits,	etc. • • •
$168.5 \pm 0.4 \pm 0.2$	111	¹ CRAWFORD	93	CLE2	$e^+e^-pprox \Upsilon(4S)$
1 This result enters the fit through $m_{{m \Sigma}_c^+}-m_{{m \Sigma}_c^0}$ below.					

#### $m_{\Sigma_c^0} - m_{\Lambda_c^+}$

 $m_{\Sigma_c^{++}} - m_{\Sigma_c^0}$ 

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
167.30±0.20 OUR FIT				
167.31 ± 0.21 OUR AV	RAGE			
$167.38 \pm 0.29 \pm 0.15$	143	AITALA	968 E791	$\pi^-$ N, 500 GeV
$167.8 \pm 0.6 \pm 0.2$		ALEEV	96 SPEC	n nucleus, 50 GeV/c
$166.6 \pm 0.5 \pm 0.6$	69	FRABETTI	96 E687	$\gamma$ Be, $\overline{E}_{\gamma} \approx 220 \text{ GeV}$
$167.1 \pm 0.3 \pm 0.2$	124	CRAWFORD	93 CLE2	$e^+e^-pprox \Upsilon(4S)$
$168.4 \pm 1.0 \pm 0.3$	14	ANJOS	89D E691	γ Be 90-260 GeV
• • • We do not use t	he followii	ng data for average	s, fits, limits,	etc. • • •
$167.9 \pm 0.5 \pm 0.3$	48	² BOWCOCK	89 CLEO	$e^+e^-$ 10 GeV
$167.0 \pm 0.5 \pm 1.6$	70	² ALBRECHT	880 ARG	e ⁺ e ⁻ 10 GeV
$178.2 \pm 0.4 \pm 2.0$	85	³ DIESBURG	87 SPEC	nA ∼ 600 GeV
163 ±2	1	AMMAR	86 EMUL	νΑ
2		_		

 $^{^2}$  This result enters the fit through  $m_{\varSigma_{c}^{++}}-m_{\varSigma_{c}^{0}}$  given below.

#### $\Sigma_c$ (2455) MASS DIFFERENCES

-ε -ε			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
0.57 ± 0.23 OUR FIT			
0.66±0.28 OUR AVERAGE	Error includes scal	e factor of 1.	.1.
$+ 0.38 \pm 0.40 \pm 0.15$	AITALA		$\pi^-$ N, 500 GeV
$1.1 \pm 0.4 \pm 0.1$	CRAWFORD	93 CLE2	$e^+e^- \approx \Upsilon(45)$
$-0.1 \pm 0.6 \pm 0.1$	BOWCOCK	89 CLEO	e ⁺ e ⁻ 10 GeV
$+$ 1.2 $\pm$ 0.7 $\pm$ 0.3	ALBRECHT	88D ARG	$e^+e^-\sim 10~{ m GeV}$
• • We do not use the following	ng data for average	s, fits, limits	, etc. • • •
$-10.8 \pm 2.9$	⁴ DIE\$BURG	87 SPEC	n A ∼ 600 GeV
⁴ DIESBURG 87 is completely i since it agrees with them abo	ncompatible with the $^m \Sigma_c$ (2455)++	he other expe $- m_{\Lambda_c^+}$ . We	riments, which is surprising go with the majority here
$m_{\Sigma_c^+} - m_{\Sigma_c^0}$			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1.4±0.6 OUR FIT 1.4±0.5±0.3	CRAWFORD	93 CLE2	$e^+e^-pprox \Upsilon(45)$

#### $\Sigma_c$ (2455) DECAY MODES

 $A_{\it C}^+\pi$  is the only strong decay allowed to a  $\Sigma_{\it C}$  having this mass.

	Mode	Fraction $(\Gamma_i/\Gamma)$
Γ ₁	$\Lambda_c^+\pi$	≈ 100 %

#### $\Sigma_c$ (2455) REFERENCES

AITALA	96B	PL B379 292	E.M. Aitala et al.	(FNAL E791 Collab.)
ALEEV	96	JINRRC 3 31	A.N. Aleev et al.	(Serpukhov EXCHARM Collab.)
FRABETTI	96	PL B365 461	P.L. Frabetti et al.	(FNAL E687 Collab.)
CRAWFORD	93	PRL 71 3259	G. Crawford et al.	(CLEO Collab.)
ANJOS	89D	PRL 62 1721	J.C. Anios et ai.	(FNAL E691 Collab.)
BOWCOCK	89	PRL 62 1240	T.J.V. Bowcock et al.	(CLEO Collab.)
ALBRECHT	88D	PL B211 489	H. Albrecht et al.	(ARGUS Collab.)
DIESBURG	87	PRL 59 2711	M. Diesburg et al.	(FNAL E400 Collab.)
JONES	87	ZPHY C36 593	G.T. Jones et al.	(CERN WA21 Collab.)
AMMAR	86	JETPL 43 515	R. Ammar et al.	(ITEP)
		Translated from ZETFP	43 401.	()
BOSETTI	82	PL 109B 234	P.C. Bosetti et al.	(AACH3, BONN, CERN+)
CALICCHIO	80	PL 93B 521	M. Calicchio et al.	(BARI, BIRM, BRUX+)
BALTAY	79	PRL 42 1721	C. Baitay et al.	(COLU, BNL) I
CAZZOLI	75	PRL 34 1125	E.G. Cazzoli et al.	(BNL)

## $\Sigma_c(2520)$

$$I(J^P) = 1(\frac{3}{2}^+)$$
 Status: ***

Seen in the  $\Lambda_c^+\pi^\pm$  mass spectrum. The natural assignment is that this is the  $J^P=3/2^+$  excitation of the  $\Sigma_c(2455)$ , the charm counterpart of the  $\Sigma(1385)$ , but neither J nor P has been measured.

#### $\Sigma_c$ (2520) MASSES

The masses are obtained from the mass-difference measurements that fol-

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
2519.4±1.5 OUR F	Т				
• • We do not us	e the followir	ig data for averag	es, fits	s, limits,	etc. • • •
2530 ±5 ±5	6	¹ AMMOSOV	93	HLBC	$\nu p \rightarrow \mu^- \Sigma_C(2530)^{++}$
1 AMMOSOV 93	sees a cluster	of 6 events and e	stima	tes the l	packground to be 1 event.
$\Sigma_c(2520)^0$ MASS	,				
VALUE (MeV)		DOCUMENT ID			
2517.5±1.4 OUR F					

#### $\Sigma_c$ (2520) MASS DIFFERENCES

$^{\prime\prime\prime}\Sigma_{c}(2520)^{++}$ $^{-\prime\prime\prime}$	'Λ <del>'</del>			
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
234.5 ± 1.4 OUR FIT				
234.5±1.1±0.8	677	BRANDENB 97	CLE2	$e^+e^-\approx \Upsilon(4S)$
$m_{\Sigma_c(2520)^0}-m_A$	<del>,</del>			
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
232.6 ± 1.3 OUR FIT				
232.6±1.0±0.8	504	BRANDENB 97	CLE2	$e^+e^-pprox \Upsilon(4S)$
$m_{\Sigma_c(2520)^{++}}-m$	⁷ Σ _c (2520) ⁰			
VALUE (MeV)		DOCUMENT ID	TECN	COMMENT
1.9±1.7 OUR FIT				
1.9±1.4±1.0		² BRANDENB 97	CLE2	$e^+e^-pprox \Upsilon(4S)$
² This BRANDENE	BURG 97 res	ult is redundant with m	easurem	ents in earlier entries.

#### $\Sigma_c$ (2520) WIDTHS

$\Sigma_c$ (2520) ⁺⁺ WIDT	Ή			
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
$17.9^{+3.8}_{-3.2}\pm4.0$	677	BRANDENB 97	CLE2	$e^+e^-pprox \Upsilon(4S)$
$\Sigma_c$ (2520) 0 WIDTH				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
$13.0^{+3.7}_{-3.0}\pm 4.0$	504	BRANDENB 97	CLE2	$e^+e^-pprox \Upsilon(45)$

#### $\Sigma_c(2520)$ DECAY MODES

 $\Lambda_C^+\pi$  is the only strong decay allowed to a  $\Sigma_C$  having this mass.

	Mode	Fraction $(\Gamma_j/\Gamma)$
$\Gamma_1$	$\Lambda_c^+\pi$	≈ 100 %

#### Σ_c(2520) REFERENCES

				•
BRANDENB AMMOSOV	97 93	PRL 78 2304 JETPL 58 247 Translated from	G. Brandenburg et al. V.V. Ammosov et al. ZETFP 58 241.	(CLEO Collab.) (SERP)

³ See the note on DIESBURG 87 in the  $m_{\Sigma_c^{++}} - m_{\Sigma_c^0}$  section below.

 $\Xi_c^+$ 



$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

According to the quark model, the  $\equiv_c^+$  (quark content usc) and  $\equiv_c^0$  form an isospin doublet, and the spin-parity ought to be  $J^P=1/2^+$ . None of I, J, or P has actually been measured.

#### $\Xi_c^+$ MASS

The fit uses the  $\Xi_c^+$  and  $\Xi_c^0$  mass and mass-difference measurements.

VALUE (MeV)	EVT5	DOCUMENT ID		TECN	COMMENT
2466.3± 1.4 OUR FIT	•				
2466.4± 1.5 OUR AV	ERAGE				
2465.8± 1.9± 2.5	90	FRABETTI	98	E687	$\gamma$ Be, $\overline{E}_{\gamma}$ = 220 GeV
2467.0 ± 1.6 ± 2.0	147	<b>EDWARDS</b>	96	CLE2	$e^+e^-\approx \Upsilon(45)$
2465.1 ± 3.6 ± 1.9	30	ALBRECHT	90F	ARG	$e^+e^-$ at $\Upsilon(4S)$
$2467 \pm 3 \pm 4$	23	ALAM	89	CLEO	e ⁺ e ⁻ 10.6 GeV
2466.5 ± 2.7 ± 1.2	5	BARLAG	89c	ACCM	π [−] Си 230 GeV
• • • We do not use t	he followin	g data for average	es, fits	i, limits,	etc. • • •
2464.4 ± 2.0 ± 1.4	30	FRABETTI	93B	E687	See FRABETTI 98
2459 ± 5 ±30	56	¹ COTEUS	87	SPEC	<i>π</i> A ≃ 600 GeV
2460 ±25	82	BIAGI	83	SPEC	Σ - Be 135 GeV

1 Although COTEUS 87 claims to agree well with BIAGI 83 on the mass and width, there appears to be a discrepancy between the two experiments. BIAGI 83 sees a single peak (stated significance about 6 standard deviations) in the  $\Lambda K - \pi^+ \pi^+$  mass spectrum. COTEUS 87 sees two peaks in the same spectrum, one at the  $\Xi_c^+$  mass, the other 75 MeV lower. The latter is attributed to  $\Xi_c^+ \to \Sigma^0 K^- \pi^+ \pi^+ \to (\Lambda^0) K^- \pi^+ \pi^+$ , with the  $\gamma$  unseen. The combined significance of the double peak is stated to be 5.5 standard deviations. But the absence of any trace of a lower peak in BIAGI 83 seems to us to throw into question the interpretation of the lower peak of COTEUS 87.

#### =+ MEAN LIFE

VALUE (10 ⁻¹² s)	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT	
0.33 ^{+0.06} OUR AVE	RAGE					
$0.34^{+0.07}_{-0.05}{\pm}0.02$	56	FRABETTI	98	E687	$\gamma$ Be, $\overline{\it E}_{\gamma} =$ 220 GeV	
$0.20^{+0.11}_{-0.06}$	6	BARLAG	<b>89</b> C	ACCM	$\pi^-$ (K $^-$ ) Cu 230 GeV	
$0.40^{+0.18}_{-0.12}\pm0.10$	102	COTEUS	87	SPEC	$nA \simeq 600 \text{ GeV}$	
$0.48 + 0.21 + 0.20 \\ -0.15 - 0.10$	53	BIAGI	<b>85</b> C	SPEC	$\Sigma^-$ Be 135 GeV	
• • • We do not use the following data for averages, fits, limits, etc. • •						
$0.41^{+0.11}_{-0.08}{\pm}0.02$	30	FRABETTI	93в	E687	See FRABETTI 98	

#### E+ DECAY MODES

No absolute branching fractions have been measured. The following are branching ratios relative to  $\Xi^-\pi^+\pi^+$ .

	Mode	Fraction $(\Gamma_i/\Gamma)$	Confidence level
Γ ₁	$\Lambda K^- \pi^+ \pi^+$	[a] 0.58±0.18	
$\Gamma_2$	$\Lambda \overline{K}^*(892)^0 \pi^+$	[a,b] < 0.29	90%
$\Gamma_3$	$\Sigma(1385)^{+}K^{-}\pi^{+}$	[a,b] < 0.41	90%
Γ4	$\Sigma^+ K^- \pi^+$	[a] 1.18±0.31	
Γ ₅ Γ ₆ Γ ₇	$\Sigma^{+}\overline{K}^{*}(892)^{0}$	$[a,b]$ 0.92 $\pm$ 0.30	
Γ ₆	$\Sigma^0 K^- \pi^+ \pi^+$	[a] $0.49 \pm 0.26$	
$\Gamma_7$	$\equiv$ ⁰ $\pi$ ⁺	[a] $0.55 \pm 0.16$	
Γ8	$\equiv -\pi^+\pi^+$	[a] ≡ 1.0	
Γ ₈	$\Xi(1530)^{0}\pi^{+}$	[a,b] < 0.2	90%
$\Gamma_{10}$	$\equiv^{0} \pi^{+} \pi^{0}$	[a] $2.34 \pm 0.68$	
Γ11	$=0$ $\pi^{+}$ $\pi^{+}$ $\pi^{-}$	[a] $1.74 \pm 0.50$	
$\Gamma_{12}$	$\Xi^0 e^+  u_e$	[a] $2.3 \begin{array}{c} +0.7 \\ -0.9 \end{array}$	
$\Gamma_{13}$	pK-π ⁺	[a] $0.20 \pm 0.05$	

- [a] No absolute branching fractions have been measured. The following are branching ratios relative to  $\Xi^-\pi^+\pi^+$ .
- [b] This branching fraction includes all the decay modes of the final-state resonance.

#### =+ BRANCHING RATIOS

	=+ c	BRANCHING	RAT	105		
$\Gamma(\Lambda K^-\pi^+\pi^+)/\Gamma_{tr}$	otal					Γ1/Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	<u>-,</u>
seen	56	COTEUS	87	SPEC	$nA \simeq 600 \; GeV$	
seen	82	² BIAGI	83	SPEC	Σ- Be 135 GeV	
² BIAGI 85B looks	for but do	es not see the .	Ξ+	in pK-	$\overline{K}^0\pi^+$ ( $\Gamma(\rho K^-$	$\overline{K}^0\pi^+$ )
$/ \Gamma(\Lambda K^- \pi^+ \pi^+)$ <0.03, 90% CL), 1	$<$ 0.08 with $\Omega^- K^+ \pi^+$ ,	90% CL), $ ho 2K^{-2}$ $ ho K^{*0}\pi^{+}$ , and $\Sigma$	2π ⁺ (138	(Γ(ρ2Κ΄  5)+ Κ ⁻	$\frac{-2\pi^+}{\pi^+}$ , $\Gamma(\Lambda K^-)$	$\pi^{+}\pi^{+}$ )
$\Gamma(\Lambda K^-\pi^+\pi^+)/\Gamma($	Ξ-π+π+	)				Γ1/Γ8
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
0.58±0.16±0.07	61	BERGFELD	96	CLE2	$e^+e^-\approx \Upsilon(45)$	
Γ(Λ <del>Κ</del> *(892) ⁰ π ⁺ )/		+ π+) <del>K</del> *(892) ⁰ are incl	ludad			$\Gamma_2/\Gamma_1$
VALUE		DOCUMENT ID			COMMENT	
<0.5	90	BERGFELD	96	CLE2	$e^+ e^- \approx \Upsilon(45)$	
Γ(Σ(1385)+ κ-π	⁺ )/Γ(Λ <i>K</i> -	-π ⁺ π ⁺ )				Γ ₃ /Γ ₁
		$\Sigma$ (1385) $^+$ are inc	lude	1.		
VALUE	CL%	DOCUMENT ID		<u>TECN</u>	COMMENT	
<0.7	90	BERGFELD	96	CLE2	$e^+e^-\approx \Upsilon(45)$	
$\Gamma(\Sigma^+K^-\pi^+)/\Gamma(3)$	E-π+π+)					$\Gamma_4/\Gamma_8$
VALUE	EVTS	DOCUMENT ID				
1.18±0.26±0.17	119	BERGFELD		CLE2	,	
• • We do not use	the following	•				
$0.92 \pm 0.20 \pm 0.07$		3 JUN		SELX		GeV
$0.09^{+0.13}_{-0.06}^{+0.13}_{-0.02}$	5	BARLAG	89c	ACCM	$2 \Sigma^{+} K^{-} \pi^{+}, 3$ = $\pi^{+} \pi^{+}$	
³ This JUN 00 resul	t is redunda	nt with other resu	lts gi	ven belo		
Γ(Σ+ <del>K</del> *(892) ⁰ )/I	(Ξ-π+π	+)				$\Gamma_5/\Gamma_8$
		K*(892) ⁰ are inc	luded			
VALUE	EVT5	DOCUMENT ID			COMMENT	
0.92±0.27±0.14	61	BERGFELD		CLE2	, ,	
• • • We do not use		=				
seen	59	AVERY	95	CLE2	$e^+e^-\approx \Upsilon(45)$	
$\Gamma(\Sigma^0 K^- \pi^+ \pi^+)/\Gamma$	Γ(Λ <i>K</i> -π+	·π ⁺ )				$\Gamma_6/\Gamma_1$
VALUE	EVTS	DOCUMENT ID			COMMENT	
0.84±0.36  4 See, however, the	47 note on the	4 COTEUS		SPEC measur	лA ≃ 600 GeV rement	
		· · · · · ·		, measur	cincinci	
$\Gamma(\Xi^0\pi^+)/\Gamma(\Xi^-\pi$		DOCUMENT ID		TECH	COLUMNIT	$\Gamma_7/\Gamma_8$
0.55 ± 0.13 ± 0.09		DOCUMENT ID	96	CLE2	$e^+e^-\approx \Upsilon(45)$	١
		EDITANDS	,,,	CLLZ	C C ~ 1(43	
$\Gamma(\Xi^-\pi^+\pi^+)/\Gamma_{\text{tot}}$				T.C.	CO.44.5515	Гв/Г
VALUE		DOCUMENT ID		CLE2	$e^+e^-\approx \Upsilon(45)$	
seen seen	160	BERGFELD AVERY	95	CLE2	$e^+e^-\approx T(45)$ $e^+e^-\approx T(45)$	
seen	30	FRABETTI		E687	$\gamma$ Be, $\overline{E}_{\gamma} = 220$ (	5e∨
seen	30	ALBRECHT	90F	ARG	e+e- at 7(45)	
seen	23	ALAM	89	CLEO	e+ e- 10.6 GeV	
Γ(Ξ(1530) ⁰ π ⁺ )/Γ						Γ ₉ /Γ ₈
	CL%_	<b> ⊆</b> (1530) ⁰ are inc <u>DOCUMENT ID</u>			COMMENT	
<0.2	90	BERGFELD		CLE2		
		52.15.225			, ,	
$\Gamma(\Xi^0\pi^+\pi^0)/\Gamma(\Xi^-$						$\Gamma_{10}/\Gamma_{8}$
VALUE	EVTS	DOCUMENT ID				`
2.34±0.57±0.37	81	EDWARDS	96	CLE2	$e^+e^-\approx \Upsilon(45)$	)
$\Gamma(\Xi(1530)^0\pi^+)/\Gamma$	•	DOCUMENT ID		TECN		Γ ₉ /Γ ₁₀
• • • We do not use		g data for average	s, fit	s, limits,	, etc. • • •	
<0.3	90	EDWARDS	96	CLE2	$e^+ e^- \approx \Upsilon(45)$	)
$\Gamma(\Xi^0\pi^+\pi^+\pi^-)/\Gamma$	(Ξ-π+π	+)				$\Gamma_{11}/\Gamma_{\theta}$
$\frac{\Gamma(\Xi^0\pi^+\pi^+\pi^-)/\Gamma}{\frac{VALUE}{1.74+0.42+0.27}}$	EVTS	DOCUMENT ID			COMMENT	
VALUE 1.74±0.42±0.27	<u>EVTS</u> 57	<i>DOCUMENT ID</i> EDWARDS			$e^+e^-\approx \Upsilon(4S)$	)
$\frac{VALUE}{1.74 \pm 0.42 \pm 0.27}$ $\Gamma(\Xi^0 e^+ \nu_e)/\Gamma(\Xi^-$	<u>EVTS</u> 57 <b>π⁺π⁺)</b>	DOCUMENT ID	96	CLE2	$\frac{COMMENT}{e^+e^-\approx \Upsilon(45)}$	
VALUE 1.74±0.42±0.27	<u>EVTS</u> 57 <b>π⁺π⁺)</b>	DOCUMENT ID  EDWARDS  DOCUMENT ID	96	CLE2	$\frac{COMMENT}{e^+e^-\approx \Upsilon(45)}$	Γ ₁₂ /Γ ₈

 $\Xi_c^+, \Xi_c^0, \Xi_c^{\prime +}$ 

$\Gamma(pK^-\pi^+)/\Gamma(\Sigma^-\pi^+)$	+ K-π+)				Γ ₁₃ /Γ	ı
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	_
$0.22 \pm 0.06 \pm 0.03$	76	JUN	00	SELX	Σ – nucleus, 600 GeV	- 1
Γ(pK-π+)/Γ(Ξ	-π+π+)				Г ₁₃ /Г	В
Γ(ρΚ  π ⁺ )/Γ(Ξ <u>VALUE</u>	-π+π+) <u>EVTS</u>	DOCUMENT ID		TECN	Γ ₁₃ /Γ	В

## =+ REFERENCES

		•		
JUN	00	PRL 84 1857	S.Y. Jun et al.	(FNAL SELEX Collab.)
FRABETTI	98	PL B427 211	P.L. Frabetti et al.	`(FNAL E687 Collab.)
BERGFELD	96	PL B365 431	T. Bergfeld et al.	` (CLEO Collab.)
EDWARDS	96	PL B373 261	K.W. Edwards et al.	(CLEO Collab.)
ALEXANDER	95B	PRL 74 3113	J. Alexander et al.	(CLEO Collab.)
Also	95E	PRL 75 4155 (erratum)		` ,
AVERY	95	PRL 75 4364	P. Avery et al.	(CLEO Collab.)
FRABETTI	93B	PRL 70 1381	P.L. Frabetti et al.	(FNAL E687 Collab.)
ALBRECHT	90F	PL B247 121	H. Albrecht et al.	(ARGUS Collab.)
ALAM	89	PL B226 401	M.S. Alam et al.	(CLEO Collab.)
BARLAG	89C	PL B233 522	S. Barlag et al.	(ACCMOR Collab.)
COTEUS	87	PRL 59 1530	P. Coteus et al.	(FNAL E400 Collab.)
BIAGI	85B	ZPHY C28 175	S.F. Biagi et al.	(ČERN WA62 Collab.)
BIAGI	85C	PL 150B 230	S.F. Biagi et al.	(CERN WA62 Collab.)
BIAGI	83	PL 122B 455	S.F. Biagi et al.	(CERN WA62 Collab.)
BIAGI	83	PL 122B 455	S.F. Biagi et al.	[CERN WA62 Co



$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

According to the quark model, the  $\Xi_c^0$  (quark content dsc) and  $\Xi_c^+$  form an isospin doublet, and the spin-parity ought to be  $J^P=1/2^+$ . None of I, J, or P has actually been measured.

#### E MASS

The fit uses the  $\Xi_c^0$  and  $\Xi_c^+$  mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID	TECH	COMMENT	_
2471.8±1.4 OUR FIT	•				_
2471.8±1.4 OUR AV	ERAGE				
$2470.0 \pm 2.8 \pm 2.6$	85	FRABETTI	98B E687	$\gamma$ Be, $\overline{E}_{\gamma}=220$ GeV	
2469 ±2 ±3	9	HENDERSON	92B CLE	o Ω−κ+ [']	
$2472.1 \pm 2.7 \pm 1.6$	54	ALBRECHT	90F ARG	$i e^+e^-$ at $T(45)$	
$2473.3 \pm 1.9 \pm 1.2$	4	BARLAG	90 ACC	M $\pi^-$ (K $^-$ ) Cu 230 GeV	
2472 ±3 ±4	19	ALAM	89 CLE	O e ⁺ e ⁻ 10.6 GeV	
• • • We do not use	the following	ig data for average	s, fits, limi	ts, etc. • • •	
$2462.1 \pm 3.1 \pm 1.4$	42	1 FRABETTI	93C E687	See FRABETTI 988	
2471 ±3 ±4	14	AVERY	89 CLE	O See ALAM 89	
1 The FRABETTI 9	3C mass is	well below the othe	er measure	ments.	

#### $\Xi_c^0 - \Xi_c^+$ MASS DIFFERENCE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
5.5±1.8 OUR FIT 6.3±2.3 OUR AVERAGE				
$+7.0\pm4.5\pm2.2$	ALBRECHT	90F	ARG	$e^+e^-$ at $\Upsilon(45)$
$+6.8 \pm 3.3 \pm 0.5$	BARLAG	90	ACCM	$\pi^-$ (K $^-$ ) Cu 230 GeV
+5 ±4 ±1	ALAM	89	CLEO	$\Xi_c^0 \rightarrow \Xi^-\pi^+, \Xi_c^+ \rightarrow$
				$\Xi^-\pi^-\pi^-$

#### **≡**⁰ MEAN LIFE

$6^{+0.023}_{-0.015}$ our ave	RAGE			
$1^{+0.025}_{-0.017} \pm 0.005$	42	FRABETTI	93C E687	$_{m{\gamma}}$ Be, $\overline{m{E}}_{m{\gamma}} =$ 220 GeV
$2^{+0.059}_{-0.030}$	4	BARLAG	90 ACCM	π - (K - ) Cu 230 GeV
	$06 + 0.023 \atop -0.015$ OUR AVE $01 + 0.025 \atop -0.017 \pm 0.005$ $02 + 0.059 \atop -0.030$	0.017	0.025 0.025 0.005 0.005 0.005 0.005 0.005	$0.1 + 0.025 \pm 0.005$ 42 FRABETTI 93C E687

#### **≡**⁰ DECAY MODES

#### **≡**⁰ BRANCHING RATIOS

•		
		Γ ₁ /Γ
DOCUMENT ID	TECN	COMMENT
ALBRECHT 9	5в ARG	$e^+e^-pprox$ 10.4 GeV
		Г2/Г
DOCUMENT ID	TECN	COMMENT
		$\gamma$ Be, $\overline{E}_{\gamma} = 220 \text{ GeV}$
		Г ₃ /Г
DOCUMENT ID	TECN	COMMENT
		$\gamma$ Be, $\overline{E}_{\gamma}=$ 220 GeV
١		Г4/Г5
	TECN	COMMENT
		$e^+e^-$ at $T(45)$
		Γ ₆ /Γ
DOCUMENT ID	TECN	
		π ⁻ (K ⁻ ) Cu 230 GeV
Dritterio .	7,00131	• •
		Γ ₇ /Γ ₄
		COMMENT
HENDERSON 9	928 CLEO	$e^+e^-pprox$ 10.6 GeV
		Γ _B /Γ ₄
DOCUMENT ID	TECN	COMMENT
ALEXANDER 9	958 CLE2	$e^+e^-\approx \Upsilon(45)$
+1		Г9/Г4
	== e+ anvi	
ALBRECHT 9	33B ARG	$e^+e^-pprox$ 10.4 GeV
⁺ π ⁺ π ⁻ )		Г9/Г5
(not the sum) of the	$\Xi^-e^+$ any	thing and $arXilon^-\mu^+$ anything
DOCUMENT ID	TECN	COMMENT
		$e^+e^-\approx 10.4 \text{ GeV}$
Ξ ⁰ _c REFERENCE	ES	<del></del>
P.L. Frabetti et a	nl.	(FNAL E687 Collab.)
•	nl.	(FNAL E687 Coliab.) (ARGUS Collab.) (CLEO Collab.)
P.L. Frabetti <i>et a</i> H. Albrecht <i>et al.</i> J. Alexander <i>et a</i> ratum)	ol. d.	(ARGUS Collab.) (CLEO Collab.)
P.L. Frabetti et a H. Albrecht et al. J. Alexander et a ratum) H. Albrecht et al. P.L. Frabetti et a	ni. 	(ARGUS Collab.) (CLEO Collab.) (ARGUS Collab.) (FNAL E687 Collab.)
P.L. Frabetti et a H. Albrecht et al. J. Alexander et a ratum) H. Albrecht et al.	il. il. al.	(ARGUS Collab.) (CLEO Collab.) (ARGUS Collab.)
P.L. Frabetti <i>et a</i> H. Albrecht <i>et al</i> J. Alexander <i>et al</i> ratum) H. Albrecht <i>et al</i> P.L. Frabetti <i>et a</i> S. Henderson <i>et a</i>	il. il. al.	(ARGUS Collab.) (CLEO Collab.) (ARGUS Collab.) (FNAL E687 Collab.) (CLEO Collab.)
	DOCUMENT ID  ALBRECHT S  DOCUMENT ID  FRABETTI S  DOCUMENT ID  ALBRECHT S  DOCUMENT ID  HENDERSON S  DOCUMENT ID  ALEXANDER S  (not the sum) of the  DOCUMENT ID  ALBRECHT S  (not the sum) of the  DOCUMENT ID  ALBRECHT S  (not the sum) of the  DOCUMENT ID  ALBRECHT S  (not the sum) of the	DOCUMENT ID   TECN



VALUE (MeV) 2574.1 ± 3.3 OUR FIT

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

The  $\Xi_c^{\prime+}$  and  $\Xi_c^{\prime0}$  presumably complete the SU(3) sextet whose other members are the  $\Sigma_c^{++}$ ,  $\Sigma_c^+$ ,  $\Sigma_c^0$ , and  $\Omega_c^0$ . see Fig. 3 in the Note on Charmed Baryons just before the the  $\varLambda_c^+$  Listings. The quantum numbers given above come from this presumption but have not been measured.

#### E'+ MASS

The mass is obtained from the mass-difference measurement that follows.

| DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID | DOCUMENT ID

	<i>≡′</i> + −	±+ MASS DIF	FERENC	E	
VALUE (MeV) 107.8±3.0 OUR FIT	EVTS	DOCUMENT ID	TECN	COMMENT	
107.8±1.7+25	25	IESSOP 9	9 CLF2	$e^+e^-\approx \tau(45)$	

### E'+ DECAY MODES

The  $\Xi_c^{\prime+}$  –  $\Xi_c^+$  mass difference is too small for any strong decay to occur.

Mode	Fraction $(\Gamma_i/\Gamma)$
$\Gamma_1 = \varepsilon^+ \gamma$	seen

 $\Xi_c^{\prime+}$ ,  $\Xi_c^{\prime0}$ ,  $\Xi_c(2645)$ ,  $\Xi_c(2815)$ 

#### **≡**′⁺ REFERENCES

JESSOP 99 PRL 82 492 C.P. Jessop et al.

(CLEO Collab.)



$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

See the note in the Listing for the  $\Xi_c^{\prime+}$ , above.

#### E'0 MASS

The mass is obtained from the mass-difference measurement that follows.

VALUE (MeV)

DOCUMENT ID

#### 2578.8±3.2 OUR FIT

#### **≡**⁰ MASS DIFFERENCE

VALUE (MeV) 107.0±2.9 OUR FIT

DOCUMENT ID

TECN COMMENT

107.0±1.4±2.5 28

99 CLE2  $e^+e^-\approx \Upsilon(4S)$ 

#### **E**[®] DECAY MODES

**JESSOP** 

The  $\Xi_c^{\prime 0} - \Xi_c^0$  mass difference is too small for any strong decay to occur.

Mode  $\Xi_c^0 \gamma$  $\Gamma_1$ 

Fraction  $(\Gamma_i/\Gamma)$ 

**≡**[™] REFERENCES

JESSOP

99 PRL 82 492

C.P. Jessop et al.

(CLEO Collab.)

## E_c(2645)

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$
 Status: ***

A narrow peak seen in the  $\Xi_C\pi$  mass spectrum. The natural assignment is that this is the  $J^P=3/2^+$  excitation of the  $\Xi_C$  in the same SU(4) multiplet as the  $\Delta(1232)$ , but the quantum numbers have not been measured.

#### $\Xi_c(2645)$ MASSES

The masses are obtained from the mass-difference measurements that foi-

 $\Xi_c(2645)^+$  MASS

DOCUMENT ID 2647.4±2.0 OUR FIT Error includes scale factor of 1.2.

 $\Xi_c(2645)^0$  MASS

VALUE (MeV) 2644.5 ± 1.8 OUR FIT DOCUMENT ID

#### $\Xi_c(2645) - \Xi_c$ MASS DIFFERENCES

 $m_{\Xi_c(2645)^+} - m_{\Xi_c^0}$ 

**EVTS** DOCUMENT ID TECN COMMENT 175.6±1.4 OUR FIT Error includes scale factor of 1.7.

175.6±1.4 OUR AVERAGE Error includes scale factor of 1.7.

 $177.1 \pm 0.5 \pm 1.1$ 47  $174.3 \pm 0.5 \pm 1.0$ 

FRABETTI **GIBBONS** 

988 E687  $\gamma$  Be,  $\overline{E}_{\gamma}=220$  GeV 96 CLE2  $e^+e^-\approx \tau(45)$ 

 $m_{\Xi_c(2645)^0} - m_{\Xi_c^+}$ 

VALUE (MeV) EVTS 178.2±1.1 OUR FIT 178.2±0.5±1.0

DOCUMENT ID

TECN COMMENT 95 CLE2  $e^+e^-\approx T(4S)$ 

#### $\Xi_c$ (2645) WIDTHS

*Ξ_c*(2645)⁺ WIDTH

VALUE (MeV) CL%

TECN COMMENT DDCUMENT ID 96 CLE2  $e^+e^- \approx \Upsilon(45)$ **GIBBONS** 

<u>Ξ</u>_c(2645)⁰ WIDTH

VALUE (MeV) CL% EVTS <5.5 90

DOCUMENT ID **AVERY** 

TECN COMMENT 95 CLE2  $e^+e^-\approx \Upsilon(4S)$ 

#### $\Xi_c(2645)$ DECAY MODES

 $\Xi_{\mathcal{C}} \pi$  is the only strong decay allowed to a  $\Xi_{\mathcal{C}}$  resonance having this mass.

	Mode	Fraction $(\Gamma_j/\Gamma)$	
$\overline{\Gamma_1}$	$\Xi_c^0 \pi^+$	seen	
$\Gamma_2$	$\Xi_c^+\pi^-$	seen	

#### Ξ_c(2645) REFERENCES

98B PL 8426 403 96 PRL 77 810 95 PRL 75 4364 FRABETTI GIBBONS AVERY

P.L. Frabetti et al. L.K. Gibbons et al. P. Avery et al.

(FNAL E687 Collab. (CLEO Collab. (CLEO Collab.

(2815)

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$
 Status: ***

A narrow peak seen in the  $\Xi_{c}\pi\pi$  mass spectrum. The simplest assignment is that this belongs to the same SU(4) multiplet as the  $\Lambda(1520)$  and the  $\Lambda_{C}(2625)$ , but the spin and parity have not been measured.

#### $\Xi_c(2815)$ MASSES

The masses are obtained from the mass-difference measurements that follow.

 $\Xi_c(2815)^+$  MASS

VALUE (MeV) 2814.9±1.8 OUR FIT DOCUMENT ID

 $\Xi_c(2815)^0$  MASS

VALUE (MeV) 2819.0±2.5 OUR FIT DOCUMENT ID

## $\Xi_c(2815) - \Xi_c$ MASS DIFFERENCES

 $m_{\Xi_c(2815)^+} - m_{\Xi_c^+}$ VALUE (MeV) DOCUMENT ID TECN COMMENT EVTS 348.6 ± 1.2 OUR FIT 348.6±0.6±1.0 ALEXANDER 99B CLE2  $e^+e^-\approx \Upsilon(4S)$  $m_{\Xi_c(2015)^0} - m_{\Xi_c^0}$ VALUE (MeV) **EVTS** DOCUMENT ID TECN COMMENT

> ALEXANDER 998 CLE2  $e^+e^-\approx T(45)$  $\Xi_c$ (2815) WIDTHS

Ξ_c(2815)+ WIDTH

VALUE (MeV) CL% DOCUMENT ID TECN COMMENT ALEXANDER 99B CLE2  $e^+e^-\approx \Upsilon(4S)$ 

 $\Xi_c(2815)^0$  WIDTH

347.2±2.1 OUR FIT 347.2 ± 0.7 ± 2.0

VALUE (MeV) <6.5

DOCUMENT ID TECN COMMENT ALEXANDER 99B CLE2  $e^+e^-pprox \varUpsilon(45)$ 

#### Ξ_c(2815) DECAY MODES

The  $\Xi_C \pi \pi$  modes are consistent with being entirely via  $\Xi_C(2645) \pi$ .

	Mode	Fraction ( $\Gamma_i/\Gamma$ )
Γı	$\Xi_{\varsigma}^{+}\pi^{+}\pi^{-}$	seen
$\Gamma_2$	$\equiv_c^0 \pi^+ \pi^-$	seen
_	. , ,	······································

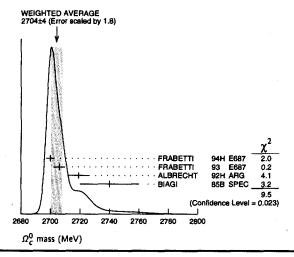
#### 三c(2815) REFERENCES

ALEXANDER 99B PRL 83 3390

J.P. Alexander et al.

(CLEO Collab.)

ı


$$I(J^P) = O(\frac{1}{2}^+)$$
 Status: ***

The quantum numbers have not been measured, but are simply assigned in accord with the quark model, in which the  $\Omega_{\rm C}^0$  is the ssc ground state.

#### $\varOmega_c^0$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
2704 ± 4 OUR AV	ERAGE	Error includes scale	factor of 1.8	. See the ideogram below.
2699.9± 1.5±2.5	42	¹ FRABETTI	94H E687	$\gamma$ Be, $\overline{E}_{\gamma} =$ 221 GeV
2705.9± 3.3±2.0	10	² FRABETTI	93 E687	$\gamma$ Be, $\overline{E}_{\gamma}=$ 221 GeV
2719.0 ± 7.0 ± 2.5	11	3 ALBRECHT	92H ARG	$e^+e^-pprox 10.6$ GeV
$2740 \pm 20$	3	BIAGI	85B SPEC	$\Sigma^-$ Be 135 GeV/ $c$

- 1  FRABETTI 94H claims a signal of 42.5  $\pm$  8.8  $\Sigma^+K^-K^-\pi^+$  events. The background is about 24 events.  2  FRABETTI 93 claims a signal of 10.3  $\pm$  3.9  $\Omega^-\pi^+$  events above a background of 5.8
- events.  3  ALBRECHT 92H claims a signal of 11.5  $\pm$  4.3  $\Xi^ K^-\pi^+\pi^+$  events. The background is about 5 events.



#### Ω0 MEAN LIFE

VALUE (10 ⁻¹² s) 0.064±0.020 OUR AVE	EVTS RAGE	DOCUMENT ID TECN	COMMENT
$0.055 {}^{+ 0.013}_{- 0.011} {}^{+ 0.018}_{- 0.023}$	86	ADAMOVICH 958 WA89	$\Omega^{-}\pi^{-}\pi^{+}\pi^{+},$ $=-K^{-}\pi^{+}\pi^{+}$
$0.086^{+0.027}_{-0.020}\!\pm\!0.028$	25	FRABETTI 950 E687	$\Sigma^{+}K^{-}K^{-}\pi^{+}$

#### $\Omega_c^0$ DECAY MODES

	Mode	Fraction $(\Gamma_f/\Gamma)$
$\overline{\Gamma_1}$	$\Sigma^+ K^- K^- \pi^+$	seen
$\Gamma_2$	$\Xi^- K^- \pi^+ \pi^+$	seen
	$\Omega^-\pi^+$	seen
$\Gamma_4$	$\Omega^-\pi^-\pi^+\pi^+$	seen

#### $\Omega_c^0$ branching ratios

	Ç					
Γ(Σ+K-K-1	r ⁺ )/Γ _{total}					$\Gamma_1/\Gamma$
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
seen	42	FRABETTI	94н	E687	$\gamma$ Be, $\overline{E}_{\gamma}$ = 221	GeV
Γ(Ξ-K-π+π	+)/Γ _{total}					$\Gamma_2/\Gamma$
VALUE	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT	
seen	11	ALBRECHT	92H	ARG	$e^+e^-\approx 10.6$ (	5eV
seen	3	BIAGI	<b>85</b> B	SPEC	Σ-Be 135 GeV	V/c
$\Gamma(\Omega^-\pi^+)/\Gamma_{to}$	tal					$\Gamma_3/\Gamma$
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
seen	10	FRABETTI	93	E687	$\gamma$ Be, $\overline{E}_{\gamma} = 221$	GeV
Γ(Ξ-K-π+π						$\Gamma_2/\Gamma_3$
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
• • We do not	use the following	data for average	s, fits	s, limits,	etc. • • •	
<2.8	90	FRABETTI	93	E687	$\gamma$ Be, $\overline{E}_{\gamma} = 221$	GeV
$\Gamma(\Omega^-\pi^-\pi^+\pi^-)$	⁺ )/Γ(Ω ⁻ π ⁺ )					$\Gamma_4/\Gamma_3$
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
seen		ADAMOVICH			$\Sigma^-$ 340 GeV	
• • • We do not	use the following	data for average	es, fits	s, limits,	etc. • • •	
<1.6	90	FRABETTI	93	E687	$\gamma$ Be, $\overline{E}_{\gamma} = 221$	GeV
		Ω _c REFEREN	CES			
ADAMOVICH 95B FRABETTI 95D FRABETT! 94H FRABETTI 93 ALBRECHT 92H	PL B358 151 PL B357 678 PL B338 106 PL B300 190	M.I. Adamovic P.L. Frabetti e P.L. Frabetti e P.L. Frabetti e	t al. t al.	i.	(CERN WA89 (FNAL E687 (FNAL E687 (FNAL E687	Collab.) Collab.)

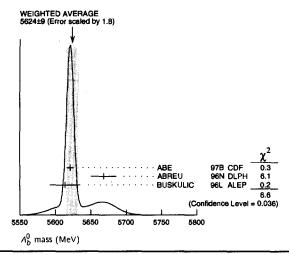
## **BOTTOM BARYONS**

$$(B=-1)$$

 $\Lambda_b^0 = udb$ ,  $\Xi_b^0 = usb$ ,  $\Xi_b^- = dsb$ 



$$I(J^P) = O(\frac{1}{2}^+)$$
 Status: ***


In the quark model, a  $\Lambda_b^0$  is an isospin-0 udb state. The lowest  $\Lambda_b^0$  ought to have  $J^P=1/2^+$ . None of I, J, or P have actually been measured

#### AB MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
5624 ± 9 OUR AVE	RAGE Erro	or includes scale fa	actor of 1.8.	See the ideogram below
5621 ± 4 ± 3		¹ ABE	97B CDF	$p\overline{p}$ at 1.8 TeV
5668± 16± 8	4	² ABREU	96N DLPH	$e^+e^- \rightarrow Z$
5614± 21± 4	4	² BUSKULIC	96L ALEP	$e^+e^- \rightarrow Z$
• • • We do not use	the followin	g data for average	es, fits, limits	, etc. • • •
not seen		³ ABE	93B CDF	Sup. by ABE 978
5640± 50±30	16	⁴ ALBAJAR	91E UA1	p₱ 630 GeV
5640 ⁺¹⁰⁰ -210	52	BARI	91 SFM	$A_b^0 \rightarrow \rho D^0 \pi^-$
5650 + 150 - 200	90	BARI	91 SFM	$\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^+ \pi^- \pi^-$

 $^{^1}$  ABE 97B observed 38 events above a background 18  $\pm$  1.6 events in the mass range 5.60–5.65 GeV/ $c^2$ , a significance of > 3.4 standard deviations.

 $^{^4}$  ALBAJAR 91E claims 16  $\pm$  5 events above a background of 9  $\pm$  1 events, a significance of about 5 standard deviations.



#### 10 MEAN LIFE

These are actually measurements of the average lifetime of weakly decaying b baryons weighted by generally unknown production rates, branching fractions, and detection efficiencies. Presumably, the mix is mainly  $\Lambda_b^0$ , with some  $\Xi_b^0$  and  $\Xi_b^-$ .

See b-baryon Admixture section for data on b-baryon mean life average over species of b-baryon particles.

"OUR EVALUATION" is an average of the data listed below performed by the LEP B Lifetimes Working Group as described in our review "Production and Decay of b-flavored Hadrons" in the  $B^\pm$  Section of the Listings. The averaging procedure takes into account correlations between the measurements and asymmetric lifetime errors.

VALUE (10 S)	EVIS DOCON	TENTIO TE	CN COMMENT	
1.229±0.080 OUR EVA	LUATION			
$1.11 \begin{array}{c} +0.19 \\ -0.18 \end{array} \pm 0.05$	⁵ ABRE	U 99w DI	LPH $e^+e^- \rightarrow Z$	
$1.29 \begin{array}{l} +0.24 \\ -0.22 \end{array} \pm 0.06$	5 ACKE	RSTAFF 98G OI	PAL $e^+e^- \rightarrow Z$	
$1.21 \pm 0.11$	⁵ BARA	TE 98D AL	EP $e^+e^- \rightarrow Z$	
$1.32 \pm 0.15 \pm 0.07$	ABE	96м С	DF Excess Λ _C ℓ ⁻ , dec lengths	ay

• • • We do not use the	tollowing	data for average	es, fits, limits,	etc. • • •
$1.19 \begin{array}{c} +0.21 & +0.07 \\ -0.18 & -0.08 \end{array}$		ABREU	960 DLPH	Repl. by ABREU 99w
$1.14 \begin{array}{c} +0.22 \\ -0.19 \end{array} \pm 0.07$	69	AKER\$	95K OPAL	Repl. by ACKER- STAFF 98G
$1.02 \begin{tabular}{c} +0.23 \\ -0.18 \end{tabular} \pm 0.06$	44	BUSKULIC	95L ALEP	Repl. by BARATE 98D

 $^{^5\,\}mathrm{Measured}$  using  $\varLambda_{\mathcal{C}}\,\boldsymbol{\ell}^-$  and  $\varLambda\boldsymbol{\ell}^+\,\boldsymbol{\ell}^-.$ 

#### AD DECAY MODES

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy  $p\overline{p}$ ), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction B( $b \rightarrow b$ -baryon) and are evaluated for our value B( $b \rightarrow b$ -baryon) = (11.6  $\pm$  2.0)%.

The branching fractions  ${\rm B}(b{\operatorname{-baryon}} \to A\ell^-\bar{\nu}_\ell$  anything) and  ${\rm B}(\Lambda^0_b \to \Lambda^+_C\ell^-\bar{\nu}_\ell$  anything) are not pure measurements because the underlying measured products of these with  ${\rm B}(b \to b{\operatorname{-baryon}})$  were used to determine  ${\rm B}(b \to b{\operatorname{-baryon}})$ , as described in the note "Production and Decay of  $b{\operatorname{-Flavored}}$  Hadrons."

	Mode	Fraction $(\Gamma_j/\Gamma)$	Confidence level
Γ ₁	$J/\psi(1S)\Lambda$	$(4.7\pm2.8)\times10^{-4}$	1
$\Gamma_2$	$\rho D^0 \pi^-$		
Гз	$\Lambda_c^+\pi^-$	seen	
Γ4	$\Lambda_c^+ a_1(1260)^-$	Seen	
$\Gamma_5$	$\Lambda_{C}^{+} \pi^{+} \pi^{-} \pi^{-}$		
$\Gamma_6$	$\Lambda K^{0} 2\pi^{+} 2\pi^{-}$		
Γ,	$\Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything	[a] $(7.9 \pm 1.9) \%$	
$\Gamma_{B}$	$\rho\pi^-$	$< 5.0 \times 10^{-5}$	5 90%
Гэ	ρK ⁻	< 5.0 × 10 ⁻⁵	5 90%

[a] Not a pure measurement. See note at head of  $\varLambda_h^0$  Decay Modes.

#### A BRANCHING RATIOS

Γ(J/ψ(1S)Λ)/Γ _{to}						Γ1/Γ
VALUE (units 10 ⁻⁴ )	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT	
4.7± 2.1± 1.9 • • • We do not use	the following	⁶ ABE og data for average		CDF limits	pp at 1.8 TeV	
155.2±94.8±26.8	16				$J/\psi(15) \rightarrow \mu^+$	$\mu^-$
error is their expeour best value. ALBAJAR 91s repaire $B(\overline{b} \rightarrow b)$ error and our second	riments's er ports 180 $\pm$ baryon) $=$ (	and B( $B^0  oup J/\psi$ () for and our second 110 for B( $\overline{b}  oup b$ -11.6 $\pm$ 2.0) $\times$ 10 the systematic error	error baryo 2. O	is the s n) = 0. ur first	ystematic error fro 10. We rescale to error is their expe	om using our best eriment's
$\Gamma(pD^0\pi^-)/\Gamma_{\text{total}}$						$\Gamma_2/\Gamma$
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
<ul> <li>• • We do not use</li> </ul>	the following	ng data for average				
seen	52	BARI			$D^0 \rightarrow K^-\pi^+$	
seen		BASILE	81	SFM	$D^0 \rightarrow \kappa^- \pi^+$	
$\Gamma(\Lambda_c^+\pi^-)/\Gamma_{\text{total}}$						Гз/Г
VALUE	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT	
seen	3	ABREU	96N	DLPH	$\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$	-
seen	4	BUSKULIC	06.	ALED	A+ K+	70

seen	3	ABREU	96N DLPH	$\Lambda_c^+ \rightarrow p K^- \pi^+$
seen	4	BUSKULIC	96L ALEP	$\Lambda_c^+ \to pK^-\pi^+$ $\Lambda_c^+ \to pK^-\pi^+, p\overline{K}^0,$
				$\Lambda_{\pi}^{+} \pi^{+} \pi^{-}$
$\Gamma(\Lambda_c^+ a_1(1260)$	⁻)/Γ _{total}			Γ4/Γ
VALUE	EVTS	DOCUMENT ID	<u>TECN</u>	COMMENT
seen	1	ABREU	96N DLPH	$\Lambda_c^+ \to \rho K^- \pi^+$
				$a_1^- \rightarrow \rho^0 \pi^- \rightarrow$

$\Gamma(\Lambda_c^+\pi^+\pi^-\pi^-)/\Gamma$	Ttotal				Г5/Г
VALUE	EVTS	DOCUMENT I	D TECN	COMMENT	
• • • We do not use	the followin	g data for avera	ges, fits, limit:	s, etc. • • •	
seen	90	BARI	91 SFM	$\Lambda^+ \rightarrow pK^-$	r+

	_			c ·	
$\Gamma(\Lambda K^0 2\pi^+ 2\pi^+ 2\pi^+ 2\pi^+ 2\pi^+ 2\pi^+ 2\pi^+ 2\pi^+$	r ⁻ )/Γ _{total}				Γ ₆ /Γ
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
• • • We do no	ot use the following	data for averag	es, fits, limits	s, etc. • • •	
seen	4	⁸ ARENTON	86 FMPS	$AK_{5}^{0}2\pi^{+}2\pi^{-}$	

⁸ See the footnote to the ARENTON 86 mass value.

 $^{^2}$  Uses 4 fully reconstructed  $\Lambda_D$  events.

 $^{^3}$  ABE 93B states that, based on the signal claimed by ALBAJAR 91E, CDF should have found 30  $\pm$  23  $\Lambda_D^0 \to J/\psi(1S)\Lambda$  events. Instead, CDF found not more than 2 events.

 $\Gamma(A_c^+\ell^-\nu_\ell$  anything)/ $\Gamma_{total}$ The values and averages in this section serve only to show what values result if one assumes our  $B(b\to b\text{-}b\text{-}b\text{-}b\text{-}y\text{-}o\text{-})$ . They cannot be thought of as measurements since the underlying product branching fractions were also used to determinine B(b ightarrow b baryon) as described in the note on "Production and Decay of b-Flavored Hadrons."

VALUE	EVT5	DOCUMENT ID	TECN	COMMENT
0.079±0.019 OUR AV		<u> </u>		
$0.074 \pm 0.013 \pm 0.013$		⁹ BARATE	98D ALEP	$e^+e^- \rightarrow Z$
$0.102^{+0.035}_{-0.029}\pm0.018$	29	¹⁰ ABREU	95s DLPH	$e^+e^- \rightarrow Z$
• • • We do not use	the followi	ng data for averag	es, fits, limits,	etc. • • •
$0.065 \pm 0.016 \pm 0.011$	55	¹¹ BUSKULIC		Repl. by BARATE 98D
$0.13 \pm 0.05 \pm 0.02$	21	¹² BUSKULIC	92E ALEP	$\Lambda_C^+ \rightarrow \rho K^- \pi^+$

- ⁹ BARATE 98D reports [B( $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \ell^{-} \overline{\nu}_{\ell}$  anything)  $\times$  B( $\overline{b} \rightarrow b$ -baryon)] = 0.0086  $\pm$  $0.0007\pm0.0014$ . We divide by our best value B( $\bar{b}\to b$ -baryon) =  $(11.6\pm2.0)\times10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value. Measured using  $\Lambda_c \ell^-$  and  $\Lambda \ell^+ \ell^-$ .
- ¹⁰ ABREU 95s reports [B( $\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$  anything)  $\times$  B( $\overline{b} \to b$ -baryon)] = 0.0118  $\pm$  $0.0026 {+0.0031} \over -0.0021$ . We divide by our best value B( $\overline{b} \rightarrow b$ -baryon) = (11.6  $\pm$  2.0)  $\times$  10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ¹¹ BUSKULIC 95L reports [B( $\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$  anything)  $\times$  B( $\overline{b} \to b$ -baryon)] = 0.00755 ± 0.0014  $\pm$  0.0012. We divide by our best value B( $\bar{b} \to b$ -baryon) = (11.6  $\pm$  2.0)  $\times$  10 $^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ¹² BUSKULIC 92E reports [B( $\Lambda_b^0 \to \Lambda_c^+ \ell^- \bar{\nu}_\ell$  anything)  $\times$  B( $\bar{b} \to b$ -baryon)] = 0.015  $\pm$  $0.0035\pm0.0045$ . We divide by our best value  $B(\overline{b}\to b\text{-baryon})=(11.6\pm2.0)\times10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by BUSKULIC 95L.

$\Gamma(\rho\pi^-)/\Gamma_{\text{total}}$					Г8/Г
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<5.0 × 10 ⁻⁵	90	13 BUSKULIC	96V ALEP	$e^+e^- \rightarrow Z$	
13 BUSKUUG BEV 3	ssumer PD	G 96 production frac	tions for RC	R+ R hhar	wone

$\Gamma(\rho K^-)/\Gamma_{\text{total}}$					Г9/
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<5.0 × 10 ⁵	90	14 BUSKULIC	96V ALEP	$e^+ e^- \rightarrow Z$	
• • • We do not use	the follow	ing data for average	s, fits, limits,	etc. • • •	
$< 3.6 \times 10^{-4}$	90	15 ADAM	96D DLPH	$e^+e^- \rightarrow Z$	
14 BUSKULIC 96v a	ssumes PI	OG 96 production fra	actions for $B^{0}$	$B^+$ , $B_s$ , $b$ bar	yons.
¹⁵ ADAM 96D assur				3.	•

#### A REFERENCES

ABREU	99W	EPJ C10 185	P. Abreu et al.	(DELPHI Collab.)
ACKERSTAFF	98G	PL B426 161	K. Ackerstaff et al.	(OPAL Collab.)
BARATE	98D	EPJ C2 197	R. Barate et al.	(ALEPH Collab.)
ABE	97B	PR D55 1142	F. Abe et al.	(CDF Collab.)
PDG	97	Unofficial 1997	WWW edition	
ABE	96M	PRL 77 1439	F. Abe et al.	(CDF Collab.)
ABREU	96D	ZPHY C71 199	P. Abreu et al.	(DELPHI Collab.)
ABREU	96N	PL B374 351	P. Abreu et al.	(DELPHI Collab.)
ADAM	96D	ZPHY C72 207	W. Adam et al.	(DELPHI Collab.)
BUSKULIC	96L	PL B380 442	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	96 <b>V</b>	PL B384 471	D. Buskulic et al.	(ALEPH Collab.)
PDG	96	PR D54 1		
ABREU	955	ZPHY C68 375	P. Abreu et al.	(DELPHI Collab.)
AKERS	95K	PL B353 402	R. Akers et al.	(OPAL Collab.)
BUSKULIC	95L	PL B357 685	D. Buskulic et al.	(ALEPH Collab.)
ABE	93B	PR D47 R2639	F. Abe et al.	(CDF Collab.)
BUSKULIC	92E	PL B294 145	D. Buskulic et al.	(ALEPH Collab.)
ALBAJAR	91E	PL B273 540	C. Albajar et al.	(UA1 Collab.)
BARI	91	NC 104A 1787	G. Bari et al.	(CERN R422 Collab.)
ARENTON	86	NP B274 707	M.W. Arenton et al.	(ARIZ, NDAM, VAND)
BASILE	81	LNC 31 97	M. Basile et al.	(CERN R415 Collab.)

 $I(J^P) = O(\frac{1}{2}^+)$  Status: *

OMITTED FROM SUMMARY TABLE

ABREU 95V observe an excess of same-sign  $\Xi^\mp \ell^\mp$  events in jets, which they interpret as  $\Xi_b \to \Xi^- \ell^- \overline{\nu}_\ell X$ . They find that the probability for these events to come from non-b-baryon decays is less than  $5 \times 10^{-4}$  and that  $\varLambda_b$  decays can account for less than 10%

In the quark model,  $\Xi_b^0$  and  $\Xi_b^-$  are an isodoublet  $(u \circ b, d \circ b)$  state; the lowest  $\Xi_b^0$  and  $\Xi_b^-$  ought to have  $J^P=1/2^+$ . None of I, J, or P have actually been measured.

#### **≡**_b MEAN LIFE

This is actually a measurement of the average lifetime of b-baryons that decay to a jet containing a same-sign  $\Xi^{\mp}\ell^{\mp}$  pair. Presumably the mix is mainly  $\Xi_b$ , with some  $\Lambda_b$ .

"OUR EVALUATION" is an average of the data listed below performed by the LEP  ${\cal B}$  Lifetimes Working Group as described in our review "Production and Decay of b-flavored Hadrons" in the  ${\cal B}^\pm$  Section of the Listings. The averaging procedure takes into account correlations between the measurements and asymmetric lifetime errors.

VALUE (10 ⁻¹² s) 1.39±0.30 OUR EVA	EVT5	DOCUMENT ID	TECN	COMMENT
$1.35 + 0.37 + 0.15 \\ -0.28 - 0.17$	LOA! ION	BUSKULIC	96T ALEP	Excess $\Xi^-\ell^-$ , impact parameters
$1.5 \begin{array}{l} +0.7 \\ -0.4 \end{array} \pm 0.3$	8	ABREU	95v DLPH	Excess =- \ell^-, decay

#### Eh DECAY MODES

	Mode	Fraction $(\Gamma_i/\Gamma)$
$\overline{\Gamma_1}$	$\bar{\Xi}^-\ell^-ar{ u}_\ell$ anything	seen

#### **E**_b BRANCHING RATIOS

$\Gamma(\Xi^-\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$			Γ ₁ /Ι	-
VALUE	DOCUMENT ID	TECN	COMMENT	_
seen	¹ BUSKULIC	96T ALEP	Excess = l over	
seen	ABREU	95v DLPH	Excess = - l over	

0.8)  $\times$  10⁻⁴ per lepton species, averaged over e and  $\mu$ .

#### **Eb REFERENCES**

(ALEPH Collab.) (DELPHI Collab.) 96T PL 8384 449 95V ZPHY C68 541 D. Buskulic et al. P. Abreu et al.

## b-baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$

#### b-baryon ADMIXTURE MEAN LIFE

Each measurement of the b-baryon mean life is an average over an admixture of various b baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different b-baryon mean life. More b-baryon flavor specific channels are not included in the measurement.

"OUR EVALUATION" is an average of the data listed below performed by the LEP B Lifetimes Working Group as described in our review "Production and Decay of b-flavored Hadrons" in the  $B^\pm$  Section of these Listings. The averaging procedure takes into account correlations between the measurements and asymmetric lifetime errors.

VALUE (10 ⁻¹² s) EVTS 1.208±0.051 OUR EVALUATION	DOCUMENT ID	TECN	COMMENT
1.16 ±0.20 ±0.08	¹ ABREU	99w DLPH	$e^+e^- \rightarrow Z$
$1.19 \pm 0.14 \pm 0.07$	² ABREU	99W DLPH	$e^+e^- \rightarrow Z$
$1.20 \pm 0.08 \pm 0.06$	³ BARATE	98D ALEP	$e^+e^- \rightarrow Z$
$1.10 \ ^{+0.19}_{-0.17} \ \pm 0.09$	ABREU	96D DLPH	Excess $A\mu^{-}$ impact parameters
$1.16 \pm 0.11 \pm 0.06$	AKERS	96 OPAL	Excess Al—, decay lengths and impact parameters

## b-baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$

• • We do not use the following data for averages, fits, limits, etc. • •						
1.14 ±	0.08	±0.04		⁴ ABREU	99W DLPH	$e^+e^- \rightarrow Z$
1.46 +	0.22 0.21	+0.07 -0.09		ABREU	96D DLPH	Repl. by ABREU 99w
1.27 +				ABREU	95s DLPH	Repl. by ABREU 99W
1.05 +	0.12 0.11	$\pm0.09$	290	BUSKULIC	95L ALEP	Repl. by BARATE 980
1.04 +	0.48 0.38	$\pm 0.10$	11	⁵ ABREU	93F DLPH	Excess $\Lambda \mu^-$ , decay lengths
1.05 +	0.23 0.20	±0.08	157	⁶ AKERS	93 OPAL	Excess Al—, decay lengths
1.12 +	0.32 0.29	$\pm0.16$	101	⁷ BUSKULIC	921 ALEP	Excess $\Lambda \ell^+$ , impact parameters

- 1  Measured using  $\varLambda\ell^-$  decay length.  2  Measured using  $\varrho\ell^-$  decay length.

- ³ Measured using the excess of  $\Lambda\ell^-$ , lepton impact parameter. ⁴ This ABREU 99w result is the combined result of the  $\Lambda\ell^-$ ,  $p\ell^-$ , and excess  $\Lambda\mu^$ impact parameter measurements
- ⁵ ABREU 93F superseded by ABREU 96D.
- ⁶ AKERS 93 superseded by AKERS 96.
- ⁷BUSKULIC 92i superseded by BUSKULIC 95L.

#### b-baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy  $p\bar{p}$ ), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction B( $b \rightarrow b$ -baryon) and are evaluated for our value B( $b \rightarrow b$ -baryon) = (11.6  $\pm$  2.0)%.

The branching fractions B(b-baryon  $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$  anything) and B( $\Lambda_b^0 \rightarrow$  $\Lambda_{c}^{+}\ell^{-}\bar{\nu}_{\ell}$  anything) are not pure measurements because the underlying measured products of these with  $B(b \to b\text{-baryon})$  were used to determine  $B(b \to b\text{-baryon})$ , as described in the note "Production and Decay of b-Flavored Hadrons."

	Mode	Fraction $(\Gamma_{i}/\Gamma)$
Γ ₁	$ ho\mu^-\overline{ u}$ anything	( 4.2 ⁺ 1.8) %
$\Gamma_2$	$p\ell\overline{\nu}_{\ell}$ anything	( 4.1 ± 1.0) %
$\Gamma_3$	panything	(51 ±17 )%
Γ <u>4</u>	$\Lambda \ell^- \overline{\nu}_{\ell}$ anything	( 2.7 ± 0.8) %
Γ ₅	$\Lambda \ell^+ \nu_{\ell}$ anything	
Γ ₆	/\tanything	
Γ ₇	$\Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything	
Гв	$\Lambda/\overline{\Lambda}$ anything	(28 ± 7 )%
Г	$\Xi^-\ell^-\overline{\nu}_\ell$ anything	$(4.8 \pm 1.3) \times 10^{-3}$

#### b-baryon ADMIXTURE ( $A_b, \Xi_b, \Sigma_b, \Omega_b$ ) BRANCHING RATIOS

$\Gamma(\rho\mu^{-}\nu_{anything})/\Gamma_{total}$				$\Gamma_1/\Gamma$	
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
$0.042^{+0.016}_{-0.013}\pm0.007$	125	⁸ ABREU	95s DLPH	$e^+e^- \to Z$	

⁸ ABREU 95s reports [B(b-baryon  $\rightarrow p\mu^- \overline{\nu}$  anything)  $\times$  B( $\overline{b} \rightarrow b$ -baryon)] = 0.0049  $\pm$  $0.0011^+0.0015$ . We divide by our best value B( $\bar{b}\to b$ -baryon) =  $(11.6\pm2.0)\times10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\ell \overline{\nu}_{\ell} \text{anything})/\Gamma_{\text{total}}$				$\Gamma_2/\Gamma$
VALUE	DOCUMENT ID	TECN	COMMENT	
0.041±0.007±0.007	9 BARATE	98v ALEP	$e^+e^- \rightarrow Z$	

⁹BARATE 98v reports [B(b-baryon  $\rightarrow p\ell\bar{\nu}_{\ell}$  anything)  $\times$  B( $\bar{b} \rightarrow b$ -baryon)] = (4.72  $\pm$  $0.66\pm0.44)\times10^{-3}$ . We divide by our best value B( $b\to b$ -baryon) = (11.6  $\pm$  2.0)  $\times$   $10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\rho \ell \overline{\nu}_{\ell} \text{anything})/\Gamma(\rho \text{anything})$				$\Gamma_2/\Gamma_3$
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.080 \pm 0.012 \pm 0.014$	BARATE	98v ALEP	$e^+e^- \rightarrow Z$	

 $\Gamma_4/\Gamma$  $\Gamma(\Lambda \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$ The values and averages in this section serve only to show what values result if one assumes our  $B(b \rightarrow b\text{-baryon})$ . They cannot be thought of as measurements since

the underlying product branching fractions were also used to determinine B(b o bbaryon) as described in the note on "Production and Decay of b-Flavored Hadrons."

ı

VALUE	LVIJ	DOCOMENTIO	12014	COMMENT
0.027±0.008 OUR AVE	RAGE			
$0.028 \pm 0.004 \pm 0.005$		¹⁰ BARATE	98D ALEP	$e^+e^- \rightarrow Z$
$0.025 \pm 0.003 \pm 0.004$		11 AKERS		Excess of $\Lambda \ell^-$ over $\Lambda \ell^+$
$0.026 \pm 0.006 \pm 0.004$	262	12 ABREU		Excess of $\Lambda \ell^-$ over $\Lambda \ell^+$
$0.053 \pm 0.010 \pm 0.009$	290	¹³ BUSKULIC	95L ALEP	Excess of $\Lambda \ell^-$ over $\Lambda \ell^+$

• • • We do not use the following data for averages, fits, limits, etc. • • •

14 AKERS 93 OPAL Excess of Al over Al+ 15 BUSKULIC  $0.060 \pm 0.018 \pm 0.010$ 101 921 ALEP Excess of Al- over Al+

¹⁰BARATE 98D reports [B(b-baryon  $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$  anything)  $\times$  B( $\overline{b}_{-} \rightarrow b$ -baryon)] =  $0.00326\pm0.00016\pm0.00039$ . We divide by our best value  $B(\overline{b}\to b\text{-b-baryon})=(11.6\pm2.0)\times10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value. Measured using the excess of  $\Lambda\ell^-$ , epton impact parameter.

¹¹ AKERS 96 reports [B(b-baryon  $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$  anything)  $\times$  B( $\overline{b} \rightarrow b$ -baryon)] = 0.00291 ±  $0.00023\pm0.00025$ . We divide by our best value B( $\bar{b}\to b$ -baryon) =  $(11.6\pm2.0)\times10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹² ABREU 95s reports [B(b-baryon  $\rightarrow \Lambda \ell^- \bar{\nu}_\ell$  anything)  $\times$  B( $\bar{b} \rightarrow b$ -baryon)] = 0.0030  $\pm$  $0.0006 \pm 0.0004$ . We divide by our best value B( $\overline{b} \rightarrow b$ -baryon) =  $(11.6 \pm 2.0) \times 10^{-2}$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹³BUSKULIC 95L reports [B(b-baryon  $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$  anything)  $\times$  B( $\overline{b} \rightarrow b$ -baryon)] = 0.0061  $\pm$  0.0006  $\pm$  0.0010. We divide by our best value B( $\overline{b} \rightarrow \ b\text{-baryon})$  = (11.6  $\pm$  $2.0) \times 10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹⁴ AKERS 93 superseded by AKERS 96.

¹⁵BUSKULIC 92: reports  $[B(b\text{-baryon} \rightarrow \Lambda \ell^- \bar{\nu}_{\ell} \text{ anything}) \times B(\bar{b} \rightarrow b\text{-baryon})] =$  $0.0070 \pm 0.0010 \pm 0.0018$ . We divide by our best value B( $\overline{b} \rightarrow b$ -baryon) = (11.6  $\pm$  $2.01 \times 10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by BUSKULIC 95L.

#### $\Gamma(\Lambda \ell^+ \nu_\ell \text{ anything}) / \Gamma(\Lambda \text{ anything})$ $\Gamma_5/\Gamma_6$ DOCUMENT ID TECN COMMENT $0.080 \pm 0.012 \pm 0.008$ ABBIENDI 99L OPAL $e^+e^- \rightarrow Z$

ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L  $0.070 \pm 0.012 \pm 0.007$ 

$\Gamma(\Lambda/\overline{\Lambda}anything)/\Gamma_{total}$				Γ ₈ /Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
0.28±0.07 OUR AVERAGE				
$0.30 \pm 0.04 \pm 0.05$	16 ABBIENDI	99L OPAL	$e^+e^- \rightarrow Z$	
$0.19^{+0.11}_{-0.07} \pm 0.03$	17 ABREU	95c DLPH	$e^+ e^- \rightarrow Z$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

18 ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L

¹⁶ ABBIENDI 99L reports [B(b-baryon  $\rightarrow \Lambda/\overline{\Lambda}$ anything)  $\times$  B( $\overline{b} \rightarrow b$ -baryon)] = 0.035  $\pm$ 0.0032  $\pm$  0.0035. We divide by our best value  $B(\overline{b} \rightarrow b\text{-baryon}) = (11.6 \pm 2.0) \times 10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value. 17 ABREU 95c reports  $0.28^{+0.17}_{-0.12}$  for  $B(\overline{b} \rightarrow b\text{-baryon}) = 0.08 \pm 0.02$ . We rescale to our

best value B( $\bar{b} \to b$ -baryon) =  $(11.6 \pm 2.0) \times 10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value.

18 ACKERSTAFF 97N reports  $[B(b ext{-baryon} o A/\overline{A} ext{anything}) imes B(\overline{b} o b ext{-baryon})] = 0.0393 \pm 0.0046 \pm 0.0037$ . We divide by our best value  $B(\overline{b} o b ext{-baryon}) = (11.6 \pm 2.0) imes 10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Xi^-\ell^-\overline{\nu}_\ell \text{anything})/\Gamma_{\text{total}}$			٦/و٦
VALUE	DOCUMENT ID	TECN	COMMENT
0.0048±0.0013 OUR AVERAGE			
$0.0047 \pm 0.0012 \pm 0.0008$	¹⁹ BUSKULIC	96T ALEP	Excess $\Xi^-\ell^-$ over
$0.0051 \pm 0.0020 \pm 0.0009$	²⁰ ABREU	95v DLPH	Excess $\Xi^-\ell^-$ over

¹⁹BUSKULIC 96T reports [B(b-baryon  $\rightarrow \Xi^-\ell^-\overline{\nu}_{\ell}$  anything)  $\times$  B( $\overline{b} \rightarrow b$ -baryon)] = 0.00054  $\pm$  0.00011  $\pm$  0.00008. We divide by our best value B( $\overline{b} \rightarrow b$ -baryon) =  $(11.6 \pm 2.0) \times 10^{-2}$ . Our first error is their experiment's error and our second error is

the systematic error from using our best value. ²⁰ ABREU 95v reports [B(b-baryon  $\rightarrow \Xi^-\ell^-\overline{\nu}_\ell$  anything)  $\times$  B( $\overline{b} \rightarrow b$ -baryon)] =  $0.00059 \pm 0.00021 \pm 0.0001$ . We divide by our best value B( $\overline{b} \rightarrow b$ -baryon) = (11.6  $\pm$  $2.0) \times 10^{-2}$ . Our first error is their experiment's error and our second error is the systematic error from using our best value.

#### b-baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$ REFERENCES

ABBIENDI 99L EPJ C9 1 G. Abbiendi et al. (OPAL Collab.)	
ABREU 99W EPJ C10 185 P. Abreu et al. (DELPHI Collab.)	
BARATE 98D EPJ C2 197 R. Barate et al. (ALEPH Collab.)	
BARATE 98V EPJ C5 205 R. Barate et al. (ALEPH Collab.)	
ACKERSTAFF 97N ZPHY C74 423 K. Ackerstaff et al. (OPAL Collab.)	
ABREU 96D ZPHY C71 199 P. Abreu et al. (DELPHI Collab.)	
AKERS 96 ZPHY C69 195 R. Akers et al. (OPAL Collab.)	
BUSKULIC 96T PL B384 449 D. Buskulic et al. (ALEPH Collab.)	
ABREU 95C PL 8347 447 P. Abreu et al. (DELPHI Collab.)	
ABREU 955 ZPHY C68 375 P. Abreu et al. (DELPHI Collab.)	
ABREU 95V ZPHY C68 541 P. Abreu et al. (DELPHI Collab.)	
BUSKULIC 95L PL B357 685 D. Buskulic et al. (ALEPH Collab.)	
ABREU 93F PL B311 379 P. Abreu et al. (DELPHI Collab.)	
AKERS 93 PL B316 435 R. Akers et al. (OPAL Collab.)	
BUSKULIC 921 PL B297 449 D. Buskulic et al. (ALEPH Collab.)	

59 EMUL

BRADNER

## SEARCHES FOR **MONOPOLES** SUPERSYMMETRY, TECHNICOLOR, COMPOSITENESS, etc.

## Magnetic Monopole Searches

#### MAGNETIC MONOPOLE SEARCHES

Revised December 1997 by D.E. Groom (LBNL).

"At the present time (1975) there is no experimental evidence for the existence of magnetic charges or monopoles, but chiefly because of an early, brilliant theoretical argument by Dirac, the search for monopoles is renewed whenever a new energy region is opened up in high energy physics or a new source of matter, such as rocks from the moon, becomes available [1]." Dirac argued that a monopole anywhere in the universe results in electric charge quantization everywhere, and leads to the prediction of a least magnetic charge  $g = e/2\alpha$ , the Dirac charge [2]. Recently monopoles have become indispensable in many gauge theories, which endow them with a variety of extraordinarily large masses. The discovery by a candidate event in a single superconducting loop in 1982 [6] stimulated an enormous experimental effort to search for supermassive magnetic monopoles [3,4,5].

Monopole detectors have predominantly used either induction or ionization. Induction experiments measure the monopole magnetic charge and are independent of monopole electric charge, mass, and velocity. Monopole candidate events in single semiconductor loops [6,7] have been detected by this method, but no two-loop coincidence has been observed. Ionization experiments rely on a magnetic charge producing more ionization than an electrical charge with the same velocity. In the case of supermassive monopoles, time-of-flight measurements indicating  $v \ll c$  has also been a frequently sought signature.

Cosmic rays are the most likely source of massive monopoles, since accelerator energies are insufficient to produce them. Evidence for such monopoles may also be obtained from astrophysical observations.

Jackson's 1975 assessment remains true. The search is somewhat abated by the lack of success in the 1980's and the decrease of interest in grand unified gauge theories.

#### References

- 1. J. D. Jackson, Classical Electrodynamics, 2nd edition (John Wiley & Sons, New York, 1975).
- 2. P.A.M. Dirac, Proc. Royal Soc. London A133, 60 (1931).
- 3. J. Preskill, Ann. Rev. Nucl. and Part. Sci. 34, 461 (1984).
- 4. G. Giacomelli, La Rivista del Nuovo Cimento 7, N. 12, 1 (1984).
- 5. Phys. Rep. 140, 323 (1986).
- B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982).
- 7. A.D. Caplin et al., Nature 321, 402 (1986).

Monopole	Production	Cross S	ection -	Acce	lerator	Searches		
X-SECT	MASS		<b>ENERGY</b>					
(cm ² )	(GeV)	(g)	(GeV)	BEAM	EVTS	DOCUMENT ID		TECN
< 0.65E - 33	<3.3	≥ 2	11 <i>A</i>	197 _{Au}	0	1 HE	97	
<1.90E-33	< 8.1	≥ 2	160 <i>A</i>	208 _{Pb}	0	¹ HE	97	
<3.E-37	<45.0	1.0	8894	$e^+e^-$	0	PINFOLD	93	PLAS
<3.E-37	<41.6	2.0	88-94	$e^+e^-$	0	PINFOLD	93	PLAS
<7.E-35	<44.9	0.2-1.0	89-93	e+ e-	0	KINOSHITA	92	PLAS
< 2.E - 34	<850	≥ 0.5	1800	$p\overline{p}$	0	BERTANI	90	PLA\$
<1.2E-33	< 800	$\geq 1$	1800	$p\overline{p}$	0	PRICE	90	PLAS
<1.E-37	<29	1	50- <del>6</del> 1	$e^+e^-$	0	KINOSHITA	89	PLA\$
<1.E-37	<18	2	50-61	$e^+e^-$	0	KINOSHITA	89	PLAS
< 1.E - 38	<17	<1	35	$e^+e^-$	0	BRAUNSCH	888	CNTR
<8.E-37	<24	1	50-52	$e^+e^-$	0	KINOSHITA	88	PLAS
<1.3E-35	<22	2	50-52	e+e-	0	KINOSHITA	88	PLAS
<9.E-37	<4	< 0.15	10.6	$e^+e^-$	0	GENTILE	87	CLEO
< 3.E - 32	<800	$\geq 1$	1800	$p\overline{p}$	0	PRICE	87	PLAS
<3.E-38		<3	29	$e^+e^-$	0	FRYBERGER	84	PLAS
< 1.E - 31		1,3	540	ρ̈́p	0	AUBERT	838	PLAS
<4.E~38	<10	<6	34	$e^+e^-$	0	MUSSET	83	PLAS
< 8.E - 36	<20		52	PP	0	² DELL	82	CNTR
<9.E-37	<30	<3	29	$e^+e^-$	0	KINOSHITA	82	PLA\$
<1.E-37	< 20	<24	63	pр	0	CARRIGAN	78	CNTR
<1.E-37	<30	<3	56	PP	0	HOFFMANN	78	PLAS
			62	PP	0	² DELL	76	SPRK
<4.E-33			300	p	0	² STEVENS		SPRK
< 1.E - 40	<5	<2	70	p	0	3 ZRELOV	76	CNTR
<2.E~30			300	n	0	² BURKE	75	OSPK
<1.E-38			8	ν	0	4 CARRIGAN	75	HLBC
<5.E-43	<12	<10	400	p	0	EBERHARD		INDU
<2.E-36	<30	<3	60	PР	0	GIACOMELLI	75	PLAS
<5.E 42	<13	<24	400	p	0	CARRIGAN	74	CNTR
<6.E-42	<12	<24	300	p	0	CARRIGAN 3 DADTI ETT	73	CNTR
<2.E-36	_	1	0.001	γ	0	DARTELLI	72	CNTR
<1.E-41	<5	_	70	p	0	GUREVICH	72	EMUL
<1.E-40	<3	<2	28	P	0	AMALDI	63	EMUL
<2.E~40	<3	<2	30	p	0	PURCELL	63	CNTR
<1.E-35	<3	<4	28	P	0	FIDECARO	61	CNTR

⁶ p  $^{
m 1}$  HE 97 used a lead target and barium phosphate glass detectors. Cross-section limits are well below those predicted via the Drell-Yan mechanism.

<2.E-35

<1

#### Monopole Production — Other Accelerator Searches ENERGY

(GeV)	(g)	5PIN	(GeV)	BEAM	DOCUMENT ID	TECN
> 610	≥ 1	0	1800	$p\overline{p}$	⁵ ABBOTT	98K D0
> 870	≥ 1	1/2	1800	$p\overline{p}$	5 ABBOTT	98K D0
>1580	≥ 1	1	1800	ρĪ	5 ABBOTT	98K D0
> 510			88-94	e+ e-	6 ACCIARRI	95C L3

⁵ ABBOTT 98K search for heavy pointlike Dirac monopoles via central production of a

pair of photons with high transverse energies.  6  ACCIARRI 95C finds a limit B( $Z \to \gamma\gamma\gamma$ ) < 0.8  $\times$  10 $^{-5}$  (which is possible via a monopole loop) at 95% CL and sets the mass limit via a cross section model.

#### Monopole Flux — Cosmic Ray Searches

FLUX	MASS	CHG	COMMENTS				
(cm-2 _{sr} ~1 _s -1	(GeV)	(g)	$(\beta = v/c)$	EVTS	DOCUMENT ID		TECN
<1E-15		1	$1.1 \times 10^{-4} - 0.1$	0	⁷ AMBROSIO	97	MCRO
<4.1E-15		1	(0.18-2.7)E-3	0	⁸ AMBROSIO	97	MCRO
<1.0E-15		1	0.0012-0.1	0	⁹ AMBROSIO	97	MCRO
<0.87E-15			(0.11-5)E 3	0	10 AMBROSIO	97	MCRO
<6.8E-15		1	4.0E-5	0	11 AMBROSIO	97	MCRO
<2.8E-15		1	0.1-1	0	12 AMBROSIO	97	MCRO
<4.4E-15		1	0.1-1	0	13 AMBROSIO	97	MCRO
<5.6E-15		1	(0.18-3.0)E-3	0	14 AHLEN	94	MCRO
<2.7E-15		1	$\beta \sim 1 \times 10^{-3}$	0	15 BECKER-SZ	94	IMB
<8.7E-15		1	>2.E-3	0	THRON	92	SOUD
< 4.4E - 12		1	all β	0	GARDNER	91	INDU
<7.2E-13		1	all β	0	HUBER	91	INDU
<3.7E-15	>E12	1	$\beta=1.E-4$	0	¹⁶ ORITO	91	PLAS
<3.2E-16	>E10	1	$\beta > 0.05$	0	¹⁶ ORITO	91	PLAS
<3.2E-16	>E10-E12	2,3		0	¹⁶ ORITO	91	PLAS
<3.8E-13		1	all β	0	BERMON	90	INDU
<5.E-16		1	$\beta < 1.E - 3$	0	¹⁵ BEZRUKOV	90	CHER
<1.8E-14		1	$\beta > 1.1E - 4$	0	¹⁷ BUCKLAND	90	HEPT
<1E-18			$3.E-4 < \beta < 1.5E-$	3 0	¹⁸ GHOSH	90	MICA
<7.2E-13		1	all $oldsymbol{eta}$	0	HUBER	90	INDU
<5.E-12	>E7	1	$3.E-4 < \beta < 5.E-3$	3 0	BARISH	87	CNTR
<1.E-13			1.E−5 < β <1	0	¹⁵ BARTELT	87	SOUD
< 1.E - 10		1	all $\beta$	0	<b>EBISU</b>	87	INDU
<2.E-13			$1.E-4 < \beta < 6.E-4$	4 0	MASEK	87	HEPT
< 2.E - 14			$4.E-5 < \beta < 2.E-4$	4 0	NAKAMURA	87	PLA\$
<2.E-14			$1.E-3 < \beta < 1$	0	NAKAMURA	87	PLAS

 $^{^{2}\,\}mathrm{Multiphoton}$  events.

⁴ Re-examines CERN neutrino experiments.

## Searches Particle Listings

## Magnetic Monopole Searches

<5.E-14			$9.E-4 < \beta < 1.E-2$	0		SHEPKO	87	CNTR
<2.E-13			$4.E-4 < \beta < 1$	0		TSUKAMOTO		CNTR
<5.E 14		1	all $oldsymbol{eta}$	1	19	CAPLIN	86	INDU
<5.E-12		1		0		CROMAR	86	INDU
<1.E-13		1	7.E-4 <eta< td=""><td>0</td><td></td><td>HARA</td><td>86</td><td>CNTR</td></eta<>	0		HARA	86	CNTR
<7.E-11		1	all $oldsymbol{eta}$	0		INCANDELA	86	INDU
<1.E-18			$4.E-4 < \beta < 1.E-3$	0	18	PRICE	86	MICA
<5.E-12		1		0		BERMON	85	INDU
<6.E-12		- 1		0		CAPLIN	85	INDU
< 6.E - 10		1		0		EBIŞU	85	INDU
<3.E-15			$5.E-5 \le \beta \le 1.E-3$	0	15	KAJITA	85	KAMI
< 2.E - 21			$\beta < 1.E - 3$	0 15	,20	KAJITA	85	KAMI
<3.E-15			$1.E-3 < \beta < 1.E-1$	0	15	PARK	85B	CNTR
<5.E-12		1	$1.E-4 < \beta < 1$	0		BATTISTONI	84	NUSX
<7.E-12		1		0		INCANDELA	84	INDU
<7.E-13		1	$3.E - 4 < \beta$	0	17	KAJINO	84	CNTR
<2.E-12		1	$3.E-4 < \beta < 1.E-1$	0		KAJINO	84B	CNTR
<6.E-13			$5.E-4 < \beta < 1$	0		KAWAGOE	84	CNTR
<2.E-14			$1.E - 3 < \beta$	0	15	KRISHNA	84	CNTR
<4.E~13		1	$6.E-4 < \beta < 2.E-3$	0		LISS		CNTR
<1.E-16			$3.E-4 < \beta < 1.E-3$	0	18	PRICE		MICA
<1.E-13		1	$1.E-4 < \beta$	0		PRICE		PLAS
<4.E 13		1	$6.E-4 < \beta < 2.E-3$	0		TARLE	84	
			,,, ,	7	21	ANDERSON	83	EMUL
<4.E-13		1	$1.E-2 < \beta < 1.E-3$	0		BARTELT		CNTR
<1.E-12			7.E-3 < $\beta$ <1	0		BARWICK	83	PLAS
<3.E-13			$1.E-3 < \beta < 4.E-1$	0		BONARELLI	83	
<3.E-12		-	$5.E-4 < \beta < 5.E-2$	0	15	BOSETTI	83	CNTR
<4.E-11		1	5.2 · ( p ( 5.2 · L	0		CABRERA	83	INDU
<5.E-15			$1.E-2 < \beta < 1$	0		DOKE	83	PLAS
<8.E-15		-	1.E-4 < $\beta$ <1.E-1	0	15	ERREDE	83	IMB
<5.E-12		1	$1.E-4 < \beta < 3.E-2$	0		GROOM	83	CNTR
<2.E-12		-	6.E-4 < $\beta$ < 1	Ö		MASHIMO	83	CNTR
<1.E-13		1	$\beta=3.E-3$	0		ALEXEYEV	82	CNTR
<2.E-12			7.E-3 < $\beta$ < 6.E-1	0		BONARELLI	82	
6.E-10		1	all $\beta$	1	22	CABRERA	82	INDU
<2.E-11		•	$1.E-2 < \beta < 1.E-1$	ò		MASHIMO	82	
<2.E-11			concentrator	0		BARTLETT	81	PLAS
<1.E~13	>1		$1.E-3 < \beta$	0		KINOSHITA		PLAS
<5.E-11	<e17< td=""><td></td><td>$3.E-4 &lt; \beta &lt; 1.E-3$</td><td>0</td><td></td><td>ULLMAN</td><td></td><td></td></e17<>		$3.E-4 < \beta < 1.E-3$	0		ULLMAN		
<2.E-11	( = 11		concentrator	0		BARTLETT	81 78	CNTR
1.E-1	>200	2	Concentrator		23	PRICE		PLAS
<2.E-13	>200			1			75	PLAS
<2.E-13 <1.E-19		>2	abaldian	0		FLEISCHER	71	PLAS
<1.E-19 <5.E-15	<15		obsidian, mica concentrator	0		FLEISCHER		PLA\$
	< 10			0		CARITHERS	66	ELEC
<2.E-11		<1-3	concentrator	0		MALKUS	51	EMUL

7 AMBROSIO 97 global MACRO 90%CL is  $0.78 \times 10^{-15}$  at  $\beta$ =1.1  $\times$  10⁻⁴, goes through a minimum at  $0.61 \times 10^{-15}$  near  $\beta$ =(1.1-2.7)  $\times$  10⁻³, then rises to  $0.84 \times 10^{-15}$  at  $\beta$ =0.1. The global limit in this region is below the Parker bound at  $10^{-15}$ . Less stringent limits are established for  $4 \times 10^{-5} < \beta < 1$ . Limits set by various triggers in the detector are listed below. All limits assume a catalysis cross section smaller than 10 mb.

8 AMBROSIO 97 "Scintillator D" (low velocity) 90%CL increases from  $4.1 \times 10^{-15}$  at  $\frac{4}{2} \cdot 2.7 \times 10^{-3}$  to  $\frac{1}{2} \cdot 10^{-15}$  at  $\frac{4}{2} \cdot 0.7 \times 10^{-3}$  to  $\frac{1}{2} \cdot 0.7 \times 10^{-15}$  at  $\frac{4}{2} \cdot 0.7 \times 10^{-3}$ 

 $\beta$ =2.7 × 10⁻³ to 14.6 × 10⁻¹⁵ at  $\beta$ =0.006.

9 AMBROSIO 97 "Scintillator B" 90%CL (single medium-velocity trigger with two analysis

10 AMBROSIO 97 streamer tube 90%CL. Tubes contain helium, and hence trigger is sen-

AMBROSIO 97 streamer tube 90%CL. Tubes contain helium, and hence trigger is sensitive via the atomic induction mechanism. 11 AMBROSIO 97 CR39 90%CL improves to  $4.3 \times 10^{-15}$  at  $\beta = 1.0 \times 10^{-4}$ . CR39 is sensitive for  $4 \times 10^{-5} < \beta < 1$  except for a window at  $0.25 \times 10^{-3} < \beta < 2.1 \times 10^{-3}$ . In the middle region other triggers set better limits. 12 AMBROSIO 97 CR39 90%CL falls to  $2.7 \times 10^{-15}$  at  $\beta = 1$  and increases at lower velocities. Provides better limit than "Scintillator C" for  $0.1 < \beta < 1.0$ . 13 AMBROSIO 97 "Scintillator C" 90%CL, based on high absolute energy loss in two scintillator lawers

scintillator layers.

scintillator layers. 14 AHLEN 94 limit for dyons extends down to  $\beta$ =0.9E-4 and a limit of 1.3E-14 extends to  $\beta$ =0.8E-4. Also see comment by PRICE 94 and reply of BARISH 94. One loophole in the AHLEN 94 result is that in the case of monopoles catalyzing nucleon decay, relativistic particles could veto the events. See AMBROSIO 97 for additional results.

15 Catalysis of nucleon decay; sensitive to assumed catalysis cross section.

¹⁶ ORITO 91 limits are functions of velocity. Lowest limits are given here.

¹⁷Used DKMPR mechanism and Penning effect. ¹⁸ Assumes monopole attaches fermion nucleus.

19 Limit from combining data of CAPLIN 86, BERMON 85, INCANDELA 84, and CABRERA 83. For a discussion of controversy about CAPLIN 86 observed event, see GUY 87. Also see SCHOUTEN 87.
 20 Based on lack of high- energy solar neutrinos from catalysis in the sun.
 21 Anomalous long-range α (4 He) tracks.
 22 CARREDA 23 cardiable quart for single Direc charge within ±5%

 22  CABRERA 82 candidate event has single Dirac charge within  $\pm 5\%$ .

23 ALVAREZ 75, FLEISCHER 75, and FRIEDLANDER 75 explain as fragmenting nucleus. EBERHARD 75 and ROSS 76 discuss conflict with other experiments. HAGSTROM 77 reinterprets as antinucleus. PRICE 78 reassesses.

Monopole	Flux —	Astrop	hysics
FLUX	MASS	CHG	COMMENTS

$(cm^{-2}sr^{-1}s^{-1})$	(GeV)	(g)	$(\beta = v/c)$	EVTS		DOCUMENT ID		TECN
<1.3E-20			faint white dwarf			FREESE	99	ASTR
<1.E-16	E17	1	galactic field	0		ADAMS	93	COSM .
<1.E-23			Jovian planets		24	ARAFUNE	85	ASTR
<1.E-16	E15		solar trapping	0		BRACCI	85B	ASTR
<1.E-18		1		0	24	HARVEY	84	COSM
<3.E-23			neutron stars			KOLB	84	ASTR
<7.E-22			pulsars	0		FREESE	83B	ASTR
<1.E-18	<e18< td=""><td>1</td><td>intergalactic field</td><td>0</td><td></td><td>REPHAELI</td><td>83</td><td>COSM</td></e18<>	1	intergalactic field	0		REPHAELI	83	COSM
<1.E-23			neutron stars	0	24	DIMOPOUL	82	COSM
<5.E-22			neutron stars	0	24	KOLB	82	COSM
<5.E-15	>E21		galactic halo			SALPETER	82	COSM
<1.E-12	E19	1	$\beta = 3.E - 3$	0	26	TURNER	82	COSM
<1.E-16		1	galactic field	0		PARKER	70	COSM

24 Catalysis of nucleon decay.

25ADAMS 93 limit based on "survival and growth of a small galactic seed field" is  $10^{-16}~(m/10^{17}~{\rm GeV})~{\rm cm}^{-2}~{\rm s}^{-1}~{\rm sr}^{-1}$ . Above  $10^{17}~{\rm GeV}$ , limit  $10^{-16}~(10^{17}~{\rm GeV}/m)$  cm $^{-2}~{\rm s}^{-1}~{\rm sr}^{-1}$  (from requirement that monopole density does not overclose the universe) is more stringent.

26 Re-evaluates PARKER 70 limit for GUT monopoles.

#### Monopole Density — Matter Searches

DENSITY	(g)	MATERIAL	EVTS	DOCUMENT ID		TECN
<6.9E-6/gram	>1/3	Meteorites and other	0	JEON	95	INDU
<2.E7/gram	>0.6	Fe ore	0	²⁷ EBISU	87	INDU
<4.6E6/gram	> 0.5	deep schist	0	KOVALIK	86	INDU
<1.6E-6/gram	> 0.5	manganese nodules	0	²⁸ KOVALIK	86	INDU
<1.3E-6/gram	> 0.5	seawater	0	KOVALIK	86	INDU
>1.E+14/gram	>1/3	iron aerosols	>1	MIKHAILOV	83	SPEC
<6.E-4/gram		air, seawater	0	CARRIGAN	76	CNTR
<5.E 1/gram	>0.04	11 materials	0	CABRERA	75	INDU
<2.E-4/gram	>0.05	moon rock	0	ROSS	73	INDU
<6.E-7/gram	<140	seawater	0	KOLM	71	CNTR
<1.E-2/gram	<120	manganese nodules	0	FLEISCHER	69	PLAS
<1.E ~ 4/gram	>0	manganese	0	FLEISCHER	69B	PLAS
<2.E-3/gram	<1-3	magnetite, meteor	0	GOTO	63	<b>EMUL</b>
<2.E-2/gram		meteorite	0	PETUKHOV	63	CNTR

 27  Mass  $1\times10^{14}$  –1  $\times10^{17}\,$  GeV.  28  KOVALIK 86 examined 498 kg of schist from two sites which exhibited clear minearalogic evidence of haiving been buried at least 20 km deep and held below the Curie temperature.

#### Monopole Density — Astrophysics

DENSITY	CHG (g)	MATERIAL	EVTS	DOCUMENT ID		TECN
<1.E-9/gram	1	sun, catalysis	0	²⁹ ARAFUNE	83	COSM
<6.E-33/nucl	1	moon wake	0	SCHATTEN	83	ELEC
<2.E~28/nucl		earth heat	0	CARRIGAN	80	COSM
<2.E-4/prot		42cm absorption	0	BRODERICK	79	COSM
<2.E-13/m ³		moon wake	0	SCHATTEN	70	ELEC

²⁹ Catalysis of nucleon decay.

#### REFERENCES FOR Magnetic Monopole Searches

FREESE	99	PR D59 063007	K. Freese, E. Krasteva	
ABBOTT	98K	PRL 81 524	B. Abbott et al.	(D0 Collab.)
AMBROSIO	97	PL B406 249	M. Ambrosio et al.	(MACRO Collab.)
HE	97	PRL 79 3134	Y.D. He	(UCB)
ACCIARRI	95C	PL B345 609	M. Acciarri et al.	(L3 Collab.)
JEON	95	PRL 75 1443	H. Jeon, M.J. Longo	` (MICH)
Also	96	PRL 76 159 (errata)		, ,
AHLEN	94	PRL 72 608 ` '	S.P. Ahlen et al.	(MACRO Collab.)
BARISH	94	PRL 73 1306	B.C. Barish, G. Giacomelli, J.T.	
BECKER-SZ	94	PR D49 2169	R.A. Becker-Szendy et al.	(IMB Collab.)
PRICE	94	PRL 73 1305	P.B. Price	(UCB)
ADAMS	93	PRL 70 2511	F.C. Adams et al.	(MICH, FNAL)
PINFOLD	93	PL B316 407		ALBE, HARV, MONT+)
KINOSHITA	92	PR D46 R881	K. Kinoshita et al.	(HARV, BGNA, REHO)
THRON	92	PR D46 4846	J.L. Thron et al.	(SOUDAN-2 Collab.)
GARDNER	91	PR D44 622	R.D. Gardner et al.	(STAN)
HUBER	91	PR D44 636	M.E. Huber et al.	(STAN)
ORITO	91	PRL 66 1951	S. Orito et al. (ICEPI	P. WASCR, NIHO, ICRR)
BERMON	90	PRL 64 839	S. Bermon et al.	(IBM, BNL)
BERTANI	90	EPL 12 613	M. Bertani et al.	(BĠNA, INFN)
BEZRUKOV	90	SJNP 52 54	L.B. Bezrukov et al.	(INRM)
		Translated from YAF 52		· · · · · · · · · · · · · · · · · · ·
BUCKLAND	90	PR D41 2726	K.N. Buckland et al.	(UCSD)
GHOSH	90	EPL 12 25	D.C. Ghosh, S. Chatterjea	(JADA)
HUBER	90	PRL 64 835	M.E. Huber et al.	(STAN)
PRICE	90	PRL 65 149	P.B. Price, J. Guiru, K. Kinoshita	(UCB, HARV)
KINOSHITA	89	PL B228 543	K. Kinoshita et al.	(HARV, TISA, KEK+)
BRAUNSCH	88B	ZPHY C38 543	R. Braunschweig et al.	(TASSO Collab.)
KINOSHITA	88	PRL 60 1610	K. Kinoshita et al.	(HARV, TISA, KEK+)
BARISH	87	PR D36 2641	B.C. Barish, G. Liu, C. Lane	(CIT)
BARTELT	87	PR D36 1990	J.E. Bartelt et al.	(Soudan Collab.)
Also	89	PR D40 1701 erratum	J.E. Bartelt et al.	(Soudan Collab.)
EBISU	87	PR D36 3359	T. Ebisu, T. Watanabe	(KOBE)
Also	85	JPG 11 883	T. Ebisu, T. Watanabe	(KOBE)
GENTILE	87	PR D35 1081	T. Gentile et al.	(CLEO Collab.)
GUY	87	Nature 325 463	J. Guy	(LOIC)

MASEK	87	PR D35 2758	G.E. Masek et al. (UCSD) S. Nakamura et al. (INUS, WASCR, NIHO)
NAKAMURA PRICE	87 87	PL B183 395 PRL 59 2523	S. Nakamura et al. (INUS, WASCR, NIHO) P.B. Price, R. Guoxiao, K. Kinoshita (UCB, HARV)
SCHOUTEN	87	JPE 20 B50	J.C. Schouten et al. (LOIC)
SHEPKO	87	PR D35 2917	M.J. Shepko et al. (TAMU)
TSUKAMOTO CAPLIN	87 86	EPL 3 39 Nature 321 402	T. Tsukamoto et al. (ICRR) A.D. Caplin et al. (LOIC)
Also	87	JPE 20 850	J.C. Schouten et al. (LOIC)
Also	87	Nature 325 463	J. Guy (LOIC)
CROMAR HARA	86 86	PRL 56 2561 PRL 56 553	M.W. Cromar, A.F. Clark, F.R. Fickett (NBSB) T. Hara et al. (ICRR, KYOT, KEK, KOBE+)
INCANDELA	86	PR D34 2637	J. Incandela et al. (CHIC, FNAL, MICH)
KOVALIK PRICE	86 86	PR A33 1183	J.M. Kovalik, J.L. Kirschvink (CIT)
ARAFUNE	85	PRL 56 1226 PR D32 2586	P.B. Price, M.H. Salamon (ÚCB) J. Arafune, M. Fukugita, S. Yanagita (ICRR, KYOTU+)
BERMON	B5	PRL 55 1850	S. Bermon et al. (IBM)
BRACCI Also	85B 85	NP B258 726 LNC 42 123	L. Bracci, G. Fiorentini, G. Mezzorani (PISA+) L. Bracci, G. Fiorentini (PISA)
CAPLIN	85	Nature 317 234	A.D. Caplin et al. (LOIC)
EBISU	85	JPG 11 883	T. Ebisu, T. Watanabe (KOBE)
KAJITA PARK	85 85B	JPSJ 54 4065 NP B252 261	T. Kajita et al. (ICRR, KEK, NIIG) H.S. Park et al. (IMB Collab.)
BATTISTONI	84	PL 133B 454	G. Battistoni et al. (NUSEX Collab.)
FRYBERGER HARVEY	84 84	PR D29 1524 NP B236 255	D. Fryberger et al. (SLAC, UCB)
INCANDELA	84	PRL 53 2067	J. A. Harvey J. Incandela et al. (CHIC, FNAL, MICH)
KAJINO	84	PRL 52 1373	F. Kajino et al. (ICRR)
KAJINO KAWAGOE	84B 84	JPG 10 447 LNC 41 315	F. Kajino et al. (ICRR) K. Kawagoe et al. (TOKY)
KOLB	84	APJ 286 702	E.W. Kolb, M.S. Turner (FNAL, CHIC)
KRISHNA	84	PL 142B 99	M.R. Krishnaswamy et al. (TATA, OSKC+)
LISS PRICE	84 84	PR D30 884 PRL 52 1265	T.M. Liss, S.P. Ahlen, G. Tarle P.B. Price et al. (UCB, IND+) (ROMA, UCB, IND+)
PRICE	84B	PL 140B 112	P.B. Price (CERN)
TARLE	84	PRL 52 90	G. Tarle, S.P. Ahlen, T.M. Liss (UCB, MICH+)
ANDERSON ARAFUNE	83 83	PR D28 2308 PL 133B 380	S.N. Anderson et al. (WASH) J. Arafune, M. Fukugita (ICRR, KYOTU)
AUBERT	83B	PL 120B 465	B. Aubert et al. (CERN, LAPP)
BARTELT BARWICK	83B 83	PRL 50 655 PR D28 2338	J.E. Bartelt et al. (MINN, ANL) S.W. Barwick, K. Kinoshita, P.B. Price (UCB)
BONARELLI	83	PL 126B 137	R. Bonarelli, P. Capiluppi, I. d'Antone (BGNA)
BOSETTI	83	PL 133B 265	P.C. Bosetti et al. (AACH3, HAWA, TOKY)
CABRERA DOKE	83 83	PRL 51 1933 PL 129B 370	B. Cabrera et al. (STAN) T. Doke et al. (WASU, RIKK, TTAM, RIKEN)
ERREDE	83	PRL 51 245	S.M. Errede et al. (IMB Collab.)
FREESE GROOM	83B 83	PRL 51 1625 PRL 50 573	K. Freese, M.S. Turner, D.N. Schramm (CHIC) D.E. Groom et əl. (UTAH, STAN)
MASHIMO	83	PL 128B 327	T. Mashimo et al. (ICEPP)
MIKHAILOV	83	PL 130B 331	V.F. Mikhailov (KAZA)
MUSSET REPHAEL!	83 83	PL 128B 333 PL 121B 115	P. Musset, M. Price, E. Lohrmann Y. Rephaeli, M.S. Turner (CERN, HAMB)
SCHATTEN	83	PR D27 1525	K.H. Schatten (NASA)
ALEXEYEV BONARELLI	82 82	LNC 35 413 PL 112B 100	E.N. Alekseev et al. (INRM) R. Bonarelli et al. (BGNA)
CABRERA	82	PRL 48 1378	B. Cabrera (STAN)
DELL	82	NP B209 45	G.F. Dell et al. (BNL, ADEL, ROMA)
DIMOPOUL KINOSHITA	82 82	PL 119B 320 PRL 48 77	S. Dimopoulos, J. Preskill, F. Wilczek (HARV+) K. Kinoshita, P.B. Price, D. Fryberger (UCB+)
KOLB	82	PRL 49 1373	E.W. Kolb, S.A. Colgate, J.A. Harvey (LASL, PRIN)
MASHIMO SALPETER	82 82	JPSJ 51 3067 PRL 49 1114	T. Mashimo, K. Kawagoe, M. Koshiba (INUS) E.E. Salpeter, S.L. Shapiro, I. Wasserman (CORN)
TURNER	82	PR D26 1296	E.E. Salpeter, S.L. Shapiro, I. Wasserman (CORN) M.S. Turner, E.N. Parker, T.J. Bogdan (CHIC)
BARTLETT	81	PR D24 612	D.F. Bartlett et al. (COLO, GESC)
KINOSHITA ULLMAN	81B 81	PR D24 1707 PRL 47 289	K. Kinoshita, P.B. Price (UCB) J.D. Ullman (LEHM, BNL)
CARRIGAN	80	Nature 288 348	R.A. Carrigan (FNAL)
BRODERICK BARTLETT	79 78	PR D19 1046 PR D18 2253	J.J. Broderick et al. (VPI) D.F. Bartlett, D. Soo, M.G. White (COLO, PRIN)
CARRIGAN	78	PR D17 1754	R.A. Carrigan, B.P. Strauss, G. Giacomelli (FNAL+)
HOFFMANN	78	LNC 23 357	H. Hoffmann et al. (CERN, RDMA)
PRICE HAGSTROM	78 77	PR D18 1382 PRL 38 729	P.B. Price et al. (UCB, HOUS) R. Hagstrom (LBL)
CARRIGAN	76	PR D13 1823	R.A. Carrigan, F.A. Nezrick, B.P. Strauss (FNAL)
DELL	76	LNC 15 269	G.F. Dell et al. (CERN, BNL, ROMA, ADEL)
ROSS STEVENS	76 76B	LBL-4665 PR D14 2207	R.R. Ross (LBL) D.M. Stevens et al. (VPI, BNL)
ZRELOV	76	CZJ₽ B26 1306	V.P. Zrelov et al. (JINR)
ALVAREZ BURKE	75 75	LBL-4260 PL 60B 113	L.W. Alvarez (LBL) D.L. Burke et al. (MICH)
CABRERA	75	Thesis	B. Cabrera (STAN)
CARRIGAN Also	75 71	NP B91 279 PR D3 56	R.A. Carrigan, F.A. Nezrick (FNAL)
EBERHARD	75	PR D11 3099	P.H. Eberhard et al. (LBL, MPIM)
EBERHARD	75B	LBL-4289	P.H. Eberhard (LBL)
FLEISCHER FRIEDLANDER	75 R 75	PRL 35 1412 PRL 35 1167	R.L. Fleischer, R.N.F. Walker (GESC, WUSL) M.W. Friedlander (WUSL)
GIACDMELLI	75	NC 28A 21	G. Giacomelti et al. (BGNA, CERN, SACL+)
PRICE CARRIGAN	75 74	PRL 35 487 PR Ø10 3867	P.B. Price et al. (UCB, HOUS)
CARRIGAN	73	PR D8 3717	R.A. Carrigan, F.A. Nezrick, B.P. Strauss (FNAL) R.A. Carrigan, F.A. Nezrick, B.P. Strauss (FNAL)
ROSS	73	PR D8 698	R.R. Ross et al. (LBL, SLAC)
Also Also	71 70	PR D4 3260 Science 167 701	P.H. Eberhard et al. (LBL, SLAC) L.W. Alvarez et al. (LBL, SLAC)
BARTLETT	72	PR D6 1817	D.F. Bartlett, M.D. Lahana (COLO)
GUREVICH	72	PL 38B 549	I.I. Gurevich et al. (KIAE, NOVO, SERP)
Also	72B	JETP 34 917 Translated from ZETF 6	L.M. Barkov, I.I. Gurevich, M.S. Zolotorev (KIAE+)
Also FLEISCHER	70 71	PL 31B 394 PR D4 24	I.I. Gurevich et al. (KIAE, NOVO, SERP)
KOLM	71	PR D4 24 PR D4 1285	R.L. Fleischer et al. (GESC) H.H. Kolm, F. Villa, A. Odian (MIT, SLAC)
PARKER	70	APJ 160 383	E.N. Parker (CHIC)
SCHATTEN FLEISCHER	70 69	PR D1 2245 PR 177 2029	K.H. Schatten (NASA)
FLEISCHER	69B	PR 184 1393	R.L. Fleischer et al. (GESC, UNCS, GSCO)
FLEISCHER	69C	PR 184 1398	R.L. Fleischer, P.B. Price, R.T. Woods (GESC)
Also CARITHERS	70C 66	JAP 41 958 PR 149 1070	R.L. Fleischer et al. (GESC) W.C.J. Carithers, R.J. Stefanski, R.K. Adair
AMALDI	63	PR 149 1070 NC 28 773	E. Amaldi et al. (ROMA, UCSD, CERN)
GOTO PETUKHOV	63 63	PR 132 387 NP 49 87	E. Goto, H.H. Kolm, K.W. Ford (TOKY, MIT, BRAN) V.A. Petukhov, M.N. Yakimenko (LEBD)
PURCELL	63	PR 129 2326 NC 22 657	E.M. Purcell et al. (HARV, BNL)
FIDECARO BRADNER	61 59	NC 22 657 PR 114 603	M. Fidecaro, G. Finocchiaro, G. Giacomelli (CERN)
MALKUS	51	PR 83 899	H. Bradner, W.M. Isbell (LBL) W.V.R. Malkus (CHIC)
		OTHER	RELATED PAPERS
GROOM	86	DDDI 140 323	D.E. Groom (UTAN)

D.E. Groom

GROOM Review PRPL 140 323

#### Supersymmetric Particle Searches

#### SUPERSYMMETRY

Revised October 1999 by Howard E. Haber (Univ. of California, Santa Cruz) Part I, and by M. Schmitt (Harvard Univ.) Part II

This review is divided into two parts:

Supersymmetry, Part I (Theory)

- I.1. Introduction
- I.2. Structure of the MSSM
- I.3. Parameters of the MSSM
- I.4. The supersymmetric-particle sector
- I.5. The Higgs sector of the MSSM
- I.6. Reducing the MSSM parameter freedom
- I.7. The constrained MSSMs: mSUGRA, GMSB, and SGUTs
- I.8. Beyond the MSSM

Supersymmetry, Part II (Experiment)

- II.1. Introduction
- II.2. Common supersymmetry scenarios
- II.3. Experimental issues
- II.4. Supersymmetry searches in  $e^+e^-$  colliders
- II.5. Supersymmetry searches at proton machines
- II.6. Supersymmetry searches at HERA and fixed-target experiments
- II.7. Conclusions

#### SUPERSYMMETRY, PART I (THEORY)

(by H.E. Haber)

(UTAH)

I.1. Introduction: Supersymmetry (SUSY) is a generalization of the space-time symmetries of quantum field theory that transforms fermions into bosons and vice versa. It also provides a framework for the unification of particle physics and gravity [1-3], which is governed by the Planck scale,  $M_{\rm P} \approx 10^{19} \; {\rm GeV}$ (defined to be the energy scale where the gravitational interactions of elementary particles become comparable to their gauge interactions). If supersymmetry were an exact symmetry of nature, then particles and their superpartners (which differ in spin by half a unit) would be degenerate in mass. Thus, supersymmetry cannot be an exact symmetry of nature, and must be broken. In theories of "low-energy" supersymmetry, the effective scale of supersymmetry breaking is tied to the electroweak scale [4-6], which is characterized by the Standard Model Higgs vacuum expectation value v = 246 GeV. It is thus possible that supersymmetry will ultimately explain the origin of the large hierarchy of energy scales from the W and Z masses to the Planck scale.

At present, there are no unambiguous experimental results that require the existence of low-energy supersymmetry. However, if experimentation at future colliders uncovers evidence for supersymmetry, this would have a profound effect on the study of TeV-scale physics and the development of a more fundamental theory of mass and symmetry-breaking phenomena in particle physics.

### Supersymmetric Particle Searches

I.2. Structure of the MSSM: The minimal supersymmetric extension of the Standard Model (MSSM) consists of taking the Standard Model and adding the corresponding supersymmetric partners [2,7]. In addition, the MSSM contains two hypercharge  $Y=\pm 1$  Higgs doublets, which is the minimal structure for the Higgs sector of an anomaly-free supersymmetric extension of the Standard Model. The supersymmetric structure of the theory also requires (at least) two Higgs doublets to generate mass for both "up"-type and "down"-type quarks (and charged leptons) [8,9]. All renormalizable supersymmetric interactions consistent with (global) B-L conservation (B =baryon number and L =lepton number) are included. Finally, the most general soft-supersymmetry-breaking terms are added [10].

If supersymmetry is associated with the origin of the scale of electroweak interactions, then the mass parameters introduced by the soft-supersymmetry-breaking terms must in general be of order 1 TeV or below [11] (although models have been proposed in which some supersymmetric particle masses can be larger, in the range of 1-10 TeV [12]). Some lower bounds on these parameters exist due to the absence of supersymmetric-particle production at current accelerators [13]. Additional constraints arise from limits on the contributions of virtual supersymmetric particle exchange to a variety of Standard Model processes [14,15]. In particular, the Standard Model fit (without supersymmetry) to precision electroweak data is quite good [16]. If all supersymmetric particle masses are significantly heavier than  $m_Z$  (in practice, masses greater than 300 GeV are sufficient [17]), then the effects of the supersymmetric particles decouple in loop-corrections to electroweak observables [18]. In this case the Standard Model global fit to precision data and the corresponding MSSM fit yield similar results. On the other hand, regions of parameter space with light supersymmetric particle masses can generate significant one-loop corrections, resulting in a poorer overall fit to the data [19]. Thus, the precision electroweak data provide some constraints on the magnitude of the soft-supersymmetry-breaking terms.

As a consequence of B-L invariance, the MSSM possesses a multiplicative R-parity invariance, where  $R=(-1)^{3(B-L)+2S}$  for a particle of spin S [20]. Note that this formula implies that all the ordinary Standard Model particles have even R-parity, whereas the corresponding supersymmetric partners have odd R-parity. The conservation of R-parity in scattering and decay processes has a crucial impact on supersymmetric phenomenology. For example, starting from an initial state involving ordinary (R-even) particles, it follows that supersymmetric particles must be produced in pairs. In general, these particles are highly unstable and decay quickly into lighter states. However, R-parity invariance also implies that the lightest supersymmetric particle (LSP) is absolutely stable, and must eventually be produced at the end of a decay chain initiated by the decay of a heavy unstable supersymmetric particle.

In order to be consistent with cosmological constraints, a stable LSP is almost certainly electrically and color neutral [21]. Consequently, the LSP in a R-parity-conserving theory is weakly-interacting in ordinary matter, i.e. it behaves like a stable heavy neutrino and will escape detectors without being directly observed. Thus, the canonical signature for conventional R-parity-conserving supersymmetric theories is missing (transverse) energy, due to the escape of the LSP. Moreover, the LSP is a prime candidate for "cold dark matter" [22], a potentially important component of the non-baryonic dark matter that is required in many models of cosmology and galaxy formation [23].

In the MSSM, supersymmetry breaking is accomplished by including the most general renormalizable soft-supersymmetrybreaking terms consistent with the SU(3)×SU(2)×U(1) gauge symmetry and R-parity invariance. These terms parameterize our ignorance of the fundamental mechanism of supersymmetry breaking. If supersymmetry breaking occurs spontaneously, then a massless Goldstone fermion called the goldstino  $(\widetilde{G})$ must exist. The goldstino would then be the LSP and could play an important role in supersymmetric phenomenology [24]. However, the goldstino is a physical degree of freedom only in models of spontaneously broken global supersymmetry. If the supersymmetry is a local symmetry, then the theory must incorporate gravity; the resulting theory is called supergravity. In models of spontaneously broken supergravity, the goldstino is "absorbed" by the gravitino  $(\tilde{g}_{3/2})$ , the spin-3/2 partner of the graviton [25]. By this super-Higgs mechanism, the goldstino is removed from the physical spectrum and the gravitino acquires a mass  $(m_{3/2})$ .

It is very difficult (perhaps impossible) to construct a model of spontaneously-broken low-energy supersymmetry where the supersymmetry breaking arises solely as a consequence of the interactions of the particles of the MSSM. A more viable scheme posits a theory consisting of at least two distinct sectors: a "hidden" sector consisting of particles that are completely neutral with respect to the Standard Model gauge group, and a "visible" sector consisting of the particles of the MSSM. There are no renormalizable tree-level interactions between particles of the visible and hidden sectors. Supersymmetry breaking is assumed to occur in the hidden sector, and then transmitted to the MSSM by some mechanism. Two theoretical scenarios have been examined in detail: gravity-mediated and gauge-mediated supersymmetry breaking.

Supergravity models provide a natural mechanism for transmitting the supersymmetry breaking of the hidden sector to the particle spectrum of the MSSM. In models of gravity-mediated supersymmetry breaking, gravity is the messenger of supersymmetry breaking [26,27]. More precisely, supersymmetry breaking is mediated by effects of gravitational strength (suppressed by an inverse power of the Planck mass). In this

scenario, the gravitino mass is of order the electroweak-symmetry-breaking scale, while its couplings are roughly gravitational in strength [1,28]. Such a gravitino would play no role in supersymmetric phenomenology at colliders.

In gauge-mediated supersymmetry breaking, supersymmetry breaking is transmitted to the MSSM via gauge forces. A typical structure of such models involves a hidden sector where supersymmetry is broken, a "messenger sector" consisting of particles (messengers) with  $SU(3)\times SU(2)\times U(1)$  quantum numbers, and the visible sector consisting of the fields of the MSSM [29,30]. The direct coupling of the messengers to the hidden sector generates a supersymmetry breaking spectrum in the messenger sector. Finally, supersymmetry breaking is transmitted to the MSSM via the virtual exchange of the messengers. If this approach is extended to incorporate gravitational phenomena, then supergravity effects will also contribute to supersymmetry breaking. However, in models of gauge-mediated supersymmetry breaking, one usually chooses the model parameters in such a way that the virtual exchange of the messengers dominates the effects of the direct gravitational interactions between the hidden and visible sectors. In this scenario, the gravitino mass is typically in the eV to keV range, and is therefore the LSP. The helicity  $\pm \frac{1}{2}$  components of  $\tilde{g}_{3/2}$  behave approximately like the goldstino; its coupling to the particles of the MSSM is significantly stronger than a coupling of gravitational strength.

I.3. Parameters of the MSSM: The parameters of the MSSM are conveniently described by considering separately the supersymmetry-conserving sector and the supersymmetry-breaking sector. A careful discussion of the conventions used in defining the MSSM parameters can be found in Ref. 31. For simplicity, consider the case of one generation of quarks, leptons, and their scalar superpartners. The parameters of the supersymmetry-conserving sector consist of: (i) gauge couplings:  $g_s$ , g, and g', corresponding to the Standard Model gauge group  $SU(3)\times SU(2)\times U(1)$  respectively; (ii) a supersymmetry-conserving Higgs mass parameter  $\mu$ ; and (iii) Higgs-fermion Yukawa coupling constants:  $\lambda_u$ ,  $\lambda_d$ , and  $\lambda_e$  (corresponding to the coupling of one generation of quarks, leptons, and their superpartners to the Higgs bosons and higgsinos).

The supersymmetry-breaking sector contains the following set of parameters: (i) gaugino Majorana masses  $M_3$ ,  $M_2$  and  $M_1$  associated with the SU(3), SU(2), and U(1) subgroups of the Standard Model; (ii) five scalar squared-mass parameters for the squarks and sleptons,  $M_{\widetilde{Q}}^2$ ,  $M_{\widetilde{U}}^2$ ,  $M_{\widetilde{D}}^2$ ,  $M_{\widetilde{L}}^2$ , and  $M_{\widetilde{E}}^2$  [corresponding to the five electroweak gauge multiplets, i.e., superpartners of  $(u,d)_L$ ,  $u_L^c$ ,  $d_L^c$ ,  $(\nu,e^-)_L$ , and  $e_L^c$ ,]; (iii) Higgs-squark-squark and Higgs-slepton-slepton trilinear interaction terms, with coefficients  $A_u$ ,  $A_d$ , and  $A_e$  (these are the so-called "A-parameters"); and (iv) three scalar Higgs squared-mass parameters—two of which contribute to the diagonal Higgs squared-masses, given by  $m_1^2 + |\mu|^2$  and  $m_2^2 + |\mu|^2$ , and one off-diagonal Higgs squared-mass term,  $m_{12}^2 \equiv B\mu$  (which defines

the "B-parameter"). These three squared-mass parameters can be re-expressed in terms of the two Higgs vacuum expectation values,  $v_d$  and  $v_u$ , and one physical Higgs mass. Here,  $v_d$  ( $v_u$ ) is the vacuum expectation value of the Higgs field which couples exclusively to down-type (up-type) quarks and leptons. (Another notation often employed in the literature is  $v_1 \equiv v_d$  and  $v_2 \equiv v_u$ .) Note that  $v_d^2 + v_u^2 = (246 \text{ GeV})^2$  is fixed by the W mass, while the ratio

$$\tan \beta = v_u/v_d \tag{1}$$

is a free parameter of the model.

The total number of degrees of freedom of the MSSM is quite large, primarily due to the parameters of the soft-supersymmetry-breaking sector. In particular, in the case of three generations of quarks, leptons, and their superpartners,  $M_{\widetilde{c}}^2$ ,  $M_{\widetilde{U}}^2$ ,  $M_{\widetilde{D}}^2$ ,  $M_{\widetilde{L}}^2$ , and  $M_{\widetilde{E}}^2$  are hermitian  $3\times 3$  matrices, and the A-parameters are complex  $3\times 3$  matrices. In addition,  $M_1$ ,  $M_2$ ,  $M_3$ , B and  $\mu$  are in general complex. Finally, as in the Standard Model, the Higgs-fermion Yukawa couplings,  $\lambda_f$  (f = u, d, and e), are complex  $3 \times 3$  matrices which are related to the quark and lepton mass matrices via:  $M_f = \lambda_f v_f / \sqrt{2}$ , where  $v_e \equiv v_d$ (with  $v_u$  and  $v_d$  as defined above). However, not all these parameters are physical. Some of the MSSM parameters can be eliminated by expressing interaction eigenstates in terms of the mass eigenstates, with an appropriate redefinition of the MSSM fields to remove unphysical degrees of freedom. The analysis of Ref. 32 shows that the MSSM possesses 124 truly independent parameters. Of these, 18 parameters correspond to Standard Model parameters (including the QCD vacuum angle  $\theta_{\rm QCD}$ ), one corresponds to a Higgs sector parameter (the analogue of the Standard Model Higgs mass), and 105 are genuinely new parameters of the model. The latter include: five real parameters and three CP-violating phases in the gaugino/higgsino sector, 21 squark and slepton masses, 36 new real mixing angles to define the squark and slepton mass eigenstates and 40 new CP-violating phases that can appear in squark and slepton interactions. The most general R-parityconserving minimal supersymmetric extension of the Standard Model (without additional theoretical assumptions) will be denoted henceforth as MSSM-124 [33].

I.4. The supersymmetric-particle sector: Consider the sector of supersymmetric particles (sparticles) in the MSSM. The supersymmetric partners of the gauge and Higgs bosons are fermions, whose names are obtained by appending "ino" at the end of the corresponding Standard Model particle name. The gluino is the color octet Majorana fermion partner of the gluon with mass  $M_{\widetilde{g}} = |M_3|$ . The supersymmetric partners of the electroweak gauge and Higgs bosons (the gauginos and higgsinos) can mix. As a result, the physical mass eigenstates are model-dependent linear combinations of these states, called charginos and neutralinos, which are obtained by diagonalizing the corresponding mass matrices. The chargino-mass matrix depends on  $M_2$ ,  $\mu$ , tan  $\beta$  and  $m_W$  [34].

# Searches Particle Listings Supersymmetric Particle Searches

The corresponding chargino-mass eigenstates are denoted by  $\widetilde{\chi}_1^+$  and  $\widetilde{\chi}_2^+$ , with masses

$$M_{\widetilde{\chi}_{1}^{+},\widetilde{\chi}_{2}^{+}}^{2}=\tfrac{1}{2}\bigg\{|\mu|^{2}+|M_{2}|^{2}+2m_{W}^{2}\mp\bigg[\big(|\mu|^{2}+|M_{2}|^{2}+2m_{W}^{2}\big)^{2}$$

$$-4|\mu|^2|M_2|^2-4m_W^4\sin^22\beta+8m_W^2\sin2\beta\operatorname{Re}(\mu M_2)\bigg]^{1/2}\bigg\},\ (2)$$

where the states are ordered such that  $M_{\widetilde{\chi}_1^+} \leq M_{\widetilde{\chi}_2^+}$ . If CP-violating effects are neglected (in which case,  $M_2$  and  $\mu$  are real parameters), then one can choose a convention where  $\tan \beta$  and  $M_2$  are positive. (Note that the relative sign of  $M_2$  and  $\mu$  is meaningful. The sign of  $\mu$  is convention-dependent; the reader is warned that both sign conventions appear in the literature.) The sign convention for  $\mu$  implicit in Eq. (2) is used by the LEP collaborations [13] in their plots of exclusion contours in the  $M_2$  vs.  $\mu$  plane derived from the non-observation of  $e^+e^- \to \widetilde{\chi}_1^+ \widetilde{\chi}_1^-$ .

The neutralino mass matrix depends on  $M_1$ ,  $M_2$ ,  $\mu$ ,  $\tan \beta$ ,  $m_Z$ , and the weak mixing angle  $\theta_W$  [34]. The corresponding neutralino eigenstates are usually denoted by  $\tilde{\chi}_i^0$   $(i=1,\ldots 4)$ , according to the convention that  $M_{\widetilde{\chi}_1^0} \leq M_{\widetilde{\chi}_2^0} \leq M_{\widetilde{\chi}_2^0} \leq M_{\widetilde{\chi}_2^0}$ If a chargino or neutralino eigenstate approximates a particular gaugino or higgsino state, it is convenient to employ the corresponding nomenclature. Specifically, if  $M_1$  and  $M_2$  are small compared to  $m_Z$  and  $|\mu|$ , then the lightest neutralino  $\tilde{\chi}_1^0$ would be nearly a pure photino,  $\tilde{\gamma}$ , the supersymmetric partner of the photon. If  $M_1$  and  $m_Z$  are small compared to  $M_2$  and  $|\mu|$ , then the lightest neutralino would be nearly a pure bino,  $\widetilde{B}$ , the supersymmetric partner of the weak hypercharge gauge boson. If  $M_2$  and  $m_Z$  are small compared to  $M_1$  and  $|\mu|$ , then the lightest chargino pair and neutralino would constitute a triplet of roughly mass-degenerate pure winos,  $\widetilde{W}^{\pm}$  and  $\widetilde{W}_{3}^{0}$ , the supersymmetric partners of the weak SU(2) gauge bosons. Finally, if  $|\mu|$  and  $m_Z$  are small compared to  $M_1$  and  $M_2$ , then the lightest neutralino would be nearly a pure higgsino. Each of the above cases leads to a strikingly different phenomenology.

The supersymmetric partners of the quarks and leptons are spin-zero bosons: the squarks, charged sleptons, and sneutrinos. For simplicity, only the one-generation case is illustrated below (using first-generation notation). For a given fermion f, there are two supersymmetric partners  $\tilde{f}_L$  and  $\tilde{f}_R$  which are scalar partners of the corresponding left and right-handed fermion. (There is no  $\tilde{\nu}_R$  in the MSSM.) However, in general,  $\tilde{f}_L$  and  $\tilde{f}_R$  are not mass-eigenstates since there is  $\tilde{f}_L$ - $\tilde{f}_R$  mixing which is proportional in strength to the corresponding element of the scalar squared-mass matrix [35]

$$M_{LR}^2 = \begin{cases} m_d(A_d - \mu \tan \beta), & \text{for "down"-type } f \\ m_u(A_u - \mu \cot \beta), & \text{for "up"-type } f, \end{cases}$$
 (3)

where  $m_d$  ( $m_u$ ) is the mass of the appropriate "down" ("up") type quark or lepton. The signs of the A-parameters are also convention-dependent; see Ref. 31. Due to the appearance of the fermion mass in Eq. (3), one expects  $M_{LR}$  to be small compared to the diagonal squark and slepton masses, with the

possible exception of the top-squark, since  $m_t$  is large, and the bottom-squark and tau-slepton if  $\tan \beta \gg 1$ .

The (diagonal) L- and R-type squark and slepton squared-masses are given by

$$\begin{split} M_{\widetilde{f}_{L}}^{2} &= M_{\widetilde{F}}^{2} + m_{f}^{2} + (T_{3f} - e_{f} \sin^{2} \theta_{W}) m_{Z}^{2} \cos 2\beta , \\ M_{\widetilde{f}_{R}}^{2} &= M_{\widetilde{R}}^{2} + m_{f}^{2} + e_{f} \sin^{2} \theta_{W} m_{Z}^{2} \cos 2\beta , \end{split}$$
(4)

where  $M_{\widetilde{F}}^2 \equiv M_{\widetilde{Q}}^2$   $[M_{\widetilde{L}}^2]$  for  $\widetilde{u}_L$  and  $\widetilde{d}_L$   $[\widetilde{\nu}_L$  and  $\widetilde{e}_L]$ , and  $M_{\widetilde{R}}^2 \equiv M_{\widetilde{U}}^2$ ,  $M_{\widetilde{D}}^2$  and  $M_{\widetilde{E}}^2$  for  $\widetilde{u}_R$ ,  $\widetilde{d}_R$ , and  $\widetilde{e}_R$ , respectively. In addition,  $e_f = \frac{2}{3}$ ,  $-\frac{1}{3}$ , 0, -1 for f = u, d,  $\nu$ , and e, respectively,  $T_{3f} = \frac{1}{2}$   $[-\frac{1}{2}]$  for up-type [down-type] squarks and sleptons, and  $m_f$  is the corresponding quark or lepton mass. Squark and slepton mass eigenstates, generically called  $\widetilde{f}_1$  and  $\widetilde{f}_2$  (these are linear combinations of  $\widetilde{f}_L$  and  $\widetilde{f}_R$ ), are obtained by diagonalizing the corresponding  $2 \times 2$  squared-mass matrices.

In the case of three generations, the general analysis is more complicated. The scalar squared-masses  $[M_{\widetilde{F}}^2]$  and  $M_{\widetilde{R}}^2$  in Eq. (4)], the fermion masses  $m_f$  and the A-parameters are now  $3\times 3$  matrices as noted in Section I.3. Thus, to obtain the squark and slepton mass eigenstates, one must diagonalize  $6\times 6$  mass matrices. As a result, intergenerational mixing is possible, although there are some constraints from the nonobservation of FCNC's [14,15]. In practice, because off-diagonal scalar mixing is appreciable only for the third generation, this additional complication can usually be neglected.

It should be noted that all mass formulae quoted in this section are tree-level results. One-loop corrections will modify all these results, and eventually must be included in any precision study of supersymmetric phenomenology [36].

I.5. The Higgs sector of the MSSM: Next, consider the Higgs sector of the MSSM [8,9,37]. Despite the large number of potential CP-violating phases among the MSSM-124 parameters, one can show that the tree-level MSSM Higgs sector is automatically CP-conserving. That is, unphysical phases can be absorbed into the definition of the Higgs fields such that a is a real parameter (conventionally chosen to be positive). Moreover, the physical neutral Higgs scalars are CP eigenstates. There are five physical Higgs particles in this model: a charged Higgs boson pair a two a where a is a two a and a do neutral Higgs boson (a0).

The properties of the Higgs sector are determined by the Higgs potential, which is made up of quadratic terms [whose squared-mass coefficients were mentioned above Eq. (1)] and quartic interaction terms. The strengths of the interaction terms are directly related to the gauge couplings by supersymmetry (and are not affected at tree-level by supersymmetry breaking). As a result,  $\tan\beta$  [defined in Eq. (1)] and one Higgs mass determine the tree-level Higgs-sector parameters. These include the Higgs masses, an angle  $\alpha$  [which measures the component of the original  $Y=\pm 1$  Higgs doublet states

in the physical CP-even neutral scalars], and the Higgs boson couplings.

When one-loop radiative corrections are incorporated, additional parameters of the supersymmetric model enter via virtual loops. The impact of these corrections can be significant [38]. For example, at tree-level, MSSM-124 predicts  $m_{H_1^0} \leq m_Z |\cos 2\beta| \leq m_Z$  [8,9]. If this prediction were unmodified, it would imply that  $H_1^0$  must be discovered at the LEP collider (running at its maximum energy and luminosity); otherwise MSSM-124 would be ruled out. However, when radiative corrections are included, the light Higgs-mass upper bound may be significantly increased. The qualitative behavior of the radiative corrections can be most easily seen in the large top-squark mass limit, where in addition, both the splitting of the two diagonal entries [Eq. (4)] and the two off-diagonal entries [Eq. (3)] of the top-squark squared-mass matrix are small in comparison to the average of the two top-squark squared-masses,  $M_{\rm S}^2 \equiv \frac{1}{2}(M_{\widetilde t_1}^2 + M_{\widetilde t_2}^2)$ . In this case (assuming  $m_{A^0} > m_Z$ ), the upper bound on the lightest CP-even Higgs mass at one-loop is approximately given by

$$m_{H_1^0}^2 \lesssim m_Z^2 + \frac{3g^2 m_t^4}{8\pi^2 m_W^2} \bigg\{ \ln \left( M_{\rm S}^2/m_t^2 \right) + \frac{X_t^2}{M_{\rm S}^2} \left( 1 - \frac{X_t^2}{12 M_{\rm S}^2} \right) \bigg\}, \ (5)$$

where  $X_t \equiv A_t - \mu \cot \beta$  is the top-squark mixing factor [see Eq. (3)]. A more complete treatment of the radiative corrections [39] shows that Eq. (5) somewhat overestimates the true upper bound of  $m_{H_1^0}$ . These more refined computations, which incorporate renormalization group improvement and the leading two-loop contributions, yield  $m_{H_1^0} \lesssim 130 \text{ GeV}$  (with an accuracy of a few GeV) for  $m_t = 175 \text{ GeV}$  and  $M_S \lesssim 1 \text{ TeV}$  [39].

In addition, one-loop radiative corrections can also introduce CP-violating effects in the Higgs sector, which depend on some of the CP-violating phases among the MSSM-124 parameters [40]. Although these effects are more model-dependent, they can have a non-trivial impact on the Higgs searches at LEP and future colliders.

I.6. Reducing the MSSM parameter freedom: Even in the absence of a fundamental theory of supersymmetry breaking, one is hard-pressed to regard MSSM-124 as a fundamental theory. For example, no fundamental explanation is provided for the origin of electroweak symmetry breaking. Moreover, MSSM-124 is not a phenomenologically viable theory over most of its parameter space. Among the phenomenologically deficiencies are: (i) no conservation of the separate lepton numbers  $L_e$ ,  $L_\mu$ , and  $L_\tau$ ; (ii) unsuppressed FCNC's; and (iii) new sources of CP-violation that are inconsistent with the experimental bounds. As a result, almost the entire MSSM-124 parameter space is ruled out! This theory is viable only at very special "exceptional" points of the full parameter space.

MSSM-124 is also theoretically deficient since it provides no explanation for the origin of the supersymmetry-breaking parameters (and in particular, why these parameters should conform to the exceptional points of the parameter space mentioned above). Moreover, the MSSM contains many new sources of CP violation. For example, some combination of the complex phases of the gaugino-mass parameters, the A-parameters, and  $\mu$  must be less than of order  $10^{-2}$ – $10^{-3}$  (for a supersymmetry-breaking scale of 100 GeV) to avoid generating electric dipole moments for the neutron, electron, and atoms in conflict with observed data [41,42].

There are two general approaches for reducing the parameter freedom of MSSM-124. In the low-energy approach, an attempt is made to elucidate the nature of the exceptional points in the MSSM-124 parameter space that are phenomenologically viable. Consider the following two possible choices. First, one can assume that  $M_{\widetilde{O}}^2,\ M_{\widetilde{U}}^2,\ M_{\widetilde{D}}^2,\ M_{\widetilde{E}}^2,\ M_{\widetilde{E}}^2$  and the matrix A-parameters are generation-independent (horizontal universality [5,32,43]). Alternatively, one can simply require that all the aforementioned matrices are flavor diagonal in a basis where the quark and lepton mass matrices are diagonal (flavor alignment [44]). In either case,  $L_e$ ,  $L_{\mu}$ , and  $L_{\tau}$  are separately conserved, while tree-level FCNC's are automatically absent. In both cases, the number of free parameters characterizing the MSSM is substantially less than 124. Both scenarios are phenomenologically viable, although there is no strong theoretical basis for either scenario.

In the high-energy approach, one treats the parameters of the MSSM as running parameters and imposes a particular structure on the soft-supersymmetry-breaking terms at a common high-energy scale [such as the Planck scale  $(M_P)$ ]. Using the renormalization group equations, one can then derive the low-energy MSSM parameters. The initial conditions (at the appropriate high-energy scale) for the renormalization group equations depend on the mechanism by which supersymmetry breaking is communicated to the effective low energy theory. Examples of this scenario are provided by models of gravitymediated and gauge-mediated supersymmetry breaking (see Section I.2). One bonus of such an approach is that one of the diagonal Higgs squared-mass parameters is typically driven negative by renormalization group evolution. Thus, electroweak symmetry breaking is generated radiatively, and the resulting electroweak symmetry-breaking scale is intimately tied to the scale of low-energy supersymmetry breaking.

One prediction of the high-energy approach that arises in most grand unified supergravity models and gauge-mediated supersymmetry-breaking models is the unification of gaugino mass parameters at some high-energy scale  $M_X$ , i.e.,

$$M_1(M_X) = M_2(M_X) = M_3(M_X) = m_{1/2}.$$
 (6)

Consequently, the effective low-energy gaugino mass parameters (at the electroweak scale) are related:

$$M_3 = (g_0^2/g^2)M_2$$
,  $M_1 = (5g'^2/3g^2)M_2 \simeq 0.5M_2$ . (7)

In this case, the chargino and neutralino masses and mixing angles depend only on three unknown parameters: the gluino mass,  $\mu$ , and  $\tan \beta$ . If in addition  $|\mu| \gg M_1$ ,  $m_Z$ , then the

## Searches Particle Listings Supersymmetric Particle Searches

lightest neutralino is nearly a pure bino, an assumption often made in supersymmetric particle searches at colliders.

Recently, attention has been given to a class of supergravity models in which Eq. (7) does not hold. In models where no tree-level gaugino masses are generated, one finds a model-independent contribution to the gaugino mass whose origin can be traced to the super-conformal (super-Weyl) anomaly which is common to all supergravity models [45]. This approach has been called anomaly-mediated supersymmetry breaking. Eq. (7) is then replaced (in the one-loop approximation) by:

$$M_i \simeq \frac{b_i g_i^2}{16\pi^2} m_{3/2} \,,$$
 (8)

where  $m_{3/2}$  is the gravitino mass (assumed to be of order 1 TeV), and  $b_i$  are the coefficients of the MSSM gauge beta-functions corresponding to the corresponding U(1), SU(2) and SU(3) gauge groups:  $(b_1, b_2, b_3) = (\frac{33}{5}, 1, -3)$ . Eq. (8) yields  $M_1 \simeq 2.8 M_2$  and  $M_3 \simeq -8.3 M_2$ , which implies that the lightest chargino pair and neutralino make up a nearly-mass degenerate triplet of winos. The corresponding supersymmetric phenomenology differs significantly from the standard phenomenology based on Eq. (7), and is explored in detail in Ref. [46]. Anomaly-mediated supersymmetry breaking also generates (approximate) flavor-diagonal squark and slepton mass matrices. However, in the MSSM this cannot be the sole source of supersymmetry-breaking in the slepton sector (which yields negative squared-mass contributions for the sleptons).

1.7. The constrained MSSMs: mSUGRA, GMSB, and SGUTs: One way to guarantee the absence of significant FCNC's mediated by virtual supersymmetric-particle exchange is to posit that the diagonal soft-supersymmetry-breaking scalar squared-masses are universal at some energy scale. In models of gauge-mediated supersymmetry breaking, scalar squared-masses are expected to be flavor independent since gauge forces are flavor-blind. In the minimal supergravity (mSUGRA) framework [1–3], the soft-supersymmetry-breaking parameters at the Planck scale take a particularly simple form in which the scalar squared-masses and the A-parameters are flavor diagonal and universal [26]:

$$\begin{split} M_{\widetilde{Q}}^2(M_{\rm P}) &= M_{\widetilde{U}}^2(M_{\rm P}) = M_{\widetilde{D}}^2(M_{\rm P}) = m_0^2 \mathbf{1} \,, \\ M_{\widetilde{L}}^2(M_{\rm P}) &= M_{\widetilde{E}}^2(M_{\rm P}) = m_0^2 \mathbf{1} \,, \\ m_1^2(M_{\rm P}) &= m_2^2(M_{\rm P}) = m_0^2 \,, \\ A_U(M_{\rm P}) &= A_D(M_{\rm P}) = A_L(M_{\rm P}) = A_0 \mathbf{1} \,, \end{split}$$
(9)

where 1 is a  $3\times 3$  identity matrix in generation space. Renormalization group evolution is then used to derive the values of the supersymmetric parameters at the low-energy (electroweak) scale. For example, to compute squark and slepton masses, one must use the low-energy values for  $M_{\widetilde{F}}^2$  and  $M_{\widetilde{R}}^2$  in Eq. (4). Through the renormalization group running with boundary conditions specified in Eq. (7) and Eq. (9), one can show that the

low-energy values of  $M_{\widetilde{F}}^2$  and  $M_{\widetilde{R}}^2$  depend primarily on  $m_0^2$  and  $m_{1/2}^2$ . A number of useful approximate analytic expressions for superpartner masses in terms of the mSUGRA parameters can be found in Ref. 47.

Clearly, in the mSUGRA approach, the MSSM-124 parameter freedom has been sharply reduced. For example, typical mSUGRA models give low-energy values for the scalar mass parameters that satisfy  $M_{\widetilde{L}} \approx M_{\widetilde{E}} < M_{\widetilde{Q}} \approx M_{\widetilde{U}} \approx M_{\widetilde{D}}$  with the squark mass parameters somewhere between a factor of 1–3 larger than the slepton mass parameters (e.g., see Ref. 47). More precisely, the low-energy values of the squark mass parameters of the first two generations are roughly degenerate, while  $M_{\widetilde{Q}_3}$  and  $M_{\widetilde{U}_3}$  are typically reduced by a factor of 1–3 from the values of the first and second generation squark mass parameters because of renormalization effects due to the heavy top quark mass.

As a result, one typically finds that four flavors of squarks (with two squark eigenstates per flavor) and  $\tilde{b}_R$  are nearly mass-degenerate. The  $\tilde{b}_L$  mass and the diagonal  $\tilde{t}_L$  and  $\tilde{t}_R$  masses are reduced compared to the common squark mass of the first two generations. (If  $\tan \beta \gg 1$ , then the pattern of third generation squark masses is somewhat altered; e.g., see Ref. 48.) In addition, there are six flavors of nearly mass-degenerate sleptons (with two slepton eigenstates per flavor for the charged sleptons and one per flavor for the sneutrinos); the sleptons are expected to be somewhat lighter than the mass-degenerate squarks. Finally, third generation squark masses and tau-slepton masses are sensitive to the strength of the respective  $\tilde{f}_L - \tilde{f}_R$  mixing as discussed below Eq. (3).

Due to the implicit  $m_{1/2}$  dependence in the low-energy values of  $M_{\widetilde{Q}}^2$ ,  $M_{\widetilde{U}}^2$  and  $M_{\widetilde{D}}^2$ , there is a tendency for the gluino in mSUGRA models to be lighter than the first and second generation squarks. Moreover, the LSP is typically the lightest neutralino,  $\widetilde{\chi}_1^0$ , which is dominated by its bino component. However, there are some regions of mSUGRA parameter space where the above conclusions do not hold. For example, one can reject those mSUGRA parameter regimes in which the LSP is a chargino.

One can count the number of independent parameters in the mSUGRA framework. In addition to 18 Standard Model parameters (excluding the Higgs mass), one must specify  $m_0$ ,  $m_{1/2}$ ,  $A_0$ , and Planck-scale values for  $\mu$  and B-parameters (denoted by  $\mu_0$  and  $B_0$ ). In principle,  $A_0$ ,  $B_0$  and  $\mu_0$  can be complex, although in the mSUGRA approach, these parameters are taken (arbitrarily) to be real. As previously noted, renormalization group evolution is used to compute the low-energy values of the mSUGRA parameters, which then fixes all the parameters of the low-energy MSSM. In particular, the two Higgs vacuum expectation values (or equivalently,  $m_Z$  and  $\tan \beta$ ) can be expressed as a function of the Planck-scale supergravity parameters. The simplest procedure is to remove  $\mu_0$  and  $B_0$  in favor of  $m_Z$  and  $\tan \beta$  (the sign of  $\mu_0$  is not fixed in this process). In this case, the MSSM spectrum and its interaction strengths are determined by five parameters:  $m_0$ ,  $A_0$ ,  $m_{1/2}$ ,  $\tan \beta$ , and the sign of  $\mu_0$ , in addition to the 18 parameters of the Standard Model. However, the mSUGRA approach is probably too simplistic. Theoretical considerations suggest that the universality of Planck-scale soft-supersymmetry-breaking parameters is not generic [49].

In the minimal gauge-mediated supersymmetry-breaking (GMSB) approach, there is one effective mass scale,  $\Lambda$ , that determines all low-energy scalar and gaugino mass parameters through loop-effects (while the resulting A-parameters are suppressed). In order that the resulting superpartner masses be of order 1 TeV or less, one must have  $\Lambda \sim 100$  TeV. The origin of the  $\mu$  and B-parameters is quite model dependent and lies somewhat outside the ansatz of gauge-mediated supersymmetry breaking. The simplest models of this type are even more restrictive than mSUGRA, with two fewer degrees of freedom. However, minimal GMSB is not a fully realized model. The sector of supersymmetry-breaking dynamics can be very complex, and no complete model of gauge-mediated supersymmetry yet exists that is both simple and compelling.

It was noted in Section I.2 that the gravitino is the LSP in GMSB models. Thus, in such models, the next-to-lightest supersymmetric particle (NLSP) plays a crucial role in the phenomenology of supersymmetric particle production and decay. Note that unlike the LSP, the NLSP can be charged. In GMSB models, the most likely candidates for the NLSP are  $\widetilde{\chi}_1^0$  and  $\widetilde{\tau}_R^{\pm}$ . The NLSP will decay into its superpartner plus a gravitino (e.g.,  $\widetilde{\chi}_1^0 \to \gamma \widetilde{g}_{3/2}$ ,  $\widetilde{\chi}_1^0 \to Z \widetilde{g}_{3/2}$  or  $\widetilde{\tau}_R^{\pm} \to \tau^{\pm} \widetilde{g}_{3/2}$ ), with lifetimes and branching ratios that depend on the model parameters.

Different choices for the identity of the NLSP and its decay rate lead to a variety of distinctive supersymmetric phenomenologies [30,50]. For example, a long-lived  $\tilde{\chi}_1^0$ -NLSP that decays outside collider detectors leads to supersymmetric decay chains with missing energy in association with leptons and/or hadronic jets (this case is indistinguishable from the canonical phenomenology of the  $\tilde{\chi}_1^0$ -LSP). On the other hand, if  $\tilde{\chi}_1^0 \to \gamma \tilde{g}_{3/2}$  is the dominant decay mode, and the decay occurs inside the detector, then nearly all supersymmetric particle decay chains would contain a photon. In contrast, the case of a  $\tilde{\tau}_R^\pm$ -NLSP would lead either to a new long-lived charged particle (i.e., the  $\tilde{\tau}_R^\pm$ ) or to supersymmetric particle decay chains with  $\tau$ -leptons.

Finally, grand unification can impose additional constraints on the MSSM parameters. Perhaps one of the most compelling hints for low-energy supersymmetry is the unification of  $SU(3)\times SU(2)\times U(1)$  gauge couplings predicted by models of supersymmetric grand unified theories (SGUTs) [5,51] (with the supersymmetry-breaking scale of order 1 TeV or below). Gauge coupling unification, which takes place at an energy scale of order  $10^{16}$  GeV, is quite robust (i.e., the unification depends weakly on the details of the theory at the unification scale). In particular, given the low-energy values of the electroweak couplings  $g(m_Z)$  and  $g'(m_Z)$ , one can predict  $\alpha_s(m_Z)$  by using the MSSM renormalization group equations to extrapolate to higher energies and imposing the unification condition on the

three gauge couplings at some high-energy scale,  $M_{\rm X}$ . This procedure (which fixes  $M_{\rm X}$ ) can be successful (i.e., three running couplings will meet at a single point) only for a unique value of  $\alpha_s(m_Z)$ . The extrapolation depends somewhat on the low-energy supersymmetric spectrum (so-called low-energy "threshold effects") and on the SGUT spectrum (high-energy threshold effects), which can somewhat alter the evolution of couplings. Ref. [52] summarizes the comparison of present data with the expectations of SGUTs, and shows that the measured value of  $\alpha_s(m_Z)$  is in good agreement with the predictions of supersymmetric grand unification for a reasonable choice of supersymmetric threshold corrections.

Additional SGUT predictions arise through the unification of the Higgs-fermion Yukawa couplings  $(\lambda_f)$ . There is some evidence that  $\lambda_b = \lambda_\tau$  leads to good low-energy phenomenology [53], and an intriguing possibility that  $\lambda_b = \lambda_\tau = \lambda_t$  may be phenomenologically viable [54,48] in the parameter regime where  $\tan \beta \simeq m_t/m_b$ . Finally, grand unification imposes constraints on the soft-supersymmetry-breaking parameters. For example, gaugino-mass unification leads to the relations given in Eq. (7). Diagonal squark and slepton soft-supersymmetry-breaking scalar masses may also be unified, which is analogous to the unification of Higgs-fermion Yukawa couplings.

In the absence of a fundamental theory of supersymmetry breaking, further progress will require a detailed knowledge of the supersymmetric-particle spectrum in order to determine the nature of the high-energy parameters. Of course, any of the theoretical assumptions described in this section could be wrong and must eventually be tested experimentally.

1.8. Beyond the MSSM: Non-minimal models of low-energy supersymmetry can also be constructed. One approach is to add new structure beyond the Standard Model at the TeV scale or below. The supersymmetric extension of such a theory would be a non-minimal extension of the MSSM. Possible new structures include: (i) the supersymmetric generalization of the see-saw model of neutrino masses [55,56]; (ii) an enlarged electroweak gauge group beyond  $SU(2)\times U(1)$  [57]; (iii) the addition of new, possibly exotic, matter multiplets [e.g., a vector-like color triplet with electric charge  $\frac{1}{3}e$ ; such states sometimes occur as low-energy remnants in E6 grand unification models]; and/or (iv) the addition of low-energy  $SU(3)\times SU(2)\times U(1)$  singlets [58]. A possible theoretical motivation for such new structure arises from the study of phenomenologically viable string theory ground states [59].

A second approach is to retain the minimal particle content of the MSSM but remove the assumption of R-parity invariance. The most general R-parity-violating (RPV) theory involving the MSSM spectrum introduces many new parameters to both the supersymmetry-conserving and the supersymmetry-breaking sectors. Each new interaction term violates either B or L conservation. For example, consider new scalar-fermion Yukawa couplings derived from the following interactions:

$$(\lambda_L)_{pmn}\widehat{L}_p\widehat{L}_m\widehat{E}_n^c + (\lambda_L')_{pmn}\widehat{L}_p\widehat{Q}_m\widehat{D}_n^c + (\lambda_B)_{pmn}\widehat{U}_p^c\widehat{D}_m^c\widehat{D}_n^c, (10)$$

#### Supersymmetric Particle Searches

where p, m, and n are generation indices, and gauge group indices are suppressed. In the notation above,  $\widehat{Q}$ ,  $\widehat{U}^c$ ,  $\widehat{D}^c$ ,  $\widehat{L}$ , and  $\widehat{E}^c$  respectively represent  $(u,d)_L$ ,  $u_L^c$ ,  $d_L^c$ ,  $(\nu, e^-)_L$ , and  $e_L^c$  and the corresponding superpartners. The Yukawa interactions are obtained from Eq. (10) by taking all possible combinations involving two fermions and one scalar superpartner. Note that the term in Eq. (10) proportional to  $\lambda_B$  violates B, while the other two terms violate L.

Phenomenological constraints on various low-energy B- and L-violating processes yield limits on each of the coefficients  $(\lambda_L)_{pmn}$ ,  $(\lambda_L')_{pmn}$  and  $(\lambda_B)_{pmn}$  taken one at a time [60]. If more than one coefficient is simultaneously non-zero, then the limits are in general more complicated. All possible RPV terms cannot be simultaneously present and unsuppressed; otherwise the proton decay rate would be many orders of magnitude larger than the present experimental bound. One way to avoid proton decay is to impose B- or L-invariance (either one alone would suffice). Otherwise, one must accept the requirement that certain RPV coefficients must be extremely suppressed.

If R-parity is not conserved, supersymmetric phenomenology exhibits features that are quite distinct from that of the MSSM. The LSP is no longer stable, which implies that not all supersymmetric decay chains must yield missing-energy events at colliders. Both  $\Delta L = 1$  and  $\Delta L = 2$  phenomena are allowed (if L is violated), leading to neutrino masses and mixing [61], neutrinoless double beta decay [62], sneutrino-antisneutrino mixing [56,63,64], and s-channel resonant production of the sneutrino in  $e^+e^-$  collisions [65]. Since the distinction between the Higgs and matter multiplets is lost, R-parity violation permits the mixing of sleptons and Higgs bosons, the mixing of neutrinos and neutralinos, and the mixing of charged leptons and charginos, leading to more complicated mass matrices and mass eigenstates than in the MSSM. Note that if  $\lambda_L' \neq 0$ , then squarks can behave as leptoquarks since the following processes are allowed:  $e^+\overline{u}_m \to \widetilde{d}_n \to e^+\overline{u}_m$ ,  $\overline{\nu}\overline{d}_m$ and  $e^+d_m \to \tilde{u}_n \to e^+d_m$ . (As above, m and n are generation labels, so that  $d_2 = s$ ,  $d_3 = b$ , etc.)

The theory and phenomenology of alternative low-energy supersymmetric models and its consequences for collider physics have recently begun to attract significant attention. In particular, experimental and theoretical constraints place some non-trivial restrictions on R-parity-violating alternatives to the MSSM (see, e.g., Refs. [60,66] for further details).

#### References

- 1. H.P. Nilles, Phys. Reports 110, 1 (1984).
- S.P. Martin, in Perspectives on Supersymmetry, edited by G.L. Kane (World Scientific, Singapore, 1998) pp. 1-98.
- R. Arnowitt and P. Nath, in Perspectives on Supersymmetry, edited by G.L. Kane (World Scientific, Singapore, 1998) pp. 442-461.
- 4. E. Witten, Nucl. Phys. B188, 513 (1981).
- S. Dimopoulos and H. Georgi, Nucl. Phys. **B193**, 150 (1981).

- L. Susskind, Phys. Reports 104, 181 (1984);
   N. Sakai, Z. Phys. C11, 153 (1981);
   R.K. Kaul, Phys. Lett. 109B, 19 (1982).
- 7. H.E. Haber and G.L. Kane, Phys. Reports 117, 75 (1985).
- K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog. Theor. Phys. 68, 927 (1982) [E: 70, 330 (1983)]; 71, 413 (1984);
  - R. Flores and M. Sher, Ann. Phys. (NY) 148, 95 (1983).
- J.F. Gunion and H.E. Haber, Nucl. Phys. **B272**, 1 (1986)
   [E: **B402**, 567 (1993)].
- L. Girardello and M. Grisaru, Nucl. Phys. **B194**, 65 (1982).
- See, e.g., R. Barbieri and G.F. Giudice, Nucl. Phys. B305, 63 (1988);
   G.W. Anderson and D.J. Castano, Phys. Lett. B347, 300 (1995); Phys. Rev. D52, 1693 (1995); Phys. Rev. D53, 2403 (1996);
   J.L. Feng, K.T. Matchev and T. Moroi, IASSNS-HEP-99-
- 81 (1999) [hep-ph/9909334].
  12. S. Dimopoulos and G.F. Giudice, Phys. Lett. B357, 573 (1995);
  A. Pomarol and D. Tommasini, Nucl. Phys. B466, 3 (1996);
  A.G. Cohen, D.B. Kaplan and A.E. Nelson, Phys. Lett. B388, 588 (1996);
  J.L. Feng, K.T. Matchev and T. Moroi, IASSNS-HEP-99-78 (1999) [hep-ph/9908309].
- M. Schmitt, "Supersymmetry Part II (Experiment)," immediately following, in the printed version of the Review of Particle Physics (see also the Particle Listings immediately following).
- See, e.g., F. Gabbiani, E. Gabrielli A. Masiero and L. Silvestrini, Nucl. Phys. B477, 321 (1996).
- For a recent review and references to the original literature, see: A. Masiero and L. Silvestrini, hep-ph/9711401 (1997).
- J. Erler and P. Langacker, "Electroweak Model and Constraints on New Physics," in the section on Reviews, Tables, and Plots in this Review.
- P.H. Chankowski and S. Pokorski, in *Perspectives on Supersymmetry*, edited by G.L. Kane (World Scientific, Singapore, 1998) pp. 402-422.
- A. Dobado, M.J. Herrero and S. Penaranda, Eur. Phys. J. C7, 313 (1999); hep-ph/9903211 (Eur. Phys. J. C, in press).
- 19. J. Erler and D.M. Pierce, Nucl. Phys. B526, 53 (1998).
- P. Fayet, Phys. Lett. **69B**, 489 (1977);
   G. Farrar and P. Fayet, Phys. Lett. **76B**, 575 (1978).
- J. Ellis, J.S. Hagelin, D.V. Nanopoulos, K. Olive, and M. Srednicki, Nucl. Phys. **B238**, 453 (1984).
- G. Jungman, M. Kamionkowski, and K. Griest, Phys. Reports 267, 195 (1996).
- M. Srednicki, in the section on "Dark Matter" in the full Review of Particle Physics.
- P. Fayet, Phys. Lett. 84B, 421 (1979); Phys. Lett. 86B, 272 (1979).
- S. Deser and B. Zumino, Phys. Rev. Lett. 38, 1433 (1977).
- L.J. Hall, J. Lykken, and S. Weinberg, Phys. Rev. **D27**, 2359 (1983).
- S.K. Soni and H.A. Weldon Phys. Lett. 126B, 215 (1983);
   Y. Kawamura, H. Murayama, and M. Yamaguchi, Phys. Rev. D51, 1337 (1995).

- A.B. Lahanas and D.V. Nanopoulos, Phys. Reports 145, 1 (1987).
- M. Dine and A.E. Nelson, Phys. Rev. **D48**, 1277 (1993);
   M. Dine, A.E. Nelson, and Y. Shirman, Phys. Rev. **D51**, 1362 (1995);
  - M. Dine, A.E. Nelson, Y. Nir, and Y. Shirman, Phys. Rev. **D53**, 2658 (1996).
- G.F. Giudice, and R. Rattazzi, hep-ph/9801271 (to appear in Phys. Reports), and in *Perspectives on Supersymmetry*, edited by G.L. Kane (World Scientific, Singapore, 1998) pp. 355-377.
- H.E. Haber, in Recent Directions in Particle Theory, Proceedings of the 1992 Theoretical Advanced Study Institute in Particle Physics, edited by J. Harvey and J. Polchinski (World Scientific, Singapore, 1993) pp. 589-686.
- S. Dimopoulos and D. Sutter, Nucl. Phys. **B452**, 496 (1995);
   D.W. Sutter, Stanford Ph. D. thesis, hep-ph/9704390.
- H.E. Haber, Nucl. Phys. B (Proc. Suppl.) 62A-C, 469 (1998).
- Explicit forms for the chargino and neutralino mass matrices can be found in Appendix A of Ref. 9; see also Ref. 31.
- 35. J. Ellis and S. Rudaz, Phys. Lett. 128B, 248 (1983).
- D.M. Pierce, J.A. Bagger, K. Matchev and R.J. Zhang, Nucl. Phys. B491, 3 (1997).
- J.F. Gunion, H.E. Haber, G. Kane, and S. Dawson, The Higgs Hunter's Guide (Addison-Wesley Publishing Company, Redwood City, CA, 1990).
- H.E. Haber and R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991).
  - Y. Okada, M. Yamaguchi, and T. Yanagida, Prog. Theor. Phys. 85, 1 (1991);
  - J. Ellis, G. Ridolfi, and F. Zwirner, Phys. Lett. **B257**, 83 (1991).
- M. Carena, J.R. Espinosa, M. Quiros, and C.E.M. Wagner, Phys. Lett. B335, 209 (1995);
  - M. Carena, M. Quiros, and C.E.M. Wagner, Nucl. Phys. B461, 407 (1996);
  - H.E. Haber, R. Hempfling, and A.H. Hoang, Z. Phys. C75, 539 (1997);
  - S. Heinemeyer, W. Hollik and G. Weiglein, Phys. Lett. B440, 296 (1998); B455, 179 (1999); Eur. Phys. J C9, 343 (1999);
  - R.-J. Zhang, Phys. Lett. **B447**, 89 (1999).
- A. Pilaftsis and C.E.M. Wagner, Nucl. Phys. **B553**, 3 (1999).
- 41. W. Fischler, S. Paban, and S. Thomas, Phys. Lett. **B289**, 373 (1992);
  - S.M. Barr, Int. J. Mod. Phys. A8, 209 (1993);
  - T. Ibrahim and P. Nath, Phys. Rev. **D58**, 111301 (1998) [E: **D60**, 099902 (1999)];
  - M. Brhlik, G.J. Good and G.L. Kane, Phys. Rev. **D59**, 115004 (1999).
- A. Masiero and L. Silvestrini, in *Perspectives on Supersymmetry*, edited by G.L. Kane (World Scientific, Singapore, 1998) pp. 423-441.
- H. Georgi, Phys. Lett. **B169B**, 231 (1986);
   L.J. Hall, V.A. Kostelecky, and S. Raby Nucl. Phys. **B267**, 415 (1986).
- 44. Y. Nir and N. Seiberg, Phys. Lett. B309, 337 (1993);

- S. Dimopoulos, G.F. Giudice, and N. Tetradis, Nucl. Phys. **B454**, 59 (1995).
- L. Randall and R. Sundrum, Nucl. Phys. B557, 79 (1999);
   G.F. Giudice, R. Rattazzi, M.A. Luty and H. Murayama,
   JHEP 12, 027 (1998);
  - J.L. Feng and T. Moroi, IASSNS-HEP-99-65 [hep-ph/9907319].
- J.L. Feng, T. Moroi, L. Randall, M. Strassler and S.-F. Su, Phys. Rev. Lett. 83, 1731 (1999);
   T. Gherghetta, G.F. Giudice and J.D. Wells, CERN-TH-
  - 99-104 [hep-ph/9904378]; J.F. Gunion and S. Mrenna, UCD-99-11 [hep-ph/9906270].
- M. Drees and S.P. Martin, in Electroweak Symmetry Breaking and New Physics at the TeV Scale, edited by T. Barklow, S. Dawson, H.E. Haber, and J. Siegrist (World Scientific, Singapore, 1996) pp. 146-215.
- M. Carena, M. Olechowski, S. Pokorski, and C.E.M. Wagner, Nucl. Phys. B426, 269 (1994).
- L.E. Ibáñez and D. Lüst, Nucl. Phys. B382, 305 (1992);
   B. de Carlos, J.A. Casas and C. Munoz, Phys. Lett. B299, 234 (1993);
  - V. Kaplunovsky and J. Louis, Phys. Lett. **B306**, 269 (1993);
  - A. Brignole, L.E. Ibáñez, and C. Munoz, Nucl. Phys. B422, 125 (1994) [E: B436, 747 (1995)].
- For a brief review and guide to the original literature, see J.F. Gunion and H.E. Haber, in *Perspectives on Supersym*metry, edited by G.L. Kane (World Scientific, Singapore, 1998) pp. 235-255.
- M.B. Einhorn and D.R.T. Jones, Nucl. Phys. B196, 475 (1982);
   W.J. Marciano and G. Senjanovic, Phys. Rev. D25, 3092 (1982).
- 52. S. Pokorski, Acta Phys. Polon. B30, 1759 (1999).
- H. Arason et al., Phys. Rev. Lett. 67, 2933 (1991);
   Phys. Rev. D46, 3945 (1992);
  - V. Barger, M.S. Berger, and P. Ohmann, Phys. Rev. **D47**, 1093 (1993);
  - M. Carena, S. Pokorski, and C.E.M. Wagner, Nucl. Phys. **B406**, 59 (1993);
  - P. Langacker and N. Polonsky, Phys. Rev. **D49**, 1454 (1994).
- M. Olechowski and S. Pokorski, Phys. Lett. **B214**, 393 (1988);
  - B. Ananthanarayan, G. Lazarides, and Q. Shafi, Phys. Rev. **D44**, 1613 (1991);
  - S. Dimopoulos, L.J. Hall, and S. Raby, Phys. Rev. Lett. **68**, 1984 (1992);
  - L.J. Hall, R. Rattazzi, and U. Sarid, Phys. Rev. **D50**, 7048 (1994);
  - R. Rattazzi and U. Sarid, Phys. Rev. **D53**, 1553 (1996).
- J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, and T. Yanagida, Phys. Lett. B357, 579 (1995);
   J. Hisano, T. Moroi, K. Tobe, and M. Yamaguchi, Phys.
- Y. Grossman and H.E. Haber, Phys. Rev. Lett. 78, 3438 (1997).
- 57. J.L. Hewett and T.G. Rizzo, Phys. Reports 183, 193 (1989)
- See, e.g., U. Ellwanger, M. Rausch de Traubenberg, and C.A. Savoy, Nucl. Phys. B492, 21 (1997), and references therein.
- 59. K.R. Dienes, Phys. Reports 287, 447 (1997).

Rev. **D53**, 2442 (1996).

### Supersymmetric Particle Searches

- H. Dreiner, in Perspectives on Supersymmetry, edited by G.L. Kane (World Scientific, Singapore, 1998) pp. 462-479.
- F.M. Borzumati, Y. Grossman, E. Nardi, and Y. Nir, Phys. Lett. B384, 123 (1996).
- R.N. Mohapatra, Phys. Rev. D34, 3457 (1986);
   K.S. Babu and R.N. Mohapatra, Phys. Rev. Lett. 75, 2276 (1995);
   M. Hirsch, H.V. Klapdor-Kleingrothaus, and S.G. Kovalenko, Phys. Rev. Lett. 75, 17 (1995); Phys. Rev. D53, 1329 (1996).
- M. Hirsch, H.V. Klapdor-Kleingrothaus, and S.G. Kovalenko, Phys. Lett. B398, 311 (1997).
- Y. Grossman and H.E. Haber, Phys. Rev. **D59**, 093008 (1999).
- S. Dimopoulos and L.J. Hall, Phys. Lett. B207, 210 (1988);
   J. Kalinowski, R. Ruckl, H. Spiesberger, and P.M. Zerwas, Phys. Lett. B406, 314 (1997);
   J. Erler, J.L. Feng, and N. Polonsky, Phys. Rev. Lett. 78, 3063 (1997).
- M. Bisset, O.C.W. Kong, C. Macesanu and L.H. Orr, UR-1524 (1998) [hep-ph/9811498];
  R. Barbier et al., Report of the group on the R parity violation, hep-ph/9810232 (1998).

#### SUPERSYMMETRY, PART II (EXPERIMENT)

Revised October 1999 by M. Schmitt (Harvard University)

III.1. Introduction: The theoretical strong points of supersymmetry (SUSY) have motivated many searches for supersymmetric particles. Most of these have been guided by the MSSM and are based on the canonical missing-energy signature caused by the escape of the LSP's ('lightest supersymmetric particles'). More recently, other scenarios have received considerable attention from experimenters, widening the range of topologies in which new physics might be found.

Unfortunately, no convincing evidence for the production of supersymmetric particles has been found. The most far reaching laboratory searches have been performed at the Tevatron and at LEP, and these are the main topic of this review. In addition, there are a few special opportunities exploited by HERA and certain fixed-target experiments.

Theoretical aspects of supersymmetry have been covered in Part I of this review by H.E. Haber (see also Ref. 1, 2); we use his notations and terminology.

II.2. Common supersymmetry scenarios: In the 'canonical' scenario [1], supersymmetric particles are pair-produced and decay directly or via cascades to the LSP. For most typical choices of model parameters, the lightest neutralino is the LSP. If R-parity is conserved, the LSP is stable. Since the neutralino is neutral and colorless, interacting only weakly with matter, it can be a candidate for cold dark matter, and in fact for a wide range of theoretical parameters, an appropriate density of relic neutralinos is expected. (See the Listings for current limits and constraints.) Assuming the conservation of R-parity, the LSP's will escape detection, giving signal events the appearance of "missing energy." In proton colliders, the

momentum component along the beam direction is not useful, so one works with the so-called "missing transverse energy"  $(\not\!E_T)$ , which is the vector sum of the transverse components of all visible momenta. In  $e^+e^-$  machines, both the missing transverse momentum,  $p_T^{\rm miss}$  (essentially the same quantity as  $\not\!E_T$ ), and the missing energy,  $E^{\rm miss}$ , which is the difference between twice the beam energy and the total visible energy, are utilized. There are always at least two LSP's per event. Collimated jets, isolated leptons or photons, and appropriate kinematic cuts provide additional handles to reduce backgrounds.

The conservation of R-parity is not required in supersymmetry, however, and in some searches it is assumed that supersymmetric particles decay via interactions which violate R-parity (RPV), and hence, lepton and/or baryon number. For the most part the production of superpartners is unchanged, but in general the missing-energy signature is lost. Depending on the choice of the R-parity-breaking interaction, SUSY events are characterized by an excess of leptons or hadronic jets, and in many cases it is relatively easy to suppress SM backgrounds [3]. A distinction is made between "indirect" RPV, in which the LSP decays close to the interaction point but no other decays are modified, and "direct" RPV, in which the supersymmetric particles decay to SM particles, producing no LSP's. In either case the pair-production of LSP's, which need not be  $\widetilde{\chi}_1^0$ 's or  $\overline{\nu}$ 's, is a significant SUSY signal.

In models assuming gauge-mediated supersymmetry breaking (GMSB) [4], the gravitino  $\tilde{g}_{3/2}$  is a weakly-interacting fermion with a mass so small that it can be neglected when considering the event kinematics. It is the LSP, and the lightest neutralino decays to it radiatively, possibly with a very long lifetime. With few exceptions the decays and production of other superpartners are the same as in the canonical scenario, so when the  $\tilde{\chi}^0_1$  lifetime is not too long, the event topologies are augmented by the presence of photons which can be energetic and isolated. If the  $\tilde{\chi}^0_1$  lifetime is so long that it decays outside of the detector, the event topologies are the same as in the canonical scenario. In some variants of this theory the right-sleptons are lighter than the lightest neutralino, and they decay to a lepton and a gravitino. This decay might occur after the slepton exits the apparatus, depending on model parameters.

Finally, in another scenario the gluino  $\tilde{g}$  is assumed to be light  $(M_{\widetilde{g}} < 5 \text{ GeV}/c^2)$  [5]. Its decay to the lightest neutralino is kinematically suppressed, so long-lived supersymmetric hadrons  $(\tilde{g} + g)$  bound states called  $R^0$ 's) are formed [6]. While the sensitivity of most searches at LEP and the Tevatron would be lost, specific searches at fixed target experiments seem to have closed this gap definitively. (See the review article by H. Murayama.)

II.3. Experimental issues: Before describing the results of the searches, a few words about experimental issues are in order.

Given no signal for supersymmetric particles, experimenters are forced to derive limits on their production. The most general formulation of supersymmetry is so flexible that few universal bounds can be obtained. Often more restricted forms of the theory are evoked for which predictions are more definite—and exclusions more constraining. The most popular of these is minimal supergravity ('mSUGRA'). As explained in the Part I of this review, parameter freedom is drastically reduced by requiring related parameters to be equal at the unification scale. Thus, the gaugino masses are equal with value  $m_{1/2}$ , and the slepton, squark, and Higgs masses depend on a common scalar mass parameter,  $m_0$ . In the individual experimental analyses, only some of these assumptions are necessary. For example, the gluon and squark searches at proton machines constrain mainly  $M_3$  and a scalar mass parameter  $m_0$  for the squark masses, while the chargino, neutralino, and slepton searches at  $e^+e^-$  colliders constrain  $M_2$  and a scalar mass parameter  $m_0$  for the slepton masses. In addition, results from the Higgs searches can be used to constrain  $m_{1/2}$  and  $m_0$  as a function of  $\tan \beta$ . (The full analysis involves large radiative corrections coming from squark mixing, which is where the dependence on  $m_{1/2}$  and  $m_0$  enter.) In the mSUGRA framework, all the scalar mass parameters  $m_0$  are the same and the three gaugino mass parameters are proportional to  $m_{1/2}$ , so limits from squarks, sleptons, charginos, gluinos, and Higgs all can be used to constrain the parameter space.

While the mSUGRA framework is convenient, it is based on several highly specific theoretical assumptions, so limits presented in this framework cannot easily be applied to other supersymmetric models. Serious attempts to reduce the model dependence of experimental exclusions have been made. When model-independent results are impossible, the underlying assumptions and their consequences are carefully delineated. This is easier to achieve at  $e^+e^-$  colliders than at proton machines.

The least model-dependent result from any experiment is the upper limit on the cross section. It requires only the number N of candidate events, the integrated luminosity  $\mathcal{L}$ , the total expected background b, and the acceptance  $\epsilon$  for a given signal. The upper limit on the number of signal events for a given confidence level  $N^{\text{upper}}$  is computed from N and b (see review of Statistics). The experimental bound is simply

$$\epsilon \cdot \sigma < N^{\text{upper}}/\mathcal{L}.$$
 (1)

This information is nearly always reported, but some care is needed to understand how the acceptance was estimated, since it can be quite sensitive to assumptions about masses and branching ratios. Also, in the more complicated analyses,  $N^{\rm upper}$  also changes as a result of the optimization for a variety of possible signals.

The theoretical parameter space is constrained by computing  $\epsilon \cdot \sigma$  of Eq. (1) in terms of the relevant parameters while  $N^{\text{upper}}/\mathcal{L}$  is fixed by experiment. Even after the theoretical scenario and assumptions have been specified, some choice remains about how to present the constraints. The quantity  $\epsilon \cdot \sigma$  may depend on three or more parameters, yet in a printed page one usually can display limits only in a two-dimensional space. Three rather different tactics are employed by experimenters:

- Select "typical" values for the parameters not shown. These may be suggested by theory, or values giving more conservative—or more powerful—results may be selected. Although the values are usually specified, one sometimes has to work to understand the possible 'loopholes.'
- Scan the parameters not shown. The lowest value for ε·σ is used in Eq. (1), thereby giving the weakest limit for the parameters shown. As a consequence, the limit applies for all values of the parameters not shown.
- Scan parameters to find the lowest acceptance ε and use it as a constant in Eq. (1). The limits are then safe from theoretical uncertainties but may be overconservative, hiding powerful constraints existing in more typical cases.

Judgment is exercised: the second option is the most correct but may be impractical or uninteresting; most often representative cases are presented. These latter become standard, allowing a direct comparison of experiments, and also the opportunity to combine results.

Limits reported here are derived for 95% C.L. unless noted otherwise.

II.4. Supersymmetry searches in  $e^+e^-$  colliders: The large electron-positron collider (LEP) at CERN has been running at center-of-mass energies more than twice the mass of the Z boson. After collecting approximately 150 pb⁻¹ at LEP 1 (collider energy at the Z peak), each experiment (ALEPH, DELPHI, L3, OPAL) has accumulated large data sets at LEP 2: about 5.7 pb⁻¹ at  $\sqrt{s} \sim 133$  GeV (1995), 10 pb⁻¹ at 161 GeV and 11 pb⁻¹ at 172 GeV (1996), 57 pb⁻¹ near 183 GeV (1997), and most recently, 180 pb⁻¹ at 189 GeV (1998). This review emphasizes the most recent LEP 2 results.

The LEP experiments and SLD at SLAC excluded essentially all visible supersymmetric particles up to about half the Z mass (see the Listings for details). These limits come mainly from the comparison of the measured Z widths to SM expectations, and are relatively insensitive to the details of SUSY particle decays [7]. The data taken at higher energies allow much stronger limits to be set, although the complex interplay of masses, cross sections, and branching ratios makes simple general limits impossible to specify.

The main signals come from SUSY particles with charge, weak isospin, or large Yukawa couplings. The gauge fermions (charginos and neutralinos) generally are produced with large cross sections, while the scalar particles (sleptons and squarks) are suppressed near threshold by kinematic factors.

Charginos are produced via  $\gamma^*$ ,  $Z^*$ , and  $\widetilde{\nu}_e$  exchange. Cross sections are in the 1-10 pb range, but can be an order of magnitude smaller when  $M_{\widetilde{\nu}_e}$  is less than 100 GeV/ $c^2$  due to the destructive interference between s- and t-channel amplitudes. Under the same circumstances, neutralino production is enhanced, as the t-channel  $\widetilde{e}$  exchange completely dominates the

# Searches Particle Listings Supersymmetric Particle Searches

s-channel  $Z^*$  exchange. When Higgsino components dominate the field content of charginos and neutralinos, cross sections are large and insensitive to slepton masses.

Sleptons and squarks are produced via  $\gamma^*$  and  $Z^*$  exchange; for selectrons there is an important additional contribution from t-channel neutralino exchange which generally increases the cross section substantially. Although the Tevatron experiments have placed general limits on squark masses far beyond the reach of LEP, a light top squark (stop) could still be found since the flavor eigenstates can mix to give a large splitting between the mass eigenstates. The coupling of the lightest stop to the  $Z^*$  will vary with the mixing angle, however, and for certain values, even vanish, so the limits on squarks from LEP depend on the mixing angle assumed.

The various SUSY particles considered at LEP typically would decay directly to SM particles and LSP's, so signatures consist of some combination of jets, leptons, possibly photons, and missing energy. Consequently the search criteria are geared toward a few distinct topologies. Although they may be optimized for one specific signal, they are often efficient for others. For example, acoplanar jets are expected in both  $\tilde{t}_1$ , and  $\tilde{\chi}_1$ ,  $\tilde{\chi}_2$ 0 production, and acoplanar leptons for both  $\tilde{\ell}^+\tilde{\ell}^-$  and  $\tilde{\chi}^+\tilde{\chi}^-$ .

The major backgrounds come from three sources. First, there are the so-called 'two-photon interactions,' in which the beam electrons emit photons which combine to produce a low mass hadronic or leptonic system leaving little visible energy in the detector. Since the electrons are seldom deflected through large angles,  $p_T^{\rm miss}$  is low. Second, there is difermion production, usually accompanied by large initial-state radiation induced by the Z pole, which gives events that are well balanced with respect to the beam direction. Finally, there is four-fermion production through states with one or two resonating bosons  $(W^+W^-, ZZ, We\nu, Ze^+e^-, \text{etc.})$  which can give events with large  $E^{\rm miss}$  and  $p_T^{\rm miss}$  due to neutrinos and electrons lost down the beam pipe.

In the canonical case,  $E^{\rm miss}$  and  $p_T^{\rm miss}$  are large enough to eliminate most of these backgrounds. The  $e^+e^-$  initial state is well defined so searches utilize both transverse and longitudinal momentum components. It is possible to measure the missing mass  $(M_{\rm miss} = \{(\sqrt{s} - E_{\rm vis})^2 - \vec{p}_{\rm vis}^2\}^{1/2})$  which is small if  $p_T^{\rm miss}$  is caused by a single neutrino or undetected electron or photon, and can be large when there are two massive LSP's. The four-fermion processes cannot be entirely eliminated, however, and a non-negligible irreducible background is expected. Fortunately, the uncertainties for these backgrounds are not large.

High efficiencies are easily achieved when the mass of the LSP is lighter than the parent particle by at least 10  ${\rm GeV}/c^2$  and greater than about 10  ${\rm GeV}/c^2$ . Difficulties arise when the mass difference  $\Delta M$  between the produced particle and the LSP is smaller than 10  ${\rm GeV}/c^2$  as the signal resembles background from two-photon interactions. A very light LSP is challenging also since, kinematically speaking, it plays a role similar to a neutrino, so that, for example, a signal for charginos of mass  $85~{\rm GeV}/c^2$  is difficult to distinguish from the production of

 $W^+W^-$  pairs. The lower signal efficiency obtained in these two extreme cases has been offset by the large integrated luminosities delivered over the last two years, so mass limits are not degraded very much.

Since the start of LEP 2, experimenters have made special efforts to cover a wide range of mass differences. Also, since virtual superpartners exchanged in decays can heavily influence branching ratios to SM particles, care has been taken to ensure that the search efficiencies are not strongly dependent on the final state. This ability to cover a wide range of topologies has driven the push for bounds with a minimum of model dependence.

Charginos have been excluded up to 94 GeV/ $c^2$  [8,9] except in cases of very low acceptance ( $\Delta M = M_{\widetilde{\chi}^\pm} - M_{\widetilde{\chi}^0_1} \lesssim 3~{\rm GeV}/c^2$ ) or low cross section ( $M_{\widetilde{\nu}_e} \lesssim 120~{\rm GeV}/c^2$ ). When  $|\mu| \ll M_2$ , the Higgsino components are large for charginos and neutralinos. In this case the associated production of neutralino pairs  $\widetilde{\chi}^0_1 \widetilde{\chi}^0_2$  is large and the problem of small mass differences ( $M_{\widetilde{\chi}^0_2} - M_{\widetilde{\chi}^0_1}$ ) less severe. Experimental sensitivity now extends down to mass differences of 3 GeV/ $c^2$ , corresponding to  $M_2$  above 2 TeV/ $c^2$ .

The possibility of extremely small mass differences has been raised in several theoretical papers, and the DELPHI Collaboration has engineered several searches to cover this scenario [10]. For  $\Delta M \sim 1~{\rm GeV/c^2}$ , they distinguish signal from two-photon background on the basis of photons radiated in the initial state, which have different kinematic characteristics. For  $\Delta M \sim 0.4~{\rm GeV/c^2}$ , the chargino acquires a non-negligible lifetime, so they look for displaced vertices and tracks which do not originate from the interaction point. The modeling of lifetime and chargino decays required special care. When  $\Delta M < m_\pi$ , the lifetime is so long that the chargino appears as a heavily ionizing particle which exits the apparatus before decaying. The bounds on the chargino mass are weaker than in the canonical case with larger  $\Delta M$ , but still are well above the bounds from LEP 1 (Fig. 1).

The limits from chargino and neutralino production are most often used to constrain  $M_2$  and  $\mu$  for fixed  $\tan\beta$ . For large  $|\mu|$  (the gaugino case), chargino bounds limit  $M_2$ , and vice versa (the Higgsino case). When  $\tan\beta$  is not large, the region of parameter space with  $\mu<0$  and  $|\mu|\sim M_2$  corresponds to 'mixed' field content, and the limits on  $M_2$  and  $|\mu|$  are relatively modest, numerically. This is especially true when electron sneutrinos are light, leading to a degradation of the indirect limits on the LSP mass, as discussed below.

When the sleptons are light, two important effects must be considered for charginos: the cross section is significantly reduced and the branching ratio to leptons is enhanced, especially to  $\tau$ 's via  $\tilde{\tau}$ 's which can have non-negligible mixing. These effects are greatest when the chargino has a large gaugino component. The weakest bounds are found for small negative  $\mu$  and small  $\tan \beta$ , as the cross section is reduced with respect to larger  $|\mu|$ , the impact of  $\tilde{\tau}$  mixing can be large, and the efficiency is not optimal because  $\Delta M$  is large.

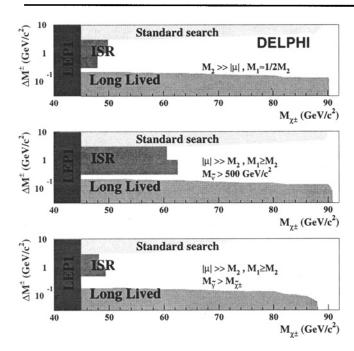



Figure 1: Ranges of excluded chargino and neutralino masses, for very small  $\Delta M$ , from DELPHI [10].

If the sneutrino is lighter than the chargino, then two-body decays  $\tilde{\chi}^+ \to \ell^+ \tilde{\nu}$  dominate, and in the 'corridor'  $0 < M_{\tilde{\chi}^\pm} - M_{\tilde{\nu}} \lesssim 3 \text{ GeV}/c^2$  the acceptance is so low that no exclusion is possible [11,9].

The limits on slepton masses [12] fall a bit below the kinematic limit due to a phase space suppression near threshold. The simplest topology results from  $\tilde{\ell} \to \ell \tilde{\chi}_1^0$ . Considering the production of  $\tilde{\ell}_R$  only, the 189 GeV data from OPAL gives 89 GeV/ $c^2$  for  $\tilde{e}_R$ , 82 GeV/ $c^2$  for  $\tilde{\mu}_R$ , and 81 GeV/ $c^2$  for  $\tilde{\tau}_1$ . For selectrons and smuons there is a small improvement from the preliminary combination of the four LEP experiments [13], and one sees that the dependence on  $\Delta M = M_{\widetilde{\ell}} - M_{\widetilde{\chi}_{i}^{0}}$  is weak for  $\Delta M \gtrsim 5 \text{ GeV}/c^2$ . Assuming a common scalar mass term  $m_0$ , the masses of the left- and right-sleptons can be related as a function of  $\tan\beta,$  and one finds  $m_{\tilde{\ell}_L} > m_{\tilde{\ell}_R}$  by a few  ${\rm GeV}/c^2.$  Consequently, in associated  $\tilde{e}_L\tilde{e}_R$  production, the special case  $M_{\widetilde{\chi}} \lesssim M_{\widetilde{e}_R}$  still results in a viable signature: a single energetic electron. ALEPH have used this to close the gap  $M_{\tilde{e}_R} - M_{\widetilde{Y}} \to 0$ . In this same framework, bounds on the parameters  $m_{1/2}$  and  $m_0$  have been derived.

In some GMSB models, photons from the decay  $\tilde{\chi}_1^0 \to \gamma \, \tilde{g}_{3/2}$  accompany the leptons. The resulting limits are similar to the canonical case. In other GMSB models, sleptons may decay to  $\ell^{\pm} \, \tilde{g}_{3/2}$  outside the detector, so the experimental signature is a pair of collinear, heavily ionizing tracks [14]. Combined search limits are 86 GeV/ $c^2$  for  $\tilde{\mu}_R$  and  $\tilde{\tau}_R$  [15]. Shorter lifetimes are possible, however, so searches have been performed for displaced vertices, tracks with kinks, and tracks with large impact parameters. Combining these together, slepton mass

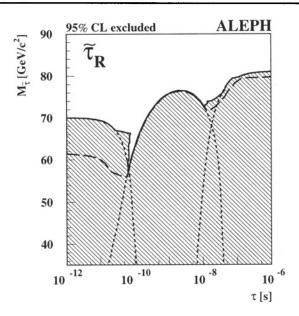



Figure 2: Lower limit on the mass of  $\tilde{\tau}_R$  as a function of its lifetime, from the ALEPH 183 GeV data [12]. The full line shows the actual mass limit obtained, while the long dashed line shows the limit expected from Monte Carlo studies. The short dashed lines indicate the limits from the three types of searches: acoplanar leptons  $(\tau < 10^{-9}s)$ , tracks with large impact parameters and kinks  $(10^{-11}s < \tau < 10^{-7}s)$ ; and, heavily ionizing tracks  $(\tau > 10^{-8}s)$ .

limits independent of lifetime have been derived. The result from ALEPH for  $\tilde{\tau}_R$  is shown in Fig. 2 [12].

For these same GMSB models, it is possible that the lightest stau is significantly lighter than the other sleptons. If so, then special topologies may result, such as  $4\tau$  final states from neutralino pair production. DELPHI has searched in this and related channels, finding no evidence for a signal [16].

Limits on stop and sbottom masses [17,18], vary with the mixing angle because the cross section does: for  $\theta_{\tilde{t}} = 56^{\circ}$  and  $\theta_{\widetilde{k}} = 67^{\circ}$  the contribution from Z exchange is "turned off." The stop decay  $\widetilde{t}_1 \to c\widetilde{\chi}_1^0$  proceeds through loops, giving a lifetime long enough to allow the top squark to form supersymmetric hadrons which provide a pair of jets and missing energy. If sneutrinos are light, the decay  $\tilde{t}_1 \to b\ell\tilde{\nu}$  dominates, giving two leptons in addition to the jets. Access to small  $\Delta M$  is possible due to the visibility of the decay products of the c and b quarks. Limits vary from 91  $\text{GeV}/c^2$  for an unrealistic pure  $\widetilde{t}_L$  state to 89 GeV/ $c^2$  if the coupling of  $\widetilde{t}_1$  to the Z vanishes. The electric charge of the sbottoms is smaller than that of stops, leading to weaker limits, but the use of b-jet tagging helps retain sensitivity: the bounds range between 75 and 90 GeV/ $c^2$  depending on  $\theta_{\widetilde{b}}$ . Limits from the Tevatron reach much higher masses, but only when the neutralino is much lighter than the stop or sbottom. ALEPH has interpreted the

### Supersymmetric Particle Searches

results of their search in terms of generic squarks, excluding a rather small region not covered at the Tevatron [17].

In canonical SUSY scenarios the lightest neutralino leaves no signal in the detector. Nonetheless, the tight correspondences among the neutralino and chargino masses allow an indirect limit on  $M_{\widetilde{\chi}_1^0}$  to be derived [9,11]. The key assumption is that the gaugino mass parameters  $M_1$  and  $M_2$  unify at the GUT scale, which leads to a definite relation between them at the electroweak scale:  $M_1 = \frac{5}{3} \tan^2 \theta_W M_2$ . Assuming slepton masses to be at least 200 GeV/ $c^2$ , the bound on  $M_{\widetilde{\chi}_1^0}$  is derived from the results of chargino and neutralino searches and certain bounds from LEP 1.

When sleptons are lighter than 120 GeV/ $c^2$ , all the effects of light sneutrinos on both the production and decay of charginos and heavier neutralinos must be taken into account. Although the bounds from charginos are weakened, useful additional constraints from slepton and higher-mass neutralino searches rule out the possibility of a massless neutralino. The current OPAL limit [8], shown in Fig. 3, is  $M_{\widetilde{\chi}^0_1} > 32.8$  GeV/ $c^2$  for  $\tan \beta > 1$  and  $m_0 \gtrsim 500$  GeV/ $c^2$  (effectively,  $M_{\widetilde{\nu}} > 500$  GeV/ $c^2$ ). Allowing the universal scalar mass parameter  $m_0$  to have any value, the limit is  $M_{\widetilde{\chi}^0_1} > 31.6$  GeV/ $c^2$ .

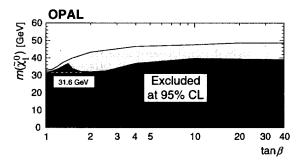



Figure 3: Lower limit on the mass of the lightest neutralino, derived by the OPAL Collaboration using constraints from chargino, neutralino, and slepton searches [8]. The light shaded region is obtained assuming  $m_0 \gtrsim 500 \text{ GeV}/c^2$ ; the dark region, for any  $m_0$ .

The ALEPH Collaboration has explored the constraints coming from the negative results of Higgs searches [9]. These are depicted as excluded regions in the  $(m_0, m_{1/2})$  plane and can be translated into bounds on  $M_{\tilde{\chi}_1^0}$ ; they do not, however, substantially strengthen bounds coming from less complicated analyses. This work has also been performed by the LEP SUSY Working Group [19].

If R-parity is not conserved, searches based on missing energy are not viable. The three possible RPV interaction terms  $(LL\overline{E}, LQ\overline{D}, \overline{U}\,\overline{D}\,\overline{D})$  violate lepton or baryon number, consequently precisely measured SM processes constrain products of dissimilar terms. Collider searches assume only one of the many possible terms dominates; given this assumption, searches for charginos and neutralinos, sleptons and squarks

have been performed. All sets of generational indices  $(\lambda_{ijk}, \lambda'_{ijk}, \lambda''_{ijk})$  have been considered, allowing for both direct and indirect RPV processes. Rather exotic topologies can occur, such as six-lepton final states in slepton production with  $LL\overline{E}$  dominating, or ten-jet final states in chargino production with  $\overline{U}\,\overline{D}\,\overline{D}$  dominating; entirely new search criteria keyed to an excess of leptons and/or jets have been devised [20]. Searches with a wide scope have found no evidence for supersymmetry with R-parity violation, and limits are as constraining as in the canonical scenario. In fact, the direct exclusion of pair-produced  $\widetilde{\chi}_1^{(0)}$ 's rules out some parameter space not accessible in the canonical case.

Visible signals from the lightest neutralino are also realized in special cases of GMSB which predict  $\widetilde{\chi}_1^0 \to \gamma \widetilde{g}_{3/2}$  with a lifetime short enough for the decay to occur inside the detector [21]. The most promising topology consists of two energetic photons and missing energy resulting from  $e^+e^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$ . For the DELPHI search, a technique was developed to identify photons which do not originate from the primary vertex. No excess was observed over the expected number of background events [21], leading to a bound on the neutralino mass of about 84 GeV/ $c^2$ . When the results are combined [22], the limit is  $M_{\widetilde{\chi}_1^0} > 89 \text{ GeV}/c^2$ . Single-photon production has been used to constrain the process  $e^+e^- \to \widetilde{g}_{3/2}\widetilde{\chi}_1^0$ .

II.5. Supersymmetry searches at proton machines: Although the LEP experiments can investigate a wide range of scenarios and cover obscure corners of parameter space, they cannot match the mass reach of the Tevatron experiments (CDF and DØ). Each experiment has logged approximately 110 pb⁻¹ of data at  $\sqrt{s} = 1.8$  TeV. Although the full energy is never available for annihilation, the cross sections for supersymmetric particle production are large due to color factors and the strong coupling.

The main source of signals for supersymmetry are squarks (scalar partners of quarks) and gluinos (fermionic partners of gluons), in contradistinction to LEP. Pairs of squarks or gluinos are produced in s, t and u-channel processes, which decay directly or via cascades to at least two LSP's. The number of jets depends on whether the gluino or the squark is heavier, with the latter occurring naturally in mSUGRA models. The possibility of cascade decays through charginos or heavier neutralinos also complicates the search. The u, d, s, c, and b squarks are assumed to have similar masses; the search results are reported in terms of their average mass  $M_{\widetilde{q}}$  and the gluino mass  $M_{\widetilde{q}}$ .

The classic searches [23] rely on large missing transverse energy  $E_T$  caused by the escaping neutralinos. Jets with high transverse energy are also required as evidence of a hard interaction; care is taken to distinguish genuine  $E_T$  from fluctuations in the jet energy measurement. Backgrounds from W, Z and top production are reduced by rejecting events with identified leptons. Uncertainties in the rates of these processes are minimized by normalizing related samples, such as events with two

jets and one or more leptons. The tails of more ordinary hardscattering processes accompanied by multiple gluon emission are estimated directly from the data.

The bounds are derived for the  $(M_{\widetilde{g}}, M_{\widetilde{q}})$  plane and have steadily improved with the integrated luminosity. If the squarks are heavier than the gluino, then  $M_{\widetilde{g}} \gtrsim 180~{\rm GeV}/c^2$ . If they all have the same mass, then that mass is at least 260  ${\rm GeV}/c^2$ , according to the DØ analysis. If the squarks are much lighter than the gluino (in which case they decay via  $\widetilde{q} \to q \widetilde{\chi}_1^0$ ), the bounds from UA1 and UA2 [24] play a role giving  $M_{\widetilde{g}} \gtrsim 300~{\rm GeV}/c^2$ . All of these bounds assume there is no gluino lighter than 5  ${\rm GeV}/c^2$ .

Since these results are expressed in terms of the physical masses relevant to the production process and experimental signature, the excluded region depends primarily on the assumption of nearly equal squark masses with only a small dependence on other parameters such as  $\mu$  and  $\tan \beta$ . Direct constraints on the theoretical parameters  $m_0$  and  $m_{1/2} \approx 0.34\,M_3$  have been obtained by the DØ Collaboration assuming the mass relations of the mSUGRA model [23]. In particular,  $m_0$  is keyed to the squark mass and  $m_{1/2}$  to the gluino mass, while for the LEP results these parameters usually relate to slepton and chargino masses.

Charginos and neutralinos may be produced directly by annihilation  $(q\overline{q} \to \widetilde{\chi}_i^{\pm} \widetilde{\chi}_j^0)$  or in the decays of heavier squarks  $(\widetilde{q} \to q' \widetilde{\chi}_i^{\pm}, q \widetilde{\chi}_j^0)$ . They decay to energetic leptons (for example,  $\widetilde{\chi}^{\pm} \to \ell \nu \widetilde{\chi}_1^0$  and  $\widetilde{\chi}_2^0 \to \ell^+ \ell^- \widetilde{\chi}_1^0$ ) and the branching ratio can be high for some parameter choices. The presence of energetic leptons has been exploited in two ways: the 'trilepton' signature and the 'dilepton' signature.

The search for trileptons is most effective for the associated production of  $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$  [25]. The requirement of three energetic leptons reduces backgrounds to a very small level, but is efficient for the signal only in special cases. The results reported to date are not competitive with the LEP bounds.

The dilepton signal is geared more for the production of charginos in gluino and squark cascades [26]. Jets are required as expected from the rest of the decay chain; the leptons should be well separated from the jets in order to avoid backgrounds from heavy quark decays. Drell-Yan events are rejected with simple cuts on the relative azimuthal angles of the leptons and their transverse momentum. In some analyses the Majorana nature of the gluino is exploited by requiring two leptons with the same charge, thereby greatly reducing the background. In this scenario limits on squarks and gluinos are almost as stringent as in the classic jets+  $E_T$  case.

It should be noted that the dilepton search complements the multijet+  $E_T$  search in that the acceptance for the latter is reduced when charginos and neutralinos are produced in the decay cascades—exactly the situation in which the dilepton signature is most effective.

The top squark is different from the other squarks because its SM partner is so massive: large off-diagonal terms in the squared-mass matrix lead to large mixing effects and a possible light mass eigenstate,  $M_{\widetilde{t}_1} \ll M_{\widetilde{q}}$ . When the parameters  $A, \mu$  and  $\tan \beta$  are suitably tuned, light bottom squarks can also be expected. Analyses designed to find light stops and sbottoms have been performed [27]. The first of these was based on the jets+  $E_T$  signature expected when the stop is lighter than the chargino. The search was improved by employing heavy-flavor tagging, which made the selection effective for sbottoms, too. A powerful limit  $M_{\widetilde{t}} \gtrsim 115~{\rm GeV}/c^2$  was obtained for a neutralino mass around 40  ${\rm GeV}/c^2$ , shown in Fig. 4.

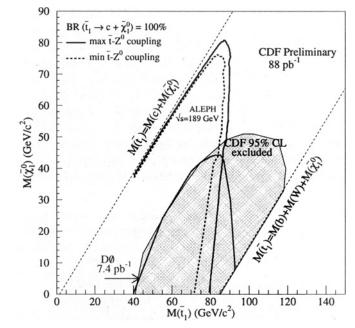



Figure 4: Excluded stop and sneutrino masses, for the  $c\tilde{\chi}_1^0$  decay mode, from the CDF Collaboration [27].

A search for the pair-production of light stops decaying to  $b\widetilde{\chi}_1^{\pm}$  has been performed by DØ [27]. The presence of two energetic electrons was required; backgrounds from W's were greatly reduced. Regrettably this experimental bound does not yet improve existing bounds on stop masses.

The CDF and DØ collaborations have searched for supersymmetry in certain RPV scenarios [28]. DØ employs their search for events with two energetic electrons and jets, which is appropriate to decays  $\tilde{\chi}_1^0 \to eq\bar{q}$ . Within the mSUGRA framework they sum contributions from all processes predicted as a function of  $m_0$ ,  $m_{1/2}$  and  $\tan\beta$ , thereby obtaining exclusions in parameter space. CDF uses the same-sign dielectron and jets topology to look for gluino and squark production and obtain general upper limits on cross sections. They also consider a special case of  $\tilde{g} \to c\,\tilde{c}_L$  followed by  $\tilde{c}_L \to e\,d$ , motivated by an excess of rare events reported by the HERA collaborations.

Interest in GMSB models was generated by an anomalous event observed by the CDF Collaboration [29]. These models predict large inclusive signals for  $p\bar{p} \to \gamma \gamma + X$  given kinematic constraints derived from the properties of the CDF event.

#### Supersymmetric Particle Searches

DØ reported a result from events with two energetic photons and large  $E_T$  resulting in the limit  $M_{\widetilde{\chi}_1^0} > 75~{\rm GeV}/c^2$  [30]. DØ also looked specifically for squarks and gluinos in the scenario, which would give two photons and two or more jets, and obtained squark and gluino mass limits of 320  ${\rm GeV}/c^2$ . An analysis reported by CDF looks for virtually all thinkable topologies involving two energetic photons [30]. The neutralino mass limit is the same.

II.6. Supersymmetry searches at HERA and fixed-target experiments: The electron-proton collider (HERA) at DESY runs at a center-of-mass energy of 310 GeV and, due to its unique combination of beam types, can be used to probe certain channels effectively. Results were obtained on associated selectron-squark production with R-parity conservation [31]. An RPV search was performed assuming a dominant  $LQ\overline{D}$  interaction [32]. Squarks would be produced directly in the s-channel, decaying either directly to a lepton and a quark via R-parity violation or to a pair of fermions and a chargino or neutralino, with the latter possibly decaying via R-parity violation. From less than 3 pb⁻¹, model-independent bounds on  $\lambda'_{111}$  were derived as a function of the squark mass.

The special case of a light  $\tilde{t}_1$  was also considered, and limits derived on  $\lambda'_{131}$  as a function of  $M_{\tilde{t}}$ .

It is difficult to conduct direct searches for light gluinos  $(M_{\widetilde{a}} \lesssim 5 \text{ GeV}/c^2)$  at colliders because they would form light, long-lived hadrons ( $R^0$ 's, a  $g\tilde{g}$  bound state) which would be difficult to identify. Certain fixed-target experiments, however, are well suited to the task. The most sensitive searches have been conducted by KTeV at Fermilab and NA48 at CERN, both designed to study very large samples of neutral kaons. KTeV looked for  $R^0 \to \rho^0 \tilde{\gamma}$  with  $\rho^0 \to \pi^+ \pi^-$  and also  $R^0 \to \pi^0 \tilde{\gamma}$ , important below the  $2\pi$  threshold [33]. NA48 searched for  $R^0 \to \eta \tilde{\gamma}$  with  $\eta \to 3\pi^0$  [34]. The searches required decay vertices far downstream of the target and enough missing transverse momentum to eliminate  $K_L^0$  decays. Backgrounds were estimated directly from data and fluxes measured using known  $K_L^0$  decay modes; the  $R^0$  flux is related to the  $K_L^0$  flux theoretically. No evidence for  $R^{0}$ 's was found, and a wide range of  $R^0$  lifetimes was ruled out for 0.9 GeV/ $c^2 < M_{R^0} \lesssim 5$  GeV/ $c^2$ . These results definitively excludes the possibility of light gluinos with very light photinos (from light gluino decay) solving the cold dark matter problem.

**Table 1:** Lower limits on supersymmetric particle masses. 'GMSB' refers to models with gauge-mediated supersymmetry breaking, and 'RPV' refers to models allowing R-parity violation.

particle		Condition	Lower limit $(\text{GeV}/c^2)$	Source
$\overline{\widetilde{\chi}_1^{\pm}}$	gaugino	$M_{\widetilde{\nu}} > 500 \mathrm{GeV}/c^2$	94	LEP 2
-		$M_{\widetilde{ u}} > M_{\widetilde{ u}^{\pm}}$	<b>7</b> 5	LEP 2
		any $M_{\widetilde{i}i}$	45	Z width
	Higgsino	$M_2 < 1 { m TeV}/c^2$	89	LEP 2
	GMSB		150	$D \varnothing$ isolated photons
	RPV	$LL\overline{E}$ worst case	87	LEP 2
		$LQ\overline{D}~m_0 > 500~{ m GeV}/c^2$	88	LEP 2
$\widetilde{\widetilde{\chi}_1^0}$	indirect	any $\tan \beta$ , $M_{\widetilde{\nu}} > 500 \text{ GeV}/c^2$	33	LEP 2
		any tan $\beta$ , any $m_0$	32	LEP 2
	GMSB		83	$D \varnothing$ and LEP 2
	RPV	$LL\overline{E}$ worst case	23	LEP 2
$\widetilde{\widetilde{e}}_R$	$e\widetilde{\chi}_1^0$	$\Delta M > 10  \mathrm{GeV}/c^2$	89	LEP 2 combined
$\widetilde{\mu}_R$	$\mu\widetilde{\chi}_1^0$	$\Delta M > 10~{ m GeV}/c^2$	84	LEP 2 combined
$ ilde{ au}_R$	$ au \widetilde{\chi}_1^0$	$M_{\widetilde{\chi}_1^0} < 20  \mathrm{GeV}/c^2$	71	LEP 2
$\widetilde{ u}$		<b>~1</b>	43	Z width
$\widetilde{\mu}_R,\widetilde{ au}_R$		stable	71	LEP 2 combined
$\overline{\widetilde{t}_1}$	$c\widetilde{\chi}_1^0$	any $\theta_{\rm mix}$ , $\Delta M > 10 {\rm GeV}/c^2$	87	LEP 2 combined
		any $\theta_{\mathrm{mix}},M_{\widetilde{\chi}_1^0}<rac{1}{2}M_{\widetilde{t}}$	88	DØ
	$b\ell\widetilde{ u}$	any $\theta_{ m mix}$ , $\Delta M > 7~{ m GeV}/c^2$	90	LEP 2 combined
$\widetilde{\widetilde{g}}$	any $M_{\widetilde{a}}$		190	DØ jets+ $\not\!\!E_T$
	Ą		180	CDF dileptons
$\widetilde{q}$	$M_{\widetilde{q}} = M_{\widetilde{q}}$		260	DØ jets+ $ ot\!\!\!E_T$
	ч 9		230	CDF dileptons

## Searches Particle Listings Supersymmetric Particle Searches

II.7. Conclusions: A huge variety of searches for supersymmetry have been carried out at LEP, the Tevatron, and in fixed-target experiments. Despite all the effort, no signal has been found, forcing the experimenters to derive limits. We have tried to summarize the interesting cases in Table 1. At the present time there is little room for SUSY particles lighter than  $M_Z$ . The LEP collaborations will analyze more data taken at a center-of-mass energy of 200 GeV, and the Tevatron collaborations will begin a high luminosity run towards the end of the year 2000. If still no sign of supersymmetry appears, definitive tests will be made at the LHC.

#### References

- H.E. Haber and G. Kane, Phys. Reports 117, 75 (1985);
   H.P. Nilles, Phys. Reports 110, 1 (1984);
   M. Chen, C. Dionisi, M. Martinez, and X. Tata, Phys. Reports 159, 201 (1988).
- H.E. Haber, Nucl. Phys. (Proc. Supp.) B62, 469 (1998);
   S. Dawson, SUSY and Such, hep-ph/9612229.
- H. Dreiner, An Introduction to Explicit R-parity Violation, in Perspectives on Supersymmetry, ed. by G.L. Kane, World Scientific, 1997, p.462;
  - G. Bhattacharyya, Nucl. Phys. Proc. Suppl. A52, 83 (1997);
  - V. Barger, W.-Y. Keung, and R.J.N. Phillips, Phys. Lett. **B364**, 27 (1995);
  - R.M. Godbole, P. Roy, and T. Tata, Nucl. Phys. **B401**, 67 (1993);
  - J. Butterworth and H. Dreiner, Nucl. Phys. **B397**, 3 (1993);
  - V. Barger, G.F. Giudice, and T. Han, Phys. Rev. **D40**, 1987 (1989);
  - S. Dawson, Nucl. Phys. B261, 297 (1985).
- J. Bagger et al., Phys. Rev. Lett. 78, 1002 (1997) and Phys. Rev. Lett. 78, 2497 (1997);
  - M. Dine, Nucl. Phys. Proc. Suppl. **52A**, 201(1997);
    K.S. Babu, C. Kolda, and F. Wilczek, Phys. Rev. Lett. **77**, 3070 (1996);
  - S. Dimopoulos et al., Phys. Rev. Lett. 76, 3494 (1996);
  - S. Dimopoulos, S. Thomas, J.D. Wells, Phys. Rev. **D54**, 3283 (1996), and Nucl. Phys. **B488**, 39 (1997);
  - D.R. Stump, M. Wiest, C.P. Yuan, Phys. Rev. **D54**, 1936 (1996);
  - M. Dine, A. Nelson, and Y. Shirman Phys. Rev. **D51**, 1362 (1995);
  - D.A. Dicus, S. Nandi, and J. Woodside, Phys. Rev. **D41**, 2347 (1990) and Phys. Rev. **D43**, 2951 (1990);
  - P. Fayet, Phys. Lett. **B175**, 471 (1986);
  - J. Ellis, K. Enqvist, and D.V. Nanopoulos, Phys. Lett. B151, 357 (1985), and Phys. Lett. B147, 99 (1984);
    P. Fayet, Phys. Lett. B69, 489 (1977) and Phys. Lett. B70, 461 (1977).
- R. Barbieri et al., Nucl. Phys. B243, 429 (1984) and Phys. Lett. B127, 429 (1983);
  - G. Altarelli, B. Mele, and R. Petronzio, Phys. Lett. B129, 456 (1983);
  - G. Farrar and P. Fayet, Phys. Lett. **79B**, 442 (1978) and Phys. Lett. **76B**, 575 (1978).
- G. Farrar, Phys. Rev. Lett. 76, 4111 (1996), Phys. Rev. Lett. 76, 4115 (1996), Phys. Rev. D51, 3904 (1995), and Phys. Lett. B265, 395 (1991);
   V. Barger et al., Phys. Rev. D33, 57 (1986);

- J. Ellis and H. Kowalski, Nucl. Phys. **B259**, 109 (1985);
  H.E. Haber and G.L. Kane, Nucl. Phys. **B232**, 333 (1984);
  M. Chanowitz and S. Sharpe, Phys. Lett. **B126**, 225 (1983).
- J.-F. Grivaz, Supersymmetric Particle Searches at LEP, in Perspectives on Supersymmetry, ibid., p.179;
   M. Drees and X. Tata, Phys. Rev. D43, 2971 (1991).
- 8. OPAL: CERN-EP/99-XXX (Sept 3, 1999).
- OPAL: Eur. Phys. J. C8, 255 (1999);
   ALEPH: CERN-EP/99-014 and Eur. Phys. J. C2, 417 (1998);
   L3: Eur. Phys. J. C4, 207 (1998).
- 10. **DELPHI**: CERN-EP/99-037.
- 11. ALEPH: Z. Phys. C72, 549 (1996).
- 12. OPAL: CERN-EP/99-XXX (Sept 2, 1999) and CERN-EP/98-122;
  ALEPH: Phys. Lett. B433, 176 (1998);
  DELPHI: Eur. Phys. J. C6, 385 (1999);
  L3: Phys. Lett. B456, 283 (1999).
- Preliminary results from the combination of LEP experiments, prepared by the LEP SUSY Working Group. LEPSUSYWG/99-01.1;
- See also http://www.cern.ch/lepsusy/.
  14. DELPHI: Phys. Lett. B444, 491 (1998);
  OPAL: Phys. Lett. B433, 195 (1998);
  ALEPH: Phys. Lett. B405, 379 (1997) and Phys. Lett. B433, 176 (1998);
  L3: CERN-EP/99-075.
- 15. LEP SUSY Working Group, LEPSUSYWG/98-07.1.
- 16. **DELPHI**: Eur. Phys. J. C7, 595 (1999).
- 17. OPAL: Phys. Lett. B456, 95 (1999) and Eur. Phys. J. C6, 225 (1999);
  ALEPH: Phys. Lett. B434, 189 (1998);
  L3: Phys. Lett. B445, 428 (1999).
- 18. LEP SUSY Working Group, LEPSUSYWG/99-02.1.
- 19. LEPSUSYWG/99-03.1.
- ALEPH: CERN-EP/99-093 and Eur. Phys. J. C7, 383 (1999) and Eur. Phys. J. C4, 433 (1998);
  OPAL: CERN-EP/99-043 and CERN-EP/98-203;
  DELPHI: CERN-EP/99-049;
  L3: Phys. Lett. B459, 354 (1999).
- DELPHI: Eur. Phys. J. C6, 371 (1999);
  OPAL: CERN-EP/99-088 and Eur. Phys. J. C8, 23 (1999);
  ALEPH: Phys. Lett. B429, 201 (1998);
  L3: Phys. Lett. B444, 503 (1998).
- 22. LEP SUSY Working Group, LEPSUSYWG/99-05.1.
- DØ: Fermilab Pub-98-402-E and Phys. Rev. Lett. 75, 618 (1995);
  CDF: Phys. Rev. D56, R1357 (1997) and Phys. Rev. Lett. 76, 2006 (1996).
- UA2: Phys. Lett. B235, 363 (1990);
   UA1: Phys. Lett. B198, 261 (1987).
- DØ: Phys. Rev. Lett. 80, 1591 (1998);
   CDF: Phys. Rev. Lett. 80, 5275 (1998).
- DØ: Fermilab Conf-96/389-E and Fermilab Conf-96/254-E;
  - CDF: Phys. Rev. Lett. 76, 2006 (1996).
- DØ: Phys. Rev. D60, 031101 (1999) and Phys. Rev. D57, 589 (1998) and Phys. Rev. Lett. 76, 2222 (1996);
   CDF: Fermilab Conf-99/117-E.

### Supersymmetric Particle Searches

- CDF: Fermilab Pub-98-374-E: DØ: Fermilab Pub-99-200-E
- S. Park, in Proceedings of the 10th Topical Workshop on Proton-Antiproton Collider Physics, Fermilab, 1995, ed. by R. Raja and J. Yoh (AIP, New York, 1995) 62.
- DØ: Phys. Rev. Lett. 82, 29 (1999), Phys. Rev. Lett. 80, 442 (1998) and Phys. Rev. Lett. 78, 2070 (1997); CDF: Phys. Rev. D59, 092002 (1999) and Phys. Rev. Lett. 81, 1791 (1998).
- ZEUS: Phys. Lett. B434, 214 (1998); H1: Phys. Lett. B380, 461 (1996).
- 32. H1: Z. Phys. C71, 211 (1996).
- KTeV: preprint Rutgers-99-12; hep-ex/9903048 and Phys. Rev. Lett. 70, 4083 (1997).
- 34. NA48: Phys. Lett. B446, 117 (1999).

#### SUPERSYMMETRIC MODEL ASSUMPTIONS

Most of the results shown below, unless stated otherwise, are based on the Minimal Supersymmetric Standard Model (MSSM), as described in the Note on Supersymmetry. Unless otherwise indicated, this includes the assumption of common gaugino and scalar masses at the scale of Grand Unification (GUT), and use of the resulting relations in the spectrum and decay branching ratios. It is also assumed that R-parity (R) is conserved. Unless otherwise indicated, the results also assume

- 1) The  $\tilde{\chi}_1^0$  is the lighest supersymmetric particle (LSP)
- 2)  $m_{\widetilde{f}_L} = m_{\widetilde{f}_R}$ , where  $\widetilde{f}_{L,R}$  refer to the scalar partners of leftand right-handed fermions.

Limits involving different assumptions are identified in the Comments or in the Footnotes. We summarize here the notations used in this Chapter to characterize some of the most common deviations from the MSSM (for further details, see the Note on Supersymmetry).

Theories with R-parity violation (R) are characterised by a superpotential of the form:  $\lambda_{ijk}L_iL_je_k^c + \lambda'_{ijk}L_iQ_jd_k^c +$  $\lambda''_{ijk}u_i^cd_i^cd_k^c$ , where i,j,k are generation indices. The presence of any of these couplings is often identified in the following by the symbols  $LL\overline{E}$ ,  $LQ\overline{D}$ , and  $\overline{UDD}$ . Mass limits in the presence of R will often refer to "direct" and "indirect" decays. Direct refers to R decays of the particle in consideration. Indirect refers to cases where R appears in the decays of the

In several models, most notably in theories with so-called Gauge Mediated Supersymmetry Breaking (GMSB), the gravitino  $(\widetilde{G})$  is the LSP. It is usually much lighter than any other massive marticle in the spectrum, and  $m_{\widetilde{c}}$  is then neglected in all decay processes involving gravitinos. In these scenarios, particles other than the neutralino are sometimes considered as the next-to-lighest supersymmetric particle (NLSP), and are assumed to decay to their even-R partner plus  $\tilde{G}$ . If the lifetime is short enough for the decay to take place within the detector,  $\overline{G}$  is assumed to be undetected and to give rise to missing energy (E) or missing transverse energy  $(E_T)$  signatures.

When needed, specific assumptions on the eigenstate content of  $\tilde{\chi}^0$  and  $\tilde{\chi}^{\pm}$  states are indicated, using the notation  $\tilde{\gamma}$ 

(photino),  $\widetilde{H}$  (higgsino),  $\widetilde{W}$  (wino), and  $\widetilde{Z}$  (zino) to signal that the limit of pure states was used. The terms gaugino is also used, to generically indicate wino-like charginos and zino-like neutralinos.

#### χ̃⁰ (Lightest Neutralino) MASS LIMI⊤

 $\tilde{\chi}_1^0$  is often assumed to be the lightest supersymmetric particle (LSP). See also the  $\tilde{\chi}_2^0,\,\tilde{\chi}_3^0,\,\tilde{\chi}_4^0$  section below.

We have divided the  $\tilde{\chi}^0_1$  listings below into four sections:

- 1) Accelerator limits for stable  $\tilde{\chi}_1^0$ ,
- 2) Bounds on  $\tilde{\chi}_1^0$  from dark matter searches,
- 3) Other bounds on  $\tilde{\chi}_1^0$  from astrophysics and cosmology, and
- 4) Bounds on unstable  $\tilde{\chi}_1^0$ .

Accelerator limits for stable  $\widetilde{\chi}^0_1$  Unless otherwise stated, results in this section assume spectra, production rates, decay modes, and branching ratios as evaluated in the MSSM, with gaugino and sferming mass unification at the GUT scale. These papers generally study production of  $\widetilde{\chi}_{i}^{0}\widetilde{\chi}_{i}^{0}$ 

 $(i\geq 1,\, j\geq 2),\, \widetilde{\chi}_1^+\,\widetilde{\chi}_1^-,$  and (in the case of hadronic collisions)  $\widetilde{\chi}_1^+\,\widetilde{\chi}_2^0$  pairs. The mass limits on  $\tilde{\chi}_1^0$  are either direct, or follow indirectly from the constraints set by the non-observation of  $\tilde{\chi}_1^\pm$  and  $\tilde{\chi}_2^0$  states on the gaugino and higgsino MSSM parameters

Obsolete limits obtained from  $e^+e^-$  collisions up to  $\sqrt{s}$ =136 GeV have been removed from this compilation and can be found in the 1998 Edition (The European Physical Journal **C3** 1 (1998)) of this Review.  $\Delta m_0 = m_{\widetilde{\chi}_1^0} - m_{\widetilde{\chi}_1^0}$ 

VALUE (GeV)	CL%	DDCUMENT ID	TECN	COMMENT
>31.6	95	1 ABBIENDI	00H OPAL	all $tan\beta$ , all $\Delta m_0 > 5$ GeV, all $m_0$
>31.0	95	² ABREU	00」DLPH	$tan\beta \geq 1$ , $m_{\widetilde{\nu}} > 300 \text{ GeV}$
>32.5	95	³ ACCIARRI	00D L3	$\tan \beta > 0.7$ , $\Delta m_0 > 3$ GeV, all $m_0$
>27	95	4 BARATE	99P ALEP	all $tan\beta$ , all $m_0$
• • • We do	not use t	he following data fo	or averages,	fits, limits, etc. • • •
>30.1	95	⁵ ABBIENDI	99G OPAL	$tan\beta=1$ , all $\Delta m_0$ , $m_0=500$ GeV
>24.2	95	⁵ ABBIENDI	99G OPAL	$\tan \beta = 1$ , all $\Delta m_0$ , all $m_0$
>29.1	95	⁶ ABREU	99E DLPH	$taneta \geq 1$ , all $\Delta m_0$ , $m_0 = 1$ TeV
		² ABBOTT	98c D0	$p\bar{p} \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$
>41	95	⁷ ABE	98J CDF	$ \begin{array}{l} p\bar{p} \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \\ p\bar{p} \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \end{array} $
>24.9	95	^B ABREU	98 DLPH	$\tan \beta > 1$ , $m_0 = 1$ TeV
>10.9	95	⁹ ACCIARRI	98F L3	$\tan \beta > 1$
>13.3	95	10 ACKERSTAFF	98L OPAL	$ an\!eta>1$
>17	95	11 ELLIS	97c RVUE	All $tan \beta$

 1  ABBIENDI 00H data collected at  $\sqrt{s}{=}189$  GeV. The results hold over the full parameter space defined by  $0 \leq M_2 \leq 2$  TeV,  $|\mu| \leq 500$  GeV,  $m_0 \leq 500$  GeV,  $A{=}\pm M_2$ ,  $\pm m_0$ , and 0. The minimum mass limit is reached for  $\tan\beta{=}1$ . The results of ABBIENDI 99F are used to constrain regions of parameter space dominated by radiative  $\bar{\chi}_2^0 \to \bar{\chi}_1^0 \gamma$  decays. The limit improves to 48.5 GeV for  $m_0$ =500 GeV and  $\tan\beta$ =35. See their Table and Figs 4–5 for the  $\tan\beta$  and  $m_0$  dependence of the limits.

² ABREU 00J data collected at  $\sqrt{s}$ =189 GeV. The parameter space is scanned in the domain  $0 < M_2 < 3000$  GeV,  $|\mu| < 200$  GeV, 1 < 100 GeV. 1 < 100 GeV, 1 < 100 GeV. 1 < 100 GeV, 1 < 100 GeV. 1 < 100

 3  ACCIARRI 000 data collected at  $\sqrt{s}$ =189 GeV. The results hold over the full parameter space defined by  $0.7 \le \tan \beta \le 60$ ,  $0 \le M_2 \le 2$  TeV,  $m_0 \le 500$  GeV,  $|\mu| \le 2$  TeV. The minimum mass limit is reached for  $\tan \beta = 1$  and large  $m_0$ . The results of slepton searches from ACCIARRI 99W are used to help set constraints in the region of small  $m_0$ . The limit improves to 48 GeV for  $m_0\gtrsim 200$  GeV and  $\tan\beta\gtrsim 10$ . See their Figs. 6–8 for the  $\tan\beta$  and  $m_0$  dependence of the limits.

4BARATE 99P data collected at √s=183 GeV. The limit is also based on the constraints from the total and invisible  $Z^0$  width from ABBANEO 97, on direct searches for neutralinos at LEP1 from DECAMP 92 and on the slepton limits from BARATE 98 $\kappa$ . The limit improves to 29 GeV if the unification of Higgs and sfermion masses is also assumed, and direct constraints on the Higgs mass are used

and direct constraints on the Higgs mass are used. 
5 ABBIENDI 99G data collected at  $\sqrt{s} \leq 184$  GeV. The parameter space is scanned in the domain  $0 < M_2 < 2000$  GeV,  $|\mu| < 500$  GeV, and for various values of A. No dependence of the limits on A is found. The analysis includes the effects of gaugino cascade decays. the limits from ACKERSTAFF 98 are assumed. The limit for all values of  $m_0$  assumes  $m_{\widetilde{\nu}_e} > 43$  GeV and direct limits on charged sleptons. See Table 5 for limits under different assumptions on  $\Delta m_0$  and  $\tan \beta$ .

6 ABREU 99. data collected at  $\sqrt{s}$ =183 GeV. These results include and update the limits from ABREU 99. The parameter space is scanned in the domain 0 <  $M_2$  < 3000 GeV,  $|\mu|$  < 400 GeV, 1 < tan $\beta$  < 35. The analysis includes the effects of gaugino cascade decays. In the case of radiative neutralino decays, the limits from ABREU 97J are

7 ABE 981 searches for trilepton final states  $(\ell=e,\mu)$ . See footnote to ABE 981 in the Chargino Section for details on the assumptions. The quoted result corresponds to the best limit within the selected range of parameters, obtained for  $m_{\widetilde{q}} > m_{\widetilde{g}}$ ,  $\tan \beta = 2$ , and  $\mu = -600 \text{ GeV}.$ 

 $\mu$ = 5000 sc.*  $\theta$ = 1000 services at  $\sqrt{s}$ =161, 172 GeV with single-photon-production results at LEP-1 from ABREU 97.

- ⁹ ACCIARRI 98F limit is obtained for  $0 < M_2 < 2000$ ,  $|\mu| < 500$ , and  $1 < \tan \beta < 40$ , but remains valid outside this domain. No dependence on the trilinear-coupling parameter A is found. The limit holds for all values of  $m_0$  consistent with scalar lepton contraints. It improves to 24.6 GeV for  $m_{\widetilde{\nu}} > 200$  GeV. Data taken at  $\sqrt{s} = 130$ –172 GeV. 10 ACKERSTAFF 98L limit is obtained for  $0 < M_2 < 1500$ ,  $|\mu| < 500$  and  $\tan \beta > 1$ , but remains valid outside this domain. The limit holds for the smallest value of  $m_0$  consistent with scalar lepton constraints (ACKERSTAFF 97H). It improves to 24.7 GeV for  $m_0$ =1 TeV. Data taken at  $\sqrt{s}$ =130–172 GeV. 11 ELLIS 97C uses constraints on  $\chi^{\pm}$ ,  $\chi^0$ , and  $\ell$  production obtained by the LEP experiments from  $e^+e^-$  collisions at  $\sqrt{s}$ =130–172 GeV. It assumes a universal mass  $m_0$  for scalar leptons at the grand unification scale.
- scalar leptons at the grand unification scale

Bounds on  $\widetilde{\chi}_1^0$  from dark matter searches These papers generally exclude regions in the  $M_2$  –  $\mu$  parameter plane assuming that  $\widetilde{\chi}_1^0$  is the dominant form of dark matter in the galactic halo. These limits are based on the lack of detection in laboratory experiments or by the absence of a signal in underground neturino detectors. The latter signal is expected if  $\tilde{\chi}_1^0$  accumilates in the Sun or the Earth and annihilates into high-energy  $\nu$ 's.

VALUE	DOCUMENT ID TECN
• • • We do not use	the following data for averages, fits, limits, etc. • • •
	12 AMBROSIO 99 MCRO
	¹³ BOTTINO 97 DAMA
	14 LOSECCO 95 RVUE
	¹⁵ MORI 93 KAMI
	¹⁶ BOTTINO 92 COSM
	¹⁷ BOTTINO 91 RVUE
	¹⁸ GELMINI 91 COSM
	19 KAMIONKOW.91 RVUE
	²⁰ MORI 91B KAMI
none 4-15 GeV	²¹ OLIVE BB COSM

- 12 AMBROSIO 99 set new neutrino flux limits which can be used to limit the parameter space in supersymmteric models based on neutralino annihilation in the Sun and the
- 13 BOTTINO 97 points out that the current data from the dark-matter detection experiment DAMA are sensitive to neutralinos in domains of parameter space not excluded by terrestrial laboratory searches.
- 14 LOSECCO 95 reanalyzed the IMB data and places lower limit on  $m_{\widetilde{\chi}^0_1}$  of 18 GeV if the LSP is a photino and 10 GeV if the LSP is a higgsino based on LSP annihilation in the sun producing high-enery neutrinos and the limits on neutrino fluxes from the IMB detectors.

- Talence are taken into account.

  Talence are taken into account.

  Machine are taken into account.
- 18 GELMIN 91 exclude a region in M₂ μ plane using dark matter searches.
   19 KAMIONKOWSKI 91 excludes a region in the M₂-μ plane using IMB limit on upgoing muons originated by energetic neutrinos from neutralino annihilation in the sun, assuming that the dark matter is composed of neutralinos and that  $m_{H_1^0} \lesssim$  50 GeV. See Fig. 8
- in the paper. 20 MORI 91B exclude a part of the region in the  $M_2$ - $\mu$  plane with  $m_{\tilde{\chi}^0_1}\lesssim 80$  GeV using a limit on upgoing muons originated by energetic neutrinos from neutralino annihilation in the earth, assuming that the dark matter surrounding us is composed of neutralinos and that  $m_{H_1^0} \lesssim$  80 GeV.
- 21 OLIVE 88 result assumes that photinos make up the dark matter in the galactic halo. Limit is based on annihilations in the sun and is due to an absence of high energy neutrinos detected in underground experiments. The limit is model dependent

Other bounds on  $\widetilde{\chi}^0_1$  from astrophysics and cosmology Most of these papers generally exclude regions in the  $M_2-\mu$  parameter plane by requiring that the  $ilde{\chi}_1^0$  contribution to the overall cosmological density is less than some maximal value to avoid overclosure of the Universe. Those not based on the cosmological density are indicated. Many of these papers also include LEP and/or other bounds

other bounds.					
ALUE	CL%	DOCUMENT ID		<u>TECN</u>	COMMENT
> 42	95	²² ELLIS	98	RVUE	
• • We do not use t	he follow	ing data for averag	ges, fi	ts, limits	s, etc. • • •
(600		²³ ELLIS	98B	CO5M	
		EDSJO	97	COSM	Co-annihilation
> 40		²⁴ ELLIS	97c	RVUE	
> 21.4	95	²⁵ ELLIS	96B	RVUE	$tan eta > 1.2, \mu < 0$
		²⁶ FALK	95	COSM	CP-violating phases
		DREES	93	COSM	Minimal supergravity
		FALK	93	COSM	Sfermion mixing
		KELLEY	93	COSM	Minimal supergravity
		MIZUTA	93	COSM.	Co-annihilation
		ELLIS	92F	COSM	Minimal supergravity
		KAWASAKI	92	COSM	Minimal supergravity, m ₀ =: A=0
		LOPEZ	92	COSM	Minimal supergravity, $m_0 = A = 0$
		MCDONALD	92	COSM	<del>.</del>
		NOJIRI	91	COSM	Minimal supergravity

	27 OLIVE	91	соѕм	
	ROSZKOWSK	1 91	COSM	
	ELLIS	90	COSM	
	28 GRIEST	90	COSM	
	²⁹ GRIFOLS	90	<b>ASTR</b>	$\tilde{\gamma}$ ; SN 1987A
	KRAUSS	90	COSM	
	27 OLIVE	89	COSM	
> 100 eV	³⁰ ELLIS	8.8B	ASTR	$\tilde{\gamma}$ ; SN 1987A
none 100 eV - (5-7) GeV	SREDNICKI	88	COSM	$\tilde{\gamma}$ ; $m_{\tilde{i}}$ =60 GeV
none 100 eV - 15 GeV	SREDNICKI	88	COSM	$\tilde{\gamma}$ ; $m_{\tilde{f}} = 100 \text{ GeV}$
none 100 eV-5 GeV	ELLIS	84	COSM	$\tilde{\gamma}$ ; for $m_{\tilde{f}} = 100 \text{ GeV}$
	GOLDBERG	83	COSM	$\tilde{\gamma}$
	³¹ KRAUSS	83	COSM	$\tilde{\gamma}$
	VYSOTSKII	83	COSM	$\tilde{\gamma}$

- $^{22}\,\text{ELLIS}$  98 updates ELLIS 97c (see relative footnote). Use is made of one-loop mass and coupling relations, as well as of chargino limits from  $e^+e^-$  data at  $\sqrt{s}$ =183 GeV. The limits on  $\tan\beta$  from ELLIS 97C improve to:  $\tan\beta > 2$  ( $\mu < 0$ ) and  $\tan\beta > 1.65$  ( $\mu > 0$ ).
- 23 ELLIS 98a assumes a universal scalar mass and radiative supersymmetry breaking with universal gaugino masses. The upper limit to the LSP mass is increaded due to the inclusion of  $\chi \hat{\tau}_R$  coannihilations.
- 24 ELLIS 97c uses in addition to cosmological constraints, data from e⁺e⁻ collisions at 170–172 GeV. It assumes a universal scalar mass for both the Higgs and scalar leptons. as well as radiative supersymmetry breaking with universal gaugino masses. ELLIS 97c also uses the absence of Higgs detection (with the assumptions listed above) to set a limit on  $\tan\beta>1.7$  for  $\mu<0$  and  $\tan\beta>1.4$  for  $\mu>0$ . This paper updates ELLIS 968.
- 25 ELLIS 968 uses, in addition to cosmological constraints, data from BUSKULIC 96k and SUGIMOTO 96. It assumes a universal scalar mass m₀ and radiative Supersymmetry breaking, with universal gaugino masses.
- breaking, with universal gaugino masses. 26 Mass of the bino (=LSP) is limited to  $m_{\widetilde{B}} \lesssim 350$  GeV for  $m_t = 174$  GeV. 27 Mass of the bino (=LSP) is limited to  $m_{\widetilde{B}} \lesssim 350$  GeV for  $m_t \leq 200$  GeV. Mass of the higgsino (=LSP) is limited to  $m_{\widetilde{H}} \lesssim 1$  TeV for  $m_t \leq 200$  GeV.
- 28  Mass of the bino (=LSP) is limited to  $m_{\widetilde{B}} \lesssim$  550 GeV. Mass of the higgsino (=LSP) is limited to  $m_{\widetilde{H}}\lesssim 3.2$  TeV.
- 29  GRIFOLS 90 argues that SN1987A data exclude a light photino (  $\lesssim 1$  MeV) if  $m_{\widetilde{q}} \, < \, 1.1$ TeV,  $m_{\widetilde{\rho}}$  < 0.83 TeV.
- 30  ELLIS 88B argues that the observed neutrino flux from SN 1987A is inconsistent with a light photino if 60 GeV  $\lesssim m_{\tilde{q}} \lesssim$  2.5 TeV. If m(higgsino) is  $O\!(100$  eV) the same argument leads to limits on the ratio of the two Higgs v.e.v.'s. LAU 93 discusses possible relations of ELLIS 88B bounds.
- relations of ELLIS 88B bounds. 31 KRAUSS 83 finds  $m_{\widetilde{\gamma}}$  not 30 eV to 2.5 GeV. KRAUSS 83 takes into account the gravitino decay. Find that limits depend strongly on reheated temperature. For example a new allowed region  $m_{\widetilde{\gamma}}=$  4–20 MeV exists if  $m_{\rm gravitino}<$  40 TeV. See figure 2.

#### Unstable $\tilde{\chi}_1^0$ (Lightest Neutralino) MASS LIMIT

DOCUMENT ID

VALUE (GeV) CL%

otherwise stated, results in this section assume spectra and production rates as evaluated in the MSSM. Unless otherwise stated, the goldstino or gravitino mass  $m_{\widetilde{G}}$ is assumed to be negligible relative to all other masses. In the following,  $\widetilde{\textbf{\textit{G}}}$  is assumed to be undetected and to give rise to a missing energy (#) signature.

TECN COMMENT

VALUE (GeV)	<u>CL%</u>	DOCUMENTID	TECN	COMMENT
• • • We do	not use		or averages,	fits, limits, etc. • • •
>27	95	32 ABREU	001 DLPH	$R(LL\overline{E})$ , any $\Delta m_0$ , $1 \leq \tan\beta \leq$
>86	95	33 BARATE	00g ALEP	$e^{+\overset{30}{e^{-}}} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} (\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G})$
		34 ABBIENDI		$e^+e^- \rightarrow \widetilde{\widetilde{G}}\widetilde{\chi}_1^0(\widetilde{\chi}_1^0 \rightarrow \gamma \widetilde{G})$
none 45-83	95	35 ABBIENDI	99F OPAL	$e^+e^- \rightarrow BB(B \rightarrow \gamma G)$
>29	95	³⁶ ABBIENDI	99T OPAL	$e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ , R, $m_0=500$
. (5	0.5	37 ABE		GeV, $tan\beta > 1.2$
>65	95	31 ABE	991 CDF	$p\bar{p} \rightarrow \tilde{\chi}\tilde{\chi}, \tilde{\chi}=\tilde{\chi}_{1,2}^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0 \rightarrow$
>83	95	38 ABREU	99D DLPH	$\gamma \tilde{G}$ $e^+e^- \rightarrow \tilde{B}\tilde{B} (\tilde{B} \rightarrow \gamma \tilde{G})$
/03	,,	39 ABREU	99F DLPH	$e^+e^- \rightarrow \widetilde{\chi}_1^0\widetilde{\chi}_1^0$ , with $\widetilde{\chi}_1^0 \rightarrow \tau\widetilde{\tau}$
				$(\tilde{r} \rightarrow \tau \tilde{G})$
>26.8	95	⁴⁰ ACCIARRI	991 L3	$(\widetilde{\tau} \to \tau \widetilde{G})$ $\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}, \mathcal{H}$
		⁴¹ ACCIARRI	99R L3	$e^{\stackrel{+}{+}}e^{\stackrel{-}{-}} \rightarrow \ \widetilde{G}\widetilde{\chi}_1^0,  \widetilde{\chi}_1^0 \rightarrow \ \widetilde{G}\gamma$
>88.2	95	⁴² ACCIARRI	99R L3	$e^+e^-  ightarrow \ \widetilde{\chi}^0_1  \widetilde{\chi}^0_1,  \widetilde{\chi}^0_1  ightarrow \ \widetilde{G}  \gamma$
>29	95	⁴³ BARATE	99E ALEP	$R$ , $LQ\overline{D}$ , $tan\beta=1.41$ , $m_0=500$
>77	95	44 ABBOTT	98 D0	GeV $p\overline{p} \to \widetilde{\chi}\widetilde{\chi}, \ \widetilde{\chi} = \widetilde{\chi}_{1,2}^0, \widetilde{\chi}_1^{\pm}, \ \widetilde{\chi}_1^0 \to$
				$\gamma \tilde{G}$
		⁴⁵ ABREU	98 DLPH	$e^+e^- \rightarrow \tilde{\chi}_1^0\tilde{\chi}_1^0 (\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G})$
		⁴⁶ ACCIARRI	98V L3	$e^+e^- \rightarrow \widetilde{G}\widetilde{x}_i^{0}(\widetilde{x}_i^{0} \rightarrow \gamma \widetilde{G})$
>79	95	47 ACCIARRI	98v L3	$\begin{array}{ccc} e^{+}  e^{-} & \to & \widetilde{B}  \widetilde{\widetilde{B}}  (\widetilde{B}   & \gamma  \widetilde{G}) \\ e^{+}  e^{-} & \to & \widetilde{\chi}_{1}^{0}  \widetilde{\chi}_{1}^{0}  (\widetilde{\chi}_{1}^{0}  \to  \gamma  \widetilde{G}) \end{array}$
		48 ACKERSTAFF		$e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 (\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G})$
		49 BARATE	98H ALEP	$e^+e^- \rightarrow G\widetilde{\chi}_1^0 (\widetilde{\chi}_1^0 \rightarrow \gamma G)$
>71	95	⁵⁰ BARATE ⁵¹ BARATE	98H ALEP	$\begin{array}{ccc} e^{+}  e^{-} & \to & \widetilde{B}  \widetilde{B}^{1}  (\widetilde{B}   & \gamma  \widetilde{G}) \\ e^{+}  e^{-} & \to & \widetilde{G}  \widetilde{\chi}_{1}^{0}  (\widetilde{\chi}_{1}^{0}   & \gamma  \widetilde{G}) \end{array}$
. 04	95	52 BARATE	98J ALEP	$e^+e^- \rightarrow G\chi_1^0(\chi_1^0 \rightarrow \gamma G)$
>84	95 95	53 BARATE	983 ALEP	
>23	75	54 ACCIARRI	985 ALEP	$e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 (\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G})$
		55 ELLIS		
			97 THEO	$e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$
		⁵⁶ CABIBBO	81 CO5M	

#### Supersymmetric Particle Searches

- 32 ABREU 001 searches for the production of charginos and neutralinos in the case of Rparity violation with  $LL\bar{E}$  couplings, using data from  $\sqrt{s}$ =183 GeV. They investigate topologies with multiple leptons or jets plus leptons, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. Limits are obtained in the  $M_2$  versus  $\mu$  plane and a limit on the neutralino mass is derived from a scan over the parameters  $m_0$  and aneta.
- 33  BARATE 00G search for diphoton + E topologies using data collected at  $\sqrt{s}$ =189 GeV. Limits are obtained from a scan of GMSB parameters space, under the assumption of a short-lived  $\tilde{\chi}_1^0$  NLSP. The limit is reduced to 45 GeV for long-lived neutralinos.
- 34 ABBIENDI 99F obtained an upper bound on the cross section for the process e+e- $\widetilde{G}\widetilde{\chi}_1^0$  followed by the prompt decay  $\widetilde{\chi}_1^0 \to \widetilde{G}\gamma$  of 0.46–0.075 pb for  $m_{\widetilde{\chi}_1^0} = 91-183$  GeV. See Fig. 8 for the detailed dependence of  $m_{\widetilde{\chi}_1^0}$ . Data taken at  $\sqrt{s}$ =183 GeV.
- 35 ABBIENDI 99F looked for  $\gamma \gamma E$  final states at  $\sqrt{s}$ =183 GeV. The limit is for pure bino  $\tilde{B}$  and assumes  $m_{\tilde{e}_R} = 1.35 m_{\tilde{B}}$  and  $m_{\tilde{e}_L} = 2 m_{\tilde{e}_R}$ . See Fig. 13 for the cross-section limits as a function of  $m_{\widetilde{\chi}_1^0}$
- ³⁶ ABBIENDI 99T searches for the production of neutralinos in the case of R-parity violation with  $LL\bar{E}$ ,  $LQ\bar{D}$ , or  $\overline{UDD}$  couplings using data from  $\sqrt{s}$ =183 GeV. They investigate topologies with mulitiple leptons, jets plus leptons, or multiple jets, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. Mixed decays (where one particle has a direct, the other an indirect decay) are also considered for the  $\overline{UDD}$  couplings. Upper limits on the cross section are derived which, combined with the constraint from the  $Z^0$  width, allow to exclude regions in the  $M_2$  versus  $\mu$  plane for
- any coupling. Limits on the neutralino mass are obtained for non-zero LIE couplings  $> 10^{-5}$ . The limit disappears for  $\tan \beta < 1.2$  and it improves to 50 GeV for  $\tan \beta > 20$ . 37 ABE 991 looked for chargino and neutralino production, where the lightest neutralino in their decay products further decays into  $\gamma \, \hat{G}$ . The limit assumes the gaugino mass unification, and holds for  $1 < \tan \beta < 25$ ,  $M_2 < 200$  GeV, and all  $\mu$ . ABE 991 is an expanded version of ABE 981.
- 38  ABREU 99D looked for  $\gamma\gamma E$  final states at  $\sqrt{s}$ =130–183 GeV. The limit is for prompt Above 990 looked for 7.7 $\mu$  miles states at  $\sqrt{3-13-13-13}$  GeV. The limit reduces to 76 GeV for  $m_{\widetilde{e}_R}^- = 1.50$  GeV. See Fig. 14 for the limits as a function of  $m_{\widetilde{e}_R}^-$  Model-independent cross-section limits in the range 0.10–0.13 pb are shown in Fig. 9, for neutralino masses in the range 45–81.5 GeV. Cross section limits were also derived, see Fig. 13, as function of the decay length, including non-pointing single photon final states.
- 39  ABREU 99F looked for acoplanar ditaus, taus with large impact parameters, kinks, and stable heavy-charged tracks at  $\sqrt{s}$ =130–183 GeV. See Table 5 for explicit  $m_{\widetilde{\chi}_1^0}$  limits under different model assumptions.
- 40 ACCIARRI 99I looked for multi-lepton and/or multi-jet final states from R prompt decays with  $LL\widehat{E}$  or  $\overline{UDD}$  couplings at  $\sqrt{s}$ =130–183 GeV. The situations where the  $\widehat{\chi}_1^0$  is the LSP (indirect decays) and where a  $\widetilde{\ell}$  is the LSP (direct decays) were both considered and both yield the same mass limit.
- 41 ACCIARRI 99R searches for γ½ final states using data from √5≈189 GeV. From limits on cross section times branching ratio, mass limits are derived in a no-scale SUGRA model, see their Fig. 5. Supersedes the results of ACCIARRI 98v.
- ⁴² ACCIARRI 99R searches for γÆ final states using data from √s=189 GeV. From a scan over the GMSB parameter space, a limit on the mass is derived under the assumption that the neutralino is the NLSP. Supersedes the results of ACCIARRI 98V.
- 43 BARATE 99E looked for the decay of gauginos via R-violating couplings  $LQ\overline{D}$ . The bound is significantly reduced for smaller values of  $m_0$ . Data collected at  $\sqrt{s}$ =130–172
- 44 ABBOTT 98 studied the chargino and neutralino production, where the lightest neutralino in their decay products further decays into  $\gamma \hat{G}$ . The limit assumes the gaugino mass unification.
- 45 ABSEU 98 uses data at  $\sqrt{s}$   $\approx$  161 and 172 GeV. Upper bounds on  $\gamma \gamma E$  cross section are obtained. Similar limits on  $\gamma E$  are also given, relevant for  $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{G}$  production.
- 46  ACCIARRI 98v obtained an upper bound on the cross section for the process  $e^+e^- 
  ightarrow$  $\tilde{G}\tilde{\chi}_1^0$  followed by the prompt decay  $\tilde{\chi}_1^0 o \tilde{G}\gamma$  of 0.28–0.07 pb  $m_{\tilde{\chi}_1^0}$ =0–183 GeV. See Fig. 4b for the detailed dependence on  $m_{\widetilde{\chi}_1^0}$ . Data taken at  $\sqrt{s}$ =183 GeV.
- 47 ACCIARRI 98V looked for  $\gamma\gamma E$  final states at  $\sqrt{s}$ =183 GeV. The limit is for pure bino  $\tilde{B}$  and assumes  $m_{\tilde{e}R,L}$ =150 GeV. The limit improves to 84 GeV for  $m_{\tilde{e}R,L}$ =100 GeV. See Fig. 7 for the cross-section limits as a function of  $m_{\tilde{\chi}_1^0}$ , for different cases of neutralino
- ⁴⁸ ACKERSTAFF 98J looked for  $\gamma\gamma E$  final states at  $\sqrt{s}$ =161–172 GeV. They set limits on  $\sigma(e^+e^- \to \tilde{\chi}^0_1\tilde{\chi}^0_1)$  in the range 0.22–0.50 pb for  $m_{\tilde{\chi}^0_1}$  in the range 45–86 GeV. Mass limits for explicit models from the literature are given in Fig. 19 of their paper. Similar limits on  $\gamma+\text{missing energy are also given, relevant for } \hat{\chi}^0_1\,\hat{\tilde{G}}$  production.
- 49 BARATE 98H obtained an upper bound on the cross section for the process  $e^+\,e^ightarrow$  $\tilde{G}\tilde{\chi}^0_1$  followed by the prompt decay  $\tilde{\chi}^0_1 \to \tilde{G}\gamma$  of 0.4–0.75 pb for  $m_{\widetilde{\chi}^0_1} =$  40–170 GeV.
- Data taken at  $\sqrt{s} = 161,172$  GeV.  50  BARATE 98H looked for  $\gamma\gamma$  \$\mathcal{E}\$ final states at  $\sqrt{s}=161{,}172$  GeV. The limit is for pure bino  $\widetilde{B}$  with  $\tau(\widetilde{B})$ < 3 ns and assumes  $m_{\widetilde{e}_R}=1.5m_{\widetilde{B}}$ . See Fig. 5 for the dependence of the limit on  $m_{\widetilde{e}_R}$
- ⁵¹ BARATE 98J looked for  $\gamma \not \! E$  final states at  $\sqrt{\hat s}=161$ –183 GeV. They obtained an upper bound on the cross section of about 0.2 pb for the process  $e^+e^- \to XY$  followed by the prompt decay  $X \to Y \gamma$  ( $\tau(X) < 0.1 \text{ ns}$ ) if  $m_Y = 0$ . The bound applies for  $\tilde{G} \tilde{\chi}_1^0$ .
- 52  BARATE 98J looked for  $\gamma\gamma$  \$\mathcal{E}\$ final states at  $\sqrt{\hat{s}}=$  161–183 GeV. The limit is for pure bino  $\tilde{B}$  with  $\tau(\tilde{B})<$  3 ns and assumes  $m_{\widetilde{e}_R}=1.1m_{\widetilde{B}}$ . See Fig. 5 for the dependence of the limit on  $m_{\widetilde{e}_R}$
- 53  BARATE 98s looked for the decay of gauginos via *R*-violating coupling  $L L \overline{E}$ . The bound improves to 25 GeV if the chargino decays into neutralino which further decays into lepton pairs. Data collected at  $\sqrt{s}{=}130{-}172$  GeV.

- 54  ACCIARRI 97v looked for  $\gamma\gamma E$  final states at  $\sqrt{s}{=}161$  and 172 GeV. They set limits on  $\rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1$ ) in the range 0.25–0.50 pb for masses in the range 45–85 GeV. The lower limits on  $m_{\tilde{\chi}_1^0}$  vary in the range of 64.8 GeV (pure bino with 90 GeV slepton) to 75.3 GeV (pure higgsino). There is no limit for pure zino case.
- 55  ELLIS 97 reanalyzed the LEP2 ( $\sqrt{s}$ =161 GeV) limits of  $\sigma(\gamma\gamma + E_{
  m miss})$ < 0.2 pb to exclude  $m_{\widetilde{\chi}_1^0} <$  63 GeV if  $m_{\widetilde{e}_L} = m_{\widetilde{e}_R} <$  150 GeV and  $\widetilde{\chi}_1^0$  decays to  $\gamma$   $\widetilde{G}$  inside detector.
- 56  CABIBBO 81 consider  $\widetilde{\gamma}\to\gamma+$  goldstino. Photino must be either light enough (<30 eV) to satisfy cosmology bound, or heavy enough (>0.3 MeV) to have disappeared at

VALUE (GeV) CL%

 $\widetilde{\chi}_2^0$ ,  $\widetilde{\chi}_3^0$ ,  $\widetilde{\chi}_4^0$  (Neutralinos) MASS LIMITS Neutralinos are unknown mixtures of photinos, z-inos, and neutral higgsinos (the supersymmetric partners of photons and of Z and Higgs bosons). The limits here apply only to  $\tilde{\chi}_2^0$ ,  $\tilde{\chi}_3^0$ , and  $\tilde{\chi}_4^0$ ,  $\tilde{\chi}_1^0$  is the lightest supersymmetric particle (LSP); see  $\tilde{\chi}_1^0$  Mass Limits. It is not possible to quote rigorous mass limits because they are extremely model dependent; i.e. they depend on branching ratios of various  $\tilde{\chi}_1^0$  decay modes, on the masses of decay products  $(\tilde{e}, \tilde{\gamma}, \tilde{q}, \tilde{g})$ , and on the  $\tilde{e}$  mass exchanged in  $e^+e^- o ilde{\chi}_I^0 ilde{\chi}_I^0$ . Limits arise either from direct searches, or from the MSSM constraints set on the gaugino and higgsino mass parameters  $M_2$  and  $\mu$  through searches for lighter charginos and neutralinos. Often limits are given as contour plots in the  $m_{\widetilde{\chi}^0}-m_{\widetilde{e}}$  plane vs other parameters. When specific assumptions are made, e.g, the neutralino is a pure photino  $(\tilde{\gamma})$ , pure z-ino  $(\tilde{Z})$ , or pure neutral higgsino  $(\tilde{H}^0)$ , the neutralinos will be labelled as such.

Limits obtained from  $e^+e^-$  collisions at energies up to 136 GeV, as well as other limits from different techniques, are now superseded and have not been included in this compilation. They can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review.

TECN COMMENT

DOCUMENT ID

> 55.9	95	57 ABBIENDI	00н OPAL	$\tilde{\chi}_2^0$ , tan $\beta$ =1.5, $\Delta m >$ 10 GeV, all
>106.6	95	⁵⁷ ABBIENDI	00H OPAL	$\tilde{\chi}_3^0$ , $\tan \beta = 1.5$ , $\Delta m > 10$ GeV, all
• • • We do no	t use the	following data for	averages, fits	s, limits, etc. • • •
		58 ABBIENDI	99F OPAL	$e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0 (\tilde{\chi}_2^0 \rightarrow \gamma \tilde{\chi}_1^0)$
		⁵⁹ ABBIENDI	99F OPAL	$\begin{array}{c} e^{+} e^{-} \rightarrow \hat{\chi}_{2}^{0} \tilde{\chi}_{1}^{0} \left( \tilde{\chi}_{2}^{0} \rightarrow \gamma \tilde{\chi}_{1}^{0} \right) \\ e^{+} e^{-} \rightarrow \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0} \left( \tilde{\chi}_{2}^{0} \rightarrow \gamma \tilde{\chi}_{1}^{0} \right) \end{array}$
> 44	95	60 ABBIENDI		$\tilde{\chi}_2^0$ , $\tan \beta > 1$ , $\Delta m_0 > 10$ GeV
>102	95	60 ABBIENDI	99G OPAL	$\tilde{\chi}_3^0$ , tan $\beta$ =1.5, $\Delta m_0 > 10$ GeV
		⁶¹ ABREU	990 DLPH	$e^{+}e^{-} \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}(\tilde{\chi}_{2}^{0} \rightarrow \gamma \tilde{\chi}_{1}^{0})$
> 34.8	95	62 ACCIARRI	991 L3	$\tilde{\chi}_2^0$ , $R$
		⁶³ ACCIARRI	99R L3	$e^{\stackrel{\leftarrow}{+}}e^{-} \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{2,1}^{0}, \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0}\gamma$
		64 ABBOTT	98c D0	
> 82.2	95	65 ABE	981 CDF	$ \begin{array}{l} \rho \overline{\rho} \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \\ \rho \overline{\rho} \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \end{array} $
> 92	95	⁶⁶ ACCIARRI	98F L3	$\tilde{H}_{2}^{0}$ , tan $\beta = 1.41$ , $M_{2} < 500$ GeV
		⁶⁷ ACCIARRI	98∨ L3	$e^+e^- \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_{1,2} (\tilde{\chi}^0_2 \rightarrow$
				$\gamma \tilde{\chi}^0_1)$
> 45.3	95	⁶⁸ ACKERSTAFF	98L OPAL	$\tilde{\chi}_{2}^{0}$ , $\tan \beta > 1$
> 75.8	95	⁶⁸ ACKERSTAFF	98L OPAL	$\widetilde{\chi}_3^{ar{0}}$ , $ aneta>1$
> 53	95	⁶⁹ BARATE		$e^{+}e^{-} \rightarrow \tilde{\gamma}\tilde{\gamma} (\tilde{\gamma} \rightarrow \gamma \tilde{H}^{0})$
> 74	95	⁷⁰ BARATE		$e^+e^- \rightarrow \tilde{\gamma}\tilde{\gamma}\;(\tilde{\gamma}\rightarrow \gamma\tilde{H}^0)$
		71 ABACHI	96 D0	$ \begin{array}{ccc} \rho \overline{\rho} \to & \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0 \\ \rho \overline{\rho} \to & \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0 \end{array} $
		72 ABE		
> 86.3	95	⁷³ ACKERSTAFF	96c OPAL	$\tilde{\chi}^0_3$

- 57  ABBIENDI 00н used the results of direct searches in the  $e^+\,e^-\,
  ightarrow\, ilde{\chi}_1^0 ilde{\chi}_{2,3}^0$  channels, as well as the indirect limits from  $\tilde{\chi}^0_1$  and  $\tilde{\chi}^\pm_1$  searches, in the framework of the MSSM with gaugino and sfermion mass unification at the GUT scale. See the footnote to ABBIENDI 00H in the chargino Section for further details on the assumptions. Data collected at  $\sqrt{s}$ =189 GeV. The limits improve to 86.2 GeV  $(\tilde{\chi}^0_2)$  and 124 GeV  $(\tilde{\chi}^0_3)$  for  $\tan \beta = 35$ . See their Table 6 for more details on the  $\tan \beta$  and  $m_0$  dependence of the
- ⁵⁸ ABBIENDI 99F looked for  $\gamma E$  final states at  $\sqrt{s}$ =183 GeV. They obtained an upper bound on the cross section for the production  $e^+e^-\to~\widetilde\chi^0_2\widetilde\chi^0_1$  followed by the prompt decay  $\tilde{\chi}_2^0 \to \gamma \tilde{\chi}_1^0$  of 0.075–0.80 pb in the region  $m_{\tilde{\chi}_2^0} + m_{\tilde{\chi}_1^0} > m_Z$ ,  $m_{\tilde{\chi}_2^0} =$  91–183 GeV, and  $\Delta m_0 >$  5 GeV. See Fig. 7 for explicit limits in the  $(m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_1^0})$  plane.
- ⁵⁹ ABBIENDI 99F looked for  $\gamma\gamma E$  final states at  $\sqrt{s}$ =183 GeV. They obtained an upper bound on the cross section for the production  $e^+e^- \to \tilde{\chi}_2^0 \tilde{\chi}_2^0$  followed by the prompt decay  $\tilde{\chi}_2^0 \to \gamma \tilde{\chi}_1^0$  of 0.08–0.37 pb for  $m_{\tilde{\chi}_2^0}$ =45–81.5 GeV, and  $\Delta m_0 >$  5 GeV. See Fig. 11 for explicit limits in the  $(m_{\widetilde{\chi}^0_2}, m_{\widetilde{\chi}^0_1})$  plane.
- ⁶⁰ ABBIENDI 99G uses the results of direct searches in the  $e^+e^- 
  ightarrow ~ \tilde{\chi}_1^0 \tilde{\chi}_{2,3}^0$  channels, as well as the indirect limits from  $\tilde{\chi}^0_1.\tilde{\chi}^\pm_1$  searches within the MSSM. See the footnote to ABBIENDI 996 in the Chargino Section for further details on the assumptions. Data collected at √s=181-184 GeV.
- 61 ABREU 990 looked for  $\gamma \gamma E$  final states at  $\sqrt{s}$ =183 GeV. They obtained upper bounds in the range 0.10–0.25 pb on the cross section for the production  $e^+e^- \rightarrow \tilde{\chi}_2^0\tilde{\chi}_2^0$ followed by the prompt decay  $\tilde{\chi}^0_2 \to \gamma \tilde{\chi}^0_1$  with  $\Delta m_0 >$  6 GeV. See Fig. 12 for explicit limits in the  $(m_{\widetilde{\chi}^0_2}, m_{\widetilde{\chi}^0_1})$  plane.

- 62 ACCIARRI 99i looked for multi-lepton and/or multi-jet final states from ℜ prompt decays with  $LL\overline{E}$  or  $\overline{UDD}$  couplings at  $\sqrt{s}=130-183$  GeV. The situations where the  $\tilde{\chi}_1^0$  is the LSP (indirect decays) and where a  $\hat{\ell}$  is the LSP (direct decays) were both considered. The weakest limit, quoted above, comes from direct decays with *UDD* couplings; indirect decays lead to a limit of 44.3 GeV.
- ⁶³ ACCIARRI 99R searches for  $\gamma E$  and  $\gamma \gamma E$  final states using data from  $\sqrt{s}$ =189 GeV. Limits on the cross section for the processes  $e^+\,e^- 
  ightarrow ~ \tilde{\chi}^0_2 \tilde{\chi}^0_{2,1}$  with the decay  $\tilde{\chi}^0_2 
  ightarrow$
- $\tilde{\chi}^0_1\gamma$  are derived, as shown in their Figs. 4 and 7. Supersedes the results of ACCIARRI 98v.  64 ABBOTT 98C searches for trilepton final states ( $\ell$ =e, $\mu$ ). See footnote to ABBOTT 98C in the Chargino Section for details on the assumptions. Assuming a negligible decay rate of  $\tilde{\chi}_1^{\pm}$  and  $\tilde{\chi}_2^0$  to quarks, they obtain  $m_{\tilde{\chi}_2^0} \gtrsim$  103 GeV.
- ⁶⁵ ABE 98J searches for trilepton final states ( $\ell=e,\mu$ ). See footnote to ABE 98J in the Chargino Section for details on the assumptions. The quoted result for  $m_{\tilde{\chi}_2^0}$  corresponds to the best limit within the selected range of parameters, obtained for  $m_{\widetilde{q}} > m_{\widetilde{g}}$ ,  $\tan \beta = 2$ , and  $\mu=-600$  GeV.
- 66  ACCIARRI 98F is obtained from direct searches in the  ${
  m e^+\,e^-}
  ightarrow~\widetilde{\chi}^0_{1,2}\widetilde{\chi}^0_2$  production channels, and indirectly from  $\tilde{\chi}_1^{\pm}$  and  $\tilde{\chi}_1^0$  searches within the MSSM. See footone to ACCIARRI 98F in the chargino Section for futher details on the assumptions. Data taken it  $\sqrt{s} = 130-172$  GeV.
- 67 ACCIARRI 98V looked for  $\gamma(\gamma) E$  final states at  $\sqrt{s}$ =183 GeV. They obtained an upper bound on the cross section for the production  $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_{1,2}^0$  followed by the prompt  $\operatorname{decay} \, \widetilde{\chi}^0_2 \to \ \gamma \widetilde{\chi}^0_1. \, \, \operatorname{See \, Figs. \, 4a \, and \, 6a \, for \, explicit \, limits \, \overset{-}{\operatorname{in}} \, \operatorname{the} \, \, (m_{\widetilde{\chi}^0_2}, m_{\widetilde{\chi}^0_1}) \, \, \operatorname{plane}.$
- ⁶⁸ ACKERSTAFF 98L is obtained from direct searches in the e $^+$ e $^- 
  ightarrow \, \tilde{\chi}_1^0 \, \tilde{\chi}_{2,3}^0$  production channels, and indirectly from  $\tilde{\chi}_1^{\pm}$  and  $\tilde{\chi}_1^0$  searches within the MSSM. See footnote to ACKERSTAFF 98L in the chargino Section for further details on the assumptions. Data taken at  $\sqrt{s}$ =130-172 GeV.
- 69 BARATE 98H looked for  $\gamma\gamma$  & final states at  $\sqrt{s}=161,\!172$  GeV. They obtained an upper bound on the cross section for the production  ${
  m e^+\,e^-}
  ightarrow~\tilde{\chi}_2^0\,\tilde{\chi}_2^0$  followed by the prompt decay  $\tilde{\chi}_2^0 \to \gamma \tilde{\chi}_1^0$  of 0.4–0.8 pb for  $m_{\tilde{\chi}_2^0} = 10$ –80 GeV. The bound above is for the specific case of  $\tilde{\chi}^0_1=\widetilde{H}^0$  and  $\tilde{\chi}^0_2=\widetilde{\gamma}$  and  $m_{\widetilde{e}_R}=$  100 GeV. See Fig. 6 and 7 for explicit limits in the  $(\tilde{\chi}^0_2,\tilde{\chi}^0_1)$  plane and in the  $(\tilde{\chi}^0_2,\tilde{e}_R)$  plane.
- 70  BARATE 98J looked for  $\gamma\gamma\not\in$  final states at  $\sqrt{s}=161$ –183 GeV. They obtained an upper bound on the cross section for the production  $e^+e^- \to \tilde{\chi}_2^0 \tilde{\chi}_2^0$  followed by the prompt decay  $\tilde{\chi}^0_2 o \gamma \tilde{\chi}^0_1$  of 0.08–0.24 pb for  $m_{\tilde{\chi}^0_2} <$  91 GeV. The bound above is for the specific case of  $\tilde{\chi}_1^0=\tilde{H}^0$  and  $\tilde{\chi}_2^0=\tilde{\gamma}$  and  $m_{\widetilde{e}_R}=$  100 GeV.
- 71 ABACHI 96 searches for 3-lepton final states. Efficiencies are calculated using mass relations and branching ratios in the Minimal Supergravity scenario. Results are presented as lower bounds on  $\sigma(\tilde{\chi}_1^+\tilde{\chi}_2^0) \times B(\tilde{\chi}_1^0 \to \ell^*\ell^*\tilde{\chi}_1^0) \times B(\tilde{\chi}_2^0 \to \ell^*\ell^*\tilde{\chi}_2^0)$  as a function of  $m_{\tilde{\chi}_1^0}$ . Limits range from 3.1 pb  $(m_{\tilde{\chi}_1^0} = 45~{\rm GeV})$  to 0.6 pb  $(m_{\tilde{\chi}_1^0} = 100~{\rm GeV})$ .
- ⁷² ABE 96k looked for tripleton events from chargino-neutralino production. They obtained lower bounds on  $m_{\widetilde{\chi}_2^0}$  as a function of  $\mu$ . The lower bounds are in the 45-50 GeV range for gaugino-dominant  $\hat{\chi}_2^0$  with negative  $\mu_i$  if  $an\!eta<10$ . See paper for more details of the assumptions.
- 73  ACKERSTAFF 96c is obtained from direct searches in the  $e^+\,e^ightarrow\, ilde{\chi}_1^0 ilde{\chi}_{2,3}^0$  production channel, and indirectly from  $\tilde{\chi}_1^\pm$  searches within MSSM. Data from  $\sqrt{s}=130,\,136,\,$  and 161 GeV are combined. The same assumptions and constraints of ALEXANDER 96J apply. The limit improves to 94.3 GeV for  $m_0=1$  TeV.

 $\widetilde{\chi}_1^\pm,\,\widetilde{\chi}_2^\pm$  (Charginos) MASS LIMITS Charginos are unknown mixtures of w-inos and charged higgsinos (the supersymmetric partners of W and Higgs bosons). A lower mass limit for the lightest chargino  $(\tilde{\chi}_1^{\pm})$  of approximately 45 GeV, independent of the field composition and of the decay mode, has been obtained by the LEP experiments from the analysis of the Z width and decays. These results, as well as other now superseded limits from  $e^+e^-$  collisions at energies below 136 GeV, and from hadronic collisions, can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review.

Unless otherwise stated, results in this section assume spectra, production rates, decay modes and branching ratios as evaluated in the MSSM, with gaugino and sferm mass unification at the GUT scale. These papers generally study production of  $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ .  $ilde{\chi}_1^+ ilde{\chi}_1^-$  and (in the case of hadronic collisions)  $ilde{\chi}_1^+ ilde{\chi}_2^0$  pairs, including the effects of cascade decays. The mass limits on  $\tilde{\chi}_1^\pm$  are either direct, or follow indirectly from the constraints set by the non-observation of  $\tilde{\chi}_2^0$  states on the gaugino and higgsino MSSM parameters  $M_2$  and  $\mu$ . For generic values of the MSSM parameters, limits from high-energy  $e^+e^-$  collisions coincide with the highest value of the mass allowed by phase-space, namely  $m_{\tilde{\chi}_1^\pm} \lesssim \sqrt{s}/2$ . At the time of this writing, preliminary and unpublished coults from the 1000 are of 1.500 at 600 and 600 are 600 are 600 and 600 and 600 are 600 are 600 and 600 are 600 are 600 and 600 are 600 and 600 are 600 are 600 and 600 are 600 are 600 and 600 are 600 and 600 are 600 and 600 are 600 and 600 are 600 are 600 are 600 and 600 are 600 are 600 are 600 and 600 are 600 are 600 are 600 are 600 are 600 are 600 and 600 are 6000 
unpublished results from the 1999 run of LEP2 at  $\sqrt{s}$  up to 202 GeV give therefore a lower mass limit of approximately 101 GeV valid for general MSSM models. The limits become however weaker in special regions of the MSSM parameter space where the detection efficiencies or production cross sections are suppressed. For example, this may happen when: (i) the mass differences  $\Delta m_+ = m_{\tilde\chi_1^\pm} - m_{\tilde\chi_1^0}$  or  $\Delta m_\nu =$ 

 $m_{\widetilde{\chi}_1^\pm}-m_{\widetilde{\nu}}$  are very small, and the detection efficiency is reduced; (ii) the electron

sneutrino mass is small, and the  $\bar{\chi}_1^\pm$  production rate is suppressed due to a destructive interference between s and t channel exchange diagrams. The regions of MSSM parameter space where the following limits are valid are indicated in the comment lines or in the footnotes.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
> 71.7	95	74 ABBIENDI	00н OPAL	$tan\beta=35$ , $\Delta m_{+}>5$ GeV, all $m_{0}$
> 88.4	95	75 ABREU	00J DLPH	
				$tan \beta > 1$
> 67.7	95	⁷⁶ ACCIARRI	00D L3	$\tan \beta > 0.7$ , $\Delta m_{+} > 3$ GeV, all $m_{0}$
> 68	95	⁷⁷ BARATE	98x ALEP	$\tan \beta = 1.41$ , all $m_0$
• • • We do	not use	the following data f	or averages, t	fits, limits, etc. • • •
> 89	95	⁷⁸ ABREU	00≀ DLPH	$R(LL\overline{E})$ , any $\Delta m_0$ , $1 \leq \tan\beta \leq$
> 94.1	95	⁷⁹ ABREU	00」DLPH	$e^{+}e^{-} \rightarrow \widetilde{\chi}^{\pm}\widetilde{\chi}^{\mp} (\widetilde{\chi}^{0} \rightarrow \gamma \widetilde{G}),$ $tan\beta \geq 1$
> 91	95	⁸⁰ BARATE	00н ALEP	$RLL\overline{E}$ , $\overline{LQD}$ , $\overline{UDD}$ , $m_0 > 500$ GeV
> 90.0	95	81 ABBIENDI	99G OPAL	$\tan \beta = 1.5$ , $\Delta m_{+} > 5$ GeV, $m_{0} = 500$ GeV
> 69.1	95	81 ABBIENDI	99G OPAL	$tan\beta=1.5$ , $\Delta m_{+} > 5$ GeV, all $m_0$
> 76	95	82 ABBIENDI	99T OPAL	R, m ₀ =500 GeV
>10	95	83 ABE	991 CDF	$\rho \overline{\rho} \rightarrow \tilde{\chi} \tilde{\chi}, \tilde{\chi} = \tilde{\chi}_{1,2}^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0 \rightarrow$
/120	,,	, ,	7,7 05.	$\gamma \tilde{G}$
> 89.4	95	84 ABREU	99E DLPH	$\Delta m_+ > 10$ GeV, $m_{\widetilde{ u}} > 300$ GeV
> 88.8	95	84 ABREU	99E DLPH	$\Delta m_{+} > 5$ GeV, $m_{\widetilde{\nu}} > 41$ GeV
> 90.5	95	85 ABREU	99E DLPH	$e^+e^- \rightarrow \tilde{\chi}_1^+\tilde{\chi}_1^-, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$
> 85.5	95	86 ABREU	99v DLPH	$e^+e^{\widetilde{\chi}} \rightarrow \widetilde{\chi}^+\widetilde{\chi}^-, \widetilde{\chi}^- \rightarrow \widetilde{\tau}\nu, \widetilde{\tau} \rightarrow$
		87 ABREU	99z DLPH	$e^{+\stackrel{\tau}{e}\stackrel{G}{-}} \rightarrow \tilde{\chi}^{+}\tilde{\chi}^{-}, \Delta m_{+} < 3 \text{ GeV}$
. 76.0	0.5	88 ACCIARRI	992 DEFN 991 L3	$R$ , $LL\overline{E}$ or $\overline{UDD}$
> 76.9 > 82	95 95	89 BARATE	99E ALEP	
> 82 > 51	95 95	90 MALTONI		EW analysis, $\Delta m_{+} \sim 1$ GeV
>150	95	91 ABBOTT	98 D0	$p\bar{p} \rightarrow \tilde{\chi}\tilde{\chi}, \tilde{\chi} = \tilde{\chi}_{1,2}^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0 \rightarrow$
>150	,,	ADDOTT	,	γĞ
		92 ABBOTT	98c D0	$\rho \bar{\rho} \rightarrow \hat{\chi}_1^{\pm} \hat{\chi}_2^0$
> 01 F	or.	93 ABE	98」CDF	4 5
> 81.5	95	94 ABREU	98 DLPH	$ \rho \overline{\rho} \rightarrow \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0 $ $ \Delta m > 10 \text{ GeV} $
> 67.6 > 71.8	95 95	95 ABREU	98 DLPH	$e^+e^- \rightarrow \tilde{\chi}^+\tilde{\chi}^-, \tilde{\chi}^0_1 \rightarrow \tilde{G}\gamma$
		96 ACCIARRI	98r L3	$\tan \beta < 1.41$ , all $m_0$
> 69.2	95	97 ACKERSTAFF		$\tilde{\chi}^+ \rightarrow \ell^+ E$
> 65.7	95	98 ACKERSTAFF		$\Delta m_{\perp} > 3 \text{ GeV}, \Delta m_{\nu} > 2 \text{ GeV}$
> 03.1	73	99 ACKERSTAFF		light gluino
> 73	95	100 BARATE	985 ALEP	R, LLE
/ 10	,,	101 CARENA	97 THEO	
		102 KALINOWSK		- μ
		103 ABE	96k CDF	
> 62	95	104 ACKERSTAFF	96c OPAL	

74 ABBIENDI 00H data collected at  $\sqrt{s}$ =189 GeV. The results hold over the full parameter space defined by  $0 \le M_2 \le 2$  TeV,  $|\mu| \le 500$  GeV,  $m_0 \le 500$  GeV,  $A = \pm M_2$ ,  $\pm m_0$ , and 0. The results of stepton searches from ABBIENDI 00G were used to help set constraints in the region of small  $m_0$ . The limit improves to 78 GeV for  $\tan \beta = 1.5$ . See their Table 5 and Fig. 4 for the  $\tan \beta$  and  $M_2$  dependence of the limits.

75 ABREU 00J data collected at  $\sqrt{s}$ =189 GeV. They investigate topologies with multiple leptons, jets plus leptons, multi-jets, or isolated photons. The parameter space is scanned in the domain  $0 < M_2 < 3000$  GeV,  $|\mu| < 200$  GeV,  $1 < \tan\beta < 35$ . The analysis includes the effects of gaugino cascade decays.

⁷⁶ ACCIARRI 0DD data collected at  $\sqrt{s}$ =189 GeV. The results hold over the full parameter space defined by  $0.7 \le \tan \beta \le 60$ ,  $0 \le M_2 \le 2$  TeV,  $|\mu| \le 2$  TeV  $m_0 \le 500$  GeV. The results of slepton searches from ACCIARRI 99W are used to help set constraints in the region of small  $m_0$ . See their Figs. 5 for the  $\tan\beta$  and  $M_2$  dependence on the limits. See the text for the impact of a large  $B(\tilde{\chi}^{\pm} \to \tau \tilde{\nu}_{\tau})$  on the result.

 77  BARATE 98x limit holds for all values of  $m_0$  consistent with the slepton mass limits of BARATE 97N. The limit improves to 79 GeV for a mostly higgsino  $\tilde{\chi}_1^{\pm}$  (with  $\Delta m > 5$ GeV) and to 85.5 GeV for a mostly gaugino  $\bar{\chi}_1^\pm$  ( $\mu$ =-500 GeV and  $m_{\widetilde{\nu}} > 200$  GeV). The cases of  $m_{\tilde{\chi}_1^\pm} > m_{\widetilde{\nu}}$  or nonuniversal scalar mass or nonuniversal gaugino mass are

also studied in the paper. Data collected at  $\sqrt{s}$ =161-172 GeV. also studied in the paper. Data collected at  $\sqrt{s}=161-112$  GeV.

78 ABREU 001 searches for the production of charginos and neutralinos in the case of R-parity violation with LLE couplings, using data from  $\sqrt{s}=183$  GeV. They investigate topologies with multiple leptons or jets plus leptons, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. Limits are obtained in the  $M_2$  versus  $\mu$  plane and a limit on the neutralino mass is derived from a scan over the parameters  $m_2$  and  $\tan 0$ parameters  $m_0$  and aneta.

 79  This ABREU 00J limit holds for  $\Delta m_+>10$  GeV and  $m_{\widetilde{\nu}}>300$  GeV. For the other assumptions, see previous footnote to ABREU 00J in this Section. A limit of 94.2 GeV is obtained for  $\Delta m_{+} = 1$  GeV and  $m_{\widetilde{\nu}} > m_{\widetilde{\nu}^{\pm}}$ .

⁸⁰ BARATE 00H data collected at  $\sqrt{s}$ =183 GeV. The limit holds for any possible *R*-parity

- violating coupling. 81 ABBIENDI 996 data collected at  $\sqrt{s} \le 184$  GeV. The parameter space is scanned in the domain  $0 < M_2 < 2000$  GeV,  $|\mu| < 500$  GeV, and for various values of A. No dependence of the limits on A is found. The analysis includes the effects of gaugino cascade decays. In the case of radiative neutralino decays, the limits from ACKERSTAFF 981 are assumed. The limit for all values of  $m_0$  assumes  $m_{\widetilde{\nu}_{\theta}} > 43$  GeV and direct limits on charged sleptons. See Table 5 for limits under different assumptions on  $\Delta m_+$  and tan $\beta$ .
- 82 ABBIENDI 99's searches for the production of neutralinos in the case of *R*-parity violation with *LLE*, *LQD*, or *UDD* couplings using data from √5=183 GeV. They investigate topologies with mulitiple leptons, jets plus leptons, or multiple jets, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. Mixed decays (where one particle has a direct, the other an indirect decay) are also considered for the UDD couplings. Upper limits on the cross section are derived which, combined with the

#### Supersymmetric Particle Searches

constraint from the  $Z^0$  width, allow to exclude regions in the  $M_2$  versus  $\mu$  plane for any coupling. Limits on the chargino mass are obtained for non-zero  $LL\bar{E}$  couplings  $>10^{-5}$  and assuming decays via a  $W^*$ .

 83  ABE 991 looked for chargino and neutralino production, where the lightest neutralino in their decay products further decays into  $\gamma G$ . The limit assumes the gaugino mass unification, and holds for  $1 < \tan \beta < 25$ ,  $M_2 < 200$  GeV, and all  $\mu$ . ABE 991 is an expanded version of ABE 981.

 84  ABREU 99E data collected at  $\sqrt{s} \leq 183$  GeV. These results include and update the limits from ABREU 98. The parameter space is scanned in the domain  $0 < M_2 < 3000$  GeV,  $|\mu| < 400$  GeV,  $1 < \tan\beta < 35$ . The analysis includes the effects of gaugino cascade decays. In the case of radiative neutralino decays, the limits from ABREU 97J are assumed.

are assumed. 85 This ABREU 99E limit holds for  $\Delta m_0 > 10$  GeV and  $m_{\widetilde{\nu}} > 300$  GeV. For the other assumptions, see previous footnote to ABREU 99E in this Section. A limit of 90.6 GeV is obtained for  $\Delta m_+ = 1$  GeV and  $m_{\widetilde{\nu}} > 41$  GeV.

86 ABREU 99V reinterprets search results at 183 GeV on  $\tilde{\tau}$  decays at the interaction vertex (ABREU 99F), visible decay vertices in the tracking devices or large impact parameters (ABREU 99F) and stable charged heavy particles (ABREU 98P). Limits are computed by scanning the GMSB parameter space where  $\tilde{\tau}_1$  is the NLSP, with the constraints that electroweak symmetry is broken radiatively and that trilinear couplings are zero at the messenger scale. All branching ratios in the above decay chain are taken equal to 1. The limit holds for  $m_{\widetilde{\chi}_1} - m_{\widetilde{\tau}_1} > 0.3$  GeV, and any gravitino mass, in the domain  $m_{\widetilde{\tau}_1} > 68$  GeV, not excluded by the direct  $\tilde{\tau}$  production searches of ABREU 99F. The limit is reached for  $m_{\widetilde{G}} \leq 1$  eV and improves to 89 GeV for  $m_{\widetilde{G}} > 100$  eV. See Fig. 4 for the dependence of the limit on  $m_{\widetilde{\tau}_1}$ .

 87  ABREU 99z searches for the production of charginos degenerate with  $\tilde{\chi}_{1}^{0}$ , using data from  $\sqrt{s}=130$  to 183 GeV. The range  $\Delta m_{+}<200$  MeV is covered by a search for decays visible in the detector or for heavy stable particles identified by their ionization or Cherenkov radiation. The region 300 MeV  $<\Delta m_{+}<3$  GeV is explored by searching events with initial state radiation and few low energy particles. For 200 MeV  $<\Delta m_{+}<300$  MeV, no limits are obtained. For limits in various scenarios, see Fig. 12 and Table 3.

⁸⁸ ACCIARRI 99 looked for multi-lepton and/or multi-jet final states from  $\mathbb R$  prompt decays with  $LL\overline{E}$  or  $\overline{UDD}$  couplings at  $\sqrt{s}$ =130–183 GeV. The situations where the  $\widetilde{\chi}_1^0$  is the LSP (indirect decays) and where a  $\ell$  is the LSP (direct decays) were both considered. The weakest limit, quoted above, comes from direct decays with  $\overline{UDD}$  couplings; indirect decays lead to a limit of 91.1 GeV for  $LL\overline{E}$  and 90.9 GeV for  $\overline{UDD}$  couplings.

decays lead to a limit of 91.1 GeV in the analysis GeV in ODD couplings. 89 BARATE 99E looked for the decay of charginos via R-violating couplings  $LQ\overline{D}$ . The bound is reduced to 56 GeV for  $m_0$ =80 GeV (in the case of decays via a neutralino), and to 51 GeV for  $m_0$ =70 GeV (in the case of direct R-violating decays). Data collected at  $\sqrt{s}$ =130-172 GeV.

of  $\sqrt{s=130-1/2}$  GeV.

90 MALTONI 998 studied the effect of light chargino-neutralino to the electroweak precision data with a particular focus on the case where they are nearly degenerate ( $\Delta m_+ \sim 1$  GeV) which is difficult to exclude from direct collider searches. The quoted limit is for higgsino-like case while the bound improves to 56 GeV for wino-like case. The values of the limits presented here are obtained in an update to MALTONI 998, as described in MALTONI 00.

91 ABBOTT 98 studied the chargino and neutralino production, where the lightest neutralino in their decay products further decays into  $\gamma \tilde{G}$ . The limit assumes the gaugino

⁹²ABBOTT 98C searches for trilepton final states ( $\ell = e, \mu$ ). Efficiencies are calculated using mass relations in the Minimal Supergravity scenario, exploring the domain of parameter space defined by  $m_{\widetilde{\chi}_1^{\pm}} = m_{\widetilde{\chi}_2^0}$  and  $m_{\widetilde{\chi}_1^{\pm}} = 2m_{\widetilde{\chi}_2^0}$ . Results are presented in Fig. 1 as upper

bounds on  $\sigma(p\overline{p}\to \tilde{\chi}_1^\pm \tilde{\chi}_2^0) \times B(3\ell)$ . Assuming equal branching ratio for all possible leptonic decays, limits range from 2.6 pb ( $m_{\tilde{\chi}_1^\pm}$ =45 GeV) to 0.4 pb ( $m_{\tilde{\chi}_1^\pm}$ =124 GeV) at

95%CL. Assuming a negligible decay rate of  $\tilde{\chi}_1^\pm$  and  $\tilde{\chi}_2^0$  to quarks, this corresponds to  $m_{\tilde{\chi}_1^\pm}>$  103 GeV.

 93  ABE 98J searches for trilepton final states (\$\ell\!=\!e,\mu\$). Efficiencies are calculated using mass relations in the Minimal Supergravity scenario, exploring the domain of parameter space defined by 1.1 <tan\$\beta\$ < 8, -1000 < \$\mu\$(GeV) < -200, and \$m_{\overline{g}}/m_{\widetilde{g}}\!=\!1-2\$. In this region \$m_{\widetilde{\chi}_1^\pm} \sim m_{\widetilde{\chi}_2^0}\$ and \$m_{\overline{g}^\pm}\!\sim 2m_{\widetilde{\chi}_1^0}\$. Results are presented in Fig.1 as upper bounds on \$\sigma(p\overline{p}\to \widetilde{\chi}_1^\pm\widetilde{\chi}_2^0)\!\times\! B(3\ell)\$. Limits range from 0.8 pb (\$m_{\widetilde{\chi}_1^\pm}\!=\!50\$ GeV) to

0.23 pb  $(m_{\widetilde{\chi}_1^\pm}=100~{\rm GeV})$  at 95%CL. The gaugino mass unification hypothesis and the assumed mass relation between squarks and gluinos define the value of the leptonic branching ratios. The quoted result corresponds to the best limit within the selected range of parameters, obtained for  $m_{\widetilde{q}} > m_{\widetilde{g}}$ ,  $\tan \beta = 2$ , and  $\mu = -600~{\rm GeV}$ . Mass limits for different values of  $\tan \beta$  and  $\mu$  are given in Fig. 2.

94 ABREU 98 uses data at  $\sqrt{s}=161$  and  $T^2$  GeV. The limit is for  $41 < m_{\widetilde{\nu}} < 100$  GeV, and  $\tan\beta = 1-35$ . The limit improves to 84.3 GeV for  $m_{\widetilde{\nu}} > 300$  GeV. For  $\Delta m_+$  below 10 GeV, the limit is independent of  $m_{\widetilde{\nu}}$ , and is given by 80.3 GeV for  $\Delta m_+ = 5$  GeV, and by 52.4 GeV for  $\Delta m_+ = 3$  GeV.

⁹⁵ ABREU 98 uses data at  $\sqrt{s}$ =161 and 172 GeV. The radiative decay of the lightest neutralino into gravitino is assumed. The limit is for  $\Delta m > 10$  GeV,  $41 < m_{\widetilde{\nu}} < 100$  GeV, and  $\tan \beta = 1$ -35. The limit improves to 84.5 GeV if either  $m_{\widetilde{\nu}} > 300$  GeV, or  $\Delta m_{+} = 1$  GeV independently of  $m_{\widetilde{\nu}}$ .

96 ACCIARRI 98F limit is obtained for  $0 < M_2 < 2000$ ,  $\tan \beta < 1.41$ , and  $\mu = -200$  GeV, and holds for all values of  $m_0$ . No dependence on the trilinear-coupling parameter A is found. It improves to 84 GeV for large sneutrino mass, at  $\mu = -200$  GeV. See the paper for limits obtained with specific assumptions on the gaugino/higgsino composition of the state. Data taken at  $\sqrt{s} = 130-172$  GeV.

97 ACKERSTAFF 98x looked for dilepton+\$\mathbb{E}_T\$ final states at \$\sqrt{5} = 130 - 172\$ GeV. Limits on \$\sigm(e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^-) \times B^2(t)\$, with \$B(t) = B(\$\chi^+ \to t^+ \nu_t \chi_1^0)\$ (\$B(t) = B(\$\chi^+ \to t^+ \tilde{\nu}_t)\$), are given in Fig. 16 (Fig. 17).

98 ACKERSTAFF 98. limit is obtained for  $0 < M_2 < 1500$ ,  $|\mu| < 500$  and  $\tan\beta > 1$ , but remains valid outside this domain. The dependence on the trilinear-coupling parameter A is studied, and found neglibible. The limit holds for the smallest value of  $m_0$  consistent with scalar lepton constraints (ACKERSTAFF 97H) and for all values of  $m_0$  where the

condition  $\Delta m_{\widetilde{\nu}}>2.0$  GeV is satisfied.  $\Delta m_{\nu}>10$  GeV if  $\widetilde{\chi}^{\pm}\to\ell\widetilde{\nu}_{\ell}$ . The limit improves to 84.5 GeV for  $m_0$ =1 TeV. Data taken at  $\sqrt{s}$ =130–172 GeV.

⁹⁹ ACKERSTAFF 98v excludes the light gluino with universal gaugino mass where charginos, neutralinos decay as  $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0 \to q \bar{q} \tilde{g}$  from total hadronic cross sections at  $\sqrt{s}$ =130–172 GeV. See paper for the case of nonuniversal gaugino mass.

100 BARATE 98s looked for the decay of charginos via *R*-violating coupling *LLE*. The bound improves to 78 GeV if the chargino decays into neutralino which further decays into lepton pairs. Data collected at √s=130-172 GeV.

101 CARENA 97 studied the constraints on chargino and sneutrino masses from muon g-2. The bound can be important for large  $\tan\beta$ .

102 KALINOWSKI 97 studies the constraints on the chargino-neutralino parameter space from limits on  $\Gamma(W\to \tilde\chi_1^\pm \tilde\chi_1^0)$  achievable at LEP2. This is relevant when  $\tilde\chi_1^\pm$  is "invisible," i.e., if  $\tilde\chi_1^\pm$  dominantly decays into  $\tilde\nu_\ell\ell^\pm$  with little energy for the lepton. Small otherwise allowed regions could be excluded.

103 ABE 96K looked for tripleton events from chargino-neutralino production. The bound on  $m_{\tilde{\chi}_1^\pm}$  can reach up to 47 GeV for specific choices of parameters. The limits on the combined production cross section times 3-lepton branching ratios range between 1.4 and 0.4 pb, for 45</br>  $m_{\tilde{\chi}_1^\pm}(\text{GeV}) < 100.$  See the paper for more details on the parameter dependence of the results.

104 ACKERSTAFF 96c assumes the dominance of off-shell W-exchange in the chargino decay and applies for  $\Delta m > 10$  GeV in the region of parameter space defined by:  $M_2 < 1500$  GeV,  $|\mu| < 500$  GeV and  $\tan\beta > 1.5$ . The bound is for the smallest  $\tilde{\ell}, \tilde{\nu}$  mass allowed by LEP, with the efficiency for  $\tilde{\chi}^{\pm} \rightarrow \tilde{\nu} \nu$  decays set to zero. The limit improves to 78.5 GeV for  $m_0 = 1$  TeV. Data taken at  $\sqrt{s} = 130,136$ , and 161 GeV.

#### Long-lived $\tilde{\chi}^{\pm}$ (Chargino) MASS LIMITS

Limits on chargings which leave the detector before decaying.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
none 2-87.5	95	105 ABREU	98P DLP	H $m_{\widetilde{\nu}} > 41 \text{ GeV}$
>89.5	95	106 ACKERSTAFF	98P OPA	L
• • • We do not	use the follow	ing data for averages	s, fits, limi	ts, etc. • • •
>80	95	107 ABREU	970 DLP	Н
>83	95	108 BARATE	97K ALE	P
>45	95	ABREU	90G DLP	H
>28.7	95	ADACHI	and TOP	7

>28.2 95 ADACHI 90C TOPZ 105 ABREU 98P searches for production of pairs of heavy, charged particles in  $e^+e^-$  annihilation at  $\sqrt{s}$ =130–183 GeV. The upper bound improves to 89.5 GeV for  $m_{\widetilde{\nu}}$  >200 GeV. These limits include and update the results of ABREU 97D.

106 ACKERSTAFF 98P bound assumes a heavy sneutrino  $m_{\widetilde{\nu}} >$  500 GeV. Data collected at  $\sqrt{s} = 130$ –183 GeV.

107 ABREU 970 bound applies only to masses above 45 GeV. Data collected in  $e^+e^-$  collisions at  $\sqrt{s}$ =130–172 GeV. The limit improves to 84 GeV for  $m_{\widetilde{\nu}} >$  200 GeV.

108 BARATE 97k uses  $e^+e^-$  data collected at  $\sqrt{s}=130$ –172 GeV. Limit valid for  $\tan\beta=\sqrt{2}$  and  $m_{\widetilde{\nu}}>100$  GeV. The limit improves to 86 GeV for  $m_{\widetilde{\nu}}>250$  GeV.

#### ₩ (Sneutrino) MASS LIMIT

The limit depends on the number,  $N(\tilde{\nu})$ , of sneutrinos assumed to be degenerate in mass. Only  $\tilde{\nu}_L$  (not  $\tilde{\nu}_R$ ) is assumed to exist. It is possible that  $\tilde{\nu}$  could be the lightest supersymmetric particle (LSP).

We report here, but do not include in the Listings, the limits obtained from preliminary, unpublished constraints by the LEP Collaborations on the invisible width of the Z boson ( $\Delta\Gamma_{\rm inv.} < 2.0\,$  MeV, LEP 00):  $m_{\widetilde{\nu}} > 43.7\,$  GeV  $(N(\widetilde{\nu})=1)$  and  $m_{\widetilde{\nu}} > 44.7\,$  GeV  $(N(\widetilde{\nu})=3)$ .

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
> 37.1	95	109	ADRIANI	93м	L3	$\Gamma(Z \rightarrow \text{invisible}); N(\tilde{\nu})=1$
> 41	95	110	DECAMP	92	ALEP	$\Gamma(Z \rightarrow \text{invisible}); N(\tilde{\nu})=3$
> 36	95		ABREU			$\Gamma(Z \rightarrow \text{invisible}); N(\widetilde{\nu})=1$
> 31.2	95	111	ALEXANDER	91F	OPAL	$\Gamma(Z \rightarrow \text{invisible}); N(\tilde{\nu})=1$
• • • We do r	ot use	the	following data fo	or av	erages, f	îts, limits, etc. • • •
		112	ABBIENDI	00	OPAL	ν̃ _{e.u} , ঢ়, LLĒ or LQŪ decays
> 62	95		ABREU	001	DLPH	ν̃, R LLE decays
> 62	95	114	BARATE	00н	ALEP	ν̃, R LLE decays
none 100-215	95	115	ABBIENDI	99	OPAL	$\widetilde{\nu}_{\mu,\tau}$ , $R$ , (s+t)-channel
none 100-195	95		ABBIENDI			$\tilde{\nu}_{\tau}$ , $R$ , s-channel
none 100-160	95	117	ABBIENDI	99	OPAL	ν̃ρ, R, t-channel
		118	ABREU	99A	DLPH	$\tilde{\nu}_{e,u,\tau}$ , $R$ , $(s+t)$ -channel
> 51	95	119	BARATE	99E	ALEP	
> 49	95	120	BARATE	985	ALEP	$\tilde{\nu}_{\mu,\tau}$ , $R$ , $LL\overline{E}$ decays
> 58	95		BARATE	985	ALEP	ṽ _e , ℝ, LLĒ decays
≠ m 7	95	121	ACCIARRI	97u	L3	ν̃, Æ, s-channel
none 125-180	95	121	ACCIARRI	97u	L3	$\tilde{\nu}_{\tau}$ , $R$ , s-channel
		122	CARENA	97	THEO	$g_{\mu}-2$
> 46.0	95		BUSKULIC	95E	ALEP	$N(\widetilde{\nu})=1, \ \widetilde{\nu} \rightarrow \nu \nu \ell \overline{\ell}^{\prime}$
none 20-25000	)		BECK	94	COSM	Stable $\tilde{\nu}$ , dark matter
<600			FALK	94	COSM	ν̃ LSP, cosmic abundance
none 3-90	90	126	SATO	91	KAMI	Stable $\tilde{\nu}_e$ or $\tilde{\nu}_\mu$ ,
none 4-90	90	126	SATO	91	КАМІ	dark matter Stable $\tilde{\nu}_{\tau}$ , dark matter

 109  ADRIANI 93M limit from  $\Delta\Gamma(Z)$  (invisible) < 16.2 MeV.

¹¹⁰ DECAMP 92 limit is from  $\Gamma(\text{invisible})/\Gamma(\ell\ell)=5.91\pm0.15$  ( $N_{\nu}=2.97\pm0.07$ ).

¹¹¹ ALEXANDER 91F limit is for one species of  $\tilde{\nu}$  and is derived from  $\Gamma(\text{invisible, new})/\Gamma(\ell\ell)$  < 0.38.

- 112 ABBIENDI 00 searches for the production of sneutrinos in the case of *R*-parity violation with *LLE* or *LQD* couplings, using data from √s=183 GeV. They investigate topologies with multiple leptons, jets plus leptons, or multiple jets, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. For non-zero *LLE* couplings, they obtain limits on the electron sneutrino mass of 88 GeV for direct decays and of 87 GeV for indirect decays with a low mass  $\chi_1^0$ . For non-zero  $LQ\overline{D}$  couplings, the limits are 86 GeV for indirect decays of  $\tilde{\nu}_e$  with a low mass  $\chi_1^0$  and 80 GeV for direct decays of  $\tilde{\nu}_e$ . There exists a region of small  $\Delta m$ , of varying size, for which no limit is obtained, see Fig. 20. It is assumed that  $\tan\beta = 1.5$  and  $\mu = -200$  GeV. For muon sneutrinos, direct decays via  $LL\bar{E}$  couplings lead to a 66 GeV mass limit and via  $LQ\bar{D}$  couplings to 2.55 GeV limit
- couplings to a 58 GeV limit.

  113 ABREU 00: studies decays induced by *R*-parity-violating *LLE* couplings, using data from  $\sqrt{s}$ =183 GeV. They investigate topologies with multiple leptons or jets plus leptons, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. The limits, valid for each individual flavor, are determined by the indirect decays and assume a neutralino mass limit of 27 GeV, also derived in ABREU 00. Better limits for reselfs flavore and for exceller. for specific flavors and for specific & couplings can be obtained and are discussed in the
- paper.

  114 BARATE 00H data collected at  $\sqrt{s}$ =183 GeV. The limit holds for indirect  $\bar{\nu}$  decays mediated by  $RLL\bar{E}$  couplings, and improves to 66 GeV for direct decays. Better limits are obtained for specific flavors, or couplings. Limits are also given for direct decays via  $LQ\bar{D}$  couplings ( $m_{\nu_{q,\tau}} > 59$ GeV) and for indirect decays via  $\bar{U}D\bar{D}$  couplings ( $m_{\nu_{q,\tau}} > 7$ GeV with  $\mu$ =-200 GeV and tan $\beta$ =2). For  $LL\bar{E}$  indirect decays, use is made of neutralino mass limits from BARATE 98s.

  115 ABBIENDI 99 studied the effect of s- and t-channel  $\tau$  or  $\mu$  sneutrino exchange in
- $^+e^- 
  ightarrow e^+e^-$  at  $\sqrt{s}$ =130–183 GeV, via the *R*-parity violatin coupling  $\lambda_{1/1}L_1L_1e_1^c$ (i=2 or 3). The limits quoted here hold for  $\lambda_{1/1} > 0.13$ . The effect of t-channel electron sneutrino exchange on rate and asymmetries of  $e^+e^- \rightarrow \tau^+\tau^-$  leads to weaker limits on the electron sneutrino mass
- 116 ABBIENDI 99 studied the effect of s-channel  $\tau$  sneutrino exchange in e⁺ e at  $\sqrt{s}$ =130-183 GeV, in presence of the *R*-parity violating couplings  $\lambda_{i3i}L_{i}L_{3}e_{1}^{C}$  (i=1 and 2), with  $\lambda_{131} = \lambda_{232}$ . The limits quoted here hold for  $\lambda_{131} >$  0.09.
- 117 ABBIENDI 99 studied the effect of t-channel electron sneutrino exchange in  $e^+e^- 
  ightarrow$  $+\tau^-$  at  $\sqrt{s}$ =130–183 GeV, in presence of the *R*-parity violating couplings  $\lambda_{131}L_1L_3e_1^c$ . The limits quoted here hold for  $\lambda_{131} > 0.6$ .
- 118 ABREU 99A searches for anomalies in the production cross sections and forwardbackward asymmetries of the  $\ell^+\ell^-(\gamma)$  final states ( $\ell^-e,\mu,r$ ) from  $e^+e^-$  collisions at  $\sqrt{s}$ =130–172 GeV. Limits are set on the s- and t-channel exchange of sneutrinos in the presence of R with  $\lambda LLe^c$  couplings. For points between the energies at which data were taken, information is obtained from events in which a photon was radiated. Exclusion limits in the  $(\lambda, m_{\widetilde{\nu}})$  plane are given in Fig. 13.
- $^{119} {\rm BARATE}$  99E looked for  $\tilde{\nu}_{\mu}$  pairs with decay  $\tilde{\nu}_{\mu} \to jj$  via R-violating coupling  $L \, Q \, \overline{D}.$ Data collected at √s=130-172 GeV.
- $^{120}\,\mathrm{BARATE}$  985 looked for  $\tilde{\nu}_\ell$  pairs with decay  $\tilde{\nu}_\ell$   $\to$   $~\ell\tilde{\chi}^0_1$  , where  $\tilde{\chi}^0_1$  further decays to  $\ell^+\ell^-\nu$  Via R-violating coupling  $LL\overline{E}$ . The limit assumes  $\tan\beta=2$ , The bound on  $\widetilde{\nu}_e$  is for the higgsino region. It improves to 72 GeV for the gaugino region. Data collected at  $\sqrt{s}=130-172$  GeV.
- $^{121}\text{ACCIARRI}$  970 studied the effect of the s-channel tau-sneutrino exchange in  $e^+\,e^-\to$  $e^+\,e^-$  at  $\sqrt{s}=m_Z$  and  $\sqrt{s}=130$ –172 GeV, via the *R*-parity violating coupling  $\lambda_{131}L_1L_i^ce_1^c$ . The limits quoted here hold for  $\lambda_{131}>0.05$ . Similar limits were studied in  $e^+e^- \rightarrow \mu^+\mu^-$  together with  $\lambda_{232}L_2L_3e_2^c$  coupling.
- 122 CARENA 97 studied the constraints on chargino and sneutrino masses from muon g-2.
- The bound can be important for large  $\tan\beta$ . 123 BUSKULIC 95£ looked for  $Z \to \nu \bar{\nu}$ , where  $\bar{\nu} \to \nu \chi_1^0$  and  $\chi_1^0$  decays via *R*-parity violating interactions into two leptons and a neutrino.
- 124 BECK 94 limit can be inferred from limit on Dirac neutrino using  $\sigma(\tilde{\nu}) = 4\sigma(\nu)$ . Also private communication with H.V. Klapdor-Kleingrothaus.
- 125  FALK 94 puts an upper bound on  $m_{\widetilde{
  u}}$  when  $\widetilde{
  u}$  is LSP by requiring its relic density does
- not overclose the Universe.

  126 SATO 91 search for high-energy neutrinos from the sun produced by annihilation of sneutrinos in the sun. Sneutrinos are assumed to be stable and to constitute dark matter in our galaxy. SATO 91 follow the analysis of NG 87, OLIVE 88, and GAISSER 86.

#### **CHARGED SLEPTONS**

This section contains limits on charged scalar leptons ( $\tilde{\ell}_i$  with  $\ell = e, \mu, \tau$ ) Studies of width and decays of the Z boson (use is made here of  $\Delta \Gamma_{
m inv}$  < 2.0 MeV, LEP 00) conclusively rule out  $m_{\widetilde{\ell}_R}$  < 40 GeV (41

GeV for  $ilde{\ell}_L$ ) , independently of decay modes, for each individual slepton. The limits improve to 43 GeV (43.5 GeV for  $\tilde{\ell}_L$ ) assuming all 3 flavors to be degenerate. Limits on higher mass sleptons depend on model assumptions and on the mass splitting  $\Delta m = m_{\widetilde{\ell}} - m_{\widetilde{\chi}_1^0}$ . The mass and composition

of  $\widetilde{\chi}^0_1$  may affect the selectron production rate in  $e^+e^-$  collisions through t-channel exchange diagrams. Production rates are also affected by the potentially large mixing angle of the lightest mass eigenstate  $\ell_1 = \ell_R \sin \theta_\ell$ +  $\tilde{\ell}_L \cos \theta_\ell$ . It is generally assumed that only  $\tilde{\tau}$  may have significant mixing. The coupling to the Z vanishes for  $\theta_\ell$ =0.82. In the high-energy limit of  $e^+e$  collisions the interference between  $\gamma$  and Z exchange leads to a minimal cross section for  $\theta_\ell$ =0.91, a value which is sometimes used in the following entries relative to data taken at LEP2. When limits on  $m_{\widetilde{\ell}_R}$ quoted, it is understood that limits on  $m_{\widetilde{\ell}_I}$  are usually at least as strong.

Possibly open decays involving gauginos other than  $\tilde{\chi}^0_1$  will affect the detection efficiencies. Unless otherwise stated, the limits presented here result from the study of  $\tilde{\ell}^+\tilde{\ell}^-$  production, with production rates and decay properties derived from the MSSM. Limits made obsolete by the recent analyses of  $e^+e^-$  collisions at energies above 161 GeV have been

removed from this compilation, and can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review.

For decays with final state gravitinos ( $\widetilde{G}$ ),  $m_{\widetilde{G}}$  is assumed to be negligible relative to all other masses.

#### e (Selectron) MASS LIMIT

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>87.1	95	127 ABBIENDI	00G OPAL	$\Delta m > 5$ GeV, $\tilde{e}_{R}^{+} \tilde{e}_{R}^{-}$
none 45-73.7	95	128 ABREU	99C DLPH	$m_{\widetilde{\chi}_1^0} <$ 40 GeV, $\widetilde{e}_R^+ \widetilde{e}_R^-$
>85.0	95	¹²⁹ ACCIARRI	99W L3	$\Delta m > 7$ GeV, $\tilde{e}_R^+ \tilde{e}_R^-$
>88	95	130 BARATE	990 ALEP	$\Delta m > 8 \text{ GeV}, \tilde{e}_R^+ \tilde{e}_R^-$
• • • We do	not use	the following data f	or averages,	fits, limits, etc. • • •
>72	95	131 ABBIENDI	00 OPAL	$\tilde{e}_{R}^{+}\tilde{e}_{R}^{-}$ , $R$ , light $\tilde{\chi}_{1}^{0}$
>61	95	132 ABREU		$\tilde{e}_{R}$ , $\mathcal{R}$ (LL $\tilde{E}$ )
>85	95	133 BARATE		$\widetilde{\ell}_R \to \ell \widetilde{G}$ , any $\tau(\widetilde{\ell}_R)$
>76	95	134 BARATE	00H ALEP	$\tilde{e}_R$ , $\mathcal{R}$ (LL $\overline{E}$ )
>80	95	¹³⁵ ACCIARRI	99H L3	$\tilde{e}_{R}^{+}\tilde{e}_{R}^{-}$ , $\Delta m > 20$ GeV
>29.5	95	136 ACCIARRI	99i L3	
>57	95	¹³⁷ BARATE	99E ALEP	$\tilde{e}_{R}$ , $R$ (LQ $\overline{D}$ ), $\Delta m > 10$ GeV
>56	95	138 ACCIARRI	98F L3	$\Delta m > 5 \text{ GeV}, \ \tilde{e}_{R}^{+} \tilde{e}_{R}^{-}, \ \tan \beta \geq 1.41$
>58.0	95	139 ACKERSTAFF	98k OPAL	$\Delta m > 5$ GeV, $\tilde{e}_{R}^{+} \tilde{e}_{R}^{-}$
>78	95	140 BARATE	98K ALEP	$\Delta m > 5 \text{ GeV}, \ \tilde{e}_{R}^{+} \tilde{e}_{R}^{-}$
>77	95	¹⁴¹ BARATE	98K ALEP	Any $\Delta m$ , $\tilde{e}_R^+ \tilde{e}_R^-$ , $\tilde{e}_R^- \to e \gamma \tilde{G}$
>71	95	142 BARATE	98K ALEP	$\tilde{e}_{R}^{+}\tilde{e}_{R}^{-},\tilde{e}_{R}^{-}\rightarrow e\tilde{G},\text{any}\tau(\tilde{e}_{R}^{-})$
>65	95	¹⁴³ BARATE	98K ALEP	$\tilde{e}_{R}^{+}\tilde{e}_{L,R}^{+},  \tilde{\mu}_{R}^{+}\tilde{\mu}_{R}^{-},  \text{universal scalar}$
>64	95	144 BARATE	98s ALEP	
>77	95	145 BREITWEG	98 ZEUS	
>58	95	146 BARATE	97N ALEP	
>63	95	¹⁴⁷ AID	96c H1	$m_{\widetilde{q}} = m_{\widetilde{e}}, m_{\widetilde{\chi}_1^0} = 35 \text{ GeV}$
>45.6	95	148 BUSKULIC		ẽ → eνℓĪ'

127 ABBIENDI 00G looked for acoplanar dielectron  $+ \not\!\! E_T$  final states at  $\sqrt{s}$ =183-189 GeV. The limit assumes  $\mu < -100$  GeV and  $\tan\beta$ =1.5 for the production cross section and decay branching ratios, evaluated within the MSSM, and zero efficiency for decays other than  $\tilde{e} \rightarrow e \tilde{\chi}_1^0$ . See their Fig. 14 for the dependence of the limit on  $\Delta m$  and  $\tan\beta$ .

128 ABREU 99c looked for acoplanar dielectron + $\not$ E final states at  $\sqrt{s}$ = 130-172 GeV. The limit assumes  $\mu$ =-200 GeV and tan $\beta$ =1.5 in the calculation of the production cross section, and B( $\tilde{e} \to e \tilde{\chi}_1^0$ )=100%. See Fig. 8a for limits on the  $(m_{\widetilde{e}_R}, m_{\widetilde{\chi}_1^0})$  plane and

for different tanβ values. These results include and update limits from ABREU 960  129  ACCIARRI 99W looked for acoplanar dielectron  $E_T$  final states at  $\sqrt{s}$ =130–189 GeV. The limit assumes  $\mu=-200$  GeV and  $\tan\beta=\sqrt{2}$  for the production cross section and decay branching ratios, evaluated within the MSSM, and zero efficiency for decays other than  $\tilde{c} \rightarrow e \, \tilde{\chi}_1^0$ . The scan of parameter space, covering the region  $1 < \tan\beta < 60$ ,  $M_2 < 2$ 

TeV,  $|\mu| < 2$  TeV,  $m_0 < 500$  GeV, leads to an absolute lower limit of 65.5 GeV. See their Figs. 5–6 for the dependence of the limit on  $\Delta m$  and  $\tan \beta$ .

130 BARATE 990 looked for acoplanar dielectron  $+ E_T$  final states at  $\sqrt{s}$ =189 GeV. The limit assumes  $\mu$ =-200 GeV and  $\tan \beta$ =2 for the production cross section and decay branching ratios, and zero efficiency for decays other than  $\tilde{e} \to e \tilde{\chi}^0_1$ . Assuming a common scalar mass at the GUT scale, and extending the search to  $\tilde{e}_R^+ \tilde{e}_L^+$  final states, a  $\Delta m$  independent limit of 68 GeV is obtained. See their Fig. 3 for the dependence of the limit on  $\Delta m$ . The limits presented here make use of, and supersede, the results of

131 ABBIENDI 00 searches for the production of selectrons in the case of R-parity violation ABBLEVIOUS gradients for its production of selections in the east of Arpainy Molaton with LLE or  $LQ\bar{D}$  couplings, using data from  $\sqrt{s}$ =183 GeV. They investigate topologies with multiple leptons, jets plus leptons, or multiple jets, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. For non-zero LLE couplings, they obtain limits on the selectron mass of 84 GeV both for direct decays and for indirect decays with a low mass  $\hat{\chi}^0_1$ . For non-zero  $LQ\overline{D}$  couplings, the limits are 72 GeV for indirect decays of  $\tilde{e}_R$  with a low mass  $\tilde{\chi}_1^0$  and 76 GeV for direct decays of  $\tilde{e}_L$ . It is assumed that  $tan\beta=1.5$  and  $\mu=-200$  GeV.

It is assumed that tanp=1.5 and  $\mu=-200$  GeV. 132 ABREU 001 studies decays induced by *R*-parity-violating *LLE* couplings, using data from  $\sqrt{s}$ =183 GeV. They investigate topologies with multiple leptons or jets plus leptons, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. The limits, valid for each individual flavor, are determined by the indirect decays and assume a neutralino mass limit of 27 GeV, also derived in ABREU 001. Better limits for specific flavors and for specific R couplings can be obtained and are discussed in the

paper.

133 BARATE 00G combines the search for acoplanar dileptons, leptons with large impact parameters, kinks, and stable heavy-charged tracks, assuming 3 flavors of degenerate sleptons, produced in the schannel. Data collected at  $\sqrt{s}$ =189 GeV.

134 BARATE 00H data collected at  $\sqrt{s}$ =183 GeV. The limit holds for indirect decays mediate the schannel of the sch

BARATE Out data concerted at  $\sqrt{s}=163$  eev. The minimum and the manufacture at each  $y_R$  LLE couplings, and improves to 82 GeV for direct decays with  $\mu=-200$  GeV and  $\tan\beta=2$ . Limits are also given for indirect decays via  $\overline{UDD}$  couplings  $(m_{\widetilde{e}_R}>81$  and  $m_{\widetilde{e}_t} >$  70 GeV, with  $\Delta m >$  10 GeV). For  $LL\overline{E}$  indirect decays, use is made of neutralino mass limits from BARATE 98s.

135 ACCIARRI 99H looked for acoplanar dilelectron +  $E_T$  final states at  $\sqrt{s}$ =130–183 GeV. The limit assumes  $\mu=-200$  GeV and  $\tan\beta=\sqrt{2}$  for for the production cross section and zero efficiency for decays other than  $\widetilde{e} \to \ e \widetilde{\chi}^0_1$  . See Fig. 6 for the dependence of the

limit on  $\Delta m$ .

136 ACCIARRI 991 establish indirect limits on  $m_{\tilde{e}_R}$  from the regions excluded in the  $M_2$ versus  $m_0$  plane by their chargino and neutralino searches at  $\sqrt{s}$ =130-183 GeV. The situations where the  $\widetilde{\chi}^0_1$  is the LSP (indirect decays) and where a  $\widetilde{t}$  is the LSP (direct

#### Supersymmetric Particle Searches

- decays) were both considered. The weakest limit, quoted above, comes from direct decays with  $\overline{UDD}$  couplings;  $LL\overline{E}$  couplings or indirect decays lead to a stronger limit.
- 137 BARATE 99E looked for  $\tilde{e}_R$  pairs with decay  $\tilde{e}_R \to e \tilde{\chi}_1^0$ , where  $\tilde{\chi}_1^0$  further decays via R-violating coupling  $LQ\overline{D}$ . The limit assumes gaugino-like  $\tilde{\chi}_1^0$ . The limit is 52 GeV for the case of  $\tilde{e}_L$  pair production with  $\tilde{e}_L \to jj$  decay. Data collected at  $\sqrt{s}$ =130-172 GeV.
- 138 ACCIARRI 98F looked for acoplanar dielectron+ $E_T$  final states at  $\sqrt{s}$ =130–172 GeV. The limit assumes  $\mu$ =-200 GeV, and zero efficiency for decays other than  $\tilde{e}_R \rightarrow e \tilde{\chi}_1^0$ . See their Fig. 6 for the dependence of the limit on  $\Delta m$ .
- 139 ACKERSTAFF 98K looked for dielectron+ $\not\!\!E$  final states at  $\sqrt{s}$ =130–172 GeV. The limit assumes  $\mu < -100$  GeV,  $\tan \beta$ =35, and zero efficiency for decays other than  $\tilde{e}_R \rightarrow e \tilde{\chi}_1^0$ . The limit improves to 66.5 GeV for  $\tan \beta$ =1.5.
- 140 BARATE 98K looked for acoplanar dielectron + E final states at  $\sqrt{s}$ = 161–184 GeV. The limit assumes  $\mu$ =-200 GeV and  $\tan \beta$ =2 in the calculation of the production cross section, and B( $\tilde{e} \rightarrow e \tilde{\chi}_1^0$ )=100%. See Fig. 3 for limits on the  $(m_{\tilde{e}_R}, m_{\tilde{\chi}_1^0})$  plane and for the effect of cascade decays.
- 141 BARATE 98k looked for  $e^+e^-\gamma\gamma+E$  final states at  $\sqrt{s}=$  161–184 GeV. The limit assumes  $\mu=-200$  GeV and  $\tan\beta=2$  for the evaluation of the production cross section. See Fig. 4 for limits on the  $(m_{\widetilde{e}_R}^2/m_{\widetilde{\chi}_1^0}^2)$  plane and for the effect of cascade decays.
- 142 BARATE 98k combines the search for acoplanar dielectrons, electrons with large impact parameters, kinks, and stable heavy charged tracks at  $\sqrt{s}$ = 161-184 GeV. The limit assumes no *t*-channel neutralino exchange diagram which can make the bound weaker. See Fig. 5 for limits as a function of the lifetime  $\tau(\tilde{e}_R)$ .
- 143 BARATE 98κ combines the search for acoplanar dileptons and single electrons with universal scalar mass assumption at the GUT scale. The limit holds for all Δm, and assumes μ=-200 GeV and tanβ=2 for the evaluation of the e production cross section.
- ¹⁴⁴BARATE 98s looked for  $\bar{e}_R$  pairs with decay  $\tilde{e}_R \rightarrow e\tilde{\chi}_1^0$ , where  $\tilde{\chi}_1^0$  further decays to  $\ell^+\ell^-\nu$  via R-violating coupling  $\ell L\bar{E}$ . The limit assumes  $\tan\beta$ =2 and gaugino-like  $\tilde{\chi}_1^0$ . Data collected at  $\sqrt{s}$ =130–172 GeV.
- 145 BREITWEG 98 used positron+jet events with missing energy and momentum to look for  $e^+ q \to \tilde{e} \tilde{q}$  via gaugino-like neutralino exchange with decays into  $(e \tilde{\chi}_1^0)(q \tilde{\chi}_1^0)$ . See paper for dependences in  $m(\tilde{q})$ ,  $m(\tilde{\chi}_1^0)$ .
- 146 BARATE 97N uses  $e^+e^-$  data collected at  $\sqrt{s}$ =161 and 172 GeV. The limit is for  $\tan\beta$ =2. It improves to 75 GeV if  $\Delta m >$ 35 GeV.
- 147 AID 96c used positron+jet events with missing energy and momentum to look for  $e^+q \to \tilde{e}\,\tilde{q}$  via neutralino exchange with decays into  $(e\,\tilde{\chi}_1^0)(q\,\tilde{\chi}_1^0)$ . See the paper for dependences on  $m_{\widetilde{0}}$ ,  $m_{\widetilde{c}0}$ .
- 148 BUSKULIC 95E looked for  $Z \to \widetilde{\mathfrak{e}}_R^+ \widetilde{\mathfrak{e}}_R^-$  where  $\widetilde{\mathfrak{e}}_R \to e \chi_1^0$  and  $\chi_1^0$  decays via *R*-parity violating interactions into two leptons and a neutrino.

#### μ̃ (Smuon) MASS LIMIT

μ̄ (Smuon) M	ASS LII	MIT		
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>82.3	95	¹⁴⁹ ABBIENDI	00G OPAL	$\Delta m > 3$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$
none 45-58.6	95	150 ABREU	99c DLPH	$\Delta m > 5$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$
>76.6	95	¹⁵¹ ACCIARRI	99w L3	$\Delta m > 5$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$
>80	95	152 BARATE	99Q ALEP	$\Delta m > 5$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$
• • • We do no	t use the	following data for a	verages, fits,	limits, etc. • • •
>50	95	153 ABBIENDI	00 OPAL	$\tilde{\mu}_{R}^{+}\tilde{\mu}_{R}^{-}$ , R, $\Delta m > 5$ GeV
>61	95	¹⁵⁴ ABREU	00i DLPH	
>85	95	155 BARATE	00G ALEP	$\tilde{\ell}_R \to \ell \tilde{G}$ , any $\tau(\tilde{\ell}_R)$
>61	95	¹⁵⁶ BARATE	00H ALEP	$\tilde{\mu}_R$ , $\mathcal{R}$ (LL $\overline{E}$ )
>66	95	¹⁵⁷ ACCIARRI	99H L3	$\Delta m > 6$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$
>45	95	¹⁵⁸ BARATE		$\widetilde{\mu}_R$ , $R$ (LQ $\overline{D}$ ), $\widetilde{\Delta}m > 10$ GeV
>55	95	¹⁵⁹ ACCIARRI	98F L3	$\Delta m > 5$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$
>55.6	95	160 ACKERSTAFF	98K OPAL	$\Delta m > 4 \text{ GeV}, \ \tilde{\mu}_R^+ \tilde{\mu}_R^-$
>71	95	161 BARATE	98K ALEP	$\Delta m > 5$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$
>77	95	162 BARATE	98K ALEP	Any $\Delta m$ , $\tilde{\mu}_{R}^{+}\tilde{\mu}_{R}^{-}$ , $\tilde{\mu}_{R}^{-} \rightarrow \mu \gamma \tilde{G}$
>71	95	163 BARATE	98K ALEP	$\widetilde{\mu}_{R}^{+}\widetilde{\mu}_{R}^{-},\widetilde{\mu}_{R}^{-} ightarrow\mu\gamma\widetilde{G}$ , any $ au(\widetilde{\mu}_{R})$
>62	95	164 BARATE	98s ALEP	$\tilde{\mu}_{R}$ , $R$ (LLE)
>51	95	¹⁶⁵ ACKERSTAFF	97H OPAL	$\Delta m > 5$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$
>59	95	166 BARATE	97N ALEP	**, **
>45.6	95	¹⁶⁷ BUSKULIC	95E ALEP	$\tilde{\mu} \rightarrow \mu \nu \ell \bar{\ell}^{\prime}$
>45	95	ADRIANI	93M L3	$m_{\widetilde{\chi}_1^0}$ <40 GeV, $\widetilde{\mu}_R^+\widetilde{\mu}_R^-$
>45	95	DECAMP	92 ALEP	$m_{\widetilde{\chi}_1^0}^{-}$ <41 GeV, $\widetilde{\mu}_R^+ \widetilde{\mu}_R^-$

- 149 ABBIENDI 006 looked for acoplanar dimuon  $+E_T$  final states at  $\sqrt{s}$ =183–189 GeV. The limit assumes  $B(\widetilde{\mu} \to \mu \widetilde{\chi}_1^0)$ =1. Using decay branching ratios derived from the MSSM, a lower limit of 81.7 GeV is obtained for  $\mu < -100$  GeV and  $\tan \beta$ =1.5. See their Figs. 12 and 15 for the dependence of the limits on the branching ratio and on  $\Delta m$ .
- 150 ABREU 99c looked for acoplanar dimuon +E final states at  $\sqrt{s}=130$ –172 GeV. The limit assumes B( $\bar{\mu} \to \mu \bar{\chi}_1^0$ )=100%. See Fig. 8b for limits on the  $(m_{\bar{\mu}_R}, m_{\bar{\chi}_1^0})$  plane. These results include and update limits from ABREU 960.
- 151 ACCIARRI 99w looked for acoplanar dimuon  $+ E_T$  final states at  $\sqrt{s}$ =189 GeV. The limit assumes  $\mu$ =-200 GeV and  $\tan\beta$ = $\sqrt{2}$  and zero efficiency for decays other than  $\tilde{\mu} \rightarrow \mu \tilde{\chi}_1^0$ . See their Fig. 5 for the dependence of the limit on  $\Delta m$  and  $\tan\beta$ .
- 152 BARATE 99Q looked for acoplanar dimuon  $+ \not\!\! E_T$  final states at  $\sqrt{s}$ =189 GeV. The limit assumes  $\mu$ =-200 GeV and  $\tan \beta$ =2 for the decay branching ratios, evaluated within the MSSM, and zero efficiency for decays other than  $\ddot{\mu} \rightarrow \mu \ddot{\chi}_1^0$ . See their Fig. 3 for the dependence of the limit on  $\Delta m$ . The limits presented here make use of, and supersede, the results of BARATE 98K.

- 153 ABBIENDI 00 searches for the production of smuons in the case of *R*-parity violation with  $LL\overline{E}$  or  $LQ\overline{D}$  couplings, using data from  $\sqrt{s}$ =183 GeV. They investigate topologies with multiple leptons, jets plus leptons, or multiple jets, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. For non-zero  $LL\overline{E}$  couplings, they obtain limits on the smuon mass of 66 GeV for direct decays and of 74 GeV for indirect decays with a low mass  $\tilde{\chi}_1^0$ . For non-zero  $LQ\overline{D}$  couplings, the limits are 50 GeV for indirect decays of  $\tilde{\mu}_R$  with a low mass  $\tilde{\chi}_1^0$  and 64 GeV for direct decays of  $\tilde{\mu}_L$ . It is assumed that  $\tan\beta$ =1.5 and  $\mu$ =-200 GeV.
- 154 ABREU 00I studies decays induced by *R*-parity-violating *LLE* couplings, using data from √s=183 GeV. They investigate topologies with multiple leptons or jets plus leptons, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. The limits, valid for each individual flavor, are determined by the indirect decays and assume a neutralino mass limit of 27 GeV, also derived in ABREU 00I. Better limits for specific flavors and for specific *R* couplings can be obtained and are discussed in the paper.
- 155 BARATE 00G combines the search for acoplanar dileptons, leptons with large impact parameters, kinks, and stable heavy-charged tracks, assuming 3 flavors of degenerate sleptons, produced in the schannel. Data colleced at √s=189 GeV.
- 156 BARATE 00H data collected at  $\sqrt{s}$ =183 GeV. The limit holds for direct decays mediated by R  $LL\overline{E}^C$  couplings, and improves to 74 GeV for indirect decays. Limits are also given for direct decays via  $LQ\overline{D}$  couplings ( $m_{\widetilde{\mu}_L} > 61$  GeV) for indirect decays via  $\overline{UDD}$  couplings ( $m_{\widetilde{\mu}_R} > 67$  GeV and  $m_{\widetilde{\mu}_L} > 70$  GeV, with  $\Delta m > 10$  GeV). For  $LL\overline{E}$  indirect decays, use is made of neutralino mass limits from BARATE 98s.
- 157 ACCIARRI 99H looked for acoplanar dimuon  $+ \not\!\! E_T$  final states at  $\sqrt{s}$ =130–183 GeV. The limit assumes  $\mu$ =-200 GeV and  $\tan \beta$ = $\sqrt{2}$  and zero efficiency for decays other than  $\tilde{\mu} \rightarrow \mu \tilde{\chi}_1^0$ . See Fig. 6 for the dependence of the limit on  $\Delta m$ .
- ¹⁵⁸ BARATE ⁹9E looked for  $\tilde{\mu}_R$  pairs with decay  $\tilde{\mu}_R \to \mu \tilde{\chi}_1^0$ , where  $\tilde{\chi}_1^0$  further decays via R-violating coupling  $LQ\overline{D}$ . The limit is 52 GeV for the case of  $\tilde{\mu}_L$  pair production with  $\tilde{\mu}_I \to jj$  decay. Data collected at  $\sqrt{s}$ =130-172 GeV.
- 159 ACCIARRI 98F looked for dimuon+ $E_T$  final states at  $\sqrt{s}$ =130-172 GeV. The limit assumes  $\mu$ = -200 GeV, and zero efficiecny for decays other than  $\tilde{\mu}_R \rightarrow \mu \tilde{\chi}_1^0$ . See their Fig. 6 for the dependence of the limit on  $\Delta m$ .
- 160 ACKERSTAFF 99K looked for dimuon+ $E_T$  final states at  $\sqrt{s}$ =130-172 GeV. The limit assumes  $\mu < -100$  GeV,  $\tan \beta$ =1.5, and zero efficiency for decays other than  $\tilde{\mu}_R \to \mu \tilde{\chi}_1^0$ . The limit improves to 62.7 GeV for B( $\tilde{\mu}_R \to \mu \tilde{\chi}_1^0$ )=1.
- 162 BARATE 98K looked for  $\mu^+\mu^-\gamma\gamma+\mathcal{B}$  final states at  $\sqrt{s}=$  161–184 GeV. See Fig. 4 for limits on the  $(m_{\widetilde{\mu}_R},m_{\widetilde{\chi}_1^0})$  plane and for the effect of cascade decays.
- ¹⁶³ BARATE 98K combines the search for acoplanar dimuons, muons with large impact parameters, kinks, and stable heavy charged tracks at  $\sqrt{s}$ = 161–184 GeV. See Fig. 5 for limits as a function of the lifetime  $\tau(\bar{\mu}_R)$ .
- 164 BARATE 98s looked for  $\tilde{\mu}_R$  pairs with decay  $\tilde{\mu}_R \to \mu \tilde{\chi}_1^0$ , where  $\tilde{\chi}_1^0$  further decays to  $\ell^+\ell^-\nu$  via R-violating coupling  $\ell L \overline{E}$ . The limit assumes  $\tan \beta = 2$ , Data collected at  $\sqrt{s} = 130 172$  GeV.
- 165 ACKERSTAFF 97H limit is for  $m_{\widetilde{\chi}_1^0} >$  12 GeV allowed by their chargino, neutralino search, and for  $\tan\beta \geq 1.5$  and  $|\mu| >$  200 GeV. The study includes data from  $e^+e^-$
- collisions at  $\sqrt{s}$ =161 GeV, as well as at 130–136 GeV (ALEXANDER 97B).  166  BARATE 97N uses  $e^+e^-$  data collected at  $\sqrt{s}$ =161 and 172 GeV. The limit assumes  $B(\tilde{\mu}\to \mu\tilde{\chi}_1^0)=1$ .
- 167 BUSKULIC 95E looked for  $Z \to \overline{\mu}_R^+ \overline{\mu}_R^-$ , where  $\widetilde{\mu}_R \to \mu \chi_1^0$  and  $\chi_1^0$  decays via R-parity violating interactions into two leptons and a neutrino.

#### 7 (Stau) MASS LIMIT

T (Stau) MASS	LIMI	ı				
VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
>81.0	95	168	ABBIENDI	00G	OPAL	$\Delta m > 8$ GeV, $\theta_{\tau} = \pi/2$
none 45-55	95	169	ABREU	99c	DLPH	$m_{\widetilde{\chi}^0_1} <$ 34 GeV, $ heta_{ au} = \pi/2$
none 45-52	95		ABREU	<b>99</b> C	DLPH	$m_{\widetilde{\chi}_1^0} <$ 35 GeV, $\theta_{ au}$ =0.82
>71.5	95	170	ACCIARRI	99W	L3	$\Delta m > 12$ GeV, $\theta_{\tau} = \pi/2$
>60	95		ACCIARRI	99W	L3	$8 < \Delta m < 42 \text{ GeV}, \ \theta_{\tau} = 0.91$
>71	95	171	BARATE	99Q	ALEP	$\Delta m > 13$ GeV, $\theta_{\tau} = \pi/2$
>66	95	171	BARATE	99Q	ALEP	$\theta_{\tau} = 0.91$
• • • We do not	use the	follo	owing data for a	verag	es, fits,	limits, etc. • • •
>66	95		ABBIENDI	00	OPAL	$\tilde{\tau}_R^+ \tilde{\tau}_R^-$ , $R$ , light $\tilde{\chi}_1^0$
>61	95		ABREU	001	DLPH	$\tilde{\tau}_{R}$ , $R$ (LL $\overline{E}$ )
>85	95		BARATE	00G	ALEP	$\tilde{\ell}_R \to \ell \tilde{G}$ , any $\tau(\tilde{\ell}_R)$
>67	95	175	BARATE	00G	ALEP	$\tilde{\tau}_R \rightarrow \tau \tilde{G}$ , any $\tau(\tilde{\tau}_R)$
>61	95	176	BARATE	00H	ALEP	$\tilde{\tau}_{R}$ , $R$ ( $LL\overline{E}$ )
>55	95		ABREU	99C	DLPH	$\tilde{\tau}_R^+ \tilde{\tau}_R^-, \tilde{\tau}_R \to \tau \tilde{G}, \text{ any } \tau(\tilde{\tau}_R)$
>68.5	95		ABREU	99F	DLPH	$\tilde{\tau}_R^+ \tilde{\tau}_R^-, \tilde{\tau}_R \to \tau \tilde{G}, \text{ any } \tau(\tilde{\tau}_R)$
>53	95	179	ACCIARRI	99H	L3	$\Delta m > 10$ GeV, $\theta_{\tau} = 0.91$
>45	95		BARATE	99E	ALEP	$\tilde{\tau}_R$ , $R$ ( $LQ\overline{D}$ ), $\Delta m > 10$ GeV
>65	95	181	BARATE	98K	ALEP	$\Delta m > 10$ GeV, $\theta_{\tau} = \pi/2$
>62	95	181	BARATE	98K	ALEP	$\Delta m > 10$ GeV, $\theta_{\tau} = 0.82$
>52	95	182	BARATE	98K	ALEP	Any $\Delta m$ , $\theta_{\tau} = \pi/2$ , $\tilde{\tau}_{R} \rightarrow$
						τγĜ
none 2-35	95	183	BARATE	98K	ALEP	$\Delta m > 2$ , $\theta_T = 0.82$
>56	95	184	BARATE	98s	ALEP	τ̃ _R , ℝ (LĹĒ)
						••

168 ABBIENDI 006 looked for acoplanar ditau +  $\mathcal{E}_T$  final states at  $\sqrt{s}$ =183–189 GeV. The limit assumes B( $\tilde{r} \to \tau \tilde{\chi}_1^0$ )=1. Using decay branching ratios derived from the MSSM, a lower limit of 75.9 at  $\Delta m > 7$  GeV is obtained for  $\mu < -100$  GeV and  $\tan \beta$ =1.5. See their Figs. 13 and 16 for the dependence of the limits on the branching ratio and on  $\Delta m$ .

- 169  ABREU 99C looked for acoplanar ditaus  $+ E\!\!\!\!/$  final states at  $\sqrt{s} = 130$ –172 GeV. The limit assumes B( $ilde{ au}_R o au ilde{\chi}_1^0$ )=1. See Figs. 4c and 4d for limits on the  $(m_{\widetilde{ au}_R}, m_{\widetilde{\chi}_1^0})$  plane and and as a function of the mixing angle.
- 170 ACCIARRI 99W looked for acoplanar ditau +  $E_T$  final states at  $\sqrt{s}$ =189 GeV. See their Fig. 5 for the dependence of the limit on  $\Delta m$  and  $\tan \beta$ .
- 171 BARATE 990 looked for acoplanar ditau  $+ E_T$  final states at  $\sqrt{s}$ =189 GeV. The limit assumes B( $ilde{ au} o au ilde{\chi}_1^0$ )=1. See their Fig. 3 for the dependence of the limit on  $\Delta m$ . The limits presented here make use of, and supersede, the results of BARATE 98K.
- 172 ABBIENDI 00 searches for the production of staus in the case of R-parity violation with  $LL\overline{E}$  or  $LQ\overline{D}$  couplings, using data from  $\sqrt{s}$ =183 GeV. They investigate topologies with multiple leptons, jets pilos leptons, or multiple jets, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. For non-zero LLE couplings, they obtain limits on the stau mass of 66 GeV both for direct decays and for indirect decays in the coupling of the coupling they have the coupling the limit rate of 6. CeV for indirect decays. with a low mass  $\chi_1^0$ . For non-zero  $LQ\overline{D}$  couplings, the limits are 66 GeV for indirect decays of  $ilde{ au}_R$  with a low mass  $\chi_1^0$  and 63 GeV for direct decays of  $ilde{ au}_L$  . It is assumed that  $tan \beta = 1.5$  and  $\mu = -200$  GeV.
- tanp=1.5 and µ=−200 dev.

  173 ABREU 001 studies decays induced by R-parity-violating LtĒ couplings, using data from √s=183 GeV. They investigate topologies with multiple leptons or jets plus leptons, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. The limits, valid for each individual flavor, are determined by the indirect decays and assume a neutralino mass limit of 27 GeV, also derived in ABREU 001. Better limits for specific flavore and for specific B couplings can be obtained and are discussed in the for specific flavors and for specific R couplings can be obtained and are discussed in the
- 174 BARATE 006 combines the search for acoplanar dileptons, leptons with large impact parameters, kinks, and stable heavy-charged tracks, assuming 3 flavors of degenerate sleptons, produced in the schannel. Data colleced at  $\sqrt{s}$ =189 GeV.
- 175 BARATE 00G combines the search for acoplanar ditaus, taus with large impact parameters, kinks, and stable heavy-charged tracks. Staus are also looked for in the decay chain  $\tilde{\chi}^0_1 \to \tilde{\tau} \tau \to \tau \tau \tilde{G}$ ; see paper for results. Data colleced at  $\sqrt{s}$ =189 GeV.
- 176 BARATE 00H data collected at  $\sqrt{s}$ =183 GeV. The limit holds for direct decays mediated by R  $LL\overline{E}$  couplings, and improves up to 70 GeV for indirect decays, using the neutralino mass limits from BARATE 98s.
- 177 ABREU 99C combines the search for acoplanar ditaus, taus with large impact parameters, kinks, and stable heavy-charged tracks at  $\sqrt{s}$ = 130–172 GeV. See Fig. 11 for limits under different lifetime hypothesis.
- 178 ABREU 99F combines the search for acoplanar ditaus, taus with large impact parameters, kinks, and stable heavy-charged tracks at  $\sqrt{s}$ =130–183 GeV. See Fig. 13 for limits under various lifetime scenarios.
- 179 ACCIARRI 99H looked for acoplanar ditau +  $E_T$  final states at  $\sqrt{s}$ =130–183 GeV. The limit assumes  $\mu=-200$  GeV and  $\tan\beta=\sqrt{2}$  and zero efficiency for decays other than  $\tilde{\tau}\to$  $\tau \, \widetilde{\chi}_1^0$ . See Fig. 6 for the dependence on the limit on  $\Delta m$ .
- ¹⁸⁰BARATE 99E looked for  $\tilde{\tau}_R$  pairs with decay  $\tilde{\tau}_R \to \tau \tilde{\chi}_1^0$ , where  $\tilde{\chi}_1^0$  further decays via R-violating coupling  $LQ\overline{D}$ . Data collected at  $\sqrt{s}$ =130–172 GeV.
- 181 BARATE 98k looked for acoplanar ditaus  $+ \cancel{E}$  at  $\sqrt{s} = 161-184$  GeV. The limit assumes zero efficiency for decays other than  $ilde{ au}_R o au ilde{\chi}_1^0$ . See Fig. 3 for limits on the  $(m_{ ilde{ au}}, m_{ ilde{\chi}_1^0})$
- plane and for the effect of cascade decays.  182  BARATE 98K looked for  $\tau^+\tau^-\gamma\gamma+E$  final states at  $\sqrt{s}=$  161–184 GeV. See Fig. 4 for limits on the  $(m_{\widetilde{T}R},m_{\widetilde{\chi}_1^0})$  plane and for the effect of cascade decays.
- ¹⁸³ This limit also uses BARATE 97N to extend limit to low  $m_{\widetilde{\tau}}.$
- ¹⁸⁴BARATE 98s looked for  $\hat{ au}_R$  pairs with decay  $\hat{ au}_R \to au \hat{\chi}_1^0$ , where  $\hat{\chi}_1^0$  further decays to  $\ell^+\ell^-\nu$  via *R*-violating coupling  $\ell L \bar{\ell}$ . The limit assumes  $\tan\beta$ =2, Data collected at  $\sqrt{s}$ =130–172 GeV.

#### Long-lived $\tilde{\ell}$ (Slepton) MASS LIMIT

Limits on scalar leptons which leave detector before decaying. Limits from Z decays are independent of lepton flavor. Limits from continuum  $e^+e^-$  annihilation are also independent of flavor for smuons and staus. However, selectron limits from continuum e- annihilation depend on flavor because there is an additional contribution from neutralino exchange that in general yields stronger limits.

VALUE (GeV)	CL%	DOCUMENT ID TECN COMMENT
>81.2	95	185 ACCIARRI 99H L3 $\widetilde{\mu}_R$ , $\widetilde{\tau}_R$
none 2-80	95	186 ABREU 98P DLPH $\tilde{\mu}_R, \tilde{\tau}_R$
>82.5	95	187 ACKERSTAFF 98P OPAL $\tilde{\mu}_R$ , $\tilde{\tau}_R$
> 01	OF	188 DADATE GOVALED NO 2

- 185 ACCIARRI 99H searched for production of pairs of back-to-back heavy charged particles at  $\sqrt{s}$ =130-183 GeV. The upper bound improves to 82.2 GeV for  $\tilde{\mu}_L$ ,  $\tilde{\tau}_L$ .
- 186 ABREU 98P searches for production of pairs of heavy, charged particles in  $e^+e^-$  annihilation at  $\sqrt{s}$ =130–183 GeV. The upper bound improves to 81 GeV for  $\tilde{\mu}_L, \tilde{\tau}_L$ . These limits include and update the results of ABREU 97D.
- 187  ACKERSTAFF 98P bound improves to 83.5 GeV for  $\tilde{\mu}_L$ ,  $\tilde{ au}_L$ . Data collected at  $\sqrt{s}=$
- 130–183 GeV. 188 The BARATE 98 $\kappa$  mass limit improves to 82 GeV for  $\tilde{\mu}_L, \hat{\tau}_L$ . Data collected at  $\sqrt{s} = 161 - 184 \text{ GeV}.$

#### q̃ (Squark) MASS LIMIT

For  $m_{\widetilde{q}} >$  60–70 GeV, it is expected that squarks would undergo a cascade decay via a number of neutralinos and/or charginos rather than undergo a direct decay to photinos as assumed by some papers. Limits obtained when direct decay is assumed are usually higher than limits when cascade decays are included.

Limits from  $e^+e^-$  collisions depend on the mixing angle of the lightest mass eigenstate  $\bar{q}_1 = \bar{q}_R \sin\theta_q + \bar{q}_L \cos\theta_q$ . It is usually assumed that only the sbottom and stop squarks have non-trivial mixing angles (see the stop and sbottom sections). Here, unless otherwise noted, squarks are always taken to be either left/right degenerate, or purely of left or right type. Data from Z decays have set squark mass limits above 40 GeV, in the case of  $\tilde{q} \to q \tilde{\chi}_1$  decays if  $\Delta m = m_{\tilde{q}} - m_{\tilde{\chi}_1^0} \gtrsim 5$  GeV. For smaller values of  $\Delta m$ , current constraints on the invisible width of the Z ( $\Delta \Gamma_{inv} < 2.0$  MeV, LEP 00) exclude  $m_{\widetilde{u}_{L,R}}$  <44 GeV,  $m_{\widetilde{d}_{R}}$  <33 GeV,  $m_{\widetilde{d}_{L}}$  <44 GeV and, assuming all squarks degenerate,  $m_{\widetilde{q}} < 45$  GeV.

Limits which are obsolete relative to the current results are not included in this compilation, and can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review.

DOCUMENT ID TECN COMMENT

CL%

>250	95	189 ABBOTT	99L D0	$\tan \beta = 2, \ \mu < 0, \ A = 0$
> 91.5	95	¹⁹⁰ ACCIARRI	99v L3	$\Delta m > 10 \text{ GeV, } e^+e^- \rightarrow \tilde{q}\tilde{\tilde{q}}$
> 92	95	191 BARATE	99Q ALEP	$e^+e^- \rightarrow \tilde{q}\bar{\tilde{q}}, \Delta m > 10 \text{ GeV}$
>224	95	¹⁹² ABE	96D CDF	$m_{\widetilde{g}} \leq m_{\widetilde{q}}$ ; with cascade
				decays
• • • We do not	use the	following data for a	verages, fits,	limits, etc. • • •
> 69	95		00H ALEP	ũ _R , R <del>UDD</del>
> 49	95		00H ALEP	dp. R UDD
>240	95	194 ABBOTT	99 D0	$\tilde{q} \rightarrow \tilde{\chi}_2^0 X \rightarrow \tilde{\chi}_1^0 \gamma X, m_{\tilde{\chi}_2^0} - $
				$m_{\rm ro} > 20 \text{ GeV}$
		104		$m_{\widetilde{\chi}_1^0} > 20 \text{ GeV}$
>320	95	194 ABBOTT	99 D0	$\tilde{q} \rightarrow \tilde{\chi}_1^0 X \rightarrow \tilde{G} \gamma X$
>243	95	195 ABBOTT	99K D0	any $m_{\widetilde{g}}$ , $R$ , $tan \beta = 2$ , $\mu < 0$
>200	95	¹⁹⁶ ABE	99м CDF	$p\overline{p} \rightarrow \tilde{q}\tilde{q}, R$
>140	95	197 ACCIARRI	98J L3	$e^+e^- \rightarrow q\overline{q}$ , R, $\lambda=0.3$
>140	95	197 ACKERSTAFF	98V OPAL	$e^+e^- \rightarrow q\overline{q}$ , R, $\lambda=0.3$
> 87	95	¹⁹⁸ BARATE	98N ALEP	$e^+e^- \rightarrow \tilde{q}\bar{\tilde{q}}, \Delta m > 5 \text{ GeV}$
> 77	95	¹⁹⁹ BREITWEG	98 ZEUS	$m_{\widetilde{q}} = m_{\widetilde{e}}, \ m(\widetilde{\chi}_1^0) = 40 \text{ GeV}$
		200 DATTA	97 THEO	$\tilde{\nu}$ 's lighter than $\tilde{\chi}_1^{\pm}$ , $\tilde{\chi}_2^0$
>216	95	²⁰¹ DERRICK	97 ZEUS	$ep \rightarrow \tilde{q}, \tilde{q} \rightarrow \mu j \text{ or } \tau j, R$
none 130-573	95	202 HEWETT	97 THEO	$q\tilde{g} \rightarrow \tilde{q}, \tilde{q} \rightarrow q\tilde{g}, \text{ with a}$ light gluino
none 190-650	95	²⁰³ TEREKHOV	97 THEO	$qg \rightarrow \tilde{q}\tilde{g}, \tilde{q} \rightarrow q\tilde{g}, \text{ with a}$ light gluino
>215	95	204 AID	96 H1	$e^+ p \rightarrow \hat{q}$ , $R$ , $\lambda = 0.3$
>150	95	204 AID	96 H1	$e^+ p \rightarrow \tilde{q}$ ; $R$ , $\lambda = 0.1$
> 63	95	205 AID	96C H1	
				$m_{\widetilde{q}} = m_{\widetilde{e}}, m_{\widetilde{\chi}_1^0} = 35 \text{ GeV}$
none 330-400	95	²⁰⁶ TEREKHOV	96 THEO	ug → ũ̃g, ũ → ug̃ with a
>176	95	207 ABACHI	95c D0	light gluino Any $m_{\widetilde{g}} <$ 300 GeV; with cas-
· •				cade decays
		²⁰⁸ ABE	95T CDF	$\tilde{q} \rightarrow \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \gamma$
> 45.3	95	²⁰⁹ BUSKULIC	95E ALEP	R, (LLĒ)
> 90	90	²¹⁰ ABE	92L CDF	Any $m_{\widetilde{g}}$ <410 GeV; with cas-
				cade decay
>100		211 ROY	92 RVUE	$p\overline{p} \rightarrow \widetilde{q}\widetilde{q}; R$
		²¹² NOJIRI	91 COSM	

- 189 ABBOTT 99L consider events with three or more jets and large  $E_T$ . Spectra and decay rates are evaluated in the framework of minimal Supergravity, assuming five flavors of degenerate squarks, and scanning the space of the universal gaugino  $(m_{1/2})$  and scalar  $(m_0)$  masses. See their Figs. 2-3 for the dependence of the limit on the relative value of  $m_{\widetilde{q}}$  and  $m_{\widetilde{g}}$
- 190  ACCIARRI 99v assumes four degenerate flavors and B( $ilde{q} o q ilde{\chi}_1^0$ )=1, with  $\Delta m = m_{\widetilde{q}}$  $m_{\widetilde{\chi}_1^0}$ . The bound is reduced to 90 GeV if production of only  $\widetilde{q}_R$  states is considered. See their Fig. 7 for limits in the  $(m_{\widetilde{q}}, m_{\widetilde{\chi}_1^0})$  plane. Data collected at  $\sqrt{s}$ =189 GeV.
- ¹⁹¹BARATE 99Q assumes five degenerate flavors and B( $\tilde{q} \to q \tilde{\chi}_1^0$ )=1, with  $\Delta m = m_{\tilde{q}}$  $m_{\widetilde{\chi}^0}$ . Data collected at  $\sqrt{s}$ =189 GeV. The limits presented here make use of, and update, the results of BARATE 98N.
- update, the results of BARALE 90M. 192 ABE 96D searched for production of gluinos and five degenerate squarks in final states containing a pair of leptons, two jets, and missing  $E_T$ . The two leptons arise from the semileptonic decays of charginos produced in the cascade decays. The limit is derived for fixed  $\tan \beta = 4.0$ ,  $\mu = -400$  GeV, and  $m_{H^+} = 500$  GeV, and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity
- 193 BARATE D0H data collected at  $\sqrt{s}$ =183 GeV. The limits hold for direct decays of u-type and d-type squarks, mediated by  $R \overline{UDD}$  couplings.
- 194 ABBOTT 99 searched for  $\gamma E_T + \geq 2$  jet final states, and set limits on  $\sigma(p\bar{p})$  $\widetilde{q}+\mathsf{X})\cdot\mathsf{B}(\widetilde{q} o \gamma \not\!\!E_T\mathsf{X})$ . The quoted limits correspond to  $m_{\widetilde{g}}\geq m_{\widetilde{q}'}$  with  $\mathsf{B}(\widetilde{\chi}_2^0 o$  $\tilde{\chi}^0_1\gamma)$ =1 and B( $\tilde{\chi}^0_1 o \ \tilde{G}\gamma$ )=1, respectively. They improve to 310 GeV (360 GeV in the case of  $\gamma \tilde{G}$  decay) for  $m_{\tilde{g}} = m_{\tilde{q}}$ .
- $^{195} \text{ABBOTT}$  99K uses events with an electron pair and four jets to search for the decay of the  $ilde{\chi}^0_1$  LSP via R  $LQ\overline{D}$  couplings. The particle specrum and decay branching ratios are taken in the framework of minimal supergravity. An excluded region at 95% CL is obtained in the  $(m_0,m_{1/2})$  plane under the assumption that  $A_0$ =0,  $\mu$ <0,  $\tan\beta$ =2 and
  - any one of the couplings  $\lambda_{1jk} > 10^{-3}$  (j=1,2 and k=1,2,3) and from which the above limit is computed. For equal mass squarks and gluinos, the corresponding limit is 277 GeV. The results are essentially independent of  $A_0$ , but the limit deteriorates rapidly
- With increasing tang or  $\mu > 0$ .

  196 ABE 99M looked in 107 pb⁻¹ of  $p\bar{p}$  collisions at  $\sqrt{s} = 1.8$  TeV for events with like sign. dielectrons and two or more jets from the sequential decays  $\tilde{q} \to q \tilde{\chi}_1^0$  and  $\tilde{\chi}_1^0 \to e q \overline{q}'$ , assuming R coupling  $L_1Q_jD_k^C$ , with j=2,3 and k=1,2,3. They assume five degenerate squark flavors, B( $\tilde{q} \to q \tilde{\chi}_1^0$ )=1, B( $\tilde{\chi}_1^0 \to e q \bar{q}'$ )=0.25 for both  $e^+$  and  $e^-$ , and  $m_{\tilde{g}} \ge$ 200 GeV. The limit is obtained for  $m_{\widetilde{\chi}_1^0} \ge m_{\widetilde{q}}/2$  and improves for heavier gluinos or heavier  $\chi_1^0$ .

#### Supersymmetric Particle Searches

- 197 ACKERSTAFF 98v and ACCIARRI 98J studied the interference of t-channel squark  $(\tilde{\sigma}_R)$  exchange via R-parity violating  $\lambda'_{1jk} L_1 Q_j \sigma_k^c$  coupling in  $e^+e^- \to q \overline{q}$ . The limit is for  $\lambda'_{1jk} = 0.3$ . See paper for related limits on  $\widetilde{u}_L$  exchange. Data collected at  $\sqrt{s} = 130-172$  GeV. 198 BARATE 98N assumes five degenerate flavors  $\widetilde{u}_{L,R}$ ,  $\widetilde{\sigma}_{L,R}$ ,  $\widetilde{c}_{L,R}$ ,  $\widetilde{s}_{L,R}$ ,  $\widetilde{b}_{L,R}$ , and
- ¹⁹⁸BARATE 98N assumes five degenerate flavors  $\tilde{u}_{L,R}$ ,  $d_{L,R}$ ,  $\hat{c}_{L,R}$ ,  $\tilde{s}_{L,R}$ ,  $b_{L,R}$ , and their direct decay  $\tilde{q} \to q \tilde{\chi}_1^0$ . The bound applies for  $\Delta m > 5$  GeV. See Fig. 5 for limits in the  $(m_{\tilde{q}}, m_{\tilde{\chi}^0})$  plane. Data collected at  $\sqrt{s}$ =181–184 GeV.
- 199 BREITWEG 98 used positron+jet events with missing energy and momentum to look for  $e^+q \to \tilde{e}\tilde{q}$  via gaugino-like neutralino exchange with decays into  $(e\tilde{\chi}^0_1)(q\tilde{\chi}^0_1)$ . See paper for dependences in  $m_{\tilde{e}}$ ,  $m_{\tilde{\chi}^0_1}$ .
- 200 DATTA 97 argues that the squark mass bound by ABACHI 95c can be weakened by 10–20 GeV if one relaxes the assumption of the universal scalar mass at the GUT-scale so that the  $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$  in the squark cascade decays have dominant and invisible decays to
- DERRICK 97 looked for lepton-number violating final states via R-parity violating couplings  $\lambda_{ijk}^{\prime}L_i\,Q_j\,d_k$ . When  $\lambda_{11k}^{\prime}\lambda_{ijk}^{\prime}\neq 0$ , the process  $e\,u\,\to\,\tilde{d}_k^*\,\to\,\ell_i\,u_j$  is possible. When  $\lambda_{1j1}^{\prime}\lambda_{ijk}^{\prime}\neq 0$ , the process  $e\,\bar{d}\,\to\,\tilde{u}_j^*\,\to\,\ell_i\,\bar{d}_k$  is possible. 100% branching fraction  $\bar{q}\,\to\,\ell_j$  is assumed. The limit quoted here corresponds to  $\bar{t}\,\to\,\tau\,q$  decay, with  $\lambda'=0.3$ . For different channels, limits are slightly better. See Table 6 in their paper.
- 202 HEWETT 97 reanalyzed the limits on possible resonances in di-jet mode  $(\tilde{q} \rightarrow q\tilde{g})$  from ALITTI 93 quoted in "Limits for Excited q ( $q^*$ ) from Single Production," ABE 96 in "SCALE LIMITS for Contact Interactions:  $\Lambda(qqqq)$ ," and unpublished CDF, DØ bounds. The bound applies to the gluino mass of 5 GeV, and improves for lighter gluino. The analysis has gluinos in parton distribution function.
- 203 TEREKHOV 97 improved the analysis of TEREKHOV 96 by including di-jet angular distributions in the analysis.
- 204 AID 96 looked for first-generation squarks as 5-channel resonances singly produced in  $e^+ p$  collision via the R-parity violating coupling in the superpotential  $W = \lambda' L_1 Q_1 d_1^c$ . The degeneracy of squarks  $\widetilde{Q}_1$  and  $\widetilde{d}_1$  is assumed. Eight different channels of possible squark decays are considered.
- 205 AID 96c used positron+jet events with missing energy and momentum to look for  $e^+q \rightarrow \tilde{e}\tilde{q}$  via neutralino exchange with decays into  $(e\tilde{\chi}_1^0)(q\tilde{\chi}_1^0)$ . See the paper for dependences on  $m_{\tilde{e}}$ ,  $m_{\tilde{\chi}_1^0}$ .
- ²⁰⁶TEREKHOV 96 reanalyzed the limits on possible resonances in di-jet mode  $(\tilde{u} \rightarrow u \tilde{g})$  from ABE 95N quoted in "MASS LIMITS for  $g_A$  (axigluon)." The bound applies only to the case with a light gluino.
- 207 ABACHI 9SC assume five degenerate squark flavors with  $m_{\widetilde{q}_L} = m_{\widetilde{q}_R}$ . Sleptons are assumed to be heavier than squarks. The limits are derived for fixed  $\tan\beta = 2.0~\mu = -250~{\rm GeV}$ , and  $m_{H^+} = 500~{\rm GeV}$ , and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity scenario. The bounds are weakly sensitive to the three fixed parameters for a large fraction of parameter space. No limit is given for  $m_{\rm gluino} > 547~{\rm GeV}$ .
- 208 ABE 95T looked for a cascade decay of five degenerate squarks into  $\tilde{\chi}_{2}^{0}$  which further decays into  $\tilde{\chi}_{1}^{0}$  and a photon. No signal is observed. Limits vary widely depending on the choice of parameters. For  $\mu=-40$  GeV,  $\tan\beta=1.5$ , and heavy gluinos, the range  $50 < m_{\widetilde{q}}$  (GeV)<110 is excluded at 90% CL. See the paper for details.
- ²⁰⁹ BUSKULIC 95E looked for  $Z \to \widetilde{q} \, \overline{\widetilde{q}}$ , where  $\widetilde{q} \to q \chi_1^0$  and  $\chi_1^0$  decays via *R*-parity violating interactions into two leptons and a neutrino.
- 210 ABE 92L assume five degenerate squark flavors and  $m_{\widetilde{q}_L} = m_{\widetilde{q}_R}$ . ABE 92L includes the effect of cascade decay, for a particular choice of parameters,  $\mu = -250$  GeV,  $\tan \beta = 2$ . Results are weakly sensitive to these parameters over much of parameter space. No limit for  $m_{\widetilde{q}} \leq 50$  GeV (but other experiments rule out that region). Limits are 10–20 GeV higher if  $B(\widetilde{q} \to q\widetilde{\gamma}) = 1$ . Limit assumes GUT relations between gaugino masses and the gauge coupling; in particular that for  $|\mu|$  not small,  $m_{\widetilde{\chi}_1^0} \approx m_{\widetilde{g}}/6$ . This last
  - relation implies that as  $m_{\widetilde{g}}$  increases, the mass of  $\tilde{\chi}_1^0$  will eventually exceed  $m_{\widetilde{g}}$  so that no decay is possible. Even before that occurs, the signal disappear; in particular no bounds can be obtained for  $m_{\widetilde{g}} > 410$  GeV.  $m_{H^+} = 500$  GeV.
- 211 ROY 92 reanalyzed CDF limits on di-lepton events to obtain limits on squark production in *R*-parity violating models. The 100% decay  $\hat{q} \rightarrow q \tilde{\chi}$  where  $\hat{\chi}$  is the LSP, and the LSP decays either into  $\ell q \bar{q}$  or  $\ell \ell \bar{e}$  is assumed.
- 212 NOJIR() 91 argues that a heavy squark should be nearly degenerate with the gluino in minimal supergravity not to overclose the universe.

#### Long-lived $\tilde{q}$ (Squark) MASS LIMIT

The following are bounds on long-lived scalar quarks, assumed to hadronise into hadrons with lifetime long enough to escape the detector prior to a possible decay. Limits may depend on the mixing angle of mass eigenstates:  $\bar{q}_1 = \bar{q}_L \cos\theta_q + \bar{q}_R \sin\theta_q$ . The coupling to the  $Z^0$  boson vanishes for up-type squarks when  $\theta_U = 0.98$ , and for down type squarks when  $\theta_d = 1.17$ .

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
• • • We do not use the	follow	ing (	data for averages	, fits	, limits,	etc. • • •
none 2-85	95		ABREU	98P	DLPH	$\tilde{u}_1$
none 2-81	95		ABREU	98P	DLPH	ũ _R
none 2-80	95		ABREU	98P	DLPH	$\widetilde{u}, \theta_H = 0.98$
none 2-83	95	213	ABREU	98P	DLPH	ã _I
none 5-40	95		ABREU	98P	DLPH	$\tilde{d}_R$
none 5-38	95	213	ABREU	98P	DLPH	$\tilde{d}, \theta_d = 1.17$

213 ABREU 98P assumes that 40% of the squarks will hadronise into a charged hadron, and 60% into a neutral hadron which deposits most of its energy in hadron calorimeter. Data collected at  $\sqrt{s}$ =130–183 GeV.

#### b (Sbottom) MASS LIMIT

Limits in  $e^+e^-$  depend on the mixing angle of the mass eigenstate  $\widetilde{b}_1=\widetilde{b}_L\cos\theta_b+\widetilde{b}_R\sin\theta_b$ . Coupling to the Z vanishes for  $\theta_b\sim 1.17$ . As a consequence, no absolute constraint in the mass region  $\lesssim 40$  GeV is available in the literature at this time from  $e^+e^-$  collisions. In the Listings below, we use  $\Delta m=m_{\widetilde{b}_1}-m_{\widetilde{\chi}_1^0}$ .

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
none 80~145		²¹⁴ AFFOLDER	00D CDF	$\widetilde{b} \rightarrow b\widetilde{\chi}_{1}^{0}, m_{\widetilde{\chi}_{1}^{0}} < 50 \text{ GeV}$
>89.8	95	²¹⁵ ABBIENDI	99м OPAL	$\tilde{b} \rightarrow b \tilde{\chi}_1^0, \theta_b = 0, \Delta m > 10 \text{ GeV}$
>74.9	95	²¹⁵ ABBIENDI	99M OPAL	$\tilde{b} \rightarrow b\tilde{\chi}_1^0$ , $\theta_b=1.17$ , $\Delta m > 10$ GeV
>84	95	²¹⁶ ACCIARRI	99v L3	$\tilde{b} \rightarrow b\tilde{\chi}_1^0, \theta_b = 0, \Delta m > 15 \text{ GeV}$
>61	95	²¹⁶ ACCIARRI	99∨ L3	$\tilde{b} \rightarrow b \tilde{\chi}_1^0, \theta_b = 1.17, \Delta m > 15 \text{ GeV}$
>86	95	217 BARATE	99Q ALEP	$\tilde{b} \rightarrow b \tilde{\chi}_1^0,  \theta_b = 0,  \Delta m > 10  \text{GeV}$
>75	95	²¹⁷ BARATE	99Q ALEP	$\tilde{b} \rightarrow b \tilde{\chi}_1^{0},  \theta_b = 1.18,  \Delta m > 10  \text{GeV}$
• • • We do	not u	se the following data	for averages	, fits, limits, etc. • • •
none 52-115	95	²¹⁸ ABBOTT	99F D0	$\tilde{b} \rightarrow b \tilde{\chi}_1^0$ , $m_{\tilde{\chi}_1^0} < 20$ GeV
<b>~73</b>	95	219 ARREII	anc DLDH	$\tilde{h} \rightarrow h\tilde{v}^0$ $\tilde{\theta} = 0$ $\Delta m > 10$ GeV

none 52-1	15 95	210 ABBOTT	99F D0	$b \rightarrow b \tilde{\chi}_1^0$ , $m_{\tilde{\chi}_1^0} < 20 \text{ GeV}$
>73	95	²¹⁹ ABREU	99c DLPH	$\tilde{b} \rightarrow b\tilde{\chi}_1^0,  \theta_b = 0,  \Delta m > 10  \text{GeV}$
>44	95	²¹⁹ ABREU	99c DLPH	$\tilde{b} \rightarrow b\tilde{\chi}_{1}^{0},  \theta_{b} = \pi/2,  \Delta m > 10 \text{ GeV}$
>57	95	²²⁰ ACCIARRI	99C L3	$\tilde{b} \rightarrow b \tilde{\chi}_1^0, \theta_b = 1.17, \Delta m > 35 \text{ GeV}$
none 40-5	4.495	²²¹ ACKERSTAFF	99 OPAL	$\tilde{b} \rightarrow b\tilde{\chi}_{1}^{0}, \theta_{b}=1.17, \Delta m > 7 \text{ GeV}$
>54	95	²²² BARATE	99E ALEP	$\mu$ , $\theta_b=0$
>73	95	²²³ BARATE	98N ALEP	$\tilde{b} \rightarrow b \tilde{\chi}_1^0$ , $\theta_b = 0$ , $\Delta m > 6$ GeV
>58	95	²²⁴ BARATE	98s ALEP	

- 214 AFFOLDER 00D search for final states with 2 or 3 jets and  $E_T$ , one jet with a b tag. See their Fig. 3 for the mass exclusion in the  $m_{\widetilde{t}}$ ,  $m_{\widetilde{\chi}_1^0}$  plane.
- 215 ABBIENDI 99M looked for events with two acoplanar jets and  $P_T$ . See Fig. 4 and Table 5 for the dependence on the limit on  $\Delta m$  and  $\theta_b$ . Data taken at  $\sqrt{s}$ =161–189 GeV. These results supersede ACKERSTAFF 99.
- 216 ACCIARRI 99v looked for events with two acoplanar *b*-tagged jets and  $P_T$ , at  $\sqrt{s}$ =189 GeV. See their Figs. 4 and 6 for the more general dependence of the limits on  $\Delta m$  and  $\theta_h$ .
- 217 BARATE 990 looked for events with two acoplanar b-tagged jets and  $\mathcal{F}_{\mathcal{T}}$ . The limit assumes  $B(\tilde{b} \to b \tilde{\chi}_1^0) = 1$ . See their Fig. 2 for the dependence of the limit on  $\Delta m$  and  $\theta_b$ . Data taken at  $\sqrt{s} = 189$  GeV.
- 218 ABBOTT 99F looked for events with two jets, with or without an associated muon from b decay, and  $\mathcal{E}_{\mathcal{T}}$ . See Fig. 2 for the dependence of the limit on  $m_{\widetilde{\chi}_1^0}$ . No limit for  $m_{\widetilde{\chi}_1^0} > 47$  GeV.
- 219 ABREU 99C looked for  $\tilde{b}$  pair production at  $\sqrt{s}$ = 130–172 GeV. See Fig. 4 for other choices of  $\Delta m$ . These results include and update limits from ABREU 960.
- 220 ACCIARRI 99c looked for  $\tilde{b}$  pair production at  $\sqrt{s}$ =161–183 GeV. See Figs. 4–5 for other choices of  $\theta_b$  and  $\Delta m$ .
- 221 ACKERSTAFF 99 looked for b pair production at  $\sqrt{s}$ =130–183 GeV. The analysis includes and updates the results of ACKERSTAFF 97Q. See Table 11 and Fig. 12 for other choices of  $\theta_b$  and  $\Delta m$ .
- 222 BARATE 99£ looked for  $\widetilde{b}_L$  pairs with decay  $\widetilde{b}_L \to b\widetilde{\chi}_1^0$ , where  $\widetilde{\chi}_1^0$  further decays via R-violating coupling  $LQ\overline{D}$ .  $m_{\widetilde{\chi}_1^0} > 30$  GeV. The limit is 73 GeV for the case of  $\widetilde{b}_L$  pair production with  $\widetilde{b}_L \to j\nu$  decay. The limits for  $\widetilde{b}_R$  pairs with  $\widetilde{b}_R \to b\nu j\tau$  are much weaker. Data collected at  $\sqrt{s}$ =130–172 GeV.
- ²²³ BARATE 98N data taken at  $\sqrt{s}$ =181-184 GeV. The limit is significantly reduced for  $\theta_b \approx 1.17$ .
- 224 BARATE 98s looked for  $\bar{b}_L$  pairs with decay  $\bar{b}_L \to b\bar{\chi}_1^0$ , where  $\hat{\chi}_1^0$  further decays to  $\ell^+\ell^-\nu$  via *R*-violating coupling  $\ell L\bar{E}$ . The limit assumes  $\tan\beta$ =2, Data collected at  $\sqrt{s}$ =130–172 GeV.

#### t (Stop) MASS LIMIT

Limits depend on the decay mode. In  $e^+e^-$  collisions they also depend on the mixing angle of the mass eigenstate  $\tilde{t}_1=\tilde{t}_L\cos\theta_L+\tilde{t}_R\sin\theta_L$ . The coupling to the Z vanishes when  $\theta_L=0.98$ . In the Listings below, we use  $\Delta m\equiv m_{\tilde{t}_1}-m_{\tilde{\chi}_1}^0$  or  $\Delta m\equiv m_{\tilde{t}_1}-m_{\tilde{\nu}}$ , depending on relevant decay mode. See also bounds in " $\tilde{q}$  (Squark) MASS LIMIT." Previous obsolete limits are not included in this compilation, and can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
> 86.4	95	²²⁵ ABBIENDI	99M OPAL	$\tilde{t} \rightarrow c \tilde{\chi}_1^0,  \theta_t = 0.98,  \Delta m > 5$
> 88.0	95	²²⁵ ABBIENDI	99M OPAL	GeV $\tilde{t} \rightarrow b\ell\tilde{\nu},  \theta_t = 0.98,  \Delta m > 10$
> 87.5	95	225 ABBIENDI	99M OPAL	GeV $\tilde{t} \rightarrow b\tau \tilde{\nu}_{T},  \theta_{t} = 0.98,  \Delta m > $
> 63	95	226 ABREU	99c DLPH	$\tilde{t} \rightarrow c \tilde{\chi}_1^0, \theta_t = 0.98, \Delta m > 10$
> 81	95	²²⁷ ACCIARRI	99v L3	$\tilde{t} \rightarrow c \tilde{\chi}_1^0,  \theta_t = 0.96,  \Delta m > 15$
> 86	95	²²⁷ ACCIARRI	99v L3	GeV $\tilde{t} \rightarrow b\ell\tilde{\nu}, \ \theta_{\tilde{t}}=0.96, \ \Delta m > 15$
> 83	95	²²⁷ ACCIARRI	99v L3	GeV $\tilde{t} \to b\tau \tilde{\nu}_{\tau},  \theta_{t} = 0.96,  \Delta m > 15.6 \text{ GeV}$
> 84	95	228 BARATE	99Q ALEP	$\tilde{t} \rightarrow c \tilde{\chi}_1^0$ , all $\theta_t$ , $10 < \Delta m <  $
> 86	95	228 BARATE	99Q ALEP	$\widetilde{t} \rightarrow b\ell\widetilde{\nu}$ , all $\theta_t$ , $\Delta m > 10$ GeV

• • • We do no	t use the	e following data for a	iverages, fits,	limits, etc. • • •
> 76	95	²²⁹ ABBIENDI	00 OPAL	$R$ , $(\overline{UDD})$ , all $\theta_t$
> 61	95	²³⁰ ABREU	00i DLPH	$R(LL\overline{E}), \theta_t=0.98, \Delta m > 4$ GeV
none 68-119	95	²³¹ AFFOLDER	00D CDF	$\tilde{t} \rightarrow c \tilde{\chi}_1^0, m_{\tilde{\chi}_1^0} < 40 \text{ GeV}$
> 58	95	232 BARATE	00H ALEP	$\tilde{t}_l$ , $\mathcal{R}\left(\overline{UDD}\right)^{-1}$
>120	95	233 ABE	99м CDF	$\rho \overline{\rho} \rightarrow \widetilde{t}_1 \widetilde{t}_1, R$
> 72.5	95	²³⁴ ACCIARRI	99c L3	$\tilde{t} \rightarrow c \tilde{\chi}_1^0, \theta_t = 0.98, \Delta m > 10$
> 75.8	95	²³⁵ ACKERSTAFF	99 OPAL	GeV $\tilde{t} \rightarrow c \tilde{\chi}_1^0$ , $\theta_t = 0.98$ , $\Delta m > 5$ GeV
> 79.2	95	²³⁵ ACKERSTAFF	99 OPAL	$\tilde{t} \rightarrow b\ell \tilde{\nu},  \theta_{\tilde{t}} = 0.98,  \Delta m > 10$
> 75.0	95	²³⁵ ACKERSTAFF	99 OPAL	$\tilde{t} \rightarrow b\tau \tilde{\nu}_{\tau}, \ \theta_{t} = 0.98, \ \Delta m > 10 \ \text{GeV}$
> 48	95	236 BARATE	99E ALEP	$R(LQD), \theta_t=0$
> 65	95	²³⁷ BARATE	98N ALEP	$\tilde{t} \rightarrow c \tilde{\chi}_1^0,  \theta_t = 0.98,  \Delta m > 5$
> 82	95	²³⁷ BARATE	98N ALEP	GeV $\tilde{t} \rightarrow b\ell\tilde{\nu}$ , any $\theta_{\tilde{t}}$ , $\Delta m > 10$ GeV
> 44	95	²³⁸ BARATE	98s ALEP	$R(LLE), \theta_{+}=0.98$
none 61-91	95	²³⁹ АВАСНІ	96B D0	$\tilde{t} \rightarrow c \tilde{\chi}_1^0, m_{\tilde{\chi}_1^0} < 30 \text{ GeV}$
none 9-24.4	95	240 AID	96 H1	$e p \rightarrow \tilde{t} \tilde{t}$ , $R$ decays
>138	95	²⁴¹ AID	96 H1	$e p \rightarrow \tilde{t}$ , $R$ , $\lambda \cos \theta_t > 0.03$
> 45		²⁴² CHO	96 RVUE	$B^0 \cdot \overline{B}^0$ and $\epsilon$ , $\theta_1 = 0.98$ , $\tan \beta < 2$
none 11~41	95	²⁴³ BUSKULIC	95E ALEP	$R(LL\overline{E}), \theta_t=0.98$
none 6.0-41.2	95	AKERS	94K OPAL	$\tilde{t} \rightarrow c\tilde{\chi}_1^0, \theta_t=0, \Delta m > 2 \text{ GeV}$
none 5.0-46.0	95	AKERS	94k OPAL	$\tilde{t} \rightarrow c \tilde{\chi}_1^0,  \theta_t = 0,  \Delta m > 5 \text{ GeV}$
none 11.2-25.5	95	AKERS	94K OPAL	$\tilde{t} \rightarrow c \tilde{\chi}_1^0,  \theta_t = 0.98,  \Delta m > 2$
none 7.9-41.2	95	AKERS	94k OPAL	GeV $\tilde{t} \rightarrow c \tilde{\chi}_1^0,  \theta_t = 0.98,  \Delta m > 5$
none 7.6-28.0	95	²⁴⁴ SHIRAI	94 VNS	GeV $\widetilde{t} \rightarrow c\widetilde{\chi}_1^0$ , any $\theta_t$ , $\Delta m > 10$
none 10-20	95	²⁴⁴ SHIRAI	94 VNS	$\widetilde{t}  o c \widetilde{\chi}_1^0$ , any $\theta_t$ , $\Delta m > 2.5$ GeV
205				GEV

²²⁵ ABBIENDI 99M looked for events with two acoplanar jets,  $\not\!\!P_T$ , and, in the case of  $b\ell\bar{\nu}$  ( $b\tau\bar{\nu}$ ) final states, two leptons (taus). Limits for  $\theta_t$  are  $\sim$  2.5 GeV stronger. In the case of  $c\chi_1^0$  decays, the limits with  $\Delta m>10$  GeV improve to 90.3 for  $\theta_t=0$  and 87.2 for  $\theta_t=0.98$ . See Figs. 2–3 and Table 4 for the more general dependence of the limits on for  $\theta_t$ =0.98. See Figs. 2-3 and Table 4 for the more general dependence of the lithits on  $\Delta m$ . Data taken at  $\sqrt{s}$ =161-189 GeV. All limits assume 100% branching ratio for the respective decay modes. These results supersede ACKERSTAFF 99.

226 ABREU 99C looked for  $\tilde{t}$  pair production at  $\sqrt{s}$ = 130-172 GeV. The limit for  $\theta_t$  is 72 GeV. See Fig. 4 for other choices of  $\Delta m$ . These results include and update limits from ABREU 160.

GeV. See Fig. 4 for other choices of Δm. These results include and update limits from ABREU 960.

227 ACCIARRI 99V looked for events with two acoplanar jets, 𝑃_T and, in the case of 𝑃ℓν̃ (𝑃_Tν̃) final states, two leptons (taus). The limits for 𝑃_t = 0 improve to 88, 89, and 88 GeV, respectively. See their Figs. 4-6 for the more general dependence of the limits on Δm and 𝑃_t. Data taken at √s=189 GeV. All limits assume 100% branching ratio for the respective decay modes.

288 BARATE 994 looked for events with two acoplanar jets,  $P_T$  and, in the case of  $b\ell\bar{\nu}$  final states, two leptons. All limits assume 100% branching ratio for the respective decay modes, with flavor-independent rates in the case of semileptonic decays. See their Fig. 1 for the dependence of the limit on  $\Delta m$  and  $\theta_1$ . Data taken at  $\sqrt{s}$ =189 GeV. The limits presented here make use of, and supersede, the results of BARATE 98N.

229 ABBIENDI 00 searches for the production of stop in the case of R-parity violation with UDD or LQD couplings, using data from √s=183 GeV. They investigate topologies with multiple leptons, jets plus leptons, or multiple jets, assuming one coupling at the time to be non-zero. For mass exclusion limits relative to LQD-induced decays, see their

230 ABREU 001 searches for the production of stop in the case of *R*-parity violation with *LLE* couplings, for which only indirect decays are allowed. They investigate topologies with jets plus leptons in data from √s=183 GeV. The lower bound on the stop mass assumes a neutralino mass limit of 27 GeV, also derived in ABREU 001.

231 AFFOLDER 00D search for final states with 2 or 3 jets and  $E_T$ , one jet with a c tag. See their Fig. 2 for the mass exclusion in the  $(m_{\widetilde{\ell}}, m_{\widetilde{\chi}_1^0})$  plane. The maximum excluded  $m_{\widetilde{t}}$  value is 119 GeV, for  $m_{\widetilde{\chi}_1^0} =$  40 GeV.

232 BARATE 00H data collected at √s=183 GeV. The limit holds for indirect decays mediated by \( \overline{N} \overline{UDD} \) couplings, and m_{\tilde{\chi}0} > 20 GeV. It improves to 61 GeV for indirect decays mediated by \( \overline{R} \) LLE couplings, with neutralino mass limits from BARATE 98s. For direct decays, the limits from BARATE 00H in the squark section apply.
 233 ABE 99M looked in 107 pb⁻¹ of p\( \overline{p} \) collisions at √s=1.8 TeV for events with like sign

dielectrons and two or more jets from the sequential decays  $\tilde{q} \to q \tilde{\chi}_1^0$  and  $\tilde{\chi}_1^0 \to e q \overline{q}'$ , assuming R coupling  $L_1Q_jD_k^c$ , with j=2,3 and k=1,2,3. They assume  $B(\tilde{t}_1\to c\tilde{\chi}_1^0)=1$ ,  $\mathrm{B}(\widetilde{\chi}_1^0 o e\, q\, \overline{q}') = 0.25$  for both  $e^+$  and  $e^-$ , and  $m_{\widetilde{\chi}_1^0} \geq m_{\widetilde{t}_1}/2$ . The limit improves for

²³⁴ ACCIARRI 99c looked for  $\tilde{t}$  pair production at  $\sqrt{s}$ =161–183 GeV. See Figs. 4–5 for other choices of  $\theta_t$  and  $\Delta m$ . These results update ACCIARRI 96F.

²³⁵ ACKERSTAFF 99 looked for t pair production. The analysis considers data taken at  $\sqrt{s}$ =130–183 GeV, and includes the results of ACKERSTAFF 97Q. Unless the t= $\tau$  decay mode is explicitly indicated, the same branching fractions to t=t=t0, and t1 are assumed for t1t2t3t4 modes. See Table 10 and Figs. 9–11 for other choices of t4t5t6, and t7t8t7t9.

²³⁶BARATE 99E looked for  $\tilde{t}_L$  pairs with decay  $\tilde{t}_L \to c \tilde{\chi}_1^0$ , where  $\tilde{\chi}_1^0$  further decays via *R*-violating coupling  $LQ\overline{D}$ .  $m_{\tilde{\chi}_1^0} > 30$  GeV. The limit is 62 GeV for the case of  $\tilde{t}_L$  pair

production with  $\tilde{t}_L \to q \tau$  decays. Data collected at  $\sqrt{s}$ =130–172 GeV.

237 BARATE 98N assumes the lepton universality for the case of  $\tilde{t} \to b\ell\tilde{\nu}$  and the lower bound on  $m_{\tilde{\nu}}$  from Z decay is used. See Figs. 2 and 3 for limits as a function of  $\Delta m$ . Data collected at  $\sqrt{s}$ =181-184 GeV.

- ²³⁸BARATE 98s looked for  $\tilde{t}$  pairs with decay  $\tilde{t} \to c \tilde{\chi}^0_1$ , where  $\tilde{\chi}^0_1$  further decays to  $\ell^+\ell^-\nu$  via *R*-violating coupling  $\ell L\overline{E}$ . The limit assumes  $\tan\!\beta\!=\!2$ , Data collected at  $\sqrt{s}\!=\!130$ –172 GeV.
- ²³⁹ABACHI 96B searches for final states with 2 jets and missing  $E_T$ . Limits on  $m_{\widetilde{t}}$  are given as a function of  $m_{\widetilde{\chi}^0_1}$ . See Fig. 4 for details.
- ²⁴⁰AID 96 considers photoproduction of  $\widetilde{tt}$  pairs, with 100% R-parity violating decays of  $\widetilde{t}$ to eq, with q=d, s, or b quarks.
- 241 AID 96 considers production and decay of  $\tilde{t}$  via the R-parity violating coupling  $\lambda' L_1 Q_3 d_1^c$ .
- $X^{\prime}L_{1}Q_{3}q_{1}^{\prime}$ . 242 CHO 96 studied the consistency among the  $B^{0}-\overline{B}^{0}$  mixing,  $\epsilon$  in  $K^{0}-\overline{K}^{0}$  mixing, and the measurements of  $V_{cb}$ ,  $V_{ub}/V_{cb}$ . For the range 25.5 GeV $< m_{\widetilde{t}_{1}} < m_{Z}/2$  left by AKERS 94K for  $\theta_{t}=0.98$ , and within the allowed range in  $M_{2}$ - $\mu$  parameter space from chargino, neutralino searches by ACCIARRI 95E, they found the scalar top contribution to  $B^{0}-\overline{B}^{0}$  mixing and  $\epsilon$  to be too large if  $\tan \beta < 2$ . For more on their assumptions, see the paper and their reference 10.

²⁴³ BUSKULIC 95E looked for  $Z \to \tilde{t}\tilde{t}$ , where  $\tilde{t} \to c\chi_1^0$  and  $\chi_1^0$  decays via R-parity violating interactions into two leptons and a neutrino.

⁴ SHIRAI 94 bound assumes the cross section without the s-channel Z-exchange and the QCD correction, underestimating the cross section up to 20% and 30%, respectively. They assume  $m_c$ =1.5 GeV.

#### Heavy g (Gluino) MASS LIMIT

For  $m_{\widetilde{g}} > 60$ –70 GeV, it is expected that gluinos would undergo a cascade decay via a number of neutralinos and/or charginos rather than undergo a direct decay to photinos as assumed by some papers. Limits obtained when direct decay is assumed are usually higher than limits when cascade decays are included.

	are usually r	iigner ti	ian limits when casc	age (	decays a	re included.
VALU	E (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>19	0	95	245 ABBOTT	99L	D0	$tan\beta=2$ , $\mu<0$ , $A=0$
>26	0	95	²⁴⁵ ABBOTT	99L	D0	$m_{\widetilde{a}} = m_{\widetilde{a}}$
>17	3	95	²⁴⁶ ABE	97ĸ	CDF	Any $m_{\widetilde{a}}$ ; with cascade decays
>21	6	95	246 ABE	97ĸ	CDF	$m_{\widetilde{a}} = m_{\widetilde{p}}$ ; with cascade decays
>22	4	95	²⁴⁷ ABE	<b>96</b> D	CDF	$m_{\widetilde{q}} = m_{\widetilde{g}}$ ; with cascade decays
>15	4	95	²⁴⁷ ABE	96D	CDF	$m_{\widetilde{g}} < m_{\widetilde{a}}$ ; with cascade decays
• •	<ul> <li>We do not</li> </ul>	use the	following data for a	verag	es, fits,	
>24	0	95	²⁴⁸ ABBOTT	99	D0	$\tilde{g} \rightarrow \tilde{\chi}_2^0 X \rightarrow \tilde{\chi}_1^0 \gamma X, m_{\tilde{\chi}_1^0} - $
						$m_{\widetilde{\chi}_1^0} > 20 \text{ GeV}$
>32	:0	95	248 ABBOTT	99	D0	$\tilde{g} \rightarrow \tilde{\chi}_1^0 X \rightarrow \tilde{G} \gamma X$
>22	7	95	²⁴⁹ ABBOTT	99K	D0	any $m_{\widetilde{G}}$ , $R$ , $\tan\beta=2$ , $\mu<0$
>21	2	95	250 ABACHI	<b>95</b> C	D0	$m_{\widetilde{e}} \geq m_{\widetilde{a}}$ ; with cascade decays
>14	4	95	²⁵⁰ ABACHI	<b>95</b> C	D0	Any $m_{\widetilde{q}}$ ; with cascade decays
			²⁵¹ ABE	95T	CDF	$\tilde{g} \rightarrow \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \gamma$
			²⁵² HEBBEKER		RVUE	
>21	8	90	253 ABE	92L	CDF	$m_{\widetilde{q}} \leq m_{\widetilde{g}}$ ; with cascade
>10	10		²⁵⁴ ROY	92	RVUE	$decay$ $\rho \overline{\rho} \rightarrow \widetilde{g} \widetilde{g}; R$
			²⁵⁵ NOJIRI	91	соѕм	
none	4-53	90	²⁵⁶ ALBAJAR	87D	UA1	Any $m_{\widetilde{q}} > m_{\widetilde{g}}$
поле	4-75	90	256 ALBAJAR	87D	UA1	$m_{\widetilde{q}} = m_{\widetilde{g}}$
none	16-58	90	257 ANSARI	<b>87</b> D	UA2	$m_{\widetilde{q}} \lesssim 100 \text{ GeV}$

245 ABBOTT 99L consider events with three or more jets and large  $E_T$ . Spectra and decay rates are evaluated in the framework of minimal Supergravity, assuming five flavors of degenerate squarks, and scanning the space of the universal gaugino  $(m_{1/2})$  and scalar  $(m_0)$  masses See their Figs. 2–3 for the dependence of the limit on the relative value of  $m_{\widetilde{q}}$  and  $m_{\widetilde{g}}$ .

246 ABE 97K searched for production of gluinos and five degenerate squarks in events with three or more jets but no electrons or muons and missing transverse energy  $E_T>60$  GeV. The limit for any  $m_{\widetilde{q}}$  is for  $\mu=-200$  GeV and  $\tan\beta=2$ , and that for  $m_{\widetilde{q}}=m_{\widetilde{g}}$  is for  $\mu=-400$  GeV and  $\tan\beta=4$ . Different choices for  $\tan\beta$  and  $\mu$  lead to changes of the order of  $\pm 10$  GeV in the limits. See Footnote [16] of the paper for more details on the

247 ABE 960 searched for production of gluinos and five degenerate squarks in final states containing a pair of leptons, two jets, and missing E_T. The two leptons arise from the semileptonic decays of charginos produced in the cascade decays. The limits are derived semileptonic decays of charginos produced in the cascade decays. The limits are derived. for fixed  $\tan\beta=4.0$ ,  $\mu=-400$  GeV, and  $m_{H+}=500$  GeV, and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity scenario. The bounds are weakly sensitive to the values of the three fixed parameters for a large fraction of parameter space. See Fig. 2 for the limits corresponding to different

²⁴⁸ ABBOTT 99 searched for  $\gamma E_T + \geq 2$  jet final states, and set limits on  $\sigma(p \overline{p} \rightarrow$  $\tilde{g}$  +X)·B( $\tilde{g} \rightarrow \gamma E_T$ X). The quoted limits correspond to  $m_{\widetilde{q}} \geq m_{\widetilde{g}}$ , with B( $\tilde{\chi}_2^0 \rightarrow$  $\tilde{\chi}_1^0\gamma$ )=1 and B( $\tilde{\chi}_1^0 \to \tilde{G}\gamma$ )=1, respectively. They improve to 310 GeV (360 GeV in the case of  $\gamma \tilde{G}$  decay) for  $m_{\tilde{g}} = m_{\tilde{q}}$ .

²⁴⁹ABBOTT 99K uses events with an electron pair and four jets to search for the decay of the  $\widetilde{\chi}^0_1$  LSP via  $R\!\!\!/ \, LQ\overline{D}$  couplings. The particle specrum and decay branching ratios are taken in the framework of minimal supergravity. An excluded region at 95% CL is obtained in the  $(m_0,m_{1/2})$  plane under the assumption that  $A_0$ =0,  $\mu$  < 0, an eta=2 and any one of the couplings  $\lambda_{1/k}^{-} > 10^{-3}$  (j=1,2 and k=1,2,3) and from which the above limit is computed. For equal mass squarks and gluinos, the corresponding limit is 277 GeV. The results are essentially independent of  $A_0$ , but the limit deteriorates rapidly with increasing  $tan\beta$  or  $\mu > 0$ .

## Searches Particle Listings Supersymmetric Particle Searches

- 250  ABACHI 95c assume five degenerate squark flavors with with  $m_{\widetilde{q}_L}=m_{\widetilde{q}_R}$ . Sleptons are assumed to be heavier than squarks. The limits are derived for fixed  $\tan\beta=2.0~\mu=$ -250 GeV, and  $m_{H^+}$ =500 GeV, and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity scenario. The bounds are weakly sensitive to the three fixed parameters for a large fraction of parameter space.
- ²⁵¹ ABE 95T looked for a cascade decay of gluino into  $ilde{\chi}^0_2$  which further decays into  $ilde{\chi}^0_1$  and a photon. No signal is observed. Limits vary widely depending on the choice of parameters. For  $\mu=-40$  GeV,  $\tan\beta=1.5$ , and heavy squarks, the range  $50 < m_{\widetilde{R}}$  (GeV)<140 is excluded at 90% CL. See the paper for details.
- excluded at 90% C.L. See the paper for decails. 252 HEBBEKER 93 combined jet analyses at various  $e^+e^-$  colliders. The 4-jet analyses at TRISTAN/LEP and the measured  $\alpha_{\rm S}$  at PEP/PETRA/TRISTAN/LEP are used. A constraint on effective number of quarks N=6.3  $\pm$  1.1 is obtained, which is compared to that with a light gluino, N=8.
- 253 ABE 92L bounds are based on similar assumptions as ABACHI 95c. Not sensitive to  $m_{\rm gluino}$  <40 GeV (but other experiments rule out that region).
- ²⁵⁴ROY 92 reanalyzed CDF limits on di-lepton events to obtain limits on gluino production in *R*-parity violating models. The 100% decay  $\tilde{g} \to q \bar{q} \tilde{\chi}$  where  $\tilde{\chi}$  is the LSP, and the LSP decays either into  $\ell q \bar{d}$  or  $\ell \ell \bar{e}$  is assumed.
- 255 NOJIRI 91 argues that a heavy gluino should be nearly degenerate with squarks in minimal supergravity not to overclose the universe.
- ²⁵⁶ The limits of ALBAJAR 87D are from  $\rho \bar{p} \to \tilde{g} \tilde{g} X (\tilde{g} \to q \bar{q} \tilde{\gamma})$  and assume  $m_{\tilde{q}} >$  $m_{\widetilde{g}}$  . These limits apply for  $m_{\widetilde{\gamma}} \lesssim$  20 GeV and  $au(\widetilde{g}) < 10^{-10}$  s.
- $^{257}\, {\rm The}^{\, 6}$  limit of ANSARI 87D assumes  $m_{\widetilde{q}} > m_{\widetilde{g}}$  and  $m_{\widetilde{\gamma}} \approx ~0$  .

#### LIGHT GLUINO

Written March 1998 by H. Murayama (UC Berkeley).

It is controversial if a light gluino of mass below 5 GeV is phenomenologically allowed. Below we list some of the most important and least controversial constraints which need to be met for a light gluino to be viable. For reviews on the subject, see, e.g., Ref. 1.

- 1. Either  $m_{\tilde{g}} \lesssim 1.5$  GeV or  $m_{\tilde{g}} \gtrsim 3.5$  GeV to avoid the CAKIR 94 limit. See also Ref. 2 for similar quarkonium constraints on lighter masses.
- 2. The lifetime of the gluino or the ground state gluinocontaining hadron (typically,  $g\tilde{g}$ ) must be  $\gtrsim 10^{-10}$  s in order to evade beam-dump and missing energy limits [1,2].
- 3. Charged gluino-containing hadrons (e.g.  $\tilde{g}u\bar{d}$ ) must decay into neutral ones  $(e.g. R^0(\tilde{g}g)\pi^+)$  or  $(\tilde{g}u\bar{u})e^{-}\bar{\nu}_{e})$  with a lifetime shorter than about  $10^{-7}$  s to avoid the AKERS 95R limit. Older limits for lower masses and shorter lifetimes are summarized
- 4. The lifetime of  $R^0$  should be outside the ranges excluded by ALAVI-HARATI 99E  $(R^0 \to \pi^+ \pi^0 \tilde{\gamma},$  $\pi^0\tilde{\gamma}$ ) and FANTI 99  $(\eta\tilde{\gamma})$ . The  $R_n^+(\tilde{q}uud)$  state, which is believed to decay weakly into  $S^0(\tilde{g}uds)\pi^{\pm}$ (FARRAR 96), must be heavier than 2 GeV or have lifetime  $\tau_{R_p} \gtrsim 1$  ns or  $\tau_{R_p} \lesssim 50$  ps (e.g. if the strong decay into  $S^0K^{\pm}$  is allowed), or its production cross sections must be at least a factor of 5 smaller than those of hyperons, to avoid ALBUQUERQUE 97
- 5.  $m_{\tilde{g}} \geq 6.8$  GeV (95% CL) if the "experimental optimization" method of fixing the renormalization scale is valid and if the hadronization and resummation uncertainties are as estimated in BARATE 97L, from the  $D_2$  event shape observable in  $Z^0$  decay. The 4-jet angular distribution is less sensitive to renormalization scale ambiguities and yields

- a 90%CL exclusion of a light gluino (DEGOU-VEA 97). A combined LEP analysis based on all the  $Z^0$  data and using the recent NLO calculations [3] is warranted.
- 6. Constraints from the effect of light gluinos on the running of  $\alpha_s$  apply independently of the gluino lifetime and are insensitive to renormalization scale. They disfavor a light gluino at 70% CL (CSIKOR 97), which improves to more than 99% with jet analysis.

#### References

- 1. G.R. Farrar, Phys. Rev. **D51**, 3904 (1995); in SUSY 97, Proceedings of the Fifth International Conference on Supersymmetries in Physics," 27-31 May 1997, Philadelphia, USA, edited by M. Cvetic and P. Langacker (Nuc. Phys. B (Proc. Suppl.) 62 (1998)) p. 485. hep-ph/9710277.
- 2. R.M. Barnett, in SUSY 95, Proceedings of the International Workshop on Supersymmetry and Unification of Fundamental Interactions, Palaiseau, France, 15-19 May 1995, edited by I. Antoniadis and H. Videau (Editions Frontieres, Gif-sur-Yvette, France, 1996) p. 69.
- 3. L. Dixon and A. Signer, Phys. Rev. **D56**, 4031 (1997); J.M. Campbell, E.W.N. Glover, and D.J. Miller, Phys. Lett. B409, 503 (1997).

**Long-lived/light \widetilde{g} (Gluino) MASS LIMIT** Limits on light gluinos ( $m_{\widetilde{g}}$  < 5 GeV), or gluinos which leave the detector before

decaying.					601.1151.15
VALUE (GeV)	<u>CL%</u>	DOCUME		TECN	COMMENT
• • • We do not	use the				
		258 ALAVI-	HARATI99E	KTEV	$pN \rightarrow R^0$ , with $R^0 \rightarrow \rho^0 \tilde{\gamma}$
		²⁵⁹ BAER		0.415	and $R^0 \to \pi^0 \tilde{\gamma}$
		260 FANTI	99	RVUE	Stable $\tilde{g}$ hadrons $pBe \rightarrow R^0 \rightarrow \eta \tilde{\gamma}$
		261 + CVED	99	NA48	$pBe \rightarrow \kappa^{\circ} \rightarrow \eta \gamma$
			STAFF 98V		$e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$
		262 ADAMS		KTEV	$pN \rightarrow R^0 \rightarrow \rho^0 \tilde{\gamma}$
		263 ALBUQ	UERQ97	E761	$R^+(uud\tilde{g}) \rightarrow 5^0(uds\tilde{g})\pi^+,$
		26.4			$X^-(ssd\tilde{g}) \rightarrow S^0\pi^-$
>6.3	95	264 BARAT	E 97L	ALEP	Color factors
>5	99	265 CSIKO	₹ 97	RVUE	$\beta$ function, $Z \rightarrow \text{jets}$
>1.5	90	266 DEGOL	JVEA 97	THEO	$Z \rightarrow jjjj$
		267 FARRA		RVUE	$R^0 \rightarrow \pi^0 \tilde{\gamma}$
none 1.9–13.6	95	²⁶⁸ AKERS	95R	OPAL	Z decay into a long-lived
		260			$(\tilde{g} q \bar{q})^{\pm}$
< 0.7		269 CLAVE		RVUE	quarkonia
none 1.5-3.5		270 CAKIR	94	RVUE	$\gamma(15) \rightarrow \gamma + \text{gluinonium}$
not 3-5		271 LOPEZ	930	RVUE	LEP .
≈ 4		272 CLAVE	LLI 92	RVUE	$\alpha_{S}$ running
		273 ANTON	IIADIS 91	RVUE	α _s running
>1		274 ANTON	NADIS 91	RVUE	pN → missing energy
		275 NAKAN	/IURA 89	SPEC	R-∆ ⁺⁺
>3.8	90	276 ARNOL	.D 87	EMUL	$\pi^-$ (350 GeV). $\sigma \simeq A^1$
>3.2	90	276 ARNOL		EMUL	
none 0.6-2.2	90	277 TUTS	87	CUSB	$\gamma(1S) \rightarrow \gamma + \text{gluinonium}$
none 1 -4.5	90	278 ALBRE	CHT 860	ARG	$1 \times 10^{-11} \lesssim \tau \lesssim 1 \times 10^{-9} \text{s}$
none 1-4	90	279 BADIEI	R 86	BDMP	$1 \times 10^{-10} \stackrel{\sim}{<} \tau \stackrel{\sim}{<} 1 \times 10^{-7}$ s
none 3-5		280 BARNE	TT 86	RVUE	$p\overline{p} \rightarrow gluino gluino gluon$
none		²⁸¹ VOLOS	HIN 86	RVUE	lf (quasi) stable; $\widetilde{g}uud$
none 0.5-2		²⁸² COOPE	R 85B	BDMP	For $m_{\tilde{a}}$ =300 GeV
none 0.5-4		²⁸² COOPE		BDMP	For $m_{\widetilde{q}}^{\gamma}$ <65 GeV
none 0.5-3		282 COOPE	R 85B	BDMP	For $m_{\tilde{q}} = 150 \text{ GeV}$
none 2-4		283 DAWS	ON 85	RVUE	$\tau > 10^{-7} \text{ s}$
none 1-2.5		283 DAWS	ON 85	RVUE	For $m_{\tilde{a}}=100 \text{ GeV}$
none 0.5-4.1	90	284 FARRA	R 85	RVUE	FNAL beam dump
>1		285 GOLDN	/AN 85	RVUE	Gluononium
>1-2		286 HABER	85	RVUE	
		²⁸⁷ BALL	84	CALO	
		288 BRICK	84	RVUE	
		289 FARRA	R 84	RVUE	
>2		290 BERGS	MA 830	RVUE	For $m_{\widetilde{q}} < 100$ GeV
		²⁹¹ CHANG		RVUE	gud, guud
>2-3		292 KANE	82	RVUE	Beam dump
>1.5-2		FARRA		RVUE	R-hadron
/1.J Z		ICINICA	10	L	

## Searches Particle Listings Supersymmetric Particle Searches

- 250  ABACHI 95c assume five degenerate squark flavors with with  $m_{\widetilde{q}_L}=m_{\widetilde{q}_R}$ . Sleptons are assumed to be heavier than squarks. The limits are derived for fixed  $\tan\beta=2.0~\mu=$ -250 GeV, and  $m_{H^+}$ =500 GeV, and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity scenario. The bounds are weakly sensitive to the three fixed parameters for a large fraction of parameter space.
- ²⁵¹ ABE 95T looked for a cascade decay of gluino into  $ilde{\chi}^0_2$  which further decays into  $ilde{\chi}^0_1$  and a photon. No signal is observed. Limits vary widely depending on the choice of parameters. For  $\mu=-40$  GeV,  $\tan\beta=1.5$ , and heavy squarks, the range  $50 < m_{\widetilde{R}}$  (GeV)<140 is excluded at 90% CL. See the paper for details.
- excluded at 90% C.L. See the paper for decails. 252 HEBBEKER 93 combined jet analyses at various  $e^+e^-$  colliders. The 4-jet analyses at TRISTAN/LEP and the measured  $\alpha_{\rm S}$  at PEP/PETRA/TRISTAN/LEP are used. A constraint on effective number of quarks N=6.3  $\pm$  1.1 is obtained, which is compared to that with a light gluino, N=8.
- 253 ABE 92L bounds are based on similar assumptions as ABACHI 95c. Not sensitive to  $m_{\rm gluino}$  <40 GeV (but other experiments rule out that region).
- ²⁵⁴ROY 92 reanalyzed CDF limits on di-lepton events to obtain limits on gluino production in *R*-parity violating models. The 100% decay  $\tilde{g} \to q \bar{q} \tilde{\chi}$  where  $\tilde{\chi}$  is the LSP, and the LSP decays either into  $\ell q \bar{d}$  or  $\ell \ell \bar{e}$  is assumed.
- 255 NOJIRI 91 argues that a heavy gluino should be nearly degenerate with squarks in minimal supergravity not to overclose the universe.
- ²⁵⁶ The limits of ALBAJAR 87D are from  $\rho \bar{p} \to \tilde{g} \tilde{g} X (\tilde{g} \to q \bar{q} \tilde{\gamma})$  and assume  $m_{\tilde{q}} >$  $m_{\widetilde{g}}$  . These limits apply for  $m_{\widetilde{\gamma}} \lesssim$  20 GeV and  $au(\widetilde{g}) < 10^{-10}$  s.
- $^{257}\, {\rm The}^{\, 6}$  limit of ANSARI 87D assumes  $m_{\widetilde{q}} > m_{\widetilde{g}}$  and  $m_{\widetilde{\gamma}} \approx ~0$  .

#### LIGHT GLUINO

Written March 1998 by H. Murayama (UC Berkeley).

It is controversial if a light gluino of mass below 5 GeV is phenomenologically allowed. Below we list some of the most important and least controversial constraints which need to be met for a light gluino to be viable. For reviews on the subject, see, e.g., Ref. 1.

- 1. Either  $m_{\tilde{g}} \lesssim 1.5$  GeV or  $m_{\tilde{g}} \gtrsim 3.5$  GeV to avoid the CAKIR 94 limit. See also Ref. 2 for similar quarkonium constraints on lighter masses.
- 2. The lifetime of the gluino or the ground state gluinocontaining hadron (typically,  $g\tilde{g}$ ) must be  $\gtrsim 10^{-10}$  s in order to evade beam-dump and missing energy limits [1,2].
- 3. Charged gluino-containing hadrons (e.g.  $\tilde{g}u\bar{d}$ ) must decay into neutral ones  $(e.g. R^0(\tilde{g}g)\pi^+)$  or  $(\tilde{g}u\bar{u})e^{-}\bar{\nu}_{e})$  with a lifetime shorter than about  $10^{-7}$  s to avoid the AKERS 95R limit. Older limits for lower masses and shorter lifetimes are summarized
- 4. The lifetime of  $R^0$  should be outside the ranges excluded by ALAVI-HARATI 99E  $(R^0 \to \pi^+ \pi^0 \tilde{\gamma},$  $\pi^0\tilde{\gamma}$ ) and FANTI 99  $(\eta\tilde{\gamma})$ . The  $R_n^+(\tilde{q}uud)$  state, which is believed to decay weakly into  $S^0(\tilde{g}uds)\pi^{\pm}$ (FARRAR 96), must be heavier than 2 GeV or have lifetime  $\tau_{R_p} \gtrsim 1$  ns or  $\tau_{R_p} \lesssim 50$  ps (e.g. if the strong decay into  $S^0K^{\pm}$  is allowed), or its production cross sections must be at least a factor of 5 smaller than those of hyperons, to avoid ALBUQUERQUE 97
- 5.  $m_{\tilde{g}} \geq 6.8$  GeV (95% CL) if the "experimental optimization" method of fixing the renormalization scale is valid and if the hadronization and resummation uncertainties are as estimated in BARATE 97L, from the  $D_2$  event shape observable in  $Z^0$  decay. The 4-jet angular distribution is less sensitive to renormalization scale ambiguities and yields

- a 90%CL exclusion of a light gluino (DEGOU-VEA 97). A combined LEP analysis based on all the  $Z^0$  data and using the recent NLO calculations [3] is warranted.
- 6. Constraints from the effect of light gluinos on the running of  $\alpha_s$  apply independently of the gluino lifetime and are insensitive to renormalization scale. They disfavor a light gluino at 70% CL (CSIKOR 97), which improves to more than 99% with jet analysis.

#### References

- 1. G.R. Farrar, Phys. Rev. **D51**, 3904 (1995); in SUSY 97, Proceedings of the Fifth International Conference on Supersymmetries in Physics," 27-31 May 1997, Philadelphia, USA, edited by M. Cvetic and P. Langacker (Nuc. Phys. B (Proc. Suppl.) 62 (1998)) p. 485. hep-ph/9710277.
- 2. R.M. Barnett, in SUSY 95, Proceedings of the International Workshop on Supersymmetry and Unification of Fundamental Interactions, Palaiseau, France, 15-19 May 1995, edited by I. Antoniadis and H. Videau (Editions Frontieres, Gif-sur-Yvette, France, 1996) p. 69.
- 3. L. Dixon and A. Signer, Phys. Rev. **D56**, 4031 (1997); J.M. Campbell, E.W.N. Glover, and D.J. Miller, Phys. Lett. B409, 503 (1997).

**Long-lived/light \widetilde{g} (Gluino) MASS LIMIT** Limits on light gluinos ( $m_{\widetilde{g}}$  < 5 GeV), or gluinos which leave the detector before

decaying.	·					601115115
VALUE (GeV)	_		DOCUMENT ID		TECN	COMMENT
• • • We do not	use the					
		258	ALAVI-HARAT	199E	KTEV	$pN \rightarrow R^0$ , with $R^0 \rightarrow \rho^0 \tilde{\gamma}$
		259	BAER	00	0.415	and $R^0 \to \pi^0 \tilde{\gamma}$
		260	FANTI	99 99	RVUE NA48	Stable $\tilde{g}$ hadrons $pBe \rightarrow R^0 \rightarrow \eta \tilde{\gamma}$
		261	ACKERSTAFF			$pbe \rightarrow R^{-} \rightarrow \eta \gamma$ a + a = x + x = 0
						$e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$
			ADAMS		KTEV	$pN \rightarrow R^0 \rightarrow \rho^0 \tilde{\gamma}$
		203	ALBUQUERQ.	97	E761	$R^+(uud\tilde{g}) \rightarrow S^0(uds\tilde{g})\pi^+,$
		26.4				$X^-(ssd\tilde{g}) \rightarrow S^0\pi^-$
>6.3	95	265	BARATE		ALEP	Color factors
>5	99	200	CSIKOR	97	RVUE	$\beta$ function, $Z \rightarrow \text{jets}$
>1.5	90	200	DEGOUVEA	97	THEO	$Z \rightarrow JJJJ$
			FARRAR	96	RVUE	$R^0 \to \pi^0 \tilde{\gamma}$
none 1.9–13.6	95	200	AKERS	95R	OPAL	Z decay into a long-lived $(\tilde{g} q \bar{q})^{\pm}$
< 0.7		269	CLAVELLI	95	RVUE	quarkonia
none 1.5–3.5		270	CAKIR	94	RVUE	$\Upsilon(15) \rightarrow \gamma + \text{gluinonium}$
not 3-5		271	LOPEZ		RVUE	LEP
≈ 4		272	CLAVELLI	92	RVUE	α _s running
~ 4		273	ANTONIADIS	91	RVUE	α _s running
>1		274	ANTONIADIS	91	RVUE	pN → missing energy
· ·			NAKAMURA	89	SPEC	R-Δ++
>3.8	90	276	ARNOLD	87	EMUL	
>3.0	90	276	ARNOLD	87	EMUL	` '
none 0.6-2.2	90	277	TUTS	87	CUSB	$\gamma(15) \rightarrow \gamma + \text{gluinonium}$
none 1 -4.5	90		ALBRECHT		ARG	$1 \times 10^{-11} \le \pi \le 1 \times 10^{-9}$
none 1-4.5	90	279	BADIER	86	BDMP	$\begin{array}{c} 1 \times 10^{-11} \lesssim \tau \lesssim 1 \times 10^{-9} s \\ 1 \times 10^{-10} \lesssim \tau < 1 \times 10^{-7} s \end{array}$
none 3-5	90	280	BARNETT	86	RVUE	$p\overline{p} \rightarrow gluino gluino gluon$
none 5-5		281	VOLOSHIN	86	RVUE	If (quasi) stable; $\tilde{g} u u d$
none 0.5-2		282	COOPER		BDMP	For $m_{\tilde{a}}$ =300 GeV
none 0.5-4			COOPER		BDMP	
none 0.5-3			COOPER		BDMP	For $m_{\widetilde{q}}$ <65 GeV For $m_{\widetilde{a}}$ =150 GeV
		283	COOPER			
none 2-4		283	DAWSON	85	RVUE	$\tau > 10^{-7} \text{ s}$
none 1-2.5			DAWSON	85	RVUE	For $m_{\widetilde{q}} = 100 \text{ GeV}$
none 0.5-4.1	90	284	FARRAR	85	RVUE	FNAL beam dump
>1		285	GOLDMAN	85	RVUE	Gluononium
>1-2		280	HABER	85	RVUE	
		201	BALL	84	CALO	
		200	BRICK	84	RVUE	
		201	FARRAR	84	RVUE	
>2			BERGSMA	83C	RVUE	For $m_{\widetilde{m{q}}} < 100$ GeV
		291	CHANOWITZ	83	RVUE	g̃ud, g̃uud
>2-3		292	KANE	82	RVU:	Beam dump
>1.5-2			FARRAR	78	RVUE	R-hadron

# Searches Particle Listings Technicolor

#### Technicolor

## DYNAMICAL ELECTROWEAK SYMMETRY BREAKING

Written October 1999 by R.S. Chivukula (Boston Univ.) and J. Womersley (Fermilab).

In theories of dynamical electroweak symmetry breaking, the electroweak interactions are broken to electromagnetism by the vacuum expectation value of a fermion bilinear. These theories may thereby avoid the introduction of fundamental scalar particles, of which we have no examples in nature. In this note, we review the status of experimental searches for the particles predicted in technicolor, topcolor, and related models.

#### I. Technicolor

The earliest models [1,2] of dynamical electroweak symmetry breaking [3] include a new non-abelian gauge theory ("technicolor") and additional massless fermions ("technifermions") which feel this new force. The global chiral symmetry of the fermions is spontaneously broken by the formation of a technifermion condensate, just as the chiral symmetries in QCD are broken to isospin by the formation of a quark condensate. If the quantum numbers of the technifermions are chosen correctly (e.g. by choosing technifermions in the fundamental representation of an SU(N) technicolor gauge group, with the left-handed technifermions being weak doublets and the right-handed ones weak singlets) this condensate can break the electroweak interactions down to electromagnetism.

The breaking of the global chiral symmetries implies the existence of Goldstone bosons, the "technipions"  $(\pi_T)$ . Through the Higgs mechanism, three of the Goldstone bosons become the longitudinal components of the W and Z, and the weak gauge bosons acquire a mass proportional to the technipion decay constant (the analog of  $f_{\pi}$  in QCD). The quantum numbers and masses of any remaining technipions are model dependent. There may be technipions which are colored (octets and triplets) as well as those carrying electroweak quantum numbers, and some technipions could be dangerously light [4,5]. The lightest technicolor resonances are expected to be the analogs of the vector mesons in QCD. The technivector mesons can also have color and electroweak quantum numbers and, for a theory with a small number of technifermions, are expected to have a mass in the TeV range [6].

While technicolor chiral symmetry breaking can give mass to the W and Z particles, additional interactions must be introduced to produce the masses of the standard model fermions. The most thoroughly studied mechanism for this invokes "extended technicolor" (ETC) gauge interactions [4,7]. In ETC, technicolor, color and flavor are embedded into a larger gauge group which is broken to technicolor and color at an energy scale of 100–500 TeV. The massive gauge bosons associated with this breaking mediate transitions between quarks/leptons and technifermions, giving rise to the couplings necessary to produce fermion masses. The ETC gauge bosons also mediate transitions among technifermions themselves, leading to

interactions which can explicitly break unwanted chiral symmetries and raise the masses of any light technipions. The ETC interactions connecting technifermions to quarks/leptons also mediate technipion decays to ordinary fermion pairs. Since these interactions are responsible for fermion masses, one generally expects technipions to decay to the heaviest fermions kinematically allowed (though this need not hold in all models).

In addition to quark masses, ETC interactions must also give rise to quark mixing. One expects, therefore, that there are ETC interactions coupling quarks of the same charge from different generations. A stringent limit on these flavor-changing neutral current interactions comes from  $K^0 - \overline{K}^0$  mixing [4]. These force the scale of ETC breaking and the corresponding ETC gauge boson masses to be in the multi-hundred TeV range (at least insofar as ETC interactions of first two generations are concerned). To obtain quark and technipion masses that are large enough then requires an enhancement of the technifermion condensate over that expected naively by scaling from QCD. Such an enhancement can occur if the technicolor gauge coupling runs very slowly, or "walks" [8]. Many technifermions typically are needed to make the TC coupling walk, implying that the technicolor scale and, in particular, the technivector mesons may be much lighter than 1 TeV [3,9]. It should also be noted that there is no reliable calculation of electroweak parameters in a walking technicolor theory, and the values of precisely measured electroweak quantities [10] cannot directly be used to constrain the models.

In existing colliders, technivector mesons are dominantly produced when an off-shell standard model gauge-boson "resonates" into a technivector meson with the same quantum numbers [11]. The technivector mesons may then decay, in analogy with  $\rho \to \pi\pi$ , to pairs of technipions. However, in walking technicolor the technipion masses may be increased to the point that the decay of a technirho to pairs of technipions is kinematically forbidden [9]. In this case the decay to a technipion and a longitudinally polarized weak boson (an "eaten" Goldstone boson) may be preferred, and the technivector meson would be very narrow. Alternatively, the technivector may also decay, in analogy with the decay  $\rho \to \pi \gamma$ , to a technipion plus a photon, gluon, or transversely polarized weak gauge boson. Finally, in analogy with the decay  $\rho \to e^+e^-$ , the technivector meson may resonate back to an off-shell gluon or electroweak gauge boson, leading to a decay into a pair of leptons, quarks, or gluons.

If the dominant decay mode of the technirho is  $W_L\pi_T$ , promising signal channels [12] are  $\rho_T^\pm \to W^\pm\pi_T^0$  and  $\rho_T^0 \to W^\pm\pi_T^\mp$ . Both channels yield a signal of  $W(\ell\nu)+2$  jets, with one or more heavy flavor tags. Recently, the CDF collaboration has carried out a search in this final state [13] based on Run I data and using PYTHIA [14] version 6.1 for the signal simulation. The results are shown in Fig. 1. We see that the search is sensitive to  $\sigma \cdot B \gtrsim 10$  pb and that roughly  $170 < m_{\rho_T} < 190$  GeV is excluded at the 95% confidence level, for  $m_{\pi_T} \approx m_{\rho_T}/2$ .

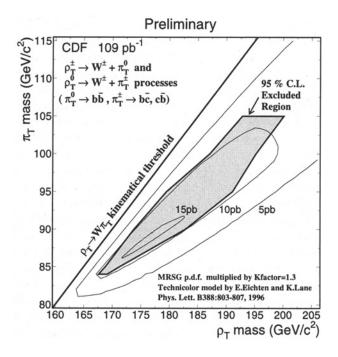



Figure 1: 95% CL exclusion region [13] for light technirho's decaying to  $W^{\pm}$  and a  $\pi_T$ , and in which the  $\pi_T$  decays to two jets including at least one b quark.

CDF has also searched [15] for the process  $\omega_T^0 \to \gamma \pi_T^0$ , yielding a signal of a hard photon plus two jets, with one or more heavy flavor tags. The sensitivity to  $\sigma \cdot B$  is of order 1 pb. The excluded region is shown in Fig. 2 and is roughly  $140 < m_{\omega_T} < 290$  GeV at the 95% level, for  $m_{\pi_T} \approx m_{\omega_T}/3$ . The analysis assumes four technicolors,  $Q_D = Q_U - 1 = \frac{1}{3}$  and  $M_T = 100$  GeV/ $c^2$ . Here  $Q_U$  and  $Q_D$  are the charges of the lightest technifermion doublet and  $M_T$  is a dimensionful parameter, of order 100 GeV/ $c^2$ , which controls the rate of  $\rho_T, \omega_T \to \gamma \pi_T$ .

Both DØ [16] and CDF [17] have searched for low-scale technicolor resonances  $\rho_T$  and  $\omega_T$  decaying to dileptons, using inclusive  $e^+e^-$  (both experiments) and  $\mu^+\mu^-$  (CDF) samples from Run I. In the search, the  $\rho_T$  and  $\omega_T$  are assumed to be degenerate in mass. The absence of structure in the dilepton invariant mass distribution is then used to set limits. Those from DØ are slightly more restrictive. Masses  $m_{\rho_T}=m_{\omega_T}<250~{\rm GeV}$  are excluded, provided  $m_{\rho_T}< m_{\pi_T}+m_W$ , or provided  $m_T>300~{\rm GeV}$ . The latter case is shown in Fig. 3. With 2 fb⁻¹ of data in Run II, the sensitivity will extend to  $m_{\rho_T}=m_{\omega_T}\approx500~{\rm GeV}$ .

L3 [18] has reported a search for four topologies:  $e^+e^- \rightarrow W^+W^-$ ;  $e^+e^- \rightarrow W^\pm\pi_T^\mp \rightarrow \ell\nu bc$ ;  $e^+e^- \rightarrow \pi_T\pi_T \rightarrow b\bar{c}\bar{b}c$ ;  $e^+e^- \rightarrow \gamma\pi_T \rightarrow \gamma b\bar{b}$ . All processes proceed through an intermediate  $\rho_T$  or  $\omega_T$  resonance, which are assumed to be degenerate in mass. No excess is seen in any channel, based

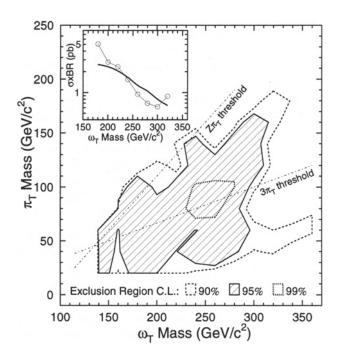



Figure 2: 95% CL exclusion region [15] for light techniomega's decaying to  $\gamma$  and a  $\pi_T$ , and in which the  $\pi_T$  decays to two jets including at least one b quark. (Inset: cross section limit for  $m_{\pi_T} = 120$  GeV.)

on 176 pb⁻¹ of data taken at an average center of mass energy of 189 GeV. The excluded region in  $m_{\rho T}, m_{\pi T}$  parameter space is shown in Fig. 4 and rules out  $m_{\rho T} < 190$  GeV, for all values of  $m_{\pi T}$ , for the range of parameters considered. This L3 analysis is the only one so far to make use of the latest calculations [19] of technihadron production and decay, as implemented in PYTHIA version 6.126 and higher [20]. All the other analyses described in this review used older versions of PYTHIA and the limits are not directly comparable.

Searches have also been carried out at the Tevatron for colored technihadron resonances [21,22]. CDF has used a search for structure in the dijet invariant mass spectrum to set limits on a color-octet technirho  $\rho_{T8}$  produced by an off-shell gluon and decaying to two real quarks or gluons. As shown in Fig. 5 masses  $260 < m_{\rho_{T8}} < 480$  GeV are excluded; in Run II the limits will improve to cover the whole mass range up to about 0.8 TeV [23].

The CDF third-generation leptoquark search [24] has also been interpreted in terms of the complementary  $\rho_{T8}$  decay mode:  $p\overline{p} \to \rho_{T8} \to \pi_{LQ}\pi_{LQ} \to \tau q\tau q$ . Here  $\pi_{LQ}$  denotes a color-triplet technipion carrying both color and lepton number, assumed to decay to  $\tau$  plus quark. Fig. 6 shows that technirho masses  $m_{\rho_{T8}} < 465$  GeV and technipion masses up to  $m_{\rho_{T8}}/2$  are excluded in this picture ( $m_{\pi_{LQ}} < 99$  GeV already having been ruled out by the standard continuum-production leptoquark searches).

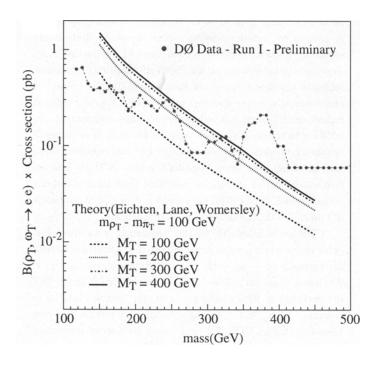



Figure 3: 95% CL cross section limit [16] for light techniomega's and technirho's decaying to  $\ell^+\ell^-.$ 

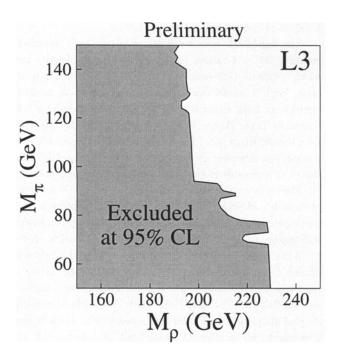



Figure 4: 95% CL exclusion region [18] in the technirho-technipion mass plane obtained from searches by the L3 collaboration at LEP 2.

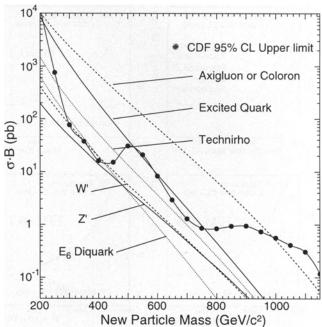



Figure 5: 95% CL cross section limits [22] for technirho's decaying to two jets at the Tevatron.

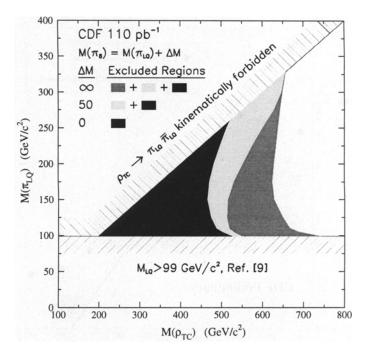



Figure 6: .95% CL exclusion region [24] in the technirho-technipion mass plane for pair produced technipions, with leptoquark couplings, decaying to  $\tau q$ .

#### **Technicolor**

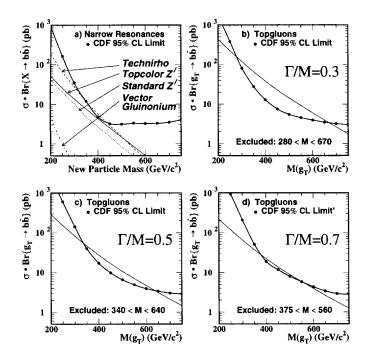



Figure 7: Tevatron limits [28] on new particles decaying to  $b\bar{b}$ : narrow resonances and topgluons for various widths.

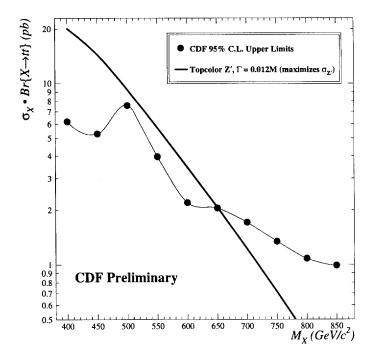



Figure 8: Cross section limits for a narrow resonance decaying to  $t\bar{t}$  [29] and expected cross section for a topcolor Z' boson.

#### II. Top Condensate and Related Models

The top quark is much heavier than other fermions and must be more strongly coupled to the symmetry-breaking sector. It is natural to consider whether some or all of electroweak-symmetry breaking is due to a condensate of top quarks [25,3]. Top-quark condensation alone, without additional fermions, seems to produce a top-quark mass larger [26] than observed experimentally, and is therefore not favored. Topcolor assisted technicolor [27] combines technicolor and top-condensation. In addition to technicolor, which provides the bulk of electroweak symmetry breaking, top condensation and the top-quark mass arise predominantly from "topcolor," a new QCD-like interaction which couples strongly to the third generation of quarks. An additional, strong, U(1) interaction (giving rise to a topcolor Z') precludes the formation of a  $\langle \bar{b}b \rangle$  condensate.

CDF has searched [28] for the "topgluon," a massive color-octet vector which couples preferentially to the third generation, in the mode  $p\bar{p}\to g_t\to b\bar{b}$ . The results are shown in Fig. 7. As shown, topgluon masses from approximately 0.3 to 0.6 TeV are excluded at 95% confidence level, for topgluon widths in the range  $0.3m_{g_t} < \Gamma < 0.7m_{g_t}$ . Preliminary results have also been reported by CDF [29] on a search for narrow resonances in the  $t\bar{t}$  invariant mass distribution. The cross section limit is shown in Fig. 8 and excludes a topcolor Z' with masses less than 650 GeV/ $c^2$ , for the case where its width  $\Gamma = 0.012\,m_{Z'}$ . This choice of width maximizes the cross section. A broad topgluon could also be detected in the same final state, though no results are yet available. In Run II, the Tevatron [23] should be sensitive to topgluon and topcolor Z' masses up to of order 1 TeV in  $b\bar{b}$  and  $t\bar{t}$  final states.

The top-quark seesaw model of electroweak symmetry breaking [30] is a variant of the original top-condensate idea which reconciles top-condensation with a lighter top-quark mass. Such a model can easily be consistent with precision electroweak tests, either because the spectrum includes a light composite Higgs [31] or because additional interactions allow for a heavier Higgs [32]. The unique role of the top quark is, in a sense, lost in seesaw models. By adjusting parameters in the theory, it is possible to generate any required fermion mass.

Flavor-universal versions of the seesaw model [33] are possible in which *all* left-handed quarks (and possibly leptons as well) participate in the electroweak symmetry-breaking condensate with separate (one for each flavor) right-handed weak singlets.

A universal prediction of these models, is the existence of new heavy gauge bosons, coupling to color or flavor, at relatively low mass scales. The absence of an excess of high- $E_T$  jets in DØ data [34] has been used to constrain strongly-coupled flavor-universal colorons (massive color-octet bosons coupling to all quarks). A mass limit of between 0.8 and 3.5 TeV is set [35] depending on the coloron-gluon mixing angle. Precision electroweak measurements constrain [36] the masses of these new gauge bosons to be greater than 1–3 TeV in a variety of models, for strong couplings. These limits are all summarized in Table 1.

#### Technicolor

Table 1: Summary of the mass limits. Symbols are defined in the text.

Process	Excluded mass range	Decay channels	Ref.
$p\overline{p}  o  ho_T  o W\pi_T$	$170 < m_{ ho_T} < 190 \; { m GeV}$	$ ho_T  ightarrow W \pi_T$	[13]*
	for $m_{\pi_T} pprox m_{ ho_T}/2$	$\pi^0_T  o bar b$	
		$\pi_T^{\pm}  o b ar c$	1
$p\bar{p} \to \omega_T \to \gamma \pi_T$	$140 < m_{\omega_T} < 290 \; { m GeV}$	$\omega_T \rightarrow \gamma \pi_T$	[15]
	for $m_{\pi_T} \approx m_{\omega_T}/3$	$\pi_T^0  o b ar b$	
	and $M_T = 100 \text{ GeV}$	$\pi_T^{ ext{\pm}} o b\overline{c}$	
$p\overline{p}  ightarrow \omega_T/ ho_T$	$m_{\omega_T} = m_{ ho_T} < 250 \; \mathrm{GeV}$	$\omega_T/\rho_T \to \ell^+\ell^-$	$[16]^*$
	for $m_{\omega_T} < m_{\pi_T} + m_W$ or $M_T > 300 \text{ GeV}$		
$e^+e^-  o \omega_T/ ho_T$		$\rho_T \to WW$ ,	[10]*
$\epsilon$ $\epsilon$ $\rightarrow \omega_T/\rho_T$	$m_{\omega_T} = m_{\rho_T} < 190 \text{ GeV}$	$egin{array}{c}  ho_T  ightarrow ww, \ W\pi_T, \ \pi_T\pi_T \end{array}$	[18]*
		$\omega_T \to \gamma \pi_T$	
		$\pi^0_{T}  o bar{b}$	
	200	$\pi_T^{\stackrel{\bullet}{=}}  o_{ar{c}}$	ro ol
$p\bar{p}  ightarrow  ho_{T8}$	$260 < m_{ ho_{T8}} < 480 \text{ GeV}$	$ \rho_{T8} \to q\overline{q}, \ gg $	[22]
$p\overline{p} ightarrow ho_{T8}$	$m_{ ho_{T8}} < 465 \; \mathrm{GeV}$	$ \rho_{T8} \to \pi_{LQ} \pi_{LQ} $	[24]
		$\pi_{LQ}  ightarrow  au q$	
$p\overline{p}  o g_{oldsymbol{t}}$	$0.3 < m_{g_t} < 0.6  { m TeV}$	$g_t  o bb$	[28]
	for $0.3m_{g_t} < \Gamma < 0.7m_{g_t}$		
$p\overline{p}  o Z'$	$m_{Z'} < 650~{ m GeV}$	Z'  o t ar t	[29]*
	for $\Gamma=0.012m_{Z'}$		-

^{*}Preliminary, not yet published.

#### Acknowledgments

We thank Tom Appelquist, Robert Harris, Chris Hill, Greg Landsberg, Kenneth Lane, and Elizabeth Simmons for help in the preparation of this article. This work was supported in part by the Department of Energy under grant DE-FG02-91ER40676.

#### References

- 1. S. Weinberg, Phys. Rev. D19, 1277 (1979).
- 2. L. Susskind, Phys. Rev. D20, 2619 (1979).
- 3. For a recent review, see R.S. Chivukula, hep-ph/9803219.
- 4. E. Eichten and K. Lane, Phys. Lett. 90B, 125 (1980).
- 5. For reviews, see E. Farhi and L. Susskind, Phys. Reports 74, 277 (1981); R.K. Kaul, Rev. Mod. Phys. 55, 449 (1983); R.S. Chivukula et al., hep-ph/9503202.
- 6. S. Dimopoulos, S. Raby, and G. L. Kane, Nucl. Phys. B182, 77 (1981).
- 7. S. Dimopoulos and L. Susskind, Nucl. Phys. B155, 237
- 8. B. Holdom, Phys. Rev. **D24**, 1441 (1981) and Phys. Lett. 150B, 301 (1985);
  - K. Yamawaki, M. Bando, and K. Matumoto, Phys. Rev. Lett. 56, 1335 (1986);
  - T.W. Appelquist, D. Karabali, and L.C.R. Wijewardhana, Phys. Rev. Lett. 57, 957 (1986);
  - T. Appelquist and L.C.R. Wijewardhana, Phys. Rev. D35, 774 (1987) and Phys. Rev. **D36**, 586 (1987).
- 9. E. Eichten and K. Lane, Phys. Lett. B388, 803 (1996).
- 10. See the review on "Electroweak Model and Constraints on New Physics" by Langacker and Erler in this Review.
- 11. E. Eichten et al., Rev. Mod. Phys. 56, 579 (1984) and Phys. Rev. **D34**, 1547 (1986).
- 12. E. Eichten, K. Lane, and J. Womersley, Phys. Lett. B405, 305 (1997).

- 13. F. Abe et al., FERMILAB-PUB-99/141-E.
- 14. T. Sjostrand, Comp. Phys. Commun. 82,74 (1994).
- F. Abe et al., Phys. Rev. Lett. 83, 3124 (1999).
- 16. DØ: M. Narain, presented at the Workshop on New Strong Dynamics at Run II (Fermilab, October 1998).
- 17. CDF: K. Maeshima, presented at the Workshop on New Strong Dynamics at Run II (Fermilab, October 1998).
- 18. L3: Search for technicolour production at lep, L3 Note 2428, June 1999, submitted to the International Europhysics Conference on High Energy Physics (Tampere, Finland, July 1999).
- Lane, Phys. Rev. D60, 075007 (1999).hep-ph/9903372.
- S. Mrenna, Phys. Lett. B461, 352 (1999).
- 21. K. Lane and M. V. Ramana, Phys. Rev. D44, 2678 (1991).
- 22. CDF: F. Abe et al., Phys. Rev. D55, R5263 (1997).
- K. Cheung and R.M.Harris, hep-ph/9610382.
- CDF: F. Abe et al., Phys. Rev. Lett. 82, 3206 (1999).
- 25. V.A. Miransky, M. Tanabashi, and K. Yamawaki, Phys. Lett. 221B, 177 (1989) and Mod. Phys. Lett. 4, 1043 (1989);
  - Y. Nambu, EFI-89-08 (1989);
  - W.J. Marciano, Phys. Rev. Lett. 62, 2793 (1989).
- W.A. Bardeen, C.T. Hill, and M. Lindner, Phys. Rev. **D41**, 1647 (1990).
- C.T. Hill, Phys. Lett. B345, 483 (1995); see also Phys. Lett. 266B, 419 (1991).
- 28. CDF: F. Abe et al., Phys. Rev. Lett. 82, 2038 (1999).
- CDF Collaboration, presented by P. Koehn at the International Europhysics Conference on High Energy Physics (Tampere, Finland, July 1999).
- 30. B.A. Dobrescu and C.T. Hill, Phys. Rev. Lett. 81, 2634
- 31. R.S. Chivukula et al., Phys. Rev. D59, 075003 (1999).
- H. Collins, A. Grant, and H. Georgi, Phys. Rev. D61, 055002 (2000).
- 33. G. Burdman and N. Evans, Phys. Rev. D59, 115005 (1999);E.H. Simmons, Nucl. Phys. **B324**, 315 (1989).
- 34. DØ: B. Abbott et al., Phys. Rev. Lett. 82, 2457 (1999).
- 35. I. Bertram and E.H. Simmons, Phys. Lett. B443, 347 (1998).
- 36. G. Burdman, R.S. Chivukula, and N. Evans, Phys. Rev. **D61**, 035009 (2000).

#### Technicolor, Quark and Lepton Compositeness

## MASS LIMITS for Resonances in Models of Dynamical Electroweak Symmetry Breaking

VALUE (GeV)	<u>CL%</u>	DOCUMENT	ID TECH	COMMENT
• • • We do not u	se the followi	ng data for aver	ages, fits, limi	ts, etc. • • •
none 350-440	95	¹ ABE	99F CDF	color-octet techni- $\rho$ , $\rho_T \rightarrow b\overline{b}$
>465	95	² ABE	99н CDF	color-octet techni- $\rho$ , $\rho_T \rightarrow 2\pi_T$
		³ ABE	99N CDF	color-octet techni- $\omega$ , $\omega_T \rightarrow \gamma b \overline{b}$
none 260-480	95	⁴ ABE	97G CDF	color-octet techni- $\rho$ , $\rho_T \rightarrow 2$ jets
none 320-480	95	⁵ ABE	95N CDF	

- ¹ ABE 99F search for a new particle X decaying into  $b\overline{b}$  in  $p\overline{p}$  collisions at  $E_{\rm CTT}=1.8$  TeV. See Fig. 7 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the upper limit on  $\sigma(p\overline{p} \to X) \times \mathbb{B}(X \to b\overline{b})$ . ABE 99F also exclude top gluons of width T=0.3M in the mass interval 280  $C_{\rm T} \times C_{\rm T}$
- 340 < m < 640 GeV, and of matrix = -m in the matrix = -m and = -m an
- 3  ABE 99H search for the techni- $\omega$  decaying into  $\gamma\pi_{\mathcal{T}}$ . The technipion is assumed to decay  $\pi_{\mathcal{T}}\to b\bar{b}$ . See Fig. 2 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the exclusion plot in the  $M_{\omega_{\mathcal{T}}}-M_{\pi_{\mathcal{T}}}$  plane.
- ⁴ ABE 97G search for a new particle X decaying into dijets in  $\rho\bar{\rho}$  collisions at  $\mathcal{E}_{Em}=1.8$  TeV. See Fig. 5 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the upper limit on  $\sigma(\rho\bar{\rho}\to X)\times \mathrm{B}(X\to 2j)$ .
- ⁵ ABE 95N search for a new particle decaying into dijets in  $p\bar{p}$  collisions at  $E_{\rm CM}=1.8$

#### REFERENCES FOR Technicolor

ABE	99F PRL 82 2038	F. Abe et al.	(CDF Collab.)
ABE	99H PRL 82 3206	F. Abe et al.	(CDF Collab.)
ABE	99N PRL 83 3124	F. Abe et al.	(CDF Collab.)
ABE	97G PR D55 R5263	F. Abe et al.	(CDF Collab.)
ABE	95N PRL 74 3538	F. Abe et al.	(CDF Collab.)

## Quark and Lepton Compositeness, Searches for

## SEARCHES FOR QUARK AND LEPTON COMPOSITENESS

Revised 1999 by K. Hagiwara (KEK) and K. Hikasa (Tohoku Univ.).

If quarks and leptons are made of constituents, then at the scale of constituent binding energies, there should appear new interactions among quarks and leptons. At energies much below the compositeness scale ( $\Lambda$ ), these interactions are suppressed by inverse powers of  $\Lambda$ . The dominant effect should come from the lowest dimensional interactions with four fermions (contact terms), whose most general chirally invariant form reads [1]

$$L = \frac{g^2}{2\Lambda^2} \left[ \eta_{LL} \, \overline{\psi}_L \, \gamma_\mu \, \psi_L \, \overline{\psi}_L \, \gamma^\mu \, \psi_L + \eta_{RR} \, \overline{\psi}_R \, \gamma_\mu \, \psi_R \, \overline{\psi}_R \, \gamma^\mu \, \psi_R \right.$$
$$\left. + 2\eta_{LR} \, \overline{\psi}_L \, \gamma_\mu \, \psi_L \, \overline{\psi}_R \, \gamma^\mu \, \psi_R \right] . \tag{1}$$

Chiral invariance provides a natural explanation why quark and lepton masses are much smaller than their inverse size  $\Lambda$ . We may determine the scale  $\Lambda$  unambiguously by using the above form of the effective interactions; the conventional method [1] is to fix its scale by setting  $g^2/4\pi = g^2(\Lambda)/4\pi = 1$  for the new strong interaction coupling and by setting the largest magnitude of the coefficients  $\eta_{\alpha\beta}$  to be unity. In the following, we denote

$$\begin{split} & \Lambda = \Lambda_{LL}^{\pm} \ \, \text{for} \ \, (\eta_{LL},\, \eta_{RR},\, \eta_{LR}) = (\pm 1,\, 0,\, 0) \;, \\ & \Lambda = \Lambda_{RR}^{\pm} \ \, \text{for} \ \, (\eta_{LL},\, \eta_{RR},\, \eta_{LR}) = (0,\, \pm 1,\, 0) \;, \\ & \Lambda = \Lambda_{VV}^{\pm} \ \, \text{for} \ \, (\eta_{LL},\, \eta_{RR},\, \eta_{LR}) = (\pm 1,\, \pm 1,\, \pm 1) \;, \\ & \Lambda = \Lambda_{AA}^{\pm} \ \, \text{for} \ \, (\eta_{LL},\, \eta_{RR},\, \eta_{LR}) = (\pm 1,\, \pm 1,\, \mp 1) \;, \end{split} \label{eq:lambda}$$

as typical examples. Such interactions can arise by constituent interchange (when the fermions have common constituents, e.g., for  $ee \rightarrow ee$ ) and/or by exchange of the binding quanta (whenever binding quanta couple to constituents of both particles).

Another typical consequence of compositeness is the appearance of excited leptons and quarks ( $\ell^*$  and  $q^*$ ). Phenomenologically, an excited lepton is defined to be a heavy lepton which shares leptonic quantum number with one of the existing leptons (an excited quark is defined similarly). For example, an excited electron  $e^*$  is characterized by a nonzero transition-magnetic coupling with electrons. Smallness of the lepton mass and the success of QED prediction for g-2 suggest chirality conservation, *i.e.*, an excited lepton should not couple to both left- and right-handed components of the corresponding lepton.

Excited leptons may be classified by  $SU(2)\times U(1)$  quantum numbers. Typical examples are:

1. Sequential type

$$\begin{pmatrix} 
u^* \\ \ell^* \end{pmatrix}_L$$
 ,  $[
u_R^*]$  ,  $\ell_R^*$ 

 $\nu_R^*$  is necessary unless  $\nu^*$  has a Majorana mass.

2. Mirror type

$$\left[
u_L^*
ight], \qquad \ell_L^*, \qquad \left(egin{array}{c}
u^* \ \ell^*\end{array}
ight)_R.$$

3. Homodoublet type

$$\begin{pmatrix} \nu^* \\ \ell^* \end{pmatrix}_L$$
,  $\begin{pmatrix} \nu^* \\ \ell^* \end{pmatrix}_R$ .

Similar classification can be made for excited quarks.

Excited fermions can be pair produced via their gauge couplings. The couplings of excited leptons with Z are listed in the following table (for notation see Eq. (1) in "Standard Model of Electroweak Interactions"):

	Sequential type	Mirror type	Homodoublet type
$V^{\ell^*}$	$-\frac{1}{2}+2\sin^2\theta_W$	$-\frac{1}{2} + 2\sin^2\theta_W$	$-1 + 2\sin^2\! heta_W$
$A^{\ell^*}$	$-\frac{1}{2}$	$+\frac{1}{2}$	0
$V^{ u_D^\star}$	$+\frac{1}{2}$	$+\frac{1}{2}$	+1
$A^{ u_D^*}$	$+\frac{1}{2}$	$-\frac{1}{2}$	0
$V^{ u_M^*}$	0	0	
$A^{ u_M^*}$	+1	-1	

Here  $\nu_D^* (\nu_M^*)$  stands for Dirac (Majorana) excited neutrino. The corresponding couplings of excited quarks can be easily obtained. Although form factor effects can be present for the gauge couplings at  $q^2 \neq 0$ , they are usually neglected.

In addition, transition magnetic type couplings with a gauge boson are expected. These couplings can be generally parametrized as follows:

$$\mathcal{L} = \frac{\lambda_{\gamma}^{(f^{*})} e}{2m_{f^{*}}} \overline{f}^{*} \sigma^{\mu\nu} (\eta_{L} \frac{1-\gamma_{5}}{2} + \eta_{R} \frac{1+\gamma_{5}}{2}) f F_{\mu\nu} 
+ \frac{\lambda_{Z}^{(f^{*})} e}{2m_{f^{*}}} \overline{f}^{*} \sigma^{\mu\nu} (\eta_{L} \frac{1-\gamma_{5}}{2} + \eta_{R} \frac{1+\gamma_{5}}{2}) f Z_{\mu\nu} 
+ \frac{\lambda_{W}^{(f^{*})} g}{2m_{f^{*}}} \overline{\ell}^{*} \sigma^{\mu\nu} \frac{1-\gamma_{5}}{2} \nu W_{\mu\nu} 
+ \frac{\lambda_{W}^{(\nu^{*})} g}{2m_{\nu^{*}}} \overline{\nu}^{*} \sigma^{\mu\nu} (\eta_{L} \frac{1-\gamma_{5}}{2} + \eta_{R} \frac{1+\gamma_{5}}{2}) \ell W_{\mu\nu}^{\dagger} 
+ \text{h.c.},$$
(3)

where  $g=e/\sin\theta_W$ ,  $F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu$  is the photon field strength,  $Z_{\mu\nu}=\partial_\mu Z_\nu-\partial_\nu Z_\mu$ , etc. The normalization of the coupling is chosen such that

$$\max(|\eta_L|, |\eta_R|) = 1.$$

Chirality conservation requires

$$\eta_L \eta_R = 0 \ . \tag{4}$$

These couplings can arise from  $SU(2)\times U(1)$ -invariant higher-dimensional interactions. A well-studied model is the interaction of homodoublet type  $\ell^*$  with the Lagrangian [2,3]

$$\mathcal{L} = \frac{1}{2\Lambda} \overline{L}^* \sigma^{\mu\nu} (g f \frac{\tau^a}{2} W^a_{\mu\nu} + g' f' Y B_{\mu\nu}) \frac{1 - \gamma_5}{2} L + \text{h.c.} , \quad (5)$$

where L denotes the lepton doublet  $(\nu,\ell)$ ,  $\Lambda$  is the compositeness scale, g, g' are SU(2) and U(1) $_Y$  gauge couplings, and  $W^a_{\mu\nu}$  and  $B_{\mu\nu}$  are the field strengths for SU(2) and U(1) $_Y$  gauge fields. The same interaction occurs for mirror-type excited leptons. For sequential-type excited leptons, the  $\ell^*$  and  $\nu^*$  couplings become unrelated, and the couplings receive the extra suppression of  $(250\,\mathrm{GeV})/\Lambda$  or  $m_{L^*}/\Lambda$ . In any case, these couplings satisfy the relation

$$\lambda_W = -\sqrt{2}\sin^2\theta_W(\lambda_Z \cot\theta_W + \lambda_\gamma) \ . \tag{6}$$

Additional coupling with gluons is possible for excited quarks:

$$\mathcal{L} = \frac{1}{2\Lambda} \overline{Q}^* \sigma^{\mu\nu} \left( g_s f_s \frac{\lambda^a}{2} G^a_{\mu\nu} + g f \frac{\tau^a}{2} W^a_{\mu\nu} + g' f' Y B_{\mu\nu} \right) \times \frac{1 - \gamma_5}{2} Q + \text{h.c.} ,$$
 (7)

where Q denotes a quark doublet,  $g_s$  is the QCD gauge coupling, and  $G^a_{\mu\nu}$  the gluon field strength.

Some experimental analyses assume the relation  $\eta_L = \eta_R = 1$ , which violates chiral symmetry. We encode the results of such analyses if the crucial part of the cross section is proportional to the factor  $\eta_L^2 + \eta_R^2$  and the limits can be reinterpreted as those for chirality conserving cases  $(\eta_L, \eta_R) = (1,0)$  or (0,1) after rescaling  $\lambda$ .

Several different conventions are used by LEP experiments to express the transition magnetic couplings. To facilitate comparison, we reexpress these in terms of  $\lambda_Z$  and  $\lambda_{\gamma}$  using the following relations and taking  $\sin^2 \theta_W = 0.23$ . We assume chiral couplings, i.e., |c| = |d| in the notation of Ref. 2.

1. ALEPH (charged lepton and neutrino)

$$\lambda_Z^{\text{ALEPH}} = \frac{1}{2} \lambda_Z$$
 (1990 papers) (8a)

$$\frac{2c}{\Lambda} = \frac{\lambda_Z}{m_{\ell^*}[\text{or } m_{\nu^*}]} \quad \text{(for } |c| = |d|)$$
 (8b)

2. ALEPH (quark)

$$\lambda_{\mathbf{u}}^{\text{ALEPH}} = \frac{\sin \theta_W \cos \theta_W}{\sqrt{\frac{1}{4} - \frac{2}{3} \sin^2 \theta_W + \frac{8}{9} \sin^4 \theta_W}} \lambda_Z = 1.11 \lambda_Z \quad (9)$$

3. L3 and DELPHI (charged lepton)

$$\lambda^{\text{LS}} = \lambda_Z^{\text{DELPHI}} = -\frac{\sqrt{2}}{\cot \theta_W - \tan \theta_W} \lambda_Z = -1.10 \lambda_Z$$
 (10)

4. L3 (neutrino)

$$f_Z^{L3} = \sqrt{2}\lambda_Z \tag{11}$$

5. OPAL (charged lepton)

$$\frac{f^{\text{OPAL}}}{\Lambda} = -\frac{2}{\cot \theta_W - \tan \theta_W} \frac{\lambda_Z}{m_{\ell^*}} = -1.56 \frac{\lambda_Z}{m_{\ell^*}} \tag{12}$$

6. OPAL (quark)

$$\frac{f^{\mathrm{OPAL}}c}{\Lambda} = \frac{\lambda_Z}{2m_{q^*}} \quad (\text{for } |c| = |d|)$$
 (13)

7. DELPHI (charged lepton)

$$\lambda_{\gamma}^{\mathrm{DELPHI}} = -\frac{1}{\sqrt{2}} \, \lambda_{\gamma}$$
 (14)

If leptons are made of color triplet and antitriplet constituents, we may expect their color-octet partners. Transitions between the octet leptons ( $\ell_8$ ) and the ordinary lepton ( $\ell$ ) may take place via the dimension-five interactions

$$\mathcal{L} = \frac{1}{2\Lambda} \sum_{\ell} \left\{ \bar{\ell}_{8}^{\alpha} g_{S} F_{\mu\nu}^{\alpha} \sigma^{\mu\nu} \left( \eta_{L} \ell_{L} + \eta_{R} \ell_{R} \right) + h.c. \right\}$$
 (15)

where the summation is over charged leptons and neutrinos. The leptonic chiral invariance implies  $\eta_L$   $\eta_R=0$  as before.

#### References

- E.J. Eichten, K.D. Lane, and M.E. Peskin, Phys. Rev. Lett. 50, 811 (1983).
- K. Hagiwara, S. Komamiya, and D. Zeppenfeld, Z. Phys. C29, 115 (1985).
- N. Cabibbo, L. Maiani, and Y. Srivastava, Phys. Lett. 139B, 459 (1984).

### Quark and Lepton Compositeness

CCALE	INDITE 6-		Interactions:	4/0000
SCALE	LIMITS to	r Contact	Interactions:	Meeeel

Limits are for  $\Lambda_{LL}^{\pm}$  only. For other cases, see each reference.

$\Lambda_{LL}^+(TeV)$	$\Lambda_{LL}^{-}(TeV)$	CL%	DOCUMENT ID		TECN_	COMMENT
> 3.5	> 3.2	95	1 BARATE	001	ALEP	E _{cm} = 130-183 GeV
>3.1	> 3.8	95	ABBIENDI	99	OPAL	E _{CIN} = 130-136, 161-172, 183 GeV
• • • We	do not use	the fol	lowing data for aver	rages	, fits, lin	
>2.2	>2.8	95	ABREU	99A	DLPH	E _{cm} = 130-172 GeV
>2.7	>2.4	95	ACCIARRI	<b>98</b> J	L3	E _{cm} = 130-172 GeV
>3.0	>2.5	95	ACKERSTAFF	98v	OPAL	E _{cm} = 130-172 GeV
>2.4	>2.2	95	ACKERSTAFF	97c	OPAL	E _{cm} = 130-136, 161 GeV
>1.7	>2.3	95	² ARIMA	97	VNS	E _{cm} = 57.77 GeV
>1.6	>2.0	95		93Q	ALEP	E _{CM} =88.25-94.25 GeV
>1.6		95	^{3,4} BUSKULIC	93Q	RVUE	
	>2.2	95	BUSKULIC	93Q	RVUE	
	>3.6	95	⁵ KROHA	92	RVUE	
>1.3		95	⁵ KROHA	92	RVUE	
>0.7	>2.8	95	BEHREND	91c	CELL	E _{cm} =35 GeV
>1.3	>1.3	95	KIM	89	AMY	E _{cm} =50~57 GeV
>1.4	>3.3	95	6 BRAUNSCH	88	TASS	E _{cm} =12-46.8 GeV
>1.0	>0.7	95	⁷ FERNANDEZ	87B	MAC	E _{cm} =29 GeV
>1.1	>1.4	95	8 BARTEL	86C	JADE	E _{cm} =12-46.8 GeV
>1.17	>0.87	95	9 DERRICK	86	HRS	E _{cm} =29 GeV
>1.1	>0.76	95	¹⁰ BERGER	85B	PLUT	E _{CM} =34.7 GeV
>3.0 >2.4 >1.7 >1.6 >1.6 >1.3 >0.7 >1.3 >1.4 >1.0 >1.1	>2.5 >2.2 >2.3 >2.0 >2.2 >3.6 >2.8 >1.3 >0.7 >1.4 >0.87 >0.76	95 95 95 95 95 95 95 95 95 95 95 95 95 9	ACKERSTAFF ACKERSTAFF 2 ARIMA 3 BUSKULIC 3,4 BUSKULIC 5 KROHA 5 KROHA BEHREND KIM 6 BRAUNSCH 7 FERNANDES 8 BARTEL 9 DERRICK	98V 97C 97 93Q 93Q 92 91C 89 88 87B 86C 86	OPAL OPAL VNS ALEP RVUE RVUE RVUE RVUE AMY TASS MAC JADE HRS	$E_{\text{cm}}^{-}= 130\text{-}172 \text{ GeV}$ $E_{\text{cm}} = 130\text{-}136, 161 \text{ GeV}$ $E_{\text{cm}} = 57.77 \text{ GeV}$ $E_{\text{cm}} = 88.25\text{-}94.25 \text{ GeV}$ $E_{\text{cm}} = 88.25\text{-}94.25 \text{ GeV}$ $E_{\text{cm}} = 50\text{-}57 \text{ GeV}$ $E_{\text{cm}} = 12\text{-}46.8 \text{ GeV}$ $E_{\text{cm}} = 29 \text{ GeV}$ $E_{\text{cm}} = 12\text{-}46.8 \text{ GeV}$ $E_{\text{cm}} = 29 \text{ GeV}$

¹ BARATE 00: limits are from  $e^+e^- \rightarrow q\overline{q}$  cross section and jet-charge asymmetry at  $^{130-183}$  GeV.  2  Z-Z' mixing is assumed to be zero.

3 BUSKUL 10 930 uses the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted

 $^{\rm 4}$  for the limit.  $^{\rm 4}$  This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data re-

. Inis BUSKULIC. 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data reanalyzed by KROHA 92. 5 KROHA 92 limit is from fit to BERGER 85B, BARTEL 86C, DERRICK 86B, FERNANDEZ 87B, BRAUNSCHWEIG 88, BEHREND 91B, and BEHREND 91C. The fit gives  $\eta/\Lambda_{LL}^2=+0.230\pm0.206~{\rm TeV}^{-2}.$ 

⁶ BRAUNSCHWEIG 88 assumed  $m_Z = 92$  GeV and  $\sin^2 \theta_W = 0.23$ .

⁷ FERNANDEZ 87B assumed  $\sin^2 \theta_W^{-} = 0.22$ .

⁸ BARTEL 86c assumed  $m_Z = 93$  GeV and  $\sin^2 \theta_W = 0.217$ .

9 DERRICK 86 assumed  $m_Z^2 = 93$  GeV and  $g_V^2 = (-1/2 + 2\sin^2\theta_W)^2 = 0.004$ .

 10  BERGER 85B assumed  $m_Z=93$  GeV and  $\sin^2\!\theta_W=0.217$ .

#### SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$

Limits are for  $\Lambda_{LL}^{\pm}$  only. For other cases, see each reference.

$\Lambda_{LL}^{+}(TeV)$	$\Lambda_{LL}^{\sim}(\text{TeV})$	CL%		DOCUMENT ID		TECN	COMMENT
> 4.0	> 4.7	95	11	BARATE	001	ALEP	E _{cm} = 130–183 GeV
> 4.5	>4.3	95		ABBIENDI	99	OPAL	E _{cm} = 130-136, 161-172, 183 GeV
• • • We	do not use	the fol	lowi	ng data for aver	ages,		
>3.4	>2.7	95		ABREU	99A	DLPH	E _{cm} = 130-172 GeV
>3.6	>2.4	95		ACCIARRI	98J	L3	E _{cm} = 130-172 GeV
>2.9	>3.4	95		ACKERSTAFF	98v	OPAL	E _{cm} = 130-172 GeV
>3.1	>2.0	95		MIURA	98	VNS	E _{cm} = 57.77 GeV
>2.4	>2.9	95		ACKERSTAFF	97c	OPAL	E _{cm} = 130-136, 161 GeV
>1.7	>2.2	95	12	VELISSARIS	94	AMY	E _{cm} =57.8 GeV
>1.3	>1.5	95		BUSKULIC	93Q	ALEP	E _{cm} =88.25-94.25 GeV
>2.6	>1.9	95 1	2,13	BUSKULIC	93Q	RVUE	
>2.3	>2.0	95		HOWELL	92	TOPZ	E _{cm} =52-61.4 GeV
	>1.7	95	14	KROHA	92	RVUE	
>2.5	>1.5	95		BEHREND	91c	CELL	E _{cm} =35-43 GeV
>1.6	>2.0	95	15	ABE	901	VNS	E _{cm} =50-60.8 GeV
>1.9	>1.0	95		KIM	89	AMY	E _{cm} =50-57 GeV
>2.3	>1.3	95		BRAUNSCH	88D	TAS5	E _{cm} =30-46.8 GeV
>4.4	>2.1	95	16	BARTEL	8 <b>6</b> c	JADE	E _{cm} =12-46.8 GeV
>2.9	>0.86	95	17	BERGER			E _{cm} =34.7 GeV
11 BARA	TE 00ı lim	its are f	rom	$e^+e^- \rightarrow q\bar{q}$	cros	s section	and jet-charge asymmetry at

imits are from e+ e= qq cross section and jet-charge asyn

130-183 GeV.

12 BUSKULIC 930 and VELISSARIS 94 use the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit.

¹³ This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data re-analyzed by KROHA 92.

14 KROHA 92 limit is from fit to BARTEL 86C, BEHREND 87C, BRAUNSCHWEIG 88D, BRAUNSCHWEIG 89c, ABE 90i, and BEHREND 91c. The fit gives  $\eta/\Lambda_{LL}^2=-0.155\pm$ 0.095 TeV⁻². 15 ABE 901 assumed  $m_Z$  =91.163 GeV and  $\sin^2 \theta_W$  = 0.231. 16 BARTEL 86c assumed  $m_Z$  = 93 GeV and  $\sin^2 \theta_W$  = 0.217.

 $^{17}\,\mathrm{BERGER}$  85 assumed  $m_Z=93~\mathrm{GeV}$  and  $\mathrm{sin}^2\theta_W=0.217.$ 

#### SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for  $\Lambda_{LL}^{\pm}$  only. For other cases, see each reference.

$\Lambda_{LL}^{+}(TeV)$	Λ _{LL} (TeV)	CL%	DOCUMENT ID	TECN	COMMENT
> <b>3.9</b> > 3.8	> 3.7 > 4.0	95 95	BARATE ABBIENDI		E _{cm} = 130-183 GeV E _{cm} = 130-136, 161-172, 183 GeV

• • •	We do not	use the	following data for aver	ages, fits, lin	nits, etc. • • •
>2.8	>2.6	95	ABREU	99A DLPH	E _{cm} = 130–172 GeV
>2.4	>2.8	95	ACCIARRI	98J L3	E _{cm} = 130-172 GeV
>2.3	>3.7	95	ACKERSTAFF	98V OPAL	E _{cm} = 130-172 GeV
>1.9	>3.0	95	ACKERSTAFF	97c OPAL	E _{cm} = 130-136, 161 GeV
>1.4	>2.0	95	¹⁹ VELISSARIS	94 AMY	E _{cm} =57.8 GeV
>1.0	>1.5	95	19 BUSKULIC	93Q ALEP	E _{cm} =88.25-94.25 GeV
>1.8	>2.3	95	^{19,20} BUSKULIC	93Q RVUE	
>1.9	>1.7	95	HOWELL	92 TOPZ	E _{cm} =52-61.4 GeV
>1.9	>2.9	95	²¹ KROHA	92 RVUE	
>1.6	>2.3	95	BEHREND	91c CELL	E _{cm} =35-43 GeV
>1.8	>1.3	95	²² ABE	90i VNS	E _{cm} =50-60.8 GeV
>2.2	>3.2	95	23 BARTEL	86 JADE	E _{cm} =12−46.8 GeV

86 JADE *E*_{cm}=12-46.8 GeV  18  BARATE 001 limits are from  $e^+\,e^-\,
ightarrow\,\,q\,\overline{q}$  cross section and jet-charge asymmetry at

19 BUSKULIC 93Q and VELISSARIS 94 use the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit.

20 This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data reanalyzed by KROHA 92.
21 KROHA 92 limit is from fit to BARTEL 86C BEHREND 89B, BRAUNSCHWEIG 89C,

ABE 90), and BEHREND 91c. The fit gives  $\eta/\Lambda_{LL}^2=+0.095\pm0.120~{\rm TeV}^{-2}$ .  22  ABE 90) assumed  $m_Z=$ 91.163 GeV and  $\sin^2\theta_W=0.231$ .

²³BARTEL 86 assumed  $m_Z = 93$  GeV and  $\sin^2 \theta_W = 0.217$ .

#### SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for  $\Lambda_{LL}^{\pm}$  only. For other cases, see each

,,,	cici ciicc.					
$\Lambda_{LL}^{+}(TeV)$	$\Lambda_{LL}^{-}(TeV)$	CL%	DOCUMENT ID		TECN	COMMENT
> 5.3	> 5.5	95	24 BARATE			E _{cm} = 130-183 GeV
• • • \	Ne do not use	e the	following data for aver	ages,	, fits, lin	nits, etc. • • •
>5.2	>5.3	95	ABBIENDI	99	OPAL	E _{cm} = 130-136, 161-172, 183 GeV
>4.4	>4.2	95	ABREU	99A	DLPH	E _{cm} = 130-172 GeV
>4.0	>3.1	95	²⁵ ACCIARRI	98J	L3	E _{cm} = 130-172 GeV
>3.4	>4.4	95	ACKERSTAFF	98v	OPAL	E _{cm} = 130-172 GeV
>2.7	>3.8	95	ACKERSTAFF	97c	OPAL	E _{cm} = 130-136, 161 GeV
>3.0	>2.3	95	^{25,26} BUSKULIC	93Q	ALEP	E _{cm} =88.25-94.25 GeV
>3.5	>2.8	95	^{26,27} BUSKULIC	93Q	RVUE	
>2.5	>2.2	95	28 HOWELL	92	TOPZ	E _{cm} =52-61.4 GeV
>3.4	>2.7	95	²⁹ KROHA	92	RVUE	

 24 BARATE 001 limits are from  $e^+e^- o q \overline{q}$  cross section and jet-charge asymmetry at

25 from  $e^+e^-$ ,  $e^+e^-$ ,  $\mu^+\mu^-$ , and  $\tau^+\tau^-$ .

Ilimit is better than the statistically expected sensitivity for the limit, the latter is adopted

27 for the limit. This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data re-

 $= -0.0200 \pm 0.0666 \text{ TeV}^{-2}$ .

#### SCALE LIMITS for Contact Interactions: $\Lambda(eegg)$

Limits are for  $\Lambda_{LL}^{\pm}$  only. For other cases, see each reference.

$\Lambda_{LL}^{+}(TeV)$	Λ _{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
> 5.4	> 6.2	95	30 BARATE	001	ALEP	(e e q q)
> 5.6	> 4.9	95	31 BARATE	100	ALEP	(eebb)
• • • We	do not use	the folk	wing data for aver	ages,	fits, lim	its, etc. • • •
>4.4	>2.8	95	32 ABBIENDI	99	OPAL	(e e q q)
>4.0	>4.8	95	33 ABBIENDI	99	OPAL	(eebb)
>3.3	>4.2	95	34 ABBOTT	99D	D0	(eeqq)
>2.4	>2.8	95	35 ABREU	99A	DLPH	(eeqq) (d or s quark)
>4.4	>3.9	95	35 ABREU		DLPH	(eebb)
>1.0	>2.4	95	35 ABREU	99A	DLPH	(eeuu)
>1.0	>2.1	95	35 ABREU	99A	DLPH	(eecc)
>4.0	>3.4	95	36 ZARNECKI	99	RVUE	(eedd)
>4.3	>5.6	95	36 ZARNECKI	99	RVUE	(eeuu)
>3.0	>2.1	95	37 ACCIARRI	<b>98</b> J		(e e q q)
>3.4	>2.2	95	38 ACKERSTAFF	98v	OPAL	(e e q q)
>4.0	>2.8	95	39 ACKERSTAFF	98v	OPAL	(eebb)
>2.5	>3.7	95	⁴⁰ ABE		CDF	(eeqq) (isosinglet)
>2.5	>2.1	95	41 ACKERSTAFF			(e e q q)
>3.1	>2.9	95	⁴² ACKERSTAFF	97c	OPAL	(eebb)
>7.4	>11.7	95	⁴³ DEANDREA	97	RVUE	eeuu, atomic parity viola- tion
>2.3	>1.0	95	44 AID	95	H1	(eeqq) (u, d quarks)
1.7	>2.2	95	⁴⁵ ABE	91 D	CDF	(eeqq) (u, d quarks)
>1.2		95	⁴⁶ ADACHI	91	TOPZ	(eegg)
,						(flavor-universal)
	>1.6	95	⁴⁶ ADACHI	91	TOPZ	(eeqq)
						(flavor-universal)
>0.6	>1.7	95	47 BEHREND	91 C	CELL	(eecc)
>1.1	>1.0	95	47 BEHREND	91 c	CELL	(eebb)
>0.9		95	⁴⁸ ABE	89L	VNS	(e e q q)
,						(flavor-universal)
	>1.7	95	⁴⁸ ABE	89L	VNS	(eèga)
						(flavor-universal)
>1.05	>1.61	95	⁴⁹ HAGIWARA	89	RVUE	(eecc)
>1.21	>0.53	95	⁵⁰ HAGIWARA	89	RVUE	(eebb)
/	, 5.55				00	\-·/

- 30 BARATE 001 limits are from  $e^+e^- o qar q$  cross section and jet-charge asymmetry at 130–183 GeV.  31  BARATE 00: limits are from  $R_b$  and jet-charge asymmetry at 130–183 GeV.
- ³² ABBIENDI 99 limits are from  $e^+e^- \rightarrow q\bar{q}$  cross section at 130–136, 161–172, 183
- 33 ABBIENDI 99 limits are from  $R_b$  at 130–136, 161–172, 183 GeV.
- ³⁴ ABBOTT 990 limits are from  $e^+e^-$  mass distribution in  $p\bar{p} \rightarrow e^+e^-X$  at  $E_{cm}=$
- ³⁵ ABREU 99A limits are from flavor-tagged  $e^+e^- \rightarrow q\bar{q}$  cross section at 130–172 GeV. 36 ZARNECKI 99 use data from HERA, LEP, Tevatron, and various low-energy experiments.
- ³⁷ ACCIARRI 98J limits are from  $e^+e^- \rightarrow q \overline{q}$  cross section at  $E_{\rm cm}=$  130–172 GeV. ³⁸ ACKERSTAFF 98V limits are from  $e^+e^- \rightarrow q \overline{q}$  at  $E_{\rm cm}=$  130–172 GeV.
- 39  ACKERSTAFF 98V limits are from  $R_b$  measurements at  $E_{\rm cm} =$  130–172 GeV.
- ⁴⁰ ABE 97T limits are from  $e^+e^-$  mass distribution in  $\overline{p}p \rightarrow e^+e^-$  X at  $E_{cm}=1.8$  TeV.
- ⁴¹ ACKERSTAFF 97c limits are from  $e^+\,e^ightarrow\,q\,\overline{q}$  cross section at  $E_{\rm CM}=130$ –136 GeV
- 42 ACKERSTAFF 97c limits are  $R_b$  measurements at  $E_{\rm cm}=133$  GeV and 161 GeV.
- 43 DEANDREA 97 limit is from atomic parity violation of cesium. The limit is eluded if the contact interactions are parity conserving. 

  44 AID 95 limits are from the  $Q^2$  spectrum measurement of  $ep \rightarrow eX$ . 

  45 ABE 910 limits are from  $e^+e^-$  mass distribution in  $p\bar{p} \rightarrow e^+e^-X$  at  $E_{\rm CM}=1.8\,{\rm TeV}$ .

- 46  ADACHI 91 limits are from differential jet cross section. Universality of  $\Lambda(e\,e\,q\,q)$  for five flavors is assumed.

  47 BEHREND 91C is from data at  $E_{\rm cm} = 35-43$  GeV.
- ⁴⁸ ABE 89L limits are from jet charge asymmetry. Universality of  $\Lambda(eeqq)$  for five flavors
- is assumed.

  49 The HAGIWARA 89 limit is derived from forward-backward asymmetry measurements of D/D* mesons by ALTHOFF 83C, BARTEL 84E, and BARINGER 88.
- 50 The HAGIWARA 89 limit is derived from forward-backward asymmetry measurement of b hadrons by BARTEL 84D.

#### SCALE LIMITS for Contact Interactions: $\Lambda(\mu\mu qq)$

$\Lambda_{LL}^{+}(TeV)$	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
> 2.9	> 4.2	95 51	ABE	97T	CDF	$(\mu\mu qq)$ (isosinglet)
• • • W	e do not us	e the follow	ing data for aver	ages	fits, lir	nits, etc. • • •
>1.4	>1.6	95	ABE	92B	CDF	$(\mu\mu qq)$ (isosinglet)
⁵¹ ABE	97T limits a	re from $\mu^+$	$\mu^-$ mass distribi	ution	in <u>7</u> p -	$\rightarrow \mu^+ \mu^- X$ at $E_{cm} = 1.8$ TeV.

#### SCALE LIMITS for Contact Interactions: $\Lambda(\ell\nu\ell\nu)$

VALUE (TeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
>3.10	90	⁵² JODIDIO	86	SPEC	$\Lambda_{LR}^{\pm}(\nu_{\mu}\nu_{e}\mu e)$	
• • • We do no	t use the followi	ng data for averag	es, fit	s, limits,	etc. • • •	
>3.8		⁵³ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{+}(\tau \nu_{\tau} e \nu_{e})$	
>8.1		⁵³ DIAZCRUŻ				
>4.1		⁵⁴ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{+}(\tau \nu_{\tau} \mu \nu_{\mu})$	
>6.5		⁵⁴ DIAZCRUZ	94	RVUE	$\Lambda_{II}^{-}(\tau \nu_{\tau} \mu \nu_{\mu})$	

- ⁵² JODIDIO 86 limit is from  $\mu^+ \to \overline{\nu}_\mu \, e^+ \, \nu_e$ . Chirality invariant interactions  $L = (g^2/\Lambda^2)$  $\left[\eta_{LL}\left(\overline{\nu}_{\mu L}\gamma^{\alpha}\mu_{L}\right)\left(\overline{e}_{L}\gamma_{\alpha}\nu_{eL}\right)+\eta_{LR}\left(\overline{\nu}_{\mu L}\gamma^{\alpha}\nu_{eL}\left(\overline{e}_{R}\gamma_{\alpha}\mu_{R}\right)\right]\text{ with }g^{2}/4\pi=1\text{ and }$  $(\eta_{LL},\eta_{LR})=(0,\pm1)$  are taken. No limits are given for  $\Lambda^\pm_{LL}$  with  $(\eta_{LL},\eta_{LR})=(\pm1,0)$ . For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.
- Collect interactions, see then GAL. 53 DIAZCRUZ 94 limits are from  $\Gamma(\tau \to e\nu\nu)$  and assume flavor-dependent contact interactions with  $\Lambda(\tau\nu_{\tau}e\nu_{e}) \ll \Lambda(\mu\nu_{\mu}e\nu_{e})$ .
- ⁵⁴ DIAZCRUZ 94 limits are from  $\Gamma(\tau \to \mu \nu \nu)$  and assume flavor-dependent contact interactions with  $\Lambda(\tau \nu_{\tau} \mu \nu_{\mu}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$ .

#### SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$

Limits are for  $\Lambda_{II}^{\pm}$  with color-singlet isoscalar exchanges among  $u_L$ 's and  $d_I$ 's only,

unless oth	erwise noted. Se	e EICHTEN 84 for	details. TECN	COMMENT
>2.7	95	55 ABBOTT	99c D0	$p\bar{p} \rightarrow \text{dijet mass. } \Lambda_{LL}^+$
• • • We do no	ot use the followi	ng data for averag	es, fits, limit	
>2.1	95	⁵⁶ ABBOTT	98G D0	$p\overline{p} \rightarrow \text{dijet angl. } \Lambda_{II}^+$
		57 BERTRAM	98 RVUI	E pp → dijet mass
		⁵⁸ ABE	96 CDF	$p\overline{p} \rightarrow \text{jets inclusive}$
>1.6	95	⁵⁹ ABE	96s CDF	$p\overline{p} \rightarrow \text{dijet angl.; } \Lambda_{l,l}^+$
>1.3	95	⁶⁰ ABE	93G CDF	$p\overline{p} \rightarrow dijet mass$
>1.4	95	⁶¹ ABE	92D CDF	$p\overline{p} \rightarrow \text{jets inclusive}$
>1.0	99	⁶² ABE	92м CDF	$p \overline{p} \rightarrow \text{dijet angl.}$
>0.825	95	⁶³ ALITTI	91B UA2	$p\overline{p} \rightarrow \text{jets inclusive}$
>0.700	95	⁶¹ ABE	89 CDF	$p \overline{p} \rightarrow \text{jets inclusive}$
>0.330	95	⁶⁴ ABE	89H CDF	$p\bar{p} \rightarrow \text{dijet angl.}$
>0.400	95	⁶⁵ ARNISON	86c UA1	$p\vec{p} \rightarrow jets inclusive$
>0.415	95	66 ARNISON	86D UA1	$p\overline{p} \rightarrow \text{dijet angl.}$
>0.370	95	67 APPEL	85 UA2	$p\overline{p} \rightarrow \text{jets inclusive}$
>0.275	95	⁶⁸ BAGNAIA	84c UA2	Repl. by APPEL 85

- ⁵⁵ The quoted limit is from inclusive dijet mass spectrum in  $p\overline{p}$  collisions at  $E_{\sf cm}$ =1.8 TeV. ABBOTT 99c also obtain  $\Lambda_{11}^{-} > 2.4$  TeV. All quarks are assumed composite.
- ⁵⁶ ABBOTT 98G limit is from dijet angular distribution in  $p\bar{p}$  collisions at  $E_{\rm cm}=$  1.8 TeV. All quarks are assumed composite.
- All quarks are assumed composite.  57  BERTRAM 98 obtain limit on the scale of color-octet axial-vector flavor-universal contact interactions:  $\Lambda_{AB} > 2.1$  TeV. They also obtain a limit  $\Lambda_{VB} > 2.4$  TeV on a color-octet flavor-universal vectorial contact interaction.  58  ABE 96 finds that the inclusive jet cross section for  $E_T > 200$  GeV is significantly higher
- than the  $\mathcal{O}(\alpha_s^3)$  perturbative QCD prediction. This could be interpreted as the effect of a contact interaction with  $\Lambda_{LL}\sim 1.6$  TeV. However, ABE 96 state that uncertainty in the parton distribution functions, higher-order QCD corrections, and the detector calibration may possibly account for the effect.
- ⁵⁹ ABE 96s limit is from dijet angular distribution in  $p\overline{p}$  collisions at  $E_{cm}=1.8$  TeV. The limit for  $\Lambda_{1L}^-$  is > 1.4 TeV. ABE 96s also obtain limits for flavor symmetric contact interactions among all quark flavors:  $\Lambda_{LL}^{+} > 1.8 \, \text{TeV}$  and  $\Lambda_{LL}^{-} > 1.6 \, \text{TeV}$ .
- 60  ABE 93G limit is from dijet mass distribution in  $p\bar{p}$  collisions at  $E_{Cm}=1.8$  TeV. The limit is the weakest from several choices of structure functions and renormalization scale. I Limit is from inclusive jet cross-section data in  $p\bar{p}$  collisions at  $E_{Cm}=1.8$  TeV. The limit takes into account uncertainties in choice of structure functions and in choice of
- 62 ABE 92м limit is from dijet angular distribution for  $m_{
  m dijet}$  >550 GeV in  $par{p}$  collisions at  $E_{\mathsf{cm}} = 1.8 \; \mathsf{TeV}.$
- 63 ALITTI 91B limit is from inclusive jet cross section in  $p\bar{p}$  collisions at  $\mathcal{E}_{CM}=630$  GeV. The limit takes into account uncertainties in choice of structure functions and in choice of process scale.
- 64  ABE 89H limit is from dijet angular distribution for  $m_{
  m dijet} > 200$  GeV at the Fermilab Tevatron Collider with  $E_{
  m cm} = 1.8$  TeV. The QCD prediction is quite insensitive to choice of structure functions and choice of process scale.
- 65  ARNISON 86C limit is from the study of inclusive high- $p_T$  jet distributions at the CERN  $\bar{p}p$  collider ( $E_{\rm CM}=546$  and 630 GeV). The QCD prediction renormalized to the low- $p_T$  region gives a good fit to the data.
- 66 ARNISON 860 limit is from the study of dijet angular distribution in the range 240 < m(dijet) < 300 GeV at the CERN  $\bar{p}p$  collider ( $E_{\text{CM}} = 630 \text{ GeV}$ ). QCD prediction using EHLQ structure function (EICHTEN 84) with  $\Lambda_{QCD}=0.2$  GeV for the choice of  $Q^2=$  $p_T^2$  gives the best fit to the data.
- $\overline{\rho}_P$  collider ( $E_{\rm CM}=630~{\rm GeV}$ ). The QCD prediction renormalized to the low- $\overline{\rho}_T$  region gives a good description of the data.
- 68 BAGNAIA 84C limit is from the study of jet  $p_{\mathcal{T}}$  and dijet mass distributions at the CERN  $\bar{p}p$  collider ( $E_{\text{CM}} = 540$  GeV). The limit suffers from the uncertainties in comparing the data with the QCD prediction.

#### SCALE LIMITS for Contact Interactions: $\Lambda(\nu\nu qq)$

Limits are for  $\Lambda_{LL}^{\pm}$  only. FOr other cases, see each reference.

$\Lambda_{LL}^{+}(TeV)$	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID	TECN	COMMENT	
>5.0	>5.4	95	69 MCFARLAND 98	CCFR	ν N scattering	
69 MCF	⁶⁹ MCFARLAND 98 assumed a flavor universal interaction. Neutrinos were mostly of muon					

#### MASS LIMITS for Excited e (e*)

Most  $e^+e^-$  experiments assume one-photon or  ${\it Z}$  exchange. The limits from some  $e^+\,e^-$  experiments which depend on  $\lambda$  have assumed transition couplings which are chirality violating  $(\eta_L = \eta_R)$ . However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value  $\lambda$  by  $\sqrt{2}$ ; see Note.

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section.

#### Limits for Excited e (e*) from Pair Production

These limits are obtained from  $e^+e^- \rightarrow e^{*+}e^{*-}$  and thus rely only on the (electroweak) charge of  $e^*$ . Form factor effects are ignored unless noted. For the case of limits from Z decay, the  $e^*$  coupling is assumed to be of sequential type. Possible t channel contribution from transition magnetic coupling is neglected. All limits assume  $e^* \rightarrow e_{\gamma}$  decay except the limits from  $\Gamma(Z)$ .

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II

()	,			
VALUE (GeV)	CL%	DOCUMENT 10	TECN	COMMENT
>90.7	95	⁷⁰ ABREU	990 DLPH	Homodoublet type
• • • We do	not (	ise the following data	for averages,	fits, limits, etc. • • •
>85.0	95	71 ACKERSTAFF	98c OPAL	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
		⁷² BARATE	98u ALEP	$Z \rightarrow e^* e^*$
>79.6	95	^{73,74} ABREU	97B DLPH	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
>77.9	95	73,75 ABREU	97B DLPH	$e^+e^- \rightarrow e^*e^*$ Sequential type
>79.7	95	⁷³ ACCIARRI	97G L3	$e^+e^- \rightarrow e^*e^*$ Sequential type
>79.9	95	73,76 ACKERSTAFF	97 OPAL	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
>62.5	95	77 ABREU	96ĸ DLPH	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
>64.7	95	78 ACCIARRI	960 L3	$e^+e^- \rightarrow e^*e^*$ Sequential type
>66.5	95	78 ALEXANDER	96Q OPAL	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
>65.2	95	⁷⁸ BUSKULIC	96w ALEP	$e^+e^- \rightarrow e^*e^*$ Sequential type
>45.6	95	ADRIANI	93M L3	$Z \rightarrow e^* \dot{e}^*$

#### Quark and Lepton Compositeness

>45.6	95	_ ABREU 92c DLPH $Z \rightarrow e^*e^*$
>29.8	95	⁷⁹ BARDADIN 92 RVUE Γ(Z)
>26.1	95	BO DECAMP 92 ALEP $Z \rightarrow e^* e^*$ ; $\Gamma(Z)$
>46.1	95	DECAMP 92 ALEP $Z \rightarrow e^* e^*$
>33	95	⁸⁰ ABREU 91F DLPH $Z \rightarrow e^*e^*$ ; $\Gamma(Z)$
>45.0	95	⁸¹ ADEVA 90F L3 $Z \rightarrow e^*e^*$
>44.9	95	AKRAWY 90: OPAL $Z \rightarrow e^* e^*$
>44.6	95	B2 DECAMP 90G ALEP $e^+e^- \rightarrow e^+e^+$
>30.2	95	ADACHI 898 TOPZ $e^+e^- \rightarrow e^*e^*$
>28.3	95	KIM 89 AMY $e^+e^- \rightarrow e^*e^*$
>27.9	95	88 VNS $e^+e^- \to e^+e^+$

- ⁷⁰ From  $e^+e^-$  collisions at  $\sqrt{s}=183$  GeV. f=f' is assumed. ABREU 990 also obtain limit for  $f = -f'(e^* \rightarrow \nu W)$ :  $m_{e^*} > 81.3 \text{ GeV}$ .
- 71  From  $e^+\,e^-$  collisions at  $\sqrt{s}$ =170–172 GeV. ACKERSTAFF 98c also obtain limit from  $e^* \rightarrow \nu W$  decay mode:  $m_{e^*} > 81.3$  GeV.
- 72 BARATE 980 obtain limits on the form factor. See their Fig. 14 for limits in mass-form
- ⁷³ From  $e^+e^-$  collisions at  $\sqrt{s}$ = 161 GeV.
- ⁷⁴ ABREU 97B also obtain limit from charged current decay mode  $e^* 
  ightharpoonup W$  ,  $m_{e^*} > 70.9$
- 75 ABREU 97B also obtain limit from charged current decay mode  $e^* \rightarrow \nu W$ ,  $m_{e^*} > 44.6$
- ⁷⁶ ACKERSTAFF 97 also obtain limit from charged current decay mode  $e^* \rightarrow \nu W$ ,  $m_{\nu^*} >$
- 77.1 GeV. 77 From  $e^+e^-$  collisions at  $\sqrt{s}$ = 130–136 GeV. 78 From  $e^+e^-$  collisions at  $\sqrt{s}$ = 130–140 GeV.
- 79 BARDADIN-OTWINOWSKA 92 limit is independent of decay modes. Based on  $\Delta\Gamma(Z)$ <36 MeV.
- 80 Limit is independent of e* decay mode.
- 81 ADEVA 90F is superseded by ADRIANI 93M.
- 82 Superseded by DECAMP 92.
- 83 ABE 88B limits assume  $e^+e^- \rightarrow e^{*+}e^{*-}$  with one photon exchange only and  $e^* \rightarrow$

#### Limits for Excited e (e*) from Single Production

These limits are from  $e^+e^- \to e^*e$ ,  $W \to e^*\nu$ , or  $ep \to e^*X$  and depend on transition magnetic coupling between e and  $e^*$ . All limits assume  $e^* \to e\gamma$  decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling,  $\eta_L=\eta_R=1$ . In most papers, the limit is expressed in the form of an excluded region in the  $\lambda-m_{e^*}$  plane. See the original

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II

(1992)	).			
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
none 20-170	95	⁸⁴ ACCIARRI	98T L3	$e\gamma \rightarrow e^* \rightarrow e\gamma$
none 30-200	95	85 BREITWEG	97c ZEUS	$e p \rightarrow e^* X$
>89	95	ADRIANI	93M L3	$Z \rightarrow ee^*, \lambda_Z > 0.5$
>88	95	ABREU	92c DLPH	$Z \rightarrow ee^*, \lambda_Z > 0.5$
>91	95	DECAMP	92 ALEP	$Z \rightarrow ee^*, \lambda_Z > 1$
>87	95	AKRAWY	90i OPAL	$Z \rightarrow e e^*, \lambda_Z > 0.5$
• • • We do	not	use the following data	for averages,	fits, limits, etc. • • •
		86 ABREU	990 DLPH	e ⁺ e ⁻ → ee*
		87 ACKERSTAFF	98c OPAL	$e^+e^- \rightarrow ee^*$
		88 BARATE	98u ALEP	$e^+e^- \rightarrow ee^*$
		^{89,90} ABREU	97B DLPH	$e^+e^- \rightarrow ee^*$
		^{89,91} ACCIARRI	97G L3	$e^+e^- \rightarrow ee^*$
		92 ACKERSTAFF	97 OPAL	$e^+e^- \rightarrow ee^*$
		93 ADLOFF	97 H1	Lepton-flavor violation
		94 ABREU	96K DLPH	
		95 ACCIARRI	96D L3	e+e- → ee*
		⁹⁶ ALEXANDER	96Q OPAL	
		97 BUSKULIC	96w ALEP	
		98 DERRICK	958 ZEUS	•
		99 ABT	93 H1	ep → e*X
>86	95	ADRIANI	93M L3	$\lambda_{\gamma} > 0.04$
		100 DERRICK		Superseded by DERRICK 95B
>86	95	ABREU	92C DLPH	$e^+e^- \rightarrow e e^*, \lambda_{\gamma} > 0.1$
>88	95	101 ADEVA	90F L3	$Z \rightarrow ee^*$ , $\lambda_Z > 0.5$
>86	95	101 ADEVA	90F L3	$Z \rightarrow e e^*, \lambda_Z > 0.04$
>81	95	102 DECAMP	90G ALEP	
>50	95	ADACHI	89B TOPZ	$e^+e^- \rightarrow ee^*$ , $\lambda_{\gamma} > 0.04$
>56	95	KIM		$e^+e^- \rightarrow e e^*, \lambda_{\gamma} > 0.03$
none 23-54	95	103 ABE	88B VNS	$e^+e^- \rightarrow e e^* \lambda_{\gamma} > 0.04$
>75	95	¹⁰⁴ ANSARI	87D UA2	$W \rightarrow e^* \nu$ ; $\lambda_W > 0.7$
>63	95	¹⁰⁴ ANSARI	87D UA2	$W \rightarrow e^* \nu; \lambda_W > 0.2$
>40	95	¹⁰⁴ ANSARI	87D UA2	$W \rightarrow e^* \nu; \lambda_W > 0.09$
0.4				

 $^{^{84}}$  ACCIARRI 98T search for single  $e^*$  production in quasi-real Compton scattering. The limit is for  $|\lambda|>1.0\times10^{-1}$  and non-chiral coupling of  $e^*$ . See their Fig. 7 for the exclusion plot in the mass-coupling plane.

- ⁸⁶ ABREU 990 result is from  $e^+e^-$  collisions at  $\sqrt{s}=$  183 GeV. See their Figs. 4 and 5 for
- the exclusion limit in the mass-coupling plane. ⁸⁷ ACKERSTAFF 98c from  $e^+e^-$  collisions at  $\sqrt{s}$ =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.
- 88 BARATE 98u is from  $e^+e^-$  collision at  $\sqrt{s}=M_Z$ . See their Fig. 12 for limits in masscoupling plane
- ⁸⁹ From  $e^+e^-$  collisions at  $\sqrt{s}$ = 161 GeV.
- 90  See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane.
- $^{91}\,\mathrm{See}$  Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane. 92 ACKERSTAFF 97 result is from  $e^+e^-$  collisions at  $\sqrt{s}=161$  GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- the exclusion limit in the mass-coupling plane.

  93 ADLOFF 97 search for single  $e^*$  production in ep collisions with the decays  $e^* \rightarrow e\gamma$ , eZ,  $\nu W$ . See their Fig. 4 for the rejection limits on the product of the production cross section and the branching ratio into a specific decay channel.

  94 ABREU 96K result is from  $e^+e^-$  collisions at  $\sqrt{s}$ = 130–136 GeV. See their Fig. 4 for
- the exclusion limit in the mass-coupling plane. 95 ACCIARRI 96D result is from  $e^+e^-$  collisions at  $\sqrt{s}$ = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- 96 ALEXANDER 960 result is from  $e^+e^-$  collisions at  $\sqrt{s}=130-140$  GeV. See their Fig. 3a for the exclusion limit in the mass-coupling plane.
- 97 BUSKULIC 96w result is from  $e^+e^-$  collisions at  $\sqrt{s}=$  130–140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ⁹⁸ DERRICK 95B search for single  $e^*$  production via  $e^*e\gamma$  coupling in ep collisions with the decays  $e^* \to e \gamma$ , e Z,  $\nu W$ . See their Fig. 13 for the exclusion plot in the  $m_{e^*} - \lambda \gamma$
- ⁹⁹ABT 93 search for single  $e^*$  production via  $e^*e_\gamma$  coupling in  $e_P$  collisions with the decays  $e^* \to e \gamma$ ,  $e \, {\it Z}$ ,  $\nu \, {\it W}$ . See their Fig. 4 for exclusion plot in the  $m_{e^*}$ - $\lambda_{\gamma}$  plane.
- 100  DERRICK 93B search for single  $e^*$  production via  $e^*e\gamma$  coupling in  $e\rho$  collisions with the decays  $e^* \to e \gamma$ , e Z,  $\nu W$ . See their Fig. 3 for exclusion plot in the  $m_{e^*}$ - $\lambda_{\gamma}$  plane.
- 101 Superseded by ADRIANI 93м.
- $^{102}\,\mathrm{Superseded}$  by DECAMP 92.
- 103 ABE 88B limits use  $e^+e^- 
  ightarrow e\,e^*$  where t-channel photon exchange dominates giving  $\gamma(e)$  (quasi-real compton scattering).
- 104 ANSARI 87D is at  $E_{\rm CM}=546$ -630 GeV.

#### Limits for Excited e ( $e^*$ ) from $e^+e^- \rightarrow \gamma\gamma$

These limits are derived from indirect effects due to  $e^*$  exchange in the t channel and depend on transition magnetic coupling between e and  $e^*$ . All limits are for  $\lambda_{\gamma}=1$ . All limits except ABE 891 are for nonchiral coupling with  $\eta_L = \eta_R = 1$ .

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II

(1332/).				
VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
>306	95	ABBIENDI	99P OPAL	$\sqrt{s}$ = 189 GeV
• • • We do not	use the followin	g data for averages	, fits, limits,	etc. • • •
>231	95	ABREU	98」DLPH	$\sqrt{s}$ = 130–183 GeV
>194	95	ACKERSTAFF	98 OPAL	$\sqrt{s}$ =130–172 GeV
>227	95	ACKER,K	98B OPAL	$\sqrt{s}$ = 183 GeV
>250	95	BARATE	98J ALEP	$\sqrt{s}$ = 183 GeV
>160	95	^{L05} BARATE	980 ALEP	
>210	95	¹⁰⁶ ACCIARRI	97w L3	√s= 161, 172 GeV
>129	95	ACCIARRI	96L L3	√s=133 GeV
>147	95	ALEXANDER	96K OPAL	
>136	95	BUSKULIC	96z ALEP	$\sqrt{s}$ =130, 136 GeV
>146	95	ACCIARRI	95G L3	
		¹⁰⁷ BUSKULIC	93Q ALEP	
>127	95	¹⁰⁸ ADRIANI	92B L3	
>114	95	109 BARDADIN	92 RVUE	
> 99	95	DECAMP	92 ALEP	
		¹¹⁰ SHIMOZAWA	92 TOPZ	
>100	95	ABREU	91E DLPH	
>116	95	AKRAWY	91F OPAL	
> 83	95	ADEVA	90K L3	
> 82	95	AKRAWY	90F OPAL	
> 68	95	¹¹¹ ABE	891 VNS	$\eta_{I} = 1, \eta_{R} = 0$
> 90.2	95	ADACHI	89B TOPZ	
> 65	95	KIM	89 AMY	

- 105 BARATE 980 is from  $e^+e^-$  collision at  $\sqrt{s}=M_Z$ . See their Fig. 5 for limits in mass-
- 106  ACCIARRI 97W also obtain a limit on  $e^*$  with chiral coupling,  $m_{e^*} > 157$  GeV (95%CL).
- 107  BUSKULIC 93Q obtain  $\Lambda^+>$  121 GeV (95%CL) from ALEPH experiment and  $\Lambda^+>$  135 GeV from combined TRISTAN and ALEPH data. These limits roughly correspond to limits on  $m_{\rm e^+}$ .
- 108 ADRIANI 92B superseded by ACCIARRI 95G.
- 109 BARDADIN-OTWINOWSKA 92 limit from fit to the combined data of DECAMP 92, ABREU 91E, ADEVA 90K, AKRAWY 91F.
- 110 SHIMOZAWA 92 fit the data to the limiting form of the cross section with  $m_{e^*} \gg E_{\rm CM}$  and obtain  $m_{e^*} > 168$  GeV at 95%CL. Use of the full form would reduce this limit by a constitution of the cross section with  $m_{e^*} \gg E_{\rm CM}$  and obtain  $m_{e^*} > 168$  GeV at 95%CL. Use of the full form would reduce this limit by a constitution of the constitution of the cross section with  $m_{e^*} \gg E_{\rm CM}$  and obtain  $m_{e^*} > 168$  GeV at 95%CL. Use of the full form would reduce this limit by a constitution of the cross section with  $m_{e^*} \gg E_{\rm CM}$  and obtain  $m_{e^*} > 168$  GeV at 95%CL. Use of the full form would reduce this limit by a constitution of the cross section with  $m_{e^*} \gg E_{\rm CM}$  and obtain  $m_{e^*} > 168$  GeV at 95%CL. few GeV. The statistically unexpected large value is due to fluctuation in the data.
- 111  The ABE 89J limit assumes chiral coupling. This corresponds to  $\lambda_{\gamma}=$  0.7 for nonchiral coupling.

⁸⁵ BREITWEG 97c search for single  $e^*$  production in ep collisions with the decays  $e^* \to e\gamma$ , eZ,  $\nu W$ .  $f=-f'=2\Lambda/m_{e^*}$  is assumed for the  $e^*$  coupling. See their Fig. 9 for the exclusion plot in the mass-coupling plane.

#### Indirect Limits for Excited e (e*)

These limits make use of loop effects involving e* and are therefore subject to theoretical uncertainty.

VALUE (GeV) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

112 DORENBOS... 89 CHRM  $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$  and  $\nu_{\mu}e \rightarrow \nu_{\mu}e$  and 113 GRIFOLS 86 THEO  $\nu_{\mu}e \rightarrow \nu_{\mu}e$ 114 RENARD 82 THEO g-2 of electron

 112  DORENBOSCH 89 obtain the limit  $\lambda_{\gamma}^2\Lambda_{\text{Cut}}^2/m_{e^*}^2<2.6$  (95% CL), where  $\Lambda_{\text{Cut}}$  is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that  $\Lambda_{\text{cut}}=1$  TeV and  $\lambda_{\gamma}=1$ , one obtains  $m_{e^*}>620$  GeV. However, one generally expects  $\lambda_{\gamma}\approx m_{e^*}/\Lambda_{\text{cut}}$  in composite models.

113 GRIFOLS 86 uses  $\nu_{\mu}e \rightarrow \nu_{\mu}e$  and  $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$  data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.

114 RENARD 82 derived from g-2 data limits on mass and couplings of  $e^*$  and  $\mu^*$ . See figures 2 and 3 of the paper.

#### MASS LIMITS for Excited $\mu$ ( $\mu$ *)

#### Limits for Excited $\mu$ ( $\mu$ *) from Pair Production

These limits are obtained from  $e^+e^- \rightarrow \mu^{*+}\mu^{*-}$  and thus rely only on the (electroweak) charge of  $\mu^*$ . Form factor effects are ignored unless noted. For the case of limits from Z decay, the  $\mu^*$  coupling is assumed to be of sequential type. All limits assume  $\mu^* \rightarrow \mu \gamma$  decay except for the limits from  $\Gamma(Z)$ .

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II (1992)).

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
>90.7	95	115	ABREU	990	DLPH	Homodoublet type
• • • We do	not use	the	following data	for a	/erages,	fits, limits, etc. • • •
>85.3	95		ACKERSTAFF	98c	OPAL	$e^+  e^- \rightarrow  \mu^*  \mu^*$ Homodoublet type
			BARATE	98u	ALEP	
>79.6			ABREU	97B	DLPH	$e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type
>78.4	95 118		ABREU	97B	DLPH	$e^+ e^- \rightarrow \mu^* \mu^*$ Sequential type
>79.9	95	118	ACCIARRI	<b>97</b> G	L3	$e^+e^- \rightarrow \mu^*\mu^*$ Sequential type
>80.0	₉₅ 118	,121	ACKERSTAFF	97	OPAL	$e^+  e^- \rightarrow  \mu^*  \mu^*$ Homodoublet type
>62.6	95		ABREU	96ĸ	DLPH	$e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type
>64.9	95		ACCIARRI		L3	$e^+e^- \rightarrow \mu^*\mu^*$ Sequential type
>66.8	95		ALEXANDER			$e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type
>65.4	95	123	BUSKULIC	96W	ALEP	$e^+e^-  ightarrow \mu^* \mu^*$ Sequential type
>45.6	95		ADRIANI	93м	L3	$Z \rightarrow \mu^* \mu^*$
>45.6	95		ABREU	92¢	DLPH	$Z \rightarrow \mu^* \mu^*$
>29.8	95	124	BARDADIN	92	RVUE	$\Gamma(Z)$
>26.1	95	125	DECAMP	92	ALEP	$Z \rightarrow \mu^* \mu^*; \Gamma(Z)$
>46.1	95		DECAMP	92	ALEP	$Z \rightarrow \mu^* \mu^*$
>33	95		ABREU	91F	DLPH	$Z \rightarrow \mu^* \mu^*; \Gamma(Z)$
>45.3	95	126	ADEVA	90F	L3	$Z \rightarrow \mu^* \mu^*$
>44.9	95		AKRAWY	901	OPAL	-, <i>-</i> -
>44.6	95	127	DECAMP		ALEP	
>29.9	95		ADACHI			$e^+e^- \rightarrow \mu^*\mu^*$
>28.3	95		KIM	89	AMY	$e^+e^- \rightarrow \mu^*\mu^*$

- ¹¹⁵ From  $e^+e^-$  collisions at  $\sqrt{s}=$  183 GeV. f=f' is assumed. ABREU 990 also obtain limit for  $f\!=\!-f^f$  ( $\mu^*$   $\rightarrow$   $\nu$  W):  $m_{\mu^*} > 81.3$  GeV.
- ¹¹⁶ From  $e^+e^-$  collisions at  $\sqrt{s}$ =170–172 GeV. ACKERSTAFF 98c also obtain limit from  $\mu^{\textstyle *} \rightarrow \ \nu \, W$  decay mode:  $m_{\mu^{\textstyle *}} >$  81.3 GeV.
- 117 BARATE 980 obtain limits on the form factor. See their Fig. 14 for limits in mass-form factor plane.
- ¹¹⁸ From  $e^+e^-$  collisions at  $\sqrt{s}$ = 161 GeV.
- 119  ABREU 97B also obtain limit from charged current decay mode  $\mu^{*} 
  ightarrow \nu W$ ,  $m_{\mu^{*}} > 70.9$
- 120 ABREU 978 also obtain limit from charged current decay mode  $\mu^* \to \nu W$ ,  $m_{\mu^*} > 44.6$
- 121 ACKERSTAFF 97 also obtain limit from charged current decay mode  $\mu^* \to \nu W$ ,  $m_{\nu_{\mu}^{*}} > 77.1 \text{ GeV}.$
- 122 From  $e^+e^-$  collisions at  $\sqrt{\bar{s}}=$  130–136 GeV. 123 From  $e^+e^-$  collisions at  $\sqrt{\bar{s}}=$  130–140 GeV.
- 124 BARDADIN-OTWINOWSKA 92 limit is independent of decay modes. Based on
- 125 Limit is independent of  $\mu^*$  decay mode.
- 126 Superseded by ADRIANI 93M.
- 127 Superseded by DECAMP 92.

#### Limits for Excited $\mu$ ( $\mu$ *) from Single Production

These limits are from  $e^+e^-\to \mu^*\mu$  and depend on transition magnetic coupling between  $\mu$  and  $\mu^*$ . All limits assume  $\mu^*\to \mu\gamma$  decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling,  $\eta_L=\eta_R=1$ . In most papers, the limit is expressed in the form of an excluded region in the  $\lambda-m_{n^*}$  plane.

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>89	95	ADRIANI	93M L3	$Z \rightarrow \mu \mu^*, \lambda_Z > 0.5$
>88	95	ABREU	92c DLPH	$Z \rightarrow \mu \mu^*, \lambda_Z > 0.5$
>91	95	DECAMP	92 ALEP	$Z \rightarrow \mu \mu^*, \lambda_Z > 1$
>87	95	AKRAWY	90i OPAL	$Z \rightarrow \mu \mu^*, \lambda_Z > 1$
• • • We d	lo not use th	ne following data	for averages,	fits, limits, etc. • • •
	17	²⁸ ABREU	990 DLPH	$e^+e^- \rightarrow \mu\mu^*$
				$e^+e^- \rightarrow \mu\mu^*$
	13	BARATE	98u ALEP	$Z \rightarrow \mu \mu^*$
	131,13	² ABREU	97B DLPH	$e^+e^- \rightarrow \mu\mu^*$
	131,13	3 ACCIARRI	97G L3	$e^+e^- \rightarrow \mu\mu^*$
	13	ACKERSTAFF	97 OPAL	$e^+e^- \rightarrow \mu\mu^*$
	13	SS ABREU	96K DLPH	$e^+e^- \rightarrow \mu\mu^*$
	13	ACCIARRI	96D L3	$e^+e^- \rightarrow \mu\mu^*$
	1:	ALEXANDER	96Q OPAL	$e^+e^- \rightarrow \mu \mu^*$
	13	BUSKULIC	96W ALEP	$e^+e^- \rightarrow \mu\mu^*$
>85	95 ¹³	39 ADEVA	90F L3	$Z \rightarrow \mu \mu^*, \lambda_Z > 1$
>75	95 13	³⁹ ADEVA		$Z \rightarrow \mu \mu^*, \lambda_Z > 0.1$
>80	95 14			$e^+e^- \rightarrow \mu\mu^*, \lambda_Z=1$
>50	95	ADACHI	89B TOPZ	$e^+e^- \rightarrow \mu\mu^*, \lambda_{\gamma}^-=0.7$
>46	95	KIM	89 AMY	$e^+e^- \rightarrow \mu \mu^*, \lambda_{\gamma}=0.2$

- 128 ABREU 990 result is from  $e^+e^-$  collisions at  $\sqrt{s}=$  183 GeV. See their Figs. 4 and 5 for the exclusion limit in the mass-coupling plane.
- 129  ACKERSTAFF 98c from  $e^+e^-$  collisions at  $\sqrt{s}$ =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.
- 130 BARATE 980 obtain limits on the  $Z\mu\mu^*$  coupling. See their Fig. 12 for limits in mass-
- 131 From  $e^+e^-$  collisions at  $\sqrt{s}=$  161 GeV. 132 See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane.
- 133 See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane. ¹³⁴ ACKERSTAFF 97 result is from  $e^+e^-$  collisions at  $\sqrt{s}$  = 161 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- 135 ABREU 96K result is from  $e^+e^-$  collisions at  $\sqrt{s}=$  130-136 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- ¹³⁶ ACCIARRI 96D result is from  $e^+e^-$  collisions at  $\sqrt{s}$ = 130-140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- 137 ALEXANDER 960 result is from  $e^+e^-$  collisions at  $\sqrt{s}$  = 130–140 GeV. See their Fig. 3a for the exclusion limit in the mass-coupling plane.
- ¹³⁸ BUSKULIC 96w result is from  $e^+e^-$  collisions at  $\sqrt{s}$ = 130–140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- 139 Superseded by ADRIANI 93M.
- 140 Superseded by DECAMP 92.

#### Indirect Limits for Excited $\mu$ ( $\mu$ *)

These limits make use of loop effects involving  $\mu^*$  and are therefore subject to theoretical uncertainty.

VALUE (GeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • • ¹⁴¹ RENARD 82 THEO g-2 of muon

¹⁴¹ RENARD 82 derived from g-2 data limits on mass and couplings of  $e^*$  and  $\mu^*$ . See figures 2 and 3 of the paper.

#### MASS LIMITS for Excited $\tau$ ( $\tau$ ⁴)

#### Limits for Excited $\tau$ ( $\tau$ *) from Pair Production

These limits are obtained from  $e^+e^- \rightarrow \tau^{*+}\tau^{*-}$  and thus rely only on the (electroweak) charge of  $au^*$ . Form factor effects are ignored unless noted. For the case of limits from Z decay, the  $\tau^*$  coupling is assumed to be of sequential type. All limits assume  $\tau^* \to \tau \gamma$  decay except for the limits from  $\Gamma(Z)$ .

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II (1992)).

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
>89.7	95	142	ABREU	990	DLPH	Homodoublet type
• • • We do	not use	the	following data	for a	verages,	fits, limits, etc. • • •
>84.6	95	143	ACKERSTAFF	9 <b>8</b> C	OPAL	$e^+e^- \rightarrow \tau^*\tau^*$ Homodoublet type
			BARATE	98u	ALEP	$Z \rightarrow \tau^* \tau^*$
>79.4			ABREU	97B	DLPH	$e^+e^- \rightarrow \tau^*\tau^*$ Homodoublet type
>77.4			ABREU	97B	DLPH	$e^+e^- \rightarrow \tau^*\tau^*$ Sequential type
>79.3			ACCIARRI			$e^+e^- \rightarrow \tau^*\tau^*$ Sequential type
>79.1	95 145	,148	ACKERSTAFF	97	OPAL	$e^+e^- \rightarrow \tau^*\tau^*$ Homodoublet type

#### **Quark and Lepton Compositeness**

>62.2	95	¹⁴⁹ ABREU	96K DLPH	$e^+e^- \rightarrow \tau^*\tau^*$ Homodoublet type
>64.2	95	¹⁵⁰ ACCIARRI	96D L3	$e^+e^-  ightarrow  au^*  au^*$ Sequential type
>65.3	95	¹⁵⁰ ALEXANDER	96Q OPAL	$e^+e^- \rightarrow \tau^*\tau^*$ Homodoublet type
>64.8	95	¹⁵⁰ BUSKULIC	96w ALEP	$e^+e^- \rightarrow \tau^*\tau^*$ Sequential type
>45.6	95	ADRIANI	93M L3	$Z \rightarrow \tau^* \tau^*$
>45.3	95	ABREU		$Z \rightarrow \tau^* \tau^*$
>29.8	95	151 BARDADIN	92 RVUE	Γ( <i>Z</i> )
>26.1	95	152 DECAMP	92 ALEP	$Z \rightarrow \tau^* \tau^*; \Gamma(Z)$
>46.0	95	DECAMP	92 ALEP	$Z \rightarrow \tau^* \tau^*$
>33	95	¹⁵² ABREU	91F DLPH	$Z \rightarrow \tau^* \tau^*; \Gamma(Z)$
>45.5	95	¹⁵³ ADEVA	90L L3	$Z \rightarrow \tau^* \tau^*$
>44.9	95	AKRAWY	901 OPAL	$Z \rightarrow \tau^* \tau^*$
>41.2	95	154 DECAMP	90G ALEP	$e^+e^- \rightarrow \tau^*\tau^*$
>29.0	95	ADACHI	89B TOPZ	$e^+e^- \rightarrow \tau^*\tau^*$

- ¹⁴² From  $e^+e^-$  collisions at  $\sqrt{s}=183$  GeV. f=f' is assumed. ABREU 990 also obtain limit for  $f=-f^I$  ( $\tau^* \rightarrow \nu W$ ):  $m_{\tau^*} > 81.3$  GeV.
- 143  From  $e^+\,e^-$  collisions at  $\sqrt{s}$ =170–172 GeV. ACKERSTAFF 98c also obtain limit from  $\tau^{\, *} \, \rightarrow \, \, \nu \, W$  decay mode:  $m_{\tau^{\, *}} > 81.3$  GeV.
- 144 BARATE 980 obtain limits on the form factor. See their Fig. 14 for limits in mass-form factor plane. 145 From  $e^+e^-$  collisions at  $\sqrt{s}=$  161 GeV.
- 146 ABREU 97B also obtain limit from charged current decay mode  $au^* 
  ightarrow 
  u W, \, m_{_T^*} > 70.9$
- GeV. 147 ABREU 978 also obtain limit from charged current decay mode  $au^* o 
  u W$ ,  $m_{ au^*} >$  44.6
- 148 ACKERSTAFF 97 also obtain limit from charged current decay mode  $r^* \rightarrow \nu W$ ,  $m_{
  u_{_{\scriptscriptstyle T}}^*} > 77.1$  GeV.
- 149  From  $e^+\,e^-$  collisions at  $\sqrt{s}=$  130–136 GeV.  150  From  $e^+\,e^-$  collisions at  $\sqrt{s}=$  130–140 GeV.
- 151 BARDADIN-OTWINOWSKA 92 limit is independent of decay modes. Based on
- 152 Limit is independent of  $\tau^*$  decay mode.
- 153 Superseded by ADRIANI 93M.
- 154 Superseded by DECAMP 92.

#### Limits for Excited $\tau$ ( $\tau$ *) from Single Production

These limits are from  $e^+e^- \to \tau^*\tau$  and depend on transition magnetic coupling between  $\tau$  and  $\tau^*$ . All limits assume  $\tau^* \to \tau\gamma$  decay. Limits from LEP are for chiral Detween 7 and 7. An initio assume r = r + r decay, Limits from Eq. (a) coupling, whereas all other limits are for nonchiral coupling,  $\eta_L = \eta_R = 1$ . In most papers, the limit is expressed in the form of an excluded region in the  $\lambda - m_{T^+}$  plane. See the original papers.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>88	95	ADRIANI	93M L3	$Z \rightarrow \tau \tau^*, \lambda_Z > 0.5$
>87	95	ABREU	92c DLPH	$Z \rightarrow \tau \tau^*, \lambda_Z > 0.5$
>90	95	DECAMP	92 ALEP	$Z \rightarrow \tau \tau^*, \lambda_Z > 0.18$
>86.5	95	AKRAWY	901 OPAL	$Z \rightarrow \tau \tau^*, \lambda_Z^- > 1$
• • • We do	not use	the following data	for averages,	fits, limits, etc. • • •
		155 ABREU		$e^+e^- \rightarrow \tau \tau^*$
		156 ACKERSTAFF	98c OPAL	$e^+e^- \rightarrow \tau \tau^*$
		157 BARATE	98U ALEP	
	158	,159 ABREU		$e^+e^- \rightarrow \tau \tau^*$
	158	,160 ACCIARRI		$e^+e^- \rightarrow \tau \tau^*$
		161 ACKERSTAFF	97 OPAL	$e^+e^- \rightarrow \tau \tau^*$
		162 ABREU		$e^+e^- \rightarrow \tau \tau^*$
		163 ACCIARRI		$e^+e^- \rightarrow \tau \tau^*$
		164 ALEXANDER	960 OPAL	$e^+e^- \rightarrow \tau \tau^*$
		165 BUSKULIC	96w ALEP	$e^+e^- \rightarrow \tau \tau^*$
>88		166 ADEVA	90L L3	$Z \rightarrow \tau \tau^*, \lambda_Z > 1$
>59	95	167 DECAMP		$Z \rightarrow \tau \tau^*, \lambda_Z^-=1$
>40	95	168 BARTEL		$e^+e^- \rightarrow \tau \bar{\tau^*}, \lambda_{\gamma}=1$
>41.4	95	¹⁶⁹ BEHREND	86 CELL	$e^+e^- \rightarrow \tau \tau^*, \lambda_{\gamma}=1$
>40.8	95	169 BEHREND		$e^+e^- \rightarrow \tau \tau^*$ , $\lambda_{\gamma}=0.7$
155 ADDEU 6				100 C-1/ C Ab-1- F1 4 1 F f-

- 155 ABREU 990 result is from  $e^+e^-$  collisions at  $\sqrt{s}=$  183 GeV. See their Figs. 4 and 5 for the exclusion limit in the mass-coupling plane.
- 156 ACKERSTAFF 98c from e⁺e⁻ collisions at √s=170-172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.
- 157 BARATE 98u obtain limits on the  $Z\tau\tau^*$  coupling. See their Fig. 12 for limits in masscoupling plane 158 From  $e^+e^-$  collisions at  $\sqrt{s}=$  161 GeV.
- 159 See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane.
- 160 See Fig. 2 and Fig. 3 of ACCIARRI 976 for the exclusion limit in the mass-coupling plane. 161 ACKERSTAFF 97 result is from  $e^+e^-$  collisions at  $\sqrt{s}=$  161 GeV. See their Fig. 3 for
- the exclusion limit in the mass-coupling plane. 162 ABREU 96K result is from  $e^+e^-$  collisions at  $\sqrt{s}=$  130–136 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- ¹⁶³ ACCIARRI 96D result is from  $e^+e^-$  collisions at  $\sqrt{s}$ = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.  164  ALEXANDER 96Q result is from  $e^+e^-$  collisions at  $\sqrt{s}$  = 130–140 GeV. See their Fig. 3a
- for the exclusion limit in the mass-coupling plane. 165 BUSKULC 96w result is from  $e^+e^-$  collisions at  $\sqrt{s}=130$ –140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- 166 Superseded by ADRIANI 93M.
- 167 Superseded by DECAMP 92. 168 BARTEL 86 is at  $E_{\rm cm} = 30$ –46.78 GeV.
- $^{169}\,\mathrm{BEHREND}$  86 limit is at  $E_\mathrm{Cm}=$  33–46.8 GeV.

#### MASS LIMITS for Excited Neutrino ( $\nu^*$ )

#### Limits for Excited $\nu$ ( $\nu$ *) from Pair Production

These limits are obtained from  $e^+e^- \rightarrow \nu^*\nu^*$  and thus rely only on the (electroweak) charge of  $\nu^*$ . Form factor effects are ignored unless noted. The  $\nu^*$  coupling is assumed to be of sequential type unless otherwise noted. Limits assume  $\nu^* \to \nu \gamma$  decay except for the  $\Gamma(Z)$  measurement which makes no assumption about decay mode.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>90.0	95 170	O ABREU	990 DLPH	Homodoublet type
• • • We do	not use the	e following data	for averages,	fits, limits, etc. • •
>84.9 >77.6	95 177 173 95 174,175		980 ALEP 97B DLPH	$e^+e^- \rightarrow \nu^*\nu^*$ Homodoublet type $Z \rightarrow \nu^*\nu^*$ $e^+e^- \rightarrow \nu^*\nu^*$ Homodoublet type
>64.4	95 174,170	ABREU ACCIARRI	97B DLPH	$e^+e^- \rightarrow \nu^*\nu^*$ Sequential type
>71.2 >77.8 >61.4 >65.0	95 174,178 95 179,180	ACCIARRI ACKERSTAFF ACCIARRI ALEXANDER	97G L3 97 OPAL 96D L3 96Q OPAL	$e^+e^- \rightarrow \nu^*\nu^*$ Sequential type $e^+e^- \rightarrow \nu^*\nu^*$ Homodoublet type $e^+e^- \rightarrow \nu^*\nu^*$ Sequential type $e^+e^- \rightarrow \nu^*\nu^*$ Homodoublet type
>63.6 >43.7 >47 >42.6	95 18 ³ 95 18 ³ 95 18 ⁴ 95 18 ⁴	⁹ BUSKULIC ³ BARDADIN ⁴ DECAMP ⁵ DECAMP	96W ALEP 92 RVUE 92 ALEP 92 ALEP	$e^+e^- \rightarrow \nu^* \nu^*$ Sequential type $\Gamma(Z)$
>35.4 >46	95 187,188	7 DECAMP 3 DECAMP	900 ALEP	Γ(Z)

- ¹⁷⁰ From  $e^+e^-$  collisions at  $\sqrt{s}=$  183 GeV. f=f' is assumed. ABREU 990 also obtain limit for  $f{=}{-}f'{:}$   $m_{\nu_{e^*}}>$  87.3 GeV,  $m_{\nu_{\mu^*}}>$  88.0 GeV,  $m_{\nu_{\tau^*}}>$  81.0 GeV.
- 171 From e⁺ e⁻ collisions at  $\sqrt{s}$ = 130–183 GeV, ABBIENDI 99F obtain limit on  $\sigma(e^+e^- \rightarrow \nu^*\nu^*)$  B( $\nu^* \rightarrow \nu \gamma$ )². See their Fig. 13. The limit ranges from 0.094 to 0.14 pb for  $\sqrt{s}/2 > m_{\nu^*} > 45$  GeV.
  172 From e⁺ e⁻ collisions at  $\sqrt{s}$ =170–172 GeV. ACKERSTAFF 98c also obtain limit from charged decay modes:  $m_{\nu^*} > 84.1$  GeV,  $m_{\nu^*} > 83.9$  GeV, and  $m_{\nu^*} > 79.4$  GeV.
- 173 BARATE 98u obtain limits on the form factor. See their Fig. 14 for limits in mass-form
- factor plane. 174 From  $e^+e^-$  collisions at  $\sqrt{s}=$  161 GeV.
- $^{175}\,\mathrm{ABREU}$  978 also obtain limits from charged current decay modes,  $m_{\nu^*} > 56.4$  GeV.
- $^{176} {\rm ABREU}$  97B also obtain limits from charged current decay modes,  $m_{\nu^*} >$  44.9 GeV.
- 177 ACCIARRI 97G also obtain limits from charged current decay mode  $v_e^* 
  ightarrow e\,$   $W, \, m_{
  u^*} >$
- $^{64.5}\, {\rm GeV}.$   $^{178}\, {\rm ACKERSTAFF}$  97 also obtain limits from charged current decay modes  $m_{\nu_a^+} > 78.3$ GeV,  $m_{\nu_{\mu}^*} > 78.9$  GeV,  $m_{\nu_{\tau}^*} > 76.2$  GeV.
- 179  From  $e^{+}e^{-}$  collisions at  $\sqrt{s}$ = 130–140 GeV.
- 180  ACCIARRI 96D also obtain limit from  $\nu^* \to eW$  decay mode:  $m_{\nu^*} > 57.3$  GeV.
- ¹⁸¹ From  $e^+e^-$  collisions at  $\sqrt{s}$ = 130–136 GeV.
- 182  ALEXANDER 96Q also obtain limits from charged current decay modes:  $m_{
  m p^*} > 66.2$ GeV,  $m_{\nu_{\mu}^{*}} >$  66.5 GeV,  $m_{\nu_{\tau}^{*}} >$  64.7 GeV.
- ¹⁸³BARDADIN-OTWINOWSKA 92 limit is for Dirac  $\nu^*$ . Based on  $\Delta\Gamma(Z)$ <36 MeV. The limit is 36.4 GeV for Majorana  $\nu^*$ , 45.4 GeV for homodoublet  $\nu^*$
- 184  Limit is based on B(Z  $\rightarrow~\nu^*\overline{\nu}^*)\times$  B( $\nu^*~\rightarrow~\nu\gamma)^2~<~5\times10^{-5}$  (95%CL) assuming Dirac  $\nu^*$ , B( $\nu^* \rightarrow \nu \gamma$ ) = 1.
- 185  Limit is for Dirac  $\nu^*$  . The limit is 34.6 GeV for Majorana  $\nu^*$  , 45.4 GeV for homodoublet
- ¹⁸⁶DECAMP 900 limit is from excess  $\Delta\Gamma(Z)<89$  MeV. The above value is for Dirac  $\nu^*$ ; 26.6 GeV for Majorana  $\nu^*$ ; 44.8 GeV for homodoublet  $\nu^*$ .
- 187 Superseded by DECAMP 92.
- 188  DECAMP 900 limit based on B(Z  $\rightarrow~\nu^*\,\nu^*)\cdot B(\nu^*\rightarrow~\nu\gamma)^2<~7\times 10^{-5}$  (95%CL), assuming Dirac  $\nu^*$ , B( $\nu^* \rightarrow \nu \gamma$ ) = 1.

#### Limits for Excited $\nu$ ( $\nu$ *) from Single Production

These limits are from Z  $\rightarrow$   $\nu \nu^*$  or  $e p \rightarrow$   $\nu^* X$  and depend on transition magnetic coupling between  $\nu/e$  and  $\nu^*$ . Assumptions about  $\nu^*$  decay mode are given in footnotes. TECN COMMENT DOCUMENT ID

VALUE (GeV)	CL%	DOCUMENTIO		ILCN	COMMENT
none <b>40-96</b>	95	189 BREITWEG	97c Z	ZEUS	ep → ν*X
>91	95	ADRIANI	93M L	_3	$\lambda_Z > 1, \nu^* \rightarrow \nu \gamma$
>89	95	ADRIANI	93м L	_3	$\lambda_Z > 1, \nu_{\rho}^* \rightarrow eW$
>91	95	¹⁹⁰ DECAMP	92 /	ALEP	$\lambda_{7} > 1$
• • We do not use the	followin	g data for averages	, fits,	limits,	etc. • • •
	:	¹⁹¹ ABBIENDI	99F (	OPAL	
	;	¹⁹² ABREU	990 E	DLPH	$e^+e^- \rightarrow \nu \nu^*$
		¹⁹³ ACKERSTAFF	98c C	DPAL	$e^+e^- \rightarrow \nu^*\nu^*$ Ho-
					modoublet type
		¹⁹⁴ BARATE	98U A	ALEP	$Z \rightarrow \nu \nu^*$
	195,	¹⁹⁶ ABREU	97B [	DLPH	$e^+e^- \rightarrow \nu \nu^*$
		¹⁹⁷ ABREU	97i E	DLPH	$\nu^* \rightarrow \ell W, \nu Z$
		¹⁹⁸ ABREU	97) E	DLPH	$\nu^* \rightarrow \nu \gamma$
	195,	¹⁹⁹ ACCIARRI	97G L	.3	$e^+e^- \rightarrow \nu \nu^*$

 200  ACKERSTAFF 97 OPAL  $e^+e^- \rightarrow \nu \nu^*$ 

	20	1 ADLOFF	97 H1	Lepton-flavor violation
	20	² ACCIARRI	96D L3	$e^+e^- \rightarrow \nu \nu^*$
		3 ALEXANDER	960 OPAL	$e^+e^- \rightarrow \nu \nu^*$
		⁴ BUSKULIC	96w ALEP	$e^+e^- \rightarrow \nu \nu^*$
		5 DERRICK	95B ZEUS	$e \rho \rightarrow \nu^* X$
		⁶ ABT	93 H1	$e p \rightarrow \nu^* X$
>87	95	ADRIANI	93M L3	$\lambda_7 > 0.1, \nu^* \rightarrow \nu_7$
>74	95	ADRIANI	93M L3	$\lambda_Z > 0.1, \nu_e^* \rightarrow eW$
	20	7 BARDADIN	92 RVUE	
>74	95 19	DECAMP	92 ALEP	$\lambda_{7} > 0.034$
>91	95 208,20	9 ADEVA	900 L3	$\lambda_{7} > 1$
>83	95 20	9 ADEVA	900 L3	$\lambda_{7} > 0.1, \nu^* \rightarrow \nu \gamma$
>74	95 20	⁹ ADEVA	900 L3	$\lambda_{7} > 0.1, \nu_{e}^{*} \rightarrow eW$
>90	95 210,21	1 DECAMP	900 ALEP	$\lambda_{7} > 1$
>74.7	₉₅ 210,21	¹ DECAMP	900 ALEP	$\lambda_{7} > 0.06$
				_

- 189 BREITWEG 97c search for single  $u^*$  production in ep collisions with the decay  $u^*$  ightharpoonup $\nu\gamma$ .  $f=-f'=2\Lambda/m_{\nu^*}$  is assumed for the  $\nu^*$  coupling. See their Fig. 10 for the exclusion plot in the mass-coupling plane.
- ¹⁹⁰ DECAMP 92 limit is based on B( $Z \to \nu^* \overline{\nu}$ )×B( $\nu^* \to \nu \gamma$ ) < 2.7 × 10⁻⁵ (95%CL) assuming Dirac  $\nu^*$ , B( $\nu^* \rightarrow \nu \gamma$ ) = 1.
- 191 From  $e^+e^-$  collisions at  $\sqrt{s}=130-183$  GeV, ABBIENDI 99F obtain limit on  $\sigma(e^+e^-\to \nu\nu^+)$  B( $\nu^*\to\nu\gamma$ ). See their Fig. 8.
- 192 ABREU 990 result is from  $e^+e^+$  collisions at  $\sqrt{s}=$  183 GeV. See their Figs. 4 and 5 for the exclusion limit in the mass-coupling plane.
- 193 ACKERSTAFF 98c from e⁺e⁻ collisions at √s=170-172 GeV. See their Fig. 11 for the exclusion fimit in the mass-coupling plane.
- ¹⁹⁴BARATE 980 obtain limits on the  $Z\nu\nu^*$  coupling. See their Fig. 13 for limits in masscoupling plane  $^{195}\,\mathrm{From}\;e^+\,e^-$  collisions at  $\sqrt{s}{=}\;161$  GeV.
- 196 See Fig. 4b and Fig. 5b of ABREU 97B for the exclusion limit in the mass-coupling plane.
- 197 ABREU 971 limit is from  $Z \to \nu \nu^*$ . See their Fig. 12 for the exclusion limit in the mass-coupling plane.
- ¹⁹⁸ ABREU 97J limit is from  $Z \rightarrow \nu \nu^*$ . See their Fig. 5 for the exclusion limit in the mass-coupling plane.
- 199 See Fig. 2 and Fig. 3 of ACCIARRI 976 for the exclusion limit in the mass-coupling plane. ²⁰⁰ ACKERSTAFF 97 result is from  $e^+e^-$  collisions at  $\sqrt{s}=$  161 GeV, for homodoublet  $\nu^*$ . See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- 201 ADLOFF 97 search for single  $e^*$  production in ep collisions with the decays  $e^* \rightarrow e\gamma$ ,  $eZ_1 \ W$ . See their Fig. 4 for the rejection limits on the product of the production cross section and the branching ratio.
- ²⁰² ACCIARRI 96D result is from  $e^+e^-$  collisions at  $\sqrt{s}$ = 130–140 GeV. See their Fig. 2 for
- the exclusion limit in the mass-coupling plane. 203 ALEXANDER 96Q result is from  $e^+e^-$  collisions at  $\sqrt{s}=$  130–140 GeV for homedoublet  $u^*$  . See their Fig. 3b and Fig. 3c for the exclusion limit in the mass-coupling
- 204 BUSKULIC 96w result is from  $e^+e^-$  collisions at  $\sqrt{s}=$  130–140 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- 205  DERRICK 95B search for single  $\nu^*$  production via  $\nu^*eW$  coupling in ep collisions with the decays  $\nu^* \to \nu \gamma$ ,  $\nu Z$ , eW. See their Fig. 14 for the exclusion plot in the  $m_{\nu^*} - \lambda \gamma$ plane.
- 206 ABT 93 search for single  $\nu^*$  production via  $\nu^*eW$  coupling in ep collisions with the decays  $\nu^* \to \nu \gamma$ ,  $\nu Z$ , eW. See their Fig. 4 for exclusion plot in the  $m_{\nu^*}$ - $\lambda_W$  plane.
- 207 See Fig. 5 of BARDADIN-OTWINOWSKA 92 for combined limit of ADEVA 900, DE-CAMP 900, and DECAMP 92.
- 208 Limit is either for  $\nu^* \rightarrow \nu \gamma$  or  $\nu^* \rightarrow e W$ .
- ²⁰⁹ Superseded by ADRIANI 93м.
- $^{210}\,\text{DECAMP}$  900 limit based on B(Z  $\rightarrow~\nu\nu^*)\cdot\text{B}(\nu^*\rightarrow~\nu\gamma)<~6\times10^{-5}$  (95%CL), assuming  $B(\nu^* \rightarrow \nu \gamma) = 1$ .
- 211 Superseded by DECAMP 92.

#### MASS LIMITS for Excited $q(q^*)$

#### Limits for Excited $q(q^*)$ from Pair Production

These limits are obtained from  $e^+e^- \rightarrow q^* \overline{q}^*$  and thus rely only on the (electroweak) charge of the  $q^*$ . Form factor effects are ignored unless noted. Assumptions about the  $q^*$  decay are given in the comments and footnotes. CL% DOCUMENT ID

NATOE (GEV)	CL/0	DOCUMENTIO	1507	COMMENT
>45.6	95	²¹² ADRIANI	93M L3	$u$ or $d$ type, $Z \rightarrow q^* q^*$
• • • We do not	use the follow	ing data for average	s, fits, limits,	etc. • • •
		213 BARATE	98U ALEP	$Z \rightarrow q^* q^*$
		²¹⁴ ADRIANI		$Z \rightarrow q^* q^*$
>41.7	95	215 BARDADIN	92 RVUE	$u$ -type, $\Gamma(Z)$
>44.7	95	²¹⁵ BARDADIN	92 RVUE	$d$ -type, $\Gamma(Z)$
>40.6	95	216 DECAMP	92 ALEP	$u$ -type, $\Gamma(Z)$
>44.2	95	216 DECAMP	92 ALEP	$d$ -type, $\Gamma(Z)$
>45	95	217 DECAMP	92 ALEP	u or d type,
				$Z \rightarrow q^*q^*$
>45	95	²¹⁶ ABREU	91F DLPH	$u$ -type, $\Gamma(Z)$
>45	95	²¹⁶ ABREU	91F DLPH	$d$ -type, $\Gamma(Z)$
>21.1	95	218 BEHREND	86c CELL	$e(q^*) = -1/3, q^* \rightarrow$
		010		qg
>22.3	95	218 BEHREND	86c CELL	$e(q^*) = 2/3, q^* \rightarrow qg$
>22.5	95	²¹⁸ BEHREND	86c CELL	$e(q^*) = -1/3, \ q^* \rightarrow$
		210 _		$q\gamma$
>23.2	95	218 BEHREND	86c CELL	$e(q^*) = 2/3, q^* \rightarrow q\gamma$

- ²¹²ADRIANI 93M limit is valid for B( $q^* \rightarrow qg$ )> 0.25 (0.17) for up (down) type.
- 213 BARATE 980 obtain limits on the form factor. See their Fig. 16 for limits in mass-form factor plane.
- 214 ADRIANI 92F search for  $Z o q^* \overline{q}^*$  followed with  $q^* o q \gamma$  decays and give the limit  $\sigma_Z$  B(Z  $\rightarrow$   $q^*\bar{q}^*)$  B²( $q^* \rightarrow q\gamma$ ) <2 pb at 95%CL. Assuming five flavors of degenerate  $q^*$  of homodoublet type, B( $q^* \to q \gamma$ ) <4% is obtained for  $m_{q^*}$  <45 GeV.
- 215  BARDADIN-OTWINOWSKA 92 limit based on  $\Delta\Gamma(Z){<}36$  MeV.
- ²¹⁶ These limits are independent of decay modes.
- 217 Limit is for B( $q^* \rightarrow q\bar{g}$ )+B( $q^* \rightarrow q\gamma$ )=1.
  218 BEHREND 86c search for  $e^+e^- \rightarrow q^*\bar{q}^*$  for  $m_{q^*} >$ 5 GeV. But m < 5 GeV excluded by total hadronic cross section. The limits are for point-like photon couplings of excited

#### Limits for Excited $q\left(q^{\bullet}\right)$ from Single Production

These limits are from  $e^+e^-\to q^*\overline{q}$  or  $p\overline{p}\to q^*X$  and depend on transition magnetic couplings between q and  $q^*$ . Assumptions about  $q^*$  decay mode are given in the footnotes and comments.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>570 (CL = 95%) (	UR EVAL	UATION			
none 200–520 and 580–760	95	219 ABE	97G	CDF	$p\overline{p} \rightarrow q^*X, q^* \rightarrow 2$
none 40-169	95	220 BREITWEG	97c	ZEUS	
none 80-570	95	221 ABE	95N	CDF	$p\overline{p} \rightarrow q^*X, q^* \rightarrow qg$ $q\gamma, qW$
>288	90	222 ALITTI	93	UA2	$p\overline{p} \rightarrow q^*X, q^* \rightarrow qg$
> 88	95	223 DECAMP	92	ALEP	$Z \rightarrow qq^*, \lambda_7 > 1$
> 86	95	223 AKRAWY	901	OPAL	$Z \rightarrow qq^*, \lambda_Z > 1.2$
• • • We do not use	the follow	ing data for averages,	fits	, limits,	etc. • • •
		224 ABREU	990	DLPH	$e^+e^- \rightarrow qq^*$
		225 BARATE			$Z \rightarrow qq^*$
					Lepton-flavor violation
			95B	ZEUS	$ep \rightarrow q^*X$
none 80-540	95		94	CDF	$p\overline{p} \to q^* X, q^* \to q\gamma,$
> 79	95			L3	$\lambda_{7}(L3) > 0.06$
			<b>92</b> D	DLPH	Z → qq*
			92F	L3	$Z \rightarrow qq^*$
> 75	95		92	ALEP	$Z \rightarrow qq^*, \lambda_Z > 1$
				UA1	
. 20	95	233 BEHREND	967	CELL	$q^* \rightarrow qW$ $e^+e^- \rightarrow q^*\overline{q} (q^* \rightarrow$
> 39	95	BETIKEND	00C	CELL	$qg,q\gamma$ ), $\lambda_{\gamma}=1$

- 219 ABE 97G search for new particle decaying to dijets.
- ²²⁰BREITWEG 97c search for single  $q^*$  production in e p collisions with the decays  $q^* 
  ightharpoonup$  $q\gamma$ , qW.  $f_{\rm S}=0$ , and  $f=-f'=2\Lambda/m_{g^*}$  is assumed for the  $q^*$  coupling. See their Fig. 11 for the exclusion plot in the mass-coupling plane.
- 221 ABE 95N assume a degenerate  $u^*$  and  $d^*$  with  $f_S = f = f' = \Lambda/m_{d^*}$ . See their Fig. 4 for the excluded region in  $m_{q^*} - f$  plane.
- ²²²ALITTI 93 search for resonances in the two-jet invariant mass. The limit is for  $f_S = f$  $=f'=\Lambda/m_{q^*}.$   $u^*$  and  $d^*$  are assumed to be degenerate. If not, the limit for  $u^*$   $(d^*)$ is 277 (247) GeV if  $m_{d^*} \gg m_{u^*} \ (m_{u^*} \gg m_{d^*})$ .
- 223 Assumes B( $q^* \rightarrow q\gamma$ ) = 0.1.
- 224 ABREU 990 result is from  $e^+e^-$  collisions at  $\sqrt{s}=$  183 GeV. See their Fig. 6 for the exclusion limit in the mass-coupling plane.
- 225 BARATE 980 obtain limits on the Zqq* coupling. See their Fig. 16 for limits in mass-
- 226 ADLOFF 97 search for single  $q^*$  production in ep collisions with the decay  $q^* \to q\gamma$ . See their Fig. 6 for the rejection limits on the product of the production cross section and the branching ratio.
- 227 DERRICK 958 search for single  $q^*$  production via  $q^* q \gamma$  coupling in e p collisions with the decays  $q^* \rightarrow qW$ , qZ, qg,  $q\gamma$ . See their Fig.15 for the exclusion plot in the
- 228 ABE 94 search for resonances in jet- $\gamma$  and jet-W invariant mass in  $p\overline{p}$  collisions at  $E_{cm}$ = 1.8 TeV. The limit is for  $f_5=f=f^f=\Lambda/m_{q^*}$  and  $u^*$  and  $d^*$  are assumed to be degenerate. See their Fig. 4 for the excluded region in  $m_{n^*}$ -f plane.
- ²²⁹ Assumes B( $q^* \rightarrow qg$ ) = 1.
- 230 ABREU 92D give  $\sigma(e^+e^- \to Z \to q^*\overline{q} \text{ or } q\overline{q}^*) \times \text{B}(q^* \to q\gamma) <15 \text{ pb (95\% CL)}$  for  $m_{q^*} <80 \text{ GeV}.$
- 231 ADRIANI 92F search for  $Z \to q q^*$  with  $q^* \to q \gamma$  and give the limit  $\sigma_Z \cdot B(Z \to q \gamma)$  $q\,q^*)\cdot {\rm B}(q^*\to q\,\gamma)<$  (2–10) pb (95%CL) for  $m_{q^*}=$  (46–82) GeV.
- $^{232} \rm ALBAJAR$  89 give  $\sigma(q^* \rightarrow W + \rm jet)/\sigma(W) < 0.019$  (90% CL) for  $m_{q^*} >$  220 GeV.
- $233\,\mathrm{BEHREND}$  86C has  $E_\mathrm{cm}=42.5\text{--}46.8$  GeV. See their Fig. 3 for excluded region in the  $m_{q^*} - (\lambda_\gamma/m_{q^*})^2$  plane. The limit is for  $\lambda_\gamma = 1$  with  $\eta_L = \eta_R = 1$ .

#### MASS LIMITS for Color Sextet Quarks (96)

VALUE (GeV) DOCUMENT ID TECN COMMENT 890 CDF  $p \overline{p} \rightarrow q_6 \overline{q}_6$ 

234 ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

### **Quark and Lepton Compositeness**

VALUE (GeV)	CL%	DOCUMENT ID	,	TECN	COMMENT
>86	95	235 ABE	89D	CDF	Stable $\ell_8: p\overline{p} \rightarrow \ell_8\overline{\ell}_8$
<ul> <li>We do not us</li> </ul>	se the follow	ving data for avera	ges, fits	, fimits,	
		236 ABT	93	H1	$e_8: e_p \rightarrow e_8 X$
none 3.0–30.3	95	²³⁷ KIM	90	AMY	e8: e+e- → ee +
none 3.5-30.3	95	²³⁷ KIM	90	AMY	jets $\mu_8: e^+e^- \rightarrow \mu\mu +$
		²³⁸ KIM	90	AMY	jets $e_{R}: e^{+}e^{-} \rightarrow gg; R$
>19.8	95	239 BARTEL		JADE	
none 5-23.2	95	²³⁹ BARTEL		JADE	$\mu_8: e^+e^- \rightarrow \mu\mu +$
		240 BARTEL	85K	JADE	jets $e_8: e^+e^- \rightarrow gg; R$

235 ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit charged hadron. into a unit-charged hadron.

- 236 ABT 93 search for  $e_8$  production via e-gluon fusion in ep collisions with  $e_8 \rightarrow eg$ . See their Fig. 3 for exclusion plot in the  $m_{e_8}$ - $\Lambda$  plane for  $m_{e_8} = 35$ -220 GeV.
- 237  KIM 90 is at  $E_{\rm cm}=50$ –60.8 GeV. The same assumptions as in BARTEL 87B are used.
- 238 KIM 90 result  $(m_{\rm e_0}\Lambda_M)^{1/2} > 178.4$  GeV (95%CL,  $\alpha_{\rm S}=0.16$  used) is subject to the same restriction as for BARTEL 85K.
  239 BARTEL 87B is at  $E_{\rm cm}=46.3$ –46.78 GeV. The limits assume  $\ell_8$  pair production cross sections to be eight times larger than those of the corresponding heavy lepton pair
- 240 In BARTEL 85K, R can be affected by  $e^+e^- o gg$  via  $e_q$  exchange. Their limit  $m_{\rm e_B}$  >173 GeV (CL=95%) at  $\lambda=m_{\rm e_B}/\Lambda_M=1$  ( $\eta_L=\eta_R=1$ ) is not listed above because the cross section is sensitive to the product  $\eta_L\eta_R$ , which should be absent in ordinary theory with electronic chiral invariance.

#### MASS LIMITS for Color Octet Neutrinos ( $\nu_R$ )

$\lambda \equiv m_{\ell_R}/\Lambda$					
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>110	90	²⁴¹ BARGER	89	RVUE	$\nu_8: p\overline{p} \rightarrow \nu_8 \overline{\nu}_8$
• • • We do not use	the follow	ving data for average	es, fits	, limits,	, etc. • • •
none 3.8-29.8	95	²⁴² KIM	90	AMY	$ u_8: e^+e^- \rightarrow a$ coplanar jets
none 9–21.9	95	²⁴³ BARTEL	87в	JADE	$\nu_8: e^+e^- \rightarrow \text{acoplanar}$

- ²⁴¹BARGER 89 used ABE 89B limit for events with large missing transverse momentum. Two-body decay  $\nu_8 \rightarrow \nu_g$  is assumed.
- $^{242}\,\rm KIM$  90 is at  $E_{\rm CM}=$  50–60.8 GeV. The same assumptions as in BARTEL 87B are used.
- 243 BARTEL 87B is at E_{Cm} = 46.3-46.78 GeV. The limit assumes the \(\nu_8\) pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its 5U(2)_L ×U(1)_Y quantum numbers.

#### MACC LIMITS for W. /Color Octob W/ Bornes

MASS LIMITS FOR W ₈ (Co	DIOP OCTET W BOS	on)			
VALUE (GeV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the follow	-				
	²⁴⁴ ALBAJAR	89	UA1	$p \overline{p} \rightarrow W_8 X,$ $W_8 \rightarrow W_g$	

 244  ALBAJAR 89 give  $\sigma(W_8 \to~W+{\rm jet})/\sigma(W) < 0.019$  (90% CL) for  $m_{\ensuremath{W_8}}~>$  220 GeV.

#### Limits on $ZZ\gamma$ Coupling

Limits are for the electric dipole transition form factor for  $Z \to \gamma Z^*$  parametrized as  $f(s^t) = \beta(s^t/m_Z^2-1)$ , where  $s^t$  is the virtual Z mass. In the Standard Model  $\beta \sim 10^{-5}$ .

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following	data for averages	, fits, limits,	etc. • • •
< 0.80	95	ADRIANI	92) L3	$Z \rightarrow \gamma \nu \overline{\nu}$

#### REFERENCES FOR Searches for Quark and Lepton Compositeness

BARATE	100	EPJ C12 183	R. Barate et al.	(ALEPH	Collab.)
ABBIENDI	99	EPJ C6 1	G. Abbiendi et al.	`(OPAL	Collab.)
ABBIENDI	99F	EPJ C8 23	G. Abbiendi et al.	(OPAL	Collab.)
ABBIENDI	99P	PL B465 303	G. Abbiendi et al.	OPAL	Collab.)
ABBOTT	99C	PRL 82 2457	B. Abbott et al.	` (D0	Collab.)
ABBOTT	99D	PRL 82 4769	B. Abbott et al.		Collab.)
ABREU	99A	EPJ C11 383	P. Abreu et al.	(DELPH)	
ABREU	990	EPJ CB 41	P. Abreu et al.	(DELPHI	Collab.)
ZARNECKI	99	EPJ C11 539	A.F. Zarnecki	•	,
ABBOTT	98G	PRL 80 666	B. Abbott et al.	(D0	Collab.)
ABREU	98J	PL B433 429	P. Abreu et al.	(DELPHI	Collab.)
ACCIARRI	98J	PL B433 163	M. Acciarri et al.	` (L3	Collab.)
ACCIARRI	98T	PL B439 183	M. Acciarri et al.	(L3	Collab.)
ACKERSTAFF	98	EPJ C1 21	K. Ackerstaff et al.	(OPAL	Collab.)
ACKERSTAFF	98C	EPJ C1 45	K. Ackerstaff et al.	(OPAL	Collab.)
ACKERSTAFF	98V	EPJ C2 441	K. Ackerstaff et al.	(OPAL	Collab.)
ACKER,K	98B	PL B438 379	K. Ackerstaff et al.	(OPAL	Collab.)
BARATE	98J	PL B429 201	R. Barate et al.	(ALEPH	Collab.)

BARATE	98U	EPJ C4 571	R. Barate et al.	(ALEPH Conab.)
BARATE BERTRAM MCFARLAND	98	PL B443 347	I. Bertram, E.H. Simmons	
MIURA	98	E1 2 C1 307	N.J. MICI BITATIO CL BL.	(CCFR/NuTeV Collab.) (VENUS Collab.)
ABE ABE	97G 97T	PR D55 R5263 PRL 79 2198		(CDF Collab.) (CDF Collab.)
ABREU	97B	PL B393 245	F. Abe et al. P. Abreu et al.	(DELPHI Collab.)
ABREU Also	971 97L	ZPHY C74 57 ZPHY C75 580 erratum	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)
ABREU ACCIARRI	97T 97B 97I 97L 97J 97G	ZPHY C74 577	P. Abreu et al.	(DELPHI Collab.)
ACCIARRI	977	PL B401 139 PL B413 159	M. Acciarri et al.	(L3 Collab.) (L3 Collab.)
ACKERSTAFF ACKERSTAFF	97 97 <i>C</i>	PL B391 197 PL B391 221	K. Ackerstaff et al. K. Ackerstaff et al.	(OPAL Collab.) (OPAL Collab.)
ADLOFF	97	NP B483 44	C. Adloff et al.	(H1 Collab.)
ARIMA BREITWEG	97 97C	PR D55 19 ZPHY C76 631	T. Arima et al. J. Breitweg et al.	(VENUS Collab.) (ZEUS Collab.)
DEANDREA ABE	97 96	PL B409 277 PRL 77 438	A. Deandrea	(MARS) (CDF Collab.)
ABE	96\$	PRL 77 5336	F. Abe et al. F. Abe et al.	(CDF Collab.)
ABREU ACCIARRI	96K 96D	PL B380 480 PL B370 211	P. Abreu et al. M. Acciarri et al.	(DELPHI Collab.) (L3 Collab.)
ACCIARRI	96Ł	PL B384 323	M. Acciarri et al.	(L3 Collab.)
ALEXANDER ALEXANDER		PL B377 222 PL B386 463	G. Alexander et al. G. Alexander et al.	(OPAL Collab.) (OPAL Collab.)
BUSKULIC BUSKULIC	96W 96Z	PL B385 445 PL B384 333	D. Buskulic et al. D. Buskulic et al.	(ALEPH Collab.)
ABE	95N	PRL 74 3538	F. Abe et al.	(ALEPH Collab.) (CDF Collab.)
ACCIARRI AID	95G 95	PL B353 136 PL B353 578	M. Acciarri et al. S. Aid et al.	(L3 Collab.) (H1 Collab.)
DERRICK	95B	ZPHY C65 627	M. Derrick et al.	(ZEUS Collab.)
ABE DIAZCRUZ	94 94	PRL 72 3004 PR D49 R2149	F. Abe et al. J.L. Diaz Cruz, O.A. Sampayo	(CDF Collab.) (CINV)
VELISSARIS ABE	94	PL B331 227 PRL 71 2542	C. Velissaris et al.	(AMY Collab.) (CDF Collab.)
ABT	93	NP B396 3	F. Abe et al. I. Abt et al.	(CDF Collab.) (H1 Collab.)
ADRIANI ALITTI	93M 93	PRPL 236 1 NP B400 3	O. Adriani et al. J. Alitti et al.	(L3 Collab.) (UA2 Collab.)
BUSKULIC	93Q	ZPHY C59 215	D. Buskulic et al.	(ALEPH Collab.)
DERRICK ABE	93B 92B	PL B316 207 PRL 68 1463	M. Derrick et al. F. Abe et al.	(ZEUS Collab.)
ABE	92D	PRL 68 1104	F. Abe et al.	(CDF Collab.) (CDF Collab.)
ABE ABREU	92M 92C	PRL 69 2896 ZPHY C53 41	F. Abe et al. P. Abreu et al.	(CDF Collab.) (DELPHI Collab.)
	92D 92B	ZPHY C53 555 PL B288 404	P. Abreu et al. O. Adriani et al.	(DELPHI Collab.)
ADRIANI	92F	PL B292 472	O. Adriani et al.	(L3 Collab.) (L3 Collab.)
ADRIANI BARDADIN		PL B297 469 ZPHY C55 163	O. Adriani et al. M. Bardadin-Otwinowska	(L3 Collab.)
DECAMP	92	ZPHY C55 163 PRPL 216 253	D. Decamp et al.	(CLER) (ALEPH Collab.)
HOWELL KROHA	92 92	PL B291 206 PR D46 58	B. Howell et al. H. Kroha	(TOPAZ Collab.) (ROCH)
PDG SHIMOZAWA	92	PR D45, 1 June, Part II	K. Hikasa et al. K. Shimozawa et al.	(KEK, LBL, BOST+)
ABE	92 91D 91E 91F	PRI 67 2418	F Ahe et al	(TOPAZ Collab.) (CDF Collab.)
ABREU ABREU	91E 91F	PL B268 296 NP B367 511	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.)
ADACHI	91	PL B255 613	I. Adachi et al.	(TOPAZ Collab.)
AKRAWY ALITTI	91F 91B	PL B257 531 PL B257 232	M.Z. Akrawy et al. J. Alitti et al.	(OPAL Collab.) (UA2 Collab.)
BEHREND BEHREND	91B 91C	ZPHY C51 143 ZPHY C51 149	H.J. Behrend et al. H.J. Behrend et al.	(CÈLLO Collab.) (CELLO Collab.)
Also	91B	ZPHY C51 143	H.J. Behrend et al.	(CELLO Collab.)
ABE ADEVA	90f 90F	ZPHY C48 13 PL B247 177	K. Abe et al. B. Adeva et al.	(VENUS Collab.) (L3 Collab.)
ADEVA	90K	PL B250 199	B. Adeva et al.	(L3 Coffab.)
ADEVA ADEVA	90L 90O	PL B250 205 PL B252 525	B. Adeva et al. B. Adeva et al.	(L3 Collab.) (L3 Collab.)
AKRAWY AKRAWY	90F 90I	PL B241 133 PL B244 135	M.Z. Akrawy et al. M.Z. Akrawy et al.	(OPAL Collab.)
AKRAWY	90J	PL B246 285	M.Z. Akrawy et al.	(OPAL Collab.) (OPAL Collab.)
DECAMP DECAMP	90G 90O	PL B236 501 PL B250 172	D. Decamp et al. D. Decamp et al.	(ALEPH Collab.) (ALEPH Collab.)
KIM	90	PL B240 243	G.N. Kim et al.	(AMY Collab.) (CDF Collab.)
ABE ABE	89 89B	PRL 62 613 PRL 62 1825	F. Abe et al. F. Abe et al.	(CDF Collab.) (CDF Collab.)
ABE	89D	PRL 63 1447	F. Abe et al.	(CDF Collab.)
ABE ABE	89H 89J	PRL 62 3020 ZPHY C45 175	F. Abe et al. K. Abe et al.	(CDF Collab.) (VENUS Collab.)
ABE ADACHI	89L 89B	PL B232 425 PL B228 553	K. Abe et al. I. Adachi et al.	(VENUS Collab.) (TOPAZ Collab.)
ALBAJAR	89	ZPHY C44 15	C. Albajar <i>et al.</i>	(UA1 Collab.)
BARGER BEHREND	89 89B	PL B220 464 PL B222 163	V. Barger et al. H.J. Behrend et al.	(WISC, KEK) (CELLO Collab.)
BRAUNSCH	89C	ZPHY C43 549 ZPHY C41 567	W. Braunschweig et al.	(TASSO Collab.)
DORENBOS HAGIWARA	89	PL B219 369	J. Dorenbosch et al. K. Hagiwara, M. Sakuda, N. Teru	
KIM ABE	89 88B	PL B223 476 PL B213 400	S.K. Kim et al. K. Abe et al.	(AMY Collab.)
BARINGER	88	PL B206 551	P. Baringer et al.	(VENUS Collab.) (HRS Collab.)
BRAUNSCH BRAUNSCH	88 88D	ZPHY C37 171 ZPHY C40 163	W. Braunschweig et al. W. Braunschweig et al.	(TÁSSO Collab.) (TASSO Collab.)
ANSARI	87D	PL B195 613	R. Ansari et al.	(UA2 Collab.)
BARTEL BEHREND	87B 87C	ZPHY C36 15 PL B191 209	W. Bartel et al. H.J. Behrend et al.	(JADE Collab.) (CELLO Collab.)
FERNANDEZ ARNISON	87B 86C	PR D3S 10 PL B172 461	E. Fernandez et al. G.T.J. Arnison et al.	(MAC Collab.) (UA1 Collab.)
ARNISON	86D	PL B177 244	G.T.J. Arnison et al.	(UA1 Collab.)
BARTEL BARTEL	86 86Ç	ZPHY C31 359 ZPHY C30 371	W. Bartel et al. W. Bartel et al.	(JADE Collab.) (JADE Collab.)
BEHREND	86	PL 168B 420	H.J. Behrend et al.	(ČELLO Collab.)
BEHREND DERRICK	86C 86	PL B181 178 PL 166B 463	H.J. Behrend et al. M. Derrick et al.	(CELLO Collab.) (HRS Collab.)
Also DERRICK	86B 86B	PR D34 3286 PR D34 3286	M. Derrick et al. M. Derrick et al.	(HRS Collab.) (HRS Collab.)
GRIFOLS	86	PL 168B 264	J.A. Grifols, S. Peris	` (BARC)
JODIDIO Also	86 88	PR D34 1967 PR D37 237 erratum	A. Jodidio et al. A. Jodidio et al.	(LBL, NWES, TRIU) (LBL, NWES, TRIU)
APPEL	85	PL 160B 349	J.A. Appel et al.	(UA2 Collab.)
BARTEL BERGER	85K 85	PL 160B 337 ZPHY C28 1	W. Bartel et al. C. Berger et al.	(JADE Collab.) (PLUTO Collab.)
BERGER BAGNAIA	85B 84C	ZPHY C28 1 ZPHY C27 341 PL 1388 430	C. Berger et al.	(PLUTO Collab.)
BARTEL	84D	PL 138B 430 PL 146B 437	P. Bagnaia et al. W. Bartel et al.	(UA2 Collab.) (JADE Collab.)
BARTEL EICHTEN	84E 84	PL 146B 121 RMP 56 579	W. Bartel et al. E. Eichten et al.	(JADE Collab.) (FNAL, LBL, OSU)
ALTHOFF	83C	PL 126B 493	M. Althoff et al.	(TASSO Collab.)
RENARD	82	PL 116B 264	F.M. Renard	(CERN)

#### WIMPs and Other Particle Searches

OMITTED FROM SUMMARY TABLE

#### WIMPS AND OTHER PARTICLE SEARCHES

Revised March 2000 by K. Hikasa (Tohoku University).

We collect here those searches which do not appear in any of the above search categories. These are listed in the following

- 1. Galactic WIMP (weakly-interacting massive particle) searches
- 2. Concentration of stable particles in matter
- 3. Limits on neutral particle production at accelerators
- 4. Limits on jet-jet resonance in hadron collisions
- 5. Limits on charged particles in  $e^+e^-$  collisions
- 6. Limits on charged particles in hadron reactions
- 7. Limits on charged particles in cosmic rays
- 8. Search for low-scale gravity effects

Note that searches appear in separate sections elsewhere for Higgs bosons (and technipions), other heavy bosons (including  $W_R$ , W', Z', leptoquarks, axigluons), axions (including pseudo-Goldstone bosons, Majorons, familons), heavy leptons, heavy neutrinos, free quarks, monopoles, supersymmetric particles, and compositeness. We include specific WIMP searches in the appropriate sections when they yield limits on hypothetical particles such as supersymmetric particles, axions, massive neutrinos, monopoles, etc.

We omit papers on CHAMP's, millicharged particles, and other exotic particles. We no longer list for limits on tachyons and centauros. See our 1994 edition for these limits.

#### **GALACTIC WIMP SEARCHES** Cross-Section Limits for Dark Matter Particles ( $X^0$ ) on Nuclei

These limits are for weakly-interacting stable particles that may constitute the invisible mass in the galaxy. Unless otherwise noted, a local mass density of 0.3 GeV/cm3 is assumed; see each paper for velocity distribution assumptions. In the papers the limit is given as a function of the  $X^0$  mass. Here we list limits only for typical mass values of 20 GeV, 100 GeV, and 1 TeV. Specific limits on supersymmetric dark matter particles may be found in the Supersymmetry section.

For  $m_{\chi^0}=20~{\rm GeV}$ 

VALUE (nb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e followin	g data for averages	, fits	, limits,	etc. • • •
		1 BAUDIS	99	CNTR	76 _{Ge}
	90	² BELLI	99c	CNTR	F
		3 BERNABEI	99	CNTR	Nat
		⁴ OOTANI	99	BOLO	LiF
		³ BERNABEI	98	CNTR	Nal
		⁵ BERNABE!	98c	CNTR	¹²⁹ Xe
< 0.04	95	⁶ KLIMENKO	98	CNTR	⁷³ Ge, inel.
		⁷ BERNABEI	97	CNTR	F
< 0.8		ALESSAND	96	CNTR	0
< 6		ALESSAND	96	CNTR	
< 0.02	90	⁸ BEŁLI	96	CNTR	¹²⁹ Xe, inel.
		⁹ BELLI	96C	CNTR	¹²⁹ Xe
< 0.004	90	¹⁰ BERNABEI	96	CNTR	Na
< 0.3	90	¹⁰ BERNABEI	96	CNTR	1
< 0.2	95	¹¹ SARSA	96	CNTR	Na
< 0.015	90	¹² SMITH	96	CNTR	Na
< 0.05	95	¹³ GARCIA	95	CNTR	Natural Ge
< 0.1	95	QUENBY	95	CNTR	
<90	90	14 SNOWDEN		MICA	16 _O
$< 4 \times 10^{3}$	90	14 SNOWDEN	95	MICA	³⁹ K
< 0.7	90	BACCI	92	CNTR	Na
< 0.12	90	¹⁵ REUSSER	91	CNTR	Natural Ge
< 0.06	95	CALDWELL	88	CNTR	Natural Ge

 $^{^{1}}$  BAUDIS 99 give the limit  $\sigma < 1 \times 10^{-4} \, \mathrm{pb}$  for scalar  $\mathit{X}^{0}\text{-nucleon cross section}.$ 

- 2  BELLI 99c give  $\sigma <$  10 pb for the spin-dependent  $X^0$  -proton cross section.
- ³ See the following subsection for claim of a possible signal.
- ⁴ OOTANI 99 give σ < 40 pb for the spin-dependent neutralino-proton cross section. The cross-section limit extends to lower masses compared to other experiments.
- 5  BERNABEI 98C use pulse shape discrimination to enhance a possible signal. The limits  $\sigma < 3\times 10^{-4}$  pb (90%CL) for spin-independent  $X^0$ -nucleon cross section (assuming isoscalar), and  $\sigma < 20\,\mathrm{pb}$  (90%CL) for spin-dependent (assuming  $Z^0$  exchange) are
- given.  6  KLIMENKO 98 limit is for inelastic scattering  $X^{0.73}$ Ge  $\rightarrow X^{0.73}$ Ge* (13.26 keV).
- 7  BERNABEI 97 give  $\sigma < 12$  pb (90%CL) for the spin-dependent  $X^0$ -proton cross section. 8 BELLI 96 limit for inelastic scattering  $X^0$   $^{129}{\rm Xe}$   $\rightarrow$   $~X^0$   $^{129}{\rm Xe}$  (39.58 keV).
- 9  BELLI 96c use background subtraction and obtain  $\sigma < 150\,\mathrm{pb}$  ( $< 1.5\,\mathrm{fb}$ ) ( $90\%\mathrm{CL}$ ) for spin-dependent (independent)  $X^0$ -proton cross section. The confidence level is from R. Bernabel, private communication, May 20, 1999.
- $^{
  m 10}\,{\sf BERNABEI}$  96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.
- 11 SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.
- ¹² SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of 0.4 GeV cm⁻³ is assumed.
- 13 GARCIA 95 limit is from the event rate. A weaker limit is obtained from searches for
- diurnal and annual modulation.  $^{14}\,\text{SNOWDEN-IFFT}$  95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ²⁷Al and ²⁸Si. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.
- 15 REUSSER 91 limit here is changed from published (0.04) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.

#### For $m_{y0} = 100 \text{ GeV}$

VALUE (nb)	CL%	DOCUMENT ID	_	TECN	COMMENT
• • • We do not use	the follow	ng data for averages,	fits	, limits,	etc. • • •
		¹⁶ BELLI	00	RVUE	
		17 AMBROSIO	99	MCRO	
		¹⁸ BAUDIS	99	CNTR	⁷⁶ Ge
	90	¹⁹ BELLI		CNTR	
		²⁰ BERNABEI	99	CNTR	Nai
		²¹ BRHLIK	99	RVUE	
		²² OOTANI	99	BOLO	LiF
		²³ BERNABEI	98	CNTR	
			98c	CNTR	
< 0.008	95	²⁵ KLIMENKO	98	CNTR	⁷³ Ge, inel.
< 0.08	95	²⁶ KLIMENKO	98	CNTR	⁷³ Ge, inel.
		²⁷ BERNABEI	97	CNTR	F
< 4		ALESSAND	96	CNTR	0
<25			96	CNTR	
< 0.006	90	²⁸ BELLI	96	CNTR	
			96C	CNTR	
< 0.001	90		96	CNTR	Na
< 0.3	90	30 BERNABEI	96	CNTR	1
< 0.7	95		96	CNTR	Na
< 0.03	90	³² sмітн	96	CNTR	Na
< 0.8	90		96		
< 0.35	95	³³ GARCIA	95		Natural Ge
< 0.6	95		95		
< 3	95	QUENBY	95	CNTR	
$< 1.5 \times 10^{2}$	90	34 SNOWDEN		MICA	16 _O
$< 4 \times 10^2$	90	34 SNOWDEN		MICA	
< 0.08	90	35 BECK	94	CNTR	
< 2.5	90	BACCI	92	CNTR	
< 3	90	BACCI	92		
< 0.9	90	³⁶ REUSSER	91		Natural Ge
< 0.7	95	CALDWELL	88	CNTR	Natural Ge

- 16 BELLI 00 discuss the effect of astrophysical uncertainties on the WIMP interpretation of the BERNABEI 99 signal.
- 17 AMBROSIO 99 search for upgoing muon events induced by neutrinos originating from
- WIMP annihilations in the Sun and Earth. 18 BAUDIS 99 give the limit  $\sigma < 7 \times 10^{-6}$  pb for scalar  $X^0$ -nucleon cross section.
- 19 BELLI 99c give  $\sigma <$  4.8 pb for the spin-dependent  $X^0$ -proton cross section.
- 20 BERNABEI 99 search for annual modulation of the WIMP signal. The data favor the hypothesis of annual modulation at 99.6%CL and are consistent with  $m_{\chi 0} = 59^{+17}_{-14}$  GeV and spin-independent  $\chi^0$ -proton cross section of  $(7.0^{+0.4}_{-1.2}) \times 10^{-6}$  pb  $(1 \sigma \text{ errors})$ .
- $^{21}\,\mathrm{BRHLIK}$  99 discuss the effect of astrophysical uncertainties on the WIMP interpretation of the BERNABEI 99 signal.
- 22  OOTANI 99 give  $\sigma < 0.1$  nb for the spin-dependent neutralino-proton cross section.
- ²³BERNABEI 98 search for annual modulation of the WIMP signal. The data is consistent with  $m_{\chi^0}$ =59 $^{+36}_{-19}$  GeV and spin-independent  $\chi^0$ -proton cross section of  $(1.0^{+0.1}_{-0.4})$  ×  $10^{-5}$  pb (1  $\sigma$  errors).
- ²⁴BERNABEI 98C use pulse shape discrimination to enhance a possible signal. The limits  $\sigma < 7 \times 10^{-6} \, \mathrm{pb}$  (90%CL) for spin-independent  $X^0$ -nucleon cross section (assuming isoscalar), and  $\sigma < 0.6\,\mathrm{pb}$  (90%CL) for spin-dependent (assuming  $Z^0$  exchange) are
- given. ²⁵ KLIMENKO 98 limit is for inelastic scattering  $\chi^0$  ⁷³Ge  $\rightarrow \chi^0$  ⁷³Ge* (13.26 keV).
- ²⁶ KLIMENKO 98 limit is for inelastic scattering  $X^{0.73}$ Ge  $\rightarrow X^{0.73}$ Ge* (66.73 keV).  27  BERNABEI 97 give  $\sigma < 5$  pb (90%CL) for the spin-dependent  $\chi^0$ -proton cross section.
- ²⁸ BELLI 96 limit for inelastic scattering  $X^{0.129}Xe \rightarrow X^{0.129}Xe^*(39.58 \text{ keV})$ .

#### WIMPs and Other Particle Searches

- ²⁹ BELLI 96C use background subtraction and obtain  $\sigma < 0.35$  pb (< 0.15 fb) (90%CL) for spin-dependent (independent)  $X^0$ -proton cross section. The confidence level is from R. Bernabel, private communication, May 20, 1999.
- 30 BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.
- 31 SARSA 97 for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.
- 32 SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of 0.4 GeV cm⁻³ is assumed.
- 33 GARCIA 95 limit is from the event rate. A weaker limit is obtained from searches for
- diurnal and annual modulation.

  34 SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ²⁷ Al and ²⁸ Si. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.

  35 BECK 94 uses enriched ⁷⁶Ge (86% purity).
- 36 REUSSER 91 limit here is changed from published (0.3) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.

#### For $m_{\chi 0} = 1$ TeV

ILUE (nb)	CL%	DOCUMENT ID		TECN	
<ul> <li>We do not use the</li> </ul>	following	data for averages	, fits	, limits,	etc. • • •
	90	³⁷ BELLI	99c	CNTR	F
	3	38 BERNABEI	99	CNTR	Nal
	3	³⁹ BERNABEI	<b>99</b> D	CNTR	SIMP
	4	⁴⁰ DERBIN	99	CNTR	SIMP
	4	⁴¹ OOTANI	99	BOLO	LiF
	3	³⁸ BERNABEI	98	CNTR	Nal
	4	⁴² BERNABEI	98c	CNTR	¹²⁹ Xe
0.06	95	⁴³ KLIMENKO	98	CNTR	73Ge, inel.
0.4	95	44 KLIMENKO	98	CNTR	73Ge, inel.
	4	⁴⁵ BERNABEI	97	CNTR	
40		ALESSAND	96	CNTR	0
700		ALESSAND	96	CNTR	
0.05		⁴⁶ BELLI	96	CNTR	129 Xe, inel.
1.5	90 4	⁴⁷ BELLI	96	CNTR	129 Xe, inel.
	4	⁴⁸ BELLI	96C	CNTR	129 Xe
0.01	90 4	⁴⁹ BERNABEI	96	CNTR	Na
9	90 4	⁴⁹ BERNABEI	96	CNTR	1
7	95	⁵⁰ SARSA	96	CNTR	Na
0.3	90	⁵¹ SMITH	96	CNTR	Na
6	90	⁵¹ SMITH	96	CNTR	1
6		⁵² GARCIA	95	CNTR	Natural Ge
8	95	QUENBY		CNTR	Na
50	95	QUENBY		CNTR	1
$7 \times 10^2$				MICA	¹⁶ 0
$1 \times 10^3$	90		95	MICA	³⁹ K
0.8	90	⁵⁴ BECK	94	CNTR	⁷⁶ Ge
30	90	BACCI	92	CNTR	Na
30	90	BACCI		CNTR	
15		⁵⁵ REUSSER	91		Natural Ge
6	95	CALDWELL	88	CNTR	Natural Ge

- 38 See the previous subsection for claim of a possible signal.
- 39 BERNABEI 99D search for SIMPs (Strongly Interacting Massive Particles) in the mass range 10³–10¹⁶ GeV. See their Fig. 3 for cross-section limits.
- 40 DERBIN 99 search for SIMPs (Strongly Interacting Massive Particles) in the mass range  $10^2 - 10^{14}$  GeV. See their Fig. 3 for cross-section limits.
- 41 OOTANI 99 give  $\sigma < 1$  nb for the spin-dependent neutralino-proton cross section. 42 BERNABEI 98c use pulse shape discrimination to enhance a possible signal. The limits  $\sigma < 4 \times 10^{-5} \, \mathrm{pb}$  (90%CL) for spin-independent  $X^0$ -nucleon cross section (assuming isoscalar), and  $\sigma < 4$  pb (90%CL) for spin-dependent (assuming  $Z^0$  exchange) are given. ⁴³ KLIMENKO 98 limit is for inelastic scattering  $X^0$  ⁷³ Ge  $\rightarrow X^0$  ⁷³ Ge* (13.26 keV).
- ⁴⁴ KLIMENKO 98 limit is for inelastic scattering  $X^{0.73}$  Ge  $\rightarrow X^{0.73}$  Ge* (66.73 keV).
- 45 BERNABEI 97 give  $\sigma < 32$  pb (90%CL) for the spin-dependent  $X^0$ -proton cross section. 46 BELLI 96 limit for inelastic scattering  $X^0$  129 $Xe \rightarrow X^0$  129 $Xe^*$ (39.58 keV).
- ⁴⁷BELLI 96 limit for inelastic scattering  $X^{0}$  ¹²⁹Xe  $\rightarrow X^{0}$  ¹²⁹Xe*(236.14 keV).
- 48  BELLI 96c use background subtraction and obtain  $\sigma < 0.7$  pb (< 0.7 fb) (90%CL) for spin-dependent (independent)  $X^0$ -proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.
- 49 BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.

  50 SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of
- the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.
- 51 SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of 0.4 GeV cm⁻³ is assumed.
- 52 GARCIA 95 limit is from the event rate. A weaker limit is obtained from searches for
- 35 SOWDEN-IFFT 95 look for recoil tracks in an ancient mice crystal. Similar limits are also given for ²⁷Al and ²⁸Si. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.
   54 BECK 94 uses enriched ⁷⁶Ge (86% purity).
- 55 REUSSER 91 limit here is changed from published (5) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.

#### CONCENTRATION OF STABLE PARTICLES IN MATTER

#### Concentration of Heavy (Charge +1) Stable Particles in Matter

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<ul> <li>• • We do not use th</li> </ul>	e followir	ig data for averages	s, fits	, limits,	etc. • • •
$<4 \times 10^{-17}$	95	⁵⁶ YAMAGATA	93	SPEC	Deep sea water, m=5-1600m _p
<6 × 10 ⁻¹⁵	95	⁵⁷ VERKERK	92	SPEC	Water, $m=10^5$ to $3 \times 10^7$ GeV
$< 7 \times 10^{-15}$	95	⁵⁷ VERKERK	92	SPEC	Water, $m=10^4$ , $6 \times 10^7$ GeV
$<9 \times 10^{-15}$	95	⁵⁷ VERKERK	92	SPEC	Water, m= 108 GeV
$< 3 \times 10^{-23}$	90	58 HEMMICK	90	SPEC	Water, $m = 1000 m_D$
$<2 \times 10^{-21}$	90	58 HEMMICK	90		Water, $m = 5000 m_D$
$< 3 \times 10^{-20}$	90	⁵⁸ HEMMICK	90	SPEC	Water, $m = 10000 m_D$
$<1. \times 10^{-29}$		SMITH	82B	SPEC	Water, m=30-400mn
$< 2. \times 10^{-28}$		SMITH	82B	SPEC	Water, m=12-1000m _n
$<1. \times 10^{-14}$		5MITH	82B	SPEC	Water, m >1000 m _p
<(0.2-1.) × 10 ⁻²¹		SMITH			Water, m=6-350 m _p

56 YAMAGATA 93 used deep sea water at 4000 m since the concentration is enhanced in

57 VERKERK 92 looked for heavy isotopes in sea water and put a bound on concentration of stable charged massive particle in sea water. The above bound can be translated into into a bound on charged dark matter particle (5 × 10⁶ GeV), assuming the local density,  $\rho$ =0.3 GeV/cm³, and the mean velocity  $\langle v \rangle$ =300 km/s.

58 See HEMMICK 90 Fig. 7 for other masses 100–10000  $m_p$ .

#### Concentration of Heavy (Charge -1) Stable Particles

	( 6-	_,			
VALUE	CL%	DDCUMENT ID		TECN	COMMENT
• • • We do not use the fo	llowing da	ta for averages, fits	i, limi	ts, etc.	• • •
$<4 \times 10^{-20}$	90	⁵⁹ НЕММІСК	90	SPEC	C, $M = 100 m_D$
<8 × 10 ^{~20}	90	⁵⁹ НЕММІСК			C, $M = 1000 m_D$
$< 2 \times 10^{-16}$	90	⁵⁹ HEMMICK			C, $M = 10000 m_D$
$<6 \times 10^{-13}$	90	⁵⁹ НЕММІСК			Li, $M = 1000 m_D^P$
$<1 \times 10^{-11}$	90	⁵⁹ HEMMICK			Be, $M = 1000 m_p$
$<6 \times 10^{-14}$	90	⁵⁹ HEMMICK			B, $M = 1000 m_D^P$
$<4 \times 10^{-17}$	90	⁵⁹ HEMMICK			$O, M = 1000 m_D$
$<4 \times 10^{-15}$	90	⁵⁹ HEMMICK			$F_1 M = 1000 m_0$
$< 1.5 \times 10^{-13}$ /nucleon	68	⁶⁰ NORMAN	89	SPEC	206 _{PbX} -
$< 1.2  imes 10^{-12}$ /nucleon	68	⁶⁰ NORMAN	87	SPEC	56,58 _{FeX}
59 Can LIENANDER ON EL-		700 10000			

See HEMMICK 90 Fig. 7 for other masses 100–10000  $m_{D}$ .

#### LIMITS ON NEUTRAL PARTICLE PRODUCTION

#### Production Cross Section of Radiatively-Decaying Neutral Particle

VALUE (pb)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use th	e followin	g data for averages, fit	s, limits,	etc. • • •
<(2.5-0.5)	95	61 ACKERSTAFF 978	OPAL	
<(1.6-0.9)	95	62 ACKERSTAFF 978	OPAL	$ \begin{array}{ccc} X^0 \to & Y^0 \gamma \\ e^+ e^- \to & X^0 X^0, \\ X^0 \to & Y^0 \gamma \end{array} $

 61  ACKERSTAFF 978 associated production limit is for  $m_{\chi^0}$  = 80–160 GeV,  $m_{\gamma^0}$ =0 from

 $10.0\,{\rm pb}^{-1}$  at  $\sqrt{s}=161$  GeV. See their Fig. 3(a).  62  ACKERSTAFF 97B pair production limit is for  $m_{X^0}=$  40–80 GeV,  $m_{Y^0}{=}0$  from 10.0 pb⁻¹ at  $\sqrt{s} = 161$  GeV. See their Fig. 3(b).

#### Heavy Particle Production Cross Section

VALUE (cm²/N) C	L% EVTS	DOCUMENT ID		TECN_	COMMENT
• • • We do not us	e the following	ng data for averages	s, fits	, limits,	etc. • • •
		63 ADAMS	97B	KTEV	m= 1.2-5 GeV
$< 10^{-36} - 10^{-33}$ 9		⁶⁴ GALLAS	95	TOF	m= 0.5-20 GeV
$<(4-0.3)\times10^{-31}$ 9	5	65 AKESSON	91	CNTR	m = 0-5 GeV
$< 2 \times 10^{-36}$ 9	0 0	⁶⁶ BADIER	86	<b>BDMP</b>	$\tau = (0.05-1.) \times 10^{-8}$ s
$< 2.5 \times 10^{-35}$	0	⁶⁷ GUSTAFSON	76	CNTR	$\tau > 10^{-7} \text{ s}$

1

 63  ADAMS 978 search for a hadron-like neutral particle produced in pN interactions, which

decays into a  $\rho^0$  and a weakly interacting massive particle. Upper limits are given for the ratio to  $K_L$  production for the mass range 1.2–5 GeV and lifetime  $10^{-9}$ – $10^{-4}$  s. See also our Light Gluino Section. ⁶⁴ GALLAS 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c p N interactions decaying with a lifetime of  $10^{-4}$ – $10^{-8}$  s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section  $10^{-29}$ – $10^{-33}$  cm². See Fig. 10.

565 AKESSON 91 limit is from weakly interacting neutral long-lived particles produced in pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for  $\tau>10^{-7}$  s. For  $\tau>10^{-9}$  s,  $\sigma<10^{-30}$  cm⁻²/nucleon is obtained.

 $\delta < 10^{-6}$  Cm. ⁷/nucreon is obtained. 66 BADIER 86 looked for long-lived particles at 300 GeV  $\pi^-$  beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes,  $\mu^+\pi^-$ ,  $\mu^+\mu^-$ ,  $\pi^+\pi^-$ X,  $\pi^+\pi^-\pi^\pm$  etc. See their figure 5 for the contours of limits in the mass- $\tau$  plane for each mode.

67 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) longlived neutral hadrons in the M4 neutral beam. The above typical value is for  $m=3\,$  GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

 $^{^{60}\,\}mathrm{Bound}$  valid up to  $m_{\chi^-}~\sim~100$  TeV.

#### Production of New Penetrating Non- $\nu$ Like States in Beam Dump

VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

⁶⁸ LOSECCO 81 CALO 28 GeV protons

⁶⁸No excess neutral-current events leads to  $\sigma({
m production}) imes \sigma({
m interaction}) imes {
m acceptance}$  $< 2.26 \times 10^{-71} \ \text{cm}^4/\text{nucleon}^2$  (CL = 90%) for light neutrals. Acceptance depends on models (0.1 to 4.  $\times 10^{-4}$ ).

#### LIMITS ON JET-JET RESONANCES

#### Heavy Particle Production Cross Section in $p\overline{p}$

Limits are for a particle decaying to two hadronic jets.

Units(pb)	CL% Mass(GeV)	DOCUMENT ID	TECN	COMMENT
• • • We	do not use the	following data for ave	erages, fits, li	imits, etc. • • •
		⁶⁹ ABE	99F CDF	1.8 TeV $p\overline{p} \rightarrow b\overline{b}+$ anything
		⁷⁰ ABE	97G CDF	1.8 TeV p p → 2 jets
<2603	95 200	71 ABE	93G CDF	1.8 TeV pp → 2jets
< 44	95 400	⁷¹ ABE	93G CDF	1.8 TeV pp → 2jets
< 7	95 600	71 ARF	936 CDE	1.8 TeV nn 2iets

 69 ABE 99F search for narrow  $b\,\overline{b}$  resonances in  $p\,\overline{p}$  collisions at  $\mathcal{E}_{\rm CM}$ =1.8 TeV. Limits on  $\sigma(p\overline{p}\to X+{\rm anything})\times {\rm B}(X\to b\overline{b})$  in the range 3–10³ pb (95%CL) are given for  $m_X=$ 200–750 GeV. See their Table I.

70 ABE 97G search for narrow dijet resonances in  $p\bar{p}$  collisions with 106 pb⁻¹ of data at  $E_{\rm cm} = 1.8$  TeV. Limits on  $\sigma(p\bar{p} \to X + {\rm anything}) \cdot {\rm B}(X \to jj)$  in the range  $10^4 - 10^{-1}$  pb (95%CL) are given for dijet mass m=200–1150 GeV with both jets having  $|\eta| <$  2.0 and the dijet system having  $|\cos\theta^*| < 0.67$ . See their Table I for the list of limits. Supersedes

71 ABE 93G gives cross section times branching ratio into light (d, u, s, c, b) quarks for  $\Gamma$  = 0.02 M. Their Table II gives limits for M = 200–900 GeV and  $\Gamma$  = (0.02-0.2) M.

#### LIMITS ON CHARGED PARTICLES IN e+e-

#### Heavy Particle Production Cross Section in e+e-

Ratio to  $\sigma(e^+e^- \to \mu^+\mu^-)$  unless noted. See also entries in Free Quark Search and Magnetic Monopole Searches.

I

VALUE	<u>CL%</u>	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use th	e followii	ng data for averages	s, fits,	limits,	etc. • • •
			⁷² ACKERSTAFF	98P	OPAL	Q=1,2/3, m=45-89.5
			⁷³ ABREU	97D I	DLPH	GeV Q=1,2/3, m=45-84 GeV
			⁷⁴ BARATE	97ĸ	ALEP	Q=1, m=45-85 GeV
$< 2 \times 10^{-5}$	95		⁷⁵ AKERS	95R	OPAL	Q=1, m= 5-45 GeV
$< 1 \times 10^{-5}$	95		⁷⁵ AKERS	95R	OPAL	Q=2, m= 5-45 GeV
$< 2 \times 10^{-3}$	90		⁷⁶ BUSKULIC	93C	ALEP	Q=1, m=32-72 GeV
<(10 ⁻² -1)	95		77 ADACHI	90c	TOPZ	Q = 1, m = 1-16, 18-27 GeV
$< 7 \times 10^{-2}$	90		⁷⁸ ADACHI	90E	TOPZ	Q = 1, m = 5-25  GeV
$< 1.6 \times 10^{-2}$	95	0	⁷⁹ KINOSHITA	82	PLAS	Q=3-180, m <14.5 GeV
$< 5.0 \times 10^{-2}$	90	0	⁸⁰ BARTEL	80	JADE	Q=(3.4.5)/3 2-12 GeV

 72  ACKERSTAFF 98P search for pair production of long-lived charged particles at  $\sqrt{s}$  between 130 and 183 GeV and give limits  $\sigma < (0.05-0.2)$  pb (95%CL) for spin-0 and spin-1/2 particles with m=45-89.5 GeV, charge 1 and 2/3. The limit is translated to the cross section at  $\sqrt{s}{=}183$  GeV with the s dependence described in the paper. See their

73 ABREU 970 search for pair production of long-lived particles and give limits  $\sigma < (0.4-2.3)\,\mathrm{pb}$  (95%CL) for various center-of-mass energies  $\sqrt{s}$ =130–136, 161, and 172 GeV, assuming an almost flat production distribution in  $\cos\theta$ .

172 GeV, assuming an aimost hat production distribution in cose. 74 BARATE 97K search for pair production of long-lived charged particles at  $\sqrt{s} = 130$ , 136, 161, and 172 GeV and give limits  $\sigma < (0.2-0.4)$  pb (95%CL) for spin-0 and spin-1/2 particles with m=45-85 GeV. The limit is translated to the cross section at  $\sqrt{s}=172$  GeV with the  $\sqrt{s}$  dependence described in the paper. See their Figs. 2 and 3 for limits on J = 1/2 and J = 0 cases.

 75  AKERS 95R is a CERN-LEP experiment with W $_{
m cm}~\sim~m_Z$ . The limit is for the production of a stable particle in multihadron events normalized to  $\sigma(e^+e^- \to hadrons)$ . Constant phase space distribution is assumed. See their Fig. 3 for bounds for  $Q=\pm 2/3$ ,

76 BUSKULIC 93c is a CERN-LEP experiment with W_{CM} = m_Z. The limit is for a pair or single production of heavy particles with unusual ionization loss in TPC. See their Fig. 5 and Table 1.

77 ADACHI 90c is a KEK-TRISTAN experiment with W_{cm} = 52–60 GeV. The limit is for pair production of a scalar or spin-1/2 particle. See Figs. 3 and 4.

 78  ADACHI 90E is KEK-TRISTAN experiment with  $\mathrm{W_{cm}} = 52\text{-}61.4$  GeV. The above limit is for inclusive production cross section normalized to  $\sigma(e^+e^- \rightarrow \mu^+\mu^-)\cdot\beta(3-\beta^2)/2$ , where  $\beta = (1 - 4m^2/W_{cm}^2)^{1/2}$ . See the paper for the assumption about the production

mechanism.

79 KINOSHITA 82 is SLAC PEP experiment at W_{Cm} = 29 GeV using lexan and ³⁹Cr plastic

**NINOSHI A 21S SLAC PEP experiment at W_{CM} = 29 GeV using levan and 3°Cr plastic sheets sensitive to highly ionizing particles.

80 BARTEL 80 is DESY-PETRA experiment with W_{Cm} = 27-35 GeV. Above limit is for inclusive pair production and ranges between 1. × 10⁻¹ and 1. × 10⁻² depending on mass and production momentum distributions. (See their figures 9, 10, 11).

#### Branching Fraction of 70 to a Dair of Stable Channel Harry Franching

Drancing Fracti	un or z · u	a Pair Di Stat	ne Chargeo r	neavy remnions	
VALUE	CL%	DOCUMENT I	TECN_	COMMENT	_
• • • We do not u	se the followi	ng data for avera	ges, fits, limits,	etc. • • •	
$< 5 \times 10^{-6}$	95	⁸¹ AKERS	95R OPAL	m= 40.4-45.6 GeV	
$< 1 \times 10^{-3}$	95	AKRAWY	900 OPAL	m = 29-40  GeV	
91			_	4 -	

 81  AKERS 95R give the 95% CL limit  $\sigma(X\overline{X})/\sigma(\mu\mu) < 1.8 \times 10^{-4}$  for the pair production of singly- or doubly-charged stable particles. The limit applies for the mass range 40.4–45.6 GeV for  $X^{\pm}$  and < 45.6 GeV for  $X^{\pm\pm}$ . See the paper for bounds for  $Q=\pm 2/3,\,\pm 4/3.$ 

#### LIMITS ON CHARGED PARTICLES IN HADRONIC REACTIONS

#### Heavy Particle Production Cross Section

VALUE (nb)	CL% EV	TS DOCUMENT I	<u>TECN</u>	COMMENT	
• • • We do	not use the fo	llowing data for avera	ges, fits, limits	, etc. • • •	
< 0.05	95	⁸² ABE	92J CDF	m=50-200 GeV	
<30-130		83 CARROLL		m=2-2.5 GeV	
<100		0 84 LEIPUNER	73 CNTR	m=3-11 GeV	

82 ABE 92J look for pair production of unit-charged particles which leave detector before decaying. Limit shown here is for m=50 GeV. See their Fig. 5 for different charges and stronger limits for higher mass.

83 CARROLL 78 look for neutral, S=-2 dihyperon resonance in  $pp\to 2K^+X$ . Cross section varies within above limits over mass range and  $p_{lab}=5.1-5.9~{\rm GeV}/c$ .

 84 LEIPUNER 73 is an NAL 300 GeV p experiment. Would have detected particles with lifetime greater than 200 ns.

#### Heavy Particle Production Differential Cross Section

VALUE							
$(cm^2sr^{-1}GeV^{-1})$	CL%	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not	use th	e followin	ig data for average	s, fits	, limits,	etc. •	• •
$< 2.6 \times 10^{-36}$	90	0	85 BALDIN	76	CNTR	-	Q= 1, m=2.1-9.4 GeV
$< 2.2 \times 10^{-33}$	90	0	⁸⁶ ALBROW	75	SPEC	±	Q= ±1, m=4-15 GeV
$<1.1 \times 10^{-33}$	90	0	⁸⁶ ALBROW	75	SPEC	±	Q= ±2, m=6-27 GeV
$< 8. \times 10^{-35}$	90	0	87 JOVANOV	75	CNTR	±	m=15-26 GeV
$<1.5 \times 10^{-34}$	90	0	VONAVOL.	75	CNTR	±	Q= ±2, m=3-10 GeV
$<6. \times 10^{-35}$	90	0	87 JOVANOV	75	CNTR	±	Q= ±2, m=10-26 GeV
$<1. \times 10^{-31}$	90	0	88 APPEL	74	CNTR	±	m=3.2-7.2 GeV
$< 5.8 \times 10^{-34}$	90	0	⁸⁹ ALPER	73	SPEC	±	m=1.5-24 GeV
$< 1.2 \times 10^{-35}$	90	0	90 ANTIPOV	71B	CNTR	_	Q=-, $m=2.2-2.8$
$< 2.4 \times 10^{-35}$	90	0	⁹¹ ANTIPOV	71c	CNTR	_	Q=-, m=1.2-1.7, 2.1-4
$< 2.4 \times 10^{-35}$	90	0	BINON	69	CNTR	-	Q=-, m=1-1.8 GeV
$<1.5 \times 10^{-36}$		0	⁹² DORFAN	65	CNTR		Be target m=3-7 GeV
$< 3.0 \times 10^{-36}$		0	⁹² DORFAN	65	CNTR		Fe target m=3-7

 85  BALDIN 76 is a 70 GeV Serpukhov experiment. Value is per Al nucleus at heta= 0. For other charges in range -0.5 to -3.0, CL = 90% limit is  $(2.6 \times 10^{-36})/|(\text{charge})|$  for mass range  $(2.1-9.4 \text{ GeV}) \times |(\text{charge})|$ . Assumes stable particle interacting with matter as do antiprotons.

 86  ALBROW 75 is a CERN ISR experiment with  $E_{
m cm}=$  53 GeV. heta= 40 mr. See figure 5 for mass ranges up to 35 GeV

 87  JOVANOVICH 75 is a CERN ISR 26+26 and 15+15 GeV pp experiment. Figure 4 covers ranges Q=1/3 to 2 and m=3 to 26 GeV. Value is per GeV momentum.

88 APPEL 74 is NAL 300 GeV pW experiment. Studies forward production of heavy (up to 24 GeV) charged particles with momenta 24–200 GeV (–charge) and 40–150 GeV (+charge). Above typical value is for 75 GeV and is per GeV momentum per nucleon.

 89  ALPER 73 is CERN ISR 26+26 GeV pp experiment. p>0.9 GeV, 0.2 <eta <0.65.

 90  ANTIPOV 71B is from same 70 GeV p experiment as ANTIPOV 71c and BINON 69.

 91  ANTIPOV 71C limit inferred from flux ratio. 70 GeV p experiment.

 92  DORFAN 65 is a 30 GeV/c p experiment at BNL. Units are per GeV momentum per

#### Long-Lived Heavy Particle Invariant Cross Section

VALUE							
(cm ² /GeV ² /N)	<u>CL%</u> E	VTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
• • • We do not use	the followi	ng dat	a for averages, fits,	limit	s, etc. •	• •	
$< 5 \times 10^{-35} - 7 \times 10$		0	93 BERNSTEIN	88	CNTR		
$< 5 \times 10^{-37} - 7 \times 10$	-35 ₉₀	0	⁹³ BERNSTEIN	88	CNTR		
$< 2.5 \times 10^{-36}$	90	0	⁹⁴ THRON	85	CNTR	_	Q=1,
							<i>m</i> =4−12 GeV
$<1. \times 10^{-35}$	90	1	⁹⁴ THRON	85	CNTR	+	Q=1,
							<i>m</i> =4−12 GeV
$<6. \times 10^{-33}$	90	0	⁹⁵ ARMITAGE	79	SPEC		m=1.87
$< 1.5 \times 10^{-33}$	90	0	95 ARMITAGE	70	SPEC		GeV m==1.5−3.0
C1.5 X 10	90	U		13	3FEC		70=1.5=3.0 GeV
		0	⁹⁶ BOZZOLI	79	CNTR	±	Q = (2/3,
							1, 4/3, 2)
$<1.1 \times 10^{-37}$	90	0	97 CUTTS	78	CNTR		m=4-10
		_					GeV
$< 3.0 \times 10^{-37}$	90	0	⁹⁸ VIDAL	78	CNTR		m=4.5-6

 93  BERNSTEIN 88 limits apply at x=0.2 and  $p_{T}=0$ . Mass and lifetime dependence of limits are shown in the regions: m=1.5-7.5 GeV and  $\tau=10^{-8}$ -2  $\times$   $10^{-6}$  s. First number is for hadrons; second is for weakly interacting particles.

#### WIMPs and Other Particle Searches

- 94  THRON 85 is FNAL 400 GeV proton experiment. Mass determined from measured velocity and momentum. Limits are for  $\tau~>3\times 10^{-9}$  s.
- 95 ARMITAGE 79 is CERN-ISR experiment at  $E_{\rm CM}=53$  GeV. Value is for x=0.1 and  $p_T=0.15$ . Observed particles at m=1.87 GeV are found all consistent with being antideuterons. 96 BOZZOLL 79 is CERN-SPS 200 GeV pN experiment. Looks for particle with  $\tau$  larger
- than  $10^{-8}$  s. See their figure 11–18 for production cross-section upper limits vs mass.
- of Tollands of the specific o
- ⁹⁸ VIDAL 78 is FNAL 400 GeV proton experiment. Value is for x=0 and  $p_{T}=0$ . Puts lifetime limit of  $< 5 \times 10^{-8}$  s on particle in this mass range.

#### Long-Lived Heavy Particle Production $(\sigma(\text{Heavy Particle}) / \sigma(\pi))$

VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
• • • We do not	use the following	data for average	s, fit	s, limits,	etc.	
<10-8	•	⁹⁹ NAKAMURA	89	SPEC	±	$Q=(-5/3,\pm 2)$
	n 10	00 BUSSIERE	80	CNTR	+	O = (2/3.1.4/3.2)

- ⁹⁹ NAKAMURA 89 is KEK experiment with 12 GeV protons on Pt target. The limit applies
- for mass  $\lesssim 1.6$  GeV and lifetime  $\gtrsim 10^{-7}$  s.  100  BUSSIERE 80 is CERN-SPS experiment with 200–240 GeV protons on Be and Al target. See their figures 6 and 7 for cross-section ratio vs mass

#### Production and Capture of Long-Lived Massive Particles

VALUE (10 ⁻³⁶ cm ² )	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT
• • • We do not use	the following	g data for average	es, fits,	limits,	etc. • • •
<20 to 800		⁰¹ ALEKSEEV	76	ELEC	$\tau$ =5 ms to 1 day
<200 to 2000		⁰¹ ALEKSEEV	76B	ELEC	$\tau$ =100 ms to 1 day
<1.4 to 9		02 FRANKEL	75	CNTR	$\tau$ =50 ms to 10 hours
<0.1 to 9	0 1	⁰³ FRANKEL	74	CNTR	$\tau$ =1 to 1000 hours

- 101 ALEKSEEV 76 and ALEKSEEV 76B are 61-70 GeV p Serpukhov experiment. Cross section is per Pb nucleus.

  102 FRANKEL 75 is extension of FRANKEL 74.

  103 FRANKEL 74 looks for particles produced in thick Al targets by 300–400 GeV/c protons.

#### Long-Lived Particle Search at Hadron Collisions

Limits are for cross section times branching ratio.

(pb/nucleon)	CL%	<b>EVTS</b>	OOCUMENT IL	TECN	COMMENT
• • • We do	not use th	e follov	ving data for avera	ages, fits, limit	s, etc. • • •
<2	90	0	104 BADIER	86 BDMF	$\tau = (0.05-1.) \times 10^{-8}$ s

104 BADIER 86 looked for long-lived particles at 300 GeV  $\pi^-$  beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes,  $\mu^+\pi^-$ ,  $\mu^+\mu^-$ ,  $\pi^+\pi^-$ X,  $\pi^+\pi^-\pi^\pm$  etc. See their figure 5 for the contours of limits in the mass-r plane for each mode.

#### Long-Lived Heavy Particle Cross Section

VALUE (pb/sr)	<u>C1%</u>	DOCUMENT	10	<u>TECN</u>	COMMENT
• • • We do not	use the following	ig data for avei	rages, fits	, limits,	etc. • • •
<34	95	¹⁰⁵ RAM	94	SPEC	1015< m _{X++} <1085
<75	95	105 _{RAM}			MeV 920 <m<sub>Y++ &lt;1025</m<sub>

 105  RAM 94 search for a long-lived doubly-charged fermion  $X^{++}$  with mass between  $m_N$ and  $m_N+m_\pi$  and baryon number +1 in the reaction  $pp\to X^{++}n$ . No candidate is found. The limit is for the cross section at 15° scattering angle at 460 MeV incident energy and applies for  $\tau(X^{++}) \gg 0.1 \,\mu$ s.

#### LIMITS ON CHARGED PARTICLES IN COSMIC RAYS

#### Heavy Particle Flux in Cosmic Rays

$\frac{(cm^{-2}sr^{-1}s^{-1})}{(cm^{-2}sr^{-1}s^{-1})}$	CL% _	EVT5	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
• • • We do not	use the foll	owing	data for averages, fi	ts, lir	nits, etc.	• •	•
~ 6 × 10 ⁻	9	2	106 SAITO	90			$Q \simeq 14, m \simeq 370 m_D$
< 1.4 × 10 ⁻	12 ₉₀	0	107 MINCER	85			$m \geq 1 \text{ TeV}$
			108 SAKUYAMA		PLAS		$m \sim 1 \text{ TeV}$
< 1.7 × 10 ⁻	11 99	0	109 BHAT	82	cc		
< 1. × 10 ⁻		0	110 MARINI	82	CNTR	±	$Q=1, m \sim 4.5 m_D$
2. × 10	9	3	¹¹¹ YOCK	81	SPRK	±	$Q=1$ , $m \sim 4.5 m_D$
		3	¹¹¹ YOCK	81	SPRK		Fractionally charged
3.0 × 10	9	3	¹¹² YOCK	80	SPRK		m ~ 4.5 m _D
$(4 \pm 1) \times 10^{-1}$	11	3	GOODMAN	79	ELEC		m ≥ 5 GeV
< 1.3 × 10 ⁻	9 90		113 BHAT	78	CNTR	±	m > 1  GeV
< 1.0 × 10	9	0	BRIATORE	76	ELEC		
< 7. × 10 ⁻		0	YOCK	75	ELEC	±	Q >7e or < -7e
> 6. × 10	9	5	¹¹⁴ YOCK	74	CNTR		m >6 GeV
< 3.0 × 10	8	0	DARDO	72	CNTR		
< 1.5 × 10	9	0	TONWAR	72	CNTR		m > 10  GeV
< 3.0 × 10	10	0	BJORNBOE	68	CNTR		m >5 GeV
< 5.0 × 10	11 90	0	JONES	67	ELEC		m=5-15 GeV

- $^{106}\,\mathsf{SAITO}$  90 candidates carry about 450 MeV/nucleon. Cannot be accounted for by conentional backgrounds. Consistent with strange quark matter hypothesis
- Ventional backgrounds. Consistent with strange quark matter importance.

  107 MINCER 85 is high statistics study of calorimeter signals delayed by 20–200 ns. Calibration with AGS beam shows they can be accounted for by rare fluctuations in signals from low-energy hadrons in the shower. Claim that previous delayed signals including BJORNBOE 68, DARDO 72, BHAT 82, SAKUYAMA 83B below may be due to this fake
- effect. 108 SAKUYAMA 83B analyzed 6000 extended air shower events. Increase of delayed particles and change of lateral distribution above 10¹⁷ eV may indicate production of very heavy parent at top of atmosphere.
- BHAT 82 observed 12 events with delay  $> 2.\times 10^{-8}$  s and with more than 40 particles. 1 eV has good hadron shower. However all events are delayed in only one of two detectors in cloud chamber, and could not be due to strongly interacting massive particle.
- 110 MARINI 82 applied PEP-counter for TOF. Above limit is for velocity = 0.54 of light. Limit is inconsistent with YOCK 80 YOCK 81 events if isotropic dependence on zenith
- 111 YOCK 81 saw another 3 events with  $Q=\pm 1$  and m about  $4.5m_p$  as well as 2 events with  $m>5.3m_p$ ,  $Q=\pm 0.75\pm 0.05$  and  $m>2.8m_p$ ,  $Q=\pm 0.70\pm 0.05$  and 1 event with  $m=(9.3\pm3.)m_p$ ,  $Q=\pm0.89\pm0.06$  as possible heavy candidates.
- $^{112} extsf{YOCK}$  80 events are with charge exactly or approximately equal to unity.
- $^{113}\,\mathrm{BHAT}$  78 is at Kolar gold fields. Limit is for  $\tau~>10^{-6}$  s.
- 114 YOCK 74 events could be tritons.

#### Superheavy Particle (Quark Matter) Flux in Cosmic Rays

VALUE (cm ⁻² sr ⁻¹ s ⁻¹ )	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use th	e follow	ing data for average	s, fits	, limits,	etc. • • •
$< 1.8 \times 10^{-12}$	90		115 ASTONE			$m \ge 1.5 \times 10^{-13}$ gram
$< 1.1 \times 10^{-14}$	90		116 AHLEN			$10^{-10} < m < 0.1 \text{ gram}$
$< 3.2 \times 10^{-11}$	90	0	¹¹⁷ NAKAMURA			$m > 1.5 \times 10^{-13}$ gram
$< 3.5 \times 10^{-11}$	90	0	118 ULLMAN			Planck-mass 10 ¹⁹ GeV
$< 7. \times 10^{-11}$	90	0	¹¹⁸ ULLMAN	81	CNTR	$m \leq 10^{16} \text{ GeV}$

- ¹¹⁵ ASTONE 93 searched for quark matter ("nuclearites") in the velocity/c range =  $10^{-3}$ -1. Their Table 1 gives a compilation of searches for nuclearites
- 116 AHLEN 92 searched for quark matter ("nuclearites"). The bound applies to velocity/c <  $2.5 \times 10^{-3}$ . See their Fig. 3 for other velocity/c and heavier mass range.
- 117 NAKAMURA 85 at KEK searched for quark-matter. These might be lumps of strange quark matter with roughly equal numbers of u, d, s quarks. These lumps or nuclearites were assumed to have velocity/c of  $10^{-4}$ – $10^{-3}$ .
- 118  ULLMAN 81 is sensitive for heavy slow singly charge particle reaching earth with vertical velocity 100-350 km/s.

#### Highly Ionizing Particle Flux

VALUE (m ⁻² yr ⁻¹ )	CL% E	VTS	OOCUMENT ID	TECN	COMMENT
• • • We do not use	the follo	wing data	for averages, fits	, limits, etc.	• • •
< 0.4	95	0	KINOSHITA 8	B1B PLAS	Z/β 30-100

#### SEARCH FOR LOW-SCALE GRAVITY EFFECTS

This section contains experimental papers searching for effects of real or virtual gravitons (massless and massive, denoted by G) with observable coupling strength. This is expected if there are extra spacetime dimensions with a size larger than the electroweak scale, in which case the fundamental gravity scale can be around TeV, not  $10^{19}\,$  GeV.

VALUE	OOCUMENT ID	<u>TECN</u>							
• • • We do not use the following data for averages, fits, limits, etc. • • •									
	119 ABBIENDI	99P OPAL							
	120 ACCIARRI	99M L3							
	¹²¹ ACCIARRI	99R L3							
	122 ACCIARRI	995 L3							

- 119 ABBIENDI 99° search for s-channel graviton exchange effects in  $e^+e^- \to \gamma\gamma$  at  $E_{\rm cm}=189$  GeV. The limits  $G_+>660$  and  $G_->634$  are obtained from combined  $E_{\rm cm}=183$  and 189 GeV data, where  $G_\pm$  is a scale related to the fundamental gravity scale.
- 120 ACCIARRI 99M search for the reaction  $e^+e^- \to \gamma G$  and 5-channel graviton exchange effects in  $e^+e^- \to \gamma \gamma$ ,  $W^+W^-$ , ZZ,  $e^+e^-$ ,  $\mu^+\mu^-$ ,  $\tau^+\tau^-$ ,  $q\bar{q}$  at  $E_{\rm CM}=183$  GeV. Limits on the gravity scale are listed in their Tables 1 and 2.
- ¹²¹ ACCIARRI 99R search for the reaction  $e^+e^- \rightarrow \gamma G$  at  $E_{CM}$ =189 GeV. Limits on the gravity scale are listed in their Table 4. 
  122 ACCIARRI 99s search for the reaction  $e^+e^- \rightarrow ZG$  and s-channel graviton exchange
- effects in  $e^+e^-\to\gamma\gamma$ ,  $W^+W^-$ , ZZ,  $e^+e^-$ ,  $\mu^+\mu^-$ ,  $\tau^+\tau^-$ ,  $q\overline{q}$  at  $E_{\rm Cm}=$ 189 GeV. Limits on the gravity scale are listed in their Tables 1 and 2.

# Searches Particle Listings WIMPs and Other Particle Searches

	REF	ERENCES FOR W	/IMPs and Other I	Particle Searches	AKRAWY		PL B252 290	M.Z. Akrawy et al.	(OPAL Collab.)
DE					HEMMICK	90	PR D41 2074	T.K. Hemmick et al.	(ROCH, MICH, OHIO+)
BELLI	00	PR D61 023512	P. Belli et al.	(DAMA Collab.)	SAITO	90	PRL 65 2094	T. Saito et al.	(ICRR, KOBE)
ABBIENDI		PL B465 303	G. Abbiendi et al.	(OPAL Collab.)	NAKAMURA	89	PR D39 1261	T.T. Nakamura et al.	(KYOT, TMTC)
ABE		PRL 82 2038	F. Abe et al.	(CDF Collab.)	NORMAN	89	PR D39 2499	E.B. Norman et al.	(LBL)
ACCIARRI		PL B464 135	M. Acciarri et al.	(L3 Collab.)	BERNSTEIN	88	PR D37 3103	R.M. Bernstein et al.	(STAN, WISC)
ACCIARRI		PL B470 268	M. Acciarri et al.	(L3 Collab.)	CALDWELL	88	PRL 61 510	D.O. Caldwell et al.	(UC\$B, UCB, LBL)
ACCIARRI		PL B470 281	M. Acciarri et al.	(L3 Collab.)	NORMAN	87	PRL 58 1403	E.B. Norman, S.B. Gazes, I	D.A. Bennett (LBL)
AMBRO5IO	99	PR D60 082002	M. Ambrosio et al.	(Macro Collab.)	BADIER	86	ZPHY C31 21	J. Badier et al.	(NA3 Collab.)
BAUDIS	99	PR D59 022001	L. Baudis et al.	(Heidelberg-Moscow Collab.)	MINCER	85	PR D32 541	A. Mincer et al.	(UMD, GMAS, NSF)
BELLI		NP B563 97	P. Belli et al.	(DAMA Collab.)	NAKAMURA	85	PL 161B 417	K. Nakamura et al.	(KEK, INUS)
BERNABEI	99	PL B450 448	R. Bernabei et al.	(DAMA Collab.)	THRON	85	PR D31 451	J.L. Thron et al.	(YALE, FNAL, IOWA)
BERNABEI	99D	PRL 83 4918	R. Bernabei et al.	(DAMA Collab.)	SAKUYAMA		LNC 37 17	H. Sakuyama, N. Suzuki	(MEIS)
BRHLIK	99	PL B464 303	M. Brhlik, L. Roszkowski	,	Also	83	LNC 36 389	H. Sakuyama, K. Watanabe	(MEIS)
DERBIN	99	PAN 62 1886	A.V. Derbin et al.		Also	83D	NC 78A 147	H. Sakuyama, K. Watanabe	
		Translated from YAF 62			Also	83C	NC 6C 371	H. Sakuyama, K. Watanabe	(MEIS)
OOTANI	99	PL B461 371	W. Ootani et al.		BHAT	82	PR D25 2820	P.N. Bhat et al.	(TATA)
ACKERSTAFF		PL B433 195	K. Ackerstaff et al.	(OPAL Collab.)	KINOSHITA	82	PRL 48 77	K. Kinoshita, P.B. Price, D.	Fryberger (ÙCB+)
BERNABEI	98	PL B424 195	R. Bernabei et al.	(ĎAMA Collab.)	MARIN	82	PR D26 1777		(FRAS, LBL, NWES, STAN+)
BERNABEI		PL B436 379	R. Bernabel et al.	(DAMA Collab.)	SMITH	82B	NP B206 333	P.F. Smith et al.	(RAL)
KLIMENKO	98	JETPL 67 875	A.A. Klimenko et al.		KINOSHITA	81B	PR D24 1707	K. Kinoshita, P.B. Price	(UCB)
405		Translated from ZETFP			LOSECCO	81	PL 102B 209	J.M. LoSecco et al.	(MICH, PENN, BNL)
ABE		PR D55 R5263	F. Abe et al.	(CDF Collab.)	ULLMAN	81	PRL 47 289	J.D. Ullman	(LEHM, BNL)
ABREU		PL B396 315	P. Abreu et al.	(DELPHI Collab.)	YOCK	81	PR D23 1207	P.C.M. Yock	(AUCK)
ACKERSTAFF			K. Ackerstaff et al.	(OPAL Collab.)	BARTEL	80	ZPHY C6 295	W. Bartel et al.	(JADE Collab.)
ADAMS		PRL 79 4083	J. Adams et al.	(KTeV Collab.)	BUSSIERE	80	NP B174 1	A. Bussiere et al.	(BGNA, SACL, LAPP)
BARATE		PL B405 379	R. Barate et al.	(ALEPH Collab.)	YOCK	80	PR D22 61	P.C.M. Yock	(AUCK)
BERNABEI	97	ASP 7 73	R. Bernabei et al.	(DAMA Collab.)	ARMITAGE	79	NP B150 87	J.C.M. Armitage et al.	(CERN, DARE, FOM+)
SARSA	97	PR D56 1856	M.L. Sarsa et al.	(ZARA)	BOZZOLI	79	NP B159 363	W. Bozzoli et al.	(BGNA, LAPP, SACL+)
ALESSAND	96	PL B384 316	<ol> <li>A. Alessandrello et al.</li> </ol>	(MILA, MILAI, SASSO)	GOODMAN	79	PR D19 2572	J.A. Goodman et al.	(UMD)
BELLI	96	PL B387 222	P. Belli et al.	(DAMA Collab.)	SMITH	79	NP B149 525	P.F. Smith, J.R.J. Bennett	(RHEL)
Also		PL B389 783 (erratum)		(DAMA Collab.)	BHAT	78	Pramana 10 115	P.N. Bhat, P.V. Ramana M	
BELLI	96C	NC 19C 537	P. Belli et al.	(DAMA Collab.)	CARROLL	78	PRL 41 777	A.S. Carroll et al.	(BNL, PRIN)
BERNABEI	96	PL B389 757	R. Bernabei et al.	(DAMA Collab.)	CUTTS	78	PRL 41 363	D. Cutts et al.	(BROW, FNAL, ILL, BARI+)
COLLAR	96	PRL 76 331	J.J. Collar	(SCUC)	VIDAL	78	PL 77B 344	R.A. Vidal et al.	(COLU, FNAL, STON+)
SARSA	96	PL B386 458	M.L. Sarsa et al.	(ZARA)	ALEKSEEV	76	SJNP 22 531	G.D. Alekseev et ai.	(JINR)
Also	97	PR D56 1856	M.L. Sarsa et al.	(ZARA)			Translated from YAF 22	1021.	(311411)
SMITH	96	PL B379 299	P.F. Smith et al.	(RAL, SHEF, LOIC+)	ALEKSEEV	76B	SJNP 23 633	G.D. Alekseev et al.	(JINR)
SNOWDEN	96	PRL 76 332	D.P. Snowden-Ifft, E.S. I				Translated from YAF 23		` '
AKERS	95R	ZPHY C67 203	R. Akers et al.	(OPAL Collab.)	BALDIN	76	SJNP 22 264	B.Y. Baldin et al.	(JINR)
GALLAS	95	PR D52 6	E. Gallas et al.	(MSU, FNAL, MIT, FLOR)			Translated from YAF 22		
GARCIA	95	PR D51 1458	E. Garcia et al.	(ZARA, SCUC, PNL)	BRIATORE	76	NC 31A 553	L. Briatore et al.	(LCGT, FRAS, FREIB)
QUENBY	95	PL B351 70	J.J. Quenby et al.	(LOIC, RAL, SHEF+)	GUSTAFSON	76	PRL 37 474	H.R. Gustafson et al.	(MICH)
SNOWDEN		PRL 74 4133	D.P. Snowden-Ifft, E.S. I		ALBROW	75	NP B97 189	M.G. Albrow et al.	(CERN, DARE, FOM+)
Also	96	PRL 76 331	J.J. Collar	(SCUC)	FRANKEL	75	PR D12 2561	S. Frankel et al.	(PENN, FNAL)
Also	96	PRL 76 332	D.P. Snowden-Ifft, E.S. I		JOVANOV	75	PL 56B 105	J.V. Jovanovich et al.	(MANI, AACH, CERN+)
BECK	94	PL B336 141	M. Beck et al.	(MPIH, KIAE, SÄSSO)	YOCK	75	NP B86 216	P.C.M. Yock	(AUCK, SLAC)
RAM	94	PR D49 3120	S. Ram et al.	(TELA, TRIU)	APPEL	74	PRL 32 428	J.A. Appel et al.	(COLU, FNAL)
ABE	93G	PRL 71 2542	F. Abe et al.	(CDF Collab.)	FRANKEL	74	PR D9 1932	S. Frankel et al.	(PENN, FNAL)
ASTONE	93	PR D47 4770	P. Astone et al.	(ROMA, ROMAI, CATA, FRAS)	YOCK	74	NP B76 175	P.C.M. Yock	(AUCK)
BUSKULIC		PL B303 198	D. Buskulic et al.	(ALEPH Collab.)	ALPER	73	PL 46B 265		CERN, LIVP, LUND, BOHR+)
YAMAGATA	93	PR D47 1231	T. Yamagata, Y. Takami		LEIPUNER	73	PRL 31 1226	L.B. Leipuner et al.	(BNL, YALE)
ABE	92J	PR D46 R1889	F. Abe et al.	(CDF Collab.)	DARDO	72	NC 9A 319	M. Dardo et al.	(TORI)
AHLEN	92	PRL 69 1860	S.P. Ahlen et al.	(MACRO Collab.)	TONWAR	72	JPA 5 569	S.C. Tonwar, S. Naranan, B	
BACCI	92	PL B293 460	C. Bacci et al.	(Beijing-Roma-Saclay Collab.)	ANTIPOV		NP B31 235	Y.M. Antipov et al.	(SERP)
VERKERK	92	PRL 68 1116	P. Verkerk et al.	(ENSP, SACL, PAST)	ANTIPOV		PL 34B 164	Y.M. Antipov et al.	(SERP)
AKESSON	91	ZPHY C52 219	T. Akesson et al.	(HELIOS Collab.)	BINON	69	PL 30B 510	F.G. Binon et al.	(SERP)
REUSSER	91	PL B255 143	D. Reusser et al.	(NEUC, CIT, PSI)	BJORNBOE	68	NC B53 241	J. Bjornboe et al.	(BOHR, TATA, BERN+)
ADACHI	90C	PL B244 352	I. Adachi et al.	(TOPAZ Collab.)	JONES	67	PR 164 1584		WISC, LBL, UCLA, MINN+)
ADACHI *	90E	PL B249 336	I. Adachi et al.	(TOPAZ Collab.)	DORFAN	65	PRL 14 999	D.E. Dorfan et al.	(COLU)